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Femtosecond pulse lasers are finding widespread application in a variety of fields

including medical research, optical switching and communications, plasma formation,

high harmonic generation, and wavepacket formation and control. As the number of

applications for femtosecond pulses increases, so does the need to fully understand the

linear and nonlinear processes involved in propagating these pulses through materials

under various conditions. Recent advances in pulse measurement techniques, such as

frequency-resolved optical gating (FROG), allow measurement of the full electric field

of the pulse and have made detailed investigations of short-pulse propagation effects

feasible.

In this thesis, I present detailed experimental studies of my work involving non-

linear propagation of femtosecond pulses in bulk media. Studies of plane-wave propa-

gation in fused silica extend the SHG form of FROG from a simple pulse diagnostic to

a useful method of interrogating the nonlinear response of a material.

Studies of nonlinear propagation are also performed in a regime where temporal

pulse splitting occurs. Experimental results are compared with a three-dimensional

nonlinear Schrödinger equation. This comparison fuels the development of a more

complete model for pulse splitting.

Experiments are also performed at peak input powers above those at which pulse

splitting is observed. At these higher intensities, a broadband continuum is generated.

This work presents a detailed study of continuum behavior and power loss as well

as the first near-field spatial-spectral measurements of the generated continuum light.

Nonlinear plane-wave propagation of short pulses in liquids is also investigated, and
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a non-instantaneous nonlinearity with a surprisingly short response time of 10 fs is

observed in methanol. Experiments in water confirm that this effect in methanol is

indeed real. Possible explanations for the observed effect are discussed and several are

experimentally rejected.

This thesis applies FROG as a powerful tool for science and not just a useful pulse

diagnostic technique. Studies of three-dimensional propagation provide an in-depth

understanding of the processes involved in femtosecond pulse splitting. In addition, the

experimental investigations of continuum generation and pulse propagation in liquids

provide new insights into the possible processes involved and should provide a useful

comparison for developing theories.



“Truth gains more even by the errors of one who, with due study and preparation,

thinks for himself than by the true opinions of those who only hold them because they

do not suffer themselves to think.” –John Stuart Mill
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Chapter 1

Introduction

The first mode-locked pulse laser was demonstrated in 1964 and produced nanosec-

ond (10�9 s) pulses [1]. By 1987, pulses as short as six femtoseconds (6 � 10
�15 s)

had been achieved [2]. Today, commercial laser systems routinely produce sub-100 fs

pulses, and these pulses are finding application in a variety of fields. Because of the

high peak intensities of short pulses, femtosecond pulse propagation is a field rich in

nonlinear phenomena. The short duration of the pulses have made possible the observa-

tion of many light-matter interactions that were inaccessible before the advent of short

pulse lasers.

The availability of commercial femtosecond laser systems has led to many in-

teresting and challenging problems involving short pulse propagation. First, there are

many challenges associated with generating the pulses themselves. There is a demand

for shorter pulses, more intense pulses, and pulses at wavelengths ranging from x-ray

to infrared. In addition, designer pulses with a specific temporal shape or specific phase

function are desired. Femtosecond pulses are currently finding application in many di-

verse areas of science and medicine. Propagation issues play a role not only in these

current-day scientific endeavors, but will also be important for many as yet unforeseen

applications.

One obvious application of short pulses is communications. When sending in-

formation packets through a fiber or air, shorter pulses mean higher information den-
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sity and therefore faster transmission of the data. The high intensities associated with

shorter pulses, however, can lead to nonlinear propagation effects and increased tem-

poral spreading or pulse deformation during transmission. Temporal spreading limits

the density of pulses that can be sent down a transmission line. It also lowers the peak

intensity of the pulses such that, over a long distance, the signal needs to be ampli-

fied periodically. Minimizing pulse spreading minimizes the number of amplification

stations needed as well as increases the throughput of the system.

The high intensities associated with short pulses can also benefit the communi-

cations industry. High peak intensities allow optical switches based on the nonlinear

optical response of a material to be constructed. For example, a simple optical switch

can consist of a short control beam, a nonlinear material, and a polarizing beam splitter

that is crossed with the polarization of the signal beam. When both the temporally short

control beam and the signal beam are present in the nonlinear material, a polarization

rotation of the signal occurs, allowing it to proceed through the beam splitter. In this

way, the signal beam can be switched on and off.

Another example of an application of femtosecond pulses is the generation of

high harmonics of the central pulse frequency by focusing an intense pulse into a gas of

atoms. Experiments by Zhou et al. have found that the duration of the pulse determines

the efficiency of harmonic production and that the wavelength of the harmonics can

be tuned by adjusting the chirp of the input pulse [3]. High harmonic generation is of

interest as a method of generating short extreme-ultraviolet and soft x-ray pulses at a

high repetition rate in the laboratory.

Femtosecond pulses are also finding application in ultrafast pump-probe exper-

iments. The short duration of these pulses allows researchers to probe chemical re-

actions on a femtosecond time scale. Another area of current interest involves using

designer femtosecond pulses to tailor atomic or molecular wavefunctions. The idea is

to produce and probe coherent atomic wavepackets in a controlled and understandable



3

fashion.

Short pulses are also being used in many other areas. Some of these include the

study of plasma generation and laser-plasma interactions, probing and treating diseased

or damaged biological tissues, and the pursuit of new materials with larger nonlinear

responses.

All of these applications of short pulses involve propagation through glass or

crystal optics, air, other gases, fibers, or liquids such as laser dyes, solvents, or water. If

one wishes to understand or control the interaction of a short pulse with any system, it

is necessary to have a well characterized pulse, including knowledge of how that pulse

changes as it propagates from the source to the sample to the detector. In addition, the

nonlinear interactions of short pulses with materials result in complicated phenomena

that are intriguing from the standpoint of basic scientific curiosity.

This thesis addresses the linear and nonlinear propagation of � 100 fs pulses in

bulk media. Most experimental studies of pulse propagation prior to this work provided

information on only one aspect of the electric field before and after propagation, usually

the spectral or temporal intensity. Knowledge of only the spectral or temporal intensity,

however, is not sufficient to fully elucidate propagation effects. Two pulses for example

could have the same spectrum or the same intensity autocorrelation and be differently

chirped. Only by knowing the phase of the two pulses can they be distinguished. The

development of full-field measurement techniques have made possible investigations of

pulse propagation involving accurate knowledge of both the amplitude and the phase

of a femtosecond pulse. Our approach, therefore, is to measure the full electric field of

a pulse before and after traversing the material of interest and thereby glean valuable

information about the complex light-matter interactions involved in the propagation.

We accomplish this full-field measurement with the second-harmonic generation form

of frequency-resolved optical gating (FROG).

Some background information relevant to short pulses and their propagation is
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discussed in Chapter 2. This chapter also provides a brief history of pulse measure-

ment techniques leading up to the development of FROG and subsequent advances in

technology.

The femtosecond laser system is described and an overview of the experimental

procedure is given in Chapter 3. This chapter also presents a discussion of the FROG

technique in general and the polarization gating and second-harmonic generation forms

of FROG in detail. Specific emphasis is placed on those issues that are important for

using FROG as a high dynamic range measurement technique for measuring broad-

band pulses. Experimental data illustrating the capabilities of FROG as a propagation

technique are also presented.

Propagation in fused silica is investigated in Chapters 4 and 5. Propagation is

investigated in both a one-dimensional, plane-wave regime and in a regime where self-

focusing leads to complicated spatio-temporal dynamics including pulse-splitting and

continuum generation. Experimental results are compared with a model based on the

nonlinear Schrödinger equation. At the highest powers investigated, spectral band-

widths after propagation become so large that FROG measurements are no longer prac-

tical. In this case, we present observations of continuum behavior as a function of input

power and time. This chapter also presents the first near-field spatial-spectral mea-

surements of the continuum. Measurements in both chapters provide insight into the

nature of short pulse propagation in fused silica and add significantly to the battery of

experimental data available for comparison with advancing theories.

Propagation in liquid media is also investigated, and these results are reported in

Chapter 6. Studies in methanol reveal the presence of a non-instantaneous nonlinearity

with a very short response time. Studies in water lend credibility to the observed non-

linear response in methanol and provide a measure of the nonlinear index of refraction.

Finally, Chapter 7 provides a summary of the science presented in this thesis and

discusses future directions.



Chapter 2

Background

Some background is necessary for understanding the concepts presented in this

thesis. This chapter attempts to provide the reader with the information necessary to

understand later chapters. Relevant references are included for the interested reader.

The first section presents a brief discussion of the nature of short pulses. Section 2.2

addresses issues related to the linear and nonlinear propagation of these short pulses.

In the final section, a brief history of pulse measurement techniques demonstrates the

timeliness of these measurements and provides a motivation for the technique we have

chosen.

2.1 Short Pulses

A light pulse can be described as a group of optical cycles under a pulse envelope.

A short pulse in time necessarily has a broad spectral bandwidth as a result of the

Fourier relationship between time and frequency. A shorter pulse requires a larger

frequency bandwidth than a longer pulse. For a given pulse length in time, the minimum

spectral bandwidth can be calculated using the time-bandwidth product. For a Gaussian

pulse and using FWHM of intensity values of the time and spectral bandwidth, the

minimum time bandwidth product is 0.441. Using rms values, the minimum time-

bandwidth product for a Gaussian is pulse is 0.5. Reference [4] gives a table of the

minimum time-bandwidth products for a variety of common pulse shapes. Pulses with a
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time-bandwidth product close to the minimum value are said to be “transform-limited”.

A transform-limited, 100 fs pulse spectrally centered at 800 nm has a spectral FWHM

of roughly 9.5 nm.

A short pulse can be described as a carrier frequency, !0, and a complex Gaussian

envelope of the form:

E(t) = exp(�at2) exp[i(!0t + bt
2
)]: (2.1)

In this equation, exp[i(!0t+bt
2
)] is the time-varying phase shift of the sinusoidal signal

within the Gaussian pulse. The total instantaneous phase is then

�tot(t) = !0t+ bt
2
:

The rate at which the total phase propagates forward in time is the instantaneous fre-

quency and is defined as the derivative of the phase with respect to time:

!(t) � d�tot(t)

dt
:

For the Gaussian pulse in Eq. 2.1,

!(t) =
d

dt
(!0t+ bt

2
) = !0 + 2bt: (2.2)

If b 6= 0, then the instantaneous frequency varies linearly in time. In other words, the

component frequencies of the pulse are ordered in increasing or decreasing fashion in

time. Such a pulse is said to be chirped. The term “chirp” comes from the sound a

bird makes when it chirps. In that case, acoustic frequencies increase or decrease with

time. In Eq. 2.2, b is called the chirp parameter and provides a measure of the chirp of

the pulse. The presence of chirp increases the time-bandwidth product of a pulse by a

factor of
p
1 + (b=a)2. Therefore, by propagating a chirped pulse through a medium

such that the different frequencies travel at different speeds and the chirp is reduced

or eliminated, the pulse can be compressed in time. Equation 2.2 also illustrates that
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a linear frequency chirp (linear with respect to time) occurs as a quadratic term in the

phase. This point will be relevant when examining data presented in later chapters of

this thesis.

2.2 Short Pulse Propagation

As a pulse propagates, the velocity at which the carrier frequency travels through

a dispersive medium is called the phase velocity. The phase velocity is determined

by the propagation constant, k, evaluated at the carrier frequency. The propagation

constant is given by k = 2�n=�0 where n is the index of refraction of the material.

The velocity at which the envelope travels is called the group velocity. The group

velocity is given by the first derivative with respect to frequency of the propagation

constant. When the group velocity itself is frequency dependent, the component fre-

quencies of the pulse travel at different velocities. This frequency dependent group

velocity is known as group velocity dispersion (GVD). GVD leads to changes in pulse

shape, such as compression or stretching in time, as a pulse propagates. GVD is given

by the second derivative of the propagation constant with respect to frequency. Since

k goes as n=�0, a plot of n versus the free-space wavelength, �0, reveals regions of

positive and negative GVD. Positive or normal dispersion occurs at wavelengths where

the curve is concave up – where the second derivative is positive. Downward curvature

indicates regions of negative, or anomalous dispersion. At visible wavelengths, most

common optical materials exhibit normal dispersion. With normal GVD, red-shifted

frequencies travel faster than blue-shifted frequencies, leading to an upchirped pulse.

Propagation of an electromagnetic wave can be described by starting from Maxwell’s
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equations for a neutral, non-magnetic, dielectric medium:

r�E =
��0@H

@t

r�H =
@D

@t

r �B = 0

r �D = 0:

For non-magnetic media,

B = �0H:

And the electric displacement,D, is given by

D = �0E + P :

P represents the polarization, in units of electric dipole moment per unit volume, of the

medium and is the only term in Maxwell’s equations that relates directly to the medium.

In the above equations, �0 is the permeability of free space, and �0 is the permittivity of

free space. Taking the curl of r�E with

1
p
�0�0

= c and

r �E = 0 (transverse waves)

gives the one-dimensional inhomogeneous wave equation:

r2
E � 1

c2

@
2
E

@t2
=

1

�0c
2

@
2
P

@t2
: (2.3)

If the polarization, P , is linear in the applied field, then the propagation is linear.

This linear response of the medium is simply the index of refraction. If the applied

field is strong enough, P can become nonlinear in the applied field. This is what is

meant when one discusses nonlinear propagation. A good introduction to nonlinear

optics can be found in Chapter 17 of Ref. [5]. A simplified description of some of the
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basic concepts that will be important for understanding the work presented in this thesis

follows.

P can be expressed as a series expansion in the applied field:

P = �1�0E + �2E
2
+ �3E

3
+ � � �:

In this expression, �n provides a measure of the strength of the linear or nonlinear pro-

cess and is called the susceptibility. As is expected with a series expansion, higher order

susceptibilities have decreasing strength. In other words, higher order nonlinearities re-

quire a stronger field to have any effect on the propagation. It is for this reason that

nonlinear optical processes were largely inaccessible to researchers prior to the avail-

ability of lasers. Commercial femtosecond lasers now routinely produce pulses with

peak intensities on the order of 10 GW=cm
2 or higher.

The second order nonlinearity, �2E
2, is responsible for second-harmonic gener-

ation and optical parametric amplification among other things. Both of these effects

arise from a transfer of energy between electromagnetic fields of different frequencies

within the material such that

!3 = !1 + !2:

Second-harmonic generation is a special case of this general expression, where !1 =

!2. In this case, light at the fundamental frequency is converted to light at the sec-

ond harmonic frequency: !3 = 2!1. In parametric amplification, the opposite effect

occurs. Fundamental light at !3 causes the generation of light at !1 and !2, where

!1 and !2 are not necessarily equal. Second order nonlinearities only occur in non-

centrosymmetric materials such as Beta-Barium Borate (BBO), Potassium Dihydrogen

Phosphate (KDP) and Lithium Niobate. A list of the second order nonlinear coefficients

of some commonly used crystals can be found in Ref. [6].

The third order nonlinearity is active in all materials, regardless of symmetry,

and gives rise to some interesting effects, including four-wave mixing, Raman scatter-
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ing, and the optical Kerr effect. Four-wave mixing includes all processes where one

frequency is created from the combination of three other frequencies. For example, the

situations !4 = !1+!2+!3, !4 = !1+!2�!3, !4 = �!1�!2+!3 etc. are all clas-

sified as four-wave mixing. Third-harmonic generation is a special case of four-wave

mixing in which !1 = !2 = !3, and !4 = 3!1. The Raman nonlinearity is also a ver-

sion of four-wave mixing in which a molecule makes a transition between two states.

Figure 2.1 illustrates this process. A pump photon excites the molecule into a higher

energy virtual state from which the molecule immediately drops back down to either

state 1 or state 2. Raman scattering occurs when the molecule ends up in a different

state than it was initially such that !f = !p � !1�2 (Stokes) or !f = !p + !1�2 (anti-

Stokes). In the preceding equations, !f represents the emitted frequency, !p represents

the pump frequency, and !1�2 represents the energy difference, expressed in terms of

frequency, between states 1 and 2. Raman scattering can occur as either a spontaneous

or stimulated process. Since at thermal equilibrium most molecules will initially be in

the lower of states 1 and 2, more light will scatter into the lower frequency (Stokes)

emission than into the higher frequency (anti-Stokes) emission. As a result, the Raman

nonlinearity should result in a shifting of pulse frequencies to the red.

The optical Kerr effect is a result of anharmonic motion of bound electrons in the

material and results in an intensity dependent refractive index. The index of refraction

of the material is then described by n = n0+n2I where n0 is the linear index of refrac-

tion and n2I is the intensity dependent nonlinear index of refraction. The optical Kerr

effect is responsible for three important phenomena in nonlinear pulse propagation:

self-phase modulation (SPM), self-focusing (SF), and self-steepening(SS).

Self-Phase Modulation In self-phase modulation, the time-varying index of

refraction produces a time dependent phase modulation of the pulse and thereby con-

tributes to spectral broadening of the pulse. Consider the propagation-induced phase of
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Figure 2.1: Schematic diagram of the Stokes and anti-Stokes Raman scattering pro-
cesses.
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a pulse:

�(t) = !0t� kz

where k is the propagation constant, z is the propagation distance through the medium,

and !0 is the center frequency of the pulse. For a medium of length L, the phase after

propagation is given by:

�(t) = !0t�
2�n

�
L

where n is the total index of refraction given by n = n0 + n2I . Now, the instantaneous

frequency is the derivative of the phase with respect to time which is given by:

d�

dt
= !0 �

2�L

�

dn

dt

or

d�

dt
= !0 �

2�n2L

�

dI(t)

dt
:

The instantaneous frequency, therefore, goes as the negative of the derivative of the

intensity profile with respect to time. Assuming n2 is positive, this leads to a lowering

of frequencies on the leading edge of the optical pulse and an increase in frequencies

at the trailing edge of the pulse. A pulse with a smooth Gaussian envelope will thus

acquire a roughly linear frequency chirp across the central region of the pulse. This

situation is illustrated in Fig. 2.2. Note that SPM is similar to GVD in that it produces a

frequency chirp. However, SPM actually shifts some of the component frequencies of

the pulse to new frequencies while GVD only rearranges the component frequencies.

Self-Focusing Self-focusing is a nonlinear effect that results in a spatial focus-

ing of the beam as it propagates. SF is also a result of the optical Kerr effect. If n2

is positive, then the higher intensity regions of the pulse experience a larger index of
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Figure 2.2: A Gaussian function and the negative derivative of that Gaussian. The
derivative illustrates the change in frequency a Gaussian pulse experiences as a result
of SPM.
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refraction than the lower intensity wings of the pulse. In this way, the pulse transforms

the medium into a weak positive lens. As the pulse is focused, the center becomes

more intense leading to a higher index of refraction and an even stronger positive lens.

In this manner, self-focusing can become a large effect very quickly. This type of SF

is known as whole beam self-focusing. In similar fashion, any small spike or ripple

on the pulse envelope can be magnified greatly and seriously distort the original pulse

shape. This type of SF is known as small-scale self-focusing. Either type of SF can

be catastrophic in an optical system. The high intensities present in the focusing pulse

can be sufficient to damage most optical elements. Two important quantities associated

with SF are the critical power for self-focusing, given by Pcrit = (0:61�)
2
�=(8n0n2),

and the self-focusing distance, zf = w0

p
n0=(n2I) [7].

Self-Steepening Self-steepening refers to the steepening of one of the pulse

edges in the temporal domain during propagation. This pulse edge deformation is ac-

companied by an asymmetry in the pulse spectrum [8]. SS occurs as a result of an

intensity dependent group velocity. The group velocity decreases with increasing in-

tensity as a result of the intensity dependent index of refraction. The leading and trailing

edges of the pulse therefore travel faster than the central portion, leading to a steepening

of the trailing edge of the pulse in the temporal domain.

Nonlinear Schrödinger Equation The basic equation describing propagation

in a weakly nonlinear medium is the one-dimensional nonlinear Schrödinger equation

(NLSE):

@E
@z

+ i
k
00

2

@
2E
@t2

� i
2�n2

�
jEj2E = 0: (2.4)

In this equation, E is the slowly varying complex amplitude of the field in the reference

frame moving at the group velocity. GVD is determined by k00, and the third term gives

the optical Kerr effect. The field is normalized such that jEj2 is the intensity in units of
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W=cm
2.

The above mentioned linear and nonlinear effects come into play in various as-

pects of the research presented in this thesis. Many of these effects play a crucial role

in the generation of ultrashort pulses. Second-harmonic generation is the nonlinearity

on which the most often used measurement technique in this thesis is based. Linear and

nonlinear propagation effects are important in the propagation experiments performed

throughout this thesis. The preceding discussion of these effects should provide the

reader with the background necessary to understand the science presented in this the-

sis.

2.3 History of Short Pulse Measurement

To interrogate the processes involved in propagation of femtosecond pulses, it

is first necessary to be able to measure the pulses themselves. By measuring a pulse

before and after traversing the material of interest, one can infer valuable information

regarding the materials parameters. Changes in the pulse spectrum, intensity profile,

and phase are all important. Also, for numerically modeling pulse propagation, an

accurate determination of the peak intensity of the pulse is required. This section pro-

vides a brief history of pulse measurement techniques and a description of the full-field

techniques available for pulse measurement today.

Acquiring the spectrum of a short pulse is not a difficult task provided one is

careful not to distort the pulse spectrum during the measurement. Measuring the tem-

poral duration of the pulse, however, is a more daunting task because measuring a short

pulse requires an event that is even shorter. Autocorrelation techniques provide an ob-

vious solution to this quandary because they use the pulse to measure itself. A 1974

publication by Bradley and New [9] provides an excellent overview of the measurement

techniques first used to measure short pulses such as linear and nonlinear autocorrela-

tion.
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Autocorrelation works by dividing the pulse to be measured into two replicas and

then interacting these two replicas over a range of delays to produce a signal. Linear

correlation relies on measuring interference fringes between the two pulses while non-

linear correlation techniques involve overlapping the two pulses in a nonlinear medium

to produce a signal. An example is overlapping the two pulses in a second-harmonic

generating crystal. In this case, the signal produced is given by the second-order cor-

relation function:
R
I(t)I(t + �)dt. This signal can be produced in the presence of

a constant background or in a background-free configuration. Because a signal will

only be observed or enhanced above background while the two pulses are overlapped,

these methods give the user some insight into the duration of the pulse. The absolute

length of the pulse, however, cannot be obtained. To place any value on the length of

the pulse one must first assume a pulse shape. Often a pulse is assumed to be Gaussian

or hyperbolic secant squared in shape. If both the autocorrelation and the spectrum are

available, the time-bandwidth product gives some insight into phase of the pulse insofar

as it confirms the presence or absence of chirp.

