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Vortices in a Highly Rotating Bose Condensed Gas

Thesis directed by Prof. Eric Cornell

Superfluids, with their dissipationless flow and exotic topologies, have puzzled

researchers in diverse fields of physics for almost a century. One of the hallmark features

of superfluids is their response to rotation, which requires the fluid to be pierced by an

array quantized singularities or vortices. Over the past few years, vortices and the

lattices they organize into have become one of the major fields of experimental research

with dilute gas Bose-Einstein condensates.

This thesis explores the physics of vortices and vortex lattices in the dilute gas

Bose-Einstein condensate while drawing connections to other superfluid systems. In ad-

dition to characterizing several equilibrium vortex effects, this work also studies several

excitations. By removing atoms from the rotating condensate with a tightly focused,

resonant laser, the density can be locally suppressed, creating aggregate vortices con-

taining many units of circulation. These so called “giant vortices” offer insight into

the dynamical stability of density defects in this system. Using similar techniques we

can excite and directly image Tkachenko waves in the vortex. These low frequency

modes are a consequence of the small but nonvanishing elastic shear modulus of the

vortex-filled superfluid.

Finally, by working at extremely high rotations we can create a Bose-Einstein con-

densates in the lowest Landau level. In this regime, which requires rotation rates greater

than 99% of the centrifugal limit for a harmonically trapped gas, we are able observe

several expected and unexpected shifts in the physical properties of the condensate.

In conclusion the dilute gas Bose-Einstein condensates offers a rich system in

which to study vortex physics, and explore dynamical effects common to all rotating
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superfluids.



Dedication

To Odele for her love and support, and to my grandfather for getting me thinking about

the world.



vi

Acknowledgements

First I would like to thank my advisor, Eric Cornell, for his support and guidance

over the last five years. His infectious enthusiasm and depth of knowledge never ceased

to amaze me and both were a constant source of my own growth and understanding.

Also, I would like to thank Debbie Jin for her hands on approach and guidance

that first year. I learned a lot in a very short period of time. We never ended up needing

that stripe laser but I also never stopped using the skills I learned, either.

In the last five years it has been my pleasure share the lab with several other grad-

uate students including Volker Schweikhard, Paul Haljan, and most recently Shih-Kuang

Tung. It would be hard to ask for a brighter or more dedicated group of individuals.

Even more exceptionally, this group has always been humorous and fun to work with

no matter how arduous or frustrating the experiment became. Of course, no discussion

of the lab group would be complete without acknowledging our ring leader and post

doc Peter Engels. Over the last several years Peter has been both a great mentor as

well as a personal friend, and I wish him luck in his new job. He may not believe me,

but there is no doubt in my mind that Peter will grow to love his new appointment at

Washington State.

This experiment has also benefited considerably from the assistance of a number

of theorists. It has been an absolute pleasure to work with and learn from people like

Leo Radzihovsky, Dan Sheehy, Gordon Baym, Allen MacDonald and Marco Cozzini.

Support services at JILA are of course outstanding and I could not even begin



vii

to count all the ways that the machine shop, electronics shop and computing staff have

made this thesis more successful. I would especially like to thank Hans Green and James

Fung-A-Fat for their mentorship and patience. Also, I am eternally indebted to Jim

McKown for tolerating, what I am sure were, inane questions about the inner workings

of Windows and then miraculously making the problems go away.

Thanks, also, to the Cornell-Wieman-Jin group for an excellent working atmo-

sphere and to the “Sloggies” Dave, Nate, Dan, and Andrew for an excellent living

atmosphere.

Finally, thanks to the coffee girl and Burnt Toast for making such a good cup of

coffee. Thanks to Mike Ziemkiewicz and to a lesser extent John Stewart of The Daily

Show for making the last four years of presidential politics bearable.



viii

Contents

Chapter

1 Introduction 1

1.1 Superfluids great and small . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Vortices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Rotating Bose-Einstein condensates . . . . . . . . . . . . . . . . . . . . 7

1.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Experiment and Hardware 13

2.1 Generating highly rotating condensates . . . . . . . . . . . . . . . . . . 13

2.2 Rounding out the trap . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Anti-trapped expansion [1] . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Poking, prodding, cutting and blasting beams . . . . . . . . . . . . . . 32

2.5 Other adjustments to JILA Mark III . . . . . . . . . . . . . . . . . . . 35

2.6 Numerical studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Giant Vortices [2] 38

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Giant vortex formation and condensate healing . . . . . . . . . . . . . . 40

3.4 Giant vortex stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



ix

3.5 Giant vortex precession . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Tkachenko Modes [3] 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Exciting Tkachenko modes . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 The (1,0) mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 The (2,0) mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Bulk fluid modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Theory responds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Lowest Landau Level [4] 64

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Breathing mode spectrum in the lowest Landau level . . . . . . . . . . . 67

