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Abstract

This thesis presents experiments probing physics in the crossover between Bose-

Einstein condensation (BEC) and BCS superconductivity using an ultracold gas

of atomic fermions. Scattering resonances in these ultracold gases (known as

Feshbach resonances) provide the unique ability to tune the fermion-fermion in-

teractions. The work presented here pioneered the use of fermionic Feshbach

resonances as a highly controllable and tunable system ideal for studying the

BCS-BEC crossover problem. Here pairs of fermionic atoms have some proper-

ties of diatomic molecules and some properties of Cooper pairs. I present studies

of a normal Fermi gas at a Feshbach resonance and the work required to cool

the gas to temperatures where superfluidity in the crossover could be observed.

These studies culminated in our observation of a phase transition at the cusp

of the BCS-BEC crossover through condensation of fermionic atom pairs. I also

discuss subsequent work that confirmed the crossover nature of the pairs in these

condensates.
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Chapter 1

Introduction

1.1 Historical perspective

The phenomenon of superconductivity/superfluidity has fascinated and occupied

physicists since the beginning of the 20th century. In 1911 superconductivity was

discovered when the resistance of mercury was observed to go to zero below a crit-

ical temperature [1]. Although liquid 4He was actually used in this discovery, the

superfluid phase of liquid 4He was not revealed until the 1930s when the viscosity

of the liquid below the λ point (2.17 K) was measured [2, 3]. Much later, 3He,

the fermionic helium isotope, was also found to be superfluid at yet a much colder

temperature than 4He [4]. Relatively recently in 1986, high-temperature super-

conductors in Copper-oxide materials further enlarged the list of superconducting

materials [5].

These “super” systems, which I will refer to in general as superfluids, are listed

in Fig. 1.1, but they are only classic examples. There are many other physical

systems that display superfluid properties from astrophysical phenomena such

as neutron stars, to excitons in semiconductors, to atomic nuclei [6]. Although

the physical properties of these systems vary widely, they are all linked by their

counterintuitive behaviors such as frictionless flow and quantized vorticity. The

manifestation of these effects depends upon, for example, whether the system in

question is electrically charged (superconductors) or neutral (superfluids). Be-

sides these intriguing properties, there are many practical reasons for the intense

research in this field; arguably the most useful super-systems are superconduc-

2
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tors, and if a robust room-temperature superconductor were created it would be

an amazing discovery.
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Figure 1.1: Classic experimental realizations of superfluidity/superconductivity
arranged according to the binding energy (twice the excitation gap, Egap) of
the constituent fermions. The vertical axis shows the corresponding transition
temperature, Tc, to a superfluid/superconducting state compared to the Fermi
temperature, TF . (Figure reproduced with permission from Ref. [7].)

Some of the first attempts to understand the phenomenon of superfluidity were

in the context of Bose-Einstein condensation (BEC) of an ensemble of bosonic

particles [8]. BEC is a consequence of the quantum statistics of bosons, which

are particles with integer spin, and it results in a macroscopic occupation of a

single quantum state (Fig. 1.2) [9, 10, 11]. Fritz London proposed in 1938 that

superfluid 4He was a consequence of Bose-Einstein condensation of bosonic 4He

[12]. (4He is a boson because it is made up of an even number of 1/2 integer

spin fermions - electrons, protons, and neutrons.) Physicists such as Blatt et al.

pushed a similar idea in the context of superconductors in proposing that “at

low temperature, charge carrying bosons occur, e.g., because of the interaction of

electrons with lattice vibrations” [13]. For the case of tightly bound bosons, such

as 4He, London’s hypothesis turned out to be correct. However, the very strong

interactions in 4He made it difficult to verify the existence of condensation [14],

and for many years 4He studies did not mention BEC.

In the case of superconductors, discussion of BEC was overshadowed by the
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amazing success in 1957 of the Bardeen-Cooper-Schrieffer (BCS) theory of su-

perconductivity [15, 16]. In 1956 Cooper found that a pair of fermions in the

presence of a filled Fermi sea (Fig. 1.2) will form a bound pair with an arbitrarily

small attractive interaction [17]. The BCS theory solved this problem in the case

where many pairs can form in the Fermi sea. The result predicted (among other

things) the formation of a minimum excitation energy, or energy gap, in the con-

ductor below a critical temperature Tc. A great many properties of conventional

superconductors can be understood as consequences of this energy gap.

Figure 1.1 sorts the classic superfluid systems according to the strength of

the interaction between the fermions. A key aspect of the classic BCS theory is

that it applies to the perturbative limit of weak attractive interactions and hence

is only an exact theory for the far right side of Fig. 1.1. The theory perfectly

described conventional superconductors for which the attraction between fermions

is ∼10,000 times less than the Fermi energy, EF . The BCS ground state was also

able to accurately describe superfluid 3He and many (although arguably not all

[18]) aspects of high-Tc superconductors. The theory in its original form, however,

did not at all apply to the case of the tightly bound boson, 4He.

Fermi® E

spin

spin

bosons:
integer spin

fermions:
half-integer spin

Figure 1.2: Quantum statistics: Bosons versus fermions with weak interactions at
T = 0. Bosons form a BEC in which all of the bosons macroscopically occupy a
single quantum state. Due to the Pauli exclusion principle fermions form a Fermi
sea in which each energy state up to the Fermi energy is occupied.

In 1995 a completely new system joined 4He on the left side of Fig. 1.1.

Here the composite bosons were alkali atoms, such as 87Rb, that had been cooled

as a gas down to nanoKelvin temperatures via laser cooling and evaporative
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cooling [19, 20, 21]. At these temperatures the thermal deBroglie wavelength

(λdeBroglie =

√

2πh̄2

mkbT
) of the particles becomes on order of the interparticle spacing

in the gas and a Bose-Einstein condensate is formed (Fig. 1.3(a)) [22, 23]. In

contrast to 4He the alkali BEC that was created was weakly interacting, making

the condensation stunningly visible, as shown in Fig. 1.3(b). Experiments also

observed that condensates behave as coherent matter waves [24] and verified the

superfluid nature of a condensate [25, 26]. In this way both the BEC and su-

perfluid properties could be clearly seen in one system and understood extremely

well theoretically [27]. However, the fact that the dilute gas BEC was found to be

a superfluid was not at all a surprise. Although a long and complicated history

was required, physicists now understand the basic connection between BEC and

superfluidity [28]. It is commonly accepted that superfluidity is always intimately

connected to the macroscopic occupation of a quantum state.

Besides providing the first clear evidence for BEC, ultracold alkali gases opened

a world of possibilities for studying superfluid systems. Many of the initial experi-

ments with alkali BEC could be perfectly described by existing theories. However,

recent work in the field of BEC has developed techniques to reach a regime that

is more relevant for the outstanding theoretical questions in condensed matter

physics, which are most commonly in strongly correlated systems. For example,

experiments achieved BEC with much stronger interatomic interactions than typ-

ical alkali gases; furthermore, these interactions could even be controllably tuned

[29, 30]. A phase transition to the highly-correlated Mott insulator state was ob-

served through studies of quantum gases in optical lattice potentials [31]. These

bosonic systems require theory that goes beyond mean-field interactions; yet they

have a controllability rarely found in solid state materials.

At the same time as the creation of the first strongly interacting Bose gases, the

techniques used to create alkali BECs were applied to the other class of quantum

particles, fermions. To create a Fermi gas of atoms experimenters applied the

same cooling techniques as those used to achieve BEC, simply replacing a bosonic

atom, such as 87Rb or 23Na, with an alkali atom with an odd number of electrons,

protons, and neutrons. (The two such stable alkali atoms are 40K and 6Li.) Still,

evaporatively cooling fermions required ingenuity. Due to the quantum statistics

of fermions the s-wave collisions required for evaporative cooling are not present at

ultracold temperatures in a gas of spin-polarized, identical fermions. The solution
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Figure 1.3: Bose-Einstein condensation in a dilute gas of 87Rb atoms. (a) Phase
space density criterion for condensation. (b) Momentum distributions of 87Rb
atoms at three values of the temperature compared to the critical temperature.
(Figure adapted by M. R. Matthews from data in Ref. [22].)

to this problem was to introduce a second particle for the evaporative cooling,

either another state of the fermionic atom or another species entirely. The first

gas of fermionic atoms to enter the quantum degenerate regime was created at

JILA in 1999 using 40K [32]. The observation in these experiments was not a

phase transition, as in the Bose gas, but rather the presence of more and more

energy than would be expected classically as the Fermi gas was cooled below the

Fermi temperature. Many more Fermi gas experiments, using a variety of cooling

techniques, followed [33, 34, 35, 36, 37, 38, 39, 40, 41].

The next goal after the creation of a normal Fermi gas of atoms was to form a

superfluid in a paired Fermi gas. In conventional superconductors s-wave pairing

occurs between spin-up and spin-down electrons. The hope was that s-wave pair-

ing could similarly occur with the creation of a two-component atomic gas with

an equal Fermi energy for each component. Such a two-component gas can be re-

alized using an equal mixture of alkali atoms in two different hyperfine spin states.

The simplistic view was that a BCS state would appear if the temperature of this

two-component gas were cold enough and the interaction between fermions attrac-

tive and large enough. However, for typical interactions the temperatures required

to reach a true BCS state were far too low compared to achievable temperatures

(at that point) to imagine creating Cooper pairs. Stoof et al. noted that the

interaction between 6Li atoms was large compared to typical values (|a| ≈ 2000

a0), as well as attractive, bringing the BCS transition temperature closer to re-
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alistic temperatures [42, 43]. It was then recognized that a type of scattering

resonance, known as a Feshbach resonance, could allow arbitrary changes in the

interaction strength. Theories were developed that explicitly treated the case

where the interactions were enhanced by a Feshbach resonance [44, 7, 45].

In these proposals, however, increasing the interactions beyond the perturba-

tive limit of BCS theory meant that the physical system would not be simply a

BCS state, but rather something much more interesting. It was predicted that

a Feshbach resonance would allow the realization of a system with an excitation

gap on the order of the Fermi energy and provide the ability to continually tune

within this region (green box in Fig. 1.1) [7]. This system, if achievable, would

be the experimental realization of a theoretical topic that dated back to the late

1960s, the BCS-BEC crossover. In a theory originally put forth by Eagles and

later by Leggett, it was proposed that the BCS wavefunction was more generally

applicable than just to the weakly interacting limit [46, 47]. As long as the chem-

ical potential is found self-consistently as the interaction is increased, the BCS

ground state can (at least qualitatively) describe everything from Cooper pair-

ing to BEC of composite bosons made up of two fermions, i.e., the fundamental

physics behind all of the systems in Fig. 1.1 [46, 47, 48, 49, 50, 51]. After nearly a

century of 4He and superconductors being considered separate entities, an experi-

mental realization of a superfluid in the BCS-BEC crossover regime would provide

a physical link between the two. More recent interest in crossover theories has

also come in response to the possibility that they could apply to high-Tc supercon-

ductors. These superconductors differ from normal superconductors both in their

high transition temperature and the apparent presence of a pseudogap, which are

both characteristics expected to be found in a Fermi gas in the crossover [8, 18].

Thus, starting in about 2001 (the year I started work on this thesis) a major

goal in dilute Fermi gas experiments was to achieve a superfluid Fermi gas at a

Feshbach resonance, often referred to as a “resonance superfluid” [7]. However,

achievement of this experimental goal was a number of years and many steps

away. The existence of Feshbach resonances had been predicted by atomic physi-

cists both in the 6Li and in the 40K systems [52, 53], and the first step was to

locate these resonances [54, 55, 56, 57]. Subsequent experimental studies appeared

at an amazingly fast rate with contributions from a large number of groups, in

particular those of R. Grimm (Innsbruck), R. Hulet (Rice), D. Jin (JILA), W.
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Ketterle (MIT), C. Salomon (ENS), and J. Thomas (Duke). Experimenters dis-

covered interesting properties of the normal state of a strongly interacting Fermi

gas [58, 59, 60, 61, 62]. Then Fermi gases were reversibly converted to gases of

diatomic molecules using Feshbach resonances [63, 64, 65, 66]. The observation

that these molecules were surprisingly long-lived created many opportunities for

further study [64, 66, 65, 67]. Condensates of diatomic molecules in the BEC

limit were achieved [68, 69, 70, 71, 72]; then these condensates were found to exist

in the crossover regime [73, 74], signalling the existence of a phase transition in

the BCS-BEC crossover regime. Collective excitations [75, 76, 77] and thermody-

namic properties [39, 71, 78, 79] were also measured, and the nature of the pairs

was probed in a variety of ways [80, 81, 72]. Most recently a vortex lattice was

even created in the crossover [82].

Developing these techniques to access and probe the BCS-BEC crossover was

a challenging adventure for the field. Experiments in the crossover are inherently

difficult because the strong interactions make probing difficult. Some of the tech-

niques used in the end were borrowed from those developed for alkali BEC, while

others were taken from condensed matter physics. Some were new inventions

that relied on the unique ability to tune the interaction at arbitrary rates using a

Feshbach resonance.

So far the experiments that have been carried out with dilute Fermi gases

near Feshbach resonances have been qualitatively consistent with classic BCS-

BEC crossover theory. The excitation gap is on the order of the Fermi energy;

the system crosses a phase transition to a superfluid state. Quantitatively though

there is much work to be done. In tandem with these experiments, sophisticated

theories of the crossover have been developed that are too numerous to list here,

but are actively being pursued in groups such as those of A. Bulgac, K. Burnett,

J. Carlson, S. Giorgini, A. Griffin, H. Heiselberg, T. L. Ho, M. Holland, K. Levin,

E. J. Mueller, M. Randeria, C. A. R. Sa de Melo, G. Shlyapnikov, S. Strinati, S.

Stringari, B. Svistinov, E. Timmermans, and P. Törmä. In time it is expected

that the BCS-BEC crossover system provided by dilute Fermi gases should be

able to rigorously test these theories.

The power to test these many-body theories comes from the ability to create

a very clean strongly interacting Fermi system. In principle the density and

two-fermion interaction in the sample can be known precisely and the s-wave



CHAPTER 1. INTRODUCTION 9

pairing fully characterized as a function of the interaction strength. The end

result could be a fully understood physical system that connects the spectrum

of pairing from BCS to BEC, uniting the basic physics surrounding “super”

systems. On the other hand, the complicated materials physics involved in, for

example high-Tc superconductors, cannot be elucidated in these clean crossover

experiments. Still the hope is that an understanding of the basic physics will

provide a solid foundation for studies of real materials.

1.2 My work: Personal perspective

In my thesis work I carried out some of the first experimental work studying

fermions in the BCS-BEC crossover in a dilute atomic system. Co-workers and

I performed these experiments in the group of D. Jin at JILA between 2001 and

2005 using 40K atoms. As outlined above this was an exciting time in the field

of Fermi gases. In 2001 in our lab at JILA the technology existed to create

two-component Fermi gases at temperatures around 0.25 TF , as outlined Brian

DeMarco’s Ph.D. thesis [83]. Predictions had been made for the existence of a

superfluid state near a Feshbach resonance for a Fermi gas on the order of this

temperature [44, 7, 45], but to realize this state was a daunting task.

The experiments that had been done on Fermi gases as of 2001 were basically

studies of ideal (weakly interacting) Fermi gases. To realize pairing and superflu-

idity in our gas of 40K atoms required tackling the problem of strongly interacting

Fermi gases at Feshbach resonances. It was predicted that to access Feshbach

resonances in our system we would have to utilize the lowest energy states of the

hyperfine ground state of 40K [53]. Up to the start of my thesis work all of the

experiments with 40K Fermi gases were done with the highest energy spin states,

which could be trapped in a magnetic trap. To do experiments with the lowest

energy states we had to introduce an alternative trap, an optical dipole trap. At

the time this type of trap was less proven in the world of ultracold atoms than

magnetic traps. Our group was first of the many ultracold gas experiments at

JILA to utilize an optical trap. This meant I did a large amount of debugging

of optical trap technology; throughout my thesis work I was constantly improv-

ing our optical trap configuration to make our trap more stable or to create trap

parameters more suitable to current experiments.
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In the early days of my thesis work many physicists were skeptical that Fesh-

bach resonances could actually be used to realize a stable superfluid Fermi system.

The resonances that had been observed in Bose gases were associated with ex-

tremely fast inelastic decay of the trapped gas [29, 84, 85]. These decay processes,

which most often stem from three-body collisions, can quickly turn a hard-earned

quantum gas into a classical gas of atoms [86, 87, 88, 89]. Carl Wieman’s group

at JILA produced the only experiments studying BEC near a Feshbach resonance

over long time scales [30]. In this group 85Rb BECs were studied at very low den-

sities, where two-body elastic collisions dominate over three-body collisions. For

two-component Fermi gases three-body decay processes were expected to be sup-

pressed compared to the Bose case [90, 91], due to the Pauli exclusion principle,

but there was a fair amount of contention about the degree of this suppression.

In our early experiments we found that these inelastic decay processes were not

as large as in the Bose gas case, but still not negligible. In fact a large fraction of

my time was spent devising ways to make measurements of the interesting physics

on a time scale faster than inelastic decay.

An additional experimental challenge was creating a sufficiently cold Fermi gas

near a Feshbach resonance in our optical dipole trap. To be certain of achieving the

predicted phase transition, temperatures well below the predicted Tc would have to

be achieved. As I mentioned above, two-component Fermi gases at temperatures

of ∼ 0.25 TF could be created in our magnetic trap as of 2001. However, it turned

out that we would have to reach temperatures ∼ 0.1 TF to clearly observe a phase

transition in our system [73]. Besides cooling to these temperatures we also had

to find a way to get such a cold Fermi gas to the required magnetic fields and spin

states for the Feshbach resonance without heating the gas. A solution to both

of these problems was to introduce cooling of our Fermi gas in our optical dipole

trap that supplemented the cooling of the gas in the magnetic trap. At first the

evaporation in the optical trap was less efficient than that in the magnetic trap due

to large heating rates in optical dipole trap. We were able to isolate the source of

the heating to position stability of the trapping beam, and we fixed this problem

by creating very stable optics configurations. In our improved optical dipole trap

there was an even lower heating rate than had previously been achieved in our

magnetic trap. This resulted in reaching record low Fermi gas temperatures on

order of T/TF = 0.1 [59]. (These temperatures remain the coldest achievable



CHAPTER 1. INTRODUCTION 11

temperatures in 40K systems.) Further, since this gas was already in the optical

trap in a two-component spin mixture it was poised for studies at the Feshbach

resonance.

Much of our early work on Feshbach resonances concentrated on the dramatic

changes in collisional properties of our fermionic atoms [54, 57, 59]. A turning

point in our experiments and my thesis work occurred in 2003 when we were able

to reversibly create molecules in the Feshbach resonance state from our fermionic

atoms [63]. The resulting gas of bosonic molecules was a completely different

system than the ideal Fermi gas we had started with. In these experiments we

were able to directly detect the molecules we created to provide the first conclusive

evidence of Feshbach molecule creation in bosonic or fermionic systems. This

paved the way for the creation of Feshbach molecules in a variety of ultracold gas

systems.

Our creation of Feshbach molecules was followed rapidly by the observation

of a BEC of molecules [68]. Then in late 2003 my thesis work culminated in

the observation of a phase transition in the crossover through condensation of

fermionic atom pairs [73]. Measuring these fermionic pair condensates required

inventing a novel method to extract the momentum distribution of the pairs. The

method we came up with relied heavily upon very fast control of magnetic fields

at our atoms. Work to create and control fast magnetic-field ramps for these

experiments was also a large component of my thesis.

It is clear in retrospect that we realized BCS-BEC crossover physics with our

Fermi gas near a Feshbach resonance. However, within the experimental com-

munity this understanding only gradually evolved. Early on experimentalists

were mainly interested in achieving large negative scattering lengths because this

is where they expected to find the largest transition temperatures to a Cooper

paired state. Often little attention was payed to the fact that BCS theory does

not apply to systems with arbitrarily large scattering length. This fact came

to be recognized in time, but still the atomic physics community was not famil-

iar with all of the condensed matter literature on the subject of the BCS-BEC

crossover. For example the seminal papers of Eagles, Leggett, and Nozieres and

Schmitt-Rink were cited in none of the early experimental papers. Another point

of confusion was the relation between classic crossover theory and the physics

at Feshbach resonances. In particular, the role of the closed channel associated
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with the Feshbach resonance was a point of contention. For a Feshbach resonance

with relatively weak coupling (a narrow resonance) the closed channel does play

a large role in the physics, while for a Feshbach resonance with strong coupling (a

broad resonance) the system very well approximates classic crossover theory. To

resolve the role of the closed channel in experiments in 40K and 6Li the field had to

come to grips with the definition of broad and narrow Feshbach resonances. With

these definitions it was clear that the commonly used 40K and 6Li resonances were

indeed broad resonances for which the closed channel plays little role.

The goal in my thesis work after realizing condensates in the crossover was to

design experiments to study crossover physics. One challenge in designing these

experiments was to choose measurements that could be performed on a time scale

fast compared to inelastic decay of the gas. We were able to make a number

of measurements that revealed the crossover nature of the pairs. We measured a

particular excitation spectrum of the gas in the crossover as well as the momentum

distribution of the atoms in the crossover [81, 78]. Studies of the crossover have

also been successfully continued by the new graduate students in the lab.

1.3 Contents

In this thesis I will not include every aspect of the experiments we completed;

instead I will concentrate on our key contributions to the understanding of BCS-

BEC crossover physics in Fermi gases. The full range of experiments is outlined

in Appendix A through a list of published articles.

In the first few chapters of this thesis I discuss theory that is necessary to

understand experiments presented in later chapters. The goal is not to rigorously

derive modern theories, but rather to convey the mindset that many experimen-

talists currently use to think about the crossover problem with atomic Fermi

gases. Chapter 2 presents the ideas of BCS-BEC crossover physics through sim-

plified theory. Chapter 3 introduces Feshbach resonances and discusses how well

the Feshbach resonance systems reproduce conditions for the classic “universal”

BCS-BEC crossover problem.

The main body of the thesis presents experiments using an ultracold gas of
40K atoms. Chapter 4 describes cooling methods and temperature measurement

techniques. Chapter 5 contains experiments that probe the presence of Feshbach
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resonances in the 40K system and study their ability to tune atomic scattering

properties. Chapter 6 introduces the creation of molecules from a Fermi gas of

atoms, which is the analog of the BCS-BEC crossover in the normal state. Chap-

ter 7 concentrates on the stability of fermionic atoms and pairs against inelastic

collisions in the presence of a Feshbach resonance; this is a subject of practical

importance to the ability to study the BCS-BEC crossover with a Fermi gas of

atoms. Chapter 8 describes the first experiments to observe a phase transition in

a Fermi gas of atoms in the BCS-BEC crossover regime. Chapter 9 focuses on

a measurement of the momentum distribution of the pairs in the crossover; this

measurement is an important probe of the nature of the pairs in the crossover.

Chapter 10 discusses some of the most relevant additions and changes to the ap-

paratus of Ref. [32] that were required to access the BCS-BEC crossover physics

described in this thesis.

A portion of this thesis, mainly chapters 1-9, was published in a chapter of Vol.

54 of the Advances in Atomic, Molecular, and Optical Physics series published

by Elsevier [92]. Specific sections are also reprinted in an overview of Fermi gas

experiments to appear in the Proceedings of the International School of Physics

“Enrico Fermi” [93].



Chapter 2

BCS-BEC crossover physics

To understand the experimental work presented in this thesis it is helpful to be

familiar with BCS-BEC crossover physics. In this chapter I present the theory

of the BCS-BEC crossover, first from a purely qualitative point of view and then

from a slightly more quantitative perspective. In this quantitative perspective it

is not my goal to present the most sophisticated theory, but rather a theory that

introduces important parameters and illustrates the key differences between the

crossover problem and the BCS limit. Lastly I discuss some of the unanswered

questions related to the crossover problem; this conveys a sense of the importance

of experimental studies of crossover physics.

