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Thesis directed by Professor David J. Nesbitt 

 

 In this work two different areas of study are discussed.  First, a novel model is 

presented for the quantum mechanics of large amplitude motion in floppy hydrides.   

A framework is developed for converged quantum mechanical calculations on large 

amplitude dynamics in polyatomic hydrides (XHn) based on a relatively simple, but 

computationally tractable, “particles-on-a-sphere” (POS) model for the intramolecular 

motion of the light atoms. The model assumes independent 2D angular motion of H 

atoms imbedded on the surface of a sphere with an arbitrary interatomic angular 

potential, which permits systematic evolution from “free rotor” to “tunneling” to 

“quasi-rigid” polyatomic molecule behavior for small but finite values of total 

angular momentum J.  Simple tri- and tetra- atom hydrides act as a test suite for the 

POS model.  After successfully modeling these systems, the model is used on systems 

with  4 and 5 hydrogens surrounding a central heavy atom, with the final focus on the 

theoretically and experimentally challenging CH5
+ molecule. 

Next, novel methods are introduced for computing multistate potential energy 

surfaces for the abstraction of hydrogen by fluorine in two different experimentally 

important systems: F(2P) + HCl  HF + Cl(2P) and F(2P) + H2O  HF + OH(2Σ).  A 

novel method of dynamically adjusted weighting factors in state-averaged 

multiconfigurational self-consistent field calculations (SA-MCSCF) is developed and 
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tested on the F(2P) + H2O → HF + OH (2Π) reaction.  Using the DW-MCSCF 

approach a new multistate electronic potential energy surface for the F(2P) + HCl  

HF + Cl(2P) reaction is calculated in full dimensionality.  The thesis concludes with 

nonadiabatic quantum nuclear dynamics calculations for the F(2P) + HCl  HF + 

Cl(2P) reaction. 
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to the CBS limit, indicating clear convergence (see inset) in the exothermicity (ΔE) as 
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Figure 5.6:  2D slice (θ  = 123.5o) of the fitted 12A’ surface with global RMS of 0.79 

kcal/mol. 

 

Figure 5.7:  Ground reference state coefficient in the MRCI+Q wavefunction, 

indicating strong admixture of excited state character near the transition state 

geometries closest to the conical intersection (marked by asterisks). 

 

Figure 5.8:  12Α’ PES RHF vs. RHCl contours for (a) transition state (θ  = 123.5o) and 

(b) collinear (θ  = 180o) bend angles. Conical intersection seams occur to each side of 

the transition state; the seam location closest to the reaction path is marked by the 

asterisk. Contour spacing is 5 kcal/mol with respect to F + HCl(Re). 

 

Figure 5.9:  F-H-Cl bending potential corresponding to transition state (dashed) and 

conical intersection seam (solid) RHF and RHCl bond lengths, with eigenvalues 
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Figure 5.10: a) 2D effective transition state barrier height (solid) and HCl bond length 

(dashed) as a function of F-H-Cl bending angle (dotted line is Re for HCl). As 
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θ decreases below ∼120o, both the HCl bond length and barrier height increase 

dramatically from transition state values, characteristic of a shift from an “early” to 

“late” transition state. b) Trajectory analysis for F-HCl angular deflection (Δθ) as a 

function of initial bend angle, θ. For J = 0, only a very narrow range (dark grey) of 

incident scattering angles are successfully “prerotated” (light grey) into the 

appropriately bent transition state angle to react.  
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Figure 6.1:  Three lowest adiabats along the reaction path for the F(2P) + HCl  HF 

+ Cl(2P) system, obtained by high-level DW-MCSCF, MRCI+Q and CBS methods. 

The lowest two correlate with ground state F and Cl, while the highest one correlates 

asymptotically with spin-orbit excited F* and Cl* species. In the adiabatic limit, only 

the lowest spin-orbit ground state can react over a barrier accessible at experimental 

collision energies. 

 

Figure 6.2:  2D slices through two full 3D A’ adiabats. a) The region near the conical 

intersection seam (solid black line) at θ=180o, which by symmetry becomes b) an 

avoided crossing for any non-collinear geometry (θ=170o).   

 

Figure 6.3:  A 1D angular cut through full 3D adiabatic and diabatic surfaces in the 

exit channel, with RHF=Req and RHCl=6.6 a0.  The adiabats and diabats are 
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lowered from C∞v. 
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Figure 6.4:  Adiabats (dashed lines) and diabats (solid lines) calculated along the 

reaction path a) in full 3D and b) with θ constrained at 180o.  In full 3D the adiabats 

avoid where the diabats cross, whereas for a collinear geometry the adiabats and 

diabats overlap perfectly at each point along the conical intersection seam due to zero 

coupling.  

 

Figure 6.5:  A 2D RHF, RHCl contour plot for the ground state adiabatic surface at both 

a) transition state (θ=123o) and b) collinear (θ=180o) geometries. In b) the conical 

intersection seams are shown with dashed lines.  Contour spacing is 3 kcal/mol with 

respect to zero at reactant entrance channel. 

 

Figure 6.6:  Grid of distributed Gaussian locations used to fit the β coupling surface. 

Angular dependence is fitted at each point (RHF, RHCl) by a linear combination of 

sin(nθ) functions. 

 

Figure 6.7:  2D contours (at θ=123o) for the a) VΣ, b) VΠx, and c) VΠy diabats with 3 

kcal/mol spacing.  A sample histogram of residuals for fitting the VΣ function is also 

shown in a). The values are not distributed normally, which is why the RMS (0.34 

kcal/mol) is considerably larger than the FWHM (0.049 kcal/mol). 
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Figure 6.8:  Sample 2D slices through the full 3D β coupling surface between VΣ and 

VΠx diabats at a) θ=180o, b) θ=150o, and c) θ=120o.  Note that for collinear geometry, 

β vanishes identically but grows rapidly as the molecule becomes bent. 

 

Figure 6.9:  VΣ and VΠx diabats along the reaction path (scale to left), and the β 

coupling between the diabats (scale to right).  Note the strong peaking of diabatic 

coupling immediately in the post transition state region, due to rapid change in 

electronic character for the newly formed bond. 

 

Figure 6.10:  Sample results starting at the transition state (p=0 au, Δp=2 au) for 

multistate 1D wavepacket propagation along the F + HCl → HF + Cl reaction 

coordinate. The top panel displays adiabatic energies, the middle panels reveal 

snapshots of |Ψ|2 out to 100 fs, and the bottom panel accounts for the total flux that 

passed by each point on each surface. 

 

Figure 6.11: Reaction dynamics for ground F and spin-orbit excited F* as a function 

of energy.  a) Reaction probability of F and F* along the reaction path (solid lines), 

with dotted lines representing probability if non-adiabatic coupling is set to 0.  b) 

Reaction probability of F and F* along a 2D reaction path with θ constrained to be 

180o.  The dramatically increased reactivity of F* vs F results from the presence of 

conical intersection seams sampled at collinear geometries. 
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Chapter 1:  Introduction 

 In the field of theoretical chemical physics, the main focus of research 

generally falls along one of two paths:  1) the exact study of the very small or 2) the 

ensemble study of the very large.  In the former, the systems are small enough (fewer 

than 3 particles) that the mathematics allow one to reach exact results.  In the large 

systems (greater than 50 - 100 particles), there are generally enough degrees of 

freedom that measurements of the bulk can accurately be described by statistical 

averages where the exact details of each particle are not relevant.  These two branches 

of study leave behind a middle ground of systems that are too big to study exactly, yet 

are too small to be treated statically.  The key to studying these middle-of-the-road 

systems is to find the correct approximations that capture most of the chemistry and 

physics, while still being computationally tractable and providing the correct simple 

physical picture.  In this work two different areas of study are presented, both of 

which fall into this middle ground.  First, I present a model for the quantum 

mechanics of a floppy 6-atom system (CH5
+) which aims to capture the low-energy 

dynamics of a system with a large number of large-amplitude degrees of freedom.  

Then I will introduce novel methods for computing multistate potential energy 

surfaces for the abstraction of hydrogen by fluorine in two different experimentally 

important systems: F(2P)+HCl  HF + Cl(2P) and F(2P)+H2O  HF + OH(2Σ). 

 For the CH5
+ problem, I start by a developing framework for converged 

quantum mechanical calculations on large amplitude dynamics in polyatomic 

hydrides (XHn) based on a relatively simple, but computationally tractable, “particles-

on-a-sphere” (POS) model for the intramolecular motion of the light atoms. The 
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model assumes independent 2D angular motion of H atoms imbedded on the surface 

of a sphere with an arbitrary interatomic angular potential, which permits systematic 

evolution from “free rotor” to “tunneling” to “quasi-rigid” polyatomic molecule 

behavior for small but finite values of total angular momentum J. Chapter 2 focuses 

on simple triatom (n = 2) and tetratom (n = 3) systems as a function of interatomic 

potential stiffness, with explicit consideration of H2O, NH3, and H3O+ as limiting test 

cases. The POS model also establishes the necessary mathematical groundwork for 

calculations on dynamically much more challenging XHn species with n > 3 (e.g., 

models of CH5
+), where such a reduced dimensionality approach offers prospects for 

being quantum mechanically tractable at low J values (i.e., J = 0, 1, 2) characteristic 

of supersonic jet expansion conditions. 

In Chapter 3, the POS framework focuses on systems with many degrees of 

freedom (i.e., n = 4 and 5). The goal is to probe and elucidate the large amplitude 

dynamics in low J states (i.e., J = 0, 1, and 2) that will dominate high resolution 

spectra of such hydrides (e.g., CH4, CH5
+) obtained under supersonic jet-cooled 

conditions.  Comparison with experimental data as well as Diffusion Quantum Monte 

Carlo methods show how this simple reduced-dimensionality model provides 

potential insight into multidimensional quantum rovibrational dynamics. 

 Switching gears from quantum dynamics of nuclei to the creation of potential 

energy surfaces (on which quantum dynamics of nuclei can be modeled), Chapter 4 

discusses a novel method of dynamically adjusted weighting factors in state-averaged 

multiconfigurational self-consistent field calculations (SA-MCSCF) which is 

applicable to systems of arbitrary dimensionality. The proposed dynamically 
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weighted approach automatically weights the relevant electronic states in each region 

of the potential energy surface, smoothly adjusting between these regions with an 

energy-dependent functional.  This method is tested on the F(2P) + H2O → HF + OH 

(2Π) reaction, which otherwise proves challenging to describe with traditional SA-

MCSCF methods due to i) different asymptotic degeneracies of reactant (3-fold) and 

product (2-fold) channels, and ii) presence of low lying charge transfer configurations 

near the transition state region. The smoothly varying wave functions obtained by 

dynamically weighted multiconfigurational self-consistent field (DW-MCSCF) 

methods represent excellent reference states for high-level multireference 

configuration interaction (MRCI) calculations and offer an ideal starting point for 

construction of multiple state potential energy surfaces.   

 The F + H2O system is still too large to study in full dimensionality, however, 

the novel DW-MCSCF approach allows one to accurately study smaller reactive 

systems.  Using this approach, Chapter 5 presents a new ground state (12A’) 

electronic potential energy surface for the F(2P) + HCl  HF + Cl(2P) reaction.  The 

ab inito calculations are done at the MRCI+Q/CBS level of theory by extrapolation of 

the MRCI+Q/aug-cc-pVnZ (n = 2,3,4) energies.  Due to low-lying charge transfer 

states in the transition state region, the molecular orbitals are obtained by 6-state DW-

MCSCF methods. Additional perturbative refinement of the energies is achieved by 

implementing simple one-parameter correlation energy scaling to reproduce the 

experimental exothermicity (ΔE = -33.06 kcal/mol) for the reaction.  Ab initio points 

are fit to an analytical function based on sum of 2- and 3-body contributions, yielding 

an RMS deviation of < 0.3 kcal/mol for all geometries below 10 kcal/mol above the 
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barrier. Of particular relevance to non-adiabatic dynamics, the MCSCF-MRCI 

calculations show significant multireference character in the transition state region, 

which is located 3.8 kcal/mol with respect to F + HCl reactants and features a 

strongly bent F-H-Cl transition state geometry (123.5o). Finally, the surface also 

exhibits two conical intersection seams that are energetically accessible at low 

collision energies. These seams arise naturally from allowed crossings in the C∞v 

linear configuration that become avoided in Cs bent configurations of both the 

reactant and product and should be characteristic of all X-H-Y atom transfer reaction 

dynamics between (2P) halogen atoms.  

Finally, in Chapter 6, the DW-MCSCF approach is used in creating a multi 

electronic state PES for the F(2P) + HCl  HF + Cl(2P) reaction. This chapter 

presents benchmark ab initio combined calculations and analytical fits for the lowest 

three adiabatic (12A’,22A’,12A”), diabatic (12Σ, 12Πx, 12Πy) and spin-orbit corrected 

potential energy surfaces associated with the fundamental F(2P) + HCl  HF + 

Cl(2P) reaction. These surfaces are based on high-level MOLPRO multireference 

configuration interaction (MRCI) calculations performed at the complete basis set 

(CBS) level by extrapolation of MRCI+Q/aug-cc-pVnZ (n = 2,3,4) energies as a 

function of RHF, RHCl, and θFHCl . Molecular orbitals for the MRCI calculations are 

obtained by 6-state dynamically weighted MCSCF (DW-MCSCF) methods, 

necessitated by the presence of low-lying (F- + HCl+ and HF+ + Cl-) charge transfer 

states in the transition state region. Additional perturbative refinement of the adiabatic 

potentials is achieved by implementing correlation energy scaling methods to 

reproduce the experimental exothermicity.  Adiabatic surfaces are transformed into a 
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smooth diabatic representation by explicit maximization of orbital overlap with 

respect to limiting θFHCl . = 0o and 180o configurations, which reveals seams of 

conical intersections in both entrance and exit channels and which is energetically 

accessible at typical reactive collision energies. The resulting diabatic and non-

adiabatic coupling surfaces are analytically least-squares fitted with 2- and 3-body 

terms, with further inclusion of the Breit-Pauli matrix operator yielding spin-orbit 

splittings in good agreement with experiment.  By way of test application, 

wavepacket calculations along the reaction path for the set of 3D multiple surfaces 

are used to predict the role of non-adiabatic surface hopping probabilities for reaction 

of F(2P 3/2, 1/2) + HCl to form Cl(2P 3/2, 1/2) + HF. 
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Chapter 2:  Large amplitude quantum mechanics in 

polyatomic hydrides: I. A particles-on-a-sphere model 

for XHn 

I. Introduction 

The quantum mechanics of large amplitude motion have become an increasing 

focus of experimental and theoretical attention, fueled in part by impressive advances 

in high-resolution rotational/vibrational spectroscopy of tunneling dynamics in 

molecules, ions, and hydrogen bonded clusters. Classic paradigms in the field of large 

amplitude quantum dynamics have been systems such as tunneling inversion in 

ammonia1-8 (NH3) and hydronium ion9-16 (H3O+), as well as numerous demonstrations 

of large amplitude tunneling phenomena in van der Waals clusters.17-20 In favorably 

small n-atom systems, the dynamics can be treated at the level of exact quantum 

calculations for nuclear motion in full (i.e., 3n-6) dimensionality. This has been 

elegantly demonstrated, for example, in studies of HF and HCl dimers,21-24 which 

have permitted converged variational calculations in all inter- (4D) and 

intramolecular (2D) coordinates, as well reduced dimensionality extensions to H2O 

dimer25-28 (6D intermolecular coordinates with semirigid monomers) for which 

multiple H atom tunneling pathways of the rigid H2O monomers are clearly evident. 

The level of quantitative success in such benchmark hydrogen-bonded clusters is 

extremely encouraging and bodes well for understanding tunneling dynamics in even 

more complicated polyatomic systems.  
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However, as these large amplitude molecular systems increase in size and 

complexity, they quickly become prohibitive to treat by standard quantum calculation 

methods. This is unfortunate, as some of the most interesting dynamical processes 

begin to be possible in these larger systems.  Examples include the proposed 

concerted “race track” tunneling motion of the 3 H atoms around protonated 

acetylene29 (C2H3
+), and, as an even more longstanding spectroscopic challenge, 

facile intramolecular H atom exchange in protonated methane.30, 31 Furthermore, this 

level of theoretical difficulty increases rapidly with J, which makes the interpretation 

of rotational patterns especially challenging under all but the lowest temperature 

conditions. In such cases, a more realistic first spectroscopic goal is to learn how to 

predict and interpret the experimentally observed energy level patterns and thereby 

infer new insights about the actual intermolecular dynamics. 

 As background motivation for the present theoretical study, protonated 

methane (CH5
+) represents an extreme case of large amplitude quantum dynamics 

with a rich scientific history. Adding a single proton to the well-studied methane, 

CH4, creates a highly fluxional molecule where simple Lewis octet-bonding motifs do 

not apply, resulting in 5 H atoms connected by 4 electron pairs and requiring the 

presence of “three-center-two-electron” bonds (3c-2e).32 Such 3c-2e bonding motifs 

correspond to a special class of hypercoordinated carbocations, extremely important 

reactive intermediates in acid-catalyzed electrophilic reactions,33, 34 for which CH5
+ 

represents the simplest prototypic “superacid.” CH5
+ is also believed to be involved in 

the synthesis of polyatomic species in cold interstellar clouds,35, 36 fostering 

astrophysical interest in this simple but spectroscopically elusive molecular ion. 
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 From a theoretical perspective, CH5
+ is interesting because its small size 

makes quantum mechanical calculations of the potential computationally feasible. 

Early calculations of the potential surface37-39 predicted the lowest energy equilibrium 

configuration to exhibit CS symmetry. Later studies40 predicted an equilibrium 

structure reminiscent of CH3
+ “solvated” by a more distant H2 moiety, but as the level 

of theory has improved, the equilibrium separation between the CH3
+ and H2 has 

steadily decreased. Most recent high-level calculations suggest that there are, in fact, 

three low-lying energy structures within about 1 kcal/mol of each other.30, 41-43 

Furthermore, if zero point energy is taken into account, these three configurations are 

all extensively sampled by the ground-state wave function. Stated semiclassically, the 

barrier to rearrangement between these low-lying minima is lower than the zero point 

vibrational energy, thus promoting facile intramolecular scrambling of the hydrogen 

atoms.41 

 From a spectroscopic perspective, the highly fluxional, nonclassical nature of 

CH5
+ begins to account for long-standing difficulties in obtaining and interpreting its 

high resolution spectrum. Indeed, despite its first observation as a highly abundant ion 

in mass spectrometers44 in the early 1950s, optical detection and characterization of 

CH5
+ eluded spectroscopists for another 50 years. The breakthrough came in 1999 

from Oka and co-workers, who obtained a spectrum45 in the CH stretch region 

exploiting velocity modulation methods and made convincing arguments that the 

extensive, albeit unassigned, spectrum belonged predominantly to CH5
+. Desire to 

help in this assignment process has naturally led to considerable emphasis on 

calculating the near IR spectrum from theoretical first principles. However, despite 
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intense theoretical efforts 29, 30, 37-41, 46-53 directed toward CH5
+ and the recent 

availability of a high-level potential surface,42, 43 even a qualitatively correct, high-

resolution spectrum based on the rovibrational energy levels has proven challenging 

to calculate.  

 The reasons for this are at least twofold. On the experimental side, large zero 

point energies and lack of any substantial barriers between H atom interchange lead 

to extensive delocalization in the wave function. This delocalization, in turn, can 

result in large tunneling splittings and rovibrational energy patterns profoundly 

perturbed away from rigid rotor expectations, especially for the J states thermally 

populated under discharge conditions. From a theoretical perspective, however, the 

number of degrees of freedom for CH5
+ is already too large (i.e., 3n-3 = 15) to 

achieve fully converged quantum calculation of the rovibrational energy levels in full 

dimensionality.   

 In this chapter and the next, I explore a conceptually simple and physically 

motivated particles-on-a-sphere (POS) model for studying large amplitude quantum 

dynamics in systems as large as CH5
+. This model is stimulated by ab initio 

calculations by both Bunker50, 51 and Bowman,42, 43 which reveal that each of the C-H 

bond lengths in CH5
+ remain nearly constant throughout the full manifold of H atom 

exchange pathways. Specifically, the distribution of RCH distances on the full 

dimensional potential surface differ only by ~0.015Å between equilibrium and saddle 

point configurations, respectively, which is already comparable to zero point 

displacements (~0.018 Å) in the corresponding radial CH stretch coordinate.54 This 

indicates a high degree of decoupling between radial stretch and bend/rotation 
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coordinates, which I exploit by focusing explicitly on the internal CH bend/rotational 

degrees of freedom. Simply stated, the model considers the large amplitude quantum 

dynamics of an effective XHn molecule (where mX >> mH) where n identical H atoms 

are radially constrained to the surface of sphere, with angular motion dictated by a 

given H-H interaction potential, thus motivating the POS description (see Figure 2.1). 

This approach reduces the dimensionality of the problem to ∼2n (for a sufficiently 

massive central atom) and therefore makes numerically converged bending/internal 

rotor/tunneling calculations relatively straightforward for triatomic (XH2) and 

tetratomic (XH3) hydrides, as discussed herein. Most importantly, the method makes 

calculations for J = 0,1,2 computationally feasible even up to systems as large as XH4 

and XH5 (as discussed in the accompanying paper II). 

 Though this approximation may at first seem either simplistic or Draconian, it 

turns out to be neither. As this first paper attempts to illustrate, such a model 

accurately captures the essential large amplitude bend/rotational dynamics of small 

XHn systems specifically corresponding to n = 2,3. Indeed, by systematically varying 

the interatomic H-H potential “stiffness” and internal rotor constant for a single H 

atom, the effective molecular system can be tuned from a nearly “free internal rotor,” 

where large amplitude dynamics correspond to fully delocalized wave functions, to a 

more “rigid molecule” limit with energy-level-splitting patterns characteristic of 

rovibrational tunneling. It is worth stressing at the outset that spectroscopically 

accurate predictions for rotational/tunneling level splittings are not the goal of this 

work, nor are they even realistic with any known potentials or current computational 

methods. Rather my modest aim is threefold: (i) to develop a general computational 
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formalism for n-particle systems in reduced dimensionality, (ii) to establish numerical 

confidence in these methods for simple (n = 2,3) systems by comparison with 

spectroscopically well known triatomic and tetratomic test case molecules, and (iii) to 

exploit these methods to develop semi-quantitative intuition for internal 

rotor/tunneling dynamics in larger systems (i.e., n = 4,5), specifically for the lowest 

few J levels (J = 0,1,2). These low J predictions should complement and provide 

particularly valuable guidance in the acquisition and analysis of jet-cooled spectra, 

currently obtained under supersonic expansion conditions in a high-resolution IR 

laser slit discharge spectrometer.55 

 The organization of this chapter is as follows: Section II describes the general 

theoretical background necessary for efficiently solving the POS problem, focusing 

on methods used in this work for the two- and three-particle system. Sections III and 

IV discuss application of the POS model to two test systems, n = 2 (XH2) and n = 3 

(XH3), respectively. In Section V, I compare these n = 2,3 POS predictions with 

experimental results for large amplitude systems such as H2O, NH3, and H3O+. For n 

= 2,3, I compare these results with predictions from full dimensional theoretical 

calculations, which confirm the remarkable quantitative accuracy of the POS model. 

Concluding comments are briefly summarized in Section VI. 

II. Theoretical Background 

 As mentioned above, the model restricts the total dimensionality by 

constraining particles radially, while permitting them to execute large amplitude 

angular motion on the surface of a sphere. The resulting Hamiltonian for n particles 

can be simply expressed as 
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where iĵ  is the angular momentum of the ith hydrogen with respect to the central 

stationary atom and bi is the rotational constant for motion on the sphere. ( )ΩV̂  is the 

potential describing the H atom interactions, where Ω is a 2n dimensional vector of 

all H atom angular coordinates. Simply stated, this Hamiltonian is expanded in a 

suitable basis set, and the matrix elements of HPOS are calculated, with the resulting 

matrix diagonalized to generate the desired eigenvalues and eigenfunctions. Details 

that make such a model practicable to implement, particularly in larger atom systems, 

are described below.  

A. Primitive and coupled basis sets 

 The choice of a primitive basis set is dictated by the large amplitude nature of 

the problems I wish to address. Freezing the n X-H stretch coordinates yields a much 

simpler 2n dimensional Hamiltonian, but one which nevertheless permits arbitrarily 

strong coupling between overall rotation and H-X-H bending vibration. In the 

completely “floppy” limit of vanishing interaction between H atoms (V(Ω) = 0), the 

quantum mechanics is simply that of n free particles constrained to a sphere. In the 

corresponding “stiff” extreme of strong interatomic interactions, one anticipates the 

quantum behavior to be described by localized harmonic oscillator wave functions in 

each of the H-X-H angular coordinates. Since the goal of this work is to provide 

insight into low-frequency rovibrational modes of molecules in the floppy limit (such 

as CH5
+), I choose a primitive basis diagonal in the kinetic energy operator and treat 



37 

the potential perturbatively. Such a basis is the direct product of rigid rotor basis 

functions: 

∏
=

n

i
iimj

1

  ,      (2.2) 

where ji is the angular momentum of the ith hydrogen and mi is the projection of ji on 

the z axis.  

The n-particle Hamiltonian is diagonal in total angular momentum, J, so it is 

advantageous to transform this primitive basis into the coupled representation,56 This 

permits matrix construction and diagonalization for each quantum number J, with 

corresponding reduction in computational expense. The coupled basis for the XH2 

system is denoted as 

( )JMjj 21       (2.3) 

and for the XH3 system as 

( )( )JMjjjj 31221   ,     (2.4) 

where ji is the angular momentum of the ith particle, jij is the vector sum of ji and jj, 

and the parentheses denote which angular momenta are coupled. J is the total angular 

momentum, and M is the projection of J on the z axis, with standard sums over 3-J 

symbols56 to transform between coupled and uncoupled representations. When 

creating a basis set for a given J, the primitive free particle angular momenta are 

restricted to ji = [0, jmax], where jmax is chosen to achieve maximum convergence 

while minimizing computational time. In the absence of external fields, all M states 

for a given J are degenerate; thus M can be taken to be 0 for an additional 2J + 1 

reduction of the Hamiltonian matrix. 
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B. Basis set symmetrization and permutation inversion 

 For a crucial further reduction in computational effort, the Hamiltonian is 

block diagonalized using group theoretical methods.57, 58 Since these systems 

exemplify large amplitude motion, I use permutation inversion (PI) theory58, 59 to 

create symmetry-adapted linear combinations (SALCs) of the coupled basis functions 

that transform according to each PI symmetry group. The PI group for XH2 is G4 

(isomorphic to C2v), which yields four irreducible representations (A1, A2, B1, and 

B2), all nondegenerate. For XH3, on the other hand, the permutation inversion group 

is G12 (isomorphic to D3h), characterized by six irreducible representations (A1’, A2’, 

E’, A1’’, A2’’, and E’’), two of which (E’, E”) are intrinsically twofold degenerate. As 

clearly outlined by Bunker and Jensen,59 standard quantum projection operator 

techniques can be used to systematically generate SALCs of the coupled basis 

functions represented by Equations (2.3) and (2.4) that transform according to a 

single irreducible representation. This permits block diagonalization of the 

Hamiltonian and a four- and sixfold reduction in the basis set size, respectively, for 

calculation of matrix elements. Furthermore, for systems with three or more identical 

particles and therefore intrinsic degeneracies, one need only calculate these 

eigenvalues once. Thus, by symmetrizing the basis set such that only one basis 

function for each degenerate level is included,60, 61 the matrix size for a given 

symmetry can be further reduced. Though not a limiting issue for n = 2 and 3 

systems, this size reduction becomes important for larger n. For example, in CH5
+ the 

state degeneracy can be as high as six, providing an additional 36-fold reduction in 

matrix element evaluations for a given state symmetry.  
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 The use of permutation inversion-symmetrized basis sets also automatically 

permits nuclear spin statistics for the identical particles to be implemented. 

Specifically for XHn, one constructs a reducible representation of the n identical 

hydrogen atoms (spin ½ fermions), which is reduced according to standard group 

theoretical procedures59 to obtain nuclear spin weights. For n = 2 and n = 3, these 

weights are readily found to be 3:1:3:1 (for Γ = A1:A2:B1:B2) and 2:2:1:2:2:1 (for Γ = 

A1’:A2’:E’:A1”:A2’’: E”) respectively. As the energy eigenvalues are automatically 

sorted by symmetry, this permits immediate assignment of the nuclear spin states and 

weights. 

C. Matrix element evaluation 

 The use of symmetrized basis functions drastically decreases the matrix size 

for large n, thereby greatly enhancing the calculational efficiency. However, there is 

still significant computational cost in evaluation of the resulting matrix elements, 

which scales rapidly with the complexity of the system. Indeed, to more clearly 

illustrate the convergence issues and rapid scaling with molecular size, Table 2.1 

displays typical results for a given n-atom system, total angular momentum (J) and 

jmax internal rotor value in the uncoupled representation. Also shown in Table 2.1 for 

a series of n, J and jmax values are (i) Nsym, the number of irreducible representations 

for a given n, (ii) Ncoupled, the number of coupled free rotor basis states consistent with 

a given total J and all ji ≤ jmax, (iii) NSALC, the average number of linearly independent 

SALCs per symmetry species, (iv) MSALC, the average number of coupled basis states 

in a given SALC, and (v) Nintegral and Ntot, the total number of integral evaluations 

required to generate the matrix per atom pair or for all pairs, respectively. 
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 The resulting matrix size (NSALC) is decreased by as much as 50-fold from the 

full-coupled basis set (Ncoupled); thus diagonalization and storage are not the limiting 

issues. Nevertheless, the number of integral evaluations to fill this matrix increases as 

Nintegral ≈ 0.5*(NSALC )2 x (MSALC)2 per pair of atoms, which yields Ntot ≈ 0.25*(NSALC 

)2 x (MSALC)2 x n2 for the full sum over all atom pairs. As shown in Table 2.1, the 

number of integral evaluations for the two- and three-particle systems considered in 

this work is quite manageable, even up to the large jmax values required for numerical 

convergence with nearly rigid intermolecular anisotropies (e.g., models for H2O and 

NH3). However, the scaling behavior is so steep that an n = 5 system (such as CH5
+) 

will require as many as 6 × 1010 integral evaluations for only J = 2 jmax = 3. To make 

larger n calculations feasible with this model, however, these evaluations need to be 

exceedingly efficient. 

 Since both the primitive and coupled basis sets are diagonal in ji
2, the kinetic 

energy operator matrix elements satisfy this requirement automatically. For XH2, 

these matrix elements simply are: 

( ) ( ) ( ) ( )[ ]11ˆ
2211'

''
2

'
121 '

22
'
11

+++= jjjjbJjjTJjj jjjjJJ δδδ  ,  (2.5) 

with obvious extension to XH3 (and higher particle) systems: 
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The potential matrix elements, however, require substantially greater effort.  Matrix 

element evaluation by standard quadrature methods increases times by an additional 

factor of Q2n, where Q is the number of points on a potential grid, i.e., unacceptable 

for n > 3. By considering the potential as a multibody expansion, i.e.,  
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where each term represents a sum over all two-body, three-body, and four-body 

contributions, the work required to evaluate the potential elements can be greatly 

reduced. Given the rapidly growing number of evaluations required in Table 2.1, 

however, I restrict this expansion to only the first term, i.e., I consider arbitrary linear 

combinations of pairwise additive intermolecular potentials between each particle. 

