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dberg States

Thesis directed by Prof. Chris H. Greene

The Rydberg spectra of atoms and small molecules offers an experimentally con-

venient probe for exploring the exchange of energy between Rydberg electrons and other

forms of electronic, vibrational, and rotational excitation. This thesis investigates a se-

ries of special topics in the field of molecular Rydberg spectra, using a diverse set of

theoretical techniques all designed to take advantage of the computational efficiency of

the sorts of scattering parameterizations commonly associated with the field of quantum

defect theory. In particular, I consider various mechanisms by which Rydberg electrons

participate in the formation (bonding) and destruction (dissociation) of molecular states.

First, I review the methodology of multichannel quantum defect theory in molec-

ular systems, demonstrating its versatility in reducing a complicated set of channel-

coupled solutions into a physically observable photoionization spectrum with exception-

ally high resolution, even in regions characterized by complex resonant structures with

strong energy dependence. The utility of the Fano frame transformation is discussed,

two approaches to the problem of extracting resonant effects via the delay of asymptotic

boundary conditions are presented, and a case study featuring the molecular hydrogen

isotopomer HD is examined in detail.

Second, I turn to the question of Rydberg electrons in the presence of both an

ionic core and a neutral perturbing particle, extending certain basic features of the

above philosophy to a two-center geometry. This system is predicted to give rise to

a potential well that supports bound states, with a potential curve minimum existing

at many hundreds or thousands of Bohr radii. The problem is first handled at the
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level of a zero-range potential approximation, where the solution can be written by

means of degenerate perturbation theory. This approach is compared to a more robust,

but computationally expensive, description of the interaction in terms of a finite range

model potential, requiring diagonalization of the Hamiltonian with respect to an L2

basis. Some properties of these states are also noted. Next, a more powerful but

difficult formulation using the Coulomb Green’s function, subject to limiting boundary

conditions at the position of the core and perturber, is derived. Finally, a semiclassical

interpretation, corresponding to the trajectories of a point particle electron moving

classically in a Coulombic field, is examined in detail.

Third, I return to the case of the diatomic Rydberg spectrum, this time extend-

ing the solution to accommodate dissociation pathways through the use of a Siegert

pseudostate basis. Previously developed methods of treating the competition between

ionization and dissociation are reviewed and evaluated. The Siegert basis is defined,

together with an efficient procedure for its calcuation, and some of its unconventional

properties are explicitly noted. The Siegert-MQDT method is applied to several re-

active scattering or half-scattering processes, including photodissociation, dissociative

ionization, and dissociative recombination.
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Chapter 1

Introduction

The progress of scientific thought has, at several critical junctures in history,

depended essentially on something that can only be regarded, with the advantage of

hindsight, as an exceptional stroke of good luck. The theory of celestial mechanics, as

first developed by Johannes Kepler, involved several levels of fortunate happenstance:

Kepler was lucky to have selected Mars for his studies, with its notably elliptical orbit

capable of detection even by the rudimentary measurements of his era; he was lucky

that the law he was in the process of discovering involved orbits that traced conic

sections, a class of geometric constructs that had been the object of extensive study by

the ancient Greeks for purely aesthetic reasons; and he was lucky that the motion of

planets in the solar system, due to the mass disparity between them and the sun, could

be described so well at the level of approximation as a set of noninteracting two-body

systems. Without the benefit of Kepler’s good fortune, Copernicus would not have been

so quickly vindicated, nor would the foundation for Newton’s subsequent development

of gravitation been so firmly established.

By coincidence, it would be another researcher named Johannes who, three cen-

turies later, traced Kepler’s steps in recognizing an empirical law derived from the same

inverse-square force law as Kepler’s orbital mechanics– although, like Kepler, Johannes

Rydberg had little appreciation of the physical basis for his empirical formula. (Iron-

ically, his doctoral dissertation, written in mathematics before his interests turned to
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physics, had been on the subject of conic sections.) As with Kepler’s fortuitous choice

of Mars, Rydberg had the benefit of several spectral lines of hydrogen (what we now

know as the Balmer series) that lay well within the visible region of the spectrum.

These lines had in 1885 been identified by yet another Johann, the Swiss schoolteacher

Johann Jacob Balmer, as being well-characterized by the formula λ ∝ n2/(n2 − 22)

[1], although Rydberg was not aware of this at the time he began his study. Rydberg,

working from a larger library of spectroscopic data for hydrogen and the alkali metals,

was able to successfully generalize Balmer’s form of the transition frequency in 1888,

with the now-familiar result [2]

n

N0
=

1

(m1 + c1)2
− 1

(m2 + c2)2
. (1.1)

The names of the variables are here intentionally presented using Rydberg’s original

choice of symbols: n is the wavenumber of the emitted light, N0 is the eponymous con-

stant named in Rydberg’s honor, and m1 and m2 are positive integers. The appearance

of the additional constants ci was, happily enough, the only modification necessary to

extend the hydrogenic formula to the analysis of alkali spectra. And this, of all the

providential manifestations of natural simplicity considered thus far, is the one with

which this thesis shall be most properly concerned.

It would be an excusable generalization for one to observe that, in practical terms,

Rydberg states are the only multiparticle states that are quantitatively understood at

anything approaching the celebrated level of success achieved by quantum mechanics

for ground state energies and wavefunctions. The tools of quantum chemistry that

have so far been developed for the treatment of many particle systems rely chiefly

on variational approaches that minimize variables (most commonly the total energy)

subject to constraints, and as such generalize poorly to excited states. Only in the last

twenty years have techniques for excited state ab initio calculation begun to achieve



3

reasonable success, and even then only at great computational expense [3]. The Rydberg

states arising from a Coulombic potential, uniquely and fortuitously, pass over into a

limit which reduces the complex electronic correlations into a simply parameterized form

that reflects a nearly-exact integrability of the Schrödinger equation for the electronic

potential. As a consequence, even molecular Rydberg spectra with a dizzying array

of closely spaced resonances are still naturally tractable with respect to spectroscopic

assignment. The more highly excited a Rydberg state becomes, the more it acquires the

character of a perturbed hydrogenic state, and thus the more regular and predictable

the associated structure is expected to become.

With sufficiently accurate spectroscopic methods, deviations from the general ex-

pression given above begin to emerge, reflecting a variety of subtle perturbative effects

on the spectrum that would be difficult to detect through other methods. The analysis

of Rydberg spectra effectively extracts quantitative information about the spatial distri-

bution of electrons and nuclei in the core, as well as the partitioning of energy between

possible modes of core state excitation. One important class of perturbative effects is

associated with core anisotropy, arising from either the electrostatic multipole moments

of the core geometry or induced polarization of the core electrons. Other small spectro-

scopic shifts may be attributed to relativistic modification of the motion and interaction

of the Rydberg electron, including the so-called Casimir force. These corrections are

all manifestations of the alteration of the long-range Coulombic potential, and can be

expressed rather intuitively, albeit often non-trivially, as additional terms in the elec-

tronic Hamiltonian defining Rydberg motion. While these terms may possess complex

tensorial character, they are essentially adiabatic in nature, and thus remain amenable

to treatment within the familiar framework of adiabatic approximations.

Another important class of spectroscopic signatures for Rydberg-core interaction

involves the sensitivity of the Rydberg electron to short-range many-particle dynamics

in the immediate vicinity of the core structure. Due to the disproportionality of the
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spatial probability distribution of the highly excited electron relative to that of the (at

most weakly excited) core, the volume over which such interactions can contribute is

necessarily small. For Rydberg states with more than a few quanta of angular mo-

mentum, the resultant centrifugal barrier shields the core entirely, and all short-range

effects are buried deep inside of the inner turning point of the effective potential. For

any case where the Rydberg wave function extends even slightly into the core volume,

however, the core may exert substantial effects on the solution within that volume, and

thereby alter the stationary superposition of hydrogenic solution states in the asymp-

totic Coulomb region as well. Further discussion of the origin of these effects will be

deferred until Chapter 2; for the moment, it suffices to note that they require a funda-

mentally non-Born-Oppenheimer description. When the electron is far from the core,

it has relatively little kinetic energy, and its motion cannot be considered “fast” on the

time scale of core dynamics; when the electron is close to the nucleus, it has enormous

kinetic energy due to proximity to the singularity of the Coulomb potential, and enters

and exits the core volume on a time scale much faster than any adiabatic rearrangement

of energy within the core. In summary, one may instructively observe that the Rydberg

electron lives in one region of space where the Born-Oppenheimer potential is valid but

the single particle approximation fails due to strong correlation with the other electrons

and coupling with the core degrees of freedom, and one region of space where the single

particle approximation is valid but the Born-Oppenheimer approximation fails due to

the decoupling of the slow Rydberg electron from the geometry and orientation of the

core state.

1.1 Historical development of experimental technique

The separation between lines arising from the manifolds of a hydrogenic energy

spectrum diminishes rapidly with increasingly primary quantum number n, as 1
n3 . The

difference between the n = 99 and n = 100 manifolds is already less than half a
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wavenumber. Selective excitation of a particular state either within or near a particular

manifold (when, for example, the usual selection rules are broken by the introduction of

a small external static electric field) demands even greater control over the energy and

linewidth of the incident light. The extraction of detailed structure within the Rydberg

spectrum has thus been dependent upon advances in the efficiency with which light

can be produced at both high intensity and narrow bandwidth. Prior to the advent of

modern laser optics, this required the use of dispersive instruments such as prisms and

diffraction gratings to isolate monochromatic components of a broadband source. The

task was further complicated by the necessity of working under vacuum conditions due

to the strong continuum absorption of common background gas components in the ul-

traviolet, where Rydberg transitions of atoms and small molecules are most commonly

observed. Molecular oxygen becomes opaque below 1850 Å, and molecular nitrogen

below 990 Å. (For a survey of some early difficulties of the development of spectroscopy

in the VUV, see [4].)

In light of these experimental difficulties, it is understandable that high-resolution

Rydberg spectroscopy did not attain sufficient resolution to detect small (i.e., on the

order of a wavenumber) structure and shifts until the late 1960s and early 1970s. The

earliest high resolution discrete absorption spectrum of molecular hydrogen was that

conducted by Herzberg [5], and the first high resolution continuum spectrum was that

of Dehmer and Chupka [6]. These results, improving on previous resolution by as

much as two orders of magnitude, not only successfully resolved the rotational and

vibrational separations of the molecular spectrum with precision better than a fraction

of a wavenumber, but also were capable of accurately defining line widths and shapes

to an extent that prompted the development of new theory describing strong energy

dependence (i.e., resonant effects) of the photoexcitation cross-sections with quantitative

rigor.

The emergence of even better experimental methodology in the last twenty years
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has continued to improve the quality of Rydberg spectroscopy. Noteworthy examples

include the popularization of high-intensity synchrotron radiation sources, permitting

even weak features in the spectrum to contribute an observable signal, and the intro-

duction of narrow bandwidth laser sources extending into the far ultraviolet through

the use of tunable lasers, frequency doubling, and higher harmonic generation. Laser

technology has not only superseded the use of dispersive monochromators, but has also

opened the door to exquisitely fine control over the phase and coherence properties of

the incident light. Among the many delicate effects now accessible by experimental

techniques are the tunneling between the vibrational potential wells of highly excited

double-well adiabatic H2 potential curves [7], the breaking of g-u symmetry in HD, [8],

singlet-triplet mixing near the H(n=1)+H(n=2) dissociation limit [9], and competition

between dissociation and ionization decay dynamics in the regions of the H2 spectrum in

an energy regime where multiple dissociative fragmentation channels are simultaneously

open [10].

1.2 Emerging applications for Rydberg state theory

Much of the appeal of Rydberg states lies in their potential to serve as a bridge

between classical and quantum mechanics. Traditionally, the former has been associated

paradigmatically with macroscopic systems, and the latter with microscopic systems.

In theory, of course, classical mechanics is merely the expression of certain limiting

procedures necessary to extend quantum theory to systems with arbitrarily large particle

numbers, energies, and state densities. With respect to the boundary between the

classical and quantum regimes, one may identify two areas of burgeoning recent research

interest: First, techniques to demonstrate explicitly quantum mechanical properties on

a macroscopic (or at least mesoscopic) scale, and second, new methods to control or

selectively influence the evolution of quantum systems.

Much of the renewed interest in atomic physics generally may be attributed to
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rapid improvements in laser trapping and cooling technology. From the standpoint of

Rydberg spectroscopy, the ability to cool atoms to temperatures to fractions of a Kelvin

is especially appealing, since highly-excited states can survive for long times under such

conditions, allowing their evolution over time to be systematically manipulated and ex-

ternally directed toward a controlled outcome. Possibilities include arranging Rydberg

atoms in an orderly spatial geometry, entangling them with one another, constructing

Rydberg electron wavepackets that mimic classical particles or display long-time recur-

rence effects, and exploring the controlled or spontaneous transition of Rydberg atoms

into molecules or plasmas.

The range and diversity of such work has been extensive enough that it can only be

surveyed here by a selected subset of representative examples. Rydberg atoms have been

proposed as a pathway to quantum information processing, either via a dipole blockade

effect [11, 12], entanglement in superconducting cavities using microwave photons [13], or

half-cycle pulses shaped using optimal control theory [14, 15]. A system of cold trapped

atoms excited to high Rydberg levels has been observed to evolve spontaneously into a

cold plasma, at temperatures four orders of magnitude lower than any other method of

cold plasma generation, in a phase transition postulated to be analogous to the Mott

transition in semiconductors [16, 17, 18, 19]. The angular momentum composition of

Rydberg wavepackets has been selectively controlled by phase-locked laser pulses [20].

The coherent control of a four-wave mixing signal has been observed as a manifestation

of the interference between Rydberg excitation pathways [21]. The collision potentials

between Rydberg atoms have been examined in detail, revealing curve crossings at

thousands of a.u. capable of supporting bound vibrational levels [22], which may already

have been experimentally observed [23]. Finally, Rydberg states have been proposed as a

sensitive probe of small electric fields and gas phase ion concentrations, as well as various

other measurements of fundamental molecular constants like ionization potentials and

ionic energy level structure [24].
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Less attention has been paid to what might be termed “Rydberg chemistry”,

the study of bond formation and dissociation processes facilitated or influenced by the

presence of Rydberg electrons. Such applications would define a new field of conceptual

overlap between the increasing interest in quantum control of chemical reaction prod-

ucts, in the physical chemistry community, and the atomic Rydberg investigations by

the AMO community discussed above.

1.3 Outline of presented topics

In this thesis I explore a number of the properties of molecular Rydberg state

solutions, and the calculation and analysis of spectroscopic observables. In the devel-

opment of new techniques and predictions, one logically begins by working from the

simplest cases toward the more complex, and the simplest of all molecules are homonu-

clear diatomics. I shall consider two varieties of diatomic Rydberg bound states, one

being the more conventional case in which the molecular ion is bound by the core elec-

trons, with the Rydberg electron serving as a probe of the core structure and dynamics,

and the other being long-range molecules with two distantly separated centers in which

the bonding is controlled by the Rydberg electron itself.

In Chapter 2, I introduce the basic concepts and vocabulary of scattering theory

in an informal overview. The significance and origin of resonances is considered, with

particular attention to their relationship to the different classes of motion that charac-

terize the degrees of freedom that create resonant effects. I specialize to the example

of molecular hydrogen, and move on to the consideration of multichannel spectroscopy,

and how it can be described from the standpoint of a quantum defect formalism. The

spectrum of the molecular hydrogen isotopomer HD is calculated by way of quantum

defect theory in conjunction with application of Fano’s frame transformation procedure,

followed by a critical assessment of the limitations of the approach.

Chapter 3 pursues the separate topic of the perturbed spectrum of a Rydberg
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atom in the presence of a ground state atom or molecule. The interaction between the

Rydberg electron and the perturbing atom or molecule is first considered at the level of a

zero-range interaction approximation, where the particle is described by a delta function

potential with a strength proportional to the energy-dependent generalization of the

scattering length. This approximation yields an exact analytical result in degenerate

perturbation theory for a hydrogenic Rydberg atom, if spin-orbit and other degeneracy-

breaking terms can be neglected. The results of this approximation are tested by means

of a more detailed finite-range model pseudopotential defined in a way that separates

out scattered partial waves non-locally. Properties of the bound state potentials that

arise from such interactions are noted and discussed.

Chapter 4 returns to the same problem, but instead treats it using a Green’s

function formalism. I demonstrate the ability of this method to reproduce the other

methods of the previous chapter, both for the hydrogenic and finite quantum defect

cases. The case of perturbation of a Rydberg molecule by a weak external electric field is

considered, with example calculations. Finally, some relationships between semiclassical

closed-orbit theory and the nodal pattern of the quantum wavefunction.

Chapter 5 revisits the diatomic photoionization spectrum, and introduces the

complication of competing dissociative processes. The history of methods that treat

competition with the dissociative continuum is reviewed, and the advantages and limi-

tations of various methods are observed. As an alternative to these, I propose a new rep-

resentation of coupling to the continuum, using a discretized pseudostate basis obeying

Siegert boundary conditions. The properties of Siegert pseudostates are briefly summa-

rized, and a recently developed method for their efficient generation is described. Using

these pseudostates as a finite basis representation for the MQDT-frame transformation

technique, it is shown that scattering into the ionization and dissociation continua can

be treated simultaneously within a unified formalism.



Chapter 2

General review of molecular MQDT

For over a century, spectroscopy has served as a faithful midwife for the birth of

countless new discoveries in modern chemistry and physics. Bohr’s theory of the atom

was designed to accommodate classical stoichiometric concepts of valency to explain the

spectra of hydrogen and alkali atoms. Organic chemists depend on infrared spectroscopy

to detect the presence of certain bond types, and the study photoelectron spectra in

the visible and ultraviolet regions to draw inferences about the distribution of electrons

within those bonds. Biologists utilize the sensitivity of fluorescence decay lifetimes to

perturbation by analyte atoms and molecules in order to perform image mapping of

cellular structure. The reflectance and emission spectra of rocks and minerals provide

clues to geological history, whether of the upheaval of the Earth’s crust or of the flow

of ancient rivers on Mars. Astronomers rely on spectroscopic observations to determine

the composition of stars, as well as their distance, their age, their motion, their temper-

ature, the influence of any extra-solar planets they might support, and the density and

composition of the diffuse interstellar matter through which their light subsequently

travels. The most accurate clocks in the world depend on spectroscopic standards, as

does the definition of the SI unit of length, the meter. The spectroscopic study of distant

galaxies and quasars is essential to the pursuit of fundamental cosmological questions

regarding the distribution of matter in the universe, its age and early history, and the

possible variation of fundamental physical constants over cosmic time scales.
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The richness of the information available from spectroscopic analysis is belied by

its complexity. The farther removed one becomes from the simple picture of transitions

between discrete hydrogenic levels, the more difficult it becomes to make sense of the

dense forest of spectroscopic features that encode the details of an atom or molecule’s

nanoscale structure and dynamics. 1 This onset of complexity may be related to

several successive complications of the primitive hydrogenic picture: first, the transition

to systems with multiple interacting electrons; second, the passage beyond bound state

transitions to the consideration of excitations into the scattering continuum; third, the

existence of multiple internal degrees of freedom that may be simultaneously excited,

and subsequently exchange energy with one another.

This thesis will be concerned with the resonant continuum spectroscopy of atoms

and molecules, for which all three complications are potentially present and important.

By the “continuum”, we refer to any region of the spectrum that describes complete sep-

aration of two fragment particles, either of an electron from its parent atom, molecule, or

ion, or of two dissociative fragments that result from the cleavage of a bond in a molecule

or molecular ion. Since the potential energy of separating fragments is not subject to

quantization, the states of the continuum region are continuously distributed. The spec-

trum of such a region, however, will in general display quite complex and irregular peak

and valley structures that signify the presence of resonant scattering effects. The distri-

bution, shape, width, and intensity of these features reflect the geometric configuration

and dynamic evolution of the system during the brief period in which fragmentation

occurs. 2

Throughout this chapter, as well as in chapter 5, molecular hydrogen is used for

illustrative purposes, as well as for various example calculations. Molecular hydrogen

1 The British biologist and Nobel Laureate Francis Crick famously described the interpretation of a
complicated biomolecular spectra as being “like trying to determine the structure of a piano by listening
to the sound it made while being dropped down a flight of stairs.”

2 The material in this introduction, and the two sections following, is discussed in most introductory
graduate level atomic/molecular physics textbooks. See, for example, chapters 9-12 of [25] or chapters
1-3 of [26].
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is a homonuclear diatomic, and as such it is characterized by greater symmetry than

heteronuclear diatomic or polyatomic molecules. This greatly simplifies the analytical

form of many expressions, sacrificing generality for the sake of improved conceptual

clarity. For sake of comparison, some discussion and computational results for the

more complicated diatomics N2 and NO can be found in [27], and a recent example of

the successful application of quantum defect theory to a simple polyatomic system is

presented in [28].

2.1 Degrees of freedom in molecular physics

In a molecular system, there are four classes of motion: electronic, vibrational,

rotational, and translational. Since all inertial frames of reference are physically equiv-

alent, the translational motion can be eliminated by a transformation to the rest frame

of the molecule, with no effect on the observed spectrum other than an overall Doppler

shift. (For a macroscopic sample, of course, translational motion is randomized and

these effects are averaged over many atoms, imposing a limit on experimental reso-

lution.) All other motions, however, are fully quantized, potentially spectroscopically

active (subject to the relevant symmetry-dependent selection rules), and in general de-

fine degrees of freedom in which energy can be stored and potentially transferred by

coupling to the other degrees of freedom.

The fact that the motion can be resolved in this way is a consequence of the dif-

fering energy scales with respect to which these motions occur. The separation between

electronic energy levels is commonly on the order of a few tenths of an atomic unit, at

least for the lowest levels, and the associated transitions appear as lines in the visible

or ultraviolet. The separation between vibrational levels is on the order of thousandths

of atomic units (102 to 104 cm−1), and appears in the infrared. The separation between

rotational levels is on the order of hundreds of thousandths of an atomic unit (100 to

102 cm−1), extending into the far infrared or microwave. These figures are all approx-
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imate, of course, and the vibrational and rotational level splittings depend specifically

on the masses of the nuclei; molecular hydrogen and its isotopomers have light nuclei

(protons or deuterons), for example, and thus their splittings are increased by an order

of magnitude relative to a heavier molecule like NO.

Table 2.1 shows the level spacings for molecular hydrogen relative to the ground

state. This data is representative of the literature references used to check the accuracy

of the rovibronic energy levels in my own computations. For extended discussion of

the techniques used to calculate these and similar quantities, including the absolute

dissociation threshold energy of the H+
2 and HD+ molecular ions that are used to fix

the spectrum relative to threshold in the example calculations, see [29, 30, 31, 32, 33, 34].

Table 2.1: Tabulation of the lowest rovibrational levels for molecular hydrogen, in cm−1,
based on the ab initio data of [35]. These values reflect the inclusion of both adiabatic
and nonadiabatic correction terms beyond the Born-Oppenheimer approximation.

v J=0 J=1 J=2

0 0.0 118.5 354.4

1 4161.2 4273.8 4497.9

2 8087.0 8193.8 8406.4

3 11782.5 11883.6 12084.8

4 15250.5 15345.9 15535.8

5 18492.1 18581.9 18760.5

The time scale associated with motion in a particular degree of freedom is inversely

proportional to its energy splittings, and thus the differences in energy scale can also

be interpreted as defining a hierarchy of time scales. Rotational motion is much slower

than vibrational motion, and both are slow relative to electronic motion. Conceptually

this means that an electron experiences the nuclear structure of a molecule as “fixed in

space”; the nuclei, inversely, experience the electron only as a highly averaged spatial

distribution of its motion. The result is an approximate separability of the equations

of motion governing these two disparate degrees of freedom; when this assumption is

taken to be exact, the result is the familiar Born-Oppenheimer approximation. To find
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a Born-Oppenheimer solution, the nuclei are first frozen in space, and the electronic

Hamiltonian diagonalized subject to the potential for that configuration. The electronic

calculation is repeated for a systematically varied range of nuclear coordinate values,

mapping out variation in energy levels to define associated potential surfaces. The

potential surface is then used to define a Hamiltonian controlling the nuclear motion,

which is diagonalized for the vibrational energy spectrum and vibrational wavefunctions.

Figure 2.1 shows the lowest electronic singlet ungerade potential curves for molec-

ular hydrogen and the Rydberg series limiting curve of the molecular ion, based on data

from the ab initio calculations of Kolos and Wolniewicz. Notice the avoided crossing

in the 41Σu curve, resulting from the crossing of a repulsive electronically autoioniz-

ing (doubly excited) state potential curve that descends through this region, creating a

similar series of avoided crossings with all of the singly excited electronic states higher

than n=4.

