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Haljan, Paul C. (Ph.D., Physics)

Vortices in a Bose-Einstein Condensate

Thesis directed by Prof. Eric A. Cornell

Since the advent of Bose-Einstein condensation in the dilute alkalis, there has been

considerable interest in observing effects in atomic condensates akin to the hallmark

effects associated with superfluidity and superconductivity. In particular, the study of

quantized vortices and vortex lattices represents an important connection between the

traditional ”super” systems such as liquid Helium and this new atomic system.

This thesis explores some of the first vortex experiments in a condensate of mag-

netically trapped Rubidium-87. Single vortex lines and rings are created using a wave-

function engineering technique, which is an ideal starting point to study the dynamical

behavior of vortices within the condensate. An entirely different approach of “intrin-

sic nucleation” has been developed to create rapidly rotating condensates with large

amounts of vorticity. A novel variation of forced evaporation is used to simultaneously

cool and spin up an ultracold gas. In this way, condensates can be formed that con-

tain large, extraordinarily regular lattices of well over 100 vortices. Direct detection

of the vortex cores makes it possible to study the microscopic structure of the vortex

arrangements both at equilibrium and under dynamical conditions where severe applied

stresses distort the lattice far from its equilibrium configuration.

In conclusion, the techniques developed in this thesis have opened up a new area of

rotating condensate physics and, in the future, may lead to regimes of extreme rotation

and quantum Hall physics.
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Chapter 1

Introduction

1.1 Bose-Einstein condensation and the “super” systems

The phenomenon of Bose-Einstein condensation(BEC) has a rich history over the

past century [155], beginning with the recognition of two classes of particles in nature,

bosons and fermions, obeying Bose-Einstein and Fermi-Dirac statistics respectively: In a

system of indistiguishable particles, an arbitrary number of bosons may occupy a single

quantum state whereas fermions are restricted by the Pauli exclusion principle to a single

particle per state. Remarkably, according to the “spin statistics theorem,” particles in

nature with integer spin are bosons while those with half-integer spin are fermions. The

different particle statistics have fundamental and far-reaching physical consequences;

however, effects become evident only at low1 temperatures where particles gather in

the lowest energy states of a system and the average occupation of a state approaches

unity. Early in the 1900s, theory by Bose [56] and Einstein [76] predicted that if a gas

of ideal(non-interacting) bosons is cooled down, a quantum phase transition will occur

at a critical temperature T = TC , below which a macroscopic population “condenses”

into the ground state of the system. At T = 0, the condensate fraction reaches one. It

certainly is not surprising that all the particles end up in the ground state at T = 0

since it is the state with the lowest energy. Significantly, however, the macroscopic
1 A “low” temperature is defined relative to the characteristic spacing of a system’s energy levels

and need not be low in any particular absolute terms.
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occupation persists at finite temperatures up to the critical temperature.

Following the theory of Bose and Einstein, London [115] was the first to suggest

that BEC could account for the experimentally observed superfluid transition in liquid

4He, even though the strong interatomic interactions in the liquid clearly put the system

far from the concept of an ideal Bose gas. Implicit in this discussion is the fact that

4He, although composed of fermions (electrons, protons, neutrons), is nevertheless a

composite boson, the constituent spins of which add up to give a total integer spin. The

original motivations of London are not delved into here; instead, some of the relevant

consequences are pointed out. In a liquid helium sample, the condensate is associated

with the superfluid component. As a macroscopically occupied quantum state, it has an

associated wavefunction or order parameter Ψ =
√

ρ(�r)eiS(�r). As Tilley points out [155],

this fact in itself made London’s proposal a bold suggestion. After all, wavefunctions

were associated at the time with the microscopic quantum world of atoms but London

was suggesting that a continuous wavefunction exists over the scale of a bucket of liquid

helium!

Given the existence of an order parameter, currents of the superfluid or “super-

flows” are associated quantum mechanically with gradients in the phase S. As originally

emphasized by Onsager [131] and Feynman [85], this has a direct bearing on the mean-

ing of a rotating quantum fluid. Since the order parameter needs to be single valued, the

phase around a closed loop must return on itself or, if there is a hole in the superfluid,

it can increment by an integer multiple of 2π. The latter case describes the multiply-

connected topology of a superfluid pierced by one or many quantized vortex cores. The

connection between quantum mechanical phase and velocity is a rather strong statement

permitting rotation to enter a superfluid only in the form of quantized vortices. In the

“rotating bucket” experiments with liquid helium, a rotating normal fluid is cooled below

the superfluid transition. Above a critical rotation rate ΩC , singly-quantized vortices

are nucleated at the edge of the superfluid and migrate inwards. Higher rotation rates
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lead to the nucleation of more vortices, which come to form stationary arrays in the

rotating frame. In 1979, Yarmchuk and Packard [160] reported the direct observation of

individual vortex cores in arrays of up to eleven vortices. The visual observation of vor-

tex lattices, together with the quantization of vortex circulation as first demonstrated

by Vinen [156], represents one of the hallmarks of superfluidity.

Following superfluid 4He, the list of physical systems exhibiting a macroscopically

occupied quantum state grew to include superfluid 3He, superconductors and lasers. The

latter two systems have resulted in countless technological advances. In the case of su-

perconductors, conduction electrons pair up to form composite bosons which produce

persistent supercurrents, directly analogous to the superflows in liquid Helium II. Mag-

netic fields play the role of rotation in a superconductor. Thus, above a critical applied

magnetic field, Abrikosov lattices of magnetic flux quanta are observed [1], having the

same triangular structure predicted for vortex lattices in superfluid 4He.

In 1995, the newest member of the macroscopic quantum states was demonstrated

experimentally - BEC in a trapped dilute alkali gas. There are currently in excess of

30 gaseous BEC experiments around the world using several different atoms (Cs, H,

He∗, Li, K, Na, Rb ...). With a density 10−6 less than that of air at STP, a dilute-gas

condensate involves interatomic interactions that are relatively weak compared those

in helium liquid (although this is an evolving frontier [62]). The result is a theoretical

description that is more tractable. The dilute nature of the gas also means that the

ground state fraction is large, essentially 100% compared with ∼10% in Helium II,

where the interactions deplete the ground state [155]. A novel feature in the atomic

vapour experiments is the ability to directly see the density profile of the condensate’s

wavefunction with optical imaging, central in fact to the results of this thesis. For this

reason in particular, dilute gas condensation as a visually accessible phenomenon has

become synonymous with the concept of ”BEC”.

One of the most interesting (and fun) aspects of atomic BEC is the interplay it
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has with other areas of physics, be it quantum optics or condensed matter. For example,

a significant amount of evidence has been amassed to connect superfluidity in 4He to the

phenomenon of Bose-Einstein condensation. One may ask though: is dilute-gas BEC a

superfluid? The question is more than just semantics. To answer it, one arguably should

demonstrate the canonical experimental properties that define superfluidity [114], such

as the rotating bucket experiments mentioned above, although the choice of experiments

ends up being somewhat subjective. It is useful to try to distill the basic features of

a condensate that contribute to its superfluid character. Consider rotation properties

specifically. The existence of a macroscopic wavefunction alone leads to the quantiza-

tion of circulation characteristic of a superfluid; however, equally crucial is the role of

repulsive interactions in the condensate since they are responsible for the “persistence”

of quantized vortices as stable topological objects in the fluid. Garcia-Ripoll et al. [88]

refer to this as the “structural stability” of a vortex, which may be understood as follows:

A quantized vortex cannot disappear from the condensate wavefunction by “spinning

down.” The multiply-connected topology of a wavefunction containing a vortex core,

like a rubber sheet with a hole in it, can be destroyed only by cutting the density of

the condensate along a radial line from its edge to the vortex core. Since the repulsive

interatomic interactions give the condensate a finite compressibility, the suppression

of the condensate density along a radial line entails an energy cost. It is this energy

cost which makes a quantized vortex a structurally stable topological feature. In the

absence of sufficiently strong repulsive interactions, an asymmetry introduced in the

condensate’s confining potential would presumably destabilize the vortex [88]. An anal-

ogous situation has been experimentally demonstrated for an optical vortex contained

in a laser beam propagating in free space [125]. Under an asymmetric perturbation from

a cylindrical lens, the optical vortex dynamically inverts its topological charge, which is

thus clearly not a stable quantity.
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1.2 Rotating Bose-Einstein condensates

This thesis addresses the experimental creation of quantized vortices, from one to

many, in a dilute-gas condensate of 87Rb. Concurrent with the results presented here,

a number of other experimental groups have also addressed the rotational behaviour of

a condensate, including studies of vortices [118, 48, 104, 103, 75] and the measurement

of a condensate’s non-classical moment of inertia [119, 100]. The overall body of work,

both theoretical and experimental, is already sizeable, making rotating condensates its

own little sub-field of gaseous BEC.

A general BEC workshop took place at JILA in 1999 near the outset of this the-

sis work. At the time, there was considerable discussion and uncertainty how a vortex

could be nucleated into a condensate. The discussion centered around the analog of

the “rotating bucket” experiment for trapped gases. The prime question related to

the nature of the energy barrier that a vortex would need to overcome to be nucleated

into the condensate. This whole issue was initially circumvented when Williams and

Holland proposed a novel way to directly create a condensate containing a vortex with

wavefunction engineering [159]. Based on earlier experimental work in this group with

coupled two-component condensates, the wavefunction engineering technique led to the

first creation of a (single) vortex in a dilute-gas condensate [122]. At about the same

time, the ENS group was successful at nucleating vortex lattices by stirring the conden-

sate in a deformed confining potential [118]. In very rapid succession, there were results

from several groups providing different methods of nucleation and elucidating vortex

behaviour. Vortices, it seemed, were “everywhere.” In retrospect, it seems strange that

there was any uncertainty at all in 1999 about vortex nucleation in a condensate! The

field was and continues to be extremely active, which has made it a fascinating area to

work in.

The wavefunction engineering technique, with its ability to introduce a vortex
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into a condensate “artificially” with reproducible initial conditions, has proven to be

a useful method to study a wide variety of vortex dynamics in a T = 0 condensate

[Chapter 3]. Additionally, the technique allows the creation of two-component vortices

in which the vortex state is composed of one internal spin state of 87Rb while the

core is filled with fluid composed of another simultaneously trapped spin state. The

mutually repulsive interaction between the two components opens up the possibility to

study vortex dynamics in mixtures of interacting superfluids, where the vortex angular

momentum need not be confined to one component.

As a general technique, wavefunction engineering has even been extended to make

dark solitons in a condensate. The dark soliton, which is the matter wave equivalent of

the optical phenomenon, corresponds to a nodal plane cutting across the condensate and

an associated π phase discontinuity. Unlike vortices, solitons are not topological features

in the condensate wavefunction. Indeed, after their creation, the solitons are observed to

rapidly decay to vortex rings in our spherical trapping geometry. Although interesting

in its own right, this decay process can be considered an example of wavefunction

engineering whereby an unstable precursor state decays to a desired target state, the

vortex ring. This may prove useful in the future for making more complicated topological

structures in the condensate.

The vortex work based on wavefunction engineering focused on the “quantum

limit” of single vortices in a condensate essentially at zero temperature. The variety

of experiments not only provided some interesting vortex physics but, perhaps most

importantly, led to the acquisition of a number of experimental techniques for the ma-

nipulation and detection of vortices. These techniques have continued to prove useful

as the experimental direction has moved from the creation and study of condensates

with single vortices to the opposite limit of highly rotating condensates containing large

lattices of a hundred or more vortices.

The route to large vortex lattices in a condensate ultimately involves the mechan-
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ical addition of angular momentum to the trapped gas, just as for the original liquid

helium experiments. Coming full circle with the 1999 workshop, a point of controversy

has been the exact nature of the vortex nucleation mechanism, this time in the context

of experimental results. The group at ENS and later those at MIT and Oxford have

nucleated vortex lattices by directly addressing the condensate with a stirring potential.

In this “extrinsic” nucleation technique, the stirring action of the potential has been

found to drive surface waves on the condensate to instability. The crests of the waves

break, nucleating vortices in the resulting turbulence of the “surf”. The approach to

vortex nucleation taken in this thesis [Chapter 4] has followed a somewhat different

route, which at the time offered the possibility of a different physical mechanism for

nucleation. In this new method, an ultracold gas above TC is first brought into rotation

and then evaporatively cooled to quantum degeneracy. Above a critical rotation rate,

vortices are nucleated into the condensate. This “intrinsic” nucleation is due only to

the interaction of the normal cloud with the condensate since the trapping potential

is left static (and rotationally symmetric to conserve angular momentum) throughout

the evaporation. After a flurry of discussion in the literature, the nucleation mecha-

nism appears to be due again to surface-wave instabilities, driven not by a rotating trap

roughness but instead by thermal fluctuations from the rotating normal cloud.

Nevertheless, a significant benefit of the intrinsic nucleation method is the gen-

eration of large amounts of vorticity in a condensate. A key feature of the evaporative

technique is that it is designed to simultaneously cool and spin up a trapped gas to

higher rotation rates. As a result, highly rotating condensates of a million or more

atoms can be formed containing 130 or more singly quantized vortices. They are crys-

tallized in remarkably ordered lattices, spanning ten or more lattice constants across the

condensate. In a particular sense, these vortex lattices are very much the opposite of the

“quantum” limit of a single vortex. For the large numbers of vortices in the condensate,

the correspondence principle would suggest that the rotation field, coarse grained over
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the vortex structure, should go over to the classical limit of rigid-body rotation. In

fact, the condensate does centrifugally distend like a rotating classical gas. From the

distortion to the condensate shape, an effective rigid-body rotation rate as high as 95%

of the centrifugal limit has be inferred (and this value is rising even higher in current

experiments). The large rotation rates and condensate number have been brought to

the point of reproducibility that the BEC machine is now truly a vortex machine.

The reproducible production of highly rotating condensates containing large, equi-

librium vortex lattices is an ideal spring board for a number of different experiments.

In the first instance, a study has been made of the non-equilibrium lattice dynamics

induced when large amplitude shape deformations are applied to the condensate. The

anisotropic stress of the shape deformations induces a variety of strain responses in the

vortex lattice including shifting of lattice planes, changes of lattice structure, and the

formation of sheet-like structures in which individual vortices appear to have merged.

Finally, it was mentioned above how in presence of large amounts of vorticity

a condensate attains the classical limit of rigid-body rotation. However, in the limit

of truly extreme rotation rates one approaches what may be called the “true quan-

tum limit” where the amount of vorticity approaches the number of particles within

the condensate. Under these circumstances, recent theory [63, 133, 101, 146] predicts

the transformation of a condensate from a vortex lattice state to a strongly correlated

quantum system, analogous to the quantum Hall regime in condensed matter physics.

Given the versatile set of experimental tools that can be brought to bear on the con-

densate, it is a possibility more than a hope that quantum Hall physics will be accessed

in dilute-gas BEC in the near future.

1.3 JILA Mark III: keeps on going, and going . . .

Underlying all the physics explored in this thesis is a BEC apparatus, JILA Mark

III, originally constructed by previous members of the group as a “next generation”
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machine [78, 120]. Diode laser technology and a vacuum system without moving parts

have made this experiment extraordinarily reliable as far as experiments go. Consider

that the glass cells have been under continuous high vacuum since their construction

in 1996. The original 87Rb dispenser is still being used with several more available in-

chamber. Having a cycle time of ∼1min, the machine has produced about a half-million

condensates during the time of this thesis and averaged two successful experiments per

year. Admittedly, the apparatus has undergone a gradual overhaul with time. Lasers

have been changed and several more added. There are now at least as many lasers

devoted to manipulating and probing the condensate as there are ones devoted to its

production. Although practically every part of the setup has undergone modification,

the same basic apparatus underlies it all (if you can still see it under the optics and coils!)

Only now is the experiment beginning to suffer from some limitations, particularly in

optical access, leaving room for plenty of ingenuity.



Chapter 2

Phase-contrast imaging

2.1 Introduction

A quick look through the JILA theses on atom trapping and cooling shows that

every one covers the topic of optical imaging in one way or another; this thesis is no

exception. The reason is obvious: essentially all experimental data on an atom cloud

derives from images formed by scattering probe laser light off it. Every new imaging

technique opens up new experimental possibilities. Phase-contrast imaging [2], allowing

the non-destructive measurement of condensate samples in situ [52], has proven to be

a particularly useful and general technique for our experimental apparatus, especially

for the vortex experiments detailed in this thesis. Because phase-contrast imaging has

become the workhorse for condensate assay in our experiment, more than the usual

detail is devoted here to outlining a proper quantitative model of the technique.

The imaging of an atom cloud can make use of the absorption or refractive index

properties of the atoms. For absorptive imaging, spontaneous photon scattering by

the atoms leaves a shadow imprint of the cloud on the probe beam: I = I0e
−D(�r). The

optical depth D(�r) gives quantitative access to the density profile of the cloud integrated

down the line of sight. There are a number of reasons why absorptive imaging is not

particularly useful in-trap. Optical depths for on-resonant probe light (D0 ∼ 102 − 103)

far exceed the limitations of imaging setups with a maximum observable optical depth

of ∼ 3 or so [120]. Detuning the probe from resonance to reduce the optical depth
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only leads to another problem, image distortions due to lens-like refraction by the atom

cloud [120]. From the perspective of non-destructiveness, the average recoil energy of

an atom following spontaneous emission (Er ∼ 45nK for 87Rb) is comparable to the

temperature of Bose-condensed samples and thus results in the loss of the atom from

the condensate. Since sample sizes are small (104 − 106 atoms), obtaining an image

with good signal-to-noise involves scattering a photon or more per atom. After a single

absorption image a condensate will be mostly melted if not blown away.

The alternative to absorption imaging is to use an off-resonant phase-contrast

technique sensitive to the phase shift induced by the cloud. A nondestructive image is

possible because the spontaneous scattering rate Γ dies out more quickly away from res-

onance than the phase shift ξ. (For a probe detuned δ from resonance, Γ ∝ 1/δ2 versus

ξ ∝ 1/δ). The high on-resonant optical depth D0 of a trapped condensate in particu-

lar allows for large probe detunings that significantly suppress spontaneous scattering

while still maintaining a good imaging signal (ξ ∼ D0/δ ∼ 1). In the last part of this

chapter, the “nondestructive” nature of phase-contrast imaging will be characterized in

a little more detail, including the ultimate limit of a quantum nondemolition (QND)

measurement for number.

2.2 Phase-contrast technique

To measure the phase shift induced by the atom cloud, an interference technique

is needed. One way to do this would be to have an interferometer with the atom cloud

in one arm. Phase-contrast imaging, which uses Fourier optics techniques, works in a

very similar way. As shown in Figure 2.1, a probe laser beam detuned from resonance

is incident on the atom cloud. The cloud acts as a phase object, diffracting (elastically

scattering) some of the incident light. In analogy to the interferometer, the unscattered

component forms the reference beam while the forward-scattered component carries the

object information. The components are collected by an imaging lens and spatially
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L1 L2 CCD

BEC

P1

Figure 2.1: Phase-contrast imaging, using imaging lens L1, phase plate P1 in the back
Fourier plane of L1 and magnification lens L2. A CCD records the images.

separated in the back focal plane due to the Fourier transforming effect of the lens

[143]. This allows a small dielectric dot mounted on a glass substrate to selectively shift

the phase of the unscattered component by φ0. A second magnification lens recombines

the two light components, which interfere at the image plane to form a phase-contrast

image of the atom cloud. A phase dot shift of φ0 = π/2 maximizes the contrast signal

for small phase shifts.

The phase plate is a 1/16” thick, 1” diameter glass substrate with a small MgFl2

dot at the center of one face. The dot, with a diameter of 100µm and a thickness

of λ/4(n − 1) = 513nm corresponding to a phase shift of π/2, was deposited onto

the substrate through a thin, stainless steel mask composed of a purchased optical

pinhole. The opposite surface of the phase plate was then anti-reflection coated for

780nm to reduce fringes. An issue which arose in the deposition process was the crater-

like appearance of the pinhole (due to the laser ablation used in its manufacture).

In initial tests, the crater edges resulted in a non-uniform dot, presumably due to

shadowing effects. This was solved by carefully polishing the thin steel around the hole

to a flat finish.

The diameter of the dot was chosen based on typical condensate and probe beam

sizes. The waist size for the probe beam incident on the atom cloud is 1mm com-

pared to 30µm for the condensate radius; therefore, in the Fourier plane of the imaging
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lens(f ∼100mm), the focused probe beam is 30µm compared with 1mm for the diffracted

light. A 100µm diameter dot is large enough to include most of the focused probe beam,

yet small enough to avoid significantly affecting the scattered light.

2.3 3-D imaging

There are a few points of interest relating to our imaging setup. The probe lasers

for phase contrast are typically detuned up to several GHz from resonance. Furthermore,

the detuning is changed often depending on the signal-to-noise and non-destructiveness

desired. External cavity diode lasers with a DAVLL frequency lock [65] provide the

versatility for probing both near and far from resonance. A Fabry-Perot cavity is rather

useful to monitor the probe frequency relative to the well-defined frequency of a laser

under saturation absorption lock [72].

To satisfy our insatiable desire for more and more information, three orthogonal

axes of (nondestructive) imaging are simultaneously available to probe an atom cloud

(see Fig. 2.2). The horizontal axes share a single CCD array, which is more than

large enough to have side-by-side images of the atom cloud. The vertical imaging axis

is integrated into an optical path normally occupied by one of the beams used for

magneto-optical trapping [78]. As a result, some beam switching is required during the

experimental cycle (see Fig. 2.2, side-view). All the complication of assembling a 3-D

puzzle of extraordinarily dense optics around a fragile glass vacuum cell is well worth

it, as each imaging direction has proven crucial to the vortex experiments discussed in

subsequent chapters.
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Figure 2.2: Experimental setup for 3-axis imaging. The top view shows the two hori-
zontal imaging axes combined onto a single CCD camera. The more detailed side view
shows the vertical axis, which is integrated into a MOT beam path. New Focus flipper
mounts MR1 and MR2 rotate into place to permit imaging. Lenses L1 (f = 120mm)
and L3 (f = 700mm) form the vertical imaging microscope. The matched pair of lenses
L1 and L2 form a one-to-one telescope for the MOT beam.
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2.4 Detailed calculation of imaging process

2.4.1 Overview of calculation

The purpose of this section is to provide a quantitative analysis of phase-contrast

imaging, divided into the effect of the atom cloud (“object formation”), the optics

(“image formation”), and image processing (“signal inversion”). The only real effort is

to calculate the effect of probe laser propagation through the atomic cloud; the rest of the

imaging system involves basic Fourier optics and is straight forward. Condensates as well

as cold thermal clouds that are fairly dense can be imaged. For the purposes of imaging,

a condensate is well approximated as a classical gas of independent quantum absorbers

[126], in other words, a dielectric. Therefore, in order to understand object formation

we simply need to calculate the refractive index and absorption for a generic atom

cloud. The extra twist is that the magnetic confining potential for the atoms provides

an ambient bias field that breaks the symmetry of the system. As in anisotropic crystals,

the susceptibility of the atom cloud becomes a tensor quantity and the eigenmodes of

propagation are no longer the simple free-space ones. As an additional complication,

the TOP trap [78] used in this thesis work has a time-varying magnetic bias field which

can be oriented in any direction in the horizontal plane. With three axes of imaging

having three different polarizations constrained by optical access [Fig. 2.3], it is useful to

investigate the effect of the bias field changing during a time-sequence of non-destructive

pictures. Finally, in pushing the limits of imaging, for example in the analysis of the

shape of an atom cloud, it is also useful to understand any nonlinear behaviour in

phase-contrast imaging that will distort the image.

In calculating the optical response of an atom cloud, several references are useful

[144, 143, 124] but the information is fairly scattered. Hopefully the expressions and

techniques collected here will prove useful for other trapping experiments, including

ones using absorption imaging.
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Figure 2.3: Probe polarizations for the three orthogonal axes of imaging. Also shown
are the contributions to the magnetic bias field seen by atoms trapped in the TOP trap:
(i) the rotating bias field Bb and (ii) a possible static component Bq depending on the
position of the atoms in the quadrupole trap.

2.4.2 Atomic susceptibility

The starting point for light propagation in an atom cloud (“the medium”) is the

Maxwell wave equation in a nonpermeable (zero magnetization) dielectric medium

∇2 �E −∇(∇ · �E) − µo
∂2

∂t2
�D = 0

∇ · �D = 0 (2.1)

where �D = ε0
�E + �P with �P being the induced polarization of the medium, �E the light’s

electric field, and ε0 and µ0 the permittivity and permeability of free space respectively.

The polarization �P(�r, t) of an ultracold trapped cloud of atoms (including a con-

densate) is simply n(�r)〈�d 〉, where n(�r) is the number density and 〈�d 〉 = −〈e�r〉 is the

induced dipole moment of a stationary atom in the presence of the probe laser field.

Velocity effects are negligible for the trapped clouds in our experiment. Note that the

spatial dependence of the polarization arises only from the density distribution.

We want to consider the optical probing of a 87Rb cloud in a particular ground

hyperfine state 5S1/2|F,mF 〉. Available transitions are the D1 and D2 lines reaching
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the 5P1/2 and 5P3/2 electronic states respectively. We use the D2 line at λ = 780nm,

with hyperfine structure resolved, as shown in Fig. 2.4. Contributions from all allowed

transitions to the upper hyperfine manifold must be included when calculating the dipole

response.

We focus on a single pair of states, labeled {|g〉, |e〉} with associated resonant

frequency ωeg and linewidth γ. The state |g〉 (|e〉) is in the ground(excited) hyperfine

manifold.

The incident probe laser with frequency ω has an electric field,

�E(�r, t) =
�E

2
eiωt−ik0z + c.c. (2.2)

The steady-state solution for probe durations τ � 1/γ is discussed in many places

[124, 144]. In the dipole approximation (eik0z ∼ 1) and the rotating wave approximation

(ω − ωeg � ω), the dipole moment of an atom can be written as

〈d̂(t)〉 = − i

�

�dge · �E(t)
γ/2 + iδeg

�deg + c.c. (2.3)

where δeg = ω − ωeg is the detuning and �deg is the dipole matrix element 〈e|�d|g〉.

Saturation effects [124] are justifiably ignored in phase-contrast imaging since probe

detunings are many linewidths and probe intensities are low, typically 100−200µW/cm2

compared to the saturation intensity IS = 1.6mW/cm2 for Rubidium.

The main numerator dependence (�d · �E)�d of the dipole moment can be reordered

as

(�d †
eg

�E) �deg = �deg(�d †
eg

�E) = (�deg
�d †
eg)�E (2.4)

where �deg
�d †
eg is a 3×3 (Hermitian) matrix (as opposed to �d †

eg
�deg, which is a number).

This allows us to write the polarization as �P =
↔
χeg

�E where the susceptibility
↔
χeg is:

↔
χeg=

−i

�

�deg
�d †
eg

γ/2 + iδeg
n(�r) (2.5)
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Figure 2.4: Relevant 87Rb level structure showing the D2 optical transition with ground
and excited hyperfine manifolds resolved. Also shown in the boxed region is the Zee-
man sub-structure for the ground hyperfine states with filled circles identifying the two
magnetically trapped states used in the experiment.
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To include all hyperfine states |e〉 ∈ |F ′,mF ′〉 in the upper manifold, we sum

up their contributions
↔
χeg to the total susceptibility. The dipole decay rate from the

upper hyperfine states is γ, independent of mF ′ sublevel; therefore, the excited state

dependence in
↔
χeg is through the detuning and dipole matrix �deg

�d †
eg only.

It is very useful to define a dipole matrix normalized to the cycling transition

matrix element as follows:
↔
C (e, g) =

�deg
�d †
eg

|�dcyc|2
(2.6)

Thus the net expression for the susceptibility of an atom cloud in ground hyperfine state

|g〉 is:

↔
χ= −i

∑
e∈{F ′,mF ′}

nσ

k0

↔
C (e, g)

1 + i
2δeg

γ

(2.7)

where the sum is over all excited states {|e〉}. If more than one ground state is occupied,

the susceptibility should also be averaged over all of them. The value of σ is the standard

crosssection for a cycling transition

σ =
3λ2

2π
(2.8)

In obtaining Eqn. 2.7, the standard relation for the linewidth of a cycling transition was

also used

γ =
ω3|�dcyc|2
3πε0�c3

(2.9)

We could express the susceptibility tensor in Cartesian co-ordinates; however, the

natural basis to use is the spherical tensor one defined as:

ε̂± = ∓ 1√
2
(x̂ ± iŷ), ε̂0 = ẑ (2.10)

If we further choose to use “atom co-ordinates”, where the direction of the magnetic bias

field lies along the ẑ-axis, then dipole selection rules cause the
↔
C (e, g) matrix [Eqn. 2.6]

to be diagonal for each of the terms in the susceptibility sum [Eqn. 2.7]. The total
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susceptibility is, as a result, also diagonal in this basis with value:

↔
χ=




χ+ 0 0

0 χ0 0

0 0 χ−


 (2.11)

where

χq = −i
∑

e∈{F ′,mF ′}

nσ

k0

cq(e, g)

1 + i
2δeg

γ

(2.12)

The Clebsch-Gordan type terms cq(e, g) are the diagonal elements of
↔
C (e, g) in the

atom basis [124]:

cq(F,m
F
;F ′,m

F ′ ) =
1
N

|ε̂q · �deg|2
|�dcyc|2

=
1
N

(2J + 1)(2J ′ + 1)(2F + 1)(2F ′ + 1)

×
∣∣∣∣∣
{

L′ J ′ S

J L 1

}{
J ′ F ′ I

F J 1

}(
F 1 F ′

mF q −mF ′

)∣∣∣∣∣
2

(2.13)

The curly-(round-)bracketed terms are 6-j (3-j) symbols, easily evaluated in Mathe-

matica for example. The normalization N is chosen such that cq = 1 for the cycling

transition, namely |2, 2〉 → |3, 3〉 for 87Rb. The normalized values for the D2 line of

87Rb (I=3/2) can be found listed in a previous thesis [120].