Such pairwise additive potential depends only on the angle between pairs of particles:  

( )∑
<

=Ω
n

ji
ijVV γ)2()(  ,    (2.8) 

where γij is the H-X-H angle between the ith and jth hydrogen. 

Although not essential for the n = 2,3 test systems described in the current 

study, such a pairwise additive approximation provides a crucial advance for treating 

larger systems, making theoretical studies of XH4 and XH5 tractable. Specifically, if I 

expand any pairwise additive potential in a sum of Legendre polynomials, the matrix 

element for each term can be calculated analytically via Clebsh-Gordan angular 

momentum algebra.62 For the XH2 problem, this yields: 
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where fλ are the Percival-Seaton coefficients: 
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are 3-J, 6-J symbols, respectively.56 For the n = 2 particle 

system, calculation of these potential matrix elements is very fast, exploiting efficient 

3-J and 6-J evaluation routines.63 

The extension to a larger number of particles is straightforward. The n = 3 

potential is expressed as a sum of pairwise interactions, i.e., 
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where the matrix element of the first term is analogous to the two particle matrix 

element and easily calculated as:  
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The other two terms simply require transformation to a different coupling scheme.56 

For example, the V(2)(γ13) term is calculated by recoupling the j1 and j3 angular 

momenta first to produce j13, i.e., 
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where the Ci coefficients can be expressed as 6-J symbols and each term evaluated as 

in Eq. 2.12.  

 It may seem restrictive to limit the potential to a pairwise additive form; 

however, it is reasonable to believe that the approximation will work well for the 

floppy CH5
+. The large zero-point motion of the bending/rotation degrees of freedom 

and the low barriers to interconversion of the hydrogens in CH5
+ are likely the 
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predominant factors influencing the spectroscopic patterns.  The high-quality 

potential43 of Bowman and co-workers contains a Cs minimum and two low-lying 

transitions states: A Cs transition state at 42 cm-1 and a C2v transition state at 190 cm-

1.  Preliminary calculations on the Bowman surface with a restricted RCH coordinate 

result in a C2v minimum and one Cs transition state at 115cm-1.  A fit of a pairwise 

additive potential to the Bowman surface yields a similar C2v minimum and a similar 

Cs transition state 300cm-1 higher.  All of the transition states are an order of 

magnitude smaller than the zero-point energy of about 11,000cm-1 (or 4,100cm-1 

when freezing the C-H stretch coordinates).  The effects of the pairwise potential is 

investigated in more detail in Chapter 3; however, the large-amplitude coupled 

bending/rotation patterns should not change significantly.  As will be demonstrated 

later in this chapter, a pairwise additive potential reproduces the full dimensional and 

bending levels of both NH3 and H3O+ remarkably well. 

 The pairwise additive potential only depends on the angle between each pair 

of particles, which can be expanded in Legendre polynomials with no loss of 

generality. In the interest of simplicity, I take this form of the potential for this paper 

to be  

( ) ( )[ ]0
)2( cos1

2
γγγ −−= ijij

kV   ,   (2.14) 

which exhibits a minimum at γ = γ0. The three free parameters in the full Hamiltonian 

are: (i) b, the rotational constant for a single H atom, (ii) k, the depth of the potential 

well, and (iii) γ0, the equilibrium H-X-H angle. I further introduce the parameter χ = 

k/b, the ratio of the potential well to the rotational constant, which provides a 
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convenient dimensionless metric for characterizing the “floppiness” vs. “stiffness” of 

the pairwise interaction. 

 I conclude this section with an explicit timing example. By exploiting efficient 

3-J/6-J evaluations, Equations (2.11) and (2.12), and logical extensions thereof, each 

potential energy matrix element for a given coupled basis state can be calculated on a 

single 2.4 GHz Intel processor in 6.5 μs. This rate translates into ∼2 hours per 109 

integral evaluations, or, by inspection of Table 2.1, ∼100 hours for a system with n = 

5, J = 2, jmax = 3. This is encouraging and suggests that such POS calculations may be 

tractable even past n = 5, at least for systems with intermolecular potentials 

sufficiently “floppy” to be adequately represented by small values of jmax. Symmetry 

and nuclear-spin-sorted results will be presented in Chapter 3 for n = 4,5 atom 

systems, benchmarked against CH4, and will offer an approximate but insightful 

model of quantum level structure for the highly fluxional CH5
+ species. To first 

establish the feasibility of these methods, however, I focus herein on explicit 

examples of the POS model for the computationally straightforward n = 2,3 systems. 

III. Two Particles-On-A-Sphere (XH2) 

 The first test system is that of two POS, i.e., XH2, with Hamiltonian 

parameters (bi = 18.00 cm-1, γ0 = 104o) chosen to resemble the equilibrium structure 

of H2O in the limit of large anisotropy in the intermolecular pair potential. The 

strategy is to investigate the large amplitude eigenenergies as a function of the 

dimensionless stiffness parameter, χ = ki / bi, for fixed bi. With only two particles, one 

can readily anticipate the limiting behaviors in each of two regimes. Specifically the χ 

<< 0 (“floppy”) limit should yield rotation-like energy level patterns characteristic of 
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two free internal rotors, with characteristic spacings as a function of j1, j2. Conversely, 

the energy levels in the χ >> 1 (“stiff”) limit should begin to approach the asymmetric 

top rotor levels for a harmonic oscillator in the H-X-H bend coordinate.  

 Figure 2.2 shows a sample energy eigenvalue correlation diagram for two 

POS (J = 0, A1 symmetry), as the stiffness of the potential is increased. When χ is 

small, the progression scales like ji(ji + 1) for each of the two independent rigid 

rotors. For the specific case of J = 0, however, the angular momenta of the two 

hydrogen atoms are perfectly correlated in the coupled basis, i.e., j1 = j2. Thus, in the 

limit of low potential anisotropy, the states can be approximately labeled by |j1j2>sym 

for a given symmetry and one thus observes energies in Figure 2.2 for χ ≈1 increasing 

uniformly as Erot = 2bj(j + 1), for j = 0,1,2… In the stiff limit, the intermolecular 

potential is large enough that the two atomic displacements are now correlated and 

best described as a small amplitude vibration. The appropriate notation in this limit is 

therefore
sym

v , where the ket denotes the number of quanta and symmetry in the 

bending vibrational mode. As expected, the correlation diagram in Figure 2.2 for χ 

≈1000 (J = 0, A1 symmetry) demonstrates harmonic behavior, i.e., approximately 

equal vibrational spacings in the first few energy levels. 

 If one examines multiple J values for the lowest vibrational state (v = 0) as a 

function of intermolecular stiffness, an analogous but quite different trend is 

anticipated. By way of example, Figure 2.3 shows the energies (relative to EJ = 0) of J 

= 0, 1, and 2 for XH2 as χ is increased from 1 to 10000. At low χ, the energy spacing 

is 2b, reflecting uncorrelated rotation of the two hydrogen atoms. As χ is increased, 

however, evolution to a more localized rotational structure of XH2 is clearly evident. 



46 

Specifically, for χ ≈ 10000, the energy levels for XH2 converge on those of a rigid 

molecule, with J = 0, 1 and 2 states taking on the characteristic Ka, Kc patterns of an 

asymmetric top. This is most readily evident in the set of JKaKc = 101, 111, and 110 

levels, which systematically converge (for high χ) on the characteristic asymmetric 

top values of Erot = B + C, A + C, A + B, respectively. 

 Additional confirmation for the two-particle dynamics can be obtained from 

the corresponding wave functions, representative 2D slices for the J = 0 XH2 ground 

state which are displayed in Figure 2.4 as a function of χ. To visualize the anisotropy-

induced correlation between the hydrogen atoms, I rotate the coordinate system so 

that one hydrogen is always pointing upwards at θ = 0 and φ = 0. For an n = 2 system, 

the probability of finding the second particle is then plotted as a function of γ, the 

angle between the two hydrogen atoms. Figure 2.4 clearly illustrates the expected 

behavior for the XH2 system; the wave functions become more strongly localized as 

the potential is stiffened, slowly converging on the equilibrium angular separation (γ0) 

between the two hydrogen atoms as χ increases.  

  As a final test of the n = 2 model, the XH2 system can be mapped onto the 

well-studied H2O molecule, for which the full 3D intermolecular potential has been 

determined to exceptionally high accuracy by Tennyson and co-workers.64 In the 

spirit of the POS model, I first fix the two OH bond lengths at equilibrium values 

(ROH = 0.958 Å) and then fit the reduced dimensionality-bending H2O potential to a 

15-term Legendre expansion. The resulting 1D potential is then inserted into the 

Hamiltonian with b = 18.4 cm-1 (obtained from equilibrium bond lengths) and 

diagonalized to yield the converged rovibrational eigenstates and eigenfunctions for 
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H2O in the POS limit. To facilitate direct quantitative comparison, the equivalent 

asymmetric top rotational constants are extracted from the three lowest J = 1 levels, 

as indicated in Figure 2.3. Similarly, the HOH vibrational bending levels are 

estimated via differences in the lowest three J = 0 states of A1 symmetry, as illustrated 

in Figure 2.2. The resulting rovibrational predictions are compared with known 

experimental values for H2O in Table 2.2, which indicate nearly quantitative 

agreement (< 0.1% for vibrations, < 1 - 5 % for rotational constants). Given the 

calculational simplicity of this POS model for n = 2, this level of agreement for H2O 

appears promising, especially considering the complete absence in such a model of 

any stretch-bend coupling.  

IV. Three Particles-On-A-Sphere(XH3) 

 With these encouraging results for the two-particle Hamiltonian system, I add 

one more atom to the model to form XH3. In anticipation of numerical comparison 

with experimental data, the intermolecular structural parameters for this system have 

been chosen to best approximate NH3, with b = 16.63 cm-1 and γ0 = 1080. Since this 

model potential now predicts an equilibrium nonplanar C3v structure with a double 

minimum along the inversion coordinate, one expects to see evidence of (i) 

symmetric top rotational behavior and (ii) quantum mechanical tunneling through the 

inversion barrier. 

 Analogous to the two-particle system, I consider appropriate state labels as a 

function of low and high intermolecular anisotropy. In the floppy limit (χ ≈ 1), the 

states can be well designated by 
sym

jjj 321 where the symmetry label uniquely 
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identifies the proper linear combination of the three-particle permutations. In the 

semirigid molecular limit for XH3 , there are three vibrational modes: one is the 

umbrella mode of A1
’/A2

” symmetry (νumb) with the remaining pair forming a 

degenerate bend (νbend) of E’/E” symmetry. The most convenient notation in the stiff 

limit is therefore 
symbendumbvv , with the corresponding number of quanta in either the 

A umbrella or the E bend vibration explicitly denoted. 

As in the case of XH2, I first examine the correlation diagram for energy 

eigenvalues between floppy and stiff potential limits. Figure 2.5 displays 

eigenenergies of the first few A1
’/A2

” symmetry states of XH3 with J = 0. In the 

floppy limit (χ ≈ 1), a simple progression of rigid rotor energy levels for XH3 can be 

easily recognized, although more complicated than for XH2. This is because there are 

multiple ways to add the three H atom angular momenta (j1,j2,j3) and still get total J = 

0. Nevertheless, the lowest several states of A1
’/A2

” symmetry (with respect to EJ = 0) 

are found to be consistent with the free rotor limit of Erot = 4b, 6b, 10b, 12b, etc. The 

corresponding lowest energy level behavior in the stiff limit (χ >>1) clearly correlates 

with a simple progression in the umbrella mode, split by tunneling through the planar 

barrier. (The XH3 bending modes are present in this energy range as well but only 

appear as doubly degenerate vibrations of E’/E” symmetries.) Note that the 

magnitude of these tunneling splittings increases rapidly with vumb, corresponding 

semiclassically to vibrational promotion of barrier penetration as one energetically 

accesses the planar transition state.  

 By way of confirmation, one can similarly examine low J levels in the ground 

vibrational v = 0 state as a function of χ . Figure 2.6 displays the correlation diagram 
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of rotational energies (relative to EJ = 0) for J = 0, 1, and 2 states of XH3 as a function 

of increasing χ. At χ ≈ 1, the free rotor pattern emerges, with characteristic 2b energy 

spacings. In the limit of χ >> 1, however, the correlation diagram correctly predicts a 

convergence toward the familiar energy levels of a rigid symmetric top, specifically, 

EJK = B J (J + 1) + (C - B) K2. (Note that this requires inclusion of E’ symmetry to 

represent the intrinsically degenerate K ≠ 0 states.) Since the equilibrium structural 

parameters of the potential are modeled after NH3, the energy levels are those of an 

oblate symmetric top, i.e., energy decreasing with K for a fixed J value. 

Further examination of the model behavior can be obtained from 2D slices 

through the corresponding eigenfunctions. As the total wave function, Ψtot, is not 

possible to plot in 6D, I examine a simpler 2D function of one hydrogen coordinate 

(θ, φ), with the other two hydrogens held fixed at (θ = 0, φ = 0) and (θ = γ0 φ = 0), 

respectively (see insert in Figure 2.7 for relevant details). A series of slices through 

Ψtot is shown in Figure 2.7 as a function of χ, with the lowest A1’ and first excited 

A2” states for J = 0 on the left and right, with the equivalent slice through the 

potential contour shown at the bottom. As expected for an increase in potential 

stiffness (i.e., increasing χ), the wave function probability for the last H atom 

progressively localizes on the two equilibrium positions (γ = γ0 = 1080, φ  = 1200, 

2400). Furthermore, the wave function amplitudes clearly exhibit the expected 

alternation between symmetric and antisymmetric wave function characteristic of a 

double well potential.  

 As a logical benchmark test of these n = 3 POS calculations, I look to the 

limiting case of ammonia (NH3), for which the intermolecular potential and energy 
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term values are well known from previous spectroscopic studies. Currently, the model 

is only capable of representing a pairwise additive potential, whereas the most 

accurately determined NH3 potential65 requires small three-body terms to fully 

describe the interaction of the three hydrogens. As I will be unable to include such 

nonpairwise additive terms for n > 3 (e.g., CH5
+), I choose instead to fit an effective 

pairwise potential that most accurately reproduces the true inversion potential for 

NH3. Specifically, the k and γ0 parameters in Eq. 2.6 are fit to reproduce (i) the 

experimentally known barrier height at planarity and (ii) the equilibrium HNH bend 

angle for NH3. Note that this does not represent a fit to the complete tunneling path, 

as was done in the previous section for H2O. However, this approach does offer 

additional insight into the importance of such three-body terms, for which sufficient 

computational resources will not be available for larger particle systems.  

The results of these test calculations for NH3 are summarized in Table 2.3 for 

J = 0 vibrational levels up to 2000 cm-1, along with the experimental values. Both the 

vibrational energies and inversion tunneling splittings for the umbrella mode match 

experiment remarkably well (< 3–5%), particularly for such a simple two-parameter 

representation of the ammonia potential. Though still respectable, the agreement is 

not quite as good (indeed, systematically underestimated by ∼9%) in the degenerate 

bending vibrational predictions. However, this is not entirely surprising, since only 

barrier height information has been included in formulating the approximate NH3 

surface.  
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V. Discussion 

 I first begin with a brief discussion of the convergence properties for my 

calculations. In Figure 2.8, the fractional error for the ground-state energy is plotted 

as a function of jmax for several values of χ.  As expected, the error (relative to fully 

converged results at jmax = 50) decreases with increasing jmax and basis set size. 

Furthermore, the size of jmax necessary to converge to a given level increases with 

stiffness in the potential. This is simply the result of a basis set designed to be 

diagonal at V(Ω) = 0; i.e., as the interatomic potential is increased, the free rotor 

picture provides a progressively worse zeroth-order description. Also shown in Figure 

2.8 for comparison are corresponding convergence tests for the XH3 system. 

Particularly noteworthy is that the convergence rate for a given value of χ is 

remarkably similar for both XH2 and XH3. This is extremely encouraging for 

extension of these studies to n = 4,5 particle systems, for which the basis set size (and 

hence the Hamiltonian) grows so quickly that calculations for asymptotic values of 

jmax may not be feasible to establish a rigorous level of convergence for a given test 

potential. For the n = 2,3 systems discussed herein, however, all the calculations have 

been performed with jmax > 20, i.e., sufficiently high to ensure negligible fractional 

errors (< 0.0001 %).  

 Now that I have demonstrated the capability of the POS model for reasonably 

accurate predictions in “stiff” XH2 and XH3 systems such as H2O and NH3, I next 

turn my attention to the floppier molecular ion, H3O+.  The hydronium ion has been 

extensively studied over the past several decades with both high level theoretical and 

experimental methods. As a result, the intermolecular potential for this ion is known 



52 

to nearly spectroscopic accuracy. The barrier height in H3O+ (∼ 650 cm-1) is 

considerably lower than for NH3 (∼ 1792 cm-1), which leads to tunneling splittings in 

the ground state of nearly 60 cm-1. A test study of H3O+ via POS methods is therefore 

helpful in developing further confidence in calculations for other large amplitude 

tunneling systems, specifically other closed-shell-protonated molecular ions such as 

CH5
+.  

I start by fitting the theoretical H3O+ 1D symmetric inversion potential66 to a 

15-term Legendre expansion, again without including any three-body terms. Fully 

converged rovibrational energy levels for the resulting potential are then obtained 

from the POS Hamiltonian treatment, with b = 17.6 cm-1. The results are listed in 

Table 2.4. Similar to what was observed for the NH3 test problem, the predicted H3O+ 

energies agree reasonably well with both experiment and exact full 6D calculations 

by Bowman et al. Indeed, the typical error between (i) the POS and (ii) full 

dimensional calculations is on the order of 3–5%, which is certainly adequate for such 

a simple model based on (i) an infinitely heavy central atom and (ii) fixed moment of 

inertia for each HX rotor. Also similar to what was observed in the NH3 studies, there 

are noticeably larger errors (8–12%) for predictions in the degenerate-bending 

vibrational manifold. This may be simply attributable to the fact that the POS 

potential is only fit to (and thus might be expected to better reproduce) the H3O+ 

potential along the inversion coordinate. Nevertheless, the results are reasonably 

accurate for such a fit and may indeed be further improved by a better modeling of 

the potential shape. Most importantly, however, the overall energy level patterns for 

the umbrella inversion, tunneling, and degenerate bending modes are accurately and 
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semiquantitatively reproduced. Since one aim of the POS approach has been to 

develop qualitative intuitions in highly fluxional tunneling systems, this may already 

prove of substantial value in more challenging molecular ions such as CH5
+. 

VI. Summary and Conclusion 

 In this chapter, a conceptually simple method has been introduced for 

approximate but reasonably quantitative treatment of large amplitude quantum 

motion in small floppy hydrides such as XHn. This POS method takes advantage of 

the approximate independence of XH bond length on angular coordinates to motivate 

a reduced dimensionality Hamiltonian treatment of hydrogenic motion constrained to 

the surface of a sphere. Despite the simple nature of this approximation, the method is 

found to work surprisingly well for test n = 2 and n = 3 particle systems. Furthermore, 

the method yields good quantitative agreement in tests against experimental results 

for stiff systems with known intermolecular potentials (e.g., H2O and NH3) as well as 

more “floppy,” large amplitude systems (e.g., hydronium ion, H3O+). The agreement 

with full dimensional theoretical calculations is extremely promising, particularly in 

the quantitative reproduction of all patterns relevant to spectroscopic assignment and 

analysis of highly quantum mechanical systems.  

 Most importantly, however, the numerical methods developed with this 

approach lead to favorable scaling properties that offer encouragement toward 

applications with even larger n atom systems. The test cases shown herein 

demonstrate the feasibility of extension of these methods up to n = 5, at least for 

angular momentum states (J = 0, 1 and 2) relevant to spectroscopic studies in a low 

temperature slit supersonic expansion. As all n = 2,3 test molecules studied with POS 
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methods in this paper reflect relatively stiff intermolecular potentials, I feel confident 

that significant progress can be made toward larger systems. In later chapters, I apply 

these POS methods to n = 4,5 particle systems along with any extra optimizations 

needed to converge these exponentially much harder problems. The aim is to provide 

reduced dimensionality tools to develop the necessary insight and intuition for large 

amplitude dynamical systems, for which calculations in full dimensionality are 

simply not feasible. The long range goal is to incorporate these reduced 

dimensionality approaches with high-level ab initio potential surfaces to provide 

valuable information for decoding high-resolution spectra of highly fluxional species 

such as CH5
+. 
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Tables 

Table 2.1. Basis set size and matrix calculation time scaling as a function of n, J, and jmax.  

n J jmax Nsym
a Ncoupled NSALC MSALC Nintegral Ntot Time 

 0   51 51 1 1,326 1,326 0.01 s  
2 1 50 4 150 50 2 5,050 5,050 0.03 s  
 2   246 62 2 7,750 7,750 0.05 s  
           
 0   2,056 230 5 0.7 x106 2 x106 0.22 m  
3 1 15 6 6,120 680 10 23 x106 69 x106 7.54 m  
 2   10,050 1.1 x103 16 159 x106 478 x106 51.97m  
           
 0   5,719 244 28 23 x106 140 x106 0.30 h  
4 1 6 10 16,688 690 75 1,339 x106 8,034 x106 14.6 h  
 2   26,320 1.1 x103 113 7,753 x106 46,520 x106 84.3 h  
           
 0   4,269 67 101 0.02 x109 0.2 x109 0.40 h  
5 1 3 14 11,925 186 276 1.3 x109 13 x109 23.90 h  
  2     17,225 268 400 5.7 x109 57 x109 104.1 h  

 

aNsym refers to the number of irreducible symmetry representations; Ncoupled is the number of coupled basis set states for a 

given J, jmax; NSALC is the average number of symmetry-adapted linear combinations (SALC) per symmetry species; MSALC 

is the average number of coupled basis states in a given SALC; Nintegral is the number of integral evaluations per atom pair; 

Ntot is the total number of integral evaluations over all atom pairs.  
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Table 2.2. Calculated and experimental H2O energy levels (cm-1) for the bending 

mode and rotational constants (cm-1).  

 

  POS 3-D QMa Experimentb

1
1

A
 1588 1594.7 1594.7

1
2

A
 3149 3151.5 3151.6

  
A 25.67 24.27
B 14.89 14.81
C 9.19  9.20

 

a,b Values from Polansky et al.64 
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Table 2.3. Calculated and experimental NH3 energies and splittings.  

 

State POS Full QMa Experimentb 
 Energy Splitting Energy Splitting Energy Splitting 

'1
00

A
 0 0 0

''2
10

A
 0.798 } 0.798 0.790 }0.790 0.793 }0.793 

'1
20

A
 895.6 934.06 932.43

''2
30

A
 930.9 }  35.3 969.57 }35.51 968.12 }35.69 

'
01

E
 1482 1627.91 1626.28  

''
11

E
 1483  

'1
40

A
 1536 1600.79 1597.47

''2
50

A
 1813 } 277 1885.06 }284.27 1882.18 }284.71 

'1
60

A
 2299 2387.82 2384.15

'
21

E
 2413 2543.43 2540.53

''2
70

A
 2795 2899.62 2895.51

 

'1
02

A
 2938 3220.13 3216.1  

'
02

E
 2953 3244.26 3240.44  

 
'1

80
A

 3345  3467.24  3462   

 

a,b Values from Rajamaki et al.67 
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Table 2.4. Calculated and experimental H3O+ energies and splittings.  

 

State POS Full QMa Experimentb 
 Energy Splitting Energy Splitting Energy Splitting 

'1
00

A
 0 0 0

''2
10

A
 54.33 }54.33 46 }46 55.35 }55.35 

'1
20

A
 529.9 580 581.17

''2
30

A
 876.7 }347 934 }354 954.4 }373.23 

'1
40

A
 1377 1445 1475.84  

'
01

E
 1421 1624 1625.95  

''
11

E
 1498 1681 1693.87  

''2
50

A
 1918 2005 1882.18  

 

a,b Values from Huang et al.66 
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Figures 

 

Figure 2.1. Schematic picture of the particles-on-a-sphere (POS) method, which is 

based on a modeling of polyatomic hydrides (XHn) as one heavy atom (X) that 

constrains the motion of n H atoms to the surface of a sphere. 
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Fig 2.2. EJ = 0 energy level correlations for XH2, plotted for the first few lowest 

energies vs. potential stiffness, χ. At small χ, a simple rigid rotor pattern with 

increasing spacings (4b, 8b, 12b, etc.) is clearly exhibited (the rotational levels are 

reproduced with greater detail in the inset), but which evolves smoothly to a harmonic 

pattern of constant energy spacing (hω0) in the limit of large χ. 
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Fig 2.3. EJ = 0,1,2 energy level correlations for XH2 in the ground vibrational state, 

plotted for the first few lowest energies versus potential stiffness, χ. At small χ, the 

energy separations reflect uncorrelated free rotation of the hydrogen atoms. At large 

χ, however, this smoothly transitions into the characteristic JKaKc patterns of a rigid 

asymmetric top. 



62 

 

Figure 2.4. 1D wave function probability distribution for the XH2 ground vibrational 

state plotted as a function of increasing χ. As the potential stiffness is increased, the 

width of the HXH angular distribution narrows toward γ = γ0, i.e., the equilibrium 

geometry. As shown in the inset, the first hydrogen is defined to be at (θ  = 0, φ = 0), 

with the |amplitude|2 for the second hydrogen plotted for (θ = γ, φ ).  
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Figure 2.5. EJ = 0 energy level correlation as a function of intermolecular stiffness for 

XH3, plotted for the first few energies of the umbrella mode. At small χ, the levels 

correspond to three independent rigid HX rotors (displayed with greater detail in the 

inset) but eventually correlate with inversion doubled tunneling splittings in the limit 

of large χ. 
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Figure 2.6. Ev = 0 energy level correlation for XH3 J = 0, 1, 2 as function of 

intermolecular stiffness, χ. For small χ, the pattern reflects three freely rotating 

hydrogens, which for large χ smoothly transitions into the rotational energy pattern 

characteristic of an oblate symmetric top. 
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Figure 2.7. 2D cuts (in θ, φ space) through full 6D XH3 wave functions for (i) 

symmetric ground state (left hand side) and (ii) the antisymmetric first excited state 

(right hand side) of the umbrella mode for increasing values of χ. The contour plot 

(center bottom) displays the corresponding potential. At χ = 6, 60 and 600, the 

contour spacings are 1.5 cm-1, 15 cm-1, and 150 cm-1, respectively. As shown in the 

inset, the first and second hydrogens are fixed at (θ  = 0, φ = 0) and (θ  = γ0, φ = 0), 

with amplitude for the third hydrogen plotted as a function of (θ , φ ).  
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Figure 2.8. The log of the fractional error (base 10) as a function of jmax for several 

values of stiffness χ. Larger χ converges more slowly as the basis set is optimized for 

floppy intermolecular potentials. For a given χ, it is worth noting that the n = 2 and n 

= 3 calculations converge almost at the same rate, which bodes favorably for scaling 

to a larger number of H atoms. 
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Chapter 3:  Large amplitude quantum mechanics in 

polyatomic hydrides: II. A particle-on-a-sphere model 

for XHn (n = 4,5) 

I. Introduction 

The quantum mechanics of large amplitude motion has been the focus of 

experimental and theoretical work for many years.  Advances in high-resolution 

rotational/vibrational spectroscopy have given much experimental evidence of large 

amplitude dynamics in molecules and ions.  The tunneling inversion in ammonia1-8 

(NH3) and hydronium ion9-16 (H3O+) are two such examples of well-studied systems 

that exhibit large-amplitude motion.  In systems with few enough degrees of freedom 

(N ≤ 6), the exact quantum nuclear dynamics can be solved in full dimensionality. For 

example, this has been achieved in landmark studies of HF and HCl dimers17-20, as 

well as reduced-dimensionality extensions to H2O dimer21-24 using six-dimensional 

(6D) intermolecular coordinates with semirigid H2O molecules.  

However, as molecular systems increase in size and complexity, standard 

quantum-calculation methods rapidly become too difficult to permit treatment in full 

dimensionality. This is particularly unfortunate from a chemical physics perspective, 

as some of the most interesting dynamical processes, such as the facile exchange of 

identical H atoms predicted to occur in protonated methane25,26, begin to emerge in 

these larger systems. Furthermore, the level of theoretical difficulty increases rapidly 

with total angular momentum, J, which makes the high-resolution interpretation of 



73 

rovibrational patterns especially challenging under all but the lowest temperature 

conditions. In such cases, a more realistic first spectroscopic goal is to learn how to 

predict and interpret the experimentally observed energy level patterns and thereby 

infer new insights about the actual intermolecular dynamics.   

As a specific target of interest, protonated methane (CH5
+) represents an 

extreme case of large-amplitude quantum dynamics with a rich scientific history. The 

addition of a single proton to relatively “rigid” methane, CH4, creates the highly 

fluxional CH5
+ molecule where simple Lewis octet bonding motifs do not apply. Five 

H atoms are connected by 4 electron pairs and require the presence of “three-center-

two-electron bonds” (“3c-2e”).27 Such 3c-2e bonding motifs correspond to a special 

class of hypercoordinated carbocations, which are extremely important reactive 

intermediates in acid-catalyzed electrophilic reactions,28,29 for which CH5
+ represents 

the simplest prototypic “superacid.”  CH5
+ is also believed to be a key intermediate in 

the synthesis of polyatomic organic species in cold interstellar clouds,30,31 further 

motivating astrophysical interest in this simple, but spectroscopically elusive, 

molecular ion. 

 From a theoretical perspective, CH5
+ is interesting because its relatively small 

size and high symmetry make quantum mechanical calculations of the potential 

energy surface computationally tractable, though still quite challenging. The most 

recent high-level calculations suggest that there are, in fact, three low-lying energy 

structures within about 1 kcal/mol of each other.25,32-34 Furthermore, if zero point 

energy is taken into account, these three configurations are all extensively sampled by 

the ground-state wave function. Stated simply, the barrier to rearrangement between 
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these low-lying minima is considerably lower than the quantum zero-point vibrational 

energy, thus permitting facile intramolecular scrambling of the hydrogen atoms32 to 

take place. 

 From a spectroscopic perspective, the highly fluxional, nonclassical nature of 

CH5
+ begins to account for long-standing difficulties in interpreting a high-resolution 

spectrum. Despite its initial observation as a highly abundant ion in mass 

spectrometers in the early 1950s,35 optical detection and characterization of CH5
+ 

eluded spectroscopists for another 50 years. The breakthrough came in 1999 from 

Oka and coworkers, who obtained a spectrum36 in the CH-stretch region by exploiting 

velocity modulation methods.  They made convincing arguments that the extensive, 

albeit rovibrationally unassigned, spectrum belonged predominantly to CH5
+.  

Recently, exciting progress has been made in obtaining broadband IR action spectra 

of CH5
+ by Asvany and coworkers.37 These spectra yield unresolved vibrational 

structure from 3500 down to < 1000 cm-1.  Our group has also obtained high-

resolution jet-cooled IR spectra38 in the 2820 - 3050 cm-1 region. 

