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Lewandowski, Heather Jean (Ph. D. Physics)

Coherences and correlations in an ultracold Bose gas

Thesis directed by Dr. Eric A. Cornell

The development of a new and simplified system to create a Bose-Einstein con-

densate (BEC) is presented, as well as experimental studies of two spin-state condensed

and non-condensed samples. The first part of this thesis describes in detail our appa-

ratus and experiential procedure for creating a BEC. We designed a system to create

a BEC that is simple and robust enough to be constructed by someone outside of the

field of atom cooling and trapping. Our system includes several novel features that re-

duce the complexity of the apparatus, which include mechanical transfer of atoms and

a hybrid magnetic trap.

The second part of this thesis describes studies of two spin-state clouds. We stud-

ied the correlations and coherences of non-condensed clouds using Ramsey spectroscopy

to gain an understanding of interatomic interactions. We were able measure precisely

the mean-field interactions between coherent particles, as well as determine mecha-

nisms that preserve and destroy coherence. These experiments led us to the study of

spin waves, in which scattering of indistinguishable particles gives rise to coherent spin

oscillations. Using sensitive Ramsey spectroscopy, we were able to fully examine the

spatio-temporal spin-state oscillations. Following the studies of normal cloud coherence,

we went on to explore coherence effects in condensates.
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Chapter 1

Introduction

The creation of the field of ultracold atomic physics has opened up many new

possibilities for studying the effects of quantum mechanics in theoretically accessible

systems. Ultracold temperatures reduce the complexity of the system by reducing the

possible states a system can occupy, thus allowing a more complete understanding of the

system. An extreme case of a sample of ultracold atoms is a Bose-Einstein condensate

(BEC), in which all of the atoms occupy a single quantum state.

The theory of Bose-Einstein condensation was first suggested by Bose [1] and

expanded upon by Einstein [2] more than 75 years ago. However it was not until 1995

that a BEC was first produced in a dilute vapor. The time lag in the experimental

realization of the predicted phase transition is not so incredible, once one realizes the

extraordinary conditions that must occur in order to Bose condense a gas.

In everyday life, quantum statistics does not play a major role in our experiences

because the thermal wavelength of particles is small compared to the interparticle spac-

ing. However if a particle’s wavelength is made comparable to the interparticle spacing,

quantum statistics will become important. The relevant parameter that determines

whether particles obey classical or quantum statistics is the phase-space density, which

is the number density times the thermal de Broglie wavelength cubed. As this param-

eter approaches one, quantum statistics becomes relevant. For Rubidium gas at room

temperature and typical vacuum density of 10−9 torr, the phase space density of the
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sample is ∼ 10−20, which is twenty orders of magnitude away from the Bose-Einstein

condensation transition. It was predicted that one would have to cool Rubidium vapor

below 1 millionth of a degree above absolute zero to observe a BEC. Remarkably, with

the advent of laser and evaporative cooling, this goal turned out to be obtainable. Now

over 35 groups in the world have condensed eight different atomic species. This accom-

plishment was recently recognized by the awarding of the 2001 Nobel prize in physics

“for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and

for early fundamental studies of the properties of the condensates” [3].

It is somewhat ironic that, after finally achieving the goal of producing a con-

densate, the studies in our group concentrated on the most basic system in quantum

mechanics: the two-level system. We wanted to study the macroscopic quantum phase

of a condensate, and how this phase is affected by both internal and external couplings.

One cannot measure the absolute phase of a particle, but rather only the relative phase

with respect to another particle. Therefore if we want to study the phase of a conden-

sate, we must have another condensate as a phase reference. We meet this requirement

by producing a condensate in two distinct spin states, which we can manipulate and

measure by standard atomic-physics techniques. The ultimate goal was to study how a

normal cloud interacting with a condensate affects the phase of the condensate. Before

we began our condensate coherence studies, we felt we should understand fully normal

cloud coherences and correlations. This initial study led to many significant results

including the unexpected observation of spin waves and precision measurements of in-

teratomic collisions and correlations. These studies are directly relevant to the field of

atomic clocks, where interatomic collisions currently limit the accuracy. After an ex-

tensive study of normal clouds in two spin states, we began studies of pure-condensate

coherence and the effects of the normal cloud on condensate coherence. The studies

of condensate coherence are still ongoing with the hope that we may be able to un-

derstand the coupling between the normal cloud and the condensate. It is a pleasure
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to note that a two-level system can still yield surprises, 75 years after the advent of

quantum mechanics.

1.1 Overview

We originally set out with two goals in mind. First, we wanted to design and

build a new type of BEC apparatus, which would be simpler and more robust than was

currently in use in dozens of labs around the world. Second, we wanted to use our stable

apparatus to study phase coherence of condensates.

In the seven years since their first observation, dilute vapor condensates have

been studied extensively. In most cases the condensate properties themselves are the

focus of the investigations. Relatively little work has been done using a condensate as

a tool to explore questions in other fields. We feel that physicists in other fields such as

condensed matter have a different and unique perspective on possible experiments that

could make use of condensates. Therefore, developing a system that could be used for

these purposes is worthwhile. The current experimental systems [4, 5, 6] were designed

by people with a tremendous amount of knowledge and experience in experimental

atomic physics, and until now producing a BEC without expertise in ultracold atom

trapping has been a daunting task. We felt, however, that with some modifications

to the current experimental design, any experimental physicist, regardless of discipline,

could produce a BEC in their lab.

1.2 Organization of this thesis

This thesis is organized as follows. The first part of this thesis (Chapter 2) will

describe most of the basic steps in detail on how to build a BEC apparatus. Many of the

techniques described have been developed by others [7, 8, 9] over the last 20 years but

are included so that this thesis may serve as a ‘recipe’ for creating a BEC. Besides the

traditional methods we also describe several new features of our design, which include
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a new method of atom transfer and a hybrid magnetic trap.

The second part of the thesis (Chapters 3-6) is devoted to the scientific stud-

ies of two spin-state ultracold and condensed atom samples. We started our study of

two-component samples by spectroscopically measuring cold-collision properties, which

include mean-field and Zeeman energy shifts, as well as correlations between the spin

states. The basic theory behind the spectroscopy is described in Chapter 3, and the

results of these studies are described in Chapter 4. During our spectroscopic measure-

ments, we observed by accident an effect we initially called anomalous spin-state segre-

gation. We observed the spin states separating spatially in the trap in an unexpected

way. Eventually, with the help of several theorists, we understood the spin dynamics

to be spin waves. Chapter 5 discusses the origin of and our extensive measurements of

spin waves produced in our two-component cloud. Armed with the knowledge of coher-

ences and correlations gained from our experiments of cold collisions and spin waves, we

studied how loss of coherence affected two-component condensates. Chapter 6 describes

our results on coherence effects on finite temperature condensates.



Chapter 2

Experimental design and procedure

A large fraction of the effort represented in this thesis was the development of a

new and improved system for creating a BEC. This system was developed from scratch,

with little more than a bare optical table as a starting point. Several of the components

developed for this apparatus have proven so useful that several groups at JILA, and

at universities throughout the United States, are now incorporating them into their

experimental systems.

We recommend several sources that contain background information on a variety

of subjects not covered in depth in this text. For a textbook description of atom cooling

and trapping we recommend Laser cooling and trapping by Metcalf and van der Straten

[10]. Two useful papers that describe diode lasers and saturated absorption spectroscopy

are “Using diode lasers for atomic physics” [11] and “A narrow-band tunable diode laser

system with grating feedback and a saturated absorption spectrometer for Cs and Rb”

[12]. A third paper by Wieman and coworkers describes the components and the process

for constructing a magneto-optical trap (MOT) for use in undergraduate laboratories

[13]. A review of many ideas in evaporative cooling may be found in van Druten and

Ketterle [14]. There is a good section on imaging cold clouds in “Making, probing, and

understanding Bose-Einstein condensates” by Ketterle and colleagues [15].

Our design has many features that allow a condensate to be made even if the

system is not particularly optimized. We use a MOT with large beams (5 cm diameter)
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with a considerable amount of laser power (400mW) to collect a large number of atoms.

The large number of atoms in our MOT is efficiently and reproducibly translated 45 cm

to a final magnetic trap via a mechanical transfer mechanism. We are able to place

the magnetic trapping magnets and coils very close to our atoms thus producing very

strong confinement and high collision rate. All of these features insure that evaporation

will work well and produce a condensate consistently.

One of the main concerns when designing any BEC apparatus is the need to

optically collect many atoms and yet to have a long lifetime for the atoms in the magnetic

trap. These two constraints require orders of magnitude different vapor pressures. It is

not easy to change the vapor pressure in a vacuum system by two orders of magnitude in

a reasonable time of seconds. There are two conventional ways of solving this problem: a

double MOT apparatus [16] and an atomic beam [17]. The double MOT system collects

atoms in a MOT in one region of the vacuum system, which has a high alkali vapor

pressure, and transfers the pre-cooled atoms to a second MOT in an UHV chamber, with

a pressure in the low 10−11 torr, for further cooling. The transfer is done essentially by

pushing the atoms between MOTs with a laser beam. There are several disadvantages

to this method. Two MOTs are necessary, which requires the system to use more laser

power than a single MOT system. Also the optics and optical access needed for the

second MOT restrict the space for the magnetic trap coils, so that to create a specified

magnetic gradient requires considerable electrical power. Finally, the push beam and

MOTs are very sensitive to optical alignment making optimum performance difficult to

sustain. The other main method is to use a laser-cooled atomic beam from a Zeeman

slower. Zeeman slowers are large (1-2 m) and require a high temperature oven. Systems

with Zeeman slowers have only one MOT, but they suffer from the same optical access

problems around the magnetic trap as does the double MOT design.

A design similar to ours, developed by the Hänsch group in Garching [18], uses a

series of electromagnetic coils to move the atoms from one chamber to the other. The
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atoms are initially transferred from the MOT into a magnetic quadrupole trap; then by

ramping the current in successive sets of quadrupole coils lined along the transfer tube,

the atoms are transferred between chambers. This design has the benefit of being able

to move the atoms easily around a corner to reduce line-of-sight between the chambers,

which reduces trap loss from background collisions. However, the ten overlapping sets

of quadrupole coils require a large amount of power to run, take up considerable space

around the apparatus, and require effort to design, construct, and optomize.

Our system uses a moving magnetic trap to transfer atoms between regions of

the vacuum system. Magnetic coils are mounted on a linear track and translated from

one section of the system to the other; this technique has many advantages. It is very

easy to use. The track, motor, and controller are commercially available as a turnkey

system. The transfer worked the first time and works essentially every time without

any maintenance. As with the Garching group’s design, our system does not need a

second MOT in the UHV region, so we can place our magnetic trap close to the atoms

and produce very strong confining fields.

The other new feature in our system is a hybrid magnetic trap. It uses strong

permanent magnets to produce radial confining fields and low power electromagnetic

coils to produce axial confinement and a bias field. The permanent magnets do not

consume power and thus do not need to be actively cooled, as would electromagnetic coils

producing the same field. The tight confinement from the permanent magnets insures

that we have the necessary collision rate to evaporatively cool the atoms. Permanent

magnets are however plagued by long-term stability problems. The longitudinal bias

field, the only parameter for which stability is critical, is produced by servo-controlled

electromagnetic coils, which are air cooled. Our design allows tight confinement from

the permanent magnets and bias-field stability from the coils. The magnetic trap is

designed to have tight enough confinement so that we can produce a condensate even

if the system is not well optimized.
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We will outline in detail the steps required to make a Bose-Einstein condensate

using our particular experimental system. This Chapter begins by giving directions for

setting up the necessary vacuum and optical systems. Next we describe the experimental

procedure for pre-cooling atoms in a MOT, transferring the atoms to a magnetic trap,

and evaporatively cooling them to create a condensate. There is also an extensive

Section dedicated to imaging the condensate and extracting useful parameters from the

images.

2.1 Experimental resources

Our experimental apparatus does not require a large amount of space compared

to other BEC systems, particularly those with Zeeman slowers. Our lab contains three

components: an optical table, electronics, and control computers. We have the vacuum

system, lasers, and all of the optics on one 4’×8’ optical table. The system is not

congested, and we still have several square feet of free space on the table. In addition to

the optical table, we have a canopy the size of the table, which is half full of electronics,

and one full electronics rack. We also have two computers in the lab, which control the

experiment.

2.2 Lasers

The experiment requires three different wavelengths of laser light: two to make

the magneto-optical trap and one to image the condensate. We use a different laser for

each of these tasks. We use a commercial external cavity diode laser (ECDL) [12], which

is amplified by a single pass through a tapered amplifier chip for the MOT trapping

beams, in a master-oscillator power-amplifier (MOPA) configuration. This system will

nominally produce 500 mW of power at 780 nm. The MOT hyperfine repump and probe

beams are supplied by two separate ECDLs, which each produce ∼ 8 mW.
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2.2.1 Frequency control and stabilization

All three lasers are locked to atomic transitions in 87Rb using saturated absorption

spectroscopy [12]. This type of frequency stabilization is standard practice and thus will

not be described here in detail. The basic idea is to produce sub-Doppler spectral lines,

which can be used as feedback to stabilize the laser. The optical layout for saturated

absorption spectroscopy is shown in Fig. 2.1.

We lock each laser to the peak of an atomic transition. The frequency location

of the peak of the transition is relatively insensitive to intensity and broadening effects,

which would change the locking set point if the laser were locked instead to the side of

the line. Unfortunately a servo can only lock to a region where there is a slope of the line

to use as feedback. We solve this problem by generating a derivative of the saturated

absorption signal. We modulate the frequency of the laser, by either modulating the

laser current or the radio frequency (rf) driving an acoustic optic modulator (AOM).

The modulation has a depth of 5 MHz at a rate of 50 kHz, which is slow enough for the

AOMs to respond and fast enough to be above the bandwidth of the servo. The signal

from the saturated absorption spectrometer is routed to a homemade lock-in detector

which gives the derivative of the original transition lines. The derivative changes sign

at the peak, and thus is a convenient error signal for our servo.

We use AOMs to shift the frequency of the light that is used in the experiment.

The AOMs are driven by amplified voltage-controlled oscillators. A diagram of the

optical set-up for the AOMs is shown in Fig. 2.3. A portion of the light from the

MOPA is sent through a 120 MHz AOM, which is frequency modulated. The negative

first order diffracted beam is used in the saturated absorption spectrometer. This scheme

allows us to lock the laser to the peak of the (2 → 2′, 2 → 3′) crossover line (peak A

in Fig. 2.2) and have the trapping light red detuned by several natural linewidths from

the 2 → 3′ cooling transition. The unprimed states refer to the 5S1/2 manifold and the
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lucite
beamsplitter

photo diodes

Rb vapor cell

Saturating beam

focusing lens

Figure 2.1: Optical set-up for saturated absorption spectroscopy. A small amount of
light (0.1-1 mW) is split off from the laser and sent through a half inch thick piece of
Lucite to produce two weak beams. The two reflected beams, about 1-2 mm wide, pass
through the Rb vapor cell and are focused onto two photodiodes. The saturating beam
that passes through the lucite is sent into the vapor cell counter-propagating with one
of the weak beams.

primed states refer to the 5P3/2 manifold. The repump laser is locked directly to the

1 → 2′ transition. We modulate the current of the repump laser instead of the frequency

of an AOM. The probe beam is sent through two AOMs in our design. One AOM is

essentially a fast shutter, while the other allows us to modulate the frequency sent to

the saturated absorption and not impart the frequency modulation onto the probe beam

itself. We need to shift the frequency of the probe beam only a few MHz from the lock

frequency. Therefore the two AOMs are set to almost the same frequency, and their

center frequency of 260 MHz is arbitrary. We lock the probe laser to the peak of the

(2 → 2′, 2 → 3′) crossover transition.

Vibration isolation is important when operating ECDLs, in our case commercial

New Focus Vortex lasers. Vibration can cause undesirable frequency noise at a level

that the feedback may not be able to fully correct. We mount the repump laser on a

piece of 1/4” thick sorbathane sheeting to reduce the effect of vibrations from the table.

The probe beam laser is mounted directly on the table. Mounting it on sorbathane

could cause the beam pointing to drift and thus decrease the coupling into the fiber.

We also mount our shutters on the same material, so that vibrations induced by the
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Figure 2.2: Saturated absorption spectra of the hyperfine structure on the Rubidium
5S1/2 →5P3/2 transition. Widths and relative heights of the peaks are affected by beam
alignment, intensity, and polarization. These are only representative signals.

solenoids when they open or close is not transmitted to the optical table.

2.2.2 Shutters

We use both mechanical shutters and AOMs to control the timing of the laser

light. The mechanical shutters provide an excellent extinction ratio but are slow and can

have jitter in their timing. We can also use an AOM as a shutter by using a diffracted

order. AOMs are fast, with response times on the order of a 1 µs, but their extinction

ratio is less impressive. For critical light pulses such as the probe pulse, we use both
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Figure 2.3: Laser frequency control for the three lasers in our experiment. For the less
critical repump laser, the frequency modulation for the lock-in detection is applied to
the laser frequency itself through current modulation. For the more critical trapping
and probing beams, the frequency modulation is applied to the AOMs, and thus the
frequency modulation is not on the light used on the atoms.

types of shutters. We create a pulse by first opening the mechanical shutter several ms

before the start of the pulse, turning on the AOM for the desired pulse length, then

closing the mechanical shutter several ms later. Mechanical shutters can cause noise

on the lasers when they open or close through acoustical vibrations. We are careful to

open the shutter early enough for the laser servo to recover from the acoustical noise

before triggering the AOM for the probe pulse.
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2.2.3 Spatial filtering

The spatial beam profile from diode lasers is not Gaussian and may contain high

contrast stripes, which must be reduced before the light is used in the experiment.

The output of a MOPA system can be nonuniform depending on the amplifier chip. A

MOT does not require perfectly uniform beams but high contrast features will lower

the trapping efficiency. We focus the MOPA beam, f# 16, through a large pinhole

(50 - 100 µm), eliminating any high-frequency spatial modes while retaining most of the

laser power (∼75 %). The MOT is largely insensitive to the spatial profile of the repump

beam, so we do not spatially filter this light. The probe beam, on the other hand, must

have a very uniform and flat intensity profile. We use a single-mode angle-polished

polarization-preserving fiber to filter spatially the probe beam. It is critical to use

both an angle-polished and polarization-preserving fiber to reduce temporal intensity

fluctuations of the beam. The facets of a flat-polished fiber can form an etalon, which

will produce high-frequency intensity fluctuations on the output. A non-polarization-

preserving fiber will scramble the input polarization depending on the stress (thermal

or mechanical) applied to the length of the fiber. These polarization fluctuations will

be converted into intensity fluctuations when the light pases through a polarizer. One

good method to align the input light polarization with the axis of the fiber is to first

adjust the angle of the initial linear polarization until pure linear light is emitted from

the fiber. This procedure may be too coarse to accurately align the axis, so the next

step is to tap on or warm up with your hand the center of the fiber, so as to not change

the coupling at the ends, and to watch the intensity fluctuations on the output after a

polarizer. One can now more finely adjust the input polarization until a minimum of

polarization fluctuations is observed on the output.
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2.3 Vacuum system

2.3.1 Chamber design

The vacuum chamber is a simple single ion pump system that has a high vacuum

vapor cell (10−8 − 10−9 torr) and an ultra-high vacuum (UHV)(10−11 torr) science cell.

Three vacuum pumps are used in the system, but only one of them is used on a continual

basis. A diagram of the chamber is shown in Fig. 2.4. The turbo pump, connected

to the system by an all-metal valve, is used only during initial pump down and bake

out. The Ti-sublimation pump is turned on only every couple of years to remove extra

Rb or H from the system. The workhorse pump is the 40 l/s ion pump, which pumps

continuously on the chamber during normal operations. The ion pump is conduction

limited for some atomic species and thus it may be larger than needed. However we

would recommend the 40 l/s pump to ensure the system has adequate pumping speed.

The valve on the ion pump was used only as a diagnostic tool during original testing

of the system and would be removed if the system was reconstructed. The valve used

to close off the turbo pump is necessary to remove the pump from the system after the

bake out. The sealing surface of the valves and not the bellows should always face the

vacuum side; this configuration reduces the surface area in the UHV chamber.

One thing to consider when deciding on Ti-sublimation pump placement is where

the Titanium will deposit. The Ti-sublimation pump’s filaments should be placed so

that there is not a direct line of sight to any valve or pump. The Ti will coat all surfaces

in direct line with the filaments and can cause a valve sealing or pumping problem. See

Fig. 2.4 for position of the filaments in our system.

