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Ultrafast Spectroscopy of Non-Markovian Dynamics in a Dense Atomic Vapor

Thesis directed by Prof. Steven T. Cundiff

This thesis presents results from ultrafast spectroscopy experiments and the-

oretical calculations of non-Markovian dynamics in a dense atomic vapor. For a

dense atomic vapor the excitation pulses are short compared to the duration of

collisions and the time between collisions is long compared to the collision du-

ration. Thus there are distinct timescales that correspond to regimes in which

the phase-coherence of the atomic superpositions is retained (called the non-

Markovian regime) and regimes in which the phase memory is lost (called the

Markovian regime). This is not the case for most condensed phase systems, in

which the time between dephasing interactions, the interaction duration and the

pulse width are of similar order. Using the current theory of stochastic fluctu-

ations of the energy levels due to collisions, we simulate and fit the signatures

of phase memory from two-pulse transient four-wave mixing experiments, provid-

ing support for the theoretical model that is commonly used for more complex

condensed phase systems. Further three-pulse experiments in conjunction with a

theoretical derivation of the correlation function of frequency fluctuations using

molecular dynamics simulations in an exciton picture provide insight into resonant

effects in dense atomic vapors. In addition, distinct signatures of local field ef-

fects are observed and compared with theory. The results presented in this thesis

provide support for theoretical models employed in more complex systems, con-

tribute insight into the fundamental physics of dense atomic vapors, and exhibit

the benefits of ultrafast spectroscopic techniques through the clarity of signatures

representing system response.
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Chapter 1

Introduction

The research presented in this thesis falls under the general heading of

“atomic, molecular and optical physics.” This field encompasses the study of

light-matter interaction on the atomic scale. The particular set of experiments

described in this thesis allows us to focus on how the electronic state of a dense

atomic vapor changes with time. In the experiments, an ultrashort pulse of light

impinges on a dense vapor of atoms at a resonant frequency, exciting electrons into

superpositions between a ground state and an excited state. Soon the electron

superpositions become “out of sync,” or dephase, due to changes in the atomic

energy levels from collisions. These changes are a form of quantum dissipation,

meaning they are not reversible. Probing with sequences of ultrashort laser pulses

results in a representation of the dephasing process even as it begins, a regime of

quantum dissipation often referred to as non-Markovian dynamics. This topic of

ultrafast spectroscopy of non-Markovian dynamics in a dense atomic vapor is the

primary focus of this thesis. A closely related phenomenon in which the emitted

light is redshifted due to the high density of atoms, known as the local field effect,

constitutes a secondary aspect of this thesis.
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1.1 Historical Background and Overview of Main Results

This thesis research applies the relatively modern technique of ultrafast spec-

troscopy to the mature field of atomic vapors, resulting in an unusual perspective

on dense vapors as well as ultrafast techniques and the systems to which they are

commonly applied. In particular, the research of this thesis contributes to under-

standing the fundamental physics of atomic vapors, provides support to theoretical

treatments commonly applied in condensed phase systems, and exhibits the ben-

efits of ultrafast techniques through the clarity of signatures representing system

response. An overview of the research including some historical background is

given in this section.

2wh
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Figure 1.1: A schematic of the ground state and excited state energy levels of
an atom undergoing a collision. During the collision the transition frequency
fluctuates by a time-dependent amount δω(t).

This thesis research is related to the more general question of how to model

quantum dissipation [1]. Quantum dissipation generally refers to the irreversible

loss of order in quantum systems. In an atomic vapor, the cause of quantum

dissipation is atomic collisions. During a collision, the resonance frequency of

an atom fluctuates, as shown in Fig. 1.1. A collision can be thought of as the

transient formation of a dimer, with the amplitude of the resonance fluctuation

in principle determined by the interatomic potential energy surfaces of the dimer.

If we consider the superposition between ground and excited state as a function

of time, shown in Fig. 1.2, the effect of the collision is to create a phase difference
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between the superpositions of an atom that has undergone a collision and one

that has not undergone a collision. This loss of phase coherence is known as

dephasing. If we overlay the superpositions of an unperturbed and perturbed

atom (see Fig. 1.2), we can define the correlation time tc as the time it takes

for a perturbed atom to become out of phase with an unperturbed atom. The

correlation time is a measure of the phase memory of the system, representing how

long an atom can retain approximately the same phase as an unperturbed atom.

In physics literature, dynamics which occur on timescales less than the correlation

time are termed non-Markovian dynamics, while those which occur in timescales

much greater than the correlation time are termed Markovian dynamics1 . For

non-Markovian dynamics the phase coherence is retained such that the evolution of

the superpositions of the atoms is reversible. Conversely, for Markovian dynamics

the phase coherence of the system is lost over the timescale of interest due to the

randomization of the phases of the superpositions due to collisions, making the

evolution irreversible. Stated from an experimental perspective, non-Markovian

dynamics arise in experiment whenever the finite duration of collisions must be

taken into account, while dynamics are Markovian whenever collisions can be

considered to occur infinitely fast.

Historically, the effects of non-Markovian dynamics on frequency-domain

lineshapes attracted interest about a century after the first studies of spectral

emission lines in the mid-1800’s. After decades of improving the technique of

white-light spectroscopy, in the 1920’s pressure-broadened lineshapes were re-

solved for a number of atomic vapors and theoretical treatments began to elu-

cidate the underlying physics [2]. Initially, theories which approximated collisions

between atoms and perturbers as infinitely fast in what is known as the impact

1 The term “Markovian” is used because of its relationship to time evolution determined
solely by the instantaneous state of the system. A more thorough definition is given in Ch. 2.
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Figure 1.2: The superposition between a ground state and excited state as a
function of time for an uperturbed (top) and perturbed (bottom) atom. The
correlation time tc is the time it takes for a perturbed atom to become out of
phase with an unperturbed atom.

approximation were sufficient to describe the majority of experiments, with good

agreement for linewidths at low densities.

Studies took on new emphasis with the improved intensities and spectral

resolution provided by the advent of the laser in the 1960’s. Initially, theoretical

treatments employing the impact approximation were still sufficient to explain

most experimental results [3, 4]. Starting in the 1970’s, predictions were made

for signatures of the finite duration of collisions to be manifested in frequency-

domain lineshapes as a deviation from Lorentzian form, both near line center and

at detunings from resonance on the order of the inverse duration of a collision

[5]. These were quickly verified experimentally [6, 7]. A non-impact theory of the

technique of frequency-domain four-wave mixing (FWM) was presented in 1986,

and FWM experiments revealed non-impact behavior in the wings of helium-

broadened sodium vapor lineshapes in 1989 [8, 9].

Because collisions occur on short timescales their frequency-domain mani-

festation is most dominant in the wings of the absorption lineshape [10]. Thus

frequency-domain experiments are limited in their ability to probe the fastest

dynamics by the inherently low signal-to-noise ratio and influence of other reso-
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nances in the wings of absorption lineshapes. This is in contrast to time-domain

experiments in which the fastest dynamics dominate at short times and with high

signal-to-noise ratio. In addition, unlike lineshapes, which are integrated over

many collision durations, time-domain techniques can separate short timescales

from long ones, providing a different perspective from frequency-domain studies

of fast dynamics.

Time-domain techniques began with the first applications of pulsed lasers to

spectroscopy in the 1970’s and the development of the theory of transient nonlin-

ear optics [11]. However, applications of ultrafast spectroscopy were made largely

in condensed phase systems, with only a few ultrafast experiments in dense atomic

vapors, which mainly studied propagation effects in transmission [12]. Initially the

theory for ultrafast spectroscopy was based on the optical Bloch equations, which

relied on the impact approximation [13, 14]. Once sub-picosecond probes of re-

laxation phenomena began revealing ultrafast dynamics in the 1980’s theoretical

treatments were proposed that modified the optical Bloch equations to include

the finite duration of interactions, with a unified approach to transient nonlinear

optical phenomena using Liouville operators published in 1983 [15, 16]. Ultra-

fast nonlinear spectroscopy is now commonly applied to such intricate systems

as biological light-harvesting complexes to result in an incredibly sophisticated

understanding of their structure and dynamics [17]. In molecular systems, studies

of non-Markovian interactions of atoms in molecules and between molecules and

solvents have provided detailed inter- and intramolecular information, such as how

bonds stretch and molecules conform [18, 19].

One of the main difficulties in ultrafast molecular studies is the dephasing

caused by interactions of the molecules with the solvent. These experiments are

usually performed in liquid solutions, where the solvent-solute interactions often

occur at femtosecond time scales, causing ultrafast dephasing, which obscures the
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non-Markovian dynamics at short times [20, 21, 22, 23]. In these experiments

it is also common to have dephasing times on the order of the pulse duration.

In contrast, in a dense atomic vapor the pulse duration, collision duration and

dephasing time are all well-separated, making dense atomic vapors ideal systems

in which to apply ultrafast spectroscopy to the study of non-Markovian dynamics.

Considering the above opportunities for contribution, we study the phase

relaxation dynamics of a dense potassium vapor using ultrafast spectroscopy. The

experimental results exhibit signatures characteristic of both Markovian and non-

Markovian dynamics, which can be modeled using the non-Markovian theory com-

monly applied to more complex systems [15]. Studying such a model system lends

support to the use of the non-Markovian theory. Through further experiments in

conjunction with detailed theoretical derivations we also gain insight into long-

range interactions in resonance-broadened vapors. This work contributes to the

understanding of excitonic interactions in dense media in general and a resonance-

broadened vapor in particular. The research described in this thesis takes advan-

tage of the simple electronic structure and tunable density of dense atomic vapors

to exhibit the benefits of ultrafast spectroscopic techniques through the clarity of

signatures representing system response. Finally, we show that with time-domain

techniques we are able to probe other effects that have proven difficult to separate

from competing factors in the frequency domain, such as the local field effect.

1.2 Thesis Organization

This thesis is organized as follows. Chapter 2 includes an introduction to

the ultrafast technique of transient four-wave mixing, which is a general technique

that encompasses the experiments of this thesis. The density matrix formalism

is described, leading to a derivation of the optical Bloch equations for homoge-

neously broadened and static inhomogeneously broadened systems. It is shown
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that the optical Bloch equations apply the impact approximation. Then the the-

ory including non-Markovian dynamics is presented, which is used to model the

two-pulse experimental results in the next chapter.

Chapter 3 contains the experimental setups and results. First the experi-

mental components are described. Then the two-pulse TFWM experiment and

results are presented along with fits from the non-Markovian theory derived in

the previous chapter. The three-pulse and time-resolved experimental setups and

results are then presented. Although the data for low temperatures and densi-

ties supports the theoretical treatment used in the two-pulse results, the higher

temperature and density three-pulse data exhibits bi-exponential behavior that

requires a more detailed analysis, presented in the next chapter.

Chapter 4 describes a theoretical approach to modelling the three-pulse

results that derives the correlation function of frequency fluctuations in an exciton

picture based on molecular dynamics simulations. First an introduction is made

to the exciton formalism, then a description of the molecular dynamics simulation

is given, followed by the procedure of determining the correlation functions and

the calculated correlation functions and three-pulse photon echo peak shifts.

Chapter 5 describes the local field effect, with a derivation of the local field

effect in the frequency-domain and time-domain, followed by experimental results

and some preliminary calculations of propagation effects.

In the conclusion, Ch. 6, future ideas for buffer gas and transmission exper-

iments are presented along with a summary of main results.

Appendices A-B.3 provide derivation details for Ch. 2. In particular, App. A

covers the details of the derivation of the optical Bloch equations for a two-level

system, App. B.1 describes the use of Feynman diagrams, App. B.2 provides

details of the cumulant expansion and App. B.3 gives further response function

derivation results.
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Appendices C-E supplement the experimental chapter. App. C lists some

attributes of potassium for reference. App. D describes the pulse picker mentioned

in the experimental chapter and other experimental components. App. E describes

the design and manufacture of the novel vapor cells used in the experiments.

App. F supplements Ch. 4 by providing the derivation of the exciton Hamil-

tonian for a 2-level system, while App. G gives detailed information about how to

run the molecular dynamics package GROMACS.

Finally, App. H lists some useful constants and conversions.



Chapter 2

Theoretical Background for Transient Four-Wave Mixing Experiments

In order to provide a basis for interpreting the experimental results presented

in this thesis, in this chapter an overview of the signatures of non-Markovian dy-

namics in a dense atomic vapor is presented. We start with a description of

the transient four-wave mixing process and the fundamentals of nonlinear op-

tics. The density matrix formalism is then presented to facilitate the theoretical

derivations of the material response through the optical Bloch equations. First

the cases of homogeneously broadened and static inhomogeneously broadened sys-

tems are considered and compared. Then it is shown that the typical optical Bloch

derivation of the homogeneously broadened system response makes the Markov

approximation for the dephasing process. Finally the theory that allows us to take

non-Markovian dynamics into account is presented and distinctions are drawn be-

tween the signatures of non-Markovian dynamics and those of homogeneously and

static inhomogeneously broadened systems. The derivation of the non-Markovian

system response is carried out in detail for a three-level system and is the theo-

retical basis for much of the theoretical fitting made to the experimental data of

this thesis.
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2.1 Transient Four-Wave Mixing

Transient four-wave mixing (TFWM) is a time-domain spectroscopic tech-

nique used to study dynamics in a variety of systems. TFWM occurs when

three input pulses of either the same or different frequencies successively excite

a medium. The radiative output, which is the fourth wave, depends on the time

sequence and separation of the input pulses. For the experiments presented in

this thesis the field frequencies are degenerate, and thus we will only consider the

degenerate case for the following derivations.

In the degenerate transient four-wave mixing process, three pulses with

wavevectors k1, k2 and k3 and degenerate frequencies ω1 = ω2 = ω3 are inci-

dent on a material sample. Figure 2.1 is a schematic of TFWM. The first pulse,

with wavevector k1, induces a polarization in the sample with a spatial phase

across the vapor determined by its angle of incidence and wavelength. After some

delay τ , the second pulse, k2, produces an excited state population whose ampli-

tude is greatest in areas where the polarization left by the first pulse constructively

interferes with the second pulse and least where they destructively interfere. Thus

the excited state population is spatially modulated, forming an amplitude grating

with periodicity k2 − k1. After a second delay T the third pulse, k3, scatters

off the grating (i.e. creates a polarization that radiates) into the new direction

k3 + k2 − k1.

By varying the relative delay between pulse k1 and k2, or pulse k2 and k3,

the excited state dynamics of the system can be investigated. In particular, if

the time delay between pulse k1 and k2, τ , is varied, the transient behavior of

the induced polarization can be investigated. If the time delay between pulse k2

and k3, T , is varied, the transient behavior of the excited state population can

be investigated. Stated another way, varying the time delay between pulses al-
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lows a characterization of the evolution of the intermediate density matrix states

(described below). If the pulses are weak, the density matrix equations of mo-

tion can be expanded to third order in the field. As the fact that the signal

is radiated in a new direction attests, the signal is generated completely by the

nonlinear polarization. Thus the detected signal energy is proportional to the

square of the third-order nonlinear polarization. Varying the first delay τ probes

the off-diagonal density matrix elements ρnm representing the coherent superpo-

sition created between states n and m, while varying the second delay T probes

the density matrix elements ρnn representing population and, in the case of a

three-level system, ρnm representing Raman coherence [24]. It is from this density

matrix expansion in orders of the field that the language used above, referring to

the sequence, polarization (first-order) – population (second-order) – polarization

(third-order), stems.

sample

k k k= - + 24 1 3+k

k2
&

k3

k1

I

x

t¿ T

I1 I2 I3

Figure 2.1: Schematic of transient four-wave mixing. The phase fronts of pulses
k1 and k2 are depicted with lines perpendicular to the wavevectors. The resulting
excited state population has an amplitude I which varies spatially across the
sample. The dark bars across the sample represent the maxima of the excited
state population grating. At the bottom of the diagram are the pulses labeled by
their intensities, shown as they are delayed in time.

It is clear from this description that to predict the response of the material
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to the fields requires an understanding of how the polarization is coupled to the

fields. The relationship between the material polarization and the incident fields is

described by the Maxwell equations. In particular, the nonlinearity of the material

is contained in the relation

D = E + 4πP, (2.1)

where the polarization P (dipole moment per unit volume) depends nonlinearly

on the electric field E and contains all the information concerning the response

of the medium to the field in what is known as the constitutive equation. If this

equation were known, it would then be possible to find the solution of the Maxwell

equations with appropriate boundary conditions for any field and material system.

The constitutive equation is complicated, however, and therefore we must make

approximations.

If the incident field is sufficiently weak1 , it is appropriate to express the

polarization P as a power series in the field strength E [25]. We do this specifically

to third-order with three different incident fields to represent degenerate TFWM:

P(k, ω) = P(1)(k, ω) + P(2)(k, ω) + P(3)(k, ω)

with

P(1)(k, ω) = χ(1)(ω) · E(k1, ω),

P(2)(k, ω) = χ(2)(ω) : E(k1, ω)E(k2, ω), (2.2)

P(3)(k, ω) = χ(3)(ω) : E(k1, ω)E(k2, ω)E(k3, ω),

where χ(n) is the nth-order nonlinear susceptibility, a tensor of rank (n + 1). In

Eq. 2.3 the variable ω in the susceptibilities implies that each order of the po-

larization contains a sum over all the possible frequency combinations, including

1 A loose definition of “sufficiently weak” is that the incident field is much less than the
characteristic atomic field strength Eat = e/a2

0
, where −e is the charge of the electron and a0 is

the Bohr radius of hydrogen.
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negative frequencies, for that order. In addition, the dependence of the nth-

order polarization P(n) on wavevector k means that each order of the polarization

contains a sum over all the possible combinations of wavevectors k1 . . .k3. The

susceptibility (and therefore the polarization) is determined by the physical mi-

croscopic structure of the medium, and so it must be derived using quantum

mechanics. Thus if we wish to understand the response of a medium to third or-

der in the field, as we do in TFWM, we must find a way of deriving the third-order

polarization. Because in general a medium will be made up of many components

in different states, the density matrix formalism, which employs ensemble averages

over the states, proves useful for this task.

2.2 Density Matrix Formalism

The physical properties of a material system can in general be described

with a wavefunction ψ(r, t). The wavefunction obeys the Schrödinger equation

i~(∂ψ(r, t)/∂t) = Hψ(r, t), and therefore its time evolution and observable prop-

erties can be fully determined. For an ensemble system of quantum objects each

with state i, it is convenient to use the density matrix formalism, which gives a

statistical description of the system. The density matrix operator of the system is

then defined as the ensemble average of the outer product of each state vector of

the system with itself. The average is over all of the possible states of the system,

each state i having a probability weight wi:

ρ ≡
∑

i

wi|i〉〈i| = |i〉〈i|. (2.3)

The corresponding density matrix elements ρnm give the probability of the system

to be in a certain physical state. This becomes clear if we use the eigenkets

|n〉 of the system as the base kets of all the states, |i〉 =
∑

n

ai
n|n〉. Then the

diagonal elements ρnn = 〈n|ρ|n〉 = |an|2 give the probability that the system is in
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energy eigenstate n. The off-diagonal elements ρnm ≡ 〈n|ρ|m〉 = ana∗m give the

coherence between the levels n and m, that is, ρnm is nonzero only if the system

is in a coherent superposition of the energy eigenstates n and m.

With the density matrix operator we can calculate the ensemble-averaged

value of any observable quantity, including the polarization P:

[P] ≡
∑

i

wi〈i|P|i〉 =
∑

n

∑

m

〈n|ρ|m〉〈m|P|n〉 = Tr(ρP). (2.4)

To find how the expectation value of an observable quantity evolves with time in

the system, it is sufficient to determine how the density matrix evolves in time.

Because the wavefunction |ψ〉 obeys the Schrödinger wave equation, we can also

find the equation of motion for ρ. Thus

∂ρ

∂t
=

∑

j

wj(|ψ̇j〉〈ψj| + |ψj〉〈ψ̇j|) =
1

i~

∑

j

wj(H|ψj〉〈ψj| + |ψj〉〈ψj|H)

=
1

i~
(Hρ− ρH) =

1

i~
[H, ρ]. (2.5)

The Hamiltonian H typically consists of two terms,

H = H0 +Hint, (2.6)

where H0 is the Hamiltonian of the unperturbed system and Hint represents the

interaction of the fields with the system. In the basis of the energy eigenfunctions,

H0 is diagonal and therefore [H0, ρ]nm = (ǫn − ǫm)ρnm, where ǫj is the energy of

state j. In the electric dipole approximation in which the spatial dimension of

the atom is considered much smaller than the incident wavelength, the electronic

interaction Hamiltonian is given by Hint = −µ ·E(t), where µ = −er is the electric

dipole moment operator of the atom and E(t) is the incident field.