At the level of the adiabatic approximation, the quantum defect may be defined

in the molecular body frame as a function of the internuclear separation R,

UnΛ(R) = U+
1sσ(R) − 1

2
[n− µΛ(R)]−2. (2.1)

In practice, the quantum defect function µΛ(R) has a weak energy dependence, although

it rapidly approaches an energy-independent value for increasing principal quantum

number n. For energy-independent quantum defect calculations, the quantum defect

must be defined either relative to one particular potential curve, or else through some

limiting procedure in the energy. As an additional approximation, the curves are here

diabatically continued through the avoided crossings, since the the relation in Eq. 2.1

assumes there are no avoided crossings with other electronic states. (This is a reasonable

approximation for the ungerade states reached in ground state photoionization of H2,

since the avoided crossings appear outside the Franck-Condon region and have little
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Figure 2.1: Potential energy curves for the Σ (solid) and Π (dashed) symmetries of H2, together with the ionic potential curve (dotted),
based on the ab initio calculations of Kolos and Wolniewicz [36].
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influence on the preionization spectrum.) For the sake of all remaining calculations in

this section, we will use the 5Σ and 6Π potential curves to define the energy-independent

quantum defects, as shown in Figure 2.2. The potential curves associated with these

defects are shown in Figure 2.3, giving some visual estimation of the extent of the

approximation involved in neglecting energy dependence. The most obvious error is

the catastrophic failure of the 2Σ state to reach the correct asymptotic limit. The

higher Rydberg states that dominate the continuum spectrum, however, are quite well

described by the energy independent approximation. Corrections to this approximation

are discussed in [37, 38, 39].

The rotation and vibration of a molecule are coupled more strongly than the

nuclear and electronic degrees of freedom, by a combination of centrifugal and Coriolis-

like terms of the Hamiltonian. In general, one should not speak of separable vibrational

and rotational states, but only a fully coupled “rovibrational” state that obeys the

entire nuclear Hamiltonian. To a good approximation, however, the energy of such a

state is still recognizable as the combination of a rotational excitation and a vibrational

excitation, provided the rotational excitation is small.

The coupling between rotation and electronic angular momentum is particularly

sensitive to the excitation of the Rydberg electron. The low temperature spectrum

of molecular hydrogen is strongly influenced by an l-uncoupling process, whereby the

electron undergoes a gradual transition from the low n case of being strongly coupled

to the internuclear axis (Hund’s case [b], where the approximately “good” quantum

number Λ is the projection of the total orbital angular momentum onto the internuclear

axis) to the high n case where the electronic angular momentum decouples from the

symmetry axis and is instead quantized along the ionic core’s axis of rotation (Hund’s

case [d], where the approximately “good” quantum number N+ is the rotational angular

momentum of the core). In the range n=6-10, the coupling is mixed, and both Λ and

N+ are only meaningful in an approximate sense.
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Figure 2.2: Quantum defects for the Σ (solid) and Π (dashed) symmetries of H2, based
on the fittings of Jungen and Atabek [40].
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Figure 2.3: Effective energy-independent potential energy curves for the Σ (solid) and Π (dashed) symmetries of H2, based on the quantum
defects in Figure 2.2, together with the ionic potential curve.
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2.2 Resonances

In phenomenological terms, a resonance in the continuum scattering behavior of a

dynamical system appears as a strong and localized energy dependence. This may man-

ifest itself as either an enhancement or a suppression of the background cross-section.

Mathematically speaking, a resonance is associated with the existence of a nearly bound

state of the Hamiltonian, an approximate eigensolution that would become a true bound

state if the Hamiltonian were modified in some intentional way. Resonances in atomic

and molecular physics result in continuum wavefunctions that accumulate probability

density in some restricted region of configuration space for which the magnitude of the

separation between the scattering particles is “small”, such that it resembles the distri-

bution of a bound state wavefunction of the two-particle system. If a state at a resonant

energy is initially prepared in a superposition that gives it a spatial distribution local-

ized in this way, it will generally remain localized for a long period of time before slowly

decaying into the exterior continuum region; in time dependent terms, a resonance can

be described as a decaying nearly-bound state, with an associated lifetime inversely

proportional to the strength of its coupling to the surrounding continuum.

Resonances commonly arise from one of two situations. A shape resonance occurs

when the single-channel potential describing the interaction of two particles has a local

maximum separating two regions, and the scattering energy is below the energy of this

maximum such that it lies at what would become a bound state in the inner region

if the potential beyond the local maximum were replaced by an infinite wall. In the

time-dependent picture, a particle must travel back and forth between these regions

by tunneling through the potential barrier; since tunneling probability is exponentially

sensitive to the height of the barrier, the particle can be effectively trapped inside the

inner region for a duration sufficient to complete many cycles of the orbital period

appropriate for classical motion within the local potential well. Shape resonances in
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electron-atom or atom-atom interactions are commonly encountered as a result of the

centrifugal correction to the effective potential arising from the (l+1)l
2r2 repulsive term;

attractive interactions are typically shorter-range, and thus the cross-over between the

strong but shorter-range attractive potential region and the weaker but longer-range

repulsive potential region creates a local maximum close to threshold for scattering

states with a finite angular momentum.

A Feshbach resonance is the result of coupling between channels associated with

the excitation of additional degrees of freedom in a system. For example, the energy

associated with two electrons being simultaneously excited to hydrogenic Rydberg states

would, in the absence of electron correlation, be a stable doubly excited state. Since

one of the two electrons may relax back into the ground state and give up its energy

to promote the other into the continuum, the doubly excited state is unstable with

respect to autoionization, and the two-particle bound state solution instead becomes a

resonance. In molecular systems, autoionizing resonances can also result from coupling

to the nuclear degrees of freedom. Because of small terms in the Hamiltonian that violate

the Born-Oppenheimer assumptions and introduce coupling between the nuclear and

electronic motion, a system excited in both a nuclear and an electron degree of freedom

is unstable with respect to transfer of energy from the nuclear excitation into the electron

(if it has a total energy greater than the ionization threshold). As a result, the electron

is able to escape into the continuum. At the energy of the hypothetically uncoupled

doubly-excited state, the continuum will show a preionization resonance, a resonance

that reflects the existence of a short-lived metastable state that eventually undergoes

ionization. Similarly, if the hypothetical doubly-excited system is above the energy

required for dissociation, the electron can relax to a lower energy level, transferring its

energy to the nuclear motion and yielding a predissociation resonance. If both types

of continua are energetically accessible at once, then the processes will compete, with

relative intensities of the preionization and predissociation spectra at that energy that



21

correspond to the probabilistic branching ratio between the two processes. (we shall set

aside the question of predissociation until Chapter 5, and for the moment limit attention

to the preionization spectrum.)

Bound states are characterized by a single intensity parameter, governed (in the

limit of the dipole approximation) by the dipole oscillator strength of that transition.

The width of a bound state transition line is generally controlled by spectral broadening

effects that arise from the finite thermal energy of the sample; as the temperature is

decreased, the lines become sharper. Bound state transition lines cannot be made arbi-

trarily narrow, however, due to the natural linewidth arising from their finite lifetime for

decay back to the ground state. Resonances, on the other hand, have a natural width

associated with the much faster time scale for energy interchange between coupled de-

grees of freedom; they can correspondingly display much larger linewidths. The shape

of a bound state transition line is usually a symmetric Gaussian, in accordance with the

exponential Maxwell distribution of kinetic energies at finite temperature. Resonances,

by contrast, have a (potentially asymmetrical) Fano line shape. The asymmetry can

be explained by recognizing that the excitation to the continuum can occur either by a

direct pathway (just as at non-resonant energies), or by the creation of the intermediate

autoionizing state; these two pathways must be summed coherently, and thus could give

rise to either destructive interference (suppressing the intensity) or constructive inter-

ference (enhancing the intensity). Depending on the value of the lineshape parameter,

the peak may even be converted into a window resonance, a nearly symmetric dip in

the cross-section.

In the limit of extremely weak coupling (and thus extremely long decay lifetime),

resonances strongly resemble bound states. Indeed, as the coupling vanishes, a reso-

nance must pass over smoothly into a true bound state embedded in the continuum.

Although the continuum itself is uniformly and densely packed with states, it is possible

to imagine taking a carefully arranged linear combination of continuum wavefunctions
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(with, in general, complex coefficients) that behaves very much like a discrete eigenstate

[41, 42]. In particular, it will display time dependence proportional to eiEat, where Ea

is a complex value; the real part of Ea describes periodic motion within the local quasi-

binding potential, and the imaginary part describes the slow leak of electron probability

density into the rest of the continuum. This complex energy state is in some sense the

optimally discretized eigenstate of the Hamiltonian for representing that particular res-

onant process; it is a true pole of the scattering Green’s function, analytically continued

into the complex plane. One can imagine performing the same transformation in the

other direction; taking a finite basis of such scattering eigenstates, and using them as a

representation of a portion of the continuum. we shall revisit this idea in chapter 5.

For the Coulomb potential of an electron in a neutral molecule, there exists an

infinite number of excited electronic Rydberg states. The ionizing electron leaves behind

a molecular ion which may be in either the ground state or any energetically accessible

rotationally or vibrationally excited state. The residual state, in conjunction with all

other quantum numbers needed to describe the escaping electron, is termed a chan-

nel, and labeled by the appropriate rotational or vibrational quantum numbers of the

molecular ion. (The use of asymptotic states to define the channel labels provides a

natural connection with the scattering matrix (or S-matrix) representation of the scat-

tered continuum wavefunction– the indices of the S-matrix correspond to the asymptotic

channels.) The energy at which a channel becomes energetically accessible, or open, is

simply the energy of the molecular ion in that rotational and vibrational state. At lower

energies, the channel is closed, but still influences the continuum by creating an infinite

series of Rydberg resonances. Unlike bound state transitions, which have experimental

widths that reflect an incoherent sum over many particles in a sample, resonances can

(and frequently do) overlap with one another and produce complicated interference ef-

fects. In particular, resonances belonging to a Rydberg series attached to one channel

threshold may interact with resonances belonging to a different channel threshold. If the
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two series have distinct properties– say, one has broad widths and decays primarily by

ionization, and the other is narrow and decays primarily by dissociation– the composite

effect on the (coherent) total spectra can be quite complex and difficult to untangle.

Surmounting this difficulty is the principal task of theoretical multichannel Rydberg

spectroscopy, known more commonly in the literature as multichannel quantum defect

theory (MQDT).

2.3 Channel elimination: Traditional and energy-smoothed ap-

proaches

Quantum defect theory begins from the assumption that the No independent

solutions of an No-channel Schrödinger equation can be written as an expansion with

terms consisting of a product of channel functions (describing the state of the core and

all degrees of freedom of the outer electron except the fragmentation coordinate) and

a linear combination of radial Coulomb functions. These long range solutions, valid

beyond the region where channel coupling remains significant, can be written in more

than one representation, but a convenient choice for conceptual purposes is the outgoing

wave form

Ψphys
i′ (E) = A

No
∑

i

1

r
Φi(ω)[f+

i (r)Sii′
phys − f−i (r)δii′ ], r → ∞, (2.2)

where the scattering matrix is labeled with the superscript phys to denote that only

channels which are energetically accessible (open) will contribute to the sum. The

Coulomb functions f±
i (r) are those that obey incoming and outgoing wave boundary

conditions [43], and the operator A denotes a formal antisymmetrization procedure.

In this expression, Φi(ω) includes the total wavefunction of the core associated with

ionic threshold energy Ei, and the spherical harmonics Ylm(θ, φ) and spin wavefunction

of the outer electron. For the example system of molecular hydrogen, we adopt the

approximation that only p-wave scattering contributes to the state probed in total
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absorption– even parity states are symmetry forbidden transitions, and f and higher

partial waves are unable to penetrate through the centrifugal barrier into the coupling

region– and thus the index i describes only the vibrational and rotational states v+, N+

of the core. (In fact, for the calculation for HD in the following section the breakdown

of gerade-ungerade symmetry compromises the accuracy of this approximation, but this

is expected to only be significant in the vicinity of the dissociative thresholds of highly

excited vibrational states.)

The critical point realized by Seaton, Fano, and other MQDT pioneers is that the

asymptotic boundary conditions implied by the above expression need not be enforced

until the final stage of the calculation. The short range interactions involved in the

creation of auto-ionizing resonances can be fully included by the use of an alternate

expansion that incorporates an additional Nc accessible excitation channels, whose Ry-

dberg electron channel energies are below the threshold for ionization. This modified

expression is still only accurate beyond some value r0 bounding the small-r region where

coupling occurs, and can be written in the similar form

Ψi′(E) = A

N
∑

i

1

r
Φi(ω)

1

i
√

2
[f+
i (r)Sii′ − f−i (r)δii′ ], r > r0. (2.3)

Here Sii′ indicates a quantity familiar in multichannel quantum defect studies, the

smooth, short-range N-channel scattering matrix.

Roughly speaking, the i′-th independent solution in Eq. (2.3) describes a simple

one-step scattering process in which the outermost electron encounters the ionic core

while moving inward in channel i′, and scatters outward into all channels i. Some of the

i channels may be energetically closed at r → ∞, but the finiteness boundary condition

has not yet been imposed.

In order to remove unphysical closed-channel divergences, the usual MQDT “channel-

elimination” procedure is employed, which amounts to forming an appropriate linear
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combination of the solutions in Eq. (2.3) to construct the physical scattering matrix. We

write this expression in the form used in Ref. [44], in terms of the Hermitian conjugate

of S, partitioned into open and closed sub-blocks:

S†phys = S†
oo − S†

oc[S
†
cc − e2iβ ]−1S†

co. (2.4)

The four matrices in the right-hand side of (2.4) are physically open and closed partitions

of the smooth, short-range scattering matrix (Hermitian conjugated) from Eq. (2.3),

S† =









S
†
oo S

†
oc

S
†
co S

†
cc









. (2.5)

The matrix β is diagonal and of dimension Nc × Nc; its elements βi = π[−2(E −

Ei)]
−1/2 are the Coulomb phase parameters in each closed channel. These quantities

vary strongly with energy near their respective thresholds, and account for nearly all

the energy dependence of the physical scattering process. This allows the expression

to correctly describe resonant spectra even while the energy dependence of the smooth,

short-range scattering matrix is entirely neglected.

The physical significance of the eigenvalues of the scattering matrix, as first real-

ized by Fano [45], centers on the recognition that S will be diagonal in the representation

where the short-range Hamiltonian is diagonal. That is, there exist N = Nc + No so-

lutions, the eigenchannel solutions Φα, each of which have a common phase shift πµα

in all physical channels. The scattering matrix can be recovered from the eigenchannel

defects µα by means of a transformation,

Sii′ =
∑

α

Uiαe
2iπµα(UT )αi′ . (2.6)

The matrix U is known as the frame transformation matrix as a consequence of its

role in transforming from the short-range (“body frame”) diagonal representation to

the long-range (“lab frame”) electron-plus-core representation. In the inner region, the
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outer electron is moving fast enough that a definite value of the internuclear separation

R and orbital angular momentum along the axis Λ can be defined; in the outer region,

the electron is moving slowly on the time scale of nuclear motion, and the system is

more appropriately described by the ionization channel indices. The rotational and

vibrational components of the frame transformation matrix can be separated to give

Uiα = 〈i|α〉 = 〈v+|R〉(N+)〈N+|Λ〉(lJ). (2.7)

The first factor is simply the vibrational wavefunction for the v+ state, and the second

factor is a rotational frame transformation matrix element defined in [27]. Note that

this expression assumes that a single value of the orbital angular momentum l is present.

If additional partial waves contribute significantly in the outer region, then the form of

this transformation becomes more complicated.

The eigenchannel quantum defects, since they are labeled by quantities that are

meaningful in the Born-Oppenheimer limit, can be extracted from the bound state

potential energy curves of H2 through their definition given in Eq. 2.1. The actual use of

these quantum defects in a numerical frame transformation is problematic owing to the

continuous variable R, which effectively necessitates an infinite number of channels to

be included in the scattering matrix. In practice, however, a reasonable approximation

to the exact frame transformation can be accomplished by truncating the sum over

alpha after a relatively small number of vibrational states (usually of the order of one or

two dozen per ionic rotational quantum number in this work). The approximate frame

transformation matrix is formed from the eigenvectors of the quantum defect matrix,

defined by

µ
(J ′)

v+N+,v+′N+′ =
∑

Λ

〈N+|Λ〉(lJ ′)
[∫

dR〈v+|R〉(N+)µΛ(R)〈R|v+′〉N+′

]

〈Λ|N+′〉(lJ ′),

(2.8)
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The numerical diagonalization of Eq. 2.8 is generally more convenient than direct

construction and diagonalization of the scattering matrix itself.

Because of the weak energy dependence of the quantum defect (see Ref. [37]) a

single function for each body frame symmetry, µΛ(R), suffices to describe all bound state

potential energy curves of the π symmetry, and provides a reasonable approximation to

most higher n curves of the σ symmetry. We follow Raoult and Jungen [46] in selecting

an eigenquantum defect function derived from fitting to the bound states of the n=6

curve for the σ case, and n=5 for π. Since the 3pσ state deviates substantially from

this simple approximation, and the 2pσ state also differs qualitatively, peaks associated

with resonances in these low-n channels are not expected to be located precisely by

this method. Gao and Greene [39] have shown how the frame transformation may be

reformulated to account for such energy dependent effects.

The total photoionization cross section is directly proportional to the differential

oscillator strength, and is given by the expression

σ(ω) =
4π2ωα

3(2J0 + 1)

∑

J

∑

j

|D(−)phys
j |2 (2.9)

where J0 is the initial total angular momentum state, J is the final angular momentum

state, D
(−)phys
j is the reduced dipole matrix element between the j-th physical incoming-

wave solution and the molecular ground state, ω is the frequency of the absorbed photon,

and α is the fine structure constant. D
(−)phys
j can be calculated by a channel elimination

transformation analogous to that for the physical scattering matrix above,

D(−)phys = D−
o −D−

c [S†
cc − e2iβ]−1S†

co, (2.10)

using the reduced dipole matrix elements for the long-range solutions D
(−)
j , which can

themselves be found from the body-frame dipole matrix elements by application of the

frame transformation coefficients [47, 27]. Note that in a real physical system at finite
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temperature, more than one J0 will typically be present, and a final average must be

carried out over the initial statistical distribution.

In traditional MQDT, an analogue of the scattering matrix channel elimination

procedure is performed to determine the final solutions used in the dipole matrix el-

ements. As before, this allows the No physical Dphys
j to be factored into the matrix

product of a vector consisting of N weakly energy dependent short-range Dj and an No

by N matrix containing all of the resonant structure. The cross section may then be

convolved over some finite width Γ using (for example) a Lorentzian kernel

σconv(ω0) =
1

2π

∫

dω σ(ω)
Γ

(ω − ω0)2 + (Γ/2)2
(2.11)

to produce a spectrum that approximates the finite resolution achieved in any actual

experiment.

Robicheaux [48] showed that this analytical form for the convolution can be

rewritten in the suggestive form (suppressing the sum over J)

σconv(ω0) = − 4π2α

3(2J0 + 1)
Im



(ω0 +
iΓ

2
)
∑

j

∫

dE |D(−)
j |2

(

Eg + ω0 +
iΓ

2
−E

)−1




(2.12)

where E = Eg+ω is the energy of the final state and Eg is the ground state energy. The

sum and integration can be formally carried out to yield a new formula which involves

the Coulomb functions defined at complex electron energies E = Er + iΓ
2 . Robicheaux’s

original expression for this preconvolved cross section, after rearrangement and the

application of a matrix identity, can be written as

σconv(ω0) = − 4π2α

3(2J0 + 1)
Im



(ω0 +
iΓ

2
)
∑

j

D
(−)∗
j

∑

k

(

(S† − e2iβ)(−1)(S† + e2iβ)
)

j,k
D

(−)
k





(2.13)
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Unlike the partitioning scheme for channel elimination (as in Eq. (2.4), this

formula treats open and closed channels on an equal footing. In essence Eq. (2.13)

relies on the exponential to naturally close a channel every time its argument β (a

complex generalization of the phase parameter) switches from being almost real at

energies below the channel threshold to having a large imaginary component at energies

above the threshold. Although the exact expression derived by Robicheaux for β is

complicated to evaluate, the approximation

βj = πκj , Er −Ej < 0 (2.14)

βj = i∞, Er −Ej > 0 (2.15)

can be used in its place. Here κj = 1/
√

−2(E −Ej) is a complex generalization of the

effective quantum number in channel j, with the branch chosen such that Re βj > 0

when Er −Ej < 0.

2.4 Application: HD photoionization spectrum

The experimental photoionization spectrum of HD was first observed at high res-

olution by Dehmer and Chupka [49], and theoretically modeled to a high degree of

accuracy by Du and Greene [50]. In this section, we revisit the HD problem using Ro-

bicheaux’s faster, more direct reformulation of MQDT to generate a much broader range

of the photoabsorption spectrum. The decision to return to this system is motivated by

several factors. First, high resolution experimental data exists for both the photoion-

ization and photoabsorption cross-sections, and it provides a qualitative measure of the

influence of competing dissociation channels or other decay pathways. This allows us

to study the anticipated failure of the Ref. [50] implementation of energy independent

MQDT. Discrepancies are expected in the neighborhood of strong coupling to the dis-
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sociative regions of the potential energy surface, where g-u symmetries become mixed,

and where the 1sσ potential curve may no longer adequately suffice to describe the core

electronic state. Second, most of the peaks in the experimental spectrum of HD have

remained unassigned, or have only tentative spectroscopic labels, and the present study

can identify them with minimal ambiguity. Third, this comparatively straightforward

application offers a reasonable opportunity to assess the speed and robustness of the

preconvolution variant of MQDT, with the intent of considering it for more general

application to other molecular problems in the future.

Below the first ionization threshold, located at 124568.5 cm−1, the spectrum is

discrete, consisting of isolated bound states. The preconvolution algorithm describes this

region equally well, but owing to our primary interest in the photoionizaton spectrum,

discrete photoabsorption will not be discussed further here. At higher energies, the

spectrum consists of sets of Rydberg series that converge to thresholds associated with

rovibrational states of the residual ion. Because the vibrational levels are more widely

spaced than the rotational levels by approximately an order of magnitude (∼2000 cm−1

vs. ∼200 cm−1), ionization thresholds appear as neighboring pairs, with all allowed

transitions corresponding to an ionic rotational state of either J + 1 or J − 1 (since

the Rydberg electron is restricted to the p-wave solutions excited when an HD ground

state electron absorbs a single VUV photon). To simulate the results of a spectrum

taken at 78 K, the contributions from the three energetically accessible initial rotational

states, labeled by their total angular momentum as J0=0, 1, and 2 are weighted by the

Boltzmann statistical factors 61.9%, 35.8%, and 2.2%, respectively. This results in four

distinct thresholds, each with up to three attached series (R, Q, and P branches), which

originate from each vibrational state of the core.

Much of the complexity of the photoionization spectrum arises in regions where

peaks in one series are perturbed by the lower-n resonances of a higher threshold that

lie at roughly the same energy. In such cases, spectral features can become so strongly
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mixed as that any formal spectroscopic assignments would be somewhat arbitrary. A

common example occurs when a lower-n resonance appears just slightly below a higher-

n threshold, such that its width is less than the energy separations of the near-threshold

series. In this instance, the low-n resonance will be distributed over many adjacent

peaks in the series, causing the total number of such peaks to be increased by one and

uniformly enhancing their intensity, yet no one peak can be unambiguously assigned to

the perturber.

To a limited extent, the spectrum exhibits repeated patterns attributable to the

nearly uniform separation between the first few vibrational levels. As a result, a subsec-

tion of the total spectrum that spans one vibrational energy spacing serves to provide

a qualitatively representative measure of accuracy over a broader range. We have cho-

sen to focus on the spectrum in the energy regime near the second (v+ = 1) set of

rovibrational thresholds, from 125500 cm−1 to 127300 cm−1.

Figures 2.4-2.7 show the theoretical results superimposed on the experimental

data points. Since the experiment does not provide an absolute normalization for the

intensity, we have normalized this data to match the theoretical cross-section at 127000

cm−1. The peaks in Figure 1 have been labeled through the application of a technique

detailed in [37] which involves searching for the roots of a determinantal equation and

examining the magnitude of the coefficients in each closed channel. As n becomes large

(≥10), the coupling (as noted earlier) undergoes a transition from Hund’s case b (where

the projection of the angular momentum of the Rydberg electron along the internuclear

axis Λ is a “good” quantum number) to Hund’s case d (where the preferred quantum

number is the rotational state of the core). Although this decoupling occurs gradually,

we adopt here the convention of describing resonances of n<10 according to the first

case, and n>10 in terms of the second.