The differential pumping between the two chambers is maintained by placing a

small aperture on each side of the bellows to reduce the conductance. The apertures are

5 mm diameter holes in the solid copper gaskets connecting the bellow to the system.

With our design the pressure differential between the two chambers is about a factor
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Figure 2.4: Vacuum system layout. The system is suspended with a series of clamps
(not shown), so the center line of all the horizontal tubing is 18 cm above the optical
table.

of 17 for Rb. A second ion pump could be added between the two cells to increase the

pressure differential and allow a shorter MOT loading time without sacrificing science

cell lifetime.

The conductance of gas through a tube and an aperture in the molecular-flow

regime is

Ctube =
3.81D3

L

√

T/M liters sec−1 (2.1)

Caperture = 3.7A
√

T/M liters sec−1, (2.2)
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where D and L are the diameter and length of the tube in cm [19]. A is the cross-

sectional area of the aperture in cm2, T is the temperature in Kelvin, and M is the

molecular weight of the gas. The conductance of a system can be found by adding

the conductance of each individual part like capacitors in an electrical circuit as in the

following: (Cparallel = C1 + C2 + · · ·, 1/Cseries = 1/C1 + 1/C2 + · · ·).

The science and MOT cells are cylindrical glass cells attached to glass-to-metal

seals. The science cell is a 10 cm length of 1.4 cm outside diameter pyrex tubing with

a window on one end and a glass-to-metal seal on the other. The MOT cell is a 20 cm

length of 5 cm outside diameter pyrex tubing necked down on each end. One end is

attached to a glass-to-metal seal, while a getter assembly is fused to the other end

(Fig. 2.5).

4 cm 4 cm 25 cm 8 cm

1.9 cm 5 cm

1.9 cm

Figure 2.5: Diagram of the MOT cell showing the getter assembly and glass-to-metal
seal welded onto a knife-edge seal flange.

The getter assembly consists of a current feedthrough and two Rb dispensers

(getters). The feedthrough, called a pin press, is a glass section with Tungsten pins

inserted. The Rb getters are spot welded to the pins of the pin press. The Rb getters

are a controllable source of Rb vapor. A getter is a small foil container of a Rb salt,

which releases Rb when a moderate current of 2-6 A is run through the device. It is

important to use a current limited power supply for the getters, because the resistance

of the getters changes drastically as the temperature increases. The getter assembly can

be seen in Fig. 2.6.

Special care must be taken with the getters to insure they will produce clean
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getters

Tungsten pins

pinpress

Figure 2.6: Getter assembly showing two getters and reentrant glass with pins inserted.

Rb vapor. First, the getter material can easily absorb water, so we keep them under

vacuum with desiccant during storage and flow only dry gas during the glass fusing

process. Second, they release Rb as a double exponential function of temperature.

Thus, we make sure that while the pin press is being fused to the cell, the getters are

not heated significantly by the fusing torch. Avoiding moisture and heat, we are usually

able to have getters that produce clean Rb vapor. However occasionally the getters

will produce other products as well as Rb. In our current system when we turn on the

getters the number of atoms in the MOT decreases, presumably due to contaminants

being released from the getter. Our mode of operation is to turn on the getters at 3.5 A

for 10 minutes to supply the MOT cell with a day’s worth of Rb, and then to allow

10-20 min for the contaminants to pump out of the system before taking data.

A good question to ask is why we chose to use cylindrical glass cells instead

of square cross-section cells. The main reason is it is easier to make cylindrical cells.

Anyone with a small amount of glassblowing training can fabricate the cylindrical cells,

whereas constructing square cells usually requires significantly more equipment and

expertise. Another advantage to using a cylindrical MOT cell is the interference fringes



18

on the trapping beams have higher spatial frequency and are spaced less regularly than

with a square cell. One can shake the glass MOT cell around by a 1 cm and see little

movement of the MOT cloud. MOT alignment with a square cell can be more difficult

because it is important to place the minimum of the fringes away from the center of

the trap. This type of alignment requires more frequent adjustments and is more a

trial-and-error process than simply overlapping the beams at the correct angles, as is

required for a cylindrical cell. A cylindrical cell distorts the trapping beam, but this

does not seem to be a large problem for us.

The cylindrical science cell, on the other hand, is less desirable. The probe beam is

focused by the cell, which acts as two cylindrical lenses. This is generally not a problem

for absorption imaging, but can be for phase contrast imaging. Phase contrast imaging

requires placing a material in the fourier plane to shift the phase of the light. The large

astigmatism induced by the cell requires placing a phase shifting line rather than a dot,

thus making alignment more difficult. If we were to reconstruct our experiment, we

would replace the cylindrical science cell with a commercial square cell, which is easy

to obtain from companies who specialize in producing spectroscopic cells.

2.3.2 Chamber construction

Obtaining UHV pressures requires careful assembly of the vacuum components.

The most important thing is to make sure all of the components are clean. We start

the cleaning process by placing the submersible parts (no valves, pumps, or cells) in an

ultrasonic cleaner with strong soap for 1 hour. If the valves are cleaned in the ultrasonic

cleaner they must be re-greased before they are used. The long cleaning time allows

the strong soap to remove residual oil from the factory. Typically when a vacuum part

is baked in air it will become a golden color, which we assume is residual burnt factory

oil. A one hour bath in a strong basic soap will remove this coating, and it will not

return with subsequent air bakes. The long bath is not absolutely necessary and may
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be reduced to a few minutes to just remove any particulates from the parts. After the

ultrasonic bath the parts are rinsed with deionized water, acetone, and then methanol.

Next the parts are baked in air for 4 hours at 400◦ C to drive off any residual material

still on the parts. Once the parts have cooled they are wrapped in oil-free aluminum

foil until assembly.

It is important to avoid contamination of the vacuum system during assembly.

We always wear powder-free latex gloves and change them often. All knife edges and

copper gaskets are wiped with ultra-pure methanol before installation to remove any

factory residue.

We use silvered bolts on the knife edge flanges to reduce the possibility of bolts

seizing in the flanges during the bake out. If silvered bolts are not available we place

some molybdenum disulfide powder suspended in methanol on the threads of the bolts

for lubrication. Suspending the molybdenum in methanol reduces the chance that it

will fall into the vacuum system during assembly and become a contaminant.

After the entire vacuum system has been assembled it is pumped out and checked

for leaks. We use a small turbo pump backed by a dry, four-stage diaphragm pump to

initially pump out the chamber. We use a diaphragm pump rather than a standard

oil-filled roughing pump, because the diaphragm pump does does not contain any oil,

which could leak into the system. Once the turbo pump has spun up to full speed we

spray a small amount of ultra-pure methanol on all the flanges and cells. If there is

a large leak, the pressure in the tubing connecting the turbo pump to the diaphragm

pump, read by a thermocouple gauge, will change when methanol is applied. The system

is pumped on overnight before the bake out is started. A carefully cleaned system, which

does not contain any large leaks, should pump out overnight with the pressure reaching

around several 10−8 torr, read from the ion pump.
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2.3.3 Chamber bake out

The vacuum system must be baked at high temperatures under vacuum to remove

contaminants to obtain UHV pressures. We bake most of the chamber at 300◦ C for

several days. Before the bake out, we run about 6 A through the getters for 30 seconds

to verify the presence of Rb, which can be seen by either laser absorption or fluorescence.

The high current also degasses the getters.

The system can now be prepared for the bake. The first step in the bake out

process is to wrap the glass cells with clean fiberglass cloth. The cloth will protect

the cells from anything that may melt onto the cells during the bake. Next we place

Teflon-coated thermocouples on the chamber at critical places such as the cells, glass-

to-metal seals, and pumps. We then wrap the system with high-temperature resistive

heater tape. It is not important to wrap the entire surface of the chamber with tape,

but rather to have a constant

tape-to-chamber surface area ratio. Heater tape is applied to different objects propor-

tional to their surface area and not the mass of the object. The mass only defines

the time constant for thermal equilibration, whereas the ultimate temperature is deter-

mined by the heat flow in and out of the region, which is proportional to the surface

area. The tape should never overlap itself, or the intense heat will cause the tape to

burn. Several short tapes are used to wrap the system so each section may be controlled

independently. The turbo pump is not baked because it is not part of the final chamber

and can not handle high temperatures. We do however bake the entire ion pump with

the magnets in place. Typical maximum baking temperatures for different components

are listed in Table 2.3.3. After the tapes are in place the chamber is wrapped with strips

of fiberglass and then several loose layers of aluminum foil to insulate the system from

the environment.

The system is slowly brought up to the final temperature over 6-8 hours. The ion
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Vacuum element Maximum baking temperature (◦C)

turbo pump inlet flange 120
ion pump magnets 250

ion pump body 400
ion pump cable 250

bakeable valve, open 450
bakeable valve, closed 300
Ti-sublimation pump 350

glass/metal seals 300

Table 2.1: Vacuum component temperature limits

pump is still off at this point. There is a large amount of material driven off the walls

of the chamber during the initial several hours of the bake. We prefer to have the turbo

pump, which has an almost infinite pumping lifetime, pump out initially rather than

the finite lifetime ion pump. Each heater tape is powered by a variable AC transformer

(variac) which controls the temperature of each section of the chamber. Generally we

increase the temperature by at most 50◦ C per hour. Temperature gradients can apply

significant stress to the system. We prefer to keep the temperature gradients to under

30◦ C across the glass cells and glass-to-metal seals, which are the most susceptible

components to failure. Caution must be taken when the system is near 300◦ C because

some parts of the system could overshoot in temperature due to long thermal time

constants. During the bake 3 A are run continuously through the getters to clean them.

If the getters are left off they will be the coldest part of the system, and contaminants

will accumulate on them. We also run 25 A through the Ti-sublimation filaments during

most of the bake. Throughout the warming up process, thermocouple readings, variac

settings, and pressure readings are recorded to facilitate future bakes. Once the system

is at the desired temperature we bake with just the turbo pump on for 12 hours. At

this point we degas the getters and Ti-sublimation filaments. To degas the getters,

we increase the current in each getter for 30 seconds to 5 A to drive off any surface

contaminants. After the first 12 hours we turn on the ion pump and valve off the still-
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running turbo pump. When the valve is above room temperature we close it only finger

tight. Therefore, we do not allow the turbo pump to spin down until the system is

back to room temperature, and the valve can be properly closed with a torque wrench.

We allow the system to bake with the ion pump on for ∼ 2 days, or until the pressure

on the ion pump reads in the middle 10−9 torr. We cool the system down slowly over

4-6 hours. At this point the ion pump should read the lowest possible pressure, which

is 10−10 torr for most pumps, if there is no leakage current. The ultimate test of the

vacuum pressure is the lifetime of the atoms in a magnetic trap.

2.4 Magneto-optical trap

We have a large six-beam MOT. We are forced to use six beams and not retro

reflect the beams because the cloud of atoms casts a shadow and would cause an intensity

imbalance between the beams. Also the cylindrical cell distorts the beams as they pass

through both sides of the cell. The diameter D, of the beams is approximately 5 cm.

Large beams greatly increase the number of atoms in a MOT because the loading rate

scales theoretically as D∼4 for intensities even as low as half saturation [20].

The optical layout is shown in Fig. 2.7 with the vertical beam paths shown in

Fig. 2.8. We use 5 cm diameter polarizing beamsplitting cubes and waveplates and

7.5 cm mirrors to accommodate the large beams. The repump beam enters the system

via the backside of a cube; therefore the polarization of the repump beam will not be

optimum when it enters the trapping region. This is not a problem because a Rb MOT

requires very little repump power.

The MOT coils, which also serve as the quadrupole trap coils, are made of 24 turns

of square hollow copper tubing coated with Kapton. The wire has a square cross-

section of 4.15 mm on a side with a round 2.5 mm diameter hole in the center. The

coils are cooled by running water through the center region of the wire. The wire

is wound onto a phenolic spool and secured with epoxy. Phenolic was chosen as the
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Figure 2.7: Schematic of the MOT optical layout. Some of the mirrors and waveplates
for the vertical beams are not shown.

spool material because it will not support eddy currents when the current is abruptly

changed in the coils. The inner diameter of the coils is 5 cm, and their centers are

separated by 10 cm. The current in the coils, run in series, is controlled by a simple

servo circuit (Fig. 2.9), which controls three power MOSFETs. We use a 580 Amp, 8 V

switching power supply, run in voltage-controlled mode, to supply current to the MOT

coils. The coil configuration produces a magnetic field gradient of 1 Gauss/cm/Amp

along the axis of the coils.
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Figure 2.8: Picture of the vertical-beam optics for the MOT omitted from Fig. 2.7.
Figure shows the location of the track (blue arrow) and the vertical MOT beams (red
arrows). The coils of the MOT/quadrupole trap are translated left, towards the science
cell, out of the field of view of this photograph.

2.4.1 MOT alignment

The alignment of our MOT is not as sensitive as it would be for a MOT with

1” beams. We start aligning the MOT by placing an iris in the beam from the MOPA
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Figure 2.9: Schematic of the MOT/Quadrupole trap servo circuit. The circuit has
standard PI loop gain, where the proportional gain comes from the feedback from the
closed-loop Hall current sensor. We use 2/0 gauge welding cable to carry 300 A from
the power supply to the coils and MOSFETs. The three MOSFETs are mounted on a
water cooled copper plate to remove the heat generated by the MOSFETs.

before it is split into six. Closing the aperture allows us to align the centers of the

beams. Once we get all the beams roughly aligned with respect to the magnetic coils

and each other, we balance the power in the beams. We have λ/2 plates mounted on

rotating mounts before every polarizing beamsplitting cube to adjust the power in each

beam. We measure the power just before the beams enter the MOT cell and adjust the

waveplates until the power is equal in each of the six beams to better than 10%. Next we

open the iris and attempt to see a trapped cloud. A simple security camera can image

the fluorescence from the cloud, which can be viewed on a monitor. It may take several

hours with the getters running for the cell to be coated with Rb and a significant Rb

vapor pressure to be established. Once a cloud is visible, an easy way to adjust finely

the alignment is to reduce the beam size, optimize the cloud for number and roundness,
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and repeat, all the time making sure the beam pairs are kept counterpropagating.

The position of the trapped cloud should be centered with the quadrupole mag-

netic trap to minimize energy gained by the cloud when it is transferred into the mag-

netic trap. To test this, we increase the current in the MOT coils until the cloud size is

reduced greatly by the large magnetic field-induced detuning. The position of the small

cloud, in a very large magnetic field gradient, is reliably at the center of the magnetic

field, and thus the center of the magnetic trap. We then decrease the field, and adjust

the the beam alignment and power balance until the cloud center is in the same location

at high and low magnetic fields.

Another test for quality of the alignment is to look at optical molasses [21]. We

quickly turn off the magnetic field of the MOT and look at the expanding cloud. If it

moves rapidly in one direction this could be a sign of beam imbalance (from incorrect

polarization or intensity splitting between the beam), poor alignment, or stray magnetic

fields. The goal is have slow, spatially-uniform expansion during optical molasses. In

traditional systems, it is necessary to use shim coils to cancel ambient magnetic fields

and to have the atoms in the optical molasses expand uniformly. A feature of our

system is the lack of need for shim coils. We transfer atoms to our quadrupole trap at

a relatively high temperature, where the small reduction in energy from the shim coils

would not make a great improvement in the phase space density of the magnetically

trapped cloud.

2.4.2 MOT characterization

We calculate the number of atoms in the MOT by measuring fluorescence from

the trapped cloud on a photodiode. We focus the fluorescence onto the photodiode with

a single lens. The number of atoms in the MOT is

N =
4π(photodiode current)

(solid angle)(responsivity)(energy of a photon)(R)(0.96)k
, (2.3)
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where solid angle refers to the solid angle subtended by the collection lens, the respon-

sivity refers to the current produced for a given power incident on the photodiode, and

k is the number of uncoated glass surfaces between the atoms and the detector. R the

photon scattering rate in photons/sec/atom, is

R =
I
Is
πΓ

1 + I
Is

+ 4(∆
Γ )2

, (2.4)

where I is the total intensity of the six beams impinging on the atoms, Is is the satu-

ration intensity, which is 4.1 mW/cm2 for random polarization for Rb. Γ is the natural

linewidth of 6 MHz for Rb, and ∆ is the detuning from resonance. In our experience,

using the Is appropriate for random polarization gives the most accurate number of

atoms in a MOT.

We servo the MOT load to increase reproducibility in condensate number. We

could load the MOT for a fixed time each shot. However, if the pressure of Rb changes

throughout the day, the loading rate, and thus the total number loaded into the MOT

will drift with time. We instead measure the voltage output from a photodiode collecting

light from the MOT; when a particular value is reached we stop the loading and proceed

to transfer atoms to the quadrupole trap. This also allows us to vary the resulting

number of atoms in the final cloud by adjusting the MOT load level.

2.5 From MOT to Ioffe-Pritchard trap

2.5.1 Transfer into the quadrupole magnetic trap

There are three main steps to transferring atoms from a MOT into a magnetic

trap: compressed MOT (CMOT) [22], optical pumping, and turn on of the magnetic

trap. Our goal is to transfer the atoms into the quadrupole trap with the highest phase

space density. When the atoms are caught in the magnetic trap, most of the resultant

energy of the atoms comes from the added potential energy due to the Zeeman energy

from magnetic field. The larger the cloud is when the magnetic trap is turned on the
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greater the potential energy gained by the atoms. We can not adiabatically ramp on our

magnetic trap from zero gradient, because at low magnetic gradients the trap center

is significantly offset from the cloud center due to gravity. The center offset induces

slosh in the trap, which turns into thermal energy. Therefore reducing the initial spatial

extent of our CMOT cloud is more important than obtaining the coldest temperature.

Our CMOT stage consists of a MOT with greatly reduced repump laser power

and large red detuning of the trapping laser. MOTs with large numbers of atoms have

a maximum density of around 1011 atoms/cm3, which is limited by radiation pressure.

The CMOT has the effect of reducing radiation pressure in the trap and thus creating

a denser cloud of atoms. Reducing the repump power reduces the time the atoms

spend in the state (F= 2) resonant with the trapping light. Increasing the detuning of

the trapping laser decreases the scattering rate and thus the absorption of reradiated

photons.

We use a short CMOT stage in preparation for transfer to the magnetic trap.

The CMOT has a much smaller loading rate than a regular MOT. Therefore we want to

minimize the time spent in the CMOT stage and just go briefly to a CMOT configuration

before the magnetic trap is turned on. The repump power is reduced from several mW

to 50 µW for the CMOT stage. We have two separate repump beams entering the

vapor cell. One beam is the main repump beam with several mW of power, and the

other, which we call the bypass beam, has only 50 µW of power. Using two shutters we

are able to have either full repump power or quickly reduce the power for the CMOT

stage. We also jump the detuning of the trapping laser 50 MHz red of resonance. This

frequency jump is accomplished by unlocking the laser, applying a voltage to the laser

piezo electric tuner (PZT) for the CMOT and optical pumping stages, and then after

the shutters are closed turning off the applied voltage and relocking the laser. We keep

the magnetic field gradient constant at the MOT value during the CMOT stage. The

entire CMOT stage lasts about 10 ms and is not very sensitive to changes in trapping
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laser detuning on the order of 10 MHz.

We can characterize the atom cloud in the CMOT using fluorescence imaging.

The position of the cloud in the CMOT may be very different from the position of the

cloud in the MOT or magnetic trap because of beam imbalances or misalignment. We

adjust the alignment and half-wave plates controlling the power in the beams to overlap

the position CMOT with that of the magnetic trap, using the same high magnetic field

gradient alignment technique used for the MOT/magnetic trap alignment. A large offset

of the centers will increase the temperature of the magnetically trapped cloud.

After the CMOT stage we optically pump the atoms into the lower hyperfine

ground state with arbitrary population in the magnetic sublevels. An atom excited to

the F′ = 3 state has about a 1 in 1000 chance of decaying to the F = 1; therefore the

atoms will be pumped into the F = 1 state in less than one ms if the repump light is

turned off. We trap only the mf = −1 Zeeman state in the magnetic trap. Naively one

might think that we trap only 1/3 of the atoms, surprisingly this is usually not the case.

We can, in certain circumstances, get over 50% of the atoms in the right Zeeman state,

depending on the MOT beam polarization. The population distribution in a MOT is

not an easily controlled parameter but can be adjusted with small random tweaks of

the MOT beams. We check to see that we are effectively pumping the atoms into the

F= 1 state by imaging the cloud with F= 2 → F’= 3 light. If the atoms fluoresce, they

have not been fully pumped into the F= 1 state, and the optical pumping time must

be increased.