The equation of motion as it stands does not account for dissipative pro-

cesses such as dephasing due to collisions and population decay. It is common

to add phenomenological terms to the equation of motion that represent decay
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processes, using the assumption
(

∂ρnm

∂t

)

relax
= γnm(ρnm − ρeq

nm), where ρeq
nm is the

equilibrium value to which ρnm relaxes at rate γnm, with ρeq
nm = 0 for n 6= m, cor-

responding to the inability of incoherent thermal processes to produce coherent

superpositions of atomic states. Here γnm corresponds to the population relax-

ation rate T−1
1 if the state is diagonal or the dephasing rate T−1

2 if the state is off

diagonal. Although the population decay term can be justified by quantizing the

field [13], adding phenomenological dephasing terms is equivalent to making the

Markov approximation for the coherence decay process, as will be shown below.

Thus the final form of the density matrix equation of motion including

phenomenological decay terms is

ρ̇nm = −iωnmρnm − i

~
[−µ · E(t), ρ]nm − γnm(ρnm − ρeq

nm), (2.7)

where ωnm ≡ (En − Em)/~ is the transition frequency. Because of the similarity

of this formalism with that used to describe a spin-one-half particle in a magnetic

field, these equations of motion are termed the optical Bloch equations2 .

To find the polarization P using the density matrix via Eq. 2.4, we must

first solve the density matrix equation of motion, Eq. 2.7. This is generally not

possible to do exactly, and thus we consider a perturbative approach.

For weak fields an expansion can be made in terms of the interaction Hamil-

tonian, replacing Hint by λHint, where λ ranges from zero to one to characterize

the strength of the perturbation. The solution of Eq. 2.7 is then in the form of a

power series in λ:

ρnm = ρ(0)
nm + λρ(1)

nm + λ2ρ(2)
nm + λ3ρ(3)

nm. (2.8)

For Eq. 2.8 to be a solution of Eq. 2.7 for all values of λ, the coefficients of each

2 The Bloch equations were initially developed by Bloch to simulate nuclear magnetic reso-
nance experiments [14, 26]. They were later extended to provide a quantum-mechanical model
of the coherent response of a dilute atomic vapor to a laser field. In this context the equations
are called the optical Bloch equations [13, 14].
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power of λ must satisfy Eq. 2.7 individually. The solutions starting with first

order all take the same form; we obtain for the qth-order equation of motion

ρ̇(q)
nm = −(iωnm + γnm)ρ(q)

nm − i

~
[−µ · E(t), ρ(q−1)]nm. (2.9)

This system of equations can be integrated directly because each equation uses

previously solved orders and contains only linear terms of the current order. The

qth-order solution is

ρ(q)
nm(t) = − i

~

∫ t

−∞
dt′e(iωnm+γnm)(t′−t)[−µ · E(t′), ρ(q−1)]nm. (2.10)

In the case of transient four-wave mixing, the third-order polarization is the quan-

tity of interest. Following the above derivation, this means we must find the third-

order solution to the density matrix equation of motion, ρ(3), and take the trace

of its product with the polarization operator P(ω) = Nµ:

[P(3)]mn = NTr(ρ(3)µ)mn. (2.11)

2.3 Optical Bloch Equations for Homogeneously and Static Inho-

mogeneously Broadened Systems

To make the physics of the polarization conceptually transparent let us first

consider a two-level atomic system, with a ground state a and excited state b.

We will consider both a homogeneously broadened system as well as a static in-

homogeneously broadened system in order to form a basis of comparison with

the theoretical approach to non-Markovian dephasing. Let there be only two

incident fields, such that the second pulse k2 creates both the second-order popu-

lation and third-order polarization. The incident fields are of the form Ei(r, t) =

1
2
Ei(t)e

i(ki·r−ωt) + c.c., i = 1, 2, with ω nearly resonant with the atomic transition

frequency ω0 = ωb − ωa. We specify that the third-order polarization of interest

is in the direction k4 = 2k2 − k1.
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The equations of motion ρba = ρ∗ab and ρD = ρaa − ρbb from Eq. 2.9 then

become in the rotating wave approximation (see App. A for details)

ρ̂
(n)
ba (r, t) =

iµba

~
exp

[

−
( 1

T2

+ i∆ω
)

t
]

(2.12)

×
∫ t

−∞
E(r, t′)ρ

(n−1)
D exp

[(

1

T2

+ i∆ω

)

t′
]

dt′

ρ
(n)
D (r, t) =

2iµba

~
exp

(

− t

T1

)

(2.13)

×
∫ t

−∞
{−E(r, t′)ρ̂

(n−1)
ab + E∗(r, t′)ρ̂

(n−1)
ba } exp

(

t′

T1

)

dt′,

where ∆ω = ω0 − ω and ρ̂
(n)
ba = ρ

(n)
ba exp(iωt).

Choosing the third-order coherence only in the direction k4 = 2k2 − k1

results in (details in App. A)

ρ̂
(3)
ba (k4) = (2.14)

−2iρ(0)

(

µba

~

)3

exp
[

−
( 1

T2

+ i∆ω
)

t+ ik4 · r
]

∫ t

−∞

∫ t′

−∞

∫ t′′

−∞
dt′dt′′dt′′′

×
{

E2(r, t
′)E2(r, t

′′)E∗
1(r, t

′′′) exp
[

γ(t′ − t′′) +
t′′′

T2

+ i∆ω(t′ + t′′ − t′′′)
]

+E2(r, t
′)E∗

1(r, t
′′)E2(r, t

′′′) exp
[

γ(t′ − t′′) +
t′′′

T2

+ i∆ω(t′ − t′′ + t′′′)
]}

,

where γ = T−1
2 − T−1

1 , µab = µba and the population was assumed to start in the

ground state, ρ
(0)
D = ρ(0), ρ

(0)
ba = 0.

We now consider delta-function field excitations separated by variable tem-

poral delays. This assumption is valid when the pulse duration is much shorter

than the decay times T1 and T2 as well as the inverse detuning (∆ω)−1. Then the

field envelopes become Ej(t) = δ(t − tj), j = 1, 2, where tj is the pulse arrival

time; we also assume on-resonance excitation and set ω = ωba.

For the case of a homogeneously broadened system, the phenomenological

dephasing constants already account for the homogeneous width. Thus the polar-
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ization is P(3)(r, t) = P̂(3)(r, t) exp(−iωt) + c.c., with

P̂(3) = Nµabρ̂
(3)
ba (r, t, ω0), (2.15)

where N is the number density. Substitution of Eq. 2.14 with delta-function pulses

in the above equation yields the polarization in the homogeneous limit:

P̂(3)(r, t) = −iρ(0)CNµbaθ(t− t2) exp[ik4 · r − T−1
2 (t− t1)] (2.16)

where θ(t) is the Heaviside step function and C a constant.

We now consider the limit of the system being static inhomogeneously broad-

ened [27]. In the case of an inhomogeneously broadened system, the product of

the density matrix element and the inhomogeneous lineshape is integrated over

frequency; thus P̂(n) becomes

P̂(n) = N

∫ ∞

0

µabρ̂
(n)
ba (r, t, ω0)g(ω0)dω0, (2.17)

where the lineshape function g(ω0) obeys the normalizing condition
∫ ∞
0
g(ω0)dω0 =

1.

To model static inhomogeneous broadening we employ a Gaussian form

for the lineshape function, which is commonly used to represent the lineshape

arising from a large number of frequencies (through application of the central

limit theorem):

g(ω0) = (
√
πδω)−1 exp[−(ω0 − ω)2/∆ω2]. (2.18)

This results in a polarization given by

P̂(3)(r, t) = (2.19)

−iρ(0)DNµbaθ(t− t2) exp
[

ik4 · r −
(t− t1)

T2

− 1

4
(t− 2t2 + t1)

2(∆ω)2
]

,

where D is a constant. Note the homogeneous response can be retrieved by setting

∆ω = 0.
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The behavior of the real-time signal as a function of delay is shown for the

homogeneous case in Fig. 2.2 and the inhomogeneous case in Fig. 2.3. The real-

time signal for the homogeneously broadened system is the free polarization decay,

while for the static inhomogeneously broadened system it is the photon echo. In

the latter case, the first pulse creates a coherent superposition between ground

and excited state, which evolves according to each atom’s resonance frequency

until the second, conjugate pulse reverses the evolution to cause a rephasing,

called the photon echo, the same delay later. The photon echo signal will have a

width in time which is the inverse of the inhomogeneous width of the frequency

distribution. Thus the pulses must be short, that is, wide in frequency such that

they span the inhomogeneous width, for a photon echo to arise. An analogy is

described in Fig. 2.4. The temporal behavior for both the homogeneous and static

inhomogeneous limits are plotted in Fig. 2.5.
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Figure 2.2: Calculated 2-pulse real-time TFWM signals for a homogeneously
broadened system. The delay between pulses increases downward, with horizontal
ticks spaced by the delay step size.



20

t2

Increasing D
elay

Static Inhomogeneously
Broadened 2-Level System

 

 

2-
P
ul

se
 R

ea
l-T

im
e 
TF

W
M

 S
ig

na
l

t, real time

Figure 2.3: Calculated 2-pulse real-time TFWM signals for a static inhomoge-
neously broadened system. The delay between pulses increases downward, with
horizontal ticks spaced by the delay step size.

The time-integrated signal is the integral over the square of the polarization:

∫ ∞

−∞
|P(3)(r, t)|2dt. (2.20)

In the homogeneous limit the time-integrated signal is

J = Aθ(t− (t2 − t1)) exp

[

− 2

T2

(t2 − t1)

]

(2.21)

where A is a proportionality constant independent of t2 − t1.

The time-integrated signal for an inhomogeneously broadened system is

J = Bθ(t− t2 − t1) exp

[

− 4

T2

(t2 − t1)

]{

1 + Φ

[

∆ω√
π

(t2 − t1)

]}

(2.22)

whereB is a proportionality constant independent of t2−t1 and Φ(x) ≡ 2√
π

∫ π

0
e−t2dt.

The time-integrated behavior for both types of broadening is shown in

Figs. 2.6 and 2.7. The decay of the TFWM signal for both the inhomogeneous

and homogeneous cases is directly related to the dephasing of the coherent super-

position between the ground and excited state. For the case of a homogeneously
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Figure 2.4: Runners on a track as an analogy for the photon echo. The
runners represent oscillators, with their speeds the resonance frequencies, and
the gun shot a resonant pulse. The first pulse creates a coherent superpo-
sition between the ground and excited state. During the ensuing delay, the
atomic superpositions dephase from one another due to their different frequen-
cies. A second conjugate pulse causes the oscillators to reverse their evolution,
resulting in a rephasing of the coherence the same delay τ later, the photon
echo. This interactive animation can be found on the Cundiff group website at
http://jilawww.colorado.edu/˜cundiffs/Research-SemiCoherence.html, and is an
echo (pardon the pun) of the front cover artwork of the November 1953 edition of
Physics Today. [Created by J. Fall and V. Lorenz, JILA.]

broadened transition, the decay time of the TFWM signal is half the dephasing

time, T2/2, while for a static inhomogeneously broadened transition it is T2/4.

This difference of a factor of 2 between the homogeneous and inhomogeneous case

can be understood based on the real-time signals. In the homogeneous case the

peak of the real-time signal, the free polarization decay, occurs at t = t2, while in

the inhomogeneous case the peak of the real-time signal, the photon echo, occurs

at t = t2 + (t2 − t1). When these signals are integrated over time, this difference

in peak location results in the inhomogeneous response decaying twice as fast.
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E
xc

ita
tio

n 
P
ul

se
s

 

 (a)

(c)

(b)
H
om

og
en

eo
us

R
es

po
ns

e

  

 

t
2

t
1t

1
 & t

2

t, real time

In
ho
m
og

en
eo
us

R
es

po
ns

e

t, real time

 

 

Figure 2.5: Calculated 2-pulse real-time TFWM signals for (a) two-pulse excita-
tion in the case of a (b) homogeneously broadened and (c) static inhomogeneously
broadened 2-level system. The two cases of zero delay between pulses and finite
delay are shown.

In both cases the decay rate is then doubled because we are detecting the field

squared, or the intensity. The time-integrated inhomogeneously broadened system

response exhibits a peak at approximately δω−1. This behavior is a result of the

increasing area of the real-time signal at short times, shown in Fig. 2.7. There is

only “half” a photon echo at zero delay due to causality. With increasing delay

the “full” photon echo begins to develop, resulting in an initial increase of the

time-integrated signal.
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Figure 2.6: Calculated 2-pulse time-integrated TFWM signal for a homogeneously
broadened system (natural log scale).

T2/2

 

 

Inhomogeneously Broadened
2-Level System

2-
P
ul

se
 T

im
e-

In
te

gr
at

ed
 T
FW

M
 S

ig
na

l

, delay between pulses

Figure 2.7: Calculated 2-pulse time-integrated TFWM signal for a static inhomo-
geneously broadened system (natural log scale).

2.4 The Markov Approximation

The above treatments of homogeneously and inhomogeneously broadened

systems contain some important assumptions about the microscopic timescales of
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correlations. In particular, the treatment of the homogeneously broadened system

above only accounts for exponential dephasing of the coherence, corresponding to

a Lorentzian lineshape. In reality, no lineshape is perfectly Lorentzian. The finite

duration of collisions results in deviations from Lorentzian behavior both at line

center and in the wings of the absorption lineshapes [15]. This translates to non-

exponential dephasing in time-domain experiments.

In this section the phenomenological approach used above is shown to be

equivalent to making the Markov approximation for the dephasing process. In

physics literature, Markovian evolution refers to time evolution determined solely

by the instantaneous state of the system. Note this is not the same as the mathe-

matical definition of a Markovian process, in which the time evolution is dependent

on the previous state (the precise definition is provided in the next section). In

this limit dephasing collisions are considered to occur infinitely fast, that is, the

correlation time of the atomic superpositions is very short compared with the

time scales of the nuclear dynamics. If we consider the optically-induced coherent

superposition between ground and excited state as a function of time, the Marko-

vian limit assumes collisions result in sudden phase jumps (see Fig. 2.8). In this

section the time-domain response will be derived for a two-level system using the

density matrix formalism including finite frequency fluctuations in the Markov

approximation (also known as the impact approximation) [13]. It will be shown

that linear frequency fluctuations result in dephasing of the coherence, and that

the Markov approximation results in exponential dephasing. In the next section

this treatment will be extended to non-Markovian dephasing.

To calculate the optical response including the finite duration of collisions

the random frequency fluctuations at short times must be taken into account. To

do so we add a time-dependent fluctuation to the excited state frequency. We
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start with the equation of motion from Eq. 2.9:

ρ̇(q)
nm = −(iωnm + γnm)ρ(q)

nm − i

~
[−µ̂ · E(t), ρ̂(q−1)]nm.

We add a term to represent frequency fluctuations δω(t):

ρ̇(q)
nm = −(iωnm + iδωnm(t) + γnm)ρ(q)

nm − i

~
[−µ̂ · E(t), ρ̂(q−1)]nm. (2.23)

Now solving this equation we find

ρ(q)
nm(t) = − i

~

∫ t

−∞
dt′e(iωnm+γnm)(t′−t)[−µ̂ · E(t′), ρ̂(q−1)]nm (2.24)

× exp
[

i
(

∫ t′

0

δωnm(t′′)dt′′ −
∫ t

0

δωnm(t′)dt′
)]

.

We now apply the ensemble average, which only affects the random varia-

tions in δω(t):

ρ(q)
nm(t) = − i

~

∫ t

−∞
dt′e(iωnm+γnm)(t′−t)[−µ̂ · E(t′), ρ̂(q−1)]nm (2.25)

×〈exp
[

i
(

∫ t′

0

δωnm(t′′)dt′′ −
∫ t

0

δωnm(t′)dt′
)]

〉.

To solve we approximate the ensemble average of the product of exponentials to

be the product of the ensemble averages and Taylor expand the exponentials. We

consider only one of the δω terms as the same treatment applies to both:

〈exp[−i
∫ t

0

δω(t′)dt′]〉 = 1 + i

∫ t

0

dt′〈δω(t′)〉 (2.26)

−1

2

∫ t

0

dt′
∫ t

0

dt′′〈δω(t′)δω(t′′)〉 + · · ·

+
(−i)2n

(2n)!

∫ t

0

dt1 . . .

∫ t

0

dt2n〈δω(t1) . . . δω(t2n)〉 + · · · .

Now we note that the fluctuations δω(t) have zero mean (the random fluctuations

are as often positive as negative), so terms odd in δω(t) are zero. Then if we

consider the first even term, the integrand, 〈δω(t′)δω(t′′)〉, is the two time corre-

lation function of frequency fluctuations and ultimately will be used to determine
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the remaining terms. Thus it plays an important role in the theory and in the

interpretation of experiment. At this point we must decide what form it shall

take. To reproduce the results for a homogeneously broadened system above, we

now take the Markov approximation.
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Figure 2.8: Superpositions in the Markovian limit. Collisions result in phase
jumps.

The Markov approximation assumes that variations in ω are rapid compared

to other changes such as population decay rates and dephasing rates such that

the fluctuation at one instant in time can be considered completely uncorrelated

with that of any different time. Thus we take the correlation function to be a

delta function with an overall constant representative of the amplitude of the

fluctuation:

〈δω(t)δω(t′)〉 = 2γphδ(t− t′).

The constant γph can be set phenomenologically according to experimentally de-

termined linewidths. The first even term of the expansion then is

1

2

∫ t

0

dt′
∫ t

0

dt′′〈δω(t′)δω(t′′)〉 = −γpht. (2.27)

We now assume that the fluctuations obey Gaussian statistics, that is, that they

have a normal distribution. This assumption is reasonable if the fluctuations are

made up of many small, random contributions with a finite mean and variance,

qualities which satisfy the requirements of the central limit theorem. Making this
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approximation the higher order terms are simply factors of the two-time corre-

lation function, resulting in a factor of (2n)!/2n, equaling the number of permu-

tations of 2n terms into n pairs. To restrict the permutations to distinguishable

products, we divide by n!, resulting in the 2nth term,

(−i)2n

(2n)!

∫ t

0

dt1 . . .

∫ t

0

dt2n〈δω(t1) . . . δω(t2n)〉

=
(−1)n

(2n)!
(2γph)

n (2n)!

2nn!

∫ t

0

dt1 . . .

∫ t

0

dt2nδ(t1 − t2) . . . δ(t2n−1 − t2n)

=
(−γpht)

n

n!
. (2.28)

Using this result we then find a simple form for the expansion:

〈exp
[

−i
∫ t

0

δω(t′)dt′
]

〉 =
∞

∑

n=0

(−γpht)
n

n!
= exp(−γpht). (2.29)

Inserting this result back into the density matrix element for both fluctuation

terms we find the solution for the equation of motion:

ρ(q)
nm(t) = − i

~

∫ t

−∞
dt′e(iωnm+γnm+2γph)(t′−t)[−µ̂ · E(t′), ρ̂(q−1)]nm. (2.30)

Thus fluctuations with Markovian statistics result in exponential decay of the

coherence. This equation is just that formed using phenomenological dephasing

terms for a homogeneously broadened system, with the population and dephasing

rates separated into γnm − 2γph, γnm = 0, n 6= m. This approximation is not

valid when the experiment probes timescales in which fluctuations do not occur

instantaneously nor are obscured by fast dephasing dynamics. This brings us to

the theory used to treat nonlinear optical interactions in the non-Markovian limit.

2.5 Non-Markovian Theory

The Markov approximation only holds for the limit in which either the

experiment is insensitive to the retention of phase memory during collisions or
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the fluctuations are fast compared with the dephasing dynamics. With ultra-

short pulses we are capable of resolving the response of a system on the timescale

of collisions, and in a dense atomic vapor the dephasing time is longer than the

collision duration, meaning the signal will no longer exhibit purely exponential de-

phasing. Modeling non-Markovian dynamics theoretically ultimately comes down

to making a choice for the form of the fluctuations δω and thus the form of the

two-time correlation function of frequency fluctuations. To account for phase

memory during collisions it is common to invoke the mathematical definition of a

Markov process. In particular, according to the mathematical definition a stochas-

tic process x(t) is Markovian if its future probabilities P (x(tn)) for every n are

determined by the most recent states:

P (x(tn) ≤ xn|x(tn−1), . . . , x(t1)) = P (x(tn) ≤ xn|x(tn−1)), (2.31)

with t1 < t2... < tn [28]. This equation can be read as “The probability of a system

being less than or equal to a value xn at time tn given all previous states is equal

to the probability given only the most recent state, x(tn−1).” Applying this to

the frequency fluctuations allows the fluctuations to depend on their most recent

form, improving the treatment of the short-time limit in which non-Markovian

dynamics are important. Furthermore, in a theorem proven by Doob, any random

process x that is both Markovian and follows Gaussian statistics (also known as

an Ornstein-Uhlenbeck process [29]) has a correlation function Cx(τ) of the form

Cx(τ) = σ2
xe

−τ/τr , (2.32)

where τr is the relaxation time and σx the standard deviation of x [30]. Using

this correlation function is a common way of accounting for phase memory in

condensed phase systems, often referenced simply as a stochastic model or the

Kubo model [15, 31, 32, 33]. Another way of achieving this result theoretically
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is to invoke the overdamped Brownian oscillator model in the high temperature

limit [16].