2.1 Pairing in a Fermi gas of atoms

As we have seen, superfluids are fundamentally associated with the quantum

properties of bosons. Since all visible matter is made up of fermions, creating

a superfluid most often requires pairing of fermions. The simplest (although

historically not the most famous) way to imagine pairing fermions is to create

a two-body bound state of the two fermions. Two half-integer spin fermions

when paired will produce an integer spin particle, which is a composite boson. In

the case of experiments discussed in this thesis the fermionic particles are atoms;

this makes such a two-body bound state a diatomic molecule. Below a critical

temperature an ensemble of these diatomic molecules will form a BEC. The left

side of Fig. 2.1 represents a superfluid containing these type of pairs. The two

14
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colors represent fermions in two different spin states; two states are required if

the fermions are to pair via s-wave (l = 0) interactions.

diatomic molecules         strongly interacting pairs          Cooper pairs

BEC BCS

Figure 2.1: Cartoon illustration of the continuum of pairing in the BCS-BEC
crossover.

In other pairing mechanisms, such as Cooper pairing, the underlying fermionic

nature of the system is much more apparent. Cooper considered the problem of

two fermions with equal and opposite momentum outside a perfect Fermi sea [17].

The energy of the two fermions turns out to be less than the expected value of 2EF

for arbitrarily weak attractive interactions. This result is in surprising contrast to

the result of the problem of two fermions in vacuum; in this case there will not be

a bound state until the interaction reaches a certain threshold. The key difference

between the two situations arises from Pauli blocking, which in the Cooper pair

case prevents the two fermions under consideration from occupying momentum

states k < kF , where kF is the Fermi wavevector [94].

Considering only one pair of electrons as free to pair on top of a static Fermi

sea is not a sufficient solution to the pairing problem. All fermions should be

allowed to participate in the pairing, and we expect that pairs should form until

an equilibrium point is reached. At this equilibrium point the remaining ensemble

of fermions is disturbed enough from a Fermi sea configuration to no longer lead

to a bound state at the given interaction strength [95]. The BCS state is an

approximate solution to this many-body problem. A description of the full BCS

theory is beyond the scope of this current discussion, but is presented in the

original papers [15, 16] and discussed in numerous books, for example Refs. [94,

95]. Qualitatively the BCS state consists of loose correlations between fermions
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across the Fermi surface in momentum space (Fig. 2.1 right side). Spatially

the pairs are highly overlapping and cannot simply be considered to be composite

bosons. In the BCS limit the momentum distribution only changes from the usual

Fermi sea in an exponentially small region near the Fermi surface.

It is interesting to consider what happens if diatomic molecules become more

and more weakly bound, to the point where the binding energy of the molecules,

Eb, becomes less than the Fermi energy, EF . One could also consider increasing

the interaction energy of a Cooper paired state until it is close to EF . The essence

of the BCS-BEC crossover is that these two sentences describe the same physical

state. As the interaction between fermions is increased there will be a continual

change, or crossover, between a BCS state and a BEC of diatomic molecules. The

point where two fermions in vacuum would have zero binding energy is considered

the cusp of the crossover problem, and pairing in such a state is represented in the

middle of Fig. 2.1. These pairs have some properties of diatomic molecules and

some properties of Cooper pairs. Many-body effects are required for the pairing,

as with the BCS state, but there is some amount of spatial correlation, as with

diatomic molecules. The pair size is on the order of the spacing between fermions,

and the system is strongly interacting.

2.2 Varying interactions

It is instructive to consider a physical situation that will allow the realization

pairing throughout the crossover (Fig. 2.1) [47]. Suppose we start with an attrac-

tive potential between two atomic fermions in vacuum, such as the square well

potential with characteristic range r0 shown in Fig. 2.2. If this potential is very

shallow there is a weak attractive interaction between the fermions. If we make

this potential deeper the interaction between fermions becomes stronger, and for

a strong enough attraction a bound molecular state will appear. This molecule

will become more and more deeply bound as the potential becomes deeper.

The interaction in this system can be characterized by the s-wave scattering

length a. The quantity a comes out of studying two-body, low-energy scattering

and is related to the s-wave collision cross section through σ = 4πa2. The top

of Fig. 2.2 shows a pictorial representation of a. Just before the bound state

appears a is large and negative, corresponding to a strong attractive interaction.
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a <0

a >0

a <0
attractive

-1/a

E
b

a >0
repulsive a 8

r0 r0

r r

Figure 2.2: Scattering wavefunctions in the presence of an attractive potential
(right) and a more deeply attractive potential (left), in a regime where a weakly
bound state of the potential (dashed line) is near threshold. r here describes the
relative position of two distinguishable fermions. The scattering length diverges
as the bound state moves through threshold (bottom).
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As the bound state moves through threshold a diverges and then becomes large

and positive, corresponding to a strong repulsive interaction. When a is much

larger than r0, the interaction is independent of the exact form of the potential,

and a > 0 is universally related to the binding energy of the two-body bound

state through Eb = h̄2

ma2
, where m is the mass of a fermion [96].

Now if we consider an ensemble of many fermions under the situation in Fig.

2.2, we have a system that can be tuned from BCS to BEC simply by tweaking the

attractive potential. To the far right we have a small negative a and thus the BCS

limit. In the opposite limit we have an ensemble of diatomic molecules, hence the

BEC limit. It is important to note that although the interaction between fermions

in pairs is strongest in the BEC limit, from the point of view of collisions in the

gas the BEC limit is actually weakly interacting because the molecule-molecule

interaction is weak.1 The most strongly interacting gas from the point of view

of collisions occurs near the divergence of a. Here many-body calculations are

difficult because there is no small expansion parameter. The precise point at

which a diverges is known as unitarity. Here the only length scale in the problem

is 1/kF , giving this point many unique properties [98, 99, 100, 101].

2.3 Simple theory

BCS theory was originally applied in the limit where the interaction energy is

extremely small compared to the Fermi energy. In this case the chemical potential,

µ, can be fixed at EF , and many calculations become reasonably simple. Leggett

pointed out that if the BCS gap equation is examined allowing µ to vary, the

gap equation actually becomes precisely the Schrödinger equation for a diatomic

molecule in the limit where µ dominates [47]. Below we briefly illustrate the

key steps in an application of BCS theory to the entire crossover. This gives

qualitatively correct results for the entire spectrum of pairing. The structure of

the crossover theory below originates in the work of Nozieres and Schmitt-Rink

(NSR) in Ref. [48] and of Randeria et al. in Ref. [49].

Let us consider a homogeneous Fermi system in three dimensions in an equal

mixture of two different states at T = 0. Application of usual BCS theory results

1In the limit a � r0 the molecule-molecule scattering length amm is predicted to be 0.6aaa,
where aaa is the scattering length for atoms scattering above threshold [97].
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in the gap equation

∆k = −
∑

k′

Ukk′
∆k′

2Ek′
(2.1)

where Ek =
√

ξ2
k + ∆2, ξk = εk − µ, and εk = h̄2k2

2m
. Ukk′ < 0 is the attractive

interaction for scattering of fermions with momenta k′ and −k′ to k and −k. We

also obtain the number equation

〈Ntot〉 =
∑

k

(1 − ξk
Ek

) (2.2)

where Ntot is the total number of fermions in both states.

To solve Eqn. 2.1 in the BCS limit the standard approach is to assume that

the potential is constant at a value U < 0, which implies that the gap is constant

as well, i.e., ∆k = ∆. In this case the gap equation (Eqn. 2.1) becomes

− 1

U
=

∑

k

1

2Ek
. (2.3)

One will find, however, that this equation diverges. For BCS superconductors

this problem is resolved because the interaction can be limited to within the

Debye energy, h̄ωD, of EF . This is a result of the nature of the phonon-mediated

interaction between the electrons that gives rise to the attractive interaction.

Further simplifications in the BCS limit are that µ = EF and that, since h̄ωD �
EF , the density of states is constant at the value N(ξ = 0). The gap equation

then becomes

− 1

N(0)U
=

∫ h̄ωD

−h̄ωD

dξ

2
√

∆2 + ξ2
. (2.4)

Solving Eqn. 2.4 produces the BCS result ∆ ≈ 2h̄ωDe
−1/N(0)|U |.

To extend this calculation to the crossover in atomic systems we can no longer

apply the h̄ωD cutoff. The solution to the divergence problem in this case is

nontrivial and requires a renormalization procedure, the full description of which

we will not present here (but see, for example, Ref. [8] and references therein).

The result of such a procedure is a “renormalized” gap equation

− m

4πh̄2a
=

1

V

∑

k

(
1

2Ek
− 1

2εk
) (2.5)
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where the interaction is now described by the s-wave scattering length a instead

of U and V is the volume of the system. Furthermore, in the crossover we cannot

assume µ = EF ; instead we must solve the gap equation (Eqn. 2.5) and number

equation (Eqn. 2.2) simultaneously for µ and the gap parameter ∆. We will solve

for these parameters as a function of the dimensionless parameter kFa, where

kF =
√

2mEF/h̄. As pointed out in a useful paper by M. Marini et al. this can

actually be done analytically using elliptic integrals [102].
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Figure 2.3: Gap parameter, ∆, and chemical potential, µ, of a homogeneous Fermi
gas at T = 0 as determined through NSR theory. The red and blue lines show the
BCS and BEC limits of the theory. Note that the limiting theories only deviate
significantly from the full theory in approximately the range −1 < 1

kF a
< 1.

The black lines in Fig. 2.3 show the result of this calculation of ∆ and µ.

We also plot the values of both ∆ and µ as they would be calculated in the BCS

and BEC limits to find that the crossover occurs in a relatively small region of

the parameter 1/kFa, namely from approximately −1 < 1/kFa < 1. In typical

crossover experiments with 40K or 6Li, this regime corresponds to varying a from

−2000 a0 through ∞ and to 2000 a0, where a0 is the Bohr radius (0.0529 nm).

It is useful to explicitly understand the value and meaning of both µ and ∆

in the two limits. µ is EF in the BCS limit and −Eb/2 = −( 1
kF a

)2EF in the

BEC limit. ∆ is e
−π

kF |a|EF in the BCS limit and EF
√

16
3π

1
kF a

in the BEC limit

[102]. Although referred to as the gap parameter, ∆ only has meaning as the

excitation gap, i.e., the smallest possible energy that can create a hole (remove a
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fermion) in the superfluid, in the BCS limit. In general the excitation energy is

Egap = min Ek = min
[

√

( h̄
2k2

2m
− µ)2 + ∆2

]

[8]. This is ∆ when µ is positive (as

in the BCS limit), but becomes
√
µ2 + ∆2 when µ is negative.

2.4 Beyond T = 0

The phase transition temperature, Tc, is an important parameter for any super-

fluid system. In the BCS-BEC crossover the transition temperature increases as

the interaction is increased, i.e., it is lowest in the perturbative BCS regime and

highest in the BEC limit (Fig. 1.1). In a homogeneous system, in the BCS limit

Tc/TF = 8
π
eγ−2e

−π
2kF |a| where γ = 0.58 [51], and in the BEC limit Tc/TF = 0.22

[103]. Note that BCS transition temperatures can be extremely small due to

the exponential dependence upon 1/kFa. For example, at a typical interaction

strength in alkali fermionic gases (a = −100 a0) and a typical kF (1/kF = 2000

a0) the BCS transition temperature would be ∼10−14 TF , which is a completely

inaccessible temperature in contemporary atomic systems. Still, at 1/kFa = −1

where BCS theory nearly applies, the transition temperature is on the order of

0.1 TF , which is accessible in current atomic systems.

In the BCS limit, pairing and the phase transition to a superfluid state occur

at the same temperature. However, in the BEC limit this is not the case; because

the constituent fermions are very tightly bound, pairs can form far above Tc. It is

natural to expect that there would be a crossover between these two behaviors in

the BCS-BEC crossover, i.e., at the cusp of the crossover the pairing temperature,

T ∗, would be distinct from Tc, yet not far from it. In a simple picture T ∗ should

be related to a pair dissociation temperature, which in the case of molecules is

∼Eb/kb [8]. It is important to differentiate between the superconducting order

parameter, which exists below Tc, and the pairing gap, which exists below T ∗

[18]. The pairing gap is associated with so-called preformed pairs, which are pairs

that are not yet phase coherent. Aspects of the pseudogap observed in high-Tc

superconductors may be a manifestation of pre-formed pairs [18].
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2.5 Modern challenges

The discussions and calculations above, while providing an introduction to basic

crossover theory, are far from the state-of-the-art for theory in the field. There are

noticeable problems with the NSR theory presented in Sec. 2.3. For example, the

result for the chemical potential at unitarity (1/kFa = 0) is significantly different

from the result of more accurate calculations using full Monte Carlo simulations

[104, 105]. The chemical potential is often written as µ = (1 + β)EF , and the

NSR theory produced β = −0.41 at unitarity, while the Monte Carlo simulation

of Ref. [105] finds β = −0.58 ± 0.01 at unitarity. As another example, extension

of the NSR theory predicts that amm = 2aaa, while a full 4-body calculation

in the BEC limit yields amm = 0.6aaa [97]. (Experiments at ENS have shown

that amm = 0.6+0.3
−0.2aaa [71], in agreement with the full calculation but not the

NSR theory.) Both of these problems point to the fact that the NSR ground

state, which only includes two-particle correlations, is not sufficient to accurately

describe the system. Thus, it is clear that adding higher-order correlations to

BCS-BEC crossover theory is necessary, yet not a simple task [106].

An even greater challenge is to extend accurate theories to nonzero tempera-

ture where predictions can be made about the critical temperatures and the role

of pre-formed pairs. Furthermore, all of the calculations considered thus far are

carried out for a homogeneous Fermi system. However, the experiments with

ultracold gases take place in traps (most often harmonic traps). The use of an

inhomogeneous density gas can lead to qualitative changes in the system that

must be accounted for in theory: Strong interactions can modify the density of

the trapped gas [107], and signals can become blurred as the density, and hence

the gap, varies across the sample [80].



Chapter 3

Feshbach resonances

In the previous chapter we determined that varying the fermion-fermion interac-

tion is the key to accessing BCS-BEC crossover physics. We also observed that to

arbitrarily vary the interactions we could imagine using a variable attractive po-

tential with a bound state near threshold. Amazingly atomic systems can achieve

exactly such a physical situation. The attractive potential is provided by the van

der Waals interaction between two atoms, and the knob to tune this potential

is a homogeneous magnetic field. The sensitive magnetic-field dependence of the

potential can be provided through a scattering resonance known as a Feshbach

resonance [108, 109, 110, 111]. The goal of this chapter will be to understand

exactly how a Feshbach resonance allows us to arbitrarily tune the interaction

using a magnetic field. In this chapter I will be discussing only two-body physics,

namely the problem of two fermions scattering in vacuum. We will find that the

Feshbach resonance used for the experiments in this thesis approximates well the

classic two-body system required for study of the BCS-BEC crossover problem of

Ch. 2.

3.1 Description

Calculating the interaction between two ground state alkali atoms is a nontrivial

problem that has been studied extensively in atomic physics [112]. Study of this

problem shows that for S-state atoms the interatomic potential is repulsive for

very small r and has a weak attractive tail that goes as −C6/r
6 as r → ∞.

23
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This weak attractive tail is a result of the interaction between mutually induced

dipole moments of the atoms, which is known as the van der Waals interaction.

The interatomic potentials are deep enough to contain a large number of bound

vibrational states. A Feshbach resonance occurs when one of these bound states

(often called the bare molecule state) coincides with the collision energy of two

free atoms in a different scattering channel. Such a situation is depicted in Fig.

3.1(a). The interatomic potential of the two free atoms is often referred to as the

open channel, while the potential containing the bare molecule state is referred

to as the closed channel. When the closed and open channels describe atoms

in different magnetic sublevels, they can be shifted with respect to each other

through the Zeeman effect using an external magnetic field (Fig. 3.1(b)).

closed channel

open channelEnergy

internuclear separation r

C6

r
6

-

Energy

magnetic field B

(a) (b)

Figure 3.1: (a) Feshbach resonances are the result of coupling between a molecular
state in one interatomic potential with the threshold of another. (b) The bare
molecule state of the closed channel tunes differently with magnetic field than the
open-channel threshold. This can lead to a crossing of the two levels.

Typically the effect of the coupling between the closed and open channels is

small, but at a Feshbach resonance when the open-channel dissociation threshold

is nearly degenerate with the bare molecule state, the effect of the coupling can be

significantly enhanced. This coupling changes the effective interatomic potential,

which we will refer to as the multichannel potential [113]. A bound state will

be added to this multichannel potential at a magnetic field value near (but not

exactly at) the magnetic field position of the crossing of the bare molecule and

open-channel threshold. When I use the term “molecule” in this thesis I am

always referring to this additional bound state of the multichannel potential, a

so-called dressed molecule. The wavefunction of these molecules is generally a
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linear superposition of open-channel and closed-channel wavefunctions. As we will

see in the next section, the open-channel component dominates for the molecules

studied in this thesis.

As the magnetic field is tuned this multichannel bound state moves through

threshold, and the scattering length between atoms in the open channel diverges.

The scattering length near a Feshbach resonance varies with the magnetic field,

B, according to the following equation [112].

a(B) = abg

(

1 − w

B − B0

)

(3.1)

Here abg is the triplet background (nonresonant) scattering length for atoms scat-

tering in the open channel, B0 is the magnetic field position at which the molecular

bound state of the coupled system goes through threshold, and w is the magnetic-

field width of the Feshbach resonance, defined as the distance in magnetic field

between B0 and the magnetic field at which a = 0. Figure 3.2 shows how a di-

verges according to Eqn. 3.1 for the 40K resonance described in the next section.
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Figure 3.2: Behavior of the scattering length at a Feshbach resonance in 40K
between the f=9/2 and mf=−7/2,−9/2 states.
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3.2 A specific example

To further illustrate Feshbach resonance physics it is useful to consider a specific

atomic example. Here I will discuss the case of the 40K resonance that is used

for most of the BCS-BEC crossover studies in this thesis. The open channel in

this case describes the scattering of |f,mf〉 = |9/2,−9/2〉 and |9/2,−7/2〉 atoms,

which are the two lowest energy states in the 40K system (see Fig. 4.1). f describes

the total atomic angular momentum and mf is the magnetic quantum number.

For this particular problem the open channel couples to only one closed channel,

|f,mf 〉 = |9/2,−9/2〉 and |7/2,−7/2〉 atoms. We will compare the results of this

example to the requirements for studying the classic BCS-BEC crossover problem

of Ch. 2. In the classic problem instead of two coupled channels a single variable

depth potential with r0 � a is considered (where r0 is the range of the potential).

To calculate exactly the properties of our 40K resonance we would need to

carry out a full coupled channels calculation using realistic potassium potentials.

The description of such a calculation is beyond the scope of this thesis but is

described nicely in, for example, Ref. [112].1 Instead, for the demonstrative

purposes of this chapter, we will examine the results of a simpler technique that

is derived from K. Góral et al. in Ref. [114] and applied to the case of 40K by M.

Szymańska et al. in Ref. [113]. We will solve the coupled Schrödinger equations

that describe our two-channel system with a few simplifying assumptions. This

technique reproduces the important physics of our 40K resonance using a small

set of experimentally measurable parameters. The main approximation is the

so-called “pole approximation” described in Ref. [114] that holds when the open

channel is strongly coupled to only one bare molecule state.

Our main goal will be to use the simplified two-channel calculation to deter-

mine the binding energy of the molecular state in the multichannel potential as a

function of the magnetic field. The Hamiltonian for our two-channel system is

H =





− h̄2

m
∇2 + Voc W

W − h̄2

m
∇2 + Vcc



 (3.2)

1We have compared some of the data presented in this thesis to full coupled channels cal-
culations carried out by Chris Ticknor in John Bohn’s group at JILA. See Ch. 5 and Ch.
6.
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where Voc is the uncoupled open-channel potential, Vcc is the uncoupled closed-

channel potential, the potential W describes the coupling between the open and

closed channels, and m is the mass of 40K. It can be shown that the solution to this

problem depends on only a few accessible parameters of the 40K system [114]. For

the 40K resonance we are considering, these parameters include the background

scattering length abg = 174 a0 [54], the van der Waals coefficient C6 = 3897 a.u.

[115], the resonance width w = 7.8 G [57], and the resonance position B0 =

202.1 G [73]. Also useful is the binding energy of the first bound state in Voc,

E−1 = 8.75 MHz (which can be attained from abg and C6) [114, 113]. Finally, we

need the difference in magnetic moment (change in energy with magnetic field)

of the open channel threshold with respect to the closed channel bare molecule.

In our simplified calculation we will assume this to be the linear value that best

approximates the result of a full coupled channels calculation, µco = 1.679 µB =

h × 2.35 MHz/G [113, 116].2 These parameters, which in the end come from

experimentally measured values, of course all have uncertainties, which we will

ignore for now.
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Figure 3.3: Multichannel bound state of a Feshbach resonance in 40K determined
through the simplified calculation described in the text [114, 113].

The solution to the coupled Schrödinger equations based on the Hamiltonian

2For 40K µco from the result of the full calculation comes quite close to the difference in
magnetic moments of the closed and open channel thresholds, which is µco = h × 2.49 MHz/G
at 200 G according to the Breit-Rabi formula [117].
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above using the pole approximation is outlined in Ref. [114]. The calculation is

not computationally intensive and, after inserting the parameters above, provides

the multichannel binding energy Eb, which I plot as the solid line in Fig. 3.3.

Here Eb is plotted with respect to the energy of the open channel threshold, i.e.,

the open channel threshold is zero for all values of B. The dotted line shows the

movement of the bare molecule energy with magnetic field, and the flat dashed

line is the value of E−1. The multichannel bound state is the dressed state of the

avoided crossing of these two levels. The bare molecule state crosses threshold

about 9 G higher than the position where the multichannel bound state comes

through threshold, B0. The difference between these two crossings is proportional

to the resonance width parameter w and related to the interchannel coupling

parameter in the Hamiltonian, W [114]. Note that for 40K the multichannel

bound state adiabatically connects to the the highest-lying vibrational state of

the open channel at low field, rather than the bare molecule of the closed channel.
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Figure 3.4: Binding energy near the Feshbach resonance peak using three calcula-
tions of varying degrees of approximation. These results agree with those in Ref.
[113].

The physics we study in this thesis actually occurs over a very small region near

threshold in Fig. 3.3. The blue line in Fig. 3.4 shows a closeup of the multichannel

bound state near threshold. Within a few gauss range of the Feshbach resonance

position the result obeys the expectation for a >> r0, Eb = h̄2

ma2
(where a is

determined through Eqn. 3.1), which is shown by the green line in Fig. 3.4.
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Farther away there is a clear deviation from quadratic behavior in 1/a. This

behavior can be estimated by subtracting the range of the van der Waals potential

r0 from a in the calculation of the binding energy, Eb = h̄2

m(a−r0)2
(red line in Fig.

3.4) [114, 113, 118]. The range of the van der Waals potential is given by [119]

r0 =
1√
8

Γ(3/4)

Γ(5/4)

(

mC6

h̄2

)1/4

. (3.3)

The value of r0 is ∼60 a0 for 40K (and ∼30 a0 for 6Li).
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Figure 3.5: Binding energy in the magnetic field regime used for the BCS-BEC
crossover studies of this thesis.

In Fig. 3.5 we examine the binding energy even closer to threshold. Here

the result of the simplified two-channel calculation and Eb = h̄2

m(a−r0)2
(blue) are

indistinguishable, while the Eb = h̄2

ma2
prediction (green) only deviates slightly.