Stage Trapping/Repump Detuning Magnetic gradient Time

MOT On/3 mW -2.5 Γ 8 G/cm ∼10 sec
CMOT On/50 µW -10Γ 8 G/cm 20 ms

Optical pumping On/Off -10Γ 8 G/cm 1 ms
Magnetic catch Off/Off — 100 G/cm 200 µs

Magnetic trap ramp Off/Off — 100→250 G/cm 500 ms

Table 2.2: Parameters for trapping and loading into a magnetic trap
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The atoms are now ready to be caught in the magnetic trap. As stated before

we do not slowly ramp the magnetic field from zero due to the effect of gravity; we

also do not want to turn on the magnetic trap at the highest gradient possible because

this will add an excess amount of energy to the cloud. Our procedure consists of

diabatically turning on the magnetic trap to a point where gravity has a minimal effect

and yet the magnetic trap adds as little potential energy as possible. This catch point

is determined empirically to be around 100 G/cm in the axial (vertical) direction. After

the initial catch we adiabatically ramp the magnetic field gradient to 250 G/cm in 0.5 s.

We optimize the transfer by imaging the atoms after they have been loaded into the

magnetic trap, since we ultimately care about the temperature and number of atoms in

the magnetic trap. We get 1-2×109 atoms at 250-400 µK in the fully compressed trap.

2.5.2 Fluorescence imaging

We need to image the atom cloud in the MOT cell for a variety of diagnostics,

such as loading efficiency into and temperature in the magnetic trap, transfer efficiency

to the science cell, and magnetic trap lifetime in different regions of the vacuum system.

For these diagnostics it is not important to measure the absolute temperature and

number of atoms in the trap but rather relative quantities. We use fluorescence imaging

because, although it is far inferior to absorption imaging, it is easy to setup and gives

us the information we require.

We optimize the transfer to the magnetic trap by imaging the cloud using fluores-

cence. We turn off the quadrupole trap, open the camera shutter, turn on the repump

beam, flash the MOT beams for less than 1 ms, and image the fluorescence from the

cloud onto a CCD camera. We image the atoms directly out of the magnetic trap with-

out any expansion. We can not take an image too soon after the MOT stage because the

fluorescence from the MOT will saturate the camera if the shutter is open. We therefore

must wait several ms for the large camera shutter to open after the MOT stage before
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we can take an image. The optical layout is shown in Fig. 2.10.

Camera

Objective lens

Top View
Side View

f= 50mmf= 100 mm

mirror

Camera

MOT
cell

Shutter

13 cm

5 cm

Figure 2.10: Top and side views of the optical layout for fluorescence imaging. The
objective lens is apertured with an iris to 10 mm in diameter, and the second lens is
30 mm in diameter.

We calculate temperature of the cloud using the fitting parameters from a Gaus-

sian fit. The cloud is not Gaussian in shape in a quadrupole trap. However, the cloud’s

profile is not far from Gaussian, and all we really want is a measure of the cloud that

is monotonic with respect to size and fluorescence intensity. The temperature T and

peak density n0 are

T =
2

5

µBgh

kb
B′

xσFWHM (2.5)

n0 = 1.27
N

σ3
FWHM

, (2.6)

where g is the Landé g factor, and σFWHM is the full width at half max size of the

cloud using the correct functional form of atoms in a spherical quadrupole trap. We

calibrate the number N using the photodiode. Unfortunately our cylindrical glass cell

causes some problems with imaging. The cell lenses the scattered light so that the size

of the cloud is distorted by about 25% in the vertical direction. We get the temperature

from the horizontal direction, on which the cylindrical cell has no effect.

Vignetting is such a common imaging systematic for fluorescence imaging that it

deserves to be elaborated on here [23]. Vignetting occurs in a multiple lens system when

imaging an extended object. It happens when there is more than one effective aperture
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in the system. A common example is when a ray of light that passes through the

objective lens does not make it through the second lens. The light that does not make

it to the second lens comes primarily from the edge of the object as seen in Fig. 2.11.

The decrease in imaged light from the edge of the cloud decreases the apparent size of

the cloud.

Light lost from system

Figure 2.11: Illustration of vignetting. Vignetting occurs when rays of light from the
edge of an extended object are removed from the imaging system by a second aperture,
in this case the second lens.

There are a few easy ways to check if an imaging system has vignetting issues.

One way to check for a problem is to reduce the size of the first lens by a factor of two in

diameter with an iris. This should decrease the total intensity of the image by a factor

of four without changing the apparent width if vignetting is not a problem. One can

also measure how close the system is to being affected by vignetting by reducing the

size of the second lens with an iris. The size of the image will remain the same until

the second lens begins to become an aperture in the system. There are several ways to

eliminate vignetting: replace the second lens with a larger diameter lens, aperture the

objective lens, or move the lens closer together.
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2.5.3 Transfer from vapor cell to UHV region

We use moving magnetic coils to transfer the atoms from the relatively high pres-

sure vapor cell to the UHV region, where we evaporativly cool to BEC. The quadrupole

coils are mounted on a linear stage that is driven by a servo motor and controlled by a

computer (Fig. 2.12). The maximum possible acceleration of the coils is about 1/3 g,

which is much less than the trapping force from the magnetic trap at 4 g; the atoms

are therefore not heated any detectable amount. Also we do not see any atom loss from

moving the atoms. We want to get the atoms out of the vapor cell as quickly as possible

because collisions with the background gas limit the lifetime to 5-15 s depending on

the Rb vapor pressure. However, we must slow down the coils as the trapped cloud

enters the fringing fields of the Ioffe-Pritchard trap in order to adiabatically compress

the cloud. We move the atoms out of the vapor cell, into the UHV region, and to

within 4 cm from the center of Ioffe-Pritchard trap in about 1 s. We decelerate to a

speed of 1 cm/s as the atoms enter the permanent magnetic region and are adiabatically

compressed.

We purchased a commercial servo-linear track to move the coils from one end of

the vacuum system to the other. The track itself is a table, mounted on a ground ball

screw, which can accommodate higher speeds and has less backlash than a traditional

lead screw. The servo motor in our system has reproducibility of 5 µm, which is mea-

sured by a rotary encoder in the motor housing. The encoder signal, although sent

through a shielded cable, is radiated from the encoder cable; typically we see 20 kHz

spikes of 3 µs duration coming from the cable. So far this radiation has not caused any

problems with other equipment or our ability to make a condensate.

The ability to move the atoms in the magnetic trap to different regions of the

vacuum system allows us to measure the background pressure and also to localize pos-

sible places where stray light impinges on the the system. We need long, background-
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Figure 2.12: Illustration of the motion of quadrupole trap coils.

gas-limited lifetimes in the UHV region to be able to efficiently evaporate and form a

condensate. We do not know the lower limit on the necessary lifetime, but we do know

that our 170 s lifetime is much more than sufficient. We measure the lifetime in the

magnetic trap by loading atoms into the quadrupole magnetic trap, moving the cloud

to the desired position in the vacuum system, waiting some time, moving the atoms

back to the MOT region, and imaging the cloud. We fit an exponential to the number

of atoms remaining as a function of time. The exponential time constant gives us the

lifetime in the trap.

There are two additional loss mechanisms that could reduce the lifetime in the

magnetic trap. One is resonant light impinging on the atoms; the other is Majorana

spin flips [24]. An atom absorbing a single photon has a large probability of falling back

to an untrapped state and thus being ejected from the trap. There are two schools of

thought on shielding laser light from the atoms in a magnetic trap. One is to place a box

around the lasers and frequency stabilization optics; the other is to enclose the vacuum

chamber and MOT optics. We choose to place a large (137 cm × 124 cm × 53 cm) box

made from an aluminum frame with opaque lucite panels around the large MOT optics

and vacuum system. This choice has the added benefit of also blocking room lights from
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the experiment and thus allowing the experiment to be run with the room lights on.

The other loss mechanism is due to Majorana spin flips. Majorana or diabatic

spin flips happen in a magnetic trap only when the trap has a zero of the magnetic

field. Atoms can undergo a spin flip if the time rate of change of the magnetic field is

greater than the Larmor frequency. In a quadrupole trap atoms which pass through an

ellipsoid near the center of the trap can be lost due to spin flips to a non-magnetically

trapped state. The lifetime associated with this loss rate is proportional to the square

of the size of the cloud and is given by

τ = αl2, (2.7)

where α is determined experimentally to be

α = 3.7(7) × 104 s

cm2
, (2.8)

and l is the radial half width half maximum of the cloud [24]. The loss rate due to spin

flips is much smaller than the loss rate from background gas collisions for the typical

cloud temperatures (200-400 µK) we have in the quadrupole trap.

2.5.4 Ioffe-Pritchard Magnetic Trap

We have a hybrid Ioffe-Pritchard trap (HIP trap) which contains both permanent

magnets and electromagnetic coils. Permanent magnets are useful because they produce

large magnetic field gradients with no power consumption. However permanent magnets

are sensitive to temperature fluctuations and thus can lead to instabilities if used to

produce a bias field for a magnetic trap. The bias field is the most important parameter

to stabilize because it determines the final evaporative cut and thus the temperature. In

our trap the two permanent magnets produce a quadrupole field in the radial direction

and no field along the axial or bias field direction.

The bias field and axial confinement are created by four electromagnetic coils.

The outer two coils produce essentially all of the axial curvature, and the inner two
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coils control the value of the bias field. Each pair of coils is run in series and con-

trolled independently by a bipolar power supply. The power supplies internally servo

the current to better than 1 part in 104 using an analog voltage set point supplied by

a computer-controlled digital-to-analog converter. We increase the long term stability

of our trap by continually running the operating current through our coils except for a

4 s period when the atoms are entering the HIP trapping region. The trap is therefore

always at the same temperature even if our experimental timing changes. If we run

operating current through the coils continually the coils reach a steady state tempera-

ture of 75◦ C. Although this temperature does not effect the operation of the magnetic

trap it does increase the temperature of the glass cell, which it surrounds. Raising the

temperature of the glass cell causes an undesirable increase in background pressure. We

use forced air cooling to reduce the temperature of the coils from 75◦ C to 35◦ C. We

have two air cooling ports fed by filtered compressed air as seen in Fig. 2.13. We do

not use a fan to cool the trap because it adds noise to our trapping fields.

Our trap has the advantages of tight radial confinement from permanent magnets

and also a stable bias field from well-servoed axial coils. Our trapping frequencies are

(230, 230, 7) Hz with a 3 G bias field. The radial frequencies can be adjusted by

changing the bias field. The radial frequency is

ν =
1

2π

√

µBmfgf

m

B′

√
B0

(2.9)

where µb is the Bohr magneton, gf is the Landé gfactor, m is the mass of Rb, B’ is the

field gradient, and B0 is the bias field.

The trap configuration is shown in Figs. 2.14 and 2.15. The permanent magnets

are 2” X 3/4” X 1/4” grade 35 Nd/Fe/B, which produce a gradient of 450 G/cm. Ini-

tially we used permanent magnets that produced a quadrupole gradient of 1200 G/cm.

This gradient gave us 700 Hz radial trap frequencies at a bias field of 3 G. We found

that having such tight confinement caused density dependent losses, which were so large
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Figure 2.13: Science cell region showing the magnetic trap holder. Two stainless-steel
endcaps on the ends of the Boron nitride form (white) are attached to a support structure
behind the coil form. The microwave waveguide is shown on the left side of the picture
directed towards the trapping region. Not shown is the objective lens on the back of
the coil form.

that the final evaporation stage was not efficient, presumably due to inelastic collisions,

and thus we produced smaller condensates with shorter lifetimes. With a sufficiently

large number of atoms trapped initially, a larger transverse quadrupole gradient is not

always better.

The outer(inner) coils are each 20(10) turns of 18 gauge magnet wire held in place

with thermally conductive epoxy. In the normal configuration we run 13 A through the

outer coils and 6.5 A through the inner coils. All of the trap components are mounted on

a form made from Boron nitride. This ceramic has a high thermal conductivity, similar
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Figure 2.14: Ioffe-Pritchard magnetic trap (end on view). The permanent magnets are
at a 450 angle with respect to the horizontal axis so as to provide a magnetic field in
the same direction as the magnetic field from the quadrupole trap used to transport the
atoms. Four permanent magnets, magnetized through the thin dimension, will also work
to provide a two dimensional quadrupole field with no field along the axial direction of
the trap. However, using just two magnets magnetized through the thin direction will
create a significant gradient along the axial direction of the trap.
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Figure 2.15: Ioffe-Pritchard magnetic trap (side view) showing the permanent magnet
and axial coil positions. Outer(inner) coils are each 20(10) turns of 18 gauge magnet
wire and provide the axial confinment/bias.

to Aluminum, so that the heat generated from the coils can be removed. It also has a low

coefficient of thermal expansion, smaller than stainless steel, which allows the position,

and thus the trapping field, to remain constant as the trap holder changes temperature.
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Boron nitride also allows microwaves through without attenuation for frequencies below

10 GHz. Being transparent to microwaves is important for our imaging procedure, in

which we make transitions between hyperfine ground states, and for assorted scientific

goals. Boron nitride has the consistency of a hard chalk but can be machined into simple

shapes (Fig. 2.16).
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Figure 2.16: Machine drawing of the Boron-nitride HIP-trap form.(all units in mm)

We choose to use a HIP trap in the experiment because of its great stability, but

it is obviously not the only solution. A fully electromagnetic trap, such as the TOP

trap would also work [24]. The main requirement for a trap is for it to have around

450 G/cm quadrupole gradient, which is not hard to achieve with electromagnetic coils

close to the 1 cm diameter cell. The quadrupole gradient must be large to have an

acceptable initial collision rate of at least a few Hz to begin evaporation. Initially the

cloud is not in the harmonic region of the trap and is mostly confined by the quadrupole

gradient. Therefore the quadrupole gradient defines the initial collision rate. A cloud
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is in the harmonic region of the trap when the mean energy is less than one “bias field

in energy”, µBgfBbias, above the bottom of the trap; for a 3 G bias field a cloud is in

the harmonic region when its temperature is below 30µK.

2.5.5 Transfer between magnetic traps

We optimize the transfer between traps by transferring the atoms from the

quadrupole trap to the HIP trap and back again. We then move the atoms back down

to the MOT region and image them using fluorescence. We do this procedure instead of

imaging in the HIP trap because we can not obtain accurate values for the temperature

and number of hot clouds in the HIP trap. One reason it is nearly impossible to image

in the HIP trap is that the cloud is too large in the axial direction for the image to fit

on the CCD. Secondly there is a large magnetic-field-induced detuning across the radial

direction of the cloud from the permanent magnetic field. Lastly the cloud’s optical

depth is large in the magnetic trap, which leads to systematics in determining the

number. The cloud’s temperature and number measured in the MOT cell after being

brought back from the HIP trap are not a completely accurate representation of the

parameters that existed in the HIP trap, but the comparisons are at least monotonic.

Transferring atoms between a quadrupole trap and an Ioffe-Pritchard trap can

not be done completely adiabatically due to the relative directions of the magnetic fields

in each trap. If the transfer is done correctly however, one can limit loss in phase space

density to a factor of two to four during transfer. We start by slowly ramping down

the quadrupole gradient (∼ 500 ms) to a point where the cloud is approximately mode-

matched in the axial direction; for our trap this corresponds to a gradient of 100 G/cm.

Next we turn on the HIP axial coils discontinuously and turn off the quadrupole coils.

We find that the timing of the traps turning on and off is not critical to within 10 ms.

After the quadrupole trap is off, we quickly move the coils down to the MOT region in

preparation for the next run.
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2.6 Rf evaporation

Now that we have atoms in the HIP trap we can evaporatively cool them to

degeneracy. The basic idea of evaporation is to remove atoms with more than the

average energy of the cloud and allow the ensemble to equilibrate to a lower temperature

through collisions [10]. We need an adequate elastic collision rate to have the sample

reequilibrate before there is a large loss of atom number or a large increase in energy of

the sample from inelastic collisions. The elastic collision rate is

γ = n(8πa2)vrel, (2.10)

where the peak density for atoms in a quadrupole trap is

n =
0.633 N

σxσyσz
, (2.11)

and the peak density in a harmonic trap is

n =
1

(2π)3/2

N

σxσyσz
. (2.12)

The relative velocity is

vrel =

√

16kbT

3πmRb
, (2.13)

where N is the number of atoms, a is the s-wave scattering length, σi is the full width

at half max of the cloud in the i dimension, and T is the temperature of the cloud.

There are three types of inelastic collisions we have to be concerned with during

evaporation: one-, two- and three-body processes. One-body loss from collisions with

background gas atoms will cause essentially only number loss and does not induce

heating, because all atoms in the trap have about the same probability of removal.

During the initial stages of evaporation one-body loss is the dominant factor because

the density is low, inhibiting density-dependent collisions. As the density increases

two- and three-body process become important. Two-body processes are significantly

suppressed with a spin-polarized gas in the maximum angular momentum state of a
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ground hyperfine state. Due to angular momentum conservation two atoms can not

collide and spin flip to a different Zeeman level in the lower hyperfine state. The only

way for atoms to change their spin is for one of the atoms to be excited to the upper

hyperfine state, which requires 6.8 GHz of energy. An upper bound on the rate constant

has been determined experimentally to be 1.6 × 10−16cm3/s [25]. Two-body loss is

seldom an issue for 87Rb in the lower hyperfine state. Three-body loss happens when

three atoms collide, two forming a molecule, and the other taking away the residual

angular momentum. Three-body processes are proportional to density squared; the

three-body rate constant has been measured to be 4.31(1.8) × 10−29cm6/s for 87Rb

atoms [25] in the |F = 1,mf = −1〉 state, and becomes a concern when the density

approaches 1013cm−3. The three-body process not only causes atom loss but also heating

because atoms are preferentially lost from the highest density region of the cloud, which

corresponds to the atoms with the least energy in a magnetic trap. We call this processes

anti-evaporation. A good rule of thumb for efficient evaporation is to have the ratio of

elastic to inelastic collisions be ∼ 100. We define runaway evaporation as the situation

where the collision rate increases as the cloud cools. Inelastic collisions always increase

as the density increases, so without runaway evaporation one will reach a point where

the elastic to inelastic collision ratio will drop below 100.

Our evaporation consists of applying rf radiation to the atoms to spin flip them

to an anti-trapped state. The spin flipping is done in an energy dependent manner by

taking advantage of the Zeeman shift from the magnetic trap. High energy atoms spend

more of their time in high magnetic fields near the edge of the cloud compared to the

low energy atoms, and thus the high energy atoms have a larger Zeeman energy splitting

between magnetic sublevels. We can tune the rf to be resonant with the Zeeman energy

splitting for atoms with the most energy, removing them from the trap. We continue

to lower the rf, removing lower and lower energy atoms, all the time approximately

maintaining thermal equilibrium. We want to remove the same fraction of energy from
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the cloud for each evaporation frequency step if the collision rate is constant. This

condition corresponds to an exponentially decreasing frequency ramp. As the collision

rate changes so will the optimum exponential time constant. The functional form we

use is

ν(t) = (νstart − νo)e
−t/τ + νo, (2.14)

where νstart is the frequency where we begin evaporating, νo is the frequency corre-

sponding to the bottom of the trap, and τ is the exponential time constant of the ramp.

The time constant is set by the collision rate and loss rate.

2.6.1 Evaporation optimization

We need several stages of evaporation, each with different parameters. Through-

out evaporation both the elastic and inelastic collision rates change as well as the rf

coupling to the atoms, thus we must adjust the evaporation time constant and the rf

power for each stage. We decrease both the time constant, due to the increased collision

rate, and the rf power delivered to the atoms, to avoid power broadening effects, as the

atoms cool.

Power broadening of the rf knife will cause the evaporation to lose energy selectiv-

ity as the width of the knife becomes comparable to the temperature of the cloud. For

the initial stages of evaporation we need more power to have the same large probability

that an atom will spin flip as when the cloud is cold, because the atoms initially have

a larger velocity. The probability of being ejected from the trap scales as

[1-exp(-rf power/velocity)]. As the cloud approaches zero temperature one must be

very careful about not applying too much rf power. Another concern with setting the rf

power is coil or amplifier resonances. The rf coil may have a self-resonant frequency in

the frequency range spanned by the evaporation. An easy way to check for resonances

is measure the rf power delivered to the atoms using a small pick-up coil placed near

the the evaporation coil. The rf power from the synthesizer may have to be drastically
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reduced near a resonance to avoid power broadening.

We break up the evaporation into enough stages so that we decrease the temper-

ature by a factor of two or three with each stage; this criterion sets the start and stop

frequency for each stage, points A-E in Fig. 2.17. We start with a time constant of 5 s.