Autocorrelations have been performed in a variety of configurations. Because

one arm of the autocorrelator is scanned to produce signal over a range of delays, early

experiments with short pulses were necessarily multi-shot experiments. In an effort to

measure the duration of a single pulse, and not a time average length, researchers turned

to performing autocorrelations in laser dyes, observing two photon fluorescence as the

signal. Counter propagating pulses led to single shot measurements. The technique,

however, did not lend itself to background free configurations and the signal to noise

ratio often led to unreliable information. Streak cameras were employed to measure

pulses of picosecond and longer duration. Early work also employed ultrafast shutters,

where one pulse is used as a gate function, allowing the signal to pass through a Kerr

or saturable absorber medium. Borrowing from the field of acoustics in 1971, Treacy

first applied the concept of a spectrogram to the optical regime [10]. A spectrogram
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is a two-dimensional representation of the pulse as a function of time and frequency.

Treacy was, however, unable to retrieve the full intensity and phase of the pulse. Third

and higher correlation experiments were also performed in the first attempts to uncover

some phase information as well.

As short pulse technology progressed, techniques were developed that could bet-

ter measure the intensity profile of a femtosecond pulse. Techniques based on four-

wave mixing, third-harmonic generation, or a combination of sum- and difference-

frequency generation were proposed and implemented to measure complicated or asym-

metric intensity profiles [11, 12]. These methods worked well, however they could only

measure pulses in the visible. A much later optical Kerr shutter technique allowed mea-

surement of pulse asymmetry and structure of pulses in the UV [13].

Other methods were designed to measure the presence of chirp [14, 15, 16].

These methods, however, were limited either because they used a streak camera and

thus were not useful for very short pulses, or they could only resolve whether or not a

pulse was chirped. In 1991 Albrecht et al. developed a method based on two-photon

absorption to characterize the phase function of a pulse up to the fourth order. A sepa-

rate technique, however, was required to gain any information about the temporal shape

or duration of the pulse [17]. Later, Le Blanc and Sauerbrey developed a technique that

avoided the use of a nonlinear detector, thus allowing measurement of pulses from the

ultraviolet to the XUV. Results of this technique, however, were difficult to interpret,

and the technique was only capable of resolving phase shifts of pi or larger [18].

As early as 1985, the first methods to simultaneously measure both the amplitude

and phase of femtosecond pulses appeared. The first successful technique was imple-

mented by Diels et al. [4]. Theirs is something of a brute force method. The idea is to

measure the pulse spectrum, the intensity autocorrelation, and the interferometric auto-

correlation and then iteratively fit a pulse to the three results until the process converges

to the one pulse that could have produced all three. This technique still requires some
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previous knowledge or a reasonable estimate of the functional dependence of the pulse

and therefore isn’t particularly useful for complicated pulse shapes or modulations.

Also, there has been no discussion of the uniqueness of the solution. Naganuma pre-

sented a more rigorous variation on this theme and demonstrated that a measurement of

the interferometric intensity autocorrelation and the interferogram of the fundamental is

mathematically sufficient to reconstruct the pulse with ambiguity only in the direction

of time [19]. Later work resolves the time ambiguity by making measurements before

and after propagation through a piece of glass [20].

Another method relies on time domain interferometry, but requires a flat phase

reference pulse [21]. Diels later introduced a more elegant technique where one ap-

plies a known reversible transformation to the pulse to be measured so as to stretch

out the signal in time [22]. This pulse is then characterized by interferometric cross

correlation with the short version of itself. The fully characterized long pulse is numer-

ically transformed back. In practice this reversible transformation might be propagation

through a piece of glass. Of course, this method assumes a full understanding of the

processes involved in the propagation as well as accurate parameters associated with

these processes. If the pulse is of low enough peak intensity, this assumption is not an

unreasonable one.

Each of the preceding measurement techniques for resolving the intensity and

phase of a pulse involves measurements in the time domain, in the spectral domain,

or in both. The real breakthrough came, however, with techniques involving measure-

ments in a combined temporal-spectral domain. In one of the first optical temporal-

spectral measurements, Treacy directly measured chirp in a pulse using time-resolved

spectroscopy [23]. Dynamic spectrograms have also been applied to the determination

of the presence of temporal asymmetry and chirp in compressed pulses [24]. In fact, it

was a spectrographic technique that facilitated the compression of pulses to 6 fs for the

first time. Treacy had predicted that cubic phase would be the limiting factor in produc-
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ing short pulses [25]. The record in 1987 was 8 fs, produced by grating compression

of a pulse spectrally broadened by SPM in a single mode optical fiber [26]. Fork et al.

produced 8 fs pulses using this method. Then, by mixing six different spectral regions

of the compressed pulse with an unbroadened pulse from the amplifier and upconvert-

ing each, he was able to measure the relative delay experienced by each frequency

component. In this manner he could see that the 8 fs pulse had a residual cubic phase

term. By adding a prism pair and adjusting the distances between prisms and gratings,

he was able to eliminate both cubic and quadratic phase and achieve 6 fs pulses [2].

Fork’s clever measurement technique formed the basis of the first spectrographic pulse

measurement techniques.

In 1991 Chilla and Martinez published a combined spectral-temporal pulse mea-

surement technique based on Fork’s work that provided the first direct measurement

of amplitude and phase [27]. The method first filters the pulse to be measured in fre-

quency, selecting a narrow frequency range. This spectral piece is then cross correlated

with a reference pulse to measure delay. By moving the filter and thereby selecting

different frequency regions, the derivative of the phase can be found as a function of

frequency. An integral yields spectral phase. This information, in conjunction with the

power spectrum, gives the spectral amplitude and phase of the pulse. The temporal am-

plitude and phase are given by Fourier transform. This technique was termed frequency

domain phase measurement or FDPM [28].

A similar technique upconverts the pulse to be measured with a spectrally nar-

row reference pulse [29]. At each value of delay, the spectrum is recorded. The de-

lay at which each wavelength exhibits an intensity maximum is related to the phase.

The reference pulse is narrow so that each upconverted sum-frequency corresponds to

nearly one frequency component of the pulse to be measured. A rigorous development

of the theory behind this technique was presented. This method was experimentally

demonstrated to measure only the phase but, in theory, it has sufficient information to
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determine the full complex pulse field [30].

Both of the immediately preceding techniques are members of a larger class of

techniques whose members are each referred to as a STRUT: spectrally and temporally

resolved upconversion technique.

Kane and Trebino introduced a technique similar to FDPM, known as frequency-

resolved optical gating or FROG [31]. Instead of temporally resolving spectral slices

of a pulse, however, FROG spectrally resolves temporal slices of a pulse. The temporal

gating can be accomplished in several ways, but all methods rely on spectrally resolving

the signal from an autocorrelation performed in an instantaneously responding nonlin-

ear medium. This measurement yields the spectrogram of the pulse. The intensity and

phase of the pulse is then retrieved by means of an iterative two-dimensional phase re-

trieval algorithm that requires no assumptions about the pulse. The retrieved field has

been shown to be essentially unique [31]. The advantage of FROG over the Fourier

filtering method of Chilla and Martinez is that it is experimentally simpler and can be

extended to a single shot technique. More about the FROG technique can be found in

Chapter 3.

Nearly two years after the introduction of FROG, a new technique was intro-

duced by B.S. Prade et al. This method is experimentally simpler than FROG and can

also be performed in a single shot. The method makes two measurements of the power

spectrum of the pulse: one before and one after propagation through a known Kerr

medium where the spectrum acquires a complicated fringe structure. A retrieval algo-

rithm starts with an initial guess for the pulse and numerically forward and backward

propagates the pulse, replacing the spectrum with the corresponding measured values

between each step, until the algorithm converges to a single input that is consistent

with both measurements. Uniqueness of the solution is not proven, but the technique

has been demonstrated to be robust by introducing known phase distortions on a pulse

and then performing the measurement. The technique also provides a measure of the
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peak intensity of the pulse assuming the nonlinear index of refraction of the material is

known accurately.

In 1995 a method was described that directly measures spectral phase, thus elim-

inating the need for a retrieval algorithm and the worries of uniqueness [32]. This

method, which is essentially the same as a technique developed in femtosecond pulse

shaping experiments [33], is called direct optical spectral phase measurement (DOSPM).

In DOSPM, the pulse to be measured is spectrally dispersed with a grating. A V-shaped

filter then selects two narrow spectral components, one of which is located at the cen-

ter wavelength. Temporal beat patterns are then measured by cross correlation with a

nearly transform limited reference pulse. Phase differences appear as a delay of the

center peak of the beat pattern. By varying the height of the V-shaped filter, and thus

the spectral component selected, to both positive and negative offsets, the frequency de-

pendent phase can be directly determined. This method, however, gives no information

about the amplitude of the pulse. Both DOSPM and the second-harmonic generation

form of FROG have been shown to measure phase distortions to within 5% accuracy

[34]. DOSPM was later modified to employ a multi-slit arrangement [35]. This arrange-

ment allows for single shot measurement and is capable of measuring more complicated

or discontinuous phase profiles.

The preceding techniques are those that were available at the time the investi-

gations presented in this thesis began. For completeness, I mention here other pulse

measurement techniques that have since been developed.

Two additional STRUTs have been developed. The first method again overlaps a

spectrally narrow (1:5 nm) reference pulse with the pulse to be measured in a nonlin-

ear crystal to produce an upconversion signal, but it does so in a single shot geometry

[36]. The measurement yields a real time group delay spectrogram from which am-

plitude and phase can be determined using a rapid retrieval algorithm. This method

boasts close to real time phase and amplitude displays. It also employs a second-order
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nonlinear process and is therefore useful for weak signals. The second method, tem-

poral analysis of spectral components (TASC), is experimentally the same method as

FDPM except that it uses a wider slit when selecting spectral components [37]. FDPM

is limited to measuring simple phase structures because it discards information on the

full temporal dependence of each spectral piece. TASC selects broad enough spectral

components that the temporal profile is not determined by the spectral mask. TASC is

also a second order technique capable of measuring weak pulses. The method boasts

intuitive spectrograms and no time direction ambiguity.

Two methods have recently been introduced to measure not only amplitude and

phase but also peak intensity. One technique provides a measurement in the focal region

of a pulse and is based on measuring two far-field intensity patterns: one with and

one without a known nonlinear material located in the focal spot. This technique was

dubbed BRIEFING or beam reconstruction by iteration of an e-field with an induced

nonlinearity gauge [38]. A second method involves triple correlation and involves no

assumptions about the analytic form of the pulse and uses no iterative algorithms [39].

In the past, femtosecond nonlinear pulse propagation has been studied by spectral

observations [40, 41], autocorrelations [42], and cross correlations [43]. Information

about the spatial effects of nonlinear pulse propagation have been obtained using the z-

scan technique [44, 45]. Although these techniques provide important information, they

generally require assumptions about the pulse and they do not provide a measure of the

phase. Among the full-field techniques, FROG has emerged as a powerful, robust, and

widely-used pulse diagnostic. Although FROG has primarily functioned as a diagnostic

technique, it also holds value as a tool for measuring nonlinear materials properties as

will be demonstrated in the following chapters.



Chapter 3

Experiment

3.1 Laser System

All of the experiments presented in this thesis were performed using an ampli-

fied, femtosecond, Ti:Sapphire laser system. The system consists of an Argon ion

laser pumped Ti:Sapphire oscillator, a single-grating pulse stretcher, a Nd:YAG pumped

Ti:Sapphire regenerative amplifier, and a single-grating compressor. A schematic dia-

gram of the laser system can be seen in Fig. 3.1. The Argon-ion-laser-pumped Ti:Sapphire

oscillator produces �80 fs pulses, with a central wavelength of 800 nm, at a repetition

rate of roughly 100 MHz. The average power out of the oscillator is 400 mW. Pulses

from the oscillator proceed into a single grating stretcher where they are spectrally

dispersed such that different frequencies travel different path lengths and each pulse

stretches out in time. At the output of the stretcher, pulses have a duration on the order

of 200 ps. The peak intensity of pulses at this point has dropped by nearly four orders of

magnitude. The stretched pulses are then amplified in a Nd:YAG-pumped Ti:Sapphire

regenerative amplifier operating at 1 kHz. A single pulse from the amplified pulse train

is selected by a Pockels cell in the pulse switchyard, and that pulse proceeds to the

compressor. The compressor spectrally disperses the pulse, with different frequencies

traveling different path lengths, to compensate for the stretching incurred earlier and

to offset any dispersion that occurred in the amplifier and transport optics. The com-

pressed pulses have a duration of 80 fs, a central wavelength of 800 nm, and an average
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Figure 3.1: Schematic diagram of the amplified Ti:Sapphire laser system.
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power of 1 W. The pulses occur at a repetition rate of 1 kHz and have 1 mJ of energy

per pulse. The pulses are nearly bandwidth-limited, with a spectral full-width at half

maximum (FWHM) of 12 nm. Pulses typically have a small amount of residual cu-

bic phase. Figure 3.2 shows a typical output pulse in both the temporal and spectral

domains.

All components of the laser system are fully enclosed and have servo-controlled,

heated baseplates to minimize the effects of fluctuations in the ambient environment.

Despite these efforts, however, the pulses drift in duration, center frequency, and chirp

content with changes in room temperature of as little as 2 degrees Celsius. A temper-

ature drift of more than 2 degrees Celsius often causes the oscillator to cease mode-

locking. For these reasons, the room conditions and laser performance must be closely

monitored.

Laser performance is monitored in three ways; (1) An Ocean Optics fiber spec-

trometer observes the center frequency and shape of the spectral intensity profile of

pulses from the amplified pulse train by monitoring pulses transmitted through the high-

reflectivity end mirror of the amplifier cavity. (2) The transmitted pulses are also de-

tected by a fast photodiode and the pulse train is displayed on an oscilloscope. Changes

in relative peak heights of pulses in the train indicate a change in alignment of pulses

into the amplifier, and therefore a change in laser performance. (3) The polarization

gating (PG) form of frequency-resolved optical gating (FROG) is used to monitor the

beam after the compressor. PG FROG provides a nearly real time observation of pulse

duration and chirp and will be discussed in more detail later in this chapter.

Aberrations in the calcite polarizers in the pulse switchyard distort the beam pro-

file of the amplified pulses before they are compressed. Figure 3.3 displays contour

plots of CCD images of the beam before and after propagation through one of the polar-

izers. An amplified pulse passes through these polarizers on its way to the compressor.

These distortions can result in regions of high spatial intensity or “hot spots” on the
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beam. These hot spots can potentially damage optics and can result in propagation data

that is difficult to interpret. Therefore, we spatially filter the beam in order to have a

better spatial profile for performing experiments. For experiments in which only a low

intensity beam is used, the beam is sent through an ambient spatial filter consisting of

a 30 cm focal-length lens, an 80 �m diamond pinhole, and a 15 cm focal-length recol-

limating lens. In addition, a vacuum spatial filter is used for high intensity beams. A

75 cm focal-length lens focuses the beam into a 300 �m pinhole located approximately

at the center of a 1 meter long glass vacuum chamber at a pressure of 2 � 10
�2 Torr.

A second 75 cm focal-length mirror recollimates the spatially filtered beam outside the

vacuum chamber.

A spatial filter works in the following manner. The beam from the laser is mostly

Gaussian with some high frequency noise added. Beam propagation through a lens

produces the spatial Fourier transform in the focal (or transform) plane such that low

frequency components appear closest to the axis and high frequency components ap-

pear further out. Insertion of an aperture in the beam selects only the low frequency

components. A second lens recollimates the beam and performs the inverse Fourier

transform. The beam is now devoid of high frequency noise. In a sense, spatial filters

trade high frequency noise for low frequency noise because the top-hat type filtering

performed in the focal plane adds some low frequency noise in the spatial wings. This

added low frequency noise is convolved with the nearly-Gaussian pulse, however, and

is therefore usually quite small. The resulting pulse is more uniformly Gaussian than

the input pulse and is far less likely to damage optics or to cause appreciable experi-

mental error due to “hot spots” on the beam. When choosing lens and aperture sizes

for a spatial filter, the minimum noise wavelength, n, transmitted by the aperture of

diameter d is given by:

n = 2
f�

d
; (3.1)
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where f is the focal length of the first lens and � is the optical wavelength of the light.

A recommended aperture diameter, dopt, is given by:

dopt =
f�

a
; (3.2)

where a is the beam radius prior to the first lens [46]. For an ideal Gaussian pulse, this

aperture diameter passes 99.3% of the total beam energy and blocks spatial wavelengths

smaller than 2a. The fraction of power passed through an aperture of diameter d is given

by:

P

Ptotal

= 1� exp

"
�1

2

�
�ad

�f

�2
#
: (3.3)

For some experiments, pulses centered at wavelengths other than 800 nm are

needed. These pulses are generated by a home-built optical parametric amplifier (OPA)

similar to the one described by Yakovlev [47]. A diagram of the OPA is shown in

Fig. 3.4. Roughly 1 �J of the amplified laser beam is selected and focused into a 2

mm thick piece of sapphire to generate a broadband continuum. The continuum serves

as a seed for the parametric amplification. The infrared portion of the continuum is

collinearly combined with about 500 �J of 800 nm pump light in a 4 mm thick BBO

crystal in a Type-1 phase matching configuration. Different spectral components of

the seed beam arrive at the BBO crystal at different times and are phase matched at

different angles. By adjusting the delay of the continuum and angle tuning the nonlinear

crystal, the desired infrared wavelength can be amplified. The OPA shown in Fig. 3.4

uses a single pass amplification. This OPA can easily be adapted to a double pass

configuration with the addition of a dichroic beam splitter, a couple of mirrors, and a

translation stage. The OPA can be tuned continuously from 1100 to 1400 nm. Pulses

are compressed with a standard prism pair. Typical pulse energies range from 1 �J to

50 �J. Figure 3.5 shows the normalized OPA output spectra for several angles of the

crystal. Figure 3.6 shows the temporal intensity and phase of a pulse centered near

1200 nm. Short, Gaussian, IR pulses can readily be obtained.
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Figure 3.4: Schematic diagram of optical parametric amplifier. The notation B.S. indi-
cates beam splitters and the dotted rectangle indicates a translation stage.
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Figure 3.5: Normalized spectra of pulses from the OPA corresponding to different
angles of the BBO crystal. The energy per pulse and spectral FWHM are also listed for
each case.
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centered spectrally at 1200 nm.
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3.2 Overview of Experimental Method

All propagation experiments are conducted using frequency-resolved optical gat-

ing (FROG) to obtain the full electric field of the pulses. Specific details of each experi-

ment are presented with the data in later chapters. A brief overview of the experimental

method is described here.

Pulses from the compressor are spatially filtered and directed to the entrance

of the FROG apparatus. The on-axis portion of the beam is selected using a 1 mm

aperture. This beam is measured with FROG and provides the reference field for the

experiments. A nonlinear sample is then placed in the beam path prior to the FROG

apparatus and a second measurement is made. Comparison of the field after propagation

with the reference field gives insight into the processes involved in propagation through

that material. Beam size and average power are also measured at the entrance face of

the sample. The average power at the entrance face of the sample can be altered by

rotating one of a pair of polarizers placed in the beam path before the spatial filter. A

brief introduction to FROG as a technique follows in Section 3.3. Specifics of our SHG

FROG device and related experimental considerations are presented in Section 3.3.4.

3.3 FROG

Frequency resolved optical gating (FROG) was developed in 1993 as a method

for acquiring the full field of a pulse without making assumptions about pulse shape

[31, 48]. By full field, we refer only to the axial temporal slowly varying amplitude and

phase of a pulse: E(t) /
p
I(t)e

i'(t), and not to the full spatio-temporal field. FROG is

a spectrally resolved autocorrelation technique, and yields the spectrogram of the pulse

to be measured. A spectrogram, S(!; �), is a two-dimensional representation of the
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pulse as a function of time and frequency:

S (!; �) =

����
Z

1

�1

E (t) g (t� �) exp (�i!t) dt
����
2

; (3.4)

where E (t) denotes the complex electric field, and g (t� �) is a variable-delay gate

function. The gating can be performed using nearly any instantaneously responding

nonlinearity. Experimentally, a FROG device splits the pulse to be measured into two

replicas. These two replicas interact in a nonlinear medium yielding an autocorrela-

tion signal. This autocorrelation signal is then spectrally resolved, and the resulting

spectrum is recorded on a CCD.

The first FROG apparatus used self-diffraction as the nonlinearity and is referred

to as SD FROG [31]. Other FROG devices introduced include polarization gating

(PG) [49, 50], second-harmonic generation (SHG) [51, 52], third-harmonic genera-

tion (THG) [53], and transient grating (TG) [54] FROG. All of these versions, with the

exception of SHG FROG, rely on third order nonlinearities for performing the autocor-

relation. SHG is a second order nonlinearity. The spectrogram obtained with each of

these geometries is of a different mathematical form. Since in FROG the pulse is used

to gate itself, the quantity E (t) g (t� �) is simply the autocorrelation signal which we

will denote Esig (t; �).

The signal field in the case of each of the FROG geometries mentioned above are

shown below:

SD : Esig (t; �) = E
2
(t)E

�

(t� �) (3.5)

PG : Esig (t; �) = E (t) jE (t� �)j2

SHG : Esig (t; �) = E (t)E (t� �)

THG : Esig (t; �) = E
2
(t)E (t� �) :

In these expressions, E (t) denotes the complex-valued electric field, and � is the delay

between pulses in the autocorrelation. Depending on which pulse is delayed in TG
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FROG, the signal field is mathematically equivalent to that of SD or PG FROG.

