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Through the years, stochastic physics has provided important insight into natu-

ral phenomena that possess an inherently random nature. From its foundations in the

study of Brownian motion up through its myriad present applications, a stochastic de-

scription of nature has yielded an elegant theoretical understanding, as well as providing

practical and efficient simulation techniques. One particularly important application is

to the field of quantum optics, in which the interaction of light and matter is treated

in a fundamentally quantum-mechanical manner. The work presented here utilizes the

methods of stochastic physics to understand a variety of quantum-optical phenomena

involving the dynamics of atoms interacting with photons. A solid theoretical under-

standing of such phenomena is often necessary to describe laser cooling of atoms, and

many such applications are discussed here. A detailed model of atoms with complex

internal structure interacting with three-dimensional laser fields is presented, as well

as the rich dynamics of three-level atoms interacting with two lasers. Applications to

cavity cooling of atoms and molecules are discussed, and a method for describing non-

Markovian dynamics using relaxation techniques is presented. A novel cooling scheme

utilizing Feshbach resonances in the scattering of two atoms is also treated.



Acknowledgements

I would like to thank Chris Greene for his many years of guidance and support

during my graduate career. His passion for physics is contagious and it inspires those

who interact with him strive for a deeper understanding of nature. His curiosity extends

over a very broad range, and he is often willing to tackle projects outside of his main

expertise in order to expand his understanding of physics. I appreciate his willingness

to allow me to pursue a study of quantum optics and stochastic physics even given his

limited experience in these fields. I believe that our collaboration has been very fruitful.

Combining my day-to-day learning about quantum optics with Chris’s comprehensive

understanding of traditional atomic physics has allowed us to develop models of atom-

photon dynamics with unprecedented attention to an accurate treatment of atomic

internal degrees of freedom. Our collaboration has often led to the realization of parallels

between quantum-optical concepts and the many theories developed by Fano, which

Chris knows so well. For me, this conceptual bridge has been very useful, illuminating

tough subjects and often revealing an elaborate and scattered collection of methodologies

to be unified under a simple physical picture. I am proud to be a part of this scientific

lineage.

I am grateful to the many physicists at JILA who helped me during my time here.

Jun Ye has been kind enough to provide me with many opportunities to put theory

to use in describing various aspects of his vast array of cold-atom and cold-molecule

experiments. Over the years, Jinx Cooper has been a helpful and reliable fountain of



v

physics knowledge. He was always willing to utilize his lifetime of experience to help

me understand the tricky and subtle aspects of quantum optics. Robin Santra, during

his time as a post doc in Chris’s group, was patient and willing to answer my many

questions involving atomic structure.

I would also like to thank various other collaborators that made my work possible.

Jan Thomsen from Denmark and Flavio Cruz from Brazil provided the experimental

background and the impetus for our joint project that led to a better understanding of

multilevel atomic dynamics as well as a cooling scheme that they are currently imple-

menting. Ben Lev’s strong knowledge of cavity QED led to many interesting discussions

between us about the dynamics of atoms and molecules in an optical cavity.

Finally, I would like to thank the National Science Foundation for funding my

research as a graduate student.



vi

Contents

Chapter

1 Introduction 1

2 Feshbach-Resonance Cooling 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Collision-theory basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Potential scattering theory . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Cold collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Feshbach resonances . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Zero-range-potential model for two particles in a harmonic trap . . . . . 14

2.3.1 One channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Two channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Square-well-potential model for two particles in free space . . . . . . . . 19

2.5 Digression: application to molecular dissociation . . . . . . . . . . . . . 20

2.5.1 Zero-range potential . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.2 Square-well potential . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 The cooling scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Results and experimental possibilities . . . . . . . . . . . . . . . . . . . 37

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



vii

3 Dynamics of Multilevel Atoms in Three-Dimensional Polarization-Gradient Fields 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Master equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 General form of the master equation . . . . . . . . . . . . . . . . 52

3.2.2 Master equation in the low-intensity limit: adiabatic elimination

of excited states . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Direct solutions of the semiclassical master equation . . . . . . . . . . . 57

3.4 Stochastic wave-function solutions of the fully quantum master equation 59

3.5 Calculations for 25Mg and 87Sr . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Bichromatic Cooling of Three-Level Atoms 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Three-level atomic systems . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Fully quantum model and its advantages . . . . . . . . . . . . . . . . . . 78

4.4 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 EIT explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 Atom-photon dynamics for asymmetric lineshapes . . . . . . . . . . . . 83

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Cavity Cooling of Atoms and Molecules 87

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Physical picture of the cooling mechanism . . . . . . . . . . . . . . . . . 89

5.3 Theoretical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.1 Single atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.2 Multiple atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.3 Accounting for Raman losses and other experimental effects . . . 96



viii

5.4 Comparison of fully quantum to semiclassical model . . . . . . . . . . . 97

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Nonlinear Optical Spectroscopy 103

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Basics of nonlinear optical spectroscopy . . . . . . . . . . . . . . . . . . 105

6.3 Phenomenological damping model . . . . . . . . . . . . . . . . . . . . . 107

6.4 Transient multiwave mixing using relaxation theory . . . . . . . . . . . . 109

6.4.1 Relaxation theory of static pressure broadening . . . . . . . . . . 109

6.4.2 Extension to transient nonlinear-optics problems . . . . . . . . . 111

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Bibliography 113

Appendix

A Liouville Space 121

B Spontaneous-Emission Relaxation Operator for Atoms with Complex Internal

Structure 124

C Semiclassical Master Equation for Atoms with Complex Internal Structure 138

C.1 Equations without spontaneous decay . . . . . . . . . . . . . . . . . . . 138

C.1.1 Atom-field interaction . . . . . . . . . . . . . . . . . . . . . . . . 138

C.1.2 Transformation to moving, rotating frame . . . . . . . . . . . . . 143

C.2 Optical Bloch equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

C.2.1 Class I: optical coherences . . . . . . . . . . . . . . . . . . . . . . 148

C.2.2 Class II: ground-state populations and ground-state coherences . 149

C.2.3 Class III: excited-state populations and excited-state coherences 150



ix

Tables

Table

4.1 Transition linewidths, Γi = γi/2π for i =1, 2, of the 1S0-1P1-1S0 three-

level Ξ systems for common alkaline-earth atoms 24Mg, 40Ca, and 88Sr,

as well as the alkaline-earth-like atom 174Yb. The ratio of Γ1/Γ2 is also

shown, indicating the factor below the lower-transition Doppler limit

which might be expected using a three-level bichromatic scheme, neglect-

ing the more detailed lineshape analysis provided in this chapter. . . . . 76



x

Figures

Figure

2.1 Eigenspectrum in oscillator units ~ω for two particles in a harmonic

trap, as a function of the two-particle scattering length a in units of

the reduced-mass oscillator length Losc. . . . . . . . . . . . . . . . . . . 17

2.2 An example of the type of magnetic field pulse used in molecular-dissociation

experiments. This pulsed magnetic field is used here as a perturbation

in a in a two-channel model of dissociation. The amplitude of the pulse

is Bini, the width of the envelope is tpert, and the frequency of oscillation

is νpert. In this plot, νpert = 10/tpert. . . . . . . . . . . . . . . . . . . . . 24

2.3 An example of a typical molecular photodissociation spectrum obtained

using the two-channel square-well model. Plotted is the photodissociation

rate as a function of energy, both in arbitrary units. . . . . . . . . . . . 29

2.4 Eigenenergies of an interacting two-atom system in a harmonic trap near

a Feshbach resonance, as a function of the magnetic field. The shift

in the energies as the resonance is traversed can be seen, as well as the

energy dependence of the location of the shift in magnetic field. The inset

illustrates an ideal series of population transfers induced by magnetic field

ramps for the Feshbach-resonance cooling scheme. This figure is adapted

from Ref. [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



xi

2.5 Upper figure: Wave function in a box before and after rapidly (diabati-

cally) expanding the box. Lower plot: Wave function in a box before and

after slowly (adiabatically) expanding the box. . . . . . . . . . . . . . . 36

2.6 Illustration of the effect of a single Feshbach resonance cooling cycle for

an atom pair taken from a thermal distribution with T = 1 mK and

trapped with frequency ν = 1 MHz. The black (red) line represents the

population distribution before (after) application of one slow and one fast

magnetic field ramp. The state Q (here Q = 15) is indicated. This figure

is adapted from Ref. [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Diagram illustrating the effect of the Feshbach-resonance cooling scheme

on an s-wave distribution of atoms. Shown is the population in arbitrary

units as a function of the relative-coordinate quantum number n. Pop-

ulation from the state n = Q is increased in energy, and assumed to be

removed from the trap. All population with n > Q is decreased in energy

by one relative-coordinate oscillator unit of energy. . . . . . . . . . . . . 42

2.8 Probability that a pair of atoms remains trapped vs. the average total

kinetic energy of the two atoms in oscillator units (note that kBT =

〈Etot〉/6 for two harmonically trapped atoms). Three different cooling

parameters are used: 2~ωQ = 5τ (solid line), 9τ (dashed line), and 12τ

(dot-dashed line). It is assumed that rethermalization occurs between

cooling cycles (see text), although this scheme does not necessarily require

it. Inset: probability to remain trapped vs. the number of cooling cycles

for the same three cooling parameters. This figure is adapted from Ref. [1]. 45



xii

3.1 Energy level diagram of an atom with multiple hyperfine manifolds. If the

energy spacing of the excited-state manifolds are of the order or smaller

than the natural linewidth of the transition, the usual sub-Doppler cool-

ing transition (Fg ↔ Fe = Fg +1) is not isolated and the other manifolds

must be taken into account. This figure is adapted from Ref. [2]. . . . . 51

3.2 An example of a characteristic MCWF stochastic trajectory. Shown is

the average of the atomic center-of-mass energy over 500 independent

stochastic wave functions, as a function of time, for a two-level atom in

a 1D standing-wave laser field. The energy is given in units of the recoil

energy Erec = ~2k2/2m, and time is given in units of the inverse recoil

frequency ω−1
r = ~/Erec. All wave functions are initialized in the ground

state of the atom and localized in momentum space with zero momentum.

The steady state, wherein the system fluctuates around an average value,

is seen to be achieved after a transient relaxation period. Error bars

indicate the variance in the data at each given time for the ensemble of

500 stochastic wave functions. An estimate of the steady-state atomic

center-of-mass energy is obtained by performing a time-average over all

wave functions for all times after the relaxation regime. The error bar of

such an average will be smaller than the error bars in the figure, which

apply only to the data for a given time. This figure is adapted from Ref. [2]. 63



xiii

3.3 Simulation of a two-level atom with δ = −Γ/2 and Γ = 400ωrec inter-

acting with a one-dimensional laser field, as a test of the Monte Carlo

wave-function technique. Plotted is kB multiplied by the steady-state

temperature, in units of the recoil energy ~ωrec. The dots are the nu-

merical results of the Monte Carlo simulation, and the line indicates a

quadratic least-squares fit the data. The calculation yields a low-intensity

limit for the one-dimensional Doppler temperature in agreement with the

known value TD = 7
40 ~Γ/kB = 70 ~ωrec/kB. . . . . . . . . . . . . . . . . 65

3.4 Results for calculated ensemble-average energies (rms momentum squared)

for 25Mg and 87Sr, as a function of the light-shift parameter ~|δ3|s3/(2Erec).

For comparison, also shown are the calculated energies for atoms with iso-

lated transitions, Je = Jg + 1, with Jg =1, 2, 3, and 4, with detuning

δ = −5Γ. This figure is adapted from Ref. [2]. . . . . . . . . . . . . . . . 69

3.5 Semiclassical force curves illustrating the effect of increasing degeneracy

on the laser cooling of idealized atoms with isolated cooling transition

and no overlap of hyperfine manifold. As the internal atomic degeneracy

is increased and all other parameters held fixed, the appearance of a

sub-Doppler force grows. See text for details. . . . . . . . . . . . . . . . 70

3.6 Three-dimensional renderings illustrating the time evolution of an atomic

cloud in momentum space, based on the numerical simulations of cooling

87Sr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



xiv

4.1 Left side: Atomic configuration for generic three-level Ξ system. Right

side: The dressed eigenenergies for the 1S0-1P1-1S0 Ξ system in 24Mg

with s1(δ1) = 0.001 and s2(δ2) = 1. Real (top) and imaginary (bottom)

parts of the eigenvalues of Eq. (4.3), with dressed atomic states labeled.

The real parts are the energies and the imaginary parts are the effective

linewidths of the dressed atomic system. Both are plotted as functions

of δ2, with fixed δ1 = 0. This figure is adapted from Ref. [3]. . . . . . . . 77

4.2 Steady-state temperatures for bichromatic three-level laser cooling, as a

function of both detunings δ1 and δ2, with both atomic transitions per-

turbatively probed, s1 ¿ 1 and s2 ¿ 1. The bare two-photon resonance

is indicated with a dashed line. . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Steady-state temperatures for bichromatic three-level laser cooling, as a

function of both detunings δ1 and δ2, with the lower atomic transition

perturbatively probed, s1 ¿ 1, for both plots, and the upper atomic

transition dressed to varying degrees in the two plots, with s2 = 1 in the

upper plot and s2 = 5 in the lower plot. The bare two-photon resonance

is indicated with a dashed line. This figure is adapted from Ref. [3]. . . 82

4.4 Upper plot: Comparison of the true absorption spectrum of the dressed

three-level Ξ system (solid line) with a simplistic absorption spectrum

with Lorentzian lineshapes (dotted line). Optimum laser-cooling detun-

ing is indicated with arrows for each type of spectrum. Lower plot: Com-

parison of the numerical three-level-cooling temperature results (data

points) with the ratio of the maximum slope of a Lorentzian lineshape

with width Γ1 to the slope of the asymmetric lineshape, as a function of

δ1 with δ2 = −Γ1/2 (solid line). This ratio provides an indication of the

expected cooling for the dressed system relative to the Doppler limit for

the lower transition. This figure is adapted from Ref. [3]. . . . . . . . . 85



xv

5.1 Time evolution of the momentum probability distribution for an ensemble

of particles undergoing cavity laser cooling. Time is indicated, measured

in units of the inverse recoil frequency ω−1
r . . . . . . . . . . . . . . . . . 99

5.2 Time evolution of the average kinetic energy of an ensemble of particles

undergoing cavity laser cooling. Energy is given in units of the recoil

energy ~ωr and time is measured in units of the inverse recoil frequency

ω−1
r . The black line was obtained using the fully quantum model while

the red line was obtained using the semiclassical model. . . . . . . . . . 100

5.3 Time evolution of the cavity-mode population. The black line was ob-

tained using the fully quantum model, calculating the quantum-mechanical

average of the cavity photon number operator n = a†a. The red line was

obtained using the semiclassical model, calculating the average of the

square of the cavity-mode amplitude α2. Time is measured in units of

the inverse recoil frequency ω−1
r . . . . . . . . . . . . . . . . . . . . . . . 102

B.1 The partitioning of the density operator for an atom with multiple cou-

pled excited-state manifolds, each potentially having multiple substates. 128



Chapter 1

Introduction

The beginnings of the stochastic description of nature can be traced back to Ein-

stein’s 1905 work [4] concerning the observation of Brownian motion, in which small

particles immersed in water follow erratic, seemingly random trajectories. Einstein’s

analysis, performed concurrently and independently by Smoluchowski [5], seems quite

simple, yet it contains many of the elements of modern stochastic physics such as an

idea later called the Markov approximation and a precursor to the Fokker-Planck equa-

tion [6]. Einstein’s idea, that a physical theory could contain aspects that are random

at a fundamental level, was revolutionary at the time, going beyond the traditional de-

terministic equations with which physicists had been primarily concerned prior to that.

His equations employed diffusion physics, the nature of which could be determined by

the microscopic interaction properties of the observed particle with atoms in the liquid.

Inspired by Einstein’s theory, Langevin [7] later developed an equivalent theory which,

instead of a diffusion term, utilized the idea of a random fluctuating force. Langevin

was able to work out the basic properties of such forces, and equations of this type bear

his name today. Through the years, many physicists have built on these foundations to

describe a large spectrum of stochastic problems. The work presented in this thesis con-

tinues humbly along these lines, modeling various physical phenomena using stochastic

equations of motion and hopefully adding useful knowledge to the canon.

Quantum optics, another venerable branch of physics, explores the quantum-
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mechanical nature of the interaction of light and matter. This encompasses a diverse

and rich set of phenomena, from the nature of spontaneous emission to the scattering

of intense, coherent electromagnetic waves provided by a laser to the use of an optical

cavity to modify the properties of the photon vacuum as observed by an atom. The

field of quantum optics contains its own set of unique concepts, techniques, and tools.

Quantum opticians like to reduce the complex internal structure of an atom down to a

simple two-level system whenever possible. This system can be mapped onto a spin-1/2

system for which powerful conceptual tools like the Bloch sphere can be employed. Laser

interactions with the system can then be thought of as rotating a vector in a certain

way around the Bloch sphere. Quantum optics also often intersects with the field of

stochastic physics. Most of the work in this thesis involves light-matter interactions and

thus can be classified under the heading of quantum optics.

Contained in the example of Brownian motion are the elements of the theory

of system-reservoir interactions [8]. The particle’s erratic motion in the liquid can be

qualitatively separated into two unique influences. Over a long time scale, one type of

force acts to gradually change the course of the particle’s motion. On a much shorter

time scale, another type of force induces the sharp motions that give the trajectory

its random appearance. Treating the particle’s interaction with individual atoms in

the liquid as interaction with a reservoir, a detailed equation of motion can be written

down. Formal solutions of this equation can be manipulated by viewing progression

of time to be in discrete steps of length greater than the short time scale but shorter

than the longer time scale, a procedure known as coarse-graining. In this manner, the

effects of the frequently occurring collisions with atoms in the liquid can be wrapped

up into an average effect. Such an equation, termed a master equation, is useful be-

cause it removes the difficulty of explicitly treating the overwhelmingly large number of

microscopic processes that contribute to the particle’s overall motion.

Generally speaking, a master equation is obtained from the differential Chapman-
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Kolmogorov equation by setting the drift and diffusion terms to zero. The master equa-

tion describes evolution of the probability density with stochastic jumps that can occur

at random intervals, in addition to any deterministic evolution. In the context of quan-

tum optics, the master equation is useful for describing a system of one or more atoms,

perhaps coupled to a laser, interacting with the ever-present vacuum photon reservoir.

The system undergoes a deterministic evolution due to its own internal interactions, as

well as a stochastic evolution manifested by jumps that occur due to interactions with

the vacuum photon field. The quantum-optical master equation is useful because its

solutions yield the density operator (often called, less generally, the density matrix) for

the system at any time. The density operator can then be used to obtain average sys-

tem properties by taking its product with quantum-mechanical operators and tracing

over the system degrees of freedom. In this thesis, quantum-optical systems are almost

exclusively modeled using master equations, as in Chapters 3 through 6.

Another aspect of the utility of the quantum-optical master equation is its amenabil-

ity to stochastic Monte Carlo techniques [9, 10, 11, 12, 13, 14, 15]. The system-reservoir-

interaction portion of the master equation can be unraveled and interpreted as a sum

over an infinite number of individual trajectories for wave functions rather than den-

sity matrices. These trajectories each execute a random walk in phase space with

randomly spaced jumps occurring due to the interaction with vacuum photon states.

Besides offering an elegant fundamental interpretation of system-reservoir interactions,

this unraveling can be put to use as a simulation technique. A set of wave functions

can be independently propagated with jump processes occurring according to a numeri-

cal pseudo-random number generator. Although the exact master-equation evolution is

only obtained in the limit of an infinite number of such trajectories, a rather small num-

ber of trajectories can provide a very good approximation of the dynamics. Moreover,

the error involved in using a finite number instead of an infinite number of trajectories

is implicitly determined by the technique. For systems with a large number of degrees
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of freedom N , the propagation of wave functions of size N rather than a density matrix

of size N2 offers extensive numerical advantages, both in terms of computational speed

and storage. This actually understates the problem, since the master equation for a

density operator cannot be phrased as a linear N ×N matrix equation. Only by going

to a space of N2 × N2 can the problem be expressed in a form for which a numerical

linear matrix solver can be used. In this thesis, stochastic-trajectory techniques are

utilized in Chapters 3 and 5. This subject is formalized by the concept of Liouville

space, which is discussed in detail in Chapters 3 and 4, as well as Appendix A.

A good theoretical understanding of cooling processes is of practical use as well

as being fundamentally intriguing. Cooling is basically a means of decreasing a system’s

footprint in phase space, and as such, it makes use of many ideas in thermodynamic

theory. Ideas for cooling schemes are continually surfacing, and it can be an enlightening

exercise to test them against the rigors of the second law of thermodynamics. Once such

idea is presented here in Chapter 2. From a practical standpoint, cooling is tremendously

important in the today’s field of atomic, molecular, and optical physics. The variety of

quantum phenomena observed and employed in current experiments is made possible

primarily when the system, often a gas of atoms, is cooled to very low temperatures.

Such temperature regimes reduce the noise associated with higher temperature systems,

as in experiments involving atomic clocks and precision standards. In addition, they

can allow for quantum degeneracy to be obtained, as in the Bose-Einstein condensates

and degenerate Fermi gases common to experiments now.

Of all the various cooling methods, one particular type — laser cooling — has

been perhaps the most influential. The idea of scattering detuned laser light off an

ensemble of atoms to reduce their kinetic energy has contributed in some way to just

about every experiment involving cold atoms. A thorough understanding of the physics

of laser cooling [16, 17, 18], developed throughout the 1980’s and 1990’s, paved the way

to a Nobel Prize for its major contributors in 1997. Laser cooling comes in a variety of
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forms and complexities, and Chapters 3, 4, and 5 discuss the theoretical modeling of a

few of these.

The main themes of the work presented here are stochastic quantum mechanics

and cooling. Although a physical model that describes a cooling process often involves

some sort of stochastic element, this will not be the case in Chapter 2, in which a

cooling idea for two trapped interacting atoms is explored. This process will be modeled

using deterministic (in the sense that quantum mechanics is deterministic for the wave

function) scattering models. Thus, this chapter is connected to the others only by the

subject of cooling. At the other end of the spectrum, Chapter 6 discusses the application

of relaxation techniques to the field of nonlinear optical spectroscopy for understanding

non-Markovian scattering phenomena in recent experiments. This chapter utilizes the

stochastic physics developed earlier in the thesis, but the subject has really nothing to do

with cooling. Nevertheless, the progression of chapters is intended to offer a somewhat

continuous train of thought.

Chapter 2 presents a novel cooling technique that makes use of Feshbach reso-

nances in the scattering of two atoms. A few types of basic scattering models, using one

or more channels and different descriptions of the interaction, are first developed. After

a brief example of using these models to describe molecular photodissociation, details of

the cooling scheme are presented. The scattering models are employed to simulate the

workings of the cooling scheme, and the results yield an understanding of how effective

the scheme is. The work discussed here was published in Ref. [1].

Chapter 3 develops the master equation for an atom with complicated internal

structure interacting with a three-dimensional polarization-gradient laser field. Details

of the derivation of the relaxation operator for this system are relegated to Appendix B,

and a thorough derivation of the semiclassical optical Bloch equations for the system are

presented in Appendix C. The method of stochastic trajectories is presented, and then

applied to the system at hand. This yields numerical results for the cooling dynamics



6

of the fermionic alkaline-earth atoms 25Mg and 87Sr. These results are compared to the

cooling behavior of atoms with simpler internal structure. The work presented here has

been published in Ref. [2].

The laser cooling of three-level systems using two lasers is presented in Chap-

ter 4. The equations of motion are derived in one dimension for this system, and a

sparse-matrix method is used to obtain direct and exact solutions, bypassing the use

Monte Carlo techniques for this problem. A rich variety of phenomena is observed, the

interpretation of which leads to an understanding of the cooling technique in terms of

electromagnetically induced transparency. The dynamical effects of scattering light off

atoms with asymmetric Fano lineshapes is discussed, and it is shown that such scat-

tering can lead to lower temperatures than would be expected using a more simplistic

analysis with Lorentzian lineshapes. The work presented here has been submitted for

publication and a preprint version can be found in Ref. [3].

The master-equation models from the previous chapters are extended to include

an optical cavity in Chapter 5, with the goal of calculating cavity-cooling dynamics for

molecules. The full master equation is then manipulated to yield a master equation

for just the molecule system, coupled to a Langevin equation for the cavity mode. The

cavity mode operator is then approximated as a classical field, which will be valid in the

limit of large photon numbers in the cavity. The set of coupled equations is then solved

to illustrate the effects of cooling on the population distribution, and the validity of the

semiclassical approximation is tested.

Lastly, Chapter 6 illustrates a possible idea for modeling non-Markovian dynamics

in the interparticle scattering of an atomic gas. A relaxation-type theory of atomic

collisions, originally applied to understanding static pressure broadening in gases, is

extended for use the framework of nonlinear optical spectroscopy. The use of relaxation

theory should provide detailed and accurate scattering information and may lead to

a new method for modeling the cutting-edge transient four-wave mixing experiments
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being performed today.



Chapter 2

Feshbach-Resonance Cooling

2.1 Introduction

The achievement in 1995 [19, 20] of quantum degeneracy in an atomic gas, known

as Bose-Einstein condensation (BEC) for bosonic constituents, was the result of years

of development of various cooling techniques. In the end, this feat required not a

single cooling method, but a series of methods, each particularly suited to traversing

a certain temperature range of the gas. In the first condensate, a relatively hot gas

of rubidium atoms was first cooled by basic Doppler laser cooling, after which more

sophisticated polarization-gradient laser-cooling schemes produced further cooling, and

finally a creative series of evaporative-cooling trajectories did the trick.

Although many well-developed cooling schemes exist and have been successful for

a variety of atoms, there is always a desire for new cooling ideas. An atom’s internal

structure might make laser cooling ineffective, or the details of the interatomic scattering

properties of an atom might not yield a favorable ratio of elastic to inelastic collisions,

something that evaporative cooling requires. The scheme presented in this chapter is in

the spirit of the search for novel cooling techniques that may potentially find success in

systems where other techniques have failed. It also tells a somewhat entertaining story

about those who attempt to defy the second law of thermodynamics.

For completeness, this chapter begins with a brief summary of the elements of

collision theory necessary to understand the following development. The next section
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develops the quantum-defect theory of two particles in a harmonic trap, which will be

used to model the Feshbach-resonance cooling scheme. This section explores the single-

channel as well as the two-channel scattering models, utilizing a zero-range-potential

to describe the interparticle interactions. In order to provide more general insight,

the following section develops a two-channel square-well-potential version of the two-

particle theory. An example of using the previously developed theories for a perturbative

treatment of molecular photodissociation is briefly illustrated. Next, the Feshbach-

resonance cooling scheme is described, the results of calculations are presented, and the

efficacy of the scheme is assessed.

Parts of this chapter are developed from research by this author which has been

published in Ref. [1], and some of the text and figures have been adapted from the work

therein.