In general the time constant of the evaporation ramp should be about a factor

10-20 greater than 1/collision rate. We do not actually ramp continuously the frequency

of the rf for the initial stages but instead have discrete steps sent to the synthesizer

through GPIB. Typically a single GPIB command will take between 30-50 ms to be

received and executed; therefore we send a new frequency command every 50 ms. The

discrete nature of the frequency ramp is not a problem for the initial stages when each

step is small compared to the temperature of the cloud, but is a problem in the last

stage of evaporation. For the last stage we sometimes use a programmable frequency

synthesizer, which can ramp the evaporation frequency phase continuously. The extra

synthesizer is not necessary but will produce larger condensates.

We want to optimize collision rate for each stage of the evaporation. If we image

the cloud right after the stage we are optimizing the cloud may not be in equilibrium

due to a too-rapid cut and appear to have an anomalously large collision rate. Imaging

a cloud out of equilibrium can systematically misrepresent the collision rate. However if

we add an additional evaporation stage before imaging, we can circumvent this problem.

The second stage will not be as efficient if the cloud is out of equilibrium, and thus the

cloud will have less number after the second stage.

Optimizing the initial stages of evaporation in our trap is difficult because of

our inability to image hot clouds. As stated before, we can not obtain an accurate

temperature or number of atoms in our cloud when the temperature is above 1µK

because of the magnetic field gradients. However, we have created an optimization

procedure for the first stages of evaporation that is acceptable. We start with two

stages as seen in Fig. 2.17. The parameters of the first stage, segment A-B, are varied,
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and the second stage, segment B-C, parameters are kept constant. We image the cloud

at point C and maximize the peak OD by changing the parameters for segment A-B.

Even with imperfect imaging, the peak OD measured after ramp B-C is monotonic in

the true equilibrated collision rate produced by ramp A-B. Next we add a stage C-D

and optimize segment B-C and so on. It is important to iteratively adjust the time

constant and rf power because they are coupled. Luckily the initial evaporation is not

very sensitive to the parameters of the cut so this procedure works well.
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Figure 2.17: Sample evaporation trajectory with four segments shown. We typically use
8 segments, each providing a factor of 2-3 decrease in (ν − ν0)

The final stages of evaporation are more critical than the first stages. However

for the last stages we can accurately determine the temperature and density of the

cloud. The procedure for extracting these numbers from the images will be discussed in

Section 2.8. Except when optimizing the very last stage, we characterize a given stage

by optimizing number in the cloud after an additional stage. It is easy to walk the

parameters in the wrong direction, especially with the final stage; one tends to have too

short a time constant and too much rf power. We reduce the rf power 15 db from the

first to the last stage. Generally we can change the rf power by 5-10 db in the upper

stages and 3 db in the later stages without observing a significant change in evaporation
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efficiency. When optimizing the last few stages it is also important to remeasure the

trap bottom ν0, which can be more accurately determined now that one has a cold

cloud.

2.6.2 rf coil

We use a simple single-loop coil to deliver rf to the atoms for evaporation. We

typically evaporate from 40→2 MHz. The large range of frequencies we use restricts us

from impedance matching the coil to gain better coupling. Because we are in the near-

field limit of the radiation for all evaporation frequencies, one can think of the rf as just

an oscillating magnetic field. Only the component of the magnetic field produced by the

coil perpendicular to the atoms’ quantization field will cause transitions between the

Zeeman states. Therefore we place the coil directly outside the glass cell with the axis

of the loop perpendicular to the bias field to maximize the coupling to the atoms when

they are cold. Hot clouds will have atoms in the quadrupole field with quantization axes

in every direction, and there will be small regions in the cloud that are not be affected

by the rf. This does not appear to pose a serious problem, however. The coil must not

be placed closer than one radius to any electrically conductive object; the conductive

object will reduce the flux return path and thus the magnetic field produced. The size

of our loop is about 1 cm in diameter, made from 18 gauge magnet wire. We want to

minimize the enclosed area of the loop that is not near the atoms to maximize the field

at the atoms, so the loop is soldered directly to a RG 175 cable, which is powered by a

5 Watt rf amplifier.

2.7 Absorption imaging

We image clouds in the HIP trap using laser absorption. We illuminate the cloud

with resonant light, atoms scatter photons out of the beam, and we focus the shadow

cast by the atoms onto a charge coupled device (CCD) array. The amount of light
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absorbed gives the column optical density (OD) at a particular position in the cloud,

which can be used to calculate the number and temperature of the sample. Optical

density is defined by Beer’s law and is given by

I = Ioe
−OD, (2.15)

where I is the intensity impinging on the camera and I 0 is the initial intensity of the

beam.

2.7.1 Optical set up

The imaging optics are shown in Fig. 2.18. We use a probe beam that has been

filtered spatially by a single mode fiber. The probe beam is expanded to a diameter of

1 cm so that the intensity across a 100 µm condensate is nearly constant. The light first

passes through a polarizer and then through a λ/2 plate so that we can adjust the angle

of the linear polarization. We place a 4 mm2 aperture made from electrical tape on the

magnetic trap form to eliminate excess light that could scatter onto the camera from

defects in the glass cell. The shadow of the atoms is focused onto the camera with two

lenses. We use, as the objective, a 1 cm diameter gradient index singlet lens, which is

a diffraction limited optic. The objective lens is mounted directly on the trap coil form

to collect the largest possible solid angle. We use a 30 mm diameter achromat doublet

as the second lens. We use an achromat, not for its reduction in chromatic aberrations,

but for its low spherical abberations when oriented correctly. Our CCD camera, which

is no longer commercially available, is a front illuminated CCD array with pixels 9 µm

on a side. The entire array is 720 X 560 pixels and has 16 bit resolution. The quantum

efficiency at 780 nm is around 35%.
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Figure 2.18: Optical system for absorption imaging. Light from a single mode fiber is
put through a polarizing beamsplitting cube (PBS) and a half waveplate to adjust the
polarization. After the light passes through the cloud, the image is focused onto a CCD
camera by two lenses.

2.7.2 Imaging in a non-uniform magnetic field

Imaging atoms in a strong quadrupole magnetic field presents many problems.

Our goals are to i) expand the cloud above the resolution limit of our imaging system, ii)

image through the radial direction so we can observe dynamics along the axial direction,

and iii) extract useful parameters from the image without systematic effects. These goals

are difficult to obtain, because first we can not turn off the quadrupole field created

by the permanent magnets and allow the cloud to ballistically expand as is usually

done. Second imaging in the radial direction causes the bias (quantization) axis to be

perpendicular to the propagation direction of the probe beam, and thus does not allow

us to drive purely σ+ or σ− transitions, which is desirable because it would give us a

cycling transition and thus a large signal-to-noise ratio. The last obstacle to overcome

is the magnetic field gradient, which causes a spatially varying energy shift due to the

Zeeman effect. Therefore, we can not apply light which is resonant with the entire cloud.

The spatially varying detuning causes the image to have systematically the wrong width

and intensity.

We have found ways to reduce or eliminate all of our imaging problems. We

expand the cloud by transferring the atoms to an anti-trapped state and allowing them
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Figure 2.19: Possible transitions with different probe beam polarizations

to fall off of the potential created by the magnetic trap. We use a microwave adiabatic

rapid passage (ARP) to transfer coherently the atoms from the |1,−1〉 to the |2,−2〉

state [26]. ARP is best described in the dressed state picture, which is discussed in

Chapter 6.

To ARP the atoms from one bare state to another we turn on a coupling field

far off resonance, ramp the frequency slowly, compared to the Rabi frequency, through

resonance, and then turn off the field. This will coherently transfer the atoms between

the two bare states.

The other problem to solve is the incorrect imaging polarization. We would like

to drive a cycling transition from the |2,−2〉 to the |3′,−3〉 state. If we choose our probe

beam polarization linear and perpendicular to the bias field we can drive not only the

desired transition but also the |2,−2〉 → |3′,−1〉 transition, which is obviously not a

cycling transition. However we image in 100 G bias field which breaks the degeneracy

of these two transitions by 31 linewidths and allows us to have a cycling transition. Ta-

ble 2.19 lists the possible transitions for the different probe beam propagation directions
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and polarizations.

Naively one might expect that at maximum only half of the light could be ab-

sorbed, because we think of linear light as an equal amount of σ+ and σ− light. However

in the atoms’ frame these two polarizations are not the correct basis and are actually

coupled. Absorption of this type is typically know as the Voight effect. In fact all

of the light can be absorbed by the atoms, and the only effect of the direction of the

polarization is a reduction in the line strength by a factor of two.

Lastly, we reduce the Zeeman detuning across the cloud by increasing our bias

field to 100 G; this is easily accomplished by reversing the current in the inner coils.

The gradient adds in quadrature with the bias field thus reducing the spatial variation

of the magnetic field from 2.4 G to 0.1 G for a typical expanded radial cloud radius of

100 µm. The residual variation in magnetic field across the cloud changes the imaging

detuning by 140 kHz, which is much less than a natural linewidth.

2.7.3 Producing and controlling microwaves

We use microwaves for manipulating the state of the atoms during our imaging

procedure as well as during our spectroscopic measurements. We use two different

systems to produce microwaves. One system is a commercial microwave synthesizer,

which, although flexible and easy to use, has a frequency stability of only 5 ×10−12 in

a second. This stability is acceptable for ARP during our imaging procedure, but not

quite for long interrogation times during Ramsey spectroscopy. The other system we use

to produce microwave frequencies is a home-assembled frequency chain as diagramed in

Fig. 2.20. This frequency chain has frequency stability better than 10−12 in a second.

Our frequency chain begins with a reference signal from a global positioning

system (GPS) disciplined oscillator. This device provides only long-term frequency

accuracy and stability, where long term refers to a time scale on the order of hours. The

GPS-referenced oscillator removes long-term drift of a Wenzel 10 MHz phase-locked
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Figure 2.20: Microwave frequency chain showing all of the components we use to pro-
duces variable frequency microwaves at 6.8 GHz. The solid arrows indicate transmission
of 10 MHz signals. See text for further description.

oscillator (PLO), via an external, slow-response phase-locked loop (PLL), which has

a bandwidth of about 1 s. The Wenzel 10 MHz signal is split, with one portion sent

to a Wenzel 100 MHz PLO and the other portion sent to another splitter. We use the

signals from the second splitter to phase lock other rf devices in the experiment. We gain

short term frequency stability from the 10 MHz PLO and mid-range frequency stability

from the 100 MHz PLO. The cross-over region between the two PLOs is around 5 kHz.

The 100 MHz signal is multiplied up to 6.80 GHz and phase-locked to a 6.8 GHz crystal

oscillator by a Microlambda device. We require the ability to adjust the frequency of the
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microwaves, so we mix adjustable-frequency rf and the 6.80 GHz signal with a single

sideband mixer (image reject mixer). We use a single- instead of a double-sideband

mixer because it does not produce significant power in the unwanted sideband; thus it

allows greater power output of the desired sideband by the amplifier. The microwave

signal is then amplified by a 6.4 Watt solid state amplifier. We place a circulator on

the output of the amplifier to reduce reflected power coming back to the amplifier. Also

for diagnostic purposes, we place a directional coupler after the circulator, such that

the directional coupler splits off a small amount of the reflected power and sends it to a

square-law detector. The square-law detector produces a dc signal proportional to the

microwave power.

The microwaves are transmitted to the atoms by a sawed-off waveguide, which

is placed near the HIP trap, directed along the axis of the trap. We use low-loss semi-

flexible microwave cables to transfer the microwaves from the amplifier to the waveguide

to maximize the power delivered to the atoms.

2.7.4 Imaging procedure

We start the imaging procedure with the atoms in the |1,−1〉 state. We ARP

the atoms to the |2,−2〉 using microwaves. The microwave field must be swept phase

continuously for atoms to remain in one dressed state. The easiest way to have a

phase-continuous sweep is to hold the microwave frequency constant and ramp the bias

magnetic field. We typically start about 1 MHz away from resonance and sweep through

in 0.3 ms; our Rabi frequency is around 100 kHz. Next we jump the bias field to 48 G,

and wait for the anti-trapped atoms to expand. If we expanded in our normal 3 G

bias field trap the atoms would expand too rapidly into the anharmonic the region of

the trap, thus making it difficult to calculate the effect of this expansion. If we jump

directly to a 100 G bias field, the atoms would expand too slowly and fall under gravity,

once again into the anharmonic region of the trap. The intermediate field keeps the



53
Time (ms) Event

0 Camera triggered, probe beam shutter open
9 Centering coil on
10 Microwave on, bias field ramp for ARP started

10.3 bias ramp stopped, microwave off
10.3 Bias field jumped to 48 G for expansion

10.3 + Expansion time Bias field jumped to 100 G for imaging
10.4 + Expansion time Probe beam AOM on

10.402 + Expansion time Probe beam AOM off
20 Probe beam shutter closed

Table 2.3: Image timing

atoms in the harmonic region of the trap during the entire expansion. The atoms are

also slightly sagged in the trap due to gravity, so when they begin to expand they are

sitting on the side of the potential, which induces some asymmetry to the expansion.

We correct for this sag by applying a small magnetic field to shift the center of the trap

to the center of the cloud just before the expansion. We find the correct magnitude of

the centering field by imaging the cloud after long expansion times and adjusting the

added field until the cloud remains in the same position in the vertical direction.

After the cloud has expanded the desired amount, we jump the bias field to 100 G

and flash the probe beam for 20 µs. We use a short 20 µs pulse for two reasons. First we

do not want the atoms to be excited to the to the |3′,−1〉 state and fall back to a dark

state. We are only 200 MHz detuned from the |2,−2〉 → |3′,−1〉 transition and therefore

will drive transitions to this state, although with a very low probability. Second if the

atoms in the cloud scatter many photons they will pick up enough momentum to move

along the direction of the probe beam; this motion could blur the image or cause the

atoms’ transition frequency to change as they experience a different magnitude of the

magnetic field.

We take two additional pictures for normalization purposes. One picture is taken

with the probe beam on but with no atoms present Ilight; this gives our light image

which we use to calculate percent absorption. We also take a third picture with the
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probe beam off and the camera shutter open Idark. This image will give a calibration of

any stray light that does not come from the probe beam as well as camera dark current.

We calculate the optical density of each pixel, which is given by

ODmeas = ln

(

Ilight − Idark

Iatoms − Idark

)

. (2.16)

There are two common systematics that should be addressed with any absorption

imaging system. One is the effect of a maximum observable optical density. Any light

collected by the camera that can not be absorbed by the atoms will reduce the observed

OD. Two usual culprits are off-resonant light and probe-beam light that does not pass

though the cloud. A good way to check how much of the probe beam is far off resonant

is to send the probe beam through a heated Rb vapor cell and measure the percent

absorbed. Some diodes have a broad pedestal of light that is not in the main frequency

mode of the laser and thus can cause a reduction in the observed OD. The second reason

for a low maximum observable OD is probe light which is reflected off of objects and

is indirectly scattered onto the CCD. We place a small aperture in front of the cell to

reduce scattering light from the cell onto the CCD. We observe a maximum OD (ODsat)

around 2.8, even for clouds for which the actual OD is much greater. This ODsat value

is acceptable, but we must correct for it in our analysis of the image. The modified OD,

taking out the effect of OD saturation, is

ODmod = ln
1 − e−ODsat

e−ODmeas − e−ODsat

. (2.17)

We measure the maximum observable OD by creating a large cloud and expanding

it for 1 ms. The center of the cloud will have a flat top where the OD is saturated

at the maximum value. If the correction factor between ODmeas and ODmod is too

large, the potential for error increases. We increase the expansion of the cloud until

ODmeas <ODsat/2.

The other systematic with absorption imaging is the effect of probe beam intensity
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saturation. The actual OD is

ODactual = ODmod + (1 − e−ODmod)
I

Isat
, (2.18)

where I is the intensity of the probe at the position of the cloud and Isat is 1.6 mW/cm2

for Rb on a cycling transition. Isat is increased by a factor of two for our case because the

line strength is reduced for our imaging polarization. We like to minimize the correction

factor, so we work at less than 1/10 of saturation intensity.

The resonant frequency for the imaging transition can be calculated easily because

both the initial and final states are maximum angular momentum states. F and mf are

therefore always good quantum numbers, and the frequency splitting between the two

state is ∆ν = µBB. We confirm we are on resonance by taking a transition lineshape,

which involves producing identical clouds, and probing them with different frequencies.

We change the frequency of the first probe AOM and measure the peak optical depth.

The resulting curve should be a Lorentzian with the natural linewidth, Γ. Measuring the

natural linewidth with the expected center implies that many parameters are correct in

the imaging system, including narrow laser linewidth, accurate calibration of magnetic

fields, probe beam well below saturation, and correct control of probe frequency.

The lineshape can also be a useful diagnostic for probe laser frequency noise.

Frequently the probe laser frequency may be affected by shutter-induced vibrations or

current transients right before imaging. Therefore it is important to measure the noise

on the laser during the imaging pulse. One can find the shot-to-shot standard deviation

of the number of atoms imaged while the probe is tuned on resonance and contrast

with that of a half linewidth off resonance. Comparing the two measurements rejects

uncorrelated atom number fluctuations. A significant increase in shot-to-shot noise

when the laser is tuned a half linewidth off resonance indicates probe laser frequency or

magnetic field noise.
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Figure 2.21: Energy level diagram showing imaging transitions in a 100 G magnetic
field. The microwave ARP transition and optical imaging transition are shown with
solid arrows.

2.7.5 Focusing the image

We focus the image onto the CCD camera by imaging a small cloud that has

not expanded much. Before we focus the image we first take a lineshape to ensure

we are on resonance. Imaging on resonance will minimize the cloud lensing the light,

which leads to incorrectly focusing of the image. We also use a cloud with a peak OD

of less than one to reduce effects of lensing. Once we have tuned the probe laser to

the resonant frequency of the atomic transition, we adjust the position of the camera

along imaging axis. The focus of the image will be at the minimum cloud width. We

focus the image by measuring the width in the radial direction, which is not necessarily

the focus in the axial direction of the cloud because of the astigmatism induced by the
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cylindrical cell. If the cloud is exactly in the center of the glass cell the image would not

be astigmatic because all the rays of light hit perpendicular to the glass and therefore

are not refracted.

2.7.6 Measuring the image magnification

We measure the magnification of our imaging system by watching a cloud fall

under the influence of gravity. We start with atoms in the |1,−1〉 state and perform an

ARP to place them in the |2, 0〉 state, which is affected only slightly by the magnetic

field gradient. We allow the atoms to fall for a varying time and measure their resulting

position. A cloud’s position as a function of time including the small acceleration due

to the second order Zeeman shift is

z(t) = −
(

a

c

)

(cos
√
ct− 1) + z0, (2.19)

where a is the acceleration due to gravity in pixels/ms2, z0 is the cloud’s initial position,

and c is

c =

(

4πh̄

mRb

)

f B′2, (2.20)

where f is the second order Zeeman shift of 287.57 Hz/G2, and B ’ is the magnetic field

gradient. Fitting the position vs. drop time data will give a value for a, which can be

used to find the magnification M, where M is given by

M =
9.81µm/ms√

2 a
. (2.21)

The factor of
√

2 is included because our imaging axis is at 45o with respect to gravity.

2.8 Image analysis

2.8.1 Image processing

After the three images have been downloaded to the computer we apply some

image processing before fitting the images. We first calculate a measured OD for each
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pixel using Eqn. 2.16. Occasionally we will get pixels that have anomalously high or low

values due to noise or readout error. We remove these pixels by systematically going

through the image array comparing nearest neighbor pixels. If there is a difference of 6,

in units of OD, or greater the pixel is replaced by the average of the eight adjacent pixels.

We perform the same procedure a second time, this time using a difference threshold

of 0.8. After the spikes are removed, we apply corrections for saturation effects using

Eqns. 2.17 and 2.18. Finally, depending on the size of the cloud, we bin the array. For

most condensate images we use 2 X 2 binning, making a modest sacrifice in resolution

in order to reduce calculation time during the fitting routine.

2.8.2 Image fitting

We use three different fitting routines depending on the degeneracy of the cloud

[15]. For clouds above the condensation temperature we fit the image to a 2-D Gaussian.

Clouds at finite temperature but with a condensate present we fit to a modified Gaussian

plus a Thomas-Fermi distribution. In some cases, where the cloud has no detectable

thermal fraction, we just use a Thomas-Fermi distribution.