Note that in much of the literature as well as in this thesis the word “non-

Markovian” refers to the dephasing process, not the fluctuations themselves. This

is an important distinction to make because as just shown the stochastic model

actually makes the Markov approximation for the dephasing mechanism. Thus the

word “non-Markovian” is a descriptor for the dynamics of the coherence, not the

dynamics of collisions. The stochastic model does not explicitly account for the

dipole-dipole interaction between atoms and thus is limited in the physical insight

it can provide. However, because of its frequent use in more complex systems

the well-defined signatures of non-Markovian dynamics in a dense atomic vapor

provide an important opportunity to test this theoretical description of dephasing

[23].

Although it is possible to derive the dynamics including non-Markovian

dephasing with steps similar to the previous section in which we insert the time-

dependent resonance frequency into the density matrix equations of motion, there

is a parallel approach that does not require us to keep track of the detailed form of

intermediate equations [15]. This approach derives the nonlinear response in Li-

ouville space, which was originally developed by Zwanzig [34, 35, 36, 37]. A major

benefit of this formalism is that it does not require us to carry unused wavevector

combinations only to discard them later, as is done in the optical Bloch equations,

in which all permutations of the wavevectors of the fields must be carried to third

order, at which point only terms in the direction of interest are chosen. By using

Liouville operators instead we are able to specify the perturbation sequences of

interest and only derive response functions for those sequences. Here a summary

of the most important steps is provided for a three-level system in order to facil-

itate the discussion of the modeling of experimental results. The equations will
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also be simplified to the solution for a two-level system for comparison with the

above results.

We begin with the Hamiltonian for a perturbed system from Eq. 2.6:

H = H0 +Hint, (2.33)

whereH0 is the Hamiltonian for the material system in the absence of the radiation

field and Hint represents the radiation-matter interaction and is given by

Hint(t) = E(r, t)V, (2.34)

where V is the dipole operator of the atom. The evolution of the system is

represented by the density matrix equation of motion, which takes the form of the

Liouville equation

dρ

dt
= −i[H0, ρ] − i[Hint, ρ], (2.35)

which becomes in Liouville-space notation,

dρ

dt
= −iL0ρ− iLintρ. (2.36)

In Liouville space we employ Liouville (tetradic) operators, whose action on an

ordinary (dyadic) operator A is given by

L0A ≡ [H0, A], (2.37)

LintA ≡ [Hint, A]. (2.38)

To simplify the coming expressions we now set ~ = 1 and define the Liouville

dipole operator

VA ≡ [V,A]. (2.39)

We are interested in calculating the polarization P (r, t), which is given by the

expectation value of the dipole operator V :

P (r, t) ≡ 〈〈V |ρ(t)〉〉, (2.40)
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where double-angle-bracket notation is used to denote an inner product of opera-

tors. For any two operators,

〈〈A|B〉〉 ≡ Tr(A†B). (2.41)

We also define a Liouville-space matrix element by

〈〈A|L|B〉〉 ≡ Tr(A†LB). (2.42)

The third-order polarization of interest is obtained by calculating ρ(t) per-

turbatively to third order in Lint:

ρ(t) = U(t,−∞)ρ(−∞) ≡ ρ(0) + ρ(1) + ρ(2) · · · , (2.43)

where U is the time-evolution operator, which when expanded takes the form

U(t,−∞) = 1 − i

∫ t

−∞
dτG(t− τ)Lint(τ) (2.44)

+(−i)2

∫ t

−∞
dτ1

∫ τ1

−∞
dτ2G(t− τ1)Lint(τ1)G(τ1 − τ2)Lint(τ2) + · · · ,

where the Green function G(τ) is the formal solution of the Liouville equation in

the absence of the electromagnetic field:

G(τ) ≡ exp(−iL0τ). (2.45)

The third-order polarization, written in the time-domain, then is

P (3)(r, t) = (−i)3

∫ ∞

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3 (2.46)

×〈〈V |G(t3)Lint(t1 − t3)G(t2 − t3)Lint(t1 − t2)G(t1 − t2)Lint(0)|ρ(−∞)〉〉.

Reading this equation from right to left reveals the evolution of the system: The

system starts at t = −∞ in state ρ(−∞). The interactions with the field are

represented by Lint(τ) and occur at times 0 ≤ (t1 − t2) ≤ (t1 − t3) ≤ t1. Each

interaction is followed by an evolution in time according to G(τ) for the intervals
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(t1 − t2), (t2 − t3) and t3. At time t1 the polarization is calculated. This equation

for the polarization is the time-ordered expansion of the evolution operator. To

simplify the following steps we make a transformation of time variables and define

τ1 = t1,

τ2 = t1 − t3,

τ3 = t1 − t2, (2.47)

These new time variables allow us to order the interactions 0 ≤ τ3 ≤ τ2 ≤ τ1.

Equation 2.46 then becomes

P (3)(r, t) = (−i)3

∫ ∞

0

dτ1

∫ τ1

0

dτ2

∫ τ2

0

dτ3 (2.48)

×〈〈V (τ1)|G(τ1 − τ2)Lint(τ2)G(τ2 − τ3)Lint(τ3)G(τ3)Lint(0)|ρ(−∞)〉〉.

By inserting the incident fields and the appropriate dipole operators we have

an explicit expression for the polarization. We write the field in the form

E(r, t) = [E1 exp(−iω1t) + E2 exp(−iω2t) + E3 exp(−iω3t)] + c.c.. (2.49)

Here Ej is the amplitude of the jth field and ωj is its frequency. The total

polarization is the sum over all possible permutations of wavevector and frequency.

We choose to detect the polarization emitted in the direction k4 = −k1 + k2 + k3

with frequency ω4 = −ω1 + ω2 + ω3. In this case we need only consider the

polarization

P (3)(k4, t) = (−i)3
∑

m,n,q=1,2,3

∫ ∞

0

dτ1

∫ ∞

0

dτ2

∫ ∞

0

dτ3

× exp
[

−iωq(τ1) + iωn(τ1 − τ3) + iωm(τ1 − τ2)
]

×Em(τ3)En(τ2)Eq(τ1)R(τ1, τ2, τ3, τ4), (2.50)

where the summation is over all 3! = 6 permutations of the fields and we have

separated the fields from the material response by defining the nonlinear response
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function, R(τ1, τ2, τ3, τ4), which contains all relevant microscopic information:

R(τ1, τ2, τ3, τ4) ≡ (2.51)

〈〈V (τ1)|G(τ1 − τ2)V(τ2)G(τ2 − τ3)V(τ3)G(τ3 − τ4)V(τ4)|ρ(−∞)〉〉.

The above equation for the polarization can serve as a general formal expression for

any four-wave mixing process. Now if we make the assumption of delta-function

pulses Ei(τ) = Eiδ(τ − τi); i = 1, 2, 3; this expression simplifies to

P (3)(k4, t) = (2.52)

E1E2E3 exp[−iωq(τ1) + iωn(τ1 − τ3) + iωm(τ1 − τ2)]R(τ1, τ2, τ3, τ4)

This results in a real-time signal given by

S(k4, t) = |E1E2E3|2|R(τ1, τ2, τ3, τ4)|2. (2.53)

To this point the derivation has not required that we specify the level struc-

ture of the material system, but we have reached the stage at which we must

specify the Hamiltonian of the system. We choose the most general level structure

in which four different, arbitrary levels a, b, c, d are sequentially excited through

the four-wave mixing process. This is the most general case because a third-order

experiment can at most couple four levels; thus, four levels are sufficient. We now

specify the Hamiltonian H for this system interacting with a bath:

H = H0 +Hint +HB (2.54)

with

H0 =
∑

ν=a,b,c,d

|ν〉
[

ǫν −
i

2
γν

]

〈ν| (2.55)

and

HB =
∑

ν=a,b,c,d

|ν〉Hν
B(QB)〈ν|. (2.56)
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Here ǫν is the energy and γν the inverse lifetime of the level ν. Hν
B(QB) is an

adiabatic Hamiltonian describing the bath degrees of freedom QB interacting with

the system in the state ν. We assume the atoms are initially in the ground state,

making |ρ(−∞)〉〉 =
∑

a P (a)|a〉〉, where P (a) is the thermal equilibrium ground

state population in the absence of a radiation field. To calculate the response

function we write the matrix elements of the Green function Eq. 2.45:

〈〈ν ′λ′|G(t)|νλ〉〉 = δνν′δλλ′ exp
[

−iωνλt−
1

2
(γν − γλ)t

]

, (2.57)

with ν, λ = a, b, c, d and ωνλ ≡ ǫν − ǫλ. Now the bath Hamiltonian is combined

with the Hamiltonian representing the interaction with the fields to simplify the

following expressions. This choice amounts to including frequency fluctuations δω

by modifying the electronic dipole operator. Note modification could alternatively

be made to the Green function by adding a δω to H0, where it can be seen more

directly to be a fluctuation of the resonance frequency [31]; the current approach

results in simpler expressions later on. The modified dipole operator then takes

the form

V (τ) =
∑

ν,λ=a,b,c,d;ν 6=λ

µνλ exp+

(

−i
∫ τ

0

dτ1Uνλ(τ1)

)

|ν〉〈λ|. (2.58)

Here exp+ is the positive-time-ordered exponential and Uνλ ≡ Hν − Hλ. The

semiclassical approximation is made by replacing exp+ by an ordinary exponential

and treating Uνλ(τ) as an ordinary function of time (not an operator) denoted

δωνλ(τ). Then

V (τ) =
∑

ν,λ=a,b,c,d;ν 6=λ

µνλ exp

(

−i
∫ τ

0

dτ1δωνλ(τ1)

)

|ν〉〈λ|. (2.59)

Given the matrix elements of the Green function Eq. 2.57 and the form of

the dipole operator Eq. 2.59 we can now calculate the response functions. From

the definition of the Liouville dipole operator Eq. 2.39, we can write the expression
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for the response function in terms of the dyadic dipole operator V :

R(τ1, τ2, τ3, τ4) = (2.60)

〈〈V (τ1)|G(τ1 − τ2)[V (τ2), G(τ2 − τ3)[V (τ3), G(τ3)[V (τ4), |ρ(−∞)〉〉]]]

All of the response functions will take the same form, namely

R(τ1, τ2, τ3, τ4) =
∏

νλ

〈〈G〉〉F (τ1, τ2, τ3, τ4), (2.61)

where the product is over the contributing matrix elements of the Green function

and F is the four-point correlation function of the dipole operator, defined for the

excitation of a four-level system as

F (τ1, τ2, τ3, τ4) ≡ 〈Vab(τ1)Vbc(τ2)Vcd(τ3)Vda(τ4)ρ(−∞)〉. (2.62)

Using the four-point correlation function allows us to use the same four dipole

operators for every response function. A minus sign accrues for every time a

density operator is acted on from the right, as evident from the definition [V,A] ≡

V A− AV .

The real system in which we are interested for the experiments in this thesis

can be modeled as a three-level system with two excited states b and c radiatively

coupled to a ground state a but not radiatively coupled to one another. A given

four-point correlation function can only represent variations on four dipole oper-

ators, with each operator acting once. This means that to model a three-level

system we cannot use just one four-point correlation function. For example, it

might be thought that the appropriate four-point correlation function for a three-

level system with levels a, b, c is 〈VabVbaVacVca〉. However, this function does not

include two-level physics because each operator must act once, meaning sequences

involving only a and b or a and c are not covered. Another way of stating this

is that the formalism using four-point correlation functions assumes that the in-

cident pulses are narrowband and only excite one transition at a time. In the
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experiments of this thesis, the pulses are broadband and simultaneously excite

two excited states. This theoretical situation arises from our assumption of plane-

wave fields as well as delta-function durations, a strange but useful fiction. Thus to

model a three-level system we must use two 2-level four-point correlation functions

as well as the one given in the example. Thus we need the following correlation

functions:

2F (τ1, τ2, τ3, τ4) ≡ 〈Vam(τ1)Vma(τ2)Vam(τ3)Vma(τ4)ρ(−∞)〉, (2.63)

3F (τ1, τ2, τ3, τ4) ≡ 〈Vab(τ1)Vba(τ2)Vac(τ3)Vca(τ4)ρ(−∞)〉, (2.64)

where the superscripts 2 and 3 represent 2- and 3-level physics, respectively, and

m = b, c.

To choose the correct time sequences we must know which sequences of

dipole operators will contribute to a response in the chosen direction, k4 =

−k1 +k2 +k3. These sequences, called pathways, can be represented quite nicely

using diagrams, useful particularly for higher-order, multi-level response. Ap-

pendix B.1 gives an introduction to the use of these so-called double-sided Feyn-

man diagrams. The pathways contributing to the material response are shown in

Fig. 2.9. The first (last) two diagrams correspond to two- (three-) level physics.

For two-level physics there will be two distinct pathways (for each of b and c)

contributing to the response for the time ordering (−k1,k2,k3), corresponding to

diagrams labeled 2Rm
2 and 2Rm

3 and the perturbation sequences (reading right to

left) (ma,mm, am, aa) and (ma, aa, am, aa), m = b, c. We can write the response

functions in terms of the four-point correlation function of the dipole operator 2F

defined above. For three-level physics there also will be two pathways contributing

to the response for the time ordering (−k1,k2,k3), labeled 3Rn
2 and 3Rn

3 , corre-

sponding to the perturbation sequences (reading right to left) (na, nm, am, aa),

(na, aa, am, aa). We can write these response functions in terms of the four-point
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correlation function of the dipole operator 3F defined above. The R labels for

each response function have been written according to the pathways they repre-

sent. The first superscript represents 2- or 3-level physics. For 2-level physics, the

subscript represents an excited-state (2) or ground-state (3) population to second

order. For 3-level physics, the subscript represents a Raman coherence (2) or

ground state population (3) to second order. The second superscript is the final

excited state that forms a coherence with the ground state at third order. The

response functions then are

(ma,mm, am, aa) 2Rm
2 (τ1, τ2, τ3) = 2F (0, τ2, τ1, τ3)e

−iωma(τ1−τ2−τ3),

(ma, aa, am, aa) 2Rm
3 (τ1, τ2, τ3) = 2F (0, τ3, τ1, τ2)e

−iωma(τ1−τ2−τ3),

(na, nm, am, aa) 3Rn
2 (τ1, τ2, τ3) =

3F (0, τ2, τ1, τ3)e
−iωna(τ1−τ2)−iωnm(τ2−τ3)−iωma(−τ3),

(na, aa, am, aa) 3Rn
3 (τ1, τ2, τ3) = 3F (0, τ3, τ1, τ2)e

−iωna(τ1−τ2)−iωma(−τ3),

(2.65)

where the exponentials are the matrix elements of the Green function, calculated

based on Eq. 2.57 for each duration and perturbation sequence; we assume the

population decay rates are slow compared to the dephasing rates and can be

neglected. The total contribution from the Green functions for each perturbation

sequence ν1λ1, ν2λ2, ν3λ3 can be calculated from the general function Gν3λ3
(τ1 −

τ2)Gν2λ2
(τ2−τ3)Gν1λ1

(τ3), where Gνλ is the Green function matrix element for ν, λ

and the time arguments remain as written (no substitutions necessary). For the

time ordering (k2,−k1,k3) there will also be four response functions; a parallel

derivation for these is provided in App. B.2.

Using the four-point correlation function reduces the calculation of the re-

sponse functions of all contributing pathways to finding the forms of (in our case)

two four-point correlation functions, those for two-level and three-level physics. In

App. B.2 we derive the solution for the most general form of the correlation func-

tion 4F , which assumes the excitation of four different arbitrary levels a, b, c, d (in
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Figure 2.9: Double-sided Feynman diagrams representing the relevant pathways
for 3-pulse TFWM in a 3-level system for signal in direction −k1 + k2 + k3 and
time ordering (−k1,k2,k3), with m,n = b, c; m 6= n. The diagrams for all time
orderings are shown in App. B.

that order) following the derivation of Mukamel [15]. The four-point correlation

function based on the definition in Eq. 2.59 for this case has the form

4F (τ1, τ2, τ3, τ4) = µabµbcµcdµda〈exp
{

i
[

∫ τ1

0

dτδωab(τ) +

∫ τ2

0

dτδωbc(τ)

+

∫ τ3

0

dτδωcd(τ) +

∫ τ4

0

dτδωda(τ)
]}

〉 (2.66)

In order to solve this expression without simply truncating its Taylor expansion

to second order we apply the cumulant expansion [38, 39, 40]. This is carried

out in detail in App. B.2. To overview the steps taken, first we make the ansatz

that F has an exponential form: F = exp(F). We then expand F in orders of

the fluctuation δω, and substitute this expansion back into the ansatz. Collecting

terms of like order of δω and comparing with the original Taylor expansion of

F allows us to solve for the orders of F in terms of the orders of F . We then

insert these solutions into the ansatz and truncate at F (2). Thus instead of just

neglecting higher order correlations starting with Eq. 2.66, this method allows

us to partially resum the perturbation series for F . The result for the 4-level
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four-point correlation function is

4F (τ1, τ2, τ3, τ4) = µabµbcµcdµda (2.67)

× exp
{

−1

2

[

gab(τ1 − τ2) + gab(τ1 − τ4) − gab(τ2 − τ4)

−gac(τ1 − τ2) − gac(τ3 − τ4) + gac(τ1 − τ3) + gac(τ2 − τ4)

+gad(τ3 − τ4) + gad(τ1 − τ4) − gad(τ1 − τ3)

+gbc(τ1 − τ2) + gbc(τ2 − τ3) − gbc(τ1 − τ3)

+gbd(τ2 − τ3) − gbd(τ1 − τ4) + gbd(τ2 − τ4)

+gcd(τ2 − τ3) + gcd(τ3 − τ4) − gcd(τ2 − τ4)
]

}

,

where we have defined the line shape function

gαβ(τ) ≡
∫ τ

0

dτ1

∫ τ1

0

dτ2〈δωαβ(τ2)δωαβ(0)〉.

Using this expression we can determine the 2-level physics correlation function by

substituting c→ a:

2F (τ1, τ2, τ3, τ4) = µ4
am exp

[

−gam(τ1 − τ2) + gam(τ1 − τ3) (2.68)

−gam(τ2 − τ3) − gam(τ1 − τ4) + gam(τ2 − τ4) − gam(τ3 − τ4)
]

,

where m represents the excited states b, c. For the four-point correlation function

representing three-level physics we make the additional substitution d→ b to find

3F (τ1, τ2, τ3, τ4) = µ2
amµ

2
an exp

{

−1

2

[

2gam(τ1 − τ2) + 2gan(τ3 − τ4) (2.69)

−gam(τ1 − τ3) + gam(τ1 − τ4) + gam(τ2 − τ3) − gam(τ2 − τ4)

−gan(τ1 − τ3) + gan(τ1 − τ4) + gan(τ2 − τ3) − gan(τ2 − τ4)

+gmn(τ1 − τ3) − gmn(τ1 − τ4) − gmn(τ2 − τ3) + gmn(τ2 − τ4)
]

}

.

Determining the response functions for a three-level system is now reduced

to inserting the time sequences of Eq. 2.65 into the above equations for each
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pathway. Doing so gives us the final results for the third-order response functions

for a three-level system in direction −k1 +k2 +k3 and time ordering (−k1,k2,k3)

(equations for the other time ordering are in App. B.3)3 :

2Rm
2 (τ1, τ2, τ3) = µ4

ame−iωma(τ1−τ2−τ3)

× exp
{1

2

[

−gam(−τ2) + gam(−τ1) − gam(τ2 − τ1)

−gam(−τ3) + gam(τ2 − τ3) − gam(τ1 − τ3)
]

}

,

2Rm
3 (τ1, τ2, τ3) = µ4

ame−iωma(τ1−τ2−τ3)

× exp
{1

2

[

−gam(−τ3) + gam(−τ1) − gam(τ3 − τ1)

−gam(−τ2) + gam(τ3 − τ2) − gam(τ1 − τ2)
]

}

,

3Rn
2 (τ1, τ2, τ3) = µ2

amµ
2
ane−iωna(τ1−τ2)−iωnm(τ2−τ3)−iωma(−τ3)

× exp
{

−1

2

[

2gam(−τ2) + 2gan(τ1 − τ3)

−gam(−τ1) + gam(−τ3) + gam(τ2 − τ1) − gam(τ2 − τ3)

−gan(−τ1) + gan(−τ3) + gan(τ2 − τ1) − gan(τ2 − τ3)

+gnm(−τ1) − gnm(−τ3) − gnm(τ2 − τ1) + gnm(τ2 − τ3)
]

}

,

3Rm
3 (τ1, τ2, τ3) = µ2

amµ
2
ane−iωna(τ1−τ2)−iωma(−τ3)

× exp
{

−1

2

[

2gan(−τ3) + 2gam(τ1 − τ2)

−gam(−τ1) + gam(−τ2) + gam(τ3 − τ1) − gam(τ3 − τ2)

−gan(−τ1) + gan(−τ2) + gan(τ3 − τ1) − gan(τ3 − τ2)

+gnm(−τ1) − gnm(−τ2) − gnm(τ3 − τ1) + gnm(τ3 − τ2)
]

}

,

with m,n = b, c; m 6= n. The sum of the above response functions gives the

polarization. Thus we have for the spectrally integrated polarization for time

3 To convert the above equations to notation with times between pulses t1, t2 and t3 (with
t1 the time of pulse 1, t2 the delay between pulses 1 and 2 and t3 the delay between pulses 2
and 3), use the conversion equations τ1 = t1 + t2 + t3, τ2 = t1 + t2 and τ3 = t1.
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ordering (−k1,k2,k3):

P
(3)
SI (t) =

[

2R2
2(τ1, τ2, τ3) + 2R3

2(τ1, τ2, τ3) + 2R2
3(τ1, τ2, τ3) (2.70)

+2R3
3(τ1, τ2, τ3) + 3R2

2(τ1, τ2, τ3) + 3R3
2(τ1, τ2, τ3)

+3R2
3(τ1, τ2, τ3) + 3R3

3(τ1, τ2, τ3)
]

.