The contribution from each transition to the susceptibility in Eqn. 2.12 may be

written as the sum of a real and imaginary part, χ
′
q(e, g) + iχ

′′
q (e, g) with values:

χ′
q(e, g) =

2δeg

γ
χ′′

q (e, g)

χ′′
q (e, g) = −nσ

k0

cq(e, g)

1 +
(

2δeg

γ

)2 (2.14)

where the imaginary part is responsible for absorption and the real part for the refractive

index. Clearly for large detunings (δeg � γ) the real part dominates.
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2.4.3 Object formation

With the polarizability in hand, we can proceed with the effect of light propaga-

tion through the atom cloud. Returning to the wave equation [Eqn. 2.1] and assuming

a probe laser frequency ω, we obtain an equation for the laser’s electric field �E(�r) inside

the medium:

∇2 �E −∇(∇ · �E) + k2

↔
ε

ε0

�E = 0 (2.15)

where

↔
ε = ε0(1+

↔
χ) (2.16)

First, diffraction effects in the atom cloud are neglected, which amounts to drop-

ping all transverse derivatives and keeping only those with respect to the propagation

(ẑ-)direction. To estimate the magnitude of diffraction effects we can use ray-optics

and treat the cloud as a sphere of radius R and uniform refractive index. Then the

transverse deviation of rays within the cloud is roughly ∆x ∼ ξλ where ξ is the peak

phase shift of the probe through the cloud. Typically ξ � 1, so diffraction effects within

the cloud do not exceed the imaging resolution (� λ) and are unimportant.

Further, the density of the atom cloud is also assumed to change slowly compared

to λ. The laser field can then be approximated as �E = �A(�r)e−ik0z where �A(�r) is

slowly varying. Called the paraxial or WKB approximation, this amounts to neglecting

reflection by the medium [143].

Incorporating these approximations into the wave equation Eqn. 2.15 and working

in the atom co-ordinates where
↔
χ (or

↔
ε ) is diagonal, we can readily solve for two

eigenmodes of propagation {�Ea, �Eb} in the medium, namely

�Ei(�r) = �E
′
i(�r)e

−i
∫ z ki(�r

′)dz′ , i ∈ {a, b} (2.17)

which satisfy the eigenvalue problem,(
k2

0

↔
ε (�r)
ε0

− k2(1 − ẑẑ†)

)
�E = 0 (2.18)
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The spatially dependent eigenvalues ka,b(�r) are determined from a generalized Fresnel

equation [143] for a spatially dependent anisotropic medium,

∑
q

|zq|2(1 + χq(�r))

(1 + χq(�r)) − k2

k2
0

= 0 (2.19)

where the components χq of the susceptibility in the atom frame have already been

determined [Eqn. 2.12]. The only difficulty to solving these equations is to calculate the

vector components zq of the propagation direction in terms of the atom-frame spherical

co-ordinates. If the magnetic bias field has polar co-ordinates {θ, φ} with respect to

the propagation direction [Figure 2.5], then the transformation from lab to atom co-

ordinates is achieved with the rotation operator D(θ, φ) = Dy(−θ)Dz(−φ) in l = 1

representation

D(θ, φ) =




1
2eiφ (1 + cos θ) 1√

2
sin θ 1

2e−iφ (1 − cos θ)

− 1√
2
eiφ sin θ cos θ 1√

2
e−iφ sin θ

1
2eiφ (1 − cos θ) − 1√

2
sin θ 1

2e−iφ (1 + cos θ)


 (2.20)

so that the z-direction in the atom co-ordinates used in equations (2.18) and (2.19) is

ẑ =




1√
2
sin θ

cos θ

− 1√
2

sin θ


 (2.21)

Since the ẑ components depend only on θ, the same is true of the wavevector and

eigenmodes in the atom co-ordinates. The φ dependence arises when the eigenvectors

are transformed back to the lab co-ordinates with D†(θ, φ).

Equations (2.17)-(2.21) provide the total solution to propagation in the medium.

A probe laser, �Ein, is incident on the atom cloud where �Ein is some superposition of

the free-space circular polarization basis,

�Ein =




E+

0

E−


 (2.22)
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Figure 2.5: Magnetic bias field orientation relative to probe propagation direction k̂ = ẑ.

The output laser field �Eout is obtained as follows:

1)Project �Ein onto the free-space limit of the medium’s eigenvectors, which are in lab

co-ordinates:

lim
n→0

(D†(θ, φ)�Ei) =




Ei+

0

Ei−


 , i ∈ {a, b} (2.23)

where | �Ei|2 = 1 and D is given in Eqn. 2.20.

2)Apply phase shift and absorption to each of the eigenmodes.

3)Reproject (if necessary) onto the free-space circular basis.

In summary, long after the medium we have:

↔
Eout=

(
P †MP

)
�Ein (2.24)

where P is the projection onto the free-space limit of the eigenvectors [Eqn. 2.23] and

can be written generally in terms of angles {α, β}

P =




Ea+ 0 Ea−

0 0 0

Eb+ 0 Eb−


 ≡




e−iα/2 cos β 0 −eiα/2 sin β

0 0 0

e−iα/2 sin β 0 eiα/2 cos β


 (2.25)
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M gives the effect of propagation through the medium:

M =




e−iξa 0 0

0 0 0

0 0 e−iξb


 (2.26)

with ξa,b =
∫∞
−∞ (ka,b(�r) − k0) dz. The real (imaginary) part of ξ describes the phase

shift(absorption) acquired by a probe passing through the cloud.

Although the equations 2.17 & 2.18 for �Ei and ki are straightforward to solve, the

final expressions in general involve all of the susceptibility matrix elements as well as

the angles θ and φ. The solutions are too complicated to be written out here; however,

a relatively useful expression for the eigenvalues themselves is shown here for the case

where the susceptibility is small:

ka,b = kav ± δk

2
(2.27)

kav

k0
≈ 1 +

1
16
{
3χ+ + 3χ− + 2χ0 + cos(2θ)(χ+ + χ− − 2χ0)

}
δk

k0
≈ 1

8
{ 9χ2

+
+ 4χ2

0
− 4χ0χ− + 9χ2

− − 2χ+(2χ0 + 7χ−)

+2 cos(2θ)(3χ+ − 2χ0 − χ−)(χ+ + 2χ0 − 3χ−)

+ cos2(2θ)(χ+ − 2χ0 + χ−)2 } 1
2

To get a feeling for the size of the susceptibility under typical experimental condi-

tions, we can consider the simple situation of the bias field aligned with the propagation

axis of the probe laser. In this case the eigenmodes in the medium are the two circular

polarizations with wavevectors ka,b = k0
√

1 + χ± ∼ k0(1 + χ±/2) for small χq. If we

focus on a single transition for one of the polarizations, say ε̂+, then the susceptibility

χ+ can be written as

χ+ ∼ −Dpk

k0R

γ

2δ

(
1 + i

γ

2δ

)
, δ � γ (2.28)

where Dpk ∼ n0σR is the peak on-resonant optical depth (absorption coefficient), n0

the peak atom density, and R the radius of the cloud. Typical experimental parameters
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for a condensate in-trap are 106 atoms, R ∼ 28µm and Dpk ∼ 300; therefore χ+ will

be small(� 0.1) for δ � 5γ ∼ 30MHz. For comparison, typical probe detunings in the

experiment are 100MHz or more from the nearest resonance.

Since the peak phase shift of the probe is φpk = Dpk

2
γ
2δ for a single transition, the

susceptibility can perhaps more usefully be written as

χ+ ∼ −2φpk

k0R

(
1 + i

γ

2δ

)
, δ � γ (2.29)

Sufficient signal-to-noise is achieved in images of atom clouds for peak phase shifts of

∼ 0.5, a typical value for the experiment. Under these circumstances, for a condensate

with radius R ≥ 20µm, the magnitude of χ is less than 0.01, certainly small.

2.4.4 Phase-contrast image formation

After propagation through the atom cloud, the probe laser is the sum of scattered

and unscattered field components, approximately identified as follows:

�Eout = �Ein︸︷︷︸
unscattered

+ (�Eout − �Ein)︸ ︷︷ ︸
scattered

(2.30)

The unscattered part is quite reasonably approximated by the incident field �Ein since

the laser beam profile (with waist w ∼1mm) is typically much larger than the cloud

(with radius R ∼ 28µm), making the fraction of scattered power (∝ R2/w2 � 1) small.

As mentioned above, the spatial Fourier transformation performed by the imag-

ing lens [Fig. 2.1] spatially separates the light field into its unscattered and scattered

components with, crudely speaking, zero and non-zero spatial frequencies respectively.

This allows a small phase dot in the back Fourier plane of the imaging lens to selec-

tively shift the phase of the unscattered component by φ0. Thus, after the remainder

of propagation to the image plane, the total probe laser field is:

�Eimage(x, y) = eiφ0 �Ein +
(

�Eout − �Ein

)
=
[
(eiφ0 − 1) + P †MP

]
�Ein (2.31)
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using the expression for �Eout from Eqn. 2.24. Any magnification m in the imaging system

has been omitted here but can easily be included in this and subsequent formulae by

adjusting the coordinates according to {x, y} → {mx,my}.

In the experiment, a CCD camera collects the image proportional to the incident

intensity (I ∝ | �Eimage|2). For a given atom cloud, the standard protocol [78, 120]

actually involves a sequence of three images, a probe shot to obtain the intensity profile

I(�r) of the probe laser modulated by the presence of the atom cloud, a normalization shot

to obtain the intensity profile I0(�r) of the probe alone, and finally a background shot

without probe light, giving Ibackgr(�r). The normalization shot can be realized either

by first destroying the condensate or, more nondestructively, by detuning the probe

sufficiently far from resonance. On a pixel-by-pixel basis, background subtraction and

normalization are performed to yield the raw phase-contrast signal:

S(�r) =
I(�r) − Ibackgr(�r)
I0(�r) − Ibacgr(�r)

− 1 (2.32)

2.4.5 Phase-contrast signal inversion

The final step of imaging is to invert the raw signal S [Eqn. 2.32] for the column

density of the atom cloud on a pixel-by-pixel basis. This step requires knowledge of the

exact form of S, which in general depends on the details of the imaging setup such as

the probe polarization, magnetic bias field orientation and so on. It is most to the point

to consider the specific situations arising in the apparatus.

A variety of constraints on the optical table have resulted in the following ar-

rangements for the three different orthogonal probe directions [see Figs. 2.2 & 2.3]. The

“front” horizontal axis uses a probe laser incident with horizontal, linear polarization.

Additionally, a horizontally polarizing beamsplitter cube is situated in front of the cam-

era. The “side” horizontal axis uses a vertically polarized probe incident on the atoms.

Lastly, the vertical axis uses circular polarization. In all cases, the rotating magnetic
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bias field of the TOP trap may have an arbitrary orientation in the horizontal plane at

the time of imaging.

To calculate the phase-contrast signal, the detuning of the probe laser from all

resonances is assumed to be large enough that the imaginary part of the susceptibility

can be disregarded [see Eqn. 2.14]. Under this approximation, the probe eigenmodes

in the atom frame are real as are their wavevectors. A useful way to obtain the phase-

contrast signal starts with Eqn. 2.31 for �Eimage and uses the general expression Eqn. 2.25

for the projection matrix P in terms of angles α and β . Both angles depend on the

magnetic bias field orientation through α = 2φ and β = β(θ). The net signal for the

front axis, for example, is

Sfront(ξav, δξ) = 4 sin
φ0

2

[
sin

φ0

2
+ cos

δξ

2
sin
(

ξav − φ0

2

)]

+ 4 sin
φ0

2

[
cos α sin 2β cos

(
ξav − φ0

2

)
sin

δξ

2

]
− 1

4
[
3 − cos 2α + 2cos2 α cos 4β

]
sin2 δξ

2
(2.33)

in which φ0 is the phase shift due to the phase dot, and ξav and δξ are the phase shifts

due to the atom cloud in terms of wavevectors kav and δk [Eqn. 2.27]:

ξav(x, y) =
∫ ∞

−∞
(kav(�r) − k0) dz

δξ(x, y) =
∫ ∞

−∞
(δk(�r) − k0) dz (2.34)

Physically, ξav is the average phase shift of the probe passing through the cloud while δξ

is indicative of Faraday rotation of the probe’s polarization. Both quantities are directly

proportional to the column density of the atom cloud integrated along the probe line

of sight and have implicit dependencies on the bias field orientation through the polar

angle θ (see Eqn. 2.27).

Phase-contrast signals such as Sfront of Eqn. 2.33 cannot in general be alge-

braically inverted for the column density. However, a main point of this section is to

demonstrate that, when phase shifts are not too large (ξav ∼ δξ � 1), all the probe



28

signals can be reasonably approximated by the simple result

S0(ξ) = 4 sin
φ0

2

[
sin

φ0

2
+ sin

(
ξ − φ0

2

)]

ξ =




ξav front, side probe

ξav + ηδξ vertical probe

(2.35)

where η = 0(±1) applies to a strong(weak) trapping potential (see below). The approx-

imate signal is the same expression one would obtain for a scalar probe field. For the

case of a linearly polarized probe laser such as the front axis, this amounts to neglecting

Faraday rotation effects, which can be seen directly by setting δξ = 0 in the expression

for the front probe signal [Eqn. 2.33]. A nice feature of S0(ξ) is that it can be readily

inverted for ξ

ξ = arcsin

[
S0

4 sin φ0

2

− sin
φ0

2

]
+

φ0

2
(2.36)

Eqn. 2.36 is the signal inversion used in the experiment with S0 replaced by the

actual acquired signal. In order to assess the validity of this approximation, as well as

other effects such as bias field orientation, a representative example is now studied in

numerical detail. The full phase-contrast signal Sfront [Eqn. 2.33] for the front probe axis

is calculated for a condensate under typical experimental conditions and compared to

the approximate expression S0 [Eqn. 2.35]. The magnetically trapped ground hyperfine

state, |F = 1,mF = −1〉, is considered. In addition, the two typical configurations

of the TOP trap are assessed, (i) a strong trap and (ii) a weak trap where the atom

cloud sags downward by about 1mm under the pull of gravity. In the former case the

atoms feel a bias field Bb rotating in the horizontal plane. In the later sagged case,

the atoms feel both a rotating field of Bb ∼ 1.7G and an additional static downward

field of Bq ∼ 3.2G. Relevant condensate parameters for the weak trap include number

N ∼ 106 and Thomas-Fermi radius R ∼ 28µm, giving a peak on-resonant optical depth

of Dpk ∼ 300, assuming a cycling transition. The same optical depth is used for the
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strong trap for comparison purposes.

First, a feeling for the size of the optical phase shifts induced by the condensate

(in the weak trap) is given in Fig. 2.6 where ξav and δξ are plotted over the standard

range of probe detunings used. The probe is detuned below all resonances for the

|1,−1〉 state such that the signal is positive or bright on the CCD screen relative to the

background. The typical peak phase shift of |ξav | ∼ 0.3 − 0.5, which sets the standard

range of detunings, represents an operational compromise between nondestructiveness

and a good signal-to-noise ratio [see Section 2.5].

Figure 2.7(a) shows the dependence of ξav and δξ on the orientation of the rotat-

ing bias field Bb for the |F = 1,mF = −1〉 state and a fixed detuning. The fractional

peak-to-peak variation of ξav is fairly small whereas the value of δξ varies consider-

ably over bias orientation. The variation of the phase-contrast signal itself is shown

in Figs. 2.7(b)&(c) for a variety of peak average phase shifts. The fractional variation

becomes worse when the phase shift is larger or, most importantly, when the probe fre-

quency approaches a resonance, the nearest one corresponding to the F = 1 → F ′ = 0

transition at the right edge of the plots in Fig. 2.7. Additionally, the strong trap shows

more of an effect than the weak one. By way of conclusion, in the weak trap where most

of the vortex work is pursued, reasonable phase shifts ξav ≤ 0.6 and probe frequencies

greater than 100MHz from resonance will ensure that variations in the peak signal will

not exceed 5% if the bias field orientation is left uncontrolled. A more serious prob-

lem will arise for samples of smaller number, which force the probe detuning near to

resonance to achieve a good signal.

Another important imaging effect to consider is nonlinearity in the phase contrast

signal, which if left unaccounted for, will effectively distort the image of an atom cloud,

making it more “peaky” or flat-topped depending on the trend of the nonlinearity. Since

we use only an approximate form of the true signal to invert for an image, there is the

potential for distortions due to nonlinearity. The maximum fractional difference between
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line) induced by a typical |F = 1,mF = −1〉 condensate versus probe laser frequency ν.
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the approximate signal S0(ξav) [Eqn. 2.35] and the front probe signal Sfront(ξav, δξ)

[Eqn. 2.33] is shown in Fig. 2.8, again for the |1,−1〉 state over typical detunings. The

strong trap shows more of an effect than the weak one. As a rule of thumb, an effect

exceeding 10% should only arise for samples of small number where the probe needs to

be less than 100MHz detuned of the F = 1 → F ′ = 0 resonance to achieve a good signal

(ξav ∼ 0.5).

There is one additional nonlinear effect called “phase wrap,” which is intrinsic

to phase contrast. Since the signal is an interference effect with 2π periodicity, the

signal must saturate for large enough phase shifts and begin to decrease [see Fig. 2.9].

The saturation point depends on the choice of phase dot retardance. For the choice of

φ0 = π/2 used in the experiment, the effect is not much of an issue for positive phase

shifts as the saturation point occurs at a fairly high phase shift. However, it is an

issue for negative phase shifts since the phase-contrast signal is not symmetric. This is

the main reason why the probe detuning is chosen to give a positive phase shift when

looking at a cloud composed of a single spin state.

2.5 Nondestructive imaging

The utility of phase-contrast imaging lies in its nondestructive character, allow-

ing time sequences of images or “movies” to be taken of a single atom cloud in-trap.

This is particularly valuable for measuring time-dependent excitations of a condensate

with a minimum amount of data-taking [e.g. Section 3.6]. As well, nondestructive

imaging can provide the only way to analyze condensate dynamics in situations when

the initial conditions fluctuate from each realization of a condensate sample to the

next [e.g. Section 3.5]. A potentially interesting application of phase-contrast imaging

would be to use the information garnered from an image to feed back onto the con-

densate, perhaps for some type of coherent control. Admittedly, a servo-loop based

on the current implementation of the imaging would have a fairly low bandwidth since
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Figure 2.10: Nondestructive streak-camera image of a trapped condensate showing re-
moval of its center-of-mass motion (up-down oscillation) by shifting the trap. The arrow
indicates the time where the trap center is suddenly shifted.

the readout and processing of a sequence of images from the CCD camera requires a

reasonable fraction of a second. As a simple example, phase contrast can be useful to

assess and remove undesirable center-of-mass oscillations (“slosh”) of the condensate

in the confining potential. Sloshing represents a hindrance in many experiments such

as wavefunction engineering [Chapter 3], where the condensate needs to be selectively

manipulated across its spatial extent. For the simple case of reproducible slosh from

shot to shot, a phase-contrast image can be made at the start of the day to measure

the oscillations. In subsequent shots, an “antislosh” step can be applied, where the trap

center is suddenly kicked or shifted with the correct phase and amplitude to bring the

condensate to a stop [Fig. 2.10].

The statement that phase-contrast imaging is “nondestructive” is not an exact

statement and requires some quantitative clarification. The two issues focused on here

are (i) condensate depletion and heating due to residual spontaneous scattering from the

off-resonant probe laser and (ii) the effect on condensate phase due to the laser-induced

ac Stark shift.
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2.5.1 Spontaneous scattering and number loss

The nondestructive character of phase-contrast imaging is intimately related to

the signal-to-noise desired for the images. A discussion of signal-to-noise for phase

contrast can be found in a previous thesis [120]. A few points are added here as they

relate to non-destructive imaging in practice. For the sake of discussion, the atom cloud

is assumed to induce a small phase shift ξ � 1; then the phase contrast signal is S ∼ 2ξ.

The number of spontaneously scattered photons during the imaging is Nsc ∝ Iξ2 where

I is the probe intensity incident on the atoms. Thus, the destructiveness, characterized

by Nsc, can be reduced by decreasing the intensity or increasing the probe detuning

δ since ξ ∝ 1/δ. However, signal-to-noise represents a different issue. If the signal

is assumed to be shot-noise limited then S/N ∼ √
Iξ. We can improve the signal-

to-noise ratio by either increasing the intensity or detuning closer to boost the phase

shift. Which is preferable to reduce destructiveness? The answer is that it does not

matter because the signal-to-noise depends only on the spontaneous scattering rate:

S/N ∝ N
1/2
sc . Therefore, in the shot-noise limit the signal-to-noise is fixed by the

scattering rate allowed for a stipulated destructiveness.

On the other hand, most of the time the image noise is dominated by background

interference fringes proportional to the incident intensity. In this case, the signal-to-

noise is S/N ∼ 2ξ/η where η characterizes the strength of the fringes. Under these

circumstances, if the peak density of clouds being imaged is low, for example in the

case of thermal clouds, the only way to obtain better signal-to-noise is to tune the

probe closer to resonance. The intensity then is dropped to preserve nondestructiveness

as much as possible. At some point the intensity is low enough that the shot noise

becomes of the same order as the fringe noise.

The destructive nature of the probe laser has been studied by shining it continu-

ously on the condensate. A typical result is shown in Figure 2.11(a). The decay of total
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condensate number matches fairly well with the calculated spontaneous decay rate (1.5

times smaller), assuming a single frequency for the probe. The destructiveness can be

considerably worse if, for example, the probe laser is running poorly single-mode.

When actually taking images, the probe does not shine continuously but is pulsed

on only for brief periods of exposure (100µs). To assess any delayed heating effect

following a probe pulse, a sequence of eight images has been taken using three different

time intervals and a deliberately destructive probe intensity [Fig. 2.11(b)]. Only a

relatively small difference in condensate loss is seen between the image sequence lasting

0.14s and the one lasting 4s, indicating that most of the atom loss due to the probe

pulse occurs during the pulse time and not as a result of delayed heating.

2.5.2 Stark effects and measurement induced squeezing

Nondestructive phase-contrast imaging of condensates offers the intriguing possi-

bility to produce measurement-induced squeezed states of atom number [57, 71], anal-

ogous to squeezed states for photons. A familiar concept from quantum optics is the

existence of an uncertainty relation between photon number and phase, δNδξ ≥ 1. At

the quantum limit where the equality sign is satisfied, a reduction of number fluctuations

results in an increased variance in the phase. For a maximally squeezed state (δN ∼ 1),

the phase is undefined. One can argue formally that the number-phase uncertainty rela-

tion is a feature of all systems of indistinguishable bosons and so applies to a condensate

as well. This would imply that a nondestructive measurement of condensate number

below the atom shot noise could create a squeezed condensate. The concomitant loss

of a well-defined condensate phase can be thought of as the back-action effect of the

number measurement. This formal discussion has not identified the physical mechanism

for the back-action. The object of this section is to show how shot noise on the probe

laser intensity together with the ac Stark effect [3] produce the destructive effect on the

atoms’ phase. In the spirit of the “Heisenberg microscope,” a direct consideration of an
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Figure 2.11: Destructive number reduction of a condensate in the presence of an off-
resonant probe laser. (a)Condensate number decay due to a continuously shining probe
laser with an intensity of 150µW/cm2 and a detuning of 2.1GHz from the F = 1 →
F ′ = 0 resonance. The fit exponential decay rate is 2.9(2)s−1 compared to a calculated
spontaneous scattering rate of 1.9s−1. (b)Time sequence of eight probe frames with
three different time intervals between frames. The light pulses for each frame are 100µs
long with a large probe intensity of 2500µW/cm2 (a factor of 10 larger than typical)
and a detuning of 1.1GHz from the F = 1 → F ′ = 0 resonance.
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experiment is used to arrive at the number-phase uncertainty relation for a condensate.

A side benefit is a brief assessment of the feasibility to obtain number squeezing with

phase-contrast imaging.

Number-squeezing due to interatomic interactions has already been observed in

multi-condensate systems [132, 93]. The loss of interference contrast between the in-

dividual condensates provides a signature for the large variance in relative phase. An

experiment to observe measurement-induced squeezing would use a similar technique.

For example, optical tweezers can be used to split a condensate spatially into two, one

of which is reserved as a phase reference. The other condensate is then subjected to a

nondestructive probe, after which the condensates are re-interfered to assess the probe’s

affect on their relative phase. An interesting alternative that does not require any spa-

tial separation makes use of a condensate composed of two internal spin states together

with a coherent coupling drive to create a beamsplitter in the time domain. A cou-

pled two-component condensate composed of the simultaneously magnetically trapped

hyperfine states |1,−1〉 and |2, 1〉 [Fig. 2.4] has already been realized with this experi-

mental apparatus [120] and is covered in more detail in Chapter 3. A key feature of this

system is that phase contrast imaging can distinguish between the two states without

needing to spatially separate them. The probe laser frequency is detuned between the

two states such that the |1,−1〉 state imparts a positive phase shift to the probe beam

while the |2, 1〉 state imparts a negative phase shift. As a result, in the presence of both

states the net phase-contrast signal provides a direct readout of the number difference.

To simplify the discussion, the phase-contrast imaging of a single-component con-

densate is considered. The generalization to two components is straight forward and

leads to similar results. The phase-contrast signal collected on the CCD camera pro-

vides a measure of the optical phase shift ξ imparted by the condensate, which in turn
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is proportional to its column density n̄(x, y),

ξ = βpcn̄(x, y) (2.37)

where βpc is a constant which can be determined from the previous sections of this

chapter. To obtain the total number of atoms in the condensate, the image needs to be

integrated over all Npix CCD pixels spanned by the condensate profile. The uncertainty

in the total number of atoms for small phase shifts is thus

δNat =
1

βpc

Apix

m


Npix∑

i=1

δξ2
i


1/2

. (2.38)

In the above equation, Apix is the area of a pixel, m accounts for the imaging magnifi-

cation, and δξi is the phase uncertainty at the ith pixel. Neglecting technical noise, the

output of the probe is very nearly a coherent state satisfying the uncertainty relation

δNphδξph ∼ 1 and having shot-noise fluctuations about the average photon number,

δNph ∼ N
1/2
ph . The uncertainty relation applies at each CCD pixel where Nph is the

number of photons arriving at that pixel. For small phase shifts, the number of photons

will be approximately pixel-independent, allowing the uncertainty in atom number to

be reduced to the simple result

δNat =
1

βpc

Apix

m

(
Npix

η
QE

)1/2

δξph (2.39)

where δξph ≈ 1/N1/2
ph . The coefficient η

QE
has been added to account for the quantum

efficiency of the CCD detector. To connect with experimental parameters, the number

of photons at a CCD pixel can further be written in terms of the probe intensity I

incident on the atoms

Nph =
τ

�ω

Apix

m
I (2.40)

The various constants include the probe duration τ , the laser frequency ω, the pixel

area Apix and the magnification of the imaging system m.

Now that the nondestructive number measurement has been dealt with, it only

remains to consider the backaction effect on the condensate phase. The off-resonant
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probe induces an ac Stark shift in the internal energy state of the condensate atoms,

resulting in an intensity-dependent phase shift

ξat =
τβst

�ω
I (2.41)

The constant βst can be determined from perturbation theory for weak intensities. The

average phase shift accumulated by the condensate can always be taken into account

from a measure of the average probe intensity; what remains, however, is the uncer-

tainty introduced by fluctuations in the intensity. Equation 2.40 can be used to relate

the intensity at the atoms to the photon number counted by the CCD. This allows

the uncertainty in condensate phase to be expressed in terms of the photon counting

statistics at the detector,

δξat = βst
m

Apix
δNph (2.42)

The uncertainties for atom number [Eqn. 2.39] and phase [Eqn. 2.42] can be combined

to yield the uncertainty relation

δNatδξat ∼
{

βst

βpc

}(
Npix

η
QE

)1/2

(δNphδξph)︸ ︷︷ ︸
∼1

(2.43)

Thus the nondestructive measurement transfers the uncertainty relation for the probe

photons to one for the atoms. For simple probe arrangements, for example using a

single circular polarization and a magnetic bias field aligned along the imaging axis,

the expression βst/βpc in Eqn. 2.43 is equal to one (and is expected to be larger than

one for more complicated situations). In the limit of a single CCD pixel and unity

quantum efficiency ηQE , the uncertainty relation for the atoms reaches the quantum

limit expected for a system of indistinguishable bosons.