We also plot the closed channel contribution to the molecule wavefunction, which

is given by dEb

dB
/µco. The Feshbach molecules that we will be interested in for

the BCS-BEC crossover studies will have binding energies on order of or smaller

than EF . A typical value of EF in our experiments (h× 15 kHz) is shown by the

dotted line in Fig. 3.5. At this point the closed channel fraction according to our

two-channel calculation is only 2%; this result is in agreement with full coupled

channels calculations [120, 116]. This open-channel dominance means that, for

our crossover studies, the two coupled channels problem of the Feshbach resonance

can be approximated by small effective changes to the open channel potential. A



CHAPTER 3. FESHBACH RESONANCES 30

resonance for which this is true is often referred to as a “broad resonance,” while

the limit in which the closed channel dominates for Eb ≈ EF is referred to as a

“narrow resonance” [121, 122, 123]. In the case in which Eb ≈ h̄2

m(a−r0)2
we can

derive a simple equation that describes this criterion for a broad resonance in a

Fermi system,
w2µ2

co

4EF
h̄2

ma2
bg

� 1. (3.4)

For the 40K resonance we have been considering the left side of this expression

has a numerical value of 43, and it has a value of 10,000 for the 6Li resonance at

B0 = 834 G [118, 124], indicating both Feshbach resonances used for BCS-BEC

crossover studies thus far can be considered broad.

In conclusion, we have seen how in atomic systems a Feshbach resonance can

be used to add an additional bound state to an interatomic potential, leading

to a divergence in the zero-energy scattering cross section for atoms colliding

through the open channel. The Feshbach resonances that have so far been used

for BCS-BEC crossover studies are broad resonances. These resonances can be

approximated by a single-channel problem and display universal properties, i.e.,

they have no dependence on the details of the atomic structure, but rather only on

the parameters a and kF . For the 40K resonance there are slight deviations from

the a� r0 limit that must be taken into account for precise measurements (Fig.

3.5). Still the physics of a 40K gas at this resonance should basically reproduce

the classic BCS-BEC crossover scenario envisioned by Leggett [47] and described

in Sec. 2.2.



Chapter 4

Cooling a Fermi gas and

measuring its temperature

To access the superfluid state of a Fermi gas in the crossover the gas must be cooled

below the critical temperature, Tc. To achieve such a temperature with a trapped

gas of fermions was one of our largest challenges. In this chapter I describe how we

cool 40K and assess the success of this cooling through temperature measurements.

More technical details related to the contents of this chapter can be found in Ch.

10.

4.1 Cooling 40K

The apparatus used to cool 40K for these BCS-BEC crossover experiments employs

the strategy used for some of the first experiments with 87Rb BEC [22, 125, 126].

We perform the “usual” combination of trapping and cooling in a magneto-optical

trap (MOT) followed by evaporative cooling [19, 20, 21]. The laser cooling uses

light from semiconductor diode lasers on the 40K D2 line (4S1/2 to 4P3/2 transition

at 766.7 nm), and a two chamber apparatus allows for an ultra high vacuum region

for evaporative cooling [83]. The major difference compared to the 87Rb exper-

iments stems from the fact that elastic collisions between identical fermions are

suppressed at ultracold temperatures. This is because quantum statistics require

antisymmetry of the total wavefunction for two colliding fermions, which forbids

s-wave collisions for identical fermions. While odd partial wave collisions, such

31
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7/2 = mf

f=7/2

f=9/2

1.3 GHz

+9/2=mf

-7/2
-5/2

-9/2

+7/2

Figure 4.1: 40K ground state level diagram, with exaggerated Zeeman splittings.
The two levels represent the hyperfine structure, which originates from the cou-
pling of the nuclear spin (I = 4) with the electron spin (S = 1/2). Note the
hyperfine structure of 40K is inverted.

as p-wave, are allowed, these collisions are suppressed below T ≈ 100 µK because

of the angular momentum barrier [127]. Thus, since evaporative cooling requires

collisions to rethermalize the gas, a mixture of two distinguishable particles is

required to cool fermions.
40K provides an elegant solution to this problem. Figure 4.1 shows the ground

state energy levels of 40K. The large angular momentum of the lowest ground

state hyperfine level (f=9/2) provides 10 distinct spin states. The two highest

energy states, mf=+9/2 and mf=+7/2, can both be held with reasonable spatial

overlap in a magnetic trap, which is the type of trap most proven for evaporative

cooling when starting from a MOT. In this way an apparatus designed for only

one atomic species could provide two distinguishable states for cooling. To remove

the highest energy atoms for evaporative cooling, microwaves at ∼1.3 GHz were

used to transfer atoms to untrapped spin states in the upper hyperfine state

[32, 83]. With this technique, quantum degeneracy was reached in 1999 and by

2001 two-component 40K Fermi gases at temperatures of 0.25 TF could be created.

A detailed description of the work to achieve these temperatures is recorded in

Brian DeMarco’s Ph.D. thesis (Ref. [83]).

One of the first steps in accessing the BCS-BEC crossover was to create a

degenerate Fermi gas in an equal mixture of the f=9/2 Zeeman states between

which a Feshbach resonance was predicted, mf=−9/2 and −7/2 (Fig. 4.1). To
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Figure 4.2: Optical trap at the focus of a gaussian laser beam.

accomplish this we needed to trap the high-field-seeking spin states of the f=9/2

manifold; these states cannot be trapped in a magnetic trap. Thus, we developed

a far-off-resonance optical dipole trap (FORT) to confine the required spin states

for the crossover experiments. Such a trap can be formed at the focus of a gaussian

laser beam whose optical frequency is far detuned from the 40K transitions (Fig.

4.2).

We found that the best way to realize a cold gas in an optical dipole trap was

to load a relatively hot gas of fermions after some evaporation in the magnetic

trap. Typically we load the optical trap when the sample in the magnetic trap

reaches T/TF ≈ 3. After transfer to the mf=−9/2,−7/2 spin states the gas

is evaporated in the optical trap simply by lowering the depth of the trap and

allowing the hottest atoms to spill out. This evaporation and the subsequent

temperature measurements are typically performed at a magnetic field of ∼235

G. At this field the scattering length is the background (nonresonant) value of

174 a0, and from this field Feshbach resonances can be easily accessed.1

Evaporative cooling in the optical trap actually allowed us to achieve colder

temperatures than previous records. We could cool to T/TF ≈ 0.1 (and possibly

colder) with up to 106 atoms in each spin state. At these temperatures another

impediment to cooling fermions appears - Pauli blocking of collisions [128]. In

a degenerate Fermi sea the Pauli exclusion principle forbids collisions for which

the final state would place fermions in already occupied levels. This results in a

suppression of the collision rate compared to the classical expectation and may

make evaporative cooling more difficult in an all-fermion system. Many recent

experiments have used a bosonic atom as their “second particle” as a possible

1The background scattering length is reasonably large compared to many other alkali atoms,
resulting in nice evaporative cooling. Yet the interaction it provides still allows us to approximate
the gas as an ideal Fermi gas for the purpose of temperature measurement.
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approach to avoiding this problem [33, 34, 35, 37, 38].

An important question is why colder temperatures could be achieved in the

optical trap than had been previously achieved with the same apparatus in the

magnetic trap. There are two main possibilities for the answer to this question.

First, evaporation in a magnetic trap relies on the ability to drive spin-changing

transitions with rf or microwaves. At cold temperatures the microwave frequencies

required for the mf=+9/2 and the mf=+7/2 states differ, requiring the use of

a more complicated two-frequency evaporation scheme [83]. The optical trap on

the other hand evaporates both states equally, maintaining the optimum equal

mixture automatically. Second, the history of the cooling attempts with the

apparatus have shown that, not surprisingly, a low heating rate is essential to

achieving a degenerate Fermi gas. We have found that the coldest achievable

temperatures have been proportional to the heating rate in the trap. The heating

rate in our optical trap is typically 5 nK/sec in weak traps (after solving the

technical issues discussed in Ch. 10). For a similar atom number in the magnetic

trap the heating rate is 20 nK/sec [83]. We suspect that the heating rate in the

magnetic trap is limited by the presence of an “Oort” cloud of hot atoms [83].

The lower heating rate in the optical dipole trap could be explained by the fact

that such a “Oort” cloud cannot form in this trap due to the limited trap depth

of an optical trap.

4.2 Measuring the temperature of a Fermi gas

In atomic gas experiments the standard technique for measuring the temperature

of a gas is to suddenly turn off the trapping potential confining the atoms and

then wait for an “expansion time” t. A two-dimensional image of the atomic

distribution then reveals the velocity, or momentum, distribution of the gas [20].

This technique is often referred to as time-of-flight imaging. For a classical gas

the velocity spread is directly related to the temperature of the gas through the

Maxwell-Boltzmann distribution. In the quantum regime measuring temperature

from such distributions becomes trickier. In this section I will describe techniques

for measuring the temperature of an ideal Fermi gas using images of gas distribu-

tions.
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4.2.1 An optically trapped Fermi gas

Before presenting temperature measurements, it is useful to describe the expected

distribution of an optically trapped Fermi gas. First, we analyze the optical dipole

potential created from a single gaussian laser beam using a harmonic approxima-

tion; this is the potential used for most of the BCS-BEC crossover experiments

presented in this thesis. Then we present the most relevant formulas for describing

the spatial and momentum distributions of a Fermi gas in such a harmonic trap.

A more thorough description of a harmonically trapped Fermi gas can be found

in Ch. 5.2 of Ref. [83].

Optical dipole trap

An optical dipole trap results from the interaction between a light field and the

oscillating atomic electric dipole moment that is induced by the light field. This

effect, known as the ac Stark shift, forms the conservative part of the interac-

tion of atoms with light. The shift is proportional to the light intensity, and the

sign depends upon the sign of the detuning of the light compared to the atomic

resonance. When the light is detuned red of the atomic transition and the light

intensity varies in space, an attractive potential well can be formed. While the

photon scattering rate decreases quadratically with the frequency detuning be-

tween the light and the atomic transition, the ac Stark shift varies linearly with

this detuning. Thus, a trap with a large detuning results in a significant dipole

potential at a low photon scattering rate. This allows use of the dipole potential

for atom traps with long storage times, as was first realized in Ref. [129].

The simplest optical dipole trap is formed by the focus of a single red-detuned

gaussian laser beam (Fig. 4.2). The trap potential from the beam is proportional

to the laser intensity, which is given by

I(r, z) =
Ipk

1 + (z/zR)2
e

−2r2/w2

1+(z/zr)2 (4.1)

where w is the beam waist (1/e2 radius), zR = πw2/λ is the Rayleigh range,

Ipk = 2p
πw2 is the peak intensity, and p is the total optical power.

Calculating the strength of the potential from atomic properties is straightfor-

ward [130]. Let λ be the laser wavelength and λ0 be the wavelength of the atomic
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transition; correspondingly ω = 2πc/λ and ω0 = 2πc/λ0. The dipole potential is

then given by

U(r, z) = −3πc2Γ

2ω3
0

(

1

ω0 − ω
+

1

ω0 + ω

)

I(r, z) (4.2)

where Γ is the linewidth of the atomic transition.

For our potassium trap λ = 1064 nm, Γ = 2π×6.09 MHz, and typically w=15

to 20 µm. Equation 4.2 is in principle only valid for a two-level system, while

potassium is of course multi-level, with the most relevant structure being the

fine structure giving the D1 and D2 lines at 770.1 nm and 766.7 nm, respectively.

However, in this case where the fine structure splitting is small compared to ω0−ω
we can approximate the system as two-level with λ0 given by the center of the

two lines, 768.4 nm [130]. Note though that we do not make the rotating wave

approximation (RWA) in the Eqn. 4.2; for our detuning the 1
ω0+ω

term actually

contributes a 14% effect.
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Figure 4.3: Potential for potassium atoms created by a single 1064 nm gaussian
laser beam with w=15 µm and a power of 10 mW. The dotted line in the left-
most graph shows the parabola that approximates the potential for small x. The
y-direction includes the effect of gravity. Note that the horizontal scale in the
third graph (z-direction) is a factor of 100 larger than the scale in the first two
graphs.

Figure 4.3 shows cross-sections of the potential for a typical trap that would

hold a degenerate Fermi gas in our system. In Eqn. 4.2 we have ignored the effect

of gravity on the trap. Yet when the trap becomes shallow, gravity can play a

large role. The y-direction in Fig. 4.3 shows the gravitational potential added
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to Eqn. 4.2. Gravity effectively lowers the trap depth in the y-direction, making

evaporation in shallow traps one-dimensional.

At the bottom of the trap we can approximate the gaussian potential as a

parabolic potential (dotted line in Fig. 4.3). In this case we have a harmonic trap

with oscillator frequencies given by

ωr = 2πνr =

√

4U0

mw2
ωz = 2πνz =

√

4U0

mz2
R

. (4.3)

where U0 = |U(0, 0)|. In shallow traps the harmonic approximation breaks down

since atoms sample the potential near the top of the well where the gaussian

rises less steeply than the parabola. We account for this effect in experiments

by modelling the real trap as a harmonic trap with a lower effective frequency.

We determine the effective frequency experimentally through observation of the

Fermi gas excitation frequencies in the weakly interacting regime. 2

Trapped, ideal Fermi gas distribution

We now consider a Fermi gas in a harmonic potential. We start with the Hamil-

tonian for a particle in a harmonic well

H =
p2

2m
+

1

2
mω2

rρ
2 (4.4)

where p2 = p2
x + p2

y + p2
z and ρ2 = x2 + y2 + λ2z2, (λ = ωz/ωr). The density of

states is g(ε) = ε2

2(h̄ω̄)3
where ω̄ = (ω2

rωz)
1/3 [103]. The statistics of the Fermi gas

are described by the Fermi-Dirac distribution function

f(ε) =
1

e
ε

kbT /ζ + 1
(4.5)

where ζ = eµ/kbT is the fugacity.

We can calculate the Fermi energy, which is defined as the energy of the highest

2We have found that our surface fit technique of measuring temperature is unaffected by the
anharmonicities of the optical trapping potential down to temperatures of T/TF = 0.1. We
have tested that adiabatically changing the trap depth with respect to the Fermi energy does
not affect the measured temperature. Further, the good agreement between the two measures
of T/TF in Fig. 4.7 suggests that the potential shape we assume is appropriate.
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occupied level of the potential at T = 0. We simply equate the integral over all

states up to EF to the number of particles in one fermion spin state, N :

N =
∫ EF

0
g(ε)dε. (4.6)

The result is

TF =
EF
kb

=
h̄ω̄

kb
(6N)1/3. (4.7)

The temperature compared to TF describes the degeneracy of the Fermi gas and

in the classical limit is related to peak phase space density through PSDpk =

(T/TF )−3/6.
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Figure 4.4: Energy of an ideal Fermi gas.

Also using the distribution function and the density of states we can obtain

thermodynamic quantities such as the energy per particle, which will become

important in Ch. 9.

E =
U

N
=

∫ ∞
0 εg(ε)f(ε)dε
∫ ∞
0 g(ε)f(ε)dε

= 3kbT
Li4(−ζ)
Li3(−ζ)

(4.8)

The function Lin(x) =
∞
∑

k=1
xk/kn appears often in the analysis of a harmonically

trapped Fermi gas. Lin is the Poly-Logarithmic function of order n, sometimes

written gn. Figure 4.4 plots the result of Eqn. 4.8. In the classical regime the

energy is proportional to the temperature, while in the Fermi gas limit the energy

asymptotes to 3
4
EF (3

8
EF kinetic energy and 3

8
EF potential energy).
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Table 4.1: Distribution functions for a harmonically trapped Fermi gas.

Validity Spatial distribution where σ2
r = kbT

mω2
r

and r2
F = 2EF

mω2
r

all T/TF n(ρ) = λN
(2π)3/2σ3

r
Li3/2(−ζe−ρ

2/2σ2
r )/Li3(−ζ)

T/TF � 1 nc(ρ) = λN
(2π)3/2σ3

r
e−ρ

2/2σ2
r

T = 0 n0(ρ) = λN
r3
F

8
π2

(

1 − ρ2

r2
F

)3/2

for ρ < rF , 0 otherwise

Validity Momentum distribution where σ2
p = mkbT and p2

F = 2mEF

all T/TF Π(p) = N
(2π)3/2σ3

p
Li3/2(−ζe−p

2/2σ2
p)/Li3(−ζ)

T/TF � 1 Πc(p) = N
(2π)3/2σ3

p
e−p

2/2σ2
p

T = 0 Π0(p) = N
p3F

8
π2

(

1 − p2

p2F

)3/2

for p < pF , 0 otherwise

Distribution functions in position and momentum can be determined through

standard statistical mechanics techniques and the Thomas-Fermi approximation,

which holds when many oscillator states are occupied (see Refs. [131, 83]). Table

4.1 shows the resulting Fermi-Dirac distribution functions in position and momen-

tum space. The full expression is shown first, but it is also useful to understand

the classical and T = 0 limits. In the classical limit the distribution is gaussian,

and at T = 0 the distributions are only nonzero for values less than the Fermi ra-

dius rF or Fermi momentum pF = h̄kF . It is useful to explicitly state the meaning

of the Fermi wavevector, kF , as it is a quantity we normalize to in the BCS-BEC

crossover. kF is defined through EF =
h̄2k2

F

2m
and is related to the inverse distance

between fermions at the center of the trap; at T = 0 the number density of one

fermion spin state at the center of the trap is written in terms of kF as npk =
k3

F

6π2 .
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4.2.2 Measuring temperature from the momentum distri-

bution

In the experiment we access the distribution of the Fermi gas through absorption

images of an expanded gas. Absorption images are aquired by illuminating the

atoms with a resonant laser beam and imaging the shadow cast by the atoms onto

a CCD camera. These images effectively integrate through one dimension to give

a two-dimensional image (for example Fig. 4.6(a)). The appropriate function for

this distribution is n(ρ) or Π(p) (see Table 4.1) integrated over one dimension

[83]. Integrating through x and writing the result in terms of the experimentally

observed optical depth (OD), we find for the Fermi-Dirac distribution

ODFD(y, z) = ODpk Li2(−ζe
− y2

2σ2
y e

− z2

2σ2
z )/Li2(−ζ). (4.9)

In the classical limit this equation becomes a two-dimensional gaussian function:

ODgauss(y, z) = ODpk e
− y2

2σ2
y e

− z2

2σ2
z . (4.10)

These forms are applicable for both the spatial and momentum profiles, and for

arbitrary expansion times through the relations σ2
y = kbT

mω2
r
[1 + (ωrt)

2] and σ2
z =

kbT
mω2

z
[1 + (ωzt)

2], where t is the expansion time.

Examples of theoretical cross sections of ODFD for various degeneracies, and

constant TF , are shown in Fig. 4.5. As the gas becomes colder the overall distribu-

tion becomes narrower, while the shape of the distribution becomes flatter. Note

that as the temperature is lowered far below TF the changes in the distribution

become small compared to TF . Still, down to T/TF ≈ 0.1 the temperature can be

determined from least-squared fits to such distributions. Figure 4.6(a) is a sample

absorption image of an expanded Fermi gas. The black points in Fig. 4.6(b) are

the result of an azimuthal average of the image. The red line shows the result of

a surface fit of the two-dimensional image to the Fermi-Dirac distribution (Eqn.

4.9), which reveals that the gas is at a temperature of 0.1 TF . For comparison the

blue line is the result of a fit appropriate for a classical distribution (Eqn. 4.10).

Clearly the experimental distribution is flatter than a classical distribution.

To evaluate this thermometry, we can examine the results of least-squared
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Figure 4.5: Theoretical cross sections of a harmonically trapped Fermi gas mo-
mentum distribution integrated along one dimension. TF is held fixed as T/TF
varies.
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Figure 4.6: Nonclassical momentum distribution of Fermi gas. (a) Sample false
color absorption image of the momentum distribution of a degenerate Fermi gas.
Here the integration is along the z-direction. (b) Azimuthally averaged profile
of the absorption image. The error bars represent the standard deviation of the
mean of averaged points.
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surface fits for gases at a variety of expected temperatures. In the fits ODpk,

σy, σz , and ζ are independent fit parameters. σy and σz tell us the temperature;

ζ can be viewed as a shape parameter that is directly related to T/TF through

Li3(−ζ) = −(T/TF )−3/6. As a check on the fits we compare the result for ζ to

T/TF calculated through

T

TF
=

σ2
ymω

2
r

h̄ω̄(6N)1/3(1 + (ωrt)2)
. (4.11)

We use the measured trap frequencies for ωr and ωz and the number of atoms in

each spin state N calculated from the total absorption in the image. For most

purposes we can extract N from a gaussian fit (Eqn. 4.10), in which case the total

number of atoms in the image is
2πODpkσrσz

σ
, where σ is the photon absorption

cross-section,
3λ2

0

2π
. This result is exact for a classical gas and is only 7% off at

T/TF = 0.1.
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Figure 4.7: Analysis of fits to Eqn. 4.9 for expansion images of an optically
trapped gas with an equal mixture of mf=−9/2,−7/2 atoms [59]. For these data
the integration was in the x-direction, and T was extracted from σy.

Figure 4.7(a) shows a comparison between T/TF from Eqn. 4.11 and ζ . The

black line shows the expected relationship for an ideal Fermi gas. In Fig. 4.7(b)

ζ is converted to T/TF for a more direct comparison. In general the two values

agree, indicating the fits are extracting the correct information. Note that the

noise in the points becomes large at temperatures > 0.5 TF . This is expected
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because the changes in the shape of the distribution become small in this limit. A

similar effect occurs in the low temperature limit where the distribution changes

little as the T = 0 Fermi gas limit is approached. However, the success of this

thermometer in the 0.1 < T/TF < 0.5 range has made this method the workhorse

of temperature measurements in the Jin lab since Brian DeMarco’s work.

4.2.3 Measuring temperature using an impurity spin state

A second technique for measuring temperature that we have explored is impurity

spin-state thermometry. Eric Cornell proposed this idea in the JILA hallway as

a method to check the Fermi-Dirac surface-fit technique outlined in the previous

section. A check is especially necessary for the coldest temperature gases at 0.1 TF

and below, due to the decrease in the sensitivity of the Fermi-Dirac fits at these

temperatures. We have not done extensive work using impurity thermometer.

However, as we will see here this thermometer works quite well and has great un-

explored potential, in particular as a technique that could measure temperatures

less than 0.1 TF .

5/2

7/2

9/2

mf

non-degenerate
"impurity" state

two-component
degenerate Fermi gas{

Figure 4.8: Measurement of T through an embedded impurity spin state. All
three components are overlapped in the optical trap.

The idea of the impurity spin-state technique is to embed a small number of

atoms in a third state within the usual two-component gas (Fig. 4.8). In the

limit where the number of atoms in the impurity spin, Nim, is small compared to

the particle number in the original states, the Fermi energy of the impurity state

will be low enough that the impurity gas will be nondegenerate. Provided all of

the spin states in the system are in thermal equilibrium, the temperature of the
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system will be
mσ2

im

kbt2
, where σim is simply determined from a fit of the impurity

gas momentum distribution to a gaussian distribution (Eqn. 4.10).

A difficulty with this method is that EF scales weakly with particle number.

Suppose we originally have a gas with a particle number of 105 at T/TF = 0.1.

For T/TF of the impurity to be 1, Nim would need to be 100, and detecting the

distribution of 100 atoms with good signal to noise is not trivial. However, the

fully classical limit does not need to be reached to gain information about the

temperature from the impurity state. It is only required that the T/TF be large

enough that the energy of the impurity gas changes significantly with temperature.

Figure 4.4 illustrates for the range of T/TF for which this is the case.