The TFWM signal can in turn be calculated by performing an integral over the

square of the polarization,

S =

∫ ∞

−∞
|P (3)(t)|2dt. (2.71)

Now that we have the response functions in terms of the lineshape functions

g the last step is to decide the form of the two-time correlation function of fre-

quency fluctuations to find the form of g. To model a system with non-Markovian

dephasing we use the stochastic model described at the beginning of this section.

In particular, we assume the modulation of the i to j transition δωij obeys the

stochastic two-time correlation function of frequency fluctuations

〈δωij(t1)δωij(t2)〉 = ∆2
ij exp(−Λij|t2 − t1|) (2.72)

and

〈δωij(t)〉 = 0, (2.73)

where ∆ij corresponds to the root-mean-squared amplitude of the frequency fluc-

tuations and Λ−1
ij is their time scale. The angle brackets denote an ensemble

average over the stochastic process. Figure 2.10 is a schematic of the stochastic

correlation function. The stochastic model results in a line shape function given

by

gij(t) =

∫ t

0

dτ1

∫ τ1

0

dτ2〈δωij(τ1 − τ2)δωij(0)〉 (2.74)

=
2∆2

ij

Λ2
ij

[

exp(−Λijt) + Λijt− 1
]

.
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Figure 2.10: Schematic of stochastic correlation function.

In order to compare these results with the two-pulse derivations above, we

reduce the equations to the two-pulse case by setting τ1 = τ2. The response

functions for the two possible interaction pathways corresponding to 2- and 3-

level physics then are

2Rm
2 = 2Rm

3 = µ4
ame−iωma(τ1−2τ2) exp

[

2gam(−τ2) + gam(−τ1)

− gam(τ2 − τ1) − gam(τ1 − τ2)
]

,

3Rn
2 = 3Rn

3 = µ2
amµ

2
ane−iωna(τ1−τ2)−iωma(−τ2) exp

{

−1

2

[

3gam(−τ2) + 2gan(τ1 − τ2)

+ gam(−τ1) − gam(τ2 − τ1) − gan(−τ1) + gan(−τ2) + gan(τ2 − τ1)

+ gmn(−τ1) − gmn(−τ2) − gmn(τ2 − τ1)
]

}

. (2.75)

The sum of the response functions gives the polarization in Eq. (2.71) that is

then numerically integrated to obtain the TFWM signal. The results of this

non-Markovian calculation for the case of a two-level system are plotted for the

time-resolved and time-integrated cases in Figs. 2.11 and 2.12.

The 2-pulse results including non-Markovian dephasing look very similar

to the static inhomogeneous broadening case derived earlier. Indeed, one way to

think about this result is in terms of the system being “inhomogeneously broad-

ened” at short times and “homogeneously broadened” at long times. These two
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limits correspond to timescales in which fast modulations of the transition energy

dominate the response (homogeneous broadening) and short timescales in which

the static distribution of transition energies dominates (inhomogeneous broad-

ening). Like the static inhomogeneously broadened case, the rise of the time-

integrated signal from zero delay is due to the integration up to the full area of

the real-time signal, a photon echo [41]. This is similar to the inhomogeneously

broadened case derived earlier in that at zero time, there is only half of a photon

echo because of causality; the photon echo cannot arrive until after the second

pulse, and if τ is zero, only half of the echo can form. Thus as τ is increased

from zero to positive delay, the signal rises because of the integration over the

developing photon echo.

The non-Markovian photon echo arises from varying atomic spacing at short

delays, not Doppler broadening nor static inhomogeneous broadening, from which

the photon echo phenomenon was originally observed [42]. At short delay the

atoms do not move and thus their resonance frequencies remain constant over

the delay. The atoms are at varying distances from one another, resulting in

a distribution of transition frequencies due to the varying dipole-dipole interac-

tions, making the vapor effectively inhomogeneously broadened. In this regime

the evolution of the coherent superposition between ground and excited state is

reversible, and thus the real-time signal is a photon echo. For longer delays, colli-

sions begin to take effect, randomizing the phases of the superpositions such that

they cannot rephase as well to produce a photon echo. This intermediate regime

occurs when τ is approximately equal to the correlation time. This is in contrast

to the static inhomogeneous case, in which the peak of the signal is determined

only by the decay of the photon echo, not the loss of photon echo-like behavior.

The loss of photon echo-like behavior is clearly exhibited in the real-time signal

shown in Fig. 2.11. As the delay between pulses is increased, the photon echo
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signal decreases, resulting in peaks of the real-time signal at shorter and shorter

delays, until eventually the photon echo fails to arrive at all.

The parameters ∆ and Λ representing the amplitude and duration of fluctu-

ations determine the timescale of the crossover from homogeneous to inhomoge-

neous broadening in the time-integrated signal. The decay constant at long times

is T2 = Λ/(2∆)2. The effect of varying ∆ and Λ are shown in Figs. 2.13 and 2.14,

respectively. It can be seen that varying ∆ results primarily in an increase of the

dephasing rate, which affects the location of the peak of the signal versus delay.

Varying Λ primarily affects the delay of the peak, faster fluctuations resulting in

earlier crossovers from inhomogeneous to homogeneous broadening.

t2

Non-Markovian Broadened
2-Level System

Increasing D
elay

 

2-
P

ul
se

 R
ea

l-T
im

e 
TF

W
M

 S
ig

na
l

t, real time

Figure 2.11: Calculated 2-pulse time-resolved TFWM signal for a non-Markovian
broadened 2-level system.

To see the effect on the TFWM signal of having two excited states instead

of just one, we calculate the 2-pulse TFWM signal for the case of a three-level

system using the response functions derived above. We choose the spacing of

the excited state energy levels to match that between the potassium D1 and D2



45

T2/2

 

 

Non-Markovian Broadened
2-Level System

2-
P

ul
se

 T
im

e-
In
te

gr
at

ed
 T

FW
M

 S
ig

na
l

, delay between pulses

Figure 2.12: Calculated 2-pulse time-integrated TFWM signal for a non-
Markovian broadened 2-level system (natural log scale).
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Figure 2.13: Calculated 2-pulse time-resolved TFWM signal for a non-Markovian
broadened 2-level system (natural log scale). Varying the correlation function
parameter ∆, representing the root-mean-square amplitude of the fluctuations.

lines studied in the experiments. The resulting time-integrated 2-pulse TFWM
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Figure 2.14: Calculated 2-pulse time-integrated TFWM signal for a non-
Markovian broadened 2-level system (natural log scale). Varying the correlation
function parameter Λ−1, representing the timescale of the fluctuations.

signal is shown in Fig. 2.15. The beating exhibited by the signal is a result of the

quantum interference of the two excited state pathways, with the beat frequency

corresponding to the frequency difference between the levels. In addition, if the

levels have different dipole moments or are excited with different intensities the

amplitude of the modulation in the beats will decrease.

Finally, we consider the case of 3-pulse TFWM. Although the particular se-

quence and arrangement of pulses will be described in detail in the experimental

chapter, we consider here how separating the second and third pulses gains added

insight into the physics of non-Markovian dynamics. In particular, it has been

shown that varying the delay τ between the first and second pulse for various val-

ues of the delay T between the second and third pulse allows the mapping out of

the correlation function of frequency fluctuations [43]. This may not be surprising

considering that the response functions are so intimately related to the correlation
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Figure 2.15: Calculated 2-pulse time-integrated TFWM signal for a non-
Markovian broadened 3-level system (natural log scale).

function through the line shape functions. Physically this seems reasonable as well

considering that varying the second delay probes changes that occur while the sys-

tem is in the intermediate density matrix state corresponding to population. By

changing that time interval we have access to the timescales of the randomization

process that result in the loss of rephasing capability. That is, because the photon

echo cannot arise until after the third pulse reverses the evolution of the coher-

ent superposition created by the first pulse, varying the second-third pulse delay

“exposes” the coherence to variable durations of randomizing collisions. It is just

these randomizing collisions that determine the form of the correlation function.

In terms of the actual signals, the effect of increasing the second delay is

to shift the peak of the TFWM signal versus the first delay τ towards zero. In

other words, increasing the second delay decreases the inhomogeneous system re-

sponse that determines the peak location in the TFWM signal versus τ . The

time-integrated three-pulse TFWM signals for various second delays T are plot-

ted in Fig. 2.16. By determining the peak delay of these signals and plotting this
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delay as a function of T , a form for the correlation function of frequency fluctu-

ations can be found. This “photon echo peak shift” thus reveals the form of the

microscopic correlations involved in the dephasing process. As seen in Fig. 2.17,

for the stochastic model chosen in the above derivation we indeed find an exponen-

tial peak shift. The exact relationship between the peak shift and the correlation

function is just that exhibited by the response functions derived above. In some

molecular systems this relationship can be shown to take a more direct form, par-

ticularly for systems which exhibit both a fast and slow peak shift decay [43]. The

next two chapters on the experimental results and correlation function theory will

explore the relationship between the peak shift and the correlation function in

more detail for our system.
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Figure 2.16: Calculated 3-pulse time-integrated TFWM signal for a non-
Markovian broadened 2-level system (natural log scale).
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Figure 2.17: Calculated 3-pulse photon echo peak shift for a non-Markovian broad-
ened 2-level system.



Chapter 3

Transient Four-Wave Mixing Experiments and Results

Transient four-wave mixing (TFWM) applied to the study of non-Markovian

dynamics is often called the photon echo technique, referring to the photon echo

as the signature of non-Markovian dephasing1 . In this chapter the experimental

setups and results will be presented for two- and three-pulse photon echo as well as

the time-resolved version of three-pulse photon echo. The results will be analyzed

in light of the theoretical results of the previous chapter. Through this analysis

the scope of the stochastic theory as well as the effects of resonance broadening

will become apparent.

3.1 Experimental Components

Potassium is the element of choice for these experiments because of its simple

electronic structure, with energy levels easily accessed by a Ti:sapphire laser (see

Fig. 3.1 for a diagram of the optically active energy levels). Potassium is an

alkali metal containing 19 electrons, with one valence electron in the 4s shell.

The two lowest excited states of this valence electron correspond to the D1 and

D2 lines at 769.896 nm (1.61 eV, 12, 985.17 cm−1) and 766.490 nm (1.62 eV,

13, 042.88 cm−1), respectively2 . These lines correspond to the 42S1/2 → 42P1/2

1 Two-pulse photon echo is also known as parametric scattering [27] or self-diffracted TFWM.
2 The phrase “D lines” comes from Frauenhofer’s study of the spectrum of the sun in the

early 1800’s, resulting in a paper in 1821. He labeled the strongest dark lines across the visible
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and 42S1/2 → 42P3/2 fine structure transitions that are split through the spin-

orbit interaction. Potassium was chosen over other candidate alkali metals to

simplify experiment and theory. In particular, it was chosen over sodium because

the potassium D lines are easily attainable by a Ti:sapphire laser, whereas the

D lines for sodium lie in the yellow part of the spectrum, which would require a

dye laser. Potassium was chosen over rubidium and cesium because the hyperfine

splitting of potassium is less than that of these other alkalis, with the potassium

hyperfine splitting negligible due to broadening at the experimental densities and

temperatures used [45]. Additional properties of potassium are given in App. C.

42P1/2

42S1/2

42P3/2

D1 D2
(766.490 nm)(769.896 nm)

Figure 3.1: Optically active energy levels.

In these experiments a Kerr-lens modelocked Ti:sapphire laser with an ex-

tended cavity was used because of its low repetition rate of ∼ 26 MHz to reduce

accumulation of population in the excited state. The laser pulses are dispersion

compensated by a prism pair just downstream of the laser output coupler, result-

ing in pulses ∼ 160 fs long by the time they reach the cell, approximately double

the Fourier-transform limited width of 70 fs. Simulations were run to determine

the effects of temporal chirp on TFWM and the signals were found to be unaf-

fected by temporal chirp. The pulses are focused onto the interface between the

spectrum by the capital letters A in the red to H in the violet; the D line turned out to be a
doublet, thus becoming D1 and D2. It was not until twenty-seven years later that the connection
was made to the already-known spectral lines of sodium. His notation remains in use today for
sodium, and I assume that the similarity of the doublets in other alkali metals promotes their
being called the “D lines” also [44].
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sapphire window and the potassium vapor by a 25 cm focal-length achromatic

doublet lens to minimize chromatic dispersion (a 15 cm singlet lens was used in

the two-pulse experiments, which are not as sensitive to dispersion). The broad

(∼ 13 nm FWHM) laser spectrum excites both the potassium D1 and D2 lines,

which are well-separated, resulting in quantum beats at the difference frequency

(as derived in the previous chapter). This is in contrast to molecular vibronic

spectra, which often contain multiple, overlapping transitions [23]. In addition

to the D lines the pulses off-resonantly excite other levels which were examined

via the fluorescence as a function of temperature and input laser power, shown in

Fig. 3.2. Intensity dependence was measured for the major transitions and both

linear and square dependence was found, corresponding to the off-resonant single-

and two-photon excitation of higher-lying states such as the atomic 6S and 4D

lines and a distinctive molecular band at 670 nm. These do not contribute to the

resonant TFWM signal but do reveal the presence of potassium dimers.

The cell used to hold the potassium vapor is custom-made at JILA and

consists of a titanium body with a sapphire window for optical access. A detailed

description of the potassium cell, its historical development, and directions for its

manufacture can be found in App. E. To keep the potassium from condensing

onto the sapphire window, higher temperature is maintained at the window than

the back of the cell. The densities of the vapor are determined using phenomeno-

logical formulae relating the vapor pressure of potassium to temperature, from

which the densities are then calculated based on the ideal gas equation3 [47].

Temperatures up to 800◦C are achieved, corresponding to a number density of

∼ 9 × 1018 cm−3. For the data presented in this chapter the TFWM signals are

detected in reflection because the absorption length of the potassium vapor is on

3 Note the treatment of potassium as an ideal gas is less valid for higher densities and pres-
sures at which phenomenological formulae have been shown to deviate [46]. Thus uncertainties
probably arise primarily from the assumption of ideal gas behavior.
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Figure 3.2: Detected fluorescence from potassium vapor excited at 768 nm versus
wavelength for various temperatures.

the order of the wavelength of the incident light at these densities. Transmission

cells were also manufactured and data were taken in transmission as well; the

transmission cells and data are presented in App. E. This quality of short ab-

sorption length makes the vapor effectively thin for reflection experiments, which

minimizes reshaping of the excitation pulses and reabsorption of the signal. In ad-

dition, it has been shown that the reflected signal is equivalent to the transmitted

signal for an optically thin sample [48].

The nominal radiative lifetime of potassium is ∼ 26 ns, but this is known

to be extended due to the trapping of radiation (the emission and reabsorption of

real photons) at high densities [49]. To determine the actual radiative lifetime we

employed a home-built pulse picker (see App. D for details) to divide down the
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repetition rate and used a photo-multiplier tube to detect the vapor fluorescence

excited by laser pulses with center wavelength tuned to the D lines. The repeti-

tion rate was divided by 50, and data were collected using a fast oscilloscope for

a series of temperatures ranging from 450◦C to 600◦C. The fluorescence decay

was most visible at 450◦C, shown in Fig. 3.3(a), with a decay time of ∼ 0.16 µs.

The effects of radiation trapping decrease with temperature and density as shown

in Fig. 3.3(b), which could be due to the decreasing optical depth in reflection.

Thus the extended cavity laser does not have a sufficiently low repetition rate

to allow all of the excited state population to relax back to the ground state be-

tween pulses. To determine the effects of radiation trapping on transient four-wave

mixing experiments, two-pulse TFWM data were taken with and without pulse

picking. It was found that the dephasing rate is slightly suppressed due to radi-

ation trapping. The dephasing rate reaches a steady value versus repetition rate

starting around 1 MHz. Thus dividing down by 20 pulses seems to be sufficient to

reduce the influence of radiation trapping. The pulse picker was used in collecting

the two-pulse TFWM data presented here but was not used in the three-pulse

experiments due to the pulse picker’s heavy toll on pulse intensites and because

the signatures of interest in these experiments are not very sensitive to the change

in dephasing rate due to radiation trapping. Signal intensities were checked for

compliance with cubic dependence on intensity for all of the TFWM data to en-

sure the suitability of a perturbative treatment. The intensity was found to have

a significant influence on the negative delay signal strength of 2-pulse TFWM

data, with a larger negative delay signal for lower intensities. This is important

for studying the local field effect as described in Ch. 5 but does not affect the

signatures of interest in this chapter.

The major broadening mechanisms in a vapor of pure potassium atoms are

Doppler and resonance broadening. Doppler broadening arises from the blue- and
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Figure 3.3: (a) Oscilloscope trace of fluorescence intensity versus time. The vapor
is excited every 50th pulse, with remnants of the other pulses represented as the
smaller peaks. The exponential decay is the radiative decay of the excited state
population. (b) The measured decay times as a function of temperature.

red-shifted spectral contributions of atoms moving towards or away from the inci-

dent pulses. The varying atomic velocities result in contributions from a large va-

riety of spectral components, resulting in a Gaussian (inhomogeneous) lineshape.

Resonance broadening is due to the dipole-dipole interaction between ground- and

excited-state atoms of the same species. If the vapor is resonance broadened, the

dominant mechanism for dephasing is collisions. Because the dephasing collisions

arise from the behavior of like atoms, the vapor is homogeneously broadened in

this limit. In order to study the non-Markovian dephasing process we then work

at densities at which resonance broadening dominates over Doppler broadening.

These densities correspond to temperatures above ∼ 350◦C (see Fig. 3.4). Thus

the experimental results shown below were taken with the vapor above this tem-

perature, which corresponds to densities > 8 × 1016cm−3.

We now introduce the two- and three-pulse photon echo experiments and

results.
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Figure 3.4: Theoretical linewidths for resonance and Doppler broadening.
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Figure 3.5: The 2-pulse photon echo experimental setup.

3.2 The Two-Pulse Photon Echo Experiment and Results

As a description was given for three-pulse TFWM in the previous chapter,

here we give only a brief description of the two-pulse transient four-wave mixing

process, which when applied to the study of non-Markovian dynamics is called the

two-pulse photon echo technique (2PE). In the 2PE experiment, shown in Fig. 3.5,

two pulses with wavevectors ka and kb and center frequency tuned to resonance

are incident on the dense vapor. The first pulse, with wavevector ka, induces a

coherence between the ground and excited states of the atoms with a spatial phase

across the vapor determined by its angle of incidence and wavelength. After some

delay τ , the second pulse, kb, produces an excited state population whose ampli-
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tude is greatest in areas where the coherence left by the first pulse constructively

interferes with the second pulse and least where they destructively interfere. Thus

the excited state population is spatially modulated, forming an amplitude grating

with periodicity kb−ka. At the same time it creates the grating, the second pulse

also scatters off the grating (i.e. creates a coherence that radiates) into the direc-

tion 2kb−ka. This background-free signal is time-integrated by a slow photodiode

detector. The scattered signal has an intensity proportional to the amplitude of

the population grating. By varying the time delay between pulses, τ , the tran-

sient behavior of the induced polarization can be investigated. Note that the use

of subscripts a and b instead of numbers is to represent the fact that signals in

either direction can be detected, and thus there is a different ordering correspond-

ing to positive and negative delay depending on which signal is detected. That

is, for the signal in direction 2kb −ka “negative delay” corresponds to kb arriving

first, while for the signal in direction 2ka − kb negative delay corresponds to ka

arriving first. Thus we do not label the wavevectors with numbers in order to

prevent confusion of the geometrical orientation with the pulse sequence.

Typical experimental results are shown in Fig. 3.6. The detected signal

intensity is plotted as a function of the delay between pulses. The signal exhibits

quantum beats due to that fact that two energy levels are excited, as was confirmed

theoretically in the previous chapter. The important aspect of this signal is that

it initially increases at short times, peaks and then exponentially decays at long

times. This behavior corresponds to that predicted in the previous chapter for

a non-Markovian broadened system. Thus the 2PE signal contains signatures of

both non-Markovian and Markovian dynamics. Indeed, the dynamical signatures

are well-separated (see Fig. 3.6) as an initial rise of the signal caused by the

integration of the developing photon echo, a flat signal at short delays due to

non-Markovian scattering, and exponential dephasing due to pure homogeneous
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broadening. The extra dip near zero delay is a result of the signal following the

integration of the pulses, which have a finite duration. The 2PE experiment was

performed for a series of densities and temperatures. The results are plotted

in Fig. 3.7. As temperature and density increase, the range of non-Markovian

dynamics decreases. This agrees with the reasoning that the collision duration

and time between collisions should decrease with increasing temperature and thus

that the range of non-Markovian dephasing should decrease with temperature.