The final point addressed in this section is the feasibility of squeezing the fluctua-

tions in condensate number with a nondestructive probe. Measurement-induced squeez-

ing is achieved by a determination of the number to better than the atom shot-noise.

The degree of squeezing can be assessed from the measurement uncertainty Eqn. 2.39
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assuming an ideal detector with 100% efficiency. A practical limitation to this process

is the fraction of condensate atoms lost as a result of spontaneous scattering from the

probe. Clearly, the squeezing is not useful if the probe also destroys the condensate.

The number of scattered photons during the probe pulse is Nsc = NatΓτ with Γ be-

ing the spontaneous scattering rate [124]. For a simple probe configuration with large

detuning, the number uncertainty [Eqn. 2.39] for an ideal detector is easily written in

terms of Nsc

δNat =
(

Ac

σc∗

)1/2(Nat

Nsc

)1/2

(2.44)

The value of the coefficient c∗ is of order unity or less and, in general, depends on

several Clebsch-Gordon coefficients [Eqn. 2.13] as well as the probe detuning. If a

cycling transition is being used for probing, then c∗ = 1, independent of detuning. The

quantity σ ∼ λ2/2 is the on-resonant light scattering crosssection [Eqn. 2.8] whereas

Ac = NpixApix

m is the crossectional area of the condensate in terms of detector variables

with the folowing qualification: The crossectional area is ∼ πR2
c for a condensate with

radius RC that is larger than the diffraction limit; otherwise, AC ∼ πλ2 and the first

term in Eqn. 2.44 attains a minimum value (Ac/σ)1/2 ∼ 1. For typical experimental

parameters, a more appropriate value for this ratio is 10 − 100. Therefore, to achieve

a maximally squeezed state (δN ∼ 1), the number of scattered photons needs to be at

least as large as the atom number if not larger, assuredly killing the condensate [see

Section 2.5.1].

Even if the squeezing is not maximal, a reasonable effect such that δNat = N
1/2
at /α

with α > 1 could nevertheless be useful for atom-interferometric applications. What

considerations limit the maximum value of α? There are a number of possibilities

in connection with spontaneous scattering. First, the condensate number may be so

heavily depleted following the probe measurement that δNat, albeit absolutely small,

is not fractionally small anymore. This does not represent a significant limitation and
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only plays a role if an overwhelming fraction of the condensate is destroyed. The second

limit is reached when the uncertainty δNsc in the number removed from the condensate

becomes comparable to the uncertainty δNat of the number measurement. This limit has

some flexibility with regard to probe detuning and a discussion is left to a more detailed

treatment. Instead, a third issue is briefly considered here, whereby the squeezing can

be strongly limited by the maximum particle density achievable in the condensate. The

maximum value of the density is determined by the rate of density-dependent inelastic

loss, which depends on the atomic species being used. The resulting limitation to

number squeezing can be seen to arise as follows: With δNat = N
1/2
at /α, Eqn. 2.44 can

be solved for α:

α =
(

Nsc
σc∗
Ac

)1/2

(2.45)

It is evident that the level of squeezing is connected to the number Nsc of photons that

are spontaneously scattered. The ultimate limit to Nsc is on the order of the number

of atoms Nat. This leads to a maximum value of α = αmax, which can be expressed

explicitly in terms of the number density n ∼ Nat/(AcL). Here, L is the size of the

third dimension of the condensate. The net expression for αmax is given by

αmax ∼
(

nλ3 Lc∗
2λ

)1/2

(2.46)

For 87Rb, the maximum density is about n ≈ 1014 cm−3, yielding nλ3 ∼ 100. The size L

depends on the number of atoms and the trapping arrangement. As a specific example,

in a lithographic microtrap where atom interferometry may be realized, approximate

parameters include Nat ∼ 104 and L/λ ∼ 1 − 10 [4]. As a result, the limit to squeezing

imposed by a finite density is roughly αmax ∼ 10, which is a factor of 10 less than

maximal squeezing. Of course, such a value is an upper limit based on a considerable

loss of atoms. The practical value of αmax will be lower depending on such issues as

how many atoms must be preserved to achieve good detection signal-to-noise.

A significant improvement to this situation can be achieved by wrapping an optical
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cavity with finesse F around the atoms. This has two effects, (i) to increase the effective

path length through the atom cloud (and optical phase shift) by F/π and (ii) to boost

the intensity in the cavity by F/π relative to the input [143]. If the intensity into the

cavity is reduced to maintain a given amount of spontaneous scattering, the shot-noise

of the phase-contrast image will certainly increase by
√F/π; however, the image signal

itself increases much more - by F/π - due to the cavity-enhancement of the phase shift.

The net result is a significant reduction in the number fluctuations,

(δN)cavity = (δN)free

( π

F
)1/2

(2.47)

with the cavity-free expression (δN)free given by Eqn. 2.44. At least a factor of ∼10

improvement in the squeezing could be achieved with a reasonable finesse of F ∼ 103.



Chapter 3

Single Vortex Lines and Rings

3.1 Introduction

Quantized vortex lines, forming visible topological defects in a quantum fluid, are

one of the most appealing demonstrations of superfluidity and superconductivity (For

a review, see [155, 74]). What sets quantum fluids, including dilute-gas BEC, apart

from their classical counterparts is that rotation can be manifested only in the form

of quantized vortices. This is a direct consequence of the fluid being associated with

a macroscopic order parameter(wavefunction) Ψ =
√

ρ(�r)eiS(�r). Because the fluid’s

velocity field �v(r) is associated with the gradient of the order parameter’s phase [155],

any flow is fundamentally restricted to be irrotational (curl-free)

∇× �v(�r) ∼ ∇× (∇S(�r)) = 0. (3.1)

This immediately precludes the occurrence of solid-body rotation, so familiar from clas-

sical fluids, as it is ostensibly non-irrotational. What is possible are vortices, character-

ized by an azimuthal phase gradient around a line defect that defines the vortex core.

The single valuedness of the order parameter requires that the phase accumulated in a

closed path around the core be an integer multiple of 2π or, in other words, that the

circulation be quantized in units of �/m [Figure 3.1].

This chapter focuses on the creation and dynamical behaviour of singly quantized

vortices in a dilute-gas Bose-Einstein condensate. While the study of vortices in a
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Figure 3.1: Singly quantized vortex in a quantum fluid, characterized by a 2π phase wrap
around a fluidless core. The azimuthal phase gradient is associated with a superflow
around the core, as indicate by the arrow.

condensate may be considered very much “condensed matter“ in flavor, a truly atomic

physics oriented method - wavefunction engineering - is used to make the vortices. This

technique, based on a theoretical proposal by Williams and Holland [159], led to the

first experiment to demonstrate vorticity in an atomic condensate [122]. A slightly

different interpretation of the original proposal [159] is presented here to emphasize the

experimental route to generating condensates with arbitrary wavefunctions.

The idea for wavefunction engineering arose out of earlier experiments with two-

component condensates, in which a microwave-frequency field is used to transfer popula-

tion between two internal spin states of 87Rb [120]. The essence of creating an arbitrary

wavefunction is to control the amplitude and phase of the transferred population in a

spatially dependent way. A novel benefit of this particular vortex creation technique

is the ability to create two-component vortices, where fluid composed of one spin state

contains vorticity while the fluid in the other spin state is non-rotating and fills out

the vortex core. Because of the interatomic interactions, a condensate in a superposi-

tion of the different spin states amounts to two interpenetrating, interacting superfluids

[64, 120]. The relative density evolution of the two superfluids provides a fascinating

additional degree of freedom to the dynamics described in this chapter.
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The deterministic introduction of a single vortex into a condensate via wavefunc-

tion engineering provides an excellent starting point to assess vortex dynamics. Studies

of two fundamental “bending modes” of a vortex have been made, namely precession of

the vortex core position about the condensate center and tilting of the vortex line’s ori-

entation. In Section 3.5, the core precession will be shown to be the dynamical response

of the vortex to the radial forces pulling on it. The same forces more generally apply

a bending force to a vortex line offset from the symmetrical position of the condensate

center [151, 89]. Under these circumstances, a curved shape can minimize the vortex

length. This is equivalent to energy minimization since for a condensate with repulsive

interactions there is an associated energy cost per unit length to suppress the density

along the vortex core. Vortex curvature is expected to be prominent in the case of vor-

tices aligned with the long direction of a strongly prolate condensate, where significant

vortex shortening can be achieved with a bent shape. Indeed, increasing vortex curva-

ture in the presence of thermal dissipation has recently been observed by the ENS group

in their cigar-shaped condensate [142]. On the other hand, for the roughly spherically

shaped condensates of this experiment, the vortices are relatively short and stiff and are

expected to be essentially straight except for very near to the cloud edge.

Nevertheless, we have been able to generate “maximally bent” vortices in the

form of vortex rings fully situated within the bulk of the condensate. The formation

process of the vortex ring - through the catastrophic decay of a dark soliton - represents

interesting physics in and of itself, being a confluence of ideas from nonlinear optics,

condensed matter and atomic BEC. Furthermore, the method demonstrates the use of

wavefunction engineering to create a precursor state, the soliton, that has the correct

symmetry to evolve through dynamical instabilities into a desired target state, the

vortex ring. Perhaps this idea may prove useful to create objects in the condensate

with yet more complicated topologies.

As a final comment, each of the experiments in this chapter has involved the
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implementation of new techniques to manipulate and probe condensates with vorticity.

These include the general technique of wavefunction engineering with two-component

condensates, tailored TOP confining potentials for vortex manipulation [Section 3.6],

multiple axes of imaging [Section 3.8], and two complementary methods of vortex detec-

tion - direct imaging of vortex cores in ballistically expanded condensates [Section 3.5]

and angular momentum sensing using surface-wave spectroscopy [Section 3.6]. (Core de-

tection in expansion was in fact first demonstrated by the ENS group [118].) In general,

the study of single-vortex dynamics has provided a solid intuition and a proving ground

for techniques in the study of vortex behaviour in a condensate. The techniques have

been broadly useful in the later experiments of Chapter 4 involving multiple vortices

and have spawned new ideas which might otherwise have been missed, for example, the

interaction of surface modes with highly rotating condensates [Section 4.8].

3.2 Coupled two-component condensates

Since two-component condensates form the basis for the wavefunction engineering

technique, a short overview of their main properties is presented here. A more detailed

account may be found in [120]. Rubidium has three magnetically trappable hyperfine

ground states, two of which have nearly the same magnetic moment and so can be held

simultaneously in overlapping TOP potentials [120]. These two states, |F = 1,mF =

−1〉 and |F = 2,mF = 1〉 hereafter known as |1〉 and |2〉, can be coherently coupled with

a ∼6.8GHz two-photon transition via the virtual intermediate state |F = 2,mF = 0〉

[Figure 3.2]. As long as the radio frequency (rf) and microwave fields comprising the

two-photon transition are sufficiently far detuned from the intermediate state, it can

be adiabatically eliminated leaving an effective two-level system {|1〉, |2〉}. The usual

coherent population transfer of Rabi oscillations may be observed between the states
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Figure 3.2: Two-photon coupling between two hyperfine spin states of the 87Rb ground-
state 5S1/2. The spin states, labeled |1〉 and |2〉 for short, may be simultaneously
confined in overlapping magnetic potentials. The two-photon coupling is comprised of
a microwave photon (∼6.8GHz) and an rf photon (∼1MHz) as indicated. The inter-
mediate state that mediates the coupling may be adiabatically eliminated, leaving a
two-level system with an effective coupling drive (boxed inset).
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Figure 3.3: Nondestructive imaging of a magnetically trapped condensate undergoing
spatially uniform two-photon Rabi oscillations between internal states |1〉 and |2〉. The
frequency of the probe laser is tuned such that it is primarily sensitive to the presence
of the |1〉 state, which appears as bright on a gray background.

|1〉 and |2〉 [Figure 3.3] with an effective on-resonant (“bare”) Rabi frequency given by

Ω0 =
ΩµW Ωrf

4∆int
(3.2)

Approximate values for the intermediate state detuning ∆int, microwave and rf Rabi

frequencies ΩµW and Ωrf are ∼1MHz, ∼100KHz and ∼0-10KHz respectively, giving

an effective Rabi frequency Ω0 in the range 0-1KHz. As an aside, the nondestructive

imaging of Rabi oscillations in Figure 3.3 shows nicely how phase contrast imaging is an

ideal probe for the two-component dynamics as it is state sensitive through the choice

of probe laser detuning.

The dynamics of the two-component system involve more than simply coupling of

internal levels since the components interact through collisions. In the dilute-gas regime

characterizing the condensate samples, the weak interparticle interactions are well de-

scribed by an elastic s-wave scattering length and an associated density-dependent mean

field [69]. Three scattering lengths, a11, a22 and a12, refer to each of the intra- and

inter-species two-body interactions possible for the |1〉 and |2〉 states. The values of

the scattering lengths are all positive, indicating repulsive interactions, and are of very

nearly the same strength [5]. However, slight differences in the interactions make it such

that it is energetically favorable for a mixture of the two fluids to phase-separate into

a distribution dependent on particulars such as the confining geometry [102, 99]. Fig-

ure 3.4 shows the phase separation behaviour typical of the spherical trap used in this
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Figure 3.4: Nondestructive imaging of mean-field-induced spin segregation in a two-
component condensate, comprised of the internal spin states |1〉 and |2〉. The frequency
of the probe laser is tuned such that it is primarily sensitive to the presence of the
|1〉 state, which appears bright. At t = 0, the condensate is in |1〉, after which a
short coupling pulse transfers ∼1/2 the population to |2〉. The internal spin states
are simultaneously trapped in a spherical, harmonic magnetic trap (ω ∼ 2π8Hz). The
spherical symmetry causes a radial spin segregation into a |1〉 shell around a |2〉 ball by
120ms. The mutual density oscillations continue to later times.

chapter. After a short π/2 pulse of the two-photon drive creates an initially uniform

superposition of the two states, they separate radially into a ball-and-shell structure

with the |1〉 fluid exterior to the |2〉’s. The |1〉 state in other words has a slightly greater

buoyancy than the |2〉 state. The mutual density oscillations continue about the equi-

librium ball-and-shell configuration with a characteristic time scale for the initial phase

separation of roughly the harmonic trap period or 120ms.

In the hierarchy of time scales, the last effect noted here, which ultimately limits

the kinds of behaviour that may be observed, is the magnetic trap loss of the two

components due to inelastic collisons. In the first place, the situation is not as bad

as perhaps might initially be expected. The fortuitous suppression of spin-exchange

collisions in 87Rb allows for the simultaneous coexistence of the |1〉 and |2〉 states without

rapid loss [128]. The individual lifetime of a |1〉-state condensate in the typical spherical

trap (ωtrap = 2π 8Hz) is ∼50s, most likely limited by collisions with hot background gas.1

A condensate in the |2〉 state has a considerably shorter density-dependent lifetime of

about 1s. This is due to the availability of collisional channels to magnetically untrapped

states via spin exchange. The lifetime of the |2〉 state is a not-so-generous experimental
1 Loss in condensate fraction from sample heating can be suppressed by the continuous application

of forced evaporative cooling. Empirically, this is found to somewhat improve the lifetime of a |1〉-state
condensate.
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limit since only a few trap periods worth of dynamics may occur before the |2〉 atoms

are depleted. On the other hand, for single-component vortex experiments involving

the |1〉 state only, the time available is essentially “forever”.

3.3 Wavefunction engineering with two-component condensates

3.3.1 The idea

It has already been mentioned that the wavefunction engineering technique is as-

sociated with two-component condensates. However, some limited manipulation of the

condensate wavefunction is possible with single-component condensates alone. Dark

solitons in particular have been experimentally realized in this way [58, 73]. As a

macroscopically occupied wavefunction, a single-component condensate has an associ-

ated scalar order parameter with a well-defined amplitude and phase at each point in

space. One can spatially modify the phase using the intensity-dependent ac Stark shift

induced by an off-resonant laser [Figure 3.5]. The size of a typical trapped condensate

(10-100µm) is large enough that it can be imprinted with intricate Stark-induced phase

patterns, limited in detail only by the wavelength of the illuminating laser (λ ∼ 1µm).

This technique provides access only to the phase, leaving the condensate density to re-

arrange itself via dissipative dynamics after the imprinting is complete. One hopes that

the density evolution is sufficiently well-bounded that the desired target state survives

the dynamics. This is by no means guaranteed since the target state has a higher energy

in general than the ground state.

Coupled two-component condensates provide a means to control both the am-

plitude and the phase of the wavefunction engineered. As was shown in Figure 3.3, a

coupling drive coherently transfers population between spin states uniformly across a

condensate. The aim of wavefunction engineering is to control the amplitude and phase

of the coherent transfer in a spatially dependent way. To develop a simple model, the
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Figure 3.5: The ac Stark shift of ground hyperfine states in 87Rb due to a laser detuned
from resonance with the excited electronic state 5P3/2.

two-photon Rabi frequency [Eqn. 3.2] is assumed to be sufficiently large that popula-

tion transfer between the spin states occurs quickly compared to the mean-field driven

component separation in the trap. Under these circumstances, a simple “nailed down”

picture can be considered in which the two-component dynamics are described by a

local two-level system fixed at each point in space.

The means to control the population transfer in the two-level system is again

the laser-induced ac Stark shift, which serves to alter the energy splitting between

the two levels [Figure 3.5] thereby affecting the detuning with respect to the coupling

(two-photon) drive. At least two control parameters are required to influence both

the amplitude and phase of the transfer. This results in a more sophisticated scheme

than phase imprinting whereby the incident intensity is modulated with characteristic

parameters of the dynamic control being the amplitude and phase of modulation. To

obtain spatially selective control over the population transfer, one can imagine using

a spatial light modulator array to put an arbitrary two-dimensional light pattern onto

the condensate. This amounts to focusing a laser beam at each point in the condensate
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Figure 3.6: Local wavefunction engineering in a two-component condensate. (a) An
off-resonant laser with modulated intensity is focused at a particular point in the con-
densate. The oscillating intensity modulates the local resonance between internal hy-
perfine states {|1〉, |2〉} via the ac Stark effect. In the presence of a coupling drive, this
is equivalent to the modulation of the drive (b), which acquires sidebands at multiples
of the carrier frequency. A resonant sideband (c) allows coherent population transfer
between the spin states. Control of the sideband amplitude and phase allows control of
the amplitude and phase of the locally transferred population (see text).
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Figure 3.7: Point-by-point wavefunction engineering in a two-component condensate to
construct a singly quantized vortex.

[Figure 3.6]. Modulating the laser intensity at each point in the condensate dithers

the two-level resonance of the atoms. Equivalently the coupling drive itself can be

considered to be locally modulated, putting FM sidebands onto the carrier frequency

at integer multiples of the modulation frequency. Thus it now becomes possible to

couple resonantly to the atoms using not only the carrier frequency but also one of the

sidebands [Figure 3.6]. If a sideband is tuned to the two-level resonance, the rate of the

resulting population transfer may be controlled by the strength of the sideband, which

is directly related to the modulation depth of the laser intensity at that point. While

the control of transfer amplitude is straight forward, what is truly remarkable is that the

phase of the transferred population can also be controlled in a completely deterministic

way - by the choice of modulation phase. This means that the modulation parameters

of amplitude and phase may be dialed into the spatial light modulator pixel-by-pixel

to produce the desired (two-dimensional) condensate wavefunction in the final internal

spin state [Figure 3.7]. Once the transfer to the target wavefunction is complete, the

“scaffold state” formed by the remaining population in the initial spin state can (if

desired) be selectively blown away with the light pressure from an on-resonant laser.
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3.3.2 A closer look

Since the direct control of population amplitude and phase through associated

modulation parameters is so fundamental a point, it is shown explicitly for the two-level

system at a particular point in the condensate. The model imagines a two-level system

{|1〉,|2〉} with resonant frequency ω0 at about 6.8GHz and a coupling drive characterized

by frequency ω and bare Rabi frequency Ω0. The resonance is Stark modulated as

ω0(t) = ω0 + αm sin(ωmt + φm) (3.3)

with modulation frequency ωm, amplitude αm and phase φm. The value of ω0 includes

the time-averaged Stark shift of the states. There are four system parameters to account

for, namely the amplitude and phase of both states |1〉 and |2〉. The total population in

the two-level system is conserved; thus only the population difference, p2 − p1, matters.

Initially the state begins in a single spin state. The phases may be separated into the

phase of the initial state and the phase of the target state referenced to the initial. As

long as the time-averaged Stark shift is the same across the condensate, there is only an

isotropic phase shift to the initial state, which can be considered a spatially flat phase

reference. As an additional caveat, the notion of a spatially flat phase reference holds

only initially when population is being transferred from the initial state everywhere in

the condensate. Once the population begins to be transferred back to the initial state

at some points in the condensate, the phase evolution gets complicated (see below).

Except for Section 3.9, the wavefunction engineering focuses on the regime where pop-

ulation is still being transferred from the initial state; thus, we need care only about

the population difference and relative phase φ to understand the structure of the final

state’s wavefunction. A particularly powerful pictorial way to understand the dynamics

of these two variables is the Bloch picture [49] where the system is characterized by a

pseudospin vector �s in a three-dimensional space [Figure 3.8]. The vertical 3̂-axis repre-

sents the population difference and the azimuthal angle in the horizontal plane indicates
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Figure 3.8: Bloch sphere

the relative phase. In terms of the well-known one-to-one correspondence of a two-level

system with a spin-1/2 system, the Bloch vector axes represent the expectation values

of the Pauli spin components, si = 〈σi〉.

It is important to note that the Bloch-sphere representation suffers from a lim-

itation in that the relative phase is undefined for a pseudospin pointing along either

of the poles. Only away from the poles where population exists for both states of the

two-level system is the relative phase a meaningful quantity. In fact, the loss of a well-

defined relative phase at the poles is necessary since there is a π phase change in φ as

the pseudospin traverses a pole. The phase change is associated with the state whose

population vanishes at the given pole. (See Section 3.9 for a physical implication of this

effect).

The situation of a coupled two-level system in the absence of modulation (αm = 0)

is reviewed first because it provides a paradigm for the solution with modulation. The

approach follows closely that of ref. [49]. The equations of motion for the pseudospin

in the presence of a coupling drive may be written as a torque problem

d

dt
�s(t) = �ΩL(t) × �s(t) (3.4)
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where the torque vector is oscillating in time

�ΩL(t) =




−Ω0e
−iωt + c.c.

0

ω0


 (3.5)

The bare Rabi frequency Ω0 is given by Eqn. 3.2. If the drive is not too far detuned from

resonance (|ω −ω0| � ω0), the problem can be solved to a very good approximation by

transforming into a frame rotating about the 3̂-axis at the drive frequency ω and then

performing a time-average to eliminate all rapidly oscillating torque components. This

so-called “rotating-wave approximation” is justified since the fast oscillating components

will have no cumulative effect on the pseudospin over time. What remains after the

time-averaging is again a torque equation for the pseudospin �ρ(t) in the rotating frame

d

dt
�ρ(t) = �Ω × �ρ(t) (3.6)

but now with a constant torque

�Ω =




−Ω0

0

−δ


 (3.7)

where δ = ω − ω0 is the detuning2 [Figure 3.2]. Since the rotating frame, called here

the “standard” Bloch frame, differs from the lab frame by a trivial (time-dependent)

rotation about the 3̂-axis, the phase difference between the states can without loss of

generality be associated with the azimuthal angle in the standard frame. The solution

to Equation 3.6 is just a rotation of the pseudospin about the torque direction

�ρ(t) =
↔
R (t) �ρR (3.8)

with �ρR being a constant vector characteristic of the initial conditions. The expression
2 The detuning differs by a minus sign from the definition in [49].
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for the rotation matrix
↔
R (t) is:

↔
R (t) =




Ω2
0+δ2 cos θ(t)

Ω2
δ
Ω sin θ(t) δΩ0

Ω2 (1 − cos θ(t))

−δ
Ω sin θ(t) cos θ(t) Ω0

Ω sin θ(t)

δΩ0
Ω2 (1 − cos θ(t)) −Ω0

Ω sin θ(t) δ2+Ω2
0 cos θ(t)
Ω2


 (3.9)

The effective off-resonant Rabi frequency Ω and the argument θ(t) are identified as

Ω = |�Ω| =
√

Ω2
0 + δ2, θ(t) = Ωt (3.10)

The general dynamical behaviour, corresponding to Rabi oscillations, involves

precession of the pseudospin �ρ, which traces out a cone centered on the torque vector �Ω.

For example, at the start of the coherent control process, the population of the two-level

system is all in one state. For the case of the |2〉 state, this corresponds to a pseudospin

vector pointing along the north pole of the Bloch sphere. The coupling drive is far

detuned (|δ| � Ω0) such that the torque vector [Eqn. 3.7] is also nearly aligned with

the north pole. In the absence of any modulation, the pseudospin will precess in a tight

circle about the torque direction [Figure 3.9]. The deviation of the pseudospin from its

initial vertical orientation is small, as one would expect, since the large detuning of the

drive permits little population transfer to the final state.

A time-dependent detuning is now added in accordance with Eqn. 3.3

δ(t) = δ0 + αm sin(ωmt + φm) (3.11)

As a result, it is now necessary to solve for the pseudospin dynamics in the presence

of an oscillating torque. In similar fashion to the original Rabi problem, the torque

oscillations are expected to drive a slow tipping of the pseudospin at a new effective

Rabi frequency ΩC , which characterizes the rate of population transfer for the coherent

control. Continuing with the analogy to the Rabi problem, a separation of time scales is

evident between the instantaneous spin precession rate at Ω and the slow accumulated

spin tipping at ΩC . Using the standard technique to reduce the number of fast-oscillating
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Figure 3.9: Rabi oscillations on the Bloch sphere in the standard rotating frame (see
text). The pseudospin �ρ precesses in time, tracing out a cone about the torque vector
�Ω.

variables, a transformation is made into the instantaneous moving frame of the torque

vector, sometimes called the “quasi-static basis.” The moving frame is both rotating

and dithering in space. As a result the transformation matrix
↔
R (t) [Eqn. 3.9] acquires

extra time dependence through

Ω → Ω(t) =
√

Ω2
0 + δ(t)2

θ(t) =
∫ t Ω(t′)dt′ (3.12)

and �ρR of Eqn. 3.8, originally constant, becomes compensatorily time dependent. To

obtain the equation of motion in the co-moving frame, the torque equation 3.6, including

a time-dependent detuning, is first written in matrix form and then expanded using

�ρ(t) =
↔
R (t)�ρR(t). The resulting equations of motion for the pseudospin �ρR in the co-

moving frame are

d�ρR

dt
= −

(
↔
R

† ∂
↔
R

∂Ω
∂Ω
∂t

)
�ρ

R
(3.13)

To obtain an analytical understanding of these equations we consider the limit where

the time-averaged detuning δ0 is large compared to both the bare Rabi frequency Ω0
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and the modulation amplitude αm. After an expansion to first order in αm and Ω0, the

time-average of the equations of motion [Eqn. 3.13] can (once again!) be written as an

effective torque equation:
d

dt
�ρR(t) = �ΩC × �ρR(t) (3.14)

The time-averaged torque �ΩC in the co-moving frame has components:

ΩC1 = −sign(δ0)αm
ωmΩ0

Ω2

〈
sin(ωmt + φm) sin

(
Ωt +

αm

ωm
sin(ωmt + φm)

)〉
t

ΩC2 = αm
ωmΩ0

Ω2

〈
sin(ωmt + φm) cos

(
Ωt +

αm

ωm
sin(ωmt + φm)

)〉
t

ΩC3 = 0 + O
(

Ω2
0

Ω2

)
(3.15)

The righthand side of the above expressions can be expanded in Bessel functions, which

are the familiar feature one obtains for all problems involving frequency modulation.

“Resonances,” defined by a non-zero average torque, will occur when the modulation

frequency is an integer fraction of the effective Rabi frequency

ωm =
Ω
n

, n ∈ ±1,±2 . . . (3.16)

The integer n refers to the index of the FM sideband being used for coupling [Figure 3.6].

The first two resonances are evaluated as follows, corresponding to coupling via the first

two sidebands:

ωm = Ω → �ΩC = −αmΩ0

2Ω
J0

(
αm

ωm

)2




sign(δ0) cos φm

− sin φm

0




ωm =
Ω
2

→ �ΩC =
αmΩ0

2Ω
J1

(
αm

ωm

)
J0

(
2αm

ωm

)



sign(δ0) cos 2φm

− sin 2φm

0


 (3.17)

Only the lowest order Bessel term has been retained for these expressions. The direction

of the torque �ΩC is referenced to the moving frame; however, under the approximation
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already made that the average detuning is large and the modulation depth relatively

small, the moving frame is nearly equivalent to the standard Bloch frame within a

trivial rotation about the �3-axis. (This can be seen by setting αm and Ω0 to zero in

the transformation matrix
↔
R [Eqn. 3.9].) As a result, the time-averaged torque can

be interpreted in the same way as for the familiar Rabi problem. This provides the

remarkable conclusion that, when a sideband is resonant, �ΩC lies in the horizontal Bloch

plane and has an azimuthal orientation controlled by the modulation phase. For the

first sideband resonance the azimuthal angle is (within a sign) given by the modulation

phase; for the second sideband it is twice the modulation phase and so on. Clearly,

by controlling the orientation of the torque vector the pseudospin can be pointed in an

arbitrary direction in the horizontal plane, or, in more physical terms, population can

be transferred in the two-level system with a deterministic arbitrary phase [Figure 3.10].