5.4 Tkachenko spectrum in the lowest Landau level . . . . . . . . . . . . . . 68

5.5 Fractional core area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6 Vortex core density profile . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.7 Condensate radial density profile . . . . . . . . . . . . . . . . . . . . . . 75

6 Experimental studies of equilibrium vortex properties in a Bose-condensed gas

[1] 78

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 The lattice constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 Vortex core size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Core contrast and condensate temperature . . . . . . . . . . . . . . . . 86



x

Bibliography 92

Appendix

A Numerical TOP trap model 97



xi

Tables

Table

A.1 Table of useful constants . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



xii

Figures

Figure

1.1 Vortices in various superfluid systems. . . . . . . . . . . . . . . . . . . . 6

2.1 Vortex nucleation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Adding fields to distort the TOP field. . . . . . . . . . . . . . . . . . . . 17

2.3 Top field distortion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Trap ellipticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Beat measurements of trap ellipticity. . . . . . . . . . . . . . . . . . . . 21

2.6 Rotation decay measurements. . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Trap rounding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8 Condensates in expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.9 Revised frequency chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.10 ARP timing sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.11 Poking beam setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Different stages of giant vortex formation process. . . . . . . . . . . . . 41

3.2 Lattice reforming after giant vortex formation. . . . . . . . . . . . . . . 43

3.3 Core developing after a 5 ms short, 2.5 pW laser pulse. . . . . . . . . . . 44

3.4 Oscillation of core area after an 8 pW, 5 ms laser pulse. . . . . . . . . . 46

3.5 Measured oscillation frequencies of the aggregate size for different rota-

tion rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



xiii

3.6 Giant core precession. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 Ring cut out of a BEC by a 125 ms long, off-centered laser pulse. . . . . 48

4.1 (1,0) Tkachenko mode excited by atom removal. . . . . . . . . . . . . . 52

4.2 Measured oscillation amplitude for a typical excitation. . . . . . . . . . 54

4.3 Tkachenko frequency vs theory. . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Atom removal patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Radial breathing mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Numerical studies of Tkachenko modes. . . . . . . . . . . . . . . . . . . 63

5.1 Harmonic oscillator states in the rotating frame as one approaches the

lowest Landau level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Side view images of BECs in trap. . . . . . . . . . . . . . . . . . . . . . 67

5.3 Measured axial breathing frequency. . . . . . . . . . . . . . . . . . . . . 69

5.4 Tkachenko modes near the lowest Landau level. . . . . . . . . . . . . . . 71

5.5 Fractional condensate area occupied by vortex cores. . . . . . . . . . . . 74

5.6 Numerically generated vortex core density profiles. . . . . . . . . . . . . 76

6.1 Vortex lattice spacing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Comparison of measured core radii with the Thomas-Fermi prediction. . 84

6.3 Measured core brightness as a function of final rf evaporative cut. . . . . 90



Chapter 1

Introduction

1.1 Superfluids great and small

Traditionally in physics one learns that the world is divided into two. There is

the microscopic world of quantum mechanics and there is the macroscopic world where

classical physics still reigns. Superfluids are astonishing in that they shatter this barrier

between worlds. These highly quantum systems can exist on length scale of a µm, a

cm, or even 104 km. With their dissipationless flow and exotic topologies such fluids

have puzzled researchers in diverse fields of physics for almost a century.

An understanding of superfluids starts with the early 1920’s work of Satyendra

Nath Bose [5] and Albert Einstein [6]. In these papers they argue that at a small

but finite temperature a gas of bosons will quickly collect in the ground state. This

transition to the ground state far exceeds the expectation for an equally cold ideal

gas of atoms and can result in a nearly complete occupation of a single quantum state.

This condensation, although an impressive first step, is however not sufficient to explain

superfluidity. It was Fritz London [7, 8] who, while trying to explain the phenomena

observed in superfluid Helium in the 1930’s, would suggest that this macroscopically

occupied state is governed by a single wave function, or order parameter, of the form

Ψ =
√

ρ(~r)eiS(~r) . (1.1)

In the 1930’s this was a radical idea but even today it is a little unsettling to think
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a thousand atoms, or a million atoms, or even Avagadro’s number of atoms could be

described by a single wavefunction commonly associated with a single particle. Ul-

timately what makes superfluids so interesting is that this macroscopic wavefunction

extends quantum mechanics into the macroscopic world.

The experimental side of the story of superfluids arguably begins with Kamerlingh

Onnes [9] who was, in many ways, the Christopher Columbus of superfluids. Onnes was

first to liquify 4He and in 1908 he was attempting to cool this new liquid further in order

to produce solid 4He. While unsuccessful in this attempt, Onnes did cool the liquid well

into the superfluid regime that would later be called He II. Unfortunately Onnes did

not recognize the superfluid for what it was. It would take 30 more years before a study

of He II would find it to have no viscosity and for the term “superfluid” to be coined.

In the mean time Kamerlingh Onnes was at it again. It was 1911 and Onnes was

attempting to understand the change in resistivity of a metal at very low temperatures.