This argument is made more quantitative below through the application of the

non-Markovian theory.
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Figure 3.6: Experimental two-pulse photon echo signal for potassium vapor at
500◦C (number density ∼ 3.4 × 1017 cm−3) with dynamical signatures labeled.
Quantum beats are due to the excitation of both the potassium D resonance
lines.

In this experiment the dephasing time, collision duration and pulse width

are all well-separated. Based on thermal velocities calculated assuming ideal gas

behavior and the range of the attractive part of a typical interatomic potential

energy surface, at 700◦C the collision duration is approximately 0.5 ps. This col-

lision duration is much less than the time between collisions of 2 ps (based on

the dephasing time) and much greater than the pulse duration of 180 fs. In ad-
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Figure 3.7: Experimental two-pulse photon echo signals for various temperatures
and densities (log scale), with lines drawn to highlight the non-exponential be-
havior at short times. The non-Markovian behavior decreases with increasing
temperature and density.

dition, this estimated value for the collision duration agrees well with the delay

at which the signal peaks, which according to the theory corresponds to approx-

imately the correlation time Λ−1. In condensed phase systems the timescale of

fluctuations can be on the order of 200 fs [18], with dephasing due to solvent in-

teraction also occuring at ultrafast timescales [20]. Thus the above experimental

results exhibit unusually well-separated contributions from homogeneous and in-

homogeneous broadening as compared to molecules in the condensed phase. We

also note that we do not need to be concerned with contributions from other time

orderings that occur during pulse overlap. Indeed, with such a model system,
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this is an opportunity to test the non-Markovian theory derived in the previous

chapter that is often used in more complex molecular systems. To do so we use

the response functions derived in the previous chapter for 2PE in a three-level

system. Least-square fits are made to the experimental data with the only fitting

variables being the parameters of the stochastic correlation function ∆ij and Λij

for the two transitions.

Theoretical results match quite well with the experimental results via least-

square fits, as shown in Fig. 3.8. The discrepancy near zero delay is due to the

assumption of delta-function pulses in time, which does not allow for finite pulse

width effects. The fit parameter Λij corresponds to the decay rate of the corre-

lation function and determines the time scale of the deviation of the 2PE signal

from exponential behavior at short delays. To confirm that these signatures arise

from non-Markovian dephasing, fits were made to the data for various temper-

atures and as expected Λij increases with increasing temperature, as shown in

Fig. 3.9. This represents a decreasing collision duration. The magnitude of the

excited state frequency fluctuations is represented by the parameter ∆ij, which is

also plotted in Fig. 3.9. The ratio κ = Λij/∆ij is of order 1, which means that

the broadening mechanism is intermediate and not in either the homogeneous or

inhomogeneous limits.

The excellent fit between theory and experiment demonstrate that the stochas-

tic model adequately describes the dynamics. The stochastic model does not take

into account memory in the bath, as occurs, for example, in semiconductors due

to electron-LO-phonon scattering [50]. Memory in the bath results in oscillatory

dephasing, so the fact that we do not see oscillatory dephasing implies that a

model that includes such a microscopic description of the bath [51, 52] is not

needed4 . The stochastic model does not include resonance broadening effects;

4 For an atomic system “the bath” is all the other atoms.
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Figure 3.8: Typical experimental 2-pulse photon echo signals (solid grey lines) for
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thus, differences will exist in comparison with a foreign-gas broadened vapor in

which the interaction range and therefore the collision duration is relatively small.

The deviation of the inverse collision duration from square-root dependance on

temperature may indicate the importance of the resonant interactions. This can

be explored experimentally by introducing a buffer gas to the potassium vapor,

which would decrease the interaction range and bring the system to the Marko-

vian, homogeneously broadened limit (see Ch. 6 for a description). Performing

such an experiment would grant the ability to determine signatures unique to res-

onance broadening. In addition, further insight can be gained with a three-pulse

photon echo experiment, which as mentioned in the last chapter can enable the

mapping out of the correlation function of the system [43, 53, 54]. This latter

experiment is the subject of the next section.

3.3 The Three-Pulse Photon Echo Experiment and Results

Ti:sapphire
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kc

kb

reflected signals
above input beams

delay
detectorsdelay

k k k- b c+ += -ka

k+k-

lens view

k k k k+ a b c- +=

26 MHz
160 fs

768 nm

potassium
vapor

Figure 3.10: The time-integrated 3-pulse photon echo experimental setup. The
signals are detected in reflection due to the small absorption length (∼ λ/2) of
the potassium vapor.

The experimental setup for three-pulse TFWM, known as three-pulse pho-

ton echo (3PE) in non-Markovian spectroscopy, is shown in Fig. 3.10. Figure 3.11
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Figure 3.11: The three-pulse photon echo experimental geometry.

shows the pulse geometry. The 3PE technique extends the previous experimental

arrangement by adding a third pulse. The pulses once again are labeled alphabet-

ically to imply that time ordering is dependent on the geometry of the detected

signal. The first pulse excites a coherence between the ground and excited states.

During the ensuing delay τ , dephasing occurs due to collisions. Then the second

pulse arrives and converts the remaining coherence to excited-state or ground-

state population. During the second delay T , loss of population and spectral

redistribution occurs due to natural decay and collisions, and the system’s ability

to rephase and form a photon echo decreases. The third and final pulse forms

a third-order coherence that radiates as the signal. The time-integrated 3PE is

measured by scanning the first delay τ for various fixed values of the second delay

T , with negative delay corresponding to the conjugate pulse coming second. A

schematic of the pulse ordering for different time delays is shown in Fig. 3.12. The

3PE signal is more sensitive to the beam geometry that the two-pulse case. In

particular, the beams must be parallel to observe the proper population decay as

a function of T , as shown in Fig. 3.13.

As exhibited by the data shown in Fig. 3.14, and considering only the k−

signal for simplicity, for τ > 0 the overall signal versus τ (ignoring the quantum

beating due to simultaneous excitation of both excited states) rises, peaks, and

then exponentially decays. This is the same behavior as exhibited by the 2-

pulse photon echo signal. Across the peak, the real-time signal changes from a
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Figure 3.12: Time delays of the three-pulse photon echo experiment.

0 3 6

Effects of changing beam angle in 3PE 

3P
E

 S
ig

na
l

T, delay between second and third pulse (ps)

Parallel

0 3 6

Splayed Out

0 3 6

 
Toed In

Figure 3.13: Dependence of the population decay (taken by varying T for fixed τ)
on beam angle. The beams must be aligned parallel before the focusing lens for
the population decay to be properly measured.

photon echo to free polarization decay, corresponding to the crossover from non-

Markovian to Markovian dynamics. As the second delay T is increased, the signals

reveal how the system’s ability to form a photon echo changes. For the case of

the first delay τ being less than the correlation time, we can divide the dynamics

into three regimes as a function of the second delay T (see Fig. 3.15). For T less

than the correlation time, the non-Markovian dynamics at short times results in a
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real-time signal that is a photon echo, but the intensity is slightly decreased due to

the collisions that occur during the second delay. The dotted line in the schematic

represents what the signal would be if T were zero. For T much greater than the

correlation time, the dephasing during the second delay completely precludes a

photon echo from forming, as shown in the figure for the Markovian regime. In

the time-integrated signal, this results in a shift of the peak toward τ = 0. Thus

varying the second delay allows a probe of the loss of photon echo-like behavior

during the transition to homogeneous broadening. To determine the peak shift,

data are taken as a function of τ for the second delay T at the beat maxima of the

population signal for best signal-to-noise. The scans of τ for each of these T are

then analyzed by fitting a Gaussian to each beat, determining the maxima delays

versus τ of the Gaussian fits, and fitting these delays in turn with a Gaussian

to find the overall peak of the 3PE signal. Three-pulse photon echo data were

taken for a series of temperatures and densities. The resulting 3PE peak shifts,

or 3PEPS, are shown for a series of temperatures in Fig. 3.16.

For some molecular systems the 3PEPS reveals the two-time correlation

function of frequency fluctuations directly [23]. However, this is only possible

due to a theoretical simplification arising from the presence of both fast and slow

modulation in the system. For a dense atomic vapor, such simplifications do not

necessarily occur, but a qualitative form for the correlation function can be found

from the 3PEPS. The experimental peak location versus τ is exponential at lower

temperatures and thus qualitatively supports the use of an exponential correlation

function in modeling two-pulse experiments, as was done for the 2PE signals above

[55]. The peak shift is bi-exponential above 500◦C. The fitting functions shown

in the figure are of the form

∆2
1 exp(−Λ1T ) + ∆2

2 exp(−Λ2T ), (3.1)
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Figure 3.14: Experimental 3-pulse photon echo signals at 600◦C (1.3× 1018cm−3)
for T = 0.58 ps to 36 ps. The peak of the signal, marked by an arrow in the figure,
shifts to τ = 0 ps due to the loss of rephasing capability.
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Figure 3.15: Schematic of regimes for τ < tc (τ in the non-Markovian regime).
Real-time signals are shown in solid black for the cases of T in the non-Markovian,
intermediate and Markovian regimes. Dotted lines represent the signal for perfect
rephasing.

where the subscripts 1 and 2 refer to the fast and slow exponentials, respectively.



68

0 10 20

0.1

1

*, 
pe

ak
 d

el
ay

 (l
og

 p
s)

T, delay between 2nd and 3rd pulse (ps)

 500oC
 550oC
 600oC
 650oC
 700oC
 750oC

Experimental Peak Shift

Figure 3.16: 3PEPS for a series of temperatures and densities with bi-exponential
fits (lines).

The amplitudes ∆2
i and time constants 1/Λi for the exponentials are plotted in

Fig. 3.17. This bi-exponential behavior could represent the presence of two col-

lision mechanisms, such as both short-range/binary/hard and long-range/many-

body/soft collisions, the latter being due to resonance effects at these high densi-

ties [56]. Alternatively, it could be due to contributions from higher-order powers

of the correlation function [57]. The current theory does not account for resonance

broadening, which dominates at these high densities [58]. To take resonance ef-

fects into account and gain a more complete description of the system response,

we performed molecular dynamics simulations in an exciton picture and calcu-

lated the correlation function of one-exciton frequency fluctuations. Using these

correlation functions we then calculated the 3PEPS signals [59]. This work is

presented in the next chapter.
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Figure 3.17: Experimental 3-pulse photon echo peak shift fitting parameters ∆
and Λ for the fast (square) and slow (triangle) exponentials.

3.4 The Time-Resolved Three-Pulse Photon Echo Experiment and

Results
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Figure 3.18: The time-resolved 3-pulse photon echo experimental setup.

We also performed the time-resolved version of the 3PE experiment to gain

more insight into the correlation function experimentally. In the time-resolved

version of 3PE (time-gated 3PE), a reference pulse is correlated with the emitted

3PE signal at a particular τ and T in a BBO crystal for up-conversion, resulting

in a time-resolved scan of the nonlinear response. In the setup, shown in Fig. 3.18,

the beam from the laser is split into five arms, three corresponding to the three
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beams used for four-wave mixing, one used as a tracer for the TFWM signal from

the vapor, and one used as a reference for upconversion of the TFWM signal.

Three delay stages are used to form the delays between pulses, with two stages

before the cell for the τ and T delays and one after the cell for signal upconversion

with the reference. Data are taken for various τ and T as a function of the delay

between the signal and the reference, t. Results are shown in Fig. 3.19.

The presence of the photon echo is clearly seen in the time-resolved signal

(Fig. 3.19). As a function of τ we can see that the signal exhibits a free polarization

decay and a photon echo for small T . As τ is increased, the photon echo moves

to the corresponding delay. As T is increased this photon echo-like behavior goes

away. This is an unusually clear example of the utility of the three-pulse photon

echo technique for probing non-Markovian dynamics.
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Figure 3.19: Experimental time-resolved 3-pulse photon echo signals at 600◦C
(1.3 × 1018cm−3). Small arrows point to t = τ , the photon echo location for
perfect rephasing. Photon echo strength clearly decreases with increasing T .



Chapter 4

Correlation Functions from Molecular Dynamics Simulations in an

Exciton Picture

In this chapter the experimental three-pulse photon echo results are com-

pared to calculated correlation functions of frequency fluctuations from molecular

dynamics simulations in the exciton formalism. Although fits using the stochas-

tic model are excellent for the two-pulse photon echo experimental results, the

bi-exponential behavior of the 3PEPS at high density cannot be explained by a

single exponential correlation function. Even if it could, the insight the stochas-

tic theory provides into the dynamics of the system is limited by our assumed

correlation function. In addition, adding resonance effects is interesting from a

purely theoretical point of view as to how it might change the 3PEPS as well

as potential experimental signals for varying buffer gas pressure and the spectra

obtained from 2D spectroscopy, in which crosspeaks reveal excitonic coupings (see

Ch. 6 for a brief description of the latter). Understanding the influence of exci-

tonic effects would provide insight into the interactions of a resonance-broadened

vapor in particular as well as other disordered excitonic systems such as molecular

aggregates, semiconductors and biological systems. Potassium vapor is an ideal

system in which to study disordered excitons due to its electronic simplicity and

its easily adjusted density and temperature.
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4.1 The Exciton Formalism

The model used for the two-pulse experiment is the equivalent of a foreign

gas model because we do not consider the interaction of atoms with atoms but

rather assume the interactions of a particular atom can be averaged into the fluc-

tuations of “the bath,” which in the case of a vapor are “all the other atoms.”

This model holds for foreign-gas broadened vapors because dephasing collisions

are short-range and thus spatially extended couplings of energy levels do not arise.

For a resonance-broadened vapor, the range of interaction between atoms is sig-

nificantly more long-range, meaning at the least binary interactions must be taken

into account. The exciton model facilitates binary as well as higher-order interac-

tions [60]. The concept of excitons enables us to write a diagonal Hamiltonian for

a system which fits neither the concept of a solid with bands nor that of a random

ensemble of separated atoms. This is done by working intermediately between

k-space and real space using the orthogonal states of excitons. An exciton can be

considered a quasiparticle representing a system of coupled oscillators. Generally,

for a system of N atoms there will be N one-exciton (all electrons in the ground

state except one electron in the excited state) states and N(N − 1)/2 two-exciton

(all electrons in the ground state except two) states, and so on. A schematic of

such a level scheme is shown in Fig. 4.1. An example derivation of the exciton

levels for a system of two 2-level atoms is given in App. F. The fluctuating exciton

Hamiltonian (including two-exciton states) is

HS =
∑

m

ΩmB̂
†
mB̂m +

m6=n
∑

m,n

(JmnB̂
†
mB̂n +KmnB̂

†
mB̂

†
nB̂mB̂n), (4.1)

where

B̂†
m = |m1〉〈m0| (4.2)
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Figure 4.1: Schematic of one- and two-exciton states for N atoms.

and

B̂m = |m0〉〈m1| (4.3)

are the exciton creation and annihiliation operators, Jmn is the one-exciton cou-

pling parameter between atoms m and n and Kmn that for the two-exciton. For

2 atoms (N = 2) we have the following relationship between the atom basis and

exciton basis:

Atom basis → exciton basis:

atoms m, states a states em

|ma〉|ma〉 → |emem〉

1 ground state:

|10〉|20〉 → |00〉

N = 2 one-exciton states:

|10〉|21〉 → |01〉

|11〉|20〉 → |10〉

N(N − 1)/2 = 1 two-exciton states:

|11〉|21〉 → |11〉.
As a first step to improving the theoretical treatment we decided to consider

only the formation of one-exciton states. Within the one-exciton formalism there

are a number of ways we could imagine improving the theoretical treatment of
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dense vapors. One approach is to attempt an analytical model in which N one-

exciton states are assigned a distribution of values corresponding to the typical

energies for a particular density. Unlike atoms in molecules that oscillate about

some mean distance from other atoms, atoms in a vapor vary drastically in dis-

tance from one another. Thus the experimental bandwidth of the incident pulses

would be the restraining factor on the range of energies such that only excitons

with energies within the laser bandwidth would contribute. The fluctuations of

the exciton energy levels then could be applied via a stochastic model for each

exciton energy level. This approach would represent binary interactions as well as

provide additional fitting parameters, but still assumes a form for the correlation

functions.

An alternative approach would be to use molecular dynamics (MD) simula-

tions, in which we consider a cluster of atoms that undergo a dynamic trajectory.

This approach would not need the stochastic model as an assumption, but rather

would calculate a correlation function based on the configurations of the atoms

from the simulated trajectories using interatomic potential energy surfaces. This

approach and its results are described in this chapter. To calculate the corre-

lation function from molecular dynamics (MD) simulations we took four main

steps: 1. simulate trajectories of an ensemble of atoms, 2. determine the resonant

exciton couplings Jm,n based on distances between atom pairs for each snapshot

of the trajectory, 3. diagonalize the one-exciton Hamiltonian and 4. calculate the

correlation functions and peak shifts. We begin with a description of the MD

simulation.

4.2 Molecular Dynamics Simulations

For the MD simulation, a 600 ps dynamic trajectory for a simulation unit

cell containing 10 to 40 potassium atoms in the gas phase was generated from
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the ground state potential energy surface (PES) of K2 using the molecular dy-

namics package GROMACS [61] (see App. G for details about the package). The

ground state potential energy surface was approximated by a Buckingham poten-

tial function fit to the 11Σ+
g ground state surface of K2, which was calculated via

a one-electron non-empirical pseudopotential method by [62]. The Buckingham

potential function is represented as

V (r) = A exp(−Br) − C

r6
. (4.4)

The fit to the ground state is shown in Fig. 4.2. The ground state potential

function was truncated in the simulation at 5 nm, at which distance the potential

reaches a value 10−7 times less than the potential minimum.
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Figure 4.2: The 11Σ+
g ground state surface and Buckingham potential fit used

in the molecular dynamics simulation. [Surfaces provided in S. Magnier et al.,
J. Chem. Phys. 121, 1771 (2004).]

Twenty runs were performed for each temperature, each run 6000 steps long

with a 0.002 ps time step, with the atom positions written to the output every

10 steps, resulting in a resolution of 0.02ps. Weak temperature coupling to a

bath at the experimental temperatures of the cell window was applied through a

Berendson algorithm provided by the GROMACS program. The Berendson algo-
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Table 4.1: Simulation box side lengths for 10 and 20 atoms.

Temp (◦C) Density (m−3) Box (nm) 10 atoms Box (nm) 20 atoms
300 4.815 × 1021 127.585 160.748
350 1.8355 × 1022 81.6736 102.902
400 5.660 × 1022 56.1127 70.6976
450 1.4775 × 1023 40.7528 51.3453
500 3.375 × 1023 30.9439 38.9869
550 6.920 × 1023 24.3574 30.6884
600 1.298 × 1024 19.7504 24.8839
650 2.2625 × 1024 16.4111 20.6767
700 3.706 × 1024 13.9219 17.5405
750 5.7610 × 1024 12.0181 15.1418

rithm slowly corrects for deviations of the system temperature T as determined

from atom velocities from the bath temperature T0 according to the equation

dT/dt = (T0 − T )/τ , where τ was set to be 0.1 ps in the simulations. No pres-

sure coupling was applied (i.e. the box size remained constant throughout the

simulation). The box size was scaled to include the same number of atoms for

each temperature (see Table 4.2 for a list of box side lengths for the tempera-

tures considered). The temperatures used for this scaling were the experimental

temperatures at the vapor cell nut (where the potassium rests in liquid form and

determines the vapor pressure). Atomic positions were set by the C command

rand() for each run, and initial velocities were randomly generated for each run

by the GROMACS program according to the Maxwell distribution for an ideal

gas.

4.3 Resonant Exciton Couplings

The resonant couplings arise from the attractive or repulsive nature of

atomic interaction, so interatomic potential energy surfaces represent the am-

plitude and range of the transition frequency fluctuations for the case of pairwise
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interaction. Thus for each snapshot of the trajectory, the resonant exciton cou-

plings Jm,n were determined for each pairwise atomic distance as the value of the

difference between the 11Σ+
u excited state potential energy surface and the 11Σ+

g

ground state surface of K2 [62]. Only the 11Σ+
u was used in the calculation; all

other surfaces dissociating to 4s + 4p (as plotted in Fig. 4.3) were not taken into

account, nor were transitions from the other ground state (see both ground states

in Fig. 4.4). The surfaces used in this calculation are plotted in Fig. 4.5. The

Jm,n were input into the fluctuating Frenkel exciton Hamiltonian, defined by

ĤS =
∑

m

ΩmB̂
†
mB̂m +

m6=n
∑

m,n

Jm,nB̂
†
mB̂n, (4.5)

where Ωm is the excitation energy of atomm, chosen to be Ωm = Ω = 13024.0162 cm−1

[60]. Two-exciton states, or quartic couplings, were not taken into account.
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Figure 4.3: All of the potential energy surfaces dissociating to 4s+4p. [As provided
in S. Magnier et al., J. Chem. Phys. 121, 1771 (2004).]