The amplitude of the time averaged torque, which corresponds to a new effective

Rabi frequency ΩC , is directly proportional to the bare Rabi frequency Ω0 and, most

importantly, the modulation amplitude αm. Thus, the amount of population trans-

ferred over a given time can be directly controlled by the modulation depth. As a side

note, from the Bessel dependence it is clear that the second FM sideband resonance is

considerably suppressed relative to the first in the low modulation regime (αm/ωm � 1).

Concentrating on the first sideband, the prescription for wavefunction engineering

of a two-component condensate is straightforward: apply off-resonant laser light at each

point in space to modulate the local two-component resonance. For each point, dial in

the amplitude and phase of modulation to obtain the desired amplitude and phase for

the wavefunction transfer. Direct point-by-point control is a novel feature of coherent

control with condensates and is due to the large size of the macroscopic wavefunction

(10-100µm) relative to the wavelength (∼1µm) of the laser addressing it. It is interesting

to compare this situation to coherent control techniques in other atomic and molecular

systems, including the engineering of electronic wave-packets in Rydberg atoms [157]
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Figure 3.10: Coherent control of the pseudospin �ρ on the Bloch sphere. The azimuthal
angle of the pseudospin can be controlled with the orientation of effective torque vector
�ΩC (see text). Three different orientations are illustrated. A particular polar angle of

the pseudospin can also be achieved by applying the torque for the required amount of
time.

and vibrational wave-packets in molecules [92]. In both cases the ∼1µm wavelength of

the short-pulsed laser incident on the system is much larger than the typical size of the

system, measured in Bohr radii. Therefore, coherent control is achieved in a different

way. The large bandwidth of the laser pulses is used to couple to the superposition

of energy states required to construct the target wavefunction [Figure 3.11]. One can

consider wavefunction engineering in this fashion to be analogous to Fourier wave optics

whereas the point-by-point manipulation of the condensate describes the complementary

case analogous to ray optics.

3.3.3 Experimental realization: single vortex formation

The implementation of wavefunction engineering within the system {|1〉,|2〉} be-

gins with a two-photon drive characterized by a bare Rabi frequency3 of Ω0∼33Hz

and a detuning of ∼100Hz from resonance, giving an effective off-resonant Rabi fre-

quency of Ω ∼100Hz. The coherent control makes use of the first sideband resonance

(ωm = Ω ∼100Hz) as it provides the strongest coupling. There exist a number of tech-

nological possibilities to generate the spatially and temporally modulated pattern of

laser intensity necessary to create arbitrary condensate wavefunctions. As mentioned
3 Ω0 is kept at a low value to suppress the magnitude of inhomogeneities in its value across the

condensate. The inhomegeneities arise from the magnetic trapping potential [Section 3.9].
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Figure 3.11: Wavefunction engineering in“Fourier space.” The cartoon illustrates the
creation of a vibrational wavepacket in a diatomic molecular system with a short pulsed
laser. (a) A laser pulse is incident on the molecule. (b) The frequency bandwidth of the
pulse allows coupling to many vibrational states. (c) Shaping the frequency spectrum
of the pulse allows the creation of the desired target state Ψ(R) as superposition of
vibrational modes Ψi.

earlier, a two-dimensional liquid crystal modulator provides the “ultimate” general solu-

tion. Simpler techniques, however, exist to create the topological features of immediate

interest, namely solitons and vortices. To make a singly quantized vortex, which is a

donought shape with a 2π azimuthal phase winding, a spatially dependent intensity

modulation is required that increases from zero away from the cloud center and has a

2π phase dependence azimuthally. These specifications exactly describe a linear slope

of light intensity rotating about the center of the condensate. This is accomplished

in practice by rotating a laser beam that is offset from the condensate center [Fig-

ure 3.12]. Since the rotation(i.e. modulation) frequency is a modest ∼100Hz, a pair of

piezo-actuated mirrors provides a convenient and simple means to move the “sculpting”

beam in two-dimensions [Figure 3.12]. To minimize any spatially dependent phase-

imprinting effect from the time-averaged beam profile, the radius of beam rotation is

chosen to be ∼3/4 of its waist. This results in a uniform time-averaged intensity profile

across the condensate extent. Typical beam parameters include a waist size of 95µm,

total power of ∼10nW, and a laser frequency ∼1100MHz below the F = 1 → F ′ = 0

transition [Figure 2.4]. These parameters yield an average ac Stark shift across the con-
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densate of typically 60Hz (taken into account in the two-photon drive frequency) and a

peak modulation amplitude at the condensate edge (R∼25µm) of 45Hz or ∼0.45Ω.

The condensate begins in a single initial spin state, chosen as either |1〉 or |2〉.

The coupling drive is sufficiently far detuned (∼3Ω0) that negligible population transfer

occurs in the presence of the drive alone. However, when the sculpting beam is applied

and the two-photon drive is tuned to within a few Hz of the first sideband, coupling to

the final spin state occurs. As expected, population is transferred into the donought

shape of a vortex surrounding a core of the initial spin state [Figure 3.13]. The process

is continued for 50-70ms yielding a typical transfer efficiency of 50%. A vortex can be

successfully created starting with either internal state [Figure 3.13] although one would

expect that driving to the |1〉 state is preferable because it has a longer lifetime and its

situation outside a |2〉 core is the natural one in terms of the components’ buoyancies

(Compare Figures 3.13(b)&3.4). In any case, vortices are habitually formed by driving

to the |1〉 state. If a |2〉 vortex is desired, a short (4ms) π pulse from a strong two-photon

drive can be subsequently applied to flip the spin composition of vortex and core.

To obtain a reasonable transfer rate at the first sideband, the bare Rabi fre-

quency Ω0 and peak modulation depth αm are a reasonable fraction of the two-photon

detuning. This results in local residual Rabi oscillations during the engineering process

[Figure 3.14]. Within one Rabi cycle (∼10ms), a partial transformation of the final pop-

ulation occurs to a crescent shape that appears to rotate around the cloud. However,

the non-symmetric crescent shapes are avoided by stopping the engineering process after

an integer multiple of the average effective Rabi period (2π/Ω). At such points in time,

neglecting technical imperfections, all azimuthal points must have experienced the same

evolution and the state must be symmetric, which it is in practice [Figure 3.14].

“By construction,” the wavefunction engineering should make a vortex with a 2π

winding as indicated by the simulation [Figure 3.13(d)]. The phase winding can be ex-

perimentally verified with an interferometric technique that couples the two components
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Figure 3.12: Sculpting beam setup for wavefunction engineering. (a) The output of
an external cavity diode laser (ECDL) is passed through an acousto-optic modulator
(AOM) to provide control of the laser power. The light is transported to near the
condensate via optical fiber, providing some spatial mode cleaning as well. A small
amount of light is split off after the fiber to servo the laser power. A pair of piezo-
mounted mirrors, PZT1 and PZT2, allow the beam to be moved in two dimensions with
an arbitrary pattern. Three bounces between the mirrors provide amplification of the
beam’s motion. The beam is then weakly focused onto the condensate to create, for
example, a rotating beam (b) for vortex engineering.
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Figure 3.13: (a)&(b) Nondestructive imaging of vortex growth during the process of
wavefunction engineering in a trapped two-component condensate. Images are taken
at taken at 10 ms intervals corresponding to one period of the effective off-resonant
Rabi oscillations present in the condensate. A vortex may be created in the internal
|2〉 state (a) or |1〉 (b). In each case, the frequency of the probe laser is tuned to
be primarily sensitive to the state containing vorticity. (c) A numerical simulation of
the local Bloch equations [Eqn. 3.6] with detuning modulation across the condensate is
shown for comparison. Parameters of the simulation, typical of those in the experiment,
are as given in the text. (d) The phase difference between the internal states is shown
for the simulation at t=40ms and may be interpreted as the phase of the final spin
state. Although not perfectly uniform radially, the phase pattern clearly predicts the
2π azimuthal phase wrap of a singly quantized vortex.
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Figure 3.14: Nondestructive imaging showing the residual local Rabi oscillations during
the growth of a vortex, in this case in the |2〉 state. The image series spans one cycle
of the average off-resonant Rabi frequency (Ω=100Hz). At times (e.g. t=0ms) corre-
sponding to an integer multiple of the Rabi period, the |2〉 fluid forms a symmetric ring
corresponding to a centered vortex.
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where the densities of the core and vortex overlap. This was done for the first demon-

stration of vortex creation [122]. It is not discussed again here as two more heavily used

vortex diagnostics are already presented in later sections.

The handedness of the vortex created can be changed by reversing the rotation

of the sculpting beam, but this is not done in practice. For a fixed beam rotation

direction, the vortex handedness can also be chosen with the sign of the average two-

photon detuning [Eqn. 3.17], which is demonstrated experimentally in Section 3.6.

The long term stability of the engineering process has been improved by a slow

intensity servo applied to the sculpting beam [Figure 3.12]. Residual difficulties include

the slow thermal drift of the piezoelectric elements, which could ultimately be stabilized

with a beam-pointing servo. By far, however, reproducibility of the vortex formation

is most adversely affected by undesirable center-of-mass motion (“slosh”) of the con-

densate. This causes both shot-to-shot variations in the relative position between the

condensate and sculpting beam as well as relative motion during the engineering pro-

cess. Typically, the result is the creation of an off-center vortex. Careful attention is

required on a day-to-day basis to minimize slosh as much as possible. Many shots (with

a �1min cycle time) are still needed to obtain a collection of reasonably well-centered

vortices. For this reason, a good deal of effort is made to assure that all aspects of the

experiment are stable over long periods of time, including condensate formation, beam

intensity, and so on.

3.4 Dynamical stability of two-component vortices

While it is essentially irrelevant which spin state is used initially to create a two-

component vortex [Figure 3.13], differences in the interparticle interactions of the two

components [Section 3.2] produce a stark dichotomy of dynamical behaviour depending

on the spin composition of the vortex and core. For convenience, the notation (1,0)

denotes the case of a |1〉 vortex and |2〉 core while (0,1) denotes the opposite config-
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uration. On a simple level, a vortex in the |2〉 state will certainly be destroyed more

quickly due to the faster collisional loss of |2〉 atoms from the magnetic trap; however,

a more interesting issue is the dynamical stability of a two-component vortex given

that the two fluids can exchange angular momentum through their mutual interactions.

A simplified analytical model by Pérez-Garćıa and Garćıa-Ripoll [90, 135] evokes the

qualitative behaviour, which is shown to depend on two factors: the spin component

hosting the vortex, and, interestingly, the relative population N1/N2 of the components.

A stability condition is derived for the (1,0) configuration as(√
N1

N2
− 1

)2

> 1 − a11

a22
(3.18)

For 87Rb, the values of the intra-species scattering lengths, aii [Section 3.2] are such

that the stability condition is satisfied for any population distribution amongst the spin

components. The opposite configuration (0,1) is stable if(√
N2

N1
− 1

)2

> 1 − a22

a21
(3.19)

For 87Rb this inequality fails over the range of populations N1/N2 ∈ [0.73, 1.49].

The stability of the two different vortex configurations has first been compared

under the experimental condition of a roughly equal population distribution between

vortex and core [Figure 3.15]. The (1,0) configuration remains stable over time whereas,

in the (0,1) case, the |2〉 vortex crushes inward under the influence of its negative

bouyancy. The |2〉 vortex fragments into two pieces, never healing into an intact ring

shape in subsequent dynamics.

For a sufficiently small |1〉 core, the stability condition for the (0,1) configuration

will be satisfied. In order to approach this regime experimentally, a vortex has first been

created in the (1,0) state. The |2〉 core can then be reduced slowly over ∼1s through its

inherent decay or quickly (�10ms) through the application of a short blast of selectively

resonant laser light. In either case, a 4ms two-photon π pulse is then administered to
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Figure 3.15: Dynamical stability of two-component vortices.(a) The free evolution of a
|1〉 vortex (i.e. (1,0) state) in the magnetic trap. It is stable over a time long compared
to the trap oscillation period (128 ms). (b) The free evolution of a |2〉 vortex (i.e. (0,1)
state) is much more dynamic. It is seen shrinking quickly into the invisible |1〉 core
and rebounding into fragments. Each column is from a single run, where the times
indicated are referenced to the end of vortex creation. In these pictures the states
appear differently with respect to the background due to the different signs of the
imaging light detuning.
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switch the spin-composition of the vortex from (1,0) to (0,1). This essentially instan-

taneous spin flip provides a sharp initial time for the subsequent evolution of the (0,1)

configuration.

Figure 3.16 presents typical results where one image sequence involves a moder-

ately sized |1〉 core while the two remaining sequences are for a small |1〉 core. In the

case of the larger core, the two components separate into two pieces with the |1〉 fluid

moving outward to edge of the condensate. The two components continue to rotate

around one another to preserve the total angular momentum of the system. The theory

of [90, 135] predicts that the instability of the initial (0,1) configuration should induce

an oscillation between (0,1) and (1,0) in which the components fully exchange angular

momentum. The predicted intermediate state of two rotating halves sharing angular

momentum appears similar to that observed in Figure 3.16(a); however, the continued

evolution to the (1,0) configuration has not been seen experimentally. Indeed, the fact

that the |2〉 vortex fragments into a single rather than two pieces as in Figure 3.15(b)

may be attributed to a radial bias in the initial core position introduced by the engi-

neering process.

For the case of a small |1〉 core [Figure 3.16(b)and (c)], the mutual mean field

energy clearly is sufficiently reduced that the (0,1) configuration is stable. The |1〉 atoms

remain confined within the |2〉 fluid and track the core as it precesses around the con-

densate center in the direction of the vortex flow [see Section 3.5]. In the image sequence

of Figure 3.16(c) it may even be possible to distinguish a “Matryoshka nested doll” con-

figuration in which the |1〉 core itself is filled with a small amount of |2〉 fluid trapped

inside due to its negative buoyancy.
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Figure 3.16: Three nondestructive image sequences showing the time evolution of two-
component vortices in the (0,1) state. The image frames are spaced by the times indi-
cated. (a) A |2〉 vortex (dark) with a moderately sized |1〉 core (bright) is unstable and
breaks up. The |1〉 and |2〉 components separate into two segments that rotate around
one another. (b)&(c) A |2〉 vortex with a small-sized |1〉 core is stable. The |1〉 fluid
remains confined in the |2〉 fluid and tracks the precessional motion of the vortex core.
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3.5 Vortex Core precession [51]

3.5.1 Abstract

We have observed and characterized the dynamics of singly quantized vortices in

dilute-gas Bose-Einstein condensates. Our condensates are produced in a superposition

of two internal states of 87Rb, with one state supporting a vortex and the other filling

the vortex core. Subsequently, the state filling the core can be partially or completely

removed, reducing the radius of the core by as much as a factor of 13, all the way down

to its bare value of the healing length. The corresponding superfluid rotation rates,

evaluated at the core radius, vary by a factor of 150, but the precession frequency of

the vortex core about the condensate axis changes by only a factor of two.

3.5.2 Introduction

The dynamics of quantized vortices in superfluid helium and superconductors have

been fascinating and important research areas in low-temperature physics [155, 74, 154].

Even at zero temperature, vortex motion within a superfluid is intricately related to the

quantization of current around the vortex core. Besides these superfluid systems, studies

of the dynamics of optical vortices has also become an active area of research [87, 112].

More recently, demonstrations of the creation of quantized vortices in dilute-gas Bose-

Einstein condensates (BEC) [122, 118] have emphasized the similarities between the

condensed matter, optical, and dilute-gas quantum systems. Because of the observa-

tional capabilities and the techniques available to manipulate the quantum wavefunction

of the condensates, dilute-gas BEC experiments provide a unique approach to studies

of quantized vortices and their dynamics. This section reports direct observations and

measurements of singly quantized vortex core precession in a BEC.

Numerous theoretical papers have explored the expected stability and behavior

of vortices in BEC [105, 141, 6, 55, 106, 82, 152, 153, 116, 147, 123, 90, 135]. One
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interesting expected effect is vortex core precession about the condensate axis [141, 55,

106, 82, 152, 153, 116, 147, 123]. Radial motion of the core within the condensate can

also occur, and may be understood as being due to energy dissipation and damping

processes. Core precession may be described in terms of a Magnus effect – a familiar

concept in fluid dynamics and superfluidity [155, 74]. An applied force on a rotating

cylinder in a fluid leads to cylinder drift (due to pressure imbalances at the cylinder

surface) that is orthogonal to the force. Analogously, a net force on a vortex core in a

superfluid results in core motion perpendicular to both the vortex quantization axis and

the force. In the condensate vortex case, these forces can be due to density gradients

within the condensate, for example, or the drag due to thermal atoms. The density-

gradient force may be thought of as one component of an effective buoyancy: just as a

bubble in a fluid feels a force anti-parallel to the local pressure gradient, a vortex core

in a condensate will feel a force towards lower condensate densities. The total effective

buoyancy, however, is due less to displaced mass (the “bubble”) than it is to dynamical

effects of the velocity-field asymmetry, a consequence of a radially offset core. Typically,

the total buoyancy force is away from the condensate center, and the net effect is an

azimuthal precession of the core via the Magnus effect. Drag due to the motionless (on

average) thermal atoms opposes core precession, causing the core to spiral outwards

towards the condensate surface. In the absence of this drag (for temperature ∼ 0),

radial drift of the core may be negligible.

3.5.3 Experimental technique

Our techniques for creating and imaging a vortex in a coupled two-component con-

densate are described in refs. [122, 159]. The two components are the |F = 1,mF = −1〉

and |F = 2,mF = 1〉 internal ground states of 87Rb, henceforth labeled as states |1〉 and

|2〉 respectively. We start with a condensate of 106 |2〉 atoms, confined in a spherical

potential with oscillator frequency 7.8 Hz. A near-resonant microwave field causes some
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of the |2〉 atoms to convert to |1〉 atoms. The presence of a rotating, off-resonant laser

beam spatially modulates the amplitude and phase of the conversion. The net result

is a conversion of about half of the sample into an annular ring of |1〉 atoms with a

continuous quantum phase winding from 0 to 2π about the circumference – a singly

quantized vortex. The balance of the sample remains in the non-rotating |2〉 state and

fills the vortex core. With resonant light pressure we can selectively remove as much

of the core material as we desire. In the limit of complete removal, we are left with a

single-component, bare vortex state.

In this bare-core limit, the core radius is on the order of the condensate healing

length ξ = (8πn0a)−1/2, where n0 is the peak condensate density and a is the scattering

length. For our conditions, ξ = 0.65 µm, well under our imaging resolution limit. The

bare core can be observed after ballistic expansion [118] of the condensate, but this is

a destructive measurement. On the other hand, if we leave some of the |2〉-state atoms

filling the core, the pressure of the filling material opens up the radius of the |1〉 vortex

core to the point where we can resolve the core in a time series of nondestructive phase-

contrast images.

3.5.4 Filled-core dynamics

We first discuss vortex dynamics in two-component condensates, where 10%−50%

of the atoms were in the |2〉 fluid filling the |1〉 vortex core. We took successive images

of the |1〉 atoms in the magnetic trap, with up to 10 images of each vortex. The vortex

core is visible as a dark spot in a bright |1〉 distribution, as shown in Fig. 3.17(a).

Instabilities in our vortex creation process usually resulted in the creation of off-center

vortex cores, allowing us to observe precession of the cores. We observed precession out

to ∼ 2 s, after which the |2〉 fluid had decayed to the point that the vortex core was too

small to be observed in the trapped condensate.

The recorded profile of each trapped condensate was fit with a smooth Thomas-
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Figure 3.17: (a) Seven successive images of a condensate with a vortex and (b) their
corresponding fits. The 75-µm-square nondestructive images were taken at the times
listed, referenced to the first image. The vortex core is visible as the dark region within
the bright condensate image. (c) The azimuthal angle of the core is determined for each
image, and is plotted vs. time held in the trap. A linear fit to the data indicates a
precession frequency of 1.3(1) Hz for this data set. (d) Core radius r in units of healing
length ξ. The line shown is a linear fit to the data.
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Fermi distribution. Each vortex core profile was fit with a Gaussian distribution to

determine its radius and position within the condensate. From the fits, we determined

the overall radius Rt of the trapped condensate (typically 22 µm), the HWHM radius r of

the filled vortex core, and the displacement dt and angle θt of the core center with respect

to the condensate center. Core angles and radii for the images in Fig. 3.17(a) are shown

in Figs. 3.17(c) and (d). The vortex core is seen precessing in a clockwise direction,

which is the same direction as the vortex fluid flow around the core. The angular

precession frequency was determined from the time dependence of θt (Fig. 3.17(c)).

This and other similar data sets showed no reproducible radial motion of the core over

the times and parameters examined. However, consistent decrease in the size of the core

was observed, which we interpret as being due to known decay of the |2〉 fluid through

inelastic atomic collisional processes.

For each data set, we determined a mean core radius and displacement. The data

cover a range of core radii (r = 7ξ to 13ξ), displacements (dt = 0.17Rt to 0.48Rt),

and percentage of atoms in the core (10% to 50%). Except for a few “rogue vortices”

(discussed below), the measured precession frequencies are clustered around 1.4 Hz,

as shown in Fig. 3.18, precessing in the same direction as the fluid rotation. The data

(Fig. 3.18(a)) suggest a slight increase in frequency for cores further from the condensate

center. We also see (Fig. 3.18(b)) a slight decrease in precession frequency for larger

cores. These measurements are in qualitative agreement with two-dimensional numerical

simulations for two-component condensates [123].

As indicated in Fig. 3.18, a few vortex cores exhibited precession opposite to

that of the fluid flow (negative frequencies). The quality of the corresponding vortex

images was routinely lower than for the positive-frequency precession points, with vor-

tices looking more like crescents and “D” shaped objects rather than like the images

of Fig. 3.17. We only found such occurances with our two-component (in-trap) mea-

surements. We speculate that this “inverse precession” may be due to rare events in
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Figure 3.18: Compiled data for filled vortex core precession, with each data point ex-
tracted from a series (as in Fig. 3.17) of nondestructive images of a single vortex. Pre-
cession frequency is plotted vs. (a) core displacement dt in units of condensate radius
Rt, and (b) core radius r in units of healing length ξ. Circles correspond to positive
frequencies and filled squares to negative frequencies. (Positive frequency is defined as
core precession having the same handedness as the vortex angular momentum.) The
triangle at r = ξ shows for reference the average measured precession frequency of many
bare vortices (see text and Fig. 3.19(b)). A line is drawn as a guide to the trend in
frequency vs. core size.
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which total angular momentum may be distributed in a complicated way among both

internal states. Such cases might arise due to position instabilities of the rotating laser

beam during the vortex creation process. Recent theoretical attention has addressed the

possibly related situation of non-symmetric configurations of vortices in two-component

condensates [90, 135].

3.5.5 Bare core dynamics

To examine the dynamics of bare vortices, our procedure consisted of taking

a nondestructive phase-contrast picture of the partially filled |1〉 vortex distribution

(Fig. 3.19(a) inset), as previously discussed, followed by complete removal of the core

filling [7]. We then held the bare vortex in the trap for a variable hold time th, after

which the condensate was released from the trap. We took a final near-resonance phase-

contrast image [8] of the atomic distribution (Fig. 3.19(a)) after the condensate had

ballistically expanded by a factor of ∼ 3.5 [9] and the empty core had expanded [70] to

a fit radius of ∼ 9µm.

Displacements dt and angular positions θt of the cores for the in-trap images were

extracted as described before. The images of the expanded clouds were fit with identical

distributions, and the Thomas-Fermi radius Re of the expanded cloud and the vortex

core displacement de and angle θe were obtained for each image. For each pair of images,

we determined the angular difference ∆θet ≡ θe − θt between the cores in the expanded

and in-trap images. We also determined the core displacement ratio de/dt, an indicator

of the radial motion of the core during the hold time th.

From the measurements of ∆θet at different hold times th (Fig. 3.19(b)), we find

a bare core precession frequency of 1.8(1) Hz, slightly faster than the precession of filled

cores and consistent with the trend shown in Fig. 3.18(b) for filled cores. To emphasize

that our measurements of filled and empty cores are different limits in a continuum of

filling material, we indicate the measured bare core precession frequency in Fig. 3.18(b)
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Figure 3.19: (a) Ballistic expansion image of a vortex after all |2〉 atoms have been
removed. The dark spot is the bare vortex core. Inset – the corresponding, preceding
in-trap nondestructive image of the partially-filled core. (b) Angular differences ∆θet

between vortex cores from the in-trap and expansion images, plotted against hold time th
in the magnetic trap. The line is a fit through the data, indicating a bare core precession
frequency of 1.8(1) Hz. (c) Radial core motion is determined by (de/Re)/(dt/Rt), the
ratio of the fractional core displacements from the expansion and in-trap images of each
data set. The data are shown as open circles, with the average of all data at each given
hold time plotted as a filled triangle. (d) Core visibility of an expanded vortex, defined
as the conditional probability for observing a vortex in an expanded image given the
observation of a vortex in the corresponding, pre-expansion in-trap image. Visibility
drops dramatically for hold times th > 1 s.
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with a point at r = ξ.

From Fig. 3.18(b) it is apparent that the structure and content of the vortex core

have a relatively modest effect on precession frequency. One can calculate, for instance,

the fluid rotation rate νr at the inner core radius. The value of νr is given by the

quantized azimuthal superfluid velocity evaluated at the radius of the core, divided by

the circumferential length at that radius. For bare vortices, νr is about 260 Hz, while

for the largest filled cores of Fig. 3.18(b) (for which nearly half of the sample mass is

composed of core filling), νr is only about 1.7 Hz. Thus between vortices whose inner-

radius fluid rotation rates vary by a factor of 150, we see only a factor of 2 difference in

precession frequency.

The slower precession of filled cores can be understood in terms of our buoyancy

picture. Due to its slightly smaller scattering length, |2〉 fluid has negative buoyancy

with respect to |1〉 fluid, and consequently tends to sink inward towards the center of

the condensate [10]. With increasing amounts of |2〉 material in the core, the inward

force on the core begins to counteract the outward buoyancy of the vortex velocity field,

resulting in a reduced precession velocity. It is predicted that with a filling material of

sufficiently negative buoyancy in the core, the core precession may stop or even precess

in a direction opposite to the direction of the fluid flow [123], but our data do not reach

this regime.

Various theoretical techniques involving two- and three-dimensional numerical

and analytical analyses have been explored to calculate the precession frequency of

a vortex core within a condensate. We briefly compare those most readily applied

to our physical parameters, assuming a spherical, single-component condensate with

3 × 105 atoms in a non-rotating trap. Where relevant, we assume a core displacement

of dt = 0.35Rt. A two-dimensional hydrodynamic image vortex analysis [11] has been

analytically explored in the homogeneous gas [82] and two-dimensional harmonic con-

finement [116] limits. The latter of these predicts a bare core precession frequency
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of ∼ 0.8 Hz. Svidzinsky and Fetter’s three-dimensional [152] solution to the Gross-

Pitaevskii equation predicts a precession frequency of ∼ 1.3 Hz. Jackson et. al. [106]

have obtained results in close agreement with this analytical solution using a numerical

solution to the Gross-Pitaevskii equation. Finally, a path-integrals technique by Tem-

pere and Devreese [153] predicts a 1.24-Hz precession, and a two-dimensional simulation

by McGee and Holland [123] using a steepest-descents technique predicts a precession

frequency of 1.2 Hz.

Measurements of de/dt for different hold times th show the radial motion of

the bare cores and is a probe of energy dissipation of the vortex states. The plot

of Fig. 3.19(c) displays no trend of the core towards the condensate surface during th,

indicating that thermal damping is negligible on the 1 s timescale [12]. However, we

notice a sharply decreasing visibility of expanded bare vortices for hold times greater

than th ≥ 1 s, as indicated in Fig. 3.19(d). The absence of radial core motion sug-

gests that decreased visibility is due to imaging limitations rather than true decay. One

hypothesis is that the vortex core may be tilting away from the imaging axis [151], sup-

pressing contrast in optical depth below our signal-to-noise threshold. Such a situation

may arise if the trap is not perfectly spherical, and if the vortex is not aligned along a

principle axis of the trap. Evidence in support of this hypothesis [13] will be presented

in Section 3.6.