In Figures 2.4 - 2.7 several peaks are labeled that exhibit some significant discrep-

ancies between theory and with experiment. These discrepancies likely arise from our
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Figure 2.4: Experimental[49] and preconvolved theoretical oscillator strength [51] for
HD photoionization between 125500-126000 cm−1 photon energy.
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Figure 2.5: Experimental[49] and preconvolved theoretical oscillator strength [51] for
HD photoionization between 126000-126500 cm−1 photon energy.
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Figure 2.6: Experimental[49] and preconvolved theoretical oscillator strength [51] for
HD photoionization between 126500-127000 cm−1 photon energy.
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Figure 2.7: Experimental[49] and preconvolved theoretical oscillator strength [51] for
HD photoionization between 126000-127500 cm−1 photon energy.
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neglect of competing predissociation processes in the MQDT calculations. As previously

shown by Du and Greene[50], departures from linear absorption in the experiments from

photon energies ∼12600 to greater than 12700 cm−1 are also a potential problem. Re-

garding predissociation, for example, the resonances labeled R(0), R(1), and Q(1) that

are assigned to perturbers associated with v = 3− 8 ionic cores are likely to be affected

by coupling with either the repulsive, dissociative inner wall of the potential energy

surface via the Coriolis interaction (for Λ 6= Λ′), or the outer potential regions where

nλn’λ′ doubly-excited potential curves are known to intersect and strongly perturb the

Rydberg potential surface. Such examples of channel interactions are well-documented

in H2 (e.g. the 3pσ-3pπ Coriolis-type predissociation discussed in [52], and predissocia-

tion of the 3pπ, v = 8 and 4pπ, v = 5 states discussed in [53] and [54]). Although these

two mechanisms appear to be distinct, MQDT in principle allows a unified description

of joint Coriolis interactions and electronic core excitations.

Comparison of our results with experiment in Figure 2.4 shows that many of the

observed resonances are in good agreement in terms of position and intensity. Most of

these resonances are assigned to those classified in the Hund’s case d limit and they

also have low vibrational excitation. Discrepancies in intensities, however are apparent

for the strong v=3 resonances predicted at 125750 and 125830cm−1, as well as the v=8

set between 125860 and 125900 cm−1. These resonances are associated with 5pπ, v = 3

interlopers. For HD it is somewhat surprising (but not unprecedented) that Rydberg

states attached to ionic cores with vibrational quanta as low as v = 3 excitation will

strongly sample the dissociative regions of the potential energy surfaces, resulting in a

significant competition with the autoionization channel. The increase in the effective,

non-adiabatic couplings in HD may therefore be related to the breakdown of the g-u

inversion symmetry, particularly near its dissociative limits; for the corresponding peaks

in the H2 spectrum the predissociation is only moderate [55].

Another class of discrepancy in Figure 2.4 is typified by the predicted R(0), v = 2,
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7pσ interloper at 125970 cm−1, which, while in good agreement in terms of position,

is too intense. This may be due to the breakdown of symmetry, or else to the non-

linearity of the intensity dependence on the cross section arising from saturation effects

[50]. (The results of Glass-Maujean [55] imply that ionization prevails for the 7pσ series

in H2 except in cases where cases where the peaks are strongly mixed with another

series.)

Figures 2.5 - 2.7 show a comparison of the present theory with the remaining

range of experiment considered here, leading up to 127500 cm−1. Figure 2.5 shows

an increasing number of low-n, high-v interlopers predicted by theory with minimal

correlation to resonance observed in the experiment. It is also apparent that shifting of

many predicted resonances ∼3-5 cm−1 compared to experiment occurs near the v = 1

threshold at 126600 cm−1 (shifts of this magnitude are also noticeable for some of the

resonances in Figure 2.4 as well). The origin of these shifts is not certain, although

Ref. [50] pointed out that they are likely due to our neglect of energy dependence in

the quantum defects, or else associated with random slippage errors in the experimental

wavelength calibration.

The discrepancies seen in Figure 2.6 are most apparent for the very strong reso-

nances predicted at 126610, 126680, and 126700 cm−1, respectively. These resonances

are associated with 4pπ, v = 5 interlopers which can predissociate. This resonance and

intensity pattern parallels the three predicted 5pπ, v = 3 interlopers shown in Figure

2.4, perhaps strengthening the conclusion that those are strongly predissociated as well.

In Figure 2.7 one observes a complete breakdown of agreement between the the-

oretical predictions and experiment beyond ∼127200 cm−1. This must be attributed to

my neglect of predissociation processes, particularly since the predicted resonances are

associated with interlopers which have very high vibrational excitation, for example,

states with 3pλ, v = 8− 9. These states would predissociate primarily through Coriolis

coupling with nσ states of comparable total energy.
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In summary, disagreement between the MQDT calculations and experiment is

probably partly attributable to the neglect of predissociation via the Coriolis interaction

and channel-coupling with two-electron excited core states. In limited spectral regions,

departures from linearity in the original experimental conditions could also be a source

of discrepancy. In chapter 5, approaches to the treatment of predissociation will be

reconsidered in greater detail.

Within regions of the spectrum dominated by high-n resonances, however, the

frame transformation-based MQDT method remains impressively accurate. The very

recent work of Merkt and coworkers [56] provides a persuasive example of the capabilities

of the frame transformation to describe even densely spaced resonances in the near-

threshold regime. Figure 2.8 shows the experimental photoionization spectrum plotted

in a narrow region near the v = 1, np0 threshold, where the Rydberg series has many

sharp and narrow resonances. Just above the threshold is a complex resonance arising

from the perturbation of the v = 1, np2 series (converging to a threshold at 789.847

Å) by an interloper attached to the v = 2 threshold. Each of the modulated groupings

of peaks below the threshold at 790.630 Å can similarly be understood as a complex

resonance arising from the mixing of the overlapping v = 1, np0 and v = 1, np2 series.

The theory (b) in 2.8 is a reproduction of the result in [50], calculated at too coarse a

mesh to identify any of these high-n structures. Figure 2.9 shows the same spectrum

recalculated on a much finer mesh; the positions as well as the intensity modulation

and shifting line profiles across the complex resonance sets are all well-described by the

theory, aside from a few very weak and broad features in the experimental spectrum.

(The disagreement in intensity for the Q(1), v = 2 8pπ peak at 790.07 Å is presumably

due to predissociation.)
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Figure 2.8: Ultra high resolution experimental (a) [56] and theoretical (b) oscillator
strength for HD photoionization near the v=1 threshold, using theory from the mid-
1980s by Du and Greene [50].

Figure 2.9: Recent recalculation of the theoretical oscillator strength by the same
method, on a much finer grid and at a rotational temperature (25 K) appropriate for
the newer experiment.



Chapter 3

Long-range Rydberg state: Approximate and model approaches

In the previous chapter, we considered a system consisting of a Rydberg electron

attached to a single positively-charged core. Within a small region of space defined

by the dimensionality of the core, the electron would experience a complex potential,

but outside that region, the behavior of the electron would be well-characterized by

some linear combination of bound or continuum hydrogenic solutions. The method of

multichannel quantum defect theory was explicitly designed to exploit this natural par-

titioning of the Hamiltonian into a complicated form in one tightly localized region of

space, and a far simpler form everywhere outside of it. Suppose that, instead of a single

core, the Rydberg electron had two such regions of “hard physics”, well separated from

one another, within the volume of space where its probability density was non-vanishing.

The philosophy of quantum defect theory would still be highly appropriate for this class

of nuclear geometries. The vast majority of the volume in which the electron resided

would still be simple Coulombic physics, and the interaction with the isolated and lo-

calized regions where the electron was governed by a more complex Hamiltonian could

still be conceptualized as scattering centers embedded in a region of far smoother tra-

jectories, like divots in a fairway of a golf course, or bumpers in the playfield of a pinball

machine. It would still be fantastically wasteful, from a computational standpoint, to

expend effort describing the short-range and long-range interactions using the same

approach; any method that would be adequate to describe the difficult many-particle
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interactions of the inner regions would entail accounting for all manner of correlations,

(anti)symmetrizations, and excitations, and once the method was outside that region,

all of this specialized machinery would no longer be essential.

3.1 The Fermi pseudopotential approximation

When an atom in a low-lying excited state or a Rydberg state is brought near

a ground state atom or molecule, much of the interaction derives from simple electron

scattering off of the ground state species. This picture was developed in a classic paper

by Fermi [57], to describe pressure shifts and broadening of atomic Rydberg spectral

lines, as well as for the scattering of neutrons by protons in a hydrogen-rich sample [58].

Fermi’s approximation, although conceptually crude, was surprisingly accurate for its

time, in part because certain effects neglected by his analysis (the “excluded volume” and

“wave distortion” corrections) tend to cancel one another [59]. 1 Presnyakov, however,

noted that the Fermi model would be difficult to extend to alkali-alkali interactions, due

to the electron affinity of alkali atoms [62]; most of them have either true ionic bound

states, or else near-threshold resonances.

The outer electron of a Rydberg atom is distributed over a region that extends

far from the ionic core. At large radii the Coloumb potential is weak, and varies slowly

as a function of position; consequently, the valence electron has low momentum and

may be viewed as occupying a ’quasi-free’ state. This allows the interaction between a

nearby ground state particle (the ’perturber’) and the Rydberg atom to be described

in terms of isolated scattering events between the electron and perturber and between

the electron and the ionic core. In effect, the three-body problem (electron, ion, and

perturber) is treated as a combination of two separate two-body interactions.

Ordinarily, the scattering of a low energy electron (such as a Rydberg electron

1 For detailed reviews of the theory of pressure shifts and broadening, including comparison of the
Fermi model with several other methods, see Allard and Kielkopf [60] or Beigman and Lebedev [61].
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far from the core) can be well-approximated by including only S-wave scattering. This

is a familiar consequence of the Wigner threshold law. When the angular momentum

of the scattered electron relative to the perturbing particle is greater than zero, how-

ever, the short-range potential may support quasibound negative ion states, i.e., shape

resonances. Since the scattering parameters vary rapidly as a function of energy in the

vicinity of a shape resonance, such resonance channels can result in the formation of

molecular bound states. This situation will be considered later in further detail, and

for now we restrict attention to the S-wave case.

The Fermi pseudo-potential appropriate for S-wave scattering is given by

VS(~r, ~R) = 2πaT [k(R)]δ(~r − ~R) (3.1)

where ~r is the position of the electron, ~R is the position of the perturber, both from the

ionic core, k(R) is the valence electron wavenumber, and we define the triplet scattering

length for electron-perturber collisions as aT = − tan δT0 /k. The energy variation of

the triplet S-wave phase shift δT0 , comes from its implicit dependence on R, according

to 1
2k

2(R) = − 1
2n2 + 1

R , for a Rydberg electron with principal quantum number n. In

general, it is necessary to account for singlet scattering as well, but for Rubidium, the

singlet scattering interaction is much weaker and does not give rise to the same bound

states, so to a good approximation it may be neglected.

Alternatively, a more general zero-range pseudopotential form appropriate to par-

tial waves beyond l = 0 can be formulated using a Green’s-function technique that treats

the perturber as an additional boundary condition on the atomic solution [63]. Such

methods will be considered in further detail in the following chapter. The Green’s

function approach has been applied fruitfully to the study of electron transfer effects

in atomic collisions [64], particularly those in which the collision is assisted by a laser

field that excites one of the atoms into a Rydberg state [65, 66]. A second, and fully
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equivalent, method applies the zero-range potential as an additional term in the molec-

ular Hamiltonian, consisting of a sum of separable projections for each l-channel onto

angular momentum eigenstates [67].

Even before the work considered in this thesis, two particularly noteworthy and

relevant predictions have been based on the Fermi approximation. First, Ivanov, in his

study of the perturbation of strongly degenerate Rydberg levels, observed that the in-

teraction potential associated with S-wave scattering of the Rydberg electron from the

perturber would experience a sign reversal as it passed through the separation radius as-

sociated with the Ramsauer minimum of the electron-perturber scattering cross-section

[68]. Since the potential vanishes asymptotically, and is attractive at intermediate dis-

tances, Ivanov concluded that the potential was sufficiently broad that it must support

a bonded complex at large distances. Second, Du and Greene [69, 70] applied a combi-

nation of the Fermi method and MQDT to rare gas Rydberg dimers in order to explain

features of their photoionization spectra. Even at the level of the Fermi approximation,

their potential curves displayed long-range oscillations comparable to those witnessed

by de Prunelé.

3.2 Degenerate perturbation theory for the hydrogenic case

In a high Rydberg state, the electron kinetic energy is so low that the electron-

perturber scattering is primarily S-wave, and such that the scattering properties of the

electron at non-resonant energies are dominated by the S-wave scattering length. Anal-

ysis by Greene, Dickinson, and Sadeghpour [71] showed that, in an ultracold gas, the

negative 3S-wave scattering length can produce a new type of ultra-long-range molecule

with unusual properties. This model has already been used to predict the existence

of two classes of ultra-long-range (i.e. of size 102-104 a.u.) Rydberg molecular bound

states in an ultracold Rb gas; these molecules consist of one excited and one ground state

atom [71]. In addition to being much larger than any previously known diatomic ground
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state, 2 these molecules are expected to have permanent electric dipole moments in the

kdebye range, and lifetimes on the order of tens or hundreds of microseconds (for n in

the range 30-70). The Born-Oppenheimer potential curves of these states are oscillatory,

with many local minima, each supporting multiple vibrational levels. The second class,

the perturbed hydrogenic states [69, 70], also have an unusual valence electron proba-

bility distribution resembling a trilobite fossil, which can be viewed as a semiclassical

electron interference pattern [73]. Both classes of molecular states, however, are bound

only weakly, by just a small fraction of the spacing between adjacent n-manifolds. For

n = 30, for example, the minimum of the first type of state is approximately 100 MHz,

whereas the minimum of the second type is roughly 10 GHz, compared to the 250 GHz

separation between the n = 30 and n = 29 manifolds. All further discussion will be

focused entirely on the perturbed hydrogenic states.

For a completely degenerate hydrogenic n2 manifold, the Fermi S-wave pseudopo-

tential effectively recombines the manifold into n2-1 states that remain unperturbed

and degenerate (and thus have zero amplitude at the perturber position) and one non-

degenerate state that maximizes the amplitude at this position. Using first-order degen-

erate perturbation theory for the delta-function perturbation of Eq. 3.1, the resulting

non-degenerate internuclear potential may be written in closed form,

Un(R) = − 1

2n2
+ 2πaT (k(R))

n−1
∑

l=lmin

2l + 1

4π
Rnl(R)2, (3.2)

where Rnl is the radial hydrogenic wavefunction and the states below lmin are possibly

non-degenerate levels that are sufficiently distant from the manifold that their contribu-

tion may be reasonably neglected. This formula is exact for a Coulomb potential, and

remains reasonably accurate for quasi-degenerate approximations to the level structure

of an alkali atom. (For short internuclear distances, the potential must also be ad-

2 Since the first publication of this prediction, the observation of other classes of diatomics with
comparably large internuclear separations, generated by various dipole-dipole interaction effects, has
been reported [23, 72].
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justed to include the polarization interaction between the ion and the perturber, since

the highly excited Rydberg electron no longer shields the ionic core.) A plot of the

molecular bound state defined by Eq. 3.2 is shown in Figure 3.1.

This class of potentials supports many vibrationally bound states. The lowest

states are confined to individual local potential wells associated with the oscillation of

the perturbed hydrogenic potential, while higher states are distributed over multiple

minima, or over the entire width of the broad well formed by the energy-dependence of

the scattering length. For n=30, the potential supports about 70 vibrational wavefunc-

tions. All of these states are characterized by strongly asymmetrical charge distribution,

with the electron density accumulated heavily on top of the perturber in a pronounced

peak. This charge separation is the origin of the unusually large dipole moments as-

sociated with this class of states, on the order of D = R − 1
2n

2 a.u.; for states in the

vicinity of n=30, the degenerate perturbation theory predicts electric dipole moments

on the order of a kdebye (see [74] for a recent calculation of the dependence of the dipole

moment on R).

It may seem somewhat peculiar to suggest that a homonuclear diatomic bonded

complex could possess a permanent dipole moment. In principle, the solutions should

appear in parity eigenstate pairs (gerade/ungerade) symmetrized in such a way as to

make the nuclei indistinguishable. In any practical application, however, the parity

eigenstates are so nearly degenerate as to make such symmetrization irrelevant; even

the smallest external perturbation (by stray electric field, say, or a nearby Rydberg

atom) is sufficient to break degeneracy and form the charge-separated states calculated

above by hybridization of adjacent J states of opposite parity. Equivalently, one could

think of preparing the system in a charge-localized state, and estimating the tunneling

time necessary for the ground state valence electron on the perturbing alkali to penetrate

to the location of the ionic core; even a rough estimate of the parity splitting (< 10−100

a.u., from [71]) gives a localization half-life many orders of magnitude longer than the
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Figure 3.1: A surface plot of the Rydberg electron probability density ρ|Ψ(ρ, z)|2 in cylindrical coordinates for the n = 30 3Σ S-wave
scattered (“trilobite”) state [71]. The perturber is located at the position of the lowest minimum in the potential energy curve (at R = 1234
a.u.), and corresponds to the largest peaks in electron density along the axis of symmetry.
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entire history of the universe.

3.3 Omont’s generalized delta-function approximation

For electron-perturber scattering in partial waves beyond the S-wave case, the

strongest contributions are expected to occur when some higher partial wave is resonant.

Our treatment of this problem follows a method developed by Omont [75], based on

approximating the zero-range pseudopotential with an l-expansion of the R-matrix. For

the present results, we shall be content to examine only systems for which the scattering

is dominated by the S- and P-wave partial waves, although the same approach should

also apply to perturbers with D-wave or F-wave shape resonances (such as N2 or SF6.)

we will here assume the 87Rb Rydberg atom, whose large ionic core destroys the orbital

angular momentum degeneracy and whose heavy mass ensures the existence of many

closely-spaced vibrational levels. Rubidium, of course, is a favorite atom utilized in the

study of ultracold atomic gases. I shall further assume that experimental ability exists

to prepare a Rydberg state containing high angular-momentum components, either by a

multiphoton process or by the imposition of a weak electric field that breaks the dipole

selection rule.

Following Omont, the matrix element associated with P-wave electron-perturber

scattering can be written as

〈Ψ1|Vp|Ψ2〉 = −6π tan δT1
k3(R)

~∇Ψ1(~r) · ~∇′Ψ2(~r
′) |~r=~r′=R (3.3)

where δT1 is now the triplet P-wave scattering phase shift. we adopt the ab initio calcu-

lations of Bahrim et al [76, 77, 78], for the S- and P-wave triplet e−-Rb(5s) scattering

phase shifts.

In order to generate a bound state, the perturbation should ideally result in a neg-

ative energy shift, though bound states might in some cases result from repulsive scat-
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tering lengths. For S-wave scattering, a negative shift occurs when the scattering length

aT = − tan δT0 (k)/k is negative. For P-wave scattering, the corresponding parameter

that must have a negative value is the effective scattering volume, aT = − tan δT1 (k)/k3.

(Again, in general both singlet and triplet scattering must be included, but for Rb only

the triplet P-wave scattering is resonant.) Qualitatively, these pseudopotentials may

be viewed as selecting a linear combination of atomic states that maximizes either the

value of the wavefunction (S-wave) or of its derivative (P-wave) at the position of the

perturber. Note that for the P-wave correction, the derivative acts in all three spatial

directions, giving rise to two possible sets of states: those that maximize the gradient

parallel to the internuclear axis, and those that maximize the gradient perpendicular to

it. The former have a nodal plane perpendicular to the internuclear axis, and thus a Σ

molecular symmetry (m = 0), and the latter place the nodal plane along the axis, and

hence have a Π molecular symmetry (m = 1).

3.4 Resonance scattering effects

At the position of a resonance, the tangent of the phase shift diverges, resulting

in an unphysical form of the interaction potential. In practice, however, the energy

eigenstate is bounded by manifolds corresponding to n+ 1 and n− 1, and is subject to

level repulsion by states of identical symmetry attached to the adjacent manifolds. This

permits a diagonalization even at energies close to the resonance energy, circumventing

the need to resort to explicit renormalization of the potential. The number of manifolds

retained above and below the n-value of interest can be varied to test the eigenvalue

stability. In a typical calculation, adequate convergence is obtained with three to seven

total manifolds.

The Born-Oppenheimer potential curves (both S- and P-waves) associated with

the Σ molecular symmetry are shown in Figure 3.2, and the curve for the Π symmetry

state (possible for P-wave only) is shown in Figure 3.3. These results are found by
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diagonalization of the Omont psedopotential within a basis of Rb atomic states asso-

ciated with the included manifolds, including both the high-l quasidegenerate states

and the lower-l states with finite quantum defect. The associated S- and P-wave phase

shifts, as functions of energy, are shown in Figure 3.4. Recall that the phase shifts

at the perturber R are implicit functions of R as a result of the change in the local

kinetic energy of the scattered electron. The most prominent qualitative features of

the potentials are directly controlled by the energy dependence of the phase shift. For

example, the point at which the Σ S-wave potential passes through zero corresponds to

the Ramsauer-Townsend zero in the e−-Rb(5s) phase shift at 0.042 eV (around R = 450

a.u.) [71].

For the present context, the most notable characteristic of the P-wave potentials

is their broad and comparatively deep minimum. As R decreases through the vicinity

of the shape resonance around R = 700, the associated P-wave potentials detach from

the n = 30 manifold, pass through a point where the slope of the potential becomes

large, and run close to the n = 29 manifold for smaller R. In essence, a rise by π in

the scattering phase shift due to the P-wave resonance results in a promotion of the

associated molecular curve to the next lower manifold. We emphasize that this effect is

quite general; it will occur between any two adjacent n-manifolds, for any partial-wave

electron-perturber scattering channel that contains a shape resonance. This behavior

should consistently define the existence of a global minimum in the potential curve, and

thus a set of bound vibrational levels. In the inset of figure 3.2 we show the first ten

vibrational levels for the P-wave scattered Σ state.

Both sets of potential curves exhibit multiple avoided crossings, with both the

hydrogenic energy levels and (in the case of identical molecular symmetry) with each

other. Depending on the Landau-Zener parameters for each crossing, sufficiently high

vibrational levels may dissociate on a time scale shorter than the natural lifetime of the

Rydberg state. Even for states lower in energy than the crossing energy, the possibility
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Figure 3.2: 3Σ Born-Oppenheimer potential curves for states arising from both S-wave
and P-wave scattering [79]. Several of the lowest vibrational levels, along with their
associated wavefunctions, are shown in the inset. The zero of the energy axis is taken
to lie at the position of the n = 30 manifold.
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Figure 3.3: 3Π Born-Oppenheimer potential curve arising from P-wave scattering [79].
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Figure 3.4: Phase shifts for low energy S- and P-wave scattering from 87Rb as a function
of energy [79]. The Ramsauer-Townsend zero in the S-wave curve at E = 0.05 eV
corresponds to the point at R = 450 where the S-wave potential crosses through the
n = 30 manifold. The resonance in the P-wave phase between 0.02 and 0.04 eV controls
the rapid rise of the P-wave potential in the range between R = 500 and R = 1000 a.u.
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of tunneling cannot be excluded; this is of particular concern for the crossing between S-

and P-wave 3Σ states, which occurs close to the S-wave minimum and could potentially

destabilize even the lowest vibrational level. Based on this and other anticipated decay

mechanisms, including a significant contribution from blackbody radiation, we predict

that the lifetime of such states should scale as n2 [80] and be of the order of 50µs for

n = 30. This is longer than the vibrational period of low-lying levels, suggesting the

possibility of resolving vibrational substructure in the absorption spectrum.

Figure 3.5 contains a wavefunction of the Σ P-wave scattered molecular state in

the vicinity of the minimum of the potential curve. Rather than being distributed over

the entire classically allowed region, the electron density is confined to an envelope with

the approximate shape of a butterfly. The nodal pattern features two large “wings”

of electron density extending to the usual spatial boundary of the atomic Rydberg

state, but along the internuclear axis the density accumulates near the position of the

perturber.

Like the trilobite states controlled by pure S-wave scattering [71], the P-wave

”butterfly” states develop large electric dipole moments, despite the fact that the elec-

tron density vanishes at the perturber. The behavior of the dipole moment at the equi-

librium separation with n scales roughly linearly with n, and its value for the n = 30

states is approximately 1.05 kdebye, rising to 3.91 kdebye for n = 70. The Π symmetry

states have similarly large dipole moments, but negative, with a value of -1.53 kdebye

at n = 30. Such large permanent dipole moments can be manipulated by external

electromagnetic fields or by dipole-dipole interactions.