2.2 Collision-theory basics

The purpose of this section is to provide a summary overview of the basic concepts

and results of two-particle collision theory. Once introduced, these concepts will be

useful in understanding the terminology used in developing the scattering models of

various sophistication later in the chapter. The general theory of potential scattering

theory is first presented, followed by a treatment of the so-called cold-collision regime,

in which a great deal of simplifications can be made for the low-energy collisions which

occur in the quantum-gas experiments found in many of today’s laboratories.

2.2.1 Potential scattering theory

In understanding the physics of the collision of two particles, it is equivalent and

simpler to study the problem of a single particle colliding with a potential V (r). The
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time-dependent Schrödinger equation for this situation is

[
− ~

2

2m
∇2 + V (r)

]
Ψ(r, t) = i~

∂

∂t
Ψ(r, t) (2.1)

where m is the mass of the particle, ~ is a constant related to Planck’s constant h

by ~ = h
2π , and Ψ(r, t) is the wave function representing the particle. For V (r) real

and independent of time, an assumption that is typically valid, stationary state wave

functions ψ(r) can be found which are solutions to the time-independent Schrödinger

equation, [
− ~

2

2m
∇2 + V (r)

]
ψ(r) = Eψ(r). (2.2)

Here, the particle’s energy E is defined as

E =
p2

2m
=
~2k2

2m
, (2.3)

where k is the wave vector, defined in terms of the particle’s momentum p as

k =
p
~

. (2.4)

If V (r) goes to zero faster than 1/r for large r, then outside of a certain range

Eq. (2.2) describes a free particle. In this region, the wave function ψki
for a given

initial wave number ki, can be written as the sum of an incoming plane wave and an

outgoing scattered spherical wave,

ψki
(r) ∼

r→∞ A

[
eiki·r + f(k, θ, φ)

eikr

r

]
. (2.5)

where f(k, θ, φ), called the scattering amplitude and which is a function of the incoming

wave vector k and the spherical coordinates θ and φ, describes the amplitude of the

outgoing wave as a function of the direction and momentum of the incoming wave. It

can be shown that the differential cross-section is related to the scattering amplitude

by the expression
dσ

dΩ
= |f(k, θ, φ)|2 , (2.6)
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with the total cross-section then given by integrating the differential cross section over

all solid angles,

σtot =
∫

dσ

dΩ
dΩ =

∫
|f(k, θ, φ)|2 dΩ. (2.7)

If V (r) is spherically symmetric,

V (r) → V (r), (2.8)

then ψki
can be expanded in a series of products of Legendre polynomials and radial

functions,

ψki
(k, r, θ) =

∞∑

l=0

Rl(k, r)Pl(cos θ), (2.9)

where Rl(k, r) is a radial function, independent of angle, and Pl(cos θ) is the lth Legendre

polynomial. This series is referred to as a partial wave expansion, with each term of

the expansion representing an individual partial wave, parameterized by a single value

of angular momentum l. It will be useful to redefine the radial functions as

ul(k, r) ≡ rRl(k, r). (2.10)

Then the separated Schrödinger equation for the ul radial functions, which is called the

radial equation, is [
d2

dr2
− l(l + 1)

r2
− U(r) + k2

]
ul(k, r) = 0, (2.11)

where

U(r) =
2µ

~2
V (r) (2.12)

is the rescaled interaction potential. The asymptotic solutions to the radial equation

are

ul(k, r) ∼
r→∞

Al(k)
k

sin [kr − lπ/2 + δl(k)], (2.13)

where Al and δl are constants (with respect to r), and δl is referred to as the phase shift

for the lth partial wave. In the partial-wave formalism, various scattering properties
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can be expressed as sums of partial-wave contributions. For example, the scattering

amplitude is

f(k, θ) =
1

2ik

∞∑

l=0

(2l + 1)
{

e2iδl(k) − 1
}

Pl(cos θ), (2.14)

and the total cross-section is equal to the sum of all partial wave cross-sections,

σtotal(k) =
∞∑

l=0

σl(k), (2.15)

where the partial wave cross-sections are

σl(k) =
4π

k2
(2l + 1) sin2 δl(k). (2.16)

2.2.2 Cold collisions

In the radial equation for ul(k, r), Eq. (2.11), the l-dependent term can be added

to the bare potential U(r) and the two treated as an effective potential,

Ueff(r) = U(r) +
l(l + 1)

r2
. (2.17)

The second term, called the centrifugal barrier, will cause the effective potential to

increase with increasing values of l. For small collision energies, this centrifugal barrier

will become insurmountable for partial waves beyond a certain value of l. For collisions

of low enough energy, only the l = 0 partial waves will contribute to the scattering; the

others will be prevented from colliding. Collisions occurring in this low energy range

are termed cold collisions. Since only s-wave (l = 0) collisions occur in this regime,

the number of partial waves that need to be considered is reduced, and many of the

scattering properties simplify. This reduction of the partial-wave series given in Eq. (2.9)

to include only the first term is very useful as it can allow scattering properties to often

be determined analytically when working in the cold-collisions regime.

If a quantity called the scattering length is defined as the low energy limit of the

tangent of the phase shift for an s-wave collision,

a = − lim
k→0

tan δ0(k)
k

, (2.18)
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then the scattering properties reduce to simple expressions involving a. In particular,

the scattering amplitude becomes

f →
k→0

−a, (2.19)

the differential cross section becomes

dσ

dΩ
→

k→0
a2, (2.20)

and the total cross section reduces to

σtot →
k→0

4πa2. (2.21)

A positive scattering length indicates that the interactions between the particles are re-

pulsive, while a negative scattering length indicates that the interactions are attractive.

2.2.3 Feshbach resonances

Feshbach resonances have had an enormous impact on the study of cold quantum

gases in recent years, as have been extensively utilized experimentally to control the

interaction strength between atoms in these gases [?, 21, 22, 23, 24]. Controlled by

adjusting the magnetic field applied to the gas, Feshbach resonances amount to a knob

by which experimentalists can tune the interparticle interactions. Such control, when

applied to, for example, optical lattices containing one or more atoms at each site, can

allow unprecedented insight into the physics of condensed matter systems.

A Feshbach resonance [25, 26, 27], as opposed to a shape resonance, is fundamen-

tally a multichannel phenomenon, as it occurs for two atoms when their collision energy

becomes degenerate with a bound state in a closed collision channel, producing brief

transitions into and out of this state. It is primarily in order to describe such a resonance

that motivates the use of various multichannel models in the following sections.
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2.3 Zero-range-potential model for two particles in a harmonic trap

To describe the dynamics of the Feshbach-resonance cooling scheme, it is neces-

sary to utilize a quantum-mechanical model for two particles interacting in a harmonic

trap. Drawing from the basic collision theory presented in the preceding section, a

theory with both a single channel as well as a two-channel theory will be presented.

The single-channel theory is simpler, and provides a good starting point, while the in-

troduction of a second channel allows for a more accurate description of the scattering

by allowing inelastic phenomena to take place. Many papers have addressed the issue

of the applicability of the single-channel model for various types of resonances, from

narrow to broad. Such details are beyond the scope of the present discussion, and a

two-channel theory will be the primary tool utilized to model the Feshbach-resonance

cooling scheme.

Although a variety of methods can be used to solve the zero-range-potential prob-

lem in a harmonic trap, this section will utilize a quantum-defect-theory approach.

2.3.1 One channel

In the past, a single-channel quantum-defect-theory model of two interacting

trapped particles has been successfully used to describe the coherent atom-molecule

quantum beats produced in an atomic gas with a Feshbach resonance, which has been

subjected to magnetic-field ramps [28]. The development of this model is outlined here

to provide a basis for understanding the subsequent development of a two-channel the-

ory.

The interaction between the two harmonically trapped particles is described by

an energy-independent regularized zero-range potential [28, 29, 30],

V (r) =
4π~2a

m
δ(3)(r)

∂

∂r
r, (2.22)

where r is the (vector) interparticle coordinate and a is the two-particle scattering
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length. The Hamiltonian for the system is separable into center-of-mass and relative

(interparticle) parts. This is due to the fact that the interaction potential given above

depends only on the relative coordinate, while the free-space kinetic energy operator for

a pair of particles can always be written as the sum of a relative and a center-of-mass

term. The center-of-mass degree of freedom exhibits a trivial simple-harmonic-oscillator

spectrum, so only the relative motion is considered in the following. Also, since the

zero-range interaction in Eq. (2.22 affects only s-wave interactions, the equation can

be restricted to consider only l = 0. Defining the reduced mass, µ = m/2, the time-

independent Schrödinger equation for the relative-coordinate wave function ψ(r) of two

atoms interacting in a harmonic-oscillator trap is given by
(
− ~

2

2µ

d2

dr2
+ V (r) +

1
2
µω2r2

)
ψ(r) = Eψ(r). (2.23)

Defining the dimensionless units of length x = r/Losc, where Losc =
√
~/(ωm/2) is the

reduced-mass oscillator length, and of energy ε = E/~ω, rescaling the s-wave eigenfunc-

tion as

ψε,l=0 =
u(x)

x

1√
4π

, (2.24)

and noting that Eq. (2.22) is nonzero only at the origin, Eq. (2.23) becomes
(
−1

2
d2

dx2
+

1
2
x2

)
u(x) = εu(x), (2.25)

with the zero-range potential interaction imposing the boundary condition on u(x) at

the origin of
u′(0)
u(0)

= −Losc

a
. (2.26)

The solutions to Eq. (2.25), regular and irregular at the origin, can then be

found and cast in terms of the effective quantum number ν = ε/2− 3/4. Applying the

techniques of quantum defect theory, the quantization condition for the scaled energy ε

in terms of the quantum defect β is obtained,

ε = 2(n− β) +
3
2
, (2.27)
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where n = 0, 1, 2, 3, . . . . Enforcing the boundary condition on the logarithmic derivative

of u(x) at the origin, given in Eq. (2.26), yields the quantum-defect equation

tanπβ = − a

Losc

2Γ
(

ε
2 + 3

4

)

Γ
(

ε
2 + 1

4

) . (2.28)

Equation (2.28) along with Eq. (2.27) can be solved self consistently to obtain the

energy eigenvalues ε for a specified scattering length a. The eigenenergies ε obtained

are illustrated in Fig. 2.1 as a function of the scattering length in oscillator units a/Losc.

Note that the energy levels undergo a shift as the inverse of the scattering length goes

through zero, or equivalently, the scattering length goes through infinity. This effect is

due to the introduction of a new bound state, and the characteristics of these level shifts

will provide the basic motivation for the Feshbach resonance cooling scheme presented

later in this chapter.

Note that a somewhat different approach to solving this problem is given in

Ref. [29], yielding the transcendental equation

2Γ
(−ε

2 + 3
4

)

Γ
(−ε

2 + 1
4

) =
Losc

a
, (2.29)

which can be shown to be equivalent to the system of equations specified by Eq. (2.27)

and Eq. (2.28).

2.3.2 Two channels

In order to later model the effects of the magnetic field ramps for the Feshbach-

resonance cooling scheme, a two-channel Feshbach resonance model is now developed,

based on the single-channel model described in Ref. [28]. Both of these models describe

a two-atom Feshbach resonance for a harmonic trap, and utilize a zero-range potential

to describe the interaction between the two atoms. The two-channel model has the

advantage of allowing for a field-dependent resonance state. In the two-channel problem,

the s-wave radial solutions for the relative coordinate r of the atom pair satisfy the
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Figure 2.1: Eigenspectrum in oscillator units ~ω for two particles in a harmonic trap, as
a function of the two-particle scattering length a in units of the reduced-mass oscillator
length Losc.
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matrix equation

Hψ(r) = Eψ(r), (2.30)

where the Hamiltonian matrix H is defined as

H = − ~
2

2µ
1

d2

dr2
+ V (r) + Eth, (2.31)

and ψ(r) is a two-component wave-function vector with components ψi(r) corresponding

to the ith channel. In Eq. (2.30), the first term on the right hand side is the two-channel

kinetic energy operator, where 1 is the identity matrix. The matrix V represents the

two-particle interactions, with diagonal elements describing single-channel scattering

and the off-diagonal elements describing channel coupling. The matrix Eth is a diagonal

matrix that describes the bare (zero interaction) splitting of the thresholds of the two

channels. As such, it will be a diagonal matrix, and in most cases the zero of energy

will be chosen so that only one element is nonzero. Here it will be written as

Eth =




0 0

0 ∆ε


 , (2.32)

where ∆ε is the energy shift of the second channel from the first channel.

Along the lines of the single-channel model developed above, the interactions

within each channel will be described by independent zero-range potentials, and a para-

metric channel coupling will be introduced. Using the same scaled length and energy

parameters from the single channel model, this results in decoupled time-independent

Schrödinger equations for the two channels,

(
−1

2
d2

dx2
+

1
2
x2

)
u1(x) = εu1(x) (2.33)

(
−1

2
d2

dx2
+

1
2
x2

)
u2(x) = (ε−∆ε) u2(x), (2.34)

where ui for i = 1, 2 is the wave function for the ith channel, scaled as in Eq. (2.24).

The zero-range potential imposes a boundary condition at the origin, which is written
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here as

d

dx




u1(x)

u2(x)




x=0

=



− 1

a1
ζ

ζ − 1
a2







u1(x)

u2(x)




x=0

. (2.35)

Equation (2.35) contains the in-channel scattering physics in the diagonal terms, with

ai being the single-channel scattering length for the ith channel, and with the channel

coupling represented in the off-diagonal elements by the parameter ζ.

Again applying a quantum-defect-theory treatment, along the lines of Ref. [28]

for a single-channel model, a transcendental equation is obtained [31],
(

2Γ
(− ε

2 + 3
4

)

Γ
(− ε

2 + 1
4

) − 1
a1

)(
2Γ

(− ε−∆ε
2 + 3

4

)

Γ
(− ε−∆ε

2 + 1
4

) − 1
a2

)
− ζ2 = 0, (2.36)

the solutions of which, for specified values of a1, a2, ζ, and ∆ε, are the eigenenergies of

the interacting system.

The aggregate scattering length for the full two-channel problem predicted by

this model, in the low-collision-energy limit when ω → 0, is

a(E,B) =

(
1
a1

+
|ζ|2√

2µ∆ε(B)/~2 − 2µE/~2 − 1/a2

)−1

. (2.37)

This expression can be compared to the known scattering length, determined from

either experiment or more detailed scattering calculations, to determine the values of

the parameters a1, a2, and ζ. The parameters also affect the magnetic-field dependence

of the adiabatic energy states for the interacting system, and can also be fitted to.

Although it is often found that a given set of parameters will not provide accurate

scattering predictions over all regimes, they can be chosen to suitably describe the

scattering over a certain range of interest.

2.4 Square-well-potential model for two particles in free space

In this section, the theory will be generalized to describe interactions between

the two particles described by square-well potentials, which, although not usually as
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analytically appealing as zero-range potentials, can provide a better description of short-

range interaction physics when such a thing is important. The theory presented here is

based on a model developed by Chris Greene [32].

The two-channel Hamiltonian will be written as Eq. (2.31) in the previous section,

with the constant potential in the inner region given by

V (r) =



−V1 V12

V12 −V2


 θ(r0 − r), (2.38)

and the upper threshold specified by

Eth =




0 0

0 Eth
2


 . (2.39)

The solution matrix, given by u(r), obeys u(0) = 0.

Define the matrix

W =
(
−2m

~2

) (
V (r) + Eth − ε1

)
=

(
2m

~2

)



ε + V1 −V12

−V12 ε−Eth
2 + V2


 . (2.40)

The eigenvector and eigenvalue matrices corresponding to W are X and w2, respectively:

WX = Xw2. Two uncoupled single-channel equations for y(r) = XT u(r) are then

obtained. The regular solutions at the origin that satisfy these uncoupled equations are

simply

y(r) =




sinw1r 0

0 sinw2r


 . (2.41)

2.5 Digression: application to molecular dissociation

As an example of the utility of the theory developed earlier in this chapter, this

section applies two-channel scattering models to the problem of molecular dissociation

induced by an oscillating magnetic field of perturbative amplitude. For the present

purpose, only processes in free-space will be considered, and the scattering equations

will be used neglecting the harmonic-oscillator trapping potential.
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2.5.1 Zero-range potential

The model consists of two scattering channels, each with a zero-range potential at

the origin. The radial wave function satisfies the following free-space coupled equations,

− ~
2

2m

d2

dx2
u1 = Eu1, (2.42)

− ~
2

2m

d2

dx2
u2 = (E −∆ε(B))u2, (2.43)

where E is the two-channel energy, ∆ε(B) is the channel energy separation and is a

function of the magnetic field, and u1 and u2 are the lower and upper channel radial

wave functions, respectively. The effects of the true potentials in the channels are

enforced by a boundary condition at the origin that fixes the log derivative of the radial

wave function at that point. With the exception of the origin, the wave functions

everywhere satisfy the free-particle Schrödinger equations given above. The boundary

condition at the origin is given in Eq. (2.35).

Molecular dissociation consists of transitions from states below the lower-channel

threshold (both channels closed) to states in which one or both of the channels are open.

Thus, it is necessary to consider two separate cases: (a) the lower channel open and the

upper channel closed, and (b) both channels closed. Dissociation processes consist of

transitions from the bound case (b) to the continuum case (a). The two cases will be

considered individually.

(a) For ∆ε > E > 0 (lower channel open, upper channel closed), the energy-

normalized solutions are



u1a(x)

u2a(x)


 =

√
2m

πk1a~2




sin(k1ax + δ)

Dae
−κ2ax


 , (2.44)

where Da is a constant. From the differential equations,

Ea =
~2k2

1a

2m
= ∆ε− ~

2κ2
2a

2m
. (2.45)
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The boundary condition at the origin gives



k1a cos δ

−κ2aDa


 =



−1/a1 ζ

ζ∗ −1/a2







sin δ

Da


 , (2.46)

or 

−1/a1 − k1a

tan δ ζ

ζ∗ −1/a2 + κ2a







sin δ

Da


 = 0. (2.47)

This equation has a non-trivial solution if
∣∣∣∣∣∣∣

−1/a1 − k1a
tan δ ζ

ζ∗ −1/a2 + κ2a

∣∣∣∣∣∣∣
= 0. (2.48)

Using the solution to this equation, and defining the energy-dependent scattering length

to be a(Ea) = − tan δ(k1a)/k1a,

1
a(Ea)

=
1
a1

+
|ζ|2√

2m
~2 (∆ε−Ea)− 1/a2

. (2.49)

Going back to Eq. (2.47) closed-channel amplitude is determined to be

Da = −sin δ

ζ

(
1
a1

+
k1a

tan δ

)

=
sin δ

ζ

(
1

a(Ea)
− 1

a1

)
.

(2.50)

(b) For E −∆ε < 0 (both channels closed), the solutions are



u1b(x)

u2b(x)


 =

√
2m

πκ1b~2




e−κ1bx

Dbe
−κ2bx


 . (2.51)

From the differential equations,

Eb = −~
2κ2

1b

2m
= ∆ε− ~

2κ2
2b

2m
. (2.52)

The boundary condition at the origin gives


−κ1b cos δ

κ2bDb


 =



−1/a1 ζ

ζ∗ −1/a2







1

Db


 , (2.53)
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or 

−1/a1 + κ1b ζ

ζ∗ −1/a2 + κ2b







1

Db


 = 0. (2.54)

This equation has a non-trivial solution if
∣∣∣∣∣∣∣

−1/a1 + κ1b ζ

ζ∗ −1/a2 + κ2b

∣∣∣∣∣∣∣
= 0. (2.55)

Using Eq. (2.54), the upper-channel amplitude is found to be

Db =
1
ζ

(
κ1b − 1

a1

)
, (2.56)

or equivalently,

Db =
ζ∗

κ2b − 1/a2
. (2.57)

2.5.1.1 Dissociation rate

At this point, time-dependent perturbation theory will be used to determine the

rate of transitions from case (b), where a true bound state exists, to case (a), where the

lower channel is open, and the states of the coupled system are all continuum.

The perturbation being applied is a magnetic field, oscillating with frequency

νpert, with amplitude Bpert, and with an envelope of length tpert, as used, for example,

in experiments at JILA [33]. This type of oscillating field pulse is shown in Fig. 2.2.

This oscillation can be represented by

B(t) = Bini + Bpert sin
(

π
t

tpert

)
sin (2πνpertt) , (2.58)

where Bini is the magnetic field at which the pulse is centered, and Bpert is the amplitude

of the oscillations.

The first-order transition amplitude in time-dependent perturbation theory is

c(1)
n (t) =

−i

~

∫ t

t0

dt′eiωnit
′
Vni(t′), (2.59)
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Figure 2.2: An example of the type of magnetic field pulse used in molecular-dissociation
experiments. This pulsed magnetic field is used here as a perturbation in a in a two-
channel model of dissociation. The amplitude of the pulse is Bini, the width of the
envelope is tpert, and the frequency of oscillation is νpert. In this plot, νpert = 10/tpert.
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where Vni is the transition matrix element between the state |i〉 and the state |n〉. The

perturbation that considered here is of the form

V (t) =




0 0

0 ∆ε(B(t))−∆ε(Bini)


 ,

=




0 0

0 µ (B(t)−Bini)


 ,

(2.60)

where µ is the slope of ∆ε with respect to B.

The transition matrix element for each of the two cases will now be considered.

2.5.1.2 Bound-bound transitions

Transitions that occur between case (b) and case (b) are bound-bound transitions.

The transition matrix element is

(
u1b(x) u2b(x)

)
V (t)




u1b′(x)

u2b′(x)


 = u2b(x)Bpert sin

(
π

t

tpert

)
sin (2πνpertt) u2b′(x).

(2.61)

The transition amplitude is then given by

c
(1)
EE′(t) =

2mµBpert

π
√

κ1bκ1b′~2
DbDb′

∫ ∞

0
dxe−(κ2b+κ2b′ )x

×
∫ t

t0

dt′ei(E−E′)t/~ sin
(

π
t

tpert

)
sin (2πνpertt)

=
2mµBpert

π
√

κ1bκ1b′~2

ζ∗2

(κ2b − 1/a2) (κ2b′ − 1/a2)
1

κ2b + κ2b′
f(E −E′, νpert, t),

(2.62)

where

f(E − E′, νpert, t) =
∫ t

t0

dt′ei(E−E′)t/~ sin
(

π
t

tpert

)
sin (2πνpertt) . (2.63)
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The bound-bound transition rate is then

REE′(t) =
∣∣∣c(1)

EE′(t)
∣∣∣
2

=
(

2mµBpert

π~2

)2 1
κ1bκ1b′

(
1

κ2b + κ2b′

)2 ( |ζ|2
(κ2b − 1/a2) (κ2b′ − 1/a2)

)2

× f2(E − E′, νpert, t)

=
(

µBpert

π

)2 1√
EE′

(
1√

∆ε−E +
√

∆ε− E′

)2

×


 |ζ|2(√

2m
~2 (∆ε−E)− 1/a2

)(√
2m
~2 (∆ε−E′)− 1/a2

)




2

× f2(E − E′, νpert, t).

(2.64)

2.5.1.3 Bound-free transitions

Transitions that occur between case (b) and case (a) are bound-free transitions.

The transition matrix element is

(
u1a(x) u2a(x)

)
V (t)




u1b(x)

u2b(x)


 = u2a(x)Bpert sin

(
π

t

tpert

)
sin (2πνpertt) u2b(x).

(2.65)

The transition amplitude is then given by

c
(1)
ba (t) =

2mµBpert

π
√

k1aκ1b~2
DaDb

∫ ∞

0
dxe−(κ2a+κ2b)x

×
∫ t

t0

dt′ei(Ea−Eb)t/~ sin
(

π
t

tpert

)
sin (2πνpertt)

=
2mµBpert

π
√

k1aκ1b~2

ζ∗ sin δ

ζ

(
1

a(Ea)
− 1

a1

)
1

κ2b − 1/a2

1
κ2a + κ2b

f(Eb −Ea, νpert, t).

(2.66)
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The transition rate is then calculated to be

Rba(t) =
∣∣∣c(1)

ba (t)
∣∣∣
2

=
(

2mµBpert

π
√

k1aκ1b~2

)2

sin2 δ

(
1

a(Ea)
− 1

a1

)2 (
1

κ2b − 1/a2

)2 (
1

κ2a + κ2b

)2

× f2(Eb −Ea, νpert, t)

=
(

2mµBpert

π~2

)2 sin2 δ

k1aκ1b

(
1

κ2a + κ2b

)2

 |ζ|2√

2m
~2 (∆ε− Ea)− 1/a2




2 (
1

κ2b − 1/a2

)2

× f2(Eb −Ea, νpert, t)

=
(

µBpert

π

)2 sin2 δ√−EaEb

(
1√

∆ε−Ea +
√

∆ε−Eb

)2

×

 |ζ|√

2m
~2 (∆ε−Ea)− 1/a2




2 
 |ζ|√

2m
~2 (∆ε− Eb)− 1/a2




2

× f2(Eb −Ea, νpert, t).

(2.67)

In the above equation, the expression for the energy-dependent scattering length given

in Eq. (2.49) has been inserted. From Eq. (2.48),

tan δ =
k1a

|ζ|2
κ2a−1/a2

− 1/a1

, (2.68)

so, using the fact that sin2 (arctanx) = x2

1+x2 ,

sin2 δ =
k2

1a( |ζ|2
κ2a−1/a2

− 1/a1

)2
+ k2

1a

. (2.69)

For t > tpert, the function f2 will be a sharply peaked function of νpert centered

on the transition energy.

At this point, it would also be possible to calculate the dissociation properties

taking into account interference between the two possible pathways of bound-bound-free

indirect and bound-free direct dissociation. This would yield behavior characterized by

Fano lineshapes [34], originally developed in the context of autoionization theory.
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2.5.2 Square-well potential

Since both channels are closed, the solutions for r > r0 must decay exponentially,

~ψphys(r) =




N1e
−q1r

N2e
−q2r


 . (2.70)

Smoothly matching the solution and its derivative at r0 requires

~ψphys(r0) = Xy(r0)~z, (2.71)

~ψ′phys(r0) = Xy′(r0)~z, (2.72)

or

Xy(r0)~z = D(r0)~s, (2.73)

Xy′(r0)~z = D′(r0)~s, (2.74)

with

D(r) =




e−q1r 0

0 e−q2r


 , (2.75)

and

~s =




N1

N2


 . (2.76)

Eliminating z and defining the R-matrix gives

(
RD(r0)−D′(r0)

)
~s = 0, (2.77)

which has a non-trivial solution when

det
(
RD(r0)−D′(r0)

)
= 0, (2.78)

or ∣∣∣∣∣∣∣

(R11 − q1) e−q1r0 R12e
−q2r0

R21e
−q1r0 (R22 − q2) e−q2r0

∣∣∣∣∣∣∣
= 0. (2.79)
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Energy

Rate

Figure 2.3: An example of a typical molecular photodissociation spectrum obtained
using the two-channel square-well model. Plotted is the photodissociation rate as a
function of energy, both in arbitrary units.