Desire to help in this assignment process has naturally led to considerable 

emphasis on direct calculation of near IR spectra from first principles. However, 

despite intense theoretical efforts directed toward CH5
+25,32,39-51 and the recent 

availability of a high-level potential surface,33,34 high resolution spectra based on fully 

converged exact rovibrational energy levels have proven extremely challenging to 

calculate. The reasons behind this challenge are at least twofold. On the experimental 

side, large zero-point energies and lack of any substantial barriers between H atom 

interchange lead to extensive delocalization in the wave function. This in turn can 
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result in large tunneling splittings and rovibrational energy patterns profoundly 

perturbed away from rigid rotor expectations, especially for the J states thermally 

populated under discharge conditions. From a theoretical perspective, however, the 

number of degrees of freedom for CH5
+ is already too large (15D) to achieve fully 

converged quantum calculation of the rovibrational energy levels in full 

dimensionality. 

In Chapter 2,52 the particle-on-a-sphere (POS) model was introduced as an 

alternative method for calculating the energies and wave functions for molecules with 

large amplitude motion in a large number of degrees of freedom.  The model was 

tested on relatively “floppy” molecules (i.e., exhibiting large amplitude bending 

dynamics) with considerable success for di- and tri-hydride species.  In the XH2 case, 

the convergence of the energy levels was readily achieved for J ≤ 2, with the 

rovibrational levels converged to near spectroscopic (< 10-4 cm-1) accuracy.  By way 

of example, Figure 3.1a displays rovibrational energies of the lowest J = 0 and J = 1 

states for XH2 as a function of jmax. Here jmax is the maximum angular momentum for 

a single H basis state and therefore a measure of the variational basis set size, where 

specific parameters for the POS potential and equilibrium bond lengths/bond angles 

for XH2 are closely modeled after H2O. As expected, the variational energies decrease 

with increasing basis set size, converging on the complete basis set limit to the 

ground, fundamental, and 1st overtone excited bending states.  Agreement at higher 

resolution is also shown (see Figure 3.1a inset) with the predicted rotational energies 

for a rigid asymmetric top with H2O equilibrium bond lengths/angles. As a more 

significant challenge to the model, energy levels could be similarly converged for 
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floppy XH3 molecules modeled after H3O+. Indeed, the expected progression of 

umbrella inversion levels was reproduced even for potentials modeled after the 

relatively high-tunneling barrier case of NH3. This pattern is summarized in Figure 

3.1b, where the observed tunneling splittings are given for each pair of converged J = 

0 energy levels and exhibit a dramatic increase with energy above the barrier.  It is 

worth noting that apparent deviations from this pattern simply arise from a doubly 

degenerate asymmetric bend state occurring near 5000 cm-1, which, as expected, 

exhibits a “normal” tunneling splitting comparable to the ground state. 

 Most important, the POS model also provides access to rovibrational quantum 

eigenfunctions as well as eigenenergies. By way of example, Figure 3.2a displays a 

1D projection of the full 4D wavefunction for XH2 onto the γ coordinate, where γ is 

the H-X-H bending angle between the two hydrogens. For comparison, I also show a 

corresponding slice through the J = 0 wave function (shaded in grey) obtained from 

Diffusion Monte Carlo (DMC) methods, where the stiffness (i.e., anisotropy of the 

potential) χ of the intermolecular bend potential is systematically incremented 

between each plot (χ ≈ 3700 corresponds to the bending potential in H2O). 

Agreement between POS and DMC predictions for XH2 is excellent, limited only by 

the intrinsic statistical nature of the DMC wave functions. Similar levels of agreement 

are evidenced between 1D representations (solid points) of the full 6D XH3 wave 

functions and statistical DMC calculations (shaded in grey), which are plotted in 

Figure 3.2b as a function of increasing stiffness of the intermolecular potential.  Here 

γ refers to the angle between any pair of H’s with respect to the central atom, and 

thus both the POS and DMC Ψ(γ) should be more appropriately thought of as 
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pairwise angular-distribution functions. As expected, each of the hydrogen pairs 

become more tightly correlated with increasing potential stiffness, with the angle 

strongly localizing around the equilibrium value (104o for XH2 and 108o for XH3).   

However, the potential promise in such a POS approach lies in permitting one 

to theoretically move past n = 2 and n = 3 to more challenging systems of higher 

dimensionality, which represent the focus of the present work. The organization of 

this chapter is as follows. Section II reviews the general theoretical background 

necessary for efficiently solving the POS problem and focuses explicitly on methods 

used in this work for the n = 4 and n = 5 particle system.  Sections III and IV discuss 

applications of the particle-on-a-sphere model to two test systems, n = 4 (XH4) and n 

= 5 (XH5), respectively. I specifically model the rotation-bending potentials on 

suitably scaled versions of i) relatively “stiff” species such as methane (CH4) and ii) 

highly fluxional species such as protonated methane (CH5
+). In Section V, I compare 

the n = 5 POS predictions with other large amplitude theoretical results for CH5
+.  

Concluding comments are summarized in Section VI. 

II. Theoretical Background 

 As discussed more fully in Chapter 2, the POS model assumes a massive 

central atom (mX >> mH) and effectively averages over the high-frequency radial 

stretching of the X-H bond lengths, so that the resulting 2D angular coordinates can 

be simply represented as motion constrained to the surface of a sphere. The reduction 

of dimensionality can be simply achieved by freezing the radial coordinates in the full 

dimensional potential at some average value, or more reasonably, by adiabatically 

adjusting the radial coordinates to a minimum energy as a function of the remaining 



78 

2n angular coordinates. The justification for the latter approach is clearly superior, 

and in the case of CH5
+, takes advantage of both the greater than twofold difference in 

CH stretch vs. torsional / bending frequencies as well as the relatively small spread (< 

0.015 Å) in CH equilibrium bond lengths observed for H atoms at typical zero-point 

energies. The resulting Hamiltonian for the large-amplitude angular motion of n 

particles can then be simply expressed as 

( )∑
=

Ω+=
n

i
iiPOS VjbH

1

2 ˆˆ ,   (3.1) 

where iĵ  is the angular momentum of the ith hydrogen with respect to the central 

stationery atom, and bi is the rotational constant for motion on the sphere.  ( )ΩV̂  is 

the potential describing the H atom interactions, where Ω is a 2n dimensional vector 

of all n H atom angular coordinates.   

One key advantage of this approach is that there is no distinction between 

angular bending and end-over-end tumbling degrees of freedom.  Thus the solutions 

treat vibration and rotation on a completely equivalent footing (i.e., there are no 

perturbative assumptions about the magnitude of Coriolis interactions).  The method 

should work best in the limit of extreme large-amplitude quantum motion (e.g., CH5
+) 

and relatively weak interparticle interactions, as opposed to the standard decoupling 

of Ψtot into a product of rotational and vibrational wave functions describing small 

amplitude displacements with respect to a zeroth-order body-fixed frame. For 

example, such a method would be particularly well suited for describing the quantum 

motion of n He atoms solvating a heavy central atom, as in van der Waals clusters of 

XeHen. However, the corresponding cost of equality with respect to rotation/vibration 
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internal coordinates is a much more rapid scaling of the variational problem with 

number of particles. Thus, although n = 2 (4D) and n = 3 (6D) systems are 

theoretically tractable from a variety of approaches, extension of the POS methods to 

n = 4 and 5 invoke special considerations, which are described below. 

A.  Primitive and coupled basis sets 

 As discussed earlier,52 the goal of the POS model is to describe floppy 

molecules such as CH5
+, where the Coriolis coupling between overall rotation and H-

X-H angular vibrations is large.  In the “floppy” limit, where the potential V(Ω) can 

be viewed as a perturbation of freely rotating molecules, a natural basis in which to 

expand the Hamiltonian is simply a direct product of rigid rotor functions: 

∏
=

n

i
iimj

1
,     (3.2) 

The full n-particle Hamiltonian is diagonal in total J2 and Jz, so it is advantageous to 

transform this primitive basis into an equivalent coupled representation53 that permits 

matrix construction and diagonalization for each quantum number J. For increased 

speed in the potential matrix element evaluation, my choice of a coupled basis for the 

XH4 system is 

( ) ( )( )JMjjjjjj 34431221 ,      (3.3) 

and for the XH5 system, 

( )( ) ( )( )JMjjjjjjjj 455412323321 ,     (3.4) 

In these expressions, ji represents the angular momentum for the ith particle, jij is the 

vector sum of ji and jj, parentheses denote the coupling order, and J and M represent 

the total angular-momentum quantum number and projection on the z axis, 
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respectively.  In the absence of external fields, all M states for a given J are 

degenerate; thus M can be taken to be 0 for a further factor of 2J + 1 reduction of the 

Hamiltonian matrix size.  To create a basis set for a given J, the primitive free-particle 

angular momenta are restricted to j = [0, jmax].   

B.  Basis set symmetrization and permutation inversion 

 To achieve a crucial reduction in computational effort, the Hamiltonian is 

block diagonalized using group theoretical methods.54,55 This involves the use of 

permutation inversion theory55 to create symmetry-adapted linear combinations 

(SALCs) of the coupled basis functions that transform according to each permutation 

inversion symmetry group. The permutation inversion group for XH4 is G48 

(isomorphic to the direct product Td symmetry group with the inversion operation), 

which yields 10 irreducible representations: A1
+, A2

+, E+, F1
+, F2

+, A1
-, A2

-, E-, F1
-,  

and F2
- with nuclear spin weights of 5:1:3 for A1:E:F2, respectively, for spin ½ Hs.  

For XH5, the permutation inversion group is G240, characterized by 14 irreducible 

representations: A1
+, A2

+, G1
+, G2

+, H1
+, H2

+, I+, A1
-, A2

-, G1
-, G2

-, H1
-, H2

-, and I- with 

nuclear spin weights of 6:4:2 for A2:G2:H2 symmetries,50 respectively.  Using 

standard projection operator techniques,55 the coupled basis functions are transformed 

into orthonormal SALCs of each irreducible representation.  For XH5 in particular, 

these irreducible representations reflect high levels of intrinsic degeneracy, 

specifically E = 2, F = 3, G = 4, H = 5, and I = 6.  By exploiting this degeneracy and 

including only one of the resultant SALCs for each irreducible representation,56,57 I 

therefore dramatically reduce the basis set size. 
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 It is important to note that while such a symmetrization need only be 

performed once, the creation of these SALCs currently represents the limiting step in 

POS extension to even larger basis sets.  The nested loops required to symmetrize and 

orthogonalize the SALCs quickly grow extremely rapidly with increasing n and jmax.  

Specifically, the time required to create an orthonormal SALC basis set of a single 

irreducible representation increases as (jmax)7. By way of example, in order to create 

an orthonormal basis set of SALCs for one symmetry with n = 5, J = 0, jmax = 5 

(Ncoupled ≈ 75,000) requires about 1 month to symmetrize and orthogonalize on a 2.4 

GHz Intel CPU.  This translates into a current upper limit for the XH5 problem of jmax 

= 5, 4 and 3 for J = 0, 1, and 2, respectively. However, this process may be 

significantly accelerated by parallelization of the code, which represents one of 

several ongoing directions of further exploration.  

C.  Matrix element evaluation 

 The use of symmetrized basis functions significantly decreases matrix size for 

large n and jmax, reducing both memory requirements to store the matrix as well as 

computational effort for matrix diagonalization. However, calculating the 

Hamiltonian matrix in a symmetrized basis still requires significant CPU time. Matrix 

element evaluation in the SALC basis requires calculation of the integral 'ˆ iHi , that 

is expanded into a sum of integrals over the direct product of each term in the SALCs.  

Naively, when the basis function i  is a SALC created from a sum of coupled basis 

functions and the Hamiltonian matrix is too large to store in memory, integral 
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evaluation might be expected to occur via a process that scales quadratically with 

SALC size: 

∑ ∑
= =

=
SALC SALCM

k

M

l
lk lHkCCiHi

1 1

* ˆ'ˆ ,     (3.5) 

where k and l are indices over each of the MSALC coupled basis functions in each of 

the NSALC SALC basis functions.  Consequently, creation of the symmetrized 

Hamiltonian matrix would increase roughly as the 4th power, i.e., O(N4), of basis set 

size.  More specifically, the number of evaluation of integrals required is ½ x NSALC
2 

x MSALC
2, where NSALC is the number of SALC basis function for a given symmetry 

and MSALC is the number of coupled basis functions in the linear combination that 

comprises the SALC.  Even for small values of jmax, this number becomes quite large, 

requiring for J = 0, jmax = 5, and n = 5 on the order of 109 integral evaluations to create 

the Hamiltonian matrix; this calculation requires 1 to 2 weeks on a 2.4 GHz Intel 

CPU, even with analytic matrix elements. 

 However, by changing the order of evaluation, the matrix element evaluation 

can be expressed as an O(N3) operation, which is significantly faster when there are a 

large number of symmetries into which the SALCs can be distributed.  Rather than 

calculating the full NSALC x NSALC Hamiltonian matrix ( ΓH ) from direct products of 

SALCs, the matrix can be expressed as ΓΓΓ ⋅⋅= SHSH T   ' , where 'H  is the nonsparse 

Ncoupled x Ncoupled unsymmetrized Hamiltonian, and ΓS  is a NSALC x Ncoupled sparse 

matrix that transforms the coupled (unsymmetrized) basis functions into the SALC 

basis set.  The advantage is that ΓS  is quite sparse (e.g., for XH5, ∼95% of the matrix 

elements are zero); thus computing terms in 'H  (which itself is too large to store for 
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typical Ncoupled ≈ 75,000), multiplied by nonzero terms in ΓS  is easily accomplished.  

Ultimately, this rearrangement of operations results in Ncoupled x NSALC x MSALC + 

NSALC
2 x MSALC matrix element evaluations, i.e., reducing to an O(N3) algorithm. This 

is approximately (NSALC x MSALC)/(Ncoupled + NSALC) times faster than the naive direct 

product approach, resulting in a 50- to 100-fold increase in speed for large basis sets 

with many symmetries.   

 By careful choice of the potential, the evaluation of both the kinetic energy 

and potential energy matrix elements is analytic.  Since the basis set is diagonal in ji
2, 

the kinetic energy operator matrix elements satisfy this requirement automatically. 

For XHn, these matrix elements simply are: 

( )1'ˆ
1

' += ∑
=

kk

n

k
ii jjbiTi δ ,      (3.6) 

where b is the internal X-H rotational constant and jk is the angular momentum of the 

kth X-H rotor. Calculation of the corresponding potential matrix elements involves 

substantially greater effort.   Evaluation of the potential by standard quadrature 

methods requires Q2n calculations per matrix element, where Q is the number of 

points on a potential grid and n is the number of hydrogens on the sphere, which 

scales too rapidly when n > 3.  To proceed, therefore, I consider the potential as a 

multibody expansion, i.e., 
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where each successive term represents a sum over all 2-body, 3-body, 4-body, etc., 

contributions. As a major simplification, I restrict this expansion to the first term, i.e., 
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only considering linear combinations of pairwise additive intermolecular potentials 

between each particle that depends only on the angle between pairs of particles:  

( )∑
<

=Ω
n

ji
ijVV γ)2()( ,    (3.8) 

where γij is the H-X-H angle between the ith and jth hydrogen and V(2) is a sum of 

Legendre polynomials in γij. By truncating after the first term in the expansion, the 

work required to calculate a potential matrix element only grows as n2 (the number of 

pairwise interaction for n particles), as opposed to Q2n with numerical quadrature (Q 

being the number of quadrature points per dimension). As a further bonus, if I expand 

any pairwise additive potential in a sum of Legendre polynomials, the matrix element 

for each term can be calculated analytically via Clebsh-Gordan angular momentum 

algebra.52,58  The matrix element between two coupled particles and a Legendre 

function are the Percival-Seaton coefficients58, which are simply sums over 3- and 6-J 

symbols.  Thus one has gained the advantage of both an n2 vs. Q2n scaling of integral 

evaluations as well as a much more efficient analytic evaluation of each matrix 

element. Although such a pairwise additive approximation to the potential was not 

essential for calculations in n = 2 and n = 3 systems, it proves absolutely crucial to 

extension to the larger systems of interest such as XH4 and XH5.   

D.  Rigid-body DMC 

 In Chapter 2, direct comparison between the POS model and exact full 

dimensional quantum mechanical calculations proved feasible for low J states in XH2 

and XH3, due to an acceptably small number of degrees of freedom. For the much 

more computationally demanding XH4 and XH5 systems, exact full dimensional 
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quantum calculations for J > 0 are simply not available for benchmarking the POS 

calculations. However, calculations for the nodeless ground rovibrational state (J = 0) 

are feasible for n = 4 and 5 via DMC methods, which scale much more favorably than 

variational methods for systems of high dimensionality (roughly linearly in 2n).  

Thus, I can test the convergence of the J = 0 POS methods against DMC results, 

specifically exploiting the “rigid body” formulation (RBDMC) to constrain the radial 

stretching coordinate for the diffusing 2n dimensional “walkers.”59-62 

 By way of example, Figures 3.1a and 3.1b show the energies of XH2 and XH3 

as a function of jmax (i.e., basis set size).  As jmax is increased, the energy of each state 

decreases variationally, with the ground state J = 0 energy converging on the DMC 

result (dotted line).  The insets show a more detailed picture of agreement between 

variational POS and DMC POS methods. For both XH2 and XH3 calculations, the 

converged variational calculation equals the DMC result within 1σ statistical 

uncertainty, where the DMC error estimate reflects 10 ensembles of 2000 walker 

trajectories starting with different initial conditions.  

 The distribution of walker angular coordinates also provides a statistical 

sampling of the wave function.  Figure 3.2a displays the DMC wave function for 

walkers at an angle γ apart from each other in XH2, binned in 1o increments and 

normalized to unity; the black dots represent the wave function results calculated by 

the variational POS method.  Note that when the angular stiffness (χ) is low, the two 

H atoms rotate independently of each other and the distribution reduces to sin(γ), i.e., 

a uniform sampling of interangular coordinates on a sphere. However, as the stiffness 

χ is increased, the wave function becomes localized around the equilibrium angle 
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corresponding to H2O (γo = 104o). A similar pair of POS and DMC wavefunction 

plots for XH3 is shown in Figure 3.2b, where γij represents the angle between any two 

of the particles.  Here the equilibrium angle corresponds to that of NH3 (γo = 108o), 

and thus the projection of the wave function peaks near 108o for a stiff (i.e., large χ) 

potential and becomes less localized as the potential is softened.  Agreement between 

the DMC and variationally calculated POS wave functions for each value of χ is 

exact within statistical uncertainty limits. 

III. Four Particles-On-A-Sphere(XH4) 

 Building on the above successes for XH2 and XH3, the next test system to 

investigate with the POS model is XH4.  The rotor and bending potential parameters 

(bi = 16.63 cm-1 and γ0 = 109.47o) are specifically chosen to recapitulate the 

equilibrium structure of methane, CH4, with a V(2)(γ) stiffness in the pairwise 

potential chosen to yield the correct CH-bending frequencies. As I will not in general 

be able to converge POS calculations for such a strongly localized intermolecular 

potential, it will be useful to introduce a scaled function, Vscaled(γ) = αV(2)(γ), to 

reflect an angular potential “softer” than methane by a multiplicative factor of α. In 

the stiff limit (α = 1), my POS model of methane should yield a spherical top rotor 

with two ν2 and ν4 bending states corresponding to the E (~1526 cm-1) and F2 (~1306 

cm-1) symmetry vibrations, respectively.  At higher resolution, the 2J + 1 K level 

degeneracy of a rigid spherical top will be lifted by centrifugal interactions in 

rotationally excited states, which will lead to additional rotational fine structure for J 
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> 0.  See Table 3.1 for a list of the coefficients used in the Legendre expansion for the 

CH4 potential. 

 I begin the POS investigation of XH4 by exploring the rate of convergence as 

a function of basis set size. In Figure 3.3, the vibrationless state energies for J = 0 - 4 

are shown as a function of jmax, based on a scaled methane potential with a stiffness of 

α = 0.033.  By way of comparison, the dashed line in Figure 3.3 represents the J = 0 

DMC ground-state energy for the same potential; the inset illustrates agreement of 

eigenenergies within the 1σ error of the DMC calculation. The size of the basis set 

increases extremely rapidly with jmax.  For example, for J = 4, Ncoupled increases from 

16,429 to 39,046 to 80,866 for jmax = 5, 6, and 7, respectively. As a result, jmax = 7 is 

the largest calculation that can be performed for the 4 particle POS model with J = 4 

(for J = 0, jmax can be as large as 9).  This choice of α reflects a bending potential that 

is ~30-fold softer than actual methane, but nevertheless permits systematic 

convergence of POS calculations for a series of rotationally excited states within 

computational limits of time and resources. The plots in Figure 3.3 demonstrate that 

as jmax is increased up to the maximum value, the variational POS energies decrease 

monotonically to an asymptotically converged value. If I empirically characterize 

convergence by the incremental decrease in POS eigenenergies for an incremental 

jmax- 1  to jmax increase in basis set size, then jmax = 7 corresponds to a 0.001 cm-1 

convergence for the lowest rotational state J = 0, with only slightly reduced (0.01 cm-

1) levels of convergence for excited rotational states J = 1 - 4.  At an even finer level 

of detail, the jmax = 7 energies clearly demonstrate converged spherical top rotational 
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fine structure, with centrifugal distortion lifting the nominally degenerate 2J + 1 K 

energy levels for each J.  

  The progression of the v = 0 energies as a function of α is shown in Figure 

3.4a, as the CH4-like potential is increased from α = 0.0001 (i.e., nearly a free rotor 

limit) up to the stiffest calculations (α = 0.033) that can be currently converged. In the 

α = 0.0001 limit, the 4 individual C-H rotors rotate more or less independently, 

resulting in energy-level spacings characteristic of a large single C-H rotor constant.  

As the potential is stiffened, these states converge onto what approximates a ~J(J + 1) 

spherical top progression of energies, with the fine structure splittings in Figure 3.4a 

(shown in detail in Figure 3.4b) due to centrifugal bend-rotation coupling. 

Noteworthy is that while the effective B for α = 0.033 is only 20% above the true 

value, the fine structure splittings are ∼500 times larger, albeit in the correct 

symmetry order with even qualitatively correct splitting ratios. This implies that even 

for a 30-fold scaled-down internal anisotropy, the end-over-end tumbling structure of 

the 4 particle system is already well defined, with the fine structure effects requiring 

much larger basis sets (as well as the inclusion of radial degrees of freedom) to 

converge. 

 In addition to comparison of POS vs. experimental rotational energies in the 

ground vibrational state, I can also inspect the low frequency vibrational states of 

methane (ν2,E and ν4,F2) in the rotationless J = 0 level (see Figure 3.5). Since it was 

possible to use a larger jmax for J = 0 calculations, the energies have been converged 

with a 10-fold stiffer α = 0.33 than for J > 0, but still somewhat short of the full 

methane potential. As the potential approaches the full methane stiffness, the energy 
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of the ν2,E and ν 4,F2 vibrations increase monotonically towards experimental 

values,63 with the order of the ν2,E and ν 4,F2 vibrations maintained even for 

substantially floppier potentials.  Similar qualitative agreement is noted with two 

quanta of bending energy, as shown in Figure 3.5 for 2 ν 2,A1 + E, ν 2 + ν 4,F1 + F2, 

and 2 ν 4,A1 + E + F2.  Analogous to the calculations presented earlier, the ordering of 

the dyads is correctly predicted, with the vibrational fine structure splittings 

decreasing as the potential stiffens .  Although 4 particle POS calculations cannot be 

fully converged up to α = 1, it is important to note that many of the qualitative 

patterns are already quite visible and correctly predicted at potentials substantially 

softer than the full potential. 

IV. Five Particles-On-A-Sphere (XH5) 

The overall target of the POS model is to expand to 5 particles on a sphere, 

which I hope will provide initial insight into the challenging fluxional CH5
+ problem. 

I model the individual C-H rotor with b = 12.81cm-1, i.e., consistent with expectation 

values of the C-H bond length from full 15D DMC calculations.34,64  As discussed 

earlier in this paper, my choice of i) a pairwise additive potential with ii) each term 

expressed as a sum of Legendre functions makes matrix element calculation of the 

potential operator analytic.  To take advantage of this, the full 15D MP2/cc-pVTZ 

Bowman CH5
+ potential34 needs to be expressed in this sum of pairwise potentials.  

To accomplish this, the radial coordinates of the 15D potential are first adiabatically 

relaxed in the “fast” CH stretch coordinate to create a 10D potential that depends only 

on the relative angular coordinates.  The critical point geometries are shown in Figure 
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3.6. The minimum energy structure of CH5
+ on the Bowman potential is of Cs 

symmetry, consisting of what looks like an H2 perched on top of a CH3
+ structure.  

However, at the wave function level, there is rapid quantum exchange between “H2” 

or “CH3” moieties, resulting in complete delocalization of each of the H atoms 

between the 120 equivalent geometries separated by low barriers.  For example, the 

H2 (or CH3
+) moiety can “rotate” through a Cs transition state (E = 43 cm-1) or “flip” 

H’s between H2 and CH3
+ through a slightly higher C2v transition state (E = 192 cm-

1). Most importantly, this process ensures that angular geometries and energies of all 

critical points for the full 15D and reduced 10D potential are identical. 

The second step is to represent the 10D potential by a sum of pairwise 

potentials, which is achieved by least-squares fitting 10,000 randomly selected points 

with energies below 1,000 cm-1.  The energies and angular geometries of these points 

are then fit to a sum of pairwise terms, with each term described by a sum of 

Legendre functions (See Table 3.1 for a list of the coefficients used in the Legendre 

expansion for the CH5
+ potential).  Of crucial relevance is the reproduction quality for 

critical points and the “flip” and “torsion” reaction paths between C2v and Cs minima. 

The critical points of the angular coordinates are shown in Figure 3.6  for i) the 10D 

radially relaxed version of the full 15D Bowman potential and for ii) the pairwise fit 

potential. Given the enormously simplifying nature of the pairwise additive 

approximation, the agreement between 10D and pairwise critical points is quite 

remarkable. Similar accuracy is also demonstrated in Figure 3.7 for both the 10-D 

potential and the pairwise fit along the Cs (internal rotation) and C2v (“H2 flip”) 
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reaction paths. Again, the differences between the 10D potential and the pairwise fit 

are surprisingly small.  

The availability of DMC methods provides one more opportunity to test the 

validity of the pairwise approximation for both the 10D radially relaxed as well as the 

full 15D potentials. Specifically,  DMC is able to calculate the ground state wave 

function at all three levels of dimensionality (POS, 10D and 15D), each of which can 

then be projected on to the γ coordinate (where γ is the angle between any two 

particles) for more quantitative comparison. The results from such a comparison are 

summarized in Figure 3.8, which reveals quite good agreement at the wave function 

level. (Note that the 10D and 15D histograms are offset from 0 for better visual 

clarity with respect to the pairwise potential histogram.) The main peak in each of the 

wave functions near 110o corresponds to unresolved features due to  i) the H-C-H 

angles in the CH3
+ motif, as well as ii) the angle between one of the H2 hydrogens and 

a CH3
+ hydrogen.  The smaller wavefunction shoulder near 60o corresponds to 

contributions from iii) the smaller H-C-H central angle between the H2 hydrogens.  

Treatment at the POS, 10D and 15D levels yield reduced interatomic distributions 

that are nearly identical, and indeed indistinguishable within statistical uncertainty for 

the pairwise fit and full 10D potential versions of the DMC wave functions. Though 

clearly not exact, this suggests that the use of a pairwise potential still captures the H-

C-H angular correlations at a high level and, at the very least, is not the significant 

source of error in the reported calculations. 

 In analogy to the strategy for the n = 4 particle problem, I first look at the 

ground state (J = 0) zero-point energy for n = 5 particle POS calculations as the 
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potential (asymptotically the pairwise 10D fit of the full 15D Bowman CH5
+ 

potential) is stiffened from α = 0.0001 up to α = 1.0.  Figure 3.9 illustrates the 

variationally calculated zero-point energy (solid line) from the POS model, with 

converged DMC energies and uncertainties for the 10D pairwise (solid  circles) and 

nonpairwise 10D potentials (open squares). (The 15D zero-point energy can also be 

readily calculated from DMC, but is irrelevant for the present comparison due to an 

additional ∼7000 cm-1 in the radial stretch coordinates).  The agreement between POS 

eigenvalue predictions for the pairwise and exact 10D results is excellent at low α, 

confirming the utility of the pairwise approximation to the CH5
+ potential.  Of more 

quantitative relevance, however, this comparison illustrates the degree of 

convergence (or lack thereof) of the POS calculations at a spectroscopic level as a 

function of potential stiffness. Up to α = 0.01,  the ground-state energies appear to be 

quite converged to < 1 cm-1, with this quality of convergence degrading substantially 

as α approaches unity. 

 More specifically, I can monitor the convergence for a particular value of α 

(0.01) with respect to basis set size (i.e., jmax).  In Figure 3.10, the ground state 

energies for each of the 6 nonzero nuclear spin weight symmetries50 for CH5
+ are 

plotted as a function of jmax.  Note that the totally symmetric ground state (A1
+), 

which is the only energy that can be rigorously compared with DMC results (J = 0), is 

not represented, has zero statistical weight in CH5
+, and is not shown.  Also included 

along the ordinate axis is the size of the basis set for each jmax for J = 0, 1, and 2.  

Note the rapidly growing size of Nprim as jmax increases, which is why jmax = 5 is the 

largest basis set that can be implemented at the current time for a J = 0 calculation, 
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with jmax = 4 and  jmax = 3 for J = 1 and 2, respectively. As mentioned previously, this 

constraint is due to the maximum size coupled basis set that can currently be 

symmetrized on a single processor with non-parallelized code. 

V. Discussion 

The difficult theoretical issues posed by CH5
+ have been addressed by 

numerous ab initio potential surface investigations over the years; however, efforts to 

predict detailed rovibrational energy levels for a given potential surface have proven 

even more challenging. Landmark work by Bunker and co-workers,50 using a 

rotation-contortion Hamiltonian,49 has been used to predict the J = 0  1 microwave 

spectrum of CH5
+, exploiting symmetry correlations between the two extremes 

associated with a rigid Cs and C2v potential minima.  In this work, considerable effort 

was made to calculate energies for states of nonzero statistical weight at a number of 

different flip and torsion rearrangement barriers, based on a Hamiltonian which 

adiabatically separates one large amplitude internal contortional mode from the 

remaining 11 “fast” vibrational modes.  The Hamiltonian is a sum Hrot (end-over-end 

tumbling of the molecule), Hτ (motion along the contortion degree of freedom), and 

Hrot,τ (coupling between tumbling and contortion), with all coupling neglected 

between the “fast” vibrations and overall rotation.  As an alternative formulation, the 

POS model neglects the contributions from only the 5 “fastest” CH-stretching 

vibrations but does include the 7 low-energy bending vibrations and allows full 

coupling of these vibrations to end-over-end tumbling of the CH5
+ molecule.  The 

corresponding disadvantage of the POS model, however, is the significant additional 

challenge to achieve convergence for realistically stiff versions of the potentials. This 
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motivates a brief discussion of the POS predictions with the rotation-contortion 

results, with an eye toward establishing additional insights into the dynamical trends 

anticipated for CH5
+.   