Through a combination of destructive and nondestructive imaging techniques we

have obtained measurements of vortex dynamics in bare- and filled-core vortices in

dilute-gas BEC. Vortex precession frequencies show only modest dependence on the

radius and content of the vortex core. Further measurements of vortex dynamics in

condensates may reveal the rate of loss of angular momentum at finite temperatures,

an indication of energy dissipation. Such measurements may suggest interpretations for

“persistence of current” in condensates, further strengthening ties between BEC and

superfluidity. In order to pursue these goals, we plan to extend the studies reported
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here to investigate higher-order dynamical behavior and to characterize the dissipative

effects of finite temperatures.

3.6 Vortex tilting [98]

3.6.1 Abstract

A vortex in a condensate in a nonspherical trapping potential will in general

experience a torque. The torque will induce tilting of the direction of the vortex axis.

We observe this behavior experimentally and show that by applying small distortions

to the trapping potential, we can control the tilting behaviour. By suppressing vortex

tilt, we have been able to hold the vortex axis along the line of sight for up to 15

seconds. Alternatively, we can induce a 180◦ tilt, effectively reversing the charge on the

vortex as observed in the lab frame. We characterize the vortex non-destructively with

a surface-wave spectroscopic technique.

3.6.2 Introduction

The decay of “persistent” supercurrents, be they in superfluids or superconduc-

tors, is intimately connected to the dynamical behavior of vortices. A magnetically

trapped, gas-phase Bose-Einstein condensate (BEC) provides a useful laboratory for

characterizing the microscopic behavior of individual vortices subject to various con-

trolled perturbations [122, 118, 51, 61]. In one recent experiment, a vortex core in a

near-spherical condensate “vanished” [51] from view apparently without moving out to

the edge of the sample and annihilating there. Another group [118] found that the em-

pirical critical rotation velocity for the formation of a vortex in an elongated condensate

is much higher than can be accounted for by a simple model of the vortex as a rigid

line-defect without any dynamics along its length. Feder et al. [80] explain the latter

observation by showing that the higher rotation rate is necessary to suppress the growth
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of anomalous normal modes (“bending” modes) of the vortex. In this section we study

the lowest odd-order normal mode, which in our near-spherical geometry corresponds

not to a bend but to a tilting of the vortex orientation. We show that the “vanish-

ing” vortex of ref. [51] was in fact due to tilting of the vortex away from the line of

sight. Such uncontrolled tilting was caused by residual asphericity in the condensate’s

confining potential. By tailoring the asphericity, we have learned to control the tilting

dynamics.

The tilting behaviour of a vortex in a condensate, confined in a slightly aspheric,

parabolic potential, is discussed in detail by Svidzinsky and Fetter [151], starting from

the Gross-Pitaevskii equation. Only a brief summary of their theoretical results is

given here. The vortex direction satisfies a set of equations similar in form to the

Euler equations for rigid body rotation, familiar from classical mechanics. As a result,

the tilting dynamics of a quantized vortex in a confined BEC are reminiscent of the

behaviour of a freely spinning rigid body as seen in the body-fixed frame [84]. In the

case of the spinning rigid body, there are two stable axes about which precession of

the spin direction will occur, namely the axes with the largest and smallest moments of

inertia. The intermediate axis is unstable and no precession occurs about that direction.

If the spin direction lies initially near the intermediate axis, it will evolve away from

its initial orientation. Similarly, for a quantized vortex in a BEC, tilt precession of

the vortex is predicted to occur about two stable axes, given in this case by the tight

and weak directions of confinement. The unstable axis corresponds to the direction of

intermediate trapping strength.

The tilting dynamics of a vortex are constrained by two integrals of motion, one

in particular corresponding to conservation of energy. Physically, this implies that, as

the vortex tilts, its direction follows an angular trajectory which is a contour of constant

vortex length, or equivalently constant energy. As is the case for all the normal modes of

a vortex, the precession frequency for a vortex tilting about a stable axis is predicted to
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scale with the rate of vortex fluid circulation evaluated at the condensate edge. For our

typical conditions, this fluid rotation is near 0.3 Hz. The theoretical frequency for tilt

precession depends additionally on the magnitude and character of the trap asymmetries

and the initial orientation of the vortex.

3.6.3 Vortex formation

In our experiment, we first use a wavefunction engineering technique to make

singly quantized vortices in a two-component BEC [122, 159]. The two components,

which are two different hyperfine levels of 87Rb, are magnetically confined together in

a nominally spherical, harmonic TOP trap [78], parameterized by a trapping frequency

ωtrap/2π = 7.8(1) Hz. The vortex formation process leaves one component in the cir-

culating state while the other component, which is non-rotating, fills out the core [14].

The vortex is formed initially aligned along the line of sight. We take a non-destructive

picture of the two-component vortex to record the initial displacement of the core with

respect to the center of the condensate cloud. We then create a bare vortex by selec-

tively removing the fluid filling the core [51], which shrinks down to a size below our

imaging resolution.

This section deals exclusively with the dynamics of bare vortices in a single-

component BEC. The bare vortex state is formed with about 2 · 105 atoms at a temper-

ature of T/Tc = 0.8(1) where the critical temperature Tc is 20(6) nK. The number of

atoms in the condensate is determined (in the Thomas-Fermi limit) from the conden-

sate radius R, equal to 20.8(4) µm on average. Following the creation process and core

removal, the condensate is held for a variable holding time in its confining potential,

and then probed for the presence of the vortex.
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3.6.4 Disappearing vortices

We have previously reported that the visibility of vortex cores was lost after a

holding time of about 1 s in a nominally spherical trap [51]. In those experiments,

the confining potential was suddenly removed, and the condensate allowed to expand

ballistically before imaging. The presence of a vortex was detected in the expansion

image as a dimple in the condensate’s density distribution. The topological nature of a

quantized vortex means that the only way for a BEC to rid itself of a vortex is for the

core to make its way to the edge of the cloud and annihilate there; the vortex cannot

gradually spin down. Our vortices, however, seemed to disappear without any visible

radial motion of the cores outward. We did notice that the contrast of the cores as

observed in expansion decreased at longer holding times before being lost altogether.

These results could be explained by a tilting of the vortex away from the line of sight.

Because the vortex core is such a narrow feature, only small deviations from the line

of sight (∼ 20◦) are necessary for contrast to be lost below the noise threshold in the

expansion images.

In order to circumvent this imaging limitation, we have implemented an alterna-

tive method of vortex detection that is more robust against tilting of the vortex from

the line of sight, and that has the additional advantage of being sensitive to the handed-

ness of the vortex circulation. This detection technique uses the idea that the collective

excitation frequencies of a trapped condensate are sensitive to the presence of a vortex

[15, 150]. We make use of quadrupolar surface-wave excitations, that is, surface-wave

excitations which carry angular momentum l = 2. (The angular momentum of these

perturbative excitations should not be confused with the angular momentum per par-

ticle of the bulk of the condensate, which in the presence of a well-centered vortex

approaches l = 1). The projection of angular momentum of an l = 2 surface-wave

excitation onto the axis of the vortex direction can have components m = 0,±1,±2.
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In the absence of a vortex, the counter-propagating ±m modes are degenerate, but in

the presence of a vortex the handedness of the fluid flow breaks time-reversal symmetry

and lifts the degeneracy. The use of surface-wave spectroscopy for vortex detection was

first demonstrated experimentally by Chevy et al. [61].

To detect a vortex, we excite an l = 2, mz = 0 excitation about the vertical ẑ

axis by modulating the trapping potential for a single cycle. Along the line of sight,

the x̂ axis, the mz = 0 mode projects onto a superposition of mx = +2, mx = −2, and

mx = 0 modes. The mx = +2 and mx = −2 superposition may be thought of as a

standing-wave of clockwise and counterclockwise surface waves. Along the line of sight

we observe the cloud alternately stretch along two principal axes, first vertical, then

horizontal. The excitation period is measured to be 11.0(2) Hz in agreement with the

predicted value
√

2ωtrap [148]. The presence of a vortex along the line of sight induces

a splitting of the clockwise and counterclockwise wave velocities, so that the nodes of

the standing-wave are not completely fixed. As a result we observe a precession of the

principal axes of the quadrupolar excitation. We record the precession in a sequence

of seven non-destructive images, strobed at half the quadrupolar excitation period. A

typical data set is shown in Fig. 3.20. Opposite vortex circulation clearly leads to

opposite precession of the principal axes, as is evident in Figs. 3.20(b) and (c).

For a vortex whose direction is tilted with respect to the line of sight, we still

expect precession of the quadrupolar principal axes to be induced about the vortex

direction. The main limitation to vortex detection in this case is that there must be

sufficient projection of the quadrupolar precession onto the imaging camera. In the

extreme case where the vortex is oriented at 90◦ to the line of sight, any quadrupolar

precession will also be about an axis perpendicular to the line of sight, in other words,

not readily observable on the imaging camera.

Armed with our new detection method, we revisited the topic of longevity of

vortices in our nominally spherical trap. The precession of surface waves clearly revealed
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Figure 3.20: Using surface excitations for in situ detection of a vortex in a confined
BEC. (a), (b) and (c) are each a series of non-destructive images of the quadrupolar
mode, after excitation. The pictures are strobed at 45.5 ms, half the excitation period.
(a) is the case of a vortex free condensate; (b) and (c) show the excitations in the
presence of a vortex whose core is normal to the plane of the page. The vortices in (b)
and (c) have opposite handedness. The principal axes of the ellipse-shaped quadrupolar
mode precess in the direction of the fluid flow. The images are each fit to an elliptical
distribution with orientation ∆θ of the principal axes. The orientation, expressed as an
angular deviation from the vertical and horizontal axes, is plotted versus time in (d) for
each of the cases (a), (b) and (c). A linear fit has been applied to the data to determine
a precession frequency of the principal axes, -0.49(4) Hz for (b) and 0.45(5) Hz for (c).
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the presence of vortices at 1.5 s and at 2 s holding time, well after the vortices ceased to

be visible in the expansion images [51]. Given that the surface-wave probe for vortices

should be relatively robust to small tilts of the vortices with respect to the line of sight,

we came to the tentative conclusion that our vortices were in fact tilting away from the

line of sight during the first few seconds after their creation. This behavior could be

accounted for by small (≤3%) residual asymmetries in our trapping potential.

3.6.5 Vortex tilt: three experiments

Further study of the tilting required better characterization of the trap potential,

and we achieved this by deliberately introducing tailored deformations to the confining

potential, deformations that were certain to overwhelm the residual asymmetry. The

results of three such experiments are presented here: first, the suppression of vortex tilt;

second, the generation and observation of vortex tilt about a stable axis; and, third, the

manipulation of a vortex’s orientation through controlled deformations of the BEC’s

confining potential.

In the first experiment, the spherical confining potential is squeezed by 10% along

the line of sight following the creation of a vortex in the BEC [16, 17]. This places the

vortex along the tight, stable axis of the trap. As a result, tilting of the vortex away

from the line of sight should be suppressed. After a variable holding time in the squeezed

trap, the confining potential is returned to spherical symmetry and the condensate is

then quickly probed for the presence of the vortex. Using both the surface-wave and

expansion techniques, we have detected vortices lasting for holding times up to 15 s.

This is a significant improvement over our previously published limit of 1 s. Although

visibility has been restored at long times by holding the condensates in a squeezed trap,

it is important to note that only well-centered vortices have been found to survive to

the longest times. This is consistent with a model of initially offset cores spiraling out

of the condensate under the influence of thermal damping [18].
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The second experiment proceeds in the same way as the first except the spherical

trap is now squeezed along a horizontal axis at 45◦ to the line of sight. The squeezing

process produces a triaxial confining potential, where the tight and weak directions

of confinement lie in the horizontal plane while the intermediate axis is vertical. The

measured trap asymmetries together with the initial vortex direction indicate that the

vortex should precess about the weak axis, although slightly different conditions could

lead to rather different behavior (see Fig. 3.21). In any case, as the vortex tilts away from

the line of sight to a maximum excursion of 90◦ from the imaging axis, the visibility

of the vortex will gradually disappear. Eventually, if the vortex precesses about the

stable axis and back into the line of sight, it should become visible again in a ‘revival of

visibility’. This effect is seen in Fig. 3.22, where vortex visibility is plotted as a function

of holding time in the squeezed trap. Visibility is defined as the probability of detecting

a vortex at a given time and is obtained from a set of approximately ten shots for each

point plotted. Vortices whose initial offset from trap center exceeds a prescribed value

of ∼0.15 R are omitted from the analysis. This is done to reduce blurring of the revival

due to possible position-dependent tilt rates, and, moreover, to prevent loss of contrast

at long times due to the drift of cores out of the condensate. The vortex detection is

accomplished with both surface-wave and expansion techniques. The revival measured

with expansion imaging is much more narrowly resolved in time, as is to be expected

from this method’s greater sensitivity to alignment of a vortex with the line of sight.

The frequency of the tilt mode, determined from the data in Fig. 3.22, is 0.25(2)

Hz. The theory of Svidzinsky and Fetter [151] predicts the lowest-order odd-parity vor-

tex mode should have a frequency below 0.3 Hz for our values of the Thomas-Fermi ra-

dius, confinement asymmetry, and initial vortex angle. Uncertainties in the confinement

asymmetry preclude a more precise determination of the theoretical tilting frequency.

The uncertainties are such that the vortex could lie on an initial trajectory arbitrarily

close to a ‘saddle’ line, where the revival time should diverge (see Fig. 3.21). The high
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Figure 3.21: Possible tilting behaviour of a vortex in a confined BEC is illustrated for
the conditions of the second tilting experiment (see text). The axes of symmetry for
the triaxial confining potential are indicated. Initially, the vortex is nearly anti-aligned
with the line of sight. Depending on the precise initial orientation of the vortex and the
relative values of the confinement strengths, the vortex direction could (a) precess about
the weak axis, (b) precess about the tight axis, or (c) drift towards the intermediate
axis along a ‘saddle’ line, as traced out on the surface of the condensate.
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Figure 3.22: Visibility of a vortex in a BEC is plotted versus the time the BEC is held in
a trap squeezed along an axis at 45◦ to the line of sight. Visibility is the probability of
detecting a vortex over several shots. Filled squares indicate vortex detection with the
surface-wave technique; open triangles indicate detection with the expansion technique.



94

contrast of the two revivals in Fig. 3.22 clearly indicates, however, that the shot-to-shot

fluctuations of the confinement asymmetry and of the initial position of the vortex are

small.

The third and final tilting experiment demonstrates the reversal of vortex hand-

edness. The vortex, as usual, is formed along the line of sight. The direction of the

vortex is then flipped 180◦ by deforming the trapping potential in two steps, as illus-

trated in Fig. 3.23. From the perspective of the line of sight, the ‘lab frame,’ the vortex

has effectively flipped its handedness. Surface-wave detection is used to verify this, with

pictures similar to Figs. 3.20(b) and (c) being obtained before and after the flipping pro-

cess respectively. Manipulation of vortex direction may prove to be a useful technique

in a TOP trap. For example, maneuvering a vortex to an arbitrary direction followed

by a second stage of wavefunction engineering could produce a condensate wavefunction

with more complicated, three-dimensional topological structure.

In conclusion, we have described a non-destructive method of vortex detection

and used it to characterize the tilt modes of a bare vortex in a trapped BEC. Control

over the tilt of a vortex has been demonstrated, including the suppression of tilting

altogether. The suppression of tilting, which maintains the visibility of vortices out to

long times, now permits the study of the lifetime of vortices at finite temperature.

3.7 A position sensitive spectroscopy

The vortex dynamics described to this point have been essentially at zero tem-

perature and well described by the Gross-Pitaevskii equation. The finite temperature

behaviour which has been alluded to in Sections 3.5 and 3.6 is the lifetime or “persis-

tence” of a bare vortex in the condensate. As a topological feature, the vortex cannot

“spin down.” To leave the condensate, it must spiral radially outward under the in-

fluence of the friction imparted by the normal cloud bathing the condensate (see also

Section 4.6). In order to assess this motion one would like to follow the radial position
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Figure 3.23: A sequence of trap deformations to reverse the direction of a vortex is
shown. The figure shows a horizontal crosssection of the BEC as seen from above.
The vortex is initially formed along the line of sight and aligned with the -x̂ axis. In
step 1, the trap is squeezed in the horizontal plane along tight axis 1. The vortex is
then allowed to precess for 1.5 s, at which point it should be aligned with the ŷ axis.
The new direction of the vortex is indicated by a dotted arrow. In step 2, the trap is
squeezed along tight axis 2 and the vortex allowed to precess another 1.5 s until it is
aligned with the x̂ axis. To an observer looking down the line of sight, the vortex has
effectively reversed its handedness. Changing the time allowed for vortex precession by
0.5 s inhibited the effect. For the correct timing, the flipping process was found to be
successful 80% of the time.
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of the vortex as it spirals outward to the condensate edge. However, a complication

arises if wavefunction engineering is used to create the vortex. As was mentioned in

Section 3.3.3, condensate slosh causes shot-to-shot variations in the initial core position.

This is an important consideration in comparing with theory since the lifetime of a vor-

tex is predicted to depend logarithmically on its initial distance from the condensate

center (with a centered vortex being metastable) [82]. As a result, a nondestructive mea-

surement scheme is required to determine both the initial and final radial core positions

for each experimental run. Such a task is technically challenging for bare vortices since

the core size is below imaging resolution in-trap, where nondestructive phase-contrast

imaging can be used. The first option available, as outlined in Section 3.5, is to mea-

sure the initial core position of a two-component vortex, remove the component that

fills out the core to create a bare vortex, wait, then analyze the final core position in

expansion. Besides being a relatively convoluted measurement, this technique suffers

from limitations to vortex visibility in the expansion images, where the “haze” of a siz-

able normal cloud surrounding the condensate obscures the vortex cores. Interestingly,

the surface-wave spectroscopy presented in the previous section provides an alternative

nondestructive technique to assess bare-vortex position in the condensate. Although

vortex-lifetime results obtained in this way ultimately proved inconclusive and are not

discusssed here, the technique, which is interesting in its own right, is outlined here.

As alluded to previously, surface-wave spectroscopy is sensitive to the angular

momentum of a vortex in the condensate. For the quadrupolar (l = 2) surface waves

used in the experiment, the vortex flow breaks the symmetry between co- and counter-

propagating surface modes (m = +2 and m = −2), which acquire a frequency splitting

[15]. A sum-rule argument [161] shows that the splitting depends on the angular mo-

mentum per particle 〈�z〉 in the condensate

ω+ − ω− =
2
m

〈�z〉
〈r2

⊥〉
. (3.20)
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The expectation value of r2
⊥, the square of the co-ordinate perpendicular to the vortex

quantization axis, depends on the shape of the potential confining the condensate. For

the nominally spherical condensates in the experiment, 〈r2
⊥〉 scales with the square of

the size of the condensate given by the Thomas-Fermi radius R. To connect with the

results of Section 3.6, the standing-wave pattern formed by a superposition of m = +2

and m = −2 waves [Figure 3.20] precesses due to the splitting at a rate

ωp = (ω+ − ω−)/4. (3.21)

While a singly-charged vortex at the center of a condensate contributes an angular

momentum per particle of �, an offset vortex will contribute progressively less as it moves

towards the edge of the condensate. (The core of course still has a 2π winding around

it.) A calculation for a harmonic confining potential [19] gives the angular momentum

per particle in terms of lateral vortex displacement r as

〈�z〉 = �

(
1 − r2

R2

)5/2

. (3.22)

Thus, in so far as surface-wave spectroscopy is sensitive to the angular momentum per

particle in the condensate, it provides an indirect assay of vortex position. Recent

theory [83, 96] indicates that the sum-rule result for the frequency splitting [Eqn. 3.20]

may be inaccurate for a single offset vortex; nevertheless, the qualitative behaviour is

certainly correct and provides an intuitive understanding of the effect of vortex position

on surface-wave spectroscopy.

To verify this experimentally, multiple runs have been performed to create a

vortex in the standard way. To summarize briefly, a two-component vortex with varying

radial position is engineered and the core fluid is then removed to create a bare vortex.

An image of the two-component vortex is taken before the removal and later fit to obtain

the vortex position. A standing wave of m = +2 and m = −2 waves is excited on the

condensate containing the bare vortex. The precession rate [Eqn. 3.21] of the standing
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wave, determined from a series of non-destructive images [Figure 3.20], is plotted as

a function of radial core displacement in Figure 3.24. Although the basic trend of

the data is as expected, the precession rate decreases faster with displacement than

the predicted dependence according to Eqns. 3.20 and 3.22 as well as the prediction

according to ref. [83]. This discrepancy is likely due to systematic errors in the core

position obtained from fits to the two-component images. Simulated images of two-

component vortices indicate that the fits are untrustworthy when the distance from the

cloud center to core position is more than a few tens of percent of R.

As a final note, the statement that the surface-wave technique is “nondestructive”

does require justification as the presence of the surface-wave excitation has the potential

to perturb the vortex. At least in terms of effects to the radial core position, the

nondestructiveness can be readily assessed by monitoring any changes in the surface-

wave precession frequency over time. As demonstrated qualitatively in Figure 3.25, the

surface-wave excitation apparently has no effect on the radial position of the vortex for

the range of excitation amplitude used (20%-40%).

3.8 Soliton engineering and decay to vortex rings [50]

3.8.1 Abstract

We have created spatial dark solitons in two-component Bose-Einstein conden-

sates in which the soliton exists in one of the condensate components and the soliton

nodal plane is filled with the second component. The filled solitons are stable for hun-

dreds of milliseconds. The filling can be selectively removed, making the soliton more

susceptible to dynamical instabilities. For a condensate in a spherically symmetric po-

tential, these instabilities cause the dark soliton to decay into stable vortex rings. We

have imaged the resulting vortex rings.
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Figure 3.24: Quadrupolar precession frequency vs. displacement r of a bare vortex
from the center of a condensate (see inset). The displacement is scaled by the Thomas-
Fermi radius (R ≈ 22µm) of the nominally spherical condensate. Each data point
represents a single experimental run in which a singly-quantized vortex is created in a
condensate, followed by quadrupolar surface-wave spectroscopy as per Figure 3.20. The
plot combines three data sets with different amplitudes for the quadrupolar excitation,
characterized by an ellipticity ε of {0.2, 0.26, 0.4}. The solid line is the predicted
behaviour based on Eqns 3.20 & 3.22 while the dotted line is the prediction according
to ref. [83].
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Figure 3.25: Long-time precession of a quadrupolar standing-wave on the surface of a
condensate containing an � = 1 vortex. (a) Sequence of nondestructive in-situ images,
which begins in the first frame by showing a two-component vortex engineered into the
condensate. The fluid filling the core is then removed (not shown) and a quadrupolar
surface wave excited. The second frame and following show the time evolution of the
surface wave where the indicated times are referenced to the time of surface-wave excita-
tion. The images are spaced by two oscillation periods of the quadrupolar surface mode
(2τ = 182ms) such that the major axis of the condensate deformation would remain
vertical in the absence of a vortex. The decrease in ellipticity of the cloud is primarily
due to thermal damping of the quadrupolar mode. (b) A two-dimensional ellipse is fit
to each image. (c) The angular orientation of the ellipse’s major axis is extracted and
plotted as a function of time. A linear fit has been added to guide the eye.
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3.8.2 Introduction

Topological structures such as vortices and vortex rings have fascinated scientists

and mathematicians for centuries. In a quantum fluid, vortices have quantized flow

around a one-dimensional core where the density vanishes. Vortex lines, which termi-

nate at the boundaries of the quantum fluid, have been observed in superfluid helium and

superconductors [74, 155], and recently in Bose-Einstein condensates (BECs) [121, 118].

Similarly, vortex rings are vortices whose cores are closed loops; the poloidal quantized

flow pattern resembles that of a smoke ring. Quantized vortex rings have been pro-

duced in superfluid helium, and were first detected in pioneering work by Rayfield and

Reif [139]. In this section we report direct experimental observations of vortex rings in

BECs.

Solitons are localized disturbances in a continuous nonlinear medium that preserve

their spatial profile due to a balance between the effects of dispersion and nonlinear-

ity [20]. Dark solitons have been previously created in single-component BECs using

phase-imprinting methods [21]. These structures are characterized by a local decrease in

fluid density (the depth). The macroscopic quantum phase of the BEC differs on either

side of the soliton; for a completely dark (black) soliton, the depth is 100% (a complete

absence of fluid), the phase offset is π, and the soliton velocity is zero. We have created

black solitons (having a fluid-free nodal plane) in nearly spherically symmetric 87Rb

BECs, and have observed the subsequent decay of the solitons into vortex rings.

Unlike vortices and vortex rings, whose stability is ensured by Kelvin’s theo-

rem [74], soliton stability depends on the nonlinearity and geometry of the medium [22].

Optical dark solitons in self-defocusing nonlinear media have been observed to de-

cay into optical vortices via a ‘snake instability’ [23], confirming predictions [110]. In

general, dark solitons in BECs are also expected to be inherently dynamically unsta-

ble [111, 24, 60, 81]. Because both the velocity and depth of a soliton are determined by
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its phase offset [140], small local perturbations of either the strength of the nonlinearity

or of the depth give the soliton a corresponding nonuniform transverse velocity pro-

file. Once the soliton begins to decay, it quickly breaks up into more stable structures.

Within our spherically symmetric BECs, the expected decay products are concentric

vortex rings [81]. Because the theoretical background for soliton decay in condensates

has been previously described in detail in Ref. [81], we limit our paper to primarily a

phenomenological presentation of data. Evidence for soliton decay is obtained through

direct images of the BEC density distribution. We provide a visual comparison of data

with numerical simulations of soliton decay.

3.8.3 Experimental techniques

We create dark solitons using concepts that we have previously applied to making

singly quantized vortices in BECs [121, 159]. The magnetically trapped BEC can exist

as a superposition of two internal components, hyperfine states |1〉 ≡ |F = 1,mF = −1〉

and |2〉 ≡ |F = 2,mF = 1〉. Conversion between the two components is achieved with

a microwave field slightly detuned from the |1〉 to |2〉 internal conversion energy. A

“modulation beam,” an off-resonant laser beam whose small spatial focus provides a

requisite spatial selectivity, is dithered rapidly across the BEC. The laser beam induces

a small AC Stark shift in the |1〉 to |2〉 transition energy. The phase and amplitude of

this effective frequency modulation varies from point-to-point in the sample in a spatial

pattern determined by the time-varying position of the optical modulation beam; thus

the microwave-induced inter-component conversion varies in phase and amplitude across

the BEC.

In our experiment, we start with a uniform-phase (i.e., ground state) condensate

of component |2〉. To make a soliton, we choose a modulation beam pattern such that

inter-component conversion is suppressed in the middle of the sample, whereas the

upper and lower parts of the BEC undergo conversion to component |1〉 with an initial
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phase offset of π between the two parts [Figure 3.26]. Uncontrolled variations in the

timing of the modulation cause the angular orientation of the soliton nodal plane to

vary randomly from one soliton to the next. For further details, see our earlier vortex

work [121] and theory by Williams and Holland [159]. The soliton state contains about

3×105 |1〉 atoms, and the filling consists of about 7×105 |2〉 atoms. The axial (vertical)

trap frequency is 7.6(3) Hz, the radial (horizontal) frequencies are 7.8(3) Hz, and the

condensates have a Thomas-Fermi (TF) radius of 28 µm. The solitons are created at

temperatures of T = 23(6) nK, or T/Tc = 0.8(1), where Tc is the BEC phase transition

temperature.

After removing the coupling field, we observe the trapped excited-state conden-

sates using nondestructive phase-contrast imaging. Our probe laser is tuned such that

only component |1〉 is visible, and these atoms appear bright on a dark background. As

described in [121], a filled-core vortex appears as a dark hole in a bright atom cloud.

Similarly, a soliton with a filled nodal plane appears as a dark band that divides the

|1〉 BEC. This two-component BEC can be described as a bright soliton of component

|2〉 trapped within the |1〉 dark soliton [25]. The filling material of |2〉 atoms stabilizes

the dark soliton against dynamical instabilities; the filled solitons are observed to last

for at least 800 ms.

To study the dynamical instabilities of the solitons, we first use resonant light

pressure to selectively remove the |2〉 atoms that fill the nodal plane. The |2〉 atoms are

adiabatically removed over 100 ms, and a bare dark soliton of component |1〉 remains.

The soliton node and any soliton decay products are then too small to be observed

while the BEC is held in the trap [26]. We thus remove the trapping potential and

allow the BEC to ballistically expand, causing the variations, or ‘defects,’ in the density

distribution to also expand [70]. These density defects are then resolvable. We obtain

a final near-resonance phase-contrast image of the expanded atom cloud, using a probe

detuning of 20 MHz. Expansion imaging has previously been used to detect bare vortex
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Figure 3.26: Experimental setup for soliton engineering is shown in (a,b). A linear
gradient in light intensity (a) from an offset laser beam is rotated about the condensate
center at a frequency ωm. A pair of microwave coupling drives (b) is applied between
internal |1〉 and |2〉 with detunings of δ = ±ωm. Using the results of Section 3.3, the
experimental setup can be shown to be equivalent to the simpler wavefuction engineering
technique as described in (c,d). The light intensity undergoes a “see-saw” modulation
(c) at frequency ωm and only one coupling drive (d) is used. The node of the soliton is
formed along the pivot of the seesaw, where no intensity modulation occurs and, as a
result, no population transfer occurs between states |1〉 and |2〉 .
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cores [118, 51].