This gives the quantization condition

e−(q1+q2)r0 [(R11 − q1) (R22 − q2)−R12R21] = 0. (2.80)

The normalization condition requires

1 =
∫ r0

0
dr

(
sinw1r B† sinw2r

)
XT X




sinw1r

B sinw2r


 +

∫ ∞

r0

dr
∣∣∣~ψphys(r)

∣∣∣
2

=
∫ r0

0
dr sin2 w1r + |B|2

∫ r0

0
dr sin2 w2r + |N1|2

∫ ∞

r0

dre−2q1r + |N2|2
∫ ∞

r0

dre−2q2r.

(2.81)

Square-well calculations of the dissociation rate utilizing this model and to find

bound-bound and bound-free transition rates using Mathematica yield spectra of the

form shown in Fig. 2.3. The shape of this spectrum agrees with the predictions of more

sophisticated scattering models, and comparison with such models or with experimen-

tally obtained spectra can be used to determine the correct model parameters.
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2.6 The cooling scheme

In this section, the workings of the Feshbach-resonance cooling scheme are pre-

sented. This scheme makes use of the unique characteristics of a Feshbach resonance

to reduce the energy of pairs of externally confined atoms. It will be shown how this

method can be used to cool pairs of atoms taken from a thermal distribution. The

basis of the cooling scheme originates from observing, as shown in Fig. 2.1 that the

quantum-mechanical energy levels of two atoms in a harmonic trap shift by an energy

of approximately two trap quanta as the scattering length is adjusted through the res-

onance. If the scattering length is a function of some control parameter, then as the

control parameter is swept in one direction across the resonance, it will induce this

energy shift. Throughout this section, the particular control parameter considered will

be the magnetic field B, which here is used to manipulate the atom-atom scattering

length a in the vicinity of a pole. However, it is important to note that, in other con-

texts, the shift of the energy levels could be induced by varying the detuning of an

off-resonant dressing laser, or by varying an electric field strength. The cooling scheme

that is presented here in terms of the control parameter B can be extended to those

other contexts in a straightforward manner. In the following, the basic mechanism of

the Feshbach resonance cooling process is first developed. After that, the method of

simulating the cooling, utilizing the two-body scattering models developed earlier in this

chaper, will be presented. Next, the feasibility and effectiveness of the proposed cooling

scheme are then illustrated through an application to a system of two atoms in a trap,

as would be encountered in a realistic experimental setup. Finally, the possibility of

applying the scheme to atoms in optical traps or lattices will be discussed.

As mentioned earlier in this chapter, the Schrödinger equation for two identical,

interacting mass m atoms under spherical harmonic trapping potential of frequency ν

can be decoupled into two equations: one involving the three relative coordinates of
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the pair of atoms, and another involving the three center-of-mass coordinates [29, 30].

In the Schrödinger equation for the relative coordinate of two trapped atoms, a central

potential is used. It is assumed for the time being that the center-of-mass coordinate

can be neglected, which will be the case if the system is translationally cold. An applied

external magnetic field B is introduced and its effect is described in a QDT context as

a B-dependent quantum defect βEl(B). Then, the energy levels Enl(B) for the relative

motion of an atom pair are given by [30]

Enl(B) = (2n− 2βEl(B) + l + 3/2) ~ω, (2.82)

where ω = 2πν. Note that the quantum defect βEl(B) depends strongly on the relative

orbital angular momentum l of the pair but it varies only weakly as the radial oscillator

quantum number n is changed. The defect βEl(B) has only a weak dependence on the

energy when considered on the scale of an oscillator quantum. Explicitly, this can be

written as |dβEl(B)/dEnl| ¿ 1/~ω.

It will be shown later that the quantum defect for one relative partial wave l for an

atom pair (for example, the s wave, p wave, or d wave) must change by approximately

unity across the energy range kB∆T of interest, and across the accessible range of the

control parameter, ∆B. The Feshbach resonance, which causes the scattering phaseshift

to change by a value of π is the result of this unit variation of βEl(B). A simple closed-

form expression can be derived for the quantum defect βEl, as is shown in Refs. [30]

and [35]. This expression can be simplified when considering energies that are higher

than the energy of first few trap states to become

βEl(B) ≈ arctan
(

a (Enl, B) ~ω
2LoscEnl

√
e

)
, (2.83)

where a(Enl, B) is the energy- and field-dependent scattering length and Losc =
√
~/ (µω)

is the characteristic oscillator length for the system, with the reduced mass µ = m/2

defined.
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For simplicity, the present development is constrained to consider only an s-wave

resonance. However, the ideas described could be easily extended to higher partial-

wave resonances. The limiting low-energy scattering phaseshift is proportional to the

wavenumber k = (2µE/~2)1/2 for an s-wave Feshbach resonance. The E- and B-

dependent scattering length, along the lines of Section 1.3, (dropping the subscript

l for notational efficiency, and because only the s wave is being considered) is then

given by

a(En, B) = abg +
ΓE

√
~2/(8µEn)

En + (B −Bres)E′
res(B)

, (2.84)

where abg is the background scattering length. A zero-energy bound state is created

when the the magnetic field strength is equal to Bres, the resonance magnetic field . The

width ΓE in energy of the resonance is related to the width ∆ in the control parameter

βEl by the relation ΓE = 2kabgE
′
res(B)∆, where E′

res signifies the rate at which the

resonance energy Eres changes as a function of the control parameter [36]. Figure 2.4

provides a plot of the characteristic s-wave energy levels En for the relative coordinate

of two atoms in a spherical harmonic-oscillator trapping potential, as functions of the

applied magnetic field B for the particular case of a magnetic Feshbach resonance in

the scattering of 85Rb(2,−2)+85Rb(2,−2). A somewhat large and perhaps unrealis-

tic trapping frequency of ν = 1 MHz is used in this in order to accentuate the field

dependence of the energy levels for visualization purposes. The idea for using such a

setup for cooling involves ramping the magnetic field B slowly from B1 to B2 and then

quickly back to B1. A magnetic-field ramp for a more realistic situation encountered

in an experiment would likely cross more level shifts (that is, it would cover a larger

range of magnetic field). The quantum-mechanical state that undergoes an energy-level

shift for for the field value of B = B2 (which will be defined by n = Q later in this

chapter) is indicated by a dashed line. In the example illustrated in Fig. 2.4, the model

resonance parameters considered are Bres = 155.2G, E′
res = −3.5 MHz/G, ΓB = 10G,
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and abg = −380 a0, where a0 is the Bohr radius.

The particular choice of parameters affects the magnetic-field dependence of the

adiabatic energy states. These parameters can thus be adjusted to provide satisfactory

agreement with experimental data in the regions presently of interest. For example, for

85Rb, empirically determined parameters are found to be a1 = −435 a0, a2 = 1.49 a0,

and ζ = 0.00116 a−1
0 . Simulations of the field ramps can then be performed by specifying

an initial state of the system and numerically solving the Schrödinger equation.

The basic idea of cooling with a Feshbach resonance involves ramping the mag-

netic field through the region in which the energy levels shift by a value of approximately

2~ω. Figure 2.4 denotes the internal energy eigenvalues for the pair of atoms as a func-

tion of magnetic field B. If the pair of atoms is initially in an eigenstate at the field

strength of B = B1, then a sufficiently slow field ramp from B1 to B2 will decrease the

internal energy of the pair by approximately 2~ω if the energy level undergoes a shift

in that field range (see inset of Fig. 2.4). More precisely, a slow ramp here is meant

to mean an adiabatic ramp. A fast ramp from B2 back to B1 would seem, ideally, to

project the wave function of the atom pair onto an eigenstate |n(B2)〉 with the same

energy as |n(B1)〉. This type of ramp is more precisely defined as a nonadiabatic ramp.

The result of the projection is to induce a net decrease in energy of approximately 2~ω.

Once this set of field ramps is finished, additional ramps can then be performed. Ideal

cooling is described in a diagrammatic manner by arrows in the inset of the figure,

which has the same axes as the main figure. This diagram illustrates a process by which

population is transferred from point a to point b during the adiabatic (slow) field ramp

and from point b to back to point c during the nonadiabatic (fast) field ramp.

Figure 2.5 illustrates the application of diabatic vs adiabatic changes in terms of

a quantum particle in a box. For a particle initially in a one-dimensional box, the wave

function of the particle is depicted on the left side of the top and bottom of the figure.

In the upper portion of the figure, the box is rapidly expanded to a larger size. In this
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Figure 2.4: Eigenenergies of an interacting two-atom system in a harmonic trap near a
Feshbach resonance, as a function of the magnetic field. The shift in the energies as the
resonance is traversed can be seen, as well as the energy dependence of the location of
the shift in magnetic field. The inset illustrates an ideal series of population transfers
induced by magnetic field ramps for the Feshbach-resonance cooling scheme. This figure
is adapted from Ref. [1].
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case, assuming that the change in box size is fast enough to be in the diabatic limit,

the initial wave function will project onto the eigenstates of the new system, and the

wave function will be unchanged. In the bottom portion of the figure, the box is slowly

expanded to a larger size. If this change is slow enough to be in the adiabatic limit, the

wave function will slowly track the corresponding eigenfunction of the box, resulting in

the displayed wave function. This difference of projection for fast changes and adiabatic

following for slow ramps is an important concept for understanding Feshbach-resonance

cooling.

The dynamics of the cooling scheme can be modeled by specifying an initial state

of the system and then integrating the time-dependent Schrödinger equation,

i~
∂

∂t
|ψ(B, t)〉 = H(B) |ψ(B, t)〉 . (2.85)

The system state vector can be expanded in a set of eigenkets of the the system Hamil-

tonian for a given magnetic field,

|ψ(Bi, t)〉 =
∑
νi

a(i)
νi

(t) |νi〉 , (2.86)

where the a
(i)
νi (t) is the expansion coefficient of the |νi〉 energy eigenstate for the system

with a magnetic field of Bi, which has eigenvalue ~ωνi ,

H(Bi) |νi〉 = ~ωνi |νi〉 . (2.87)

Consider propagating the system from an initial magnetic field value of B1 at time t1

to a final value of B2 at time t2. Using the expansion in Eq. (2.86) for the value of the

initial magnetic field, Eq. (2.85) implies that

d

dt
a(1)

ν1
(t) = −iων1a

(1)
ν1

(t). (2.88)

It has already been illustrated in Fig. 2.4 how the eigenvalues ων1 change as a function

of magnetic field. This time dependence, ωνi = ωνi(t), by way of the time-varying
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Figure 2.5: Upper figure: Wave function in a box before and after rapidly (diabati-
cally) expanding the box. Lower plot: Wave function in a box before and after slowly
(adiabatically) expanding the box.
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magnetic field, yields a solution to Eq. (2.88) of

a(1)
ν1

(t2) = a(1)
ν1

(t1)e
−i
R t2

t1
dt ων1 (t). (2.89)

Putting things in terms of the eigenstates of the system for the new magnetic field B2,

a(2)
ν2

(t2) =
∑
νi

〈νf |νi〉 a(1)
ν1

(t1)e
−i
R t2

t1
dt ων1 (t), (2.90)

where the overlap matrix 〈ν2|ν1〉 is defined by

aνj =
∑
νi

〈νj |νi〉 aνi , (2.91)

and can be determined in a straightforward manner from the QDT development of two-

channel model presented in Section 2.3.2. If the system is initially diagonalized over a

range of magnetic-field values of interest for the problem at hand, these eigenenergies

can be used to perform numerical integrations in Eq. (2.90) and, supplying initial values

of the expansion coefficients and the appropriate overlap matrices, the time evolution

can be determined.

2.7 Results and experimental possibilities

Upon performing simulations of the cooling using the numerical propagation tech-

nique presented in the preceding section, the effect of the adiabatic and nonadiabatic

field ramps can be determined. Initially it is assumed that the atom pair is in a pure

quantum state at a magnetic field of B = B1. As predicted by the above qualitative

discussion, the adiabatic field ramp (B1 to B2 and shown in Fig. 2.4) decreases the

energy of the atom pair regardless of the initial eigenstate chosen. A nonadiabatic ramp

(B2 to B1 and also shown in Fig. 2.4) for a state which is initially at a field value of B2

and assuming that this initial state is not degenerate with the resonance state, causes

the system to project onto a state at B = B1 having roughly the same energy as the

initial state at B2. If, however, the pair is initially in a state that is degenerate with the
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resonance state for the field value of B = B2, the fast ramp is found to result in a strong

projection of the initial state onto the resonance state. This is to be expected since the

character of the dressed state of the interacting system having the same energy as the

bare resonance state is very similar to the character of this bare resonance state. The

projection between these two states is thus very effective. In this case, the atom pair

must gain energy due to the fact that the resonance state at B = B1 has a energy that

is larger than that of the initial state at B = B2.

It is now possible to generalize the above argument to allow an initial quantum

state that is in a mixed state. From this, it can be shown how cooling can be performed

for a more realistic ensemble of atom pairs instead of a pure state. If an atom pair is

taken from a thermal distribution of pairs, the probability of occupying a level with

relative-motion energy En is given in terms of a Boltzmann factor by e−En/τ/Z(τ) with

τ = kBT , where kB is Boltzmann’s constant, Z(τ) =
∑

i e
−Ei/τ is the partition function,

noting that the sum runs over all states of the system, and T is the temperature of the

source distribution from which the two atoms were taken. Based on the conclusions for

field ramps applied to pure states above, the application of a cooling cycle, defined as

a slow field ramp from B = B1 to B = B2, followed by a fast ramp back to B = B1,

will exhibit two different types of behavior when applied to a mixed state. The first

behavior is to decrease by approximately 2~ω the energy of the population in states

which happen to undergo a full shift in the energy level between the field strengths of

B = B1 and B = B2. The second behavior is to increase the energy of the population

that happens to be the state that is degenerate with the resonance state, in other words,

the state which is undergoing an energy shift at B = B2. This happens because the

population is moved to the state or states that are degenerate with the resonance at

B = B1. The state from which the population is heated originates will be denoted from

this point by n = Q.

Figure 2.6 illustrates the results of a numerical simulation of a single cooling cycle
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applied to a mixed, thermal distribution of s-wave states initial state of the system. The

same model Feshbach-resonance parameters were used as the example shown in Fig. 2.4.

The black line in Fig. 2.6 represents an initial s-wave relative-coordinate probability

distribution for the the atom pair in a harmonic trap, again with frequency ν = 1MHz,

and for a temperature T = 1 mK of the source. The red line denotes the same s-wave

probability distribution after the application of a slow and a fast magnetic field ramp,

for a value of the cooling parameter Q = 15. It is clear that the application of a single

cooling cycle transfers the population of the n = Q state to states with much larger

energy. In the example in the figure, this state is n ≈ 88, as is evidenced by the spike

seen in Fig. 2.6. As can also been seen, the field ramps transfer the population of each

state with n > Q, states higher in energy than the Q state, each to the state next-lowest

in energy, which has approximately 2~ω less energy than the initial state. The numerical

simulations reveal that the net result of these two types of processes is to increase the

overall average energy of the system. That is, the energy increase from the few cases

where the pair gains a large amount of energy overwhelms the total energy decrease

due to the many cases where the pair loses a small amount of energy. It turns out

though, that this behavior is not entirely unexpected, as can be seen in Ref. [37] which

discusses the general nature of cooling processes based on time-dependent Hamiltonians.

However, it is important to note that, since the atoms gaining energy can be displaced

to an arbitrarily high energy state, as determined by the values of the extremum of the

field ramp (B = B1 in Fig. 2.4), it should be possible to remove these atoms by utilizing

methods similar to those used for atom removal in evaporative cooling.

At this point, it is interesting to observe the comparison of the Feshbach-resonance

cooling scheme with the well-known evaporative cooling technique by which the most

energetic atoms in a gas are allowed to escape, resulting in a colder remaining gas.

The process described here is similar to a conceptual “fractional” evaporative cooling

experiment, whereby the parameter Q is equivalent to the evaporative-cooling cutoff
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Figure 2.6: Illustration of the effect of a single Feshbach resonance cooling cycle for an
atom pair taken from a thermal distribution with T = 1 mK and trapped with frequency
ν = 1 MHz. The black (red) line represents the population distribution before (after)
application of one slow and one fast magnetic field ramp. The state Q (here Q = 15) is
indicated. This figure is adapted from Ref. [1].
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parameter and, instead of all the population with n > Q being removed, only a fraction

of this population is skimmed off and removed from the trap. The similarity between

the two methods can be clearly seen in Fig. 2.6. The nature of the cooling scheme

are more explicitly shown in Fig. 2.7. Note, however, that cooling with a Feshbach-

resonance scheme is differentiated from evaporative cooling by the fact that it is not

fundamentally of a statistical nature. The more that is known about the atom pair’s

initial state, the more effectively the pair can be cooled. In fact, if the initial state of

the pair is known with exact precision, not pulled from a thermal reservoir (as is the

case for a pure state), it is possible to design a sequence of field-ramp that will allow the

transition of an atom pair to the ground state of the trap 100% of the time in principle.

As with evaporative cooling, the requirement of atom removal leads to consider-

ations of efficiency. An estimate of the efficiency can be made by assuming that the

population of the state Q is removed from the trap, while the population of all states

with n > Q are moved to the next-lowest state, that is, to states with n − 1. This

assumes that the range of the field ramps is such that the heated fraction (n = Q) ends

up at an energy corresponding to negligible thermal population (as in Fig. 2.6), and

that all population above a specified energy can be removed. If the level energies at

B = B1 are approximated by En(B1) ≈ 2n~ω, the probability to remove an atom pair

during a cycle is

Prem(Q, τ) =
e−2~ωQ/τ

Z(τ)
. (2.92)

The average energy decrease in a cooling cycle is due to the energy of the n ≈ Q

population removed from the trap, plus the energy loss for states n > Q:

∆E(Q, τ) = (2~ωQ + 〈ECM〉) e−2~ωQ/τ

Z(τ)
+

∞∑

n=Q+1

2~ω
e−2~ωn/τ

Z(τ)
. (2.93)

Noting that 〈ECM〉 = 3τ (since 〈Etot〉 = 3τ for a single atom in a harmonic trap), and

with
∑∞

n=Q+1 e−2~ωn/τ ≈ e−2~ωQ/ττ/2~ω, Eq. (2.93) becomes

∆E(Q, τ) =
e−2~ωQ/τ

Z(τ)
(2~ωQ + 4τ) . (2.94)
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Figure 2.7: Diagram illustrating the effect of the Feshbach-resonance cooling scheme
on an s-wave distribution of atoms. Shown is the population in arbitrary units as
a function of the relative-coordinate quantum number n. Population from the state
n = Q is increased in energy, and assumed to be removed from the trap. All population
with n > Q is decreased in energy by one relative-coordinate oscillator unit of energy.
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The energy efficiency Eeff, defined as the amount of energy removed per atom removed,

is then given by

Eeff(Q, τ) = 2~ωQ + 4τ. (2.95)

Since Q determines the efficiency of the cooling process, it is referred to as the cooling

parameter. Results from the numerical model indicate that Eq. (2.95) provides a good

estimate of the efficiency.

The time scale for one cooling cycle is determined by the speed of the adiabatic

field ramp. This speed in turn is determined by the strength of the coupling between the

resonance state and the trap states. The smaller the coupling for an avoided crossing,

the slower is the field ramp required to maintain adiabaticity. The coupling between

the resonance state and the trap states is related to the resonance width parameter ΓE ,

which can be used in a Landau-Zener estimate of the transition probability [36],

Ptr
∼= exp

(
− 2
|dB/dt|

ωΓE

|dE/dB|
)

. (2.96)

Motivated by the possibility of experimentally trapping a small, deterministic

number of atoms [38, 39], the experimental feasibility of this cooling scheme is now ex-

plored. A Feshbach-resonance cooling experiment involves a sequence of cooling cycles.

As discussed above, a single experiment could result in a heated atom pair, which in

turn would be lost from the trap. To see the effect of multiple field ramps, Eqs. (2.92)

and (2.93) can be iterated. For a variety of cooling efficiency parameters Q, Fig. 2.8

shows the probability for an atom pair to remain trapped vs. the average total kinetic

energy (the energy of both the relative and the center-of-mass degrees of freedom) of

the two atoms in oscillator units. Included in this calculation is the probability that the

atom pair is in an s-wave state to begin with, because the field ramp has no effect on

other partial waves. It is assumed that rethermalization occurs between cooling cycles,

which could be ensured by, for example, introducing a slight anharmonicity into the

trapping potential. (In the absence of anharmonicity, the relative and center-of-mass
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degrees of freedom would remain uncoupled.)

To be more specific, a crossed-beam optical dipole trap [40] can be considered,

which offers a good blend of large trap frequency (for a large s-wave fraction), isotropy,

and anharmonicity (for rethermalization between the relative and center-of-mass degrees

of freedom). Assuming the dipole trap has an average frequency of ν = 10 kHz and

contains two atoms taken from a source with temperature T = 8µK (〈Etot〉/~ω = 100),

it is seen from Fig. 2.8, solid line, that a temperature of 0.16µK (〈Etot〉/~ω = 2, both

atoms in the ground state) could be reached 10% of the time by performing less than

2000 cooling cycles. For a range in magnetic field for the ramps of ∆B ≈ 1G, and using

Eq. (2.96) with Ptr = 0.1, it can be seen that such a series of field ramps could take place

in under 1 s. A pertubative calculation accounting for the trap anharmonicity indicates

that rethermalization between the relative and center-of-mass degrees of freedom should

occur on a time scale comparable to a single ramp time for a crossed-beam dipole

trap. This will ensure that the relative s-wave distribution will rethermalize with each

ramp and that the cooling of the relative coordinate will also cool the center-of-mass

coordinate (both of which have been assumed up to this point).

Feshbach resonance cooling could also be applied to atom pairs in an optical

lattice. In this case, field ramps could be performed on the lattice ensemble of atom

pairs, with a certain percentage of sites resulting in cooled pairs, while other sites will

have either zero atoms or one (uncooled) atom. It may also be possible to prepare

the optical lattice by some other means to have a high probability of exactly double

occupancy at each lattice cite (see for example Ref. [41]). From such an initial state,

a Feshbach resonance cooling scheme could be used to efficiently cool atom pairs to

low-lying trap states.
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Figure 2.8: Probability that a pair of atoms remains trapped vs. the average total
kinetic energy of the two atoms in oscillator units (note that kBT = 〈Etot〉/6 for two
harmonically trapped atoms). Three different cooling parameters are used: 2~ωQ = 5τ
(solid line), 9τ (dashed line), and 12τ (dot-dashed line). It is assumed that rethermaliza-
tion occurs between cooling cycles (see text), although this scheme does not necessarily
require it. Inset: probability to remain trapped vs. the number of cooling cycles for the
same three cooling parameters. This figure is adapted from Ref. [1].
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2.8 Conclusion

In summary, this chapter has developed a two-body theory that describes how

the energy of an atom pair can be reduced. The resulting novel cooling scheme, which

makes use of Feshbach resonances, offers a viable new means to manipulating small,

deterministic numbers of trapped atoms [38, 39] with present-day technology. Since it

is not clear at present how efficiently other cooling methods such as evaporation can be

applied to small atom samples, this proposal may prove quite useful. Extension of this

scheme to atom clouds is possible.



Chapter 3

Dynamics of Multilevel Atoms in Three-Dimensional

Polarization-Gradient Fields

3.1 Introduction

This chapter continues the discussion of theoretical descriptions of cooling by

focusing on the technique of using lasers to cool atoms. In particular the dynamics of

atom-laser interactions is analyzed for atoms having multiple, closely spaced, excited-

state hyperfine manifolds. The atom’s motion is described in a polarization gradient

field created by a three-dimensional laser configuration. .

The system is treated first in a semiclassical approximation, in which the center-

of-mass of the atom is approximated to be a classical variable rather than a quantum-

mechanical operator. This semiclassical problem allows much easier solutions than a

fully quantum problem, and yields quantities with intuitive appeal because they are

classical in nature. For example, the friction that an atom feels while moving in the

optical field can be obtained, as well as the diffusion coefficient for the atom’s motion.

These two quantities work against each other to obtain a steady-state thermal distribu-

tion of a given temperature. In the end, such semiclassical approximations can be quite

problematic and limited, as is the case when the atomic momentum approaches the

recoil limit. Other problems can occur also: it is not unusual for semiclassical methods,

when applied naively, to yield unphysical negative temperatures.

After this, the system is treated fully quantum mechanically, including the atom’s
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center-of-mass degree of freedom. The master equation describing this system is devel-

oped, and then specialized to the low-intensity limit by adiabatically eliminating the

excited states. It is shown how this master equation can be simulated using the Monte

Carlo wave function technique, and details are provided on the implementation of this

procedure.

Monte Carlo calculations of steady state atomic momentum distributions for two

fermionic alkaline earth isotopes, 25Mg and 87Sr, interacting with a three-dimensional

lin-⊥-lin laser configuration are presented, providing estimates of experimentally achiev-

able laser-cooling temperatures.

The complex behavior that occurs when a multilevel atom interacts with polarization-

gradient fields has been of interest for some time now. Sub-Doppler cooling [42] occurs

because of elaborate optical-pumping processes produced by laser light in atoms with

sublevel structure, as seen, for example, in the lin-⊥-lin and the σ+-σ− laser configura-

tions. The semiclassical understanding of these interactions [16, 17, 43, 44, 45, 46] in one

or more dimensions has led to a reasonably good qualitative understanding of the under-

lying mechanisms. Semiclassical analysis has even in some cases provided quantitative

predictions of sub-Doppler laser cooling temperatures measured in experiments [46].

However, the most direct route to a quantitative understanding of atom-laser

interactions is via a fully quantized master equation for the atom, in which the center-

of-mass motion of the atom is taken into account quantum mechanically. This allows

behavior at low laser intensities and low atomic velocities, the regime laser cooling

strives to reach, to be described correctly. The drawback of solving such a master

equation, however, is the large number of basis states required for the calculation, due

to the additional momentum states. This problem becomes especially pronounced when

attempting to model three-dimensional systems, where the state space grows as the cube

of the number of one-dimensional momentum states needed.

The Monte Carlo wave-function (MCWF) technique, introduced in the early
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1990’s has allowed significant progress to be made on the subject of atom-photon in-

teractions in three dimensions as well as lower-dimensional calculations. The MCWF

technique is a simulation procedure for the master equation that involves propagation of

single stochastic wave functions, rather than density operators, with random processes

occurring at random intervals due to interactions with the photon field that cause spon-

taneous emission. It has been shown that this method is equivalent to the master

equation in the limit of a large number of independent stochastic wave functions [10].

The MCWF technique has been successfully utilized to calculate three-dimensional sub-

Doppler laser cooling temperatures for atoms with Zeeman degeneracy in the ground

and excited states [11].

The majority of the research done on laser cooling has involved essentially two-

level systems, consisting of a ground state and an excited state, which may or may

not contain degenerate sublevels. However, some investigations have explored atomic

systems in which multiple distinct excited states come into play. In particular, the use

of bichromatic laser fields [47, 48] to cool three-level Λ systems have been extensively

studied (see Refs. [49, 50, 51] for example).