In each case, the spectrogram obtained is referred to as the measured “FROG

trace”. The FROG trace is a plot of intensity versus frequency and time delay. The

electric field of the pulse that created the FROG trace can be essentially uniquely deter-

mined from the FROG trace. Ambiguities associated with the various types of FROG

will be discussed in Section 3.3.2.

Once the FROG trace has been measured, the next step is to retrieve the electric

field of the pulse that created the trace. The spectrogram obtained in the FROG mea-

surement can easily be transformed into a two-dimensional phase retrieval problem by a

simple change of variables. An in-depth discussion of this transformation can be found

in Ref. [55]. The two-dimensional phase retrieval problem is a well known problem

in the field of image science. The method of retrieving the intensity and phase of a

pulse from the FROG trace is to apply an iterative phase retrieval algorithm. The task

of the FROG retrieval algorithm is to find a signal field that satisfies two constraints.

The first constraint is that the measured FROG trace must be the squared magnitude of

the one-dimensional (1-D) Fourier transform of Esig(t; �) with respect to time:

IFROG (!; �) =

����
Z

1

�1

Esig (t; �) exp (�i!t) dt
����
2

: (3.6)

The second constraint is the mathematical form of the signal field as given by Eq. 3.5.

This constraint is the ability of the calculated field to be generated from a realistic signal

field by a known nonlinear optical process. The basic FROG algorithm is as follows. A

1-D Fourier transform algorithm is employed that involves Fourier transforming back

and forth between Esig (t; �) and Esig (!; �). The first constraint is applied in the fre-

quency domain, where the magnitude of Esig (!; �) is replaced by the square root of

the measured FROG trace. The second constraint is applied in the temporal domain.

This process is iterated until the algorithm converges. Convergence is determined by

considering the root mean square (rms) difference between the measured FROG trace
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and the trace computed from the retrieved pulse field. When this “FROG error” is ac-

ceptably low, the algorithm is said to have converged. The FROG error is computed

as a normalized intensity and is therefore unitless. The value of the FROG error at

which the algorithm is considered converged differs depending on the type of FROG

involved, and the size of the grids used in acquiring and retrieving the FROG trace. For

a 128�128 grid, SHG FROG error is typically less than 0:002.

Several versions of the retrieval algorithm for FROG have been published [31,

48, 50, 51, 56, 57, 58]. Some have included an additional constraint in the form of

an independently measured spectrum, but this added constraint causes instabilities and

stagnation of the algorithm and therefore should not be used [52]. The most robust

algorithm available during the time these thesis investigations were performed involves

the use of generalized projections. The method of generalized projections basically

involves projecting the solution back and forth onto two sets, each of which constitutes

the set of all fields that satisfy a particular constraint. In the case of FROG, each of

these sets corresponds to one of the two algorithmic constraints discussed earlier. A

projection onto the other set involves moving to the closest point inside that set, where

the closest point is determined by minimizing a defined distance metric between the

two sets. These distance metrics necessarily differ for different FROG types and will

not be discussed in detail here. Further information on the application of the method

of generalized projections can be found in Refs. [52] and [57]. It should be noted

here that generalized projections do not guarantee convergence. However, the method

typically has been found to work very well in FROG applications, especially when

used in combination with other algorithmic methods. It is interesting to note that the

FROG algorithm typically converges fastest when the initial guess for the field is one

of random noise, not a Gaussian pulse. The FROG algorithm used for the experiments

presented in this thesis combines several algorithmic techniques, switching between

methods as each one stagnates. The algorithm we use is a software package available
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from Femtosoft technologies. It should be noted that in April of this year, a genetic

algorithm was introduced [58]. This algorithm retrieves SHG FROG traces better than

the composite algorithm used in these studies. The genetic algorithm is much slower

to converge, but converges to lower errors, and is a very promising FROG algorithmic

technique.

One reason that the FROG algorithm converges well despite the absence of a

guarantee of convergence with generalized projections is that the FROG trace is overde-

termined. An electric field sampled at N points has 2N degrees of freedom, N in mag-

nitude and N in phase. The FROG trace, however, has N2 pixels. It is for this reason

that a measured FROG trace having a fairly large amount of random noise can still be

retrieved well. In fact, the algorithm often converges to a field that produces a less

noisy calculated FROG trace [59]. The overdetermined nature of the FROG trace also

reveals systematic errors in acquiring the trace by failure of the algorithm to converge

[60]. Systematic errors cause nonconvergence because of the physically realizable field

constraint included in the retrieval algorithm.

Another very useful feedback mechanism inherent in FROG is the presence of

consistency checks of the measured FROG trace. These consistency checks occur in the

form of 1-D curves called marginals that are obtained by integrating the FROG trace

over the frequency or delay variable. The mathematical form of the marginals obtained

depend, of course, on the type of FROG being implemented. Since the SHG form of

FROG is used for collecting most of the data presented in this thesis, its marginals are

discussed here.

The frequency marginal is obtained by integrating the FROG trace over the delay

variable, � . For the case of SHG frog, the resulting curve is given by [61]:

M
!
SHG (!) = 2I (!) � I (!) (3.7)

which is simply the autoconvolution of the fundamental pulse spectrum. In Eq. 3.7,
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M
!
SHG (!) denotes the frequency marginal, and I (!) denotes the pulse spectrum. There-

fore, all that is needed to perform a consistency check on the FROG measurement is to

independently measure the pulse spectrum, calculate the autoconvolution of that spec-

trum, and compare to the frequency marginal. Not only can this method be used to

check for systematic errors, but it is also useful for alignment of the nonlinear crystal

in the FROG device and for correcting for phase matching problems that occur in the

crystal.

The delay marginal for SHG FROG is obtained by integrating the FROG trace

over the frequency variable, !, and is given by [61]:

M
�
SHG (�) =

Z
1

�1

I (t) I (t� �) dt (3.8)

Equation 3.8 is simply the second-order autocorrelation of the pulse. Hence, a sec-

ond consistency check is to perform an independent second order autocorrelation and

compare to the delay marginal.

3.3.1 Some Practical Issues Concerning FROG

As with any measurement technique, the data must be sampled properly. The

FROG sampling rate (FSR) is satisfied when all non-zero FROG data lie completely

within the FROG grid, where non-zero is defined as an intensity equal to or greater

than 10�4 times the peak intensity [60]. In other words, since the temporal and spectral

domains are related by a Fourier transform, the time step must be chosen such that the

spectrum does not extend off the edge of the FROG grid. The step sizes in the two

domains are related by the following expressions:

�t =
1

fs
and �f =

fs

n
(3.9)

or

�t =
1

n�f
(3.10)
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where �t is the temporal sampling interval, fs is the sampling frequency, �f is the

spectral sampling interval, and n is the number of samples in the temporal and spectral

domains. Sampling near the FSR limit allows one to use the smallest possible grid and

therefore allows quick algorithmic convergence, however the retrieved field often has

a sharp, jagged profile. Since all necessary data are present, more attractive spectral

and temporal profiles can be obtained by symmetrically adding zeroes to both ends

of the data set in one domain and Fourier transforming to the other. Another obvious

way of avoiding jagged retrieved field profiles is to sample data on a larger grid and

therefore above the FSR. FROG traces are most visually appealing when both the delay

and frequency domains are equally sampled. However, any sampling rate that satisfies

the FSR is sufficient.

Careful calibration of the frequency and delay axes is also particularly important.

Since the step size in each domain, as well as the central wavelength of the data are used

as input parameters in the retrieval algorithm, accuracy of these parameters determines

the accuracy of the retrieved field. It has been shown that inaccuracy on the order of

10% in the input parameters introduces roughly 10 to 20% inaccuracy in retrieved pulse

parameters such as temporal and spectral FWHM and phase distortion [52]. Since the

two domains are related by Fourier transform, an error in any calibration will affect all

aspects of the retrieved field.

3.3.2 Ambiguities Inherent in FROG

FROG essentially retrieves the full field of the measured pulse, however there

are a few ambiguities inherent in various forms of FROG that should be mentioned.

Three ambiguities are inherent in all forms of FROG [31, 48]. The first ambiguity is

an arbitrary constant phase factor, which is irrelevant in ultrashort pulse measurements.

The second ambiguity is an arbitrary shift in time and is similarly unimportant. The

third ambiguity is the distinction between Esig (t; �) and E
�

sig (�t;��). The latter sig-
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nal, however, is not consistent with the mathematical form of the signal field constraint

and therefore cannot occur in FROG. Additional ambiguities are specific to various

versions of FROG. SHG FROG, for instance, has two important ambiguities. The first

of these is the direction of time. Since SHG is a second order technique and produces

traces that are symmetric with respect to time, an upchirped pulse cannot inherently be

distinguished from a downchirped pulse. The direction of time of the retrieved pulse

must be determined independently. Methods for resolving this ambiguity will be dis-

cussed in Section 3.3.4. The second SHG FROG ambiguity exists in the relative phase

of multiple pulses. In this case relative phases of ' and ' + � yield the same FROG

trace. A similar ambiguity in the relative phase of multiple pulses exists for the THG

form of FROG. In this case, however, it is for relative phases of ' and ' � 2�=3. For

the SD, PG, and TG forms of FROG, no additional ambiguities are known.

It was mentioned previously that the PG form of FROG is used as a pulse di-

agnostic technique for the work presented in this thesis. PG FROG was chosen as a

pulse diagnostic because the associated FROG traces are essentially a graphic display

of pulse instantaneous frequency versus time and are thus very intuitive. PG FROG can

be used in a single-shot configuration and thus can yield nearly real time qualitative

information about the pulse. Figure 3.7 shows simulated PG FROG traces for a flat

phase, a downchirped, and an upchirped pulse. The delay axis increases from the top to

the bottom of each graph, and the wavelength axis increases from left to right. Intensity

is plotted on an arbitrary color scale, with the most intense regions in the center of the

FROG trace falling off to lower intensities at the edges of the signal. The approximate

temporal duration of the pulse can be determined by observing the width of the signal

along the delay axis. With frequent monitoring, the trace is a good indicator of changes

in the output of a laser system.

The SD and TG forms of FROG also yield intuitive traces, while SHG and THG

do not. The SHG and THG forms however offer higher sensitivity than their more
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Figure 3.7: PG FROG traces for (a) an unchirped pulse, (b) a downchirped pulse, and
(c) an upchirped pulse.
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intuitive counterparts. As mentioned earlier, some forms of FROG have important

ambiguities as well. The type of FROG used for any application should be chosen to

meet the needs of each individual experiment. Table 3.1 gives a summary comparison

of the various forms of FROG mentioned here.

FROG techniques are generally simple to implement, insensitive to noise, and

provide the user with a full-field characterization of a pulse with only minor ambi-

guities. The technique can be very broadband and has been implemented for pulses

in the ultraviolet, visible, and infrared. FROG was first introduced as a multiple shot

technique, but can also be adapted to single shot measurements [49, 62, 63]. FROG has

been demonstrated for pulses with energies as low as 1 pJ [55] and when combined with

spectral interferometry can measure a pulse train with average energy of only 42 zepto-

joules, or 42� 10
�21 J [64]. Since any nearly instantaneously responding nonlinearity

can be used, FROG can be tailored to fit individual requirements. Non-instantaneous

nonlinearities present in the autocorrelation crystal can also be accounted for in the

retrieval process [50]. Since FROG has inherent consistency checks, systematic errors

can be easily identified and removed. Recently, efforts have been made to extend FROG

to a real-time measurement technique [65, 66], and a method of placing error bars on a

FROG measurement has been determined [67].

Several improvements on the basic FROG technique have been invented, some

of which have been given excessively cute names. TADPOLE is a combination of

FROG and spectral interferometry that allows the measurement of very weak pulses

[64]. TREEFROG allows simultaneous recovery of two independent ultrashort pulses

from a single spectrogram. TREEFROG has been implemented in a mulitshot configu-

ration using SHG FROG [68] and in a single shot configuration using PG FROG [69].

Multi-pulse Interferometric (MI) FROG is an extension of FROG that allows real-time,

single-shot imaging of ultrafast phase shifts. This technique is also capable of resolving

three pulses in a single shot [70]. MI FROG has been applied to pump-probe coherent
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spectroscopy, measuring ultrafast, high-field ionization rates in gases [71, 72]. A ver-

sion of FROG using the Kerr nonlinearity in an optical fiber has the same sensitivity as

SHG FROG, but it does not have an ambiguity in the direction of time [73, 74]. A ver-

sion of FROG using cascaded second-order nonlinearities also boasts high sensitivity

without the time direction ambiguity [75, 76].

FROG has primarily been applied as a laser diagnostic [77, 78, 79, 80, 81] un-

til recent years when it has been extended to a variety of other scientific endeavors.

FROG has been used for the measurement of nonlinear materials properties [82]. It has

been applied to understanding modelocking dynamics in external cavity semiconductor

diode lasers [83]. It has also been used in the study of relativistic accelerations in plas-

mas [84] and ionization induced pulse shortening and retardation [85]. FROG has also

been used in feedback systems to generate tailored pulses from a compressor [86, 87]

and in using tailored pulses to control condensed-phase vibrational excitation [88].

For the purpose of this thesis, I now delve into a little more detail on the PG and

SHG forms of FROG in general and discuss the details relevant to our implementation

of these devices.

3.3.3 PG FROG

The polarization gating form of FROG is the most intuitive form of FROG and is

used in this work as a laser diagnostic. A diagram of the apparatus is shown in Fig. 3.8.

The pulse to be measured is split into two replicas. One replica, the probe beam, is

sent through a pair of crossed polarizers. The more intense gate beam undergoes a

polarization rotation of 45 degrees by out of plane propagation before interacting with

the probe beam in a thin piece of fused silica. The gate beam induces a birefringence

in the fused silica through the optical Kerr effect. When the probe beam overlaps the

gate beam in the fused silica, the probe beam undergoes a slight polarization rotation,

allowing a portion of it to pass through the second polarizer to the detector. PG FROG
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PG FROG:

Figure 3.8: Schematic diagram of polarization gating FROG. C.L. denotes cylindrical
lens; BS, beamsplitter; and f.s., fused silica. Polarizing beam splitter cubes are drawn
as squares with a diagonal line through the center.
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can be arranged in a multishot or single shot configuration. Multiple shot configurations

rely on scanning one arm through a range of delays. A single shot configuration is

used here. In this arrangement, a cylindrical lens focuses both the probe and gate

beams to vertical lines in the fused silica. The beams are crossed horizontally at an

angle in the fused silica. In this way, each position along the axis of beam overlap

corresponds to a specific value of relative delay between the two beams. The entire

autocorrelation signal can then be imaged onto the slits of an imaging spectrometer, and

the entire FROG trace can be acquired in a single shot with a CCD camera. Although

our diagnostic system employs a single shot geometry, because of the speed of the CCD,

actual FROG traces are acquired by averaging over several shots. All adjustments to the

lasers are made manually, therefore integration over several pulses is sufficient to allow

pseudo-real time viewing of how these adjustments affect the output pulses. Pulses

are monitored with PG FROG while the length of the compressor is adjusted to set the

chirp of the laser pulses to the desired level.

The thickness of the nonlinear medium in PG FROG is important. If the medium

is too thick, the pulse to be measured will broaden temporally and acquire a linear chirp

on propagation through the glass. If the medium is too thin, the signal will be distorted

by an etalon effect. Light can reflect off the back surface of the glass, travel to the front

surface, and reflect back into the direction of signal. If the nonlinear medium is too

short, the time it takes for the light to travel back and forth in the glass can be shorter

than the duration of the pulse. This is especially true for longer pulses such as the ones

used in these investigations. For this reason, a 1 mm thick piece of fused silica is used.

The difference in angle of propagation between probe and gate beams should be

kept as small as is reasonably possible. This angle is typically less than 10 degrees.

As each beam propagates through the crystal it experiences an angle dependent path

length, and hence an angle dependent delay. The difference in delay experienced by the

two beams leads to a blurring of the time delay at any given spatial coordinate. This
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blurring effect also increases with the thickness of the nonlinear medium.

Since, in this single-shot configuration, the delay is mapped to a spatial coor-

dinate, spatial quality of the beams is particularly important [55]. For this reason, if

the PG FROG were to be used to obtain more quantitative information, the input beam

should be spatially filtered. In our experiments, there was no spatial filtering before

the PG FROG device. For this reason, it is likely that comparisons between PG and

SHG measurements taken simultaneously reveal inaccuracies in the PG measurement.

The retrieved fields from traces acquired in rapid succession with PG FROG also vary

appreciably. It is for these reasons that the PG form of FROG is used solely as a qual-

itative pulse diagnostic in these experiments. Because of its intuitive traces, it serves

this purpose well.

3.3.4 SHG FROG

SHG FROG employs a second order nonlinearity and is therefore the most sen-

sitive of the most commonly employed FROG techniques. It is capable of making high

dynamic range measurements, making it suitable for propagation experiments where

small changes in the low intensity wings of the pulse bear important information about

the physics involved in the propagation process. A diagram of the SHG FROG appa-

ratus is shown is Fig. 3.9. The pulse to be measured is split into two replicas using a

1.6 mm thick beamsplitter with a broadband Inconel coating. Front surface metallic

reflectors are used to minimize dispersion as the pulse propagates to the frequency-

conversion crystal. A 10 cm focal length spherical mirror focuses the two replicas of

the pulse into the second harmonic conversion crystal, and the resulting signal at 2! is

imaged onto the entrance slits of an imaging spectrometer. The pulse in one arm of the

interferometer is delayed with respect to the other by a stepper-motor controlled trans-

lation stage. The spectrum at each delay is recorded with a thermoelectrically-cooled,

16-bit CCD camera. For each value of delay, the signal is averaged over 300 pulses.
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Figure 3.9: Schematic diagram of SHG FROG apparatus. BS denotes the beam splitter;
and BBO, the second harmonic generating crystal. (From Ref. [89].)
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FROG spectrograms are recorded on 128 by 128 or 256 by 256 grids depending on

the spectral content of the pulse to be measured. Typical peak intensities recorded on

the camera produce 50,000 counts, while the dark current level is at 970 counts. In

addition, the noise level is �2–5 counts, providing a signal-to-noise ratio of better than

10,000:1. Propagation experiments using SHG FROG are conducted by measuring the

pulses with and without a nonlinear sample in the beam.

There are several important issues that should be taken into consideration when

using SHG FROG. A good discussion of some of the issues can be found in Ref. [52].

One obvious issue is the ambiguity of the direction of time. This time ambiguity can be

removed in three ways: 1) repeat the measurement after chirping the pulse in a known

manner, such as propagating the pulse through a glass with known dispersion, 2) prop-

agate through a thin piece of glass such that surface reflections introduce a small pulse

behind the main pulse [78], or 3) have some a priori understanding of the processes

that produced the measured pulse. Initially we chose the first option, propagating the

pulse through a 5 cm thick piece of BK-7 glass. As our research progressed, however,

we switched to the third option, using information from our developing model of pulse

propagation as described in later chapters [90, 91].

As mentioned earlier, SHG FROG yields a trace that is symmetric about de-

lay. One may find it tempting then to only measure half the trace, thereby reducing

the amount of time required to complete a measurement. However, if the trace is not

centered at the exact zero delay point, some broadening of the measured pulse could

result. Also, acquiring half of the trace and numerically inserting the mirror image

before running the algorithm has the unfortunate side effect of symmetrizing noise as

well. Asymmetric noise will be discarded by the algorithm because of the physically

realizable signal constraint, but symmetric noise will remain. Therefore, acquiring only

half of a trace, or symmetrizing a fully acquired trace, serves to increase the effects of

noise and should thus be avoided. It is also noteworthy that the symmetric nature of the
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FROG trace does not imply that only symmetric pulses can be retrieved. The symmetry

of the trace has no bearing on the symmetry of the retrieved pulses.

Because SHG FROG is such a sensitive technique, it is imperative to limit the in-

tensity of light being measured. Because of the high intensities present in the focus of

the two beams, it is relatively easy to damage the nonlinear crystal. Also, if conversion

efficiency in the crystal is too high, depletion of the input fields occurs, invalidating the

expression for the signal field: Esig (t; �) = E (t)E (t� �). In this case, the algo-

rithm will necessarily fail to converge to the correct pulse. A rule of thumb guideline is

to keep the peak intensity conversion efficiency below 3% [52].

Propagation of intense femtosecond pulses through several centimeters of a bulk

nonlinear medium such as fused silica can result in complicated temporal and spectral

intensity profiles, as well as dramatic spectral broadening. As an example, the intensity

in the wings of the spectrum after propagation (at wavelengths that are �50 nm from

the spectral peak) can be just three orders of magnitude less than the peak intensity.

Compare this to our input pulse, where the intensity spans six orders of magnitude over

the same 50 nm spectral region. Because of the large spectral bandwidths of the propa-

gated fields it is important to take into account the finite phase matching bandwidth of

the second harmonic conversion process. This finite phase matching bandwidth arises

from a phase mismatch between the fundamental and second harmonic frequencies.

The conversion efficiency due to phase mismatch is given by [7, 92]

� =

�
sin(�kL=2)

�kL=2

�2
; (3.11)

where �k = (2!=c)[ne(2!; �) � no(!)], ! and 2! are the fundamental and second

harmonic frequencies, ne and no are the extraordinary and ordinary refractive indices,

L is the length of the crystal, and � is the phase matching angle in the crystal. There-

fore, the thinner the crystal, the larger the range of frequencies that can be converted

for a given crystal orientation. For lower peak intensity propagation experiments,
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where the resulting pulse spectral bandwidth is lower, we use a 100 �m thick piece

of � � BaB2O4 (BBO) as the SHG crystal. For experiments in which high peak in-

tensities lead to dramatically broadened pulses, we use a 50 �m piece of BBO. In both

cases, the crystal is cut at an angle of � = 29:1
Æ for type-I phase matching at 800 nm.

For all experiments, the frequency marginal is used to check and correct for problems

associated with the phase-matching bandwidth of the nonlinear crystal.