To see if an impurity spin-state thermometer was feasible we designed an

experiment to test this thermometer against the surface-fit technique described

previously. We started with a (not necessarily equal) mixture of atoms in the

mf=+7/2,+9/2 spin states. Part way through the evaporative cooling process

a small fraction of the mf=+7/2 atoms were transferred to the mf=+5/2 state,

which served as our impurity (Fig. 4.8). For this experiment the gas was prepared

at a low magnetic field of a few gauss where the three-state mixture is fully stable.

Here the scattering length between any pair of the three spin states is 174 a0. The

spin states were selectively imaged by applying a large magnetic field gradient

of ∼80 G/cm during the expansion to spatially separate the spin states (Stern-

Gerlach imaging) [83].
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Figure 4.9: Dimensionless plot of the variable Tgauss (defined in the text) versus
temperature.
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For analysis of the impurity spin-state data in the most general case where

the impurity is not fully classical, it is useful to introduce the variable Tgauss. For

a momentum space distribution Tgauss is defined as
mσ2

gauss

kbt2
, where σgauss is the

result from a least-squared fit to the gaussian distribution of Eqn. 4.10. As we

noted in Fig. 4.6 the Fermi distributions is not well fit by a gaussian, but the

result is a well-defined quantity. Figure 4.9 displays Tgauss/TF as a function of

degeneracy, as determined through least-squared fits to theoretical distributions.

Tgauss provides much the same information as the Fermi gas energy E (Fig. 4.4).

However, it is more useful for our current purposes because it can be extracted

from real images with better signal to noise than E, and it is convenient because

in the classical limit it becomes precisely the real temperature of the system.

In Fig. 4.10 is Tgauss as a function of N for a cold gas of atoms distributed

among the three states mf=9/2, 7/2, and 5/2. N is the measured number of

atoms in the spin state from which Tgauss is extracted. The seven sets of points

come from multiple iterations of the experiment for which the temperature was

expected to be constant. Since the trap strength was held constant N uniquely

defines EF , and given that the temperature T is constant for all points on the plot,

we can translate the dimensionless theoretical result of Fig. 4.9 to the situation

of Fig. 4.10. The black line in Fig. 4.10 shows the best-fit curve to the data, in

which the only free parameter is the real temperature T . Note T is the value of

Tgauss as N goes to zero. If the gas were fully classical, Tgauss would be constant as

a function of N ; it is a manifestation of Pauli blocking that different components

of an equilibrium gas can have the same temperature but different energies [128].

Figure 4.11 shows the results of four experiments like the one shown in Fig.

4.10. The temperature result from the impurity measurement is compared to

the result from the surface fits described in Sec. 9.1 (applied to the mf=9/2

cloud). We see that both methods agree to within the uncertainty for clouds in

the T/TF = 0.1 − 0.2 range.

4.2.4 Temperature in the BCS-BEC crossover

Our focus thus far has been on measuring the temperature of an ideal, normal

Fermi gas. For the BCS-BEC crossover experiments we would like to know the

temperature of our gas at any interaction strength. To this point there have been
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Figure 4.10: Impurity spin state thermometry. Tgauss is plotted for all of the
states in the gas, for multiple experiment iterations in which T was held fixed.
The mf=9/2 points have an average degeneracy of T/TF = 0.13.

no experiments that have directly measured the temperature of a gas throughout

the entire crossover. This makes it difficult to compare to theories that commonly

use temperature in the crossover as an important parameter.

The main technique that has been used thus far is to instead measure the

entropy of the system, which, through theory, can be translated to a temperature

at any point in the crossover. The entropy, S, can be determined through temper-

ature measurements in the weakly interacting regime. For example, in the Fermi

gas limit the entropy is given by S = (4
3
E − µ)/kbT [132]. Then if experiments

are performed using adiabatic magnetic-field ramps to the crossover regime, the

entropy will be held constant at the weakly-interacting value. As we have seen

in 40K it is convenient to measure the temperature of the weakly interacting gas

above the Feshbach resonance with a Fermi gas, while in most of the 6Li experi-

ments the temperature is measured through the condensate fraction close to the

BEC limit. In either case, the limitation of this technique is that it relies upon

theory to convert between entropy and temperature in the crossover. Some initial

work on this theoretical problem can be found in Ref. [133].

An alternative temperature measurement in the crossover was applied in the

group of J. Thomas where they measured the temperature at unitarity by using
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Figure 4.11: Comparison of thermometers. The y-axis shows the result of the
Fermi-Dirac fits to the mf =9/2 distribution, and the x-axis shows the result of
the impurity spin-state technique.

fits to the momentum distribution in the hydrodynamic limit [79]; here the dis-

tribution is simply a rescaled Fermi distribution and thus amenable to the same

fitting procedure as the weakly interacting regime [134]. The impurity spin-state

thermometer described in Sec. 4.2.3 is another possible, but as of yet unexplored,

direct thermometer in the crossover regime. Since the mf=−5/2 state is weakly

interacting with mf=−9/2,−7/2 states even at the mf=−9/2,−7/2 Feshbach

resonance, the mf=−5/2 distribution could be used to measure T on resonance.

However, at high magnetic field values the mf = −5/2,−9/2 mixture is only

metastable; experimentally we have found this mixture has an exponential decay

time of ∼1 sec at ∼200 G for a typical density of ∼1013 cm−3. This short lifetime

makes a possible measurement more difficult, but not impossible.



Chapter 5

Elastic scattering near Feshbach

resonances between fermionic

atoms

Some of the first signatures of the presence of fermionic Feshbach resonances

were the observation of magnetic-field dependent changes in the elastic-scattering

properties of a normal Fermi gas [54, 58, 55, 57, 59, 60, 61, 62]. Here I present

three different techniques that we used to probe changes in scattering properties

at a fermionic Feshbach resonance. Two techniques probed the collision cross

section, which reveals the magnitude of a. In the third measurement we observed

the sign of a change and saw evidence for unitarity-limited interactions.

5.1 Measuring the elastic collision cross section

The first Feshbach resonance we searched for experimentally is the resonance

described in Ch. 3 that occurs between the mf=−9/2 and mf=−7/2 spin states.

The original theoretical prediction for the location of this resonance was B0 =

196+9
−21 G, based on available potassium potentials [53]. We first experimentally

measured the position of this resonance using the technique of cross-dimensional

rethermalization, which measures the collision cross section [135]. This was a

technique that had provided much information about a Feshbach resonance in

bosonic 85Rb gas [30, 136].

48
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For this measurement we started with a gas of fermions in the mf=−7/2,−9/2

spin states at T ≈ 2 TF . The gas was taken out of thermal equilibrium by

modulating the optical trap intensity at 2 νy, which caused selective heating in

the y-direction. (We could selectively modulate one radial direction because for

this measurement our optical trap was not cylindrically symmetric, νx = 1.7

νy.) The exponential time constant for energy transfer between the two radial

directions, τ , was measured as a function of magnetic field. τ is related to the s-

wave collision cross section through 1/τ = 2〈n〉σv/α. v = 4
√

kbT/πm is the mean

relative speed between colliding fermions and 〈n〉 = 1
Ntot

∫

n7(r) n9(r) d
3r is the

density weighted density. α is the calculated number of binary s-wave collisions

required for rethermalization [127].
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Figure 5.1: Collision cross section measured near an s-wave Feshbach resonance
between 40K atoms in the mf = −7/2,−9/2 spin states at T = 4.4 µK [57]. In
between the peak and dip in σ the interaction is attractive; everywhere else it is
repulsive.

Figure 5.1 plots the result of this measurement as a function of the magnetic

field, B. The magnetic field was calibrated through radio-frequency (rf) transi-

tions between mf levels in the 40K system. An advantage of the cross-dimensional

rethermalization technique is that it allows measurements of σ over a large range.

Through cross section measurements that extend over four orders of magnitude,
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both the position of the divergence of the scattering length, B0, and the position

of the zero crossing could be measured (Fig. 5.1). This told us the magnetic-

field width of the resonance w, which as we saw in Ch. 3 describes the coupling

strength.

The line in Fig. 5.1 is the result of a full coupled channels calculation of σ

carried out by C. Ticknor and J. Bohn, in which the parameters of the potas-

sium potential were adjusted to achieve a best fit to our data from two different
40K resonances [57, 137]. This calculation took into account the distribution of

collision energies in the gas by thermally averaging over a gaussian distribution

defined by a temperature of 4.4 µK. The fit result placed the Feshbach resonance

at B0 = 201.6 ± 0.6 G and the zero crossing at 209.9 ± 0.6 G.

5.2 Anisotropic expansion

A disadvantage of the cross-dimensional rethermalization method is that it only

provides a valid measurement of σ in the so-called collisionless regime. A trapped

gas is considered collisionless if the trap oscillator period 1/ν is much shorter than

the mean time between collisions in the gas, 1/Γ. In the opposite limit where

Γ � ν the gas is collisionally hydrodynamic, obeying the classic hydrodynamic

equations. If a gas is hydrodynamic the cross-dimensional rethermalization time

will be determined by the oscillator period 1/ν instead of the mean time between

collisions.

At the peak of the Feshbach resonance the fermion-fermion interactions can

easily become strong enough to make the gas collisionally hydrodynamic. In this

regime a technique more suited to measuring changes in the elastic cross section is

anisotropic expansion. In the hydrodynamic limit collisions during the expansion

transfer kinetic energy from the elongated axial (z) gas dimension into the radial

(r) direction. This changes the aspect ratio of the expanded gas (σz/σr) compared

to the collisionless expectation (see Ch. 4). This effect was first observed in a 6Li

Fermi gas in Ref. [58].

Figure 5.2 presents a measurement of anisotropic expansion in a 40K gas at

T/TF = 0.34. Here we enhanced interactions between the mf=−9/2,−5/2 spin

states using a Feshbach resonance between these states at ∼224 G. At the position

of the Feshbach resonance where σ is large, the aspect ratio σz/σy decreases. As
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the gas becomes collisionless away from the resonance the aspect ratio smoothly

evolves to the collisionless value. The key to observing anisotropic expansion

is to hold the magnetic field at the value near the Feshbach resonance during

the beginning of expansion. In these experiments the magnetic field remained

high for 5 ms of expansion and a resonant absorption image was taken after a

total expansion time of 20 ms. In this measurement the mf=−9/2,−5/2 gas was

created at the field B by starting with a mf=−9/2,−7/2 gas and applying a π

pulse between the -5/2 and -7/2 states 0.3 ms before expansion. This technique

avoids complications due to atom loss but creates a nonequilibrium gas.
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Figure 5.2: Anisotropic expansion of a strongly interacting Fermi gas [59].

In general the expected aspect ratio in the regime between collisionless and

hydrodynamic behavior is difficult to calculate. We can however check to see if

some degree of hydrodynamic expansion of the normal gas is expected. We can

calculate the elastic collision rate Γ = 2〈n〉σv in the gas, using an elastic collision

cross section given by σ = 4πa2
59 and |a59| = 2000 a0 (as was measured near the

resonance peak [59]) to find Γ = 46 kHz. Comparing this rate to the trapping

frequencies we find Γ/νr = 37 and Γ/νz = 2400. Hence, it is not surprising that

we observe anisotropic expansion. For a gas that was fully hydrodynamic, with

Γ � νr, νz, we would expect our measured aspect ratio to reach 0.4 [138, 139].

In ultracold gas experiments anisotropic expansion is often associated with
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superfluidity of a BEC. This is because a typical ultracold Bose gas is collision-

less, while below the superfluid transition the gas obeys superfluid hydrodynamic

equations. Near a Feshbach resonance however where the gas can be collision-

ally hydrodynamic, anisotropic expansion can be observed both above and below

the superfluid transition temperature. Still anisotropic expansion has been put

forth as a possible signature of superfluidity in the BCS-BEC crossover regime

[138, 139]. In pursuing this signature it is important to carefully distinguish be-

tween collisional and superfluid hydrodynamics and take into account that changes

during expansion will affect the many-body state [140]. Such analysis is possible

and has been considered in Refs. [58, 71].

5.3 Measuring the mean-field interaction

Measurements of the collision cross section are useful for detecting the strength

of the interaction but are not sensitive to whether the interactions are attractive

or repulsive. The mean-field energy, on the other hand, is a quantum mechanical,

many-body effect that is proportional to na. For Bose-Einstein condensates with

repulsive interactions the mean-field energy (and therefore a) can be determined

from the size of the trapped condensate [29, 141], while attractive interactions

cause condensates with large atom number to become mechanically unstable [142,

143]. For an atomic Fermi gas the mean-field interaction energy has a smaller

impact on the thermodynamics. Here I discuss a novel spectroscopic technique

that measures the mean-field energy of a two-component Fermi gas directly [59,

60].

In this measurement we again used the Feshbach resonance between themf=−5/2

and −9/2 spin states. At magnetic fields near the resonance peak, we mea-

sured the mean-field energy in the Fermi gas using rf spectroscopy (Fig. 5.3(a)).

First, optically trapped atoms were evaporatively cooled in a 72/28 mixture of

the mf=−9/2 and mf=−7/2 spin states. After the evaporation the optical trap

was recompressed to achieve a larger density, and the magnetic field was ramped

to the desired value near the resonance. We then quickly turned on the resonant

interaction by transferring atoms from the mf=−7/2 state to the mf=−5/2 state

with a 73 µs rf π-pulse. The fraction of mf=−7/2 atoms remaining after the pulse

was measured as a function of the rf frequency.
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Figure 5.3: Radio-frequency spectra. (a) Transition of interest. (b) Rf lineshapes
with (solid line) and without (dotted line) interactions [59].

The relative number of mf=−7/2 atoms was obtained from a resonant ab-

sorption image of the gas taken after 1 ms of expansion from the optical trap.

Atoms in the mf=−7/2 state were probed selectively by leaving the magnetic

field high and taking advantage of nonlinear Zeeman shifts. Sample rf absorption

spectra are shown in Fig. 5.3(b). At magnetic fields well away from the Feshbach

resonance we could transfer all of the mf=−7/2 atoms to the mf=−5/2 state

and the rf lineshape had a Fourier width defined by the rf pulse duration. At the

Feshbach resonance there were two changes to the rf spectra. First, the frequency

for maximum transfer was shifted relative to the expected value from a magnetic

field calibration. Second, the maximum transfer was reduced and the measured

lineshape is wider.

Both of these effects arise from the mean-field energy due to strong interactions

betweenmf=−9/2,−5/2 atoms at the Feshbach resonance. The mean-field energy

produces a density-dependent frequency shift given by

∆ν =
2h̄

m
n9(a59 − a79), (5.1)

where n9 is the number density of atoms in the mf=−9/2 state, and a59 (a79) is

the scattering length for collisions between atoms in the mf=−9/2 and mf=−5/2

(mf=−7/2) states [144]. Here the nonresonant interaction term proportional to

the population difference between the mf=−7/2 and mf=−5/2 states is ignored;
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this term equals 0 for a perfect π-pulse. For our spatially inhomogeneous trapped

gas, the density dependence broadens the lineshape and lowers the maximum

transfer. This effect occurs on both sides of the Feshbach resonance peak. In

contrast, the frequency shift for maximum transfer reflects the scattering length

and changes sign across the resonance.

We measured the mean-field shift ∆ν as a function ofB near the Feshbach reso-

nance peak. The rf frequency for maximum transfer was obtained from Lorentzian

fits to spectra like those shown in Fig. 5.3(b). The expected resonance frequency

was then subtracted to yield ∆ν. The scattering length a59 was obtained using

Eqn. 5.1 with n9 = 0.5 npk and a79 = 174 a0 [54]. The peak density of the trapped

mf=−9/2 gas npk was obtained from gaussian fits to absorption images. The nu-

merical factor 0.5 multiplying npk was determined by modelling the transfer with

a pulse-width limited Lorentzian integrated over a gaussian density profile.

The measured scattering length as a function of B is shown in Fig. 5.4. This

plot, which combines data taken for two different gas densities, shows that we

were able to realize both large positive and large negative values of a59 near the

Feshbach resonance. The solid line in Fig. 5.4 shows a fit to the expected form for

a Feshbach resonance (Eqn. 3.1). Data within ±0.5 G of the peak were excluded

from the fit. With abg = 174 a0 we found that the Feshbach resonance peak occurs

at 224.21 ± 0.05 G and the resonance has a width w of 9.7 ± 0.6 G.

When B is tuned very close to the Feshbach resonance peak, we expect the

measured a59 to have a maximum value on the order of 1/kF due to the unitarity

limit. This saturation can be seen in the data shown in Fig. 5.4. Two points that

were taken within ±0.5 gauss of the Feshbach resonance peak, one on either side

of the resonance, clearly lie below the fit curve. The unitarity-limited point on the

attractive interaction side of the resonance (higher B) has an effective scattering

length of ∼2/kF . (Here h̄kF is the Fermi momentum for the mf=−9/2 gas.)

5.4 40K Feshbach resonance summary

Table 5.1 lists the Feshbach resonances we have studied experimentally in 40K.

All of these resonances were originally located by measuring scattering properties

using the techniques described above. I include the states between which the

resonance occurs, the partial wave of the resonant collision l, our most precise
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Figure 5.4: Scattering length as measured through the mean-field interaction [59].
These data were taken for a normal Fermi gas at T/TF = 0.4 and at two different
densities: npk = 1.8 × 1014 cm−3 (circles) and npk = 0.58 × 1014 cm−3 (squares).

Table 5.1: Observed Feshbach resonances in 40K.

open channel |f,mf〉 l B0 (G) w (G) reference

|9/2,−9/2〉 + |9/2,−7/2〉 s 202.10 ± 0.07 7.8 ± 0.6 [57, 73]
|9/2,−9/2〉 + |9/2,−5/2〉 s 224.21 ± 0.05 9.7 ± 0.6 [59]
|9/2,−7/2〉 + |9/2,−5/2〉 s ∼174 ∼7 unpublished
|9/2,−7/2〉 p ∼ 198.8 [57, 145]

measurement of the resonance position B0, and the resonance width w.



Chapter 6

Creating molecules from a Fermi

gas of atoms

After locating Feshbach resonances in our 40K system, we wanted to observe ev-

idence of a molecular bound state near threshold on the low-field side of the

Feshbach resonances. Creating molecules in this bound state, referred to as “Fes-

hbach molecules,” would be the first step towards achieving the BEC limit of

the crossover problem. We were motivated to believe that it would be possible

to create Feshbach molecules by experiments carried out in the Wieman group

at JILA [146, 147]. By pulsing a magnetic field quickly towards a Feshbach reso-

nance they were able to observe coherent oscillations between atoms and Feshbach

molecules in a 85Rb BEC. We hoped to employ a slightly different approach to

creating molecules in which we would ramp the magnetic field fully across the

Feshbach resonance. In this chapter I will present how, using this technique, we

were able to efficiently and reversibly create Feshbach molecules from a Fermi gas

of atoms. Another of our contributions to the study of Feshbach molecules was a

spectroscopic detection technique that firmly established that Feshbach molecules

had been created. I also present our current understanding of the physics of

conversion of atoms to molecules using adiabatic magnetic-field ramps; this un-

derstanding was gained through a study of the conversion dependences led by the

Wieman group [148]. Lastly, I describe how the dissociation of molecules in a

sample at low density provided our most precise measurement of the Feshbach

resonance position.
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Figure 6.1: Creating molecules using magnetic-field ramps across a Feshbach res-
onance.

6.1 Magnetic-field association

Figure 6.1 shows the behavior of the bound molecular state at a Feshbach reso-

nance presented in Ch. 3. Given this picture, one would expect that atoms could

be converted to molecules simply by ramping the magnetic field in time across

the Feshbach resonance position B0 [149, 150, 151]. The only requirement to cre-

ating molecules in this way is that the magnetic-field ramp must be slow enough

to be adiabatic with respect to the two-body physics of the Feshbach resonance

(two-body adiabatic). To a very good approximation the Feshbach molecules have

twice the polarizability of the atoms [152] and therefore would be confined in the

optical dipole trap along with the atoms.1

We performed such an experiment using a magnetic-field ramp across the

mf = −5/2,−9/2 resonance introduced in the previous chapter. We started with

a nearly equal mixture of the two spin states mf = −5/2,−9/2 at a magnetic field

of 227.81 G. The field was ramped at a rate of (40 µs/G)−1 across the resonance

to various final values. The number of atoms remaining following the ramp was

determined from an absorption image of the gas at ∼4 G after expansion from the

optical trap. Since the light used for these images was resonant with the atomic

transition, but not with any molecular transitions, we selectively detected only the

atoms. Figure 6.2 shows the observed total atom number in the mf = −5/2,−9/2

states as a function of the final magnetic-field value of the ramp. We found that

the atoms disappeared abruptly at the Feshbach resonance peak (dashed line).

1In fact the atoms and molecules have the same trapping frequency, but the molecule trap
depth is twice as large as the atom trap depth.
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Figure 6.2: Creation of molecules as seen through atom loss [63]. A fit to an error
function provides a guide to the eye. Atom loss occurs at precisely the expected
position of the Feshbach resonance given a previous measurement of the scattering
length divergence [59].
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We also found in similar experiments that we could recover the lost atoms with

an immediate magnetic-field ramp back above the Feshbach resonance. This ruled

out many atom loss processes and strongly suggested that all of the lost atoms

were converted to Feshbach molecules. We were surprised at the efficiency of the

conversion of our Fermi gas of atoms to a Bose gas of molecules; we could easily

create hundreds of thousands of Feshbach molecules with an initial efficiency of

∼ 50%.

6.2 Detecting weakly bound molecules

6.2.1 Rf spectroscopy

While suggestive of molecule creation, the measured atom loss was not conclusive

proof for the existence of Feshbach molecules. We thus employed a spectroscopic

technique to probe the molecules. First, we created the molecules with a magnetic-

field ramp across the Feshbach resonance and stopped at a magnetic field Bhold.

At Bhold a 13 µs radio frequency (rf) pulse was applied to the gas; the rf frequency

was chosen so that the photon energy was near the energy splitting between the

mf=−5/2 and mf=−7/2 atom states (see Fig. 5.3(a)). The resulting population

in themf=−7/2 state, which was initially unoccupied, was then probed selectively

either by separating the spin states spatially using a strong magnetic-field gradient

during free expansion (Stern-Gerlach imaging) or by leaving the magnetic field

high (215 G) and taking advantage of nonlinear Zeeman shifts.

Figure 6.3(a) shows a sample rf spectrum at Bhold = 222.49 G; the resulting

number of atoms in the mf=−7/2 state is plotted as a function of the frequency

of the rf pulse. We observed two distinct features in the spectrum. The sharp,

symmetric peak was very near the expected mf=−5/2 to mf=−7/2 transition

frequency for free atoms. With the Stern-Gerlach imaging we saw that the total

number of mf=−5/2 and mf=−7/2 atoms was constant, consistent with transfer

between these two atom states. The width of this peak was defined by the Fourier

width of the applied rf pulse. Nearby was a broader, asymmetric peak shifted

lower in frequency. Here we found that after the rf pulse the total number of

observed atoms (mf = −5/2 + −7/2) actually increased. Also, the resulting

mf=−7/2 gas in this region had a significantly increased kinetic energy, which
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Figure 6.3: Rf spectrum for an atom/Feshbach molecule mixture [63]. (a) Transfer
to the mf=−7/2 states as a function of rf frequency. The left feature is the
molecule dissociation spectrum and the right feature represents the transfer of
atoms between mf=−5/2 and mf=−7/2. (b) Corresponding kinetic energy of
the mf=−7/2 state.
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grew linearly for larger frequency shifts from the atom peak (Fig. 6.3(b)).