Mercury was chosen for the experiment because the metal could be cooled effectively.

From here the story is well known. As Onnes cooled his mercury sample, the resistivity

decreased roughly as expected until reaching 4.2 K, at which point a most unexpected

thing happened, the resistivity of the sample dropped abruptly to zero. Onnes had

made the first observation of superconductivity. A theoretical description of supercon-

ductivity would take much more time but ultimately Bardeen, Cooper and Schrieffer

would demonstrate that the pairing of electrons into Cooper pairs would allow fermions

to condense like bosons. Thus superconductors, like He II, become governed by a single

coherent wavefunction.

Over the years many other similar systems have been discovered. In 1971 Lee,

Osheroff and Richardson discovered two superfluid phases in the fermionic liquid 3He.

Like superconductors 3He condenses through the pairing of fermionic atoms. Much as

electrons in a superconductor sense each other through a Coulomb repulsion, the 3He

atoms interact via their strong magnetic moments. This super system has generated
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a great deal of interest due to its relative accessibility [9]. The lack of background

lattice structure or impurities make this system clean to work with and the magnetic

susceptibility makes NMR a convenient diagnostic tool.

Superfluids are not just exotic laboratory creations, but can also occur in nature.

Neutron stars, some of which predate Onnes’ work by 107 years, are predicted to have

a superfluid interior. Such neutron stars are a superfluid system that truly stretches

the definition of “low” temperature. Having a density of roughly 1014 g/cm3 [10] these

stars are thought to contain paired neutrons with a critical temperature, Tc, of roughly

109 K. Meanwhile core temperature of these stars is predicted to be a fairly cool couple-

million K suggesting a highly degenerate state for the paired neutrons (and to a lesser

degree paired-protons and paired-electrons [11]).

Contrasting starkly with the neutron star is a recent addition to the family of su-

perfluids and the subject of this thesis, the dilute gas Bose-Einstein Condensate (BEC).

Weighing in at densities of 10−11−10−13 g/cm3 these condensates exist at temperatures

ranging from µK to pK. These systems are clearly more experimentally accessible than

their astrological counterpart, and their dilute nature considerably simplifies the theory.

The low density and weak interactions also lead to a much higher condensate fraction

(nearly 100%) than the other systems discussed here (He II for example is only 10%

condensate) [9].

Finally one should mention the newest addition to the superfluid family, the

Fermionic condensates [12, 13, 14]. First observed in 2003, it is probably too soon to

know exactly where this dilute gas system stands with respect to the other superfluid

systems. However, it is clear that this promising new system will be able to probe the

gap between fermion and bosonic supersystems. With the addition of this new system

it is also clear that the superfluid field is still very much alive and developing.
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1.2 Vortices

One of the most distinct features of superfluidity is its response to rotation or,

equivalently, to an applied magnetic field in the case of superconductors. In any wave-

function, rotation manifests itself as a phase gradient along the direction of flow. More

specifically, a loop integral around the center of rotation of the superfluid must yield

a net change in phase regardless of loop size. At the same time the wavefunction of a

superfluid must be, in all places, single valued. In the 1950’s, Onsager [15] and Feyn-

man [16] observed that quantized vortices, or tiny tornados in the fluid, were needed

to fill such requirements and allow for rotation. Each vortex can be thought of as a

quantum of angular momentum and contains, at its center, a phase singularity around

which an integer 2π phase winding occurs. This integer 2π winding, and fluid depletion

at the vortex center allow for the wavefunction to be single valued while providing the

necessary phase gradient for rotation. Without these singularities the fluid velocity field

is curl free and cannot support circulation. This is why superfluids without vortices are

considered irrotational. It is interesting to think that a vortex-free superfluid is rota-

tionally at rest, not in the lab frame or Earth frame, but with respect to some greater

axis in the Universe.

When thinking of rotation one tends to visualize the typically classical, rigid-body

rotation of a record on a player or a tire. It should be noted that the presence of a

single vortex in a superfluid leads to an extremely non-rigid body flow. In this case,

flow is rapid near the center of the vortex, where the phase gradient is steep and falls off

as 1/r where r is the distance from the vortex center. However with increased rotation

more vortices can be added to a superfluid. The repulsive vortex-vortex interaction

causes vortices to distribute about the fluid and form a triangular lattice, or Abrikosov

lattice seen in figure 1.1 a). As one would expect, with increasing quanta of angular

momentum the system begins to behave classically, and this distribution of vortices
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across the superfluid causes the system to rotate in an increasingly rigid-body like

manner.

Not surprisingly, vortices can have profound effects on the system. For supercon-

ductors in sufficiently high magnetic fields, vortices can consume the sample and force it

into a normal state [19]. In superfluid He II systems the generation of “vortex tangles”

leads to finite viscosity even for flows below the critical velocity [9]. In neutron stars it is

predicted that vortices, pinned to the crust of the star, can break free in an avalanche of

vortex motion that causes the rotation of the entire core of the star to jump irregularly.