3.3.5 SHG FROG Data

An example measured SHG FROG trace and the calculated FROG trace corre-

sponding to the retrieved field are shown in Fig. 3.10. The FROG trace was collected

and retrieved on a 128 by 128 pixel grid, and the FROG error associated with this re-

trieval is 0:00312. The measured and retrieved traces match very well, indicating good

convergence of the algorithm. A further test of the convergence of the algorithm is to

compare the marginals of the measured FROG trace to those of the retrieved trace. A

comparison of the marginals for the traces shown in Fig. 3.10 is shown in Fig. 3.11.

Agreement is excellent in both the frequency and time domains.

That the measured and retrieved fields are in such close agreement is very good.

But it is also important to verify that the measured and retrieved FROG traces corre-

spond to the pulse actually being measured. For this, it is necessary to compare FROG

results with independently measured parameters. One comparison that is easy to im-

plement in the laboratory is a comparison between the retrieved pulse spectrum and an

independently measured spectrum. An example using the same retrieved field as above

is shown in Fig. 3.12. The agreement shown in this figure is typical. The SHG form of

FROG is also particularly nice in that its delay marginal is simply the second order in-

tensity autocorrelation of the pulse. As a further demonstration that SHG FROG indeed

measures the actual pulse field, an example of an independently measured autocorrela-

tion compared with both the measured and reconstructed delay marginals is shown in
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Figure 3.10: A measured SHG FROG trace and a FROG trace calculated from the
corresponding retrieved field.
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Figure 3.12: Independently measured spectrum (solid line) along with retrieval spec-
trum (points) for the pulse measured in Fig. 3.10.
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Fig. 3.13. Once again, agreement is very good.

Figure 3.14 shows the retrieved fields from two separate measurements. The

top graph plots the temporal fields as a function of intensity and phase. The bottom

graph plots the retrieved pulse spectra. These two FROG measurements were per-

formed roughly 15 minutes apart and demonstrate the repeatability of the measurement

technique.

The preceding measurements were all made using pulses having a relatively nar-

row spectral bandwidth. As mentioned previously, in propagation experiments one

often needs to measure a pulse that has been spectrally broadened appreciably. Even

using the thin BBO crystal, phase matching can become an issue. The phase matching

efficiency for the 50 �m BBO crystal used in some experiments has a FWHM of 52 nm.

The pulses measured in these experiments typically have a bandwidth after conversion

to the second harmonic of �40 nm (FWHM), thus the phase matching bandwidth pro-

vided by this crystal is sufficient for conversion of most of the spectrum. However, the

conversion efficiency is not constant over the entire bandwidth of the pulse. Figure 3.15

shows the phase matching efficiency curve for 50 �m of BBO cut at an angle of 29.1Æ

for type-I phase matching. Fortunately, this does not present a formidable problem

because of the consistency check provided by the frequency marginal. As has been

demonstrated previously [78], the FROG trace can be corrected prior to being input

into the retrieval algorithm by using the frequency marginal and the autoconvolution

of the fundamental spectrum. This correction eliminates bandwidth limitations due to

finite phase matching efficiencies, as well as grating and detector responses.

Comparison of the frequency marginal with the autoconvolution of the funda-

mental spectrum is also used for alignment of the second harmonic conversion crystal.

The angle of the crystal is tuned for the smallest difference between the autoconvolution

and the frequency marginal. At this angle, there is optimal overlap of the conversion

efficiency curve with the second harmonic pulse spectrum.
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Figure 3.13: An example of the agreement between an independently measured auto-
correlation of a pulse and the corresponding measured and reconstructed SHG FROG
delay marginals.
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SHG FROG technique.
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Measurement of more complicated pulses that result from highly nonlinear prop-

agation is also accomplished well by SHG FROG. Gray scale intensity plots of the

measured and retrieved FROG traces of a complicated pulse are shown in Fig. 3.16.

The square root of the second harmonic intensity is shown for display purposes to em-

phasize the wings of each trace. Darker shading corresponds to higher intensity regions,

and a contour plot with a contour interval of 40 units is overlaid on each trace. The ac-

tual intensity values (not the square root) range from 2 to � 45; 000 counts. Very good

agreement between the two traces is seen, even at the lowest intensity values. As dis-

cussed previously, the thin second harmonic crystal used in these experiments enables

the full second harmonic spectrum of the pulse to be measured.

Figure 3.17 shows the spectrum recovered from the FROG algorithm (dashes)

and an independently measured fundamental spectrum (solid line) corresponding to

the data in Fig. 3.16. The spectra are plotted on a log scale to emphasize the very

good agreement in the wings, down to the noise level of the spectrometer. The short

wavelength side of the measured fundamental spectrum cuts off before the noise level

is reached due to the spectrum extending beyond the edge of the CCD camera in the

spectrometer. The excellent agreement between the two spectra demonstrates the high

dynamic range capabilities of SHG FROG which make it suitable for characterizing the

broad-bandwidth pulses that can result from nonlinear propagation.
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Figure 3.17: Independently measured (solid line) and recovered (dashed line) spectra
corresponding to the FROG traces shown in Fig. 3.16. (From Ref. [89])



Chapter 4

Propagation in Fused Silica

Full-field measurements of femtosecond pulses provide valuable information in

the study of ultrafast phenomena. For example, improvements in measurement tech-

niques have contributed to a more comprehensive understanding of femtosecond lasers

[4, 93, 77]. Femtosecond pulse diagnostics should not, however, be limited to the study

and optimization of femtosecond sources. The study of light-matter interactions in gen-

eral can benefit greatly from knowledge of the amplitude and phase of the electric field.

Measurements of the nonlinear indices of refraction of materials [94, 82, 95] and the

characterization of nonlinear propagation in optical fibers [96] demonstrate the util-

ity of these full-field measurements. Such experiments not only elucidate light-matter

interactions but can also serve to test the measurement technique itself.

In this chapter, we extend these full field measurements to the study of propaga-

tion of short pulses through fused silica. Section 4.1 presents early attempts to measure

the nonlinear index of refraction of various materials using FROG. Difficulties in these

measurements led to a study of one-dimensional (plane wave) propagation in fused sil-

ica (Section 4.2). These studies also serve to demonstrate the validity of FROG as a

technique for investigating nonlinear pulse propagation. In Section 4.3, the experimen-

tal method is applied to the more complicated case of three-dimensional pulse propa-

gation where nonlinear effects cause the pulse to change spatially as well as temporally

during propagation. In this more complicated propagation regime, the combined effects
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of group velocity dispersion and optical nonlinearities lead to the splitting of a pulse

into two or more sub-pulses.

4.1 Measuring the Nonlinear Index of Refraction

The original goal of our investigations was to provide accurate measurements of

the nonlinear index of refraction of various materials. The index of refraction of a given

medium can be expressed as the sum of the linear index of refraction plus the nonlinear

index of refraction times the intensity of the laser pulse and is typically written:

n = n0 + n2I: (4.1)

To measure the nonlinear index of refraction, one needs to measure the phase change

acquired as a pulse traverses the material of interest. Assuming the change in phase of

the pulse, ��(t), is derived solely from self-phase modulation, ��(t) is proportional

to the change in index of refraction times the length of the medium. The change in

index of refraction is simply n2I , and ��(t) is given by

��(t) =
2�

�
n2I (t)L (4.2)

where � is the optical wavelength, and L is the length of the medium. Solving for n2

yields

n2 =
�

2�L

��(t)

I (t)
: (4.3)

The change in phase can be measured by making two separate measurements

with FROG: one before (reference) and one after propagation through the sample. A

simple subtraction of retrieved phase profiles yields ��(t). Since the change in phase

is assumed to be solely the result of self-phase modulation, ��(t) should be propor-

tional to the intensity profile, I (t). It is common to separate the effects of GVD and

SPM because GVD temporally rearranges frequencies within the pulse while SPM cre-

ates new frequencies. Contributions to the phase change from group velocity dispersion
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can be calculated and added to the reference phase before subtraction of the two phase

profiles. Some relevant equations are given later in this section. A fit of the measured

intensity profile to the measured phase change gives a constant of proportionality, � ,

such that

n2 =
�

2�L

�

I0
(4.4)

where I0 denotes the peak intensity of the pulse.

The peak intensity can be recovered from the FROG measurement, along with

independent measurements of beam size and average power of the pulses. The mea-

sured average power divided by the repetition rate of the laser equals the energy per

pulse. Energy per pulse is equivalent to the integral of the pulse intensity over space

and time:

Energy=pulse =

Z
1

0

Z 2�

0

Z
1

�1

I (r; t) r dr d� dt: (4.5)

If we assume a Gaussian spatial profile,

Energy=pulse = I0
�!

2
0

2

Z
1

�1

I (t) dt: (4.6)

The 1=e2 beam waist, !0, is determined from an intensity profile captured by a CCD

camera. The integral
R
1

�1

I (t) dt can be obtained from a FROG measurement of the

reference field thus allowing n2 to be determined.

Measurements of this type are performed using the method presented by Taylor

et al. [82]. The PG form of FROG is used for these initial measurements, with a

0.5 mm slit inserted before the cylindrical lens. This slit is centered on the beam and

selects the most intense portion of the spatial profile. This aperture eliminates spatial

averaging effects in the single-shot polarization gate geometry [82]. Measurements are

performed with samples of fused silica of varying lengths. In order to induce phase

changes of greater than 1 radian, sample lengths greater than 0:64 cm are used. After
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propagation through the fused silica, the intensity profile is broadened significantly.

Because of this broadening, a problem then arises in performing the fit between change

in phase and the intensity profile. Using each of the two measured intensity profiles for

performing the fit yields values of n2 that differ by as much as 10%. Figure 4.1 shows a

plot of intensity versus time for a pulse before and after propagation through a 2.54 cm

sample of fused silica. The measured phase difference between the two pulses is also

shown. Values of n2 at 800 nm using the two intensity curves are 1:62� 10
�16 cm2/W

and 1:81� 10
�16 cm2/W.

Pulse broadening due to GVD alone cannot account for such a large change.

Assuming a Gaussian input pulse, the spectral field of the pulse is given by [97]

E (
; z) = A0 exp
�x
2

exp
iy(z)
2

(4.7)

where A0 is a complex amplitude factor, 
 is frequency, and x and y are given by

x =
T

2
G(0)

4 (1 + a2)
and y (z) =

aT
2
G(0)

4 (1 + a2)� k00z
2

: (4.8)

TG(0) represents the 1=e2 width of the input pulse in time, a is the input chirp parameter,

and k
00 — the second derivative of the wave vector k — determines the group velocity

in the material. The 1=e
2 width of a pulse broadened during propagation through a

material of length z is then given by

TG (z) =

r
4

x
[x2 + y2 (z)]: (4.9)

For an unchirped input pulse, with a = 0, substituting Eq. 4.8 into Eq. 4.9 gives

TG (z) = TG (0)

 
1 +

�
z

Ld

�2
!1=2

(4.10)

where Ld is a characteristic length due to GVD and is given by

Ld =
TG (0)

2

2jk00j :
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Figure 4.1: Retrieved intensity as a function of delay before (solid line) and after
(dashed line) propagation through 2.54 cm of fused silica. Circles indicate phase dif-
ference. Calculated values of n2 corresponding to each intensity profile are also shown.
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A calculation of the expected pulse broadening due to GVD of a 92 fs pulse —

a typical pulsewidth in our experiments — traversing 2.54 cm of fused silica reveals

that the pulse should broaden by about 5 fs. The observed broadening under the same

conditions is on the order of 90 fs. Clearly, then, the assumption that GVD and SPM

can be treated separately works well only for short samples and longer pulses where

broadening effects are minimized. It is only by looking at the combined effects of

GVD and SPM on pulse propagation that such observations can be explained.

4.2 (1+1)-Dimensional Propagation

Fused silica is often used in applications involving short pulses in the visible and

near infrared because it has low dispersion and is therefore presumed to contribute little

to the broadening of femtosecond pulses. This may not be the case, however, when

intensities greater than � 1 GW=cm
2 are present. At these intensities the nonlinear

contribution to the index of refraction becomes important. Furthermore, the interplay

between the nonlinearity and the linear dispersion can lead to surprisingly large changes

in the pulse width over relatively small propagation lengths as seen in Fig. 4.1.

Neglecting changes in the transverse spatial profile, the propagation of a pulse

in a nonlinear, dispersive medium can be modeled by the (1+1)-dimensional nonlinear

Schrödinger equation (NLSE):

@E
@z

+ i
k
00

2

@
2E
@t2

� i
2�n2

�
jEj2E = 0: (4.11)

In this equation, E (z; t) is the slowly varying complex amplitude of the field in the

rest frame moving at the group velocity. The GVD is determined by k
00, which is the

second derivative of the wave vector k with respect to frequency, evaluated at the center

frequency. The third term gives the effects due to the instantaneous nonlinearity. The

field is normalized such that jEj2 = I is the intensity in units of W/cm2.

Figure 4.2 shows the evolution of the on-axis temporal field of an intense pulse
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as it propagates through fused silica. All fields are retrieved from SHG FROG mea-

surements. In Fig. 4.2(a), the intensity and phase of the input pulse is plotted. Plots (b)

and (c) of this figure show the intensity and phase of the same pulse after propagation

through 1.27 cm and 2.54 cm of fused silica, respectively. In addition, plots (b) and (c)

show the calculated intensity and phase using the measured field of Fig. 4.2(a) as an

initial condition to Eq. 4.11.

As is illustrated in Fig. 4.2(b) and (c), good agreement exists between the mea-

surement and the model. The peak intensity of the input pulse is 57 GW=cm
2. In

addition, � = 800 nm and k
00

= 360 fs
2
=cm are used as parameters for the calcula-

tion. The value of n2 can then be used as a fitting parameter. For these measurements,

n2 = 2:5�10�16 cm2/W gives the best agreement between experiment and theory. This

value of n2 is in good agreement with other recent measurements [94, 82].

To lowest order, Eq. 4.11 includes the effects of group velocity dispersion and

temporal self-phase modulation. During propagation at 800 nm, in the regime of posi-

tive GVD (k00) and positive n2, both dispersion and temporal SPM will act to impose a

predominantly positive chirp on the pulse. GVD then acts to broaden the chirped pulse.

Similar results have been observed in optical fibers where the (1+1)-D NLSE, Eq. 4.11,

also applies. The data in Fig. 4.2, however, provide the first amplitude and phase mea-

surements detailing the interplay of positive GVD and SPM in bulk propagation.

The use of Eq. 4.11 to model the experimental conditions is justified as long

as the field is well approximated by a plane wave during its propagation. For these

experiments, a large diameter beam with confocal parameter z0 = �n0!
2
0=� on the

order of many tens of meters is used. The confocal parameter is defined as twice the

Rayleigh range and the Rayleigh range is the distance a Gaussian beam propagates

from the focal waist, !0, to the point where the diameter has increased by a factor of
p
2. In other words, the confocal parameter gives the full distance between positions

where the spot size is
p
2!0 in a focusing beam. Self-focusing due to the nonlin-
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Figure 4.2: Temporal field of an intense femtosecond pulse at propagation distances in
fused silica of z = 0, 1.27, and 2.54 cm. The experimentally measured intensity (solid
lines) and phase (solid triangles) are shown in all three plots. The calculated intensity
(dashed lines) and phase (open circles) are also shown in plots (b) and (c). (From Ref.
[98]).
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ear index of refraction can also affect the plane wave nature of the beam. The peak

power of pulses used in these measurements is near 10 GW. This power is many or-

ders of magnitude above the critical power for self-focusing which is approximately

given by Pcrit = (0:61�)
2
�=(8n0n2). In fused silica, at a wavelength of 800 nm,

this expression evaluates to Pcrit = 2:6 MW. The critical power for self-focusing is

only defined for continuous wave propagation, and therefore the number given here

is only a guideline. Even though the peak power is well above the critical power for

self-focusing, the pulse propagates as a plane wave because the self-focusing length,

defined as zf = !0

p
n0= (n2I), is on the order 50 cm, which is more than twenty

times greater than the propagation length. The validity of this plane wave approxi-

mation is further confirmed by comparing the results calculated by Eq. 4.11 with the

results of a three-plus-one-dimensional [(3+1)-D] model presented later in this chapter.

For the experimental conditions presented here, both the (1+1)-D and (3+1)-D models

give nearly identical results.

The importance of the interplay between SPM and positive GVD is further il-

lustrated in Fig. 4.3, where the full-width at half maximum (FWHM) of the measured

and calculated intensities are plotted as a function of propagation length. In addition,

the FWHM for the case of GVD alone is also plotted. As can be seen, inclusion of the

nonlinearity results in dramatic pulse broadening over GVD alone. The fact that the

calculated FWHM is slightly less than the measured value is still under investigation.

One possible explanation for this discrepancy was investigated. It is well known

that the nonlinear susceptibility of fused silica is comprised of both a near-instantaneous

electronic response and a slower nuclear response. The slower response, called the Ra-

man response, is due to nuclear vibrations excited by the optically induced perturbation

of the electronic structure. The characteristic Raman response time is on the order of

50 � 100 fs and can comprise up to 20% of the total nonlinear response [99, 100, 101].

We hypothesized that the Raman response of the fused silica could be responsible for
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the observed differences between the calculated and measured broadening. To test this,

the Raman response was added into the model by replacing the nonlinear term of the

(1+1)-D NLSE,

n2 jE(t)j2

with

n2

�
(1� �) jE (t)j2 + �

Z t

�1

f (t� t
0

) jE (t0)j2 dt0
�
:

In this equation, � is the fraction of the nonlinearity resulting from the Raman contribu-

tion and f (t� t
0

) is the normalized Raman response function, which is approximated

by [101]

f (t) =
1 + (!r�r)

2

!r�
2
r

exp

�
� t

�r

�
sin (!rt) : (4.12)

For the numerical simulations, � is varied, �r is the Raman response time taken to be 50

fs, and the dimensionless quantity !r�r is taken to be 4.2. Calculations using this mod-

ified equation show that contributions from the Raman effect should not be observed

in this regime. In fact, appreciable contributions from the Raman nonlinearity do not

appear until peak intensities reach 100 GW=cm
2 and higher. Peak intensities in these

one-dimensional propagation experiments are an order of magnitude below that level.

Other experiments, based on cross-correlations alone observe a similar discrepancy be-

tween measured and calculated broadening [102].

Despite the small discrepancy between calculated and measured broadening,

agreement between the experiment and the model is quite good. These positive re-

sults give us confidence that the SHG-FROG technique can be successfully applied

to the more complicated propagation measurements presented in later sections of this

chapter.
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4.3 (3+1)-Dimensional Propagation

As shown in the previous section, plane-wave propagation in the regime of posi-

tive GVD and positive n2 leads to a lengthening of the pulse in time due to the combi-

nation of dispersion and SPM continuously separating the component wavelengths of

the pulse. The addition of transverse dimensions to the problem, however, can result in

interesting and complicated spatio-temporal effects, including temporal pulse splitting

[103, 104, 105, 106]. We emphasize this in contrast to the (1+1)-D situation presented

in the previous section and in contrast to nonlinear propagation in single-mode optical

fibers where pulse splitting is not observed due to the spatial constraints of the field

[107]. For Gaussian input pulses, the (1+1)-D NLSE does not predict pulse splitting

even with higher intensities and greater propagation distances. Temporal pulse split-

ting during nonlinear propagation in bulk media has been verified experimentally by

spectral [108, 41] and autocorrelation measurements [42, 109]. These measurements,

however, lack full information about the amplitude and phase of the field. In order to

provide a more complete picture of the complicated dynamics involved in the pulse

splitting process, we use SHG-FROG to measure the complete on-axis temporal field

of a pulse after propagation in a self-focusing regime. These experiments allow us to

make detailed comparisons with theoretical models and gain a better understanding of

the processes involved in the propagation.

For the following measurements, the output from the laser system is spatially

filtered, strongly attenuated, and focused with a 50 cm focal length lens to a spot size

of 70 �m FWHM at the entrance face of a 2.54 cm long fused silica sample. After

propagation, the pulse is allowed to diverge for � 75 cm. The central portion of the

beam is then selected with an aperture and used as input to the SHG-FROG. In contrast

to the (1+1)-D experiments mentioned in the previous section, the peak power of the

pulses used in these experiments is much lower. Typically, the peak power is only one
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to three times the critical power for self-focusing. Both the self-focusing length and the

confocal parameter are on the order of the propagation length, however, meaning that

transverse changes in the beam may no longer be neglected.

4.3.1 Experimental Results at 800 nm

Figure 4.4 shows the results of successive SHG FROG measurements for in-

creasing input powers. The intensity and the phase in the time domain are shown in the

left column. Independently measured spectra and the spectra recovered from the SHG

FROG measurements serve as a check of FROG convergence and are shown in the right

column. The top row of Fig. 4.4 is the input field, with a temporal intensity FWHM

of 92 fs. The time-bandwidth product is 0.6, and some uncompensated second- and

third-order phase variations are evident. Moving down the rows of Fig. 4.4, the pulse

undergoes a partial splitting, a full splitting, and then multiple splittings. The fully

split pulses of Figs. 4.4(c) and (d) are nearly two times shorter than the input pulse,

having durations on the order of 50 fs. With the instantaneous frequency defined as

!inst = !0 � d�=dt, the predominant negative curvature of the temporal phase im-

plies upchirped pulses. The calculated critical power for self-focusing in fused silica is

Pcrit = 2:6MW for values of n0 = 1:45, n2 = 2:5�1016 cm2/W, and �0 = 800 nm.

The measured peak powers for Fig. 4.4(b), (c), and (d), are 1.7 Pcrit, 1.9 Pcrit, and 2.3

Pcrit, respectively. The associated spectra for the split pulses show pronounced broad-

ening and modulation, with the characteristic modulation frequency being equal to the

inverse of the time spacing between the pulses. Agreement between the measured and

the recovered spectra is considered very good in view of the complicated structure. Ex-

periments were performed which show that increasing the length of the sample has the

same qualitative effect as increasing the peak input intensity.