 The 53.9 cm-1 torsional and 213.9 cm-1 flip barriers from least squares 

pairwise fits to the full 15D Bowman surface (i.e., α  = 1) most closely approximate 

the reduced dimensional rotation-contortion model barriers of 50 cm-1 and 200 cm-1, 

respectively. I am currently unable to converge CH5
+ calculations for α = 1 and 

therefore compare results as a function of increasing potential stiffness. In this spirit, 

converged POS eigenenergies for the lowest 10 J = 0 states of nonzero nuclear spin 

statistical weight are presented in Figure 3.11 for the progression of α = 0.0001, α = 

0.001, and α = 0.01. The corresponding J = 0 energy levels obtained from the full 

rotation-contortion model for the same series of nuclear-spin symmetry states are also 

shown in Figure 3.11. In each column, the lowest energy state is defined to be zero; 

thus the relative energies are presented as a function of model and potential stiffness.  

At the simplest level, the essentially unhindered free-rotor energy patterns 

observed at low α evolve to more complex internal rotor splittings with increasing 

potential stiffness. A general monotonically increasing trend in rotor energy spacings 

with stiffness is clear, with an energy ordering pattern that is largely (but not entirely) 

maintained with respect to α. The final extrapolation from α = .01 to the rotation-

contortion model represents a large change in both the potential and level of 

dynamical approximation, though much of the energy ordering is maintained as the 

energy separations increase.  However, arguably the most striking aspect is that the 

converged energy level differences for stiffest (α = 0.01) POS calculations, though 
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still far from the full potential (α = 1), have already achieved magnitudes 

qualitatively comparable (i.e., within 2- to 3-fold) with respect to the rotation-

contortion model predictions. We find this result particularly surprising. However, 

such behavior is likely to be more consistent with more free internal rotor state 

behavior rather than localized vibrational or librational motion, for which the 

spacings would presumably continue to scale with the square root of the potential 

stiffness, α1/2.  

 Since the convergence of the CH5
+ and CH4 calculations is limited by the size 

of the basis set into which the POS Hamiltonian is expanded, the size of the basis set 

is limited by the amount of time needed to create the orthonormal SALCs from the 

coupled basis sets.  Creating the SALC from standard methods54,55 requires creating 

linear combinations of all of the permutations of identical particles in the basis set.  

For the 4 and 5 particle problems, the length of the linear combinations of these 

SALCs, MSALC, can be on the order of 1,000 coupled basis functions.  For a given 

symmetry, each of these SALCs must be orthogonalized with respect to each other.  

As an example, in Table 3.2 the actual time required to create a J = 0 SALC for XH5 

is given as a function of jmax.  The jmax 6 and 7 values are estimated from the time 

required for jmax = 1 - 5.  This reinforces the previous assertion that the time required 

to create the symmetrized basis sets, rather than creation or diagonalization of the 

resulting Hamiltonian matrix, is currently the rate-limiting factor for achieving 

converged calculations at higher stiffness parameters.  We are currently pursuing 

several methods to increase the efficiency of this process with parallelization of the 

code. 
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 As a final note, however, we can roughly estimate the size of jmax which will 

be necessary to achieve convergence for CH5
+ in the POS model.  In Figure 3.12, the 

RBDMC wave function is projected onto the γ coordinate for α = 0.001, 0.01, 0.1, 

and 1.  As would be expected, the α = 0.001 wave function looks almost identical to 

the sin(γ) Jacobian that would be expected for independent particles.  As α is 

increased to 1, more structure in the wave function appears, which requires sufficient 

angular flexibility in the multidimensional wave function. Therefore, a crude measure 

of the jmax value required to converge the α = 1 POS calculation is to expand the 

corresponding 1D DMC pair correlation function in the H-C-H angle γ as a sum of 

Legendre functions Pl(γ) and to probe the degree of convergence with respect to l. 

The physical notion is that angular flexibility in a sum of Legendre functions with l 

≤ jmax mirrors the angular flexibility for a sum of SALCs obtained for the same jmax.  

The assumption is that the SALCs are simply sums of spherical harmonics which are 

the 2D analog to 1D Legendre polynomials; thus with an expansion of the same size, 

the flexibility of the two functions should be similar.  Figure 3.13 displays the 1D 

DMC wavefunction along with several expansions in Legendre polynomials, 

indicating a rapid visual convergence with increasing jmax.  More quantitatively, if the 

expectation value of the energy for a 1D rotor in the α = 1 pairwise potential is 

calculated using the wave functions expanded in Legendre polynomials of increasing 

order (jmax), the convergence of this energy as a function of jmax should mirror the 

number of Legendre functions required to accurately represent the 1D wave function 

(see Table 3.6).   To converge the energy to about 1% requires jmax ≈ 9, which with 

current basis set creation algorithms would take about 10 CPU-years to create.  
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However, once a basis is created, the POS method should do exceptionally well 

reproducing the correct dynamics.  The validity of this simple model can be tested 

with a converged POS wave function of lower dimensionality.  For example, the POS 

model for NH3 is converged to better than 0.01 cm-1 for a jmax = 15; by expanding this 

converged n = 3 1D pair correlation function in a sum of Legendre polynomials up to 

l = 15 and calculating the expectation value of the energy, we can compare the rate of 

convergence of the energy with respect to jmax.  Table 3.7 shows the error in the 

energy of converged POS calculation as a function of jmax compared to the error 

expectation value of the energy of the 1D expansion of the pair correlation function;  

both energies converge at about the same rate, implying that the 1D expansion gives a 

good first order estimate of the size of basis set needed to converge a full POS 

calculation. 

VI. Summary and Conclusion 

 In this paper, a simple, yet surprisingly powerful method for the approximate 

quantum treatment of large-amplitude motion in systems with many degrees of 

freedom has been tested with large molecules.  The POS method takes advantage of 

the approximate independence of the XH bond length on the angular coordinates to 

motivate a reduced dimensionality Hamiltonian treatment of the motion of n 

hydrogens constrained to the surface of a sphere.  For n = 2 and 3, the problem is 

quite tractable and solutions of very stiff systems are easily converged, although not 

as efficiently as a method designed for rigid molecules.  For the harder n = 4 and 5, 

the problem space grows so quickly that converged results are obtainable only for 

very floppy systems.  However, the important energy level patterns discovered in the 
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floppy system have been shown to correlate well to the stiff systems and give insight 

to the dynamics of these complicated systems.  The aim of the POS method is to 

provide a new tool to gain insight into the quantum dynamics of systems that display 

large amplitude motion.  This reduced dimension method is necessary for systems 

such as the highly fluxional CH5
+ where the full dimension quantum calculations are 

not possible.   
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Tables 

Table 3.1. The Legendre coefficients for the α = 1 CH4 and CH5
+ potentials 

l CH4 al (cm-1) CH5
+ al (cm-1) 

0 3892.709 4190.442
1 4999.699 3060.609
2 6942.057 14790.49
3 0 1821.198
4 1561.963 9008.753
5 0 2796.952
6 705.0527 5626.363
7 0 1216.296
8 403.3715 2174.996
9 0 238.9801

10 261.5983 381.5193
11 0  
12 183.5192  
13 0  
14 135.9025  
15 0  
16 104.7094  
17 0  
18 83.15934  
19 0  
20 67.64614  
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Table 3.2. Time required to create an orthonormal basis set of one irreducible 

representation in the G240 molecular symmetry group. 

jmax Time 
1 50 s 
2 100 m 
3 20 hr 
4 3 d 
5 30 d 
6* 110 d 
7* 1 yr 

 

*Predicted time based on scaling observed in previous calculations. 
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Table 3.3. First five J = 0 energy levels of each nonzero statistical weighted symmetry 

for n = 5.  Energies are given in cm-1, with the estimated error given in parentheses. 

  α 0.001 0.01 0.1 1 
Γ           
   246.86 (0.02) 479.0 (1.7) 1713 (195) 10752 (3074) 
   322.08 (0.01) 545.0 (1.7) 1836 (160) 12125 (3959) 

A2
+  375.57 (0.11) 609.6 (7.2) 1906 (307) 13120 (3636) 

   406.43 (0.20) 622.0 (7.7) 2011 (300) 13789 (3665) 
    425.34 (0.00) 630.1 (1.9) 2113 (341) 14343 (4237) 
   298.44 (0.01) 522.5 (3.0) 1673 (201) 10602 (2997) 
   325.38 (0.21) 551.7 (12.0) 1836 (328) 12916 (4125) 

A2
-  406.30 (0.16) 632.5 (8.5) 2039 (330) 13676 (4974) 

   425.88 (0.11) 645.5 (9.8) 2070 (355) 14415 (4500) 
    458.43 (0.37) 698.0 (15.1) 2207 (348) 14963 (5199) 
   250.83 (0.03) 472.5 (1.9) 1493 (198) 9475 (2988) 
   255.60 (0.02) 498.5 (3.3) 1669 (312) 10203 (4937) 

G2
+  306.40 (0.18) 546.8 (7.6) 1777 (257) 11363 (3947) 

   322.84 (0.02) 568.1 (3.8) 1793 (266) 11957 (3638) 
    329.75 (0.02) 583.1 (10.2) 1837 (270) 12049 (3963) 
   108.95 (0.04) 304.2 (3.1) 1189 (200) 7695 (2827) 
   192.39 (0.05) 399.0 (2.9) 1355 (194) 8547 (2962) 

G2
-  216.28 (0.01) 425.4 (3.1) 1605 (247) 10392 (3839) 

   277.00 (0.04) 506.8 (2.6) 1631 (256) 10699 (3950) 
    280.09 (0.04) 527.7 (4.8) 1783 (270) 11417 (3899) 
   144.94 (0.08) 379.7 (5.7) 1297 (154) 8420 (2015) 
   173.88 (0.04) 410.1 (3.1) 1479 (180) 8686 (3034) 

H2
+  217.60 (0.06) 464.4 (5.2) 1579 (332) 9909 (4362) 

   245.34 (0.03) 474.5 (2.6) 1682 (252) 11050 (3639) 
    253.30 (0.04) 496.5 (4.0) 1749 (228) 11391 (3880) 
   191.93 (0.05) 384.1 (1.8) 1273 (133) 8234 (2177) 
   198.73 (0.05) 422.3 (3.4) 1408 (265) 8564 (3655) 

H2
-  214.81 (0.02) 458.1 (5.2) 1623 (283) 9937 (4450) 

   276.26 (0.05) 507.9 (1.4) 1712 (254) 11039 (3623) 
    279.29 (0.04) 509.5 (5.4) 1730 (307) 11471 (3856) 
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Table 3.4. First five J = 1 energy levels of each nonzero statistical weighted symmetry 

for n = 5.  Energies are given in cm-1, with the estimated error given in parentheses. 

  α 0.001 0.01 0.1 1 
Γ           

   240.19 (0.29) 430.4 (18.1) 1579 (511) 11703 (6311) 
   327.76 (0.60) 553.6 (22.4) 1931 (445) 14787 (5301) 
A2

+  349.42 (0.06) 572.6 (10.8) 2138 (447) 16197 (5755) 
   373.88 (0.24) 590.6 (15.3) 2170 (487) 16667 (6033) 
    375.02 (0.33) 600.9 (27.6) 2284 (491) 17719 (6483) 
   269.56 (0.25) 472.4 (15.4) 1679 (371) 12379 (4635) 
   292.05 (0.28) 486.0 (16.0) 1966 (299) 15134 (3903) 
A2

-  323.56 (0.18) 548.9 (17.2) 2004 (375) 15332 (4738) 
   327.48 (0.13) 569.6 (9.9) 2077 (569) 15715 (6675) 
    374.95 (0.34) 597.6 (26.1) 2161 (509) 16574 (6083) 
   135.60 (0.03) 331.7 (4.2) 1417 (289) 10280 (4230) 
   163.77 (0.25) 373.3 (15.7) 1456 (388) 11225 (4249) 
G2

+  220.12 (0.22) 427.5 (14.4) 1584 (508) 11699 (6016) 
   240.29 (0.21) 442.6 (15.4) 1691 (417) 12515 (5395) 
    241.92 (0.31) 448.6 (14.7) 1746 (485) 12873 (5780) 
   189.27 (0.17) 392.2 (10.7) 1441 (358) 10441 (4471) 
   197.61 (0.25) 432.8 (17.3) 1588 (433) 11709 (5004) 
G2

-  221.84 (0.41) 440.2 (16.2) 1716 (372) 12319 (5300) 
   269.87 (0.29) 479.9 (15.3) 1730 (484) 12723 (5926) 
    271.25 (0.28) 482.4 (15.1) 1913 (369) 14012 (5019) 
   138.65 (0.05) 347.4 (9.4) 1419 (346) 10574 (3859) 
   163.11 (0.26) 374.1 (11.5) 1482 (357) 10824 (4942) 
H2

+  171.42 (0.31) 403.0 (16.7) 1581 (456) 11644 (5437) 
   218.70 (0.18) 442.6 (10.9) 1641 (451) 11902 (5899) 
    221.80 (0.22) 447.4 (11.5) 1683 (503) 12318 (6064) 
   116.78 (0.05) 335.6 (5.2) 1453 (226) 10587 (3398) 
   162.66 (0.01) 382.5 (3.4) 1493 (321) 11154 (3898) 
H2

-  190.46 (0.20) 402.8 (11.2) 1589 (456) 11684 (4898) 
   196.12 (0.29) 428.8 (22.4) 1666 (423) 12037 (5743) 
    200.71 (0.27) 442.3 (14.5) 1714 (491) 12817 (6154) 
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Table 3.5. First five J = 2 energy levels of each nonzero statistical weighted symmetry 

for n = 5.  Energies are given in cm-1, with the estimated error given in parentheses.  

  α 0.001 0.01 0.1 1 
Γ           

   238.13 (0.24) 435.4 (19.2) 1900 (362) 15832 (3983) 
   244.33 (0.33) 484.7 (26.8) 2203 (442) 18616 (5716) 
A2

+  322.43 (0.39) 517.3 (6.7) 2295 (729) 19598 (8367) 
   327.85 (0.48) 547.7 (45.2) 2389 (1100) 20110 (12502) 
    340.42 (0.13) 560.8 (78.7) 2452 (1327) 20806 (14431) 
   185.17 (0.46) 378.8 (32.5) 1869 (537) 16106 (5628) 
   289.83 (0.14) 481.4 (10.9) 2105 (637) 17819 (8012) 
A2

-  296.19 (0.20) 521.2 (37.7) 2312 (871) 19908 (9529) 
   320.42 (58.92) 540.4 (131.0) 2480 (1147) 21549 (11662) 
    322.52  561.8  2593  22287 
   167.36 (0.45) 388.6 (21.1) 1835 (576) 15057 (7170) 
   214.69 (0.59) 432.2 (35.0) 1912 (882) 16113 (9158) 
G2

+  239.70 (0.38) 451.4 (27.8) 2039 (833) 16907 (9736) 
   244.57 (0.58) 474.7 (40.0) 2078 (896) 17175 (10362) 
    245.48 (0.65) 489.1 (40.1) 2159 (835) 18068 (9713) 
   187.94 (0.62) 390.0 (35.1) 1840 (448) 14873 (5662) 
   190.88 (0.65) 411.6 (36.5) 1855 (695) 15635 (7528) 
G2

-  192.94 (0.98) 423.7 (37.8) 1929 (747) 16458 (8076) 
   196.67 (0.93) 441.1 (29.5) 2121 (699) 17916 (8268) 
    216.75 (0.30) 452.6 (26.1) 2169 (813) 18322 (9620) 
   139.78 (1.07) 355.1 (43.9) 1760 (667) 14741 (7174) 
   166.38 (0.60) 397.9 (39.5) 1851 (742) 15580 (8266) 
H2

+  169.84 (0.62) 406.6 (37.7) 1877 (822) 15685 (9396) 
   175.52 (0.81) 441.9 (33.5) 2093 (793) 17325 (9406) 
    217.08 (0.89) 443.1 (50.1) 2149 (792) 18050 (9285) 
   113.59 (1.01) 334.3 (46.3) 1816 (512) 14786 (6297) 
   190.62 (0.66) 404.2 (26.6) 1838 (755) 15940 (8209) 
H2

-  191.94 (0.73) 425.1 (35.7) 1923 (782) 16289 (8588) 
   196.95 (1.03) 435.7 (36.2) 2055 (923) 17238 (10168) 
    198.97 (1.11) 441.8 (45.9) 2121 (877) 17855 (10423) 
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Table 3.6.  The expectation value of the energy of a 1D rotor in the CH5
+ α = 1 

pairwise potential.   

jmax <E> (cm-1) Error 
1 13104.0 371.8%
2 11278.2 306.0%
3 4638.3 67.0%
4 3644.0 31.2%
5 4543.5 63.6%
6 3322.0 19.6%
7 3019.0 8.7%
8 3097.7 11.5%
9 2820.5 1.5%
10 2783.7 0.2%

RBDMC 2777.7   
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Table 3.7.  The error in ground state energies of the POS model and the 1D Legendre 

expansion of the pair correlation function for the converged n = 3 NH3 calculation.  

jmax POS Model 1D expansion 
2 330% 367%
4 110% 133%
6 41.2% 28.0%
8 13.7% 3.17%
10 3.53% 0.469%
12 0.589% 0.0842%
14 0.00148% 0.00348%
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Figures 

 

Figure 3.1.  Particle-on-a-sphere rotation-bending energies for a) n = 2 (XH2) and b) n 

= 3 (XH3) model systems as a function of basis set size (jmax). a)  In XH2, the 

asymmetric top rotational patterns for J = 0,1 corresponding to JKaKc = 000, 101, 111, 110 

are clearly evident, with the J = 0 energy rapidly converging to the expected DMC 

limit (dotted line).  b) Converged J = 0 energy levels for XH3 reveal inversion 

tunneling splittings in good agreement with NH3 (after which the potential was 

modeled) and increasing rapidly with symmetric bend excitation. Note the only 

exception to this pattern (near 5000 cm-1) arising from an interloper vibrational state 

due to degenerate asymmetric bend excitation, which exhibits a tunneling splitting 

very similar to the ground state (0.798 cm-1). 
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Figure 3.2.  Angular pair correlation functions for a) XH2 and b) XH3 as a function of 

potential stiffness χ = k/b, where k is the angular well depth and b the rotational 

constant for a single X-H rotor. For comparison, the shaded function is calculated 

from DMC, whereas the dots reflect the fully converged J = 0 POS calculation. 
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Figure 3.3.  Convergence of J = 0, 1, 2, 3, 4 energies for XH4 as a function of jmax.  

The POS ground state (J = 0) energy is compared against DMC predictions (dotted 

line). 

 



109 

 

Figure 3.4.  a) XH4 rotational energies of J = 0-4 as a function of potential stiffness 

scale factor α.   b) At higher resolution, centrifugal induced splittings of the 

nominally degenerate symmetric top levels for XH4 are shown for α = 0.033, which 

are considerably larger but reveal the same qualitative patterns as experimentally 

observed. 
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Figure 3.5.  Vibrational energies of XH4 as a function of the potential stiffness scale 

factor α. 
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Figure 3.6.  Minimum energy paths for CH5
+ through the Cs and C2v transition states, 

separating the Cs minimum for both the 10D relaxed potential and the pairwise fit. 
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Figure 3.7.  Geometry comparison of CH5
+ critical points. Note the surprisingly 

quantitative agreement between the full 10D relaxed potential and the pairwise 

additive fit used in the POS model. 
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Figure 3.8.  Pair correlation functions for J = 0, XH5 from DMC calculations for a 

series of potential models: a) 15D full CH5
+ potential, b) the 10D relaxed potential, 

and c) the pairwise additive least squares fit. Note the excellent agreement at the 

wave function level. 
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Figure 3.9.  Ground-state energies of CH5
+ as a function of the potential stiffness 

parameter (α), calculated by DMC and POS with both the 10D (DMC, open squares) 

and pairwise (POS, dashed line) potentials.  The inset shows the difference between 

the POS and DMC (pairwise) calculations (i.e., the level of convergence) as a 

function of α. 
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Figure 3.10. Nonzero statistical symmetries for J = 0, 1, and 2 of XH5 (with a = .033) 

as a function of basis set size, jmax and Ncoupled (the number of coupled basis functions 

in the basis set). Note the slow but steady convergence of J = 0 energies to the 

RBDMC limit with the size of Ncoupled. 
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Figure 3.11.  The lowest J = 0 internal rotor energies (with respect to the ground state 

energy, G2
- Symmetry) of the POS model compared with the RTRF-like model of 

Bunker and coworkers.  Interestingly, the splittings for the two model treatments are 

roughly the same order of magnitude, despite the stiffness of the potentials varying by 

a large factor. 
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Figure 3.12.  DMC pair correlation function of CH5
+ as a function of potential 

stiffness scale (α). 
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Figure 3.13.  Successive fits of the α = 1 pair correlation function of CH5
+ to a sum of 

Legendre functions. Such behavior suggests a much improved level of convergence 

for the POS model of CH5
+ by jmax = 7-9.  
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Chapter 4:  Dynamically Weighted MCSCF:  Multistate 

Calculations for F + H2O → HF + OH Reaction Paths 

I. Introduction 

 Chemical reactions represent a complex network of elementary reaction steps, 

each of which typically proceeds via highly reactive, open shell radical species. 

Accurate characterization of these elementary chemical reactions from first principles 

has been a long standing focus for both quantum chemists and dynamicists. This 

represents a significant challenge on several fronts. As a necessary first step in this 

process, one must calculate accurate adiabatic (i.e., Born-Oppenheimer) potential 

energy surfaces as a function of fixed nuclear configurations. There are now many 

examples of high-level ab initio potentials for simple atom + diatom chemical 

reaction systems1, though this rapidly becomes a daunting task in higher (i.e.,3N - 6) 

dimensionality. Once an adiabatic potential has been obtained, the next challenge is to 

perform exact quantum state-to-state dynamics calculations on such a surface. This is 

an area in which there have been significant advances in the last decade, and it is now 

more or less straightforward to obtain these calculations for triatomic systems 

reacting on a single electronic surface. However, extension of these exact quantum 

scattering methods to polyatomic reaction systems (N > 3) represents the current 

state-of-the art for chemical dynamics and has thus far only been heroically achieved 

for special 4 atom systems such as OH + H2 system with only one “heavy” (i.e., non-

hydrogenic) atom2 3. 
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Unfortunately, state-to-state chemical reaction dynamics may not be so simply 

described by quantum wave packet propagation on a single electronic potential 

energy surface. As a result, quantum reactive scattering even for “simple” A + BC 

triatomic systems can become substantially more complicated by the presence of non-

adiabatic interactions between various Born-Oppenheimer surfaces. Indeed, there is a 

growing body of experimental and theoretical evidence (with particular focus on 

prototypical F + H2
4,5 and Cl + H2

6 atom abstraction systems) that non-adiabatic 

effects can play a finite role in the reactive scattering dynamics. The presence of non-

adiabatic interactions even in these relatively simple atom + diatom systems raises 

obvious questions about the role of such nonadiabatic effects in atom + polyatom 

systems. This highlights the crucial importance of high-level ab initio methods for 

calculating reaction paths and potential energy surfaces for multiple electronically 

excited states, which is of particular relevance to the present work. 

A recent thrust in our group has been the use of high resolution UV lasers in 

crossed supersonic jets to study quantum state-resolved reaction dynamics for 

benchmark prototypic 4 atom reactions. The focus of particular interest has been the 

atom + triatom system F(2P) + H2O → HF + OH (2Π). There are many aspects of this 

reaction that make it particularly appropriate for combined experimental and 

theoretical study. First of all, it is strongly exothermic (ΔE ≈17.6 kcal/mol7) and 

proceeds rapidly at thermal collision energies over a relatively low barrier (∼5 

kcal/mol), which makes it experimentally convenient for study under crossed 

molecular beam conditions. Second, the products HF and OH can each be detected 

with full quantum state resolution, exploiting either LIF 8, or high resolution IR5,9, 
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techniques available that are in the group. Thirdly, from a theoretical perspective, the 

number of electrons (19) is small enough for obtaining accurate reaction paths, 

potential energy surfaces, and nonadiabatic coupling matrix elements via high-level, 

multireference ab initio methods. Most importantly, such a “heavy + light-heavy-

light” system offers the next level of challenge to quantum reactive scattering 

methods, as well as eventually providing the experimental data with which to 

facilitate detailed comparison with theory.  

In the context of non-adiabatic reaction dynamics, the F(2P) + H2O system 

represents an additional challenge for several reasons. First of all, in the asymptotic 

regions of the potential, there are nearly degenerate surfaces corresponding to F(2P) + 

H2O reagent (3-fold degenerate) and HF + OH(2Π) product (2-fold degenerate) states. 

In principle, such close proximity over long reaction path distances could promote 

significant multiple state mixing in the entrance/exit channels, even for relatively 

modest non-Born-Oppenheimer coupling matrix elements. Alternatively, strong non-

adiabatic coupling could arise in the transition state region due to avoided crossings 

between electronic surfaces. Indeed, the chemical bond rearrangement occurring near 

the transition state reflects a rapid evolution of the wave function along the adiabatic 

reaction path, which as elegantly shown by Butler and coworkers10, can often 

dominate the shape and location of the transition state barrier.  As also shown by 

Allison et. al. 11, close avoided crossings lead to strong non-adiabatic behavior. The 

complex nature of these curve crossings near transition states become especially rich 

in systems with high electron affinity atoms, where the presence of charge transfer 

states can be sufficiently low in energy to be important near the transition state 
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region. This proves to be particularly true for the F + H2O system, where the 

transition state region is dominated by avoided crossings between states correlating 

asymptotically with ionic F- + H2O+ and HF+ + OH- surfaces. As this work will 

illustrate, such strong avoidance of ground and excited state potential surfaces 

generates special demands on calculating reaction paths via high-level, multireference 

ab initio methods.  

In order to investigate the role of non-adiabatic effects on reaction dynamics, 

one must evaluate matrix elements of the nuclear kinetic energy operator, which 

requires derivative calculations for ground and multiply excited electronic state wave 

functions12. Such non-adiabatic matrix elements are calculated from the first and 

second derivatives of the wave function Ψi (Q1, Q2,…) for the ith electronic state, 

where Ql represents motion along a specific intramolecular coordinate (l = 1, 3N - 6). 

The full nuclear kinetic energy matrix elements are then obtained from these 

derivative elements by summing with G matrix analysis13 and then added to the 

traditional Born-Oppenheimer (BO) matrix to yield the full non-adiabatic 

Hamiltonian12.  The key point is that the reliable calculation of these derivative 

coupling matrix elements therefore requires smoothly varying wave functions and 

adiabatic energies for each of these ground/excited states, providing crucially 

important constraints on the fidelity of any high-level multireference calculations. 

The conventional way to calculate high-level multireference SCF energies and 

wave functions for a series of ground and excited states is by a state-averaged 

variational calculation14. In essence, this approach minimizes the weighted average of 

MCSCF energies for each of the states in question,  
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where wi is a constant weight factor for state i. The advantage of such an approach is 

that each of the electronic surfaces is treated equivalently in a variational sense, 

which is obviously relevant to achieving a balanced wave function description in the 

limit of asymptotically degenerate reactant (F + H2O) or product (HF + OH) states.  

This can lead to small but significant shifts in the ground state energies.  When 

variationally optimizing the ground state(s), any included upper state will lead to a 

less correct description of the ground state(s).  

The fundamental complication of such “statically weighted” ab initio methods 

arises when there is a different electronic degeneracy for the product and product 

asymptotes, as in F + H2O →  HF + OH, where the reactants (products) are triply 

(doubly) degenerate in the absence of spin-orbit coupling. In this case, a 3-state 

MCSCF calculation will yield the correct exact 3-fold asymptotic degeneracy of the 

F(2P) reactants, which is broken by inclusion of higher excited states unless all 

degenerate higher states are included with the same weight. Similarly, a 2-state 

MCSCF calculation can correctly capture the asymptotic 2-fold degeneracy of the 

OH(2Π) products, which is again lifted by variationally averaging in higher state 

contributions.  A 3-state calculation will not describe the 2-fold degenerate OH(2Π) 

ground state as well as a 2-state calculation. This situation is further exacerbated in 

the F + H2O transition state region, where rapid avoided crossings of determinants in 

the incomplete MCSCF wave function can result in abrupt discontinuities in both 

energies and wave functions along the reaction path.  
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Simply stated, the challenge of such a state-averaged MCSCF calculation is to 

include a sufficient number of states in the chemically interesting transition region 

and yet correctly capture the smooth evolution of the wave functions to asymptotic 3-

fold (reactant) and 2-fold (product) degeneracy, without introducing discontinuities in 

potential surface. Toward this end, I propose a simple yet surprisingly robust method, 

“dynamically weighted” MCSCF (DW-MCSCF), whereby the state weighting is 

explicitly varied as a continuous, damped function of the relative state energies.  

                      ⎟
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For a broad range of damping functions, this yields excellent results and 

automatically achieves the desired goals of i) smoothly varying energies and wave 

functions along any locally smooth path (e.g. the reaction path) and  ii) correct 

degeneracy behavior out in the asymptotic reagent/product region by including only 

the relevant states in each region.  

The organization of this chapter is as follows. Section II describes details of 

how the ab initio transition state and reaction path calculations are performed, 

specifically focusing on the F + H2O system as a test case. Further details of the 

dynamic weighting algorithm are described in Sec III, with Section IV presenting 

results using dynamic weighting MCSCF along the F + H2O reaction path. 

Concluding comments are summarized in Section V.  

II. Ab Initio Calculations 

All calculations are performed using the MOLPRO suite of ab initio 

programs15.  As my focus is on non-adiabatic dynamics, this requires a very high 



130 

level of theory capable of accurately describing multiple electronic states: 

specifically, I perform complete active space self-consistent field calculations 

(CASSCF)14 using a full valence active space, followed by inclusion of 

multireference configuration interaction (MRCI)16 and Davidson correction 

(MRCI+Q)17. At this level of theory, the choice of basis set is somewhat constrained 

by computational expense, particularly toward eventual calculation of a 4 atom 

potential surface. For reference, a single point CASSCF+MRCI+Q energy calculation 

with Dunning’s aug-cc-pVDZ18 basis takes approximately 3 CPU-hours on an AMD 

Athlon 2.4 GHz. Timing/convergence tests for absolute energies of reagents and 

products, as well as harmonic zero point corrected reaction exothermicities for aug-

cc-pVDZ, aug-cc-pVTZ, aug-cc-pVQZ, aug-cc-pV5Z basis sets are listed in Table 

4.1. This series also permits extrapolation to the complete basis set (CBS) limit19, 

based on a conventional 1/n3 plot with respect to the zeta basis set index. The timing 

studies indicate a 2.6-fold increase in computational expense between aug-cc-pVDZ 

and aug-cc-pVTZ, with steeper incremental penalties (4.2- and 5.2- fold) for each 

additional zeta. However, acceptably good convergence (< 0.1 kcal/mole with respect 

to CBS) is already achieved in predicted zero point corrected exothermicities at the 

aug-cc-pVTZ level, which dictates my choice. 