3.5 Finite range nonlocal pseudopotential

In order to confirm the accuracy of the zero-range model, we have adopted a short-

range nonlocal approximation of the form developed by Pascale [81]. In particular, this

allows the model to represent longer-range polarization terms arising from the dipole and
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Figure 3.5: A surface plot of the Rydberg electron probability density ρ|Ψ(ρ, z)|2 in cylindrical coordinates for the n = 30 3Σ P-wave
scattered (“butterfly”) state [79]. The perturber is located at the position of the lowest minimum in the potential energy curve (at R = 308
a.u.), and corresponds to the largest peaks in electron density along the axis of symmetry.
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quadrapole polarizability of the perturber. This technique has been used successfully,

for example, in the calculation of adiabatic potential curves for helium-barium collisions

[82]. To verify the accuracy of the Omont theory, we performed a full diagonalization

on a two-dimensional spline basis set using a nonlocal model pseudopotential with free

parameters that could be varied to reproduce the observed phase shifts. (See [83] for a

recent example of the application of this method.) As a further test, we also implemented

the zero-range potential approximation using a Green’s-function technique, as presented

in Chapter 4. A comparison of these three methods is shown in Figure 3.6. In each

calculation, the overall shape of the P-wave bound state confirms the validity of the

extended Fermi model, with quantitative agreement to within a few percent. Note

that for the sake of this comparison, the core quantum defects have been set to zero

(i.e., an H + Rb system), allowing the use of the exact analytically-known Coulomb

Green’s-function.

These conclusions can be extended to molecular perturbers, through a generalized

version of the same zero-range potential [66]. The simplest such system, a diatomic

molecular perturber, introduces a second axis of symmetry into the problem, defining the

orientation of the molecule, with the result that states of differing molecular symmetry

(i.e., projection of the electronic angular momentum onto the ion-perturber axis) can

become coupled. Note, however, that if the perturber has a permanent dipole moment,

the longer-range electron-dipole interaction controls the scattering physics, invalidating

the assumptions of the zero-range approximation. The large number of shape resonances

known in electron-molecule scattering (N2, SF6, BF3, CO2, for instance) suggests that

this class of Born-Oppenheimer potential curves should be observable in many different

contexts, ranging from the conventional quantum chemistry of valence states to the

Rydberg states of an ultracold gas.
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Figure 3.6: Comparison of the Omont generalization of the Fermi pseudopotential
(dashed) with the finite-range Pascale-type pseudopotential (points), and the Green’s
function method (solid) [79].



Chapter 4

Long-range Rydberg states: Green’s function method

If requested to derive a method more rigorous than the perturbative or model

potential methods discussed in the last chapter, the first inclination of a researcher

trained in the tradition of quantum chemistry would be to turn to a variational method.

This would be done with the expectation that improving both the volume of the basis

set space and the description of electron correlation (by CI or some other method)

would result in a solution set converging with arbitrary accuracy to the true energy

spectrum. From a computational standpoint, however, applying the standard machinery

of quantum chemistry to the system of a separated neutral atom and Rydberg atom

entails the acceptance of considerable inefficiencies. The Rydberg electron is distributed

over an enormous volume of space, only a small fraction of which is occupied by either

the ionic core or the perturbing atom. Apart from these isolated regions of space,

the electron experiences only the residual Coulombic potential of the core, completely

screened by the core electrons to yield an effective long-range charge of unity. Thus,

the system is identical to atomic hydrogen in this region, and must yield a solution

assembled by linear superposition of the hydrogenic solutions.

Conceptually, this amounts to envisioning the system as a series of scattering

events, with the electron being tossed back and forth from one center to the other, like

a ping-pong ball that receives an impulse “kick” and “spin” from the paddle of each

player on repeated transits back and forth across the table. If we envision enclosing
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all short-range modifications to the asymptotic Coulomb potential within small spheres

surrounding the separated centers, the eigenenergies of the system can be found by

solving for general solutions locally within each of the three partitioned regions of the

electron’s motion, and then matching them suitably at the surface of the spheres, to

select out appropriate linear combinations of the solutions in each region.

In practice, we still have no interest in actually describing the form of the wave-

function in regions where it interacts strongly with the other electrons. The electron

spends only a small fraction of its orbit in these complicated regions, and the net effect

of such interactions on the final spectrum is merely to generate appropriate boundary

conditions for the “external” Coulombic solutions. In the philosophy of multichannel

quantum defect theory, the consequence of such localized boundary conditions is to de-

fine a phase shift of the usual hydrogenic solution, which must be accommodated by the

formation of a linear combination of the regular and irregular solutions that reproduces

that phase shift. The same idea applies in the current context— except that because

the system has a boundary condition with symmetry dissimilar to that of the Coulom-

bic potential, the solution will mix not only regular and irregular solutions, but also

solutions with different values of angular momenta relative to the core.

Because the solution will be controlled entirely by boundary conditions at a sur-

face, the most computationally advantageous implementation of the solution will involve

writing a formal solution in integral form, and then evaluating the effect of phase shifts

by means of surface integral corrections to that solution. Surface integrals have reduced

dimensionality relative to any method that would involve diagonalization of functions in

three-dimensional configuration space, potentially improving the speed of calculations

by several orders of magnitude. Moreover, the surface integrals are expected to be over

extremely small and localized surfaces, permitting certain natural approximations. The

most familiar way of reducing a volume integral solution to surface integral conditions

is the application of Green’s theorem (variantly known as the “second Green’s identity”
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in some references), and so we now turn to the task of formulating a Green’s function

technique for construction of the solution.

4.1 The Coulomb Green’s function

The Coulomb Green’s function, fortunately, is known since the work of Hostler

and Pratt in the 1960s [84, 85, 86] to have an analytic closed form, derived from formally

completing the sum over eigenstates in its eigenfunction expansion. To fix the normal-

ization convention, which tends to vary from reference to reference in the literature,

we explicitly define the Green’s function at energy E, Gc(~r, ~r
′), as the solution to the

Coulomb Schrödinger equation

(

1

2
∇2 +

1

r
− 1

2ν2

)

Gc(~r, ~r
′; ν) = −δ(~r − ~r ′) (4.1)

where δ is the Dirac delta function and ν = 1√
−2E

is the effective wave number associated

with this energy. Then the Green’s function can be written in terms of the Whittaker

functions Mν,1/2(r) and Wν,1/2(r) as

Gc(~r, ~r
′; ν) =

Γ(1 − ν)

2π|~r − ~r ′|
[

M ′
ν,1/2(η)Wν,1/2(ξ) −Mν,1/2(η)W

′
ν,1/2(ξ)

]

. (4.2)

The primed functions denote derivatives with respect to the total arguments, which are

given by

ξ = (r + r′ + |~r − ~r ′|)/ν

and

η = (r + r′ − |~r − ~r ′|)/ν.

Note that these two parameters depend only on the orientation of r̂ and r̂ ′ relative to

one another, and not the absolute orientation of the entire system, with the result that

the entire expression is invariant with respect to rotation, just as one would expect for

the solution to a spherically symmetric potential. The fact that the solution can be



60

reduced to only two dynamical variables, r + r ′ and |~r − ~r|, instead of three as might

be anticipated purely from conservation of angular momentum, is a consequence of the

higher symmetry associated with the invariance of the Runge-Lenz vector.

Alternatively, the Green’s function can be written as an expansion in spherical

harmonics Ylm(θ, φ):

Gc(~r, ~r
′; ν) =

∑

lm

gl(r, r
′)Ylm(θ, φ)Ylm(θ′, φ′). (4.3)

The one-dimensional radial Green’s function for a particular angular momentum l is

then

gl(r, r
′) =

ν

rr′
Γ(l + 1 − ν)

Γ(2l + 2)
Mν,l+1/2

(

2r<
ν

)

Wν,l+1/2

(

2r>
ν

)

, (4.4)

with r< defined as the lesser of r and r′, and r> as the greater of r and r′. In terms

of the regular and irregular Coulomb functions fl(r) and gl(r), the same function is

written as

gl(r, r
′) = − 1

rr′
π

sinπ(ν − l)
fl(r<) (fl(r>) cos π(ν − l) + gl(r>) sinπ(ν − l)) . (4.5)

The second factor in the product should be recognized as the linear combination of solu-

tions that vanishes at infinity. (Here and elsewhere, the function gl with one argument

denotes the irregular Coulomb function, whereas gl with two arguments is the radial

Green’s function.)

Finally, the most general form of the Green’s function (from which equation 4.2

can be derived, and of which 4.3 is a special case) is the eigenfunction expansion,

Gc(~r, ~r
′; ν) =

∑

nlm

Φnlm(r, θ, φ)Φnlm(r′, θ, φ)

En −E(ν)
, (4.6)

with E(ν) = − 1
2ν2 and En = − 1

2n2 . In principle, the sum runs over both the infinity

of bound states and extends as an integral into the continuum, although truncation
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to a finite number of bound states often provides a reasonable approximation to the

converged sum. The eigenstates are the familiar hydrogenic wavefunctions

Φnlm(r, θ, φ) =
2

n2

√

(n− l − 1)!

(n+ l)!

(

2r

n

)l

e−r/n L2l+1
n−l−1

(

2r

n

)

Ylm(θ, φ), (4.7)

defined in terms of the generalized Laguerre polynomial Lab (x).

4.2 Hydrogenic solution for S- and P-wave scattering

The use of Green’s function-based scattering formalism to derive the perturbation

of a Rydberg spectrum has been an object of periodic interest, primarily among Rus-

sian researchers, since the mid-1960s. In their classic studies of the zero-range potential,

Demkov and Drukarev [87, 88, 63] demonstrated that the effect of a short-range poten-

tial well on a weakly bound electron in an external electric (or magnetic) field could be

approximated as a zero-range boundary condition on the Green’s function solution en-

forced at a single point. Twenty years later, they revisited the same problem for higher

angular momenta [89], replacing the zero-radius potential approximation with a bound-

ary condition on a small sphere. A more powerful implementation of the same ideas

was proposed by Andreev and coworkers [90, 91], based on Landau and Lifshitz’s classic

treatment [92] of the scattering of slow particles by a short-range center. Tkachenko

[93] explicitly applied this generalized theory to the Coulombic system in the context

of studying charge-transfer complexes (i.e., systems in which the short-range potential

has at least one bound state that perturbs the spectrum). The charge transfer process

has continued to attract attention, for example, in the consideration of laser-assisted

collision complex formation [65, 66], or certain fundamental summation relations [94].

One of the more interesting applications of the Green’s function method during this pe-

riod was that of de Prunelé [67], who observed small oscillations in the potential curves

of alkali-He systems at separations as large as hundreds of Bohr radii. Most recently,
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the work of Fabrikant, Chibisov, and Khuskivadze [95, 74] applied a Kirchoff integral

technique involving the matching of the Green’s function solution to a short-range so-

lution calculated by ab initio methods. The approach of this section differs somewhat

from any of these earlier methods in the detailed derivation, but overlaps importantly

with them on the conceptual level, and predicts similar results in the appropriate limits.

In particular, we follow the same basic procedure as Fabrikant, but we rely here only

on phase shift data, without any need to find a short-range electron perturber solution

wavefunction.

To find the eigenspectrum of a perturbed hydrogenic Rydberg atom, we begin by

assuming the same geometry and coordinate system as in the previous chapter, with the

Rydberg atom nucleus at the origin and the perturber located at a distance R along the

z-axis. The dimension of the perturber is again taken to be small on the scale of both

the electron wavelength, and the variation of the electron wavelength. This permits

the use of the same simple quasi-classical relationship between R and the scattering

wavenumber k that appeared in equation 3.1, as a parameter for the energy-dependent

phase-shift δl(k).

For the hydrogenic case, we consider a solution Ψ(~r) to the Coulomb Schrödinger

equation, valid everywhere outside of a small sphere of radius y around the perturber

at ~R:

(

1

2
∇2 +

1

r
− 1

2ν2

)

Ψ(~r) = 0. (4.8)

By multiplying 4.1 from the left on both sides of the equation by Ψ(~r), 4.8 by Gc(~r, ~r
′; ν),

taking the difference, and integrating over the outer region, we find an integral form for

the formal solution,

Ψ(~r) = −1

2

∫

{

Ψ(~r ′)∇2Gc(~r, ~r
′) −Gc(~r, ~r

′)∇2Ψ(~r ′)
}

d3r′. (4.9)
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By application of Green’s theorem, this then reduces to the desired surface integral:

Ψ(~r) = −1

2

∮

{

Ψ(~r ′)~∇Gc(~r, ~r ′) −Gc(~r, ~r
′)~∇Ψ(~r ′)

}

· d~a ′

=
1

2

∮ {

∂Ψ(~r ′)

∂n′ Gc(~r, ~r
′) − ∂Gc(~r, ~r

′)

∂n′ Ψ(~r ′)

}

da ′. (4.10)

The derivative with respect to n’ denotes differentiation along a surface normal vector

directed outward from the original integration volume, that is, pointing into the spherical

surface of integration of radius y surrounding the perturber. After defining a local

coordinate system centered on the perturber,

rx = |~r − ~R|, θx = arctan

(

r sin θ

r cos θ − R

)

, φx = φ,

and for the primed coordinate,

ry = |~r ′− ~R|, θy = arctan

(

r′ sin θ

r′ cos θ − R

)

, φy = φ′,

the outer solution becomes

Ψ(~r) =
1

2

∮

{

∂Gc(~r, ~r
′)

∂ry
Ψ(~r ′) − ∂Ψ(~r ′)

∂rx
Gc(~r, ~r

′)

}

da ′. (4.11)

The surface of integration is defined as the spherical set of points for which ry = y,

where y � 1 is a constant.

The inner region solution, defined in terms of the same local coordinate system,

can be expanded in terms of a set of spherical harmonics centered on the perturber.

The sphere enclosing the inner region is small, and the potential due to the ionic core is

varying slowly at this distance. To a good approximation, the solution at the bounding

surface (where we also assume that the short-range atom-electron potential is negligibly

small) can be written in terms of the radial wavefunctions appropriate to free-electron

partial-wave scattering: the regular and irregular spherical Bessel functions, j l and ηl.

In conjunction with the previously discussed quasi-classical approximation that fixes the
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local wavenumber as k =
√

− 1
ν2 + 2

R , this permits us to write the inner region solution

at the boundary as

Ψ(~r) =
∑

lm

Alm(jl(kx) cos δ
(k)
l − ηl(kx) sin δ

(k)
l )Ylm(θx, φx), (4.12)

where the k-dependent parameter δ
(k)
l is the phase shift for free-electron scattering in

the lth partial wave channel. In analogy with y above, x is defined as a parameter fixing

the value of rx, this time with y < x < 1. (That is to say, not only is this solution valid

on the boundary at y, but we have further assumed that it remains approximately valid

even on a larger boundary at x where the solutions will be matched. This assumption

can be made without loss of generality, since the r and r ′ coordinates are symmetric in

the Green’s function, and will be convenient for use in a future Taylor expansion. The

approximation only becomes exact, of course, in the limit as both x and y approach 0,

but that limit may still be taken in a way that preserves the ratio between x and y.)

Since the current system displays rotational symmetry around the ~R axis, and

the magnetic quantum number m is defined relative to this axis in both coordinate

systems, the final solution wavefunction will still have m as a good quantum number.

In particular, we expect to find molecular wavefunctions of Σ symmetry for m = 0,

Π symmetry for m = 1, and so forth. For present applications, we will assume that

electron-perturber scattering for angular momenta beyond l = 1 is negligible, although

the method may be naturally extended for scattering states with a d-wave resonance.

Thus, just as for the previous methods, we anticipate three types of solutions: a Σ state

arising from S-wave scattering, a Σ state arising from P-wave scattering with m = 0,

and a Π state arising from P-wave scattering with m = 1. For geometries in this chapter

where this symmetry is preserved, the solution will be written with a subscript, Ψm(~r),

to specify this symmetry.

In order to reduce the formal solution in terms of a linear system of integral
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equations into a numerical problem in linear algebra, the solution must be resolved

into components defined in terms of some discrete basis. For the hydrogenic case, the

most logical choice for a finite basis is the set of spherical harmonics centered on the

perturber, for several reasons. First, the inner region solution is already defined as

an expansion in this basis, such that the projection onto spherical harmonics simply

picks out a single term in the expansion. Since all but the first few l-values will have

vanishing phase shifts (reflecting the absence of any interaction with the core), the

matrix elements arising from these higher terms decouple entirely from the molecular

states generated by lower angular momentum scattering, and including them in the

projection basis gives only trivial solutions that correspond to non-interaction. Thus,

the summation in equation 4.12 may be effectively truncated after only the low-l terms.

Second, the Green’s function varies slowly enough over this distance that it may be

expanded in a Taylor series with rapidly diminishing higher-order terms. Third, because

the symmetries are controlled by the local behavior of the wavefunction at the perturber,

an expansion local to that center will naturally result in a matrix equation with diagonal

elements that can be associated with states of the appropriate symmetries, and off-

diagonal elements that reflect the coupling between them.

To reduce the integral equation to a matrix equation, we first insert the solution

from 4.12 into 4.11, and then project both sides onto spherical harmonics:

< lm|Ψm > =

∮

dΩxY
∗
lm(θx, φx)Ψm (4.13)

= Alm(jl(kx) cos δ
(k)
l − ηl(kx) sin δ

(k)
l )

=
1

2

∑

l′

Al′m

∮

y2dΩy

[

I ′lm(x, ~y)
(

jl(ky) cos δ
(k)
l − ηl(ky) sin δ

(k)
l

)

−Ilm(x, ~y)
∂

∂y

(

jl(ky) cos δ
(k)
l − ηl(ky) sin δ

(k)
l

)

]

Yl′m(θy, φy),

where the function Ilm(x, ~y) is the projection of the Green’s function onto Y ∗
lm(θx, φx),
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Ilm(x, ~y) =

∮

dΩxY
∗
lm(θx, φx)Gc(~r, ~r

′; ν), (4.14)

and I ′lm(x, ~y) is the partial derivative of this function with respect to x.

The resulting matrix equation may be written in its most general form as

































a00(x, y; k) · · · a0,l′(x, y; k) · · · a0,lmax
(x, y; k)

...
. . .

...

al,0(x, y; k) al,l′(x, y; k) al,lmax
(x, y; k)

...
. . .

...

almax,0(x, y; k) · · · almax,l′(x, y; k) · · · almax,lmax
(x, y; k)

































































A0m

...

Alm

...

Almaxm

































= 0.

(4.15)

For the case lmax = 1, the resulting matrix equation has dimensionality 2×2 for m = 0,

with the form









a00(x, y; k) a01(x, y; k)

a10(x, y; k) a11(x, y; k)

















A00

A10









= 0, (4.16)

and 1 × 1 for m = 1, with the form

a11(x, y; k)A11 = 0. (4.17)

Eigenvalues of the Hamiltonian are thereby identified as zeroes in the determinant of

the matrix a, as a function of the wavenumber k. For a known eigenvalue k, the linear

system 4.14 may be solved, giving the relative values of the unknown coefficients Alm

(with their absolute values fixed by the additional constraint of normalization). This

process, naturally, must be repeated for varying values of the internuclear separation R

in order to map out the internuclear potentials.

One important test of the accuracy of a numerical solution of this equation is that

the resulting determinant must be independent of y. This is a consequence of the y-
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independence of the inner region wavefunction at the boundary x, as seen in 4.12. This

implies that, in taking a Taylor series expansion of Green’s function used in the outer

region wavefunction expression 4.11, only the leading order terms in y (after accounting

for any possible cancellation between the two integrand terms) need be retained.

To evaluate the matrix elements

all′(x, y; k) = δll′(jl(kx) cos δ
(k)
l − ηl(kx) sin δ

(k)
l ) (4.18)

−1

2

∮

y2dΩy

[

I ′lm(x, ~y)
(

jl(ky) cos δ
(k)
l − ηl(ky) sin δ

(k)
l

)

−Ilm(x, ~y)
∂

∂y

(

jl(ky) cos δ
(k)
l − ηl(ky) sin δ

(k)
l

)

]

Yl′m(θy, φy),

we expand the Green’s function in a Taylor series around the point ~R. As noted previ-

ously, the Coulomb Green’s function, although defined in a six dimensional configuration

space, depends on only two independent variables as a result of its high symmetry. Al-

though these variables have already been defined as ξ and η above for the sake of a

compact notation, it will be more convenient here to define them as

u = |~r − ~r ′| = ν (ξ−η)
2

and

v = r + r′ = ν (ξ+η)
2 .

For ~r and ~r′ both in the vicinity of ~R, the variable u is close to 2R, and the variable v is

close to 0. After separating out the 1/v factor containing the divergence at ~r → ~r ′, the

Taylor expansion of the analytical Green’s function, to third order in these variables,

yields

Gc(u, v; ν) =
1

2πv
Φ(u, v; ν) (4.19)

=
1

v
+ Φv + Φuv(u− 2R) +

1

2
Φvvv +

1

2
Φuuv(u− 2R)2

+
1

2
Φuvv(u− 2R)v +

1

6
Φvvvv

2.
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The subscript notation signifies a partial derivative with respect to that variable; Φuv

designates the partial derivative of Φ = 2vGc(u, v; ν) with respect to both u and v, i.e.

∂2Φ/∂u∂v, always evaluated at u = 2R and v = 0. The expansion lacks terms that

correspond to first and higher partial derivatives with respect to u only, since all such

derivatives of Φ identically vanish.

The expressions for the Φ terms often have a surprisingly simple form, due to the

ability to convert higher derivatives into lower derivatives using the Whittaker equation

identity

M ′′
ν (

2R

ν
) = −(−1

4
+
ν2

2R
)Mν(

2R

ν
) =

ν2k2

4
Mν(

2R

ν
). (4.20)

The second derivative M ′′ here is with respect to the total argument, and the wavenum-

ber remains defined as before according to the quasi-classical approximation k =
√

− 1
ν2 + 2

R .

A series of such identities can be defined recursively to reduce any expression of higher

order derivatives to an expression written using only M and W , and their first deriva-

tives. The first few cases required for the p-wave case are given here explicitly for

reference:

Φvv = −k2 (4.21)

Φuv = −νΓ(1 − ν)

2R2
MνWν (4.22)

Φvvv = Γ(1 − ν)

{

(
ν

2R3
− k4ν

2
)MνWν −

2k2

ν
M ′
νW

′
ν+ (4.23)

1

2R2

(

M ′
νWν +MνW

′
ν

)

}

Φuvv =
2

R2
(4.24)

Φuuv = Γ(1 − ν)

{

ν

2R3
MνWν −

1

2R2

(

M ′
νWν +MνW

′
ν

)

}

. (4.25)

It is implied that all Whittaker functions and derivatives appearing above are evaluated

at the position of the perturber, that is, with the argument 2R
ν .
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The integrals in Eq. 4.14 may be simplified by noting that the projections onto

Y ∗
lm(θx, φx) will eliminate all terms of the Taylor expansion except those with the proper

symmetry, based on the orthogonality of spherical harmonics. To make the symmetry

explicit, it is advantageous to expand the variables u and v in the spherical polar

coordinate system centered on the perturber:

u = 2R+ (x cos θx + y cos θy) +O(
1

R
) (4.26)

v =
(

x2 + y2 − 2xy(sin θx sin θy cos(φx − φy) + cos θx cos θy)
)

. (4.27)

Then the Taylor series terms are regrouped according to their angular symmetry with

respect to the perturber center:

Gc(u, v; ν) =
1

2π

{

(
1

x
+ Φv +

1

2
Φvvx+

1

6
Φvvvx

2) (4.28)

+(Φuvx+
1

2
Φuvvx

2) cos θx

+(Φuvy +
1

2
Φuvvxy) cos θy

+(
y

x2
− 1

2
Φvvy −

1

3
Φvvvxy)(sin θx sin θy cos(φx − φy) + cos θx cos θy) } .

Additional terms proportional to higher spherical harmonics are not shown, but would

be relevant if Λ took on values greater than 1 (i.e. ∆ states and higher). The φ

dependence controls which terms survive in the Σ and Π molecular symmetries. For

example, in the Σ symmetry, the terms proportional to cos(φx − φy) will vanish in the

projection integral, whereas for the Π symmetry the reverse is true, and all terms except

for these will vanish. The spherical Bessel functions are already relative to the perturber

center, so it is trivial to expand them in powers of x or y.

Once all of these expansions in the perturber-centered coordinate system are

inserted into the determinantal equation 4.15, and the relevant integrals over the Green’s

function are carried out, the elements of the determinant will be written as expansions in
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x or y. For the zero-range approximation, where x and y are assumed to be vanishingly

small, only the leading order term is significant, and all higher powers can be neglected.