79

5 10 15 20 25

R Ha0L

0

2000

4000

6000

8000

10000

12000

E
Hc

m
-

1
L

4s+4s

13
S
+

u

11
S
+

g

Figure 4.4: All of the ground state potential energy surfaces. [As provided in
S. Magnier et al., J. Chem. Phys. 121, 1771 (2004).]

0.0 0.6 1.2 1.8
0

7000

14000

11 +
g and 11 +

u States

PE
S 

(c
m

-1
)

R (nm)

 11 +
u

 11 +
g

Figure 4.5: The PES whose difference was used to determine the resonant exciton
couplings.

4.4 Diagonalizing the Exciton Hamiltonian

By diagonalizing the exciton Hamiltonian we obtained the one-exciton states

used to calculate the frequency fluctuations δωi = Ω−HS[i], where i denotes the

ith diagonal one-exciton matrix element [60]. To attempt proper bookkeeping,



80

0 2 4 6 8
-4000

-2000

0

2000
One-exciton Coupling

C
ou

pl
in

g 
(c

m
-1
)

R (nm)

Figure 4.6: The difference between the 11Σ+
u excited state potential energy sur-

face and the 11Σ+
g ground state surface, used to determine the resonant exciton

couplings.

the eigenvalues and associated eigenvectors for each snapshot were compared with

those of the previous snapshot. If any element of the eigenvectors was found to

have changed by an amount greater than ǫ = 0.3 cm−1, the eigenvectors were

reordered to minimize the number of elements that underwent such change. Al-

though this removed most misorderings that masqueraded as avoided crossings,

there were some “real” avoided crossings within eigenvectors that could not be

reconciled frame-to-frame. In experiment only fluctuations within the laser band-

width (∼ 200 cm−1) contribute to the response; a survey of the range of exciton

energies revealed that most interactions stay within the laser bandwidth, repre-

senting the fact that the majority of collisions occur beyond the range of the most

attractive or repulsive parts of the potential energy surfaces.
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4.5 The Correlation Functions and Peak Shifts

The correlation functions were calculated for each run using the formula

C(τj) =

〈
N

∑

i=0

δω(ti − τj)δω(ti)〉

〈
N

∑

i=0

δω(ti)δω(ti)〉
, (4.6)

where the brackets denote an ensemble average over all the one-exciton states and

N is the number of frames in the trajectory. The fluctuations δω are approximated

to be periodic with period equal to tN , and times only up to τN/2 are considered

in the final form of the correlation function. The resulting correlation functions,

averaged over all runs for each of various temperatures and numbers of atoms, are

plotted along with the experimental peak shift results in Figs. 4.7-4.8.
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Figure 4.7: Experimental peak shifts (left) and theoretical correlation functions
from molecular dynamics simulations with 20 atoms, averaged over 20 runs (right).
The theoretical curves have been scaled to optimize their match with the experi-
mental peak shifts.

In comparing the simulations with 10 atoms with the experimental results,

good agreement is apparent. However, when the number of atoms is increased to
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Figure 4.8: Experimental peak shifts (triangles) and correlation functions from
molecular dynamics simulations with 10, 20 and 40 atoms (lines), scaled to opti-
mize fit with experimental peak shifts.

20, the behavior is similar only when comparing with lower temperatures than

those used in experiment. Simulations were performed for 40 atoms (as shown in

Fig. 4.8) and were found to be similar to the 20 atom case; thus, the correlation

functions can be considered to have converged with respect to the number of

atoms by 20 atoms. Simulations were also performed for 2 atoms, resulting in

correlation functions with much longer decay times, following the general trend

seen in going from 10 to 20. These correlation functions did not match as well

as the 10-atom case to the experimental peak shifts. The important features the

simulation and experimental results have in common are the single-exponential to

bi-exponential transition across temperature as well as the similar ratio of slow to

fast exponential amplitudes with temperature.

To determine the source of the two exponential time constants in the cor-
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Figure 4.10: Potential energy surfaces used to compare short and long couplings.

relation function, we replaced the one-exciton potential energy surface with a

shorter-range potential. This resulted in a single exponential decay, revealing

that the slow decay is due to long-range, or resonant, interactions (see Figs. 4.9

and 4.10). In addition we used this surface to check whether the change in going

from 10 to 20 atoms might be due to the box size being smaller than the range

of the one-exciton PES. Using the short-range PES case, the box size was always



84

much larger than the range of the PES. However, when the number of atoms

was decreased to 10, the correlation function exhibited a slower exponential decay

similar to that found when using the long one-exciton PES.

The correlation function temperature behavior does not agree as well with

experiment when the number of atoms is increased, which may imply that the

range of the potential is less than that represented by the potential energy surface

used in the derivation. To check that the similar temperature behavior of the

experimental peak shifts and the calculated correlation functions is real, the peak

shifts were calculated using the correlation function parameters derived above

within the theory of Ch. 2. There were thus four input parameters to the cal-

culation corresponding to the ∆’s and Λ’s of the biexponential fits. Results are

shown in Fig. 4.11. Only the correlation functions for 40 atoms were considered,

but the most important aspect of the results is their similar behavior with the

correlation functions used to calculate them, showing that bi-exponential correla-

tion functions result in bi-exponential peak shifts. Thus the fast decaying part of

the experimental peak shifts does seem to arise from the correlation functions.

The main assumptions made in the theoretical calculations are 1. using only

ground-state atoms in the MD simulation and 2. the inclusion of only one of the

eight dipole-allowed 4S+4P potential energy surfaces in calculating the exciton

Hamiltonian (this also means we ignore the fine structure and hyperfine split-

ting). The first assumption means we do not take into account the fact that the

experiment is sensitive only to the frequency fluctuations of excited atoms. The

way to account for excited atoms would be to take for each snapshot the overlap

integral between the exciton states for a system with all ground state atoms and

the exciton states for a system with all atoms in ground except one in the excited

state. In this way the evolution of the system as detected by experiment would

be properly described. Concerning the second assumption, including all the po-
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tential energy surfaces would change the characteristic timescales and amplitudes

of fluctuations in some way. To actually include all the surfaces properly seems to

be a challenging task that might not result in significant changes in behavior from

a more qualitative approach, at least as a function of temperature and density.

To conclude, the above results show that peaks shifts based on correlation

functions calculated from MD simulations in an exciton picture exhibit similar

behavior as a function of temperature and density to experimental peak shifts.

Our theoretical approach to modeling uses classical trajectories to result in re-

markably realistic simulations of quantum dissipation. In addition, the behavior

of the correlation functions versus temperature and density reveal the effects of

resonance broadening at high densities and temperatures. This unusually simple

electronic system has provided the opportunity to derive a correlation function

from first principles with relatively few simplifications compared to molecular sys-

tems. This work has implications for other disordered excitonic systems such as

molecular aggregates, semiconductors and biological systems.



Chapter 5

The Local Field

In 1880, Lorentz and Lorenz were both interested in the same problem: the

connection between the index of refraction of a transparent body, and its density

[63, 64, 65]. They found that for high-density materials the microscopic field plays

a significant role in determining the index of refraction, which can be accounted

for using the concept of a local field. Doing so reveals that the local field causes

a redshift of the resonance lineshape called the Lorentz-Lorenz shift. It was not

until a century later that the Lorentz-Lorenz shift was detected in experiment,

using resonant selective reflection in a dense potassium vapor [66]. The study

revealed a greater frequency shift than that predicted by the Lorentz and Lorenz,

which was attributed to collisional contributions. Later work disagreed with this

explanation of the extra shift [67, 68, 69]. In order to reduce the influence of

additional frequency shifts we work in the time domain using transient four-wave

mixing (TFWM). The results of the TFWM experiment reveal a clear local field

contribution. In this chapter the influence of the local field will be derived for

the frequency domain and time domain, followed by experimental TFWM results

and a preliminary calculation of the propagated local field in a dense potassium

vapor.



88

5.1 Definition of the Local Field

When an electromagnetic field is incident on a material system, a typical

atom of the system experiences not only the externally applied field but also a

microscopic field due to the induced polarization of the surrounding atoms in the

material. The effective, or local, field is the sum of the external and internal fields

incident on a typical atom in the ensemble, represented as Eloc = EMax + Eint,

where EMax is the macroscopic field determined by the Maxwell equations and

Eint is the internal field from the induced polarization of the surrounding atoms.

In order to count the field contributions of nearby atoms only once, we define

the internal field as the difference between the nearby field calculated through a

detailed microscopic treatment and that calculated from the macroscopic polar-

ization P . Thus Eint = Emic −EP, where Emic is the microscopic contribution of

nearby atoms and EP is the field from these same surrounding atoms calculated

from the macroscopic polarization P of the medium. In this way we replace the

macroscopic field by the internal field that properly takes nearby contributions

into account. The range over which nearby atoms must be considered can be ap-

proximated as a sphere whose radius is large enough to encompass atoms whose

configuration and locations result in fields that cannot be averaged out, and large

enough such that the polarization resulting from the atomic dipoles can be con-

sidered evenly distributed throughout the volume. For a random configuration

of atoms the field due to atoms inside the sphere, Emic, is zero [70], resulting in

the internal field Eint = −EP. The macroscopic field is the same as that from a

sphere with radius R containing a charge distribution with total dipole moment

p = 4πR3

3
P: EP = −LP [70], where L = 1

3ǫ0
(SI units), called the Lorentz con-

stant. Thus in the end the total field amounts to the Maxwell field minus the



89

internal field calculated using the macroscopic polarization,

Eloc = EMax − LP, (5.1)

hence the referencing of this treatment as a “mean-field” approach.

5.2 Frequency-Domain Manifestation of the Local Field

The local field is manifested in frequency-domain experiments as a redshift

of the resonance line center. This can be derived starting from the definition of

the polarization P(ω) = χ(ω)E(ω), with the local field E(ω) = EMax(ω)+LP(ω):

P(ω) = χ(ω)[EMax(ω) + LP(ω)]. (5.2)

Solving for P, we find,

P(ω) =
χ(ω)

1 − Lχ(ω)
EMax(ω). (5.3)

Now substituting this into the equation for the total field E(ω) we find

E(ω) = EMax(ω) +
Lχ(ω)

1 − Lχ(ω)
EMax(ω) =

EMax(ω)

1 − Lχ(ω)
(5.4)

Using the definition of χ for a two-level atomic system with resonance frequency

ω0 and population decay rate γ gives

1

1 − Lχ(ω)
=

1

1 − LA
ω2

0
−ω2−iωγ

=
ω2

0 − ω2 − iωγ

(ω2
0 − LA) − ω2 − iωγ

= 1 +
LA

(ω2
0 − LA) − ω2 − iωγ

, (5.5)

where A represents the strength of material response and is proportional to the

dipole moment squared. It can be seen from the above equation that accounting

for local field effects results in a redshift of the resonance frequency represented

by the LA term in the denominator. The local field thus results in a modified
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definition of the dielectric constant ǫ of the material based on what is known as

the Lorentz-Lorenz law:

ǫ− 1

ǫ+ 2
=

4π

3
Nα, (5.6)

where N is the density of the material and α is the atomic polarizability1 .

Maki et al. measured the reflectivity spectrum from the interface between

a dense potassium vapor and the sapphire window of an atomic vapor cell to

determine the resonant structure of the dielectric constant for both linear and

nonlinear response. They worked at number densities high enough for local-field

effects to be important 2 [66]. In a method known as selective reflection [71],

they measured the highly wavelength-dependent reflectivity near the D resonance

lines. The ratio of reflected intensity to incident intensity was measured as a

function of the optical frequency. Their results reveal a shift greater than that

predicted solely by the Lorentz-Lorenz shift, which they attribute to a collisional

shift contribution. To rule out the modifications that may arise from atom-window

interactions, they noted that the mean interatomic separation was much smaller

than the penetration depth of light into the medium, meaning the number of atoms

which interacted with the sapphire window was neglible compared to the number

of atoms contributing to the measured response. They support the assumption of

a collisional contribution by comparing the linear experimental results with non-

linear experimental results that contain local field contributions to higher order.

The collisional contribution is difficult to theoretically affirm, however, and later

papers have proposed other possible contributions beyond those due to collisions

between potassium atoms [67, 68, 69, 56].

1 This is also known as the Clausius-Mosotti relation for longer wavelengths.
2 Later papers showed that the Lorentz-Lorenz shift cannot be ignored at lower densities,

where inhomogeneous broadening dominates, either. [68, 67]
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5.3 Time-Domain Manifestation of the Local Field

In 2-pulse TFWM the local field results in a signal for the “wrong delay.”

As was shown in the Ch. 3, the two-pulse TFWM signal from a 2-level system

not including local field effects is zero for negative delays, that is, for delays in

which the conjugate pulse arrives last. Here we derive the nonlinear time-domain

response for a 2-level system including local field effects. We will see that the

local field allows a breaking of the “proper” time ordering, resulting in a signal

for negative delay [72].

negative delay (t < 0)

t < 0

I2loc I1loc

negative delay (t < 0)

timet < 0

positive delay (t > 0)

1loc I2loc

t > 0

positive delay (t > 0)

time

I

t > 0

Local Field Intensities for direction 2 -k k2 1

Figure 5.1: Schematic of local field intensities interacting in a 2-pulse TFWM
experiment for the signal in direction 2k2 − k1. Including local field effects, for
τ < 0 the tail of I2loc can act after I1loc to create a signal for negative delay.

To derive the time-domain response we use the local field defined above as

the incident field of the optical Bloch equations. Note that P depends on the

off-diagonal matrix elements ρnm, meaning there will arise a recursive relationship

in the optical Bloch equations that represents the polarization acting on itself.

This results in a negative delay signal due to the decaying tail of the induced po-

larization interacting with the next pulse such that signals for both time orderings

are allowed (see Fig. 5.1). Using the local field we have for the coherence at third
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order:

ρ̇(3)
mn(t) =

−iLNµ2
nm

~
[ρ(2)

mm(t)ρ(1)
mn(t) + ρ(1)

mm(t)ρ(2)
mn(t)

−ρ(2)
mn(t)ρ(1)

nn(t) − ρ(1)
mn(t)ρ(2)

nn(t)] +
[

i(ω − ωnm) − γnm +
iLNµ2

nm

~

]

ρ(3)
mn(t)

+
iLNµnm

2~
[ρ(2)

mm(t) − ρ(2)
nn(t)]EMax(r, t) (5.7)

As seen in the above equation, the coherence at third order depends directly on the

coherence at first order, representing the recursive relationship of the polarization

acting on itself. This result is unlike that of the derivation which did not include

local field effects, in which the third-order coherence equation of motion Eq. 2.9

was only directly dependent on the current and penultimate order. The results

of this derivation calculated for delta function pulses are shown in Fig. 5.2. A

negative delay signal appears when the local field is included. The decay rate

for negative delay is faster than that for positive delay by a factor of 2, which

arises from the convolution of the free polarization decay at first order with that

at third order. The ratio of the signal amplitude for positive and negative delay

is directly related to the Lorentz-Lorenz shift according to B/A = [∆ωL/γ]
2,

where A (B) is the amplitude of the signal at τ = 0 when extrapolated from

positive (negative) delay and ∆ωL = µ2NL/~ is the Lorentz-Lorenz shift. Thus

the shift ∆ωL = γ ×
√

B/A can be extracted directly from experimental TFWM

data. The original theory derived above predicts a value for the Lorentz constant

of L = 1/3ǫ0. It should be noted that in the derivation resulting in the above

equation we have ignored a dependence on ρ
(1)∗
mn at second order; in addition, the

treatment may be improved through a more thorough inclusion of the recursive

relationship of the local field on the polarization for each order.
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Figure 5.2: Calculated 2-pulse TFWM signal for a 2-level system with (dashed)
and without (solid) local field.

5.4 Transient Four-Wave Mixing Experimental Results

A representative 2-pulse TFWM signal from the experiment described in

Ch. 3 is now shown in full including negative time delay in Fig. 5.3. Although the

ratio of the decay rate for positive and negative delay agree with theory, we find the

strength of the local field contribution L as determined by fitting the signal ampli-

tudes for negative and positive delay B/A to be less than predicted by a factor of

20. This discrepancy could have a number of causes. Radiation trapping was one

candidate considered, but using the pulse picker to decrease the repetition rate

did not significantly modify the amplitude ratio. Excitation-induced effects (often

revealed by a decreasing dephasing rate with increasing excited state population)

was also considered [73], and indeed decreasing the incident intensity resulted in a

larger local field effect, but still did not make a great enough difference to match

with theory. It has been noted that at the depth at which these experiments

probe, the local field is not yet fully formed [56], which would support a decreased

shift. In addition, the opposite limit in which the fields penetrate further into the
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vapor and are influenced by propagation effects is not included in the theoreti-

cal treatment. To test whether the discrepancy is due either to an incompletely

formed local field or propagation effects, we performed some preliminary calcula-

tions of pulse fields reflected from and transmitted through a dense atomic vapor,

including local field effects. These calculations are briefly summarized below.
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Figure 5.3: Experimental 2-pulse TFWM signal for a 2-level system, with slopes
labeled.

5.5 Preliminary Calculations of Propagation

This section presents a calculation of pulse fields reflected from and trans-

mitted through a dense atomic vapor, including local field effects. The structure

under consideration is shown in Fig. 5.4. This treatment is based on the formalism

of Sipe [74] and to this point only includes the linear response.

We use the following equations for the reflected (E+
refl(z, t)) and transmitted

(E+
trans(z, t)) fields:

E+
refl(z, t) =

∫ ∞

0

dω

2π

[

n1 − n2(ω)

n1 + n2(ω)

]

E−(ω)e−iω(t−n1z/c) (5.8)

and

E+
trans(z, t) =

∫ ∞

0

dω

2π

[

2n1

n1 + n2(ω)

]

E−(ω)e−iω̃n2(ω)ze−iωt (5.9)
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Figure 5.4: Structure considered for the propagation calculations. In the calcula-
tions θ is set to zero (normal incidence).

where ω̃ = ω/c, and

E−(ω) = e−(ω−ω0)2/∆2

(5.10)

is the incident field for ω > 0 and ∆ << ω0.

The index of refraction of the vapor, n2(ω) (see Fig. 5.5), is defined to be

n2(ω) =
√

ǫ(ω), where

ǫ(ω) = 1 + χ(ω) = 1 +
e2fN/ǫ0m

(ω̄2
21 + γ2

p12) − ω2 − 2iωγp12

(5.11)

Here ω̄21 =
√

ω2
21 − e2fNL/ǫ0m.

Note in these calculations ω is in units of rad/sec, ν in units of 1/s. Below

is a list of parameter values used in the calculations:

• laser center frequency is on resonance: νlaser = ν0 = 3.9 × 1014 1/s

• laser pulse FWHM δν = 1.02×1013 1/s, which corresponds to δλ = 20 nm

(see Fig. 5.6)

• oscillator strength f = 1

• index of refraction of “air” n1 = 1

• local field parameter L = 1/3

• density N = 3.7 × 1023 m−3 (corresponds to temperature T = 700◦C)
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• dephasing rate γp12 = 1.16 × 1012 1/s.

Note the index of refraction of the vapor is determined with the parameters

f , L, N , and γp12, but the resulting amplitude of the real and imaginary parts are

not consistent with experiment. In particular, the calculated index of refraction

is only a little above 1 at 700◦C, compared to ∼ 6 in experiment. This means

that in these results the fields are modified by the vapor resonance less strongly

than in experiment. The figures that follow are largely self-explanatory.

The results for the transmitted field shown in Figs. 5.8 and 5.9 exhibit

the well-known signature of propagation effects in the form of Bessel-function

behavior, sometimes referred to as dynamic beating [12]. Experimental results

measuring the linear response through upconverted reflected pulses show no sign

of dynamic beating, implying that propagation effects are not an issue in the re-

flected TFWM signals. This result in turn means the signatures of non-Markovian

dynamics are properly assigned and are not being confused with propagation ef-

fects. Experimental results in transmission using a 14 µm-thick transmission cell

on the other hand exhibit pronounced dynamic beating, as shown in App. E.

These calculations of propagation effects can in turn be used to model the devel-

opment of local field effects in the nonlinear response of dense vapors as a function

of penetration depth and density.
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Chapter 6

Conclusion

In this thesis we have presented results from 2- and 3-pulse transient four-

wave mixing experiments and theoretical calculations of the material response. In

Ch. 2 we derived the material response of a two- and three-level system to find

that Markovian dynamics results in exponential dephasing, while non-Markovian

dephasing is distinctly non-exponential and can be modeled based on an assumed

two-time correlation function of frequency fluctuations. Chapter 3 on the photon

echo experiments revealed distinct regimes of non-Markovian and Markovian dy-

namics in two- and three-pulse photon echo. The non-Markovian theory covered

in Ch. 2 results in excellent fits for the two-pulse data, but the three-pulse peak

shift data for high temperatures and densities exhibits bi-exponential behavior

that cannot be modeled with a single exponential correlation function. In addi-

tion, time-resolved three-pulse data reveal clear photon echo-like behavior. To

improve our understanding of the three-pulse experimental results, in Ch. 4 we

presented a derivation of the correlation function of frequency fluctuations in an

exciton picture from molecular dynamics simulations. The resulting calculated

peak shifts exhibit bi-exponential behavior and reveal that the source of the slow

component is the long-range interaction due to resonance broadening. The last

chapter, Ch. 5, described the frequency- and time-domain signatures of the lo-

cal field and presented experimental results with clear local field contributions.
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A preliminary calculation of propagation effects was also presented that confirm

that the experimental signals in reflection are not altered by propagation effects.