From a simple physical standpoint, the basic process of pulse splitting can be

understood as follows. Initially, strong self-focusing moves off-axis energy toward
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Figure 4.4: Left column: Measured temporal intensity (lines) and phase (points) of the
input pulse (a) and the pulse after propagation through 2.54 cm of fused silica (b)–(d).
Plots (b)–(d) correspond to a peak input power of 1.7 Pcrit, 1.9 Pcrit, and 2.3 Pcrit,
respectively. Right column: The corresponding independently measured (lines) and
retrieved (points) spectra. (From Ref. [91])
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the peak of the pulse and compresses it in both space and time [110]. As the peak

intensity increases, effects due to SPM also increase, thereby generating new frequency

components. The combination of the SPM-induced upchirp and positive GVD then

act to push the energy away from the temporal center of the pulse, initiating pulse

splitting. As this process continues, the peak intensity drops, stopping the collapse at

the temporal pulse center. Off-axis energy, however, continues to focus away from the

temporal center such that two pulses are resolved [105].

Variations in the phase of the input pulse can strongly affect the output. It is

possible to create a predominantly linearly chirped input pulse by lengthening or short-

ening the grating compressor of the chirped pulse amplification system. Experiments

were performed using both upchirped and downchirped input pulses. The sample is a

2.54 cm long piece of fused silica. The upchirped pulse for these measurements has

a temporal FWHM of 147 fs, and the downchirped pulse has a temporal FWHM of

153 fs. The time-bandwidth product of the input pulse in both cases is � 0:8. Each of

the chirped input pulses propagates through the fused silica sample at two different peak

intensities. The lower peak intensity values are 45 and 49 GW=cm
2 for the upchirped

and downchirped pulses, respectively. The higher input peak intensity is 57 GW=cm
2

for both upchirped and downchirped pulses.

Figure 4.5 shows the measured SHG FROG traces obtained with chirped input

pulses in each of the higher power cases. In addition, both the retrieved and indepen-

dently measured spectra are plotted for comparison. The characteristic shape of the

SHG FROG trace for pulse splitting with a downchirped pulse [Fig. 4.5(a)] is very

different than when the input pulse is upchirped [Fig. 4.5(c)]. An upchirped input

pulse leads to SHG FROG traces after propagation which are largely diamond shaped,

with decreasing intensity in the center of the trace, implying greater splitting. The

downchirped input pulse, on the other hand, maintains a significant intensity in the

center of the trace. Figure 4.6 shows the retrieved time and spectral domain intensity
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and phase for each of the four input pulse cases. At higher peak powers, the amount

of pulse splitting and spectral modulation increases. When an initially downchirped

pulse [Figs. 4.6(a) and (b)] splits temporally, the resulting pulses are about two times

narrower than those produced from the splitting of an upchirped pulse [Figs. 4.6(c) and

(d)]. In addition, the spectra in Figs. 4.6(e) and (f) (downchirped input) are narrower

than the spectra of Figs. 4.6(g) and (h) (upchirped input). A simple explanation for

these observations arises from the fact that both positive GVD and SPM (from positive

n2) act to produce positive, linear chirp over the central region of the pulse. Thus, an

initial upchirp on the pulse acts as a head start to the propagation induced upchirp, re-

sulting in broader pulses. On the other hand, an initial downchirp, acts to negate the

propagation induced upchirp, yielding shorter split pulses at the output. The narrower

and deeply modulated spectrum seen with the downchirped input can be interpreted as

destructive interference between existing frequencies and new frequencies created by

SPM. Note also that the spectral phase after propagation for all four cases has an overall

concave-up curvature, regardless of the sign of the chirp of the input pulse. This phase

curvature implies an upchirp across the total split field such that the leading pulse is

spectrally red-shifted compared to the trailing pulse. This upchirp is due to the com-

bined effects of positive GVD and self-phase modulation in the regime of positive n2,

as discussed in the (1+1)-D case.

4.3.2 Experimental Results at 1200 nm

Measurements were also performed using the output of a femtosecond optical

parametric amplifier (OPA). When pumped at 800 nm, the OPA produces signal fields

with wavelengths in the range of 1100-1400 nm. This is an interesting regime in which

to study propagation because these wavelengths are predominantly used for optical

communications in fused silica fibers. In addition, in this wavelength range, the GVD

in fused silica decreases in magnitude and then changes sign from positive to negative
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near 1250 nm, while n2 remains approximately constant. With negative GVD (anoma-

lous dispersion) and positive n2, it has been predicted that spatio-temporal solitons can

propagate [111]. From a practical point of view, such 3-D solitons could have important

implications for optical communications and all-optical switching [112, 113].

To insure good beam quality, the output of the OPA is spatially filtered and re-

collimated before being focused onto the entrance face of the fused silica sample in

the same manner described for the 800 nm experiments. Beam parameters are approx-

imately the same as those used at 800 nm, so that qualitative comparisons can be made

between the two situations. Results at the wavelength of 1200 nm are shown in Fig. 4.7.

In this figure, the temporal intensity and phase before and after propagation through

3.0 cm of fused silica sample are shown. The corresponding spectra recovered from

SHG FROG and the independently measured spectra are also shown. Here again, very

good agreement between the recovered and measured spectra is demonstrated. The in-

put field of Fig. 4.7(a) has a FWHM duration of 92 fs, but the large negative curvature

of the phase indicates the existence of significant linear upchirp. The time-bandwidth

product is three times the transform limit which implies that 30 fs pulses could be

generated if the upchirp were properly compensated. After propagation through the

fused silica, the pulse begins to split, as can be seen in Figure 4.7(c). The input peak

power in this case is 9 MW, and assuming the value of n2 is the same at both 800 and

1200 nm, this equals 1.5 Pcrit. With a 10% increase in the power above 9 MW, rapid

spectral broadening and continuum generation are observed. The splitting observed in

Fig. 4.7(c) is comparable to the splitting observed with an upchirped input pulse at 1.2

Pcrit at 800 nm. The splitting at 1200 nm, however, is more symmetric. One would

expect the splitting to be less pronounced at 1200 nm because of the decrease in the

GVD at these wavelengths. The amount of splitting observed here is thus surprising.
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4.3.3 Theory

As opposed to our plane-wave experiments, to model the pulse-splitting experi-

ments presented here, it is necessary to take into account the spatial dimension of the

beam. If azimuthal symmetry is assumed, the transverse dimension can be added to the

nonlinear Schrödinger equation in the following manner:

@E
@z

� i

2k0
�

2
?

E + ik
00

0

2

@
2E
@t2

� i
k0n2

n0

jEj2 E = 0: (4.13)

The only differences between this equation and Eq. 4.11 are the addition of the

radial Laplacian �
2
?

and the additional radial dependence of the field, E (z; r; t). The

wave vector is k = 2�n0=�, with n0 being the linear index of refraction at the center

wavelength. Again, the field is normalized such that jEj2 = I is the intensity in units

of W=cm
2. Equation 4.13 is referred to as the (3+1)-D nonlinear Schrödinger equation

(NLSE), and takes into account diffraction, linear dispersion, spatial self-focusing, and

temporal self-phase modulation. It has been predicted that self-focusing could eventu-

ally lead to catastrophic collapse of the pulse as focusing increases the peak intensity,

which in turn increases the focusing effect [114]. The (3+1)-D NLSE has been used,

however, to show that below a certain power threshold GVD is sufficient to stop this

collapse and temporal pulse splitting results [115]. Numerical solutions of Eq. 4.13

are performed using the Crank-Nicholson method to compute the derivatives. For all

simulations, the real input field is assumed to have a Gaussian spatial profile and either

a Gaussian or hyperbolic secant squared temporal profile. Both temporal profiles have

been found to yield similar numerical results, and the initial temporal profile is chosen

that most closely resembles the experimental input pulse for each set of conditions. All

parameters used, such as temporal and spatial beam size and initial peak intensity, are

taken from experiment. The value of n2 is again taken to be 2:5� 10
�16

cm
2
=W.

Figure 4.8 shows the results of numerical simulations of propagation of a Gaus-

sian input pulse through 3:0 cm of fused silica. At the lowest input power, Ppeak = 0:2Pcrit,
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the pulse has remained mostly Gaussian, with essentially only the effects of GVD and

SPM coming into play. When the input peak power is increased to 1.6 Pcrit, self-

focusing has significantly compressed the pulse in space, and the pulse is also com-

pressed in time. This pulse sharpening effect was predicted and measured more than

30 years ago [110, 116]. Put simply, this pulse sharpening effect is the result of the

self-focusing induced transfer of off-axis energy toward the peak of the pulse. At the

same time, SPM has created many new frequencies within the pulse. At a peak power

of 1.8 Pcrit, GVD has begun to spread the component frequencies in time, initiating

pulse splitting. At this point, the peak intensity of the pulse has dropped. With a peak

power of 2.0 Pcrit, the pulse completely splits in time and two sub-pulses are resolved,

each of which are narrower in time than the original pulse.

The theory predicts a pulse splitting that is symmetric in intensity. The exper-

iment, however, reveals asymmetric pulse splitting. Figure 4.9 shows a comparison

of the model with experiment at two different input peak powers. At the higher input

power, the experiment shows split pulses with the trailing pulse larger than the leading

pulse. There is also a corresponding rapid change in the phase at the trailing edge of

the pulse. These two observations are consistent with the formation of a shock front.

The increased intensity at the peak of the pulse leads to a higher index of refraction

for those pulse components. The center of the pulse experiences a larger group delay

than the wings of the pulse, resulting in a piling up of energy at the trailing edge of the

pulse. Space-time focusing is believed to contribute to the observed asymmetry [105].

Cubic phase variations on the initial field are expected to play a lesser role [117]. Un-

like the (1+1)-D case, peak intensities in this self-focusing regime reach high enough

levels that the Raman response of fused silica is likely to become important during

the propagation. The peak intensity of the self-focused field approaches the TW=cm
2

level, however, no intensity-dependent loss indicative of multi-photon ionization or ab-

sorption is observed. Furthermore, no visible signs of permanent damage are observed
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in the fused silica.

Measurements illustrating changes in the spatial profile of the beam, along with

the calculated beam diameter, are shown in Fig. 4.10. Here, the measured beam di-

ameters (FWHM) at the exit face of a 3.0 cm fused silica sample for four different

input powers are presented. SHG FROG measurements of the temporal field are also

made at these same input powers, allowing the degree of temporal splitting to be mon-

itored. The time domain results are similar to those presented in Fig. 4.4. The beam

diameters shown in Fig. 4.10 are obtained by imaging the exit face of the fused silica

sample onto a CCD camera with a magnification of +2.8. The FWHM of intensity is

measured along x and y dimensions. The calculated beam diameters are obtained by

integrating over the temporal dimension of intensity plots similar to those presented in

Fig. 4.8. The two points at the lowest powers correspond to pulses that have broadened

temporally, but have not yet split. At the third point, the pulse is partially split, such

that the intensity between the two pulses drops to half the peak value. At the highest

peak power, the pulse is completely split – similar to Fig. 4.4(c). Both the numerical

and experimental results demonstrate that the spot size approaches a constant value at

powers where pulse splitting occurs. The measurements indicate that this regime oc-

curs at lower powers than predicted by the theory. Although, as seen in Fig. 4.10, the

error in the measured power is on the order of 25% due to uncertainties in the measured

pulse energy and the temporal profile of the pulse. In addition, the measured spot size is

never as small as the calculated value. This discrepancy may arise from spatial profile

deviations of the actual beam from an ideal Gaussian.

The simple (3+1)-D NLSE fares even less well in comparison to the experiments

at 1200 nm. Because of the decreased amount of linear dispersion in this regime, one

would expect decreased pulse splitting activity. In fact, using Eq. 4.13 with a value

of k00 = 60 fs2/cm at 1200 nm, no splitting is predicted even for higher input powers.

These results, together with recent simulations by Trippenbach et al., indicate that third-
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order dispersion plays an important role in pulse splitting in this regime [118].

The differences in the experimental and calculated results point out that it is

necessary to modify the (3+1)-D NLSE to include additional terms. From comparisons

with the experiment at 800 nm, we find it necessary to include terms for space-time

focusing, nonlinear shock, and a Raman response of the fused silica. Comparisons

with experiments at 1200 nm indicate the need for inclusion of third-order dispersion.

In addition, self-focusing can result in spot sizes in the sample that are on the order

of or less than a few wavelengths of the light, invalidating the paraxial approximation.

For this reason, we also include a term for nonparaxiality. These terms are included by

modifying the (3+1)-dimensional NLSE as follows:

i

2k
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: (4.14)

In order of their appearance, the terms in Eq. 4.14 include effects due to diffraction,

space-time focusing, nonparaxiality, second-order dispersion, third-order dispersion,

nonlinear shock, and a Kerr-type nonlinearity. The third-order Kerr-type nonlinearity

includes terms for both instantaneous and delayed (Raman) contributions. An in-depth

discussion of this equation can be found in a paper by Zozulya et al. [90] It should be

noted that all of the parameters used in this equation are taken directly from published

or experimentally determined values, and none are used as fit parameters in the calcula-

tions. Only diffraction, second-order dispersion, and the instantaneous nonlinearity are

included in Eq. 4.13 and have been shown to predict symmetric pulse splitting. Again,

the assumed input pulse is a Gaussian in both space and time and has characteristics

similar to those of the experimental input pulses. Numerical experiments isolating the

effects of each term individually during propagation through 3.0 cm of fused silica have

been performed [90]. The effects of each additional term are described briefly in the

following few paragraphs.
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Raman Nonlinearity

As in the one-dimensional case, the Raman nonlinearity is included by replacing

the instantaneous nonlinearity with a term that includes both an instantaneous and non-

instantaneous response. In Eq. 4.14, R (t) is the Raman nonlinearity given byZ t

�1

f (t� t
0

) jE (t0)j dt0

where

f (t) =
1 + (!r�r)

2

!r�
2
r

exp

�
� t

�r

�
sin (!rt) : (4.15)

The principal change resulting from inclusion of the Raman effect is the asymmetry

between the leading and trailing pulses. After propagation through a 3.0 cm sample, the

leading pulse has almost twice the intensity of the trailing pulse. The relative increase of

the leading pulse at the expense of the trailing pulse can be understood simply in terms

of Raman gain. The response function given by Eq. 4.15 is simply the time-domain

representation of the more common frequency-domain picture of stimulated Raman

scattering. Stimulated Raman scattering can be described as the process in which a

photon is absorbed, leaving an atom in a virtual state which then decays to a level that

is higher or lower in energy than the initial state. Lower energy (Stokes) frequencies

are observed more often than their higher energy (Anti-Stokes) counterparts because the

ground state is more heavily populated than excited states. Therefore, Raman scattering

preferentially amplifies red-shifted frequency components of the pulse at the expense of

blue-shifted frequencies. Since, in this case, positive GVD moves the red components

ahead of the blue components, it follows that the leading pulse becomes larger due to

the Raman gain.

Shock terms

Both linear and nonlinear shock terms are included in Eq. 4.14. In the case of

nonlinear shock, the peak of the pulse experiences a nonlinear increase in index of re-
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fraction and thus experiences a slower group velocity than the lower intensity regions

of the pulse. This results in shock formation at the trailing edge of the pulse. Simu-

lations including only nonlinear shock indicate that, during the pulse splitting process,

the trailing pulse starts off larger than the leading pulse. By the exit face of the sam-

ple, however, this asymmetry has reversed. The reason for this is that the shorter, more

intense trailing pulse diffracts faster than the longer leading pulse in the absence of con-

tinued compression after pulse splitting. With an input peak intensity of 85 GW=cm
2,

pulses begin to split after about 2.0 cm of propagation and, by 3.0 cm of propagation,

the leading pulse has a higher peak axial intensity than the trailing pulse.

Linear shock occurs in the space-time focusing term. Space-time focusing ac-

counts for the group delay due to a nonzero angle between a ray and the optic axis. As

a pulse passes through a nonlinear focus, some of the energy is shifted to later times

by this effect. As a result, this linear shock also leads to an amplification of the trail-

ing pulse. And, as with nonlinear shock, the trailing pulse diffracts rapidly after pulse

splitting. For these experiments, contributions from linear shock are on the same order

as those from nonlinear shock. A combination of both linear and nonlinear shock leads

to more dramatic enhancement of the trailing pulse during the pulse splitting process.

The Raman nonlinearity, which preferentially intensifies the leading pulse, is not

strong enough to completely offset the effects of the shock terms, however, it does

serve to dampen them. With Raman included, the trailing pulse does not get as sharp

or as intense during the splitting process. Also, the Raman nonlinearity contributes to

a larger leading pulse at the exit of the sample.

Third-order dispersion

In the normal dispersion regime of fused silica, third-order dispersion acts to

increase the GVD of blue components while decreasing the GVD of red components.

As a result, the trailing pulse spreads faster than the leading pulse. In this way, third-
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order dispersion results in a larger leading pulse. While contributions from third-order

dispersion should not be ignored, they are smaller than those from Raman and shock

effects.

Nonparaxiality

Nonparaxiality turns out to be a negligible effect in this regime. It may become

important, however, during propagation at even higher powers, where the process of

self-focusing results in smaller beam sizes before it is arrested by pulse splitting.

4.3.4 Results

Although the calculated examples here all point to split pulses with a larger lead-

ing pulse, changing input pulse parameters or propagating through a shorter sample

(e.g. Fig. 4.4) can result in split pulses with the opposite symmetry. A comparison of

the calculated field including the Raman nonlinearity, space-time focusing, nonlinear

shock, and third-order dispersion in addition to diffraction, second-order dispersion and

an instantaneous nonlinearity with an experiment involving similar peak input powers

is shown in Fig. 4.11. The calculated field in this case is able to reproduce the asymme-

try observed in the experiment. The overall downward curvature of the phase in both

cases is indicative of an upchirp across the entire field, meaning that the leading pulse

is red-shifted compared to the trailing pulse. Also, the rapid change in phase at the

trailing edge of the experimental pulse is well modeled by the inclusion of shock terms.

The calculated split pulses are narrower in time than the measured pulses. This may be

explained by deviations of the experimental beam from an ideal Gaussian in space and

time.

At higher peak input intensity, as in Fig. 4.4(d), the experiment observes the split-

ting of a pulse into multiple sub-pulses. Increasing peak input intensity in calculations

using the modified NLSE given by Eq. 4.14, however, does not lead to splitting into
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(dashed line) after propagation through 3.0 cm of fused silica. The input pulses for
both the experiment and the calculation have a peak power of 4.9 MW. (Adapted from
Ref. [90])
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any more than two sub-pulses. The reason for this is that Eq. 4.14 calculates the field

at the exit face of the sample. In the experiment, however, the pulse propagates for

75 cm before being measured with the SHG FROG. Another way of saying this is that

the model calculates the near-field, while the experiment makes measurements in the

far-field. The on-axis far-field can be calculated by integrating over the near-field spa-

tial cross section for each temporal slice of the pulse. In other words, we assume that a

spatial point in the near-field diffracts as a point source to the corresponding temporal

plane in the far-field. A maximum in the far-field intensity can arise from either a cross

section involving intense regions of the near-field pulse, or a cross section involving

lower intensity regions of the pulse, but constant phase. A more in-depth discussion of

this type of calculation can be found in Ref. [119]. A consequence of this calculation

is that a maximum in the far-field can arise from a region of the near-field where the

temporal intensity is near zero. The calculated spectrum does not extend quite as far to

short wavelengths as the measured spectrum. One possible explanation for this result

is the absence of multiphoton ionization in the model.

Figure 4.12 shows both the calculated near-field and far- field intensity profiles of

a pulse after propagation through 3.0 cm of fused silica at two different input powers,

along with the corresponding measured fields. The top row of Fig. 4.12 illustrates that

full pulse splitting is observed in the far-field while only partial splitting has occurred in

the near-field. Again, the asymmetry of the calculated field is similar to that of the mea-

sured field. The second row illustrates the case of a pulse in the far-field occurring in a

region of the temporal axis that is a valley in the near-field. These calculations are now

able to predict the splitting of a pulse into two or more sub-pulses. For completeness,

the calculated and measured spectra corresponding to the pulses shown in the second

row of Fig. 4.12 are plotted in Fig. 4.13. The spectra are broadened significantly after

propagation and are plotted on a log scale to illustrate the agreement even in the low

intensity spectral wings of the pulse. Figure 4.13(a) shows both the spectrum retrieved
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from the SHG FROG measurement, and an independently measured spectrum. Fig-

ure 4.13(b) shows the calculated on-axis far-field spectrum. All major features, in both

the time and frequency domains, are reproduced by the calculation.

Previous theories concerning multiple pulse splitting often relied on one pulse

splitting into two pulses and each of these pulses undergoing secondary splitting. The

calculations presented here indicate that this does not have to be the case, and in most

situations, multiple pulses in the far-field arise from constructive and destructive in-

terference of components of the near-field pulse in the far-field. In addition, the cal-

culations indicate that the position of maximum self-focusing, which occurs in the

medium, and the position of pulse splitting are spatially separated along the propa-

gation axis. The pulse first self-focuses and then, at some later propagation distance,

it splits. Moreover, the distance between the self-focusing event and the splitting is

inversely proportional to the input power.

4.4 Summary

This chapter demonstrates the ability of FROG to follow nonlinear propagation in

systems where both instantaneous and noninstantaneous nonlinearities are present. Our

experiments have shown that SHG FROG is capable of high-dynamic range measure-

ments of complicated pulses having over 100 nm of total spectral bandwidth. Experi-

ments involving temporal pulse splitting exemplify the mutually beneficial relationship

that is possible between experiment and theory. These experiments also demonstrate

the ability of FROG to lend insight into the nature of complex propagation problems.

In the plane wave regime, a (1+1)-D model based on the nonlinear Schrödinger

equation compares favorably with measurements. These experiments illustrate the im-

portance of the interplay between GVD and SPM that leads to dramatic temporal broad-

ening of a pulse.

At experimental conditions where the pulse undergoes self-focusing during prop-



95

agation, we observe the splitting of the pulse into two and more sub-pulses, each of

which has a shorter temporal duration than the initial pulse. The overall upchirp across

the split field indicates that the leading pulse is red-shifted compared to the trailing

pulse. The asymmetric nature of the measured split pulses indicates that a simple (3+1)-

D NLSE is not sufficient to describe the propagation. The asymmetry can be accounted

for numerically with the addition of a Raman nonlinearity, nonlinear shock, space-time

focusing, and third-order dispersion to a basic (3+1)-D NLSE.