Vortices in a rotating dilute gas Bose-Einstein condensate [20, 21, 22, 23, 24, 25]

are no exception and many of the profound effects they have on the BEC system will

be detailed in the rest of this thesis. The study of vortices, in a dilute gas BEC is in no

small way motivated by the connections shared with these other supersystems. We are

blessed in that there has clearly been decades of work in these other systems that can

guide our research. We are also blessed in that the BEC’s offer a very clean system in

which to study vortex effects. The perfectly smooth magnetic potential used to confine

a BEC makes us immune to the effects of vortex pinning that complicates studies in

other systems. Additionally, impurity isotopes are simply not an issue. Also interactions

in the dilute BEC system are well understood making comparison with theory much

easier. Thus, while BECs can mimik superfluid effects seen in other systems, they also

promise novel effects of their own.

Tkachenko oscillations, or sound waves in a vortex lattice, represent a striking ex-

ample of the interconnected nature of superfluid vortex systems. Tkachenko proposed

that the triangular, Abrikosov, lattice structure seen in superconductors would also be

supported in superfluid Helium. In a 1966 mathematical tour de force [26], Tkachenko

demonstrated that this lattice structure should support sound waves. These ellipti-

cally polarized transverse waves in the lattice would later be dubbed Tkachenko modes.

Tkachenko was so certain of this prediction that he spent the rest of his life looking for
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Figure 1.1: Vortices in supersystems. Image a) the first image of an Abrikosov lattice
taken in 1967 [17]. Black dots are cobalt particles that are attracted to the magnetic
field of the vortices in this superconducting lead rod. Image b) pictures of vortices in He
II taken in 1979 by Yarmchuk et al. [18] In a heroic experiment, impurity ions where
added to the superfluid and became trapped in the vortex cores. Images were taken by
adding a strong electric field to project the ions onto a phosphorous screen that could
be imaged onto film. Image c) vortices in a rotating Bose-Einstein condensate taken at
JILA in 2003.
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these excitations in He II, but ultimately met with frustration. It was Glaberson [27]

who would first report a signature of these modes in He II. Performing a rotating disk

experiment, Glaberson measured the response of the system at different excitation fre-

quencies. While these experiments ultimately demonstrated the existence of Tkachenko

modes they were a little unsatisfactory in that they necessitated the simultaneous ex-

citation of many Tkachenko modes. Worse still, vortex pinning effects coupled the

Tkachenko modes to other modes in the system, and ultimately it was impossible to

study a Tkachenko mode in isolation. This would remain the state of the field for some

time...

1.3 Rotating Bose-Einstein condensates

Recently Anglin and Crescimanno have predicted that these modes should exist

in a dilute gas BEC [28]. In this initial work they develop a hydrodynamic theory of

vortices that accounts for the finite and inhomogeneous density profile of the condensate.

This paper yields several interesting results, the most relevant of which is that there

exists a radially symmetric mode in condensates with a wavelength on the order of

the condensate radius. This mode, dubbed the (1,0) mode, is predicted to have a

frequency far smaller than any previously observed bulk fluid mode of the condensate.

Two interesting observations about the vortex lattice can be made from the existence

of this mode. First, the radially symmetric “s-bend” that it induces in the lattice could

only be possible in the presence of a finite shear modulus. A finite shear modulas is

not normally associated with a superfluid and could only exist because the superfluid is

permeated with the vortex lattice. Secondly, the extremely low frequency of this mode

suggests that this shear modulus is quite small and that the lattice is potentially very

delicate under shear.

In Anglin and Crescimanno’s notation the (1,0) mode corresponds to one radial

node and zero azimuthal nodes. While this thesis primarily studies this one mode it
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should be noted that there are others that are accessible or potentially accessible. As

mentioned in §4.4 the (2,0) mode has been observed as well. Non-radially symmetric

modes are also predicted and it is a little surprising that they have never been detected.

The (0,2) mode in particular is predicted to be an extremely low energy mode (sub 1 Hz

frequency for our system) and one might expect it to exist in nearly any vortex lattice.

By mid 2002 we began the study of Tkachenko modes in our dilute gas BEC. We

are able to observe these modes quite easily, in contrast to He II where such modes are

not directly observable. By gently perturbing the central density of the condensate we

couple to a pure (1,0) Tkachenko mode. Because our initial conditions are so repro-

ducible its becomes possible to map the vortex oscillation patterns in time, obtaining

both oscillation frequency and an approximate wavelength. Surprisingly, as low as An-

glin and Crescimanno’s predicted Tkachenko frequencies are, our measured frequency

is much lower, particulary at high rotation.

The explanation for this discrepancy would come in a slew of theory responses [29,

30, 31, 32, 33]. A particularly relevant point, made in nearly all of these works, is that

Anglin and Crescimanno’s theory is based on assumptions of incompressibility that are

true in He II but not completely true for a highly rotating BEC. As the BEC rotation rate

becomes comparable to the speed of sound the fluid becomes compressible. Interestingly

this compressible regime is also expected to occur in neutron stars [34]. Accounting for

compressibility effects lowers the predicted Tkachenko frequencies to a point where they

are consistent with experiment.