In summary, transient four-wave mixing experiments in a dense potassium

vapor, which has the unusual quality of a long dephasing time compared to the

collision duration, reveal distinct signatures of quantum dissipation in the form

of both non-Markovian and Markovian dynamics. These results serve as a basis

for understanding more complex systems such as molecular liquids due to the

excellent agreement between the two-pulse experiments and theory assuming the

stochastic correlation function. In addition, calculated correlation functions reveal

that resonance effects may be the cause of the bi-exponential behavior observed in

three-pulse photon echo peak shift experiments, giving insight into the dynamics

of resonance-broadened vapors and disordered excitonic systems in general. Fi-

nally, the utility of time-domain techniques in the study of dense atomic vapors

was supported throughout this research by the clear experimental signatures rep-

resenting system response, both for non-Markovian dynamics and the local field

effect.

We end by considering other avenues for contribution that could be ex-

plored in the future. A systematic study of the TFWM signals as a function

of buffer gas density and temperature would yield insight into the difference be-

tween foreign-gas broadening and self-broadening. In conjunction with further

theoretical molecular dynamics simulations we could gain a fundamental picture

of the range of interactions in dense vapors. Once transmission cells (mentioned

in App. E) are manufactured with a thickness on the order of a wavelength, trans-

mission experiments can explore the transition from purely local field effects to

propagation effects. In addition, with transmission cells dense vapors could then

be studied with two-dimensional Fourier transform spectroscopy, which would en-

able the direct identification of excitonic effects, once again exhibiting signatures
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with unusual clarity due to the simplicity of the atomic system.

Finally, we acknowledge the support of the NSF JILA Physics Frontier Cen-

ter for the duration of the research presented in this thesis.
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Appendix A

Optical Bloch Equations Derivation Details

This appendix contains details for the derivation of the optical Bloch equa-

tions for a two-level system.

Starting from Eq. 2.10, we have

ρ(q)
nm(t) = − i

~

∫ t

−∞
dt′e(iωnm+γnm)(t′−t)[−µ · E(t′), ρ(q−1)]nm. (A.1)

To third order we then have

ρ
(3)
ba (t) = −2iρ(0)

(µba

~

)3
exp[−(iωba +

1

T2

)]

∫ t

−∞
dt′

∫ t′

−∞
dt′′

∫ t′′

−∞
dt′′′

E(r, t′)E(r, t′′)E(r, t′′′) exp[γ(t′ − t′′) + t′′′/T2]

×{exp[iωba(t
′ − t′′ + t′′′)] + exp[−iωba(t

′ + t′′ − t′′′)]}, (A.2)

where γ = 1
T2

− 1
T1

, µab = µba and the population was assumed to start in the

ground state, ρ
(0)
D = ρ(0), ρ

(0)
ba = 0.

Now if we write the fields as Ei(r, t) = Ei(t) exp[−iωt + iki · r] + c.c. then

we can separate the term in direction k4 = 2k2 − k1 and make the rotating wave

approximation in which we ignore terms with sums of frequencies ωba + ω and

−ωba − ω. We have

ρ
(3)
ba (t) = −2iρ(0)

(

µba/~
)3

exp
[

−
( 1

T2

+ iωba

)

t+ ik4 · r
]

∫ t

−∞

∫ t′

−∞

∫ t′′

−∞
dt′dt′′dt′′′

exp
[

γ(t′ − t′′) +
t′′′

T2

]{

E2(t
′)E2(t

′′)E∗
1(t

′′′) exp[i∆ω(t′ + t′′ − t′′′)]

+E2(t
′)E∗

1(t
′′)E2(t

′′′) exp[i∆ω(t′ − t′′ + t′′′)]
}

, (A.3)
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where ∆ω = ωba − ω. This is equivalent to Eq. 2.14.

Now we let the field envelopes be delta-function pulses, defined by Ei(t) =

δ(t− ti):

ρ
(3)
ba (t) = −2iρ(0)

(µba

~

)3
(A.4)

exp[ik4 · r −
1

T2

(t− t1)] exp[−iωbat+ i∆ω(2t2 − t1)]θ(t− t2)

where we have used the definition

∫ x

−∞
δ(t− y)f(t)dt =

∫ x−y

−∞
δ(t)f(t+ y)dt = f(y)θ(x− y), (A.5)

where θ(t) is the Heaviside step function, θ(t) = 0 for t < 0, θ(t) = 1/2 for t = 0,

θ(t) = 1 for t > 0. Now if we consider pulses with center frequency on resonance,

ω = ωba, and use the definition P̂(3) = Nµbaρ̂
(3)
ba (r, t, ω0) we find

P̂(3)(r, t) = −iρ(0)CNµbaθ(t− t2) exp[ik4 · r − T−1
2 (t− t1)] (A.6)

which is Eq. 2.16.



Appendix B

Non-Markovian Theory Derivation Details

B.1 Density Matrix Diagrams

All of the relevant diagrams contributing to the response of a three-level

system in 3-pulse TFWM in direction −k1 + k2 + k3 are shown in Fig. B.1.
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Figure B.1: Double-sided Feynman diagrams representing the relevant pathways
for 3-pulse TFWM in a 3-level system in direction −k1 + k2 + k3 for all time
orderings, with n,m = b, c;n 6= m. Orderings (−k1,k3,k2) and (k3,−k1,k2)
are the same as for (−k1,k2,k3) and (k2,−k1,k3), with 3 and 2 switched, while
orderings (k2,k3,−k1) and (k3,k2,−k1) have no diagrams.

Each diagram in Fig. B.1 is a unique pictorial representation of one of the

third-order density matrix terms [24]. These diagrams are called double-sided
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Feynman diagrams because their representation of density matrix perturbations

is similar to that provided by Feynman diagrams used to determine perturbations

on wavefunctions [75]. The left-hand side of each diagram indicates the time-

evolution of |ψ〉 and the right-hand side indicates the time evolution of 〈ψ|, with

time increasing vertically upward [76]. The incident fields are represented by wavy

lines labeled by the wavevector number of the field. Each interaction of the applied

field with the material system is indicated by a vertex of a wavy line (the field)

with a straight vertical line (the ket or bra component of the density matrix).

The letters before and after the vertex represent the density matrix state of the

system before and after the interaction. From these diagrams we can write the

mathematical solution for ρ(3) by using the appropriate set of translation rules.

Double-sided Feynman diagrams give us the ability to form both a mathe-

matical and physical description of a TFWM process. Reading off of the diagram

labeled 2Rm
3 for time ordering (−ka,kb,kc) in Fig. B.1, we see that the system

begins in the ground state, which corresponds to the zeroth-order density matrix

element ρ
(0)
aa . The first pulse, −ka, interacts with the material system to induce a

polarization represented mathematically by ρ
(1)
am. This intermediate density ma-

trix state is off-diagonal and dephases in time T2. This diagram corresponds to

the convolution integral over t1. At a subsequent time t2, the second field E∗
2

forms a ground state population represented by ρ
(2)
aa , correponding to the convo-

lution integral over t2. Finally, at a time t3, the third pulse kc interacts with

the system to produce a polarization in the direction k4 = k1 − k2 + k3 rep-

resented by ρ
(3)
ma. This polarization, according to the definition of Eq. 2.11, is

P(3) = N(〈a|µ|m〉ρ(3)
ma + c.c.). The other diagrams in Fig. B.1 can be read in a

similar manner. The bottom row of diagrams correspond to field interactions with

a different time ordering.
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B.2 The Cumulant Expansion

To show the steps taken in the cumulant expansion we derive as an example

the cumulant expansion of a one-point correlation function,

F (t) = µ〈exp[i

∫ t

0

dt1δω(t1)]〉. (B.1)

The first step is to Taylor expand the expression for F to second order in the

fluctuation (as in Eq. 2.26):

F = µ
{

1 + i

∫ t

0

dt1〈δω(t1)〉 −
1

2

∫ t

0

dt1

∫ t

0

dt2〈δω(t1)δω(t2)〉 + · · · (B.2)

+
(−i)2n

(2n)!

∫ t

0

dt1 . . .

∫ t

0

dt2n〈δω(t1) . . . δω(t2n)〉 + · · ·
}

Now we make the ansatz that the one-point correlation function has the form

F ≡ exp[−F ] (B.3)

We expand F itself in powers of δω, with λ as the expansion parameter:

F ≡ λF (1) + λ2F (2) + · · · (B.4)

If we now expand the ansatz in a Taylor series including this expansion of F and

collect terms of like order we find

F = 1 − (λF (1) + λ2F (2) + · · · ) − 1

2
(λF (1) + λ2F (2) + · · · )2 − . . .

= 1 − λF (1) + λ2
(

F (2) − 1

2
F (1)2

)

+ · · · (B.5)

Comparing this equation with the expansion of F in Eq. B.2 and solving for F (1)

and F (2) we find

F (1) = i

∫ t

0

dt′〈δω(t′)〉

F (2) =
1

2

∫ t

0

dt′
∫ t

0

dt′′〈δω(t′)δω(t′′)〉 − 1

2

[

i

∫ t

0

dt′〈δω(t′)〉
]2

=

∫ t

0

dt′
∫ t

0

dt′′〈δω(t′)δω(t′′)〉 (B.6)
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Thus our expression for F in the cumulant expansion truncated to second order

is

F (t) = µ exp
[

i

∫ t

0

dt′〈δω(t′)〉 +

∫ t

0

dt′
∫ t

0

dt′′〈δω(t′)δω(t′′)〉
]

(B.7)

These steps are performed similarly for a four-point correlation function.

B.3 Response Functions

All of the relevant diagrams contributing to the response of a three-level

system in 3-pulse TFWM are shown in Fig. B.1. The response functions for time

ordering (k2,−k1,k3) in terms of the four-point correlation functions defined in

Eqs. 2.63 and 2.64 and the lineshape function g of Eq. 2.74 are

(ma,mm,ma, aa) 2Rm
2 (τ1, τ2, τ3) = 2F (τ3, τ2, τ1, 0)e−iωma(τ1−τ2+τ3),

(ma, aa,ma, aa) 2Rm
3 (τ1, τ2, τ3) = 2F (τ1, τ2, τ3, 0)e−iωma(τ1−τ2+τ3),

(ma,mn,ma, aa) 3Rm
2 (τ1, τ2, τ3) = 3F (τ3, τ2, τ1, 0)e−iωma(τ1−τ2+τ3)−iωmn(τ2−τ3),

(na, aa,ma, aa) 3Rn
3 (τ1, τ2, τ3) = 3F (τ1, τ2, τ3, 0)e−iωna(τ1−τ2)−iωma(τ3)

(B.8)
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The response functions in terms of the lineshape function g are

2Rm
2 (τ1, τ2, τ3) = µ4

ame−iωma(τ1−τ2+τ3)

× exp
{1

2

[

−gam(τ3 − τ2) + gam(τ3 − τ1) − gam(τ2 − τ1)

−gam(τ3) + gam(τ2) − gam(τ1)
]

}

,

2Rm
3 (τ1, τ2, τ3) = µ4

ame−iωma(τ1−τ2+τ3)

× exp
{1

2

[

−gam(τ1 − τ2) + gam(τ1 − τ3) − gam(τ2 − τ3)

−gam(τ1) + gam(τ2) − gam(τ3)
]

}

,

3Rn
2 (τ1, τ2, τ3) = µ2

amµ
2
ane−iωma(τ1−τ2+τ3)−iωmn(τ2−τ3)

× exp
{

−1

2

[

2gam(τ3 − τ2) + 2gan(τ1)

−gam(τ3 − τ1) + gam(τ3) + gam(τ2 − τ1) − gam(τ2)

−gan(τ2 − τ1) + gan(τ3) + gan(τ2 − τ1) − gan(τ2)

+gmn(τ3 − τ1) − gmn(τ3) − gmn(τ2 − τ1) + gnm(τ2)
]

}

,

3Rm
3 (τ1, τ2, τ3) = µ2

amµ
2
ane−iωna(τ1−τ2)−iωma(τ3)

× exp
{

−1

2

[

2gam(τ1 − τ2) + 2gan(τ3)

−gam(τ1 − τ3) + gam(τ1) + gam(τ2 − τ3) − gam(τ2)

−gan(τ1 − τ3) + gan(τ1) + gan(τ2 − τ3) − gan(τ2)

+gnm(τ1 − τ3) − gnm(τ1) − gnm(τ2 − τ3) + gnm(τ2)
]

}

,

with m,n = b, c; m 6= n.



Appendix C

Some Properties of Potassium

This appendix lists some properties of potassium relevant to the experiments

and simulations. All frequencies are in inverse time (no 2π) unless otherwise

stated.

Physical Quantity D1 line D2 line

Lines

Resonance1 769.89645 nm 766.48991 nm

389.393 THz 391.124 THz

1.6104 eV 1.61756 eV

12, 985 cm−1 13, 043 cm−1

Angular Frequency ω0 2446.63 THz 2457.5 THz

Strengths2

Oscillator strength fik 0.339463548 0.6817342151

Stat. weight, lower lvl gi 2 2

Stat. weight, upper lvl gk 2 4

Transition prob. Aki 0.382 0.387

1 from A Physicist’s Desk Reference, Ed. H. L. Anderson, AIP Press, Springer (1989).
2 ibid.
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Physical Quantity D1 line D2 line

Linewidths3

Natural 0.0755279 × 10−3 nm 0.0758408 × 10−3 nm

38.2 MHz 38.7 MHz

0.157982µeV 0.16005µeV

Natural lifetime τk 26.2 ns 25.8 ns

Doppler (700 ◦C) 1.37497 × 10−3 nm 1.36888 × 10−3 nm

0.695423 GHz 0.698513 GHz

2.87604µeV 2.88882µeV

Resonance (700 ◦C) 1.61786 nm 2.26709 nm

0.818269 THz 1.15685 THz

3.38409 meV 4.78435 meV

Total (700 ◦C) 1.61927 nm 2.2685 nm

0.818984 THz 1.15757 THz

3.38704 meV 4.78732 meV

1/γtot 1.22103 ps 0.86388 ps

Exptl Linewidths4 (700 ◦C) 1.88622 nm 2.32422 nm

0.954 THz 1.186 THz

3.96294 meV 4.88317 meV

Shifts5

Collisional shift coefficient β −0.05 m3/ps −0.03 m3/ps

Collisional shift (700 ◦C) 0.0583112 nm 0.0346778 nm

−29.4923 GHz −17.6954 GHz

3 ibid.
4 from Thesis of J. Shacklette, University of Colorado (2001).
5 from A Physicist’s Desk Reference, Ed. H. L. Anderson, AIP Press, Springer (1989).
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Physical Quantity D1 line D2 line

−0.12197 meV −0.0731822 meV

Lorentz-Lorenz Shift (700 ◦C) 0.08583 nm 0.170092 nm

−43.4105 GHz −86.7943 GHz

−0.179531 meV −0.358952 meV

Shifted Resonance (700 ◦C) 770.041 nm 766.695 nm

389.32 THz 391.019 THz

1.6101 eV 1.61713 eV

Other Quantities

Level splitting 3.40654 nm

1.73059 THz

7.15717 meV

Shifted Level splitting (700 ◦C) 3.34591 nm

1.69901 THz

7.02653 meV

Atomic Mass 39.0983 amu

Thermodynamic properties6 melting 63.4◦C boiling 759.2◦C7

6 from [77]
7 at 760 mm Hg



Appendix D

Experimental Details

In this appendix the details of the pulse picker and other experimental com-

ponents are given.

D.1 The Pulse Picker

The pulse picker is based on the use of acousto-optic modulators (AOMs). In

an AOM, acoustic waves create a strain-induced change in the index of refraction,

resulting in optical beam diffraction. By modulating the acoustic waves with an

RF signal it is possible to divide down the number of pulses in a pulse train

by refracting some pulses and transmitting others. The control is enabled by a

NIDAQ 6602 Counter/Timer on the computer. The pulse picker electronic design

is shown in Fig. D.1.

bandpass
215 MHZ

from
laser

AOMs

break-out box
timer/

counter

RF spectrum mixer output

pulse
broadener pulse

shortener

phase
shifter

I

LR

Figure D.1: Schematic of pulse picker.
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Here we provide a brief overview of the components and appropriate inputs

at various stages. We start with the photodiode-detected pulses from the laser,

which are divided into two arms, here referred to as “First” and “Second.”

First:

(1) take to tunable bandpass filter (remember to impedance match at input)

and dial to ∼ 211 MHz RF frequency (use RF spectrum analyzer – re-

member to impedance match again). Note the filter is a linear device, so

it doesn’t matter which port is chosen for input/output.

(2) because the phase shifter cannot handle powers above 0 dBm, send the

211 MHz frequency to the phase shifter first

(3) then amplify the 211 MHz carrier with one ZAD-1 amplifier to about 1 V

on the scope

(4) send it to the R port on the mixer

Second:

(1) take to pulse broadener and then to computer’s source pin (PFI39)

(2) take from computer output and plug into input of pulse shortener; inside

are three chips:

• a comparator (makes analog signal into digital) and

• two inverters (shifts pulse and “AND”’s it with unshifted pulse to

create short pulse)

• note the −5 V is used to remove any DC from the signal, and is

connected directly to the output; technically this is not the best way

to do it, but because the signal is so fast and short making a summer

with the AD8561 op amp would be more complicated
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(3) take output from pulse shortener and send it to the mixer’s I port; note

the mixer is somewhat leaky, so make sure there is not too much of the

211 MHz leaking through (check by unplugging the modulating pulse and

looking at the L port on the scope); attenuate as needed

(4) send about 1 V to the big amp from the mixer and then to the AOM; a

final output of about 5 V results in a good first-order diffraction; if more

power is needed, attenuate less at the big amp input

Typical values for input/output at various important junctions:

• output from laser on scope: ∼ 140 mV direct from laser, ∼ 85 mV after

3-junction

• output from bandpass filter: ∼ 10 mV on scope and into phase shifter

• values going into / out of mixer:

∗ R: 300 mV (after phase shifter and one amplifier ZFL-500LN)

∗ I: 300 mV (attenuated by 10 dB after pulse shortener; is 1 V before

10 dB)

∗ L: output ∼ 160 mV peak-to-peak (attenuated by 3dB before enter-

ing large amplifier; originally 225 mV peak-to-peak)

• input to large amps: ∼ 160 mV peak-to-peak

• output to AOMs: ∼ 9 V peak-to-peak (DC is ∼ 500 mV)

• AOM power (% of input) with unmodulated input: input ∼ 136 mW,

output ∼ 13 mW; ∼ 9.5%.

• AOM power with modulated input: for 1/14, 210µW; for 1/21, 177µW
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For second AOM, lower input/output of pulse shortener:

• values going into / out of mixer:

∗ R: 400 mV (after phase shifter and one amplifier ZFL-500LN)

∗ I: 800 mV (attenuated by 10 dB after pulse shortener; is 1.6 V before

10 dB)

∗ L: output ∼ 200 mV peak-to-peak (attenuated by 3dB before enter-

ing large amplifier; originally 300 mV peak-to-peak)

• input to large amps: ∼ 200 mV peak-to-peak

• output to AOMs: ∼ 11 V peak-to-peak (DC is ∼ 100 mV)

• AOM power (% of input) with unmodulated input: input ∼ 125 mW,

output ∼ 20 mW; ∼ 16%.

• AOM power with modulated input: for 1/14, 445µW; for 1/21, 405µW

D.2 Experimental Components

In this section a detailed description of experimental components used for

the most general time-resolved three-pulse experimental setup is given.

The laser used for all of the experiments of this thesis is a home-built

extended-cavity Kerr-lens mode-locked Ti:sapph pumped by a green laser. The

pump laser is a Spectra Physics Millenia V diode-pumped CW laser (neodymium

yttrium vanadate, NdYVO4, gain medium) centered at 532 nm with a maximum

power output of 5 W. The Millenia is usually set in power mode at 4 W for the

experiments to extend the lifetime of the diodes, which were replaced in April of

2005. With this power the average modelocked Ti:Sapph output is approximately

380 mW. The Millenia laser is cooled by a Neslab RTE-III Chiller and controlled
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via the Millennia V control module. The T40 power supply is connected to a uni-

versal power supply to prevent damage from power outages, which had previously

led to diode failure.