Since the inner region solution 4.12 is independent of y, the determinant matrix elements

must also be y-independent to leading order; this provides a consistency check on various

cancellations that occur in analytical simplification of the matrix elements, and has also

been confirmed numerically. The dependence on x is generally finite (since the spherical

Bessels do display x dependence), but should cancel on either side of the equation to

give a final equation in ν and R only. (Factors of k may also need to be divided out of

the entire equation in order to clarify the identity of the scattering length, although this

is a purely cosmetic modification.) For the Σ symmetry (m = 0), the solution condition

from the determinantal equation is

0 =

{

1 − Φv
tan δ

(k)
0

k
+ (Φvvv − 3Φuuv))

tan δ
(k)
1

k3
− (4.29)

(ΦvΦvvv + 3Φ2
uv − 3ΦvΦuuv)

tan δ
(k)
0

k

tan δ
(k)
1

k3

}

.

Note that the k dependence could have been entirely rewritten in terms of ν and R,

but has been left explicit in order to reveal the energy- dependent triplet scattering

length, aT = − tan δ
(k)
0 /k, that appears in the Fermi pseudopotential treatment. A

logical factorization of this expression yields the equivalent form

{1 + aTΦv}
{

1 + (Φvvv − 3Φuuv)
tan δ

(k)
1

k3
+

aT
1 + aT

(3Φ2
uv

tan δ
(k)
1

k3
)

}

= 0. (4.30)

The final term in the second bracketed factor is numerically “small” under most circum-

stances, and so this amounts to a near-separation of the total quantization condition

into two independent solutions. In fact, the first bracketed factor is immediately recog-

nizable as the result of Demkov [63] for S-wave scattering of a Rydberg electron off a

zero-range potential, confirming that the method recovers the predicted S-wave solution
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in the limit that P-wave scattering is negligible, as first derived by Dalidchick and Ivanov

[96]. The capability to describe higher partial waves in our theory is comparable to the

theories of Tkachenko [93] and Dubov and Rabitz [66], both derived by the method of

Andreev [90], and the results here agree for the special cases considered in those papers.

(To our knowledge, however, no previous study ever applied these results to a system

with a scattering resonance in the manner of the current work.) Thus, Eq. 4.30 may

be understood as a generalization of the results of [63] and [96], but with the additional

capability of describing avoided crossings between the two classes of solution. For the

Π symmetry, the equivalent expression is simply

1 − Φvvv
tan δ

(k)
1

k3
= 0. (4.31)

The form of the Taylor expansion coefficients Φxy provides a source of analytical

information about the behavior of the solution potential, albeit without much accom-

panying physical insight. For example, one can observe that both Φv, Φuv, and Φuuv

all oscillate as a function of R such that they may vanish at particular R values, while

Φvv, Φuvv, and Φvvv do not. This implies that the Σ solution potential curves will

show oscillations, while the Π curve will be smooth. It also suggests that the coupling

between the S-wave and P-wave scattered bound states (which is proportional to Φuv)

will potentially vanish for certain values of R, such that the avoided crossing between

the potential curves may become nearly diabatic.

Extension of the above results to a non-hydrogenic case (i.e., for finite quantum

defects, as with an alkali Rydberg atom) can be accomplished in one of two ways. First,

the Rydberg core can be treated as a second scattering center for the electron, and an

equivalent set of surface integrals performed local to its center. Of course, the inner

region solution around the ionic center will need to be expanded in terms of Coulomb

functions, rather than spherical Bessel functions, but in all other respects the derivation
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is identical. Each non-zero quantum defect creates an additional linear equation that

must be solved, and increases the dimensionality of 4.14 by one. Alternatively, the

Green’s function can be expanded in spherical harmonics relative to the ionic core, with

the quantum defect explicitly inserted into the radial solution of Eq. 4.5:

gRbl (r, r′) = − 1

rr′
π

sinπ(ν + µl − l)
{fl(r<) cos πµl − gl(r<) sinπµl} (4.32)

{fl(r>) cos π(ν − l) + gl(r>) sin π(ν − l)} .

If the Coulomb Green’s function given by the expansion for vanishing quantum defect

(i.e., using Eq. 4.5) is subtracted from this expression, the result is a closed form for the

correction term, first derived (based on a somewhat different argument) by Davydkin

et al. [97],

Gq.d. corr(~r, ~r
′; ν) =

π

rr′ sinπν

∑

lm

sinπµl
sinπ(µl + ν)

Wν,l+1/2(r)Wν,l+1/2(r
′)Ylm(θ, φ)Y ∗

lm(θ′, φ′),

(4.33)

where the notation W denotes the Whittaker function normalized according to the same

convention as the standard Coulomb f and g, i.e. W = f cosπ(ν − l) + g sinπ(ν − l).

The integrals over this correction term are identical in form to those of the Coulomb

Green’s function itself, and carried out numerically. (Since the sum cannot be performed

analytically, there is no advantage to attempting a Taylor series expansion as before.)

In the actual evaluation of these integrals, numerical stability of the root-find

procedure is greatly improved by the analytic removal of singularities. In the Coulomb

Green’s function, the prefactor Γ(1 − ν) is singular at each integer ν, and diverges as

(sinπν)−1; this is expected, since the Green’s function has a pole at the hydrogenic

solutions. Similarly, the terms in the summation form for the correction for finite

quantum defects each diverge whenever sinπ(µl + ν) vanishes; in the absence of the

perturber, this would define the set of non-degenerate poles at ν = n− µl.
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A plot of the Σ potential curves for the Rb∗-Rb long-range molecular Rydberg

state in the vicinity of the n=30 manifold are shown in Figure 4.1.

4.3 Solution in the presence of an external field

Because of the unusually large dipole moments of these molecules, even a weak

external electric field will be sufficient to align them. For this reason, it is desirable to

have some estimate of the effect of an electric field on the level structure of the bound

state potential curves. Furthermore, the functional form of the field dependence of the

level shifts may prove useful in the experimental distinguishing of Rydberg-ground state

interactions like the trilobite state, and Rydberg-Rydberg long-range dipole interactions

such as those discussed in [22]. The theory of Rydberg-perturber interactions was

already the subject of study by de Prunelé [67], in the context of non-resonant states

formed for Rydberg-rare gas dimers (which do not support bound states, but do yield

oscillatory long-range potential curves).

In introducing a weak external electric field, we follow the approach of de Prunelé,

and consider the form of the correction term from the standpoint of an eigenfunction

expansion in the Stark eigenstates. This requires that the Stark spectrum first be ex-

panded in terms of the zero-field spectrum by a full diagonalization. In the hydrogenic

case, the results of this transformation are known exactly; the Stark Hamiltonian is

exactly separable in parabolic coordinates, and the transformation coefficients for arbi-

trary field were first derived by Fano and Harmin [98, 99], with strong analogies to the

MQDT frame transformation [100]. For an alkali system, the diagonalization must be

performed numerically by first-order perturbation theory (see, for example, [101]). The

Stark map for several manifolds of Rb in the vicinity of n=15 is shown in Figure 4.2.

Since both the Coulomb Green’s function and the Coulomb-Stark Green’s function

can be expanded in eigenstates, the correction due to the external field is [67]
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Figure 4.1: 3Σ potential curves for Rb∗-Rb long-range interaction, relative to the energy of the n=30 hydrogenic manifold. The nearly
vertical line of zeroes occurring beyond R=1750 is an artifact of the root finder at the classical turning point k=0.
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Figure 4.2: Stark splitting for Rb in the vicinity of the n=15 manifold.
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∆Gs(~r, ~r
′;E) = 〈r|

(

∑

α,m

|αm〉〈αm|
E −Eα

−
∑

ν,l,m

|νlm〉〈νlm|
E −Eνl



 |~r ′〉 (4.34)

In principle, the sum runs over the entire eigenspectrum, including the continuum. For

most practical purposes, however, the correction is only important when the terms in

the denominator become large, restricting the sum to levels close to the bound state

energy of interest.

If this correction term is added to the Green’s function in the outer region solution,

the matching condition will find solutions for a finite-field Coulomb-Stark Hamiltonian.

We will initially assume that the external field is aligned with the internuclear axis.

The level structure may be investigated as a function of both the dynamical parameters

E and R. Holding E constant and varying R gives the Born-Oppenheimer potential

curves for the molecular state. Figures 4.4 and 4.5 show the energy level spectrum at a

fixed field strength, as a function of the internuclear separation R.

Alternatively, R may be held constant and the field strength varied, in order to

study the Stark effect itself. Figure 4.5 shows the Stark maps for several energy levels

at a fixed internuclear separation, as a function of the field strength.

4.4 Semiclassical interpretation

Rydberg states are often celebrated in the literature for their potential to bridge

the conceptual gap between the quantum and classical worlds. The motion of a Ryd-

berg electron may be described accurately using semiclassical techniques, which relate

the classical closed-orbit trajectories of the spatial potential to the underlying nodal

structure of the true quantum mechanical solution. In this section, we discussion the

origin of the nodal pattern for the 3Σ-scattered state. This is a condensed version of the

semiclassical interpretation presented in [73], which may referenced for a more extended

discussion of these results in terms of the EKB quantization.
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Figure 4.3: Adiabatic energy level spectrum for states of Σ molecular symmetry in the vicinity of then = 15 manifold, for a field strength
of 51.42 V/cm. Note that the degenerate manifold has been split in accordance with the linear Stark effect. The avoided crossings between
the P-wave scattered molecular state and the atomic P state are partially obscured by artifacts that reflect insufficient sensitivity of the
root-finding algorithm.
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Figure 4.4: Magnified region of the previous plot showing the energy spectrum near the degenerate manifold, with a series of avoided
crossings between the trilobite state and high-angular momentum atomic states. Occasional spurious roots appear at the position of the
atomic levels, reflecting imperfect cancellation between the Stark correction term and the Coulomb Green’s function.
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Figure 4.5: Energy dependence of selected atomic and molecular levels with respect to electric field, at an internuclear separation of
R = 157.
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The robust, elliptic nodal structure of the electronic states observed in Figure 3.1

suggests that the problem will simplify in elliptic coordinates. Elliptic coordinates have

been used to treat a number of other two center problems such as H+
2 [102] and atomic

hydrogen perturbed by a point dipole [103]. From this standpoint, it is no surprise

that elliptic coordinates are useful for the current system. However, it is desirable to

understand both why elliptic coordinates seem to be preferred in our system, and exactly

how the description is simplified when elliptic coordinates are used.

Guided by the elliptically shaped nodal patterns, we introduce elliptic coordinates,

defined with the foci of the elliptical coordinate system placed on the ion (at the origin)

and the perturbing Rb atom (ρ, z) = (0, R). If r1 and r2 are the distances between the

Rydberg electron and the two foci of our coordinate system, the elliptic coordinates are

defined as

ξ =
r1 + r2
R

(4.35)

η =
r1 − r2
R

.

These coordinates are constrained to the ranges 1 ≤ ξ < ∞ and |η| ≤ 1 . Next, our

unperturbed elliptic eigenstates are introduced.

The elliptic eigenstates we construct here are stationary eigenstates of the hydro-

gen atom. These states differ from the traditional states of hydrogen (eigenstates of

H, ~L2, Lz) through the replacement of ~L2 by a constant of the motion that emerges out

of elliptic coordinates. The Schrödinger equation for an electron (in a molecular Lz = 0

Σ state) in a Coulomb potential in elliptic coordinates reads [104, 105, 106]

[

−1

2

∂

∂ξ

(

ξ2 − 1
) ∂

∂ξ
− 1

2

∂

∂η

(

1 − η2
) ∂

∂η
− R

2
(ξ − η) − R2

4
E
(

ξ2 − η2
)

]

Ψ(ξ, η;R) = 0.

(4.36)
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This equation separates into two one-dimensional eigenvalue problems for the

elliptic separation constant B(R)

[

−1

2

∂

∂ξ

(

ξ2 − 1
) ∂

∂ξ
− R

2
ξ − R2

4
Eξ2

]

F (ξ,R) = B(R)F (ξ,R) (4.37)

[

−1

2

∂

∂η

(

1 − η2
) ∂

∂η
+
R

2
η +

R2

4
Eη2

]

Φ(η,R) = −B(R)Φ(η,R), (4.38)

where Ψ(ξ, η;R) = F (ξ,R)Φ(η,R). Given a total energy E = −1
2n2 and a distance R, the

separation constant B(R) becomes quantized when boundary conditions appropriate

for bound states are imposed. We label these states by the number of nodes in the ξ

direction, nξ = (0, . . . , n− 1). The number of nodes in the angular η direction for this

m = 0 state is then given by the constraint

nη = n− 1 − nξ. (4.39)

Although analytical power series solutions of these Equations (4.37, 4.38) have

been found [104, 105, 106], an efficient way of calculating the solutions is to diagonalize

the one-dimensional Hamiltonians in a b-spline basis set. This procedure produces the

elliptic Coulomb states Ψnξ
(ξ, η;R) along with the corresponding values of the sepa-

ration constant Bnξ
(R). In all of the preceding equations, the internuclear separation

R appears as a continuous parameter. However, these equations do not yet include

the effect of the perturbing Rb atom. So far, the parameter R only gives the distance

between the foci of our elliptic coordinate system.

At least back to Sommerfeld [107], it has been known that the hydrogen atom

is separable in elliptic coordinates. Although the separability of the hydrogen atom

in elliptic coordinates is not widely known, a number of authors have investigated the

properties of the elliptic eigenstates. Erikson and Hill first [108] showed that the elliptic

separation constant B(R) was related to the orbital angular momentum about the two
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foci of the coordinate system (see also [102, 109]). Figure 4.6 shows contour plots of

the electron probability density for four of the degenerate elliptic states in the n = 30

manifold. The value of R for the elliptic coordinates underlying these states is 1232 a.u.

To our knowledge, the unusual nodal patterns of these states, which range from elliptical

(0, 29) to semicircular (14, 15) to wedge (29, 0) shaped, have not been reported in the

literature thus far. Next, these states are used as zero order eigenstates in perturbation

theory.

To include the effect of the perturbing Rb atom, the perturbation is diagonalized

in the basis of elliptic eigenstates. The relevant perturbation matrix is

Vnξn
′

ξ
(R) = 2πAT [k(R)]

〈

nξ
∣

∣

∣δ(~r − ~R)
∣

∣

∣n′ξ

〉

. (4.40)

Because this matrix is separable, only one state splits away from the degenerate n-

manifold when it is diagonalized. The total energy of the state can be found analytically,

and is given by the expression:

En(R) =
−1

2n2
+
∑

nξ

∣

∣

∣Vnξnξ
(R)

∣

∣

∣

2
=

−1

2n2
+ 2πAT [k(R)]

∑

nξ

∣

∣

∣Ψnξ
(1, 1;R)

∣

∣

∣

2
, (4.41)

which is used in Figure 4.7 to calculate the Born-Oppenheimer potential curve. The

wavefunction is then a linear combination of the elliptic eigenstates Ψnξ
(ξ, η;R):

Ψn(ξ, η;R) =
∑

nξ

Ψnξ
(1, 1;R)Ψnξ

(ξ, η;R). (4.42)

It is clear that both the Born-Oppenheimer potential curve (4.41) and wavefunc-

tion (4.42) are determined by the values of the primitive elliptic eigenstates Ψnξ
(1, 1;R)

at the position of the perturbing Rb atom (ξ, η) = (1, 1). In general, the wavefunctions

and eigenvalues include contributions from all n elliptic eigenstates in the degenerate

manifold. That the molecular states shows a strong elliptic character is seen when

the values Ψnξ
(1, 1;R) are shown as a function of internuclear separation R. Figure



83

Figure 4.6: Examples of elliptic eigenstates of the n = 30 hydrogen atom defined with an
elliptic coordinate system where the distance between the foci of the coordinate system
is 1232 a.u., and plotted in cylindrical polar coordinates [73]. The foci of the elliptic
coordinate system have been placed at the origin and at (ρ, z)=(0,1232) (shown by a
small circle).
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Figure 4.7: Born-Oppenheimer potential curve for a highly polar n = 30 Rydberg state
of Rb2 [73]. The approximate numbers of nodes in the electronic wavefunction (νξ, νη)
are shown below each minima. Note that the effective quantum numbers (νξ, νη) evolve
continuously as a function of internuclear separation, but are integer valued at the
minima.
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4.9 shows a plot of the values of
∣

∣

∣Ψnξ
(1, 1;R)

∣

∣

∣

2
(nξ = 0, 1 . . . , 10) for an unperturbed

n = 30 state as a function of R. At certain internuclear separations, a single primi-

tive elliptic states dominates the molecular wavefunction (4.42) and Born-Oppenheimer

potential curve (4.41). A comparison between the coefficients in Figure 4.9 and the

Born-Oppenheimer potential curve in Figure 4.7 shows that the minima in the po-

tential curve occur precisely where a single elliptic state is dominating the molecular

wavefunction. This “quasi-separability” of the full wavefunction means that at certain

internuclear separations the full Hamiltonian (including the perturbation) is nearly di-

agonal is the basis of primitive elliptic eigenstates. In some sense, the potential energy

is minimized (or maximized, for AT > 0) when the amount a non-separability in elliptic

coordinates is the least.

Furthermore, as the internuclear separation is changed, the specific elliptic state

that dominates the sums in Equations (4.42) and (4.41) changes. This accounts for the

redistribution of the nodes in the molecular wavefunction from the η to the ξ direc-

tion as the internuclear separation decreases (see Figures 4.7 and 4.8). Thus, at the

outermost minimum (R = 1575 a.u.), Figure 4.9 shows a peak in the contribution of

the nξ = 0 state. At the next minimum (R = 1382 a.u.), the nξ = 1 state has come

to dominate. As the character of the molecular state evolves from one elliptic state to

another the numbers of nodes in the electronic wavefunction (νξ, νη) evolve according

to the constraint

νξ(R) + νη(R) = n− 1. (4.43)

The characteristic elliptically shaped nodal pattern is preserved as the nuclei get closer

together, but the number of nodes in the two elliptic directions get redistributed from the

angular η direction to the radial ξ direction as the internuclear separation is decreased.

Thus we have shown how an unexpected “quasi-separability” in elliptic coordi-
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Figure 4.8: Contour plots of ρ |Ψ(ρ, z)|2 of the Born-Oppenheimer wavefunctions of a
long-range Rb2 molecule at the energy of an n = 30 Rydberg state [73]. Four internuclear
separations are shown (R = 1575, 1382, 1234, 1110) corresponding to the outermost
minima in the oscillating potential curve (see Figure 4.7). These states are labeled by
the approximate numbers of nodes (νξ, νη) in the two elliptic directions.
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Figure 4.9: The values of the expansion coefficients
∣

∣

∣Ψnξ
(1, 1;R)

∣

∣

∣

2
for a n = 30 state

[73]. These coefficients determine which elliptic eigenstate of hydrogen (see Figure 4.6)
dominates the molecular wavefunction and Born-Oppenheimer potential curve (Figures
4.7 and 4.8) at a given radius. Each peak in the graph is labeled by the elliptic quantum
numbers (nξ, nη) of the state the peak represents.
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nates emerges at certain internuclear separations. These special internuclear separations

are precisely the minima in the Born-Oppenheimer potential curve. That the Born-

Oppenheimer Hamiltonian is nearly diagonal in elliptic coordinates at a sequence of

internuclear radii is an unexpected simplification that accounts for the elliptical shape

of the nodal structure of the molecular states. The evolution of the molecular state

with internuclear separation can be viewed as an change in the contributions of the

primitive elliptic states that comprise the wavefunction. Now we turn to a semiclassical

description of these states.

Semiclassical methods permit a simple interpretation of multidimensional quan-

tum systems [110]. In the absence of the perturbing Rb atom, the long range dynamics

of the Rydberg electron are purely Coulombic. Our main challenge is therefore to in-

clude the effect of the perturbing Rb atom in a semiclassical treatment. In principle, it

would be possible to include the perturbing potential using classical perturbation theory

[111]. Rather than this approach, we focus on a more qualitative viewpoint. To include

the effect of the perturbing Rb atom semiclassically, we replace its delta-function Fermi

potential by an inhomogeneous delta-function source at the perturbing atom. While this

is clearly an approximation, we show that this approximation reproduces the solutions

from degenerate perturbation (Equation 4.42) theory extremely well. The resulting

object of interest is then the Coulomb Green’s function with the source placed at the

position of the ground state Rb atom. The semiclassical Green’s function can be written

[110] as a sum over classical trajectories that propagate from ~x′ to ~x with energy E:

G(~x, ~x′, E) ≈
∑

traj

AeiS(~x,~x′,E)−iµπ/2.

For our purposes the most important quantities in this expression are the classical

action S(~x, ~x′, E) and the Maslov index µ of each trajectory, which counts the numbers

of sign changes of the amplitude A. The amplitude A is a measure of the stability of

each classical path. If the energy E is fixed and the source coordinate of the Green’s
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function is set to be at the position of the perturbing atom (~x′ = ~R) there are only four

classical trajectories that contribute to the Green’s function G(~x, ~R,E). These four

paths always lie on two Kepler ellipses that intersect the points ~x and ~R and have a

Coulomb potential at one focus. An example of these four paths is seen in Figure 4.10.

The foci of the elliptic coordinate system (the Coulomb singularity and the perturbing

Rb atom) are shown as solid circles. The Green’s function is then a coherent sum of

the four trajectories that propagate from the ground state Rb atom to the observation

point marked by a hollow circle.

Figure 4.11 shows contour plots of both the quantum and semiclassical Coulomb

Green’s function with the source point placed at the ground state Rb atom (ρ, z) =

(0, 1232). The semiclassical Green’s function has been constructed as described above,

and shows strong agreement with the molecular wavefunction found using degenerate

perturbation theory (Figure 4.8) and the quantum Green’s function also pictured here.

The quantum Green’s function shown in Figure 4.11 is based on an analytical expression

first derived by Hostler [85, 86]. The good agreement of these three methods (quan-

tum and semiclassical Green’s function, and degenerate perturbation theory) show that

the inclusion of the perturbing Rb atom through an inhomogeneous source term in the

Schrödinger equation is a good approximation for the problem at hand. Additionally,

from a semiclassical perspective, then, the nodal structure of these electronic wavefunc-

tions is governed by two things. First, the long range Coulomb physics provides the

majority of the dynamical evolution. Second, the ground state Rb atom at ~R selects

only Coulomb orbits that pass through this point. From this perspective, constraining

the trajectories to pass through the ground state Rb atom is a perfectly sensible way of

including the effect of the perturbation in a semiclassical treatment.
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Figure 4.10: An example of the four classical paths lying along the two possible closed-
orbit trajectories that contribute to the semiclassical Green’s function G(~x, ~R,E), at
the energy of an n = 30 Rydberg state [73]. The trajectories lie on two Kepler ellipses
intersecting the perturber at ~R (right solid circle) and the observation point ~x (hollow
circle). These ellipses are unique when one focus is constrained to be at the Coulomb
singularity at the origin (left solid circle).
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Figure 4.11: Contour plot of the semiclassical (upper) and quantum (lower) Coulomb
Green’s function with the source coordinate placed at the ground state Rb atom (ρ,
z)=(0, 1234) [73]. The semiclassical Green’s function has only been shown up to the
classical turning point where it diverges unphysically.



Chapter 5

Siegert states

Progress toward a truly general theory of molecular systems excited at continuum

energies depends on the ability to describe all accessible continua concurrently. Modern

experiments routinely probe energy regimes where multiple channels of both ionizing

and dissociative types are in competition [10]. The philosophy of multichannel quantum

defect theory outlined in Chapter 2 is naturally suited to the description of physics in

the asymptotic region, where channel indices correspond to the quantum numbers of

the separated system, and complicated short-range scattering dynamics are reduced to

a minimal set of interaction parameters. In principle, the problems of predissociation

and preionization are based on exactly the same interaction parameters, since they both

hinge on the coupling between the electronic excitation of the Rydberg electron and the

rovibronic excitation of the core. In preionization, sufficient energy is transferred from

the core to the electron to promote it into the continuum of the separated electron-ion

system; in predissociation the reverse process occurs, with energy transferring from the

electron into vibrational excitation, dissociating the molecule.

5.1 Dissociative channels in molecular MQDT: General considera-

tions

The extension of quantum defect theory to include a nuclear continuum is not

naturally suggested by the form of the channel expansion on which the theory relies,
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because the usual theory has only ionization channels represented explicitly (see Eq. 2.2

in Chapter 2). The time-independent Schrödinger wavefunction is conventionally ex-

panded using a solution ansatz form that distinguishes the channel states (discrete, and

usually calculated numerically) from the asymptotic states of the scattering coordinate

(continuous, and usually known analytically at large separations). The necessity of se-

lecting one coordinate set to serve as the “channels” inevitably entails a preimposed bias

as to which coordinate should be considered to correspond to the reactive dynamics of

the fragmenting particles. From that perspective, the very notion that MQDT could be

of utility in double continuum problems may appear on the surface to be questionable.