3.8.4 Numerical calculations

Before discussing experimental data, we briefly describe results of numerical

calculations. The techniques employed have been described in detail in Ref. [81].

The equilibrium configuration, dynamics, and Bogoliubov excitation spectrum for a

two-component condensate at low temperatures may all be obtained from the appro-

priate three-dimensional time-dependent Gross-Pitaevskii (GP) equation [137], with

N1 = 3 × 105 |1〉 atoms in a state initially constrained to have odd parity along one

axis, and 0 ≤ N2 ≤ 7 × 105 |2〉 atoms in an even-parity state. The spherical trap fre-

quency is chosen to be ν0 = 7.8 Hz, and the intra- and inter-species scattering lengths

are (a11 , a22 , a12) = 5.5 × (1.03 , 0.97 , 1.0) nm, respectively [99]. The behavior of the

BEC in full two-component simulations, in which we approximate a slow removal of the

|2〉 atoms, is found to be qualitatively similar to simulations where we set N2 = 0 at the

outset. In all cases, the soliton is found to undergo a snake instability, decaying into

vortex rings.

Indeed, the Bogoliubov spectrum contains modes with complex frequencies for all

N2 considered; such modes have been shown to drive the soliton instability [81]. For

N2 ≥ 4×105, only one such mode remains, with imaginary frequency of magnitude ν ∼

(4×104/N2)ν0. Assuming a soliton decay time ∝ ν−1, a filled soliton with N2 = 7×105

is expected to be stable for longer than 2 s, consistent with experimental observations.

The results of a one-component (N2 = 0) simulation are shown in Fig. 3.27. The

soliton decays into three nearly concentric vortex rings approximately 130 ms after initial

formation. In general, the rings tend to migrate towards the condensate surface, and

may then grow, shrink, and reconnect with each other. The innermost ring is the most

stable, remaining intact for at least 150 ms in the absence of a collision with another

ring. Along an imaging axis parallel to the plane of a given vortex ring, the integrated
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column density reveals two dips in the density distribution, connected by a fainter line.

The ring, however, is not constrained to lie in any given plane, and may bend and tilt,

producing other types of images. In elongated traps with aspect ratios of two or higher,

simulations indicate that a soliton can decay directly into nearly parallel vortex lines

rather than rings; however, this behavior is not obtained for spherical traps.

3.8.5 Experimental results

In our experimental cycle, we first create a filled dark soliton and obtain a non-

destructive image of the initial trapped (filled) soliton. Over the next 100 ms, we remove

the |2〉 atoms from the soliton nodal plane until only the |1〉 atoms remain. The trapped

single-component condensate is then held for a variable hold time before being allowed

to ballistically expand for 56 ms [27]. Finally, the expanded density distribution is

recorded.

Images of the decayed solitons typically reveal two dips in the condensate density

distribution, as shown in Fig. 3.28(b)-(e). While our images are consistent with the

expected signatures of vortex rings, they are inconclusive evidence for the decay of

solitons into vortex rings; from a single image containing only a pair of density dips,

we can not differentiate between a single vortex ring and a pair of vortex lines.

For comparison, an expanded vortex line is shown in Fig. 3.28(a). We believe that our

signal-to-noise levels may limit our ability to see a dark line connecting the two clear

density defects that would indicate the sides of a ring. We also note that high-frequency

excitations visible in T = 0 simulations would be quickly damped for T > 0, and thus

not seen in the experiment.

Because detection of two-dimensional topological structures, such as dark solitons

and vortex rings, can be enhanced by probing along two orthogonal directions, we

added an additional probe beam. In our improved apparatus, the second probe beam

is orthogonal to the original beam, and propagates horizontally (as does the original).
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Figure 3.27: Results of numerical simulations showing the decay of a black soliton in a
BEC. The simulation corresponds to 3×105 87Rb atoms in a spherically symmetric trap
with frequency 7.8 Hz. Successive frames are shown at 50 ms intervals, with the first
frame at 100 ms after the start of the simulation. The first row shows the density profile
of the condensate, integrated down an axis parallel to the soliton plane. The low-density
regions within the cloud are also rendered (second row), with views perpendicular to
the soliton plane.

(a) (b) (c) (d) (e)

22
0 
µm

Figure 3.28: Typical images of expanded condensates, and their initial states (insets)
before the |2〉 atoms were removed. (a) A vortex, (b)-(e) the decay products of solitons.
Image (e) was taken with a hold time of 500 ms; all other images were taken with a
hold time of 0 ms, in addition to the 100 ms |2〉 removal and the 56 ms expansion [22].
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Figure 3.29: (a) An illustration of our probe beam paths. (b)-(e) Simultaneous 100-
µm-square images of trapped condensates from the front and side imaging directions.
Shown are (b) a ground state condensate of component |1〉, (c) a shell of |1〉 atoms
around a central ball of |2〉 atoms [21,22], (d) a |1〉 vortex filled with |2〉 atoms, and (e)
a horizontally oriented dark soliton of component |1〉, filled with |2〉 atoms.

The beams intersect at the condensate. Phase-contrast imaging is used independently

with each beam path, and the probe beams propagate towards different sides of a

single charge-coupled device (CCD) camera array. The apparatus allows us to take

simultaneous pictures of condensates from the ‘front’ (original) and the ‘side’ (added)

directions using a single camera, as illustrated in Fig. 3.29(a). While we can observe

the full depth of the filled soliton node along the front direction, regardless of the initial

orientation, the nodal plane is usually at an oblique angle to the side probe, and soliton

contrast is thus reduced. Examples of simultaneous images of trapped condensates

from the front and side are shown in Figs. 3.29(b)-(e). In the pair of images shown in

Fig. 3.29(d), the filled core of a vortex is visible as the dark hole in the front image,

and as the dark band in the side image. In Fig. 3.29(e), a filled horizontal dark soliton

appears as a band across the condensate in each probing direction, demonstrating that

the BEC is split into two sections.

The use of two orthogonal probe beams confirms that dark solitons indeed decay

into vortex rings. With the two beam paths, we observed pairs of density dips in simul-

taneous side and front expanded images of decayed solitons. In each image set shown
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in Figs. 3.30(b)-(d), pairs of density dips lie nearly horizontally and at corresponding

locations within the two BEC images. We have also obtained images in which a faint

line corresponding to a decrease in integrated column density can be observed between

two defects in one of the expanded images, as shown in Figs. 3.30(e) and (f), providing

further striking demonstrations of soliton decay into vortex rings. Figures 3.30(e)-(g)

emphasize that when the vortex ring is not close to horizontal, clear pairs of density dips

are not seen in the side images. However, a weak ring-shaped halo may be discerned

in the side image residuals of Figs. 3.30(e) and (g), when the ring is in a near-vertical

plane orthogonal to the side probe direction. Although the halo signal is only slightly

above the noise of the residuals, it can be noticed when compared to the residuals for

an expanded ground state condensate, shown in Fig. 3.30(a). Images in Figs. 3.30(b)

through (f) represent the best 10% of our data showing solitons decaying into rings;

Fig. 3.30(g) is typical.

Numerical as well as experimental data show great variability in the types of

images that can be expected after a soliton decays. For example, Fig. 3.30(h) is a

rare example showing two clear density dips in the side image, but here a clear line

corresponding to the defect extends through the entire condensate in the front image

and residuals. It is possible that this image shows soliton decay into two vortex lines

rather than a ring, or breakup of a ring into vortex lines. We defer to a future paper a

discussion of the diversity of our images, which may result from interesting vortex ring

dynamics, including vortex ring bending, tilting, and reconnections.

Small perturbations unavoidably induce a dark soliton to decay. In a spherically

symmetric BEC, a soliton decays into a relatively stable vortex ring. In addition to

demonstrating this nonlinear decay, our experiment shows that condensates can indeed

support vortex rings, which may be detected via expansion imaging. Future experiments

may include studies of vortex ring stability, lifetime, and dynamics [108], as well as

investigations into vortex structures created by impurity motion above a superfluid
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Figure 3.30: Images of expanded condensates and their initial states (insets), as viewed
along both imaging axes. Each subfigure consists of two expansion images (top row of
each subfigure) and two images of residuals plots (bottom row), obtained after subtract-
ing a TF fit of each expansion image. The white regions in the residuals correspond
to depletion of fluid in the BEC. The residuals are superimposed with white ellipses
outlining the fit TF profiles of the condensates, for position reference. (a) An expanded
ground state condensate. (b)-(h) The decay products of solitons. The hold times (be-
tween |2〉-atom removal and BEC expansion) were 0 ms for images (a)-(c),(f), and (g);
50 ms for (d) and (e); and 150 ms for (h). For all images, we reduced background noise
(fringes) using a digital fourier-transform filter.
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critical velocity [130]. Possibilities to create vortex rings by other means may also be

explored, such as by passing objects through the BEC [107].

3.9 Wavefunction engineering at DC

The wavefunction engineering technique with two-component condensates uses

a space- and time-dependent modulation of the resonance between the two internal

components. In this way, arbitrary control over the population transfer between the

states is realized [Section 3.3]. It is, however, possible to exert some degree of spatial

control over the population transfer through the application of static gradients in the

resonance across the condensate. This method of wavefunction engineering “at dc,”

which is an extension of earlier work in this group on two-component condensates [121],

provides an extremely simple way to generate dark solitons in a condensate and may be

extended to generate stacks of several solitons.

The method takes advantage of preexisting features of the 87Rb two-photon transi-

tion used in the experiment [Figure 3.2] as well the magnetic potential confining the con-

densate. In particular, the two-photon transition between the simultaneously trapped

states |F = 1,mF = −1〉 (“|1〉”) and |F = 2,mF = 1〉 (“|2〉”) occurs via a magnetically

untrapped state, |F = 2,mF = 0〉. As a result, there arises a gradient in the tran-

sition’s intermediate state detuning ∆int across the vertical extent of the condensate

[Figure 3.31]. Essentially this gradient is due to the force of gravity, which the magnetic

trapping force counterbalances for the trapped |1〉 and |2〉 states but cannot for the

intermediate state because of its vanishing magnetic moment.

The gradient in intermediate state detuning has the peculiar effect that it does

not change the two-photon resonance frequency across the condensate but instead adds

a vertical gradient to the on-resonant coupling strength (Rabi frequency Ω0)[Eqn. 3.2].

In keeping with the local Bloch picture developed in Section 3.3, a “pseudospin” can

be associated with the internal two-level system {|1〉,|2〉} at each vertical point in the
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Figure 3.31: Vertical variation in two-photon intermediate state detuning ∆int across a
magnetically trapped condensate. The magnetically untrapped intermediate state feels
a linear potential gradient (force) due to gravity.
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Figure 3.32: Local pseudospin �ρ (inset) at each vertical point labeled “a...e” on the con-
densate. The on-resonant Rabi frequency Ω0 increases vertically, as indicated schemat-
ically.

condensate [Figure 3.32]. The pseudospin’s polar angle θ characterizes the population

difference between |2〉 and |1〉 while the azimuthal angle φ defines their relative phase.

At t = 0 before any coupling drive is applied, the condensate is in a single internal

state such that the pseudospin points down (for |1〉 ) or up (for |2〉 ) everywhere on

the condensate [Figure 3.33(i)]. The application of an on-resonant coupling drive to

the condensate is equivalent to introducing a torque vector along the 1̂-axis of the

Bloch sphere. This causes the pseudospin to precess in the 2-3 plane about the torque

direction, corresponding to on-resonant Rabi oscillations. Because of the gradient in

Ω0, the size of the torque changes for different vertical positions across the condensate

and the precession of the pseudospin progresses at different rates locally.

After some time, the Rabi oscillation at the top of the condensate will be 2π out

of phase with the oscillation at the bottom. This corresponds to a full 2π spread in the

pseudospin’s orientation across the condensate - one “winding” [Figure 3.33(iii)]. At this

time in the condensate, a central region of one spin component vertically separates two

outer regions of the other, forming a “hamburger-and-bun” appearance [Figures 3.33(iv)

and 3.34]. From the Bloch sphere, it is clear that there must also a vertical step of π

in the relative phase φ across the middle of the condensate (Compare points b & d in
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Figure 3.33: Filled dark soliton creation from a static vertical gradient in the Rabi
frequency. (i) The condensate begins in one internal state (|2〉) such that the local
pseudospin points up at all vertical positions on the condensate labeled a through e.
(ii) The initial condensate wavefunction Ψ is sketched as a function of vertical trap
co-ordinate z. (iii) Eventually the vertical gradient in Rabi frequency leads to a com-
plete angular spread in the pseudospin across the condensate. (iv) The corresponding
wavefunction is shown for each of the two-components, |1〉 (dotted line) and |2〉 (solid
line).
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φ = π

φ = 0

Figure 3.34: Three-dimensional density distribution of a filled dark soliton, inferred from
two orthogonal images shown in side panel projections. Only the bimodal distribution
of the spin component containing the soliton is displayed. The other component fills
out the intervening space forming the horizontal soliton plane.

figure 3.33(iii)). This phase step is wholly associated with the spin component lying in

the outer regions since its density node permits the rapid phase change at the center

of the condensate. Very simply then, what has been created is a horizontally-oriented

filled dark soliton as for Section 3.8! To confirm this indirectly, the central component

filling out the soliton plane has been removed to induce the decay of the soliton to

vortex rings. After ballistic expansion of the condensate, two axes of images have been

used to identify the usual signature of a vortex ring [Figure 3.35], which shows up in

every shot. The reproducibility is due to the fact that the soliton (and consequently

the vortex ring) is always formed in a plane including the two imaging axes.

This soliton creation technique has a few additional features of potential interest.

First, if the drive is applied until two or more windings are present in the condensate,

a stack of solitons may be created [Figure 3.36]. Unfortunately, corresponding stacks of

vortex rings were not observed in expansion. Second, if the coupling drive is not exactly

resonant, the phase steps will be smoothed out somewhat and be reduced from π, in

other words creating filled gray solitons. Stacks of gray (moving) solitons suggest the

possibility of their collisions; however, since each member in the stack has a phase step
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Figure 3.35: Typical vortex ring formed from a “winding soliton.” (a) The vortex ring
is in a plane including the two orthogonal imaging axes, labeled “front” and “side.”
(b & c) Expansion images showing the characteristic pairs of density dimples in both
imaging axes. The dimples correspond to the points on the vortex ring tangent to the
imaging direction.

with the same orientation, the gray solitons will all move in the same direction probably

precluding any collisions.

As a final note of general interest, soliton creation through winding demonstrates

the quantum weirdness of a spin-1/2 (SU(2)) system. At the time of a single winding in

the condensate, the Rabi oscillations at the top and bottom edges of the condensate are

2π out of phase, which for a classical oscillation would indicate rephasing. Both regions

are in the same spin state yet a π phase difference still exists between them, creating

the soliton. Only after a full 4π phase evolution has occurred will the local spin-1/2

systems at the top and bottom of the condensate be rephased.

3.10 More angular momentum

The wavefunction engineering implemented so far with frequency modulation has

used the first sideband for coherent control [Section 3.3]. What do the higher-order

sidebands offer? For the nth sideband, the phase of the engineered wavefunction is an

n-fold multiple of the modulation phase, as has been shown explicitly for the cases n = 1

and n = 2 [Eqn. 3.15]. This has an interesting consequence in the creation of quantized

vortices where a modulation pattern with a 2π azimuthal phase gradient is applied to

the condensate. As has been demonstrated in Section 3.3.3, the first sideband can be
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t = 0 ms t = 14 ms t = 27 ms t= 65 ms t = 75 ms

Figure 3.36: Vertical stacks of solitons arising from a static vertical gradient in the Rabi
frequency. Successively larger number of solitons are obtained by applying the coupling
drive for a longer time t as indicated.

used to transfer the 2π phase winding from the modulation pattern onto the condensate

phase to form a singly quantized vortex. Tuning instead to the nth sideband should

transfer an n-fold winding of 2π, in other words an � = n vortex! A simulation of the

second sideband case (ωm = Ω/2) is shown in Figure 3.37.

In practice, wavefunction engineering via the second sideband has proven to be

unsuccessful because the coupling is strongly reduced compared with the first sideband

[Eqn. 3.15]. More complicated modulation patterns might make it possible to create

multiply quantized vortices using only the first sideband. Instead, a third method has

been attempted to create an � = 2 vortex. A multi-step engineering process is per-

formed in which two � = 1 windings are sequentially engineered into the condensate

[Figure 3.38]. An � = 2 vortex is expected to be unstable against decay to two � = 1

vortices, which is a lower energy configuration [129]. Indeed, two � = 1 vortices are

observed in expansion following the engineering process [Figure 3.38(c)]. Unfortunately,

it is more likely that motion of the condensate in the intervening time between engi-

neering stages has led to the direct creation of a pair of offset � = 1 vortex cores rather

than a single � = 2 state. Recently, vortices with charge � = 2 have been created in a

condensate using a different technique that is nevertheless a form of coherent control

[28].

The process of adding more vorticity to a condensate through sequential stages

of wavefunction engineering is limited to two iterations because of the 50% transfer
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Figure 3.37: Simulation of � = 2 vortex engineering using the second modulation side-
band to control the transfer of population from state |2〉 to |1〉. (a) Growth of the vortex
population forming a ring of |1〉 fluid at the condensate perimeter. Time is indicated
in units of the average effective Rabi frequency Ω. (b) Relative phase at t=6 between
|2〉 and |1〉 , which may be interpreted as the phase of |1〉 relative to the flat phase
reference of the initial state |2〉. (c) Transfer dynamics within one Rabi cycle (2π/Ω),
showing two � = 1 cores separating, rotating around one another, and re-merging.
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Figure 3.38: Multiple vorticity (� = 2 × 1) with multi-step wavefunction engineering.
(a) Four sequential nondestructive images show a |2〉 vortex being engineered into a
non-rotating trapped condensate. (b) The |1〉 fluid filling the vortex core is selectively
removed and the remaining |2〉 vortex transferred into the |1〉 state with a fast coupling
pulse (not shown). (c) A second stage of wavefunction engineering, using the |1〉 vortex
as an initial state, adds another 2π winding to the condensate. (d) An image of the
ballistically expanded condensate shows two vortex cores, verifying the creation of a
condensate with two units of circulation.
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efficiency at each stage. In the next chapter a new approach is taken to introduce large

amounts of angular momentum into a condensate in the form of many singly-quantized

vortices.



Chapter 4

Vortex Lattices

4.1 From quantum to classical ... and on to quantum

Chapter 3 focused on the creation and behaviour of one quantum of circulation

- in other words singly quantized vortices - in a condensate. This chapter deals with

the opposite limit of highly rotating condensates containing large amounts of vorticity.

The experimental technique has been honed to the point where condensates with large

numbers of both atoms and vortices can be made relatively reproducibly. The approach

to creating vortex-full condensates is different from that taken in other experimental

groups and involves the evaporative cooling of a rotating cold gas to quantum degener-

acy. In this way a condensate is created in equilibrium with the rotating environment

of the normal gas surrounding it. At high rotation rates, large, well-ordered triangular

lattices of vortices are observed in the condensate. In the limit of large amounts of vortic-

ity, the correspondence principle would suggest that the velocity flow in the condensate

should mimic classical rigid-body rotation. This of course applies only on a macroscopic

scale coarse-grained over the vortex core structure [Figure 4.1]. Classical-like rotational

effects, such as centrifugal distortion of the condensate’s density, are explored exper-

imentally in this chapter. With direct detection of the vortex cores available, it has

also been possible to study the “microscopic” structure of the vortex arrangements,

both at equilibrium and under dynamical conditions where applied stress can distort

the equilibrium lattice configuration.
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Figure 4.1: (a) Vortex lattice and (b) classical rigid-body rotation.

As a final note, in the rigid-body regime, the areal density nV of vortices grows

linearly with increasing rotation of the condensate. However, even though rotation

rates up to 95% of the centrifugal limit are demonstrated in this chapter, the vortex

distribution remains in the “dilute limit” where the spacing between vortices ∼ n
−1/2
V

is much larger than the typical core size given by the healing length. Since the core size

grows with decreasing atomic density, the limit of a very rapidly rotating, distended

condensate and reduced atom number allows vortices to begin to approach one another.

The “true” quantum limit is ultimately reached where a vortex occupies the same area as

an atom in the condensate. Under these circumstances recent theory [63, 133, 101, 146]

predicts the transformation of the condensate from a vortex lattice state to a strongly

correlated quantum system, associated with quantum Hall physics. The techniques

developed in this chapter hopefully will provide the starting point for achieving this

new regime of rotating condensate physics.
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4.2 Intrinsic vortex nucleation [97]

4.2.1 Abstract

We have developed an evaporative cooling technique that accelerates the rotation

of an ultra-cold 87Rb gas, confined in a static harmonic potential. As a normal gas is

evaporatively spun up and cooled below quantum degeneracy, it is found to nucleate

vorticity in a Bose-Einstein condensate. Measurements of the condensate’s aspect ratio

and surface-wave excitations are consistent with effective rigid-body rotation. Rotation

rates of up to 94% of the centrifugal limit are inferred. A threshold in the normal cloud’s

rotation is observed for the intrinsic nucleation of the first vortex. The threshold value

lies below the prediction for a nucleation mechanism involving the excitation of surface-

waves of the ground-state condensate.

4.2.2 Introduction

To paraphrase an ancient riddle, what happens when an irresistible torque meets

an irrotational fluid? The answer has been known for more than 50 years: a quantized

vortex is nucleated. Vortices alone contribute to a superfluid’s rotation, so that the

bulk of the fluid may remain curl-free. The nucleation of vortices in bulk superfluid

Helium has been the topic of extensive study (for a review see [74]). In the archetypical

experiment, a rotatable pot filled with a mixture of superfluid and normal liquid Helium

undergoes gradual angular acceleration. The normal fluid and the walls of the pot

rotate together as a rigid body, defining a rotating environment. At some threshold

angular velocity, a vortex line is nucleated at the circumference of the pot, and then

quickly migrates inward until it is collinear with the axis of rotation. Further angular

acceleration results in the nucleation of more vortices; eventually the fluid is filled with

an array of vortex lines [29]. A central theme [30] of this research is the question: to

what extent is the nucleation process “extrinsic,” i.e. dependent on such details as the
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roughness of the surface of the walls, and to what extent is it “intrinsic” [31, 32], i.e.

driven (in the limit of microscopically smooth walls) by the flow of normal fluid along

the boundary of the superfluid? In the analogous rotating-potential experiments with a

dilute-gas Bose-Einstein condensate (BEC), the confining potential and the normal fluid

typically rotate at different rates [94]. In this context, the extrinsic-intrinsic question

can be restated as: is it the confining potential or the normal fluid that defines the

rotating environment?

Vortices in a BEC have been created with wavefunction engineering [33], through

the decay of solitons [50, 75], and in the wake of moving objects [104, 34]. The first

rotating-potential experiment to detect vortices in a BEC was performed by the Paris

group [118]; results have also been obtained by the MIT [48] and Oxford [103] groups.

In these experiments the role of the normal fluid was secondary to that of the rotating

potential; it is conceivable the normal fluid was not rotating at all. This section presents

vortex nucleation experiments performed in the opposite limit, namely in the environ-

ment of a rotating normal gas in a static confining potential. Such an environment

allows for the isolated study of the intrinsic mechanism for vortex nucleation.

4.2.3 Evaporative spin-up

Our experiments begin with a magnetically trapped cloud of about 6 · 106 87Rb

atoms, in the |F = 1,mF = −1〉 hyperfine state, cooled close to the critical tempera-

ture Tc = 67nK. The atoms are initially confined in an axially symmetric, oblate and

harmonic potential [136] with axis of symmetry along the vertical (‘z’) axis. To induce

rotation of the cloud, we first gradually apply an elliptical deformation to the potential

in its horizontal plane of symmetry, and then rotate the deformation [109] about the

vertical axis at a fixed angular frequency. The rotating potential is characterized by

an axial frequency ωz = 2π(13.6)Hz, average radial frequency ω̄ρ = 2π(6.8)Hz and a

horizontal ellipticity of 25%. Such a large rotating trap asymmetry, accessible in the
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oblate configuration of our apparatus, is found to be necessary not only to get the cloud

rotating, but also to sustain ongoing rotation. Moreover, in steady state the cloud does

not reach the rotation rate of the applied asymmetry. We believe that the stirring

process is fighting a small, static asymmetry that acts to despin the cloud [35].

In thermal equilibrium, a normal cloud rotates as a rigid body with the centrifugal

force causing the cloud to bulge outwards in the radial direction. In order to detect the

rotation, we use a nondestructive phase-contrast technique to image the cloud in situ

from the side. Four sequential pictures of a given cloud are taken to average over

oscillations in the widths and to improve the signal to noise. The cloud temperature is

extracted from its vertical width σz, which is unaffected by rotation about the vertical

axis. The rotation ΩN of a cylindrically symmetric cloud is determined from the aspect

ratio, λ = σz/σρ, using the relation:

Ω/ωρ =
√

1 − (λ/λo)2 (4.1)

where λo is the static aspect ratio. The technique of side-view imaging is crucial for

distinguishing between changes in radial size due to temperature and to rotation.

For stirring rates up to 2.5Hz, the rotation of the cloud reaches its steady-state

value by 15s or less. After 15s, the rotating trap asymmetry is ramped off, leaving

non-condensed clouds a factor of 1.2 – 1.3 above Tc, for stirring frequencies 0 – 2.5Hz.

Radio frequency (rf) evaporation is then used to cool the normal cloud to BEC. In

the oblate configuration of our TOP trap [136], we have found that rf evaporation

immediately quenches the rotation, presumably because the selection process, which

removes atoms with large radial displacements, preferentially removes atoms with large

axial components of their angular momentum. By adiabatically distorting the trap

into a prolate geometry with {ωρ, ωz} = 2π{8.35, 5.45}Hz [78], we can instead cool

the cloud by removing atoms with large axial displacements and thereby reduce the

effect of the evaporation on the axial angular momentum [Figure 4.2]. As the normal
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Figure 4.2: Vertical crosssection of the evaporation surface in the prolate confining
geometry of the TOP trap. The surface, which represents a contour of magnetic field
at which the radio-frequency evaporation is resonant, forms a shallow cone in three
dimensions with an angle θ � 10◦ from the horizontal. The prolate shape of the confining
potential has the effect of making the evaporation surface effectively shallower (θeff �
6◦).

cloud is evaporated, its aspect ratio is observed to decrease continuously, indicating a

monotonically increasing rotation rate (Fig. 4.3a). During the evaporation, the angular

momentum per particle of the normal cloud remains roughly constant, even though the

number of atoms is reduced by over a factor of five and temperature, by a factor of four

(Fig. 4.3b). As the cloud cools and shrinks, it must spin up for the angular momentum

per particle to remain fixed.

To reach significant rotation rates by the end of evaporation requires the lifetime

of the normal cloud’s angular momentum to be comparable to the evaporation time.

The nearly one-dimensional nature of the evaporation together with the low average

trap frequencies make cooling to BEC in the prolate trap very slow (∼50s). We obtain

angular momentum lifetimes this long [Figure 4.4] by shimming the azimuthal trap

symmetry to better than 0.1%.

4.2.4 Highly rotating pure condensates

Towards the end of the evaporation, a condensate begins to appear at the center

of the rotating normal cloud [36]. We discuss first the results of experiments in which
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Figure 4.3: (a)Aspect ratio λN of a rotating normal cloud during evaporation preferen-
tially along the axis of rotation. Data for three initial cloud rotations are shown, ob-
tained by first stirring for 15s with an applied rotation of 0ω̄ρ (inverted triangles), 0.07ω̄ρ

(open circles) and 0.37ω̄ρ (squares). (b)Angular momentum per particle (squares) and
temperature (triangles) of the normal cloud during evaporation for the 0.37ω̄ρ case.
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Figure 4.4: Aspect ratio of a normal cloud as a function of time after transfer to the
prolate confining geometry. Open (filled) squares indicate the case of a static (rotat-
ing) cloud. The lines correspond to exponential decay fits with a single time constant
τ1=2.2(2)s for the static case and two time constants, τ1=2.2s fixed and τ2=60(6)s, for
the rotating data. The initial rapid decay associated with τ1 is on the order of the col-
lison rate in the gas and corresponds to rethermalization of the cloud shape to the new
confining geometry. The longer decay of the rotating cloud’s aspect ratio is associated
with the damping of its rotation as a result of residual trap asymmetries.

we continue the evaporation until little or no normal fraction remains. In this case,

we find that the rotating normal component has given birth to a condensate distended

in its radial dimension, as one would expect for a classical rotating body under the

influence of the centrifugal force [Figure 4.5]. This effect is reminiscent of liquid Helium

experiments, in which the surface of a rotating bucket of superfluid exhibits the same

meniscus curvature as for an ordinary viscous fluid [37]. For large enough numbers of

vortices in the condensate, the correspondence principle would suggest that the rotation

field, coarse grained over the cloud, should go over to the classical limit of rigid-body

rotation. In this limit, the classical Eq. (4.1) should connect condensate aspect ratio to

rotation rate.