Thermal clouds are fit using a standard 2-D Gaussian function which is

zGauss = |PeakOD| exp

(

−1

2

(x− cx)2

s2x
− 1

2

(y − cy)
2

s2y

)

, (2.22)

where the adjustable parameters are cx, cy, the cloud centers in both directions, sx, sy,

the Gaussian widths in both directions, and the peak OD. The fitting is done using a

Matlab script called from inside LabVIEW.

We use a slightly more complicated procedure to fit clouds that have both a

condensate and thermal cloud present. The condensate portion of the image can be fit

to a Thomas-Fermi profile, which is parabola integrated in one dimension. The thermal

cloud is no longer an ordinary Gaussian when it is degenerate but is modified by Bose

statistics. We first use only the pixels that have an OD from ODpeak to 70% ODpeak for
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a fit to a Thomas-fermi profile given by

fTF = |TFpeakOD|MAX









1 −
(

x− cx
sTFx

)2

−
(

y − cy
sTFy

)2




3/2

, 0






, (2.23)

where sTFx, sTFy are the radii of the profile in each direction.

The Thomas-Fermi fit curve is subtracted from the image and the resulting image

is fit to the modified Gaussian given by

fmodGauss =
g 3

2

(fGauss)

g 3

2

(1)
, (2.24)

where g 3

2

is

g 3

2

(z) = z +
z2

23/2
+

z3

33/2
+

z4

43/2
+

z5

53/2
+

z6

63/2
+

z7

73/2
+

z8

83/2
+

z9

93/2
+

z10

103/2
... (2.25)

We use just the first 11 terms of g 3

2

in the fitting procedure. We also impose a constraint

on the Gaussian fit to have the same center as the Thomas-Fermi fit.

2.8.3 Calculating cloud parameters

Once we fit the image and extract the fitting parameters we can calculate the

properties of the cloud. The first step is to calculate the size of the cloud in the

magnetic trap based on our anti-trapped expansion. The Boltzmann equation for the

equilibrium distribution function F, which describes the anti-trapped expansion, is

LF (x, v, t) = 0, (2.26)

where F and L are given by

F (x, v, t) =
N m3

Rbλ
6
dB|ω|

h6
exp(− mRb

2kBT
(−→v 2 + ω2−→x 2)) (2.27)

L =
δ

δt
+ −→v · ∇−→x − (−→ω 2−→x ) · ∇−→v , (2.28)
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and the matrix of the trap frequencies is

w =

















ωx 0 0

0 ωy 0

0 0 ωz

















. (2.29)

The solution to the Boltzmann equation, for each dimension of the cloud, is given

by

σ(t = 0) =
σmeas ω

√

ω2 + (ω2 + ω2
0) sinh

2(ωt)
, (2.30)

where σmeas is the cloud size after expansion, ω is the harmonic trap frequency during

the expansion, ω0 is the original trapping frequency, and t is the expansion time. This

treatment assumes that the initial position and velocity are uncorrelated and that the

mean-field does not contribute significantly to the expansion. The mean-field contribu-

tion to the expansion is negligible in the axial direction, from which we calculate all size

dependent parameters.

The expansion is dominated by the anti-trapping potential and not the mean field,

so the expansion is essentially the same for the condensate and the normal component.

We calculate the temperature of the cloud from the axial width because there is very

little expansion in this direction, and the frequency of the potential does not change

much during the expansion.

The following equations allow one to calculate the useful properties of normal

clouds and condensates. The absorption cross-section A, is

A = (branching ratio)

(

3λ2

2π

)

× 1

1 + 4∆2

Γ2

(2.31)

where λ is the wavelength of the transition, ∆ is the detuning from resonance, and Γ is

the natural linewidth. The number, temperature, peak number density, collision rate,

relative velocity and phase space density of a normal cloud are respectively

Nnormal = 4.88512 ODpeak sradial saxial A (2.32)
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T =
mRb

kB
(ωaxial saxial)

2 (2.33)

nnormal =
1

(2 π)3/2

N a.r.2

s3axial

(2.34)

C.R.peak = n (8πa2) v (2.35)

v =

√

16 kB T

3 π mRb
(2.36)

PSD = n

(

h√
2πmRbkBT

)3

, (2.37)

where sradial/axial is the Gaussian size as defined in Eqn. 2.22, ωi is the trap frequency

in the i dimension, a.r. is the aspect ratio of the trap (a.r.= ωaxial

ωradial
), and a is the

s-wave scattering length. The number, peak number density, and chemical potential of

a condensate are given respectively by the following

NBEC =
2π

5
ODpeak sTFaxial sTFradial A (2.38)

nBEC =

(

15

8π

)

NBECa.r.
2

s3axial

(2.39)

µBEC =
1

2
h̄ωho

(

15NBEC a

aho

)2/5

. (2.40)

The harmonic oscillator length is

aho =

√

h̄

mRb ωho
, (2.41)

and the harmonic oscillator frequency is

ωho = (ωaxial ω
2
radial)

1/3, (2.42)

where sTFradial/axial is defined in Eqn. 2.23.
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2.9 Computer control

We use two computers to run our experiment; one computer controls all of the

timing, digital, analog, and GPIB commands, while the other is dedicated to running

the camera. To initiate an image acquisition, the control computer externally triggers

the camera, which in turn triggers the camera computer. It is useful to allocate these

tasks to different computers so that the camera computer can analyze the data from the

previous shot while the control computer moves on to the next shot. The preliminary

analysis of each shot, which includes calculating cloud parameters, is completed in real

time, greatly increasing the amount of data that can be compiled and digested in a day.

Control Computer

DIO-128
digital outputs
(timing clock) GPIB

analog output
board

analog input

DAC 2

DAC 1

Inner coil
power supply

(Kepco)

Outer coil
power supply

(Kepco)

Shutters,
Switches,

etc.

MOT
Photodiode

MOT coil
servo

MOPA laser
servo

rf sysnthesizer

Camera Computer

Camera
boardCamera

trigger

Fitting and
analysis

Figure 2.22: Computer control diagram showing the different computer boards and
what they control.

A Bose-Einstein condensation experiment requires precise temporal control of
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a variety of components. Most functions require timing resolution on the ms scale,

but for certain key tasks, such as imaging, expansion, and microwave spectroscopy, we

need timing on the microsecond scale. There are several basic types of outputs and

inputs our control system needs to handle. We need TTL, analog, serial, and GPIB

outputs. Most of the experiment is controlled by digital outputs, which control items

such as shutters and switches. Our magnetic coils, both quadrupole and HIP trap,

have servos that require analog voltage set points. The servo motor driving the track

is controlled via a serial connection. We also have several instruments including rf and

microwave synthesizers that use GPIB as the main mode of communication. Our only

input port, excluding the camera, is an analog voltage from a photodiode that monitors

the fluorescence from the atoms in the MOT. This input is fed into a multipurpose

analog input board produced by National Instruments.

We have come up with a complete timing system that includes all the different

I/Os. The programming software we chose is LabVIEW; it is a well known and easy

to use software package. LabVIEW does have some limitations because it runs in a

Windows environment. LabVIEW timing can vary by up to 10 ms shot-to-shot, because

the operating system can interrupt the program at any time. Therefore we need another

source to handle our precise timing. LabVIEW can still handle our imprecise events,

such as GPIB commands, quadrupole coils current ramps, and track motion. Four

computer boards and two external digital-to-analog converters (DACs) make up the

control hardware.

We use a DIO-128 board produced by Viewpoint USA as the main clock in our

system. It has 64 digital inputs and outputs and an internal oscillator that has 500 ns

resolution [27]. We load an array of time stamps and port levels, which is the state

(hi/low) of each digital port at each time stamp, into the first-in-first-out buffer on

the board via LabVIEW. The buffer can hold up to 16000 words. When we want the

timing sequence to start we send a trigger to the DIO-128 from within LabVIEW. From
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that point on until the buffer is cleared, the board no longer communicates with the

computer and thus is not susceptible to operating system interrupts.

We have two different methods to produce the analog output voltages required in

the experiment. One way we produce an analog voltage is via a National Instruments

analog output board, which resides inside the noisy environment of the computer. We

use this board to control items that can handle the amount of noise produced, such

as the quadrupole coil servos. The analog output board can store an array of voltage

values and output them when triggered by the DIO-128. We create voltages with a

lower level of noise using external 16 bit DACs digitally controlled by the DIO-128. The

power supplies which drive the HIP trap coils are controlled with the low noise DACs.



Chapter 3

Driven two-level atom

The goal of this chapter is to describe how a two-level atom is affected by a

coupling radiation field and a specific case of two hyperfine levels in 87Rb coupled by

a two-photon field. This chapter includes a basic description of Rabi flopping and

Ramsey’s method of separated oscillatory fields, which will be used as the method

of spectroscopy for the following experiments. The goal of both of these methods of

spectroscopy is to measure the energy difference between two atomic states. The choice

of the two specific hyperfine levels and method of coupling them will also be discussed.

3.1 Rabi flopping

A two-level atom in an oscillating field can be described by a time dependent

Hamiltonian, which is given by

H =









h̄ω0

2 ΩRe
iωt/2

ΩRe
−iωt/2 −h̄ω0

2









, (3.1)

where ω0 is the the frequency difference between the two states, ω is the frequency of the

driving field, ΩR is the Rabi frequency, and t is time. The time-dependent Schrödinger

equation with this Hamiltonian can be solved using the rotating wave approximation

and the initial condition that the atom is in the ground state. The probability of being

found in the excited state as a function of time is

P (t) =

(

ΩR

Ω′
R

)2

sin2
(

Ω′
R

2
t

)

, (3.2)
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where the effective Rabi frequency is

Ω′
R =

√

Ω2
R + (ω0 − ω)2 (3.3)

=
√

Ω2
R + δ2, (3.4)

and δ is the detuning from resonance. An atom in the field oscillates between the two

states at the effective Rabi frequency, where the contrast of the oscillation is determined

by the detuning. This sinusoidal population transfer is referred to as Rabi flopping.

Rabi’s resonance method can be used to measure the energy splitting between two

states. However, it has some limitations. Rabi’s method probes the transition frequency

while an atom is interacting with the coupling field, which can lead to frequency shifts

from the AC Stark effect or additional phase noise. The frequency of the Rabi fringes

depends not only on the frequency between the two states but also on the power of

the driving field. Originally, in molecular beam experiments, the molecules would pass

through a single region where they were illuminated by radiation and then be detected.

It is reasonable to think that increasing the length of the interaction region l, would

decrease the width of the spectral lines. However if the field is not uniform throughout

the interaction region, increasing l will, at some point, lead to a broadening of the

spectral lines. This broadening limits the resolution of Rabi spectroscopy. Ramsey’s

method of separated oscillatory fields was developed to overcome these limitations.

3.2 Ramsey spectroscopy

Ramsey’s method uses two interaction regions separated by free propagation as

seen in Fig. 3.1. Following a two-pulse Ramsey sequence, the probability of being

in the excited state as a function of time, in the short intense pulse limit, with the

approximations that δ � ΩR and τ �T is

Pt(T, δ) =
1

2
+

1

2
cos (δ T ), (3.5)
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Figure 3.1: Ramsey’s method of separated oscillatory fields, where two pulses length τ
are separated by free propagation length T.

where T is the free propagation time. A π pulse corresponds to 100% transfer between

states, and a π/2 pulse creates an equal superposition of the two states. The two pulses

do not need to be π/2 pulses. However this condition gives the highest signal-to-noise

ratio and full contrast fringes. Note that the Ramsey fringe frequency only depends

on the field detuning from resonance and thus on the energy difference of the atomic

states and not on the power of the field, as long as τΩR is constant. The driving field

must still be stable during the pulses; this is a shorter time and the constraint on field

amplitude stability does not increase with increasing free propagation time.

Ramsey’s method can be thought of as an interferometer in the following way. If

an atom is initially in the ground state, the first π/2 pulse places the atom in an equal

coherent superposition of the ground and excited states. The splitting is identical to the

splitting by a beamsplitter in a optical interferometer. Next, during the propagation

time, the relative phase of the two states evolves at a rate proportional to the energy

difference between the states, and the coupling drive accumulates a phase ωT. The

second π/2 pulse recombines the two states, interferometrically comparing the relative

phase accumulated.
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3.3 Two-photon transition in 87Rb

We want to measure the phase properties of an ensemble of atoms to gain un-

derstanding of phase coherence and mechanisms that cause decoherence; these mea-

surements will be described in depth in chapter 4. The absolute phase of an atom can

not be measured but rather only the phase relative to another system. We study the

phase properties of a system that is made up of two hyperfine ground states in 87Rb.

These states must have the same magnetic moment to first order to be trapped, over-

lapped spatially within the trap, and have nearly identical responses to magnetic field

for spectroscopy.

F = 2

|2, 0>

F = 1

~ 6.8 G zH

|2, 1>

|1, -1>

~ 3 M zH
DIM=0.7 M zH

5S
1/ 2

Figure 3.2: Energy level diagram for the ground state of 87Rb in a field of 3.2 G showing
the relevant two-photon transition.

The two states we use are the |1〉 ≡ |F = 1,mf = −1〉 and |2〉 ≡ |F = 2,mf = 1〉

states in the 5S1/2 manifold. They satisfy the requirement of having nearly identical

magnetic moments. We can coherently transfer population between the two states via
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µb

h 1.399624624 (56) MHz/G
ni 3/2
gi 0.9951414(10) ×10−3 [28]
gj 2.00233113(20)
νhf 6834.68261090434(3) MHz [29]

Table 3.1: Breit-Rabi equation constants for 87Rb

a two-photon transition. We need two photons because the states differ by two units of

angular momentum. We use a microwave photon (∼ 6.8 GHz) and a rf photon

(∼ 3 MHz) to couple the two states as shown in Fig. 3.2. When the detuning from

the intermediate state |2, 0〉 is large compared to the Rabi frequency for the one photon

transition, the probability of making a transition to the intermediate state is small. In

this limit the system can be thought of as just a two-level system with effective coupling

given by the two-photon Rabi frequency, which is

Ω =
Ωµwave Ωrf

2 ∆IM
, (3.6)

where Ωµwave is the Rabi frequency for the |1,−1〉 → |2, 0〉 transition, Ωrf is the Rabi

frequency for the |2, 1〉 → |2, 0〉 transition, and ∆IM is the intermediate state detuning.

The magnetic field dependence of this transition can be calculated using the Breit-Rabi

formula, which is

ν(B) = − νhf

2(2ni + 1)
− gi µB mf B ± νhf

2

√

1 +
4 mf

2 ni + 1
x(B) + x2(B), (3.7)

where

x(B) =
(gj + gi)µB B

νhf
. (3.8)

B is the magnitude of the magnetic field, and the constants for the equation are given

in Table 3.1.



Chapter 4

Spectroscopy

This chapter, which was adapted from “Effect of cold collisions on spin coherence

and resonance shifts in a magnetically trapped ultracold gas” published in Physical

Review A [30], describes precision microwave spectroscopy of magnetically trapped,

ultra-cold 87Rb. We use this spectroscopy to characterize intra- and inter-state density

correlations. The cold collision shifts for both normal and condensed clouds are mea-

sured. The results verify the presence of the sometimes controversial “factors of two,”

in normal-cloud mean-field energies, both within a particular state and between two

distinct spin species. One might expect that as two spin species decohere, the inter-

state factor of two would revert to unity, but the associated frequency chirp one naively

expects from such a trend is not observed in our data. We also measure coherence times

of normal clouds as a function of potential inhomogeneity. Our simple model of de-

coherence, which ignores collisions, systematically underestimates the coherence times

leading to the conclusion that collisions help to preserve coherence across a trapped

sample.

In the cold collision regime, quantum statistical effects due to particle indistin-

guishability dominate scattering processes. The symmetrization requirement for identi-

cal particles in an ultra-cold Bose gas enhances the probability of finding two particles

nearby, causing enhanced density fluctuations. At lower temperatures the statistical

nature of the Bose gas causes the phenomena of Bose-Einstein condensation, where all
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atoms in the condensate share the same wavefunction, suppressing the density fluctua-

tions found in a noncondensed sample.

In other work, suppression of second-order density fluctuations in a condensate

has been measured through analysis of the expansion energy of condensates [31, 32]. In

a separate experiment, the suppression of third-order density fluctuations was probed

by comparing the three-body loss rate of a condensate to that of a normal cloud [33].

The effect of cold collisions has also been measured as a density-dependent energy shift

in atomic fountain clocks [34, 35, 36]. These shifts are quite small (∼0.1-10 mHz) due to

the low densities at which the clocks operate, but are measurable because of their high

precision. The uncertainty associated with these collisional shifts can be problematic; in

fact the next generation of atomic fountain clocks are based on 87Rb rather than 133Cs

because the collisional shift of 87Rb is ∼ 30 times smaller. In recent ultra-cold hydrogen

experiments the cold collision shift provided the signature of Bose-condensation; below

the BEC transition a large frequency shift of the 1S-2S transition was seen, reflecting

the high density of the condensate [37].

4.1 Spectroscopy in a magnetic trap

We performed precision microwave spectroscopy on ultra-cold and condensed 87Rb

atoms confined in a magnetic trap. Due to the high densities achievable in a magnetic

trap, the collisional energy shifts are 105 greater than those in 87Rb atomic clocks, al-

lowing a high-precision measurement of the shifts of the magnetically trappable states

to be made with relative ease. The collisional shifts for both a normal and condensed

sample were measured, providing a useful probe of the quantum statistics of the sys-

tem. Additionally, magnetic confinement permits long interrogation times, allowing

us to characterize temporal coherence of the normal cloud under various experimen-

tal conditions. Comparison of measured coherence times with a collisionless numerical

simulation suggests that collisions preserve coherence in normal clouds.
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Precision spectroscopy of trapped samples is difficult because atom trapping relies

on spatial inhomogeneity of the atomic energy levels. Spatial inhomogeneity of the

energy levels broadens the transition frequency, thus limiting the precision attainable

through spectroscopy. In other work, this difficulty has been avoided by confining atoms

in a blue-detuned optical dipole trap, where atoms spend little time interacting with the

trapping fields [38]. In our work spatial inhomogeneity of the transition frequency was

minimized through the use of a pair of energy levels which experience the same trapping

potential. At a magnetic field of ∼ 3.23 G, the |1〉 and |2〉 hyperfine levels experience

the same first-order Zeeman shift. For a normal cloud at 500 nK, each energy level

is Zeeman shifted by ∼10 kHz across the extent of the cloud; however, at 3.23 G the

differential shift of the two levels across the cloud is ∼1 Hz. Compared to the differential

Zeeman shift, the energy shift due to cold collisions is then a relatively large effect at

high densities, making measurements of collisional shifts in this system possible. The

small inhomogeneity allows for long coherence times, ∼2 seconds and longer for low-

density clouds, making this system attractive for precision measurements as well as for

the study of condensate coherence in the presence of a thermal cloud.

A two-photon microwave-rf transition is used to transfer atoms between the |1〉

and |2〉 states. A detuning of 0.7 MHz from the |2, 0〉 intermediate state provides

a two-photon Rabi frequency of ∼ 2.5 kHz. Ramsey spectroscopy of the |1〉 → |2〉

transition is performed by measuring the total number of atoms remaining in state |1〉

after two π
2 pulses separated by a variable time delay are applied [39]. The frequency

of the resulting Ramsey fringes is the difference between the transition frequency ν12

and the two-photon drive frequency. We can measure local variations of ν12 (e.g. from

magnetic or mean-field energy shifts) by detecting the number of atoms remaining in

state |1〉 at specific spatial locations along the axis of the normal cloud Fig. 4.1a. We

bin the cloud only in the axial direction because the collision rate is less than the radial

trap frequency; therefore the atoms thermally average over the radial direction during
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an experiment. For a particular peak density we measure the axial spatial variation

in frequency by binning the cloud into several sections and determining a frequency

for each bin Fig. 4.1b. This measurement is done at Bbias = 3.23 G to minimize the

magnetic contribution to the inhomogeneity. The transition frequency vs. axial position

along the cloud is shown in Fig. 4.1c.

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-600 -400 -200 0 200 400 600

-4502

-4500

-4498

-4496

-4494

Time between p/2 pulses (ms)

Axial distance from center of cloud (mm)

O
ff

se
t

fr
eq

u
en

cy
(H

z)
C

en
te

r
b

in
o

p
ti

ca
l

d
en

si
ty

62.35 ms 65.05 ms 67.75 ms

(a)

(b)

(c)

Figure 4.1: (a) Images of |1〉 atoms (upper) and |2〉 atoms (lower) after two π
2 pulses.