The focus in this chapter is primarily on monochromatic laser cooling for atoms

with multiple closely spaced hyperfine excited-state manifolds. Figure 3.1 provides a

graphical illustration of this type of atomic configuration. This situation is of impor-

tance, for example, in alkaline-earth atoms with nonzero nuclear magnetic moment. If

the excited state manifolds are spaced in energy on the order or smaller than the excited

state linewidth Γ, coherences between these manifolds become nonnegligible, and can

have a significant effect on the optical pumping processes required for sub-Doppler cool-

ing and on the dynamics of the atom-photon interaction. Sub-Doppler laser cooling was

experimentally identified in fermionic 87Sr [52], despite significant spectral overlap in the

excited state. At the time, it was hypothesized that the large ground-state degeneracy

in 87Sr (due to the large nuclear spin I = 9/2) was somehow able to overcome the de-
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crease in cooling due to the spectral overlap. Other systems with spectral overlap in the

excited state are 39K [53], 7Li [54], and the fermionic isotopes of Yb [55]. In 87Rb, the

effects of excited-state spectral overlap on the effectiveness of velocity-selective coher-

ent population trapping have been explored, both experimentally and theoretically [56].

The goal in this chapter is to provide a detailed discussion of the theoretical techniques

required to model such systems realistically.

The structure of this chapter is as follows. Section 3.2 develops the master equa-

tion for a laser-driven atom with multiple excited-state manifolds. Within this section,

the a general fully quantized master equation is first derived, pulling from the detailed

derivation of the spontaneous-emission relaxation operator in Appendix B. Next, this

master equation is specialized to the low-intensity limit, which reduces the number of

internal atomic states necessary to describe the problem, and which is justified for the

low-power laser configurations which result in optimum cooling of the gas. Section 3.3

then goes on to demonstrate the semiclassical method of solving this problem, with

results provided which will aid in a qualitative understanding of the later, more quan-

titative results obtained from the Monte Carlo. Section 3.4 introduces the MCWF

technique and applies it to the low-intensity master equation. Section 3.5, full Monte

Carlo master-equation simulations are performed for 25Mg and 87Sr atoms in a three-

dimensional lin-⊥-lin laser configuration as an example of using this technique determine

expected temperatures for these atoms in a laser cooling experiment.

Parts of this chapter are developed from research by this author which has been

published in Ref. [2], and some of the text and figures have been adapted from the work

therein.

3.2 Master equation

In this section we develop the master equation describing a multilevel atom in-

teracting with a coherent laser field and coupled to a vacuum photon field. It is this
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equation, with quantized atomic center-of-mass, that will provide an accurate descrip-

tion of atom-photon dynamics, and this master equation will provide the basis for the

Monte Carlo simulations that will be discussed later.

3.2.1 General form of the master equation

The full Hamiltonian for the atom-laser system plus the radiation field is

H = HA + HR + VA−L + VA−R, (3.1)

where HA =
∑

i ~ωiPi+ P 2

2m is the bare atomic Hamiltonian, HR is the vacuum radiation

field Hamiltonian, and VA−L and VA−R are the atom-laser and atom-radiation field

coupling terms, respectively. In the atomic Hamiltonian, Pi is a projection operator

onto the i-th internal excited-state manifold, ~ωi is the energy of the i-th excited-

state manifold relative to the ground-state manifold, P is the atomic center-of-mass

momentum operator, m is the atomic mass, and the sum runs over all excited-state

manifolds. Equation (3.1) assumes that the effects of atom-laser and atom-radiation-

field coupling are independent [8].

Equation (3.1) can be viewed in terms of system-reservoir interactions. The sys-

tem consists of the atom, the laser, and their interaction. The system Hamiltonian

is

HS = HA + VA−L. (3.2)

The reservoir is the vacuum radiation field, having many more modes than the system.

With the Markov approximation, along with a few other approximations, the master

equation is then given by

σ̇ =
i

~
[σ,HS ] + Lsp[σ]. (3.3)

The operator σ is the system reduced density operator element, i.e., the reservoir degrees

of freedom have been traced over, σ = TrRρ. The remaining term, Lsp[σ], encompasses



53

the interaction between the atom and the vacuum photon field, and provides for the

phenomenon of spontaneous emission.

The relaxation operator due to spontaneous emission, which is derived in detail

in the Appendix B, is given by

Lsp[σ] =
3Γ
8π

∫
d2Ω

∑

ε⊥k

∑

i,j

e−ik·R(ε∗ ·A(i))σ(ε ·A(j)†)eik·R

− 3Γ
16π

∫
d2Ω

∑

ε⊥k

∑

i,j

[
(ε ·A(i)†)eik·Re−ik·R(ε∗ ·A(j))σ

+ σ(ε ·A(i)†)eik·Re−ik·R(ε∗ ·A(j))
]
, (3.4)

where A(i)† and A(i) are vector raising and lowering operators, respectively, between

the ground state and the ith excited state, R is the atomic center-of-mass position, k

is the direction of the photon emitted in the relaxation process, and Γ is the decay rate

of the exited states. The integral is performed over solid angle in the vector k and the

sum over ε ⊥ k refers to the two polarization directions perpendicular to k. Note that

here and throughout this chapter, it is assumed that each of the excited-state hyperfine

manifolds has the same lifetime τ = Γ−1. Expanding these vector operators in a basis

of spherical unit vectors, ε̂±1 = ∓(x̂± iŷ)/
√

2 and ε̂0 = ẑ, we have

A(i) =
∑

q=0,±1

(−1)q ε̂−qA
(i)
q . (3.5)

The spherical components of the vector operators are

A(i)
q =

∑

Mg ,Mei

αFg ,Fei ,Mg ,Mei ,Jg ,Je,I |JgIFgMg〉 〈JeIFeiMei | (3.6)

A(i)
q

†
=

∑

Mg ,Mei

αFg ,Fei ,Mg ,Mei ,Jg ,Je,I |JeIFeiMei〉 〈JgIFgMg| , (3.7)

where

αFg ,Fei ,Mg ,Mei ,Jg ,Je,I = (−1)Fg+Fei+Mg+Je+I
√

(2Fg + 1)(2Fei + 1)(2Je + 1)

×




Fg 1 Fei

−Mg Mg −Mei Mei








Jg Fg I

Fei Je 1





. (3.8)
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Eq. (3.4) is written in a way that makes explicit that it is in Lindblad form [57, 58,

59]. As will be shown later, it is important for the relaxation operator to be of this form

in order to make use of the MCWF technique. Because the complex exponentials in the

second line cancel each other, the remaining integral over solid angle can be evaluated,

whereby Eq. (3.4) can be equivalently written as [10]

Lsp[σ] =
3Γ
8π

∫
d2Ω

∑

ε⊥k

∑

i,j

e−ik·R(ε∗ ·A(i))σ(ε ·A(j)†)eik·R− Γ
2

∑

i

[Peiσ + σPei ] . (3.9)

The atom-laser interaction term, which is given in the electric-dipole approxima-

tion by

VA−L(R, t) = −D ·EL(R, t), (3.10)

where EL(R, t) is the electric field of the laser and D is the electric dipole operator. As

is typical, the laser is treated as a classical field, since it is a densely populated mode

of the electric field. The laser electric field can be written in terms of its positive and

negative frequency components, EL(R, t) = E(+)
L (R)e−iωt + c.c., and then expanded

into spherical components,

E(+)
L (R) =

E0

2

∑

q=0,±1

(−1)qaq(R)ε̂−q, (3.11)

where E0 is the electric-field amplitude and aq(R) are the expansion coefficients. Making

the rotating-wave approximation, so that

VA−L(R, t) = −D(+) ·E(+)
L (R)e−iωt −D(−) ·E(−)

L (R)eiωt, (3.12)

where D(+) =
∑

i PeiDPg and D(−) =
∑

i PgDPei , we find

VA−L = −Ω
2

∑

i

Di(R)e−iωt + H.c.. (3.13)

The previous equation introduced the atom-laser raising operator,

D†i (R) =
∑

q=0,±1

aq(R)A(i)
q

†
, (3.14)
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and lowering operator,

Di(R) =
∑

q=0,±1

a∗q(R)A(i)
q , (3.15)

and also introduced the so-called “invariant” Rabi frequency,

Ω =
E0 〈Je||D||Jg〉√

2Je + 1
, (3.16)

where 〈Je||D||Jg〉 is the reduced dipole matrix element between the ground and excited

states. This form of a Rabi frequency, defined in terms of the reduced matrix element

between the J = Jg ground state and the J = Je excited state, is convenient because,

in general, Rabi frequencies for transitions to different excited-state manifolds will not

be the same.

Next, observe that the second term in Eq. (3.9) is comprised of excited-state

projection operators both pre- and post-multiplying the system density operator. Thus,

it is clear that this term can be absorbed into the free-evolution commutator term in

Eq. (3.3), allowing the master equation to be equivalently described by Hamiltonian

evolution determined by an effective Hamiltonian Heff, plus a term which is commonly

called a jump term, and which cannot be written in the form of a commutator with the

system density operator. This results in

σ̇ = − i

~

(
Heffσ − σH†

eff

)
+

3Γ
8π

∫
d2Ω

∑

ε⊥k

∑

i,j

e−ik·R(ε∗ ·A(i))σ(ε ·A(j)†)eik·R, (3.17)

where the effective Hamiltonian Heff is given by

Heff =
P 2

2m
−

∑

i

~
(

δi + i
Γ
2

)
Pei + VA−L, (3.18)

where VA−L is as given in Eq. (3.13). In obtaining Eqs. (3.17) and (3.18), the usual

rotating-frame transformation, which removes the free-evolution atomic Bohr frequen-

cies from the problem, has been made. The more relevant frequencies are instead the

laser detunings δi = ω − ωi from the ith excited-state hyperfine manifold. The master

equation given in Eq. (3.17) is fully general, but has been written in a form that will



56

facilitate setting up a stochastic wave function simulation using the MCWF technique

described later.

3.2.2 Master equation in the low-intensity limit: adiabatic elimination

of excited states

The master equation just discussed will now be specialized to the limit of low

laser intensity. Specifically, this limit is valid when the saturation parameter for the

atom in the ith excited-state hyperfine manifold,

si =
Ω2/2

δ2
i + (Γ/2)2

, (3.19)

is small, which occurs when the laser intensity is small or the laser detuning from the

atomic transition is large. In this limit, the excited states are said to adiabatically

follow the ground states. The excited states can then be eliminated from the equations

of motion, resulting in a master equation in terms of only the ground-state sub-density-

matrix,

σgg = PgσPg. (3.20)

In this limit, the master equation becomes (see section 8.3.3 of Ref. [60])

σ̇gg = − i

~

(
heffσgg − σggh

†
eff

)
+

∫
d2Ω

∑

ε⊥k

∑

i,j

(ε∗ ·B(i)(R,k))σgg(ε ·B(i)†(R,k)). (3.21)

The new effective Hamiltonian is given by

heff =
P 2

2m
+

∑

i

si

2
~

(
δi − i

Γ
2

)
D(i)(R)D(i)†(R). (3.22)

The new decay raising and lowering operators are given by

B(i)
q

†
(R,k) =

√
3siΓ
8π

A(i)
q

†
eik·RD(i)(R), (3.23)

and

B(i)
q (R,k) =

√
3siΓ
8π

A(i)
q e−ik·RD(i)†(R). (3.24)
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Note that this new lowering (raising) operator contains two components: a raising (low-

ering) operator D(i)†(R) (D(i)(R)) between the ground state and the ith excited-state

manifold due to the atom-laser interaction, and a lowering (raising) operator A
(i)
q

†
eik·R

(A(i)
q e−ik·R) of type q corresponding to coupling with the reservoir photon field via a

photon with polarization q. Thus, the jump operator in the low-intensity equations

describes a transition cycle of the atom involving coupling to both the laser and the

reservoir photon field. Note also that this new operator and the effective-Hamiltonian

term in the equation of motion are both proportional to the saturation parameter si,

the perturbation parameter.

3.3 Direct solutions of the semiclassical master equation

In Appendix C, the semiclassical master equation is derived in detail. This section

presents an overview of solution techniques of the resulting equations, called the optical

Bloch equations because of their similarity to the Bloch equations that describe the

precession of a nuclear magnetic moment in a magnetic field.

The optical Bloch equations for the multilevel atomic system considered here are,

˙̃ρ
(
e
(m)
i , gj

)
= i

[
δω(m) −∆− kLv(i− j)

]
ρ̃

(
e
(m)
j , gi

)
− i

~
eiωLt

[
Ṽ , ρ̃

]�
e
(m)
i ,gj
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˙̃ρ (gi, gj) = −ikLv(i− j)ρ̃ (gi, gj)− i

~

[
Ṽ , ρ̃

]
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(3.28)

The above equations describe the evolution of the various matrix elements of the density

matrix, with the shorthand notation ρ(i, j) = 〈i|ρ|j〉. The subscripts on the commu-

tators likewise indicate a matrix element, [, ]i,j = 〈i|[, ]j〉. The tildes over the density
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matrix elements imply the following redefinition corresponding to optical coherences as

ρ̃
(
e
(m)
i , gj

)
→ ρ̃

(
e
(m)
i , gj

)
eiωLt, (3.29)

ρ̃
(
gi, e

(m)
j

)
→ ρ̃

(
gi, e

(m)
j

)
e−iωLt. (3.30)

For elements that are not optical coherences, the redefinition has no effect.

This system of equations can be solved by putting the various matrix elements of

ρ̃ into a vector, corresponding to all of the possible combinations of N internal atomic

states and yielding a N2 elements. The optical Bloch equations given above then provide

an N2 ×N2 matrix, labeled here as Msc, for the time evolution of the ρ vector,

˙̃ρ = Mscρ̃. (3.31)

This equation can be solved by specifying an initial state for ρ̃ and numerically inte-

grating the above differential matrix equation. For atomic systems with on the order of

10 to 100 internal states, this is usually numerically tractable.

If only the steady state of the system is desired, as is the case here in which

final laser-cooling temperature is the goal, it is faster to simply set ˙̃ρ = 0 in the above

equation and then solve for ρ̃. This involves a numerical inversion of the matrix Msc.

However, this matrix is singular and cannot be inverted. It turns out that the system

is overspecified, and this can be remedied by supplying the additional condition that

the sum of the populations is always equal to unity, a fundamental requirement for the

density matrix of a system with conserved norm. This condition can be enforced by

modifying one of the rows of Msc corresponding to a population element to have zeros in

all locations except population elements. Then, the steady state solution to the matrix

equation is given by

ρ̃ss = M−1
sc v, (3.32)

where v is a vector with all zeros except for a 1 in the position corresponding to the

modified row of Msc.
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Once the steady-state density matrix of the system is obtained, any steady-state

properties of the system can be determined by performing traces over this density matrix

multiplied by the appropriate quantum mechanical operator Ô

O = 〈Ô〉 = Tr
[
Ôρ̃ss

]
. (3.33)

3.4 Stochastic wave-function solutions of the fully quantum master

equation

The MCWF [9, 10, 11, 12, 13, 14, 15] technique is a means of interpreting a

system-reservoir master equation — which describes the evolution of a density operator

for a system interacting with a large external reservoir — as the evolution of an ensem-

ble of individual wave functions, each undergoing random quantum jumps. The free

evolution of the stochastic wave functions is determined by the effective Hamiltonian

that was derived in section 3.2. The nature of the quantum jumps is determined by the

leftover term in the master equation, which cannot be absorbed into the free-evolution

commutator. The components of this leftover term are often called quantum-jump

operators.

The following discussion will deal primarily with the master equation in the low-

intensity limit, as developed in the previous section, although the methods could just

as easily be applied to the arbitrary-intensity master equation. The low-intensity limit,

however, provides a reduction in the number of internal atomic states required in the

calculation, and this will be beneficial for performing calculations later. Furthermore,

since the lowest temperatures are achieved for low laser intensities, such a specialization

does not hinder the ability to calculate lower bounds of temperature.

Having already expressed the master equation in a form involving an effective

Hamiltonian and a jump term, the application of the MCWF technique is rather straight-

forward along the lines developed in the literature (see, in particular, Ref. [10]). For a

single stochastic wave function, the procedure is as follows. First, set the wave function



60

to an initial value. Then, numerically propagate the wave function for a time step δt

according to the effective Hamiltonian Heff only, from an initial value |ψ(t)〉 to a final

value |ψ(1)(t + δt)〉,

|ψ(1)(t + δt)〉 =
(

1− iHeffδt

~

)
|ψ(t)〉 . (3.34)

Restrictions on the size of δt are given such that the first-order truncation of the time-

evolution operator in Eq. (3.34) is approximately valid. We note that Heff is non-

Hermitian by construction, as a result of absorbing parts of the relaxation operator into

the original (Hermitian) bare system Hamiltonian. Because of this, propagation with

Heff will not conserve the norm of the wave function when propagated to |ψ(1)(t + δt)〉.

The time step δt of the propagation must be chosen so that δp ¿ 1 in the inner product,

〈
ψ(1)(t + δt)

∣∣∣ψ(1)(t + δt)
〉

= 1− δp. (3.35)

The quantity δp is the loss of norm resulting from propagating with Heff for a time step

δt, and is found to be

δp = δt 〈ψ(t)|
∑

i

B(i)†(R,k) ·B(i)(R,k)|ψ(t)〉

= δt 〈ψ(t)|
∑

i

∑

q=0,±1

B(i)
q

†
(R,k)B(i)

q (R,k)|ψ(t)〉

=
∑

i

∑

q=0,±1

δpi,q.

(3.36)

The total loss of norm has been decomposed into individual elements each corresponding

to a particular type of interaction with the reservoir (i.e., the q-value of the interaction,

or the excited state i involved). These individual contributions are given by

δpi,q = δt 〈ψ(t)|B(i)
q

†
(R,k)B(i)

q (R,k)|ψ(t)〉 . (3.37)

It is seen that the loss of norm due to a given type of interaction with the reservoir

is determined by the quantum-mechanical expectation value of the product of jump

operators of this type of interaction. The loss of norm δp can also be interpreted as the

probability for a quantum jump to occur.
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After the wave function has been propagated as described above, and the values of

δpi,q calculated, it must then be determined whether or not a quantum jump occurred.

This is achieved by generating a pseudo-random number on a computer and comparing

it to the value of the total jump probability δp. If the random number is less than δp, a

quantum jump occurred, and if it is greater, no quantum jump occurred. If a quantum

jump does occur, the type of quantum jump must also be calculated by comparing the

random number with the individual sub-probabilities δpi,q in the same manner.

If a quantum jump of type q, i occurs, the quantum jump lowering operator

B
(i)
q (R,k) must be applied to the wave function from the beginning of the time step,

|ψ(t + δt)〉 =

√
δt

δpi,q
B(i)

q (R,k) |ψ(t)〉 . (3.38)

The square-root factor in front of the lowering operator is necessary for renormalization.

If no quantum jump occurs, then the stochastic wave function is simply renormalized.

The resulting wave function is then used as the starting point for propagation

over the next time step, and the procedure is repeated.

A good approximation of the true system density matrix is achieved by combining

the trajectories of a number of independently propagated stochastic wave functions, each

trajectory having a unique sequence of pseudo-random numbers. (A thorough discussion

of the statistical issues involved with the MCWF technique can be found in Ref. [10].)

Once a suitable ensemble of stochastic wave function trajectories has been obtained, an

estimate of the true expectation value of an operator is found by taking the ensemble

average of the expectation value of that operator with respect to the stochastic wave

functions. For example, an estimate of the average kinetic energy at a time t for a system

for which N independent stochastic wave functions have been calculated is given by

〈E〉 (t) =
1
N

N∑

i=1

〈
ψi(t)

∣∣∣∣
P 2

2m

∣∣∣∣ψi(t)
〉

, (3.39)

where ψi(t) is the ith stochastic wave function, given at time t.
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Figure 3.2 demonstrates a simple example of the application of the MCWF tech-

nique, wherein the average kinetic energy is calculated for a two-level atom interacting

with a one-dimensional standing-wave field. For this calculation, we have used a Rabi

frequency of Ω = Γ/2 and a detuning of δ = −Γ/2, where Γ is the decay rate of the

upper to the lower atomic state, and we have set Γ = 400Erec, where Erec = ~2k2/2m

is the recoil energy. The atomic kinetic energy, averaged over 500 stochastic wave func-

tions each initialized to zero momentum, is plotted as a function of time, with error bars

indicating the error in the ensemble average for a given time. The separation of the

transient relaxation period from the steady-state is clear, the steady state regime being

characterized by fluctuations in the average energy about a mean. This noise is due to

the finite number of stochastic wave functions being used, and if a greater number of

wave functions were used, the amplitude of the fluctuations would be decreased. In the

limit of an infinite number of wave functions, the true density-matrix solution of the

master equation would be obtained. An estimate of the steady-state kinetic energy is

found by time-averaging the calculated data over the entire steady-state regime. Since

this is a larger ensemble than the set of wave functions for a single time, the error of

such an average will be smaller than the error bars shown in the figure.

As a test of the model, it is useful to perform a calculation for which the ana-

lytical solution is known. For a two-level atom moving in a one-dimensional field of

two opposing, linearly polarized lasers, it is expected that the steady-state temperature

will coincide with the Doppler limit when the detuning is set to it’s optimal value of

δ = −Γ/2, and when the intensity of the laser is vanishing, Ω → 0. This limiting temper-

ature is achieved because there is no internal structure to the atom which would allow

sub-Doppler dynamics. Generally, in the literature, the Doppler limit will be quoted as

TD = ~Γ/2kB. This value of the Doppler temperature is useful as a rough estimate, and,

indeed, most experiments are unable to sufficiently eliminate heating factors — such as

background-gas collisions and imperfections in the laser — to warrant such precision in
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Figure 3.2: An example of a characteristic MCWF stochastic trajectory. Shown is
the average of the atomic center-of-mass energy over 500 independent stochastic wave
functions, as a function of time, for a two-level atom in a 1D standing-wave laser field.
The energy is given in units of the recoil energy Erec = ~2k2/2m, and time is given in
units of the inverse recoil frequency ω−1

r = ~/Erec. All wave functions are initialized in
the ground state of the atom and localized in momentum space with zero momentum.
The steady state, wherein the system fluctuates around an average value, is seen to be
achieved after a transient relaxation period. Error bars indicate the variance in the data
at each given time for the ensemble of 500 stochastic wave functions. An estimate of
the steady-state atomic center-of-mass energy is obtained by performing a time-average
over all wave functions for all times after the relaxation regime. The error bar of such
an average will be smaller than the error bars in the figure, which apply only to the
data for a given time. This figure is adapted from Ref. [2].
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the first place. However, to check the Monte Carlo calculations, a more accurate value

will be needed, as is obtained in the 1989 paper by Castin, Wallis, and Dalibard [61], in

which they survey the analytical understanding of Doppler atom-laser dynamics. Using

an innovative technique called the Family Method, they find that the one-dimensional

Doppler limit is in fact TD = 7~Γ/40kB. Employing a Monte Carlo wave-function cal-

culation for this rather trivial system with δ = −Γ/2 and Γ = 400ωrec, and performing

the calculation for a variety of laser intensities, the limiting behavior shown in Fig. 3.3

is found, with the dots indicating the numerical results of the Monte Carlo calculation,

and a quadratic fit to the data denoted by a solid line. In the low-intensity limit, the

temperature goes to TD = 7
40 ~Γ/kB = 70 ~ωrec/kB, in agreement with the result of

Castin et al. [61].

3.5 Calculations for 25Mg and 87Sr

The purpose of this section is to illustrate the application of the theory developed

up to this point to a complicated system. We wish to quantitatively study the dynamics

of particular atoms interacting with three-dimensional polarization-gradient laser fields.

The balance of the frictional cooling forces along with the diffusion experienced by the

atom due to spontaneous emission and its interaction with the laser leads to a steady-

state momentum distribution that determines the temperature of a gas of such atoms. In

particular, we will study here the cooling of the fermionic isotopes of two alkaline-earth

atoms, 25Mg (nuclear spin I = 5/2, 1S0-1P1 width Γ/2π = 81MHz, hyperfine split-

tings ∆ω13/2π = 46 MHz and ∆ω23/2π = 27 MHz, where we have assumed a hyperfine

quadrupole parameter B = 0 [62]) and 87Sr (I = 9/2, 1S0-1P1 width Γ/2π = 32 MHz,

hyperfine splittings ∆ω13/2π = 43 MHz and ∆ω23/2π = -17 MHz). These atoms, hav-

ing nonzero nuclear magnetic moment, have degenerate (assuming zero magnetic field)

Zeeman sublevels. These sublevels allow for the mechanism of sub-Doppler cooling in

an appropriate laser configuration. Both 25Mg and 87Sr exhibit significant excited-state
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Figure 3.3: Simulation of a two-level atom with δ = −Γ/2 and Γ = 400ωrec interacting
with a one-dimensional laser field, as a test of the Monte Carlo wave-function technique.
Plotted is kB multiplied by the steady-state temperature, in units of the recoil energy
~ωrec. The dots are the numerical results of the Monte Carlo simulation, and the line
indicates a quadratic least-squares fit the data. The calculation yields a low-intensity
limit for the one-dimensional Doppler temperature in agreement with the known value
TD = 7

40 ~Γ/kB = 70 ~ωrec/kB.
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spectral overlap, with ∆ω13/Γ = 0.57, ∆ω23/Γ = 0.33, and ∆ω13/Γ = 1.3, ∆ω23/Γ =

-0.53, respectively. We consider the three-dimensional lin-⊥-lin laser configuration, con-

sisting of a pair of opposing beams along each cartesian axis, in which each beam is

linearly polarized orthogonal to its opposing beam. Furthermore, for this calculation,

we set to zero the relative phases of the three sets of laser pairs.

Having a nuclear spin of I = 5/2, the 1S0 state of 25Mg results in a hyper-

fine ground state with 6 sublevels. Use of the low-intensity master equation given in

Eq. (3.17) allows us to consider only these 6 internal states of the atom, since the ex-

cited states have been adiabatically eliminated in this regime. However, as noted in

Ref. [11], a momentum grid extending to 20~k in each direction with a spacing of ~k

would yield a density matrix with (6× 413)2 ≈ 2× 1011 elements. A direct solution of

this master equation is not numerically feasible, even without considering the further

increases in matrix size necessary to describe the master equation relaxation operator

in Liouville space [63]. On the other hand, the MCWF method only requires numerical

propagation of individual wave functions, which would be represented by vectors with

6× 413 ≈ 4× 105 elements. If the number of independent stochastic wave functions re-

quired to achieve satisfactory convergence for the calculation of a particular property of

the system is not unreasonably large, the MCWF method provides a distinct advantage

over a direct master-equation solution.

We follow the procedure outlined in Section 3.4, working in the low-intensity limit

in order to reduce the number of internal atomic states in the calculation, which increases

the efficiency of calculation. Since laser cooling is most effective at low laser intensities,

this turns out to be a useful regime in which to work, with the additional benefit that

lower temperatures require a smaller number of atomic center-of-mass momentum states

in the calculation. We must determine the effective Hamiltonian as given in Eq. (3.22)

and the jump operators as given in Eqs. (3.23) and (3.24) for each atom, and for the

particular laser field being considered.
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We consider here the lin-⊥-lin laser configuration in three dimensions, with the

relative phases of the beams set to zero. The positive-frequency component of the

electric field is

EL(R, t) =
E0

2

[
ŷeikX + ẑe−ikX + ẑeikY + x̂e−ikY + x̂eikZ + ŷe−ikZ

]

=
E0

2

∑

q=0,±1

(−1)qaq(R)ε̂−q,
(3.40)

with spherical coefficients

a+1(R) = − 1√
2

(
e−ikY + eikZ + ieikX + ie−ikZ

)
, (3.41)

a−1(R) = +
1√
2

(
e−ikY + eikZ − ieikX − ie−ikZ

)
, (3.42)

a0(R) = e−ikX + eikY . (3.43)

With these coefficients, along with parameters appropriate to the particular atom un-

der consideration, the atom-laser raising and lowering operators given in Eqs. (3.14)

and (3.15) can be constructed. With knowledge of the effective Hamiltonian and the

raising and lowering operators, we can then proceed with the MCWF procedure as

outlined.