A second effect, entering the lowest Landau level (LLL) regime, is also expected

to decrease the lattice shear modulus and further lower the predicted Tkachenko fre-

quencies. In the rotating frame and as the condensate rotation rate approaches the

trapping frequency, the single-particle harmonic oscillator energy states organize into

Landau levels or band like structures of nearly degenerate states. If condensate interac-

tions are weaker than the energy splitting between Landau levels, then the condensate
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primarily occupies the near-degenerate states of the lowest Landau level. This places

significant constraints on the condensate wavefunction and one would expect to see a

number of interesting effects including a weaker shear modulus in the vortex lattice [29].

Tkachenko modes aside, BECs in the lowest Landau level are intriguing on their

own, as this system is somewhat analogous to type-II superconductors in a strong mag-

netic field [19]. In the extreme case exotic quantum Hall like effects are predicted to

occur. For rotating BECs in the LLL, three regimes have been identified, distinguished

by the filling factor (the ratio of atoms in the fluid to vortices). For high filling factors,

the condensate is in the mean-field lowest Landau level regime [35, 19, 36] and forms an

ordered vortex lattice ground state. Filling factors around 10, although currently out

of reach, are expected to lead to melting of the vortex lattice. At such filling factors,

the shear strength of the lattice is predicted to drop to a point where quantum fluc-

tuations begin to melt the vortex lattice [37, 38], and a variety of strongly correlated

vortex liquid states similar to those in the Fermionic fractional quantum Hall systems

are predicted to appear [37]. For filling factors around 1, exotic quasiparticle excitations

obeying fractional statistics [39] are predicted.

By monitoring the frequency of the (1,0) Tkachenko mode and the frequency of

the axial breathing mode [40] we observe a transition to the 2D, high-filling factor, LLL

regime. Two theory predictions in particular are addressed for this regime. First there

is the Ho prediction [35] that the radial condensate profile should become gaussian as

one enters the lowest Landau level. This prediction arises from the fact the condensate

wavefunction in the lowest Landau level is so constrained that the position of the vortices

dictates the entire condensate profile. If one assumes a perfect Abrikosov lattice then the

resulting condensate profile is Gaussian. However our experimental observation shows a

decidedly parabolic profile that implies that the lattice, far from the condensate center,

distorts slightly as predicted by several other groups [41, 42, 43]. It is interesting to

note that this predicted distortion closely resembles the lattice distortion predicted by
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Sheehy and Radzihovsky [44] for the Thomas Fermi regime.

Also in the lowest Landau level the vortex core size becomes comparable to the

lattice spacing. This is highly suggestive of type-II superconductors in a strong magnetic

field where vortices become increasing tightly packed. When the applied magnetic field

in these systems reaches a critical value (generally dubbed Hc2) the vortices effectively

swallow the entire system, forcing it into a normal state. In the dilute-gas BEC, early

extrapolations from Thomas-Fermi theory [45, 46] suggest a similar effect. Alternatively

it is argued by argued by Fischer and Baym [19] and Baym and Pethick [36] that kinetic

energy considerations prevent this overlap and that the ratio of core size to spacing will

ultimately saturate. A challenging set of experiments discussed in §5.5 demonstrates

that the latter prediction is correct.

Multiply quantized vortices also offer intriguing comparisons across supersystems.

Vortices discussed so far have all been singly quantized but, in principle, a vortex can

have any integer 2π phase winding. Such multiply quantized vortices are just one of the

exotic vortex phases seen in 3He-A systems [47] and can also be observed at pinning

sites in superconductors [48, 49, 50]. To date, doubly quantized vortices have been

observed as the result of topological vortex formation [51], but higher quanta have not

been observed. In this thesis, I discuss a somewhat less elegant means of forming a

“giant” vortex. Here we suppress the fluid density in the center of the condensate by

employing a focused, resonate laser to burn a hole in the cloud. This is not a true

multiply-quantized vortex, since density suppression does not actually lead to vortex

core overlap. Nonetheless, these experiments yield interesting information about the

dynamical stability of such giant vortex features. The Giant vortex itself drastically

demonstrates the effects of Coriolis force and the changed dynamics in the rapidly

rotating system
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1.4 Outlook

Predicting the future course of the TOP trap apparatus has traditionally been

very hazardous. However, one obvious direction is the study of the exotic, low-filling-

factor states discussed earlier. It should be noted however that this has also been our

stated goal for much of the last three years. While this goal has yielded a great deal

of interesting science, it has also become clear that low signal and fragile condensates

will make low filling factors hard to achieve. There is some hope that the installation

of an optical lattice could make this regime accessible and a serious effort to do so is

currently underway.