At the same time, much of the conceptual appeal of quantum defect methods

for single continuum studies is retained or even enhanced by the computational chal-

lenges of working within a two-continuum problem. The physics of the system is still

dominated by a finite set of energetically open channels, and the selection of an ex-

pansion form that incorporates those channel states directly will still greatly reduce

computational labor. Some coordinates and asymptotically “good” quantum numbers

refer to coordinates that obey periodic rather than asymptotic boundary conditions,

such as the angular electronic coordinates or the rotational eigenvalues; it would be

a great waste of computational resources to solve for wavefunctions already known in

advance, such as when the ionization occurs via a few partial waves or into a small

number of product rotational states. Moreover, the transition from single continua

systems to multiple continua only complicates the necessity of efficiently describing the

coupling between metastable resonant states and the continua in which they are embed-

ded. Since the short-range interaction physics to which resonant processes are sensitive

is relatively indifferent to the number of different continua or types of continua that are

simultaneously open, the same quantum defects and phase shifts that characterize the

single-continuum case still ought to contain all necessary information for handling any

associated multiple-continuum generalizations of the same system.
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5.2 Established methods for handling dissociative channels

The extension of quantum-defect-style techniques to the description of dissociative

channel physics was initially pursued in the late 1970s by Schneider, Burke, and other co-

workers [112, 113, 114, 115], in the context of electron scattering from neutral molecules.

Their calculations were based on the Born-Oppenheimer approximation, and neglected

all non-adiabatic coupling effects. This allowed for an adequate handling of dissociative

attachment and vibrational excitation processes of neutrals, but could not be extended

to electron scattering from positive ions (or the associated half-scattering processes of

neutral molecule photoionization and photodissociation), which involve an essentially

non-adiabatic coupling interaction with electronic Rydberg states. Still, Schneider et al.

were able to demonstrate that their R-matrix method gave results formally equivalent to

that of the Fano frame transformation formulas (see the concluding discussion of [115]).

Other applications of quantum defect theory to the dissociative spectra of diatomic

molecules were later developed by Giusti [116] and [117] . These methods are analogous

to the standard one-dimensional formulation of quantum defect theory, but with the

electronic coordinate replaced by the nuclear degree of freedom. (For an extended

discussion of the extension of MQDT to non-Coulombic long-range potentials, see [43,

118, 119].) These methods are rigorous, but naturally involve no reference to electronic

physics except at the level of relying on adiabatic or diabatic potential curves.

5.2.1 Jungen eigenphase method

One of the earliest attempts to apply multichannel quantum defect theory to the

problem of competing dissociation and ionization processes was carried out by Christian

Jungen [53]. Jungen adopted an approach inspired by the utility of Fano’s approach [45]

in treating the “recoupling” transformation between the short-range interaction of the

Rydberg electron with the core, and the long-range Coulombic forces of the Rydberg
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states. For escape into an electronic continuum only, the result of this procedure is

the orthogonal frame transformation already discussed in Chapter 2. To represent the

dissociative physics, the vibrational basis must be augmented in some way that permits

a finite value of the wavefunction on the fixed-R boundary between the inner region

(where the wavefunction is unknown) and the outer region (where it can be expanded

in dissociative channels). R, as before, refers to the internuclear separation, as opposed

to r, the radial coordinate of the electron. The assumption is made that the potential in

the outer region vanishes except for a constant that defines the channel energy threshold.

Note that while the boundary condition of the electronic coordinate r is formally applied

at infinity, the boundary condition for the nuclear coordinate R is necessarily imposed at

some finite boundaryR0 that delineates the range over which the inner region vibrational

basis is defined. Outside the region the solution is a linear combination of the regular

and irregular vibrational continuum functions, FnΛ cos δ −GnΛ sin δ, multiplied by the

channel function that describes the state of the dissociating atoms or molecular fragment

pair, with the Rydberg electron in a low-n electronic state.

Figure 5.1 shows the inner and outer regions, the boundaries between them, and

the form of the solutions in each region, as found in [53]. Solutions with finite amplitude

in region II correspond to ionization, and solutions with finite amplitude in region III

correspond to dissociation. Solutions in region IV, which would describe dissociative

ionization, are not possible in the current version of Jungen’s method.

If a vibrational basis for the molecular ion H+
2 is generated in accordance with a

fixed logarithmic derivative boundary condition at R0, which all functions in the basis

must satisfy, then the (discrete) basis consists a ladder of energy levels that begin to

resemble the eigenstates of a particle in a one-dimensional box as soon as they rise

high enough in energy to exceed the dissociation threshold; they shall be referred to

as the “box states”, in contrast to the ordinary vibrationally bound states that van-

ish as R → ∞. For an arbitrary choice of the logarithmic derivative, it is unlikely
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Figure 5.1: Partition of configuration space into inner and outer regions, taken from the
work of Ch. Jungen [53].

that the wavefunction expansion constructed using the box states (which all share the

same boundary condition) will have an energy at precisely the right value to correspond

to the true (energy-conserving) continuum state. The selection of a single logarith-

mic derivative discretizes the continuum values available for continuum-like H+
2 channel

states, and this also restricts the continuum H2 states to a finite range of discrete val-

ues. Thus, the system must be solved iteratively, with a systematic variation of the

logarithmic derivative from −∞ to ∞ that causes the locations of the energy levels to

scan across the position of the true dissociative state energy. This is accomplished by

casting the eigenequation system normally as for the ionization-only R-matrix approach

[120] approach, but including the box state channels as “strongly closed” channels with

phase parameters that depend implicitly on the logarithmic derivative. These addi-

tional strongly closed channels produce exactly one extra solution, corresponding to the

dissociative continuum state of proper energy. This and the other eigenphase solutions

are then projected back onto the channel basis, defining the usual smooth, short-range

reaction matrix (or scattering matrix). From this point, channel elimination can be

performed, usually to close off the “weakly closed” channels associated with the true

vibrationally bound states of the molecular ion potential that give rise to the ionization

Rydberg series structure.
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As originally developed, this method is encumbered by the need to recalculate

the eigensolution coupling matrix elements at each new logarithmic derivative. Since

the values at which the linear eigensystem possesses an eigensolution are dependent

on energy, this means that the system must be solved repeatedly at each energy until

the result has iteratively converged to the desired accuracy. Moreover, the method, as

originally conceived, functions only for a single dissociative channel per Λ symmetry, and

only in the energy regime below dissociative ionization. The reaction matrix contains an

explicit channel for dissociation, reflecting the constraint that the solution must vanish

either at infinity in all ionization channels, or else at the boundary in the dissociation

channel.

More recently [121], Jungen and Ross generalized their method to allow for mul-

tiple dissociative channels, and to remove the necessity for iteration. The standard

frame transformation calculation is done first for the normal basis set (vanishing at

R0, and it is then repeated with a different logarithmic derivative for each dissociation

channel. The eigenchannel solutions for all the different boundary condition choices

are combined into a single generalized basis, and the asymptotic boundary conditions

then give a generalized eigenvalue problem for the full two-dimensional eigenphases and

eigensolution vectors. As before, this gives a short-range reaction matrix with “weakly

closed” channels, which may be then eliminated with the usual algebra. This method

has provided the most accurate theoretical results currently available, and is in the pro-

cess of being extended to other systems [122]. It does depend, however, on a physically

motivated choice of the “additional” logarithmic derivatives; the accuracy of the results

reflects the extent to which an energy in the vibrational basis appears close to the en-

ergy at which the calculation is being performed. In effect, this optimization condition

amounts to a semi-iterative procedure that must be adjusted “by hand” in different en-

ergy ranges. This is easily accomplished for the study of a single peak at some specified

energy, but could be potentially quite inconvenient for the calculation of a continuously
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energy-dependent spectrum with many peaks over a wide energy range. Moreover, it

remains unclear how to extend this method to energies above the dissociative ionization

threshold.

5.2.2 Stephens-Greene box averaging method

A more conceptually direct approach to the representation of coupling to a dis-

sociative continuum is that of box size averaging [54]. As in the Jungen method, the

dissociative continuum is discretized by allowing the vibrational basis to extend far

above the ionic dissociation threshold, to include many box states. Instead of looking

at the variation of these state energies with logarithmic derivative, one may instead con-

sider their sensitivity to variations in the box radius R0. As the box increases in size,

the box state levels shift to lower energies, passing smoothly through all continuum

energies. The coupling between these fictitious channels and the physical ionization

channels provides a measure of the extent to which flux can be expected to pass into

those dissociation channels. The positions of resonances with strong dissociative charac-

ter will be perturbed significantly by the introduction of these additional box states, and

the variation in this perturbation as a function of R0 is thus a measure of the coupling

strength between the dissociative continuum and the ionization channel associated with

that resonance.

In order to quantitatively interpret this effect, the standard MQDT frame trans-

formation procedure must be performed sequentially for a series of closely spaced box

radius parameter values. The cross-sections arising from each individual value of the

box radius are then averaged together, giving a cross-section in which the linewidths

of dissociation-sensitive peaks have been broadened. The range of R0 values used in

the calculation is determined by the separation between box state energy levels in the

vicinity of the energy for which coupling to the dissociative continuum is anticipated

to be important; roughly speaking, it is necessary to change R0 by exactly enough to
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shift all the levels down by one cycle, such that the n + 1-th level is lowered to the

position initially occupied by the n-th level. Since the eigenvalues of a particle in a box

have a relative spacing itself proportional to n, the selection of an appropriate refer-

ence value for n is essential for producing an evenly weighted average. This is a trivial

choice at low total energies, where only one dissociative channel is accessible; if there

are multiple competing dissociative product channels open at once, however, the crite-

rion becomes more difficult to specify, and if the cycle periodicities are fundamentally

incommensurate, potentially impossible.

5.2.3 Two-dimensional R-matrix method

R-matrix techniques derive their name from the original formulation of Wigner

and Eisenbud [123], who first recognized that the matrix of generalized logarithmic

derivatives on the surface bounding a continuum system of interacting particles could

be written as an expansion over resonant terms located at the eigenenergies of the

bounded system1 . This approach demonstrated good utility for the semi-empirical

characterization of small collections of known nuclear resonances in terms of a minimal

parameter set, but it was not applied widely for ab initio computation in its original

form, owing to its poor convergence properties. Although it is possible to improve

convergence through the inclusion of certain correction schemes, such as the Buttle

correction, this can only be accomplished at the expense of some amount of conceptual

clarity and computational efficiency.

An alternate version of the R-matrix theory was introduced by Fano and Lee [120],

based on transformation to the eigenchannel representation. Rather than selecting a

single arbitrary value for the surface logarithmic derivative and solving the Schrödinger

equation subject to that condition, the eigenchannel representation provides a set of

solutions, each of which has a different logarithmic derivative that is common to all of its

1 For a review of early applications of R-matrix theory to problems in nuclear physics, see [124].
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physical channel components. Since the boundary condition is itself the undetermined

eigenvalue parameter, it is permissible to express the matrix equation in a basis set

that uses basis functions with a range of different logarithmic derivatives, improving

the convergence properties of the final R-matrix expression. This comes at the expense,

however, of requiring an iterative solution procedure. For an application of this approach

to photoionization, see [125].

The eigenchannel approach may be recast in a noniterative form by means of a

variational principle first discovered by Kohn [126]. In contrast to the more traditional

bound state applications of the calculus of variations to quantum systems, which apply

the Rayleigh-Ritz method to determine a stationary value of the energy for a given basis

set, Kohn’s principle gives a stationary value for the logarithmic derivative in terms of

a fixed scattering energy. For continuum systems this is conceptually advantageous,

in that it reflects an awareness that the total energy is typically a controllable input

parameter for scattering experiments. This simplification was first proposed for a field-

perturbed atomic system by Greene [127], and shortly thereafter extended to molecular

photoionization [128]. Although this approach successfully combines the stable conver-

gence of the eigenchannel method with the non-iterative efficiency of the traditional

Wigner-Eisenbud theory, it still suffers from the disadvantage of requiring the eigensys-

tem to be solved again at each new energy. This disadvantage may be reduced by use of

a modified “streamlined” solution technique for the generalized eigenequation, although

for larger basis sets (e.g., such as those commonly required for the two-dimensional R-

matrix method), the computational advantage is limited by the inability to efficiently

diagonize the Γ matrix in the closed-closed subspace [129, 44]. Additionally, the energy

dependence of the R-matrix elements over small energy ranges is frequently smooth

enough that they may be interpolated from a limited number of data points, provided

sufficient care is taken with respect to the handling of divergences in the logarithmic

derivative eigenvalues.
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A detailed review of the variational R-matrix method may be found in [129].

Here, we will focus specifically on the specialization of this method to the problem of

photoionization and photodissociation in diatomics. For a system with two dissimilar

modes of fragmentation, as is the case for competing dissociation and ionization, the

variational principle must be adjusted to account for the nonequivalence of the kinetic

energy terms of the Hamiltonian. Assume the potential within a two-dimensional box

bounded by surfaces at the axes and at r = r0 and R = R0 may be written as V (r,R).

Then the time independent Schrödinger equation requires

(

− 1

2µr

∂2

∂r2
− 1

2µR

∂2

∂R2
+ V (r,R)

)

ψ(r,R) = Eψ(r,R). (5.1)

The mass factors µr and µR denote the reduced masses for electronic and nuclear motion,

respectively. The angular degrees of freedom have already been separated in spherical

coordinates, such that the full solution in the inner region is given by

Ψ(~r, ~R) =
1

rR
ψ(r,R)Φ(Ω). (5.2)

The notation Ω represents all angular degrees of freedom. In general, the possibility of

additional electronic symmetries and partial wave components would require a sum over

multiple Φ channels, although for the ungerade photodissociation spectrum of molecular

hydrogen it suffices to assume that only the p-wave channel is active; the R coordinate,

however, is strictly confined to s-wave scattering by conservation of momentum. The

partition of configuration space that defines the inner region is identical to that of

Jungen’s work as previously shown in Figure 5.1, with Jungen’s radius r2 corresponding

to the box boundary labeled here as r0.

The mass factors may be temporarily absorbed by a change of variables, x =
√
µrr

and X =
√
µRR, to recast the Hamiltonian in a more symmetric form. Then the

differential equation is transformed into the usual matricial form by the taking of an
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inner product over the enclosed box volume,

E

∫

dx dX ψ∗ψ =

∫

dx dXψ∗
(

−1

2

∂2

∂x2
− 1

2

∂2

∂X2
+ Ṽ (x,X)

)

ψ (5.3)

followed by the application of Green’s theorem,

E

∫

dx dX ψ∗ψ =

∫

dx dX

(

1

2

∂ψ∗

∂x

∂ψ∗

∂x
+

1

2

∂ψ∗

∂X

∂ψ∗

∂X

)

(5.4)

+

∫

dx dXψ∗Ṽ (x,X)ψ (5.5)

−1

2

∫ x0

0
dxψ∗(x,X0)

∂ψ

∂X
|x=x0 (5.6)

−1

2

∫ X0

0
dxψ∗(x0, X)

∂ψ

∂X
|X=X0 . (5.7)

The logarithmic derivative is defined based on an outward normal with respect to the

appropriate scaled variable along each surface,

∂ψ

∂X
|X=X0 = −bψ, ∂ψ

∂x
|x=x0 = −bψ.

After rearrangement and restoration of the original variables, the variational quantity

b may finally be expressed as

b =

√
µrµR

∫

dr dR
(

2E − 1
µr
|∂ψ∂r |2 − 1

µR
| ∂ψ∂R |2 − 2V (r,R)|ψ|2

)

√
µr
∫ r0
0 dr |ψ|2 +

√
µR
∫ R0
0 dR |ψ|2

(5.8)

Note that the boundary parameter b is not the logarithmic derivative itself, but rather

the mass-rescaled logarithmic derivative; to recover the usual logarithmic derivative, b

must be multiplied by the appropriate
√
µ factor.

Proceeding from this relation, the solution is expanded in a two-dimensional basis,

ψ =
∑

i

∑

j

ci,jui(r)vj(R)

,

to produce the usual generalized eigenvalue equation,
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Γ~c = bΛ~c, (5.9)

where Γ is the matrix representation of the numerator of 5.8 and Λ is the matrix rep-

resentation of the denominator of 5.8 (i.e., the overlap matrix for that basis). Each

eigensolution will have a common boundary parameter value bβ on both surfaces. Out-

side the box boundary, the scattered eigenchannel solutions can be written as a channel

decomposition of the regular and irregular solutions [44],

ψβ(r, ω) =
∑

i

1

r
Φi(ω)(fi(r)Iiβ − gi(r)Jiβ). (5.10)

The symbol ω includes all degrees of freedom necessary to describe the channel, in-

cluding R and all angular coordinates Ω. This wavefunction requires a formal antisym-

metrization, but for sufficiently large r0 this can usually be neglected. For the solutions

asymptotic in R, the variable r is replaced by R wherever it appears, and the Coulomb

functions fi and gi are replaced by the regular and irregular vibrational continuum func-

tions, which can be found by the Milne method [118, 130] or else by similar numerical

techniques. The matching condition of continuity for the wavefunction and its derivative

permits the determination of I and J in terms of Wronskians,

Iiβ = −W (gi, ψiβ)

W (fi, gi)

and

Jiβ = −W (fi, ψiβ)

W (fi, gi)
,

and this suffices to define either the reaction matrix K = IJ−1 or the scattering matrix

S = (I+ iJ)(I− iJ)−1. The notation ψiβ refers to the projection of the solution ψβ onto

the i-th channel function at the appropriate matching surface.

The variational R-matrix method requires an explicit form for the potential energy

function within the two-dimensional box. In principle, the potential energy of molecular
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hydrogen as a bivariant function of r and R is quite complicated, reflecting short-range

electron correlation effects that are challenging to define for the highly excited pseudo-

continuum states that characterize the R-matrix eigenspectrum. Instead, we have opted

to work with a simplified two-dimensional model potential that reproduces the features

of the exact H2 intermolecular potential to reasonable quantitative accuracy. A separate

potential form is utilized for each Λ-space symmetry, with several parameters that may

be optimized through a one-dimensional R-matrix procedure to reproduce the known

body-frame quantum defects µΛ(R). For the Σ symmetry, this procedure yields (in

atomic units)

V (r,R) = −α1

(

1 − tanh
α2 −R− α3R

4

7

)

tanh (R/α4)
4 e

−r2/3

r
(5.11)

where α1 = 1.6435, α2 = 6.2, α3 = 0.0125, and α4 = 1.15. For the Π symmetry, the

optimization gives

V (r,R) = α1

√
R
(

e−(R−α2)2/α3

) e−r
2/3

r
(5.12)

with α1 = 0.480, α2 = 3.35, and α3 = 6.5. The resulting model potential curves are

shown in 5.2. Note that the model potential begins to break down for Σ states of

low n, owing to the neglected energy dependence of the Σ quantum defect which is not

described by this fitted potential. The shape of the 2Σ potential is not even qualitatively

correct, a reflection of the inability of a 1Σ+
u state to dissociate into two ground state

hydrogen atoms [40]. This is a problem common to all QDT techniques that use an

energy-independent quantum defect, but since the n=2 state lies so low in energy as

to be inactive for scattering or photoabsorption processes near the ionization threshold,

this does not constitute a serious defect for the purpose of using the model as a test

system.

As mentioned above, the R-matrix procedure is computationally expensive to re-
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Figure 5.2: Potential curves generated from the model Hamiltonian using Eqs. 5.11
and 5.12. Potentials drawn with a dashed curve are of 1Σu symmetry, and those with
a solid curve are of 1Πu symmetry. (These may be compared with the exact curves for
H2 shown in Figure 2.1.)
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peat at each new energy (unless the basis set is small enough to use the streamlined

version). Fortunately, the quantities I and J are only weakly and smoothly energy

dependent, and can be interpolated from data computed on a coarser energy grid. Be-

cause they incorporate relative phase information, and because the phase is ambiguous

with respect to a shift of π, the eigenvector solutions are susceptible to branch disconti-

nuities associated with the underlying trigonometric functions; these must be repaired

before the interpolation is applied. Given the interpolated reaction matrix values, the

only remaining step that must be performed at each energy is the elimination of closed

channels according to the conventional channel elimination procedure. Note that this

method results in the appearance of channels in the S-matrix that are explicitly labeled

as either ionization or dissociation channels.

Results of the R-matrix calculation, and a comparison with experimental data,

are summarized in Table 5.1 (aside from the v+ = 2 resonance series, for which the

peaks are exclusively ionized, and occur within a wavenumber or two of the correct

position). The photoionization, photodissociation, and total cross-sections are shown

in Figures 5.3, 5.4, and 5.5. The photoionization and photodissociation portions of the

cross-section are separated by summation over only the appropriate physical channels.

Note that since this calculation is based on a model potential, and resonance features

are often highly sensitive to small variations in the form of the short-range potential,

the comparison is not expected to be quantitative. A comparison with the Siegert

method (below) using the same model potential, however, suggests that only errors in

the positions (as opposed to widths or relative yields) of the peaks are likely to be a

consequence of the failure of the model approximations. The inability of the relative

yields to reproduce experiment in anything beyond a general qualitative correspondence

is disappointing, and may reflect either a fundamental weakness of the technique, or

some undetected error in the implementation. Moreover, the dissociation spectrum

reveals an unassignable peak at 786 Å; this may be an artifact related to the anomalous
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shape of the 2pσ and 3pσ potential curves. This method probably merits further study

before any definite conclusions are drawn concerning its capabilities and limitations.

Table 5.1: Positions and fractional yields for select ungerade J=0 resonances in H2.

Model Obs. (H2)

3pπ, v = 8 Position (cm−1) 127295.7 127248.2

Width (cm−1) 3.9 3.4

% Ionization 0.1 ≤ 2

% Dissociation 99.9 ≥ 98

5pσ, v = 4 Position (cm−1) 127622.0 127599.4

% Ionization 0.42 0.77

% Dissociation 0.58 0.10 ± 0.10

4pπ, v = 5 Position (cm−1) 127701.4 127667.6

% Ionization 0.998 0.85

% Dissociation 0.002 0.18 ± 0.05

The two-dimensional R-matrix method, unlike the MQDT approaches, works di-

rectly from the potential energy function, rather than incorporating that information

through intermediate parameters such as the quantum defects. Its advantage is that it

does not rely on the vibrational frame transformation method, and thus serves well as a

benchmark calculation. In situations where the short-range potential can be described

in full quantitative detail, it provides a “brute force” alternative to the more approxi-

mate quantum defect methods, with a controlled convergence behavior relative to the

variation of geometric parameters like the number of channels and the box dimensions.

This can be of potential utility for testing other methods, or studying representative

model systems. For experimental spectra, however, the reproduction of accurate high-

resolution spectra at the sub-wavenumber level is much more easily attained by the

inclusion of semi-empirical parameter adjustments that naturally account for small cor-

rection effects.
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Figure 5.3: Infinite resolution photoionization cross-section calculated using the two-
dimensional R-matrix technique.

Figure 5.4: Infinite resolution photodissociation cross-section calculated using the two-
dimensional R-matrix technique.

Figure 5.5: Infinite resolution total photoabsorption cross-section, taken from the sum-
mation of Figures 5.3 and 5.4.
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5.3 Siegert pseudostates: Basic concepts

The difficulties of the Stephens-Greene box-averaging stems from its inability to

represent a true outgoing wave solution. With the box averaging method, for example,

the inner region solutions are fixed by normalization in such a way as to guarantee

conservation of the probability within the box radius; the solution cannot have a finite

flux at the boundary, but can only “bounce”. As such, the shape of an averaged peak

can be broadened, but the total integrated area can never be reduced. This is a nec-

essary consequence of flux conservation. For methods that incorporate the dissociative

channel as if it were an additional ionic channel, on the other hand, the solution forces

flux to be conserved despite distribution over all channels; this neglects the possibility

that the true solution may be coupled to both types of continua at once, implying a

failure when the first threshold for dissociative ionization is crossed; it is simply not

possible in these methods for flux to be outgoing in both channel types at once. De-

spite the ability of MQDT to provide, in principle, the true two-dimensional solution

within a finite region of space, the use of a conventional basis fails to provide sufficient

flexibility to characterize a wavefunction with outgoing wave form in both the asymp-

totic electronic coordinate (controlled by the assumed asymptotic form of the outer

region solutions) and the finite-bounded nuclear coordinate simply in terms of a single

set of channel states. Thus, methods such as the treatment of Ross-Jungen [121] must

explicitly supplement the basis using additional sets of basis functions obeying non-

Dirichlet boundary conditions, with the logarithmic derivative of each new set selected

in a somewhat arbitrary and ad hoc manner.

The construction of outgoing-wave solutions for a given Hamiltonian can be ac-

complished by analytically generalizing the energy eigenvalue spectrum of that Hamil-

tonian into the complex plane. Because outgoing wave states behave asymptotically as

exponential functions of a complex argument, they cannot be described in terms of the



110

usual boundary conditions encountered in Sturm-Liouville theory, since neither their

values nor their first derivatives vanish at any point in space; thus, the hermiticity of

the Hamiltonian operator is no longer sufficient to guarantee that the eigenvalues are

confined to real axis. The physical interpretation of complex eigenenergies was first

explored by Gamow [131], who recognized that the lifetime τ of a resonance state was

inversely proportional to the imaginary part of its complex energy. Subsequent work by

Wiesskopf and Wigner [132] related the lifetime τ to the linewidth parameter Γ = 1/τ ,

at least at the level of the approximation of their theory.