The asymmetric peak corresponds to the dissociation of molecules into free

mf=7/2 and mf=−9/2 atoms. Since the applied rf pulse stimulates a transition

to a lower energy Zeeman state, we expected hνrf = hν0 −Eb −∆E, where Eb is

the binding energy of the molecule, ν0 is the atom-atom transition frequency for

noninteracting atoms, and we have ignored mean-field interaction energy shifts.

The remaining energy, ∆E, must be imparted to the dissociating atom pair as

kinetic energy. Two separate linear fits were applied to the kinetic energy data in

Fig. 6.3(b) to determine the threshold position. The slope beyond threshold for

the data is 0.49±0.03; this indicates that the atom pair (mf=−7/2 + mf=−9/2)

does indeed receive the additional energy, ∆E, beyond the binding energy when

the molecule is dissociated.

The observed lineshape of the asymmetric peak in Fig. 6.3(a) should de-

pend upon the Franck-Condon factor, which gives the overlap of the molecular

wavefunction with the atomic wavefunction. C. Ticknor and J. Bohn calculated

this multichannel Franck-Condon overlap as a function of energy. The resulting

transition rate, convolved with the frequency width of the applied rf and scaled

vertically, is shown as the solid line in Fig. 6.3(a). The agreement between theory

and experiment for the dissociation spectrum is quite good. This well-resolved

spectrum provides much information about the molecular wavefunction. A useful

discussion of the theoretical aspects of these dissociation spectra and their relation

to the wavefunction of the initial and final states can be found in Ref. [153].

In Fig. 6.4 is the magnetic-field dependence of the frequency shift ∆ν = νrf −
ν0, which to first order should correspond to the molecular binding energy. While

∆ν could in principle be obtained directly from the transfer spectrum (Fig. 6.3(a)),

we used the appearance of the threshold in the energy of the mf=−7/2 gas, as it

is more clear (Fig. 6.3(b)). We compared the position of this energy threshold to

the expected atom-atom transition frequency ν0 based upon a calibration of the

magnetic-field strength. The data are consistent with a theoretical calculation of

the binding energy (solid line) based upon a full coupled channels calculation with

no free parameters carried out by C. Ticknor and J. Bohn. This measurement of

Eb accentuates the fact that these Feshbach molecules are not typical molecules.

With binding energies on the order of h×100 kHz (4×10−10 eV) they are extremely

weakly bound compared to molecules chemists are accustomed to studying.
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Figure 6.4: The frequency shift (∆ν) from the expected mf = −5/2 → −7/2
transition plotted versus magnetic field for the mf=−7/2 atoms (squares) and the
molecules (circles). The line corresponds to a calculation of the binding energy of
the molecules as a function of detuning from the Feshbach resonance [63].
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The excellent agreement with theory in Fig. 6.4 left no doubt that efficient

creation of Feshbach molecules is possible. In addition, our rf spectroscopy tech-

nique was extended for a variety of other measurements in paired systems. It

was proposed that rf spectroscopy could be used to measure the excitation gap

in a superfluid Fermi gas [154, 155]; such a measurement is published in Ref.

[80]. Our rf spectroscopy technique was also extended to detect confinement in-

duced molecules in a one-dimensional Fermi gas [156]. Molecule dissociation via

rf spectroscopy has proven useful for giving atoms in a molecule a large relative

momentum, as in Ref. [157]. Dissociating the molecules far above threshold pro-

duces a fun absorption image. The dissociated atoms fly out in a spherical shell,

and the resulting absorption image is a ring structure (Fig. 6.5).

(a) (b)

+k

-k

Figure 6.5: Dissociation of molecules with radio frequencies [157]. (a) The atoms
that result from the dissociation have equal and opposite momenta. (b) False
color absorption image of a dissociated molecular gas.

6.2.2 Dissociation through magnetic-field modulation

A very similar technique to rf spectroscopy that we later employed to study

fermionic atom pairs such as molecules was magnetic-field modulation [81]. After

creating Feshbach molecules at a magnetic field Bhold, we modulated the homo-

geneous magnetic field at a frequency near Eb/h, as shown in Fig. 6.6(a). To

quantify the response of the gas, we determined the increase in the gas tempera-

ture after the perturbation was applied. We found that a sensitive way to detect

this increase in temperature was to measure the number of atoms that escaped
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from a shallow optical dipole trap due to evaporation [81]. By varying the fre-

quency of the modulation we could map out a molecule dissociation spectrum

and measure the dissociation threshold ∆ν. The result of this measurement for a

variety of magnetic fields Bhold is shown in Fig. 6.6(b).
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Figure 6.6: (a) Magnetic field modulation to dissociate molecules. (b) Resulting
binding energy.

Note that this measurement is considerably more precise than the rf spec-

troscopy measurement. One reason for this is that the B-modulation technique

does not change the magnetic moment of the atoms, meaning the measurement

is not sensitive to magnetic-field fluctuations. The lines in Fig. 6.6(b) show the

result of the calculation of Ch. 3, with the dashed lines indicating the uncertainty

on the curve due to the uncertainty in the measured Feshbach resonance param-

eters B0 and w.2 The data agree with the calculation to within the uncertainty,

but note in this measurement many-body effects may result in systematic shifts.

This magnetic-field modulation method of dissociating molecules was extended to

associate free 85Rb atoms into Feshbach molecules in Ref. [158].

2Most of this uncertainty originates in B0, and the value and uncertainty in B0 comes from
the measurement in Sec. 6.4. Fig. 6.6(b) suggest that the resonance position is actually at the
upper limit of the measurement of Sec. 6.4.
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6.3 Understanding molecule conversion efficiency

While using magnetic-field ramps to create molecules was very successful, there

were many outstanding questions about the physics of the process. For example,

what parameters define the conversion efficiency from atoms to molecules? The

first important parameter turns out to be the rate of the magnetic-field ramp

across the resonance. If the ramp is too fast no molecules will be created because

the ramp will be diabatic with respect to the atom-molecule coupling. As the

ramp is made slower, however, atoms will pair to form molecules. This effect is

shown in Fig. 6.7 where molecule creation through atom loss is shown. Theoretical

predictions find that this effect can be well modelled by the Landau-Zener formula

for the transition probability at a two-level crossing

f = fm(1 − e−δLZ ) (6.1)

where f is the fraction of atoms converted to molecules, fm is the maximum

fraction of atoms that can be converted to molecules, and δLZ is the Landau-

Zener parameter [151, 114]. Let δLZ be β(dB/dt)−1 where (dB/dt)−1 is the inverse

magnetic-field ramp rate across the resonance. We can fit Fig. 6.7 with β as the

fitting parameter to find in this case β ≈ 20 µs/G [63, 148]. Reference [114]

predicts that β = αnwabg where n is the atomic gas density, w is the width

of the Feshbach resonance, abg is the background scattering length, and α is a

proportionality constant. A study by Hodby et al. verified the linear dependence

of β upon the density n, but the proportionality constant α for this expression is

still under investigation [148].

Notice in Fig. 6.7 that even at rates a few times slower than β not all the atoms

are converted to molecules. One would expect that if the atom-molecule system

were in chemical equilibrium and the temperature of the molecular sample were

much less than Eb/kb then 100% of the atoms should be converted to molecules.

An important point to recognize for all of the experiments in this chapter is that

we are not operating in chemical equilibrium. At the final magnetic field values

in these experiments the time scale for chemical equilibrium is significantly longer

than time scales in Fig. 6.7, and we routinely work on time scales intermediate

between the time scale of β and the chemical equilibrium time scale. Thus, the
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observed saturation in molecule conversion is important to understand. Reference

[148] studies this phenomenon both for a bosonic gas of 85Rb and our fermionic

gas.
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Figure 6.7: Time scale for two-body adiabaticity [63].

Eric Cornell suggested that the saturation in molecule conversion was likely

related to phase space density (or T/TF in our case) based on intuitive arguments.

An adiabatic process smoothly alters the wavefunction describing atom pairs but

does not change the occupation of states in phase space. Thus to form a molecule

a pair of atoms must initially be sufficiently close in phase space that their com-

bined wavefunction can evolve smoothly into the Feshbach molecule state as the

resonance is crossed. In other words one would expect a molecule to form if a pair

of atoms has a relative position rrel and relative velocity vrel such that

|δrrelmδvrel| < γh (6.2)

where γ is an experimentally determined constant.

Figure 6.8 shows the result of a measurement of the saturation in molecule

conversion (fm) for a 40K gas as a function of T/TF , which is monotonically

related to the phase space density of the gas. We see that indeed the conversion

fraction does increase as T/TF decreases (phase space density increases) with a

maximum conversion at our lowest temperatures of about 90%. 85Rb data show

a similar dependence. To quantify the conversion expected for the many-body
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Figure 6.8: Dependence of molecule conversion on the initial T/TF of a two-
component Fermi gas [148].

problem given the two-body criterion above (Eqn. 6.2) an algorithm described in

Ref. [148] was developed. The line in Fig. 6.8 is the result of this algorithm for

the best fit value of γ. We found that for the fermion data γ = 0.38 ± 0.04 and

for the boson data γ = 0.44± 0.03, indicating that a similar process is at work in

both the Fermi and Bose cases.

6.4 A precise measurement of B0

A precise determination of the magnetic-field location of the Feshbach resonance

B0 is an essential ingredient for exploring the BCS-BEC crossover regime. Knowl-

edge of the position and the width of the resonance allows a precise calculation

of the interaction strength at a particular magnetic field (see Ch. 3). As we saw

in Ch. 5, B0 can be measured via scattering properties of the resonance, but

our most precise measurement of B0 actually comes from the study of Feshbach

molecules. In particular we looked for dissociation of Feshbach molecules in a low

density gas as a function of magnetic field. To determine if the molecules had

been dissociated or not we probed the gas at low magnetic field; here atoms not

bound in molecules can be selectively detected.

Figure 6.9 shows the result of such a measurement. Molecules created by
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a slow magnetic-field ramp across the resonance were dissociated by raising the

magnetic field to a value Bprobe near the Feshbach resonance (inset to Fig. 6.9).

Note that to avoid many-body effects, we dissociated the molecules after allowing

the gas to expand from the trap to much lower density. This plan also allowed

us to be certain we would not create molecules in the ramp of the magnetic field

to near zero field for imaging. The measured number of atoms increased sharply

at B0 = 202.10± 0.07 G. This measurement of the resonance position agreed well

with previous less precise results [57, 67].3
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Figure 6.9: Determination of the position of the Feshbach resonance via molecule
dissociation in a low-density Fermi gas [73]. A fit of the data to an error function
reveals B0 = 202.10 ± 0.07 G, where this uncertainty is given by the 10%-90%
width.

3Note that this measurement of the resonance position is quite similar to the molecule asso-
ciation result of Fig. 6.2. However, the disadvantages of the association method are: (1) The
molecule creation must take place in a high-density sample; hence many-body effects may play
a role. (2) The details of the magnetic-field ramp to low field for imaging, in particular its initial
rate, are crucial.



Chapter 7

Inelastic collisions near a

fermionic Feshbach resonance

Elastic collisions between atoms (discussed in Ch. 5) are often referred to as good

collisions. These collisions allow rethermalization in the gas but do not change

the internal state of the atoms or molecules. In atomic gas experiments a constant

concern is inelastic collisions, often referred to as bad collisions. In these collisions

the products often are particles in lower energy internal states. The difference in

energy between the incoming particles and the products of the collision must be

carried away in the form of kinetic energy. When this energy difference is large

compared to energy scales such as the trap depth particles can be lost from the

trap and significant heating of the sample can occur.

Near a Feshbach resonance inelastic collisions can be enhanced along with

elastic collisions. To accomplish the work in this thesis we spent a large fraction

of our time understanding the inelastic processes near 40K Feshbach resonances

and designing experiments that minimize the effect of inelastic collisions. In this

chapter I will discuss the inelastic collisions near a 40K Feshbach resonance and

present measurements of relevant inelastic collision rates. We observed clear ev-

idence of inelastic processes near the fermionic Feshbach resonance, but found

that despite these inelastic processes the lifetime of the sample was long enough

to study BCS-BEC crossover physics.

69
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7.1 Expected inelastic decay processes

Let us first consider the stability of free fermionic atoms on the BCS side of

a fermionic Feshbach resonance. In particular consider the Feshbach resonance

between the |f,mf〉 = |9/2,−9/2〉 and |9/2,−7/2〉 states that is used for many

of the experiments in 40K. Since these are the two lowest energy states of 40K

the only inelastic collision involving two of these fermions that is energetically

favorable is

|9/2,−9/2〉+ |9/2,−7/2〉 → |9/2,−9/2〉 + |9/2,−9/2〉. (7.1)

This process however can only occur via odd partial wave collisions, which are

suppressed at ultracold temperatures [53]. Thus, any inelastic collision with these

states must involve at least three fermions. A three-body inelastic collision in a

two-component Fermi gas with components X and Y would take the form

X +X + Y → X + (XY )−. (7.2)

Here the subscript − represents a lower-energy molecular state. Such lower-energy

molecular states are always present in these atomic gas systems as there are many

vibrational levels of the interatomic potential. To conserve energy and momen-

tum in the collision the products X and (XY )− carry away the binding energy

of the (XY )− molecule in the form of relative kinetic energy. Theory predicts

that this three-body collision process will be suppressed for s-wave interactions

between fermions because it requires that two identical fermions approach each

other [90, 91, 97, 159]. However, while the rate of this inelastic collision process is

suppressed, it is not forbidden, making it an important process near a Feshbach

resonance [57, 160].

As we cross the Feshbach resonance to the BEC side with a cold 40K Fermi

gas we must consider the stability of a mixture of fermionic atoms and Feshbach

molecules. An isolated Feshbach molecule for the mf = −7/2,−9/2 40K resonance

will be stable for the same reason as the two fermion mixture is stable. Note that

the case in which the two atoms in the molecule are not in the lowest energy

internal states, such as molecules created using 85Rb, is quite different [146, 148].

These 85Rb Feshbach molecules will spontaneously dissociate as observed in Ref.
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[161]. For our 40K molecules however we again expect that any decay processes

will require more than two fermions, for example [97, 162]

X +XY → X + (XY )− (7.3)

XY +XY → XY + (XY )−. (7.4)

The first process is reminiscent of Eqn. 7.2 above. These processes are often

referred to as collisional quenching of vibrations [163, 164, 165]. Again we expect

some suppression of these decay channels due to Fermi statistics since two identical

fermions must approach each other, as shown schematically in Fig. 7.1.

(a) (b)

Figure 7.1: Particles involved in inelastic collisions in a Feshbach molecule/atom
mixture. (a) Illustration of Eqn. 7.3 (b) Illustration of Eqn. 7.4.

7.2 Lifetime of Feshbach molecules

In this section I present experimental data on the stability of a mixture of atoms

and Feshbach molecules. To obtain these data we created a molecule sample at

the mf = −7/2,−9/2 Feshbach resonance in which typically 50% of original atom

gas was converted to molecules. We then measured the molecule number as a

function of time while holding the molecule/atom mixture in a relatively shallow

optical dipole trap [67]. Figure 7.2 shows the result of this measurement at a

variety of magnetic fields on the BEC side of the Feshbach resonance. The plot

shows Ṅ/N versus the atom-atom scattering length a. Here N is the number of

molecules and Ṅ is the initial linear decay rate.

We found that far from resonance the molecules decay quickly, but the decay

rate changes by orders of magnitude as the Feshbach resonance is approached.

Physically this effect is partially related to the overlap between the wavefunctions
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of the XY molecule and the (XY )− molecule. As the Feshbach resonance is

approached the XY molecules become extremely weakly bound and quite large,

and hence they have less overlap with the small (XY )− molecules.
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Figure 7.2: Feshbach molecule loss rate as a function of the atom-atom scattering
length near a Feshbach resonance in 40K [67]. N here is the number of molecules.
The line is a fit of the closed circles (•) to a power law. The open circles (◦) are
data for which the pair size is expected from two-body theory to be larger than
the interparticle spacing.

A scaling law for the dependence of the molecule decay rate upon the atom-

atom scattering length a was found in [97] and later in [159] for the processes

described by Eqns. 7.3 and 7.4 (Fig. 7.1). The scaling law was found by solving

the full few-body problem in the limit where the molecules are smaller than the

interparticle spacing, yet a � r0. Physical effects important to the result are

the Fermi statistics and the wavefunction overlap. The prediction for Eqn. 7.3

(molecule-atom collisions) is that the decay rate should scale with a−3.33 and for

Eqn. 7.4 (molecule-molecule collisions) with a−2.55.

Since our measurement was carried out with thermal molecules the density of

the molecule gas remains approximately constant over the a = 1000 a0 to 3000 a0

range. (The total peak atom density in one spin state in the weakly interacting

regime was n0
pk = 7.5 × 1012 cm−3.) Thus, we could measure the power law

by fitting the data in Fig. 7.2 to the functional form Ca−p, where C and p are

constants. We included only points for which the interatomic spacing in the center

of the sample was larger than the expected size of an isolated molecule, a/2. We
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found p = 2.3±0.4, consistent with the predicted power law for molecule-molecule

collisions. A similar power law was observed in a gas of Li2 molecules at the 834

G Feshbach resonance [166].

In general we find that the lifetime of the molecules is surprisingly long near the

Feshbach resonance. The molecule lifetime for magnetic fields at which a > 3000

a0 is greater than 100 ms. This is much longer than lifetimes observed in bosonic

systems for similar densities and internal states [167, 168]. 100 ms is actually

a long time compared to many other time scales in our Fermi gas such as the

time scale for two-body adiabaticity, the average time between elastic collisions,

and the radial trap period. This comparison suggested that it would indeed be

possible to study BCS-BEC crossover physics using atomic 40K gases.

7.3 Three-body recombination

We also observe inelastic decay of fermionic atoms on the BCS side of the Feshbach

resonance, where the decay is due the process described by Eqn. 7.2 [57]. These

collisions cause both particle loss and heating. The heating can result from a

combination of two processes: First, the density dependence of the three-body

process results in preferential loss in high density regions of the gas [169]. Second,

the products of the inelastic collision, which have kinetic energies on order the

binding energy of the XY− molecules, can collide with other particles on the way

out of the sample causing transfer of energy to the gas.

We found that one relevant measure of the effect of inelastic decay processes

on our ability to study BCS-BEC crossover physics is the heating of our Fermi gas

during magnetic-field ramps that are sufficiently slow to be adiabatic compared

to many-body time scales (see Ch. 8). We performed an experiment in which

we approached the Feshbach resonance at rate of (6 ms/G)−1, waited 1 ms, and

then ramped back at the same slow rate to the weakly interacting regime. The

result of this experiment is shown in Fig. 7.3. If we started with a gas initially

at T/TF = 0.10, T/TF upon return increased by less than 10% for a ramp to

1/k0
Fa = 0 (yet by 80% for a ramp to 1/k0

Fa = 0.5). k0
F is the Fermi wavevector

measured in the weakly interacting regime. For this measurement the initial peak

density in one spin state was n0
pk = 1.2 × 1013 cm−3.
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Figure 7.3: T/TF measured in the weakly interacting regime as a function of the
final magnetic field in an adiabatic ramp towards the Feshbach resonance and
back [78]. The magnetic field is represented through the dimensionless parameter
1/k0

Fa.

7.4 Comparison of 40K and 6Li

In both 40K and 6Li gases the scaling law of the decay rate as a function of

molecule size was found to be the same [67, 166]. However, comparison of the

absolute decay rates for similar densities and a ≈ 5000 a0 shows that the inelastic

decay of 40K occurs more than two orders of magnitude faster than at the broad
6Li Feshbach resonance [39, 166, 124]. This difference has so far not been fully

explained theoretically. However, it must be related in some way to the differ-

ence in the full three-body potentials for 40K versus 6Li atoms. This difference in

lifetime between the two atomic species affects how experiments in the BCS-BEC

crossover are approached in 40K versus 6Li. For example, in our experiments we

obtain the coldest gases in 40K by evaporating a Fermi gas in the weakly interact-

ing regime where inelastic decay is negligible. Experimenters using 6Li, however,

obtain their coldest gases through evaporation near the Feshbach resonance or

slightly to the molecular side of the resonance [170, 69].

In our discussions thus far we have only considered inelastic collisions in which

the final state is a more deeply bound molecule. In the 6Li systems experimenters

make use of inelastic collisions that interconvert atoms on the repulsive side of the
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Feshbach resonance and Feshbach molecules [170, 69]. The rate of these inelastic

collisions in the 6Li system is faster than inelastic decay to more deeply bound

molecules, and the binding energy of the Feshbach molecules Eb ≈ h̄2

ma2
is small

enough to not cause significant problems in the cooling process. Hence, they

typically start with a hot gas of atoms on the BEC side of the resonance and after

evaporative cooling observe a pure sample of Feshbach molecules [66, 69]. Thus,

in contrast to the 40K experiments in this thesis, 6Li experiments can operate with

chemical equilibrium between atoms and Feshbach molecules.



Chapter 8

Making condensates from a Fermi

gas of atoms

So far we have considered the normal state of the Feshbach resonance/Fermi

gas system and found that it has all the elements necessary to study BCS-BEC

crossover physics. However, the true test of whether we could access BCS-BEC

crossover physics with our atomic gas would be to observe a phase transition. The

phase transition could be distinguished through observation of the onset of either

superfluid behavior or condensation. Due to the linked nature of these phenomena

one would necessarily imply the other. Just as with alkali BEC in 87Rb and 23Na

(Fig. 1.3), the observable of choice for the first experiments to observe this phase

transition in the BCS-BEC crossover was condensation.

In this chapter I will discuss how we were able to show condensation of

fermionic atom pairs in the BCS-BEC crossover regime. This demonstration re-

lied heavily upon our previous knowledge of the normal state of a Fermi gas at

a Feshbach resonance. First, I present our observation of condensation of Fes-

hbach molecules to create one of the first molecular BECs [68]. This work led

the way to observation of condensation of fermionic atom pairs in the crossover

regime. Then I present a phase diagram of the BCS-BEC crossover regime at-

tained through measurements of condensate fraction.

76
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8.1 Emergence of a molecular condensate from

a Fermi gas of atoms

We have seen that a Feshbach resonance can be used to create a large number of

ultracold molecules starting with a Fermi gas of atoms. After observing that these

molecules can be long lived, the creation of a BEC from these bosonic Feshbach

molecules was an obvious goal. Previously we had created molecules by applying a

magnetic-field ramp just slow enough to be two-body adiabatic; in the experiments

here the idea will be to apply a magnetic-field ramp that is not only two-body

adiabatic, but also slow with respect to the many-body physics timescale in our

gas (many-body adiabatic). With such a magnetic-field ramp across the Feshbach

resonance the entropy of the original quantum Fermi gas should be conserved

[65, 171]. For an initial atom gas with a sufficiently low T/TF the result should

be a low entropy sample of bosonic molecules, which for a low enough entropy is

a BEC.

To pursue this idea experimentally we again used the Feshbach resonance

between the mf=−9/2 and mf=−7/2 spin states starting with a Fermi gas at

temperatures below quantum degeneracy. We applied a time-dependent ramp of

the magnetic field starting above the Feshbach resonance and ending below the

resonance. The magnetic field was typically ramped in 7 ms from B = 202.78 G

to either B = 201.54 G or B = 201.67 G, where a sample of 78% to 88% Feshbach

molecules was observed. A critical element of this experiment is that the lifetime

of the Feshbach molecules can be much longer than the typical collision time in

the gas and longer than the radial trapping period (see Ch. 7). The relatively long

molecule lifetime near the Feshbach resonance allows the atom/molecule mixture

to achieve thermal equilibrium during the magnetic-field ramp. Note however that

since the optical trap used for these experiments is strongly anisotropic (νr/νz ≈
80) we may attain only local equilibrium in the axial direction.