The delay between the pulses is listed at the top. The edges of the cloud have become
out of phase with the center. The white lines show how the cloud is divided up along
the axial direction to measure the spatial dependence of the transition frequency. Each
image is 1 mm on the horizontal (axial) dimension. (b) The center-bin |1〉 state optical
density as a function of time between the two π

2 pulses. (c) The plot shows the spatial
dependence of the transition frequency in the axial direction. Offset frequency is defined
as the transition frequency - 6834682610.9 Hz. The solid line is a gaussian fit to the
data. These data were taken at Bbias = 3.23 G.
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By analyzing the spatio-temporal variations of ν12, combined with the measured

evolution of the |1〉 state after a single π
2 pulse, we were able to resolve spatially the

evolution of spin waves [40], which will be discussed in depth in chapter 5. In order

to perform measurements of ν12 insensitive to spin waves, one of the following two

techniques was used. With one technique the entire cloud, rather than specific spatial

locations, was monitored to average out the effects of spin waves. Alternatively, Ramsey

spectroscopy was restricted to interrogation times short compared to the spin wave

frequency [41].

Figure 4.2: Differential Zeeman shift at low magnetic fields for the |1〉 → |2〉 transition.
The solid line is the predicted splitting from the Breit-Rabi formula. The inset plot
expands the bias field region where most studies are performed.

One effect which shifts the transition frequency ν12 is the differential Zeeman

shift. The Breit-Rabi formula predicts a minimum in ν12 at B0 = 3.228917(3) Gauss,

thus the differential Zeeman shift between the |1〉 and |2〉 energy levels is first-order
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magnetic field independent at B = B0. The differential Zeeman shift about B0 can be

approximated as ν12 = νmin+β(B−B0)
2 [42]. Measuring ν12 for different magnetic fields

allows us to calibrate our magnetic field from the expected dependence, see Fig. 4.2. By

working in the vicinity of B = B0 we greatly reduce spatial inhomogeneity of ν12 and

also become first-order insensitive to temporal magnetic field fluctuations.

4.2 Cold-collision energy shift

A second effect which shifts ν12 arises from atom-atom interactions. In the

s-wave regime, where the thermal de Broglie wavelength of the atoms is greater than

their scattering length, atoms experience an energy shift equal to α 4πh̄2

m an, where α is

the two-particle correlation at zero separation, n is the atom number density, a is the

scattering length, and m is the atom mass. Therefore for a two-component sample the

expected energy shift of each state is

δµ1 =
4πh̄2

m
(α11a11n1 + α12a12n2) (4.1)

δµ2 =
4πh̄2

m
(α12a12n1 + α22a22n2), (4.2)

where n1 and n2 are the |1〉 and |2〉 state density and

αij =
〈Ψ†

iΨ
†
jΨiΨj〉

〈Ψ†
iΨi〉〈Ψ†

jΨj〉
. (4.3)

The shift of the transition frequency in Hz can then be written as

∆ν12 =
2h̄

m
(α12a12n1 + α22a22n2 − α11a11n1 − α12a12n2)

=
h̄

m
n(α22a22 − α11a11 + (2α12a12 − α11a11 − α22a22)f), (4.4)

where f = n1−n2

n and n = n1 + n2.

For noncondensed, indistinguishable bosons, α = 2 due to exchange symmetry;

therefore αnc
11 = αnc

22 = 2 in a cold normal cloud (where the superscript c or nc refers

to condensed of noncondensed atoms respectively). Distinguishable particles do not



76

maintain exchange symmetry, making αnc
12 = 1 for an incoherent two-component mix-

ture. However if a two-component sample is prepared by coherently transferring atoms

from a single component, such as in Ramsey spectroscopy, then the excitation process

maintains exchange symmetry, and we might expect αnc
12 = 2 [43]. In this scenario the

collisional shift should be calculated using αnc
11 = αnc

22 = αnc
12 = 2, leading to a predicted

frequency shift of

∆ν12 =
2h̄

m
n(a22 − a11 + (2a12 − a11 − a22)f). (4.5)

This result can also be obtained by solving the transport equation [44, 45]. From spec-

troscopic studies [46] the three 87Rb scattering lengths of interest have been determined

to be a22 = 95.47a0, a12 = 98.09a0, and a11 = 100.44a0, where a0 is the Bohr radius.

The frequency shift can then be written as

∆ν12 =
2h̄

m
a0n(−4.97 + 0.27f). (4.6)

If on the other hand the |1〉 and |2〉 states do not maintain exchange symmetry, such

that αnc
12 = 1, then the frequency shift would instead be

∆ν12 =
2h̄

m
a0n(−4.97 − 97.82f). (4.7)

These two models are clearly distinguished by the dependence of ν12 on f .

When we perform Ramsey spectroscopy with a pair of π
2 pulses, the populations

of the |1〉 and |2〉 states are equal, and thus f = 0 during the interrogation time. From

Eq. 4.4 it is apparent that with f = 0 the collisional shift is sensitive only to αnc
ii and aii

terms. For these measurements the bias field was set to B0, and the transition frequency

was measured for a range of densities. To adjust density of the sample, the number of

atoms in the initial MOT load was varied. All normal cloud data was taken at the

same temperature of 480 nK, and all condensate data was taken with high condensate

fractions in order to minimize effects due to the normal cloud. The density for the

normal cloud was found by fitting Gaussian profiles to absorption images of the clouds
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and extracting the number, temperature, and density. To measure condensate density,

Thomas-Fermi profiles were fit to absorption images of the condensates and the total

number, N0, in the condensates and the Thomas-Fermi radius along the long axis, Z,

were extracted.

Figure 4.3: Measurement of the cold collision shift. Solid and open circles represent
measurements of the normal cloud and condensate respectively. The solid line is a fit
to the normal cloud data ∆ν12 = 0.1(0.4) − 3.9(0.3)10−13n; the dashed line is a fit to
the condensate data ∆ν12 = −0.1(1.4) − 1.9(0.2)10−13n, where ∆ν12 is in Hz and n is
in cm−3.

The results of this measurement are shown in Fig. 4.3. Comparing the colli-

sional shift measured for the normal cloud to that measured for a condensate gives

αnc
ii /α

c
ii = 2.1(2). If instead we assume αnc

ii = 2 and αc
ii = 1, then the data for both

the condensate and normal cloud can be used to obtain a value for the difference in

scattering lengths of a22 − a11 = −4.92(28)a0, in agreement with values determined

from molecular spectroscopy [46].

Many systematics can plague density measurements made through absorption

imaging. In order to test independently our density calibration for both the nor-
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mal and condensed samples, each of which can suffer from different errors, we used

the Bose-condensation phenomenon. The density of normal clouds was tested through

measurement of the critical temperature, and condensate density was tested with the

Thomas-Fermi approximation. Assuming that disagreements are due only to errors in

estimation of atom number, the worst case scenario, leads us to reduce normal cloud

density by 11(4)% and increase condensate density by 11(3)%. Adjusting the cold colli-

sion shifts accordingly would yield a worst-case corrected value of αnc
ii /α

c
ii = 1.7(2) [47].

The adjusted normal and condensate density shifts can be combined as above to give a

value for the difference in scattering lengths of a22−a11 = −4.85(31)a0; not significantly

different from our unadjusted measurement.

The remaining significant systematic is atom loss due to |2〉-|2〉 collisional dipolar

relaxation. In order to minimize effects of this loss, interrogation times were kept as short

as possible. Nevertheless for the highest density condensate measurements the |2〉-|2〉

loss causes the total density to drop by 3% in 20 ms, the maximum interrogation time.

For all other densities the loss was no larger than this, and in most cases much smaller.

Finally, the |1〉 and |2〉 states begin undergoing spatial separation in the condensate

after the first π
2 pulse [48]; however, the timescale for the separation is much longer

than our 20 ms interrogation time.

Exchange symmetry between the |1〉 and |2〉 states can be tested by working at

a fixed density and varying the relative |1〉 to |2〉 population by varying the length

of the first Ramsey pulse [49]. In this case the first term in Eq. 4.4 will be con-

stant and the measurement will test αnc
12 and a12 as well as the αnc

ii and aii terms

(see Eq. 4.6 and 4.7). To minimize systematics the interrogation times were kept

short, making precise frequency determination difficult. Nevertheless, our measure-

ment (Fig. 4.4) indicates αnc
12/α

nc
11,22 = 1.01(2), where we have used the spectroscopi-

cally determined scattering lengths. This clearly indicates that exchange symmetry is

maintained between the |1〉 and |2〉 states. A similar measurement was made on the
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Figure 4.4: Testing the exchange symmetry between the |1〉 and |2〉 states. The tran-
sition frequency is measured as f = n1−n2

n is varied for a normal cloud at fixed peak
density of 7×1012 cm−3 and temperature of 510 nK. The solid line is the fit, which yields
αnc

12/α
nc
11,22 = 1.01(2), which is to say, inter- and intra-state density correlations are quite

accurately the same. The dotted line indicates the expected slope for αnc
12/α

nc
11,22 = 1/2.

|F = 1,mf = 0〉 → |F = 2,mf = 0〉 transition by Fertig and Gibble [35].

4.3 Missing frequency chirp

As a thought experiment, imagine distinct thermal populations of |1〉 and |2〉

atoms, separately prepared, then mixed together, with the energy of interaction (pro-

portional to αnc
12) measured for instance calorimetrically. Surely in this case the density

fluctuations in state |1〉 and in state |2〉 would be uncorrelated, and αnc
12 would be deter-

mined to be 1, not 2. We lack the experimental sensitivity to make such a calorimetric

measurement, and our Ramsey-fringe method of measuring energy differences obviously

would not work for incoherent mixtures. We speculated, however, that if αnc
12 = 2

for coherent superpositions, and if αnc
12 = 1 for incoherent mixtures, then for partially

decohered samples, αnc
12 would take on some intermediate value. So by performing a
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Figure 4.5: A data set of Ramsey fringes probing for frequency shifts as a function of
coherence. For this measurement normal clouds at a temperature of 480 nK and a peak
density of 3.2 × 1013 cm−3 were used.

measurement similar to that in Fig. 4.4 we might expect to see a more negative slope

for a partially decohered sample; alternatively a frequency chirp in the Ramsey fringes

may be seen as the sample decoheres.

We probed the time evolution of αnc
12 in a way similar to Fig. 4.4; however rather

than varying f we set f ' 0.8 then measured ν12 with long interrogation times, looking

for a frequency chirp as the fringe contrast decreased. This method has the advantage

that there is a relatively small |2〉 state population, so effects arising from |2〉 loss are

minimized. Seven data sets were taken for this measurement; an example is shown in

Fig. 4.5. By allowing a linear frequency chirp in the fit of the Ramsey fringes, the

frequency shift can be constrained to −0.2(3) Hz by the time the fringe contrast has
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reduced to 1/e [50]. However if we hypothesize that αnc
12 goes from 2 to 1 linearly as

fringe contrast goes from 100% to 0% we would expect a frequency shift of −20(2) Hz

as the fringe decayed, while the experimental limit is 40 times smaller. The lack of

chirp disagrees with the traditional notion that the frequency of the transverse spin

precession is a direct measurement of the energy difference between spin up and spin

down. Clearly this appealing but unrigorous model is far too naive.

4.4 Coherence of normal clouds

Ramsey spectroscopy not only allows us to probe the energy difference between

the two states but also permits the measurement of the coherence between the two

states. Coherence measurements were performed using the same time domain method

used to measure ν12; however, interrogation times were extended until the Ramsey fringe

contrast was lost. The resulting data was fit to a e−(t/τ)2 decay, where τ is the coherence

time. Additionally, fitting allowed for both a loss in total atom number and a linear

frequency chirp of ν12. To ensure that the 1/e atom loss times were much longer than

the coherence times, fractional transfers (f ' 0.8) to the |2〉 state were used for the

high density data points. The results of coherence measurements for different magnetic

fields and at three different densities are shown in Fig. 4.6.
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Figure 4.6: Coherence times in a normal cloud. The temperature was ∼ 480 nK and
the normal cloud peak density for each plot is: (a) 4× 1012 cm−3; (b) 1.3× 1013 cm−3;
(c) 3.2 × 1013 cm−3. The solid line in each plot corresponds to the 1/e times obtained
from a numerical simulation (see text). The noise in the simulation data is due to the
finite number of particles used and the random initialization.
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We expect that the primary source of decoherence is inhomogeneity in ν12 across

the cloud, to which both the differential Zeeman and collisional shifts contribute. The

collisional shift scales directly with density, and thus provides a Gaussian-shaped ν12

profile across the cloud. Inhomogeneity arising from the differential Zeeman effect de-

pends on the bias field. The magnitude of the magnetic field near the bottom of the

trap can be written as B(z) = B′′

2 z
2 +Bbias, thus the inhomogeneity due to the Zeeman

shift is ν12 ∝ B′′2

4 z4 + (Bbias − B0)B
′′z2. By setting Bbias(>,<,=)B0 the curvature of

ν12 can be adjusted to be positive, negative, or nearly zero, respectively. This allows in-

homogeneity due to the collisional shift to be roughly cancelled by an opposing Zeeman

inhomogeneity Figs. 4.7 and 4.8 [51].

This effect of this cancellation can be seen in Fig. 4.6; as the density is increased

from (a) to (c), the inhomogeneity induced by the collisional shift increases, so that a

larger opposing Zeeman inhomogeneity is necessary for cancellation. Therefore the bias

field for peak coherence time decreases as cloud density increases.

In an attempt to compare the measured decoherence times to the known spatial

inhomogeneity of the transition frequency, we performed the following numerical sim-

ulation: consistent with a Maxwell-Boltzmann distribution, we randomly assign initial

positions and velocities to ten thousand simulated atoms. Ignoring the effects of colli-

sions, we calculate the three-dimensional trajectory of each atom for several simulated

seconds, keeping track of the time integral of ν12 along the trajectory. At each point

in time, we calculate the spatially integrated transverse magnetization and, as inhomo-

geneities cause this magnetization to wash out, find the time it takes the integrated

transverse magnetization to reduce to 1/e of its original value [52]. This model should

correctly account for the effect of motional averaging except that all collisional effects

are explicitly excluded. The resulting modelled damping times are plotted as a solid line

along with the experimentally measured damping times in Fig. 4.6. While the model

does a reasonable job predicting the value of the bias field for which the coherence
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is a minimal variation of the frequency across the cloud. Increasing the bias field causes
the energy shifts to have the same curvature and produces an overall larger variation
of frequency across the cloud; reducing the bias field below BC causes the Zeeman shift
contribution to overwhelm the cold collision shift and thus dominate the energy vs.
position profile.

time peaks, it consistently underestimates (in some cases by a factor of eight) the ac-

tual value of the coherence time. Our model neglects both velocity-changing collisions

and the exchange-type collisions that lead to spin waves; it appears that these effects

contribute significantly to preserving coherence across the trapped atom cloud.

The extreme aspect ratio of our trapped cloud complicates a proper quantitative

analysis of the effects of collisions on coherence. Along the axial direction, other work

has shown that the effects of spin-waves are to keep local magnetization across the cloud

from straying too far from its spatially averaged value [see in particular Fig. 5.3(a) in

chapter 5]. In the radial directions, the motional oscillation frequency exceeds the mean-
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Figure 4.8: The transition frequencies at different positions along the cloud are plotted
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At Bbias = 3.37 G the magnetic shift and the mean-field shift are in the same direction
and therefore the inhomogeneity is across the cloud is increased. When the cloud is in a
field of 2.83 G inhomogeneity due to the mean-field shift is almost completely cancelled
by the magnetic shift. Data points are connected to guide the eye.

field exchange frequency in the cloud, and thus the effects of spin-waves are probably

not relevant. On the other hand, velocity-changing collisions are likely important – in

their absence, atoms with small transverse energies would stay near the axis of the

trap, while atoms with large transverse energies would preferentially sample the larger

magnetic fields and lower densities further from the axis. Velocity-changing collisions

which re-randomize the transverse trajectories of these different classes of atoms (before

they have a time to accumulate a radian or more of relative phase-difference) will serve

to extend the coherence time of the sample. In the highest density data set presented

[Fig. 4.6(c)] the mean elastic collision rate was 74 Hz, which should be compared to the
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measured coherence times of around 0.5 to 1.2 seconds.

4.5 Coherence of condensates

We were also able to explore the coherence of nearly pure condensates. There are

two standard data taking methods to measure coherence using Ramsey spectroscopy.

One is to take equally spaced points and fit the data to an exponentially decaying sine

wave (Fig. 4.9). This measurement technique is sensitive to phase noise because phase

noise will artificially decrease the fitted coherence time. The functional form of the

fringes is derived as follows. The same result can be more rigourously derived using a

density matrix approach. The initial state after the first π/2 pulse is

|ψ〉 =
1√
2

[|1〉 + |2〉]. (4.8)

After some time t the state is modified by loss in both states and phase evolution due

to the energy difference between the states and can be written as

|ψ〉 =
1√
2

[e−t/2τ1 |1〉 + e−t/2τ2eiφ|2〉], (4.9)

where τi is the lifetime of state i. The approximation of an exponential loss rate is not

entirely correct. The main loss rate is 2-body for the |2〉 state and 3-body for the |1〉.

However the condensate density distribution is changing in time due to the mean-field

separation effect and therefore the loss rate is just modelled as exponential. After some

time t a second π/2 pulse is applied, producing the state:

|ψ〉 =
1

2
[e−t/2τ1(|1〉 + |2〉) + e−t/2τ2eiφ(−|1〉 + |2〉)]. (4.10)

From this state we can calculate the probability of being in the |1〉 state as a

function of time, which is

P|1〉(t) =
1

4
[e−t/τ1 + e−t/τ2 − 2 cosφe−(t/2τ1+t/2τ2)]. (4.11)
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The |1〉 state has a much longer lifetime than the |2〉 state so the term e−t/2τ1 in

Eqn. 4.11 can be set equal to unity, and an exponential decoherence term can be added

with time constant τcoh. The probability of being in the |1〉 state then is

P|1〉(t) =
1

4
[1 + e−t/τ2 − 2e−t/τcoh cosφe−t/2τ2 ]. (4.12)

The function we using in our fitting routine is

y(t) = A
1

4
[1 + e−t/τ2 − 2e−t/τcoh cos (2π(ν + c t)t+ θ)e−t/2τ2 ], (4.13)

where the free parameters are an amplitude A, a |2〉 state lifetime τ2, a decoherence

time τcoh, a fringe frequency ν, a linear frequency chirp c, and a phase offset θ.

The other method for measuring coherence time, which is insensitive to phase

noise, is to take data (∼10 points) over a time interval equal to a single fringe at several

different propagation times (Fig. 4.10a). Then the standard deviation Σ, is calculated

for each fringe and fit to a decaying exponential in quadrature with a background noise

level (Fig. 4.10b). Σ is

Σ(t) =

√

1

8
e−2t/τ2 . (4.14)

The functional form we use in the fitting routine is

y(t) =

√

A2

8
e−2t/τ2 + y2

0, (4.15)

where y0 is the background noise level.

Measuring condensate coherence time is difficult because of the high loss rate in

the |2〉 state and phase noise due to shot-to-shot number fluctuations. The high density

in the condensate causes large dipolar relaxation rates and reduced lifetime of the |2〉

state. Therefore we lose signal rapidly as the |2〉 atoms are lost from the trap. We can

reduce this loss rate by not applying a π/2 pulse but rather transfer only 20% of the

atoms to the |2〉 state, which decreases the density and thus the loss in this state.
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Figure 4.9: Ramsey fringes of the center bin of a condensate with peak density of
8.9(3)×1013 with a condensate fraction of 0.70(3). 24% of the condensate is initially
placed in the |2〉 state. The fit gives a value for τ = 268(28)ms. (see text for discussion)

The other complication with measuring condensate coherence is phase noise in-

duced by shot-to-shot number fluctuations. The cold-collision frequency shift for typical

large condensates with densities of 1014cm−3 is ∼ 20 Hz. A 5% variation of the density

will then cause a phase shift of 0.5 rad at 0.5 seconds. Therefore we must make con-

densates with small and repeatable density to measure coherence times with minimal

phase noise. We create small stable condensates by first evaporating normally to pro-

duce a medium-sized condensate (105 atoms); then leave the rf on close to the edge of

the condensate for several seconds. Any noise in the bias field will cause the rf knife to

cut into the condensate. However the noise will average out over several seconds thus

producing a small, consistently-sized condensates.

One example of a coherence measurement of a condensate is shown in Fig. 4.9.