Alternatively, we can study the angular momentum in the BEC directly by excit-



129

Static Rotatingz

xy

60
 µ

m

80 µm

(a) (b)

Side
View

Figure 4.5: Side view images of (a) a static and (b) a highly rotating condensate. The
imaged clouds are characterized by atom number {3.3·106, 4.5·106} and aspect ratio
{1.586, 0.5}.

ing quadrupolar surface waves [61, 98] with a rotating weak deformity of the magnetic

trap. The quadrupolar surfaces waves are characterized by angular momentum quan-

tum number mz = +(−)2 describing an excitation that is co-(counter-)propagating with

the rotation of the condensate. By varying the initial stir rate applied to the normal

cloud, condensates of different aspect ratio can be accessed for study. In Fig. 4.6a, the

frequency of the mz = ±2 modes is shown as a function of condensate aspect ratio. The

mz = +2 mode is seen to speed up and the mz = −2 to slow down due to the presence

of vorticity in the condensate.

For small rotation rates, the splitting between the mz = ±2 modes is predicted to

be linearly proportional to the mean angular momentum of the condensate [39, 161] (see,

though, Section 3.7). In the large-Ω limit of rigid-body rotation, Zambelli and Stringari

[161, 38] have used a sum-rule argument to show that the splitting between the modes

is simply 2Ω, and, further, that the sum of the squared frequencies of the two modes is

independent of rotation rate. Cozzini and Stringari [66] have shown that hydrodynamic

equations including a rigid-body rotation field �Ω∧�r reproduce the sum-rule result. The

frequencies of the m = ±2 modes are explicitly:

ω±2 =
√

2ω2
ρ − Ω2 ± Ω. (4.2)
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Figure 4.6: Quadrupolar surface-wave spectroscopy of condensates formed in a rotating
normal cloud. (a)Quadrupolar frequency as a function of condensate aspect ratio for
the m = +2 (squares) and m = −2 (triangles) surface waves. Solid lines are a single fit
to the combined data using the theory of Zambelli and Stringari [161, 38]. Dotted lines
indicate average frequency and aspect ratio for a static BEC. (b)The splitting between
m = ±2 frequencies scaled by twice the radial trap frequency, plotted explicitly as
a function of BEC rotation rate inferred from the aspect ratio. The solid line is the
prediction from the same theory as in (a). Each plotted point is obtained from a single
m = −2 measurement in (a) combined with a spline interpolation to the relatively quiet
m = +2 data. Only aspect ratios smaller than 1.43 (corresponding to ΩBEC/ωρ ≥ 0.35)
are included to avoid obtaining imaginary rotation frequencies due to experimental noise
in the aspect ratio.
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A best fit of this model to the combined m = ±2 data is shown in Fig. 4.6a, where

the rigid-body rotation rate has been inferred from the condensate aspect ratio and the

classical Eq. (4.1). Perhaps more intuitively, the frequency splitting is plotted explicitly

versus inferred rotation rate in Fig. 4.6b. The excellent agreement with the model of

Zambelli and Stringari is compelling evidence in favor of the reasonableness of using

Eq. (4.1) to connect the condensate aspect ratio with its effective rotation rate. This is

further born out by extensive 3-D numerical simulations of the Gross-Pitaevskii equation

for the parameters of our experiment, by Feder and Clark. Their numerical simulations

confirm that a condensate in an environment rotating at frequency Ω > 0.5 ωρ will

equilibrate close to the aspect ratio given by Eq. (1) [40].

In pure condensate samples we have observed aspect ratios as pronounced as

0.35 λo, corresponding to a rotation rate of 0.94 ωρ. The rapid rotation rate, combined

with the increased condensate area arising from its radial bulge, mean that the conden-

sate must be supporting a large number of vortices. Feder and Clark [40] calculate 56.

With these initial conditions, we have observed continued rotation for at least 140 s.

4.2.5 Mutually rotating condensate and normal cloud

If the evaporation is stopped before the normal cloud has been completely re-

moved, a comparison can be made between the aspect ratios, and hence rotation rates,

of the condensate and normal cloud. By adjusting the initial stir rate applied to the

normal cloud and the depth of the evaporation, we are able to reach different rotation

rates for a given condensate fraction. After the evaporation is stopped, a time of 5 s

is allowed for the gas to rethermalize to the last evaporative cut. We then take four

nondestructive pictures and fit the images to a two-component distribution. Figure 4.7

shows a plot of the condensate aspect ratio λBEC compared with the aspect ratio λN

of the normal cloud where each point represents a single realization of the experiment.

For λN < 1.36 (ΩN > 0.5 ωρ), the condensate aspect ratio closely tracks the
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Figure 4.7: (a)Aspect ratio of the BEC vs. that of the normal cloud after evaporation
halted. Right and top scales provide a conversion from aspect ratio to classical rigid-
body rotation rate for BEC and normal cloud respectively. Data for evaporation of
both a static (empty squares) and rotating cloud (filled squares) are shown. Dotted
lines indicate average static aspect ratios for both BEC and normal cloud. A solid
1:1 line is superimposed on the data. Three representative integrated density profiles
of two-component clouds indicate the range of different aspect ratios observed. (b)A
magnified version of the region of high aspect ratio (low rotation rate) in (a). Added to
the plot are data (triangles) obtained with evaporative spin-up 3 times slower than for
the filled squares. A dashed line indicates the aspect ratio expected for a BEC with a
single, centered vortex as calculated by Feder and Clark [40].
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normal aspect ratio, providing a further manifestation of the correspondence principle

for a highly rotating BEC. In the vicinity of λN = 1.48 (ΩN = 0.35 ωρ), we observe

threshold behavior in the condensate rotation. At this low value of rotation we don’t

expect the rigid-body model to be valid for the condensate; but we make use of a

numerical calculation by Feder and Clark [40] to indicate the change in condensate

aspect ratio associated with the presence of a single, centered vortex (Fig. 4.7b). There

is considerable scatter in the data so one cannot make a strong statement about the

nature of the threshold shape, but clearly, somewhere between 0.32 < ΩN/ωρ < 0.38

the first vortex is nucleated.

A comparison of the observed threshold with two theoretical rotation rates pro-

vides some insight into the nature of the vortex nucleation. The first theoretical value

is Ωc, the critical rotation rate for thermodynamic stability of a single vortex. For our

experiment (with 3 – 8·105 atoms in the condensate component) Ωc is 0.2 – 0.25 ωρ[41],

distinctly lower than our observed threshold for nucleation. The second value is ωmin,

the frequency at which the slowest surface-wave mode propagates around the circumfer-

ence of the condensate. The Paris group has shown that for their ”extrinsic” nucleation

process (vortices nucleated by a rotating asymmetric potential) the key mechanism is

the nonlinear excitation of surface waves [118, 117]. Results from MIT [34, 48] and

from Oxford [103] are also consistent with such a mechanism. For the parameters of

our experiment, ωmin = 0.4 ωρ [68]. Our observed threshold for “intrinsic” nucleation

is clearly under this value; thus, interpreting our effect in terms of a normal “wind”

exciting surface waves on the condensate is problematical. However, because the con-

fining potential is not rotating in our case, the vortex nucleation can only arise from

interaction with the rotating normal cloud.

The data presented in Fig. 4.7 include a range of condensate fraction from 0.1-0.45

for each rotation rate of the normal cloud, although no segregation relative to either

axis is evident for plots of different BEC fractions. Moreover, by reducing the rate of
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evaporation, we have decreased the rate of acceleration of the normal cloud rotation by

a factor of 3, and still observe a threshold for vortex formation between 0.32 and 0.38

(Fig. 4.7b).

Threshold behaviour aside, the rotating normal cloud can create equilibrated

condensates with very large rotation rates. This may allow us in future work to approach

the regime for which the vortices are so close-packed that their separation becomes

comparable to their core size, given by the healing length of the condensate [101].

4.3 Theory responds

The experimental results of the previous section have initiated a discussion in the

literature [158, 53, 134, 145] as to the mechanism for vortex nucleation in the presence

of a rotating normal cloud. The consensus of the theory to date is that the mechanism

is ultimately the same as in the “extrinsic” experiments where vortices are nucleated

with a rotating asymmetric potential. In other words, the nucleation is driven in both

cases by surface-wave instabilities, which allow a vortex to overcome the energy barrier

at the condensate surface and thereby enter into the bulk [68]. For a rotating potential,

the rotation threshhold for the onset of vortex nucleation is set by the minimum surface-

wave frequency

ΩS = min



[ω
�

�

]
(4.3)

where �� defines the angular momentum of the surface mode with frequency ω
. The

above equation is a generalization of the well-known Landau criterion [113] with the

critical velocity now given by vc = ΩSR on a condensate of radius R. For typical ex-

perimental parameters, �min ≈ 10 [68, 53, 134]. In an actual experiment, the nucleation

threshhold may end up somewhat higher than ΩS if the surface roughness of the rotat-

ing potential does not contain a spherical harmonic order � high enough to couple to

the minimum surface wave [68].
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In the intrinsic nucleation experiments, one can think heuristically of the “wind”

of the normal cloud, instead of the rotating potential, driving the surface-waves on a

condensate. More technically, though, one can speak of the gain of a surface mode,

which depends on the mode’s velocity relative to the normal cloud [158, 134]:

γ = γ(0)

(
�ΩN

ω
�

− 1
)

(4.4)

For a static normal cloud (ΩN = 0), all of the surface modes experience a negative gain

or, in other words, are damped. However, if the normal cloud is brought into rotation,

the gain of one or several surface modes on the condensate may become positive leading

to an instability. The onset of the first instability will occur when the normal cloud

rotation is resonant with the slowest surface wave: ΩN = ΩS . More generally, for an

arbitrary rotation rate, Penckwitt et al. [134], using a condensate growth model, have

shown that the surface mode with the largest gain will dominate the vortex nucleation.

The � value corresponding to maximum gain can be found from ∂
( 
Ω
ω
�
− 1) = 0 and

matches �min from Eqn. 4.3 at threshhold.

The primary point of contact between theory and experiment is the location of

the threshhold for first vortex nucleation. The experimentally observed threshhold from

the previous section lies in the range 0.32 < ΩN/ωρ < 0.38, which is somewhat lower

than the slowest surface-wave ωmin/ωρ = 0.4 quoted for our experimental parameters

[Section 4.2]. Anglin [53] provides an analytical expression for the rotation threshhold

based on the local critical velocity at the Thomas-Fermi surface of a condensate. Applied

to our experiment, this yields a threshhold value somewhat closer to the observed one -

Ω/ωρ = 0.41−0.36 for condensate number in the range 3−8·105. The local surface theory

is valid in the limit of short surface-wavelength where the penetration depth δ of the

surface waves into the bulk of the condensate is small compared the Thomas-Fermi size

of the condensate R. In terms of the radial harmonic oscillator length aρ = (�/(mωρ)1/2,

the penetration depth is δ = (a4
ρ/R)1/3. At threshhold, δ/R ≈ 0.1 and the theory is
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expected to reasonably valid.

4.4 Direct observation of vortex lattices

In our initial vortex nucleation experiments [Section 4.2], the vorticity within a

condensate was detected indirectly from the centrifugal distortion of the density pro-

file or from the presence of angular momentum sensed with surface-wave spectroscopy.

Complementary to these techniques assessing “macroscopic” rotational effects is the

direct detection of vortex cores in the density profile of a condensate when observed

along the rotation direction (see also chapter 3). There is considerable interest in the

“microscopic” structure of large amounts of vorticity, where the term “microscopic” is

used to refer to the size scale of the vortex core. In particular, the minimum energy

configuration for a reasonably rotating condensate at equilibrium is expected to con-

sist of a large number of singly-quantized vortex cores arranged in a triangular lattice

[59, 79, 54].

Triangular vortex lattices were first observed in a condensate at the ENS [118]

and somewhat later at MIT [48] and Oxford [103]. Given that the intrinsic nucleation

technique can produce highly rotating condensates (ΩBEC = 0.95ωρ), the system offers

the potential to study large amounts of densely packed vorticity. For this reason as

well as the added benefits of direct vortex detection, we were led to add a vertically

oriented imaging axis to see down the rotation axis of the condensate. After the usual

evaporative spin-up sequence to produce near pure rotating condensates [Section 4.2],

the condensate’s confining potential is discontinuously removed and the condensate

allowed to ballistically expand [27]. The expansion is continued until the vortex core size

is large enough to be resolved with our imaging system at which point the density profile

along the axis of rotation is imaged. Figure 4.8 shows typical images of condensates at

different rotation rates, or equivalently, with different amounts of vorticity. The highly

ordered triangular lattice structure is apparent in the images out to the edge of the
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Figure 4.8: (a). . .(f) Vortex lattices corresponding to condensate aspect ratio
{1.53,1.54,1.42,0.96,0.5,0.54}. For (c). . .(f), the corresponding rigid-body rotation rate
ΩBEC/ωρ is {0.4,0.8,0.95,0.94}. The condensate in (f) has about the same rotation as
case (e) but is larger and contains more vortex cores because the number of atoms is
significantly larger.
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condensate, even though the density profile is non-uniform due to the inhomogeneous

confining potential. It has recently been pointed out [79, 54] that the radially decreasing

density profile in fact helps to preserve the triangular ordering by suppressing distortions

in the lattice structure at the surface of the condensate.

Two applications of vortex core detection are considered here, one at low vorticity

and one at high. In the first application, the vortex nucleation process of Section 4.2 has

been revisited to verify the amount of vorticity at threshhold. In the original experiment,

numerical simulations [79] were relied upon to provide the aspect ratio for a condensate

in the presence of small numbers of vortices. This permitted the identification of the

nucleation threshhold with the creation of a single vortex. The new ability to detect

vortex cores in ballistic expansion allows this to be directly confirmed in the experiment.

A set of data has been acquired similar to that in figure 4.7, where a normal

cloud is spun up to varying degrees and then evaporatively cooled until a condensate

component appears. The average condensate fraction for the data set is NBEC/N ∼

0.34. An in-situ non-destructive image is taken from the side to permit a comparison of

the aspect ratios of the condensate and normal cloud. The sample is then ballistically

expanded and imaged from the top to allow for the visual identification of vortex cores

in the condensate. In figure 4.9, the aspect ratio of the condensate is plotted against

that of the normal cloud near threshhold, where the data points are now identified

according to vortex number. The vortex counting for the data set has been performed

by eye. It is clear that the nucleation threshhold is indeed associated with the presence

of a single vortex in the condensate. In other words, the threshold is low enough that,

after nucleation, single vortices are energetically favored. Only at a slightly higher

normal cloud rotation (0.4 � ΩN/ωρ � 0.5) do two and three vortices begin to appear.

This may help to solidify the connection between the experimental data and numerical

simulations of the nucleation [134] where single vortices should be found to occur at

threshhold.
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Figure 4.9: The threshhold for vortex nucleation repeated as for figure 4.7, but with
direct vortex detection now used to identify the number of vortices for each data point
(see legend). The open squares are obtained by evaporative cooling of a static normal
cloud. The axes and dashed and dotted lines are as defined in Figure 4.7.

The aspect ratio for a condensate with a single centered vortex, as calculated

by Feder [79], is also corroborated by the data in figure 4.9. Notwithstanding the

measurement noise inherent in the data, it is not surprising that several single vortex

points appear in the plot region between static and single vortex aspect ratios: if a vortex

is offset from the condensate center, it will have less of a centrifugal effect on the radial

size. Indeed, by and large, the single vortices were not found to be perfectly centered on

the condensate. This effect not only helps to explain the smoothness of the nucleation

threshhold when plotted in terms of aspect ratio but also substantiates the position of

the threshhold, 0.32 < ΩN/ωρ < 0.38, as originally identified. Further refinement of the

measured critical rotation rate can be achieved only by reducing systematic errors and

noise in the determination of the normal cloud’s aspect ratio.
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The data set has been continued to higher rotation rates of the normal cloud

where more and more vortices enter into the condensate. Under these circumstances it

is possible to study the number of vortices in the condensate as a function of its effective

rigid-body rotation rate ΩBEC , which can be inferred from its aspect ratio λBEC in the

usual way [Eqn. 4.1]. Since the condensates are formed in equilibrium with a rotating

normal cloud, the vortex number is expected to correspond to the equilibrium value.

The limit of effective rigid-body rotation is characterized by a uniform distribution of

vorticity with areal density nV = 2Ω/κ [155]. Here κ = h/m is the quantized circulation

of a single vortex and m is the mass of a condensate atom. For a condensate with a

radial size given by Thomas-Fermi radius Rρ, the number of vortices in the rigid-body

approximation is πR2
ρnV , which can be expressed explicitly as:

N rb
V =

2µ0

�ωρ

Ω/ωρ

(1 − Ω/ωρ)
3/5

(4.5)

In the previous equation, µ0 = mω2
ρRρ(0)2 is the chemical potential of the condensate in

the absence of rotation, expressed in terms the static Thomas-Fermi radius Rρ(0) in the

radial direction. There is a weak dependence on the number of atoms in the condensate

through Rρ(0)2 ∼ N2/5. It is also worth noting that, in the rigid-body approximation,

the number of vortices included in a Thomas-Fermi condensate is related to the angular

momentum per particle [66] by

NV =
7
2
〈�z〉
�

(4.6)

In figure 4.10, the raw number of vortices for the current experimental data set

is plotted as a function of the aspect ratio of the condensate. Additionally, data from

a later run using a more efficient spin-up technique [Section 4.7] is included and in-

volves experimental conditions that are significantly different in the following ways: The

evaporation has proceeded until little normal cloud is visible; higher rotation rates are

included; and the condensates have larger number, corresponding to a static Thomas-

Fermi radius Rρ ∼30µm compared with 21µm for the current set of data. The static
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chemical potential µ0 has a correspondingly larger value of 33�ωρ compared with 16�ωρ.

As a result, it is not surprising that the later data set shows a larger number of vortices

for a given rotation rate [Figure 4.10(a)]. However, by plotting the reduced vortic-

ity NV �ωρ/2µ0, the dependence of NV on condensate number can be removed [Fig-

ure 4.10(b)]. The fit Thomas-Fermi radius for each plotted point is used to calculate

the chemical potential µ0 in order to remove intra-data-set fluctuations as well. Ex-

pressed in terms of the reduced vorticity, the data sets are now seen to match over a

wide range of aspect ratio.

The rigid body prediction [Eqn. 4.5] has also been included in the plot for com-

parison. It is quite clear that the experimental data tracks but consistently lies below

the rigid-body value. Possible systematic errors will be discussed below; however, a

numerical calculation by Feder and Clark [79] for a condensate with 2 · 105 atoms in

a similar confining potential matches the data extremely well over the entire range of

aspect ratio shown in figure 4.10(b). In their numerical simulations of rotating conden-

sates, Feder and Clark have found that the aspect ratio and moment of inertia 〈Lz〉/Ω

approach their classical rigid-body values with increasing rotation, but the number of

vortices lags considerably behind the expectation according to Eqn. 4.5. For example, in

the case of a condensate rotating at 95% of the centrifugal limit (ΩBEC/ωρ = 0.95), the

aspect ratio and moment of inertia are found to be within a few percent of the rigid body

predictions, even though the vortex number is 65 compared to the rigid-body value of

89. The simulations further show that the vortex density does agree with the rigid-body

distribution in the bulk of the condensate; only at the edge of the condensate does a

discrepancy arise where at least one hexagonal ring of the triangular vortex lattice is

missing. The lattice is nevertheless stationary in the rotating frame which raises the

question: what provides the extra rotation to make up for the missing vorticity? The

answer lies with the inhomogeneous confining potential. The resulting non-uniform den-

sity profile of the condensate contributes a radial force that, according to the Magnus
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Figure 4.10: (a)Vortex number as a function of BEC aspect ratio for two different
experimental runs, in particular with an average condensate number of 0.4 · 106(open
squares) and 2 ·106(filled squares). A lower aspect ratio indicates a faster effective rigid-
body rotation rate. (b) Reduced vortex number plotted as a function of BEC aspect
ratio. The uniform rigid-body prediction (dotted line) and a numerical simulation by
Feder and Clark [79](solid line) are added for comparison.
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force [155], causes the vortices to rotate a little faster about the axis of the condensate.

This additional rotational motion is precisely the core precession observed for single

offset vortices in Chapter 3. Recent analytical results [54] show the same “conspiracy”

of two microscopic rotational contributions to yield the overall macroscopic rigid body

rotation field.

The natural question arises whether the disagreement between the data and rigid

body prediction can be due to systematic errors in evaluating the reduced vorticity.

The main dependence on experimental numbers is NV /(ωρRρ(0)2). In figure 4.11, the

ratio of the observed vorticity to the rigid body expectation NV /N rb
V is plotted as a

function of aspect ratio and is found to be roughly a constant around ∼ 0.75 − 0.8.

This could be accounted for by a systematic error of 25% in the radial trap frequency

ωρ = 2π8.45Hz, which can be ruled out, or a 12% systematic error in the determination

of the condensate size Rρ, which cannot be immediately ruled out at this time. The

final possibility for error is in the actual counting of vortices present in the condensate.

Because of the vanishing density at the edge of the cloud, the low signal-to-noise makes

it difficult to identify vortices in this region of the image, particularly in the case of large

vortex number.(Compare figures 4.8(c)&(f)). It may simply not be possible to conclude

definitively whether or not there are vortices at the edge of the condensate contributing

to a rigid-body rotation field. An automated vortex counting algorithm, not yet applied

to the data presented here, may help and will at least provide an unbiased estimate of

the counting error arising at the condensate surface.

In conclusion, direct vortex detection has been used to verify the single vortex

character of the intrinsic nucleation threshhold and to study ordered triangular lattices

composed of variable amounts of vorticity. The observed vortex number in a rotating

condensate agrees with the rigid-body prediction within a constant factor of ∼25%.

Two possible systematics in the determination of condensate size and vortex number

preclude a definitive statement regarding the observed deviation from the rigid-body
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Figure 4.11: Ratio between observed vortex number with respect to rigid body predic-
tion. Two separate data sets as in figure 4.10 are indicated by open and filled squares.
The solid line represents the numerical simulation by Feder and Clark [79].

prediction. Nevertheless, the tantalizing agreement with theory justify further work in

the future, including more data at higher vortex number and a comparison of the vortex

lattice constant (vortex spacing) with theoretical predictions [79, 54]. It represents an

interesting application of the correspondence principle to understand how the micro-

scopic quantum vortex structure reacts in the presence of an inhomogeneous confining

potential to mimic the macroscopic classical limit of effective rigid-body rotation.

4.5 Rotational suppression of the quantum degeneracy temperature

So far in this chapter, the phase boundary between vortex-free and vortex-full

condensates has been considered as a function of the normal cloud rotation rate ΩN .

Another albeit simpler effect of the rotation is to suppress the quantum degeneracy

temperature TC , which forms the boundary between normal and condensed phases [149].

This effect may be accounted for by the centrifugal weakening of the radial harmonic

confinement, ω̃ρ =
√

ω2
ρ − Ω2, which leads to a reduction in the normal gas density nth

relative to the non-rotating case. As a result, a lower temperature must be reached
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before the phase space density (∼ nth/T 3/2) is sufficiently high to bring about the BEC

transition. The expression for TC as a function of the rigid-body rotation rate Ω of the

gas sample is

TC = T
(0)
C

(
1 − Ω2

ω2
ρ

)1/3

(4.7)

In the above equation, T
(0)
C is the static critical temperature. For a non-interacting

gas in a harmonic potential, T
(0)
C = 0.94�ωhoN

1/3 where N is the number of atoms in

the sample and ωho = (ω2
ρωz)1/3 is the average trap frequency. In figure 4.12, the data

originally from figure 4.7 have been used to plot condensate fraction versus temperature

for three different ranges of sample rotation rate. All quantities are obtained from fits

to the non-destructive in-situ images of the trapped gas clouds. As usual, the rotation

rate has been assessed from the changing aspect ratio of the normal cloud according to

Eqn. 4.1. It is qualitatively clear from figure 4.12 that a lower temperature is required

at higher rotation rates to reach a given condensate fraction. For each data point, the

temperature and condensate fraction can be used together to infer a value for the critical

temperature of the sample. To remove shot-to-shot variation in TC due to atom-number

fluctuations, the value of the inferred transition temperature can be scaled by the static

value T
(0)
C calculated from the measured atom number. The scaled value of TC is plotted

against rotation rate in figure 4.13 for three ranges of temperature: “hot,” “medium”

and “cold,” corresponding to three different ranges of condensate fraction.

Each group of data clearly show the suppression of TC towards higher rotation. The

overall suppression of TC is roughly consistent with an effect associated with the inter-

atomic interactions [69] although there may also exist systematic errors in the number

or temperature calibrations.

The centrifugal suppression of TC is perhaps less interesting than that due to

many-body interaction effects; nevertheless, from a technical stand point, centrifugal

effects are an important consideration in the evaporative cooling and spin-up process.
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Figure 4.12: Condensate fraction versus temperature for various sample rotation rates.
Condensate number NC and total number N are obtained from fits to cloud images.
The temperature Tvert is extracted from the vertical width of the normal cloud while
the centrifugal distortion in the normal cloud’s aspect ratio yields its rotation ΩN . The
temperature is scaled by the static critical temperature T

(0)
C for an ideal gas (see text).

The data has been grouped according to three different ranges of ΩN (see legend). The
solid line is the theoretical dependence expected for a static ideal gas.

As the gas rotation is continually increased during evaporative spin-up, it affects not

only the critical temperature but also the collision rate γcoll ∼ N/(T ω̃2
ρ). The effect

of the weakening effective trap frequency ω̃ρ is indeed a significant effect. Whereas

the temperature decreases by a factor of ∼ 10 during an evaporation proceeding to a

rotation of Ω/ωρ = 0.95, the value of ω̃2
ρ changes by a factor of ∼ 20 such that the density

and collision rate change little. Therefore the evaporative process lacks the hallmark

“runaway” characteristic of an ever-increasing collision rate. In addition, the evaporative

process operates in a weak confining potential (ωho ≈ 2π8Hz) and removes atoms along

only one dimension [Section 4.2]. In spite of violating the cherished rules of successful

evaporation, the current typical evapoartion can produce highly rotating condensates

(Ω/ωρ ≈ 0.95) with sizeable atom number (N ≈ 2 · 106)! Of course the evaporation,

starting not too far above TC , takes several minutes to make a pure condensate.
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Figure 4.13: Inferred critical temperature TC , scaled by the non-rotating expectation
T

(0)
C for an ideal gas, as a function of normal gas rotation ΩN/ωρ. For each data point,

TC is inferred from the measured condensate fraction and temperature of a sample. The
total number of atoms is used to obtain T

(0)
C . The data has been grouped according

to three different condensate fractions as shown. A set of static points, where the
normal cloud is not stirred before evaporation, are deliberately plotted at zero rotation.
Otherwise, the rotation rate ΩN is obtained from the normal cloud’s aspect ratio. The
rotating data has been cropped at a minimum threshhold 0.2 < ΩN to avoid imaginary
rotation values arising from noise in near-static aspect ratios. The dotted line is the
theoretical expectation according to Eqn. 4.7 with T

(0)
C as for an ideal gas. The solid

line is a fit of the data to Eqn. 4.7 with an arbitrary overall scaling of the vertical axis.
The fit result is equivalent to assuming an effective T

(0)
C that is 87(1)% of the ideal gas

value.
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4.6 Vortex lattice decay

Rounding out the “life cycle” of vortex lattices, a qualitative description of their

decay from the condensate is presented here. The decay of vortex lattices [47] and

single vortex lines [142] have also been studied in other experimental groups. As already

mentioned in section 3.7, a rotating condensate spins down by passing vortices out to

its edge where they decay in a shower of phonons. Since the vortex cores in a lattice are

rotating about the condensate center, they reach the edge by spiraling outward. The

radial damping of the vortices is driven by the frictional drag from collisions with the

normal cloud [82]. If a vortex lattice is rotating in equilibrium with the normal cloud,

the drag force on the vortices vanishes. If the normal cloud is faster, it pushes vortices

into the condensate to bring it into rotational equilibrium. If slower, the normal cloud

pulls vortices out of the condensate. In the macroscopic limit of large vorticity where the

condensate and normal component may be characterized by rotation rates ΩBEC and

ΩN respectively, the effect of the normal cloud can be summed up by a mutual friction

γ(ΩN − ΩBEC), which is proportional to the relative velocity between the components

[162] (see also Section 4.3). The phenomenological constant γ includes, among other

effects, the temperature dependence.

The evaporative spin-up process initially forms a condensate and normal cloud

rotating together (about the vertical �z-axis). In order to induce a decay in the rotation

of the sample, a “surface roughness” must be present in the confining potential to

break its rotational symmetry. Angular momentum is then no longer conserved in the

system. The walls of our magnetic trap are essentially infinitely smooth, except for the

lowest order (� = 2) roughness corresponding to an elliptical asymmetry [Figure 4.14].