To study the resulting atom-molecule gas mixture after the magnetic-field

ramp, we measured the momentum distribution of both the molecules and the

residual atoms using time-of-flight absorption imaging. After typically 10 to 20 ms

of expansion we applied a radio frequency (rf) pulse that dissociated the molecules

into free atoms in the mf=−5/2 and mf=−9/2 spin states [63]. Immediately af-

ter this rf dissociation pulse we took a spin-selective absorption image. The rf
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pulse had a duration of 140 µs and was detuned 50 kHz beyond the molecule

dissociation threshold where it did not affect the residual unpaired atoms in the

mf=−7/2 state. We selectively detected the expanded molecule gas by imaging

atoms transferred into the previously unoccupied mf=−5/2 state by the rf dis-

sociation pulse. Alternatively we could image only the expanded atom gas by

detecting atoms in the mf=−7/2 spin state.

Close to the Feshbach resonance, the atoms and molecules are strongly in-

teracting with effectively repulsive interactions. The scattering length for atom-

molecule and molecule-molecule collisions was calculated by Petrov et al. to be

1.2 a and 0.6 a respectively, for values of a much larger than r0 and smaller than

the interparticle spacing [97]. During the initial stage of expansion the positive

interaction energy is converted into additional kinetic energy of the expanding

gas. Therefore, the measured momentum distribution is very different from the

original momentum distribution of the trapped gas. In order to reduce the effect

of these interactions on the molecule time-of-flight images we used the magnetic-

field Feshbach resonance to control the interparticle interaction strength during

expansion. We could significantly reduce momentum kick due to the interaction

energy by rapidly changing the magnetic field before we switched off the optical

trap for expansion. The field was typically lowered by 4 G in 10 µs. At this

magnetic field farther away from the resonance the atom-atom scattering length

a was reduced to ∼500 a0. We found that this magnetic-field jump resulted in a

loss of typically 50% of the molecules, which is a result of the reduced molecule

lifetime away from the Feshbach resonance.

To attempt to observe condensation of molecules we monitored the molecule

momentum distribution while varying the temperature of the initial weakly inter-

acting Fermi gas, (T/TF )0. Below (T/TF )0 of 0.17 we observed the sudden onset of

a pronounced bimodal momentum distribution. Figure 8.1 shows such a bimodal

distribution for an experiment starting with an initial temperature of 0.1 TF ; for

comparison the figure shows the resulting molecule momentum distribution for an

experiment starting at 0.19 TF . The bimodal momentum distribution is a striking

indication that the gas of weakly bound molecules has undergone a phase transi-

tion to a BEC [22, 23]. To obtain thermodynamic information about the molecule

gas the momentum distribution is fit with a two-component distribution. The fit

function is the sum of an inverted parabola describing the Thomas-Fermi momen-
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Figure 8.1: Momentum distribution of a molecule sample created by applying a
magnetic-field ramp to an atomic Fermi gas with an initial temperature of 0.19 TF
(0.1 TF ) for the left (right) picture [68]. In the right sample the molecules form a
Bose-Einstein condensate. The lines illustrate the result of bimodal surface fits.

Figure 8.2: Molecular condensate fraction N0/N versus the scaled temperature
T/Tc [68]. The temperature of the molecules is varied by changing the initial
temperature of the fermionic atoms prior to the formation of the molecules, yet
measured through the momentum distribution of the molecular thermal gas.
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tum distribution of a bosonic condensate and a gaussian momentum distribution

describing the noncondensed component of the molecule gas. In Fig. 8.2 the

measured condensate fraction is plotted as a function of the fitted temperature of

the molecular thermal component in units of the critical temperature for an ideal

Bose gas Tc = 0.94(Nν2
rνz)

1/3h/kB. In this calculated Tc, N is the total number of

molecules measured without changing the magnetic-field for the expansion. The

critical temperature for the strongly interacting molecules measured from Fig. 8.2

is 0.8 ± 0.1 Tc. Such a decrease of the critical temperature relative to the ideal

gas prediction is expected for a strongly interacting gas [172].
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Figure 8.3: Time scale for many-body adiabaticity [68]. The fraction of condensed
molecules is plotted versus the time in which the magnetic field is ramped across
the Feshbach resonance from 202.78 G to 201.54 G.

As expected we found that the creation of a BEC of molecules requires that the

Feshbach resonance be traversed sufficiently slowly to be many-body adiabatic.

This many-body time scale should be determined by the time it takes atoms

to collide and move in the trap. In Fig. 8.3 the measured condensate fraction

is plotted versus the ramp time across the Feshbach resonance starting with a

Fermi gas at a temperature ∼0.1 TF . Our fastest ramps resulted in a much

smaller condensate fraction while the largest condensate fraction appeared for a

magnetic-field ramps slower than ∼3 ms/G.

Rapidly changing the interaction strength for time-of-flight expansion of the

condensate allowed us to measure the interaction energy in the molecular sample.
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Figure 8.4: Expansion energy of the molecular condensate versus the interaction
strength during expansion. In this measurement the BEC is created in a regime
where the atom-atom scattering length is ∼3300 a0. For time-of-flight expansion
the magnetic field is rapidly changed to different final values, characterized by the
atom-atom scattering length a.

Figure 8.4 shows a plot of the expansion energy of the molecule BEC for various

interaction strengths during time-of-flight expansion. Here the condensate was

created at a fixed interaction strength, and thus the initial peak density npk was

constant. The linear dependence of the energy upon a suggests that the molecule-

molecule scattering length is proportional to the atom-atom scattering length as

predicted in Ref. [97]. In addition the expansion energy extrapolates to near zero

energy for a=0. This is consistent with a Bose-Einstein condensate of molecules.

Assuming the molecule-molecule interaction strength calculated in Ref. [97], the

peak density of the strongly interacting condensate was npk = 7 × 1012 cm−3.

In conclusion, I have discussed the creation of a BEC of weakly bound molecules

starting with a gas of ultracold fermionic atoms. With a relatively slow ramp of

an applied magnetic field that converts most of the fermionic atoms into bosonic

molecules and an initial atomic gas below T/TF = 0.17, we observed a molecular

condensate in time-of-flight absorption images taken immediately following the

magnetic-field ramp. Our experiment approaches the BEC limit, in which super-

fluidity occurs due to BEC of essentially local pairs whose binding energy is larger

than the Fermi energy. Strikingly, our 40K molecular condensate is not formed by

any active cooling of the molecules, but rather merely by traversing the BCS-BEC
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crossover regime. At the same time as these experiments in 40K, experiments us-

ing 6Li created a similar BEC of Feshbach molecules. Their approach however

was direct evaporative cooling of the Feshbach molecules [69, 70].

8.2 Observing condensates in the crossover

To create a molecular condensate we started with a quantum Fermi gas, slowly

traversed the BCS-BEC crossover regime, and ended up with a BEC of molecules.

An obvious question was whether condensation also had occurred in the crossover

regime that we had passed through. To answer this question we needed to over-

come a number of challenges. First, we required a probe of the momentum distri-

bution of pairs in the crossover. In the BEC limit the momentum distribution of

the molecules could be measured using standard time-of-flight absorption imaging.

However, this method is problematic in the crossover because the pairs depend on

many-body effects and are not bound throughout expansion of the gas. Second,

to prove observation of condensation in the BCS-BEC crossover regime we had to

show that we were not simply seeing condensation of pairs in the two-body bound

state (two-body pairs), but rather condensation of pairs requiring many-body ef-

fects to form (many-body pairs). A clear example of condensation of many-body

pairs would be condensation on the a < 0, or BCS, side of the Feshbach resonance.

Here the two-body physics of the resonance no longer supports the weakly bound

molecular state; hence, only many-body effects can give rise to a condensation of

fermion pairs.

To solve the problem of measuring the momentum distribution of pairs in

the crossover we introduced a technique that took advantage of the Feshbach

resonance to pairwise project the fermionic atoms onto Feshbach molecules. We

were able to probe the system by rapidly ramping the magnetic field to the BEC

side of the resonance, where time-of-flight imaging could be used to measure the

momentum distribution of the weakly bound molecules. The projecting magnetic-

field ramp was completed on a timescale that allowed molecule formation but was

still too brief for particles to collide or move significantly in the trap. This is

possible due to the clear separation of the two-body and many-body time scales.

The timescale for many-body adiabaticity in Fig. 8.3 is two orders of magnitude

longer than the timescale for two-body adiabaticity shown in Fig. 6.7.
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The key to the second problem, verifying condensation of many-body pairs,

came from careful understanding of the two-body physics. As discussed in Ch. 6

we were able to precisely measure the magnetic-field position above which a two-

body bound state no longer exists, B0 (Fig. 6.9). If we observed condensation of

fermionic atom pairs at B > B0 we could be assured that these were pairs that

were the result of many-body effects.

To perform experiments making use of these ideas, we continued with the

same experimental setup as the last section where we discussed the creation of

molecular condensates. We initially prepared the ultracold two-component atom

gas at a magnetic field of 235.6 G, far above the Feshbach resonance. Here the

gas is not strongly interacting, and we measured (T/TF )0 through surface fits to

time-of-flight images of the Fermi gas (Ch. 4). The field was then slowly lowered

at the many-body adiabatic rate of 10 ms/G to a value of Bhold near the resonance.

Whereas before we had considered only values of Bhold below B0 on the BEC side

now we explore the behavior of the sample when ramping slowly to values of Bhold

on either side of the Feshbach resonance.

To probe the system we projected the fermionic atoms pairwise onto molecules

and measured the momentum distribution of the resulting molecular gas. This

projection was accomplished by rapidly lowering the magnetic field by ∼10 G

at a rate of (40 µs/G)−1 while simultaneously releasing the gas from the trap

(Fig. 8.5). This put the gas far on the BEC side of the resonance, where it was

weakly interacting. After a total of typically 17 ms of expansion the molecules

were selectively detected using rf photodissociation immediately followed by spin-

selective absorption imaging. To look for condensation, these absorption images

were again surface fit to a two-component function that was the sum of a Thomas-

Fermi profile for a condensate and a gaussian function for noncondensed molecules.

Figures 8.6 and 8.7 present the main result of this section. In Fig. 8.6(a) is the

measured condensate fraction N0/N as a function of the magnetic-field detuning

from the resonance, ∆B = Bhold − B0. The data in Fig. 8.6(a) were taken for

a Fermi gas initially at T/TF = 0.08 and for two different wait times at Bhold.

Condensation was observed on both the BCS (∆B > 0) and BEC (∆B < 0)

sides of the resonance. We further found that the condensation that occurs on

the BCS side of the Feshbach resonance was distinguished by its longer lifetime.

The lifetime was probed by increasing thold to 30 ms (triangles in Fig. 8.6(a));
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Figure 8.5: A typical magnetic-field ramp used to measure the fraction of con-
densed fermionic atom pairs [73]. The system is first prepared by a slow magnetic-
field ramp towards the resonance to a variable position Bhold (two-sided arrow).
After a time thold the optical trap is turned off at t = 0 and the magnetic field
is quickly lowered by ∼10 G. After expansion, the molecules are imaged on the
BEC side of the resonance (◦).

this time was much longer than the previously measured lifetime of the molecular

condensate in the BEC limit [68]. Not surprisingly then we found that for the

BEC side of the resonance no condensate was observed for thold = 30 ms except

very near the resonance. However, for all data on the BCS side of the resonance

the observed condensate fraction was still > 70% of that measured for thold = 2

ms.

An essential aspect of these measurements is the fast magnetic-field ramp that

projects the fermionic atoms pairwise onto molecules. It is a potential concern

that the condensation might occur during this ramp rather than at Bhold. To

verify that condensation did not occur during the ramp we studied the measured

condensate fraction for different magnetic-field ramp rates. Figure 8.6 compares

the condensate fraction measured using the 40 µs/G (circles) rate to that using

a ramp that was ∼7 times faster (open diamonds). We found that the measured

condensate fraction was identical for these two very different rates, indicating

that this measurement constitutes a projection with respect to the many-body

physics. The validity of the magnetic-field projection technique was also explored
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Figure 8.6: Measured condensate fraction as a function of detuning from the
Feshbach resonance ∆B = Bhold − B0 [73]. (a) Data for thold = 2 ms (•) and
thold = 30 ms (4) with an initial gas at T/TF = 0.08. (b) Data for two different
projection magnetic-field ramp rates: 40 µs/G (•) and ∼6 µs/G (�). The dashed
lines ∆B = 0 reflect the uncertainty in the Feshbach resonance position.
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in studies of a 6Li gas at MIT. Researchers there first reproduced the observation of

condensation using the pairwise projection technique with a 6Li gas [74]. They also

monitored the delayed response of the many-body system after modulating the

interaction strength [173]. They found that the response time of the many-body

system was slow compared to the rate of the rapid projection magnetic-field ramp.

There have been a number of theoretical papers on the subject of the pairwise

projection technique for measuring condensate fraction in the crossover [174, 175,

176]. Work thus far has established that observation of condensation of molecules

following a rapid projection ramp indicates the pre-existence of condensation of

fermionic atom pairs before the projection ramp.

To summarize, in this section we have introduced a method for probing the

momentum distribution of fermionic atom pairs and seen how this technique could

be employed to observe condensation near a Feshbach resonance. By projecting

the system onto a molecule gas, we observed condensation of fermionic pairs as

a function of the magnetic-field detuning from the resonance as shown in Fig.

8.7. While Fig. 8.7 is reminiscent of Fig. 1.3 where condensation was observed a

function of T/Tc, note that the condensate here actually appears as a function of

interaction strength, not temperature.

8.3 Measurement of a phase diagram

In addition to varying ∆B and measuring the condensate fraction, we can also

vary the initial temperature of the Fermi gas. Figure 8.8 is a phase diagram

created from data varying both ∆B and (T/TF )0. ∆B is converted to the di-

mensionless parameter 1/k0
Fa, where a is calculated directly from ∆B through

Eqn. 3.1 and k0
F is extracted from the weakly interacting Fermi gas. The col-

ors represent the measured condensate fraction using the projection technique.

The boundary between the light and dark blue regions shows where the phase

transition occurs in the BCS-BEC crossover. On the BCS side of the resonance

the condensate forms for higher initial T/TF as ∆B decreases, as expected based

upon BCS-BEC crossover theories (Ch. 2).

These data lie precisely in the regime that is neither described by BCS nor

by BEC physics, −1 < 1/kFa < 1 (see Fig. 2.3). The condensed pairs in these

experiments are pairs with some qualities of diatomic molecules and some qualities
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Figure 8.7: Time-of-flight images showing condensation of fermionic atom pairs.
The images, taken after the projection of the fermionic system onto a molecule
gas, are shown for ∆B = 0.12, 0.25, and 0.55 G (right to left) on the BCS side of
the resonance. The original atom gas starts at (T/TF )0 = 0.07. The 3D artistry
is courtesy of Markus Greiner.
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Figure 8.8: Transition to condensation as a function of both ∆B and (T/TF )0 [73].
The data for this phase diagram were collected using the same procedure as in
Fig. 8.5 with thold ≈ 2 ms. The false color surface and contour plot were obtained
using a Renka-Cline interpolation of approximately 200 distinct data points.
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of Cooper pairs. Thus, these experiments realized a phase transition in the BCS-

BEC crossover regime and initiated experimental study of this physics.

Finally, as in our previous measurements performed in the BEC limit, the mea-

sured condensate fraction in Fig. 8.8 always remains well below one [68]. This is

not observed in the case of 6Li experiments [74], suggesting that technical issues

particular to 40K may play a role. As part of our probing procedure the magnetic

field is set well below the Feshbach resonance where the molecule lifetime is only

on the order of milliseconds [67, 97]. This results in a measured loss of 50% of

the molecules and may also reduce the measured condensate fraction. Further-

more, temperature measurements using the surface-fitting procedure become less

accurate below T/TF = 0.1 (see Sec. 4). It also is expected that the isentropic

ramp from a weakly interacting Fermi gas to the crossover results in a larger value

of T/TF than (T/TF )0. The extent of this adiabatic heating is currently under

theoretical investigation [133]. Density-dependent loss processes could also play

a role in heating of the sample, especially as the BEC limit is approached (see

Ch. 7). Whether any or all of these processes play a role in the small condensate

fraction is a subject of current study in the Jin group.



Chapter 9

The momentum distribution of a

Fermi gas in the crossover

The measurements of condensation in the crossover described in the last chap-

ter probed the phase coherence between fermionic atom pairs. As discussed in

Ch. 2, it is only in the BCS limit that the pairs are always coherent, and when

the interaction becomes large so-called pre-formed pairs are predicted to exist

above the phase transition temperature Tc [8, 18]. To verify such theories it is

important that techniques for detecting pairing be developed alongside studies

probing the phase transition. There have been a number of probing techniques

used to detect pairing including rf spectroscopy [80], magnetic-field modulation

[81], spectroscopic probes [72], and measurements of the atomic momentum distri-

bution [62, 78]. This chapter focuses on measurements of the atomic momentum

distribution in the BCS-BEC crossover using 40K [78].

The classic characteristic change of the momentum distribution of a superfluid

Fermi system is a broadening of the Fermi surface (see for example [94]). Figure

9.1 (inset) shows the expected momentum distribution of a homogeneous, zero-

temperature Fermi system. In the BCS limit (1/kFa → −∞) the amount of

broadening is small and associated with ∆. As the interaction increases this

effect grows until at unitarity (1/kFa = 0) the effect is on order of EF , and in

the BEC limit (1/kFa → ∞) the momentum distribution becomes the square of

the Fourier transform of the molecule wavefunction (see for example [48]). This

kinetic energy increase can be interpreted as a cost of pairing. Amazingly, the

90
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Figure 9.1: Theoretical column integrated momentum distributions of a trapped
Fermi gas n(k) calculated for T = 0 using NSR theory [177]. The normalization is
given by 2π

∫

n(k)kdk = N . The lines correspond to a = 0 (blue), 1/k0
Fa = −0.66

(green), 1/k0
Fa = 0 (red), and 1/k0

Fa = 0.59 (black). (inset) Corresponding
distributions for a homogeneous system.

total energy of the system is lowered despite this large kinetic energy increase.

Here I will discuss the atom momentum distribution of a trapped Fermi gas.

The case of an inhomogeneous trapped gas is more complicated than the homo-

geneous case. Nonetheless, in the strongly interacting regime the momentum dis-

tribution probes the pair wavefunction and consequently the nature of the pairs:

Small, tightly bound pairs will broaden the momentum distribution more than

large, weakly bound pairs. Similarly a fully paired gas will broaden the distribu-

tion more than a gas with a small fraction of paired atoms. It is expected that

this measurement will probe the pairs independent of whether they have formed

a condensate. Throughout this chapter I will compare our data to theory of the

momentum distribution of a trapped gas. This theoretical work is the result of a

collaboration between our group, Murray Holland of JILA, and Stefano Giorgini,

a JILA visiting fellow from Trento, Italy.
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9.1 Measuring the momentum distribution

We found that the momentum distribution of a Fermi gas in the crossover could

actually be measured using the standard technique of time-of-flight expansion fol-

lowed by absorption imaging [22]. The key to measuring the atom momentum

distribution is that the gas must expand freely without any interatomic interac-

tions; to achieve this we quickly changed the scattering length to zero for the

expansion. This was particularly convenient using 40K because the zero crossing

of the scattering length occurs only 7.8 G above B0. Bourdel et al. pioneered

this type of measurement using a gas of 6Li atoms at T/TF ≈ 0.6, where TF is

the Fermi temperature [62]. In this work we carried out measurements down to

T/TF ≈ 0.1, where pairing becomes a significant effect and condensates have been

observed [73, 74].

To understand what we expect for our trapped atomic system, we can predict

the atomic momentum distribution using a local density approximation and the

results for the homogeneous case. In the trapped gas case, in addition to the local

broadening of the momentum distribution due to pairing, attractive interactions

compress the density profile and thereby enlarge the overall momentum distribu-

tion. Figure 9.1 shows a calculation of an integrated column density from the

result of a mean-field calculation at T = 0 as described in Ref. [177].

First, I will discuss the atomic momentum distribution measured with a low

temperature Fermi gas. We started with a weakly interacting mf = −7/2,−9/2

gas at T = 0.12 TF in a trap with a radial frequency of νr = 280 Hz and

νz/νr = 0.071.1 We then adiabatically increased the interaction strength by ramp-

ing the magnetic field at a rate of (6.5 ms/G)−1 to near the mf = −7/2,−9/2

Feshbach resonance. After a delay of 1 ms, the optical trap was switched off and

simultaneously a magnetic-field ramp to a ≈ 0 (B = 209.6 G) at a rate of (2

µs/G)−1 was initiated. The rate of this magnetic-field ramp was designed to be

fast compared to typical many-body timescales as determined by h
EF

= 90 µs.

The gas was allowed to freely expand for 12.2 ms, and then an absorption im-

age is taken. The imaging beam propagated along ẑ and selectively probed the

mf=−9/2 state.

1For this measurement we introduced the use of a crossed dipole trap configuration. In
addition to the usual beam with a 15 µm waist, we focused a w=200 µm beam oriented parallel
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Figure 9.2: Experimental, azimuthally averaged, momentum distributions of a
trapped Fermi gas at (T/TF )0 = 0.12 normalized such that the area under the
curves is the same as in Fig. 9.1 [78]. The curves correspond to 1/k0

Fa = −71
(blue), -0.66 (green), 0 (red), and 0.59 (black). Error bars represent the standard
deviation of the mean of averaged pixels. (inset) Curves for 1/k0

Fa = −71 (top)
and 0 (bottom) weighted by k3. The lines are the results of a fit to Eqn. 9.1.
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Samples of these absorption images, azimuthally averaged, are shown in Fig.

9.2 for various values of 1/k0
Fa. There is a dramatic change in the distribution

that is qualitatively very similar to the prediction in Fig. 9.1. Some precautions

need to be taken in the quantitative comparison of Figs. 9.1 and 9.2. First,

the magnetic-field ramp to the Feshbach resonance, while adiabatic with respect

to most time scales, is not fully adiabatic with respect to the axial trap period.

Second, in the experiment an adiabatic field ramp keeps the entropy of the gas, not

T/TF , constant. However, the resulting change in T/TF should have a minimal

effect on the distribution for 1/k0
Fa < 0 [133]. Third, the theory assumes T = 0

and does not include the Hartree term, thus underestimating the broadening on

the BCS side compared to a full theory [105].

9.2 Extracting the kinetic energy

It is natural now to consider extracting the kinetic energy from the momentum

distribution. While the momentum distribution should be universal for small mo-

menta, for large momenta it is influenced by details of the interatomic scattering

potential. In the extreme case of a delta potential, which we used for the calcu-

lation in Fig. 9.1, the momentum distribution has a tail with a 1/k4 dependence,

giving rise to a divergence of the kinetic energy. In the experiment we avoid a

dependence of the measured kinetic energy on details of the interatomic poten-

tial because the magnetic-field ramp is never fast enough to access features on

the order of the interaction length of the Van der Waals potential, r0 ≈ 60 a0

for 40K [119]. Thus, the results presented here represent a universal quantity,

independent of the details of the interatomic potential. Although universal in

this sense, the measured kinetic energy is intrinsically dependent on the dynamics

of the magnetic-field ramp, with faster ramps corresponding to higher measured

energies.