Our example entails propagating 20 stochastic wave functions each for three dif-

ferent values of the light-shift parameter, ~|δ3|s3/(2Erec) =10, 20, and 30, for both

25Mg (I = 5/2) and 87Sr (I = 9/2). We consider only δ3 = −5Γ. As in Figure 3.2, we

calculate the stochastic trajectories of the ensemble average (i.e., averaged over the 20

wave functions) kinetic energy for each atom as a function of time. We continue this

propagation until the transient regime has been passed for some time, and use the time

average over the steady-state ensemble-average kinetic energy to provide an estimate of

the total average kinetic energy and the final error. The results are shown in Fig. 3.4,

along with the energies for atoms with an isolated cooling transition for comparison,

Je = Jg + 1 with Jg =1, 2, 3, and 4, with detuning δ = −5Γ, as first calculated by

Castin and Mølmer in Ref. [11]. From this cursory analysis, we can see that 25Mg
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should exhibit a sharp rise in temperature with increasing laser intensity, while 87Sr

will cool to sub-Doppler temperatures even for higher intensities, as has been noted

experimentally [52].

Detailed calculations of this sort, for realistic atoms, are quite computationally

expensive. For example, a single data point for the Mg and Sr calculations presented

here required on the order of 200 hours wall time for a 20 processor parallel code,

running on a cluster of 2.4 GHz Intel Zeon processors.

It is insightful to make a qualitative illustration of the effects of increasing the

atomic degeneracy for an isolated transition as would be the case for a system having no

hyperfine overlap. Using the semiclassical calculation method discussed in Section 3.3,

the force on such an atom can be determined as a function of the atom’s velocity.

Figure 3.5 shows plots of this force, in arbitrary units, as a function of the atom’s

velocity in units of the recoil velocity, in for increasing internal atomic degeneracy. The

top-left plot is for a system with a ground hyperfine quantum number of Fg = 0 to an

excited state of Fe = 1. For these parameters, no sub-Doppler cooling is expected, and

the force curve displayed is simply that of normal Doppler cooling. In the top-right plot,

with Fg = 1 and Fe = 2, the appearance of a small sub-Doppler force occurs. This force

usually appears in a small range of velocities around zero. Nevertheless, the force curve

is steepened dramatically, and even over this small range can have a significant impact

on the effectiveness of cooling. The bottom-left plot, with Fg = 2 and Fe = 3 shows

an even more dramatic sub-Doppler force, and the bottom-right curve, with Fg = 3

and Fe = 4 even more so. This qualitative observation supports the more quantitative

results shown in Fig. 3.4 for isolated transitions.

As a final note, one of the advantages of performing detailed quantum calculations

is the ability to create illustrative pictures. Figure 3.6 provides one such example, using

the three-dimensional data obtained from the above Monte Carlo simulations in the ray-

tracing rendering program Pov-Ray, and illustrating the reduction in three-momentum
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Figure 3.4: Results for calculated ensemble-average energies (rms momentum squared)
for 25Mg and 87Sr, as a function of the light-shift parameter ~|δ3|s3/(2Erec). For com-
parison, also shown are the calculated energies for atoms with isolated transitions,
Je = Jg + 1, with Jg =1, 2, 3, and 4, with detuning δ = −5Γ. This figure is adapted
from Ref. [2].
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Figure 3.5: Semiclassical force curves illustrating the effect of increasing degeneracy
on the laser cooling of idealized atoms with isolated cooling transition and no overlap
of hyperfine manifold. As the internal atomic degeneracy is increased and all other
parameters held fixed, the appearance of a sub-Doppler force grows. See text for details.
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space of a cloud of 87Sr atoms undergoing sub-Doppler polarization-gradient cooling.

3.6 Conclusion

In conclusion, this chapter has provided a detailed description of the fully quantum-

mechanical master equation that describes an atom with multiple internal internal struc-

ture interacting with a three-dimensional polarization-gradient laser field. It has been

shown how the spontaneous-emission relaxation operator is generalized for atoms of this

type. The MCWF technique has been applied to these equations of motion, providing

a more efficient means of performing calculations for these systems compared to a full

solution of the master equation. A few example calculations have been presented to

illustrate the application of this theory to atomic systems interacting with laser config-

urations commonly used in experiments.
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Figure 3.6: Three-dimensional renderings illustrating the time evolution of an atomic
cloud in momentum space, based on the numerical simulations of cooling 87Sr.



Chapter 4

Bichromatic Cooling of Three-Level Atoms

4.1 Introduction

In this chapter, the subject of laser-cooling dynamics is further explored, this

time applied to a three-level atomic system. This type of atomic configuration is much

simpler than the elaborate multi-manifold systems discussed in Chapter 3. Moreover,

instead of applying complicated polarization-gradient electromagnetic fields in three

dimensions, only two standing-wave laser beams in one dimension will be utilized here.

Nonetheless, this basic configuration yields a rich variety of novel phenomena with some

unexpected conclusions.

As in Chapter 3, the types of atoms that will be focused on will be group-II

atoms, the alkaline earths. Alkaline-earth atoms are difficult to laser cool to the µK

or nK regime, but this technique exhibits encouraging potential to circumvent current

roadblocks.

The work here also introduces a sparse-matrix technique that permits efficient

solution of the master equation for the stationary density matrix, including the quan-

tized atomic momentum. This overcomes longstanding inefficiencies of exact solution

methods, and it sidesteps inaccuracies of frequently-implemented semiclassical approx-

imations. The realistic theoretical limiting temperatures are optimized over the full

parameter space of detunings and intensities. A qualitative interpretation based on the

phenomenon of electromagnetically-induced transparency reveals dynamical effects due
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to photon-atom dressing interactions that generate non-Lorentzian lineshapes. Through

coherent engineering of an asymmetric Fano-type profile, the temperature can be low-

ered down to the recoil limit range.

The inability to cool alkaline-earth atoms down to the 100 nK range has proven

to be a formidable bottleneck in the study of ultracold dilute gases. Novel cooling

techniques have limited applicability and so far quantum degeneracy has been obtained

only for ytterbium, a lanthanide atom with similar level structure, despite extensive

efforts by numerous groups [64, 65, 52, 2]. The theoretical description of laser cool-

ing took strides in the 1990s, primarily utilizing the semiclassical approximation which

resulted in complicated calculations [45]. Few realistic calculations have treated the

atomic motion quantum mechanically and predict realistic cooling temperatures. Here,

a direct method is introduced, based on sparse-matrix techniques, which efficiently

yields the fully quantized stationary density matrix. In contrast to Monte Carlo ap-

proaches [10, 12, 2], the temperature and other observables emerge without statistical

monitoring; the efficiency enables a complete mapping of the large parameter space

of laser intensities and detunings. Here, this mapping is computed for a three-level

cooling scheme and develop a qualitative interpretation based on the physics of elec-

tromagnetically induced transparency (EIT). The calculations predict that promising

regimes exist that should produce record-low temperatures and overcome the difficulty

of alkaline-earth atom cooling. This is orders of magnitude cooler than could be ob-

tained using the main resonance line alone. Moreover, the cooling can be controlled and

adjusted in real time, which should make this method competitive with or superior to

other proposed ways of cooling alkaline-earth atoms.

Although leading to many advances [19, 66, 67], internal atomic structure greatly

restricts the species for which laser cooling can be applied successfully, and determines

whether ultracold temperatures — on the order of a few µK — can be achieved. Basic

Doppler cooling [18, 68] has a minimum temperature proportional to the width of the
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atomic transition. Lower temperatures can be achieved by exploiting the multilevel

hyperfine structure [16, 17, 69, 70], by modifying the atomic scattering [71], or by using

narrow optical transitions as a second-stage for pre-cooled atoms [64, 65]. Here, sub-

Doppler cooling with three-level systems under two-color excitation is explored. The

published literature discusses some similar schemes, for both atoms [72, 73, 74] and

trapped ions [75, 76, 77]. In particular, the work of Tan et al. [73] appears initially

to be the most exciting, since it claims to permit cooling to below the recoil temper-

ature, believed to be a rigorous quantum lower bound for this type of laser cooling.

However, this is an artifact of the errors associated with a semiclassical treatment of

atomic momentum in Ref. [73], since that approximation is known to produce incorrect,

arbitrarily low (and even negative) temperatures. In order to realistically evaluate the

promise of three-level cooling based on dressed-state ideas, it is thus critical to carry

out fully quantum solutions with great efficiency, as in the sparse solution technique

introduced here.

Parts of this chapter are developed from research by this author which has been

submitted for publication, and some of the text and figures have been adapted from the

work therein. A preprint form of this submitted publication can be found in Ref. [3].

4.2 Three-level atomic systems

There are three basic types of three-level systems — the Λ, V, and Ξ systems —

each classified according to the ordering of the bare quantum states in energy, and the

possible decay pathways. The Λ-configuration is commonly used for studying EIT [78]

and related phenomena. The focus here is on a Ξ system, shown in Fig. 4.1, because

of its relevance to current experimental work [79, 80]. Note, however, that the general

conclusions can be applied to any type of three-level system, and can be extended to

systems with more than three levels. The level structure and internal parameters for the

Ξ system are depicted in the left-hand side of the figure. This cooling technique seems
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well suited to alkaline-earth atoms, which are good candidates for the next generation

of optical atomic clocks, studies of ultracold collisions, optical Feshbach resonances [81],

and quantum degeneracy [82].

The linewidths, Γi = γi/2π for i =1, 2, of both the upper and lower transitions

for some of the most relevant alkaline-earth (24Mg, 40Ca, and 88Sr) and alkaline-earth-

like (174Yb)systems are given in Table. 4.1. From an initial analysis, it might seem

that mixing of the bare atomic states could allow cooling to a temperature set by the

narrowest of the two transitions. This seems reasonable because traditional Doppler

cooling with a single laser and two-level system predicts temperatures proportional to

the transition linewidth. Since the upper transition in all cases considered in Table. 4.1

is narrower than the lower transition, this simplistic analysis predicts that sub-Doppler

cooling should occur by a factor of Γ1/Γ2 below the Doppler limit. This ratio is also

given in Table. 4.1, and it can be seen that, for example, magnesium offers the possibility

of beating the Doppler limit by the rather large factor of 36. Later in this chapter, the

detailed workings of this type of cooling will be explained, and it will be shown that

this limit is in fact an underestimate of effectiveness of the cooling, and the Doppler

limit can be beat by significantly more than a factor of 36.

Table 4.1: Transition linewidths, Γi = γi/2π for i =1, 2, of the 1S0-1P1-1S0 three-level Ξ
systems for common alkaline-earth atoms 24Mg, 40Ca, and 88Sr, as well as the alkaline-
earth-like atom 174Yb. The ratio of Γ1/Γ2 is also shown, indicating the factor below the
lower-transition Doppler limit which might be expected using a three-level bichromatic
scheme, neglecting the more detailed lineshape analysis provided in this chapter.

24Mg 40Ca 88Sr 174Yb

Γ1 (MHz) 79 34.63 32 28.01

Γ2 (MHz) 2.2 4.77 2.96 4.81

Γ1/Γ2 36 7.3 11 5.8
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Figure 4.1: Left side: Atomic configuration for generic three-level Ξ system. Right side:
The dressed eigenenergies for the 1S0-1P1-1S0 Ξ system in 24Mg with s1(δ1) = 0.001 and
s2(δ2) = 1. Real (top) and imaginary (bottom) parts of the eigenvalues of Eq. (4.3),
with dressed atomic states labeled. The real parts are the energies and the imaginary
parts are the effective linewidths of the dressed atomic system. Both are plotted as
functions of δ2, with fixed δ1 = 0. This figure is adapted from Ref. [3].
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4.3 Fully quantum model and its advantages

Fig. 4.1 shows the internal atomic states in order of increasing energy as |0〉, |1〉,

and |2〉. The transition energy of the lower transition, |0〉 → |1〉, and of the upper

transition, |1〉 → |2〉, are ~ω(1)
0 and ~ω(2)

0 , respectively. Two lasers are included, of

frequency ω1 and ω2, and their detunings are defined from the appropriate atomic

transitions as δi = ωi−ω
(i)
0 , for i = 1,2. The intensities of lasers 1 and 2 are characterized

by their Rabi frequencies Ω1 = −〈0|d|1〉·E1(x) and Ω2 = −〈1|d|2〉·E2(x), respectively,

where d is the electric-dipole operator of the atom and Ei is the electric-field amplitude

for the ith laser. The spontaneous-emission linewidths of states |1〉 and |2〉 are Γ1/2π

and Γ2/2π, (79 MHz and 2.2 MHz, respectively, for 24Mg). The time evolution for the

atom in the laser field, with mass m and center-of-mass momentum operator p, is given

by the master equation,

ρ̇(t) =
i

~
[ρ,H] + L [ρ] , (4.1)

where ρ is the reduced density matrix of the atom system, the vacuum photon field

degrees of freedom having been traced over, H = p2/2m + ~ω(1)
0 |1〉 〈1|+ ~ω(2)

0 |2〉 〈2|+

V
(1)
laser(x) + V

(2)
laser(x) is the Hamiltonian of the atom-laser system, and the superoperator

Liouvillian L describes effects due to coupling of the atom to the vacuum photon field,

resulting in spontaneous emission [8].

4.4 Numerical solution

Eq. (4.1) treats all the atomic degrees of freedom quantum mechanically, so its

solutions generally provide an accurate description of the atom’s dynamics. Thus, much

of the difficulty associated with semiclassical approximations of the system is avoided.

For reasonable temperatures, however, the number of numerical basis states required to

directly solve the problem, even in one dimension, is impractical for most computers.

Here, this problem is resolved without resorting to Monte Carlo methods by noting
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that the matrix for the linear system equivalent to Eq. (4.1) is very sparse: only a

small fraction of its elements are nonzero. For a typical calculation, the Hilbert space

involves 3 internal degrees of freedom for the atom, and 150 momentum states in one

dimension. The resulting number of complex density matrix elements is thus 450×451/2

independent elements for this case owing to symmetry, and L would take over 160GB to

store if it was a full matrix. But the particular structure shared by Liouvillian operators

L that describe relaxation processes simplifies the numerics, and requires less than 2 GB

to solve the sparse system; specifically, the microscopic properties of atomic operators in

L permit construction of the matrix L with the zero elements eliminated. The steady-

state solution of Eq. (4.1) is then found using a standard sparse-matrix inversion, giving

an exact direct solution of a fully-quantized master equation in just 1-2 minutes of CPU

time on a current workstation.

The steady-state density matrix has been calculated this way in one dimension.

The average kinetic energy is
〈
p2/2m

〉
= Tr(ρ p2/2m), which in thermodynamic equi-

librium can be equated with 1
2kBT , where T is the temperature. The large parameter

space of the problem has been explored, e.g., varying the detunings, δ1 and δ2, as well as

the strengths Ω1 and Ω2 of the two lasers. However, the lasers are better characterized

by how strongly they dress the atom. The saturation parameters s1 and s2 for the

respective transitions are

si =
1
2

Ω2
i

δ2
i + (Γi/2)2

. (4.2)

4.5 Results

The parameter space has three distinct regimes. In the first, with s1 & 1 and s2

arbitrary, only heating occurs, as expected from Doppler-cooling theory since the lower

transition is driven strongly. Numerical results for the second regime, with s1 ¿ 1

and s2 ¿ 1, are shown in Fig. 4.2, with the temperature normalized to the lower-

level Doppler limit T
(1D)
D , T

(1D)
D = 7~Γ1/40kB [16], which is the optimum temperature
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expected for cooling with just one laser. In this plot, the location of the bare two-photon

resonance (δ1 +δ2 = 0) is denoted by the dashed line. It is clear from this plot (note the

normalization of the temperature axis) that cooling occurs only to the Doppler limit for

the lower transition T
(1D)
D = ~Γ1/2kB, and only in the range near δ1 = −Γ1/2. In this

case, laser 2 has no effect, as this amounts to simple two-level Doppler cooling on the

lower transition with laser 1.

In the final regime, when s1 ¿ 1 and s2 & 1, cooling occurs down to substantially

below T
(1D)
D . Figure 4.3 illustrates cooling in this regime, also for 24Mg, with the

temperature again normalized to the lower-level Doppler limit and the bare two-photon

resonance indicated. The steady-state temperature is plotted as a function of δ1 and

δ2 for s1(δ1) = 0.001 in both the upper and lower plots, and with s2(δ2) = 1 in the

upper plot and s2(δ2) = 5 in the lower plot. Note that the saturation parameters are

being held fixed as the detunings are varied, so that the Rabi frequencies are being

continuously adjusted. The lowest temperatures, on the order of 10−2 T
(1D)
D , are found

in the quadrant with δ1 > 0 and δ2 < 0, as well as less extreme cooling in other regions.

Observe that the lowest temperatures are obtained for frequencies detuned to the blue of

the two-photon resonance. This seems counterintuitive, since a red detuning is usually

required in order to have a net decrease of atomic kinetic energy in a photon-scattering

event.

4.6 EIT explanation

Qualitative understanding of the cooling mechanism emerges from analysis of the

simpler Hamiltonian,

H =
~
2




0 Ω1 0

Ω∗1 −2δ1 − iΓ1 Ω2

0 Ω∗2 −2(δ1 + δ2)iΓ2




. (4.3)
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Figure 4.2: Steady-state temperatures for bichromatic three-level laser cooling, as a
function of both detunings δ1 and δ2, with both atomic transitions perturbatively
probed, s1 ¿ 1 and s2 ¿ 1. The bare two-photon resonance is indicated with a
dashed line.
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Figure 4.3: Steady-state temperatures for bichromatic three-level laser cooling, as a
function of both detunings δ1 and δ2, with the lower atomic transition perturbatively
probed, s1 ¿ 1, for both plots, and the upper atomic transition dressed to varying
degrees in the two plots, with s2 = 1 in the upper plot and s2 = 5 in the lower plot.
The bare two-photon resonance is indicated with a dashed line. This figure is adapted
from Ref. [3].
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Its complex eigenvalues have real dressed energies, and imaginary parts giving dressed-

state linewidths. These dressed energies and widths are plotted on the right side of

Fig. 4.1 as functions of δ2, for the same parameters used in Fig. 4.3. The cancelation

of one of the widths can be viewed as an EIT effect: since laser 1 is perturbative while

laser 2 strongly dresses the upper transition, the new eigenstates of the system, denoted

|+〉 and |−〉, are well approximated as linear combinations of the bare states |1〉 and |2〉.

These states have the modified energies and widths shown in Fig. 4.1. The linewidth

modifications can be viewed as a Fano interference [34], in which the dressing-laser

transitions caused by the probe laser enable multiple coherent pathways among the

bare states. Constructive or destructive interference respectively increases or decreases

the atomic linewidth.

The cooling mechanism is thus qualitatively explained as ordinary two-level Doppler

cooling. But instead of using a transition between two bare states of an atom, the tran-

sition occurs between a (mostly) unmodified ground state, and a dressed excited state,

with a shifted energy and a new linewidth that can be narrower than the bare linewidth

of the lower transition. As the probe laser is scanned, the detuning relative to the

dressed energy levels is varied, but since these levels are shifted from their bare ener-

gies, resonance occurs for different detunings than are encountered in the bare system.

In fact, the shifts of the eigen-energies in Fig. 4.1 from the bare energies explain the

apparent observation of blue two-photon cooling in Fig. 4.3. In the dressed system, the

bare two-photon resonance is no longer meaningful, and the cooling region is in fact to

the red of a dressed resonance.

4.7 Atom-photon dynamics for asymmetric lineshapes

When mapping this system onto Doppler cooling theory, note that the lineshapes

are not Lorentzian, but are asymmetric Fano lineshapes for the dressed system, as

illustrated by the solid line in the upper part of Fig. 4.4 as a function of δ1 for a fixed
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of δ2 = −Γ1/2 [74, 3]. This changes the optimum-detuning condition to be that the

maximum cooling for a given transition occurs when the probe laser is detuned from

the dressed excited state precisely to the inflection point of the absorption spectrum.

This can be understood by noting that the applied force f due to the laser beam is

proportional to the absorption rate, for a given δ1. As in semiclassical cooling theories,

the friction coefficient α for the atom in the laser field is

α = − d

dv
f(v), (4.4)

where v is the atomic velocity. Since the detuning of the laser and the resonant atomic

velocity are linearly related, the derivative of the absorption spectrum with respect

to δ1 also yields a maximum in the cooling force. This is evident in normal Doppler

cooling because the optimum detuning occurs when δ = −Γ/2, the inflection point of

the Lorentzian. In general then, for asymmetric lineshapes, the optimum detuning does

not obey such a simple relation, but depends on the degree of asymmetry.

This point is illustrated in the upper portion of Fig. 4.4, which compares the actual

asymmetric absorption spectrum (solid line) of the dressed system as a function of δ1 and

for fixed δ2 = −Γ1, with the more simplistic predictions for the absorption spectrum

using symmetric Lorentzian lineshapes (dotted line). The peak of each lineshape is

located at a dressed eigenenergy, and lineshapes at the same energies and widths. As an

example, optimum-cooling detunings relative to the leftmost resonance are illustrated

with a black arrow for the true asymmetric lineshape and with a gray arrow for the

hypothetical symmetric-lineshape case. The value of the optimum detuning, as well as

the slope of the lineshape is seen to be different for these two cases.

From this complete picture of the cooling mechanism, the minimum temperatures

can now be determined, allowing for the detuning modification due to asymmetric line-

shapes. The lower part of Fig. 4.4 shows the ratio of the maximum slope of a Lorentzian

lineshape with width Γ1 to the slope of the asymmetric lineshape, as a function of δ1
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Figure 4.4: Upper plot: Comparison of the true absorption spectrum of the dressed
three-level Ξ system (solid line) with a simplistic absorption spectrum with Lorentzian
lineshapes (dotted line). Optimum laser-cooling detuning is indicated with arrows for
each type of spectrum. Lower plot: Comparison of the numerical three-level-cooling
temperature results (data points) with the ratio of the maximum slope of a Lorentzian
lineshape with width Γ1 to the slope of the asymmetric lineshape, as a function of δ1

with δ2 = −Γ1/2 (solid line). This ratio provides an indication of the expected cooling
for the dressed system relative to the Doppler limit for the lower transition. This figure
is adapted from Ref. [3].



86

with δ2 = −Γ1/2. This ratio provides an indication of the expected cooling for the

dressed system relative to the Doppler limit for the lower transition. For comparison,

fully quantum numerical results are indicated by data points. Note that the expected

temperature, due to the asymmetric lineshape, is predicted to be lower than the upper-

transition Doppler limit, indicated by the dotted line in the lower plot of Fig. 4.4, a

prediction supported by the numerical data.

4.8 Conclusion

In conclusion, coherent engineering of a three-level system can optimize the ef-

fectiveness of two-level Doppler cooling. Dressed states are created with modified

linewidths in the range between the smallest and the largest of the two bare linewidths,

and the additional effect of asymmetric lineshapes can lead to temperatures below the

Doppler limit of either bare transition. The ability to tailor the degree of cooling lends

this technique additional utility, and may be particularly useful when applied the no-

toriously difficult-to-cool alkaline-earth atoms. A dressing scheme can be suited to the

characteristics of a particular atom, and real-time adjustment of the cooling properties

can allow narrowing of the velocity-capture range as an atomic gas is cooled. Utilizing

such coherent effects should lead to simple schemes for cooling far below the typical

Doppler limit.



Chapter 5

Cavity Cooling of Atoms and Molecules

5.1 Introduction

In this chapter, a cooling scheme is explored which, in addition to an atom (or

molecule) and a laser, utilizes an optical cavity. The idea of using a cavity to help cool

atoms was first proposed in the early 1990’s [83], and early experimental explorations [84]

confirmed the feasibility of the method. Further investigation [71, 85] found situations

in which the cooling was much more effective than expected, reaching temperatures far

below the predictions of the basic theory. Further theoretical investigations [86, 87] were

able to attribute the excess cooling to the presence of so-called collective effects: basi-

cally, phenomena occurring due to the presence of multiple atoms, all interacting with

the cavity at the same time. This was not really a many-body effect, as the collective

enhancement could be modeled without including any atomic interaction physics.

The previous work in this field has led to a good understanding of cavity cool-

ing applied to atoms. However, the cooling scheme, which stipulates driving an atom

with a laser having a frequency very far detuned from the atomic transition, holds the

possibility of being effective also for molecules, which are traditionally not amenable to

laser-cooling schemes. Almost all types of typical laser cooling require a closed internal

transition in the object being cooled — the excited state must decay back to the original

ground state in order for the process to be repeated — and molecules with their dense

forest of energy levels usually do not provide this. Cavity cooling, being far detuned so
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that coherent-scattering processes are dominant, offers a means of avoiding this prob-

lem. Additionally, the collective effects that were found to enhance cavity cooling of

atoms may also bolster the cavity cooling of molecules, leading to even more effective

cooling than might be expected.

The study of the cavity cooling of molecules offers another opportunity to ap-

ply the quantum-optics master-equation techniques developed throughout this thesis,

and, as it turns out, another application of the stochastic wave-function techniques de-

veloped in Chapter 3. In this chapter, the fundamental picture of the mechanism for

cavity cooling is presented, as well as the particular details, such as Raman transitions,

that must be considered when considering the cooling of molecules instead of atoms.

Following this is the development of a fully quantum-mechanical theory of a particle,

driven by a laser, and coupled to a high-finesse optical cavity, with both the atom and

the cavity coupled to the vacuum photon field. The methods of system-reservoir theory

are clearly useful again here, but with some generalization to accommodate the more

complex situation at hand. Certain approximations are introduced to make the prob-

lem more amenable to numerical solution, and their validity is discussed. Next, it is

shown how the resulting master equation can be simulated using the same stochastic

wave-function framework developed in Chapter 3 to describe the dynamics of multilevel

atoms. Finally, some results are shown.

In the end, the technique of solving a fully quantized master equation proves

mostly unfeasible for describing collective effects. Despite the greatly enhanced calcu-

lation possibilities provided by the stochastic wave-function methods, the large number

of particles required to model the desired collective effects is simply too large, with

the existing semiclassical calculations [86, 87, 88] having a distinct advantage in this

respect. The fully quantum methods presented here, however, allow for a more detailed

description of the cooling process, as well as easily describing the time-evolution of the

cooling. This turns out to be important in aiding the design of experiments.
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5.2 Physical picture of the cooling mechanism

This section discusses the basic physical mechanism by which cavity laser cooling

occurs. Atoms and molecules will be considered, both treated as two-level systems, but

with the difference that the two-level molecule can decay from its excited state either

back to the ground state or to one or more other internal states. The latter process

is called a Raman transition, and it is assumed here that a molecule undergoing such

a transition becomes no longer trapped by the experiment, and the molecule is lost.