We find that shock terms have the largest effect on the propagation, resulting in

an enhancement of the trailing edge of the pulse in the time domain. This sharp trail-

ing pulse diffracts faster than the leading pulse and appears less intense at the exit of a

3.0 cm sample. The Raman nonlinearity serves to partially offset the effects of shock

and results in a red-shifting of pulse frequencies. In the presence of positive GVD, this

red-shift contributes to the larger leading pulse observed in some experiments. Contri-

butions from third-order dispersion are much smaller, but they do affect the symmetry

of the split field. In addition, this work demonstrates that, at high peak powers, a pulse

splits into more than two sub-pulses.

Extension of the calculation to include propagation to the far-field correctly pre-

dicts multiply-split pulses for the first time. In the following chapter, experiments carry

this research into even higher intensity regimes where continuum generation accompa-

nies pulse propagation.



Chapter 5

Continuum Generation

We have seen in the previous chapter that at powers high enough for self-focusing,

interesting pulse propagation dynamics can result. Experiments above the critical power

for self-focusing can result in the splitting of pulses into two or more sub-pulses. This

pulse splitting arises in part because of the broad spectral bandwidths that are created

by self-phase modulation and then separated temporally by group velocity dispersion.

But, what happens at even higher input powers? Do the pulses continue to split into

even more sub-pulses? And how broad does the spectrum get? It has been observed that

at powers above the critical power for self-focusing, propagation in solids, liquids, and

gases can produce an extremely broadened spectrum. The range of wavelengths pro-

duced often spans the entire visible spectrum and extends into both the IR and the UV.

This phenomenon has been called spectral super-broadening or continuum generation.

The continuum spectrum produced has been used in optical parametric amplification

[120, 47, 121, 122], time-resolved broadband absorption and excitation spectroscopy

[123, 124], and the generation of short pulses [125]. The exact process responsible for

the generation of this continuum, however, is currently unknown.

Spectral super-broadening was first observed by Alfano and Shapiro in 1970

[126]. Their experiment involved propagating 530 nm picosecond pulses in glass with

an input power of � 1 GW=cm
2. At the output, they observed a spectrum that spanned

from 400 to 700 nm. They also observed the formation of self-trapped filaments within
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the glass. The first evidence of self-trapped filaments was reported in 1964 when ex-

tremely long, thin damage spots were observed in glass and other materials [127]. For

self-trapped filaments to form, a process must be involved that arrests the self-focusing

effect and allows the pulse to propagate without spreading. Self-trapped filaments have

been explained in a variety of ways. Some of these explanations include a self-produced

dielectric waveguide [128], a self-guiding structure similar to a fiber consisting of a

Kerr cladding and a weakly ionized core [129], and as a moving focus [130]. One

or more self-trapped filaments are often present with continuum generation. It has

been asserted that regardless of the medium in which the continuum is generated, two

requirements for continuum generation are self-trapped filaments and dielectric break-

down [131]. Although the validity of the first remains a question, the second has been

proved incorrect. Evidence that dielectric breakdown is not necessary for continuum

generation is found in the properties of the transmitted continuum beam. The spatial

properties are only slightly modified from that of the incident beam [132], and the

emitted continuum is collimated, modulated, and polarized [133]. Dielectric break-

down should result in emission that is neither collimated nor polarized. The necessity

of self-trapped filaments has been brought into question by an experiment involving

continuum generation in a thin (500 �m) jet of ethylene glycol [43]. The length of

the sample is small enough that self-trapped filaments may not form. The role of self-

focusing is also minimized in this experiment. It is commonly believed, however, that

self-focusing plays an important role in the continuum generation process. That self-

focusing is important is evidenced by the fact that continuum generation only occurs

with input powers above the critical power for self-focusing [134].

The white light continuum appears as a central beam of white light surrounded

by rings of color. These rings do not extend continuously from the central white light,

but occur as distinct rings of red, green, and blue light, often separated from the cen-

tral white light beam — and from each other — by rings of darkness. The higher



98

frequency light appears in the outermost ring, and the lower frequency light forms the

ring nearest the white light continuum. This arrangement of frequency components is

exactly opposite that which would be predicted by diffraction. An example of white

light continuum generated in sapphire is shown in Fig. 5.1. The central white light

continuum is also observed to be both spatially [133, 41] and spectrally modulated

[131, 132, 134, 41]. Super-broadened spectra have been observed in a variety of ma-

terials including glasses such as fused silica and BK-7 [133, 135]; crystals such as

calcite, quartz, sodium chloride and potassium bromide [133, 136]; semiconductors

such as gallium arsenide and zinc selenide [136]; gases such as neon, argon, krypton,

xenon, nitrogen and air [137, 132, 134, 138, 129]; and liquids such as water, methanol,

carbon tetrachloride, carbon diselenide, and benzene [131, 135]. Both picosecond and

femtosecond pulses have been used to generate continua, with incident pulses spec-

trally centered from around 248 nm [134] to around 9.3 �m [136]. Continuum spectra

under all conditions share certain similarities including the central white light contin-

uum surrounded by rings of color, an asymmetric pulse spectrum with the blue spectral

wing extending further than the red, a dependence on input power rather than intensity,

and a polarization that is in the same direction as that of the input pulse. These striking

similarities indicate that the mechanism responsible for continuum generation is very

general, having little to do with the spectroscopic features of the material involved. The

width of the spectrum generated is, however, dependent on the medium in which it is

generated [124], but it does not scale with the size of the nonlinear index of refrac-

tion as might be expected. In fact, in materials with high n2, and therefore stronger

self-focusing and self-phase modulation, the spectrum is actually narrower than for

materials with low n2 [135].

Several approaches have been taken to explain the observed spectra. On first ob-

serving continuum generation in glass, Alfano and Shapiro attributed the broad spec-

trum to a stimulated, nondegenerate four wave mixing process [126]. This four wave
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Figure 5.1: Far-field image of continuum generated in sapphire.
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mixing paradigm was championed in many following papers by Penzkofer et al. [139,

140, 141, 142]. Penzkofer’s work asserts that there are several processes that can be

involved in continuum generation. The primary process is the amplification of quan-

tum noise by a stimulated, parametric four-photon interaction. In certain materials, and

under certain conditions, stimulated Raman scattering and a second parametric process

driven by the pump laser and stimulated Raman light come into play. These generated

frequencies can result in a cascaded frequency upconversion effect, generating a broad

spectrum. The asymmetry of the spectrum is explained as absorption of the red and

infrared components of the pulse [141]. Experiments by this same group indicate that

the on-axis spectrum consists of a spectrally broadened central peak, with low inten-

sity wings extending into the UV and IR. The four-wave mixing theory predicts broad

wings, but it does not account for the significant broadening near the input wavelength.

To explain this effect, self-phase modulation is invoked as a special case of four-wave

mixing in which the amplified wavelengths are already present in the pulse and do not

need to arise from quantum noise. Although this four-wave mixing theory does predict

broad spectral wings, it predicts a peaked spectrum corresponding to Raman resonances

in the material. The experimentally observed spectra are often modulated, but the peaks

do not always occur at the predicted frequencies. In addition, this theory fails to ac-

count for self-focusing in the medium, and it fails to address the ring structure observed

surrounding the central white light continuum. Although it predicts a very broadened

spectrum for special cases where the resonant structure of the material is conducive to

strong Raman scattering, the theory does not appear to be as universal as experiments

indicate continuum generation is.

Several attempts have been made to model continuum generation by more rigor-

ously solving the nonlinear wave equation for pulse propagation. The wave equation,

accounting for self-phase modulation, four-wave mixing, and self-steepening and ne-

glecting dispersion, predicts an asymmetric spectral broadening. The predicted broad-
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ening, however, is less than the observed broadening [143]. Another work, in which the

same basic equation is solved using a different method, is able to predict broader pulses

[144]. In both cases, however, dispersion is assumed to be zero. This assumption is

valid when comparing to continua generated in gases, but it is invalid in experiments

involving most liquids and solids. That dispersion plays an important role in propaga-

tion has already been demonstrated in Chapter 4 of this thesis where it is shown that

dispersion leads to temporal pulse broadening and arrests the collapse of a self-focusing

pulse. In addition, self-phase modulation implies increased broadening with a higher

nonlinear index of refraction in contrast to experimental evidence.

It has been observed that self-trapped filaments are nearly always present during

continuum generation. These self-trapped filaments can only form if there is a process

occurring in the medium that stops the collapse of the pulse due to self-focusing. The

approach can then be taken that the processes involved in halting the collapse and al-

lowing the formation of self-trapped filaments are most likely also responsible, at least

in part, for continuum generation [114]. It was proposed that plasma formation, and the

associated appearance of free electrons, was sufficient to stop the collapse and simulta-

neously enhance SPM such that a broad spectrum results [145]. Although this predicts

a broad blue-shifted spectrum, the associated loss of energy is much higher than that

observed [137]. Another twist on the influence of ionization was proposed [129] that

describes the self-trapped filament as a leaky anti-guiding structure with a Kerr type

cladding and a slightly ionized core. The nonlinear index is high at the edge of the

trapped pulse but falls off toward the center due to the influence of free electrons. This

antiguide cannot support stable propagation modes because of the lack of total inter-

nal reflection and thus loses some energy through refraction. The theory proposes that

quasi-stable modes exist and that refraction losses are responsible for the off-axis ring

structure surrounding the white-light continuum in the far-field. Spectral broadening of

the guided light is attributed to SPM.
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The most promising theory to date describes continuum generation in condensed

media and is again based on the generation of free electrons [135, 146]. In this theory,

Brodeur and Chin assert that it is not plasma formation that generates the free electrons,

but a multiphoton excitation (MPE) of electrons from the valence band to the conduc-

tion band. This MPE is a bandgap dependent process, and experiments in several liquids

and solids have shown a dependence of the self-focal diameter on the bandgap of the

material [135, 146]. The basic premise of this theory is that as the pulse undergoes self-

focusing, different temporal slices of the pulse reach a maximum intensity where MPE

occurs. MPE generates essentially free electrons, which serve to decrease the index of

refraction and arrest the focusing. The sudden change in index of refraction results in

a sudden drop in the phase. A change in phase with respect to time gives the instanta-

neous frequency. In this way, MPE generates a broad blue-shifted spectral wing. This

theory is based on a moving focus model of pulse self-focusing [130, 147, 114], which

is also applied to the continuum problem by Strickland and Corkum [41]. According

to the moving focus model, the pulse is divided into discrete temporal slices that un-

dergo self-focusing independently. Because each slice has a different power, various

slices focus to different positions along the propagation axis. These slices in effect

form temporally narrow transient sub-pulses. According to Strickland and Corkum,

these sub-pulses generate continua via an on-axis phase retardation. The observed con-

tinuum spectrum is the summation of the broadened spectra produced by each of these

transient sub-pulses. The spatial and spectral modulation characteristic of the observed

continuum can be explained as far-field interference resulting from the multiple broad-

bandwidth sources. The more modern theory relies on MPE instead of an on-axis phase

shift and thereby inherently includes a dependence on the band gap of the medium.
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5.1 On the Verge of Continuum Experiments

In an effort to better understand the continuum generation process, and in light

of the excellent agreement between the (3+1)-D theory and our FROG measurements

above the critical power for self-focusing presented in Chapter 4, our group pushed

FROG measurements into the region just above the continuum formation threshold

[119]. During these measurements, blue light was clearly visible by eye. To ensure

that the phase matching bandwidth of the second harmonic generating crystal in the

FROG device was adequate, the 100 �m BBO crystal was replaced by a 50 �m BBO

crystal. As in the pulse splitting measurements, the laser beam was spatially filtered and

focused to a FWHM spot size of 70 �m at the entrance face of a 3:0 cm long fused silica

sample. SHG FROG measurements of the on-axis far-field were performed before and

after propagation through the sample. The input pulses were nearly transform-limited

with an intensity duration of � 90 fs FWHM.

Figures 5.2 (a) and (b) show the measured on-axis intensity after propagation

for input peak powers of 6:8 and 7:4 MW, respectively. From the pulse splitting ex-

periments performed in Chapter 4 we might expect the pulse to split into many more

sub-pulses with these higher input powers. As the peak input power is increased, how-

ever, the sub-pulses begin to coalesce into a single broad pulse [119]. Calculations

using Eq. 4.14 without the nonparaxiality term are shown in Figs. 5.2 (c) and (d). The

input powers used in the calculation match those of the experiment to within 15%. In

both the experiment and the calculations, as input power is increased, the central peak

broadens and merges with the leading and trailing peaks.

Calculations at lower powers have shown that the splitting of the pulse into two

sub-pulses arises first in the far-field and progresses to the near-field with increasing

input power. Multiply-split pulses are observed in the far-field when the near-field is

fully split into two sub-pulses. At higher input powers, however, multiply split pulses
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Figure 5.2: Measured axial intensities and phases for input powers of (a) 6.8 MW and
(b) 7.4 MW. The corresponding calculated intensities and phases are shown in (c) and
(d). (From Ref. [119])
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do not appear in the near-field. Although the near-field is modulated, distinct multiple

splitting arises only from the build-up of phase in the far-field as described previously

and does not arise from the same physical processes responsible for the initial pulse

splitting.

Measured and calculated spectra corresponding to the temporal intensity profiles

displayed in Figs. 5.2 (b) and (d) are shown in Figs. 5.3 (a) and (b), respectively. The

spectra are plotted on a log scale to emphasize the long tail extending to both sides

of the central peak. By contrast, a bandwidth-limited, 100 fs Gaussian pulse centered

at 800 nm would have wings with an intensity three orders of magnitude lower than

those shown here just 50 nm on either side of the peak. These tails are thus evidence of

weak continuum generation. The short wavelength tail of the calculated spectrum falls

off faster that that of the measured spectrum. As indicated by the theory of Chin and

Brodeur [135, 146], inclusion of multiphoton excitation in the theory may account for

this difference.

5.2 Full Continuum Experiments

To improve and test the theory, good experimental data with which to compare

is essential. Careful studies of continuum generation are difficult because of the broad

bandwidths involved. With spectra spanning several hundred nanometers, an accurate

intensity autocorrelation is difficult, if not impossible, because of the phase-matching

bandwidth required. Since FROG is an autocorrelation-based device, increasing the

input power above that used for Fig. 5.2 (b) quickly results in spectrally broad pulses for

which the validity of SHG FROG comes into question. In addition, continuum pulses

diverge quickly after exiting the medium and result in very low on-axis intensities.

These intensities can be sufficiently low that a SHG FROG signal is difficult to obtain.

Near-field SHG FROG measurements could be performed by imaging the output face

of the sample onto the entrance aperture of the FROG apparatus. Such a measurement
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would suffer the same phase-matching bandwidth limitations, however, and near-field

SHG FROG measurements have not been tested in simpler propagation regimes. For

these reasons, temporal measurements of the field after propagation are not practical.

Therefore, careful measurements of the spectrum and other empirical parameters are

used for comparisons with theory at this time.

All data presented to this point have concentrated on the on-axis field before and

after propagation. In an attempt to gain insight into the continuum generation process,

we add a spatial dimension to the spectral measurements. Qualitative spatial-spectral,

far-field measurements have been available for years in the form of verbal and pictoral

descriptions of a white light beam surrounded by rings of color. The only previous

quantitative measurement, by Strickland et al. [41], recorded the spatial spectrum of

the far-field using a spectrometer and CCD. This chapter reports the first careful mea-

surements of the near-field spatial spectrum of continuum pulses (Section 5.2.4). De-

tailed investigations of power loss and continuum behavior as a function of input power

and timelapse are also reported in Sections 5.2.2 and 5.2.3.

For these measurements, spatially filtered pulses are focused at the input of the

fused silica to a spot size of 33 �m FWHM or a 26 �m radius at 1=e2 of intensity

with a 10 cm focal length lens. The fused silica sample length is reduced to 0.318

cm. These changes are made to better facilitate comparisons with theory. Self-focusing

plays an important role in continuum generation, reducing pulse radii during their pas-

sage through the sample by an order of magnitude to approximately a few microns.

These dramatic changes in beam size require different stages of the propagation to be

calculated on different size grids. To minimize the associated difficulties, we focus to a

smaller initial spot size to reduce the amount of spatial beam compression that occurs

during propagation. A shorter sample can thus be used since the propagation-limited

beam size is reached sooner.
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5.2.1 Qualitative Observations

The generated continuum exits the sample and propagates 10 cm to a white card

where it is observed by eye. Observations are also made after the beam travels 35 cm

to a white card. These observations differ from those at 10 cm only in that the beam is

much larger and therefore weaker by eye. Subtle changes in the continuum behavior are

more easily observed on the card placed 10 cm after the sample, so those observations

are reported here.

Continuum spectra are generated with input peak powers ranging from 2.7 to

12.6 MW. Self-trapped filaments are not visible by eye in the sample; the sample is

short enough, however, that they may be difficult to observe under these conditions. At

the lowest powers, the beam on the card looks like a small red spot. As input power

is increased, the red spot grows larger until white light begins to appear in the center,

surrounded very closely by rings of blue and green. I should point out that in these

experiments the continuum never goes through a stage where the central red spot is

surrounded by a blue ring as was seen in the earlier experiments. This is most likely

a result of the smaller focusing geometry used here. It is probable that in selecting

input powers to sample, we took too large a step and missed the transition from a red

spot to red surrounded by blue before the central white light spot appears. At an input

power of 4.5 MW the green and blue rings are larger, and the white center takes on

a yellow-orange hue. Following this, green frequencies begin adding into the central

beam and then it appears white again. At an input power of 5.8 MW, a red outer ring

appears separated from the white/blue/green structure by a large black ring. As the

input power is increased further, the red and blue rings grow fatter. At an input power

of 7.4 MW, a thin yellow ring forms around the outer edge of the red ring. This yellow

ring is tenuous, and seems to appear and disappear many times per second. The white

center again turns a yellow-orange color at a peak input power of 9.9 MW. And at 10.8
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MW rings of black separate each ring of color surrounding the again white center. At

this point, we see a strong white light central beam surrounded by a ring structure that

consists, going outward from the center, of a thin black ring, a thicker blue ring, a

second thin black ring, a thin green ring, a thick black ring, and a thick red ring with

a thin yellow lining at the outermost edge. Increasing the power to 12.6 MW results

in a similar far-field structure with the addition of a second outer red ring. Again, all

color rings are separated by areas of darkness. The appearance of this ring structure is

reminiscent of some kind of interference, but the mechanism that is actually channeling

light off axis is unknown. Also, the appearance of two distinct outer red rings begs the

question of whether one ring may be the result of the continuum generation process

while the other is actually fundamental light being funneled off axis, or if both are

created via the same mechanism.

This data is presented as if one always observes a distinct set of concentric rings

in the far-field. In reality, though, one occasionally observes a pattern that resembles

a series of overlapping concentric ring sets, each with a different spatial center. By

slightly moving the sample, however, the far-field ring structure can be returned to the

desired concentric ring pattern. It is also interesting to note that the power throughput

is different in these two cases. Power measured after the sample is on the order of

10% higher when a single ring structure is observed. These patterns have been reported

once before and were attributed to fluctuations due to plasma buildup [131]. I believe,

however, that these differing patterns can be explained by considering the formation

of self-trapped filaments. If a single ring structure results from continuum generation

along a single trapped filament, then these more complicated patterns probably arise

from the formation of multiple filaments. Continuum is generated along each filament

and the resulting concentric ring patterns overlap in the far-field. For all of the data

presented in this chapter, care was taken to ensure that only a single ring structure was

present during the measurement.
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It is interesting to note that although self-focusing and continuum generation are

power dependent effects, the power figures presented in this chapter seem to indicate

that continuum is occurring at the same powers at which we previously reported pulse

splitting. One possible explanation for this is that the experimental set-up for these ex-

periments is different from the pulse splitting experiments in that a shorter sample and

a smaller focal spot are used. The pulse enters the sample with a much higher initial

intensity than in the pulse splitting experiments. In those experiments, the pulse is spec-

trally broadened and GVD acts to spread the pulse in time, initiating pulse splitting. By

the time the pulse reaches the same peak intensity used in the continuum experiments,

significant spectral broadening has already occurred. Therefore, we should expect the

propagation dynamics to be somewhat different in the two cases.

5.2.2 Power Throughput as a Function of Intensity

The power measurements presented here and in the next section were performed

using a large area photodiode detector based power meter. The continuum light gener-

ated during propagation diverges rapidly after exiting the sample. Therefore, the power

meter was placed as close as possible to the output face of the sample to collect all of

the emitted light, including both the central white light and the colored rings.

Figure 5.4 shows the percentage of power lost during propagation as a function

of input power. This percentage was determined by measuring the power with and

without the sample present in the beam path. The two lowest power points in Fig. 5.4

correspond to situations where no central white light beam is observed. As the white

light continuum appears, the losses jump to � 15%. As power is increased, the overall

trend is for the losses to increase as well up to an input power of 8.0 MW. There are

three points, however, that do not follow this trend. At input powers of 4.5 and 10 MW,

denoted by circles in Fig. 5.4, the losses are much lower than expected. Interestingly,

it is at these powers that a yellow-orange color is observed in the central white-light
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Figure 5.4: The percentage of power lost during propagation as a function of input
power. The circles represent points at which the central far-field beam is yellow-orange
instead of white.
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region of the beam. The very high loss observed at 6.8 MW does not seem to correlate

to any of the observed continuum behaviors.

Overall, it is evident that the processes involved in continuum generation involve

a loss of overall power during propagation. This lends credence to the idea that multi-

photon excitation or an absorption process may be involved. In fact, calculations based

on the (3+1)-D theory presented earlier and including four-photon absorption predict

accumulated losses of 12-14% for an input power of 12 MW [148].

5.2.3 Power Throughput as a Function of Time

Power measurements are also performed as a function of time. For these mea-

surements, a post holder is attached to the optical table behind the sample, and a collar

is placed on the post of the power meter head to ensure that the power meter could be

removed and replaced to the same position. First the power without the sample present

is measured. Next the beam is blocked, the sample is added into the beam path, and the

power readings are recorded as soon as the beam is unblocked. The power meter is then

removed from the beam path while the beam continues to propagate through the sample.