To obtain the kinetic energy from the experimental data exactly we would

need to take the second moment of the distribution, which is proportional to
∑

k3OD/
∑

kOD. As illustrated in Fig. 9.2 (inset) this is difficult due to the

decreased signal-to-noise ratio for large k. Thus, our approach was to apply a 2D

to the force of gravity (ŷ) on the atoms.
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surface fit to the image and extract an energy from the fitted function. In the limit

of weak interactions the appropriate function is that for an ideal, harmonically

trapped Fermi gas (see Ch. 4)

OD(x, y) = ODpk Li2(−ζe
− x2

2σ2
x e

− y2

2σ2
y )/Li2(−ζ). (9.1)

The kinetic energy per particle is then given by

Ekin =
3

2

mσxσy
t2

Li4(−ζ)
Li3(−ζ)

(9.2)

where t is the expansion time.2 Although Eqn. 9.1 is not an accurate theoretical

description of the Fermi gas in the crossover, empirically we found it to be a

fitting function that describes the data reasonably well throughout the crossover,

as illustrated in Fig. 9.2 (inset).

Figure 9.3 shows the result of extracting Ekin as a function of 1/k0
Fa; we see

that Ekin more than doubles between the noninteracting regime and unitarity.

Using the fitting function of Eqn. 9.1 we could also extract information about the

shape of the distribution through the parameter ζ . Since ζ can range from -1 to

∞ it is convenient to plot the quantity ln(1 + ζ) (Fig. 9.4). The shape evolves

smoothly from that of an ideal Fermi gas at T/TF ≈ 0.1 in the weakly interacting

regime, to a gaussian near unitarity, and to a shape more peaked than a gaussian

in the BEC regime. These qualitative features are predicted by the mean-field

calculation of the distributions in Fig. 9.1.

9.3 Comparing the kinetic energy to theory

As mentioned earlier Ekin of a trapped gas is affected both by the broadening due

to pairing (Fig. 9.1 (inset)) and by changes in the trapped gas density profile.

In the BCS limit, the broadening due to pairing scales with e−π/2k
0
F |a| and is thus

exponentially small compared to density profile changes, which scale linearly with

k0
F |a|. In this limit we could calculate Ekin/E

0
kin using a mean-field calculation in

2This calculation gives the total Ekin in all three dimensions. Since the momentum distri-
bution was only measured in two directions, Eqn. 9.2 requires the assumption that the third
dimension reveals an identical distribution.
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Figure 9.3: The measured energy Ekin of a Fermi gas at at (T/TF )0 = 0.12
normalized to E0

kin = 0.25 kb µK. The red line is the expected energy ratio from a
calculation only valid in the weakly interacting regime (1/k0

Fa < −1). The green
bar represents the expected value of Ekin/E

0
kin at unitarity just due to density

profile rescaling. In the molecule limit (1/k0
Fa > 1) we calculate the expected

energy for an isolated molecule (blue line). The dashed line is a calculation of
the released kinetic energy across the whole crossover according to NSR theory.
(inset) A focus on the weakly interacting regime with the same axes definitions
as the main graph.
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Figure 9.4: Shape of the momentum distribution as described through the param-
eter ζ (Eqn. 9.1). ln(1 + ζ) = 0 corresponds to a gaussian distribution, and for
an ideal Fermi gas ln(1+ ζ)−1 ≈ T/TF in the limit of low T/TF . The dashed lines
show the uncertainty in the Feshbach resonance position [73].

the normal state [107]; to lowest order in k0
F |a| we found Ekin/E

0
kin = 2048

945π2k
0
F |a|+1.

This result is plotted in Fig. 9.3 (inset) and shows good agreement for the weakly

interacting regime (1/k0
Fa < −1). However, caution must be taken with the ap-

parent agreement for −0.5 < 1/k0
Fa < −1. The agreement could be explained by

the lack of pairing in this theory being compensated by the theory’s overestimation

of the density profile change when |a| becomes larger than 1/kF .

In the crossover regime where the pairs are more tightly bound, pairing pro-

vides a significant contribution to the change in the momentum distribution. At

unitarity a full Monte Carlo calculation predicts the radius of the Fermi gas den-

sity profile will become (1 + β)1/4R0 = 0.81R0, where R0 is the Thomas-Fermi

radius of a noninteracting Fermi gas [105]. Just this rescaling would result in

Ekin/E
0
kin = 1.54 (green bar in Fig. 9.3). Thus, at unitarity, pairing effects on the

momentum distribution must account for a large fraction of the measured value

of Ekin/E
0
kin = 2.3 ± 0.3 (Fig. 9.3) and all of the observed change in distribution

shape (Fig. 9.4).

In the BEC limit and at T = 0 the measured energy should be that of an

isolated diatomic molecule after dissociation by the magnetic-field ramp. Pro-

vided the scattering length associated with the initial molecular state, a(t = 0),

is much larger than r0 ≈ 60 a0, the wavefunction for the molecule is given by
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ψ = Ae−r/a(t=0)/r where r is the internuclear separation and A is a normalization

constant. M. Holland and S. Giorgini calculated the measured energy from the

solution of the Schrödinger equation with a time-dependent boundary condition

on the two-particle wavefunction d log(rψ)
dr

∣

∣

∣

r=0
= − 1

a(t)
, where a(t) is the scattering

length fixed by the magnetic field at time t. In Fig. 9.3 is the result of this

calculation for a pure gas of molecules with zero center of mass momentum and a

(2 µs/G)−1 ramp rate. We found reasonable agreement considering that there is

a large systematic uncertainty in the theory prediction resulting from the exper-

imental uncertainty in the magnetic-field ramp rate and also that this two-body

theory should match the data only in the BEC limit (1/k0
Fa� 1).

A greater theoretical challenge is to calculate the expected kinetic energy for

all values of 1/k0
Fa in the crossover. This is a difficult problem because it requires

an accurate many-body wavefunction at all points in the crossover and the ability

to time-evolve this wavefunction. Recent work in Ref. [178] has carried out this

calculation using the NSR (BCS) ground state (see Ch. 2 and Ref. [48]), and the

result is shown by the dashed line in Fig. 9.3. Qualitatively the result shows good

agreement considering that there are no free parameters in the comparison; there

is a smooth, dramatic increase in the calculated kinetic energy, just as in the ex-

periment. In the strongly interacting regime the result does not exactly reproduce

the measured kinetic energy, but one expects a quantitative disagreement given

that the NSR theory does not include the Hartree term.

9.4 Temperature dependence

We also studied the dependence of the momentum distribution on (T/TF )0. To

vary the temperature of our gas, we recompressed the optical dipole trap after

evaporation and heated the gas through modulation of the optical trap power. The

experimental sequence for measuring the momentum distribution was the same

as in Sec. 9.1 except the ramp rate to a = 0 for expansion was ∼ (8 µs/G)−1.

Figure 9.5 shows the measured kinetic energy change ∆Ekin = Ekin−E0
kin. Ideally

for this measurement we would have liked to have varied the temperature while

maintaining a fixed density. However, for these data the density does vary some.

For example, for the coldest dataset (black) the peak density, for atoms in one spin

state, in the weakly interacting regime is n0
pk = 1.4×1013 cm−3 and E0

F = 0.56 µK.
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Figure 9.5: Temperature dependence of ∆Ekin = Ekin − E0
kin normalized to the

Fermi energy at a = 0. (T/TF )0 is the temperature of the noninteracting gas.

For the hottest dataset (magenta) n0
pk decreases to 6 × 1012 cm−3 and E0

F = 0.79

µK.

On the BEC side of the resonance, ∆Ekin decreases dramatically with (T/TF )0.

Because ∆Ekin should be proportional to the molecule fraction, this result is

closely related to the recent observation that the molecule conversion efficiency

scales with T/TF [148]. In the strongly interacting regime we also observed a

decrease in ∆Ekin with increasing (T/TF )0. However, the decrease is not as steep

as would be expected if the phase transition, which occurs at (T/TF )0 ≈ 0.15 as

measured through N0/N (Fig. 8.8), were responsible for the change in the mo-

mentum distribution. Instead the temperature dependence of ∆Ekin is consistent

with the expectation that the changes in the kinetic energy are caused by pairing

and not condensation [73, 80, 18].



Chapter 10

The apparatus

The apparatus used for the experiments described in this thesis originated during

the graduate career of Brian DeMarco; the elements constructed prior to 2001

are described in his thesis “Quantum behavior of an atomic Fermi gas” [83]. The

technical work I completed involved, through the years, improving a great deal

of existing apparatus components and inserting additional capabilities required

to access BCS-BEC crossover physics. Here I provide an overview of the current

apparatus (as of December 2005), namely a description of the components required

for each step of the cooling and trapping sequence and a report on the final cold

gas. (A portion of this information was already discussed in Ch. 4.) Then I

focus on six specific elements I developed and that were particularly important to

the BCS-BEC crossover experiments or could be useful pieces of information for

building future 40K experiments. These topics include our diode laser system, our

optical dipole trap, the setup we use to create a large magnetic field, our circuit

for fast magnetic-field control, our rf delivery system, and our absorption imaging

configurations.

10.1 Procedure for making an ultracold 40K gas

The cycle to create an ultracold potassium gas with our apparatus begins with

a vapor cell magneto-optical-trap (MOT). Since 40K is a very rare isotope of

potassium (0.012% natural abundance), creating a large 40K MOT required de-

velopment of enriched potassium sources [180]. These sources, which we refer to as

100
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Table 10.1: Hyperfine constants for the 40K levels of interest in our experiments
[179].

I 4
gI -1.298099/4
A 4S1/2 -285.731 MHz
A 4P3/2 -7.59 MHz
B 4P3/2 -3.5 MHz

f = 7/2 (714.3 MHz)

f ' = 11/2 (-45.7 MHz)

f ' = 9/2 (-2.3 MHz)
f ' = 7/2 (30.6 MHz)
f ' = 5/2 (54.5 MHz)

f = 9/2 (-571.4 MHz)

4P3/2

4S1/2

766.7 nm

Figure 10.1: Hyperfine structure of relevant ground and excited state levels of 40K
[179].
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“getters,” are based on the design of SAES Getters Inc. but are made in the JILA

shop. The JILA-made getters contain commercially available enriched KCl (∼5%
40K) and a reducing agent, Ca. Enriched potassium is released through ohmic

heating of the getter inside an evacuated glass cell; this forms a vapor from which
40K can be captured in a MOT. Because of the relatively low room-temperature

vapor pressure of potassium, we heat our vapor cell to ∼50 ◦C to prevent potas-

sium from sticking to the walls of the cell. Originally four potassium getters were

placed in the vacuum system. We currently use the third of these getters. This

particular getter has provided a constant 40K vapor pressure per amount of ohmic

heating for over three years.

The 40K MOT uses light red detuned of the f=9/2 → f ′=11/2 transition (trap

light) and of the f=7/2 → f ′=9/2 transition (repump light). Due to the small

excited-state hyperfine splitting of 40K (Table 10.1 and Fig. 10.1), a relatively

large repump intensity is required. Our vapor cell MOT is aligned in a retro-

reflected configuration using laser beams with a 1.4 inch diameter. The total trap

power is ∼90 mW and the repump power ∼50 mW. Setting the potassium vapor

pressure such that the exponential MOT loading time is ∼1 sec, the result is a
40K MOT containing over 109 atoms.

The vapor cell where we collect our potassium atoms we refer to as the “col-

lection cell” (Fig. 10.2). The background pressure in this cell is too high to

evaporatively cool the atoms. Thus, for the next stage of the experiment we

transfer the atoms from the collection cell to another glass cell, the “science cell,”

which is separated from the collection cell by a long narrow tube (the transfer

tube) [125]. The limited conductance of the transfer tube isolates the collection

and science cells (Fig. 10.2), such that the vacuum pressure in the science cell is

characterized by an exponential atom lifetime of ∼150 sec. The UHV components

required to achieve this pressure are shown in Fig. 10.2; the main components

of the original system were two ion pumps and a titanium sublimation pump

(TSP). The ion pump along the transfer tube (P2) was turned off when it began

to adversely affect the vacuum. Now the system is only pumped by one 40 l/s

ion pump (P1). It has not been necessary to fire the titanium sublimation pump

since 2001.

To transfer the atoms from the collection cell to the science cell we use a

resonant laser beam to push the atoms down the transfer tube [83]. The atoms
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Collection
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P1

P2

TSP

transfer tube

off

Figure 10.2: The vacuum system for our experiments as viewed from above; the
system has remained essentially unchanged since 1998. Figure adapted with per-
mission from Ref. [83].

are guided by hexapole magnets that surround the tube. In the science cell the

atoms are caught by a second MOT, the “science MOT”. The push beam, the

collection MOT, and the science MOT are currently all left on continuously as

the atoms are transferred. With a well-optimized alignment of the push beam,

this technique results in an exponential science MOT loading time of ∼10 sec. In

the science cell the atoms are held in what is known as a “dark spot MOT”; here

the repump beam intensity is significantly decreased at the location of the atom

gas, resulting in fewer collisional losses [181].

The next step is to load atoms from the science MOT into a magnetic trap

where they can be cooled using microwave evaporation. The magnetic trap we

use is a cloverleaf design Ioffe-Pritchard style trap (Fig. 10.3). Before loading

the atoms into the magnetic trap the MOT is moved to a position optimized for

loading into the center of the magnetic trap, the trap light detuning is moved closer

to resonance to provide as much Doppler cooling as possible (CMOT stage),1 and

the atoms are optically pumped towards the f=9/2, mf=9/2 state (Fig. 4.1).

We rely upon imperfect optical pumping to create the mixture of atoms in the

1Note this procedure is opposite of the requirement for sub-Doppler cooling. While sub-
Doppler cooling has been observed in other potassium MOTs [182], we have never found it
beneficial in our apparatus.
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mf=9/2 and mf=7/2 spin states required for evaporative cooling. We succeed

in loading ∼55% of the atoms from the science MOT into a weak magnetic trap.

Following the load we compress the magnetic trap for evaporation to a trap with

a radial frequency of ∼250 Hz and an axial frequency of ∼20 Hz.

bias coil
petal coil

center
coil

Figure 10.3: Coils of the cloverleaf Ioffe-Pritchard magnetic trap. Figure adapted
with permission from Ref. [83]. The coils are wound with hollow copper tubing
through which cooling water flows. These coils are reused to create a homogeneous
magnetic field for accessing Feshbach resonances.

To remove the highest energy atoms for evaporative cooling in the magnetic

trap, microwaves between 1200 and 1300 MHz are used to transfer atoms to

untrapped spin states in the f=7/2 hyperfine state (Fig. 4.1) [32, 83]. The

microwaves are delivered to the atoms using a stub-tuned microwave coil designed

to deliver radiation in the 1200 - 1300 MHz range [83]. In the current procedure

only one microwave frequency is required at a given time for evaporation; this is in

contrast to the two-frequency evaporation scheme used to achieve two-component

quantum degenerate gases in Ref. [83]. Typically we only cool the 40K sample in

the magnetic trap to T/TF ≈ 3 (T ≈ 5 µK with a few 107 atoms) before loading

the atoms into an optical dipole trap.

The procedure for obtaining a cold gas of atoms in our optical trap in the

Feshbach resonance spin states includes the following. After loading the optical

trap we immediately begin forced evaporation by lowering the optical trap power.

(This process occurs continuously throughout the next steps.) We then transfer

the atoms from the mf=+9/2,+7/2 spin states to the mf=−9/2,−7/2 spin states

using a rf frequency sweep across all the Zeeman transitions at B ≈ 20 G. Next
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we move to a magnetic field above a Feshbach resonance, typically 235 G. This

large magnetic field is supplied mainly by the “bias coils” of Fig. 10.3. Here we

apply a π/2 rf pulse on the mf=−9/2 ↔ mf=−7/2 transition to achieve an equal

mixture of the two spin states. We follow this spin transfer by further cooling at

high magnetic field. We then hold the atoms for typically 100 ms at a final optical

trap power that defines both the final evaporative cut and the parameters of the

final trap.

Experiments studying BCS-BEC crossover physics happen in a relatively short

amount of time at the end of the experiment cycle. The crossover experiments

mostly involve changing the magnetic field, either slowly with the large magnetic

field coils of Fig. 10.3 or very quickly with a low-inductance auxiliary coil pair

(Sec. 10.5). The final step in an experiment cycle is to acquire an absorption image

of the gas. It is important for the success of our experiments to have the ability

to take absorption images of the gas with high resolution and in many different

circumstances, i.e., at high and low magnetic fields, from multiple directions, and

with the ability to distinguish the different spin states.

Many of the tasks during the experiment cycle that I have now described

require precise timing. The heart of the system used for this timing is described

in Brian DeMarco’s thesis [83]. The software for the system is quite old, dating

back to the JILA experiment of Ref. [126]. A QuickBASIC program is used

to control TTL, DAC, and GPIB boards, operating with a clock now provided

by a function generator operating at 3 kHz. The TTL and 12-bit DAC boards

were made by Keithley Instruments. We have added additional precise timing

that is controlled by the main timing system via TTL triggers. Precise timing

instruments we have added include function generators (both the Agilent 33220A

and the SRS DS345), two Quantum Composers pulse generators (Model 9614),

and a National Instruments 6733 analog board.

Analysis of the absorption images shows that our apparatus can cool a Fermi

gas to T/TF ≈ 0.1 or possibly colder (see Ch. 4). One figure of merit of the

apparatus, besides the final T/TF it can reach, is the number of atoms achieved at

a phase space density near quantum degeneracy. A large atom number (and hence

a large density) is not necessarily always a desirable feature; however, producing a

large enough atom number for ample signal has contributed to the success of many

of our experiments. Under optimum conditions we can achieve a two-component
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gas at T/TF = 0.52 with 2 × 106 atoms per spin state. Thus, if our atoms were

bosons, we would have two Bose gases at Tc with 2× 106 atoms in each gas. This

result is comparable to or better than many BEC experiments.

10.2 Diode laser system

The laser light for the trapping, cooling, and probing of 40K in our apparatus is

provided by a semiconductor-diode laser system. The laser design is outlined in

Fig. 10.4; this schematic diagram does not represent the actual geometric layout

on our optics table and omits, for example, all mirrors and polarization rotation

optics. The two main components are external cavity diode lasers (ECDLs), which

provide narrow linewidth light (∼1 MHz) near the repump and trap transitions.

The first of these lasers, the “repump laser,” is stabilized to the f=2 transition of
39K by locking to the peak of the corresponding saturated absorption spectroscopy

peak (Fig. 10.5). The locking light is shifted using an acousto-optic modulator

(AOM) 448 MHz blue of the main beam, which is near the repump transition.

The “trap laser” is stabilized using a dichroic-atomic-vapor laser lock (DAVLL)

[183]; this lock provides a wide dispersive signal that allows the laser to be locked

anywhere near the potassium transitions [83]. Beating the trap laser against lock-

ing light from the repump laser using a 1 GHz photodetector provides a frequency

reference for setting the DAVLL lock point. Using the DAVLL we can typically

tune the trap laser by 220 MHz in an experiment cycle.

Constructing external cavity diode lasers for the potassium transition (767 nm)

is more difficult than, for example, for the rubidium transition (780 nm). This is

because the readily available diodes in this wavelength range are centered at 780

to 785 nm. Since laser diodes typically decrease their wavelength with cooling

by 1 nm per 5 ◦C, historically an approach to making lasers for our apparatus

was to cool laser diodes. A diode centered at 780 nm at room temperature will

reach 767 nm when cooled to around -40 ◦C; selecting nominally 780 nm diodes

with anomalously low wavelengths can help make the cooling requirement less

severe [83]. Nonetheless, building and maintaining a stable cold laser requires

considerable time and effort; thus, we have moved towards alternatives. These

alternatives include, for example, buying ECDLs made by New Focus Inc. (Vortex

lasers) designed for 767 nm. The Vortex laser option has the disadvantage that
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Figure 10.4: Laser frequencies used in the experiment for trapping, cooling, and
probing of 40K . The green boxes are AOMs; the blue lines represent light near
the 40K f=9/2 → f ′=11/2 transition (trap light); the red lines represent light
near the 40K f=7/2 → f ′=9/2 transition (repump light). A + sign indicates a
blue shift of the frequency, and a - sign indicates a red shift of the frequency. The
loops depict optical fiber.
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Figure 10.5: Saturated absorption spectroscopy of an enriched source of potassium
atoms. Our lasers are locked to the 39K f = 2 line, which lies between the two
40K lines. Data from Ref. [184]. See, for instance, Ref. [185] for a discussion of
diode laser stabilization using saturated absorption spectroscopy.

the frequency noise on these lasers is often larger than JILA-built lasers. Another

alternative is to use diodes that are anti-reflection (AR) coated. AR coating tends

to pull the gain profile of the diode blue as well as allow a much wider tuning

range within an external-cavity configuration. A particularly good source of AR

coated diodes that has emerged recently is Eagleyard Photonics.

The ECDLs currently used in our apparatus each produce ∼10 mW of laser

power. Thus, for our experiments we amplify the power from the ECDLs to attain

the power we require for the MOTs. For this purpose we use SDL Inc. power

amplifiers (Fig. 10.4). In contrast to nearly everything else in the laser system,

these amplifiers have not been modified or replaced at all in over 5 years. It

is astounding that both of these sensitive devices have had such a long lifetime.

Unfortunately, SDL no longer produces power amplifiers, but Eagleyard photonics

now makes similar devices, yet with a somewhat lower gain and perhaps a shorter

lifetime.

The laser setup of Fig. 10.4 has proven to be very robust in its ability to

reliably operate day-to-day. Key features that contribute to this ability include:
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The design keeps the number of components to a minimum. There are only two

lasers to maintain and only four AOMs to align and control. Further, for many

of the AOMs and incidental beams in the bottom section of Fig. 10.4, there is

always ample power available. This is a result of a design in which light for various

purposes is siphoned off a main beam by AOMs.

10.3 A stable optical dipole trap

In Ch. 4 we discussed how an optical trap can be created using a gaussian laser

beam far red-detuned of atomic transitions. In this section I outline our cur-

rent system for creating a stable optical trap and provide tips for building and

stabilizing such a trap.

The most important design parameters of an optical trap are the waist and

the power. The power is an easily tunable parameter, while the waist is most

often fixed during an experiment cycle. Together the waist and power determine

the trap depth and frequencies (Eqns. 4.2 and 4.3). The depth of the trap is

very important for evaporative cooling as it defines the temperature of the gas

during evaporation (evaporative cut); the trap frequencies determine the collision

rate for evaporation as well as the density of the final sample used for BCS-BEC

crossover studies. A smaller waist will result in a higher mean trap frequency

for a given trap depth (Eqn. 4.3); on the other hand, a larger waist will make a

weaker trap for an equivalent depth. The waist size also affects the aspect ratio:

A small waist results in a less extreme aspect ratio (a smaller νr/νz). If the waist

is made too large the axial direction will become too weak at deep cuts to hold

atoms against realistic magnetic-field gradients.

In Ch. 4 we discussed only the case of a trap formed by a single gaussian

laser beam, and this is indeed the trap that was used for most of the experiments

described in this thesis. However, a single beam trap has the disadvantage that

the aspect ratio is severe and cannot be controlled independently of the trap

strength. Thus, our current system contains a crossed dipole beam configuration

in which a second red-detuned beam perpendicular to the first is overlapped with

the atoms. In our apparatus this beam points along ŷ and thus is referred to as

the “vertical beam”. To maintain a relatively low density atom gas the waist of

this beam is made significantly larger than the first beam. For example, for the
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(a)

(b)

Figure 10.6: Useful options for collimating a 1064 nm beam out of a fiber. (a)
A self-constructed multielement lens (design by M. Greiner). This set contains a
piece of silica (n=1.45), a Melles Griot meniscus lens (LAM111/077), and a Melles
Griot achromat (LAO111/077); it has an effective focal length of 48.2 mm and a
diameter of 18 mm. (b) A pre-assembled multielement lens, the Melles Griot 06
GLC 001, which has an effective focal length of 6.56 mm and a 10 mm diameter.

measurements in Ch. 9 the main beam had a 15 µm waist and the vertical beam

a 200 µm waist. The technical challenges related to assembling a second beam

are equivalent or simpler than those for the main beam. Thus, in the rest of this

section I will focus solely on constructing our main optical trap beam.