Since my spin-orbit program cannot handle general contractions, a segmented 

basis set was generated from the correlation-consistent triple-zeta basis set of 

Dunning. For O and F, the exponents were taken from the aug-cc-pVTZ basis18, and 

the first six s and three p-functions were contracted  using the 1s and 2p contraction 

coefficients, respectively. For H, the exponents of the cc-pVTZ basis18 were used and 
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the first three s-functions were contracted.  Furthermore, the f-functions on O,F and 

the d-functions on H were neglected. This resulted in a basis [6s4p3d] for O,F and 

[3s2p] for H (110 contractions).  A number of basis contractions were tested for 

calculational speed and accuracy before the final choice was made.  In Table 4.2 are 

listed a number of different contractions with convergence and timing results.  These 

data indicate the AVTZ[6s3p3d]/VTZ[3s2p] basis demonstrates similar levels of 

convergence (0.34 kcal/mol above CBS) compared with a standard aug-cc-pVTZ 

basis (0.12 kcal/mol above CBS), but with an additional 2.1-fold reduction in time. In 

effect, the contracted aug-cc-pVTZ basis performs comparably for F + H2O to the 

standard aug-cc-pVTZ basis, but at a computational speed only 20% slower than aug-

cc-pVDZ. For perspective, also shown in Table 4.2 are results including spin-orbit 

and zero-point energy corrections, which indicate residual discrepancies of 0.7 

kcal/mol (4%) between the CBS limit and experimental determined exothermicities. 

This discrepancy reflects correlation still not taken into account, and is consistent 

with the residual 0.43 kcal/mol  errors in exothermicity for the exhaustively studied F 

+ H2 potential surface of Stark and Werner20.  

As a longer range goal, I am interested in high-level multistate ab initio 

calculations for the full F + H2O PES, based on sampling approaches and Shephard 

interpolation methods outlined by Collins et al21.  The thrust of the current work, 

however, is to illustrate the advantages of dynamically weighted MCSCF, which can 

be adequately elucidated with calculations restricted along the reaction path. I start, 

therefore, by obtaining the F + H2O transition state on the lowest electronic surface 

by CASSCF geometry optimization programs in MOLPRO22.  The crux of non-
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adiabatic interactions for the F + H2O system arise from rapidly avoided crossings 

between excited charge transfer states in the transition state region. To take these 

states into account in zeroth order, I search for this lowest saddle point in a traditional 

(i.e., non dynamically weighted) 5-state SA-MCSCF calculation; Figure 4.1 shows 

the geometry of the transition state. Note that the transition state is significantly non-

planar (by nearly 60 degrees), and therefore no symmetry element is conserved 

throughout the reaction coordinate. This most likely reflects additional 

hyperconjugative interaction between the radical p hole on F and the sp3 lone pairs on 

the H2O subunit, which is further supported by the strongly non-collinear (140 

degree) F-H-O bond angle. For comparison, I have also converged the F + H2O 

transition state geometry at MRCI+Q level, which yields similar parameters listed in 

Table 4.3. 

From this transition state, a conventional reaction path is mapped in both 

product and reagent directions by following the path of steepest decent for the lowest 

state at the 5-state SA-MCSCF level23. When the gradient in the asymptotic region 

becomes too small to follow, the reaction path is defined by simply extending the F – 

H2O or HF – OH bonds toward the reactants or products.  Figure 4.2 shows the 

evolution of the nascently formed and broken bonds along this minimum energy path, 

in bond breaking (
1OHR ) and making (

1FHR ) coordinates; this curve will be defined as 

the reaction coordinate for the rest of the paper. It is worth noting that, due to lack of 

analytic derivatives in the MOLPRO based MRCI code, the reaction coordinate has 

been obtained only at the CASSCF level, which I next tackle with higher (MRCI+Q) 

levels of theory. This will lead to additional errors (overestimation by about 0.9 
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kcal/mol) in the predicted barrier height. However, for the present purposes, the 

CASSCF reaction path provides an excellent first approximation, which can later be 

compared with results from a more extensive MRCI+Q mapping of the transition 

state region.  

As a final step, spin-orbit interactions partially lift the degeneracy of the 

asymptotic F(2P) and OH(2P) states. To capture nonadiabatic effects in the F + H2O 

reaction, therefore, spin-orbit interactions are calculated by diagonalizing the 6x6 

Breit-Pauli Hamiltonian24 using the zero order non-spin-orbit wave functions as a 

basis. Although it is possible to use either SA-MCSCF or MRCI wave functions at 

this point, I find that the SA-MCSCF wave functions reproduce the experimental 

spin-orbit splitting as well as the MRCI wave functions, albeit with a factor of 100 

reduction in calculation time. As a result, I use the SA-MCSCF wave functions to 

calculate the spin-orbit interaction along the reaction path. Since the SA-MCSCF 

wave functions are used as both reference configurations for MRCI calculations and 

as basis functions for calculating the spin-orbit interaction, a method is clearly needed 

to calculate SA-MCSCF wave functions and eigenvalues that vary smoothly 

throughout the entire PES.  The next section outlines such a method for obtaining this 

in a non-biased manner and is applicable to PES calculation in any dimensionality. 

III. Dynamically Weighted Multiconfiguration Self Consistent 

Fields Method (DW-MCSCF) 

The central issue with the conventional state averaged MCSCF approach to 

the F + H2O  → HF + OH reaction is easily identified. The fluorine atom has a triply 

degenerate p-hole, thus requiring a 3-state SA-MCSCF calculation to correctly 
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describe the nature of the reactant channel. However, the lowest OH(2Π) product 

channel is only doubly degenerate, which, if I attempt to describe with a 3-state 

MCSCF calculation, will partially mix in character from the first excited state (5 eV), 

giving a less accurate description of the OH(2Π) ground state. By way of example, 

Figures 4.3a and 4.3b show how the number of states in a SA-MCSCF calculation 

affects the energies of levels for both reagents and products. In Figure 4.3a, the 3-

state calculation achieves the correct degeneracy for both the reactants and products, 

but closer inspection indicates that the reaction path energies also exhibit strong 

discontinuities in the transition state region. These are predominantly due to neglect 

of asymptotically higher energy charge transfer states that decrease rapidly with 

distance and exhibit multiple avoided crossings with lower lying covalent states in the 

transition state region. This can be improved by including more state averaging (for 

example, 5-state results are shown in Fig 4.3b). This produces a much smoother set of 

surfaces, but with a serious cost; equal variational weighting of these charge transfer 

states now leads to significantly nondegeneracies for both reactant ground state (110 

cm-1). 

To correctly maintain asymptotic degeneracies, one requires 3- (or 2-) state 

calculations for the reactants (or products).  However, in the conventional SA-

MCSCF approach, this would necessitate an ad hoc “seam” region between the two 

calculations, creating non-physical discontinuities in both the PES and wave 

functions, and would thereby prohibit extraction of non-adiabatic coupling matrix 

elements. An improved method by design would ideally yield a smooth transition 

from a 3-state to a 2-state calculation so that the weights are correct asymptotically, 
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and yet would also include sufficient states in the transition state region to adequately 

describe the avoided crossing dynamics. One idea is to set the weights with respect to 

a smoothly varying function of the nuclear coordinates. This is relatively easy to 

define for a one-dimensional reaction path  

)(sfw ii = ,   (4.3) 

where wi is the weight of state i and  if is a smoothly varying function of s, the 

reaction coordinate25.However, this becomes much harder for any higher dimensional 

potential energy surface, and in addition, requires a priori knowledge of the number 

of states important to the calculation in each region of configuration space.  

As I care most about the lowest lying surface(s) correlating with reactants and 

products, a more physically motivated approach is to adjust weights based on energy 

separation with respect to the ground state at a given geometry. Toward this end, I 

define an energy dependent weighting function 

0)(lim
1)0(

)(

→Δ
=

Δ=

∞→Δ
Ef

f
Efw

E

i

,  (4.4) 

where ΔE is the energy with respect to the ground state. By definition, the weights for 

asymptotically degenerate states will be identical (as required to achieve a proper 

description of these states), and yet will appropriately decay to zero for sufficiently 

highly excited states.  

The algorithm is implemented iteratively, with initial estimates of energy 

dependent weights chosen from a closely neighboring geometry (or a priori 

knowledge of the electronic states in the region); the process continues until energies 

are converged to a specific target value.  For the present example, I chose 10-5 Hartree 
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(~0.006 kcal/mol or 2 cm-1), as it is about 1% of the asymptotic spin-orbit splittings.  

Although the SA-MCSCF program is called more than once per point, the whole 

process is actually quite efficient; calculations converge within ∼2-4 calls of the SA-

MCSCF program. This is because the weights change very little along the reaction 

path, and the starting orbitals are already well optimized from the last SA-MCSCF 

calculation.   It is worth noting that even for bad starting guesses for the weights, e.g. 

all weight set equal, only 1 or 2 more SA-MCSCF calls are needed for convergence to 

the same threshold.  In this application, the SA-MCSCF calculation is a 6-state 

calculation with the weights of the first 6 states determined by the weighting function.  

Throughout the entire reaction path the weight of the 6th state never exceeds 

approximately 10-5, so increasing to a larger calculation will be of no benefit.  

  We next investigate the behavior of three possible weighting functions that 

match the criteria in Eq. 4.3.  An obvious first choice for a damping functional form 

is f(ΔE) ∝ exp(-β (E - E0)), but this leads to slower iterative convergence due to a 

non-zero slope in the exponential at E = E0. An improved functional form is a 

Gaussian [f(ΔE) ∝ exp(-(β (E - E0))2)], which has a zero derivative at E = E0; this 

ensures that all nearly degenerate ground states receive equal weighting and therefore 

the process converges efficiently (∼ 2 - 3 iterations). However, for Gaussian damping, 

the relative weights decay too rapidly as near degeneracies begin to lift; this proves 

undesirable for describing multiple levels near the transition state region accurately. 

For example, this can result in state weighting coefficients changing nearly 

discontinuously over relatively short reaction path distances, and thereby introducing 

non-physical curvature in the calculated potential curves. A good compromise 
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between these two damping functional forms is empirically found to be f(ΔE) 

∝ sech2(-(β (E - E0)), which has both a zero derivative near E = E0 and yet exhibits a 

more gradual exponential vs. Gaussian drop off  for large ΔE.  

The dependence on choice of weighting function is illustrated in Fig 4.4a, 

explicitly focusing on the ground state surface. Figure 4.4a displays DW-MCSCF 

results for exponential, Gaussian, and sech2  weighting functions for a fixed value of 

β-1 = 2eV.  Noteworthy is the relatively weak sensitivity to choice of weighting 

function, even near the transition state region.  Also included on the plot are the 

energies of the ground state for the 3- and 5-state constant weight methods.  The 

sensitivity (in shape and absolute energy of the ground state) to weighting function is 

much smaller than the sensitivity on number of states included in the calculation. On 

closer inspection, one sees a small but systematic increase in variational energy for 

exponential weighting. This is due to the slower drop-off in excited state weighting 

coefficients with increasing βΔE values, which therefore tends to include more states 

at the expense of ground state accuracy.  Conversely, considerably fewer differences 

are evident between Gaussian and sech2 functional weighting, due to more equivalent 

weighting of states with βΔE ≈ 0.  

An additional degree of freedom is the choice of β, which characterizes the 

range of energies weighted appreciably. If β is too large, then the calculations 

effectively collapse to ∼1 (i.e., ground) state MCSCF, which is therefore unable to 

account for rapidly avoiding adiabatic curve crossings near the transition state. 

Conversely, for small β, the weights do not decay fast enough with energy in the 

asymptotic reactant and product regions, which will not satisfy the requirement of a 
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3-state calculation in the reactant channel and 2-state in the product channel. The 

sensitivity to choice of energy scale parameter β-1 is illustrated in Figure 4.4b for a 

fixed sech2(βΔE) weighting function, with β-1 varying from 1eV to 4eV. Note again 

the relatively weak dependence of the reaction path for small scale parameters (β-1 ≈ 2 

- 3 eV) , gradually degrading with increasing β-1 as more excited states are included. 

However, also worth noting is the impact of too small a scale parameter, which can 

lead to distortions in the reaction path near the transition state (e.g. point P). Such 

effects occur because the first excited state energy is rapidly increasing near the 

transition state, which for small β-1 implies an abrupt decrease in the number of 

appreciably weighted excited states. More efficient iterative convergence properties 

may be achieved by better tailored weighting functions for a given reaction system. In 

practice, however, this simple first-order treatment already makes it straightforward 

to obtain reaction paths relatively insensitive to scale parameter and functional 

weighting, as described in the following section.  

IV. Results 

We next demonstrate how the DW-MCSCF procedure works when applied to 

the F + H2O  HF + OH system. DW-MCSCF calculations with a sech2 weighting 

function (β-1 = 3 eV) have been performed along the CASSCF reaction path. The 

results for the 4 lowest states are summarized in Figure 4.5 and indicate several 

features that are worth noting.  

First of all, the potential curves highlight the presence of multiple barriers, 

avoided crossings and a bound excited state well in the transition state region. Wave 

function analysis indicates the dominant orbital configurations of the bound state well 
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to be F- + H2O+ and HF+ + OH- charge transfer states, on the reactant and product 

sides of the transition state, respectively. Though only adiabatic curves can be 

rigorously defined, there are also clearly indications of a diabatic crossing between 

the first excited F + H2O reactant state and the HF+ + OH- surface, as well as between 

the F- + H2O+ charge transfer channel and the first excited HF + OH(2Π) product 

channel. There are also indications of a second isolated curve crossing between the 

third state and fifth state (not shown). These multiple crossings illustrate why such 

high state averaging proved necessary (at least local to the transition state) and further 

confirm expectations of strongly non-adiabatic dynamics. Second, despite the 

presence of multiple crossings, the potential curves (and wave functions) can be 

obtained as a smooth function of the reaction path. Third, reactant and product 

channels now achieve the correct degeneracy in the asymptotic limits, i.e., 3-fold and 

2-fold degenerate for F + H2O and HF + OH, respectively.  

A quantitative display of dynamic weighting as a function of distance along 

the reaction path is shown in Figure 4.6, with the adiabatic potentials reproduced in 

the top panel. As desired, the figure clearly indicates a smooth evolution from i) a  3-

state calculation for triply degenerate F + H2O reactants, ii) through a dynamic 

mixture near the transition state, into iii) a ∼2-state calculation for doubly degenerate 

HF + OH products. Upon closer inspection of the product asymptotic region, there is 

a small but finite weighting of the third state (HF + OH(A2Σ)). This could be further 

minimized by choice of β-1 scale parameter, but the effect is so small to not incur a 

significant change in the OH(2Π) energies, and using β-1 produces the smoothest 

reaction path. 
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To correctly account for spin-orbit effects in the F + H2O reaction, the Breit-

Pauli Hamiltonian24 is diagonalized using the zero order non-spin-orbit wave 

functions as a basis. As mentioned previously, the MCSCF wave functions reproduce 

the experimental spin-orbit splitting as well as the higher level MRCI+Q wave 

functions, albeit with a 100-fold reduction in computational expense. Using the DW-

MCSCF results as basis functions for the spin-orbit Hamiltonian, the 6x6 spin-orbit 

matrix is therefore evaluated and diagonalized as a function of reaction path 

geometry.  The asymptotic spin-orbit splittings in the reactant channel due to F(2P3/2, 

1/2) are calculated to be 390 cm-1, i.e., in good agreement with  the experimental 

values of 404.10 cm-1. Similarly, the spin-orbit splittings for product OH(2Π 1/2, 3/2) 

are found to be 134 cm-1, in similarly good agreement with the 139.27 cm-1 

experimental value.  

As a final stage, results for the lowest three states from a full MRCI+Q 

reaction path calculation with spin-orbit interactions are presented in Figure 4.7 and 

indicate several final points worth noting. First of all, the spin-orbit splitting is now 

visible on the scale of the plot, and is in good agreement with experiment. Second, the 

reaction barrier for the ground state has now dropped to about 7 kcal/mol. When 

corrected for zero point effects at the reactant and transition state, this translates into a 

barrier around 5 kcal/mol, which is in reasonable agreement with experiment.   

As a final note, these adiabatic correlation diagrams offer special relevance for 

further studies of non-adiabatic reaction dynamics. Specifically, the reactants starting 

out in the ground spin-orbit F(2P3/2) and crossing over the ground state barrier 

correlate exclusively with OH (2Π3/2) products in the ground spin-orbit state. On the 
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other hand, the first excited spin-orbit state F(2P1/2) correlates adiabatically over a 

very high barrier (∼60 kcal/mol) with the electronically excited OH (A2Σ) product, 

and therefore should be non-reactive in the pure Born-Oppenheimer limit. This 

behavior is quite similar to Born-Oppenheimer predictions for F/F* spin-orbit 

reactivity for the well studied F + H2, 
4,5and F + Cl2, 6systems. However, what is novel 

about the set of F + H2O surfaces is the presence of a relatively high barrier (∼25 

kcal/mol) for reactions adiabatically forming the first excited spin-orbit state 

OH(2Π1/2). This suggests that at typical collision energies in a crossed molecular 

beam, reaction dynamics in the purely adiabatic limit should produce exclusively 

ground state OH (2Π3/2) and that the presence of any excited OH(2Π1/2) products must 

therefore arise from non-adiabatic “surface hopping” dynamics. We are currently 

investigating this prediction experimentally, taking advantage of high sensitivity laser 

induced fluorescence (LIF) to probe the spin-orbit and rotational distributions of the 

nascent product OH. From a theoretical perspective, I will also use the smooth 

adiabats calculated by the DW-MCSCF method as reference functions for high-level 

MRCI+Q calculations and thereby compute the non-adiabatic coupling matrix 

elements relevant for the F + H2O reaction system. Of special interest will be 

determining the region of the potential where these non-adiabatic couplings dominate 

and whether any surface hopping dynamics between OH (2Π3/2) and OH (2Π1/2) 

surfaces are restricted to i) long range entrance or exit channel interactions26, in fact 

are ii) more strongly localized in the transition state vicinity27, or are iii) a kinetic 

effect where angular momentum of molecular rotation and spin-orbit states couple, 

mixing the two states28. 
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V. Summary and Conclusion 

DW-MCSCF is an addition to the standard SA-MCSCF calculation that 

adjusts the weights of included states automatically to account for changes in the 

electronic spectrum in different regions of a global PES.  DW-MCSCF is useful in 

reactions where i) the degeneracy in the asymptotes is different and ii) there are a 

number of low-lying states in the transition state region, because it will smoothly 

adjust the weights among the regions of interest.  

The DW-MCSCF algorithm is an approach where a starting guess for the 

weights is improved upon through iterations of a SA-MCSCF calculation.  The 

process is quite efficient, and converges in only a small number of iterations.  Since 

the MRCI+Q calculations are orders of magnitude longer in computational time, it is 

worth the extra MCSCF iterations to ensure a smooth set of starting reference wave 

functions and energies before taking the next steps. 

DW-MCSCF is general and can be applied to calculate other PESs where 

there are a number of important states varies throughout configuration space. 

Moreover, DW-MCSCF can be easily applied to a PES of any number of dimensions 

since the weighting function is only a function of the energy of the states (as opposed 

to nuclear coordinates).  The smoothly varying wave functions obtained by DW-

MCSCF can then be used as reference functions for MRCI+Q calculations, and non-

adiabatic calculations which require derivatives of the wave function.  

The example reaction F(2P) + H2O → HF + OH(2Π) is prototypical of the 

reactions that are good candidates for DW-MCSCF:  i) the reactants are 3-fold 

degenerate and products are 2-fold, and ii) there are avoided crossings involving low-
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lying charge transfer states in the transition state region.  Non-adiabatic effects are 

likely very important in this reaction, so it is imperative that smoothly varying multi-

state wave functions are calculated, as the non-adiabatic corrections are functions of 

derivatives of the wave function.  The full 6-D PES of this reaction will be calculated 

using DW-MCSCF followed by MRCI+Q along with spin-orbit and non-adiabatic 

corrections to the lowest 3 surfaces. 
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Tables 

Table 4.1. Product, reactant energies and reaction exothermicities as a function of level of theory and basis set size.   

 

 F + H2O (Hartree) HF + OH (Hartree) ΔE (kcal/mol)  
Basis CASSCF MRCI MRCI+Q CASSCF MRCI MRCI+Q CASSCF MRCI MRCI+Q rel. time 
AVDZ 0a -0.325174 -0.349268 -0.009777 -0.346794 -0.372539 -6.13 -13.57 -14.60 1.0 
AVTZ -0.044082 -0.459217 -0.490918 -0.054397 -0.481240 -0.514744 -6.47 -13.82 -14.95 2.6 
AVQZ -0.057301 -0.502245 -0.536145 -0.067061 -0.524344 -0.560164 -6.12 -13.87 -15.07 11.0 
AV5Z -0.060628 -0.516598 -0.551124 -0.070337 -0.538542 -0.574991 -6.09 -13.77 -14.98 57.3 

CBS -0.064583 -0.525946 -0.561136 -0.074483 -0.548033 -0.585155 -6.21 -13.86 -15.07 - 
a) Absolute energies stated relative to AVDZ reactant energy: -175.471563 Hartree. 
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Table 4.2. Product, reactant energiesa and reaction exothermicities as function of optimizing the AVTZ basis set 

 

Basis F + H2O MRCI+Q (Hartree)a HF + OH MRCI+Q (Hartree)a ΔE (kcal/mol) rel. time 
AVTZ[5s4p3d2f]/AVTZ[4s3p2d] -0.490918 -0.514744 -14.95 2.6 
AVTZ[6s4p3d2f]/AVTZ[3s3p2d] -0.475371 -0.499164 -14.93 2.6 
AVTZ[6s4p3d]/VTZ[3s2p1d] -0.474516 -0.498290 -14.92 2.0 
AVTZ[6s4p3d2f]/AVTZ[3s3p] -0.424399 -0.447828 -14.70 1.4 
AVTZ[6s4p3d]/VTZ[3s2p] -0.423947 -0.447425 -14.73 1.2 
    +Spin-Orbit -0.424561 -0.447633 -14.48 - 
    +ZPE -0.386702 -0.429889 -16.59 - 
Experiment - - -17.61 - 

a) Absolute energies relative to AVDZ reactant energy: -175.471563 Hartree. 
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Table 4.3. The geometry of the transition state at the SA-MCSCF and MRCI+Q level.  The lengths and angles are defined 

in Figure 4.1.  Bond lengths are in angstroms, angles in degrees.  The basis set used is AVTZ[6s4p3d]/VTZ[3s2p] in a full 

valence active space. 

 

 RHF1 ROH1 ROH2 Α β Γ 
SA-MCSCF 1.218 1.093 0.974 101.378 139.771 58.158 
MRCI+Q 1.350 1.031 0.971 102.551 118.407 69.552 
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Figures 

 

Figure 4.1: The internal coordinates used for specifying F + H2O geometries.  The 

geometry is given for the 5-state MCSCF transition state. 
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Figure 4.2: A 2D projection (RFH1 and ROH1 bond distances) of the full 6D reaction 

path calculated at the 5-state MCSCF level. This 6D reaction path is used throughout 

the paper.   
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Figure 4.3: Calculated ground and excited state energies along the F + H2O reaction 

coordinate for various levels of theory, a) 3-state MCSCF, b) 5-state MCSCF, c) 

Dynamically weighted MCSCF.  The inserts at reactant and product asymptotes 

indicate a blow up of the energy scale to highlight deviations from perfect 3-fold 

(reactant) and 2-fold (product) degeneracies. Note that the dynamic weighting method 

produces the smoothest surface, and also reproduces the correct degeneracy at both 

asymptotes of the reactants.  
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Figure 4.4: Dependence of ground state reaction path energy on weighting function in 

the transition state region. a) Exponential, Gaussian or sech2 functional form.  Note 

that the choice of the functional form has less of an effect on the surface than the 

number of states included in a traditional SA-MCSCF. b) Choice of scale parameter 

β.  If β-1 is too small, small changes in energies in excited states can cause 

discontinuities in the ground state (e.g. point P), if β-1 is too large, the weights do not 

decay to 0 in the asymptotes for the excited states.  Moderate β-1 parameters (i.e.,2-

3eV) produce smooth curves and converge to ground-state-only asymptotes. 
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Figure 4.5: The lowest 4 states of the smooth DW-MCSCF reaction path. The 

energies along the reaction path, not only vary smoothly, but the degeneracies are 

correctly reproduced in the asymptotes.  Also note that there are a number of states 

interacting in the transition state region. 
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Figure 4.6: Converged weights (normalized to sum to 1) for the DW-MCSCF with β-1 

= 3.  The energies along the reaction path are reproduced at the top to help guide the 

eye. The weights smoothly vary from (
3
1 :

3
1 :

3
1 ) to approximately (

2
1 :

2
1 :0). During 

the cross-over through the transition state a fourth and fifth state are briefly 

introduced.  DW-MCSCF automatically included the relevant states in the different 

regions of the PES. 
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Figure 4.7: MRCI+Q with spin-orbit interactions calculated at the CASSCF reaction 

path geometries.  The smoothly varying DW-MCSCF wave functions are used as 

reference configurations for MRCI+Q calculations.   Note that the lowest barrier 

(when zero-point energy is included) is experimentally accessible in crossed 

supersonic jets, but the other barriers are far out of reach. 
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Chapter 5:  Multireference configuration interaction 

calculations for the F(2P) + HCl → HF + Cl(2P) reaction: 

A correlation scaled ground state (12A’) potential 

energy surface 

I. Introduction 

 A first principles theoretical understanding of elementary reaction dynamics at 

the quantum state resolved level has remained a major challenge to the chemical 

physics community over the last several decades. As a result of this intense interest, 

there have been impressive advances in both ab initio development of accurate 

potential energy surfaces, as well as methods for numerically exact quantum 

dynamical calculations on these surfaces. One system that has represented a 

watershed for reaction dynamics has been the F(2P) + H2  HF + H(2S) reaction, for 

which there now exists an exceptionally high level potential surface1,2 and numerous 

theoretical3-8 and experimental9-20 papers on state-to-state reactive scattering. Of 

particular dynamical interest has been the subtly but importantly different “heavy + 

light-heavy” isotopic variation on this reaction system, F(2P) + HD  HF + D(2S), 

for which long lived scattering resonances in the transition state region have been 

both predicted21-31 and experimentally32 observed. Although there are many 

contributing factors, inspection of the transition state wave functions offers a simple 

physical picture of such resonances, classically corresponding to highly excited H 

atom motion in a quasi bound HF(v = 3)--D state. In essence, this state executes rapid 
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H atom motion between the F and D atoms, which eventually predissociates into the 

continuum of states corresponding to HF(v = 2,J) + D. Such efforts have further 

served to elucidate the considerable complexity and dynamical richness present even 

in simple H atom transfer reactions and continue to offer challenges for first 

principles theoretical calculations in larger systems.  

 The clear observation of transition state resonances in F + HD suggests that 

there may be similar resonance dynamical effects in the corresponding F(2P) + 

hydrogen halide systems. Of particular experimental and theoretical interest is the 

F(2P) + HCl  HF + Cl(2P) system, the high-level ab initio potential surface which 

represents the focus of this paper. This reaction has a nearly identical exothermicity 

(ΔEHF+Cl = -33.1 kcal/mol vs. ΔEHF+ H = -31.2 kcal/mol), a thermally accessible 

barrier height, and yet is still within reach of modern high-level ab initio efforts for 

mapping ground and excited potential surfaces out in full dimensionality. In this 

work, I present a new benchmark ground state potential energy surface (PES) for the 

F(2P) + HCl  HF + Cl(2P) reaction, to accompany experimental direct IR absorption 

and ion imaging studies currently in progress. In addition to being a prototypically 

heavy-light-heavy system, the F(2P) + HCl  HF + Cl(2P) reaction is also important 

in understanding hydrogen-halide chemical lasers33 and provides novel opportunities 

to study non-adiabatic dynamics on multiple electronic surfaces.   

Previous theoretical studies on this surface have included quasiclassical 

trajectory (QCT) calculations performed on an empirical LEPS surface34, QCT35and 

full dimensional time-dependant wavepacket 36 calculations obtained on a newer ab 

initio (PUMP2/6-311G(3d2f,3p2d)) surface37, and a LEPS surface created from 
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recent experimental kinetics information38.  All previous calculations have focused 

specifically on the ground (12A’) electronic state, though study of other F atom 

abstraction systems has revealed evidence for avoided crossings, charge transfer 

states, seams of conical intersection, etc. For example, it has been shown that there is 

significant non-adiabatic behavior for F(2P) + H2�HF + H(2S)  in the entrance 

channel3,23, and there is also direct experimental evidence in 4 atom systems 

(i.e.,(2P)F + H2O  HF + OH(2Π)  that exhibit strong non-adiabatic behavior in both 

the entrance and exit channels39.  It is likely that similar effects are present in F(2P) + 

HCl  HF + Cl(2P), the dynamics of which clearly necessitate a high-level 

multireference electronic treatment. In this work, I present a new ground electronic 

state (12A’) PES for the F(2P) + HCl reaction, based on high-level multireference 

calculations and representing a first step toward multiple fitted surfaces with non-

adiabatic coupling, spin-orbit interactions explicitly included. 

The F(2P) + HCl  HF + Cl(2P) reaction presents many of the same 

challenges seen earlier in the F(2P) + H2O  HF + OH(2Π) reaction40, namely the 

presence of highly electronegative atoms significantly lower the charge transfer (CT) 

states (F- + HCl+(2Π)  HF+(2Π) + Cl-) in the transition state region.  This leads to 

non-adiabatic coupling and avoided crossing behavior between the 12A’ and 22A’, 

which requires multireference calculations to describe accurately.  In light of these 

considerations, ab initio calculations for this PES are obtained via internally 

contracted multireference configuration interaction (MRCI)41-43 using reference states 

taken from a dynamically weighed multiconfigurational self-consistent field (DW-

MCSCF)40 calculation.  In addition, extrapolation to the complete basis set (CBS) 
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limit44 and correlation energy scaling45,46 are used to further refine the PES shape and 

energetics accurately. 

As a further source of dynamical richness, the F(2P) + HCl  HF + Cl(2P) 

surface is also expected to exhibit conical intersections in both entrance and exit 

channels. Indeed, this can be anticipated from rather elementary chemistry 

considerations, as described by Hutson and coworkers47-49 for open shell radical X-

HX complexes. Specifically, well outside the region of chemical reaction, the surface 

will be asymptotically dominated by dipole-quadrupole and dipole-induced dipole 

interactions. This results in a state energy ordering of E(Σ) > E(Πx) = E(Πy) for the 

linear approach geometry. In the vicinity of the transition state, however, the lowest 

energy collinear surface arises from the unfilled p-orbital of the bare F (or Cl) atom in 

an Σ configuration with respect to the HCl reactant (or HF product), i.e., yielding a 

reverse energy ordering of E(Σ) < E(Πx) = E(Πy). Since the symmetries of the 

coplanar Πx and Σ surfaces are reduced to non-crossing 12A’ and 22A’ surfaces for 

any non-collinear geometry, this necessarily implies the presence of a 3N-5 = 1D 

“seam” of conical intersections. Of special interest for F + HCl reaction dynamics,  

these conical intersection seams are both energetically low enough (Ecrossing = 3-4 

kcal/mol) with respect to collision energy (Ecom = 5 kcal/mol) as well as the F(2P) + 

HCl transition state (ETST ≈ 3.8 kcal/mol) that they are likely play an important role. 