The fringe contrast and the mean decay at the same rate, which is not predicted by our
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Figure 4.10: Alternate method of taking coherence data.(a) Ramsey fringes taken over
one fringe at six different propagation times. (b) Standard deviation of each of the six
fringe sets normalized by the mean of the data points within that set.

simple model. Our model predicts that, in absence of additional decoherence, the fringe

contrast should decrease at half the rate of the mean. One might assume initially that

there is just additional decoherence, but there are two reasons why we think this might

not be the case. First the decay rate for both the contrast and the mean coincide with

an independent measurement of the |2〉 state decay rate. Second the contrast and the

mean decay at the same rate over a wide parameter space, which includes a variety of

condensate fractions and number densities. One would think the additional decoherence

would change as these parameters are varied.
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4.6 Speculation on precision metrology

It is interesting to consider the usefulness of magnetically trapped atoms for pre-

cision metrology. Peak coherence times of approximately 2.5 s were realized with cold,

low density samples. An interrogation time of 2.5 s provides a 0.2 Hz linewidth, which

naturally leads one to consider using such a system for precision measurements. By

working at Bbias = B0, coherence times are slightly reduced. However, perturbations

of ν12 due to magnetic field fluctuations become very small, on the order of 4 mHz for

current typical experimental conditions. With careful design of the confinement coils,

the current supply, and magnetic shielding of external fields, it should be possible to

suppress fluctuations of the bias field below 1 mG, reducing Zeeman-induced frequency

shifts to below 0.1 mHz. Perturbations of ν12 due to the cold collision shift are more

significant; shot-to-shot density fluctuations will introduce frequency noise, so it is ad-

vantageous to work with the minimum possible density. However as atom number is

reduced the maximum signal-to-noise ratio will decrease due to shot-noise [53]; therefore

the optimum strategy is to work with an atom number such that the frequency uncer-

tainty due to shot-noise is on the order of the uncertainty due to density fluctuations.

For example a normal cloud of 400 nK and a peak density 1.5 × 1012 cm−3 has

6 × 104 atoms. The shot-noise-limited signal-to-noise ratio is then 245:1. With an

interrogation time of 1 second the single-shot statistical uncertainty is then 0.65 mHz;

including the effects of decoherence and atom loss will increase this to approximately

0.9 mHz. Assuming that shot-to-shot number fluctuations are also shot-noise limited,

then statistical uncertainty from the density shift is 0.84 mHz. Combining these gives a

total single-shot uncertainty of 1.24 mHz; with our current 30 second evaporation time,

the duty-cycle is such that an absolute precision of 6.8 mHz/
√

Hz can be realized. This

corresponds to a relative precision of 1 × 10−12 /
√

Hz, which in terms of measurement

precision does not reach the level of atomic fountain clocks. This system however has



91

the advantage that small energy shifts can be measured in a compact, stationary spatial

position; a 400 nK cloud occupies approximately only a 1040 × 32 × 32 µm region of

space. It is certainly feasible to perform spectroscopy at this level within 100 µm of a

surface, which might allow the measurement of short range atom-surface interactions.

We have demonstrated precise spectroscopy in an ultra-cold magnetically trapped

gas. This permitted measurement of the cold collision shift in both a condensate and

a normal cloud, allowing a probe of the quantum statistics of the system. Working at

low densities minimizes the effect of the collisional shift, allowing long coherence times

and precise determination of ν12; however the measurement of any quantity not related

to atom-atom interactions will at some level be limited by this shift. An intriguing

alternative would be to instead use a fermionic atom, which should have no collisional

shift, and thus density induced frequency noise will not be an issue. On the other hand,

the lack of collisions may also lead to more rapid decoherence: collisions appear to

preserve our bosonic system from the decohering effects of spatial inhomogeneity.



Chapter 5

Spin waves

This Chapter is adapted from “Observation of anomalous spin-state segregation

in a trapped ultra-cold vapor” and “Spatial resolution of spin waves in an ultra-cold

gas” published in Physical Review Letters [51, 40].

Macroscopic collective behavior can arise in a quantum gas even above the onset

of degeneracy. When indistinguishable atoms collide, the scattering can be significantly

altered by the need to symmetrize the scattered waves. Examples of quantum scattering

effects are seen in the strong polarization dependence of heat conduction and viscos-

ity coefficients in spin polarized 3He [54] and of thermalization rates in nondegenerate

Fermi gases [55]. Quantum collisional effects can also produce spatio-temporal spin

oscillations known as spin waves. In this Chapter we present spatially resolved images

of coupled transverse and longitudinal spin perturbances propagating through a mag-

netically trapped atomic cloud. Frequencies and damping rates for the standing-wave

excitations are studied as a function of density and temperature.

Although the concept of spin waves in ferromagnets dates back to Bloch’s pre-

dictions in 1930 [56], the theory of spin waves in liquids and in dilute gases was not

formulated until much later [57]. The first evidence for spin waves (in the form of extra

resonances in nuclear magnetic resonance spectra) occurred in spin-polarized hydrogen

and soon after in polarized 3He and dilute mixtures of 3He in 4He [58]. On a microscopic

level, spin waves arise from interference effects in lowest partial-wave collisions. When
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identical particles collide, the 180◦ backscattering event causes a scattered atom to prop-

agate along a trajectory indistinguishable from that of either a forward scattered atom

or an unscattered atom. When the two atoms are spin aligned, the backward scattering

contribution is indistinguishable from the forward scattering contribution, which adds a

factor of two to the mean-field collisional energy shift. When the spins are antiparallel,

the backward scattering event is distinguishable, and the mean-field shift arises from

the forward scattering event only. In the case of intermediate spin alignment, the back-

ward scattering event is only partially distinguishable from the unscattered event, and

one needs to add coherently two unparallel spin amplitudes, leading to a rotation of the

spins of the scattered atoms. The cumulative effect of many such spin-rotating collisions

is such that inhomogeneities of spin propagate like waves rather than diffusively. The

characteristic frequency scale for the spin rotation effect is the exchange collision rate,

ωexch = 4πh̄an/m, where m, n, and a are the mass of the atoms, the number density,

and the s-wave scattering length respectively.

5.1 Theoretical description of spin waves

The proceeding theoretical description follows a similar formalism to that of

J. Williams and colleagues [45]. Ultimately we want to calculate the spin density as a

function of position in the cloud and time. We start with the Hartree-Fock mean-field

theory of a Bose gas, which leads to the collisionless Boltzmann equation. The solution

to the Boltzmann equation predicts spin waves, but because it does not include colli-

sions, it can not predict damping of the spin waves. The collision integrals will not be

dealt with in this text but can be found in reference [59]. The Hamiltonian for two-level

atoms in a trap is

H =

(

−h̄2

2 m
∇2 + U0(r)

)

Î +
h̄

2

−→
Ω(r) · −→σ , (5.1)
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where the first two terms are just the center of mass contribution including the kinetic

energy and the potential, which is

U0(r) = Uext(r) +
4πh̄2

m
[a11 n1 + a22 n2 +

a12

2
(n1 + n2)]. (5.2)

Uext is the magnetic trapping potential, and the other terms in Eqn. 5.2 are the mean

field potential terms. For our experiments 4πh̄2an/m � kBT so the mean field terms

can be ignored. The last term in the Hamiltonian is the contribution from the spin,

where −→σ are the Pauli matrices. The coupling field, a combination of the drive field,

energy difference from the mean field and Zeeman energy shifts as well as from the spin

density, is

−→
Ω =

−→
Ω′ +

2πh̄2a12

m

−→
S (r, t), (5.3)

where

−→
Ω′ = [Ωx, Ωy, ∆BR(r, t) + ∆MF(r, t)], (5.4)

where the components of Ω′ are in Bloch space. The hyperfine splitting has been

removed by taking the rotating wave approximation. ∆BR is the differential Zeeman

shift calculated from the Breit-Rabi formula, and the differential mean-field energy is

∆MF =
4πh̄2

m
[2a11 n1 − 2a22 n2 + 2a12(n1 − n2)], (5.5)

where ni is the density in state i. The factor of two in front of the a12 comes from

the addition of the forward and backward scattering events as described previously in

Chapter 4. Ωi is the resonant Rabi frequency about the axis i and zero when the coupling

field is off, such as after the π/2 pulse. The second term in Eqn. 5.3 is responsible for

spin waves and comes from the extra factor of two in the mean-field interaction for

identical particles. The spin density as a function of position in the cloud and time is

−→
S (r, t) =

∫

dp ×−→σ (r,p, t)

2πh̄3 , (5.6)

where −→σ (r,p, t), the spin distribution function, can be obtained from the spin Boltz-

mann equation. The longitudinal component of the spin density Sz is the difference in
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the population of the two states [n1(r, t)−n2(r, t)]. Sx and Sy are the real and imaginary

parts of the internal coherence.

Now that the problem is defined, we can numerically integrate the kinetic equation

to find the spin distribution function and subsequently the spin density, which was done

by J. Williams and collegues[45]. The kinetic equation, ignoring collisions, is

∂−→σ
∂t

+
p

m
· ∇−→σ −∇Uext · ∇p

−→σ −−→
Ω ×−→σ = 0, (5.7)

where the second and third terms are the free streaming evolution, and the last term

depicts the spin precessing about the local field, which is a combination of the driving

field and the local spin.

Another slightly more intuitive way to understand the origin of spin waves is to

think about the spins of each atom precessing about the total spin during a collision.

When two atoms with different spins collide, their total spin must be conserved after the

collision. However they can each precess about the total spin and thus have a different

spin after the collision. This is depicted graphically in Fig. 5.1. The initial direction of

Before collision

After collision

Spins precess
about total spin

Figure 5.1: Intuitive picture of spin rotation during collisions. Atoms initially with
different relative phases precess about the total spin during a collision.
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the spin is dependent on the “history” or previous trajectory of each atom. Imagine a

test atom coming from the center of the cloud with a certain spin; as it moves through

the cloud its spin rotates because of its interaction with the average local spin of the

cloud. A number of such interactions, because they are coherent, build up a coherent

oscillation.

5.2 Description of system

The experimental apparatus and spectroscopy method used to prepare and probe

the ultra-cold gas are described in Chapters 2-4. Typical atom cloud parameters for

these spin wave studies are n ∼ 1013 cm−3 and T ∼ 600 nK, several times the conden-

sation temperature. The radial frequency is high enough that for the effects considered

here it is sufficient to average the cloud over the radial dimensions, effectively reduc-

ing the cloud to a one dimensional density distribution. The atomic hyperfine states

are |1〉 and |2〉, which together make up a pseudo-spin doublet [60]. The spin state is

manipulated using the two-photon coupling transition described in Chapter 3.

The transition frequency ∆(z) is in general a function of the axial position z,

due to the spatial inhomogeneity of the Zeeman shift and of the density-dependent

mean-field shift. As stated earlier in Chapter 4, we can tune the bias magnetic field

so as to cause the Zeeman shifts to cancel in whole or in part the mean-field shifts.

As a consequence, the spatial curvature of the frequency, ∂2∆(z)/∂z2, is a controllable

parameter of the experiment which may be tuned in real time, even as a spin wave is

propagating.

5.3 Bloch-sphere representation

To describe the effective two-level system, we use the language of the Bloch sphere

(see [61]) and take the axis w as the “longitudinal” population inversion, and the axes u

and v as the “transverse” coherences [62]. In a typical experiment, the atom-preparation
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cycle concludes with the atoms initially all in the |1〉 state, along the w -axis (Fig. 5.2a).

Applying a π/2 pulse starts the evolution of the wave by rotating all the spins to lie along

the v -axis (Fig. 5.2b). When ∆(z) is set to have nonzero curvature, the spins along

the long axis of the cloud begin to fan out in the u-v plane as the relative phase of the

(|1〉+ |2〉) coherent superposition develops a spatial dependence (Fig. 5.2c). Optionally

at this point in the evolution, we can tune ∂2∆(z)/∂z2 back to zero or leave it unchanged

and watch the spins evolve in an inhomogeneous potential. In either case, the atoms’

thermal motion now carries spin information back and forth along the length of the

cloud, and spin-rotating collisions can tilt the spins up out of the u-v plane (Fig. 5.2d)

[63]. Eventually, spin-currents develop that drive oscillations about an equilibrium spin

distribution. Our driving potential, determined by the curvature of ∆(z), is even in

z, and we predominantly drive the lowest order symmetric mode: a two-node standing

wave.

5.4 Experimental method for studying spin waves

5.4.1 Extracting longitudinal phase

The longitudinal and transverse components of the Bloch vectors are measured as

a function of time and space. The method for projecting the longitudinal component is

similar to that described in [51] and is depicted graphically in Fig. 5.2. After an initial

resonant π/2 pulse, the Bloch vectors are allowed to evolve for times up to t = 800 ms,

and then the atoms are imaged, thereby projecting the Bloch vectors along the cloud

onto the two spin states |1〉 and |2〉. The cloud is radially averaged and broken up into 25

equal bins along the axial direction for spatial resolution of the spin dynamics. The |1〉

and |2〉 populations are measured on separate experimental shots, and the longitudinal

angle θ of the Bloch vector is extracted. (θ = π/2 corresponds to equal populations,

and θ = 0 or π correspond to all the atoms in |1〉 or |2〉 respectively.) The evolution
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a)  Prepare ~ 600 nK normal cloud of atoms in state |1ñ.

Axis of Cloud

b) Apply a two-photon pulse to rotate the Bloch vectors into the u-v plane.

c) The inhomogeneity causes the Bloch vectors to precess at

different rates in the u-v plane.

n12

d)  Exchange collisions rotate the Bloch vectors out of the u-v plane.

Absorption Images:

Time = 40 ms

Time = 110 ms

Time = 1 ms

|1ñ|2ñ

Figure 5.2: Creation of spin waves (see text).

is traced out by repeating the experiment for many values of evolution time. Fig. 5.3a

shows the time evolution of the longitudinal component of the spin across the cloud.

5.4.2 Extracting transverse phase

The transverse spin measurement consists of a two-pulse π/2−π/2 Ramsey pulse

sequence separated by an evolution time t [39]. For each time evolution time t and

for each spatial bin along the trap axis, we measure the final density of the atoms

in |1〉, resulting in a set of roughly sinusoidal (but with slightly time-varying phase

and amplitude) Ramsey fringes for each location in space. The transverse phase and

amplitude of the Bloch vector are extracted from the fringes at each time t for each

radially-averaged section of the cloud by performing a sinusoidal fit over a small window
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Figure 5.3: False color plots of the a) longitudinal and b) transverse components of the
Bloch vectors across the cloud as a function of time for a density of 2 × 1013 cm−3 and
a temperature of 800 nK (corresponding to a 380 µm full width, half maximum cloud
size). The angles have been interpolated between bins and time steps of a) 10 ms and
b) 3 ms.

centered about t in each spatial bin [64]. Fig. 5.3b shows typical phases extracted with

this method. The spatial and temporal oscillations around the mean phase are the

transverse projections of the spin waves.

The complete trajectories of the Bloch vector can be determined for each spatial

bin by combining the transverse and longitudinal components. Normalizing the length

of each vector to the length at time t = 0 removes any effects of decoherence (e.g. from

inelastic loss and magnetic field fluctuations) and allows for a study of the equilibrium

phases of the Bloch vectors as a function of the position across the cloud for various
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∆(z). Fig. 5.4 shows the trajectories of the reconstructed Bloch vectors in each spatial

bin. Each bin has been offset by 1 rad in the transverse direction from the adjacent bins

for clarity and to depict schematically the position across the cloud. The oscillations

can be fit to extract spin wave frequency, amplitude, and damping rate.
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Figure 5.4: Bloch vector trajectories across the cloud for T = 600 nK and
n = 2 ×1013 cm−3. Each spatial bin (∼ 40 µm/bin) is shifted by 1 rad from the
adjacent bins (see text). In each bin, the path traced by the Bloch vectors is shown
starting with the red points near time t = 0 and spiralling towards the blue points at
t = 0.3 s as the Bloch vectors precess about the equilibrium position. a) Spin waves at
∂2ν/∂z2 ≈ 90 Hz/mm2. The equilibrium position (center of precession) has a curvature
to match the curved potential. b) Spin waves are excited for 70 ms at the same curva-
ture, and then at t = 0 the bias magnetic field is ramped quickly so that ∂2ν/∂z2 ≈ 0,
giving an approximately flat equilibrium configuration near the v -axis for all spatial
bins.

The steady-state Bloch vector arrangement is determined by the curvature of

the potential. In order to equilibrate, the Bloch vectors across the cloud must arrange

themselves so that the torque from the driving potential ∆(z) (which tends to spread

the vectors in the u-v plane) is balanced by a torque from the local curvature in the spin

field, which is spread out in the v-w plane. In the presence of a nonuniform potential,

the equilibrium configuration of the Bloch vectors is curved longitudinally across the

cloud to match the curvature of ∆(z), i.e. the Bloch vectors lie in the v-w plane but are

not all collinear with the v -axis. However, if the bias magnetic field is chosen to cancel

the density shift, then ∆(z) is predominantly flat across the cloud, and the equilibrium
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corresponds to the Bloch vectors everywhere in the cloud collinear with the v -axis.

These equilibrium configurations are illustrated in Fig. 5.4a and Fig. 5.4b, which show

spin-wave evolution in curved and flat potentials respectively.

5.5 Frequency of oscillation of spin waves

Next, the density dependence of the spin wave frequency was studied. The spin

wave frequency exhibits a strong density dependence, scaling roughly as 1/n, shown

in Fig. 5.5a. The linear regime for these excitations occurs only at extremely small

amplitude, where spin waves are difficult to observe due to signal-to-noise limitations.

In the nonlinear regime there is a dependence of frequency on amplitude. In order to

remove this dependence, we excite spin waves over a range of amplitudes by controlling

the curvature of the potential, ∂2∆(z)/∂z2, and we extrapolate the frequency to the low

amplitude limit for each density. The solid line is a numerical calculation predicting the

frequency obtained from solving the one-dimensional Boltzmann transport equations

[59]. The two dotted lines represent the weak and strong coupling limits, ωexch � ω◦

and ωexch � ω◦ respectively:

ωw = 2ω◦ −
ωexch

2
(5.8)

ωs =
k2

eff(kbT )

mωexch
. (5.9)

where ω◦ is the axial trap frequency and keff is an effective wave vector. The spatial wave

vector k = 2π/λ of the spin waves is studied by finding the distance λ/2 between the

spatial nodes, i.e. the bins where the orientation of the Bloch vector remains constant.

The wave vectors k and keff differ by a numerical factor of order unity due to the finite

size of the sample. For all the work discussed here, the lowest order symmetric mode,

η = 2, is excited by the symmetric inhomogeneous potential [65]. The wavelength of

the η = 2 mode is observed to be directly proportional to the size of the trap. As

predicted by Eqs. 5.8 and 5.9, there is no temperature dependence for the excitation
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frequency, since we observe k to scale inversely as the size of the cloud, i.e. as T−1/2.

The numerical calculation agrees well with experiment (see Fig. 5.5a).
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Figure 5.5: a) Frequency of the transverse spin wave component as a function of the
peak density. Each frequency is an extrapolation to the limit of small amplitude spin
waves to remove the dependence on driving amplitude. The solid line is the predicted
dispersion relation, and the dotted lines show the weak and strong coupling limits. All
data is for T = 600 nK except for the three tightly clustered points at n = 2×1019 m−3

which correspond to T = 350, 600, and 1000 nK. b) Damping rate as a function of
density, including a numerical calculation (solid line) which includes elastic collisions
and Landau damping.

The Bloch vectors initially precess about the equilibrium value with some initial

amplitude. As the Bloch vectors precess, their trajectories spiral towards the equilibrium

configuration due to damping of the spin wave excitation. The damping is predicted to

be a combination of two effects: spin diffusion and Landau damping [66]. Spin diffusion

dominates in the high density, or hydrodynamic, regime. For intermediate densities,
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there is a maximum in the damping rate due to the combination of the two effects.

It near this intermediate regime that these experiments are performed. We observe

a relationship between spin wave lifetime and density which is good agreement with

theory (see Fig. 5.5b).

We have observed collective spin excitations in a nondegenerate ultra-cold gas.

Particle indistinguishability and the need to symmetrize collisions between like particles

in coherent superpositions give rise to spatial and temporal oscillations of the Bloch

vectors across a cloud of trapped atoms. We have separately imaged both transverse

and longitudinal components of these spin waves and studied the effects of temperature

and density on the spin wave frequency, paving the way for studying spin dynamics in

a finite-temperature condensate system.