These other internal atomic states are not included in the model explicitly, but the

possibility of a Raman transition occurring and the molecule being lost will be built in.

The branching ratio for either going back to the ground state or undergoing a Raman

transition is determined by the various internal oscillator strengths for the molecule,

and it can be adjusted in the model to suit the molecule being considered.

When an atom interacts with a laser, photons are absorbed and scattered. In

general, two different processes can occur, incoherent and coherent scattering. Inco-

herent scattering dominates at higher laser intensities which saturate the atom. The

absorbing photons arrive often enough that, by the energy-time uncertainty principle,

the scattered photons do not necessarily have the same energy as the incoming photons.

If, say, two photons are absorbed and scattered in a short enough time, only the sum

of the frequencies of the outgoing photons must equal the sum of the two absorbed

photons. Coherent scattering on the other hand, dominates at low laser intensities for

which the atom is only weakly perturbed. Photons arrive spaced apart far enough in

time that the scattered photons must have the same frequency of the incoming photons.

By detuning far from the atomic transition, and using an appropriately small

Rabi frequency, that is, the intensity of the probe laser, the incoherent scattering peaks

are suppressed, and coherent scattering becomes the dominant process. However, co-

herent Raman transitions to untrapped states remain. In free space, the ratio of the



90

rate of Rayleigh (good) scattering events to the rate of Raman (bad) scattering events

is independent of the detuning, and depends only on the various molecular oscillator

strengths. Introducing a cavity can, however, enhance one process over the other, for

the right parameter values. Momentum and energy conservation will be imposed for

the scattering process, and the possibility of Raman transitions will be included.

A molecule is in a cavity oriented along the z-axis and interacts with a transverse

probe laser aligned along the x-axis. The laser frequency is ωL = ckL and the cavity fre-

quency is ωc = ckc. The molecule scatters a photon with wave vector ks. Conservation

of momentum requires

p′ = p + ~kL − ~ks, (5.1)

where p = mv, and v is the velocity of the molecule, the prime referring to the state

after scattering. Energy conservation requires

ωs = ωL + ∆ + δr, (5.2)

where

∆ = −(kL − ks) · v − ~
2m

(kL − ks)2, (5.3)

and δr = ωr − ωa, is the internal energy difference for the Raman transition. The first

term is the so-called two-photon Doppler effect, and the second term describes recoil

heating due to laser and cavity photons. Rayleigh-scattering processes are described by

the above equations with δr = 0.

Equation (5.2) indicates that the scattered photon has a frequency determined

by the probe-laser frequency, the angle of the scattered photon relative to the initial

velocity of the molecule, and the Raman energy difference. Since the motion along

the x-axis is not of importance here, it will be convenient to set vx = 0. Defining

ωrec,L = ~k2
L

2m as the recoil frequency associated a laser photon and ωrec,s = ~k2
s

2m as the

recoil frequency associated with a cavity photon, Eq. (5.3) then becomes

∆ = ks · v − ωrec,L − ωrec,s. (5.4)
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If the scattered photon has a frequency greater than the frequency of the laser photons,

ωs > ωL, then Eq. (5.4) implies that ∆ must be positive for a Rayleigh scattering event

(δr = 0), which implies that ks · v > ωrec,L + ωrec,s. This in turn implies that ks · v is

positive, so that the vectors ks and v must point in the same direction along the z-axis.

With this information, it is clear from Eq. (5.1) that the final molecular momentum

along the z-axis p′z must be less than the initial molecular momentum along the z-axis

pz. Thus, for a scattering event in which ωs > ωL and in which the scattered photon is

emitted in the z-direction, the molecule’s momentum is decreased.

Up to this point, none of this is terribly useful for cooling since scattered photons

can of course be emitted in directions other than along the z-axis and with frequencies

that are not greater than the laser frequency. However, if an optical cavity with fre-

quency ωc is introduced along the z-axis, it will greatly enhance photon emission into

the cavity mode from an atom or molecule in the cavity. If the cavity frequency is set

such that ωc > ωL, then from the discussion in the preceding paragraph, scattering pro-

cesses which decrease the particle’s momentum along the z-axis will occur preferentially,

more often than processes that increase its momentum. The effect of this on a gas of

atoms or molecules over repeated scattering events is to cool the gas.

In a cooling experiment, Raman transitions are undesirable since they lead to a

loss of molecules. The process of cavity cooling acts to suppress Raman processes. The

enhancement by the cavity of emissions along the z-axis with frequency ωc implies in

Eq. (5.2) that if Rayleigh processes (δr = 0) are resonant with the cavity, then Raman

processes (δr 6= 0) will not be, and will not be enhanced.

5.3 Theoretical models

For the purposes of developing the basic physical model, only atoms and not

molecules will be considered for the time being. As before, the atom will be approx-

imated as a simple two-level system. Later, once the underlying theory has been de-
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veloped, the behavior of molecules will be integrated into the equations. The model

is intended to describe a situation in which one or more two-level atoms in a cavity,

interacting with a single cavity mode along the z-axis, and driven by a transverse pump

laser along the x-axis. The equations of motion will first be developed for a single atom

in a cavity. After that, they will be extended to treat the case of multiple atoms, each

interacting with the cavity but neglecting interactions between atoms. Master-equation

techniques will be used to describe the fully quantum system. The cavity mode will then

be approximated as a classical field, a valid approximation in the limit of large numbers

of cavity photons. This will keep the number of quantum states needed for a numerical

calculation to a minimum when the cavity is well populated. If the cavity population

is very small and the semiclassical approximation is not valid, the fully quantum equa-

tions will remain numerically tractable since only a few modes of the cavity will need

to be included in a calculation. Stochastic wave function simulations similar to those

employed in Chapter 3 will be applied to perform calculations.

5.3.1 Single atom

The master equation describing an atom, coupled to the photon vacuum, in a

cavity, also coupled to the photon vacuum, with the atom driven transversely by a

laser, is

ρ̇ =
i

~
[ρ,Hs] + Lρ +Kρ, (5.5)

where ρ is the reduced density matrix of the atom-cavity-mode system, L is a super-

operator describing spontaneous emission (characterized by the parameter Γ), K is a

superoperator describing damping of the cavity mode (characterized by the parameter

κ), and the system Hamiltonian is given by

Hs = −~δca
†a− ~δaσ

†σ + ~
[
σ†(g(x)a + Ω) + H.c.

]
, (5.6)
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where a (a†) is the annihilation (creation) operator for a cavity photon, σ (σ†) is the

annihilation (creation) operator for an internal atomic excitation, δc = ωl − ωc is the

laser-cavity detuning, and δa = ωl − ω0 is the laser-atom detuning.

The equation of motion for the cavity mode can be determined by first writing

down the Heisenberg equation of motion for the cavity-mode operator. This will yield

a hybrid set of equations, with the atom-laser system being described by a density-

operator equation of motion (master equation) and the cavity mode described by an

operator equation of motion with fluctuation terms (Langevin equation), in which form

it can be more easily be approximated as a classical field. The process of transitioning

from a master equation to a Langevin equation is discussed in the literature [58, 15, 89].

Skipping these details, the resulting equation of motion for the cavity mode is

ȧ =
i

~
[Hs, a]− κ

2
a + F1

=
(
iδc − κ

2

)
a− ig(x)σ + F1.

(5.7)

To treat the cavity mode classically, it is necessary to find the equation of motion for

the average value of the mode operator a, which is denoted here by α = 〈a〉. Utilizing

the characteristic of noise operators that they average to zero, 〈F1〉 = 0, a set of two

coupled equations is obtained, the first of which is

α̇ =
(
iδc − κ

2

)
α− ig(x)σ, (5.8)

and the second of which is

ρ̇ =
i

~
[ρ,Hs] + Lρ, (5.9)

with the density matrix now only consisting of internal and external atomic states (the

cavity states having been traced over), and with the system Hamiltonian given now by

Hs = −~δcα
2 − ~δaσ

†σ + ~
[
σ†(g(x)α + Ω) + H.c.

]
. (5.10)

Note that in obtaining Eq. (5.9), the fact that TrcavKρ = 0 has been used, which is

a general property of superoperators of Lindblad form when the states to which they
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correspond are traced over. The number of photons n in the cavity mode is given by

n = α2. The solution of this system of equations should agree with the solution of

the fully quantum density matrix equation in the limit that the cavity mode is well

populated.

Given that only situations in which the pump laser will drive the atom weakly

are being considered here, it is possible to make the further approximation that the

excited state of the atom can adiabatically eliminated. This will decrease the state

space required for the calculation by a factor of two, thus improving the efficiency. This

will be especially necessary when considering more than one atom at a time, which is

expected to be computationally intensive.

The adiabatic-elimination procedure is easiest to implement using projection-

operator techniques. The goal is to break Eq. (5.9) into four separate equations, one each

for the sub-density-matrices ρij = PiρPj , for i,j = g,e, and where Pi is the projection

operator into the i subspace. These sub-equations are

ρ̇ee = −Γρee + i [g(x)α + Ω]
(
ρegσ − σ†ρge

)
(5.11)

ρ̇eg = −
(

Γ
2
− iδa

)
ρeg + i [g(x)α + Ω]

(
ρeeσ

† − σ†ρgg

)
(5.12)

ρ̇ge = −
(

Γ
2

+ iδa

)
ρge − i [g(x)α + Ω] (σρee − ρggσ) (5.13)

ρ̇gg = Γρee + i [g(x)α + Ω]
(
ρgeσ

† − σρeg

)
. (5.14)

The next step is to set ρ̇ee = ρ̇eg = ρ̇ge = 0 (detailed explanations of this procedure can

be found, for example, in Refs [8] and [60]). The term ρee in the two optical coherence

equations can also be neglected (again, see [60]) to obtain

ρeg =
g(x)α + Ω
δa + iΓ

2

σ†ρgg (5.15)

ρge =
g(x)α + Ω
δa − iΓ

2

ρggσ. (5.16)

The condition ρ̇ee = 0 can now be imposed on the ρee equation, and, substituting in the
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values of the optical coherences just obtained,

ρee =
i

Γ
[g(x)α + Ω]2

[
1

δa + iΓ
2

− 1
δa − iΓ

2

]
σ†ρggσ

=
[g(x)α + Ω]2

δ2
a +

(
Γ
2

)2 σ†ρggσ

= sσ†ρggσ,

(5.17)

where the saturation parameter of the atom due to interaction with both the laser and

the cavity field has been defined,

s =
[g(x)α + Ω]2

δ2
a +

(
Γ
2

)2 . (5.18)

Inserting the expression for ρee along with the previously obtained optical-coherence

expressions into the ground-state equation of motion,

ρ̇gg = Γsσ†ρggσ + i [g(x)α + Ω]2
[

ρggσσ†

δa − iΓ
2

− σσ†ρgg

δa + iΓ
2

]

= Γsσ†ρggσ + i [g(x)α + Ω]2
[

δa + iΓ
2

δ2
a +

(
Γ
2

)2 ρggσσ† − δa − iΓ
2

δ2
a +

(
Γ
2

)2 σσ†ρgg

]

= iδas
[
ρgg, σσ†

]
− Γ

2
s
{

ρgg, σσ†
}

+ Γsσ†ρggσ,

(5.19)

where the square brackets denote a commutator while the curly brackets denote an

anticommutator. Note that the last two terms comprise a decay operator of Lindblad

form. This is encouraging, since the adiabatic elimination applied to Lindblad-type

system should yield another Lindblad-type system. Note also that all terms are of first

order in the perturbation parameter s. This makes sense because the above adiabatic-

elimination procedure is equivalent to expanding the equations of motion in powers

of the intensity of the laser driving transitions within the atom, then truncating this

expansion and keeping only terms up to first order.

The ground-state equation of motion that has been obtained can now be solved

using the same wave-function Monte Carlo technique described in Chapter 3, where

at each time step the other coupled equation of the cavity mode amplitude α found
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above must be consistently solved. Note that, as opposed to the atom-laser system

studied in Chapter 3, the equations here consist of two separate entities coupled to the

photon reservoir. These must each be treated separately, with appropriate quantum

jump operators. In any given time step, it is possible for either or both the atom and

the cavity to undergo a quantum jump. The jump operator for the atom is identical

to the operator used in Chapter 3, except that it is much simpler since the atom here

is only a two-level system. The jump operator for the cavity causes the cavity mode,

which is a quantum harmonic oscillator, to decay down the ladder by one step. The

properties of this operator are easily obtained from the atomic case, with the lowering

operator a playing the role of the internal atomic lowering operator (i.e., Pauli spin

matrix) σ.

5.3.2 Multiple atoms

For N atoms, with each atom interacting individually with the cavity, and ne-

glecting interactions between different atoms, the system Hamiltonian becomes

Hs = −~δca
†a +

N∑

i=1

Hi, (5.20)

where Hi is the Hamiltonian describing a single atom and its interaction with the pump

laser,

Hi = −~δaσ
†
i σi + ~

[
σ†i (ga + Ω) + H.c.

]
. (5.21)

5.3.3 Accounting for Raman losses and other experimental effects

In order to extend the model just developed to describe Raman transitions that

occur in molecules, the following procedure can be employed during the Monte Carlo

wave-function procedure. At the end of each time step, the saturation of the atom given

in Eq. (5.18), due to the atom’s interaction with both the laser and the cavity mode,

can be calculated. Then, using a random number generated in the simulation, along
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with the knowledge of the branching ratio for Rayleigh to Raman scattering processes

obtained from details of the internal structure of the molecule, it can be determined

whether or not a Raman transition has occurred. The probability of this occurrence

is proportional to the value of the saturation parameter. If a Raman transition does

occur, the molecule can be removed from the simulation.

The detailed time-dependent calculations that the method presented here yields

also allow for the ability to include realistic experimental effects that simpler calculations

must ignore. This can be useful when the success of an experiment depends on factors

such as the loading of a pulse of molecules into the cavity region, or the escape of fast-

moving molecules out of the cavity region. In principle, it is possible to include all of

these features in the Monte Carlo procedure. For example, using the many-atom model,

the simulation could begin with a certain number of atoms of a given temperature. These

atoms then begin cooling, while new atoms can be introduced as time evolves.

5.4 Comparison of fully quantum to semiclassical model

The validity of the classical-cavity-mode approximation made earlier can be tested

by performing Monte Carlo simulations using both the fully quantum equations of mo-

tion and the semiclassical equations of motion. A simulation is set up in which an

ensemble of atoms is cooled using cavity laser cooling. The possibility of Raman transi-

tions is neglected for the present case. The parameters for the simulation are Ω = 5ωr,

g = ωr, η = 20ωr, δa = −10ωr, δc = −20ωr, Γ = 2ωr, κ = 5ωr, and an initial tempera-

ture of around T = 50~ωr/kB. The calculation utilizes the single-atom model developed

above, and propagates 25 stochastic wave functions. The cavity-laser detuning δc is held

fixed.

The ensemble-average population distribution for a series of times during the

propagation is shown in Fig. 5.1. From these plots, it can be seen how the cooling

affects only the population with velocities (both positive and negative) that satisfy the
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resonance condition in Eq. (5.2), and also including velocities in a range of ±κ/2kL

around that point. Population around p = ±8~kL is shifted into lower momentum

states as the scattering proceeds, leading to a buildup of population in the middle of

the distribution. The cavity-laser detuning could then be tuned slowly as the population

shifted down, squeezing the ensemble towards the center of the graph. Thus, it would

be expected that the limiting temperature should be on the order of κ, which is in

accordance with other cooling theories. This limit has been verified by the simulations.

The average kinetic energy over time for the same calculation is shown in Fig. 5.2.

The black line represents the calculation performed using the fully quantum model, while

the red line represents the calculation performed using the model with the classical-

cavity-mode approximation. The results are in good agreement within the error bars of

the calculation, which used only 25 stochastic wave functions. This indicates that the

numerically faster semiclassical model provides a good alternative to the slower fully

quantum model.

Figure 5.3 illustrates the evolution of the population of the cavity mode over time

for the same calculation. The black line is again obtained using the fully quantum model,

and the quantity calculated is the quantum-mechanical average of the cavity photon

number operator n = a†a. And again, the red line is obtained using the semiclassical

model, with the quantity calculated being the average of the square of the cavity-mode

amplitude α2. The fully quantum calculation was performed including only the first 5

cavity states (n = 0 - 4) in the numerical basis. It can be observed in the figure that the

results do not agree well in the short term, with the semiclassical calculation oscillating

with much greater amplitude than the fully quantum calculation, before the two settle

down in agreement at a value of 1. This is not surprising, though, since a cavity

population of unity is hardly in the high-population limit for which the classical-mode

approximation is valid. Despite this discrepancy, the evolution of the atomic momentum

distribution in Fig. 5.2 agrees quite well. This is encouraging, as the important quantity
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Figure 5.1: Time evolution of the momentum probability distribution for an ensemble
of particles undergoing cavity laser cooling. Time is indicated, measured in units of the
inverse recoil frequency ω−1

r .
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time is measured in units of the inverse recoil frequency ω−1

r . The black line was obtained
using the fully quantum model while the red line was obtained using the semiclassical
model.
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for studying cooling processes is the momentum distribution, and not the cavity-mode

properties.

5.5 Conclusion

This section has explored an interesting application of the master equation tech-

niques built up elsewhere in this thesis. The generalization of the equations of motion

for an atom and a laser, to include a cavity, adds a great deal of richness to the phenom-

ena that can be explored. Extending the stochastic wave-function methods first applied

to an atom to a cavity interacting with the photon vacuum provided another example

of the utility of such techniques. In the end, however, the number of atoms required to

explore the collective effects as originally intended proved to be out of reach of these

methods, given the computing speeds of the present. More efficient models that treat

the center of mass of the atom classically have had more success in observing collective-

cooling phenomena. The main practical use of the calculation methods presented here

has been in providing realistic modeling of experimental details.
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Chapter 6

Nonlinear Optical Spectroscopy

6.1 Introduction

The goal of this chapter is to bring together some of the ideas developed in this

thesis and apply them to the subject of nonlinear optical spectroscopy. The problem

is formulated in a rather general manner, while the eventual aim is to provide a theo-

retical analysis of the physics of collisional effects on atomic lineshapes. An important

application of this theory is the investigation of the experimental technique of transient

four-wave mixing, in which a series of short, temporally spaced laser pulses are applied

to an atomic or molecular gas or to a condensed-matter system. This setup can provide

a great deal of information about the interaction properties of the system. Importantly,

details of collisions within the system can be probed on a time scale for which the

Markov approximation, which has been utilized in Chapter 3 and Appendices B and C

of this thesis, is no longer valid. The physics of these short time scales, for which the

interaction properties are affected by the system’s memory of previous events, is referred

to as non-Markovian dynamics.

The current state of ultrafast laser technology has made possible the production

of laser pulses short enough to effectively probe the non-Markovian regime. Recent

experiments at JILA have made use of these advances in order to observe non-Markovian

dynamics in the collisions between atoms in a dense gas of potassium [90]. A common

signature of physics beyond the Markov approximation is revealed by lineshapes that



104

do not conform to a Lorentzian profile.

The field of nonlinear optical spectroscopy is well established and contains a re-

fined set of concepts, formalism, and techniques [91]. The development in this chapter

aims to marry these established methods to a detailed microscopic theory of atomic col-

lisions. Beginning in the 1950’s, physicists have approached the problem of a theoretical

treatment of the phenomenon called pressure broadening, in which collisions within a

gas of atoms have the effect of broadening the spectral lines obtained by probing the gas

with light. An atom, by itself in free space, will exhibit a finite-width lineshape when

probed. This lineshape is a result of the atom’s constant interaction with the surround-

ing photon vacuum, and it is this coupling that produces the phenomenon known as

spontaneous emission, a subject explored in detail elsewhere in this thesis. Introducing

the interaction with surrounding particles, which can be thought of as another reservoir

in addition to the photon vacuum, causes the lineshapes to be further broadened.

Some of the earliest work on the theory of pressure broadening was done by

Baranger [92, 93, 94], who developed an extensive theory utilizing relaxation theory,

in which a single atom was modeled as interacting with a reservoir of other atoms, as

well as the photon reservoir. This provided the basis for further work by others such as

Fano [95, 96, 97] and Ben-Reuven [98, 99, 100, 101]. Fano’s biggest contribution to this

field was to rework Baranger’s theory into a much more elegant formalism of relaxation

theory, as presented initially in Ref. [96] and in a more pedagogical format in Ref. [97].

Ben-Reuven, whose early work was with Fano, continued along these lines to extend

and apply the theory to pressure-broadening experiments.

The theory up to this point was mostly within what is called the impact approx-

imation, in which it is assumed that particles interact with each other instantaneously

before moving on, and which is equivalent to the Markov approximation. Later work by

Cooper and Burnett [102, 103, 104], Silbey and Harris [105], Szudy and Balis [106, 107],

Allard and Keilkopf [108], and Mukamel [109] built on previous work, applying the
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theory to newer experiments as well as considering physics outside the impact approxi-

mation.

In the theory presented in the chapter, the modern methods of nonlinear optical

spectroscopy will be used, with the physics of the interparticle interactions described

by extending the relaxation-theory techniques cited above. The nonlinear spectroscopy

techniques offer the advantage of being well suited to describing time-dependent phe-

nomena and experimental techniques such as transient multiwave mixing. The estab-

lished relaxation-theory techniques offer the advantage of a detailed description of par-

ticle scattering using realistic potentials and one or more collision channels. The main

goal of this chapter is to present the basic ideas of this theory, with the hope that they

can be used in the future to better understand the physics of the experiments currently

being conducted.

6.2 Basics of nonlinear optical spectroscopy

Many sources describe the formalism of nonlinear optics, and the basics will be

summarized in this section before attempting to incorporate scattering relaxation theory.

In particular, Ref. [91] by Mukamel provides an elegant and detailed development of

the methods of nonlinear optics, and this section will employ the same notation and

terminology. Beginning with the the Hamiltonian of the total system,

H = H
(S)
0 + H

(B)
0 + HSB + HSL(t), (6.1)

where H
(S)
0 is the Hamiltonian of the atom or molecule (system), H

(B)
0 is the Hamilto-

nian of the bath, which could be the photon vacuum and/or other perturbing particles,

HSB is the interaction of the system with the bath, and HSL is the interaction of the

system with all of the probe lasers. The density matrix obeys the Liouville equation,

dρ

dt
= − i

~
Lρ− i

~
Lint(t)ρ. (6.2)
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Here, the following Liouville-space operators have been defined (see Appendix A for a

brief review of Liouville space),

LA =
[
H

(S)
0 + H

(B)
0 + VSB, A

]
, (6.3)

LintA = [HSL(t), A] , (6.4)

VA = [V,A] , (6.5)

where V is the dipole operator such that HSL(t) = −E(r, t) ·V . Expanding the density

matrix in powers of the electric field yields

ρ(t) = ρ(0)(t) + ρ(1)(t) + ρ(2)(t) + . . . (6.6)

The polarization,

P (r, t) = Tr [V ρ(t)] = 〈〈V |ρ(t)〉〉, (6.7)

is expanded similarly, and the nth order contribution, P (n)(r, t) = 〈〈V |ρ(n)(t)〉〉, can be

shown to be

P (n)(r, t) =
∫ ∞

0
dtn

∫ ∞

0
dtn−1 . . .

∫ ∞

0
dtnS(n)(tn, tn−1, . . . , t1)

× E(r, t− tn)E(r, t− tn − tn−1) . . . E(r, t− tn − tn−1 . . .− t1),

(6.8)

with

S(n)(tn, tn−1, . . . , t1) =
(

i

~

)n

〈〈V |G(tn)VG(tn−1)V . . .G(t1)V|ρ(−∞)〉〉 , (6.9)

the nth-order nonlinear response function. The retarded Liouville-space Green function

for evolution of the system and bath without interaction with the probe laser is given

by

G(t) = θ(t) exp
(
− i

~
Lt

)
. (6.10)

The first order response function gives the usual linear response of a system. The

present work will be primarily concerned with the first important nonlinear contribution.
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Since the second-order contribution vanishes for homogeneous systems [91], this will be

the third-order nonlinear response function,

S(3)(t3, t2, t1) = 〈〈V |G(t3)VG(t2)VG(t1)V|ρ(−∞)〉〉 . (6.11)

This equation separates the physics due to interactions with the probe-laser field V,

from the physics of the atom interacting with the other atoms and with the vacuum

photon reservoir, described by the Green function G(t). This is convenient, and the

theory developed later derives an expression for this Green function utilizing a detailed

scattering theory framed in a relaxation-theory format. With a method of calculating

G(t) in hand, Eq. (6.11) can be used to determine a variety of features relevant to

transient four-wave mixing experiments.

6.3 Phenomenological damping model

Some important concepts are now introduced, in the context of a simple model

damping. The effects of collisions on an atomic lineshape can be divided into two cat-

egories, homogeneous and inhomogeneous. Homogeneous broadening is a dynamical

effect that is caused by the repeated collisions an atom undergoes, leading to a fluc-

tuation in the atom’s transition energy. This fluctuation, over time, results in a net

broadening. Inhomogeneous broadening, on the other hand, is a static effect due to the

fact that atoms see different interaction-induced frequency shifts depending on their lo-

cation, and becomes more prominent at low temperatures and in solids. In experiments,

the basic CW photon-echo technique allows for the cancelation of the effects of inhomo-

geneous broadening. Each atom’s transition frequency, having a static shift, causes the

phase to evolve at a different rate when the system is probed. When the second pulse

is applied and the evolution reversed, the disparate atoms all catch up with each other

at the same time, and an echo pulse is emitted. Homogeneous broadening, however, is

unaffected by this technique, and remains in the observed signal.
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The JILA experiment mentioned above [90] uses transient four-wave mixing tech-

niques to probe collision physics on very short time scales. Over such short probe

times, the collision physics that usually produces homogeneous broadening is now ap-

proximately static (the so-called quasi-static approximation), with each atom’s relative

distance changing very little over the probe time. Thus, although the scattering is still

a fundamentally dynamical process, the physics being probed is of the inhomogeneous

type. This means that a photon echo technique can be applied to cancel out this new

type of inhomogeneous broadening, and details about the interatomic potentials can

by probed. As a result, this type of technique is generally not considered to be a true

photon echo, since there is no fundamentally static interaction shifts in the problem, as

there is in the traditional sense of photon echoes. Nevertheless, the basic idea is the

same.