The organization of this chapter is as follows:  Section II describes the details 

of the ab initio calculations specifically focusing on the 12A’ electronic state.  In 

Section III, I describe the benchmark calculations, with emphasis on the CBS 

extrapolation and correlation energy scaling that is used to provide an accurate PES.  
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Section IV presents the details of the analytical fit to the ab initio points.  In Section 

V I discuss the interesting aspects of this PES followed by a summary and concluding 

remarks in Section VI. 

II. Details of the Ab Initio Calculations 

 All calculations are performed using the MOLPRO suite of ab initio 

programs50.  Since I explicitly need to capture non-adiabatic as well as single surface 

effects, electronically excited states of the F(2P) + HCl  HF + Cl(2P) reaction are 

required. Thus, the ab initio methods utilize multireference methods to obtain 

wavefunctions for non-adiabatic calculations and characterization of the conical 

intersections.  In addition, other 3- and 4-atom systems40 involving F have indicated 

large multireference character in the ground state wavefunctions.. In light of these 

restrictions and past success with the dynamically weighted multiconfigurational self-

consistent field (DW-MCSCF)40 method, the natural choice for this reaction is to use 

DW-MCSCF along with internally contracted multireference CI (MRCI) 41-43 and the 

multireference Davidson correction (MRCI+Q)51-53.  Two separate MRCI+Q 

calculations are done for each symmetry: one for the 12A’ and 22A’ states and one for 

the 12A” state. In this work, I restrict the focus on the ground electronic (12A’) 

surface; a more detailed description of all three adiabatic surfaces, as well as the 

diabatic representation and non-adiabatic coupling between these surfaces will be 

presented elsewhere.54 

Residual ab initio error due to incomplete basis sets can be corrected by 

extrapolating to the complete basis set (CBS) limit44 using the standard aug-cc-pVnZ 

(n = 2,3,4) basis sets of Woon and Dunning55-57.  Others46,58 have shown that an 
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additional tight (large zeta) d function to the Cl basis set improves the accuracy, but 

benchmark tests (vide infra) show no significant improvement in the F(2P) + HCl  

HF + Cl(2P) system, as calibrated against the precise experimental reaction 

exothermicity. I therefore elect to use the standard aug-cc-pVnZ (AVnZ, n = 2-4) 

basis functions and extrapolate to the CBS limit. Based on the benchmark studies of 

Peterson, this extrapolation is obtained via the three parameter fit44,46 

2)1()1()( −−−− ++= nn
CBS CeBeEnE . (5.1) 

This function yields an excellent extrapolation to the CBS limit (see Figure 5.1) as 

explicitly confirmed by additional calculations for reagent and product asymptotic 

geometries with basis set extensions up to n = 5.  

 The MRCI+Q calculations are performed using a full valence complete active 

space (CAS)59 reference function with 15 active orbitals (12A’,3A”), 6 of which 

(5A’,1A”) are uncorrelated.  The orbitals are obtained by a state-averaged 

multiconfiguration SCF (SA-MCSCF)60,61 calculation with 15 active orbitals (12A’, 

3A”) with 7 (6A’, 1A”) closed to excitations.  A total of 6 states are then included in 

the SA-MCSCF calculation (4A’, 2A”), with the weights determined by the 

dynamically weighted-MCSCF algorithm.  In order to account for the triply 

degenerate p-hole in both the F and Cl atoms at the asymptote, the SA-MCSCF 

calculations include all 3 states (2A’, 1A”); however, low-lying charge transfer (CT) 

states (e.g. F- + HCl+(2Π)  HF+(2Π) + Cl-) require the inclusion of 2 more A” and 1 

more A’ state (a total of 6 states) to fully describe the transition state region.  As 

previously demonstrated40, root flipping as the CT surfaces cross other states along 

the reaction path makes it extremely challenging to obtain a smooth accurate PES for 
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a fixed set of SA-MCSCF weights.  In DW-MCSCF, on the other hand, the weights 

for each state are chosen as a function of its energy with respect to the ground state 

energy at each point in configuration space. The function for the weight based on the 

energy difference from the ground state is 

  ( )( )0
2 EEsechw ii −−∝ β  (5.2)  

The decay coefficient (β−1) for DW-MCSCF is empirically optimized to be 3eV, 

though the results prove relatively insensitive to this choice. Most importantly, this 

method permits one to eliminate spurious discontinuities from root flipping and 

thereby obtain a smooth reaction path and surface while accurately describing the 

asymptotes and the transition state.  The orbitals obtained from the DW-MCSCF 

calculation are used as reference states for the internally contracted MRCI 

calculation.   

III. Benchmark Calculations 

A. Exothermicity  

 By way of calibration, I have performed a number of single point calculations 

at product and reagent asymptotes (F + HCl and HF + Cl) to benchmark how well 

MRCI+Q predicts the reaction exothermicity, ΔErxn, with respect to previous lower 

level methods.  Table 5.1 contains a summary of reaction exothermicities calculated 

by these methods, each for an AVnZ basis set and extrapolated to the CBS limit.  To 

facilitate most the direct comparison with experiment, the energies in Table 5.1 have 

been corrected for experimental zero-point (5.98 kcal/mol and 4.31 kcal/mol for HF 

and HCl, respectively) and spin-orbit splittings (1.16 kcal/mol and 2.52 kcal/mol for 
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F and Cl), which are not included the ab initio calculations reported here.  The results 

in Table 5.1 indicate rapid convergence with respect to basis set size (ΔE ≈ 0.06 

kcal/mol between AVQZ and the CBS limit values). Indeed, Figure 5.1 clearly shows 

that energies for both reactant and product asymptotes are independently converging 

to the CBS limit. By way of confirmation, the dotted line in Figure 5.1 represents the 

CBS extrapolation for AVnZ basis sets with n = 2 - 4, which in fact very closely  

reproduces the single point  calculated values for AV5Z.  

 It is important to note that although the calculated reaction exothermicity  

converges nicely to ∼-31.0 kcal/mol, the true exothermicity (dashed line) is in fact ∼2 

kcal/mol lower (-33.06 kcal/mol62,63).  This is not a limitation in the CBS 

extrapolation but rather the size of the “complete” active space. This can be readily 

seen in the incremental shifts in ΔE as a function of basis set size (inset in Figure 5.1), 

which indicate the CBS extrapolation converging upward to a value higher than the 

experimental energy. This arises from incomplete recovery of the full correlation 

energy at the MRCI+Q level and is reminiscent of the comparable (∼ 0.4 kcal/mol) 

exothermicity discrepancies from benchmark calculations for the F + H2 surface. 

Indeed, as demonstrated by Stark and Werner for F + H2
1, 3pF orbitals must be 

included in the active space to get results  accurate to < 0.1 kcal/mol.  For the F + HCl 

reaction, however, including 3pF orbitals would energetically require also including 

all 5 of the 3dCl orbitals, increasing the number of occupied orbitals from 15 (12A’, 

3A”) to 24 (18A’, 6A”), and making the calculation prohibitively expensive. By way 

of example, single point AVTZ calculations at reagent and product geometries with 

this enhanced active space decrease the exothermicity error down to ∼0.5 kcal/mol; 
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however, even this requires more than 2 days on a single 2.4GHz processor, i.e., too 

long to map out an entire 3D PES. I address below how to systematically compensate 

for these modest residual discrepancies in correlation energy, but for the moment, 

simply note that the calculations are quite well converged with respect to basis set by 

CBS extrapolation for n = [2 - 4]. 

 Building on ideas by Peterson46 and Truhlar45, I employ a simple global 

correlation energy scaling procedure calibrated to match the experimentally known 

reaction exothermicity. Specifically, I uniformly scale the correlation energy by a 

constant factor near unity that reproduces the exothermicity exactly while retaining 

the shape of the PES and not introducing any discontinuities.  First, I define 

correlation energy as the difference between the MRCI+Q energy and the MCSCF 

energy: 

MCSCFQMRCICORR RERERE )()()( −= + ,  (5.3) 

where R is a vector of the intermolecular coordinates.  The scaled energy is just the 

sum of the MCSCF energy plus the correlation energy scaled by a factor, γ: 

 CORRMCSCFSCALED RERERE )()()( γ+= .  (5.4) 

In the limit of γ  = 0, the scaled energy is just the MCSCF energy (i.e., no extra 

correlation energy is recovered), when γ  = 1 the scaled energy is the MRCI+Q 

energy (i.e., all correlation energy is recovered).  Allowing γ to be greater than unity 

permits recovery of additional correlation energy, in effect, approximating an increase 

in active space.  The value for γ is empirically chosen to match the reaction 

exothermicity, i.e., 

   EXPERIMENTSCALEDSCALED EreacEprodE Δ=− )()( . (5.5) 
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The scaling factors (γ) for AVnZ (n = 2 - 4), as well as the CBS extrapolation, 

monotonically decrease as the basis set becomes more complete.  Indeed, at the CBS 

limit it is close to unity (γ  = 1.027) for the A’ symmetry, i.e., one only needs to 

recover an extra 2.7% of the correlation energy to reproduce the experiment.  It is 

worth noting that the scaling values for A’ (γ  = 1.027) and A” (γ  = 1.046) 

symmetries differ; this is because in the final MRCI+Q calculation, the two lowest 

2A’ states and the one lowest 2A” state are calculated, resulting in a larger A’ 

reference space.  Permitting γ to differ provides additional flexibility for each 

symmetry species to make up for finite active space size. 

 By way of example, Fig 5.2 shows the results for correlation energy as 

defined in Eq. 5.3 along the F + HCl reaction coordinate (described later) for each of 

the AVnZ basis sets and for the CBS limit. The shaded portion reflects the “extra” 

amount of energy recovered from the CBS values by correlation scaling.  Such a 

pattern of correlation energy as a function of basis set and reaction coordinate makes 

it clear that correlation energy scaling is approximately equivalent to increasing the 

basis size.  More quantitatively, the inset in Figure 5.2 shows the ratio of correlation 

energy for a given basis set to that inferred from a CBS extrapolation.  The constancy 

of this ratio for each basis set provides further support that additional correlation 

energy is recovered by an almost constant scale factor along the full reaction path.  

Furthermore, this indicates that the shape of the PES is already quite accurately 

determined at the MRCI+Q level, with correlation scaling resulting in only minor 

adjustment of the reaction energetics to match experiment. 
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B. HF, HCl, and ClF asymptotic potentials 

 As a further test of the ab initio accuracy, the three asymptotic contributions 

for the F(2P) + HCl  HF + Cl(2P) surface corresponding to HF, HCl, and ClF have 

been benchmarked with respect to both basis size and correlation energy scaling. 

Table 5.2 summarizes the dissociation energies (kcal/mol), bond lengths (A), 

harmonic frequencies (cm-1), anharmonicities (cm-1), and rotational constants (cm-1) 

for HF, HCl, and ClF calculated by DW-MCSCF/MCRI+Q for the various AVnZ (n 

= 2 - 4).  The bond dissociation energies for each of the reactant and product channels 

are both in very satisfactory agreement (∼0.1 - 0.2 kcal/mol) with experiment, and  

are significantly improved by correlation scaling.  It is noteworthy that such scaling 

has relatively little influence on the vibration/rotation diatomic constants, providing 

additional support that correlation scaling results in only very minor changes in the 

overall PES topography. Also remarkable is that the single scaling factor chosen to 

match the experimental exothermicity for F + HCl reproduces properties of the ClF + 

H channel quite well, despite being quite remote to the reaction path for HF + Cl 

formation.  

C. Transition state 

 We begin with gradient saddle point searching for the F-H-Cl transition state 

geometry and barrier height (See Figure 5.3 for transition states at multiple levels of 

theory and Table 5.3 for a summary of transition state geometries). Previous ab initio 

PES37 calculations have reported a strongly bent F-H-Cl angle (137o) and a classical 

barrier height of 4 - 6 kcal/mol.  At the current improved level of theory 

(MRCI+Q/CBS/Scaled), the transition state geometry is bent even further (123.5o), 



171 

with a classical barrier lowered to 3.8 kcal/mol.  I note for later discussion that this is 

qualitatively different than the slightly bent transition state observed for F + H2, 

which has important consequences for the resulting reaction dynamics. Furthermore, 

the transition state is relatively loose, resulting in zero-point energy along the reaction 

path that lowers the classical barrier height by ΔE ≈ 0.9 kcal/mol. This effectively 

yields an adiabatic MRCI barrier of ∼2.9 kcal/mol. 

 By way of additional comparison, a single critical point UCCSD(T)/AVQZ 

calculation64 also yields a highly bent transition state (118o), so this novel degree of 

bending is clearly a robust feature of the true potential surface (see Figure 5.3). 

Interestingly, such UCCSD(T) calculations suggest an even smaller classical barrier 

height of 2.2 kcal/mol, though this is obtained using a spin unrestricted basis set. 

There have been previous temperature dependent studies65 of F + HCl kinetics by 

Houston and coworkers, which could in principle help resolve the differences in the 

MRCI+Q/CBS/Scaled vs. UCCSD(T)/AVQZ barrier values. Unfortunately, the F + 

HCl experimental results exhibit strongly curved non-Arrhenius behavior, which 

complicates comparison of empirical activation energies with actual ab initio 

transition state barriers. However, if I examine the CI vector from the MRCI 

calculations, the MCSCF ground state contribution accounts for only ∼60% of the 

total wave function probability at the transition state, with single excited state 

amplitudes as large as 0.53.  This indicates strong multireference character in the 

transition state wavefunction and considerable mixing of higher electronic states not 

reflected in the UCCSD(T) calculation.  Furthermore, inclusion of  ∼0.9 kcal/mol 

zero point effects would presumably similarly decrease the UCCSD(T)/AVQZ 
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adiabatic barrier to ∼ 1.3 kcal/mol. Such an adiabatic barrier height prediction would 

already be lower than for F + HD (∼ 1.5 kcal/mol1), though experimental studies66 

indicate F + HCl to have at least 3 - 4 fold lower cross sections for similar collision 

energies. Therefore, although further high-level surface calculations at the CCSD(T) 

level could be interesting to pursue, one can be cautiously confident from the present 

MRCI/Q results that a strongly bent transition state (∼123o) with a vibrationally 

adiabatic barrier height of ∼2.9 kcal/mol (before spin-orbit effects) represents a very 

good approximation to the true values.  

D. Reaction path 

 The reaction path provides a convenient set of benchmark points with which 

to further verify that my choices of method, basis, correlation scaling, etc are valid 

throughout configuration space and, in particular, away from the transition state.67 For 

simplicity, the reaction path geometries are obtained from a SA-MCSCF ((3 state) 

calculation, for which analytical gradients are available for efficient reaction path 

following (MOLPRO does not yet provide analytic gradients for full MRCI+Q) in 

both product and reagent directions along the path of steepest decent for the lowest 

state. When the potential gradients in the asymptotic region become too small to 

follow reliably, the reaction path is simply defined by increasing the F - HCl or HF - 

Cl center of mass separations toward reactants or products.   

 Using the coordinates mapped out along the SA-MCSCF reaction path, I next 

perform a 6 state dynamically weighted MCSCF calculation.  In Figure 5.4, the 

energies (a) and normalized dynamical weights (b) along the reaction path are shown 

as a function of the reaction coordinate68.  Notice that in each asymptotic region, the 



173 

DW-MCSCF method effectively reduces to a ∼three-state calculation, i.e., sufficient 

for accurately describing the triply degenerate p-hole in the lone F or Cl halogen 

atoms.  As the transition state region is entered, however, the two additional F- + 

HCl+(2Π) and HF+(2Π) + Cl- charge transfer states rapidly decrease in energy and 

become significantly weighted in the DW-MCSCF calculation and exhibit strong 

effects on the reaction path curvature (see Figure 5.4a). As evident in Figures 5.4a, b, 

dynamical weighting of the 6 lowest states more than ensures that all 5 of the relevant 

open shell and charge transfer interactions are accounted for throughout the reaction 

path, and in the transition state region in particular. 

 An internally contracted MRCI+Q calculation is then performed using the 

reference states from the DW-MCSCF calculations for each AVnZ n = [2,4] basis set.  

The energies of both the DW-MCSCF and MRCI+Q calculations are extrapolated as 

a function of basis set to the CBS limit, with final refinement by scaling of the 

correlation energies by a constant γ to match experimental exothermicity. As noted 

earlier, this correlation scaling method only makes minor adjustments in the 

energetics of the system without influencing the shape of the PES.  By way of 

example, Figure 5.5 presents the energy profile along the reaction path for the series 

of MCSCF/CBS, MRCI+Q/CBS, and MRCI+Q/CBS/Scaled procedures. The large 

shift between the MCSCF and MRCI+Q curves is due to the large amount of 

correlation energy recovered by the MRCI+Q method, in contrast with the very small 

change (see magnification in Figure 5.5) between MRCI+Q and the MRCI+Q/Scaled 

methods due to minor additional correlation energy that scaling recovers.  Most 

importantly, this dynamically weighted approach results in smoothly changing 



174 

energies along the reaction path, which represents a small but obviously key subset of 

geometries for dynamics on the full PES. 

E. Entrance and exit channel van der Waals wells 

 As noted in the previous surface calculations37, there are 12A’ van der Waals 

complexes in both entrance and exit channels.  The entrance channel exhibits a 

relatively shallow F--HCl well depth (relative to the F + HCl asymptote) of ∼0.43 

kcal/mol for a linear geometry with RHF = 4.50 a0 and RHCl = 2.44 a0. The effective 

well depth in a full collision should decrease with rotational averaging; this is in good 

agreement with crossed molecular beam experiments69, which place the rotationally 

averaged F + HCl van der Waals well depth at 0.32 kcal/mol.  As expected from the 

larger dipole-quadrupole and dipole-induced dipole interactions70, the exit channel 

exhibits a stronger van der Waals well of 1.52 kcal/mol, for a linear geometry with 

RHF = 1.75 a0 and RHCl = 4.73 a0.   Interestingly, the CI vectors for both entrance and 

exit channel wells show significant contributions (∼10% ) from excited state 

amplitudes, further supporting the importance of high-level multireference ab initio 

methods in constructing a full potential energy surface. 

IV. Potential Energy Surfaces 

 In order to construct the full 3D potential energy surface, calculations have 

been performed along a grid of points with the ranges RHF = [1.3 - 15.0] a0 and RHCl = 

[1.8 - 15.0] a0 and θF-H-Cl = [180, 150, 120, 90, 60, 30, 0], sampling only energies 

lower than 50 kcal/mol above the entrance channel energy.  These 3230 points are 

chosen on a grid such that the density is maximized in important regions of the 
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surface (transition state, van der Walls wells) while still sampling a large enough 

region to get an accurate description of the PES. Also included in the full set are 121 

points sampling directly along the reaction path.  Following the methods outlined by 

Aguado and Paniagua,71 these ab initio points are fit to an analytical multibody 

expansion: 
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where V(1) is the energy of the separated atoms which was subtracted from the ab 

initio energies, V(2) are the diatomic potentials, and V(3) reflects the remaining 3-body 

interactions.   

A. Two body terms 

 The two body term is based on a sum of modified Rydberg functions71: 
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 where R represents the pairwise interatomic distances between the 3 atoms.  Ab initio 

points for each of the diatomics are fit to a 9th order polynomial (N = 9).  For the Cl + 

HF reagent channel, 19 ab initio points between RHF = 1.2 a0 and RHF = 3.0 a0 have 

been used, yielding fits with a global RMS deviation of 0.039 kcal/mol.  Similarly for 

HCl, 26 points between RHCl = 1.6 a0 and RHCl = 4.0 a0 have been fit to a global RMS 

of 0.015 kcal/mol. Although the ClF region of the surface is not sampled directly in 

the reactive scattering experiments, the ClF potential is sampled for 21 points 

between RClF = 2.5 a0 and RClF = 4.5 a0, yielding a global diatomic fit with a very 

satisfactory RMS deviation of ∼0.046 kcal/mol.  
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B. Three body terms 

 The three body term simply reflects the remaining difference between ab 

initio points after subtracting the diatom V(2) and atom V(1) energies.  Since this term 

must vanish in any of the diatomic asymptotes, a commonly used functional form is 

simply a linear combination of two-body product functions, i.e.,  
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where the total order of the polynomial is restricted to i + j + k ≤ M.  The explicit 

numerical least squares weighting strategy for obtaining this fit is modeled after 

efforts to develop the Stark-Werner F + H2 surface1. Specifically, the ab initio points 

along the reaction path are given a weight of 100. Of the 3230 grid points, the 2200 

geometries with energies less than 15 kcal/mol above the entrance channel are 

weighted by 10, with the remaining 1030 points with energies between 15 and 50 

kcal/mol above the entrance channel receiving a weight of 1.  The resulting global 

RMS deviation for least squares fit with a 9th order polynomial (M = 9) is ∼0.72 

kcal/mol, i.e., 3.5 times better than the previous surface37, while the RMS deviation 

for points along the reaction path improves to ∼0.29 kcal/mol.  A 2D cut through the 

PES at θ  = 123.5o (i.e., the MRCI+Q/CBS/ Scaled transition state bend angle ) is 

shown in Figure 5.6. As I am restricting my initial focus to the ground state, this does 

not yet reflect spin-orbit coupling effects, though they will obviously be incorporated 

in a full non-adiabatic treatment of the lowest three surfaces54. 

 Although this fit is already quite good, it is important to note that RMS 

deviation for F + HCl surface may tend to overestimate how well the surface is in fact 
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represented. Specifically, the surface has two conical intersection seams in the 

entrance (F(2P) + HCl) and exit (HF + Cl(2P)) channels, indeed, even at energies 

comparable to the transition state.  Although a proximity metric in multiple 

dimensions is not uniquely defined, the points on the conical intersection seam that 

are “closest” to the reaction path (as simply evaluated by sum of Euclidian 

displacements for each atom) are RHF = 3.578 a0, RHCl = 2.459 a0, E = 3.55 kcal/mol in 

the entrance channel and RHF = 2.166 a0, RHCl = 2.770 a0, E = -3.23 kcal/mol in the exit 

channel.  These conical intersection seams introduce regions of derivative 

discontinuities in the adiabatic PES, which is precisely where the least squares 

multibody expansion deviates most from the ab initio values. Indeed, in some 

respects, these are the most dynamically interesting regions of the multiple surfaces 

and are clearly responsible for the role of non-adiabaticity in the reaction dynamics. A 

more complete treatment of such non-adiabatic effects therefore requires 

simultaneous diabitization and fitting of all three lowest surfaces, which is outside the 

scope of this paper and will be presented elsewhere.54  

V. Discussion 

As has been noted in other PESs for reaction systems with open highly 

electronegative open shell atoms40, the electronic wavefunction can be highly 

multireferential, i.e., significant amplitudes of excited reference state configurations 

become mixed with the ground state.  The absence of such mixing (i.e., single 

reference behavior) can be quantified by χ, the amplitude of the ground reference 

configuration in the final MRCI+Q wavefunction. To further demonstrate the crucial 

importance of multireference methods in the F + HCl PES, Figure 5.7 plots the 
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magnitude of the ground state reference configuration (i.e.,χ2) as a function of the 

reaction coordinate.  The strong and highly structured decrease in χ2 clearly indicates 

that excited reference configurations constitute a significant portion of the wave 

function in the broad vicinity around the transition state. Interestingly, there are two 

structured dips in the χ2 plot where the excited state admixture is greatest; these 

correspond quite nicely to points along the reaction coordinate closest to the conical 

intersection seams (marked with a *).  Clearly, significant mixing of excited 

configurations is taking place over the entire barrier region of the surface, further 

underscoring that single reference ab initio methods cannot be expected to adequately 

describe the electronic wavefunction. 

 The importance of these conical intersection seams in F + HCl dynamics will 

depend on how intimately the full 3D wavefunction samples these regions on the way 

toward reaction. The extent of this sampling is not immediately obvious, since the 

conical intersections occur only for a collinear configuration (θ = 0o, 180o), and yet 

the transition state is quite strongly bent (θ = 123.5o).  To provide more insight into 

this question, 2D contour plots as a function of RHF and RHCl are shown in Fig, 5.8, 

for both collinear  and transition state bending angles. The dashed lines in Fig 5.8b 

represent the coordinates of the conical intersection seams, with the asterisks 

indicating the positions closest to the (bent) reaction path. These points clearly occur 

high up on the reaction barrier and for RHF and RHCl bond lengths quite comparable to 

those of the transition state.  

 Based on the above discussion, one relevant question is therefore the 

“stiffness” of the bending potential, evaluated near the transition state bond lengths. 
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Figure 5.9 displays 1D cuts through the full potential as a function of the bend angle 

θ. The dashed line cut is for RHF and RHCl coordinates fixed at the optimized 

transition state values. The strongly bent nature of the transition state is clearly 

evident with a modest ∼3 kcal/mol higher barrier at the linear configuration. 

However, this substantially underestimates the energetic proximity to the conical 

intersection seam; specifically, if one also adjusts RHCl and RHF to the conical 

intersection values represented by the two asterisks, the energies drop to 3.55 

kcal/mol and -3.23 (referenced to the F + HCl asymptotic entrance channel). Thus 

even the higher of these two points on the seam is lower than the transition state by 

∼0.25 kcal/mol. Simply stated, all reagents with sufficient energy to surmount the 

classical reaction barrier have energetic access to non-adiabatic seam regions for both 

reagent and product channel sides of the transition state. 

 A more relevant angular slice through the potential is therefore at the RHCl 

and RHF geometries associated with the two conical intersection seam values closest 

to the transition state. Such a slice is also displayed in Fig 5.9 for the (higher energy) 

reagent channel seam region, which now indicates a much softer bending potential 

and even lower barrier (∼ 1 kcal/mol) to the linear configuration than at the transition 

state bond lengths. Note that the barrier at linearity on this second curve now 

explicitly corresponds to a point directly on the conical intersection seam. 

Furthermore, this curve intersects with the reaction path (point marked “P”) at an 

energy only 0.9 kcal/mol below this linear conical intersection, underscoring the 

energetic proximity of reactants to these regions of high non-adiabaticity. A more 

quantitative metric for how accessible the conical intersection region is to reagents 
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along the reaction path can be obtained by solving for the ground state 1D angular 

wave function at fixed RHCl and RHF. Since the F-H-Cl moment of inertia becomes 

singular at the linear configuration, this requires taking advantage of the rigid bender 

methods developed by Hougen, Bunker and Johns. Using these methods, the lowest 

several eigenenergies have been calculated and are displayed for both the transition 

state and conical intersection curves in Figure 5.9. Note that linear conical 

intersection region becomes classically accessible even for a few quanta of bend 

excitation. A more detailed investigation of these conical intersections with full spin-

orbit effects and fitting of the resulting diabatic 22A’ and 12A” surfaces is explored in 

the next chapter.54 

 The most striking aspect of the F(2P) + HCl →  HF + Cl(2P) PES is the 

sharply bent MRCI+Q/CBS/Scaled transition state geometry of 123.5o.  This feature 

is qualitatively reiterated at any level calculation, from previous single reference 

surface calculations (θ ≈137o) to single point UCCSD(T)/AVQZ (118o) calculations. 

Fig 5.8 exhibits the typical “early” barrier expected for a strongly exothermic 

reaction.  However, both the barrier height and “early” vs. “late” nature of the 

transition state changes quite dramatically with the F-HCl bend angle θ. As noted 

previously by Skodje and coworkers,64 this strongly bent transition state can have a 

significant influence on the reaction dynamics, specifically in reducing the reaction 

cross section for JHCl » 0 reagents. 

 A simple picture for such behavior can be obtained as follows. 2D transition 

state geometries and barrier heights have been obtained from the full 3D surface at a 

fixed angle, varying only the two bond length coordinates RHCl and RHF.  These 
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effective transition state barrier heights and HCl bond lengths are plotted as a 

function of θ in Figure 5.10a. For more collinear geometries (θ ≈ 180), the 2D barrier 

height and transition state HCl bond length prove to be relatively insensitive to θ. 

Furthermore, rHCl remains quite close to the free equilibrium value, as characteristic 

of “early barrier” behavior even out to near the transition state bend angle (θ ≈ 123.5). 

For more strongly bent geometries (θ < 120), however, the 2D transition state HCl 

bond length grows dramatically with decreasing θ, implying a rapid shift from “early” 

to “late” barrier dynamics, accompanied by a similarly precipitous increase in the 2D 

barrier height. By way of example, the shaded portion in Fig 5.10a displays the 

relatively small range of F-H-Cl angles that correspond to 2D barriers below a typical 

5 kcal/mol experimental collision energy. Alternatively stated, the strongly bent 

transition state nature of the F + HCl PES translates into a strongly reduced angular 

acceptance window for reaction, resulting in anomalously small cross sections even 

for an “early” barrier process at energies well above the transition state threshold. 

 Indeed, the strongly bent nature of the F-H-Cl transition state generates 

additional dynamical restrictions on the reaction probabilities. As a simple physical 

picture for this, consider a collision of F with HCl oriented initially in a bent 

configuration. Particularly for such a “heavy + light-heavy” mass combination, this 

presents a large moment arm for prerotating the HCl reagent in the entrance channel, 

thereby decreasing θ below the optimum transition state angle. From Fig 5.10a, this 

“entrance channel rotation” translates into higher effective barrier heights, thereby 

shutting off the probability of a successful reaction. To quantify how large these 

“entrance channel rotation” effects might be during a F + HCl collision, preliminary 
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classical trajectory simulations have been performed on the current PES. Initial 

conditions are chosen such that the F atom initial velocity is directly toward the H 

atom at 5.0 kcal/mol center of mass collision energy (i.e., 1.2 kcal/mol above 

threshold) for an initial F-HCl bend angle between 60o and 180o. The resulting F-H-

Cl bending angle is then recorded at the location of closest approach of the F atom to 

the HCl center of mass. Results of this sample trajectory analysis are shown in Figure 

10b, where the change in angle Δθ at the closest approach distance has been plotted 

against the initial F-H-Cl angle.  Noteworthy is that for all incident angles, Δθ is quite 

large and negative (i.e., the F-H-Cl angle becomes more bent). In conjunction with 

Figure 5.10a, this implies a large increase in the effective barrier height, which begins 

to explain the exceptionally low probability of reactive trajectories observed even 

above threshold.  

 Indeed, based on this elementary classical analysis, a successful reaction 

would require collision at very nearly collinear geometries to “prerotate” the HCl into 

the appropriate transition state bend angle. This range of angles is indicated by the 

steeply rising edge feature in Fig 5.10b, which translates into a considerable 

narrowing of reactive acceptance window at 5.0 kcal/mol, specifically from θ ≈ 33o to 

θ ≈ 2o. Furthermore, when one takes the correct sin(θ) area element into account, this 

model predicts a reactive event with only 0.21% of the hard sphere cross section. The 

dashed line in Figure 5.10b shows similar predicted deflection plots for trajectories 

with the H atom replaced with D. As expected, the deflection is somewhat decreased 

due to the more massive D atom but still quite large and sampling a region of the 

configuration space where the barrier is too large to react. Note that such a dynamical 
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picture due to pre-rotation into the transition state is most appropriate for non-rotating 

HCl reagent molecules. This is a likely explanation for observations obtained from 

classical and full 3-D quantum dynamics on this surface64 , which show very small 

cross sections for reactions starting in JHCl = 0 but which increase dramatically with 

JHCl>0. Whether such a simple picture for the role of transition state bending angle 

effects will be dynamically relevant in other reaction systems represents an 

interesting question for further exploration.  