This can be significantly reduced with some care, though residual asymmetries in our

confining potential still cause relatively cold condensates to lose their rotation over the
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Figure 4.14: An ellipticity (“surface roughness”) applied to the confining potential
breaks rotational symmetry. This leads to the rotational relaxation of the initially
co-rotating normal cloud and condensate.

span of minutes 1 . A theoretical model of angular momentum decay in the presence

of a trap asymmetry is detailed in [162]. In a loose sense, the rotating condensate

is a frictionless superfluid and is not slowed by the surface roughness of the potential

(see, though, section 4.8). The rotation of the normal cloud will, however, damp due

to the friction imparted by the roughness. With the condensate and normal fluid no

longer in rotational equilibrium, the mutual friction will in turn damp the condensate’s

rotation. Thus, there are two relevant times scales τV and τR characterizing the transfer

of angular momentum, first, from the condensate to normal fluid and, second, from the

normal fluid to the trap walls, respectively. The value of τR in general depends on the

atomic collision rate in the normal gas (typically ∼1Hz for our experimental parameters)

and the strength of the static elliptical deformation ε = (ω2
x − ω2

y)/(ω
2
x + ω2

y) present in

the confining potential. (ωx and ωy are the harmonic trap frequencies in the horizontal

directions). By controlling the strength of the ellipticity, it is possible to explore two

regimes of rotational decay corresponding to a rapid (τR � τV ) or gentle (τV � τR)

stopping of the normal cloud’s rotation.

In figure 4.15(a), the first of these situations is shown where a “strong” horizontal

ellipticity ε ≈ 0.02 has been applied to mostly stop the normal cloud’s rotation after ∼1-
1 The loss of rotation can be countered in steady state by the continuous application of rf evaporation,

which tends to spin up the cloud.
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2s. Non-destructive, in-situ images are then taken of the trapped gas from the side and

fit to extract the simultaneous aspect ratio of the condensate and normal component.

While the value for the normal cloud lies near the static value after the stopping, the low

value for the condensate indicates that it continues to rotate initially. Eventually the

rotation of the condensate itself damps, presumably under the influence of the mutual

friction from the static normal cloud. In figure 4.15(b) the rather different scenario of a

weak applied asymmetry (ε ∼ 10−3) is shown where the rotation of the condensate and

normal component decay together at the same rate. If the trap ellipticity is sufficiently

small, the mutual friction between the components is expected to dominate the friction

between the normal component and trap walls. In this case, the condensate and normal

fluid lock together as one system. The additional contribution of the condensate’s

moment of inertia to the total will cause the rotational relaxation of the system to

proceed a little slower [162]. The quantitative analysis of the degree of “locking” for

our experimental conditions as well as a detailed comparison with theoretical models is

left to a future publication.

The aspect ratio analysis of figure 4.15 provides a convenient method to assess

the macroscopic rotational decay of the condensate and normal cloud. A complimentary

viewpoint can obtained by directly imaging the vortex cores in a condensate over the

course of the decay. Several experimental runs have been made in which the rotational

decay is allowed to proceed for a variable amount of time. The usual in-situ image

is first made from the side to obtain aspect ratio information. The sample is then

ballistically expanded and imaged vertically to reveal the vortex cores in the condensate.

In figure 4.16, the rotation rate of the condensate as obtained from its aspect ratio is

shown as function of time in conjunction with the corresponding expansion images of

the vortex distribution. An automated program is used to identify the vortex cores in

the density profile and to obtain their average spacing, which is also plotted as function

of time. Figure 4.16 visually unifies the different perspectives of a condensate spinning
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Figure 4.15: Rotational relaxation of an initially co-rotating condensate and normal
component in an asymmetric confining potential. The simultaneously obtained aspect
ratio is plotted for each of the components in the case of (a) a strong asymmetry and
(b) a weak asymmetry applied at t = 0s. The aspect ratio allows a rigid-body rotation
rate to be inferred through Eqn. 4.1. An aspect ratio of ∼1.6 corresponds to a static
cloud, while a lower value indicates more rotation. The initial stopping of the normal
component is not included in graph (a); the data only begins after ∼1-2s when the
normal cloud’s aspect ratio has already reached the static value.
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Figure 4.16: Rotational relaxation of a condensate from different perspectives. (a)
Expansion images of the condensate at successively longer times after an asymmetry
has been applied to the confining potential. (b) Vortex cores identified by an automated
search algorithm. The large circle in both cases indicates the Thomas-Fermi radius of
the condensate. (c) The rotation rate of the condensate as inferred from its aspect
ratio. The aspect ratio is determined from a non-destructive image of the trapped
sample before ballistic expansion. (d) The average vortex spacing as calculated from
the expansion analysis in (b).
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down: the loss of vortex number, the decrease in their density and the decrease in

rotation rate as inferred from centrifugal distortion.

4.7 Spinning up even faster: large lattices and rotation

In the rotational decay experiments of the previous section, the application of

a strong, static ellipticity to the confining potential was used to stop the rotation of

the normal cloud. A closer inspection of the initial behaviour in this case revealed

that the cloud had also been excited into damped, rotational scissors-mode oscillations

[95, 119]. The behaviour of these oscillations is shown in figure 4.17 for a pure normal

cloud above TC . The torque from the applied static asymmetry brings the initially

rotating gas to a stop with the density forming an elongated shape at ∼ 45◦ to the

trap deformation [Figure 4.17(c)]. At this point, the angular momentum from the

rotation has been stored as potential energy due to angular displacement. The motion

then rebounds leading to the reverse rotation. This behaviour is reminiscent of the

motion of a two-dimensional pendulum with slightly different frequencies of oscillation

along two orthogonal directions. An equal superposition of pendulum motion in the

two dimensions leads to a slow beating between circular and linear oscillation. By

analogy, the period τs = 2π/∆ωρ of the scissors mode depends on the asymmetry in the

confining potential, ∆ωρ ≈ εω̄ρ for ε � 1. Underdamped oscillations will only occur for

an ellipticity larger than a critical value εC = 1/4ωρτ [94] such that the time between

atomic collisions τ is longer than the time τs for a single particle trajectory to feel the

potential asymmetry.

The behaviour of the scissors mode suggested the idea of using it in the first

stage of vortex nucleation to induce rotation in the normal gas. Before the evapora-

tive cooling to quantum degeneracy, a step-wise sequence is used to excite the scissors

mode in the normal cloud [Figure 4.18]. The excitation occurs in the same oblate con-

figuration of the TOP potential as was used for stirring in section 4.2. The cloud is
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Figure 4.17: Rotational scissors mode of an initially rotating normal gas subjected to a
sudden trap asymmetry. (a) Ellipticty ε of the cloud and (b) orientation θ of its major
axis as a function of time. The damped sinusoidal fit to (a) and sinusoidal fit to (b)
yield a scissors oscillation period of τs=5.7(8)s and τs=5.9(2)s, respectively. (c...e) A
sampling of the in-trap images taken along the axis of scissors rotation and used to
obtain graphs (b)&(c). Times indicated correspond to the horizontal axis of (b)&(c).
(f) Sketch of one complete scissors cycle including the direction of fluid rotation. The
elliptical line represents one contour of the asymmetric confining potential.
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(a) (b) (c) (d)

Figure 4.18: Stepwise excitation of the rotational scissors mode to impart angular mo-
mentum to a cold gas. (a) The gas is allowed to thermalize to an asymmetric TOP
potential. (b) The orientation of the trap asymmetry is suddenly jumped by 45◦. (c)
After a quarter period of the scissors mode, the gas is maximally rotating. (d) The trap
is quickly resymmetrized to preserve the angular momentum imparted to the gas.

first adiabatically deformed to an elliptical shape by changing the shape of the poten-

tial. An extra 2s (of the order of the rethermalization time) is allowed for the cloud

to thoroughly equilibrate to the new trapping geometry. Subsequently, the orientation

of the potential asymmetry is suddenly changed by 45◦ to excite the scissors mode.

The strength of the trap asymmetry is also discontinuously changed at this point to a

value εmid ≈ 0.25 independent of the initial conditions. After a short period of time,

the potential is made symmetric and the evaporative spin-up is implemented as before.

The excitation sequence generates the largest angular momentum, as assessed by the

ultimate rotation of the condensate formed after evaporation, around an excitation time

of τ ≈ τs/4 = 150ms, as expected for ε = εmid and ω̄ρ = 2π6.8Hz 2 . In a single parti-

cle model, the angular momentum imparted from the excitation depends on the initial

shape of the cloud through ∼ εi〈x2+y2〉. By controlling the initial trap deformity in the

first stage of the excitation sequence, we can achieve good control over the angular mo-

mentum imparted to the normal cloud and, by extension, the vortex number generated

in the condensate [Figure 4.19]. The maximum available trap ellipticity (εi ≈ 0.41) is

used to obtain the most highly rotating condensates (ΩBEC/ωρ ≈ 0.95) with the largest
2 The step-wise drive excites both a rotational and irrotational scissors mode at a low and high

frequency respectively. The irrotational component is ignored here since a simulation shows that the
bulk of the angular momentum imparted to the gas is due the rotational component.
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Figure 4.19: Dependence of (a) condensate aspect ratio (in other words rotation) and
(b) vortex number on the initial ellipticity used in the scissors excitation.
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vorticity (NV ≈ 150).

Perhaps the most significant feature of the scissors technique is that it allows the

formation of highly rotating condensates with larger atom number than the original

stirring technique. In the case of stirring, the normal cloud needs to start quite close

in temperature to TC , otherwise the evaporation cannot achieve condensation. The

main issue is the amount of heating and center of mass motion (“slosh”) induced by

the 15s of stirring required to reach steady state rotation. Both processes worsen due

to resonant effects as the trap is rotated at higher frequencies. In the case of the

scissors technique, the rotation is induced rapidly over 150ms. Slosh is straight forward

to minimize over the step-wise excitation sequence, leaving only the heating due to

spurious shape excitations generated by the sudden trap changes. Therefore, it is not

surprising that the evaporation is successful for initial clouds further from TC . In fact,

it is found beneficial to both final condensate number and rotation to start at a higher

temperature initially, presumably because of the associated larger number of atoms

present(17 · 106 versus 6 · 106 for the stirring case). A successful evaporation in terms

of final rotation rate has always proven to be intimately tied with the performance in

terms of condensate number.

The ability to reproducibly make highly rotating condensates with large numbers

of vortices and large atom number makes an ideal starting point for a whole range of

experiments, one of which is considered in the following section.

4.8 Nonequilibrium dynamics of large vortex lattices [77]

4.8.1 Abstract

We have studied the dynamics of large vortex lattices in a dilute-gas Bose-

Einstein condensate. While undisturbed lattices have a regular triangular structure,

large-amplitude quadrupolar shape oscillations of the condensate are shown to induce a
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wealth of nonequilibrium lattice dynamics. When exciting an m = -2 mode, we observe

shifting of lattice planes, changes of lattice structure, and sheet-like structures in which

individual vortices appear to have merged. Excitation of an m = +2 mode dissolves the

regular lattice, leading to randomly arranged but still strictly parallel vortex lines.

4.8.2 Introduction

The experimental study of vorticity in a dilute-gas Bose-Einstein condensate

(BEC) provides an useful perspective on superfluidity. While the focus of early work

was on the study of single or few vortices [42, 118], recent advances in technique have

made it possible to create BECs containing large amounts of vorticity [117, 48, 97, 103].

In a rapidly rotating BEC, a lattice of vortices is the lowest energy state in the rotating

frame[59]. Experimental studies of lattices to date have concentrated on formation and

decay processes [118, 117, 48, 97, 103, 138, 47]. In this section we study the nonequi-

librium behavior of vortex lattices under large-amplitude, anisotropic strain.

4.8.3 Experimental technique

For creating large amounts of vorticity in condensates, we use a modified version

of the spin-up technique described in our previous paper [97]. The starting point is

a magnetically trapped cloud of 17 × 106 87Rb atoms in the |F = 1,mF = −1〉 state

with a temperature approximately three times above the critical temperature for the

BEC phase transition, Tc = 67 nK. By manipulating the ellipticity of the confining

potential, we can resonantly pump angular momentum into the as yet uncondensed

cloud [43]. We then tune the trapping potential to near perfect axial symmetry with

trap frequencies {ωρ, ωz} = 2π{8.35, 5.45}Hz. In this round trap the cloud continues

to rotate, and by performing a nearly one-dimensional evaporation along the axis of

rotation (z-axis) as described in Ref. [97], we cool down and further spin up the cloud

until a highly rotating condensate is born out of the rotating normal cloud. For the



159

experiments described in this paper, the evaporation is continued to a point where little

or no thermal fraction remains. As a result of this procedure, we obtain highly rotating

condensates with typically 1 × 106 atoms and a Thomas-Fermi radius of Rρ = 51µm,

Rz = 26µm, containing 130 vortices or more.

To study these condensates we can image along the x, y, or z directions. When

the condensate is held in the trap, the core size of the vortices is close to the resolution

limit of our optical detection system so that individual vortices are not resolved by in-

trap imaging. However, by nondestructively imaging a trapped condensate from the side

(along the x-direction) and measuring its aspect ratio, the rotation rate of the condensate

can be determined [97, 138]. For our highly rotating condensates we determine typical

aspect ratios of 0.5, which is markedly different from the static aspect ratio of the

magnetic trap, 1.53, because of centrifugal forces. Typical condensate rotation rates of

0.95ωρ are inferred.

To resolve individual vortices, we can release a condensate from the trap and

image it 50 ms later after it has expanded by a factor of 5 [118, 51]. Such expansion

pictures taken along the z-direction reveal a triangular lattice of vortex cores in highly

rotating condensates [Fig. 4.20(a)]. The lattice structure is remarkably regular even at

the outer regions of the condensate, and is observed with very good contrast as shown

by the cross section in Fig. 4.20(b).

When looking at such vortex lattices in expansion from the side (i.e., along the x

or y direction), good contrast is only obtained if the lattice is oriented in such a way that

vortices line up behind each other along the direction of view, or in other words when

the direction of view is parallel to lattice planes. The vortex lattices are not stationary

in the lab frame, but are rotating with the condensate, and furthermore the initial

orientation of the lattice in the xy plane cannot be controlled in current experiments.

Therefore the times when vortices line up along the direction of sight are unpredictable,

and images revealing lattice planes are only obtained in a random subset of all trials.



160

a)

b)
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310 µm

450 µm0

Figure 4.20: (a) Expansion picture of a vortex lattice seen along the rotation axis. (b)
One pixel wide cross section along the white line in (a). (c) Expansion picture of a
different condensate rotating at 0.75ωρ, i.e. more slowly than in (a), seen from the side.

One example is shown in Fig. 4.20(c), where the vortex planes are clearly visible as

dark vertical lines. These images are direct verifications of the theoretical prediction

that vortex lines are only marginally bent for our experimental parameters [89, 79], as

is also confirmed by the good contrast seen in the topview picture of Fig. 4.20(a).

Vortex lattices such as the one shown in Fig. 4.20 are the starting point for

our studies of the effects of dynamically generated strain. We apply the distortion by

resonantly driving quadrupolar shape modes in the vortex-filled condensate [61, 98].

In the large-amplitude limit, the mz = +2 and mz = −2 modes distort the circular

cross-section of the condensate into an ellipse and cause the major axis of the ellipse to

rotate along with, or against, the sense of the condensate rotation, respectively. The

generated strain is considerable – the ratio of major to minor axis of the condensate can
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be larger than three to one. The frequencies of the mz = ±2 modes may be calculated

using the sum rule argument given by Refs.[161, 44]. Our condensates are rotating

typically at 0.95ωρ, just 5% under the centrifugal limit. At the centrifugal limit, the

mz = +2 ellipse is fixed in the rotating condensate frame, and the mz = −2 shape is

fixed in the lab frame. At our rotation rate of 0.95ωρ, the distortion, as seen in the

frame of the lattice, rotates at only 0.4 Hz for the mz = +2 mode, compared with 8.34

Hz for the mz = −2 mode. For this reason, we expect very different resulting lattice

dynamics in the presence of either of the two modes. We emphasize as well that the

two different modes result in very different fluid-flow patterns. In the centrifugal limit,

the mz = +2 mode very closely approximates rigid-body rotation, while much of the

mz = −2 velocity field is provided by an irrotational, quadrupole flow pattern. This

distinction may provide a parallel explanation for the correspondingly distinct observed

effects [see Section 4.9].

4.8.4 Lattice dynamics in the presence of an mz = −2 surface mode

Because the mz = −2 mode is almost stationary in the lab frame for the param-

eters of our experiment, this mode can be excited conveniently and nearly resonantly

by a static trap deformation. Indeed we observe that by jumping from the round trap

described above to a trap that has the same mean horizontal frequency, but a horizontal

ellipticity of 3.6% [45], the ellipticity of the condensate increases over a time scale of 300

ms from approximately 0 to 40%, thereby exceeding the trap ellipticity by more than

an order of magnitude. Since the vortex lattice is rotating quickly with respect to this

almost static deformation, it is an interesting and nontrivial question to ask whether or

not a lattice structure is maintained, and, if so, how it rearranges in the presence of the

excitation.

Experimentally, vortex lattices can indeed be observed in expansion images up

to 400 ms after the start of the continuously applied trap deformation (Fig. 4.21).
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a) b)

460 µm

Figure 4.21: Evolution of the lattice and condensate density profile after (a) 173 ms
and (b) 873 ms in the presence of an mz = −2 excitation. Pictures taken along axis of
rotation.

Subsequently, long range order is lost and vortex visibility becomes low, presumably

due to tilting [98] or bending of the vortex lines [48]. A closer look at the first 400 ms

of this evolution reveals a wealth of intriguing vortex dynamics. As the vortex lattice

rotates in the deformed condensate, the lattice planes must continuously shift relative to

each other to accommodate to the elliptical shape of the condensate. One consequence

of this is transient changes of the lattice structure. In Fig. 4.22 the lattice has changed

from the triangular structure of an undisturbed lattice to a near rectangular structure.

The most striking observation, however, is of condensates containing sheet-like

structures rather than individual vortex cores, as shown in Fig. 4.23(a). We interpret

these sheets as rows of vorticity along which individual vortex cores have essentially

merged. Given the near perfect contrast of these sheets, as shown by the cross section

in Fig. 4.23(b), we can exclude the possibility that the sheets are merely formed by a

collective tilting of vortices along a lattice plane, which would result in an intermediate

contrast. Similarly, we can rule out that this is an effect merely of imaging resolution

- had the vortices retained their original structure but come so close together that we
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Figure 4.22: Change of lattice structure seen along rotation axis. (a) Triangular struc-
ture in an undisturbed lattice. (b) Near rectangular structure seen transiently during
lattice evolution after 273 ms in the presence of an mz = −2 quadrupolar surface mode.
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could not spatially resolve them, we again would see white stripes set off by grey troughs,

rather than the near 100% alternating stripes of white and black. If there continue

to exist wispy fingers of condensate that cross the stripes and differentiate individual

vortices, they must be very tenuous indeed to be consistent with the observed contrast.

The clouds have been continuously distorted from their original hexagonal symmetry,

so the observation of 16 stripes along the major axis of the BEC in Fig. 4.23(a) tells

us that there must also be the equivalent of 16 units of vorticity along the length of

the stripes through the center of the cloud. By measuring the in-trap height of the

condensate, the ellipticity in the xy-plane and the number of atoms, we can infer the

ratio of unit vorticity spacing (along the minor axis) to healing length (given by 1√
8πna

,

where n is the mean density and a the scattering length) to be on the order of 5.

In fact the contrast of this sheet-like phase is so deep that the structure can be

detected by looking at condensates in trap (along the x or z direction), even though

the structure is close to our optical resolution limit. By taking a time series of ten

nondestructive images of a single condensate along the x direction, we see that the

sheet structure appears and disappears periodically with a period of about 21.2 ms for

a condensate rotating at a frequency of 0.95ωρ [Fig. 4.24].

This periodicity can be understood as follows: The sheet structure forms when

a lattice vector lies along a minor axis of the cloud, presumably since this is when

the vortices are closest together. As that vector rotates past the minor axis, structure

along the vector is reestablished, the two-dimensional (2D) pattern of individual vortices

reemerges, and the high-contrast stripes disappear from the in-trap images. A lattice

vector aligns with the minor axis six times per lattice rotation period due to the sixfold

symmetry of the unperturbed lattice, consistent with the observed frequency of periodic

stripe formation. This interpretation is bolstered by the expansion images, which show

high contrast sheets when a lattice vector lies close to the minor axis, but 2D lattices

(albeit distorted) for other orientations. We find it remarkable that this lattice-to-sheet-
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Figure 4.23: (a) Sheet-like structure seen after 173 ms in the presence of an mz = −2
quadrupolar surface mode. (b) Cross section integrated over the white box in (a). Even
though the box is wider than the calculated vortex core spacing, the observed contrast
is nearly perfect. (c-e) Same as (a), but observed within the first tens of ms in a more
deformed trap with {ωx,y,z} = 2π{6.0, 8.6, 13.8}Hz. All pictures taken along axis of
rotation.
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145 µm0

Figure 4.24: (a-e) Nondestructive in-trap images of the sheet-like structures seen along
the x-direction [conditions similar to Fig. 4.23(a)]. Spacing between images 10.6 ms.
Note the very different spatial scale from expansion images (e.g., Fig. 4.20). (f) Cross
section of (a), integrated over the condensate.

to-lattice sequence persists through multiple cycles before long range order and visibility

are compromised.

Using a trap with a stronger distortion of 34% as in Fig. 4.23(c-e), we also observe

sheets breaking apart in the center. In Fig. 4.23(c), the density distribution along

the lattice vector that we see near-parallel with the minor axis is nearly featureless.

Figure 4.23(d,e) hint at the succeeding lattice evolution: Fig. 4.23(d) represents a small

rotation from Fig. 4.23(c), and we see that the sheets have begun to reconnect across

the cloud. Figure 4.23(e) appears to be a continuation of that process, with considerable

evidence of uniformity in the repeating structure.

4.8.5 Lattice dynamics in the presence of an mz = +2 surface mode

We excite the mz = +2 mode by elliptically deforming the magnetic trap and

rotating that ellipse around in the xy plane. When the mz = +2 mode is driven

approximately 1 Hz away from its resonance, the ellipticity of the condensate increases

from 0 to 50% over a timescale of 250 msec. Under the influence of an on-resonant

drive, the ellipticity increases continuously, even passing beyond 90% after 700 msec
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Figure 4.25: (a) Irregular assembly of vortex cores as observed along rotation axis after
500 ms in the presence of an mz = +2 quadrupolar surface mode. (b) Histogram
of distances between each pair of vortices in the regular triangular lattice shown in
Fig. 4.20a. The visibility of separate peaks reveals the high degree of long-range order.
(c) Same as (b) but calculated for the BEC of Fig. 4.25a. Peaks are barely visible here,
meaning that the lattice has almost reached a random disorder.

and approaching 100% [46]. As discussed above, the distortion rotates only very slowly

with respect to the lattice, and thus we expect it to be correspondingly “gentle” with

respect to its action on the lattice.

Indeed, as we show in Fig. 4.25(a), we do not see the lattices squeezed into sheets

for the mz = +2 mode. Instead we observe a gradual increase of disorder in the lattice.

400 msec after we start driving the excitation on resonance, we see a complete loss of

long-range order in the vortex structure. The imaging contrast of individual vortices

remains high, so we know they remain parallel to the line of sight (in contrast for instance

to the case of Fig. 4.21), but otherwise they appear to have liquified (see the correlation

histogram of Fig. 4.25). This behavior confirms our expectation of the mz = +2 mode

being a gentler disturbance for the lattice than the mz = −2 mode.

4.8.6 Conclusions

In conclusion we have succeeded in observing a wealth of nonequilibrium vortex

lattice dynamics in a BEC under anisotropic compression. Key observations include the
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Figure 4.26: Macroscopic velocity field of a rotating condensate in the presence of a
counter-propagating m = −2 surface wave. The net flow induces lattice shear along the
major axis of the quadrupolar deformation.

shifting of lattice planes relative to each other, leading to transient changes of the lattice

structure, the formation of an unexpected and very pronounced sheet structure, and

finally, a gradual transition from an ordered lattice to a rather liquid-like arrangement in

which vortex cores remain visible, but their relative positions are irregular. The observed

sheet structure is of particular interest: at present the behavior of densely packed vortex

lattices is in the center of theoretical discussions about vortices [101, 63, 86, 133]. While

most of these theoretical discussions propose to enter this regime by having high rotation

rates almost inaccessible to experiment or inconveniently low atom numbers in the

condensate, this section demonstrates an alternative and unexpected way of bringing

vortices close together. We hope that the results presented here will stimulate further

theoretical discussions in the field of vortex lattices.

4.9 Theory responds

Following the publication of the experimental results from the previous section,

several theory groups [127, 66, 91] have investigated the origin of the dynamical dis-

tortions of the lattice structure in the presence of the counter-propagating m = −2

mode. Although using different approaches, both Mueller and Ho [127] and Cozzini
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and Stringari [66] reproduce the transient orthorhombic lattice structure as well as the

periodic appearance of sheet structures aligned with the short axis of the quadrupolar

deformation. Both theoretical approaches confirm that the irrotational flow pattern of

the quadrupolar mode applies a shear to the lattice and thus drives the rearrangement

of the vortices [Figure 4.26]. Furthermore, it is interesting to note in this context that

the velocity field describing the sheet-like phase of the condensate really requires the

presence of a quadrupolar flow field [Figure 4.27].

Finally, on a macroscopic level, both refs. [127] and [66] predict the time evolution

of the amplitude and orientation of the m = −2 deformation in the presence of a constant

applied trap asymmetry. The predicted behaviour is qualitatively seen in the experiment

and has already been briefly described in section 4.8. A direct quantitative comparison

between experiment and theory will be forthcoming in the future [67].
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Figure 4.27: (a)Expanded condensate density profile at the time when stripes of vorticity
form aligned with the minor axis of the m = −2 deformation. (b) Inferred microscopic
velocity field in the region of the two central stripes of vorticity surrounded by three
regions of condensate fluid. Note the circulation about each stripe of vorticity com-
posed of a row of > 10 vortex cores. The irrotational flow pattern characteristic of a
quadrupolar mode is required in the regions of condensate density to knit the vortex
stripes together with a continuous velocity field.
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nucleation in Bose-Einstein condensates in an oblate, purely magnetic potential.
Phys. Rev. Lett., 88(1):010405, December 2001.

[104] S. Inouye, S. Gupta, T. Rosenband, A.P. Chikkatur, A. Görlitz, T.L. Gustavson,
A.E. Leanhardt, D.E. Pritchard, and W. Ketterle. Observation of vortex phase
singularities in Bose-Einstein condensates. Phys. Rev. Lett., 87(8):080402, August
2001.

[105] Tomoya Isoshima and Kazushige Machida. Bose-Einstein condensation in a con-
fined geometry with and without a vortex. J. Phys. Soc. Jpn., 66(11):3502, Novem-
ber 1997.



178

[106] B. Jackson, J.F. McCann, and C.S. Adams. Vortex line and ring dynamics in
trapped Bose-Einstein condensates. Phys. Rev. A, 61:013604, December 1999.

[107] B. Jackson, J.F. McCann, and C.S. Adams. Vortex rings and mutual drag in
trapped Bose-Einstein condensates. Phys. Rev. A, 60(6):4882, December 1999.

[108] B. Jackson, J.F. McCann, and C.S. Adams. Dissipation and vortex creation in
Bose-Einstein condensed gases. Phys. Rev. A, 61:051603(R), April 2000.

[109] D.S. Jin, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell. Collec-
tive excitations of a Bose-Einstein condensate in a dilute gas. Phys. Rev. Lett.,
77(3):420, July 1996.

[110] C. A. Jones, S. J. Putterman, and P. H. Roberts. Stability of solitary wave
solutions of nonlinear schrodinger-equations in 2 and 3 dimensions. J. Phys. A,
19(15):2991, October 1986.

[111] C. Josserand and Y. Pomeau. Generation of vortices in a model of superfluid he-4
by the kadomtsev-petviashvili instability. Europhys. Lett., 30(1):43, April 1995.

[112] Yuri S. Kivshar, Jason Christou, Vladimir Tikhonenko, Barry Luther-Davies, and
Len M. Pismen. Dynamics of optical vortex solitons. Optics Communications,
152:198, 1998.

[113] L. D. Landau. J. Phys.(Moscow) 5, 71 (1941).

[114] A.J. Leggett. Superfluidity. Rev. Mod. Phys., 71(2):S318, 1999.

[115] Fritz London. The λ-phenomenon of liquid helium and the Bose-Einstein degen-
eracy. Nature, 141(3571):643, April 1938.

[116] Emil Lundh and P. Ao. Hydrodynamic approach to vortex lifetimes in trapped
Bose condensates. Phys. Rev. A, 61:063612, June 2000.

[117] K.W. Madison, F. Chevy, V. Bretin, and J. Dalibard. Stationary states of a
rotating Bose-Einstein condensate: Routes to vortex nucleation. Phys. Rev. Lett.,
86(20):4443, May 2001.

[118] K.W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard. Vortex formation in a
stirred Bose-Einstein condensate. Phys. Rev. Lett., 84(5):806, January 2000.
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