A basic understanding of collisional damping can be obtained by following the

phenomenological approach presented in many introductory quantum-optics textbooks,

a good example of which is Meystre and Sargent [57]. To begin with, take a simple

density-matrix model of a two level atom, ground state |g〉 and excited state |e〉, in-

cluding spontaneous emission with a rate Γ, i.e., the optical Bloch equations. Since

homogeneous collisional broadening is caused by a fluctuation of the atomic transition

frequency over time as the atom interacts with other atoms, it affects the off-diagonal

density-matrix element. Representing the fluctuation as δω(t) results in an equation of

motion for the coherence density-matrix term of

ρ̇ge = − (iω0 + iδω(t) + Γ) ρge, (6.12)

which has the formal solution

ρge(t) = ρge(0) exp
(
−(iω0 + Γ)t−

∫ t

0
dt′iδω(t′)

)
. (6.13)

If, as is often the case, the time scale considered is long enough that the fluctuating

term oscillates many times over that period, the integral will evaluate to zero. (Actually,
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the integral might yield a nonzero constant, but this could just be absorbed into the

bare transition frequency ω0. This is the case for an atom interacting with the photon

vacuum: the resulting Lamb shift is considered to be a part of the bare atomic energy

splittings.) This will yield an equation describing exponential decay of the coherence

matrix element, and is the case for most descriptions of spontaneous emission.

6.4 Transient multiwave mixing using relaxation theory

6.4.1 Relaxation theory of static pressure broadening

It is now necessary to summarize the essential results of the relaxation theory of

pressure broadening. The work by Fano [96] formalizes and generalizes earlier work [92,

93, 94], and the notation and techniques used by Fano will be employed here.

Consider a system, consisting of one, or possibly more atoms or molecules, and a

bath, consisting of a large number of perturbing atoms. The two can interact with each

other. Note that, for simplicity, spontaneous emission (another form of relaxation) has

been left out for now. However, this does not affect the equations in any nontrivial way,

and it can be easily inserted later. The total Hamiltonian is

H = H
(S)
0 + H

(B)
0 + VSB, (6.14)

where H
(S)
0 is the Hamiltonian of the system, H

(S)
0 is the Hamiltonian of the particle

bath, and VSB is the interaction between the two.

An important part of the development in Ref. [96] is to show that the resolvent

operator for the total evolution can be disentangled into a contribution of the bare

system and bath, and a contribution of the interaction of the two by using a known

operator identity,

1
ω − L0 − L1

=
1

ω − L0

[
1 + M(ω)

1
ω − L0

]
. (6.15)

The operator M(ω) contains all of the physics of the interaction, with everything else
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simply free evolution, and it can be expressed in various forms,

M(ω) =
1

1− L1(ω − L0)−1
L1

= L1
1

1− (ω − L0)−1L1

= L1 + L1
1

ω − L0 − L1
L1

= L1

∞∑

n=0

[
1

ω − L0
L1

]n

.

(6.16)

The interaction operator M is then expanded in terms of density,

M =
n∑

i

M
(1)
i +

n∑

i=2

i−1∑

j

M
(2)
ij +

n∑

i

i−1∑

j

j−1∑

k

M
(3)
ijk . . . , (6.17)

where n is the number of atoms or molecules. Reference [96] restricts its analysis to

include only the first term in the above expansion, describing only binary collisions, and

defining m = M
(1)
i . The present work will make the same assumption.

Also assumed in Ref. [96], and common to most of the early work on pressure

broadening, is that the total density matrix can be factorized into a product of a system

density matrix and a bath density matrix,

ρ = ρ(S)ρ(B). (6.18)

The validity of this assumption is explored in later papers [100, 102] by other authors.

For present purposes, this factorization is assumed to be valid.

Having made the binary-collision approximation, the operator m, which it is

useful to think of as a Liouville-space version of the t-matrix, obeys the equation

m(ω) = L+ L 1
ω − L0

t(ω), (6.19)

which is a Liouville-space version of the Lippman-Schwinger equation. Ref. [96] shows

that this equation is solved by

m(ω) =
ω − L0

2πi

∫ ∞+iη

−∞+iη
dψ

{
1

ψ −H0
t(ψ) +

1
ψ − ω −H∗

0

t∗(ψ − ω)

+
1

ψ −H0

1
ψ − ω −H∗

0

t(ψ)t∗(ψ − ω)
}

ω − L0

(ψ −H0) (ψ − ω −H∗
0 )

,

(6.20)
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with

ε = Imω > η > 0. (6.21)

This ensures that Im(ψ − ω) < 0.

6.4.2 Extension to transient nonlinear-optics problems

Reference [96] manipulates the expression for the Liouville-space interaction op-

erator given in Eq. (6.20), expanding it in a series of terms involving the two-particle

t-matrix. Although this series of terms is rather complicated, it provides a starting

point for making approximations.

Now, a method will be developed that utilizes m, obtained in some manner, and

applies it to the nonlinear optics formalism earlier in this chapter. This means obtaining

a Green function that can be used in determining the third-order nonlinear response

function in Eq. (6.11). Using Eq. (6.15) and taking the Fourier transform to go to the

time domain, the time-domain Green function for evolution of the system interacting

with the perturber bath is given by

G(t) = G0(t)− 1
2πi

∫ ∞

−∞
dωG0(ω)m(ω)G0(ω)e−iωt. (6.22)

Expanding the frequency-space Green function in a basis of bare-system Liouville-space

eigenstates,

G0(ω) =
1

ω − L0 + iε

=
∑
n,m

|nm〉〉〈〈nm|
ω − ωnm + iε

,
(6.23)
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which yields

G(t) = G0(t)−
∑

n,m,n′,m′
|nm〉〉〈〈n′m′| 1

2πi

∫ ∞

−∞
dω

〈〈nm|m(ω)|n′m′〉〉e−iωt

(ω − ωnm + iε)(ω − ωn′m′ + iε)

= G0(t) +
∑

n,m,n′,m′,ωnm 6=ωn′m′

|nm〉〉〈〈n′m′| θ(t)

×
(

mnm,n′m′(ωnm)
ωnm − ωn′m′

e−iωnmt +
mnm,n′m′(ωn′m′)

ωn′m′ − ωnm
e−iωn′m′ t

)

(6.24)

In obtaining the above expression, integration has been performed along the real line,

skirting the poles and obtaining residues.

If the methods in Ref. [96] are used to calculate m, then it can be applied to

Eq. (6.24) to determine a time-dependent Green function for use in Eq. (6.11). In

turn, this quantity will provide a powerful means of understanding the physics of non-

Markovian dynamics in experiments.

6.5 Conclusion

The theory in this chapter represents a preliminary idea for merging the elegant

techniques of relaxation theory — applied successfully to static pressure broadening in

the past — to the time-dependent nonlinear optics experiments being conducted today.

In it’s current form, it is an interesting exercise in the methods of Liouville space, system-

reservoir interactions, and relaxation theory that have been discussed extensively in this

thesis. Additionally, the ideas here show promise for obtaining a better understanding

of non-Markovian dynamics.
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Appendix A

Liouville Space

The primary purpose of the Liouville-space formalism is to provide a convenient

notation for expressing operations of the type often encountered in relaxation problems

and using density matrices. According to Ref. [91], the term “Liouville space” was first

used by Fano in his 1963 publication on pressure broadening [96], and his work through

the years made extensive use of these techniques. Fano’s paper, in fact, is a very good

illustration of the utility of the Liouville-space formalism. In it, equations are developed

to describe the interaction of a single particle with a surrounding gas of particles, which

is represented as a reservoir, and thus requires the use of a density matrix for the

atom. By using the Liouville-space formalism, Fano is able to derive an equation for

the operator m, given in Eq. (6.19) from Chapter 6 of this thesis, which contains all

of the physics of the system-reservoir interaction. This equation has the form of the

Lippman-Schwinger equation obtained in two-particle scattering theory, and, indeed,

just as m is the Liouville-space version of the t-matrix, Eq. (6.19) is the Liouville-space

version of the Lippman-Schwinger equation. Analogous equations such as this illustrate

the power that using such a notation can offer.

The Liouville space formalism is described in a variety of places in the litera-

ture [91, 63, 96, 97, 102, 110], and the intention of this appendix is to provide a basic

motivation for the formalism, and summarize its main tenants, for reference through-

out the thesis. For a more detailed account, the reader is referred to any one of the
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aforementioned references.

Ordinary quantum mechanics, using wave functions, is formulated in Hilbert

space. The density matrix, a generalization of the wave function to account for non-pure

states, can also be used in Hilbert space. This is, in fact, how the Liouville equation as

it is usually written,

ρ̇(t) = − i

~
[H, ρ(t)] , (A.1)

for the density operator ρ and the Hamiltonian H. This equation cannot be expressed as

a linear system, since the commutator produces terms in which ρ appears left multiplying

the Hamiltonian. In Liouville-space notation, an operator called a Liouvillian or a

superoperator is introduced. This operator L, when acting upon the density operator,

provides the required commutator, and thus the Liouville equation written in Liouville-

space notation is

ρ̇(t) = − i

~
Lρ. (A.2)

The Liouville equation is now written in a form that is equivalent to the Schrödinger

equation. This equivalence turns out to be very useful because many operations per-

formed in Liouville space will appear to be formally identical to familiar operations

performed in Hilbert space. Equation (A.2), when expanded in a basis, denotes the

N ×N density matrix now as a vector of length N2, and the superoperator L appears

as a N2 ×N2 matrix. This is now a linear system that can, for example, by plugged in

to a linear solver on a computer. However, this advantage has come at a cost, since the

size of the matrices involved are much larger than the Hamiltonian matrix represented

in Hilbert space.

Superoperators have four indices when referring back to the original Hilbert-space

operations, two that denote left multiplication of the density operator, and two that

denote right multiplication of the density operator. Explicitly, the operator L given
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above is expressed in terms of the Hamiltonian as

Lij,kl = Hikδjl −H∗
jlδik. (A.3)

This four-index notation is often referred to as tetradic notation [91, 110].

Abstract quantum-state vectors in Liouville-space notation are often, especially in

the more modern literature, written with two angle brackets as |a〉〉. The completeness

relation in Liouville space is
∑

i,j

|ij〉〉〈〈ij| = 1, (A.4)

and vectors can be expanded in basis in a manner analogous to Hilbert space,

|a〉〉 =
∑

i,j

|ij〉〉〈〈ij| |a〉〉. (A.5)

The formalism of Liouville space is used extensively in Chapter 6 of this thesis.

There, the formalism allows a great deal of simplification of the resulting equations,

and makes clear the analogy to similar but less general equations in Hilbert space. The

methods of Green functions is utilized in Liouville-space form. Liouville space concepts

are also very useful when performing numerical calculations, and have been used in

every calculation involving density matrices in this thesis. The author has constructed

a suite of Fortran subroutines that allow conversion back and forth between Hilbert

space and Liouville space.



Appendix B

Spontaneous-Emission Relaxation Operator for Atoms with Complex

Internal Structure

This appendix is concerned with the derivation of the spontaneous-emission re-

laxation operator for an atom with hyperfine degeneracy, taking into account multiple

hyperfine excited-state manifolds. This type of operator is important for atoms having

multiple excited-state manifolds which are spaced in energy on the order of or smaller

than the natural linewidth, the topic addressed in Chapter 3. When these atoms are

driven with a laser near the transition frequency — as in, for example, laser cooling —

coupling occurs for each of the excited-state manifolds and their effects must be con-

sidered. To understand the dynamics of such an atom in a polarization-gradient laser

field, it is thus important to accurately describe the coherent effects of each substate in

each hyperfine manifold, interacting with the vacuum photon field.

In addition to providing a detailed derivation of a quantity relevant to our nu-

merical calculations, this appendix is meant to illustrate in a general manner the de-

velopment of a relaxation operator. Through this rather elaborate example, it is shown

how the description of a small system, interacting with a large reservoir approximated

(or exactly described) as made up of a large number of harmonic oscillators, can be

reduced to a simple, intuitive, parameterized description, as long as certain criteria

(such as the Markov approximation) are met. In this manner, spontaneous emission, a

phenomenon experimentally observed to behave according to a single parameter Γ, is
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built up from a microscopic description of the atom interacting with the vacuum pho-

ton field. From this description, the phenomenologically determined Γ can be given a

fundamental expression in terms of a series of microscopic interactions.

To begin, this problem is mapped onto the general class of system-reservoir in-

teractions. In the present case, the atom is the system and the vacuum photon field is

the reservoir. The full Hamiltonian for the system plus the reservoir is

H = HA + HR + VA−R, (B.1)

where HA is the bare atomic Hamiltonian, which includes the internal states of the atom

as well as its center of mass, HR is the Hamiltonian of the radiation field, and VA−R is

the interaction between the two. The interaction is described within the electric-dipole

approximation as

VA−R = −D ·E(R)

= −
∑

q=0,±1

(−1)qDqE−q(R)

= −i
∑

q=0,±1

(−1)qDq

∑

i

∑

ε(i)⊥ki

√
~ωi

2ε0L3

[
ε(i)q aie

iki·R − ε(i)q a†ie
−iki·R

]
,

(B.2)

where D is the electric dipole operator for the atom, and E is the electric-field operator

for the photon field. On the second line, the interaction has been expanded into its

spherical components and on the third line the radiation field has been written in an

explicit quantum-mechanical form, quantized in a box of length L, in terms of raising

and lowering operators, a† and a, respectively. The sum over i indicates a sum over field

modes, and for each ki there are two mutually perpendicular polarization vectors ε̂(i).

To simplify the formalism, the atomic center of mass will initially be ignored, setting

the position coordinate to be the origin, R = 0. This will not affect the derivation

fundamentally, and in the end the equations will be easily generalized to include the

center-of-mass degrees of freedom.

The full system-plus-reservoir density matrix ρ evolves in time according to the
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Liouville equation,

ρ̇(t) =
i

~
[ρ(t), H] . (B.3)

This equation describes the evolution of all degrees of freedom of the problem, including

the vacuum photon field. This is unnecessarily detailed and will be impractical to solve

in most situations. The goal is to find an equation of motion for the reduced system

density matrix, defined by taking the trace over all reservoir degrees of freedom of the

full density matrix,

σ = TrRρ. (B.4)

To this end, it is useful to utilize some of the the well-established methods of quantum

system-reservoir theory. It is impractical to present a detailed discussion of this method-

ology here, but these techniques can be easily found in quantum-optics literature, and

a particularly thorough presentation is given by Cohen-Tannoudji in Refs. [8] and [111].

Summarizing, it is assumed that the reservoir is unaffected by the interactions with the

system and that the reservoir has a short memory (the Markov approximation). With

these assumptions, an equation of motion is obtained for the system reduced density

operator σ with temporal coarse graining on a time scale much larger than the time

scale of reservoir fluctuations but shorter than the time scale of evolution of the system,

σ̇(t) =
i

~
[σ(t), HA]− 1

~2

∫ ∞

0
dτ

∑
q

(−1)q

×
{

gq(τ)
[
Dq e−iHAτ/~ D−q eiHAτ/~ σ(t)− e−iHAτ/~ Dq eiHAτ/~ σ(t) D−q

]
+ H.c.

}
.

(B.5)

In the previous equation, gq(τ) is the two-time correlation function for vacuum fluctu-

ations of the photon reservoir and is given by

gq(τ) =
~c

3ε0(2π)3

∫
dω

ω3

c4
e−iωτ

= TrR

[
σRẼq(τ)Ẽq(0)

]
.

(B.6)
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where c is the speed of light and ε0 is the permittivity of free space, and where the

variables with tildes are operators in the interaction representation,

Ẽq(t) = eiHRt/~Eqe
−iHRt/~. (B.7)

It is assumed that the reservoir is initially the vacuum state, so that σR = |0〉 〈0|. From

this it can be seen that

gq(τ) =
∑

ν

|〈ν |Eq | 0〉|2 e−iωνt, (B.8)

where the kets and bras refer to reservoir states. Note that g(τ)∗ = g(−τ). The

correlation time of the reservoir τC is defined such that g(τ) → 0 for τ À τC .

In addition to the above approximations, the secular approximation will also be

made, which requires that the equation of motion for each density-matrix element σ̇ij

have only terms involving density-matrix elements σkl on the right-hand side such that

|ωij−ωkl| ¿ γ, where γ is the order of magnitude of the system-reservoir coupling. The

following discussion focuses on a system with a ground state coupled to multiple excited

states that are separated in energy of the order or smaller than γ. Thus, the ground-

excited energy splitting |ωge| À γ will be a non-secular frequency, while ωeiej ∼ γ will

be a secular frequency.

The particular atomic system under consideration consists of an ground state

with electronic angular momentum J = Jg = 0 and an excited state with J = Je = 1.

The electronic angular momentum is coupled to the nuclear spin quantum number I,

resulting in a ground state with total angular momentum Fg = I, and three excited

states with {Fei} = {I − 1, I, I + 1}. Note, however, that this derivation can be easily

extended to arbitrary angular momentum schemes. It is useful to decompose the system

density operator as illustrated in Fig B.1,

σ̇(t) = σ̇gg(t) +
∑

i,j

σ̇eiej (t) +
∑

i

[σ̇eig(t) + σ̇gei(t)] , (B.9)

where σij(t) = Piσ(t)Pj ; Pi is a projection operator onto the i-th hyperfine manifold,

Pi =
∑

Mi
|JIFMi〉 〈JIFMi|; and Mi is the substate label for the i-th manifold.
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Figure B.1: The partitioning of the density operator for an atom with multiple coupled
excited-state manifolds, each potentially having multiple substates.
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It will be useful to first work out some relations involving sums over electric-dipole

matrix elements related to reduced matrix elements and raising and lowering operators:

∑

Mg ,Mei

〈Mg|Dq|Mei〉 |Mg〉 〈Mei |

=
∑

Mg ,Mei

〈JgIFgMg|Dq|JeIFeiMei〉 |JgIFgMg〉 〈JeIFeiMei |

=
∑

Mg ,Mei

(−1)Fg+Mg+Jg+I+Fei+1
√

(2Fg + 1)(2Fei + 1)

×




Fg 1 Fei

−Mg q Mei








Jg Fg I

Fei Je 1




〈Jg||D||Je〉 |JgIFgMg〉 〈JeIFeiMei |

=A(i)
q

〈Jg||D||Je〉√
2Je + 1

,

(B.10)

and

∑

Mg ,Mei

(−1)q 〈Mei |D−q|Mg〉 |Mei〉 〈Mg|

=
∑

Mg ,Mei

(−1)q 〈JeIFeiMei |D−q|JgIFgMg〉 |JeIFeiMei〉 〈JgIFgMg|

=
∑

Mg ,Mei

(−1)Fei+Mei+Je+I+Fg+1+q
√

(2Fg + 1)(2Fei + 1)

×




Fei 1 Fg

−Mei −q Mg








Je Fei I

Fg Jg 1




〈Je||D||Jg〉 |JeIFeiMei〉 〈JgIFgMg|

=−A(i)
q

† 〈Je||D||Jg〉√
2Je + 1

,

(B.11)

where A
(i)
q

†
and A

(i)
q are the atomic raising and lowering operators defined in Eq. (3.6)

and the symmetry properties of the three-J and six-J symbols have been exploited (see

Ref. [112]).

The equation of motion for each type of sub-density-matrix in Eq. (B.9) will now

be examined. Consider first the equation for the ground-state sub-density-matrix σgg(t),
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which evolves according to

σ̇gg(t) = − 1
~2

∫ ∞

0
dτ

∑
q

(−1)q

×


g(τ)


∑

i

PgDqPeiD−qPgσ(t)Pge
−iω

(i)
0 τ −

∑

i,j

PgDqPeiσ(t)PejD−qPge
iω

(i)
0 τ




+g(−τ)


∑

i

Pgσ(t)PgDqPeiD−qPge
iω

(i)
0 τ −

∑

i,j

PgDqPeiσ(t)PejD−qPge
−iω

(j)
0 τ






 ,

(B.12)

where ω
(i)
0 = ωei − ωg. It will first be shown that the first and third terms combine to

give zero. This first term can be rearranged as

− 1
~2

∫ ∞

0
dτ

∑
q

(−1)qg(τ)
∑

i

PgDqPeiD−qPgσ(t)Pge
−iω

(i)
0 τ

= − 1
~2

∑
q

∑

i

(−1)qPgDqPeiD−qPgσ(t)Pg

∫ ∞

0
dτg(τ)e−iω

(i)
0 τ , (B.13)

and the third term can be rearranged as

− 1
~2

∫ ∞

0
dτ

∑
q

(−1)qg(−τ)
∑

i

Pgσ(t)PgDqPeiD−qPge
iω

(i)
0 τ

= − 1
~2

∑
q

∑

i

(−1)qPgσ(t)PgDqPeiD−qPg

∫ ∞

0
dτg(−τ)eiω

(i)
0 τ . (B.14)

The portion involving atomic projection operators will now be considered. It is shown

that the projection-operator factors in front of the first and third terms are identical,

and can thus be factored out. Expanding out the projection-operator portion of the
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first term,

(−1)qPgDqPeiD−qPgσ(t)Pg =
∑

Mg ,M ′
g ,Mei

|JgIFgMg〉 〈JgIFgMg|Dq |JeIFeiMei〉

× (−1)q 〈JeIFeiMei |D−q |JgIFgM
′
g〉 〈JgIFgM

′
g|σ(t)Pg

=
|〈Jg||D||Je〉|2

2Je + 1
A(i)

q A(i)
q

†
Pgσ(t)Pg

=
|〈Jg||D||Je〉|2

2Je + 1
Pgσ(t)PgA

(i)
q A(i)

q

†

=
∑

Mg ,M ′
g ,Mei

Pgσ(t) |JgIFgMg〉 〈JgIFgMg|Dq |JeIFeiMei〉

× (−1)q 〈JeIFeiMei |D−q |JgIFgM
′
g〉 〈JgIFgM

′
g|

=(−1)qPgσ(t)PgDqPeiD−qPg,

(B.15)

where the final line is the projection-operator portion of the third equation. In obtaining

the previous result, the fact that the product of raising and lowering operators A
(i)
q A

(i)
q

†

is proportional to the ground-state internal atomic projection operator Pg, and thus

commutes with the ground-state sub-density-matrix σgg has been utilized. Combining

the first and third terms of Eq. (B.12), the projection-operator terms can be factored

out,

− 1
~2

∑
q

∑

i

|〈Jg||D||Je〉|2
2Je + 1

A(i)
q A(i)

q

†
Pgσ(t)Pg

∫ ∞

0
dτ

(
g(τ)e−iω

(i)
0 τ + g(−τ)eiω

(i)
0 τ

)

= − 1
~2

∑
q

∑

i

|〈Jg||D||Je〉|2
2Je + 1

A(i)
q A(i)

q

†
Pgσ(t)Pg

∫ ∞

−∞
dτg(τ)e−iω

(i)
0 τ

= − 1
3ε0(2π)3c3~

∑
q

∑

i

|〈Jg||D||Je〉|2
2Je + 1

A(i)
q A(i)

q

†
Pgσ(t)Pg

∫
dω ω3

∫ ∞

−∞
dτe−i(ω+ω

(i)
0 )τ

= − 1
3ε0(2π)3c3~

∑
q

∑

i

|〈Jg||D||Je〉|2
2Je + 1

A(i)
q A(i)

q

†
Pgσ(t)Pg

∫
dω ω3δ(ω + ω

(i)
0 ).

(B.16)

It is clear that the contributions from the first and third terms of Eq. (B.12) vanish,

since the argument of the delta function can never be zero. Physically, this reflects the

fact that the atom cannot make a transition from the ground state to the excited state

by emitting a photon.
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This leaves only the second and fourth terms,

σ̇gg(t) =
1
~2

∑
q

∑

i,j

(−1)qPgDqPeiσ(t)PejD−qPg

×
∫ ∞

0
dτ

(
g(τ)eiω

(i)
0 τ + g(−τ)e−iω

(j)
0 τ

)

=
∑

q

∑

i,j

(−1)qPgDqPeiσ(t)PejD−qPg

× 1
~2

∫ ∞

0
dτ

~
3ε0(2π)3c3

(∫
dω ω3e−iωτeiω

(i)
0 τ +

∫
dω ω3eiωτe−iω

(j)
0 τ

)

=
1

3ε0(2π)3c3~
∑

q

∑

i,j

(−1)qPgDqPeiσ(t)PejD−qPg

×
∫

dω ω3

(∫ ∞

0
dτe−iωτeiω

(i)
0 τ +

∫ ∞

0
dτeiωτe−iω

(j)
0 τ

)
.

(B.17)

Now, using the fact that
∫∞
0 dτe−iωτ = πδ(ω) + iP 1

ω , where the P operator indicates

that the principal part must be taken when an integration is performed. It is seen

from the last equation in Eq. (B.17) that the integrand of the ω integral will consist

of two delta functions, on each for ω − ω
(i)
0 and ω − ω

(j)
0 , along with two principal-

part terms, which combine to be of the form P( 1

ω−ω
(i)
0

− 1

ω−ω
(j)
0

). The principal-part

expression gives the additional energy splitting between the ith and the jth excited-

state manifolds due to interaction with the photon reservoir accompanied by the usual

pathological divergences which will be ignored in the present case. Neglecting this

energy splitting and considering only the delta-function terms, as well as making the

approximation that the frequencies {ω(i)
0 } are approximately equal,

σ̇gg(t) ∼= 1
3ε0(2π)3c3~

∑
q

∑

i,j

(−1)qPgDqPeiσ(t)PejD−qPg

∫
dω ω3δ(ω − ω0)

=
ω0

3

3ε0(2π)3c3~
∑

q

∑

i,j

(−1)qPgDqPeiσ(t)PejD−qPg,

(B.18)

where ω0 is the average of the atomic Bohr frequencies ω
(i)
0 . Expanding the projection-
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operator portion,

(−1)qPgDqPeiσ(t)PejD−qPg

=
∑

Mg ,M ′
g ,Mei ,Mej

(−1)q |Mg〉 〈Mg|Dq |Mei〉 〈Mei |σ(t) |Mej 〉 〈Mej |D−q |M ′
g〉 〈M ′

g|

=
∑

Mg ,M ′
g ,Mei ,Mej

[〈Mg|Dq|Mei〉 |Mg〉 〈Mei |] σ(t)
[
(−1)q 〈Mej |D−q|M ′

g〉 |Mej 〉 〈M ′
g|

]

=
−〈Jg||D||Je〉 〈Je||D||Jg〉

2Je + 1
A(i)

q σ(t)A(j)
q

†

=
|〈Jg||D||Je〉|2

2Je + 1
A(i)

q σ(t)A(j)
q

†
,

(B.19)

where the fact that 〈Jg||D||Je〉† = (−1)Je−Jg 〈Je||D||Jg〉 has been used. Equation (B.12)

finally becomes

σ̇gg(t) =
ω0

3

3ε0(2π)3c3~
|〈Jg||D||Je〉|2

2Je + 1

∑
q

∑

i,j

A(i)
q σ(t)A(j)

q

†

∼= γ
∑

q

∑

i,j

A(i)
q σ(t)A(j)

q

†
,

(B.20)

where γ = γJe→Jg is the transition rate from the Je excited state to the Jg ground state

and which are assumed here to be equal to the transition rate for all of the excited-state

hyperfine manifolds. It is clear that the approximation that the various internal atomic

frequencies ω
(i)
0 are all equal to some average frequency ω0 amounts to assuming that

each excited-state manifold relaxes with the same spontaneous-emission rate.