VI. Summary and Conclusion 

 This chapter presents results from high-level ab initio calculations on the 12A’ 

electronic state for the F(2P) + HCl → HF + Cl(2P) reaction, along with an analytical 

fit to this surface in full 3D. The ab initio data for the analytical fit are calculated at a 

grid of 3D points using  dynamically weighted MCSCF methods with 6 states, 

followed by high-level multireference (MRCI+Q) methods for a series of correlation-

consistent basis sets (AVnZ, n = 2,3,4). These results are then extrapolated to the 

complete basis set limit (CBS), with a single global correlation scaling parameter to 

match theoretical and experimental exothermicities.  Sequential fits of this surface to 

atom, pairwise, and full three body terms have been obtained and reported for the 

ground adiabatic state. This represents a necessary first step toward obtaining all 

multistate diabatic electronic surfaces for use in quantum scattering calculations and 

rigorous comparison with state-resolved experimental data. 

 The successful extraction of this full 3D surface demonstrates the robust 

applicability of DW-MCSCF method to obtain multiple smooth potentials in systems 

with strongly avoided crossings and charge transfer character at the transition state. 
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Furthermore, the nominally “ground” electronic state wave function proves to be 

highly multireference in character, particularly in the chemically important region 

near the transition state. This underscores the importance of multireference methods 

in open shell reaction dynamics, particularly for highly electronegative atoms with 

strong charge transfer contributions and permits extraction of a much improved 

surface for comparison with previous single reference state methods.  A simple one-

parameter correlation scaling procedure is introduced that recovers relatively minor 

correlation energy effects due to frozen core orbitals, benchmarked to match the 

experimentally measured exothermicity. 

 This surface exhibits several intriguing dynamical features for further 

exploration.  First of all,  elementary chemical arguments are presented for open shell 

halogen/H atom abstraction reactions that predict the appearance of conical 

intersections close to the transition state region. The presence of two such seams of 

conical intersections is confirmed in the ab initio calculations, occurring at RHCl and 

RHF bond lengths close to and energies slightly below the transition state values. Most 

importantly, this may suggest a major role for multiple electronic surfaces and non-

adiabatic effects for F + HCl even under thermal reaction conditions. In fact, the 

temperature dependent studies by Houston and coworkers indicate a curiously non-

Arrhenius kinetic behavior. One plausible speculation is that this could arise from 

non-adiabatic hopping effects due to temperature dependent access to the entrance 

and exit conical intersection seams on the surface. This would be extremely 

interesting to explore, both by full multisurface dynamics calculations as well as 

rovibrational and spin orbit state-resolved scattering experiments.  
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 Second, the transition state is quite strongly bent, with a F-H-Cl bend angle of 

θ ≈ 123.5o. This is in contrast with the more nearly linear transition states observed 

for F + H2 surfaces and may have a significant impact on the reaction dynamics in 

multiple ways.  For example, 2D slices (RHF, RHCl) of the potential surface for a fixed 

bend angle indicate a dramatic increase in the effective transition state barrier and 

RHCl bond length with decreasing θ below 120. This is consistent with rapid shift 

from early to late barrier dynamics as the F-H-Cl angle becomes more bent, which, 

particularly for a heavy + light-heavy mass combination, is likely to occur naturally in 

the entrance channel. This is further verified by trajectory calculations, which reveal a 

strong “entrance channel rotation” of the HCl reagent, greatly narrowing the angular 

window of acceptance for scaling the transition state and achieving successful 

reaction. Such strongly bent transition states clearly offer a novel platform and testing 

ground for predictions of reaction dynamics as a function of rotational and vibrational 

quantum state, one of many directions which may prove interesting to pursue with the 

availability of the present surface. 
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Tables 

Table 5.1:  ΔErxn in kcal/mol of F(2P) + HCl  HF + Cl(2P) calculated by various ab 

initio methods.  Calculated energies are corrected for zero-point and spin-orbit which 

are not included in the single surface ab initio calculations.  The experimental ΔE is  

-33.060 +/- 0.001 kcal/mol.  

 

            
Basis 

Method 
AVDZ AVTZ AVQZ CBS 

Error 
(CBS) 

HF -19.3 -18.83 -18.67 -18.57 -14.49
MCSCF -23.1 -22.87 -22.75 -22.68 -10.38
MRCI -30.41 -29.98 -29.91 -29.87 -3.19
MRCI+Q -31.33 -31.04 -30.94 -30.88 -2.18
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Table 5.2:  Diatomic constants from ab initio PES calculated at MRCI+Q/AVnZ compared with the correlation scaled 

values and experiment. 

 

                    

  Basis 
De 

(kcal/mol) 
Do 

kcal/mol)
ZPE 

(kcal/mol) re(A) 
ωe 

(cm-1) 
ωexe 

(cm-1) 
Be 

(cm-1) 
αe 

(cm-1) 
HF AVDZ 133.84 128.10 5.74 0.9260 4038.1 76.8 20.6086 0.707
 AVTZ 138.08 132.24 5.84 0.9217 4118.6 77.1 20.8440 0.695
 AVQZ 139.61 133.74 5.87 0.9185 4134.6 77.1 20.9766 0.700
 CBS 140.50 134.61 5.89 0.9165 4143.2 77.1 21.0599 0.705
 Scaled 141.58 135.69 5.89 0.9164 4143.0 76.4 21.0586 0.701
  expt. 141.63 135.65 5.98 0.9168 4138.3 89.9 20.9557 0.798
HCl AVDZ 100.29 96.08 4.21 1.2938 2966.9 49.0 10.3740 0.299
 AVTZ 104.18 99.95 4.23 1.2790 2975.5 47.5 10.6048 0.301
 AVQZ 105.75 101.52 4.23 1.2775 2976.2 46.1 10.6291 0.297
 CBS 106.67 102.44 4.23 1.2769 2978.2 45.6 10.6388 0.295
 scaled 107.35 103.11 4.24 1.2766 2980.2 45.4 10.6433 0.294
  expt. 107.36 103.05 4.31 1.2746 2990.9 52.8 10.5934 0.307
ClF AVDZ 51.44 50.34 1.09 1.6847 770.2 6.5 0.4828 0.004
 AVTZ 56.86 55.74 1.12 1.6455 787.7 6.0 0.5060 0.005
 AVQZ 59.16 58.02 1.14 1.6362 803.2 5.9 0.5118 0.004
 CBS 60.54 59.39 1.15 1.6315 811.7 5.8 0.5148 0.004
 scaled 61.73 60.57 1.16 1.6304 816.3 5.8 0.5155 0.004
 expt. 61.50 60.30 1.13 1.6283 786.2 6.2 0.5165 0.004
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Table 5.3:  The geometries and energies of the transition state for a range of methods 

and basis sets.  In particular, the transition state geometry is strongly bent at all levels 

of theory.  

 

        
Method Basis Bend Angle ΔE‡ 

    (degree) (kcal/mol)
UMP237 6-311G(3d2f,3p2d) 137.4 6.2
PUMP237 6-311G(3d2f,3p2d) 137.4 4.7
PUMP437 6-311G(3d2f,3p2d) 137.4 4.0
UCCSD(T)64 AVQZ 118.0 2.2
MRCI+Q AVDZ 126.2 4.2
 AVTZ 126.4 4.2
 AVQZ 125.9 4.2
 CBS 125.7 4.2
  Scaled 123.5 3.8
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Figures 

 

Figure 5.1:  AVnZ (n = 2-5) extrapolation for F(2P) + HCl and HF + Cl(2P) energies 

to the CBS limit, indicating clear convergence (see inset) in the exothermicity (ΔE) as 

a function of n. The residual error in ΔE (dashed line) is due to active space size in 

the MRCI+Q calculations, as included in correlation scaling 
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Figure 5.2:  Correlation energy (EMRCI-EMCSCF) recovered for each basis set, AVnZ.  -

The nearly constant ratio of recovered correlation energy relative to the CBS 

extrapolation (see inset) illustrates how correlation scaling effectively mimics a larger 

active space. 
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Figure 5.3:  F-H-Cl transition state geometry at various levels of theory, all 

confirming a sharply bent transition state: (a) MRCI+Q/AVTZ; (b) 

MRCI+Q/CBS/Scaled; UCCSD(T)/AVQZ.  
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Figure 5.4:  The DW-MCSCF energies (a) and weights (b) as a function of reaction 

coordinate, with up to 6 states dynamically weighted. Note the strongly avoided 

crossings of F- + HCl(2Π)+ and HF(2Π)+ + Cl- charge transfer (CT) states with 

surfaces correlating to the ground state (2P) asymptotes. Note also the smooth weight 

adjustment from a 3-state calculation at either asymptote to > 5 states near the 

transition state geometry.  
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Figure 5.5: 12A’ reaction path at the MCSCF, MRCI+Q, and correlation scaled levels, 

indicating relatively minor effects due to correlation scaling. Such scaling makes up 

for 2.18 kcal/mol in ΔE and lowers the barrier by 0.43 kcal mol.  
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Figure 5.6:  2D slice (θ  = 123.5o) of the fitted 12A’ surface with global RMS of 0.79 

kcal/mol. 



195 

 

Figure 5.7:  Ground reference state coefficient in the MRCI+Q wavefunction, 

indicating strong admixture of excited state character near the transition state 

geometries closest to the conical intersection (marked by asterisks). 
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Figure 5.8:  12Α’ PES RHF vs. RHCl contours for (a) transition state (θ  = 123.5o) and 

(b) collinear (θ  = 180o) bend angles. Conical intersection seams occur to each side of 

the transition state; the seam location closest to the reaction path is marked by the 

asterisk. Contour spacing is 5 kcal/mol with respect to F + HCl(Re). 
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Figure 5.9:  F-H-Cl bending potential corresponding to transition state (dashed) and 

conical intersection seam (solid) RHF and RHCl bond lengths, with eigenvalues 

obtained from a rigid bender analysis. Note that the conical intersection is lower than 

the transition state with only a ∼1 kcal/mol barrier to linearity from the reaction path.  
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Figure5.10: a) 2D effective transition state barrier height (solid) and HCl bond length 

(dashed) as a function of F-H-Cl bending angle (dotted line is Re for HCl). As 

θ decreases below ∼120o, both the HCl bond length and barrier height increase 

dramatically from transition state values, characteristic of a shift from an “early” to 

“late” transition state. b) Trajectory analysis for F-HCl angular deflection (Δθ) as a 

function of initial bend angle, θ. For J = 0, only a very narrow range (dark grey) of 

incident scattering angles are successfully “prerotated” (light grey) into the 

appropriately bent transition state angle to react.  
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Chapter 6:  Multireference configuration interaction 

calculations for F(2P) + HCl → HF + Cl(2P) reaction: 

Correlation-scaled diabatic potential energy surfaces. 

I. Introduction 

 Understanding reaction dynamics at the quantum state resolved level has been 

a major challenge to the theoretical and experimental chemical physics community 

for many years. As a result of such interest, there has been much development 

towards both accurate ab initio potentials and numerically exact quantum dynamical 

calculations on these surfaces. One particularly well-studied system is the F(2P) + H2 

 HF + H(2S) reaction, for which there now exists an exceptionally accurate 

potential surface1,2 from the Werner group, as well as numerous theoretical3-8 

calculations and experimental9-20 papers on state-to-state reactive scattering. Also of 

interest has been the similar but notably different “heavy + light-heavy” isotopic 

variation on this reaction system, F(2P) + HD  HF + D(2S), for which long sought-

after quantum transition state resonances have been both predicted 21-31 and 

experimentally32 observed.  In particular, stabilization calculations at the resonance 

energy in the transition state region yield a resonance wave function that can be 

described classically as an excited H atom motion in a quasi bound HF(v = 3)--D 

state. As a simple physical picture, the light H atom executes rapid oscillations 

between the relatively heavy F and D atoms, eventually predissociating into states 

corresponding to HF(v = 2,J) + D. Ongoing theoretical and experimental work on this 
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H atom transfer triatomic system has revealed the considerable dynamical 

sophistication still to be found even in “simple” heavy + light-heavy reactions, which 

continue to offer fundamental challenges for first principles theoretical calculations.  

 The clear observation of transition state resonance dynamics in F + HD 

suggests that there may be similar resonances in other heavy + light-heavy reaction 

systems such as F(2P) + HX. One such reaction of particular interest is the F(2P) + 

HCl  HF + Cl(2P) system, the high-level benchmark calculations of 3-state 

adiabatic and diabatic potential energy surfaces which represent the primary focus of 

this chapter. The reason for this choice is several-fold. First of all, F(2P) + HCl  HF 

+ Cl(2P) has a very nearly identical exothermicity to the F(2P) + HD  HF + D(2S) 

reaction  (ΔEHF + Cl = -33.1 kcal/mol vs ΔEHF +  H = -31.2 kcal.mol), as well as an 

experimentally accessible barrier height of Ebarr = 3-5 kcal/mol. Secondly, the total 

electron count (Nelec = 27) and number of nuclear degrees of freedom are challenging 

but still manageable with modern high-level multireference configuration interaction 

(MRCI) ab initio efforts for mapping ground and excited potential surfaces out in full 

dimensionality. Thirdly, simple electrostatic arguments predict the presence of non-

adiabatic surface crossings and 1D seams of conical intersections that should be 

energetically accessible at typical reactive collision energies. Finally, the open shell 

halogen in the F(2P) + HCl  HF + Cl(2P) reaction has multiple spin-orbit 

configurations of products and reactants in the entrance and exit channels, which 

provides a potential experimental handle to distinguish surface hopping events as well 

as novel opportunities to study non-adiabatic dynamics on multiple electronic 

surfaces.  
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Previous theoretical studies on this surface have included quasiclassical 

trajectory (QCT) calculations performed on an empirical LEPS surface33, QCT34and 

full dimensional time-dependant wavepacket 35 calculations obtained on a newer ab 

initio (PUMP2/6-311G(3d2f,3p2d)) surface36, a LEPS surface created from recent 

experimental kinetics information37, and a correlation-scaled MRCI surface from our 

group38.  All previous calculations33-35 have focused specifically on the ground (12A’) 

electronic state, though study of other F atom abstraction systems has revealed 

evidence for avoided crossings, charge transfer states, seams of conical intersection, 

etc. For example, it has been shown that there is significant non-adiabatic behavior 

for F(2P) + H2->HF + H(2S)  in the entrance channel3,23, and there is also direct 

experimental evidence in 4 atom systems (i.e. F (2P) + H2O  HF + OH(2Π)  that 

exhibit strong non-adiabatic coupling behavior in both the entrance and exit 

channels39.  It is likely that similar effects are present in F(2P) + HCl  HF + Cl(2P), 

the dynamics of which clearly necessitate a high-level multireference electronic 

treatment. In this work, I present a new 3-state (12Σ, 12Πx, 12Πy) diabatic PES for the 

F(2P) + HCl reaction, based on high-level multireference calculations including spin-

orbit contributions. 

The F(2P) + HCl  HF + Cl(2P) reaction presents many of the same 

challenges seen earlier in the F(2P) + H2O  HF + OH(2Π) reaction40, namely, the 

presence of highly electronegative atoms that significantly lower the charge transfer 

(CT) state (i.e. F- + HCl + (2Π) and HF + (2Π) + Cl-) energies in the barrier region.  In 

addition, there is significant non-adiabatic coupling and avoided crossing behavior 

between the 12A’ and 22A’ surfaces, which requires explicit multireference 
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calculations to describe accurately.  In light of these considerations, ab initio 

calculations for this PES are obtained via internally contracted multireference 

configuration interaction (MRCI)41-43 methods using reference states taken from a 

dynamically weighed multiconfigurational self-consistent field (DW-MCSCF)40 

calculation.  In addition, extrapolation to the complete basis set (CBS) limit44 and 

correlation energy scaling45,46 are used to further refine the PES shape as well as 

accurately reproduce the experimentally determined energetics. 

As a further source of dynamical richness, the F(2P) + HCl  HF + Cl(2P) 

surfaces exhibit conical intersection seams in both entrance and exit channels. This 

can be explained by elementary chemistry considerations, as described by Hutson and 

coworkers47-49 for open shell radical X-HX complexes. This is most readily 

understood by first considering the collinear limit, with z as the molecular axis and 

electronic states classified in the C∞v symmetry group, followed by bending of the 

triatomic away from linearity in the xz plane and consequent reduction to the Cs 

symmetry group. Far outside the region of significant chemical reaction, the surfaces 

will be asymptotically dominated by electrostatic dipole-quadrupole and dipole-

induced dipole interactions. For a collinear configuration of atoms, this results in an 

energy ordering where the Σ state (with the unfilled p orbital parallel to the z-axis) 

lies above the doubly degenerate Πx, Πy states (unfilled p-hole perpendicular to the z-

axis). However, for the reaction to occur over the lowest barrier, the unfilled p-orbital 

must be approximately parallel to the reaction coordinate to participate in the H atom 

transfer. Thus, in the vicinity of the transition state, the lowest energy barrier (again 

in C∞v) must arise from a Σ configuration of the F (or Cl) atom with respect to the 
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HCl (or HF), thereby reversing the asymptotic Σ and Π ordering of states with respect 

to the reactant (or product) channels. Since the symmetries of the Πx and Σ surfaces 

are reduced to non-crossing 12A’ and 22A’ surfaces for any non-collinear geometry, 

this necessarily results in a 3N-5 = 1-D seam of conical intersections in both the 

entrance channel and exit channel. As will be shown in this work, these conical 

intersection seams for the F + HCl  HF + Cl system are energetically quite low 

(Ecrossing = 3-4 kcal/mol) with respect to the collision energy (Ecom = 5 kcal/mol) as 

well as the F(2P) + HCl transition state (ETST ≈ 3.8 kcal/mol). Thus, although such 

arguments for the existence of conical intersections are quite generally true for 2P + 

closed shell systems, these intersections for F + HCl  Cl + HF are energetically 

accessible in all reactive encounters and therefore likely to be of significant relevance 

in accurately describing the reaction dynamics. 

The organization of this chapter is as follows:  Section II describes the details 

of the ab initio calculations, including a discussion on the CBS extrapolation and 

correlation energy scaling that is used to provide an accurate PES.  In Section III, I 

discuss the adiabatic potential energy surfaces, followed by Section IV, detailing the 

creation of and analytical fit to the diabatic energies with a discussion on the 

inclusion of spin-orbit effects in the diabatic basis.  In Section V, I discuss the 

interesting aspects of this PES followed by a summary and concluding remarks in 

Section VI. 

II. Ab Initio Background 

 All calculations are performed using the MOLPRO suite of ab initio 

programs50.  Since I explicitly need to account for non-adiabatic as well as single 



210 

surface effects, electronically excited states of the F(2P) + HCl  HF + Cl(2P) 

reaction are required. Thus, the ab initio methods employed include multireference 

methods to obtain wavefunctions for non-adiabatic calculations and characterization 

of the conical intersections.  In addition, other 3- and 4-atom systems involving F 

have indicated large multireference character in the ground state wavefunctions38,40.  

In light of these restrictions and past success with the dynamically weighted 

multiconfigurational self-consistent field (DW-MCSCF) method, the natural choice 

for this reaction is to use DW-MCSCF along with internally contracted 

multireference CI (MRCI) and the multireference Davidson correction (MRCI+Q).  

As the MRCI calculations only correlate electrons in orbitals of the same symmerty, 

separate adiabatic MRCI+Q calculations are performed for each Cs symmetry: one for 

the 12A’ and 22A’ states together and one for the 12A” state. 

Residual ab initio error due to incomplete basis sets can be corrected by 

extrapolating to the complete basis set (CBS) limit44 using the standard aug-cc-pVnZ 

(n = 2,3,4) basis sets of Woon and Dunning51-53.  Based on the benchmark surface 

studies of O(3P) + HCl by Peterson44,46, this extrapolation is obtained via the three 

parameter fit 

2)1()1()( −−−− ++= nn
CBS CeBeEnE . (6.1) 

This function yields an excellent extrapolation to the CBS limit as explicitly 

confirmed by additional calculations for reagent and product asymptotic geometries 

with basis set extensions up to n = 5. The absolute energy difference between the 

CBS extrapolation for n = 2 - 4 and n = 2 - 5 was ~0.39 kcal/mol for both the entrance 
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and exit channel asymptotic calculations; a fuller description of the CBS 

extrapolation procedure is given in previous work on the ground state PES.38  

 The adiabatic MRCI+Q calculations are performed using a full valence 

complete active space54 (CAS) reference function with 15 active orbitals (12A’,3A”), 

6 of which (5A’,1A”) are uncorrelated.  The orbitals are obtained by a state-averaged 

multiconfiguration SCF (SA-MCSCF) calculation with 15 active orbitals (12A’, 3A”) 

with 7 (6A’, 1A”) closed to excitations.  A total of 6 states are then included in the 

SA-MCSCF calculation (4A’, 2A”), with the weights determined by the DW-MCSCF 

algorithm.  In order to account for the triply degenerate p-hole in both the F and Cl 

atoms at the asymptote, the SA-MCSCF calculations include all 3 states (2A’, 1A”); 

however, low-lying charge transfer (CT) states (e.g. F- + HCl + (2Π)  HF + (2Π) + Cl-

) require the inclusion of 2 more A” and 1 more A’ state (a total of 6 states) to fully 

describe the transition state region.  As previously demonstrated40, root flipping as the 

CT surfaces cross other states along the reaction path makes it extremely challenging 

to obtain a smooth accurate PES for a fixed set of SA-MCSCF weights.  In DW-

MCSCF, on the other hand, the weights for each state are chosen as a function of its 

energy with respect to the ground state energy at each point in configuration space. 

The function for the weight based on the energy difference from the ground state is 

  ( )( )0
2 EEsechw ii −−∝ β  (6.2)  

The decay coefficient (β−1) for DW-MCSCF is empirically chosen to be 3eV.  In the 

SA-MCSCF calculations, at the transition state, the CT states are about 2eV above the 

ground state, and from our group’s previous F + H2O calculations40 with similar 

energetics, it is known that a 3eV DW-MCSCF decay works well.  Most importantly, 
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this method permits one to eliminate spurious discontinuities from root flipping and 

thereby obtain a smooth reaction path and surface while accurately describing both 

asymptotic and transition state regions.   The orbitals obtained from the DW-MCSCF 

calculation are then used as reference states for the internally contracted MRCI 

calculation.  The benefit of using the DW-MCSCF procure is that the lowest MRCI 

states that arise from the DW-MCSCF orbitals are smoothly changing as a function of 

reaction coordinate.  However, it is impossible to completely eliminate discontinuities 

in the upper MRCI states without an unreasonably large decay coefficient.  As noted 

in previous F + H2O work40, the relative smoothness of the DW-MCSCF energies is 

controlled by the β-1 parameter. A larger β-1, correlates to smoother curves, although 

accuracy at the asymptotes suffers when β-1 is too large.  In this work, the 3eV choice 

of β-1 reflects the smoothest 12A’, 22A’, and 12A’’ curves that could be obtained 

while still accurately describing the asymptotic energies.  By the way of an example, 

in the absence of spin-orbit contributions, the three lowest asymptotic F + HCl (and 

HF + Cl) states should be exactly degenerate.  When β-1 is equal to 3eV, these three 

states at both asymptotes are degenerate to within 2x10-6 kcal/mol; however, a slightly 

larger β-1 of 5eV yields states that are only degenerate to 0.06 kcal/mol. 

 Building on ideas by Peterson and coworkers46 and Truhlar and coworkers45, I 

employ a simple global correlation energy scaling procedure calibrated to match the 

experimentally known reaction exothermicity. Specifically, the correlation energy is 

uniformly scaled by a constant factor near one that reproduces the exothermicity 

exactly while retaining the shape of the PES and not introducing any discontinuities.  
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The scaled energy is simply the sum of the MCSCF energy plus the correlation 

energy scaled by a factor, γ: 

 CORRMCSCFSCALED RERERE )()()( γ+= .  (6.3) 

In the limit of γ  = 0, the scaled energy is just the MCSCF energy (i.e., no extra 

correlation energy is recovered), and when γ  = 1, the scaled energy is the MRCI+Q 

energy (i.e., all correlation energy is recovered).  Allowing γ to be greater than one 

permits recovery of additional correlation energy, in effect, approximating an increase 

in active space. The scaling factor (γ) at the CBS limit determined in previous work38 

is close to unity (γ  = 1.027) for the A’ symmetry; i.e., one only needs to recover an 

extra 2.7% of the correlation energy to reproduce the experiment.   

III. Adiabatic Surface Calculations 

 In the F(2P) + HCl  HF + Cl(2P) reaction, there are 3 low-lying adiabatic 

potential energy surfaces that correlate to the spin-orbit split, F(2P3/2) + HCl and 

F*(2P1/2) + HCl in the entrance channel and HF + Cl(2P3/2) and HF + Cl*(2P1/2) in the 

exit channel. The overall calculational strategy is as follows. First of all, in the Born-

Oppenheimer approximation, ab initio methods directly yield the adiabatic energies 

for arbitrarily slowly moving nuclei, with non-adiabatic coupling between the 

surfaces arising from derivatives of the wave function with respect to 3N-6 

displacements. To facilitate later dynamical calculations, however, it proves 

convenient to express these (3x3) adiabatic surfaces in an equivalent (3x3) diabatic 

representation with off-diagonal coupling terms mixing the 1A’ and 2A’ states. This 

choice of diabatic representation is in general non-unique, but can be calculated 
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simply in MOLPRO by constraining the diabats to converge onto the appropriate 

adiabatic states for collinear and asymptotic geometries. Secondly, I need to include 

spin-orbit interaction due to 2P orbital angular momentum in the F and Cl atoms. 

Since this interaction is relatively weak, this is initially neglected this in the 

calculation of both adiabatic and diabatic surfaces, but it is later included explicitly 

via Breit-Pauli spin-orbit matrix elements55 to generate a 6x6 matrix representation of 

the 3 doubly degenerate spin-orbit states. 

In order to construct the full 3D potential energy surface, adiabatic 

calculations have been performed along a grid of points with the ranges RHF = [1.3 - 

15.0] a0 and RHCl = [1.8 - 15.0] a0 and θF-H-Cl = [180, 150, 120, 90, 60, 30, 0] degrees, 

sampling only energies lower than 50 kcal/mol above the entrance channel.  The 

resulting 3230 points are chosen such that the density is maximized in the most 

important regions of the surface (i.e., the transition state and van der Walls well 

regions), while still sampling a large enough region to get an accurate global 

description of the PES. Also included in this full set are 121 points sampling directly 

along the reaction path.   

Figure 6.1 shows the energies of these three adiabatic surfaces (with the spin-

orbit interactions included) as a function of the 12A’ reaction coordinate. The lowest 

adiabat has a barrier of ~5 kcal/mol, which is lowered to 3.8 kcal/mol when 

vibrationally adiabatic zero-point energies in orthogonal coordinates are taken into 

account.38 By way of contrast, the 22A’ and 12A’’ surfaces both have much higher 

barriers of about 25 kcal/mol. The two high barriers are the result of an avoided 

crossing from the relatively low energy CT states that correspond to F- + HCl + (2Π) 
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 HF + (2Π) + Cl-, as clearly revealed in the DW-MCSCF calculations. Indeed, it is 

precisely the interaction among these states that necessitated the inclusion of up to 6 

states in the DW-MCSCF calculation described earlier. A key result of this analysis is 

that at experimental collision energies of ~5 kcal/mol, only reactions over the lowest 

barrier are energetically permitted. Such adiabatic surface correlations make 

unambiguous predictions about the reaction dynamics. For example, in absence of 

non-adiabatic surface hopping, spin-orbit excited F would be completely non-reactive 

at 5 kcal/mol and any product Cl would be formed exclusively in the ground spin-

orbit state. As I shall show later, this is largely true but not entirely accurate due to 

non-adiabatic coupling between the 12A’ and 22A’ surfaces.   

 For the special case of 3 atoms in a linear configuration, the three lowest 

adiabatic states, 12A’, 22A’, and 12A’’, transform according to three different 

symmetries, 12Σ, 12Πx, and 12Πy, respectively. By the Wigner non-crossing rule, the 

12A’ and 22A’ states couple and avoid for any non-collinear geometry. However, 

these surfaces can and indeed do cross as 12Σ and 12Πx states when the molecule is 

collinear, thereby creating a 1D manifold of conical intersections.  As noted in the 

introduction, the F(2P) + HCl  HF + Cl(2P) reaction exhibits two conical 

intersection seams (one in the entrance channel, and one in the exit channel). Figure 

6.2 illustrates the nature of the conical intersection region in the exit channel.  When 

the θF-H-Cl is 180o (see Figure 6.2a), there is a 1-D “seam” of geometries (solid black 

line) at which the 12Σ and 12Πx states cross (or, alternately, the 12A’ and 22A’ states 

touch) and are exactly degenerate.  As θF-H-Cl bends away from linearity (Figure 6.2b), 

however, the symmetries are reduced from 12Σ and 12Πx to 12A’ and 22A’, thereby 
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avoiding one another in a classic conical intersection.  Of particular dynamical 

interest is that this seam occurs at energies lower than the ground transition state 

barrier, and though clearly for a collinear as opposed to the bent transition state 

geometry,  not dramatically far away from the reaction path. Thus essentially all 

reactive collisions (with the exception of tunneling events) have sufficient energy to 

sample the conical intersection region. 

 This energetic proximity of adiabatic electronic surfaces implies significant 

derivatives in the wavefunctions with respect to motion along the reaction coordinate. 

Specifically, when the molecule is bent, the 12A’ ( 22A’) state correlates adiabatically 

with the lower (higher) of the 12Σ and 12Πx states, respectively.  As mentioned 

previously, when the F atom is far away, the lower state is approximately “Π-like”, 

but switches to a “Σ-like“ state as the F approaches HCl. (Σ and Π are not rigorous 

quantum labels for anything except the collinear geometry, but nevertheless offer 

useful qualitative descriptors.)  The region in which the electrons rearrange from Π-

like to Σ-like states is the region of the avoided crossing.  The time required for 

electron rearrangement compared to the time over which the nuclei approach governs 

the role of non-adiabatic surface hopping dynamics, as first described in 1-D systems 

by Landau and Zener. Simply stated, at sufficiently low energies, the electrons 

quickly rearrange to remain on the same adiabatic surface.  However, at higher 

energies where nuclei move on time scales competitive with electron rearrangement, 

non-adiabatic transitions to a different adiabatic surface can result.  Explicit 

calculation of these transitions requires a full multiple electronic surface treatment to 

determine the role of non-adiabatic contributions to the reaction dynamics, as will be 
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demonstrated later in Section V. However, these calculations prove to be more 

tractable in the corresponding diabatic basis, the extraction of which is discussed in 

the next section.   