On a separate note, vortex experiments could truly benefit from a Feshbach reso-

nance. It is exciting to think that with such a resonance one could tune a rotating BEC

from the He II regime to a compressible neutron star regime to the lowest Landau level

regime, instantly and without adjusting atom number or rotation. Theory predictions

have even suggested that with a Feshbach resonance, a rotating BEC could serve as

nothing less then a model system for the expanding universe [52]. Unfortunately, this

is complicated by the fact that our current atom, 87Rb, does not offer any easily usable

resonances [53]. On the plus side experience has taught me that while it is hazardous

to predict the future of the TOP trap it is equally hazardous to rule anything out.

1.5 Thesis overview

The structure of this thesis is follows. Chapter 2 discusses experimental tech-

niques for generating and imaging vortices. Chapter 3 is a discussion of giant vortices

and dynamically stable density deformations in a rotating condensate. Chapter 4 de-

tails the excitation of the (1,0) and (2,0) Tkachenko modes in a vortex lattice. These

modes are compared to theory and to similar bulk fluid modes of the condensate. Chap-

ter 5 discusses the crossover to the lowest Landau level regime. Breathing modes and
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Tkachenko modes are used to demonstrate two-dimensionality and passage into the low-

est Landau level regime respectively. Additionally, the condensate and vortex density

profiles in this regime are discussed, with particular attention paid to fractional core

area effects. Finally, Chapter 6 characterizes several equilibrium vortex lattice effects.

Specifically, we attempt precision measurements of vortex lattice spacing and the vortex

core size over a range of condensate densities and rotation rates. Lastly, the effects of

finite temperature on vortex contrast are studied.



Chapter 2

Experiment and Hardware

2.1 Generating highly rotating condensates

Highly rotating condensates are the bread and butter of this thesis and will be the

starting point for every following chapter. Naturally this thesis would not be complete

without a description of how these clouds are produced. It is worth noting that the tech-

niques for creating highly rotating condensates have undergone only small refinements

since originally being detailed by Paul Haljan [54].

Our experiment begins with a magnetically trapped cloud containing greater than

107 87Rb atoms in the |F = 1,mF = −1〉 hyperfine ground state, cooled to a temperature

roughly three times the critical temperature (Tc) for Bose condensation. Using a TOP

trap we confine these atoms in an axially symmetric, oblate and harmonic potential with

trapping frequencies ({ωρ, ωz} = 2π{7, 13}Hz) with axis of symmetry along the vertical

(z) axis. This trap is commonly referred to as the stirring trap as it is where we impart

angular momentum to the thermal cloud. Rotation is generated in the thermal cloud

by resonantly coupling to a scissors mode of the cloud [55, 56]. To do this we gradually

apply an elliptical deformation to the magnetic trapping potential by distorting the

amplitude of the rotating TOP field in time. The resulting distorted trap has roughly

similar average radial-trapping frequency but an ellipticity in the horizontal plane of
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0.25. Here trap ellipticity is defined as

εtrap =
ω2

+ − ω2
−

ω2
+ + ω2

−
. (2.1)

where ω+ and ω− are the trap frequencies along the major and minor trap axis. The

uncondensed cloud is held in this trap for 5 seconds while any excitations die out. At

this point the angle of the major axis of the elliptically distorted trapping field is jumped

quickly by 45 degrees in the horizontal plane to generate the initial conditions of the

scissors mode. From here the cloud is allowed to evolve for 155 ms, or roughly one

quarter period of the resulting scissors mode, at which point we transfer the cloud to

a radially symmetric trap. Essentially we have caught the scissors oscillation between

turning points where all the initial linear velocity has turned into rotational velocity.

Using this method we can generate a cloud rotating at roughly half the radial trap

frequency, with minimal heating. By lowering the amplitude of the trap distortion or

the angle by which the trap is jumped, we can easily generate more slowly rotating

clouds as well.

At this point we begin a second phase of rf evaporation, but this time we evaporate

in one dimension along the axis of rotation [25, 54]. The motivation for this seemingly

inefficient technique is that the 1D evaporation allows us to remove energy from the z

axis of the condensate without preferentially removing high angular momentum atoms.

Lowering the energy per particle without lowering the angular momentum per particle

accelerates the cloud rotation rate Ω. To perform this 1D evaporation, we adiabatically

ramp to a prolate geometry ({ωρ, ωz} = 2π{8.3, 5.3}Hz) where the rest of the experiment

is carried out. This prolate geometry is commonly referred to as the cigar trap.

Reaching significant rotation rates by the end of evaporation requires that the

lifetime of the thermal cloud’s angular momentum be comparable to the evaporation

time. The nearly one-dimensional nature of the evaporation together with the low

average trap frequencies makes cooling to BEC in the prolate trap very slow (2 minutes).
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Figure 2.1: Growth of a rotating BEC from a rotating normal cloud. Pictures taken in
expansion after different final rf frequencies of the evaporative cooling: (a) 2.65 MHz
(pure normal cloud),(b ) 2.6 MHz, (c) 2.58 MHz, (d) 2.57 MHz,(e) 2.55 MHz,(f ) 2.5
MHz,(g) 2.4 MHz,(h ) 2.35 MHz.