Our original motivation to explore spin dynamics in uncondensed clouds arose

from our plan to extend to finite temperatures our earlier studies of spin coherence in

a condensate as described in Chapter 4 and in particular to understand the extent to

which an unpolarized normal cloud acts as a decohering thermal reservoir. The existence

of spin waves complicates these studies. A pure condensate cannot support spin waves,

but it will trivially separate due to small differences in the scattering lengths [48]. Spin

oscillations in the thermal cloud can have a considerable effect on the spin dynamics

of a finite temperature condensate, and conversely, having a small stationary cluster

of condensed atoms will significantly perturb spin waves in a thermal cloud. Such a

two component system is a rich system for studying spin dynamics in ultra-cold gases

[66]. The next chapter will present our efforts to study a finite temperature condensate

system.



Chapter 6

Coherence effects in a finite temperature condensate

Multiple spin-component Bose-Einstein condensates have permitted many studies

of global symmetries and quantum statistical correlation effects in macroscopic quantum

systems[67, 68, 25]. Interparticle correlations, or coherences, are fundamental properties

in ultra-cold atomic gases as well as in the field of quantum optics. First-order coher-

ences, referring to the deterministic nature of the phase of a system, can be seen in both

fields. First-order coherence has been seen by overlapping two Bose-Einstein conden-

sates and observing spatial density fringes [69], which is a counterpart to interference

between two laser beams. We investigate further first-order correlations by watching

finite-temperature condensate melting due to decoherence of the normal cloud. Using

the Bose-Einstein phase transition as calibration, we examine the thermodynamics of

the system to gain understanding of the correlations between atoms.

In this chapter we study how correlations affect the condensing and melting pro-

cess in a condensate. We start by discussing the properties of the states in which we

will study loss of coherence. We use two dressed states in 87Rb, because these states

enhance the natural symmetries of the system and allow us to more easily measure the

correlations. Studies of the dressed states include measurements of stability of the states

against transitions and experiments to determine the equilibrium spatial density distri-

bution. Next we discuss the situation where we cool through the transition temperature

with a partially coherent cloud to examine the symmetry of the condensed state, and
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finally how loss of coherence leads to melting of the condensate.

6.1 Dressed states

The dressed-state formalism is useful to describe a two-state system coupled by

a radiation field [26]. The energies of the bare states

Ee/g = ±1

2
h̄ω0 (6.1)

are shifted by the presence of the coupling field to

Eg = −1

2
h̄ω0 +Nh̄ω (6.2)

Ee = +
1

2
h̄ω0 + (N − 1)h̄ω, (6.3)

where ω0 is the frequency difference between the two bare states, ω is the fre-

quency of the coupling field, and N is the number of photons in the field. Solving for the

eigenstates of the new Hamiltonian including the coupling field produces two eigenstates

that are linear combinations of the bare states. These dressed states

|+〉 = e−i(Ω′

R
−δ−ωo) t

2

[√

1

2
(1 +

δ

Ω′
R

)|1〉 + e−iωt

√

1

2
(1 − δ

Ω′
R

)|2〉
]

(6.4)

|−〉 = ei(Ω′

R
−δ−ωo) t

2

[

−e−iωt

√

1

2
(1 − δ

Ω′
R

)|1〉 +

√

1

2
(1 +

δ

Ω′
R

), |2〉
]

(6.5)

are separated in energy by the effective Rabi frequency

Ω′
R =

√

(ω0 − ω)2 + Ω2
R, (6.6)

where ΩR is the resonant Rabi frequency. A diagram of the dressed states as a function

of detuning from resonance is shown in Fig. 6.1. When the coupling field is detuned

far red of resonance the ground state is essentially the |−〉 state, and the excited state

is essentially the |+〉 state. As the detuning approaches zero the dressed states become
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Figure 6.1: Energy level diagram of the dressed states showing the avoided crossing.

equal superpositions of the bare states. Finally, if the detuning increases in the blue

direction the |−〉 state is now the excited state.

An atom initially in one dressed state will remain in that dressed state if the

detuning is changed adiabatically. Adiabaticity is maintained if Υ is much greater than

one, where Υ, the adiabaticity parameter, is

Υ =
Ω2

R
∣

∣

∣

dδ
dt

∣

∣

∣

, (6.7)

where dδ
dt is the time rate of change of the detuning from resonance. The probability

that an atom will make a transition to another dressed state is [70]

P = e−2πΥ. (6.8)
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6.2 Symmetries of the dressed-state system

Before looking at correlation effects, we must first understand the properties and

symmetries of the dressed state system. The dressed states on resonance, being equal

superpositions of the bare states, have convenient properties that are not present in the

bare state system. These properties include identical collisional and loss rates as well

as nearly identical trapping potentials.

A study of the symmetries includes the stability of atoms in a single dressed state.

A collection of ultra-cold atoms in a binary mixture of two spin states has two global

U(1) symmetries, which correspond to conservation of particle number in each species.

However, when a coupling radiation field is tuned to the transition frequency between

the spin states, one of the U(1) symmetries is broken. The symmetry is broken by the

constant phase relation between the two species imposed by the field. The symmetry

that remains corresponds to a conservation of total atom number. If the energy between

the two states could be reduced to zero the system would be fully SU(2) symmetric.

Such as system would be ideal to produce proposed Schrödinger cat states [71], but is

excessively difficult with our system.

The experimental system is similar to the one described in Chapter 2. The system

consists of a sample of atoms in the |1〉 hyperfine ground state of 87Rb cooled to below

500 nK in the HIP trap. The dressing field consists of a microwave photon (∼ 6.8 GHz)

and a rf photon (3 MHz) that couples atoms to the |2〉 state through the intermediate

state |2, 0〉 [72]. Typical resonant Rabi frequencies are between 0.1-8 kHz and can

be varied dynamically during an experimental run. The atoms can be prepared in a

single dressed state by adiabatically ramping the dressing-field detuning from a large

positive or negative value to zero. The atoms can also be prepared in an equal coherent

superposition of the two dressed states by diabatically turning on a resonant dressing

field.
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We can selectively image atoms in either the dressed- or bare-state basis. To

image atoms in the dressed basis we adiabatically ramp the dressing-field frequency far

from resonance in either direction before turning off the field. For example ramping the

frequency to a larger frequency transforms the |+〉 state into the |1〉 state and the |−〉

state into the |2〉 state. We can then use absorption imaging to probe the atoms only

in the |1〉 state. We can also quickly turn off the dressing field while still on resonance

to project the atoms into the bare-state basis, and therefore probe the coherence of the

dressed states, which manifests itself as Rabi flopping in the bare states.

6.2.1 Stability of dressed states

We are unaware of any symmetry that implies conservation of atom number sepa-

rately in each dressed state, and thus transitions between dressed states are not explicitly

forbidden. We set out to observe transitions between dressed states because we thought

transitions might be possible when the energy splitting of the dressed states is less than

the thermal energy kBT .

There are several mechanisms that can transfer population between dressed states.

The most interesting type of transfer arises from collisions. During a collision the relative

phase between the |1〉 and |2〉 bare parts of the wavefunction may acquire a phase shift,

which results in population transfer in the dressed basis. Another mechanism of transfer

is driven resonantly by the magnetic trapping fields. As atoms oscillate in the harmonic

trap there appears, in the atoms’ frame, to be an oscillating magnetic field. If the

energy splitting between the dressed states, i.e. Rabi frequency, is tuned such that it is

twice the trap oscillation frequency, the atoms have a probability of making a transition

between dressed states. The radial frequency is large compared to the collision rate

which allows an atom to oscillate freely in the trap for several cycles before a collision

takes place and changes the effective oscillating magnetic field seen by the atom. This

resonant transfer is an incoherent process, because the phase of the oscillating field for
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each atoms depends on its position and velocity, which are distributed thermally. The

populations in each state should therefore not oscillate coherently but relax instead to

an equal mixture.

Besides collisionally and resonantly induced transfer, atoms can make a transition

between dressed state via the Landau-Zener process [73, 74]. If an atom cannot adia-

batically follow the torque applied by the dressing field it may transfer between dressed

states. If dδ/dt > Ω′2
R, where δ is the detuning of the dressing field, there is a large

probability an atom will undergo a Landau-Zener transition, as described in section 6.1.

The detuning from the intermediate state varies spatially across the cloud due to the

non-uniform density profile, leading to a spatially dependent mean-field energy shift,

and also due to the Zeeman energy shift from the magnetic trapping fields. As the

atoms oscillate in the trap they experience a time rate of change of detuning as they

sample different densities and magnetic fields, which induces transfer.

We measure the rate of transfer between dressed states by adiabatically dressing

the atoms in purely one dressed state on resonance and detecting atoms appearing in

the other state. We start with the atoms in the |−〉 state and wait up to two seconds.

We then ramp the drive detuning 10×ΩR in either direction to adiabatically convert one

of the dressed states into the |1〉 state, which we image using absorption. We determine

the transfer rate at different Rabi frequencies by extracting a linear slope of the fraction

transferred as a function of time (Fig.6.2).

There are two features to note with the data in Fig. 6.2. First, there is a resonant

increase in transfer where the Rabi frequency is twice the radial frequency for the reason

described above. Second there is a background rate, which decreases as Rabi frequency

increases, which is most likely due to Landau-Zener transitions. We can estimate the

transfer probability per collision far from the resonance, above 3 kHz, to be no more than

4(2)× 10−5. Although collisional transfer from the |−〉 to the |+〉 state is endothermic,

it is energetically allowed because the atoms’ thermal energy is larger than the splitting



110

ΩRabi (kHz) 

T
ra

n
s
fe

r 
ra

te
 (

H
z
)

ΩRabi (Hz)

300 400 500 600
0.0

0.1

0.2

0.3

1 10
0.0

0.1

0.2

0.3

0.4

Figure 6.2: Transfer rate is shown as a function of Rabi frequency. The inset graph
highlights the resonant transfer at twice the radial trap frequency (νradial = 230.5Hz);
the solid line is a fit to a plausible functional form of a decaying exponential plus a
Lorentzian. The error bars reflect the statistical uncertainty in the fitting. Initial cloud
parameters are T = 300 nK and density = 2 × 1013cm−3.

between the dressed states. Collisional transitions maybe suppressed in 87Rb because

the triplet and singlet scattering lengths are nearly identical, which reduces the rate

for atoms to spin-flip between hyperfine ground states during collisions. The small

collisionally induced transfer rate implies an approximate symmetry. The system is not

free to explore fully the entire SU(2) space, which would be useful for verifying several

theoretical predictions such as Mermin-Ho vortices [75]. For our purposes, the stability

of atoms in the dressed states is fortunate. We want to compare the thermodynamics

of atoms in an equal superposition of states to that of atoms in one dressed state. This

would not be possible if the atoms, initially prepared in one state, would over short
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times equilibrate to an equal populations in both states.

6.2.2 Separation of dressed states

Working with dressed states instead of bare states can also increase the spatial

symmetry of a two-component condensate. A condensate in a superposition of two bare

states will spatially separate in the trap to reduce the total energy of the system [48, 76].

The two spin states we work with in 87Rb have slightly different mean field interactions,

which drives the separation. In other work it has been shown that the |1〉 state, the

state with a larger s-wave scattering length, will move to the lower density region of

the condensate, and the |2〉 state will concentrate in the center of the cloud where the

density is the highest [48].

The dressed states on resonance, on the other hand, are composed of equal super-

positions of bare states. The mean-field interaction energy between the dressed states

is equal and therefore does not drive spatial separation. However any significant spatial

gradient in the differential potential between the dressed states, such as produced by a

spatially inhomogeneous Rabi frequency, will cause separation. Atoms at different po-

sitions in the harmonic trap are detuned differently from the intermediate state, |2, 0〉,

due to the Zeeman effect. The spatial variation of the intermediate state detuning re-

sults in a variation of the Rabi frequency across the cloud. Typically the Rabi frequency

varies by at most a few percent across the entire condensate. However at large ΩR, a few

percent can mean 100 Hz difference, more than enough to drive spatial separation. The

Rabi frequency inhomogeneity has the functional form of the magnetic trap: parabolic.

When we operate with large Rabi frequencies (>1kHz) and negative intermediate state

detuning, the dressed states separate with the |−〉 occupying the outer region of the

condensate and the |+〉 in the center (Fig. 6.3). Changing the sign of the detuning

causes the states to reverse positions in the trap. The goal for spectroscopy is to have

the two states overlapped as much as possible in the trap. The dressed states in the
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condensate remain completely overlapped, within experimental resolution, when the in-

termediate state detuning is increased to 1.4 MHz and the Rabi frequency is decreased

300 Hz as shown in Fig. 6.3 .

ΩRabi = 1900 Hz ΩRabi = 300 Hz

0 s

0.5 s

Figure 6.3: Normalized cross sections through the clouds comprised of |+〉 atoms in red
and |−〉 in blue as a function of time; the difference between the cross sections is in
black (second and fourth columns). There is significant separation of the two dressed
states when the Rabi frequency is 1.9 kHz and ∆IM = 0.7 kHz. Decreasing the Rabi
frequency to 300 Hz and increasing ∆IM = 1.4 MHz results in the clouds remaining
overlapped for at least 0.5 seconds.
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6.2.3 Evaporation of dressed states

We investigate the symmetries of the dress-state system also by condensing with

the dressing field present. An interesting question to ask is how the condensation process

is affected by the dressing field. Does the condensate form in the lowest energy state

in the system or in an excited state such as a coherent superposition of dressed states?

We examine these questions by starting with a cloud of atoms above the transition

temperature, applying the resonant dressing field, and evaporatively cooling the cloud

until a condensate forms.

We begin the experiment with a 50/50 fully-coherent superposition of |+〉 and

|−〉 states, above the condensation temperature. During the evaporation the atoms

dephase due to the spatial inhomogeneity of the Rabi frequency. The dephasing time is

proportional to the magnitude of the Rabi frequency and is on the order of 100 ms for

a Rabi frequency of 370 Hz. We cool the cloud in 120 ms using simultaneous microwave

evaporation on both the |1〉 and |2〉 states. By the time the condensate forms the normal

cloud has dephased significantly but not entirely. In this manner we can create a cloud

with a condensate fraction up to 10%. After the condensate forms we investigate the

state of the condensate by waiting a variable time before diabatically turning off the

dressing field and imaging the atoms in the |1〉 state. We integrate the number through

a column in the center of the cloud which includes most of the condensate and some of

the normal cloud. The data in Fig. 6.4 show the number in the center of the cloud,

which is 52(4)% condensate, Rabi flopping with 86(4)% contrast.

The high contrast fringes demonstrate that the condensate, which is condensed

out of a normal cloud with residual coherence, forms in a superposition of dressed states.

One might expect this result because the normal cloud retains some local coherence when

the condensate forms. However, it is still surprising that the condensate is created in

a state that cycles between the bare states, despite the powerful statistical mechanical
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preference for groundstate condensation.

We are unable to fully answer the question of how correlations are lost, or what

state a condensate is created in when the normal cloud has lost all correlations, because

of the limited parameter space we can explore. By the time the condensate forms, the

normal cloud has significantly decohered because of dephasing during the relatively long

evaporation time. This limits the measurement to samples with already small corre-

lations. On the other side, we can not form a condensate where the correlations have

essentially disappeared. This inability to condense suggests that the correlations them-

selves could promote condensation. We can barely create a condensate when correlations

are present because we lose a significant number of atoms due to dipolar relaxation in

the |2〉 state. Therefore it is not surprising that we can not produce a condensate when

the correlations are lost, because we would need a factor of 2 more atoms. Because

of these limitations we also looked at the loss of correlations from the perspective of

melting instead of condensing.
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Figure 6.4: The density of atoms in the center of the cloud in the |1〉 state Rabi flopping
as a function of hold time after evaporation. 52% of the central density consists of
condensate atoms.
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6.3 Decoherence induced melting of a finite temperature conden-

sate

We use the statistics of the Bose phase transition to look at the correlations. A

partially condensed system made up of fully coherent atoms in an equal superposition

of two spin states is, in effect, composed of a single species of atom. If the noncondensed

atoms dephase, due to an inhomogeneous potential, they become distinguishable parti-

cles and must be thought of atoms in two distinct populations. A condensate at finite

temperature initially in equilibrium with a fully coherent normal cloud will presumably

melt as the coherence is lost in the normal cloud. This can be understood by realiz-

ing the loss of coherence essentially reduces the effective number in the state by two

(Neff = N/2). The condensate must then melt to restore thermal equilibrium.

We observe condensate melting induced by decoherence in the normal cloud by

initially creating a cloud in the |1,−1〉 state with about 45% condensate fraction. Next

we dress the cloud in an equal coherent superposition of dressed states. We measure the

temperature and density of the cloud over a time of 200 ms and calculate the apparent

phase space density [77] of the normal cloud as the condensate melts. For a system

in a single dressed state or a fully coherent superposition of states, the phase space

density for the normal cloud should be equal to one, normalized by 2.61, as long as a

condensate is present. If the system is an uncorrelated binary mixture of two states,

the total normal cloud will appear to be at twice the phase space density. We also

performed the same experiment with the sample in only one dressed state.

The one state data allows us to remove imaging and fitting systematics. There

is a systematic error in calculating phase space density of the normal cloud when a

condensate is present due to our fitting routine. We find the calculated phase space

density increases linearly with increasing condensate fraction for the one component

cloud, which should remain at a constant 2.61 when a condensate is present. We remove
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this systematic by fitting a line to the phase space density vs. condensate fraction data,

and then we remove this slope from the both the single and superposition state data.

Also, when we took these data we did not have enough microwave power to transfer

100% of the atoms via ARP for imaging. Therefore, we could not detect all of the

atoms, which led to an underestimate of the phase space density. We eliminated this

problem by normalizing each phase space density data point by the average of the single

state phase space density.
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Figure 6.5: The measured phase space density (PSD), normalized by 2.61, as a function
of decohering time. The solid circles are the PSD of the normal cloud in a single state,
whereas the open circles represent the PSD of the normal cloud in an initially fully
coherent superposition of dressed states. The superposition state PSD approaches two
in a time scale of 40 ms, which is consistent with the normal cloud coherence time of
30(5) ms. Each point is a weighted average of nine independent measurements.

We are able to observe the apparent phase space density of the superposition case

go from 1→∼2 [Fig. 6.5]. The time scale for the correlations to go away is on the order
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of 40 ms, as extracted from an exponential fit to the data in Fig. 6.5. One would expect

the atoms to become uncorrelated on the same time scale as the decoherence, ignoring

the thermal equilibration time of the system. We measure the coherence time of the

thermal atoms at the edge of the cloud to give an estimate of the coherence time at the

center of the cloud. We find the coherence time of the thermal atoms to be 30(5) ms

which is consistent with the time for the correlations to disappear.

In the special case where the normal cloud has lost all correlations and can be

thought of as a binary mixture of two states, the question arises what state describes the

condensate? One possibility is that collisions into and out of the condensate from the

normal cloud could create two condensates in a binary mixture. The two condensates

would still have spatial coherence but would have lost internal coherence. There would

be a distinct relative phase between the condensates in each dressed state but would

vary from experimental shot-to-shot. In the end, any product of the decohering process

would be a novel quantum state. Unfortunately we are currently unable to determine

the state of the condensate after the decohering process, because by the time all of the

correlations are lost there is very little to no condensate present due to the large loss

rate in the |2〉 state.

In conclusion we have studied the properties of a two-state dressed system. Atoms

in a dressed state show remarkable stability against relaxing to a different dressed state.

This stability allows us to use these states to examine the effects of correlations on con-

densing and melting Bose-Einstein condensates. We were able to watch the correlations

disappear and observe decoherence-induced melting in a finite-temperature condensate.

The ultimate state of the condensate after all normal cloud correlations are gone would

be interesting to study in the future.
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Appendix A

Everything you ever wanted to know about Rubidium

Property symbol Value

cooling transition 5S1/2, F=2→5P3/2, F=3

nuclear spin I 3/2
wavelength in vacuum λ 780.23 nm
mass mRb 1.44×10−25kg
lifetime of upper state τn 27 ns
natural linewidth Γ/2π 5.9 MHz
absorption cross section σabs 290.7×10−15 m2

saturation intensity(stretched transition) Isat 1.6 mW/cm2

recoil temperature Trec 180 nK
recoil velocity vrec 0.59 cm/s
ground hyperfine splitting ωhf 6834.68261090434(3) MHz

|1,−1〉 s-wave scattering length a11 100.44 a0

|1,−1〉/|2, 1〉 s-wave scattering length a12 98.09 a0

|2, 1〉 s-wave scattering length a22 95.47 a0

Table A.1: Properties of 87Rb

.
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Figure A.1: Energy level diagram for 87Rb showing Landé g factors for each state.
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Figure A.2: Branching ratios for 87Rb. Multiply by the circled number in the left(right)
column to get the branching ration for the D2(D1) line.