The Ti:sapph laser has an extended cavity with curved telescope mirrors

from Newport (Part#10BV200UF.20, 25.4 mm dia, 2000 mm R, R > 99%, 0-20

degrees, 710-890 nm). Figure D.2 is a diagram of the components with approxi-

mate distances. The cavity mirors have a ∼ 2-inch focal length. The Ti:sapphire

laser rod is from Crystal Systems (3 mm φ× 10mm PL, specs α514 = 1.65). The

output coupler has 20% transmission (CVI PR2-750-80-1025).

Ti:sapphire Laser
1

234567
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11 12
13

14 15

16

171819

20

22

24

21

23
89

Key:

1 periscope
2 adjustable mirror
3 iris
4 lens
5 cavity mirror
6 Ti:sapphire crystal

7 cavity mirror
8 iris
9 beam stopper
10 prism (SF10)
11 prism (SF10)
12 spatial filter

13 end mirror
14 flat mirror
15 2m ROC mirror
16 flat mirror
17 2m ROC mirror
18 output coupler

19 beam sampler
20 glass
21 CCD camera
22 beam splitter
23 optical fiber
24 photodiode detector

Diode-pumped cw laser
extended cavity

56 cm

30 cm

36 cm

25 cm

124 cm

1m

87 cm

Figure D.2: Schematic of the Ti:sapph laser.

Immediately downstream of the laser two prisms (SF10) are used for disper-

sion compensation, with approximately 90 cm between prisms for the full setup.

In addition, a 1 m focal length lens (Thorlabs LA1464-B) is placed immediately

outside the laser to keep beam size small. The beam is then split up into four

arms, two of which are focused down by 10 cm lenses (Thorlabs LA1509-B) into

AOMs (Isomet 1250C) and recollimated. The reference arm includes two 10 cm
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lenses and a thick piece of glass to compensate for the lack of an AOM. To keep

track of the spectral width without the need for an optical spectrum analyzer

a sample of one beam is used to obtain a real-time trace of the spectrum us-

ing a slit, diffraction grating (Optometrics U.S.A., 1200 g/mm, 7500 blaze) and

CCD camera. The camera image is sent to a Tektronix TDS210 Digital Real-

time Oscilloscope triggered against a video synchronization generator. In general

the mirrors used are Newport 10D20ER.2 silver-coated pyrex mirrors. Most of

the beam samplers are wedged at 30’ (CVI W1-IF-1012-UV-670-1064-45P) and

the beamsplitters are also mostly wedged and vary in percentage (typically CVI

FABS-800-45P-50-IF-1012-UV and CVI FABS-850-80-PW-45P). The stages used

in the experiments are all from Newport:

• Newport MTM100CC.1, motor UE404CC, 25 cm stage

• Newport IMS500CCHA, motor UE511S2, 600 cm stage with a 1” diam.

retroreflector (Newport UBBR1-2I)

• Newport MFN25PP, motor UE16pp, 25 mm stepper stage

The longer stage can be used for population measurements. The stages are con-

trolled with a Newport XPS-C4 controller.

The temperature of the cell is controlled with an Omega CN8200 tempera-

ture controller with multiple ramp/soak capability. Usually only one ramp/soak

sequence is used, typically taking 2 hours to reach 700◦C from room temperature

(∼ 0.1 deg/sec). A Marshall color CCD camera and a monitor are used to check

for spatial overlap and as a visual check for changes in the cell. A 150 W illumi-

nator from RAM Optical Instrumentation with a tube neck was also used to view

the cell. The autocorrelation trace is taken in a BBO crystal, with the red light

blocked from entering the detectors by blue filters (e.g. Thorlabs FGB37). To ob-

tain the upconverted signal a BBO crystal 0.5 mm thick was used, with a half-wave
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plate beforehand rotated such that optimal phase matching is achieved (i.e. the

horizontally-polarized beams are rotated to be vertically-polarized and are then

focused on a plane parallel to the table onto the BBO). To reduce noise sometimes

the signals were focused with 5 cm lenses onto the detectors with 50µm pinholes.

The detectors used to detect the signals were built in JILA (model CS022A2-02).

They use a silicon photodiode, 1.5 mm diameter, 300 MHz, 6 pF; the signal gain

is 1 MΩ. The detected signals are sent to two Stanford Research Systems 830

DSP lock-in amplifiers, connected via GPIB to a computer. The program used to

control these components is written in Visual Basic. The data were analyzed in

Origin or Mathematica.

Interference filters were used for spectrally-resolved excitation experiments

(CVI F03-766.5-4-0.50 (3 nm BW) and CVI F1.5-769.9-4-0.50 (1.5 nm BW)).

In addition, a 300 mm achromatic doublet lens was obtained for three-pulse ex-

periments (Thorlabs AC508-300-B) along with a regular lens for collimation in

transmission experiments (Newport KPX205AR.16 PCX BK7). In the three-

pulse experiments of this thesis a 250 mm achromatic lens was used (Thorlabs

AC508-250-B) along with a regular lens for transmission experiments (Newport

KPX202AR.16 PCX BK7).



Appendix E

Novel High-Temperature Alkali Vapor Cell

Over the course of the work described in this thesis, novel high-temperature

vapor cells were constructed with ever-improving design. These improvements

are relevant for enabling the spectroscopy of alkali-metal vapors at high densities,

which has been hampered by the extremely corrosive nature of these vapors at

elevated temperatures. Early work used magnesium oxide windows for studies of

potassium vapor up to 500◦C [78]. Alkali-resistant glasses (for example Gelanite

or 1720 glass) were developed for use at temperatures as high as 500◦C. We have

constructed novel potassium vapor cells for use in both reflection and transmission

experiments that survive temperatures ranging from 25◦C up to 800◦C (densities

up to 1019 cm−3). The high-vacuum sapphire-to-titanium seals are achieved via

diffusion bonding, without the need for gaskets or compression rings. The vacuum

seal maintains its integrity for an average of 90 hours above 500◦C with about 10

heating / cooling cycles.

E.1 Cell Design

The materials of titanium and sapphire were chosen based on their resis-

tance to corrosion by potassium and their similar coefficients of thermal expansion.

Grade-2 commercially pure titanium from the McMaster-Carr Supply Co. is ma-

chined for the body. Sapphire windows custom-made by Meller Optics are used
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for optical access. They have an anti-reflection coating on one side and are wedged

in order to spatially separate the front and back reflections. The specifications for

the sapphire windows are for c-axis orientation, 9.00 mm dia. × 0.50 mm thick,

0.50 degree wedge, A/R coated for maximum transmission at 768 nm on one face.

See Figs. E.1 and E.2 for diagrams of the cell components. The screws are made

of Inconel. The face of the cell is polished for bonding to the sapphire window.

Wrench flat
for tightening nut

Knife edge
for cap seal

Chamfered and smoothed
edges to prevent scratches
during polishing

Lapped and polished
for sapphire window
bonding

1
.7

“

0.7“

Cell body
Titanium

Cell cap

Figure E.1: Potassium cell components.

E.2 Bonding Procedure

We bond the sapphire to the titanium through diffusion bonding (this can

be thought of as “welding” them together: apply pressure and heat to softening

point of titanium). First the cell body is baked without the window to make sure

debris are not released during bonding. The sapphire window is cleaned with

methanol and set on top of the polished end of the cell, AR coating facing out.

The window is pressed against the cell with a custom-made holder that applies
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Sapphire
window

K-type thermocouples
spot welded at these
two spots

Titanium nut,
washers and cap

Inconel
screws

Titanium cap

Figure E.2: The loaded potassium cell.

constant pressure across the outer diameter and placed inside a vacuum tube with

a cylindrical current-controlled heater surrounding the tube. The cell is heated

under vacuum at 800◦C for 2 hours to bond the window to the cell. The ramp

rate is set to reach 800◦C from room temperature in about 4 hours.

E.3 Loading Procedure

To load the cell with potassium, we use a custom-made attachment on a

vacuum system, shown in Fig. E.3. The attachment is in the shape of a “T” and

has three openings, one to the pump, one for the empty cell and one for the nut,

washers and cap that seals the cell once it is filled with potassium. It also has a

cold trap to prevent particles from entering the pump.

Once the attachment is connected to the pump, we place the nut, washers

and cap together into a wrench socket connected to a steel rod that allows us

to tighten the nut with the washers and cap onto the cell inside the vacuum

attachment. This is inserted into an arm of the attachment. We then load the

potassium into the cell in a glove bag which has an opening connected to the
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To pump

Bonded cell with K

Nut with end cap

and washers

Cold trap to prevent

particles from entering pump

Figure E.3: Vacuum attachment for loading the cell.

other arm of the attachment. We fill the cell under an argon atmosphere to

prevent the potassium from oxidizing and use a simple stainless steel scraper to

place an amount of potassium corresponding to about a 2 mm diameter sphere

into the back end of the cell. Once filled, we connect the cell, open side in, to its

end of the attachment. Then we evacuate the cell to about 7 × 10−7 Torr using

a turbo pump. At this point we screw on the nut to seal the cell while under

vacuum until a torque meter reads about 60 inch-lbs and then close the valve to

the turbo pump, vent to atmosphere and take out the assembled cell.

Thermocouples from Omega Engineering are then spot-welded onto the ti-

tanium both at the front of the cell by the window and at the back of the cell on

the cap. We slip an oven custom-made for the cell onto the back end of the cell

and bind the leads of the oven and thermocouples together with a stainless steel

wire. The oven’s body is made out of Sauerisen. Six leads come out of the oven,

which fit into the holes drilled parallel to the cell body. The oven is designed to

keep the temperature at the window a few degrees higher than the temperature

at the nut in order to keep the potassium from pooling at the window. Nickel
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Figure E.4: Heating components attached to the potassium cell. Top: thermo-
couples are attached to the front and back of the cell, Middle: the oven leads fit
into holes drilled parallel to the cell, Bottom: the cell is wrapped in nickel foil for
heat shielding.

foil is cut and crinkled to wrap around the cell for heat shielding. Figure E.4 is a

series of photos showing these steps.

Glass cell under rough vacuum

reduces turbulence around window

Thermocouples

and heater wires

Heat shielding (Nickel foil)

Front view

Figure E.5: Potassium vapor cell inside secondary glass cell to reduce turbulence
and for heat shielding.

The wrapped cell is then put inside a secondary glass cell to reduce tur-
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bulence around the window and also for heat shielding (see Fig. E.5). The glass

cell is in the shape of a hollow cylinder with length ∼8.5” and diameter ∼1.25”.

One end of the glass cell is closed at an angle to prevent back-reflections and the

other end is open and can be sealed with a metal plug that is removable. The cell

is placed so that the sapphire window faces the closed end of the glass cell. The

wires from the oven and thermocouples are connected through the glass cell’s plug

for attachment to the temperature controller. The glass cell is pumped down to

vacuum and the potassium cell is heated up to 300◦C to allow the potassium to

pool at the back of the cell. Figure E.6 shows the various pieces of the cell lined

up for assembly and Fig. E.7 shows an assembled cell.

Inconel
screws

Ti cap

Sapphire
window

Ti body

Ti end cap

Ti washers

Ti nut

Sauerisen
heater

Potassium

Figure E.6: Pieces of the vapor cell lined up for assembly.

Figure E.7: An assembled vapor cell.

If the process goes well, the cell can last up to 130 hours above 500◦C.

The cells eventually fail at the titanium-sapphire interface. When the seal fails,

a yellow film forms on the outside of the cell. Figure E.8 shows a cell whose

titanium-sapphire seal failed. The lifetime (averaged over four cells) is about 90
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hours (ranging from 85 to 108 hours) with about 10 heating/cooling cycles.

Figure E.8: A used cell.

E.4 Previous Designs

Here we present a brief record of past designs and how they were improved.

The “first generation” of vapor cells had bodies made of poly-crystalline

alumina. Potassium was loaded in liquid form with a pipette into a molybdenum

cavity. The sapphire window was bonded to the polycrystalline alumina with a

high-temperature frit. These cells were more difficult to load and did not last as

long as those of the current design.

The “second generation” of vapor cells had bodies made of titanium and

sapphire windows like the current generation, but to assemble the cell, we set

the window on top of the titanium cell, AR coating facing out, and placed three

thin titanium washers on top of the window, followed by a cap and spring, and

tightened it down with six screws. The cell was heated in this configuration for

bonding. Using this method the rate of success was not as good as with the

current method in which in the bonding process we apply pressure more carefully
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with a custom-made holder. The current method also does not require the use of

the washers or pressure from the cap, making the process simpler. We also tried

depositing a titanium ring onto the sapphire before attaching the window to the

cell; this method did not make for better results.

E.5 Transmission Cell

Potassium has an absorption length on the order of a wavelength at the

densities attained in these experiments. We made some progress towards a trans-

mission cell thin enough for experiments at the lower densities. These cells would

enable transmission experiments such as 2D Fourier transform spectroscopy, which

would shed light on the coupling between levels and many-body effects. They

would also allow more precise studies of propagation and local field effects. Fig-

ure E.9 is a schematic of the manufacturing process and Fig. E.10 is a photo of

a thin cell. Initial success was fortuitous in that there was a leak in the holding

packet, then made of stainless steel, just small enough to retain potassium during

bonding and allow its release for experiments. A later attempt using silver as the

holding packet successfully retained the potassium and released it as temperatures

approached the melting point of silver, which is approximately 962◦C, and seems

a more reliable route. The primary remaining technical problem is how to keep

the potassium from seeping into the thinnest parts of the cell, where it tends to

remain due to capillary action. Figure E.11 shows transmitted TFWM data for a

14µm-thick cell, with dynamic beats due to propagation.
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(a) (b) (c) (d) (e)

Figure E.9: Schematic of thin cell manufacture. (a) Two sapphire windows are
used. (b) First a pocket is drilled into one of the sapphire windows. (c) Then
a thin silver packet is filled with potassium and placed into the pocket. (d) A
6 µm-thin titanium washer is placed between the windows, which are then (e)
sandwiched together and heated up to 800◦C for bonding.

Figure E.10: Photo of thin cell.
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Appendix F

The Exciton Hamiltonian for a System of Two 2-Level Atoms

Here we derive the fluctuating exciton Hamiltonian for a system of two

2-level atoms. The fluctuating exciton Hamiltonian is

HS =
∑

m

ΩmB̂
†
mB̂m +

m6=n
∑

m,n

(JmnB̂
†
mB̂n +KmnB̂

†
mB̂

†
nB̂mB̂n), (F.1)

where

B̂†
m = |m1〉〈m0| (F.2)

and

B̂m = |m0〉〈m1|. (F.3)

For 2 atoms (N = 2) we have:

Atom basis → exciton basis:

atoms m, states a states em

|ma〉|ma〉 → |emem〉

1 ground state:

|10〉|20〉 → |00〉

N = 2 one-exciton states:

|10〉|21〉 → |01〉

|11〉|20〉 → |10〉

N(N − 1)/2 = 1 two-exciton states:

|11〉|21〉 → |11〉.
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We now write out the Hamiltonian explicitly:

HS|00〉 = 0

HS|01〉 = Ω2|01〉 + J12|10〉

HS|10〉 = Ω1|10〉 + J21|01〉

HS|11〉 = Ω1|11〉 +K12|11〉 +K21|11〉

(F.4)

Hatom
S =



















0 0 0 0

0 Ω J12 0

0 J12 Ω 0

0 0 0 2Ω + 2K12



















(F.5)

Now we diagonalize:

Solving to find the eigenvalues gives

(Ω − λ)2 − J2
12 = 0

λ2 − 2Ωλ+ Ω2 − J2
12 = 0

→ λ = Ω ± 1/2
√

4Ω2 − 4(Ω2 − J2
12) = Ω ± |J12|

The eigenvectors then can be found using







Ω J12

J12 Ω






= (Ω ± J12)







a

b






. (F.6)

The equation

Ωa+ J12b = (Ω + J12)aJ12a+ Ωb = (Ω + J12)b (F.7)

gives b = a, and the equation

Ωa+ J12b = (Ω − J12)aJ12a+ Ωb = (Ω − J12)b (F.8)
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gives b = −a. Thus the eigenvectors are










1√
2







1

1






,

1√
2







1

−1

















(F.9)

To find the polarization, we use the relation ĤSF = −P̂ · E(t), where P̂ =
∑

m

µm(B̂†
m + B̂m).

The eigenvectors written in the original space are then

|α〉 =
1√
2







1

1






=

1√
2







(

0 1

)







1

1













0

1






+

(

1 0

)







1

1













1

0













=
1√
2
(|01〉 + |10〉),

and similarly,

|β〉 =
1√
2
(|10〉 − |01〉) (F.10)

So now we can write the polarization:

P̂ |00〉 = µ1|10〉 + µ2|01〉

P̂ |01〉 = µ1|11〉 + µ2|00〉

P̂ |10〉 = µ2|11〉 + µ1|00〉

P̂ |11〉 = µ1|01〉 + µ2|10〉

P̂ |α〉 = 1√
2
[µ1|11〉 + µ2|00〉 + µ2|11〉 + µ1|00〉]

P̂ |β〉 = 1√
2
[µ2|11〉 + µ1|00〉 − µ1|11〉 − µ2|00〉]

µ1 = µ2 = µ→

P̂ |α〉 =
√

2µ(|11〉 + |00〉)

P̂ |β〉 = 0

(F.11)

P atom =



















0 µ µ 0

µ 0 0 µ

µ 0 0 µ

0 µ µ 0



















(F.12)
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The polarization in the exciton basis is (the columns and rows correspond

to {|00〉, |α〉, |β〉, |11〉})

P exciton =



















0
√

2µ 0 0
√

2µ 0 0
√

2µ

0 0 0 0

0
√

2µ 0 0



















. (F.13)



Appendix G

The GROMACS Package

This appendix gives directions on how to perform MD simulations using the

package GROMACS. To perform a molecular dynamics simulation (commands

are given in UNIX):

• modify grompp.mdp for T, P: change dt, nsteps, ref t, ref p, gen temp

e.g. type emacs grompp.mdp &

• modify topol.top for number of atoms

• modify conf.gro for box size. To simplify this step, run input.c with gcc

input.c and then ./a.out, which will create a conf.gro file with random

atom positions

• ensure there are not over ten or so trajectory files (traj.) in the output

folder, otherwise GROMACS won’t overwrite. That is, delete traj.trr,

.xtc files.

• type grompp -v

• type mdrun -v

• type gmxdump -f > traj.dat to convert the output to data files
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• type scp traj*.dat username@jilau1:/. to secure shell copy to a more

accessible location

To repeat this multiple times, run the program run.c with gcc run.c and

then ./a.out, which will ask you what temperature the run is for and will print

out the input you would need for the number of runs you would like. Be sure to

type gcc input.c after run.c and before inputing the lines from run.c.

To run interactively, type the command qsub -IV and be sure to exit when

done. If the program reads/writes quite a bit, cd to /data. To allow opening of

windows, type ssh -X jilau1.



Appendix H

Constants and Conversions

This appendix contains some handy constants and conversions related to

the calculations performed in this thesis.

• Wavelength (m) to frequency (Hz):

λToν(λ) = c
λ

• Frequency (Hz) to wavelength (m):

νToλ(ν) = λ
c

• Wavelength difference (m) to frequency difference (Hz):

δλToδν(λ, δλ) = c
λ2 δλ

• Frequency difference (Hz) to wavelength difference (m):

δνToδλ(ν, δν) = c
ν2 δν

• Frequency (Hz) to wavenumbers (cm−1):

νToinvcm(ν) = ν
100 c

• Wavenumbers (cm−1) to frequency (Hz):

invcmToν(invcm) = 100 · c · invcm

• Temperature (K) to wavenumbers (cm−1):

KToinvcm(K) = kB

100 h c
K
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• Wavenumbers (cm−1) to Temperature (K):

incmToK(invcm) = 100 h c invcm
kB

• Joules (J) to wavenumbers (cm−1):

Jtoinvcm(J) = J
100 h c

• Electron volts (eV) to wavenumbers (cm−1):

eVtoinvcm(eV) = e·eV
100 h c

• Wavenumbers (cm−1) to electron volts (eV):

invcmToeV(invcm) = 100 h c invcm/e

• Hartree to wavenumbers (cm−1):

HartreeToInvcm(Hart) = Eh Hart
100 h c

• Wavenumbers (cm−1) to kcal/mole:

invcmTokCpM(invcm) = 0.0028591 · invcm

• kcal/mole to wavenumbers (cm−1):

kCpMToinvcm(kCpM) = kCpM/0.0028591
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Table H.1: Constants

Physical Quantity MKSA Units CGS “Gaussian”

Speed of light (vacuum) c 2.99792458 × 108 (m/s) 2.99792458 × 1010 (cm/s)

Electron charge e 1.60217653 × 10−19 (C) 4.803 × 10−10 (esu)

Boltzmann constant kB 1.3806503 × 10−23 (J/K)

Electron mass m 9.1093826 × 10−31 (kg) 9.1093826 × 10−28 (g)

Permittivity free spce ǫ0 8.854187817 × 10−12 (F/m)

Planck’s constant h 6.6260693 × 10−34 (Js)

Classical electron radius r r = e2/(4πǫ0mc
2) (m) r = e2cgs/(mcgsc

2
cgs) (cm)

Avogadro’s number NA 6.0221415 × 1023 (1/mol)