We obtain angular momentum lifetimes this long by shimming the TOP trap’s rotating

bias field to cancel the few percent azimuthal trap asymmetry that exists despite careful

construction. With this technique we suppress the azimuthal trap ellipticity to less than

one part in a thousand.

After the evaporation we have a condensate with as many as 4.5 million atoms

and rotation rates from Ω = (0− 0.975)ωρ, with no observable thermal cloud. Rotation

can be accurately determined by comparing the condensate aspect ratio λ (defined as

the axial Thomas-Fermi radius over the radial Thomas-Fermi radius Rz/Rρ) to the trap

aspect ratio λ0 ≡ (ωρ/ωz), and using the now standard relation

Ω/ωρ =
√

(1− (λ/λ0)2) . (2.2)

2.2 Rounding out the trap

As noted in the previous section, intrinsic vortex nucleation requires that the

trap’s ellipticity in the horizontal plane be less than 0.001, no small feat. Achieving

this degree of roundness is a difficult task and it is unlikely, given the current technique
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of assembling magnetic coils by hand, that a trap this round could achieved by careful

initial fabrication. It is interesting to note that, despite careful construction, the JILA

Mark III TOP trap has a natural 0.03 ellipticity when in the cigar configuration. While

this asymmetry is roughly a factor of two better than competing Ioffe-Pritchard trap

designs it is, of course, much too large to perform intrinsic nucleation of vortices. The

glory of the TOP trap is that the rotating bias field does a great deal to define the

trap’s horizontal ellipticity and that by simply varying the amplitude of the bias field as

it rotates, one can create a highly elliptical trap or, alternatively, suppress an existing

anisotropy by more than an order of magnitude. Distorting the rotating bias field of

the TOP trap is by no means a new technique and early discussion of it can be found

in Jason Ensher’s thesis [57]. Here I will limit my discussion to distortion of the TOP

field as it applies to rounding of the trap for vortex generation.

Distortion of the top field can easily be done by adding together two oppositely-

rotating, circular, bias fields to form an elliptical, rotating, bias field1 . To clarify, by

circular and elliptical I am referring to the shape carved out by the bias field vector as it

does a complete rotation. It is convenient to refer to these two oppositely-rotating fields

as Top2 and Ellipsifier. This historical designation refers to the hardware channels that

provide each field. Generally, Top2 provides the unperturbed, circular field to which the

Ellipsifier is generally added to provide the distortion. More precisely one can describe

the rotating bias field of the Top2 channel as

BTOP = a sin(νt)̂i + a cos(νt)ĵ . (2.3)

Here î and ĵ can be thought of as the axes of the top coils (i.e. North-South

and East-West). Here I have assumed that the field amplitude a is balanced along both
1 It should be noted that the TOP box that switches between TOP channels allows for independent

adjustment of amplitude of the signal sent to each pair of TOP coils as well as adjustment of the phase
between them. In principle this analog adjustment could achieve the same effect as adding a counter-
rotating bias field. NO ONE SHOULD EVER TRY THIS! These adjustments are far too sensitive for
this work and settings are not easily reproduced. I mention this because one could easily, in thirty
seconds, unround the trap to the point from which it would take a week to recover.
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Figure 2.2: Addition of TOP fields forming an ellipse. The major axis of the ellipse is
defined by half the phase angle between the top channel and the ellipsifier channel.

axes. In reality, this is probably not perfectly true. For the experiments presented in

this thesis the bias field rotation frequency, ν, is 1800 Hz. We can then add a counter-

rotating, Ellipsifier field such that the total bias field has the form

BTOP = a (sin(νt) + ε sin(νt + φ))̂i + a (cos(νt)− ε cos(νt + φ))ĵ . (2.4)

Here ε is just the ratio of the magnetic field amplitude of the Top2 channel to

the magnetic field amplitude of the Ellipsifier channel. The effect of increasing ε on the

bias field is shown in figure 2.3. Here I have only considered the case 0 ≤ ε ≤ 1. For

ε > 1 the bias field asymmetry and orientation can be easily determined by noting that,

for most purposes, there is no fundamental distinction between the Top2 and Ellipsifier

channels and ε can also be thought of as the ratio of the Ellipsifier channel to the Top2

channel. To clarify, if the Top2 channel has half the amplitude of the Ellipsifier channel

this will yield an elliptical bias field with the same orientation and ellipticity as when

the Ellipsifier channel has half the amplitude of the Top2 channel. The only difference

is the rotational direction of the final bias field which can usually be ignored.