IV. Diabatic Potential Energy Surfaces 

A. Diabatic Surface and Non-Adiabatic Coupling Calculations 

 In contrast to the adiabatic representation, the diabatic state reflects a specific 

representation for which the wavefunctions do not change rapidly in the vicinity of a 

crossing. The key advantage of this approach is that off-diagonal coupling between 

the diabatic states can be treated as independent of nuclear velocities. Though the 

choice of such a representation is not unique, there are several methods for obtaining 

well-behaved diabatic electronic and associated coupling surfaces from adiabatic ab 

initio calculations.  Shatz and coworkers56 have developed a method to approximate 

the mixing angle, χ, from matrix elements of the electronic angular momentum 

operator.  With this mixing angle, the transformation from adiabatic to diabatic 

energies can be described by a simple 3x3 rotation 
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where '1A , '2A , and ''1A  are the adiabatic ab initio energies. The corresponding 

potential in the diabatic basis is then reported as a 3x3 matrix57: 
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Here the diagonal terms represent diabatic energies of Σ , xΠ , and yΠ  

respectively, where β is the coupling surface between Σ  and xΠ states and 

directly related to the mixing angle by 2χ = tan-1[2β/(VΣ−VΠx)]. It is worth stressing 

that the labels Σ , xΠ , and yΠ are rigorously valid only for collinear geometries, 

which therefore have a unique axis around which the electronic angular momentum 

can be defined. More precisely, these labels denote the corresponding 12A’, 22A’ and 

12A” diabatic surfaces with which these states correlate upon bending away from 

collinearity. 

The mixing angle is determined through MOLPRO subroutines, which 

calculate χ by directly examining the electronic wavefunctions58-60.   Simply stated, 

the adiabatic ab initio energies at each geometry are calculated for aug-cc-pVnZ 

bases (n = 2,3,4), extrapolated to the CBS limit via Equation 6.1 and further refined 

by correlation energy scaling via Equation 6.3.  These adiabatic energies are then 

transformed to the diabatic basis using the mixing angle obtained from the highest 

level aug-cc-pVQZ ab initio calculation. However, sensitivity to basis set level is 

extremely small, with less than 1%.variation in mixing angles for all three AVnZ (n = 

2,3,4). 

As the specific choice of diabatic representation is non-unique, I use the 

following method to ensure that the resultant diabatic surfaces are internally self-
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consistent.  At linear geometries, the coupling among the three states must vanish 

identically, since all three (12Σ, 12Πx, and 12Πy) are of different symmetries. For each 

fixed RHF and RHCl geometry, therefore, I make a 1D angular sweep from θF-H-Cl = 

180o to 0 o. I start at θF-H-Cl = 180o with diabatic states, Σ , xΠ , and yΠ , defined 

to be the adiabatic states, '1A , '2A , and ''1A . In the spirit of the diabatic 

representation,  calculations at each subsequent non-collinear angle proceed first by 

maximizing overlap with the previous orbital, determining the mixing angle via 

MOLPRO, and iterating for a series of θF-H-Cl = [120o,90 o,60 o,30 o,0 o] angles. As a 

test of self-consistency of the diabitization process, the resulting Σ  and 

xΠ diabatic states can now in general cross, but must converge smoothly onto the 

adiabatic states, '1A , '2A , at both θF-H-Cl = 180o and 0o collinear geometries.  In 

addition, at a few select geometries, θF-H-Cl was swept in 1o increments and compared 

to the 30o steps at the same points.  Variations in the mixing angle were less than 1% 

between the 1o and 30o angular sweeps, indicating excellent convergence of χ. 

Figure 6.3 shows sample adiabatic/diabatic results from calculations in the 

exit channel, where RHF is fixed at the HF equilibrium value (3.4 a0) for RHCl at 6.6 a0.  

As expected, the coupling vanishes at both θF-H-Cl = 180o (and θF-H-Cl = 0o), resulting 

in identical diabatic and adiabatic energies.  At θF-H-Cl = 180o, the Π state is lower in 

energy than the Σ state, due to dipole-quadrupole and dipole-induced dipole 

interactions (i.e., the p-hole perpendicular to the partially positive H end of the HF). 

47-49  As θF-H-Cl sequentially decreases from 180o, the Σ state (p-hole pointing 

preferentially parallel to the reaction coordinate) drops in energy due to interaction 
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with the partially negative F on the HF.  Note that as θF-H-Cl is swept from 180o to 0o, 

the adiabatic 1A’ and 2A’ states exhibit an avoided crossing in the precise area where 

the Σ and Π states swap energy ordering. 

Similarly, diabatic energy crossings (and adiabatic avoided crossings) of the 

2Σ and 2Π states also occur as a function of the reaction coordinate, as shown in 

Figure 6.4a,  Note that in the asymptotes, the low-energy states always correlate with 

the Π (blue) surface, due to the same electrostatic arguments given above.  As the 

reagents get closer toward the transition state, the Σ-like state must be lower in energy 

for the H abstraction to occur.47-49  Notice again that in the region where the diabatic 

surface are crossing, the adiabatic surfaces avoid strongly.  It is in this region where, 

adiabatically, the p-hole is moving from a Π-like state (pointing away from the 

diatomic) to a Σ-like state (pointing towards the diatomic).  Figure 6.4b shows a 

similar plot of the reaction path, but this time with the geometry artificially 

constrained to be collinear (θF-H-Cl = 180o), for which the adiabatic and diabatic 

energies are necessarily the same.  The adiabats do not avoid in this case because they 

are all of different symmetry (2Σ, 2Πx, 2Πy as opposed to the bent geometry case of 

2A’ and 2A’’). 

B. Spin-orbit Calculations 

The spin-orbit terms are calculated identically as described by  Alexander and 

coworkers61 for the F + H2  HF + H multistate surface.  In this method, first the 

Breit-Pauli spin-orbit operator55 is used to calculate the adiabatic spin-orbit states62 

using the unperturbed adiabatic states as a basis.  The Breit-Pauli spin-orbit operator 
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generates an adiabatic spin-orbit matrix (HSO), which is then transformed into a 

diabatic spin-orbit matrix using the known mixing angle.  This procedure results into 

two additional A and B surfaces as a function of coordinates (θ, RHF, RHCl), obtained 

from the diabatic orbitals via: 

xSOy HiA ΠΠ=  (6.6) 

and 

 ΣΠ= SOx HB  (6.7) 

where the absence (presence) of a bar over a state signifies an electron spin projection 

of  + 1/2 (-1/2) .  After inclusion of spin-orbit terms, the final potential is represented as 

a 6x6 matrix: 
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The 6 parameters obtained from this adiabatic to diabatic transformation ( ΣV , xVΠ , 

yVΠ , β, A, and B) are then fit to analytical functions of θ, RHF, and RHCl as described 

below. A FORTRAN subroutine and complete listing of least-squares coefficients for 

calculating this matrix and the lowest three diabatic and adiabatic PES’s will be made 

available though EPAPS63.   
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C. Analytical fits of the diabatic PES 

Following the methods outlined by Aguado and Paniagua64, the diabatic 

surface energies, VΣ, VΠx, and VΠy, are least-squares fit to a multibody expansion in 

pairwise displacement coordinates: 

 ( ) ( ) ( )ClFHClHF
ClFHClHFi
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where V(1) ( ClFHClHF RRR ,, ) represents the energy zero for three separated atoms (i.e., 

subtracted from each ab initio energy), V(2) (Ri) are diatomic potentials for in the 

asymptotic pairwise limit, and V(3) ( ClFHClHF RRR ,, ) reflects the remaining 3-body 

interactions.  

The two body interaction term is based on a sum of modified Rydberg 

functions64: 
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 where R represents the pairwise interatomic distances between the 3 atoms.  Ab initio 

points for each of the diatomics are fit to a Nth order polynomial with N = 9.  For the 

Cl + HF reagent channel, 19 ab initio points between RHF = 1.2 a0 and RHF = 3.0 a0 

have been used, yielding a least-squares fits for α1, α2 and Ci (i = 0,9) with a global 

RMS deviation of 0.039 kcal/mol.  Similarly for HCl, 26 points between RHCl = 1.6 a0 

and RHCl = 4.0 a0 have been fit to a global RMS of 0.015 kcal/mol. Although the ClF 

region is not energetically sampled in reactive scattering experiments at typical 

collision energies, the ClF potential is also obtained for 21 points between RClF = 2.5 

a0 and RClF = 4.5 a0, yielding a global diatomic fit with a RMS deviation of ~0.046 

kcal/mol. 
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 The three body term simply reflects the remaining difference between ab 

initio points after subtracting the diatom V(2) and atom V(1) energies.  Since this term 

must vanish in any of the diatomic asymptotes, a commonly used functional form is 

simply a linear combination of two-body product functions, i.e.,  
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with the total order of the polynomial restricted to i + j + k≤M.  The explicit 

numerical least-squares weighting strategy for obtaining this fit is modeled after 

efforts developing the Stark-Werner F + H2 surface. First of all, ab initio points along 

the reaction path are the most important and given the highest weight of 100. Of the 

remaining 3230 grid points, the 2200 geometries with energies less than 15 kcal/mol 

above the F + HCl entrance channel are weighted 10-fold, with the remaining 1030 

points with energies between 15 and 50 kcal/mol receiving a weight of 1.  For the VΣ 

surface, the resulting global RMS deviation for a least-squares fit with a 12th order 

polynomial (M = 12) is ~0.31 kcal/mol, with RMS deviations for VΠx and VΠy 

surfaces of  ~0.35 kcal/mol and ∼0.34 kcal/mol respectively. However, the errors in 

such a fitting process prove to have non-Gaussian tails, for which a simple RMS 

metric can substantially overestimate the importance of the deviations. By way of 

example, the inset in Figure 6.7a displays the explicit error histogram for the VΣ 

surface least-squares fit, which exhibits a substantially improved FWHM metric of 

~0.049 kcal/mol, i.e., nearly an order of magnitude better than the RMS value. 

Furthermore, the surface fit quality for geometries along the reaction coordinate is 

~0.005 kcal/mol, reflecting improvement by yet another order of magnitude.  
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The above comparison speaks to the presence of residual errors in the least-

squares fitted surface, but in regions that are generally much higher in energy and 

away from the reaction path sampled at typical collision conditions.  There appear to 

be  two contributions. The first is due to the strongly exothermic nature of the 

potential, for which the above weighting strategy necessarily includes product state 

regions high up on the repulsive walls. Secondly, analysis of the residual errors 

indicates that regions > 20 kcal/mol above the barrier are less well fit, due specifically 

to VΠx and VΠy surfaces in the transition state region.  These surfaces are much higher 

in energy (~30 kcal/mol) than the VΣ surface (~5 kcal/mol) and are influenced by 

multiple and rapid avoided crossings with excited charge transfer states. These effects 

can be compensated for by including additional electronic states in the DW-MCSCF 

prodecure and/or utilizing a faster decay parameter (~5-6 eV).  However, both options 

would degrade PES accuracy in the physically relevant regions corresponding to 

typical collision energies at or near the transition state. 

D.  Diabatic coupling and spin-orbit fits 

Slices of the diabatic coupling, β, are shown in Figure 6.8 for three different 

F-H-Cl bend angles, revealing the basic surface topography. Based on these 

observations, the surface is fit to a 3 body-like term given by the sum of i) a simple 

polynomial that creates a steep repulsive wall as RHF and RHCl become small and ii) a 

direct product of distributed Gaussians in RHF and RHCl and sin(nθ): 
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As required, the functional dependence of β on sin(nθ) ensures identically zero 

coupling between diabats for molecules in the linear configuration (θ = 0, 180). The 

first term represents an empirical 4th order polynomial “wall” for non linear 

molecules as RHF and RCl approach zero, with an a0 value least-squares fit to the data. 

With the large dynamic range terms covered in Equation 6.12, the remaining surface 

can then be efficiently fitted by normalized 2D Gaussians, ),,( iHClHF ii
RRg σ ,  

centered on ),(
ii HClHF RR  with a width of σi.. The direct product grid of 134 Gaussians 

with sin(nθ) (n = 1-3) functions results in a total of 402 basis functions for the least-

squares fit.  The RHF, RHCl grid of Gaussians is shown explicitly in Figure 6.6, with σi 

for each grid point being 0.6411 of the grid spacing.  This choice of σi arises from a 

desire to minimize the coupling (or overlap) of the Gaussian basis functions, while 

still having them wide enough to fill out the space between the grid points.  The 

weights for the 3230 ab initio points are chosen such that large weights correspond to 

large values of the diabatic coupling. Specifically, guided by simple perturbation 

theory, the weight of each ab initio point is taken to be proportional to β/(VΣ-VΠξ) 

with a cutoff dynamic range of 0.1 and 1,000.  The RMS residuals of such a least-

squares fit to the ab initio points are 0.064 kcal/mol on a range of 0 - 15 to kcal/mol. 

Similar to the above analysis of the β surface, the two spin-orbit surfaces, A 

and B, are fit with a product of distributed Gaussian and angular terms as in Equation 

6.12. However since there is now spin-orbit interaction asymmetry between the 

asymptotic F + HCl and Cl + HF limits, an additional offset term S must be included:  
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Here g is a normalized Gaussian, Pl is a Legendre function (with l = 0, 1) , and the 

offset, S, is in the form of a switching function because the two asymptotes (F + HCl 

and HF + Cl) have a constant non-zero value .  Since these surfaces must converge on 

F and Cl spin-orbit values at the reactant and product asymptotes, respectively, a 

simple switching function for A is used: 
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with a correspondingly similar expression for B. In Equation 6.14, AX is the 

asymptotic value of xSOy Hi ΠΠ  for the X atom asymptote where AF = 124.14 cm-

1 and ACl = 272.29 cm-1. At the asymptotes, the B spin-orbit term, ΣΠ SOx H , is 

conveniently identical to the A term61, so the corresponding switching functions for A 

and B use the same parameters. Based on these correct spin-orbit asymptotic values 

for the switching functions plus 202 distributed Gaussian functions in the interaction 

region, the RMS residuals of the fit are 3.1 cm-1 for the A surface, and 2.8 cm-1 for the 

B surface, both on a range of ~275 cm-1. 

V. Discussion 

The presence of low-lying conical intersections in the adiabatic surface38 

prompts the calculation of diabatic surfaces to be used in  full 3-D quantum dynamics 

calculations.  Figure 6.5b shows the contours (3 kcal/mol spacing) of the collinear 

potential energy surface of the 12A’ state along with two dashed lines representing the 

location of the conical intersection, that is, the coordinates where the 12A’ and 22A’ 
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states have equal energies at θ  = 180o, or, equivalently, where the VΣ and VΠx 

surfaces cross at θ = 180o.   

Note that conical intersections in both the entrance and exit channels occur at 

energies lower than that of the transition state. (Figure 6.5a shows the contours of the 

12A’ surface at the transition state angle θ = 123.5o.)  Specifically, the barrier to 

reaction on the 12A’ surface is 3.8 kcal/mol, with the conical intersection energies 

dropping as low as 3.55 kcal/mol and -3.23 kcal/mol in the entrance and exit channels 

respectively38. Stated simply, this means that any collision with enough energy to 

cross the barrier and react also has enough energy to access the conical intersection 

and interact with the excited 22A’ surface. It is for precisely this reason that each of 

the lowest three diabatic surfaces are calculated.  

The diabatic surfaces are composed of transformations of the three lowest 

adiabatic surfaces.  VΣ (Σ-like) and VΠx (Π-like) are mixtures of the 12A’ and 22A’ 

surfaces while VΠy is identical to the 12A’’ surface, which, by symmetry, does not 

have any interaction with the two A’ surfaces.  The contours of VΣ, VΠx, and VΠy at 

the transition state angle are shown in Figure 6.7.  The coupling between VΣ and VΠx 

is represented in the β surface shown in Figure 6.8 at three angles.  At θ  = 180o (and 

θ = 0o, not shown), the β surface is identically 0 because coupling between the 

surfaces is prohibited by symmetry.  As seen in Figure 6.8, θ = 150o and 120o, the 

value of the β surface is non-zero and significant in the region of the reaction path.  

The magnitude of the coupling is more easily seen in Figure 6.9, where it is plotted as 

a function of the reaction coordinate.  The two coupled diabatic curves are shown 

along with the value of β (using the right y-axis) along the reaction path.  The 
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coupling (β) is the largest in the steep descent out of the transition state towards the 

reactants.  This is reminiscent of the large non-adiabatic coupling seen in the F + H2O 

reaction40,where the OH spin-orbit excited state is observed in greater populations39 

than would be predicted in an adiabatic model.  In the F + HCl reaction, the two A’ 

states correlate to the Cl(2P3/2) and Cl*(2P1/2) spin-orbit states asymptotically; thus, as 

in the F + H2O reaction, non-adiabatic coupling between these two surfaces may 

produce an experimentally detectable amount of Cl* even if the reaction only has 

enough energy to cross the lowest adiabatic barrier. 

To estimate the approximate coupling between the electronic surfaces at the 

~5 kcal/mol experimental collision energies, I start with the simplest approach and 

use the well known Lendau-Zener model65 to predict the probability of surface 

hopping along the 1-D F(2P) + HCl  Cl(2P) + HF reaction coordinate.  In this 

elementary calculation, it is assumed that the reaction has just enough energy to get 

over the lowest adiabatic barrier (similar to the experimental conditions).  As the 

system travels along the reaction path, the probability of surface hopping (i.e., exiting 

on a different surface than the molecules entered on) can be estimated based on i) the 

semiclassical velocity, ii) slope difference between the crossing diabats and iii) the 

strength of the coupling.65  The Lendau-Zener model assumes constant velocity and 

constant coupling along the reaction path; this is approximated as the values of the 

velocity and coupling at the points along the reaction path where the diabats cross.  

Since the diabats cross in both the entrance and exit channels, the two crossing 

probabilities are considered independently.  In the entrance channel, this surface 

hopping probability at 5 kcal/mol collision energy is ~0.1. Thus, ~10% of the 
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reagents entering on the excited state (F(2P1/2*)) surface with sufficient energy do 

indeed cross to the lower state and react, with 90% remaining on the upper state 

surface and being reflected from the higher adiabatic barrier.  Similarly, the exit 

channel non-adiabatic contributions can be interpreted by considering all reactions 

that cross the lowest barrier.  The Landau-Zener expressions predict products moving 

over the transition state barrier to have a small but finite probability (5%) of emerging 

on the excited state Cl*(2P1/2) surface. Despite the simplicity of the model, this range 

of numbers (5%-10%) is certainly qualitatively consistent with full 3D non-adiabatic 

calculations of spin-orbit vs. ground state reactivity for the corresponding F/F* + H2 

reaction.  

The Landau-Zener model is exact only for i) constant semiclassical velocity 

and ii) constant non-adiabatic coupling, which is not rigorously the case for any 

realistic molecular system. To get a more quantitative feel for the non-adiabaticity of 

the reaction, therefore, I present preliminary results from a more sophisticated model 

based on a 1-D wavepacket constrained along the reaction coordinate. Simply stated, 

I propagate a 1-D Gaussian wavepacket in time along the 1-D F(2P) + HCl  Cl(2P) 

+ HF reaction coordinate using a standard grid representation66.  To propagate a wave 

function in time, the relation 

( ) ( ) ( )0
ˆ

0 tett tHi Ψ=Δ+Ψ Δ− , (6.15) 

is expanded in a suitable Chebychev polynomial basis67,68 which operates on the wave 

function at t = t0 and results in the wave function at t = t0 + Δt. As described by Rush 

and Wiberg69, the effective mass along the constrained 1D reaction coordinate can be 

readily calculated at each point based on large amplitude motion (LAM) Hamiltonian 
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methods of Hougen, Bunker and Johns. An attenuating operator is used70,71 to prevent 

reflection of the wavepacket at the end of the grid, with the probability flux calculated 

for each of the electronic surfaces as the wavepacket evolves in time. 

 By using such wavepacket propagation methods, I am able to include the 

coupling between not only between VΣ and VΠx surfaces, but also the additional 

coupling with the VΠy surface that occurs upon inclusion of spin-orbit interactions. 

Since the potential in Equation 6.8 is a non-Hermetian operator, I switch from the 

Cartesian Σ, Πx, Πy basis to a the signed notation Σ, Π-1, and Π1 using the standard 

relations72.  In this basis, the potential is a Hermetian block diagonal 6x6 matrix61:   
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where VΠ  = (VΠx + VΠy) / 2, V1 = β / 21/2, and V2 = (VΠy - VΠx) / 2.  However, only the 

upper (or lower) block of the matrix is necessary for wavepacket propagation, with 

the remaining elements offering redundant dynamical information on the degenerate 

α and β spin-orbit pair73.    

By way of demonstration, I present sample results from two wavepacket 

calculations on this 1-D grid. The first corresponds to a Gaussian wavepacket started 

at the transition state with no momentum (p = 0 au, Δp = 2 au), which then evolves in 

both forward and backward directions to reagents and products. Although, the 
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calculation was performed in the signed diabatic basis, the results are shown in the 

adiabatic basis.  At each point the diabatic basis is diagonalized and the resulting 

eigenvectors are used to transform the wave packed probability from diabatic to 

adiabatic states.  The results in Figure 6.10 start at t = 0 with all of the probability on 

the lowest adiabatic surface at the transition state.  Subsequent panels reveal 

snapshots of |Ψ|2 evolution up to 100 fs, with the bottom panel displaying the total 

accumulated flux passing through each point for the full calculation. It is clear that 

probability is coupled primarily between the first and second lowest adiabats, both of 

which correlate asymptotically with the ground Cl(2P3/2) state. There is transient 

minor coupling in the entrance well region of wavepacket flux into the third adiabat, 

but this asymptotically results in only ~1% probability for non-adiabatic transfer to 

the spin-orbit excited Cl*(2P1/2) state (Cl:Cl* = 0.993:0.007). It is worth noting that 

once the wavepacket has propagated appreciably away from the transition state, the 

flux map indicates that probability for each of the adiabats is effectively frozen in. 

The issue of non-adiabatic reactivity can be addressed more explicitly by 

starting the wavepacket in one spin-orbit asymptote and measuring the flux that 

emerges in each of the final spin-orbit states. For wavepackets starting on the F(2P3/2) 

surface with enough momentum to cross the barrier (p = 22 au, Δp = 2 au), the total 

normalized flux accumulated in the Cl(2P3/2) and Cl*(2P1/2) states state is 0.511 and 

0.005, respectively.  Thus half of the wavepacket reacts (the remaining probability 

reflected back to reactants), again with about ~1% non-adiabatic surface hopping 

probability. Conversely, I can start the wavepacket on the spin-orbit excited F*(2P1/2) 

state and monitor reaction to form Cl and Cl* product channels.  Note that the only 
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way for F*(2P1/2) to react is to undergo a non-adiabatic transition in the entrance 

channel, since the barrier that adiabatically correlates with F*(2P1/2) + HCl is ~25 

kcal/mol, or about 20 kcal/mol too high for the mean collision energy. As expected, 

the non-adiabatic reaction probability is small, corresponding to 2.8% product 

formation in the Cl(2P3/2) (2.72%) and Cl*(2P1/2) (0.03%) states.  In comparison with 

the 52% reactivity for wavepackets starting on the ground spin-orbit state surface, this 

would indicate F*(2P1/2) to be ~5% as reactive as F(2P3/2) and in qualitative agreement 

with the above Landau-Zener predictions.  

This 1D reaction path model also permits mapping out the reactivity of 

F(2P3/2) and F*(2P1/2) as a function of energy.  Recall from Figure 6.10 that there are 

two adiabatic states correlating asymptotically with ground spin order F(2P3/2) and 

Cl(2P3/2), with barriers denoted in energetic order by E1 and E2. Conversely, the single 

adiabatic state correlating with spin-orbit excited F*(2P1/2)  and Cl*(2P1/2) exhibits a 

barrier height E3, where E3 ≈ E2 and both E2,E3 >> E1. For these calculations, I 

therefore start the reactants in each of the three adiabatic reactant states and compute 

the total flux in any product (Cl(2P3/2) or Cl*(2P1/2)) exit channels.  The results of 

these wavepacket calculations are shown in Figure 6.11a, where solid lines represent 

the reaction probability (i.e. sum of the flux in the all of the three exit channels) and 

vertical dashed lines denote the positions of the three adiabatic energy barriers. 

Careful inspection reveals the lowest barrier in this plot is to be E1 ≈ 5.1 kcal/mol, not 

the 3.8 kcal/mol value stated earlier. This is because reaction path geometries are 

calculated from analytic derivatives on the DW-MCSCF surface, and thus are not in 

the exact same place as obtained with MRCI methods (for which MOLPRO does not 
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yet provide analytic gradients). However, this only shifts the reaction thresholds and 

has no bearing on the qualitative behavior.   

As expected, both reactants correlating with the ground spin-orbit state 

F(2P3/2) start yielding significant reaction probability as the energy is increased above 

the E1 barrier.  The finite (~5-10%) F* reactivity at these low energies is due to non-

adiabatic coupling that transfers reactants from the F* surface to (both) F surfaces 

prior to the transition state.  As the energy is increased further to the higher E2 and E3 

barriers, all incoming states become chemically reactive, reaching 100% reactivity 

asymptotically.   For comparison, also included in Figure 6.11a are dotted lines that 

represent purely adiabatic reactivity levels, for a calculation in which the non-

adiabatic coupling is arbitrarily set to 0.  The difference between dotted and solid 

lines therefore reflects the non-trivial changes in reactivity due to non-adiabatic 

coupling.   

It is worth noting that the above wavepacket calculations reflect a non-

collinear reaction path and thus do not sample the energetically accessible conical 

intersections.  I can therefore take these model calculations one step further to 

illustrate the possible importance of conical intersections on the reaction dynamics. 

By way of example, Figure 6.11b shows the results of the same wavepacket 

calculations as in 11a, however in these calculations, the 1-D path the wavepacket is 

now constrained to a collinear reaction path. Note that a direct wavepacket sampling 

of the conical intersection seam results in a preferential reactivity of spin-orbit excited 

F* vs F at low energies.  This occurs because F* now adiabatically crosses down to 

the F states and can therefore react over the lowest barrier.  Conversely, a wavepacket 
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starting in one of the F ground spin-orbit states transfers adiabatically to F* at the 

conical intersection seam and therefore to react must cross one of the two higher 

barriers.   Such dramatic differences between collinear versus the full reaction path 

dynamics speak to the crucial role of conical intersection seams in the F + HCl 

system on controlling the low energy reactivity of F*.   

VI. Summary and Conclusion 

 This chapter presents results for high-level ab initio calculations on the three 

lowest diabatic electronic states for the F(2P) + HCl → HF + Cl(2P) reaction, along 

with an analytical fit to these surfaces in full 3D and inclusion of spin-orbit effects. 

The ab initio data for the analytical fit are calculated at a grid of 3D points using  

dynamically weighted MCSCF methods, followed by high-level multireference 

(MRCI+Q) methods for a series of correlation-consistent basis sets (AVnZ, n = 

2,3,4). These results are then extrapolated to the complete basis set limit (CBS), with 

a single global correlation scaling parameter to reproduce the experimentally well-

known exothermicity. The adiabatic surfaces reveal extensive seams of conical 

intersections, as predicted from simple orbital considerations for X + HY halogen 

atom abstraction processes. For use in multiple surface quantum reactive scattering 

dynamical calculations, these surfaces have been systematically converted into a 

diabatic representation. The uniqueness of this transformation is maintained by 

requiring diabatic and adiabatic surfaces to match at both theta = 0 and 180 

configurations, which is equivalent to forcing the coupling matrix elements between 

the diabatic surfaces to vanish for collinear geometries. Sequential full 3D fits of 

these surfaces to atom, pairwise and full three body terms have been obtained and 
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reported for the three lowest diabatic surfaces, as well as explicit inclusion of spin-

orbit effects via Breit-Pauli matrix operators that yield excellent agreement with 

experiment. By way of preliminary tests, 1-D wavepacket calculations have been 

performed along the F(2P) + HCl → HF + Cl(2P) reaction coordinate to estimate the 

extent of non-adiabatic coupling and reactivity for both ground F(2P3/2) and spin-orbit 

excited F*(2P1/2) atomic species. The goal of this work has been a benchmark set of 

multistate ab initio potential energy surfaces for the F(2P) + HCl → HF + Cl(2P) 

system, that should provide much stimulation for further theoretical and experimental 

exploration. 
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Figures 

 

Figure 6.1:  Three lowest adiabats along the reaction path for the F(2P) + HCl  HF 

+ Cl(2P) system, obtained by high-level DW-MCSCF, MRCI+Q and CBS methods. 

The lowest two correlate with ground state F and Cl, while the highest one correlates 

asymptotically with spin-orbit excited F* and Cl* species. In the adiabatic limit, only 

the lowest spin-orbit ground state can react over a barrier accessible at experimental 

collision energies. 
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Figure 6.2:  2D slices through two full 3D A’ adiabats. a) The region near the conical 

intersection seam (solid black line) at θ=180o, which by symmetry becomes b) an 

avoided crossing for any non-collinear geometry (θ=170o).   
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Figure 6.3:  A 1D angular cut through full 3D adiabatic and diabatic surfaces in the 

exit channel, with RHF=Req and RHCl=6.6 a0.  The adiabats and diabats are 

asymptotically equal at collinear geometries, but strongly avoid as the symmetry is 

lowered from C∞v. 
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Figure 6.4:  Adiabats (dashed lines) and diabats (solid lines) calculated along the 

reaction path a) in full 3D and b) with θ constrained at 180o.  In full 3D the adiabats 

avoid where the diabats cross, whereas for a collinear geometry the adiabats and 

diabats overlap perfectly at each point along the conical intersection seam due to zero 

coupling.  
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Figure 6.5:  A 2D RHF, RHCl contour plot for the ground state adiabatic surface at both 

a) transition state (θ=123o) and b) collinear (θ=180o) geometries. In b) the conical 

intersection seams are shown with dashed lines.  Contour spacing is 3 kcal/mol with 

respect to zero at reactant entrance channel. 



241 

 

Figure 6.6:  Grid of distributed Gaussian locations used to fit the β coupling surface. 

Angular dependence is fitted at each point (RHF, RHCl) by a linear combination of 

sin(nθ) functions. 
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Figure 6.7:  2D contours (at θ=123o) for the a) VΣ, b) VΠx, and c) VΠy diabats with 3 

kcal/mol spacing.  A sample histogram of residuals for fitting the VΣ function is also 

shown in a). The values are not distributed normally, which is why the RMS (0.34 

kcal/mol) is considerably larger than the FWHM (0.049 kcal/mol). 
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Figure 6.8:  Sample 2D slices through the full 3D β coupling surface between VΣ and 

VΠx diabats at a) θ=180o, b) θ=150o, and c) θ=120o.  Note that for collinear geometry, 

β vanishes identically but grows rapidly as the molecule becomes bent. 
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Figure 6.9:  VΣ and VΠx diabats along the reaction path (scale to left), and the β 

coupling between the diabats (scale to right).  Note the strong peaking of diabatic 

coupling immediately in the post transition state region, due to rapid change in 

electronic character for the newly formed bond. 
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Figure 6.10:  Sample results starting at the transition state (p=0 au, Δp=2 au) for 

multistate 1D wavepacket propagation along the F + HCl → HF + Cl reaction 

coordinate. The top panel displays adiabatic energies, the middle panels reveal 

snapshots of |Ψ|2 out to 100 fs, and the bottom panel accounts for the total flux that 

passed by each point on each surface. 
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Figure 6.11: Reaction dynamics for ground F and spin-orbit excited F* as a function 

of energy.  a) Reaction probability of F and F* along the reaction path (solid lines), 

with dotted lines representing probability if non-adiabatic coupling is set to 0.  b) 

Reaction probability of F and F* along a 2D reaction path with θ constrained to be 

180o.  The dramatically increased reactivity of F* vs F results from the presence of 

conical intersection seams sampled at collinear geometries. 
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