The power meter is replaced and power measurements are made at intervals of several

seconds to several minutes for approximately one half hour. The detector is sensitive to

changes in temperature, therefore the power meter is removed between measurements

to avoid unnecessary heating. After each set of measurements, the power is again mea-

sured without the sample present to check that the laser power has not drifted during

the measurement.

When the laser first traverses the sample, the power loss discussed in the previous

section is evident. At low input powers, after the beam is incident on the sample for

several minutes, the output power begins to rise. After sufficient time, the power at the

output is very nearly the same as the input power. At higher input powers, the output

begins to rise after a shorter time. For an input peak power of 13 MW the output power
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matches the input power after only 15 seconds. During the time the output power is

rising, the far-field continuum structure also changes. Initially, a typical ring structure

including the thin yellow lining around the outermost red ring is observed as described

in Section 5.2.1. As the output power increases with time, the outer yellow lining

disappears from around the red ring and simultaneously, the central white light region

takes on a yellow hue. The initial power loss followed by a return of the output power

to the value of the input is likely a result of a saturable absorption in the material. That

the output power rises sooner with higher input powers is consistent with a saturable

absorption.

After longer periods of time, the output power again begins to drop. Again, the

amount of time that passes before this event occurs decreases with increasing input

power. With an input power of 3.7 MW, just above the power where a strong central

white light spot is observed, the output power drops by roughly 40% after 10 minutes.

After the power drops, the far-field has lost its white light characteristics and appears

as a red spot that is roughly the same diameter as the white light spot that preceded

it. When the sample is moved slightly such that the beam traverses a different spatial

path through it, the original white light continuum beam returns. These observations

suggest that even at the lowest powers for continuum generation damage is occurring in

the fused silica. Damage by short IR pulses in fused silica has been reported previously

and is associated with a rapid buildup of electrons in the conduction band [149]. This

damage thus provides further evidence that free electrons may be implicated in the

continuum generation process. A different study on the formation of color centers

in glasses asserts that continuum generation is actually responsible for the damage to

the glass [150]. The study finds that color centers are formed by one- or two-photon

absorption of the short wavelength continuum light generated by the propagation. This

same study, however, finds no evidence of the formation of color centers in fused silica,

although they may have formed and not been observed.
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5.2.4 Near-Field Spatial Spectrum

Measurements of the spatial spectrum are performed by imaging the exit face of

the sample onto the entrance slits of a 0.25 meter imaging spectrometer with an f = 10

cm lens and a magnification of 16. A radial slice of the beam is selected by the entrance

slit, dispersed, and imaged onto a 16 bit CCD camera. A mask in front of the slit al-

lows the central, high intensity portion of the beam to be blocked when measuring the

radial extremes so that more than four orders of magnitude of intensity variation can be

acquired. A long pass filter is employed when measuring the high frequency side of the

spectrum to ensure that only the first order diffracted light from the grating is collected.

Neutral density filters are placed in the beam path when necessary to prevent camera

saturation. The entire spectrum cannot be captured in a single measurement because

the grating is more dispersive than the CCD element is large. Therefore, a series of

10 to 14 spatial-spectral measurements corresponding to different wavelength regimes

are necessary to obtain the full spatial spectrum at each input power. A corresponding

background spectrum is subtracted from each individually measured spectrum to ac-

count for the differing exposure times and filtering used in each measurement. Each

spatial spectrum is normalized such that its spectral edge matches the edge of the one

obtained for the wavelength range adjoining it and the full spatial spectrum is pieced

together. When measuring spectra over such a broad range of wavelengths, it is also

important to consider the efficiencies of both the spectrometer grating and the CCD.

The grating efficiency is known from 300 to 1000 nm. While the camera efficiency is

only calibrated from 625 nm to 975 nm, the general shape of the efficiency curve is

known over a larger range. Since continuum spectra usually fall off quickly on the long

wavelength side, the limitations for the red components are not severe. The short wave-

length spectrum, however, often extends well below 625 nm. Fortunately, the grating

efficiency of the 300 groove/mm grating used here is increasing in the region of 300 to
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roughly 600 nm where it peaks. Over this same range, the camera efficiency is falling

off such that combined efficiency is relatively flat over this range. For this data a flat

efficiency with a value of the known efficiency at 625 nm is assumed over the range

400 nm to 625 nm.

Figure 5.5 shows the near-field spatial spectrum for an input peak power of 12

MW. Only one measurement of the radial position at each wavelength range is shown

in this plot. During the measurement, the continuum character changed such that the

data from the low intensity wing was no longer related to the higher intensity spatial

data shown here. This is probably a result of the sample being damaged with time as

discussed in the previous section. Rings of color would be represented in this plot as

a particular wavelength showing up primarily at two distances, equidistant from the

central peak. Since rings are observed to form with lower frequencies at the outermost

edge, these rings should appear as a v-shaped peak or set of peaks that opens toward

the distance axis in Fig. 5.5. It is evident from this data that the ring structure exists

only in the far-field. Spatial modulation of the near-field occurs near the on-axis portion

of the beam. Although the far-field continuum spectrum appears to have strong radial

symmetry, the near-field spatial modulation does not reflect this symmetry. An inter-

esting feature is the peak around 580 nm. This peak is roughly six orders of magnitude

less intense than the peak near 800 nm. This peak is better illustrated by plotting the

on-axis spectrum as shown in Fig. 5.6. This spectrum also exhibits a strong spectral

asymmetry in the generation of continuum. The short wavelength side of the spectrum

extends much further than the long wavelength side.

Lineouts of a spatial spectrum obtained with a lower input peak power of 3.6 MW

are shown in Figs. 5.7 and 5.8. Figure 5.9 shows the on-axis spectrum in this case.

As in the higher power case, the on-axis spectrum extends further to short wavelengths

than do the spectra at other radii. In this low power case, however, the peak at 580 nm

is nonexistent.
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Figure 5.5: Spatial spectrum for an input power of 12 MW. Radial distance is plotted
in mm and wavelength is plotted in nm.
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Figure 5.6: On axis spectrum corresponding to Fig. 5.5.
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5.2.5 Discussion

Preliminary on-axis calculations based on the (3+1)-D equation used to model

pulse splitting with the inclusion of four-photon absorption are capable of reproducing

some general features of the continuum [148]. For instance, the theory predicts asym-

metric spectral broadening just as observed experimentally and predicts an extensively

broadened spectrum with spectral wings extending from 400 nm to 1.4 microns. This

theory also predicts a peak around 580 nm in the high input power case. The calculated

peak, however, is only three orders of magnitude less than the peak intensity, while the

measured peak is nearly six orders of magnitude less intense than the peak. As dis-

cussed previously, the inclusion of four photon absorption also predicts a loss of power

during propagation that is comparable to the power loss we observe.

The theory of Chin and Brodeur also generally reproduces experimental obser-

vations. It predicts an asymmetric, very broad spectrum and accounts for the far-field

ring structure as interference from continua generated from multiple broad-bandwidth

sources. The theory is also based on multiphoton excitation which the power data pre-

sented here supports. Comparisons with experiment reveal, however, that although it

predicts sufficient broadening, it also predicts a blue wing that is an order of magnitude

more intense than that observed by experiment. In addition, the theory relies on a mov-

ing focus model of self-focusing that does not present a realistic representation of the

self-trapped filaments. In fact, an experiment was performed in 1969 that demonstrates

that filaments are indeed trapped and not a result of a moving focus [151]. In this ex-

periment, self-trapped filaments were sent through an aperture such that if filaments

actually existed, they would pass through unaffected. But if they were actually a result

of a moving focus, they would be destroyed by diffraction. The filaments persisted af-

ter propagation through the aperture. The reverse experiment was also performed. The

self-focused pulse was propagated through a glass film such that a filament would be de-
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stroyed by diffraction, but the larger focusing beams would pass through and continue

to focus. In this case, filaments were selectively destroyed. For this reason, a moving

focus model is probably not the best representation to be used. Also, the moving focus

model predicts the formation of short temporal sub-structures during propagation. One

might argue that perhaps short temporal sub-structures are formed as a result of pulse

splitting. The (3+1)-D NLSE used to model our pulse splitting experiments, however,

never yields distinct multiple splittings in the near-field. Therefore, it is unlikely that the

continuum is actually generated by short-duration sub-pulses. In addition, this theory

relies on one-dimensional calculations even though self-focusing is involved. Since the

transverse dimensions of the beam are being changed dramatically by the propagation,

a three-dimensional calculation is clearly more appropriate.

The question remains: what are the necessary components of a reasonable the-

ory for continuum generation? Because continuum generation occurs only above the

critical power for self-focusing, the theory should account for changes to the spatial

dimension of the beam during propagation. Based on the power measurements pre-

sented here, clearly a loss mechanism such as multiphoton absorption or excitation is

important. The data here also emphasize that a damage mechanism should be con-

sidered. The work of Chin and Brodeur clearly indicates that multiphoton excitation

has a probable role in the propagation. Their work also points out the dependence on

bandgap that can be accounted for by MPE. Counter to the work of Chin and Brodeur,

a successful theory should include, or at least not explicitly exclude, the formation of

self-trapped filaments. The formation of self-trapped filaments also offers an explana-

tion of the ring structure associated with continuum in similar fashion to the moving

focus model. If continuum is generated all along the filament, the light generated at

different points in the medium will interfere to give a ring structure. The ring structure

may also be explained by including a saturable process in the theory. Ring formation

as a result of saturation has been predicted by Marburger [114]. Theory should com-
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pare not only to the on-axis spectrum, but to the entire spatial spectrum. Descriptions

of the far-field spatial spectrum are available both in the literature and in this chapter.

This chapter also provides the first measurement of the near-field spatial spectrum. In

addition, a successful theory should include the dispersion of the material. Continuum

spectra produced in gases have shown a modulation that was initially associated with

all continuum spectra. Continuum spectra in glass that do not exhibit this modulation

have typically been explained as resulting from multiple shot experiments where the

spectral modulation would be averaged out. I believe, however, that continuum spectra

in glass do not show a strong modulation because the various spectral components are

dispersed by GVD.

Although the processes involved in continuum generation cannot fully be ex-

plained at this time, some of the main issues involved have been elucidated. The ob-

servations presented here should provide a useful comparison for developing theories.

Understanding continuum generation remains an interesting and important unsolved

problem.



Chapter 6

One-Dimensional Propagation in Liquids

It is well known that the additional degrees of freedom of constituent molecules

in a liquid compared to molecules in a solid lead to more complicated interactions be-

tween the liquid and an electromagnetic field. Propagation of an intense beam through

a liquid can result not only in the instantaneous optical Kerr effect, but in molecular

reorientation, molecular redistribution, and Raman excitations of rotation and libration

as well [124, 152]. Molecular reorientation is a rotation of a molecule to reduce the

energy of the system in response to a field induced dipole moment of that molecule.

Molecular reorientation typically occurs on a timescale of 10�11 s [124]. Molecular

redistribution is also a response of the material to a field induced dipole moment and

involves the local rearrangement of molecules in the field to minimize the energy of in-

duced dipole-induced dipole interactions between molecules. This rearrangement has

a response time in the sub-picosecond range [124]. The response times for rotation and

libration are typically on the order of 100 fs. Electrostriction, which is an increase in the

density of a material due to the presence of an applied field, typically has a response

time of approximately 100 ns in liquids [124]. Most all of these processes involve a

response time that is longer than the duration of our 80-100 fs pulses. Rotation and li-

bration respond on a timescale that is very close to the duration of our pulses. Because

of these long response times, none of these processes should lead to an observable ef-

fect in our experiments. We expect, therefore, to observe the same processes involved
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in propagation of short pulses in liquids as were observed in propagation through fused

silica in one dimension, namely the electronic Kerr effect and group velocity dispersion.

Interestingly, however, Nibbering et al. have reported a non-instantaneous non-

linear response in methanol with a response time of 27 fs [94]. Their experiment in-

volves propagation of 804 nm, 24 mJ, 150 fs pulses through a known reference material

and an unknown sample. The spectrum before and after each propagation is measured.

Spectral changes upon propagation through the reference material yield the initial pulse

intensity. The initial pulse intensity is then used with the second spectral measurement

to determine the nonlinear index of refraction of the unknown sample. Nibbering as-

serts that this measurement is evidence that the optical Kerr effect in methanol is dom-

inated by a nuclear rather than a purely electronic term. Their work assumes that the

non-instantaneous response can be modeled by a single-sided exponential:

n (t) =

Z t

�1

n2I (t
0

)

�
exp

�
�t� t

0

�

�
dt
0

: (6.1)

This chapter investigates the propagation of � 80� 120 fs pulses in two liquids:

methanol and water. Methanol is studied with the purpose of repeating Nibbering’s

measurement using a different technique and thereby confirming or disproving the re-

ported non-instantaneous nonlinearity. Water is investigated for two reasons. Propa-

gation issues involved in sending short pulses through water, particularly the nonlinear

index of refraction of liquid water, is of considerable interest in the biological sciences.

Short pulse lasers are finding application in research involving the human body, espe-

cially with regard to surgical techniques [153, 154, 155]. In addition, water is studied

because it is a hydrogen-bonded, polar liquid composed of relatively small molecules

and, as such, is suitable for testing for systematic errors in the measurement. To wit,

if both liquids show the same non-instantaneous response, the integrity of the mea-

surement technique can be questioned. If the experiments in water reveal a purely

instantaneous response, however, while the experiments in methanol do not, then it is
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likely that the non-instantaneous nonlinearity is real and not merely an artifact of the

measurement technique.

6.1 Methanol Studies

6.1.1 Stationary Cell Measurements

Experiment

Pulses from the compressor stage of the laser system described in Chapter 3

propagate unfocused to the sample. The unfocused beam propagates approximately as

a plane wave in the sample, with a diameter of 5 mm (FWHM). The energy per pulse

of 227 �J corresponds to a peak power of 2.6 GW. Because of the high energy of the

pulses, the beam is not spatially filtered. Plane-wave propagation within the sample

is verified explicitly by measuring the beam size before and after propagation through

the sample. To within the experimental error due to the pixel size of the CCD camera,

the beam size is unchanged. The spectroscopic grade methanol sample is placed in a

1 cm path length Starna spectrophotometer cuvette. Propagation through only the two

1-mm-thick cell walls of the empty cuvette is found to have negligible effect on the

pulse at this intensity.

An interesting problem arises in attempting to perform FROG measurements

with this experimental set up. When methanol is added to the cuvette, the beam ac-

quires a dynamic spatial modulation after propagation. If one observes the liquid sam-

ple with a flashlight in a dark room, one can see a convective-type current in the liquid

and small dust-sized particles moving in a circular pattern. Repeated cleaning of the

cuvette makes no difference in this behavior. If the sample is allowed to sit undisturbed

for � 24 hours, however, the liquid becomes calm, and the beam passes through with

no observable spatial modulation. All data presented in this chapter were acquired after
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a minimum 24 hour wait period.

Data

Figure 6.1 shows the measured intensity and phase of a pulse prior to and after

propagation through the methanol sample. The input field is shown in (a) and the field

after propagation is shown in (b). In both graphs, the solid line represents the intensity,

and the points represent the phase. The upward curvature of the phase in (a) is evidence

of an initially slightly downchirped input. After propagation through the methanol,

the pulse is noticeably upchirped as a result of the positive group velocity dispersion

and the positive nonlinear index of refraction n2. In addition, the peak of the phase

curvature has been shifted slightly toward the trailing edge of the pulse.

Model and Results

Since conditions have been chosen such that the pulse propagates through the

sample as a plane wave, the propagation can be modeled using a (1+1)-dimensional

nonlinear Schrödinger equation:

@E
@z

+ i
k
00

2

@
2E
@t2

� i
2�n2

�
jEj2E = 0: (6.2)

The second term of this equation accounts for group velocity dispersion, and the third

term gives the instantaneous nonlinearity. The measured input field shown in Fig. 6.1(a)

is used as an initial condition of this model, with k
00 = 290 fs2/cm [156] and n2 =

4 � 10
�16 cm2/W. The propagated field is then calculated using a split-step technique

[107, 129] and is shown in Fig. 6.2(a) along with the measured field for comparison.

The calculated intensity and phase are given by the dashed line and the crosses, re-

spectively. The simulation was performed using a range of different n2 values around

those found in the literature [94, 157], and no significant difference in the fit was ob-

served. As illustrated by this example, the simple model, including reasonable values

for the material parameters and an instantaneous response time for the nonlinearity,
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after propagation through a 1-cm sample of methanol.
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fails to match the experimentally measured phase, especially the shift in the phase to

later times.

This shortcoming in the model can be corrected by phenomenologically includ-

ing a non-instantaneous response of the nonlinearity such that the term

n2jEj2

in Eq. (2) is replaced by [114]Z t

�1

n2jE(t0)j2
�

exp(�t� t
0

�
)dt

0 (6.3)

where � is the exponential response time of the nonlinearity. Equation 6.3 is the same

representation of the non-instantaneous nonlinearity used by Nibbering et al [94].

Figure 6.2(b) shows the results of the model including the non-instantaneous re-

sponse term of Eq. 6.3 with � = 10 fs. The measured input field of Fig. 6.1(a) was again

used as an initial condition of the model. Inclusion of the non-instantaneous response

correctly predicts the observed shifting of the peak of the phase toward the trailing edge

of the pulse. The calculated phase best matches the experimentally determined phase

when values of n2 = 4� 10
�16 cm2/W and � = 10 fs are used.

An interesting feature of the data in Fig. 6.2 is the extremely small value of

the exponential response time � . As mentioned previously, response times for elec-

trostriction, molecular reorientation, molecular redistribution, and molecular librations

are all too slow to explain the observed non-instantaneous nonlinearity. As seen in the

one-dimensional experiments with fused silica presented in Chapter 4, vibrational Ra-

man does not come into play unless much higher intensities (and therefore larger pulse

bandwidths due to self-phase modulation) are used. Thermal effects occur on very

long timescales relative to the length of our pulses. Because a single FROG measure-

ment requires approximately five minutes to acquire and the repetition rate of the laser

is 1 kHz, it is possible that thermal effects could appear in these stationary cell mea-

surements. Nibbering’s work does not mention the sample conditions. To determine
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whether the observed response is indeed a result of the nonlinear index of refraction

changing during the measurement, we also performed measurements using a flowing

methanol apparatus.

6.1.2 Flowing Methanol Measurements

Experiment

For these experiments, a dye cell and pump from a dye laser were used to flow

the sample. A new dye cell was used to ensure that there was no contamination from an

optically active dye. The path length through the sample was 1.69 cm, and the thickness

of the cell walls was 2 mm. In addition, a vacuum spatial filter was inserted into the

beam path before the sample cell to improve the spatial quality of the beam. Peak input

powers ranged between 4.5 and 5.5 GW. Again, all experiments were performed in the

plane wave regime. It is also important to note that all of the data in the remainder

of this chapter were acquired under sub-optimal laboratory conditions. The building

temperature fluctuated over a range of seven degrees Celsius from day to night, greatly

affecting laser performance and stability. As a result, all FROG traces were acquired in

duplicate and only data from those traces that were repeatable are presented here. Care-

ful observation of the beam with PG FROG was also used to monitor changes in laser

behavior. In this way, if the laser changed between the measurement of two repeatable

reference traces and two repeatable sample traces, the data were also discarded.

Data

Figure 6.3 shows the intensity and phase of the input field and the field after

propagation through 1.69 cm of methanol. The input pulse has an intensity FWHM of

120 fs and has a nearly flat phase with a small component of upchirp. After propagation,

the pulse is broadened in time and is significantly upchirped as is evidenced by the
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Figure 6.3: Measured intensity and phase of the pulse before (dashed line and dia-
monds) and after (solid line and points) traversing 1.69 cm of methanol.
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downward curvature of the phase. These features are a result of the interplay between

SPM with positive n2 and positive dispersion. A shift in the phase toward the trailing

edge of the pulse is difficult to discern by eye.

The corresponding spectra before and after propagation through the methanol

sample are shown in Fig. 6.4. After propagation through the methanol, a red-shift of

energy in the spectrum is observed. This spectral red-shifting is indicative of a non-

instantaneous nonlinearity.

Propagation with a very upchirped input pulse was also investigated. For this

data, the input power was increased such that the peak intensity was roughly the same

as for the shorter, flat-phase pulse. This experiment thus tests for any dependence of

the non-instantaneous nonlinearity on the chirp or length of the pulse. The tempo-

ral duration of the very chirped input pulse differs from that of the nearly flat-phase

input pulse by 12 fs. The phase of the very chirped input pulse changes by approx-

imately six radians from the center of the pulse to the point where the intensity has

dropped to 1/e2 of the peak intensity. The most obvious effect of the propagation is a

significant broadening of the pulse. Thirty-five femtoseconds more pulse broadening

is observed with this upchirped input than with the nearly flat-phase input of Fig 6.3.

This extra broadening is the result of an upchirped input pulse providing a head start

to the propagation-induced upchirp that results from SPM with positive n2 and positive

GVD.

Model and Results

The flowing methanol data are modeled using the same equations as the station-

ary cell data. The cell walls in this case are approximately twice as thick (2 mm) as

the walls of the stationary cell. Including propagation through the cell walls in the cal-

culation has an observable effect on the calculated spectra. Therefore, all calculations

are performed assuming propagation first through 2 mm of fused silica with values of
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Figure 6.4: Measured spectra before (dashed line) and after (solid line) propagation
through 1.69 cm of methanol.
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n2 = 2:5 � 10
�16 cm2/W and k

00

= 360 fs2/cm and assuming an instantaneous re-

sponse. The field is then propagated numerically through the methanol sample using

k
00

= 290 fs
2
=cm, assuming a non-instantaneous nonlinearity as given by Eq. 6.3 and

varying the values of n2 and � . Finally, the field is propagated through the second 2

mm wall of fused silica.