Turning now to the excited-state sub-density-matrices,

σ̇eiej (t) = −iδωeiejPeiσ(t)Pej −
1
~2

∫ ∞

0
dτ

∑
q

(−1)q

×
{

g(τ)

[∑

k

PeiDqPgD−qPek
σ(t)Peje

iω
(k)
0 τ − PeiDqPgσ(t)PgD−qPeje

−iω
(i)
0 τ

]

+g(−τ)

[∑

k

Peiσ(t)Pek
DqPgD−qPeje

−iω
(k)
0 τ − PeiDqPgσ(t)PgD−qPeje

iω
(j)
0 τ

]}
,

(B.21)
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where δωab = ωa − ωb. The second and fourth terms will combine (having identical

projection-operator prefactors) to give two delta functions with arguments of ω + ω
(i)
0

and ω+ω
(j)
0 , respectively, which cannot be satisfied and thus give zero upon integration,

and also a principal part contribution of the form P( 1

ω+ω
(i)
0

− 1

ω+ω
(j)
0

), which are neglected

as before. What remains is the first term and the third term,

σ̇eiej (t) =− iδωeiejPeiσ(t)Pej

− 1
~2

∑
q

∑

k

(−1)qPeiDqPgD−qPek
σ(t)Pej

∫ ∞

0
dτg(τ)eiω

(k)
0 τ

− 1
~2

∑
q

∑

k

(−1)qPeiσ(t)Pek
DqPgD−qPej

∫ ∞

0
dτg(−τ)e−iω

(k)
0 τ .

(B.22)

Simplifying the projection-operator prefactors,

(−1)qPeiDqPgD−qPek
σ(t)Pej

=
∑

Mg ,Mei ,Mek

(−1)q |Mei〉 〈Mei |Dq |Mg〉 〈Mg|D−q |Mek
〉 〈Mek

|σ(t)Pej

=
∑

Mg ,Mei ,Mek

[〈Mei |Dq|Mg〉 |Mei〉 〈Mg|] [(−1)q 〈Mg|D−q|Mek
〉 |Mg〉 〈Mek

|]σ(t)Pej

=
|〈Jg||D||Je〉|2

2Je + 1

∑

Mg ,Mei ,Mek

αFg ,Fei ,Mg ,Mei ,Jg ,Je,I |Mei〉 〈Mg|

× αFg ,Fek
,Mg ,Mek

,Jg ,Je,I |Mg〉 〈Mek
|σ(t)Pej

=
|〈Jg||D||Je〉|2

2Je + 1
A(i)

q

†
A(k)

q σ(t)Pej ,

(B.23)
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and

(−1)qPeiσ(t)Pek
DqPgD−qPej

=
∑

Mg ,Mei ,Mek

(−1)qPeiσ(t) |Mek
〉 〈Mek

|Dq |Mg〉 〈Mg|D−q |Mej 〉 〈Mej |

=
∑

Mg ,Mek
,Mej

Peiσ(t) [〈Mek
|Dq|Mg〉 |Mek

〉 〈Mg|]

× [
(−1)q 〈Mg|D−q|Mej 〉 |Mg〉 〈Mej |

]

=
|〈Jg||D||Je〉|2

2Je + 1

∑

Mg ,Mei ,Mek

Peiσ(t)αFg ,Fek
,Mg ,Mek

,Jg ,Je,I |Mek
〉 〈Mg|

× αFg ,Fej ,Mg ,Mej ,Jg ,Je,I |Mg〉 〈Mej |

=
|〈Jg||D||Je〉|2

2Je + 1
Peiσ(t)A(k)

q

†
A(j)

q ,

(B.24)

the excited-state density-matrix equations of motion can be written as

σ̇eiej (t) = −iδωeiejPeiσ(t)Pej −
γ

2

∑
q

∑

k

(
A(i)

q

†
A(k)

q σ(t)Pej + Peiσ(t)A(k)
q

†
A(j)

q

)

= −iδωeiejPeiσ(t)Pej −
γ

2

∑
q

∑

k,l

Pei

(
A(k)

q

†
A(l)

q σ(t) + σ(t)A(k)
q

†
A(l)

q

)
Pej ,

(B.25)

where again the principal-part contributions have been neglected and where in the last

line a trivial summation index has been added that will be useful later when combining

the various sub-density-matrix decay terms.

The final equations to be considered are the optical-coherence sub-density-matrices,

σ̇eig(t) = −iδωeigPeiσ(t)Pg − 1
~2

∫ ∞

0
dτ

∑
q

(−1)q

×


g(τ)


∑

j

PeiDqPgD−qPejσ(t)Pge
iω

(j)
0 τ −

∑

j

PeiDqPgσ(t)PejD−qPge
−iω

(i)
0 τ




+g(−τ)


∑

j

Peiσ(t)PgDqPejD−qPge
iω

(j)
0 τ −

∑

j

PeiDqPgσ(t)PejD−qPge
−iω

(j)
0 τ






 .

(B.26)
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It is important to mention here that the indices on the frequencies in the exponentials

are correct in the above equation. The frequency ω
(i)
0 (not the summation index) should

only appear in the exponential in the second term, while ω
(j)
0 ’s (the summation index)

should appear in all of the other terms. The second term and the fourth term are both

non-secular, since they involve density-matrix elements σgei , and thus these terms can

be neglected. The third term is anti-resonant, i.e., it will contribute delta functions

with arguments ω + ω
(i)
0 which cannot be satisfied. Again, principal-part contributions

from these terms have been neglected, yielding

σ̇eig(t) =− iδωeigPeiσ(t)Pg − 1
~2

∑
q

∑

j

(−1)qPeiDqPgD−qPejσ(t)Pg

∫ ∞

0
dτg(τ)eiω

(j)
0 τ

=− iδωeigPeiσ(t)Pg − γ

2

∑
q

∑

k,l

PeiA
(k)
q

†
A(l)

q σ(t)Pg.

(B.27)

Similarly,

σ̇gei(t) = iδωgeiPgσ(t)Pei −
γ

2

∑
q

∑

k,l

Pgσ(t)A(k)
q

†
A(l)

q Pei . (B.28)

Using Eq. (B.9), the equation of motion due to spontaneous emission for the full

density operator can be constructed,

σ̇(t) =
i

~
[σ(t), HA]+γ

∑
q

∑

i,j

A(i)
q σ(t)A(j)

q

†− γ

2

∑
q

∑

i,j

(
A(i)

q

†
A(j)

q σ(t) + σ(t)A(i)
q

†
A(j)

q

)
.

(B.29)

Defining the spontaneous emission relaxation operator,

Lsp[σ] = γ
∑

q

∑

i,j

A(i)
q σ(t)A(j)

q

† − γ

2

∑
q

∑

i,j

(
A(i)

q

†
A(j)

q σ(t) + σ(t)A(i)
q

†
A(j)

q

)
, (B.30)

the equation of motion can be written as

σ̇(t) =
i

~
[σ(t), HA] + Lsp[σ]. (B.31)

The atomic center-of-mass dependence that was ignored for simplicity in the

previous derivation can now be reintroduced. This amounts to adding an integral over



137

momentum states in 3D that should have been included when the atomic projection

operators were inserted. Including this, the full relaxation operator takes the form

shown in Eq. (3.4).



Appendix C

Semiclassical Master Equation for Atoms with Complex Internal

Structure

Treating the atom’s center-of-mass degree of freedom as a classical variable rather

than a quantum operator — often referred to simply as the “semiclassical approxima-

tion” despite being somewhat ambiguous — yields a set of dynamical equations called

the optical Bloch equations. This appendix provides a detailed derivation of the optical

Bloch equations corresponding to the situation discussed in Chapter 3: an atom with

multiple hyperfine manifolds of arbitrary spacing, interacting with an arbitrary three-

dimensional polarization-gradient laser field. These equations are then solved by direct

numerical means in Chapter 3 to obtain information such as the friction and diffusion

coefficients for laser cooling. This information, although often technically inferior to the

solutions of fully quantum equations, is usually much easier to calculate and can pro-

vide helpful qualitative insight into the dynamics from the use of the intuitive classical

concepts of force, friction, and diffusion.

C.1 Equations without spontaneous decay

C.1.1 Atom-field interaction

The field can be written, in general, as

E(z, t) = E+(z)e−iωLt + c.c. (C.1)
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For the σ+σ− configuration, the positive frequency component is

E+ = E0ε̂e
ikLz + E ′0ε̂′e−ikLz, (C.2)

where E0 and E ′0 are the amplitudes of the two opposing, circularly polarized beams,

respectively, and ε̂ and ε̂′ are the respective polarization vectors, given by

ε̂ = ε̂+ ≡ − 1√
2

(
î + iĵ

)
, (C.3)

ε̂′ = ε̂− ≡ 1√
2

(
î− iĵ

)
. (C.4)

The interaction between the atom and the coherent field in the electric dipole

approximations is described by

V (t) = −D ·E(z, t)

= E0D
(+1)e−i(ωLt−kLz) + E ′0D(−1)e−i(ωLt+kLz)

− E0D
(−1)ei(ωLt−kLz) − E ′0D(+1)ei(ωLt+kLz).

(C.5)

Using the Wigner-Eckart theorem, and noting that S commutes with D,

D(q) =
∑

j,j′,m,m′,l,l′,s,s′
|j, m, l, s〉〈j, m, l, s|D(q) |j′, m′, l′, s′〉〈j′,m′, l′, s′|

=
∑

j,j′,m,m′,l,l′,s

|j, m, l, s〉〈j′,m′, l′, s| (−1)j−m




j 1 j′

−m q m′


 〈j, l, s‖D‖j′, l′, s〉

=
∑

j,j′,m,m′,l,l′,s

|j, m, l, s〉〈j′,m′, l′, s| (−1)j−m+l+s+j′+1

×
√

(2j + 1)(2j′ + 1)




j 1 j′

−m q m′








l j s

j′ l′ 1




〈l‖D‖l′〉 .

(C.6)

The properties of the 3-j symbol provide the information that the triangle relation must

be satisfied between j,j′ and 1, and that m′ −m = q. The 6-j symbol indicates that

the following sets must each satisfy triangle relations: {j, l, s}, {j′, l′, s}, {j, j′, 1}, and
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{l, l′, 1}. The first two are trivial, the third is redundant, and the fourth tells us that l′

can equal l+1, l, and l−1, however, parity considerations rule out the l′ = l possibility.

Now specialize to the case, useful to laser cooling, of a ground state jg coupled to

an excited state multiplet je = jg − 1, jg, jg + 1, resulting from a system with l = lg in

the ground state and l = le = lg + 1 in the excited state, coupled with a spin of s = 1.

The dipole matrix element can then be written as

D(q) = Deg

∑

je,mg

[
|je,mg + q, lg + 1〉〈jg,mg, lg|

× (−1)je+jg−mg+lg−q+1
√

(2jg + 1)(2je + 1)




je 1 jg

−mg − q q mg








lg + 1 je 1

jg lg 1





− |jg, mg, lg〉〈je,mg − q, lg + 1|

× (−1)je+jg−mg+lg
√

(2jg + 1)(2je + 1)




jg 1 je

−mg q mg − q








lg jg 1

je lg + 1 1





]
,

(C.7)

which can be further simplified to yield

D(q) =Deg

∑

je,mg

(−1)je+jg−mg+lg
√

(2jg + 1)(2je + 1)





lg jg 1

je lg + 1 1





×
[
|je, mg + q, lg + 1〉〈jg,mg, lg| (−1)q−1




je 1 jg

−mg − q q mg




− |jg,mg, lg〉〈je, mg − q, lg + 1|




jg 1 je

−mg q mg − q




]
,

(C.8)

or

D(q) = Deg(L(q)
+ − L(q)

− ), (C.9)

where the Deg is the reduced dipole matrix element, given by

Deg ≡ 〈le‖D‖lg〉 = −〈lg‖D‖le〉 , (C.10)
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and the raising and lowering operators are defined as

L(q)
+ ≡

∑

je,mg

|je,mg + q, lg + 1〉〈jg, mg, lg|

× (−1)je+jg−mg+lg−q+1
√

(2jg + 1)(2je + 1)




je 1 jg

−mg − q q mg








lg + 1 je 1

jg lg 1





,

L(q)
− ≡

∑

je,mg

|jg, mg, lg〉〈je,mg − q, lg + 1|

× (−1)je+jg−mg+lg
√

(2jg + 1)(2je + 1)




jg 1 je

−mg q mg − q








lg jg 1

je lg + 1 1





.

(C.11)
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Note that (L(q)
± )† = L(−q)

∓ , as can be seen for the raising operator:

(L(q)
+ )† =

∑

je,mg

|jg,mg, lg〉〈je,mg + q, lg + 1|

× (−1)je+jg−mg+lg−q+1
√

(2jg + 1)(2je + 1)




je 1 jg

−mg − q q mg








lg + 1 je 1

jg lg 1





,

=
∑

je,mg

|jg,mg, lg〉〈je,mg + q, lg + 1|

× (−1)je+jg−mg+lg−q+1
√

(2jg + 1)(2je + 1)




je 1 jg

−mg − q q mg








je lg + 1 1

lg jg 1





,

=
∑

je,mg

|jg,mg, lg〉〈je,mg + q, lg + 1|

× (−1)je+jg−mg+lg−q+1
√

(2jg + 1)(2je + 1)




je 1 jg

−mg − q q mg








lg jg 1

je lg + 1 1





,

=
∑

je,mg

|jg,mg, lg〉〈je,mg + q, lg + 1| (−1)je+1+jg

× (−1)je+jg−mg+lg−q+1
√

(2jg + 1)(2je + 1)




jg 1 je

mg q −mg − q








lg jg 1

je lg + 1 1





,

=
∑

je,mg

|jg,mg, lg〉〈je,mg + q, lg + 1| (−1)2(je+1+jg)(−1)−q+1

× (−1)je+jg−mg+lg
√

(2jg + 1)(2je + 1)




jg 1 je

−mg −q mg + q








lg jg 1

je lg + 1 1





,

= L(−q)
+ ,

(C.12)

where the fact that (−1)2(je+1+jg) = 1 and that (−1)−q+1 = 1 for q = ±1 has been

used. The procedure for the lowering operator is similar.
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Equation (C.5), written in terms of raising and lowering operators, becomes

V (t) = Deg

[
E0

(
L(+1)

+ − L(+1)
−

)
e−i(ωLt−kLz) + E ′0

(
L(−1)

+ − L(−1)
−

)
e−i(ωLt+kLz)

− E0

(
L(−1)

+ − L(−1)
−

)
ei(ωLt−kLz) − E ′0

(
L(+1)

+ − L(+1)
−

)
ei(ωLt+kLz)

]
.

(C.13)

In this form, the rotating wave approximation can easily be made by removing terms

of the form L(q)
± e±ωLt, and keeping only terms of the form L(q)

± e∓iωLt. The resulting

expression for the interaction is

V = Deg[E0L(+1)
+ e−i(ωLt−kLz) + E ′0L(−1)

+ e−i(ωLt+kLz)

+ E0L(−1)
− ei(ωLt−kLz) + E ′0L(+1)

− ei(ωLt+kLz)],
(C.14)

or, if E0 = E ′0,

V =
~Ω
2

[
L(+1)

+ e−i(ωLt−kLz) + L(−1)
+ e−i(ωLt+kLz) + L(−1)

− ei(ωLt−kLz) + L(+1)
− ei(ωLt+kLz)

]
,

(C.15)

where Ω ≡ 2DegE0/~ is the reduced Rabi frequency.

C.1.2 Transformation to moving, rotating frame

C.1.2.1 General properties of time-dependent transformations

For a Hamiltonian H, the equation of motion is given by

i~ρ̇ = [H, ρ] . (C.16)

The goal is to find the equation of motion in some other coordinate system, with a time-

dependent transformation given by T (t). The density operator in the new coordinate

system is given by

ρ̃ = T (t)ρT †(t), (C.17)
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which has a time derivative of

i~ ˙̃ρ = i~
d

dt

(
TρT †

)

= i~T ρ̇T † + i~
dT

dt
ρT † + i~Tρ

dT †

dt

= i~T ρ̇T † − [H, T ] ρT † − Tρ
[
H, T †

]

= i~T ρ̇T † − [H, ρ̃] +
[
THT †, ρ̃

]
.

(C.18)

The above result can then be used in Eq. (C.16) with a transformation applied,

i~T ρ̇T † = T [H, ρ] T †, (C.19)

giving

i~ ˙̃ρ =
[
THT †, ρ̃

]
− [H, ρ̃] + T [H, ρ]T †. (C.20)

The second two terms can be manipulated,

T [H, ρ] T † − [H, ρ̃] = THρT † − TρHT † −HTρT † + TρT †H

= −Tρ
[
H, T †

]
− [H, T ] ρT †

= i~
[
Tρ

dT †

dt
+

dT

dt
ρT †

]

= i~
[
ρ̃T

dT †

dt
+

dT

dt
T †ρ̃

]
,

(C.21)

resulting in

i~ ˙̃ρ =
[
THT †, ρ̃

]
+ i~

[
ρ̃T

dT †

dt
+

dT

dt
T †ρ̃

]
. (C.22)

Also, noting that

T
dT †

dt
= T

(
− 1

i~

)[
H,T †

]

= − 1
i~

(
THT † −H

)

=
1
i~

(
H − THT †

)

=
1
i~

[H, T ] T †

= −dT

dt
T †,

(C.23)



145

yields

i~ ˙̃ρ =
[
THT †, ρ̃

]
+ i~

[
T †

dt
T ρ̃− ρ̃

dT

dt
T †

]

=
[
THT †, ρ̃

]
+

[
i~

dT

dt
T †, ρ̃

]
,

(C.24)

or

i~ ˙̃ρ =
[
H̃, ρ̃

]
, (C.25)

H̃ ≡ THT † + i~
dT

dt
T †. (C.26)

C.1.2.2 Application to an atom in the σ+σ− laser configuration

Since the coupling of the atom to the vacuum field is being ignored for the time

being, the total Hamiltonian is

H = H0 + V (t), (C.27)

where H0 is the internal atomic Hamiltonian and V (t) represents the interaction between

the atom and the coherent external laser field. If the transformation to the center-of-

mass frame of an atom moving with velocity v is made, z must be replaced with vt. In

this moving frame, the interaction term is of the form

V (t) ∼ d · ε̂y = dx sin kvt + dy cos kvt. (C.28)

It is useful to transform to a rotating coordinate system in order to simplify the inter-

action term. Consider a transformation operator given by

T (t) = exp(−ikvtJz/~). (C.29)

Using the commutation relations [Jz, dx] = i~dy and [Jz, dy] = −i~dx, the transformed

interaction operator takes the simplified form

Ṽ (t) = T (t) [dx sin kvt + dy cos kvt] T †(t) = dy. (C.30)
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The time-independent form of the interaction operator in the rotating frame allows

steady-state solutions to be obtained when working in this reference frame. With the

results of the previous section, the equation of motion is

i~ ˙̃ρ =
[
H̃, ρ̃

]
. (C.31)

The inertial term in Eq. (C.26), with the transformation operator given in Eq. (C.29),

becomes

i~
dT

dt
T † = kvJz, (C.32)

and so

H̃ = H0 + kvJz + Ṽ (t), (C.33)

since H0 commutes with Jz. In the rotating frame, the interaction operator from

Eq. (C.15) becomes

Ṽ (t) =
~Ω
2

T (t)
[
L(+1)

+ e−i(ωLt−kLz) + L(−1)
+ e−i(ωLt+kLz)

+ L(−1)
− ei(ωLt−kLz) + L(+1)

− ei(ωLt+kLz)

]
T †(t)

=
~Ω
2

[
L(+1)

+ e−i(ωLt+kLvt−kLz) + L(−1)
+ e−i(ωLt−kLvt+kLz)

+ L(−1)
− ei(ωLt+kLvt−kLz) + L(+1)

− ei(ωLt−kLvt+kLz)

]
.

(C.34)

Here it is useful to compare to the form of the interaction term obtained by

Cohen-Tannoudji and Dalibard [16], in which cooling is performed on a J = 1 ground

state (with sublevels |gi〉) and a J = 2 excited state (with sublevels |ei〉). For this

situation, Eq. (C.34) becomes

Ṽ (t) =
~Ω
2
√

3

[(
|e+2〉〈g+1|+ 1√

2
|e+1〉〈g0|+ 1√

6
|e0〉〈g−1|

)
e−i(ωLt+kLvt−kLz)

+
(
|e−2〉〈g−1|+ 1√

2
|e−1〉〈g0|+ 1√

6
|e0〉〈g+1|

)
e−i(ωLt−kLvt+kLz)

+
(
|g+1〉〈e+2|+ 1√

2
|g0〉〈e+1|+ 1√

6
|g−1〉〈e0|

)
ei(ωLt+kLvt−kLz)

+
(
|g−1〉〈e−2|+ 1√

2
|g0〉〈e−1|+ 1√

6
|g+1〉〈e0|

)
ei(ωLt−kLvt+kLz)

]
,

(C.35)
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or, in the notation of Cohen-Tannoudji and Dalibard,

Ṽ (t) =
~Ω
2
√

3

[
|g+1〉〈e+2|+ 1√

2
|g0〉〈e+1|+ 1√

6
|g−1〉〈e0|

]
ei(ω+−kLz) + h.c

+
~Ω
2
√

3

[
|g−1〉〈e−2|+ 1√

2
|g0〉〈e−1|+ 1√

6
|g+1〉〈e0|

]
ei(ω−+kLz) + h.c,

(C.36)

where

ω± = ωL ± kLv. (C.37)

From Eq. (C.36), it appears that Eq. (5.1) of Ref. [16] is missing a factor of 1/
√

3 and

the ω± should be reversed. Furthermore, Eq. (5.1) of Ref. [16] is misleading because the

transformation to the moving frame has not been made. In applying this transforma-

tion (z → vt) to my Eq. (C.34), the velocity terms in the exponentials cancel exactly,

resulting in

Ṽ (t) =
~Ω
2

[
L(+1)

+ e−iωLt + L(−1)
+ e−iωLt + L(−1)

− eiωLt + L(+1)
− eiωLt

]
. (C.38)

C.2 Optical Bloch equations

The equations of motion developed up to this point can now be extended to

include spontaneous emission. The form of the spontaneous-emission relaxation op-

erator is derived in detail in Appending B and the results will be used here, with the

center-of-mass degree of freedom neglected due to the semiclassical nature of the current

equations. There will be three classes of equations:

i~ ˙̃ρ
(
e
(m)
i , gj

)
=

[
H̃, ρ̃

]�
e
(m)
i ,gj

� , (C.39)

i~ ˙̃ρ (gi, gj) =
[
H̃, ρ̃

]
(gi,gj)

, (C.40)

i~ ˙̃ρ
(
e
(m)
i , e

(n)
j

)
=

[
H̃, ρ̃

]�
e
(m)
i ,e

(n)
j

� . (C.41)

The first class describes optical coherences, the second describes ground-state popu-

lations and ground-state coherences, and the third describes excited-state populations

and excited-state coherences.
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C.2.1 Class I: optical coherences

Redefining the density matrix elements corresponding to optical coherences as

ρ̃
(
e
(m)
i , gj

)
→ ρ̃

(
e
(m)
i , gj

)
eiωLt, (C.42)

ρ̃
(
gi, e

(m)
j

)
→ ρ̃

(
gi, e

(m)
j

)
e−iωLt. (C.43)

All other elements are unchanged. This results in a change to the optical-coherence

equations of motion of

˙̃ρ
(
e
(m)
i , gj

)
= iωLρ̃

(
e
(m)
i , gj

)
+ ˙̃ρ(old)

(
e
(m)
i , gj

)
eiωLt, (C.44)

˙̃ρ
(
gi, e

(m)
j

)
= −iωLρ̃

(
gi, e

(m)
j

)
+ ˙̃ρ(old)

(
gi, e

(m)
j

)
e−iωLt. (C.45)

˙̃ρ
(
e
(m)
i , gj

)
= iωLρ̃

(
e
(m)
i , gj

)
− i

~
eiωLt

[
H0 + kLvJz + Ṽ , ρ̃

]�
e
(m)
i ,gj

�
= i [ωL − ωe(m) + ωg − kLv(i− j)] ρ̃

(
e
(m)
i , gj

)
− i

~
eiωLt

[
Ṽ , ρ̃

]�
e
(m)
i ,gj

�
= i

[
δω(m) −∆− kLv(i− j)

]
ρ̃

(
e
(m)
j , gi

)
− i

~
eiωLt

[
Ṽ , ρ̃

]�
e
(m)
i ,gj

� .

(C.46)

˙̃ρ
(
gi, e

(m)
j
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= −iωLρ̃

(
gi, e
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j

)
− i

~
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[
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]�
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�
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j
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eiωLt

[
Ṽ , ρ̃

]
(e

(m)
i ,gj)

= eiωLt
[〈

e
(m)
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∣∣∣ Ṽ ρ̃
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〉
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〈
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(m)
i

∣∣∣ ρ̃Ṽ
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〉]

=
~Ω
2
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(m)
i
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+ e−iωLtρ̃

∣∣∣ gj

〉
+

〈
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(m)
i

∣∣∣L(−1)
+ e−iωLtρ̃

∣∣∣ gj

〉

−
〈
e
(m)
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∣∣∣ ρ̃L(+1)
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∣∣∣ gj

〉
−

〈
e
(m)
i

∣∣∣ ρ̃L(−1)
+ e−iωLt

∣∣∣ gj

〉]

=
~Ω
2

[ 〈
e
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+ ρ̃

∣∣∣ gj

〉
+

〈
e
(m)
i

∣∣∣L(−1)
+ ρ̃

∣∣∣ gj

〉

−
〈
e
(m)
i
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∣∣∣ gj

〉
−

〈
e
(m)
i

∣∣∣ ρ̃L(−1)
+

∣∣∣ gj

〉]
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The raising operators in the four matrix elements above will produce terms of the

form 〈gi|ρ̃|gj〉 and 〈ei|ρ̃|ej〉, both of which are not redefined according to Eqs. (C.42)

and (C.43). Similarly, in the equation of motion for ˙̃ρ(gi, e
(m)
j ), an exponential of e−iωLt

will multiply the interaction commutator, and this time will cancel the eiωLt exponentials

in the lowering operator portions of the interaction operator.

At this point, further confirmation can be made of the error in Ref. [16]. E.g.,

if Eq. (C.46) is used to determine the coefficient of ρ̃ (g0, g0) in the equation of motion

for ˙̃ρ (e1, g0), one finds that Cohen-Tannoudji and Dalibard’s result differs by lacking a

factor of 1/
√

3, as we noted before. Using the paper by Bambini and Agresti (Ref. [43]),

Eq. (2.8b), agreement with my result is found. (Note: Bambini and Agresti define their

reduced dipole matrix element as 〈lg‖d‖le〉, which differs from mine by a sign.)

C.2.2 Class II: ground-state populations and ground-state coherences

˙̃ρ (gi, gj) = −ikLv(i− j)ρ̃ (gi, gj)− i

~

[
Ṽ , ρ̃

]
(gi,gj)

. (C.49)
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C.2.3 Class III: excited-state populations and excited-state coherences

˙̃ρ
(
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(n)
j
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= i [ωe(n) − ωe(m) − kLv(i− j)] ρ̃
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j
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~
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� .
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