To create our optical dipole trap we start with light from a CW laser at

1064 nm. We purchased a diode-pumped YAG laser made by Spectra Physics

(Spectra Physics part number T20-BL-106C). This laser runs multimode (but

single transverse mode) and can produce greater than 4 W of power. The light

from the laser is coupled into a polarization maintaining fiber, which must be

angle cut or AR coated to avoid intensity fluctuations due to cavity formation in

the fiber. The light coming out of the fiber is then collimated to the appropriate

size for creating the desired gaussian waist. For example, to create a 15 µm waist

at the atoms using a 200 mm focusing lens the the beam must be collimated to

w=4.5 mm.

Usually fiber output couplers are designed to collimate a beam to a much

smaller size than 4.5 mm. Thus, if a typical fiber output coupler is used a telescope
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must be employed to expand the small beam. The optical design of Fig. 10.6(a)

avoids these multiple steps and creates a much more compact setup by directly

collimating the beam out of the fiber to a large size. Care must be taken in

designing such a lens system to maintain low spherical aberration. It is important

to optimize the thickness of the plate of glass that forms the first element of

Fig. 10.6(a). This optimization can be done with a ray-tracing program that can

calculate the geometrical spot size that results from propagation through a set

of optics. A program we use for this purpose is a product of Lambda Research

Corporation, OSLO Light. (OSLO stands for Optics Software for Layout and

Optimization.) This program, in addition to carrying out computations based

upon geometric optics, will perform propagation of a gaussian beam through a

lens system using ABCD matrix analysis. Lens specification files can be imported

directly into the program, and the software also creates drawings such as those in

Fig. 10.6.

Fig. 10.6(b) shows a suggested coupler in the case where the beam must be

collimated to a small size and later expanded with a telescope. Such a design

might be useful if a small optic needs to be placed in the beam after the fiber,

such as an AOM or a polarizer. Using the collimator also creates a slightly more

flexible system because the size of the beam, and hence the waist, can be changed

by altering just one lens in the telescope, instead of replacing and reoptimizing

the collimating lens.

Following assembly of the optical components it is important to check for

aberrations and astigmatism (different focal positions in x and y) in the final

focus. A useful tool for this is a beam-profiling camera; we have found that the

WinCamD beam-profiling camera manufactured by DataRay Inc. works well. Fig.

10.7 shows the result of measuring the beam size on this camera as a function

of the position along the axis of the beam. Good signs are that the profile is

symmetric about the minimum of w, the points fit well to the expected form for

a gaussian focus for 1064 nm light, and the two directions (x and y) focus at the

same position.

After creating a suitable gaussian focus, the next concern is the stability of

the optical trap, as fluctuation in optical trap parameters can cause heating of

the atom gas. Noise on the laser intensity leads to fluctuations in the trap spring

constant, while noise in the pointing of the gaussian beam leads to fluctuations
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Figure 10.7: Measured optical trap axial profile. The beam sizes in the x and y
planes are measured as a function of z using a beam profiling camera. wx and wy
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in the trap center. Thus, intensity noise leads to heating when the fluctuations

are at twice the trap frequency, while pointing noise leads to heating when the

fluctuations are at the trap frequency. A theoretical analysis of the effect of

intensity and pointing noise on optically trapped atoms is presented in Ref. [186].

We minimize intensity fluctuations by servoing the optical trap power. Our

servo uses feedback from a pickoff of the trapping light power after the optical

fiber, and an AOM before the fiber controls the power. To achieve good pointing

stability of the optical trap we do not actively stabilize the beam position, but

rather rely on mounting the optical trap optics in a way that minimizes vibrations.

When we first started building optical traps, we did not pay particular attention

to the stability of the mounted optics. In this case we found that the heating rate

of the atoms in the trap was severely limited by the stability of the optics. Thus,

in subsequent configurations the optics have been mounted on thick posts, which

we sometimes fill with lead shot to damp vibrations. Moving parts, such as mirror

mounts or lens translators, are minimized. Following continual improvement to

the stability of the optics the heating rate of our trap is now ∼5 nK/sec.

The last step is to align the optical trap focus on the atoms. In our apparatus

we must send the beam through the science cell along an optical path already
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Figure 10.8: A typical optical trap evaporation trajectory to a modest final optical
trap cut. The functional form of the decrease in intensity is a series of exponentials
with changing time constants.

occupied by a MOT beam. Useful methods of combining the MOT light (767

nm) and the optical trapping light (1064 nm) include using motorized mirrors

that can be triggered with a TTL signal during the course of the experiment and

dichroic plates that reflect 767 nm light, yet transmit 1064 nm light. (CVI Laser

manufactures dichroic plates in a variety of sizes with better than 99% reflectance

at 767 nm and 95% transmission at 1064 nm.) The optical trap beam should be

aligned at a few degrees with respect to the cell normal; this avoids interference

patterns caused by back-reflections from the cell wall. Precisely aligning the

optical trap beam onto the atoms is not a trivial task since the beam must be

placed with ∼10 µm precision to trap the atoms. The best way to roughly align

the beam is to image both the atoms and the optical trap beam onto the same

position on a CCD camera. (One must be careful to account for any chromatic

shifts, however.) This brings the beam close enough to trap a fraction of the

atoms. We determined the final beam alignment by optimizing the number of

atoms in the optical trap after evaporation.

To evaporate the atoms in the optical trap the power at the atoms is controlled
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Figure 10.9: False color absorption image of two molecular condensates in a
double-well potential created with a spatially-modulated optical trap. The gases
are different sizes because there is an imbalance in the molecule number in the
two wells.

with the AOM intensity servo described above. The power during a typical cycle

of the experiment is shown in Fig. 10.8. The trap is ramped on in ∼100 ms while

the magnetic trap is still on. Then the magnetic trap is switched off suddenly and

the optical trap evaporation is immediately initiated.2 At the end of the sequence

the gas is expanded for time-of-flight imaging by turning off the optical trap power

very quickly (< 1 µs) using an AOM as a switch.

An additional feature of the current version of our optical trap is the placement

of two crossed AOMs in the beam after the optical fiber. These AOMs can deflect

the optical trap beam in x and y. The position of the optical trap can thus be

arbitrarily modulated at rates up to 1 MHz. Since the trap can be modulated on

time scales much faster than the trap oscillator frequencies (at most a few kHz), a

time-averaged potential can be created. This idea is similar to the time-orbiting-

potential (TOP) magnetic trap [126] and was suggested by M. Greiner. With

this design we succeeded in creating a double-well potential; Fig. 10.9 shows two

molecular condensates that were creating in such a double-well potential. They

are imaged by kicking the two condensates velocity in opposite directions just

before time-of-flight expansion. A spatially-modulated optical trap could perhaps

also be used to create a quartic potential or a rotating elongated trap for vortex

creation.

2Switching off the magnetic trap suddenly will not result in a perfectly adiabatic transfer.
However, for the hot gases we load into the trap the effect is negligible.
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Figure 10.10: Schematic diagram of the circuit used to control the current through
the coils of the Ioffe-Pritchard trap (Fig. 10.3). The coils can either be used to
form a magnetic trap [83] or to provide a flat bias field for Feshbach resonance
studies. The brown lines indicate long cables that contribute some resistance.

10.4 Large magnetic-field control

For accessing Feshbach resonances we needed to a create a stable, homogeneous

magnetic field at the atoms of up to ∼250 G. To do this we modified the control

circuitry for the cloverleaf Ioffe-Pritchard magnetic trap (Fig. 10.3) to allow the

coils to be used not only as a trap, but also as a bias magnetic field. A schematic

of our control over the coils is shown in Fig. 10.10. We can manipulate the current

in the bias coils independently of the current through the petal and center coils.

We start with a HP 6628A power supply operating in constant voltage mode.

The current is monitored with F. W. Bell Hall effect current sensors (“H” in Fig.

10.10) placed in various locations. A low noise servo of these currents is built

using high power FETs to control the current (“F” in Fig. 10.10). Each of the

five FETs shown in Fig. 10.10 consists of a pair of water cooled, Advanced Power

Technology MOSFETs in parallel. F1 and F3 are used only as switches for fast
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turn-on or turn-off of the current. F2, F4, and F5 are controlled via servos.

For operation of the magnetic trap F5 is switched off, F4 servos the full current

(measured with H4), and F2 maintains the required current through the bias coil

(measured with H2). For creating a bias field, F4 is switched on, F5 is allowed

to pass current, and F2 again maintains the current through the bias coils. To

make the magnetic field as homogeneous as possible across the axial direction of

our trapped gas (see Fig. 10.15), we route a small amount of current through

the center and petal coils to cancel the axial magnetic-field curvature created by

the bias coils; this current is servoed with F5. Lastly, a small current through

the science MOT quadrupole coils cancels out the residual axial magnetic field

gradient (due to differences in the precise centers of the bias and center coil fields).

A key aspect of the magnetic-field control in our apparatus is its low noise

and drift. To attain this we use PI servos with low-noise control voltages (see

Ref. [83]). There is a designated ground for these magnetic-field servos to avoid

60 Hz noise from ground loops. The two most important current sensors, H2 and

H4, are temperature stabilized and never used to monitor the performance of the

servo (as monitoring the hall probe output on an oscilloscope can lead to ground

loops and small shifts). At the position of H2 and H4 are additional “monitor”

sensors, solely for monitoring the resulting current in the coils.

To test the magnetic-field stability that we achieve we probe the magnetic

field with the atoms by driving rf transitions. Fig. 10.11 shows the result of

such a measurement using optically trapped atoms at a bias field of ∼240 G.

Atoms were transferred from the mf=−7/2 spin state to the mf=−5/2 spin state

using a square rf pulse with a duration of tpulse=240 µs. A long rf pulse (and

hence a narrow Fourier width) allowed us to sensitively measure the magnetic-

field stability. We took multiple points at a frequency on the side of the line and

measured the standard deviation. The points in Fig. 10.11 were taken over an

hour and each error bar represents the standard deviation of over 10 points. This

standard deviation corresponds to a 1 kHz fluctuation in the resonance frequency,

which corresponds to a magnetic-field stability of 7 mG.
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Figure 10.11: Transfer of atoms at 240 G between the mf=−7/2 and mf=−5/2
spin states as a function of rf frequency. The data are fit to the function for fourier
transform of square pulse, A [Sinc(πtpulse(ν − ν0))]

2. tpulse is fixed at 240 µs, and
A and ν0 are allowed to vary.

10.5 Fast magnetic-field control

For many of the BCS-BEC crossover experiments we performed it was essential

to be able to change the magnetic field very quickly. The large coils we use for

the 200 G bias field are not well suited to this purpose since they have a large

inductance and the servos that are used to control them were designed with a

bandwidth of ∼3 kHz. Thus, for magnetic-field ramps with inverse ramp rates of

1 µs/G to 100 µs/G we used low-inductance auxiliary coils and a high-bandwidth

servo to ramp the magnetic field. A circuit diagram for this system is shown in

Fig. 10.12. A Hall effect current sensor monitors the current and a Powerex IBGT

controls the current through the circuit. The current is provided by discharging a

capacitor that is charged to high voltage by a HP 6207B power supply [187]. Two

coils, each mounted along the inner diameter of one of the center coils, produce

the magnetic field at the atoms. The direction of this field can be quickly switched

using the H-bridge configuration shown in Fig. 10.12. This allows us to jump the

magnetic field either above or below the Feshbach resonance.

Fig. 10.13 shows the magnetic field produced with this circuit as determined

by observing the current through the auxiliary coils as a function of time for

various control voltage ramps. In the blue, red, and black curves the control
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Figure 10.12: Circuit used to created fast magnetic-field pulses. The two coils
shown are placed on opposite sides of the 1 inch wide cell holding the atoms, are
0.9 inches in diameter, have 5 turns each, and are wound from 24 AWG wire.

voltage ramp occurs in 7 µs, 20 µs, and 40 µs, respectively. According to this

plot, we find that we can ramp the magnetic field controllably with inverse rates

less than 1 µs/G. Current induced in other coils in the system may reduce the

true rate of the magnetic-field ramp.

10.6 Rf delivery

For the spin transfer to achieve a mixture of atoms in the Feshbach resonance

states, we required a rf delivery system that could produce high power rf in two

distinct frequency ranges. The transfer from the mf=+9/2,+7/2 spin states to

the mf=−9/2,−7/2 at 20 G requires rf at ∼6 MHz, and the transfer amongst the

mf=−5/2, −7/2 and −9/2 states at magnetic fields near the Feshbach resonances

requires rf in the 40 to 50 MHz range. The rf system we use consists of a 0-80

MHz function generator (Agilent 33250A), a high-power rf amplifier, and a 0.75

inch diameter coil consisting of 8 turns of wire located about 1.8 inches from the

atoms.

The key to delivering rf at the required frequencies was to properly impedance

match the rf coil to the 50 Ω impedance of the transmission line. To deliver the
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Figure 10.13: Magnetic field as determined through measuring the current through
the current sensor in Fig. 10.12 as a function of time. For the three different curves
the servo control voltage is changed at three different rates.

most power to the atoms at a specific frequency it is best to purely reactively

impedance match, i.e., not to add any resistance to the circuit. A system suitable

for reactively impedance matching for our requirements is shown in Fig. 10.14

[188]. For the 40 to 50 MHz frequency range and our coil inductance, the required

value of L is a few µH and the value of C is a few pF. The advantage of this circuit

is that since the capacitor is in parallel with the rf coil the dc response of the coil

is maintained. This allows efficient delivery of rf at 6 MHz.

While the coil can deliver enough power throughout the 40 to 50 MHz range it

is of course not perfectly impedance matched throughout this range. (Even at the

optimum frequency only about 75% of the power is delivered to the coil.) Thus,

invariably some power will be reflected back from the coil; this has the capability

of damaging the amplifier. To avoid this problem we now use a class A amplifier

made by ENI, the ENI525LA. The final result of our rf system is that we are able

to apply a π pulse between any of the mf=−5/2,−7/2,−9/2 states in ∼15 µs.

10.7 Absorption imaging

Nearly all of the information that we extract from our experiment comes from ab-

sorption imaging on the f=9/2 ↔ f ′=11/2 cycling transition in 40K. The concept
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the optical trap.

of absorption imaging was discussed in Ch. 4, and detailed derivations related

to absorption imaging can be found in, for example, Refs. [126, 189]. In this

section I will concentrate on the specific configurations that we use for absorption

imaging 40K gases to extract the information needed for our BCS-BEC crossover

experiments. Especially important for our crossover studies were the abilities to

image spin selectively and at high magnetic field.

Fig. 10.15 shows the basic geometry for absorption imaging in our apparatus.

The black oval represents the atom gas within the science cell and the two red

arrows show the two possible resonant imaging beams. Each imaging configuration

has a designated Princeton Instruments back-illuminated CCD camera, the CCD-

512TKB along x̂ and the CCD-512EBFT along ẑ.

In our first imaging option the resonant beam propagates along x̂ and thus

provides information about the axial and radial directions of the trapped gas. This

imaging beam is perpendicular to the large bias magnetic field. Thus, imaging

at high magnetic field with this beam is not optimum since the quantization is

90◦ off. Most imaging along this direction takes place at low magnetic field where

a small (∼4 G) magnetic field can be applied along x̂ for the quantization. At

low magnetic field the imaging light does not distinguish between different spin

states. Thus, if we need to image the spin states separately a large magnetic field

gradient (∼80 G/cm [83]) is applied along ŷ to separate the spin states spatially

(Stern-Gerlach imaging). Since we have the capability to switch the direction of

the small quantization field along this axis, this setup can image atoms in either

the + or - spin states of the f=9/2 manifold.

In the second imaging option the resonant beam propagates along ẑ where
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Figure 10.15: Imaging configurations. Gravity points into the page, and the large
bias field and the axis of the optical trap both point along ẑ. The 40K gas (black
oval) can be imaged along either ẑ where there is a 1 inch window or x̂ where
there is a 1/2 inch window. Diagram not to scale.

it is combined with the optical trap beam using dichroic plates. This setup

images both radial directions of the trapped gas and is optimized for imaging

the mf=−5/2,−7/2,−9/2 spin states at high magnetic field near Feshbach reso-

nances. The quantization is provided by the large bias magnetic field (Sec. 10.4),

and the atoms can easily be imaged spin selectively since the transitions for the

different spin states are separated by ∼30 MHz near 200 G due to the nonlinear

Zeeman shift. We can collect an image for each of two spin states per experiment

cycle using the kinetics mode and frame transfer capabilities of our CCD camera.

It is important that the optics used for imaging the atom gas are designed

correctly to provide sufficient imaging resolution. The optics used to image the

gas along the ẑ direction are shown in Fig. 10.16. The blue lines roughly represent

the image of the atom gas, which is collimated by the first set of lenses and focused

onto the camera with the second. We expect the diffraction limit to be defined by

an Airy disc pattern (see Fig. 10.17 red line) the diameter of which is 1.22λ/NA,

where NA= d/2f , d is the lens diameter, and f the lens focal length. Diffraction

limited performance of the first lens set in Fig. 10.16 at 767 nm should result in

an Airy disc diameter (spot size) of 4.5 µm.
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Figure 10.16: Optics used to image the atom gas along the ẑ direction. The atoms
are to the left and the CCD camera to the right. The meniscus and achromat lens
pair provide diffraction limited performance.

To test whether this imaging system could provide diffraction limited perfor-

mance, we imaged a 1 µm pinhole onto the WinCamD beam profiling camera

using this set of lenses. Using a gaussian fit of the resulting spot on the camera,

and accounting for the magnification and the difference in test wavelength and 767

nm, we found that the full-width-half-max (fwhm) of the spot was 2.1 ± 0.3 µm.

Converting this result to an Airy disc diameter (Fig. 10.17), we found 5.1 ± 0.6

µm, which is consistent with diffraction limited performance. While we cannot

create a gas small enough to fully test the resolution limit of this system in the

actual experiment, measurements in Ref. [157] are consistent with a spot size of

∼5 µm.

The imaging optics for the path along x̂ are similar to those in Fig. 10.16,

with the differences being the first lens is an achromat (instead of an achro-

mat/meniscus lens pair) with a 140 mm focal length and the second lens has a

500 mm focal length. The expected diffraction limited performance of this imag-

ing system is a spot size diameter of 8.7 µm (fwhm of 3.7 µm). It is also possible

to place two more lenses between the f=500 mm lens and the camera to make

a low-magnification imaging system for probing the MOT or hot gases in the

magnetic trap [83].
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Figure 10.17: Gaussian distribution compared to an Airy disc pattern; a gaussian
was fit to the Bessel function that describes the Airy disc pattern. Numbers used
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Conclusions and future directions

11.1 Conclusion

In this thesis I have presented the story of the realization of BCS-BEC crossover

physics with a gas of 40K atoms. Experiments with 40K and 6Li have shown

that a Fermi gas at a broad Feshbach resonance crosses a phase transition to a

superfluid state and displays properties of the classic BCS-BEC crossover problem.

With this system we can study the evolution from fermionic superfluidity of pairs

nearly described by BCS theory to BEC of diatomic molecules. This new system

provides a physical link between two descriptions of superfluid systems, BCS and

BEC, that were historically thought to be distinct.

The fermionic superfluids created in these gases have extremely high tran-

sition temperatures, Tc ≈ 0.1 TF . In these model systems the absolute value

of Tc ≈ 100 nK is very cold. However, for typical values of TF in metals the

corresponding transition temperature would be above room temperature. Fully

understanding this model system will perhaps contribute to the efforts to create

higher transition temperature superconductors in real materials. These atomic

gas systems also provide the opportunity to study aspects of quantum systems

that are not typically accessible in solid state materials. For example, experiments

such as those in Ch. 8 utilize dynamics for measurements. The ability to study

the physics of the BCS-BEC crossover in real time may provide new insight into

this many-body quantum system.

124
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11.2 Future work

In the immediate future there are a plethora of experiments that can be done to

study BCS-BEC crossover physics with this new system. This list includes both

more precise versions of previous measurements as well as experiments designed

to study entirely new phenomena. In our 40K experiments there are a number

of possible direct extensions of measurements discussed in this thesis. For exam-

ple, a better measurement of the Feshbach resonance position B0 than that of

Fig. 6.9 would produce more precise values of 1/kFa. To make a more precise

measurement of B0 one could use the magnetic field modulation technique for

dissociating molecules to measure Eb of a low density gas. The phase diagram of

the BCS-BEC crossover measured through N0/N could be improved with better

temperature measurements and better understanding of the systematics on N0/N .

With more precise measurements of experimental observables in the crossover, we

will be able to test more sophisticated crossover theories.

Possible extensions of this study of BCS-BEC crossover physics are also nu-

merous. Studies of higher partial wave pairing in an atomic system [57, 166, 190]

would be an important contribution due to the relevance to cuprate superconduc-

tors, which have been shown to have d-wave symmetry. Predictions have been

made for the behavior of an atomic Fermi gas in the BCS-BEC crossover with

unequal particle number in each spin state of the two-component gas [191, 192].

Such a “magnetized” system has been the topic of a number of recent experimen-

tal pursuits [193, 194]. Further, quantum Fermi gases have now been studied in

optical lattice potentials [195, 40]; studying crossover physics in the presence of

such a lattice could more closely mimic conditions in real solids.
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Appendix A

Journal articles

In writing this thesis my goal was to discuss the main objective of my graduate
work, which was to access BCS-BEC crossover physics with a Fermi gas of atoms.
To adhere to this subject I necessarily omitted some of the work to which I
contributed during my graduate career. For example, I devoted time to the study
of p-wave Feshbach resonances in Fermi gases [57, 145] and to a feasibility study
of atom shot noise as a probe of ultracold gases [157]. Thus, for completeness I list
in Table A.1 journal articles I contributed to in varying extents in my graduate
work.
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APPENDIX A. JOURNAL ARTICLES 143

Table A.1: Articles I co-authored as a graduate student.

Title Journal Year Citation

Resonant control of elastic collisions in an
optically trapped Fermi gas of atoms

PRL 2002 [54]

Tuning p-wave interactions in an ultracold
Fermi gas of atoms

PRL 2003 [57]

Measurement of positive and negative
scattering lengths in a Fermi gas of atoms

PRL 2003 [59]

Creation of ultracold molecules from a
Fermi gas of atoms

Nature 2003 [63]

Multiplet structure of Feshbach reso-
nances in nonzero partial waves

PRA 2004 [145]

Lifetime of molecule-atom mixtures near
a Feshbach resonance in 40K

PRL 2004 [67]

Detection of spatial correlations in an ul-
tracold gas of fermions

PRL 2004 [196]

Emergence of a molecular Bose-Einstein
condensate from a Fermi gas

Nature 2003 [68]

Observation of resonance condensation of
fermionic atom pairs

PRL 2004 [73]

Probing the excitation spectrum of a
Fermi gas in the BCS-BEC crossover
regime

PRL 2005 [81]

Production efficiency of ultracold Fesh-
bach molecules in bosonic and fermionic
systems

PRL 2005 [148]

Probing pair-correlated fermionic atoms
through correlations in atom shot noise

PRL 2005 [157]

Momentum distribution of a Fermi gas of
atoms in the BCS-BEC crossover

PRL 2005 [78]

Understanding the superfluid phase dia-
gram in trapped Fermi gases

PRA 2006 [197]

Finite-temperature momentum distribu-
tion of a trapped Fermi gas

PRA 2006 [198]

Experimental realization of the BCS-BEC
crossover with a Fermi gas of atoms

Advances in
AMO Physics

2006 [92]

The potential energy of a 40K Fermi gas
in the BCS-BEC crossover

In Review 2006 [199]

Fermi gas Experiments Fermi school
proceedings

2006 [93]