Calculations using the measured input field from Fig. 6.3 are in best agreement

with the temporal broadening of the measured field after propagation when a value of

n2 = 4 � 10
�16 cm2/W is used. Figure 6.5 shows the measured intensity and phase

along with calculated results using this value of n2 and three different values of � .

If the nonlinearity is assumed to be purely instantaneous (� = 0), the calculated

phase does not match well on the leading or trailing edges of the pulse. On the other

hand, when � is assumed to be 27 fs (the value determined by Nibbering et al.), the

calculated phase is shifted too far toward the trailing edge of the pulse. The best match

between the model and experiment is found when a value of � = 10 fs is used. To

further illustrate this point, the differences between the measured and calculated phases

for these three values of � are plotted in Fig. 6.6. The phase difference in the case

of � = 10 fs always falls between the phase differences in the other two cases, and is

on average closer to zero. The small scale modulation in the measured phase is not

reproduced by the calculations and results in the modulations seen in all three of the

phase difference curves. Performing calculations on a much finer grid might reproduce

these modulations. Currently, the largest number of points in the field array that the

model can handle is 512.

A comparison between the measured spectrum after propagation (shown in Fig. 6.4)

and the calculated spectrum corresponding to the case of � = 10 fs (Fig. 6.5) is shown in

Fig. 6.7. The measured and calculated spectra are in good agreement. The calculation

reproduces the observed shifting of energy to the red spectral components.

Calculations involving the very upchirped input pulse also show good agreement
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Figure 6.5: Measured intensity (solid line) and phase (points) along with calculated
intensity (dashed line) and phase (crosses) using the input field from Fig. 6.3 with n2 =
4� 10

�16 cm2/W for three different values of � .
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lations presented in Fig. 6.5: � = 0 fs (dots and dashes), � = 10 fs (solid line) and
� = 27 fs (line with crosses).
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calculated spectral intensity and phase (dashed line and crosses) for the case of n2 =
4� 10

�16 cm2/W and � = 10 fs.
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with experiment when values of n2 = 4 � 10
�16 cm2/W and � = 10 fs are used in

the model. The phase in this case is so strongly curved, however, that the effects of

differing values of � are difficult to distinguish. Therefore, any dependence of the non-

instantaneous nonlinearity on the chirp of the pulse is difficult to extract. Moreover, it

is best to use a flat-phase input pulse in experiments to determine the value n2 and � .

6.1.3 Discussion

The data presented in the previous two sections clearly indicate the presence of

a non-instantaneous nonlinearity in methanol. Experiments with a flowing methanol

configuration rule out the possibility that heating effects are contributing to the mea-

sured nonlinearity. In all cases, we observe values of n2 and � that are smaller than

those reported by Nibbering et al. [94]. To demonstrate that our numbers are clearly

different from those measured by Nibbering, a plot of our data with a calculation using

Nibbering’s numbers is shown in Fig. 6.8. The calculated field is very different from

the measured field in this case.

There are several questions that should be addressed. The first is the difference

in the measured values reported in these two investigations. The model used to cal-

culate the nonlinear response is the same in both cases. The two main differences in

the approaches are the experimental method used and the length of the input pulses.

Nibbering’s work involves propagating 150 fs pulses through the sample. Since these

pulses are longer, it is possible that they measure contributions to the nonlinear index

from libration and rotation (response time of 100 fs) that the shorter pulses used in

our experiment do not detect. It is also possible that there is a systematic error in one

or both of the measurement techniques that results in the differing magnitudes of the

propagation parameters. Another possibile difference lies in the method of measuring

the input intensity. A small change in the input intensity results in a noticeable change

in the magnitude of the nonlinear index of refraction. Therefore an incorrectly cali-
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Figure 6.8: Measured intensity and phase (solid line and points) with calculated in-
tensity and phase (dashed line and crosses) using Nibbering’s reported values: n2 =
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�16 cm2/W and � = 27 fs.
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brated power meter, or an inaccurate assessment of input pulse duration, could lead to

the differences in the measured values of n2.

A second question that remains is the nature of the non-instantaneous nonlinear-

ity. Most effects involving nuclear or molecular motion respond on timescales much

longer than 10 fs. If this effect is real, one may ask whether it is possible that the cause

is not actually something that occurs with a 10 fs response time, but simply results

in a phase profile that has similar characteristics. The model is one used to describe

any diffusive retardation in the medium and is not necessarily representative of the true

nature of the process or processes involved. The presence of one- or two-photon ab-

sorptions affecting the nonlinear index is ruled out by the UV-Vis absorption spectrum

of methanol which is flat between 850 nm and 205 nm. In addition, two-photon absorp-

tion is typically accompanied by a flattening of the peak of the intensity profile after

propagation [158], a feature that is not observed in our data. Also, measurements of

power throughput reveal losses due only to reflection.

A third question surrounding the observed effect is whether it could be an ar-

tifact of the measurement techniques used. To partially respond to this question, we

perform experiments in water using the same techniques. Water is chosen because like

methanol, it is a small, polar liquid that is hydrogen bonded and has a flat UV-Vis

absorption spectrum down to 190 nm.

6.2 Water Studies

Water measurements are performed using the flowing liquid apparatus described

in Section 6.1.2. Peak input powers are always near 5 GW, and the pulses propa-

gate as plane waves through the sample. The stability criteria are again used to select

which data sets to analyze. Calculations are performed taking into account propagation

through the cell walls. Fisher HPLC-grade water is used as the sample.
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This work Previous work

n2 (10
�16

cm
2
=W) # data sets n2 (10

�16
cm

2
=W) wavelength Ref.

1.8 2 2.8 694 nm [159]
3.0 1 4.2 532 nm [160]
4.5 3 5.4 532 nm [159]

5.7 804 nm [94]

Table 6.1: Measured and literature values of n2 for water.

6.2.1 Data and Results

Figure 6.9 shows the measured intensity and phase before and after propagation

through 1.69 cm of water. The input pulse has an initial upchirp that leads to enhanced

broadening of the pulse. After propagation, the pulse is more upchirped and shows no

shifting of the phase toward the trailing edge of the pulse.

Calculations are performed using the measured input field and a value of k00 = 247

fs
2
=cm [156]. For all acquired data, the best fit is obtained when only an instantaneous

nonlinearity is included. A comparison of the calculated and measured fields after prop-

agation for the data shown in Fig. 6.9 is plotted in Fig. 6.10. The calculated intensity

and phase matches the measurement quite well. For this calculation, n2 = 1:8� 10
�16

cm2/W. The fact that no non-instantaneous nonlinearity is present in water indicates

that the nonlinearity observed for methanol is not likely an artifact of the measurement

technique.

The value of n2 was determined for several data sets by using n2 as a fit parameter

in calculating the measured field. Three different values were obtained, with an average

value of 3:4 � 0:4 cm2/W accounting for random error only. In all cases the agreement

between the measured and calculated fields were comparable to that shown in Fig. 6.10.

Table 6.1 shows our measured values along with some values from the literature. Beside

each measured value is the number of data sets that gave that result. Our measured

values are somewhat lower than the only other published value near 800 nm [94]. The
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Figure 6.9: Measured intensity and phase prior to (dashed line and diamonds) and after
(solid line and points) propagation through 1.69 cm of water.
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Figure 6.10: Measured (solid line and points) and calculated (dashed line and crosses)
intensity and phase after propagation through 1.69 cm of water. The calculation as-
sumes a purely instantaneous nonlinearity.
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spread in the values of n2 given by different data sets is larger than we would ideally

like it to be. There are several possible explanations for this. One problem may involve

accurate measurement of the intensity. Measurement of the peak intensity is based

on accurate knowledge of the area of the input pulse (see Chapter 3). If the area of

the input pulse changes between measurement of the input pulse and measurement of

the pulse after propagation through the sample, the intensity, and hence n2, will be

incorrect. With the unstable room conditions present during these measurements, it is

conceivable that small scale or very slow changes could have occurred without causing

the data to fail the stability requirements. Also, during these water measurements a

problem arose with the temperature servo on the baseplate of the regenerative amplifier.

The temperature of the baseplate fluctuated over several degrees Celsius during the

course of an hour. Fluctuations in the temperature of the amplifier baseplate affect

laser performance and could contribute to the observed inconsistencies in the data. One

could also argue that the observed differences are an inherent limit of the measurement

technique. Previous FROG data presented in this thesis gives much more repeatable

results, however. It is more likely a problem of accurate measurement of the intensity

of an unstable laser.

6.3 Summary

The experiments in this chapter corroborate the existence of a non-instantaneous

nonlinearity with a very short response time in methanol. The value of this response

time is found to be 10 fs, roughly three times shorter than the previous measurement

reported [94]. Experiments conducted with a flowing methanol apparatus eliminate the

possibility that the observed nonlinearity is actually a heating effect. The shorter pulses

used in these experiments also cast doubt on the mechanism being driven by libra-

tional motion. Experiments in water, which show a purely instantaneous nonlinearity,

confirm that the measured non-instantaneous nonlinearity in methanol is probably real.
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Measurements of power throughput, observations of the temporal intensity of the pulse

after propagation, and observations of the UV-Vis absorption spectrum of methanol all

indicate that there is no evidence for absorption occuring during propagation. The ac-

tual mechanism responsible for the observed non-instantaneous nonlinearity remains

undetermined.

Attempts to measure the nonlinear index of refraction of water using this tech-

nique gave results with low precision. The results, however, are in agreement with other

values published in the literature. And, under more stable conditions, this would likely

be a reasonable method of measuring the nonlnear index of refraction.



Chapter 7

Summary

Understanding the propagation of short pulses in a variety of media is of great

importance to a number of applications spanning many fields of interest. By applying

a full-field measurement technique to the study of short pulse propagation in several

interesting materials and regimes, this work lends insight into the complicated com-

bination of linear and nonlinear processes involved. This work also demonstrates the

second-harmonic generation (SHG) form of frequency-resolved optical gating (FROG)

as a powerful technique for resolving complicated propagation issues in the field of

ultrafast science.

Experiments involving plane-wave propagation in fused silica reveal surpris-

ingly large changes in temporal pulse width over relatively short propagation distances.

These experiments show a broadening that is nearly 20 times larger than that predicted

by group velocity dispersion (GVD) alone. These experiments, along with calcula-

tions based on a one-dimensional nonlinear Schrödinger equation (NLSE), illustrate

that the effects of GVD and self-phase modulation (SPM) are interrelated and should

not be treated separately as is commonly seen in the literature. This thesis presents the

first full-field measurements detailing this interplay between GVD and SPM. The very

good agreement between the experiment and the model validates FROG as a valuable

technique for investigating short pulse propagation.

Propagation is also studied in a regime where conditions are such that the pulse
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undergoes self-focusing. Self-focusing leads to much higher intensities and associated

higher-order nonlinear effects that result in temporal pulse splitting. At lower input

powers, a pulse splits into two sub-pulses, each shorter in duration than the parent

pulse. With increasing input powers, multiple sub-pulses are observed. The overall

phase across the entire split field indicates upchirp, with the leading pulse shifted to

the red of the trailing pulse in frequency. The phase of the input pulse is also found

to affect the propagation. An upchirped input gives a head-start to the propagation

induced upchirp and results in split pulses that are broader in both the spectral and

temporal domains. A downchirped input pulse, on the other hand, tends to offset the

propagation induced upchirp and results in split pulses that are significantly narrower

in both the temporal and spectral domains.

In this three-dimensional propagation regime, transverse changes to the beam

can no longer be neglected, and the model must take into account propagation-induced

spatial changes to the beam. A simple three-dimensional model based on the NLSE,

however, is not sufficient to describe the observed pulse splitting. The observed split-

ting exhibits asymmetry in both intensity and phase that the simple model cannot repro-

duce. Observation of these asymmetries led to the development of a model including

the effects of a Raman nonlinearity, linear and nonlinear shock, and third-order disper-

sion. The Raman nonlinearity preferentially amplifies red-shifted frequencies within

the pulse and, with GVD, enhances the leading pulse of the split pair. Both linear

and nonlinear shock enhance the trailing pulse during the pulse-splitting process. The

very short-temporal duration trailing pulse then diffracts faster than the leading pulse

and thus appears less intense at the exit face of the sample. The effects of the Raman

nonlinearity are not sufficient to completely offset the effects of shock in the material,

however it does temper them. Third-order dispersion also contributes to a larger lead-

ing pulse by increasing the dispersion of the blue components. It is, however, a smaller

magnitude effect and plays a lesser role in determining the symmetry of the split pulses
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than either Raman or shock. The paraxial assumption is still valid with this level of

self-focusing.

This modified NLSE predicts asymmetric pulse splitting, however, it does not

predict the multiply-split pulses observed in the experiment. In order to explain the

multiple splittings, we have found that we must take into account propagation to the far-

field. In fact, we have found that multiple splittings like those observed in experiment

only occur in the far-field. These multiple pulses do not arise from subsequent splitting

of the original split field, but rather result from a build-up of phase in the far-field. In

general, pulse splitting occurs first in the far-field and then proceeds to the near-field.

When fully split pulses are resolved in the near-field, the far-field is multiply-split. The

modified NLSE including propagation to the far-field is in excellent agreement with the

experiment at 800 nm for all of the peak input powers investigated.

We have also investigated propagation at higher powers where a continuum spec-

trum is generated. Continuum spectra have been used in parametric amplification, short

pulse generation, and time-resolved spectroscopy and show potential for use in many

evolving applications. Our studies near the power threshold for continuum generation

indicate that the split temporal field begins to coalesce with the production of more

spectral components. Above the threshold for continuum generation, full-field FROG

measurements are no longer practical. In this regime, we present observations of con-

tinuum behavior as a function of both input power and elapsed time. The overall loss

of power during the continuum generation process is an indication that multi-photon

absorption occurs in the sample. The dependence of the continuum and power losses

on the elapsed time indicates the presence of a saturable process and probable material

damage. This thesis also presents the first near-field spatial-spectral measurements of

the continuum spectrum. Comparisons with the model used in the pulse splitting ex-

periments, modified to include four-photon absorption, reveal spectral asymmetries and

initial power losses similar to those observed in the experiment. This theory, however,
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is still not adequate to describe all aspects of the experimental data. These results un-

cover several of the basic processes involved in the generation of spectral continua and

should provide a useful comparison for further theoretical development.

Propagation in liquid samples is also investigated in a one-dimensional prop-

agation regime with the goal of providing a measurement of the nonlinear index of

refraction. These measurements are of interest because an accurate determination of

the nonlinear index is of particular importance in forecasting propagation effects. Mea-

surements were performed in both methanol, a common organic solvent, and water

which is of interest to medical and biological sciences. We find that full-field measure-

ment techniques are ideally suited to these kinds of measurements, assuming one takes

into account group velocity dispersion and limits the propagation to the plane-wave

regime. Studies in methanol reveal contributions to the nonlinear index of refraction

by a non-instantaneous nonlinearity with a surprisingly short response time of 10 fs.

The exact mechanism responsible for this non-instantaneous nonlinearity is unknown.

Electrostriction, molecular reorientation, molecular redistribution, rotation and libra-

tion should all occur on timescales longer than 10 fs and are therefore not responsible

for the observed nonlinear response. The nonlinear index of refraction of water, on the

other hand, results purely from the instantaneous electronic response. The nonlinear

index of refraction of water is found to be in good agreement with previous literature

values. Measurements in water thus validate both the observed non-instantaneous non-

linearity in methanol and the measurement technique.

The studies in this thesis elucidate important aspects of linear and nonlinear prop-

agation under a variety of conditions. The science presented here is not only interesting

from a fundamental standpoint, but it should also find applicability in a wide variety

of fields. This work emphasizes the advantages of using a full-field measurement tech-

nique for investigating short pulse propagation and demonstrates the suitability of the

SHG form of FROG for this purpose. These studies also exemplify the mutually ben-



151

eficial relationship that is possible between experiment and theory. These studies lend

insight into several interesting and complicated short pulse propagation related issues

and should have a bearing on other endeavors involving short, high-intensity pulses.

Of course, the experiments presented here suggest many opportunities for future

investigations, some of which include measurements of the full spatial field of a prop-

agating pulse, three-dimensional propagation in liquids, and studies of pulse splitting

in materials that do not produce continuum. As discussed in Chapter 4, the pulse split-

ting experiments involve the spatial aspects of the field during propagation. It would

thus be interesting to measure not only the on-axis field as we have done, but also to

include a measure of spatial intensity and phase during propagation as well. A means

of accomplishing this measurement is the technique of spectral interferometry.

Spectral interferometry consists of interfering an unknown pulse with a known

reference pulse and recording the entire interferogram with a CCD [161, 40, 162]. A

few requirements in spectral interferometry are as follows; there must exist a coherent

phase relationship between the two pulses, the spectrum of the reference pulse must

be greater than that of the pulse to be measured, and the reference pulse must be fully

characterized. The reference pulse can be characterized using FROG. A single laser

beam can be split to give both of the pulses thus ensuring a coherent phase relationship.

The second pulse becomes “unknown” by traversing the sample of interest. In short

pulse propagation, however, one must be careful either to limit the effects of self phase

modulation in the sample or to spectrally broaden the reference pulse via SPM prior to

its interaction with the unknown pulse to ensure that the second requirement is satisfied.

The full field, including one spatial dimension, of the unknown pulse can be retrieved

from the spectral interferogram.

We have performed spectral interferometry in a linear propagation regime and

have accurately recovered the value of dispersion of BK-7 glass along the entire spatial

dimension of the beam. We have also performed one preliminary experiment involving
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nonlinear propagation and were able to observe the expected spatially dependent non-

linear index of refraction. If one could accurately determine the full field of a continuum

reference pulse, spectral interferometry could be an invaluable tool for gathering much-

needed information about the spatial phase of a pulse during continuum generation.

It would also be interesting to study three-dimensional propagation in liquids.

We know empirically and from the literature that a continuum is generated in water.

But, do the extra degrees of freedom afforded a liquid affect the continuum generation

process? And if so, in what way? And, what effect does local boiling have on the

observed continuum?

Investigating the literature tells us that the band gap of the material plays a role

in determining the spectral broadening observed in continuum generation. There ex-

ist materials with a band gap that is too small for continuum to be generated [135].

It would be interesting to investigate pulse splitting in these materials at input peak

powers above that where multiple splitting is first observed. In the absence of spectral

superbroadening, it is improbable that the same pulse coalescence would be observed.

Another experiment would also be interesting to perform. In materials with the small-

est possible band gap above the threshold for continuum generation, where continuum

would occur at lower input powers, a situation might arise where pulse-splitting never

occurs. By investigating these extreme cases, one could potentially learn more about

the processes involved.

In any case, propagation of short pulses should continue to present many fasci-

nating and challenging problems to scientists for years to come.
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K. W. DeLong, R. Trebino, and I. A. Walmsley, “Measurement of the intensity
and phase of ultraweak, ultrashort laser pulses,” Opt. Lett. 21, 884–886 (1996).



158

[65] D. J. Kane, “Real-time measurement of ultrashort laser pulses using principal
component generalized projections,” IEEE J. Select. Topics Quantum Electron.
4, 278–284 (1998).

[66] D. J. Kane, “Recent progress toward real-time measurement of ultrashort laser
pulses,” IEEE J. Quantum Electron. 35, 421–431 (1999).

[67] M. Munroe, D. H. Christensen, and R. Trebino, “Error bars in intensity and
phase measurements of ultrashort laser pulses,” In Technical Digest. Summary
of papers presented at the Conference on Lasers and Electro-Optics, 6, 462–463
(1998).

[68] K. W. DeLong, R. Trebino, and W. E. White, “Simultaneous recovery of two
ultrashort laser pulses from a single spectrogram,” J. Opt. Soc. Am. B 12, 2463–
2466 (1995).

[69] D. J. Kane, G. Rodriguez, A. J. Taylor, and T. S. Clement, “Simultaneous mea-
surement of two ultrashort laser pulses from a single spectrogram in a single
shot,” J. Opt. Soc. Am. B 14, 935–943 (1997).

[70] C. W. Siders, A. J. Taylor, and M. C. Downer, “Multipulse interferometric
frequency-resolved optical gating: real-time phase-sensitive imaging of ultrafast
dynamics,” Opt. Lett. 22, 624–626 (1997).

[71] C. W. Siders, J. L. W. Siders, and A. J. Taylor, “Femtosecond coherent spec-
troscopy at 800 nm: measuring high-field ionization rates in gases with MI
FROG,” In Technical Digest. Summary of papers presented at the International
Quantum Electronics Conference, 7, 43–44 (1998).

[72] C. W. Siders, J. L. W. Siders, F. G. Omenetto, and A. J. Taylor, “Multiple in-
terferometric frequency-resolved optical gating,” IEEE J. Quantum Electron. 35,
432–440 (1999).

[73] M. D. Thomson, J. M. Dudley, L. P. Barry, and J. D. Harvey, “Waveguide-
enhanced frequency-resolved optical gating at 1:5 �m using the Kerr nonlin-
earity in optical fibre,” In ACOFT ’98 Proceedings. 23rd Australian Conference
on Optical Fibre Technology, pp. 57–60 (1998).

[74] M. D. Thomson, J. M. Dudley, L. P. Barry, and J. D. Harvey, “Complete
pulse characterization at 1:5 �m by cross-phase modulation in optical fibers,”
Opt. Lett. 23, 1582–1584 (1998).

[75] L. Jusinski, A. Kwok, M. A. Krumbügel, J. N. Sweetser, and R. Trebino,
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[76] A. Kwok, L. Jusinski, M. A. Krunbügel, J. N. Sweetser, D. N. Fittinghoff, and R.
Trebino, “Frequency-resolved optical gating using cascaded second-order non-
linearities,” IEEE J. Select. Topics Quantum Electron. 4, 271–277 (1998).

[77] G. Taft, A. Rundquist, M. M. Murnane, H. C. Kapteyn, K. W. DeLong, R.
Trebino, and I. P. Christov, “Ultrashort optical waveform measurements using
frequency-resolved optical gating,” Opt. Lett. 20, 743–745 (1995).

[78] G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W.
DeLong, D. N. Fittinghoff, M. A. Krumbügel, J. N. Sweetser, and R. Trebino,
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