The definition of resonance states in terms of the solutions of the Schrödinger

equation may be approached from two somewhat different perspectives. The first theory,

developed by Kapur and Peierls [133], was based on the partitioning of the Hamiltonian

into an outer region (with a continuous spectrum) and and inner region (with a discrete

spectrum), treated as two interacting coupled channels. The Kapur-Peierls eigenstates

are defined as the eigenfunctions of an effective Hamiltonian defined by inverting the

projection of the resolvent operator onto the inner channel. Since this is an energy-

dependent operator, with the wavenumber of the outer channel continuum state as a free

parameter of the Hamiltonian, the eigensolution set itself has a parametric dependence

on the scattering energy. Although the Kapur-Peierls functions have the advantage of

well-behaved orthogonality and completeness properties, they are inconvenient for use

in any calculation which involves a range of scattering energies; because they have such

a complicated parametric dependence on the energy, they are quite difficult to evaluate

except by rediagonalizing the effective Hamiltonian at each new energy.

A alternate, parameter-free version of the resonance states was developed by

Siegert [134]. Siegert states are defined, in a much more intuitive way, as the eigen-

solutions of the Hamiltonian that vanish at the origin and have pure outgoing wave

character in the asymptotic limit R → ∞. Siegert’s derivation, notably, allowed for

overlapping resonances of arbitrary width, giving a smooth background term in the
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cross-section. Siegert eigenstates formally correspond to S-matrix poles in the complex

plane. Sharply resonant features associated with bound states can be identified with

poles lying on the real axis, while broad background scattering can be described by

closely spaced eigenstates with finite imaginary parts that serve as a discretized ap-

proximation to the true continuum. The Siegert states offer several advantages over the

Kapur-Peierls theory. First, they correctly describe long-lived resonances in the sense

that they pass smoothly over into bound states; any states that lie lower in energy

than the continuum threshold of a potential are guaranteed to correspond to the usual

(real-valued) bound states. For the Kapur-Peierls formulation, this only occurs for a

fortuitous selection of the partitioning radius. Moreover, the Siegert bound states are

guaranteed to be correctly normalized and orthogonal. Second, the Siegert states are

uniquely defined for a given Hamiltonian at any scattering energy. This allows them

to serve as an expansion basis for other functions, including the Green’s function. (A

more detailed survey of the relations between the Siegert and Kapur-Peierls theories

may be found in [135].) In addition to their identification as poles of the scattering

matrix, one may note from the Siegert boundary conditions at 0 and ∞ that the Siegert

eigensolutions are proportional to the Jost solution f±(k,R) [136], and the eigenvalues

are equivalent to the zeroes of the Jost function J±(k) = f±(k, 0) in the complex plane

[137].

A renewed interest in Siegert functions during the 1970s was stimulated by the

realization that they could be applied to the direct calculation of total [138] or partial

[139, 140] linewidth parameters in many-electron multichannel systems. These methods

do not calculate cross-sections, but extract the resonance eigenvalues directly as poles of

the scattering matrix; they are closely related to the various complex coordinate scaling

methods [141]. The utility of Siegert states for numerical calculations is compromised

by their rapid exponential divergence for increasing r. One of several approaches for

circumventing divergence-related instabilities was developed by Meyer and Walter [137],
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who confined the range of the Siegert states to a finite radius, and solved for their

eigenspectrum within an L2 primitive basis set using variational calculus. That is, they

replaced the exact Siegert boundary condition

(

d

dR
− ik

)

φ(R)

∣

∣

∣

∣

R=∞
= 0 (5.13)

with the finite range boundary condition

(

d

dR
− ik

)

φ(R)

∣

∣

∣

∣

R=R0

= 0. (5.14)

(As a historical note, it is the latter definition that actually corresponds to that of

Siegert’s original paper, which was only concerned with very short-range nuclear in-

teraction potentials.) This method allowed a single formalism to yield all the bound,

virtual, and resonance states of the potential, a significant accomplishment.

A complication of the method involves the necessity of differentiating the ‘’cut-

off” resonances, a string of closely spaced poles in the complex plane arising from the

truncation of the potential at a finite cut-off radius, from the true physical resonances.

These are not artifacts, but rather the direct scattering states associated with that

modified potential. They are highly sensitive to the shape of the potential tail and

the location of the cut-off discontinuity, even if the tail is exponentially small in that

region. This is a general peculiarity of the analytical properties of Siegert states in any

infinite-range potential, even one that decays exponentially rapidly– they invariably

display a pathological sensitivity to the asymptotic potential behavior, preventing all

but a finite subset of the Siegert states for cut-off potentials (SSCPs) from converging

to exact Siegert states. From the standpoint of rigorous mathematical formalism, it is

important to consider all further discussion in light of this recognition. Since all realistic

physical potentials have a tail behavior that decays more slowly than exponentially, the

ultimate test of any Siegert method, including the elegant work of [142], is whether or not
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the derived observable quantities (cross-sections and S-matrices) are numerically stable

with respect to variation of the box radius parameters. Since scattering observables in

atomic physics are in general not sensitive to weak long-range potential terms (except in

sufficiently low energy scattering regimes that such terms can no longer be considered

weak), however, the pathological behavior of the SSCPs is expected not to have physical

significance for any realistic system; even with two very different eigenvalue spectrums,

an expansion-based expression for an observable should converge to exactly the same

value in both cases.

Even methods based on the SSCPs still suffer from the serious drawback of being

computationally dependent on iterative procedures, either in diagonalizing the full ma-

trix [138], or the secular equation resulting from a variational principle [137], or most

recently, a partitioned submatrix reduced to the dimension of the open channels [143].

The solution must be iterated many times to converge on every individual eigenvalue.

While this is potentially practical for “direct” methods, in which the only objective is

the determination of a finite number of true resonant states and perhaps a representa-

tive topology of the surrounding scattering (cut-off) resonances, it would be impossible

to calculate all the wavefunctions of the infinite series of SSCPs, which are necessary

components of any complex basis vector expansion, such as would be used (for example)

to construct the Green’s function by means of the Mittag-Leffler expansion theorem.

In principle, all of the information describing the continuum resonance features and

state densities should be contained in these eigenvectors, thus bypassing the need for

approximating any integrals over the continuum. Turning that promise into a computa-

tional reality requires a careful study of the relationship between the SSCPs, and their

representation in any finite basis, as well as a way of finding all of the eigensolutions de-

fined by that basis selection without the need for cumbersome and potentially unstable

iterative searches for eigenvalues in the complex plane.

Both of these difficulties were resolved recently by Tolstikhin et al. in their study
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of the Siegert pseudostates (SPSs) [144, 142], the set of N eigenstates the result from

solving the Hamiltonian with Siegert boundary conditions on the interval [0,R0] for an

N -dimensional basis set. Tolstikhin et al. assume orthonormality of the basis functions,

but most of their expressions can be straightforwardly generalized to a non-orthogonal

basis, and we will lift that assumption except where otherwise noted. Regardless of

orthogonality, the basis is in general not assumed to be complete except in the limit

of N → ∞. The SPS basis representation allows the derivation of completeness and

normalization properties of the Siegert state functions to be replaced by linear algebra

operations, which are then related to the true properties of the SSCPs by investigation

of the N → ∞ limiting behavior.

We seek a solution expanded in terms of some primitive basis set

φ(R) =
N
∑

j=1

cj yj(R), 0 ≤ R ≤ R0. (5.15)

Here N is the dimension of our basis, and we have selected a non-orthogonal b-spline

basis [145, 146] for the yj(R). Inserting this into the Schrödinger equation, premultiply-

ing by yj′, integrating with an integration by parts, and employing the boundary value

5.14, we find a matrix equation for the coefficients cj

∑N
j=1

(

1
2

∫ R0
0

dyj′

dR
dyj

dR dR − ik
2 yj′(R0)yj(R0) (5.16)

+
∫ R0
0 yj′(R)µ[V (r) −E]yj(R)dR

)

cj = 0. (5.17)

(5.18)

Note that we have used a Green’s theorem identity before substituting in the boundary

condition, and that the Hamiltonian has been multiplied through by the reduced mass

µ. Written more concisely in matrix notation, we have a system of the form

(H̃− ikL − k2O)~c = 0, (5.19)
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where Lj,j′ is the surface matrix yj(R0)yj′(R0), H̃j,j′ is the matrix 2µHj,j′+yj(R0)
d
dryj′(R0),

and O is the overlap matrix for the spline basis set.

This equation is manifestly nonlinear, but the method of Tolstikhin et al. allows it

to be “linearized” by recasting it as a new eigensystem in a basis of doubled dimension.

([147, 148] discuss related techniques for solving differential equations where the eigen-

value appears in a boundary condition.) We continue by defining di = ikci, yielding a

trivial second equation ikO~c = O~d. Substituting this into the original eigenequation

now gives a linear equation in the doubled basis space









H̃ 0

0 −O

















~c

~d









= ik









L −O

−O 0

















~c

~d









. (5.20)

This is an equation for the eigenvalue λ = ik, giving 2N solutions lying either on the

(Re λ)-axis or in conjugate pairs in the right half of the complex λ-plane. The solutions

(plotted here in the k plane, rather than the λ-plane) are shown in Figures 5.6 and 5.7.

An atypical feature of the SPS eigensystem should be noted here– the eigenvalue

parameter is proportional to the wavenumber k, rather than the energy. Since the energy

has a k2 functional dependence, the energy spectrum itself will need to be mapped onto

a two-sheet Riemann surface in order to become single-valued, with a branch point at

the origin and the cut following the positive real semiaxis. States with k in the upper

half-k-plane will be mapped onto the first sheet of the Riemann surface on which the

energy eigenspectrum is defined, and those with k in the lower half-plane will map to

the second sheet. Since the bound state eigenvalues (that is, those which exponentially

decay as R → R0) lie on the first sheet, this will be termed the “physical” sheet. The

only states that can lie on the physical sheet are bound states (although if a discrete

state is embedded in the continuum, it will be located on top of the cut line). Thus,

all resonance states, whether they are near the real energy axis and related to real

observable resonances, or deeper in the complex plane and related to smooth background
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Figure 5.6: Siegert pseudostate eigenspectrum resulting from the solution of of Equation 5.20. Note that the eigenstates have been
transformed from λ to k, corresponding to a rotation in the complex plane by 90 degrees. States above the real axis all lie on the
imaginary axis, and are identified as the bound states of the potential. States on the complex axis below the real axis are unphysical
antibound states.
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Figure 5.7: Enhanced detail of the spectrum in the vicinity of the real axis, showing states that correspond to the Seigert discretized
continuum. Note that the “kink” in the spectrum occurs for values of k that oscillate too quickly to be represented in the primitive spline
basis.
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scattering, are exclusively on the unphysical sheet of the multisheet Riemann surface.

The Siegert states are known to obey unconventional orthogonality, normaliza-

tion, and completeness relations, and this has historically been a source of contro-

versy in the literature, with several competing schemes for regularizing the non-square-

normalizable continuum-like states. In the SPSs, however, the origin of these questions

become simpler to understand by working within the doubled dimension space. If the

eigenvalues of Equation 5.20 are nondegenerate, then it may be easily shown (noting

that the matrices are symmetric, not Hermitian) that the eigenvectors are symmetric

with respect to the weighting matrix that appears on the right hand side,

(

~c(n)T ~d(n)T
)









L −O

−O 0

















~c(m)

~d(m)









= 0, ∀n 6= m. (5.21)

The normalization condition may be derived by examining the behavior of the exponen-

tially decaying bound states, and imposing unit normalization on them in the limit that

R0 is made sufficiently large that their amplitude on that boundary vanishes. We begin

from the orthonormality expression with an undetermined normalization constant,

(

~c(n)T ~d(n)T
)









L −O

−O 0

















~c(m)

~d(m)









= αδnm. (5.22)

By the definition of ~d, this condition reduces to an equivalent version in the original

N-dimensional basis,

−(λn + λm)~c(n)TO~c(m)T + ~c(n)TL~c(m)T = αδnm, (5.23)

or in the position-space representation,

−(λn + λm)

∫ R0

0
φn(R)φm(R)dR + φn(R0)φm(R0) = αδnm. (5.24)
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For bound states in the limit R0 → ∞, where the surface term vanishes, we must recover

the conventional unit normalization

∫ ∞

0
φn(R)φm(R)dR = δnm. (5.25)

This requirement uniquely determines the normalization constant α = −(λn+λm) for all

states. Note that since all the states on the unphysical sheet, the eigenfunction diverges

exponentially for increasing R, and thus the normalization condition 5.24 amounts to a

cancellation of two exponentially growing terms; this is a potential source of numerical

instability as the box size increases.

The orthonormality relation 5.22 implies an associated completeness relation in

the doubled dimension space,

2N
∑

n=1

1

2λn









~c(n)

~d(n)









(

~c(n)T ~d(n)T
)

=









−L O

O 0









−1

, (5.26)

which yields a set of multiple completeness relations upon reduction to the original

N -dimensional basis:

2N
∑

n=1

1

λn
c(n)c(n)T = 0 (5.27)

2N
∑

n=1

c(n)c(n)T = 2O−1 (5.28)

2N
∑

n=1

c(n)c(n)T = 2O−1LO−1 (5.29)

In fact, an infinite list of such completeness relations, generated by changing the power

of λn in the weighted sum, may be derived on the basis of a recursion relation based on

the Schroödinger equation 5.19, as shown in [142].
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5.4 Siegert pseudostates: Single channel Green’s function method

For a single-channel system with a finite-range potential, the SPS eigenstates

serve as a complete expansion set for the Mittag-Leffler expansion theorem. Unlike the

true Siegert states, for which convergence of this representation is problematic (see More

and Gerjuoy [135] for an extended discussion), the SPS Green’s function is guaranteed

to converge, owing to the completeness relations given above. The derivation proceeds

entirely by linear algebra [142], and requires no assumptions about the analytical prop-

erties of the exact Green’s function in the limit N → ∞.

The form of the Green’s function depends on the choice of boundary conditions.

The Green’s function is required in all cases to vanish at the origin,

G(0, R′; k) = 0. (5.30)

For a conventional (i.e. eigenvalue-independent) outer boundary condition, the Schrödinger

Green’s function equation

(H −E)G(R,R′; k) = δ(R −R′) (5.31)

yields the solution

G(R,R′; k) =
2N
∑

n=1

φn(r)φn(r
′)

k2
n − k2

. (5.32)

This function is identifiable as the principle value Green’s function; it displays neither

incoming nor outgoing wave character on the boundary. On the other hand, the Siegert

boundary condition

(

d

dR
− ik

)

G(R,R′; k)

∣

∣

∣

∣

R=R0

= 0 (5.33)

has the same quadratic matrix equation representation as 5.19, and gives the alternate

solution form
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G(R,R′; k) =
2N
∑

n=1

φn(r)φn(r
′)

kn(kn − k)
. (5.34)

This is the outgoing wave Green’s function. Both forms are solutions to the same

Hamiltonian, and differ only by a homogeneous solution of the Schrödinger equation.

These Green’s functions require all 2N SPS solutions to be included in the sum-

mation; the omission of even one state (or pair of states) will give a totally incorrect

solution. Since some of the pseudostates lie very far from the axis, their exponential

growth at the outer boundary may be extremely rapid. This is a potential cause of

serious numerical instability, as noted first in [149]; because the normalization of the

Siegert pseudostates 5.24 involves a cancellation of an exponentially large integral with

an exponentially large surface term, an exponential growth factor that exceeds the in-

verse of the machine precision will effectively destroy any orthonormality of the basis

set, and thus the completeness relations on which the derivation of the Green’s function

depends.

Fortunately, the scattering matrix may be analytically derived directly from the

Green’s function expansion, giving either a “sum formula”

S(k) = e2ikR0

[

1 + ik
2n
∑

n=1

[φn(R0]
2

kn(kn − k)

]

(5.35)

or the “product formula”

S(k) = −e2ikR0

2N
∏

n=1

kn + k

kn − k
. (5.36)

The second result, rather remarkably, allows the S-matrix to be written entirely in

terms of the eigenvalues; this completely bypasses the difficulty of numerical instability

associated with the rapid exponential breakdown of the orthonormality relation for

increasing value of R0, as discussed in [149].

The partitioning of configuration space into inner and outer regions for the SPS
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eigenvalue and the subsequent symmetrization of the Hamiltonian by use of the Bloch

operator are both reminiscent of the eigenvalue R-matrix method. Further, the deriva-

tion of the sum and product formulas shown above involves the surface value of the

Green’s function, G(R0, R0; k), which is known to be proportional to the R-function

(the one-dimensional R-matrix) [124]. This suggests that there should be some natural

relationship between the SPS formulation and the R-matrix formulation. In fact, Baye

et al. [149] have shown that for the same finite basis set representation, the methods are

formally equivalent. 2 This homology provides an alternate expression for the S-matrix

based on R-matrix theory, working directly from the primitive basis and the matrices

in its representation without any need to find the complete set of SPS eigenstates. Of

course, it may still be useful to find SPSs that correspond to the true physical Siegert

states, for the sake of extracting their width and shape parameters, but for only a few

states this can be easily accomplished by using the iterative approach. For the task

of constructing the scattering matrix, the usefulness of the SPS formalism appears to

be subsumed by the more general applicability of the R-matrix formalism; the latter is

not susceptible to the Siegert states’ noted susceptibility to long-range potential tails,

and the multichannel version of R-matrix theory is far simpler than that for the Siegert

state case.

Although the Green’s function SPS theory is completely rigorous, it is severely re-

stricted in utility. The limitations discussed in the last two sections of this chapter may

be summarized: First, the SPS technique is best suited for single channel problems. An

extension to even two-channel problems presents considerable challenge, and depends

on the motivated selection of a fortuitously simple uniformization transformation [150].

Such a transformation is necessary to map the multi-valued function defined on the en-

tire multisheet Riemann surface into a single-valued (but potentially quite complicated)

2 This is already anticipated in the discussion of Lane and Thomas, who note that the Wigner-
Eisenbud theory is “absolutely equivalent” to the Kapur-Peierls resonance theory [124], which in turn
is related to the Siegert theory by the renormalization procedure suggested by More and Gerjuoy [135].
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function of some new variable. For a two-channel system, the Riemann surface has four

sheets (arising from two branch cuts, with branch points at each of the threshold ener-

gies) and the uniformized matrix eigenequation is quartic in the transformed variable.

More generally, a N -channel problem will have a 2N -sheet Riemann surface, and there

is no known method for uniformization beyond the two-channel case.

Second, the derivation of the SPS Green’s function expressions shown above is

considered only for one dimensional model systems in the work of Tolstikhin et al. It

remains a matter of untested conjecture whether or not there exists a multidimensional

generalization of the requisite completeness relations, or whether the derivation yields

a comparably simple closed form. At the approximate level, one might imagine an ex-

pansion in hyperspherical coordinates [151]; this treatment is only of utility, however, if

the fragmentation modes are qualitatively similar. For the solution of competing ioniza-

tion and dissociation channels, involving the coupling between fundamentally distinct

degrees of freedom, an entirely different approach is necessary. This problem is further

compounded by the possibility that one set of channels (e.g., the ionization channels

in the hydrogenic system) may have Coulombic long-range interaction or a centrifugal

effective potential term associated with finite angular momentum. In this case, the SPS

formalism is not simply non-rigorous, but involves increasingly complicated corrections

to the boundary condition that must be expressed at the level of a Taylor expansion.

In the conclusion of their work, Tolstikhin et al. hinted at the possibility of an

entirely different philosophy for application of the Siegert states to scattering physics:

“The SPS formulation also has advantages as a method of discretization of the contin-

uum.” Their suggestion called for the use of the SPSs as a basis for a time-dependent

close-coupling calculation, with the recognition that this would “enable one to distin-

guish between the excitation of a resonance state and the underlying continuum scatter-

ing.” This idea was implemented shortly thereafter by Yoshida and coworkers [152, 153]

to describe the reflectionless loss of wavepacket probability by flux across a bounding
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surface.

In fact, the ability of Siegert states to serve as a finite basis approximation to the

continuum had already been demonstrated some time earlier in the work of Seideman

and Miller [154], in the context of exploring the semiclassical analysis of transition state

theory in nonperturbative regimes. If the wavefunction describing reaction dynamics in

the vicinity of a harmonic transition state are expanded in terms of the normal mode

frequencies, with the reaction coordinate naturally acquiring an imaginary frequency,

then the Hamiltonian expanded in normal mode coordinates becomes complex sym-

metric. If this Hamiltonian is solved by direct diagonalization, instead of perturbative

corrections to the semiclassical solution, then the spectrum contains a set of complex

eigenvalues identifiable as Siegert states. These states do not represent resonant com-

plex formation, but are instead the discretization of the reaction coordinate continuum,

and give smooth and structureless contributions to the transition probability. Ryaboy

and Moiseyev [155] showed that this set of states could be equivalently generated by a

complex coordinate scaling in which the “white” (non-resonant) continuum was rotated

off into the complex plane to uncover the Siegert eigenvalues and make their states

square integrable in the scaled coordinates.

In the next section, we follow the approach of Siedeman and Miller, rather than

the more rigorous theory of Tolstikhin et al., and begin from the hypothesis that the

Siegert pseudostates can be usefully appropriated as a basis set for representing the

discretized continuum of a channel expansion. In effect, this creates an additional

(potentially infinite) set of complex-energy channels that extend arbitrarily high into

the vibrational continuum. As Ryaboy and Moiseyev note, so long as these channels

are associated with poles of the scattering matrix that are separated in the complex

plane by “distances” (i.e., the difference between the real parts of the eigenvalues) that

are smaller than the corresponding widths (i.e., the sum of the imaginary parts of

the eigenvalues), the contribution to the observable scattering parameters (phase shift,
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cross-section, etc.) can be sufficiently smooth to completely represent the background

elastic scattering. In effect, the coupling to the continuum has been broken up into a

sequence of broad, overlapping Lorentzian resonances which may be summed together

to give a slowly varying baseline that reflects direct coupling to the continuum. If any

physical resonance states are present, they will normally have poles much closer to the

real axis, and thus their Siegert eigenstate widths will be much sharper and narrower,

and their contribution to the spectrum will be manifestly resonant.

5.5 Extending MQDT to a Siegert pseudostate basis: Theory

Since the Siegert pseudostate basis consists of two branches of narrowly-spaced

continuum-like complex eigenstates, in addition to the same rovibrational eigenstates

they share with a more conventional basis with fixed logarithmic derivatives on the

box boundary, they appear at first glance to include exactly the basis set contribution

needed to give the wavefunction outgoing flux across that boundary. In principle, we

would like to have a solution state located at precisely the energy of the vibrational con-

tinuum state into which the molecule is dissociating at that energy, with an imaginary

part corresponding to the width of the predissociating resonance. In practice, if we have

an artificial discretized continuum of sufficiently dense pseudostates with the property

of being complete (or at least, complete with respect to the subset of continuum states

one is attempting to represent), then the lack of a state at exactly the right energy and

width is immaterial, and accommodated at the level of a complex basis expansion. This

is quite different from the original method Jungen described above, where producing a

pseudo-continuum state at precisely the correct energy (by varying a parameter itera-

tively in [53]) was of paramount importance for the success of the solution. (It is more

similar to the later method of Ross and Jungen, which augments the basis by including

additional sets that do not vanish, although even in this case the choice of additional

sets must be optimized by the choice of a boundary condition resembling the boundary
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condition of the real solution wavefunction. This cannot typically be known in advance,

but must be optimized by hand for different resonances for best results, whereas the

Siegert method avoids the need to readjust any parameters throughout an entire energy

region.) There are, to be sure, numerical concerns to be addressed before this approach

should be naively trusted, especially in light of the known peculiarities of the Siegert

states, including their exponential divergence for increasing argument (on the “unphys-

ical” sheet of the Riemann surface) and their innate overcompleteness. For the sake of

devising a useful basis, however, it suffices that these concerns be resolved merely to

the level of numerical accuracy (i.e., convergence of the calculated cross-section) under

certain specified parameters that reflect relevant real-world conditions. This is a much

weaker requirement than the one necessary for implementation by the more rigorous

approach of Tolstikin et al..

For resonance series corresponding to high electronically excited intermediates

(Rydberg states) of diatomic molecules, the most natural description of the system is

one with quantum defect parameters defined in terms of a fixed internuclear distance

R and a well-defined projection of the orbital angular momentum Λ onto the axis of

symmetry. This is because the electron spends most of its time far from the nuclear core,

and when it does penetrate into the core, it gains enough speed from falling through the

Coulomb potential that the nuclei are essentially frozen on the time scale of its motion.

The quantum defect functions µΛ(R) in this representation, the so-called “body-frame”,

may either be calculated from highly accurate ab initio techniques, or extracted from a

semi-empirical fitting of experimental data [121]. In order to connect them with the true

asymptotic ionization channels defined in terms of Siegert pseudostates of the residual

core, j = {v+, N+}, a frame transformation must be performed [45, 37], where N+

is the ionic rotational momentum, and v+ is the vibrational quantum number of the

pseudostates. In the Siegert MQDT procedure, it is necessary to directly evaluate the

S-matrix by the frame transformation integral
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Sj,j′ =
∑

Λ〈N+|Λ〉
∫ R0
0 φj(R)e2iπµΛ(R)φj′(R) dR 〈Λ|N+′〉 (5.37)

+i
∑

Λ〈N+|Λ〉φj (R0)e2iπµΛ(R0)φj′ (R0)

kj+kj′
〈Λ|N+′〉.

The surface term in 5.38 is new, but it is included because also arises in the orthonormal-

ity relation [142]. A similar transformation converts the body-frame transition dipole

elements DΛ(R) into reduced dipole matrix elements in the same S-matrix representa-

tion,

DS
j = (2J + 1)

∑

Λ〈Λ|J0〉(J) 〈Λ|N+〉 (5.38)

× ∫ R0
0 φ0(R)DΛ(R)eiπµΛ(R)φj(R) dR.

Here φ0(R) is the initial vibrational wavefunction, and J0 and J are the total angular

momenta of the initial and final states of the system, respectively. (Note that the surface

term is omitted here because φ0(R) is assumed to be negative on the surface.)

Note that the Siegert pseudostates are never conjugated in these expressions,

even when they formally belong to the dual (“bra”) space. In particular, this means

that the quantity labeled as ~DS† below is calculated by conjugating only eiπµΛ(R) in

the definition above, and not the dipole matrix elements directly. The unconventional

nature of the inner product in a Siegert basis may be understood from a somewhat

more intuitive perspective by means of an appeal to the symmetry properties of the

Green’s function in the complex k plane, as first presented by More and Gerjuoy [135].

To briefly sketch this argument, we begin by noting that the Green’s operator formed

by eigenvector expansion over a resonance state basis such as the Siegert pseudostates

obeys the identity

G†(k) = G(−k∗). (5.39)
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This relation follows rigorously from the fact that the Green’s operator is real for nega-

tive energies (i.e., for pure imaginary values of k), via the Schwartz reflection principle.

(This is in contrast to the more usual case of the reflection principle, defined for func-

tions which are real when their argument is real.) This nonstandard symmetry also

applies to the left eigenvector states φ̃j and right eigenvector states φj

φ̃j(R; k) = φj(R;−k∗) = φ∗j (R; k). (5.40)

In other words, if 〈φ̃j | is a left eigenvalue of the Green’s operatorG(k), then |φ̃j〉 is a right

eigenvalue of G(−k∗). Since both the transformation between left and right eigenvectors

and the transformation between the bra and ket space representations both involve a

conjugation, the net effect is that the functions of the dual space are unconjugated.

At this stage of the calculation no information about the long-range behavior of

the channels has yet been included, and since the body-frame quantum defects are nearly

energy independent, the resulting S-matrix is typically a smooth and fairly weak function

of energy. The method of channel elimination [156, 44] systematically eliminates flux

in all electronic channels below the energy threshold for electron escape (the “closed-

channel subspace”) to form a “physical” S-matrix Sphys, by taking the proper linear

combination of short-range solutions that ensures exponential decay at infinity. For a

long-range Coulomb potential, this procedure gives

Sphys = Soo − Soc(Scc − e−2iβ)−1Sco. (5.41)

Here, β is a diagonal matrix of the usual Coulomb long-range phase parameter πνj

where νj is the (possibly complex) effective quantum number in the jth channel, S is

the scattering matrix, and the subscripts indicate partitions of the matrices into closed

and open subspaces [44].

For a Siegert state basis, this physical scattering matrix is in general not unitary,
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but rather subunitary, reflecting the loss of flux at the boundary R0 via coupling to the

Siegert pseudo-continuum states. It can be used to calculate the total cross-section for

dissociative recombination by means of conventional formulas, but with the departure

from unitarity, 1 −∑j |Sphysj,j′ |2, identified as the probability |Sphysd,j′ |2 for scattering into

the dissociative continuum. This method also provides all quantities necessary to find

the partial photoionization cross-section into any open channel, σj ; see Eq. 2.59 of [44]

for further details. The contributions from all open channels can then be summed to

give the total cross-section for photoionization.

Alternatively, the total photoabsorption cross-section may be found directly from

a “preconvolution” formula first derived by Robicheaux to handle the energy smooth-

ing of densely spaced resonances [48], but expressed here in the equivalent but more

symmetrical form of Granger [157, 158],

σtotal(E) =
4π2αω

3(2J0 + 1)
Re ~DS†

[

1− Se2iβ
]−1 [

1 + Se2iβ
]

~DS (5.42)

where Re signifies taking the real part of everything that follows, and the † here con-

jugates only the operator, not the entire matrix element. The diagonal matrix written

as e−2iβ has a nontrivial definition in terms of the quantum defect parameters, it may

be approximated quite well by taking βj = πνj for “closed” channels with E < ReEj,

and βi = i∞ for “open” channels with E > Re Ej. Here E is the total energy of the

system, Ej is the threshold energy for channel j, and νj = 1/
√

2(Ej −E) on the branch

where Im ν > 0. The utility of this expression lies in recognizing that the value of the

cross-section at a complex energy in the above formula is equivalent to the cross-section

at a real energy, smoothed over a channel-dependent width Γj = 2 Im εj. Within the

Siegert state formulation, the electron energy εj = E − Ej will naturally take on a

complex value in any channel where the channel eigenenergy Ej is itself complex, while

E remains real.
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Given S and εj , either of the two cross-section formulas above can be evaluated,

with appropriate allowances for the possibility of complex energy eigenvalues. Note that

the first procedure simply gives a sum over the flux into specific ionization channels,

while the second gives a single value for the total photoabsorption cross-section. This

means that the latter will contain information about the solution wavefunction along

the R = R0 boundary not contained in any of the open ionization channels. In general,

the value of σtotal will be equal to or greater than the sum over the individual σj, and

any difference may be attributed to the effect of coupling to high-lying Siegert states in

the continuum. Thus, the difference between these two formulae at any energy provides

the photodissociation cross-section.

In order to test the validity of this hypothesis, we will start by defining a set of

Siegert pseudostates for the H+
2 internuclear potential. The eigensolutions fall into three

classes, as shown in Figure 5.8. Those lying along the positive (Im k)-axis are associated

with negative eigenenergies on the physical sheet of the E-plane, the bound states of the

potential. These are the channel thresholds to which the Rydberg autoionization series

of the ionization spectrum converge, and so we include all of their states. The solutions

along the negative (Im k)-axis lie on the unphysical energy sheet, and we reject them as

antibound states arising from the doubling of the dimension space. The remainder of

the solutions fall above and below the (Re E)-axis, corresponding to conjugate solution

pairs of the eigenvalue parameter λ = ik. We select only those with negative Im Ej ,

a decision that can be justified conceptually on the grounds that these states display

a time dependence in which total probability decreases over time, corresponding to

decay into the continuum. (For a much more sophisticated discussion of this topic,

see the extensive discussion of [159, 160, 161], which arrives at the same conclusion for

complex expansions of the Green’s function using far more rigorous formal arguments.)

For MQDT matrix elements it is also acceptable to reject states lying very high in the

continuum, since their Franck-Condon overlap with the bound states is negligible.
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Figure 5.8: Distribution of H+
2 vibrational Siegert pseudostate energies in the complex

energy plane for angular momentum N+=1. Only the circled states are included as
channels in the scattering matrix.
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Tolstikhin et al. discuss the unusual completeness relation obeyed by the full set

of Siegert pseudostates, which has an additional factor of 2. Our restricted subset of

Siegert pseudostates does not, of course, obey that doubled completeness relation. We

have confirmed through numerical tests, however, that this restricted subset behaves

like a complete set, to at least 10−12 accuracy, for representing either L2 functions

confined within the boundary or functions with purely outgoing wave character at the

boundary. The ability to represent L2 functions diminishes somewhat for extremely nar-

row functions, for which the primary contribution must come from shorter wavelength

pseudocontinuum functions. For example, when expanding in terms of a truncated set

with a maximum Re(k) of about 50 a.u., only features broader than 1
/k=0.02 a.u. in

width can be well- represented. When using this truncated set numerically, a Gaussian

of the form e−α(R−Req )2 can be only represented to 10−6 accuracy when α=100 (i.e., a

Gaussian of width 0.14 a.u.), has a relative error of over 10% for α=1000 (i.e., a Gaus-

sian of width 0.045 a.u.), and fails entirely for α=10000 (i.e., a Gaussian of width 0.014

a.u., smaller than the wavelength of the highest excited state included in the basis).

For an impressive demonstration (in a somewhat different context) of the convergence

properties of a similarly truncated Siegert basis also used to describe smooth continuum

physics, see [154].

5.6 Extending MQDT to a Siegert pseudostate basis: Results and

discussion

In the region of the ungerade H2 spectrum between 127200 and 127800 cm−1

there are several strongly predissociated resonances, members of the npπ, v+ = 8 and

npπ, v+ = 5 series. In each case, our calculated spectrum correctly reproduces them in

the total absorption cross-section, but shows them as weak or absent in the ionization

cross-section. Comparisons of our results with other theoretical and experimental values

[55, 121] for the relative yields of selected resonances appear in Table 5.2. Note particu-
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larly that this method is able to correctly describe the strong rotational dependence of

the 4pπ, v+ = 5 branching ratio, a nontrivial consequence of subtle channel interactions.

Table 5.2: Photoionization and photodissociation yields for select ungerade resonances
in H2 for which the relative yields have been experimentally observed [55].

State Source Energy % Ion. % Diss.

3pπ, v = 8, R(0) Observed 127248.2 10(5) 95(5)

Theory[121] 127246.9 1 99
Present 127242.2 1 99

5pσ, v = 4, R(0) Observed 127599.4 90(10) 10(10)

Theory[121] 127602.2 88 12
Present 127606.8 76 24

4pπ, v = 5, R(0) Observed 127667.6 82(5) 18(5)

Theory[121] 127665.4 93 7
Present 127666.6 97 3

4pπ, v = 5, R(1) Observed 127599.4 30(10) 70(10)

Theory[121] 127758.4 17 83
Present 127759.5 29 71

As a test of the method in an entirely different energy regime we considered the

problem of dissociative photoionization, a three-body breakup channel accessible only

at much higher energies. Experimental measurements of the ratio between pure ioniza-

tion and dissociative ionization have been performed since the 1970s by a number of

researchers [162, 163, 164], along with at least one early theoretical calculation [165].

Since our ionization spectrum is a sum over individual channels, one can easily distin-

guish between contributions from channels above and below the dissociative threshold.

Our results, plotted against those of past experiment and theory, are presented in 5.9.

Finally, we have performed a model calculation demonstrating the utility of our

method for treating dissociative recombination, particularly in systems where indirect

channels (those involving scattering into intermediate autodissociating Rydberg states)

play an important role. 5.10 shows the dissociative recombination spectrum of a simpli-

fied H2 model potential (neglecting rotation and with R-independent quantum defects),

compared with the familiar approximation of O’Malley for smooth background scatter-
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Figure 5.9: Dissociative photoionization cross-section, as a ratio to the total photoioniza-
tion cross-section. The solid line is the current theory, the dotted line is an earlier theory
[165], and the points are data from various experimental measurements [162, 163, 164].
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ing by direct processes [166]. This spectrum accurately reproduces the background, and

also describes complex interference effects from the series of resonances converging to

each Rydberg threshold.

Figure 5.10: Dissociative recombination cross section for the model potential, uncon-
volved (solid) and convolved with a Lorentzian of width 0.1 eV (dashed), compared to
that resulting from the O’Malley formula (dotted).

The extension of the Siegert MQDT method to polyatomic systems might be

attempted in several ways. First, by transforming the nuclear coordinates to a hyper-

spherical coordinate system, a multidimensional problem is effectively reduced to a sin-

gle scattering coordinate (the hyperradius), allowing the formulas above to be adapted

with minimal alteration. This has already been demonstrated for the dissociative re-

combination of H+
3 [28], with results that appear to correctly reproduce broad features

in the experimental spectrum, although the theory appears not to be sufficiently precise

to describe detailed resonance structures. Alternatively, it might be possible to recast

the Siegert eigenproblem in a generalized form that admits arbitrary dimension. Even

if the completeness relations and matrix inversion identities required for the derivation
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of the Green’s function (as in the Tolstikhin papers) were no longer possible to write

out analytically in multiple dimensions, the ability to construct a “locally complete”

representation of the multidimensional continuum would still be sufficient to provide

appropriate channel states for the MQDT channel expansion.



Chapter 6

Conclusion

On a practical level, this dissertation has considered the physical properties of two

highly excited diatomic systems, one commonplace, and naturally occurring throughout

the universe, and one exotic, and likely to be observed under only carefully controlled

laboratory conditions. On a conceptual level, however, these studies share a common

philosophical framework with respect to the way in which they approach the process of

scattering for Rydberg electrons in quantum mechanical systems.

From the standpoint of classical mechanics, scattering is understood as a discrete

event or series of events associated with the changing trajectories of a set of particle

or bodies or bodies. A pair of scattering billiards, for example, will move along a

flat surface in straight line until they hit one another, experience an instantaneous

redistribution of their total energy and momentum (perhaps with some dissipation due

to inelasticity), and then continue away along altered trajectories. A satellite undergoing

a close encounter with a planet will slingshot rapidly through its gravitational field in a

hyperbolic orbit, emerging along a new asymptotic trajectory with a modified direction

and velocity. Scattering, by nature, is a localized process. It takes a strong interaction

the occurs during a short period of time and is confined to a limited region of space,

and reduces it to an overall effect in terms of the alteration of a system’s trajectories in

free space.

In quantum mechanics, the picture of particles traveling along trajectories and
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undergoing isolated events must typically be abandoned. The solution to tunneling

through a barrier, the first quantum scattering calculation that any young physicist is

likely to encounter, is solved entirely in terms of wavefunctions and matching conditions;

the solution in each region is solved separately, and the solutions are joined together

by the conditions of continuity and smoothness across the boundaries. This picture is

entirely delocalized. The solutions are continuum solutions that extend from negative

infinity to positive infinity, and there is no “event” associated with the calculation. A

sufficiently large number of solutions may be superposed, of course, to give a local-

ized wavepacket, and propagating that wavepacket according to the time-dependent

Schrödinger equation will recover a dynamical behavior recognizably similar to the clas-

sical case. But the preparation of such a packet will necessarily involve states with a

range of energies, whereas many interesting quantum mechanical measurements are as-

sociated with experiments for which the preparation of such wavepackets is difficult or

impossible. A common situation is that of experimental continuous-wave spectroscopy,

where a monoenergetic photon source (like a laser) excites an atomic or molecular sys-

tem with a single, well-defined energy.

The challenge of highly excited quantum mechanical systems, such as Rydberg

atoms and molecules, is that they occupy an intermediate status between the quantum

and classical understandings of scattering. On one hand, they are clearly scattered by

localized interactions. The total volume through which a Rydberg electron moves is typ-

ically quite large compared to the volume in which it has a complicated interaction with

a scattering body. One is logically motivated to find some way of exploiting the spatial

confinement of this interaction in order to simplify the task of solving the Schrödinger

equation. On the other hand, the interactions themselves are clearly quantum mechani-

cal in nature, such that it would be disastrous to attempt to treat an electron scattering

from a molecule as if it were something like a marble scattering from a set of bowling

balls connected by springs. The exchange of energy and momentum between a scattering
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electron and a molecule is a function of inherently quantum mechanical properties such

as phase, wavelength, spin, quantized orbital angular momentum, and quantized molec-

ular excitation modes. The solution must therefore be quantum mechanical in form.

The possibility of successfully combining advantageous features of both perspectives is

realized by quantum defect theory, which interprets complex short-range interactions

in terms of their net effect on long-range parameters like the quantum defects or phase

shifts.

In Chapter 2, quantum defect theory was introduced as a paradigm for thinking

about the effect of core scattering on a Rydberg state. The electron moves mostly in a

region far separated from the core, under the influence of a long-range Coulomb poten-

tial, and therefore has a solution that resembles the hydrogenic wavefunctions; the only

effect of the core is to shift the energy of these wavefunctions in a way that is dependent

on the orbital angular momentum, but at least to a good approximation is independent

of the electron’s long-range behavior. In the wavefunction itself, this manifests as a

phase parameter that mixes the regular and irregular Coulomb functions. In effect, the

quantum defect formalism divides the problem into a short-range solution region and

a long-range solution region, and describes the effect of the short-range physics on the

long-range solution in terms of the minimum number of necessary parameters. For a

problem with multiple scattering channels, the scattering matrix suffices to specify the

probability amplitude for inelastic scattering from one type of channel to another. Al-

though this is fully quantum mechanical, the classical picture of scattering as a localized

event that modifies particle trajectories has been restored. In semiclassical terms, the

electron occupies a closed orbital that, once per orbital period, scatters from the core

in such a way as to accumulate an additional phase shift, and transfer incoming prob-

ability flux in one channel to outgoing flux in the others. The efficacy of this approach

was demonstrated for the diatomic system HD, but the method generalizes naturally to

any Rydberg system, atomic, diatomic, or polyatomic. With respect to the problem of
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describing overlapping Rydberg series of resonances in the electronic continuum, there

is presently no other method that rivals the capabilities of quantum defect methodology

to efficiently reproduce resonant features in the scattering cross-section.

In Chapter 3, a single long-lived Rydberg stationary state is created, and the

effect of perturbation by the presence of a second particle that physically impinges on

the Rydberg wavefunction is considered. This situation is similar to that of Rydberg

excitation in the previous chapter, in the respect that electron-core interaction may

still be described most efficiently by quantum defects, but the second scattering center

creates an additional set of boundary conditions that must be satisfied. Just as the

modification of a Coulomb potential could be expressed in terms of phase-like quantum

defect parameters, so also the short-range scattering of the electron by a neutral per-

turber can be fully described in terms of an overall phase shift in each channel. These

phase shifts provide the basis for a zero-range pseudopotential approximation that per-

forms with accuracy comparable to the more conventional approach of diagonalizing the

Hamiltonian in an L2 basis. In classical terms, one might think about the difference

between a detailed modeling of the local interaction between two colliding billiard balls,

with infinitesimal deformations during the moment of contact accounting for the ex-

change of impulse, and an hard sphere approximation that treats the collision as truly

instantaneous. The first level of detailed analysis might be necessary to account for

slight inelasticity of the collision, or the transfer of translational motion into rotation

for off-center collisions, but once the functional dependence of these effects was known,

they could be incorporated directly into the hard-sphere model as various corrections

and coefficients without the need to repeated the detailed calculation. The parameter-

ization of Rydberg-neutral scattering in terms of phase shifts that depend only on the

energy and angular momentum of the electron accomplishes a similar reduction of the

detailed short-range behavior in terms of its collective asymptotic effect.

Chapter 4 implements the separation between the scattering region and the exter-
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nal free-electron region in an even more literal sense, by using the Coulomb Green’s func-

tion to write an exact integral equation solution in the outer region, and match it onto

the phase-shift adjusted short-range solution close to the perturber. Since the Green’s

function serves as a propagator in the energy representation, this may be viewed quite

literally as repeatedly colliding the electron with the perturber, and using the boundary

matching condition to select out the stable closed orbit trajectories of the motion. In

fact, modern semiclassical theory allows this picture to be implemented directly, with

a coherent summation over the two closed Coulomb orbits that pass through a given

point and begin and end on a small sphere bounding the perturber. The constructive

interference between the paths is responsible for the distinctive nodal pattern of the

wavefunction that accounts for its resemblance to the ridged shell of a trilobite.

The Rydberg state localized-scattering picture is certainly powerful with respect

to the task of describing highly excited and continuum electronic states. This raises the

question of whether on can retain the advantages of this philosophy, while at the same

time including the nuclear continuum states that arise in the context of dissociation.

Chapter 5 provides a demonstration of several approaches to extending multichannel

quantum defect theory or R-matrix theory to systems with such a double continuum,

including one that is entirely original, the method of Siegert channel states.

This dissertation has refined and extended a set of existing tools from the fields

of resonance theory, quantum defect theory, and multichannel spectroscopic analysis in

order to describe two rather dissimilar diatomic systems that arise from Rydberg elec-

tron excitation. From this foundation, there are many directions that could be pursued

with respect to verifying, improving, or applying these ideas. In some cases, this may

simply mean coming to a better understanding of the limitations of these methods. The

machinery of quantum defect theory, for example, as powerful as it often proves to be,

leaves no obvious procedure for improvement of accuracy. Unlike perturbation theory,

there are no “higher level terms” available in the theory to systematically improve the
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convergence of a solution, and unlike variational methods, there is no guarantee of a

lower or upper bounding of the calculated values. The incorporation of effects arising

from energy dependence of the quantum defect parameters, for example, or symmetry

breaking effects like the loss of gerade-ungerade symmetry in HD and Jahn-Teller cou-

plings in triatomics, must usually be added to the model on a somewhat ad hoc basis.

This increases the importance of confirming the results of such calculations, either by

more rigorous computational methods, or by direct experimental observation.

For the long-range Rydberg bound states, the first crucial test of the theory would

involve experimentally confirming their existence by means of some spectroscopic signa-

ture. At present, the most difficult aspect of preparing these states lies in the creation

of a high-enough density cold dilute gas sample. Most modern magneto-optical traps

are capable of generating densities in the range of 1010-1011 atoms per cm−3; the popu-

lation of nearest-neighbor pairs with the correct separation to form resonance-induced

bound states (e.g., at 500-1000 Bohr radii for n=30-70) would be greatly enhanced at

densities only a few orders of magnitude larger than this. As a possible alternative,

the existence and structure of molecular potential curves might be deduced from the

observation of satellite lines even at temperatures above those favorable for the forma-

tion of bound states. On the theoretical end, further refinement of the theory in this

paper (particularly with regard to the handling of fine and hyperfine structure) would

be advantageous.

If the existence of such states is confirmed, other opportunities for application-

oriented theoretical study could be investigated more thoroughly. The large permanent

dipole moments attached to these states makes the prospect for alignment-based ap-

plications particularly appealing. For example, if a sample of Rydberg molecules were

prepared and oriented along a common axis, and a beam of slow electrons passed through

the sample in the direction of that axis, one might imagine the electrons displaying a

diffraction pattern suggestive of the intricate nodal structure of the electronic wavefunc-
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tion. Another possibility, prompted by the observation that (to a good approximation)

the effect of the perturber is simply to mix atomic states, might be the creation of a

similarly shaped electronic wavefunction in the absence of any perturber at all, perhaps

by the use of pulsed multipole electric fields [167]. A third idea might involve the study

of Rydberg-state induced dissociation of diatomic or polyatomic perturbers via disso-

ciative attachment, as initially proposed in the work of Dubov and Rabitz [65, 66] in

the context of considering laser-assisted exchange reactions.

As noted in the conclusion to Chapter 5, the utility of the Siegert state method

has already been demonstrated beyond the case of molecular hydrogen. The most di-

rect route to generalize the method to polyatomic molecules is probably that used in

[28], based on a transformation of the nuclear motion to hyperspherical coordinates.

One might also envision finding a technique for calculating multidimensional Siegert

pseudostates, with the possibility of outgoing flux on several different surfaces or hy-

persurfaces in a multidimensional volume. In the two-dimensional case, for example, it

could provide a new approach to the handling of two-electron systems with an accessible

double ionization continuum, perhaps in conjunction with R-matrix methodology. Even

more complicated molecules might be analyzed by isolating a subset of particularly “ac-

tive” normal modes, and defining the Siegert spectrum in the normal mode coordinates

directly.

The study of resonant effects in near-threshold electron-molecule scattering pro-

cesses may provide the first step toward a greater understanding of resonant effects in

larger molecules with similar local structure. The work of Burrow and coworkers, for ex-

ample, has described resonant scattering properties of electrons from both chloroalkanes

and DNA bases using a model that assumes a single electronically active bond, with sub-

sequent vibrational coupling to the other bonds of the molecule [168, 169]. And the work

of Gianturco and Lucchese has suggested that one of the most important contributions

to DNA radiation-induced decay channels involves the creation of photoionized elec-
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trons that undergo low-energy dissociative attachment, a process that depends vitally

on energy redistribution between electronic and nuclear excitation modes [170, 171].
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