The shape of the rotating bias field is of course not the whole story as noted in

section 6.2.4 of Jason Ensher’s thesis [57]. Ultimately the ellipticity of the TOP trap

is determined by the interaction of the rotating bias field with the quadrupole gradient

and with gravity. Thus the final ellipticity of the trap can vary dramatically between

traps. As noted by Ensher this cannot be described analytically except for very small
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Figure 2.3: Plot of equation [2.4] demonstrating the effect of adding counter-rotating
bias fields to form an elliptical bias field. In all cases the phase angle between counter-
rotating bias fields is φ = 900. Elliptical bias fields are plotted for a range of ε, the ratio
of the strength of the two counter rotating fields.

Figure 2.4: Effect on the calculated trap ellipticity of the rotating bias field distortion.
The larger anharmonicities of the cigar trap make the trap ellipticity much waeker for
the same ε.
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eccentricities, which is not really the regime we are interested in. One can of course

model this numerically (see appendix A for an outline of this process), the results of

which have been plotted in figure 2.4 for the stirring trap2 ({ωρ, ωz} = 2π{7, 13}Hz)

and the cigar trap ({ωρ, ωz} = 2π{8.3, 5.3}Hz). The higher magnetic field gradients

of the stirring trap (58 Gauss/cm vs. 32 Gauss/cm) allow for a much larger elliptical

distortion.

In looking at figure 2.4 one can begin to understand the strategy for exciting

vortices. The stirring trap provides a high ellipticity which allows for stronger coupling

to rotational modes of the thermal cloud. On the other hand, the relatively weak

dependance of ellipticity on ε in the cigar trap allows us to cancel out the natural

ellipticity of this trap to a very high precision without being overly sensitive to drift in

the strength of the elipsifier field. This is of course not the exact natural order of things

as the cigar trap was actually chosen to facilitate one-dimensional evaporation.

While it is clear that these traps have the ability to shim away a few percent

asymmetry with an elliptical bias field, it is a somewhat more complicated issue to

perform the shimming at the level of 0.001 ellipticity that is required for evaporative

spin up of the condensate. Worse still we have a two-dimensional parameter space

(phase and amplitude of the counter-rotating field). To “round out the trap” we have

developed several techniques that are essentially a means to measure the unroundness

of the trap so that we may iteratively adjust the orientation and amplitude of the bias

field distortion to slowly correct for the natural asymmetry. These three methods can

be divide into coarse, intermediate, and fine tuning techniques.

Coarse measurement of the trap ellipticity are made by performing horizontal

beat measurements. To perform beat measurements we jump the North-South and/or

the East-West shim coils to induce condensate slosh in the horizontal plane of the trap.

When a condensate sloshes in an elliptical trap the slosh frequency is determined by the
2 trap frequencies cited are for the case of radial symmetry or ε = 0
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eigenfrequencies of the major and minor axes of the trap. Initial motion not directly

along one of these eigen axes will result in a beating between the two frequencies as

the condensate motion moves about the major axis in a manner shown in figure 2.5(a).

This beat frequency (ωbeat) is, of course, at the difference of the trap frequencies along

the major and minor axes of the trap (ω+ and ω−). In the limit that the trap is nearly

round one can write a convenient version of equation 2.1,

εtrap '
ω+ − ω−

ωρ
=

ωbeat

ωρ
. (2.5)

Here as before ωρ is the average radial trap frequency. Thus, by lowering the beat

frequency one can round out the trap. The advantage of this technique is that it will

work for very large εtrap. Beat measurements can be resolved as long as ωbeat is at least

3-4 times smaller than ωρ which is nearly always the case. The challenge and ultimately

the limitation in this technique is measuring the beating between the two axes.

The lifeblood of beat measurements is nondestructive imaging [58, 59, 54], which

allows us to measure the beat frequency in a single shot. Considering the iterative

nature of bias field tuning we would be sunk without it. The simplest nondestructive

method for this measurement is streak mode or movie type imaging. Here most of the

CCD array on the camera is masked off except for a small area at the bottom in which

the condensate image is centered. Once the slosh is excited the CCD is scrolled slowly

upward as the condensate is imaged. With large probe detunings and low probe powers

one can image the condensate motion for as long as 20 seconds before atom loss destroys

the signal.

As the beating occurs, the condensate motion goes from linear motion along the

initial axis of excitation to circular motion and then back to linear motion, along an axis

mirrored across the major axis of the trap, as is depicted in figure 2.5(a). If the imaging

axis is oriented along the initial axis of linear motion then the beating appears as narrow

and wide waists in the streak image (see figure 2.5(b)) and the frequency can be easily
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Figure 2.5: Beat measurements in the stirring trap. Image (a) shows the layout of
the experiment and oscillation pattern of a sloshing condensate as it beats between
the major and minor axis. The natural anisotropy of the trap seems to be such that
major and minor axis of the trap are 450 from the imaging axis unless a highly elliptical
top field is applied to move them away from this orientation. When the condensate
oscillation is along the imaging axis we see a small waist in the streak image such as
we do at the top of (b) and (c). Image (b) shows a double oscillation where τbeat can
be measured from the time between the two waists. Image (c) demonstrates the limit
of this method. Here we can only measure roughly a half cycle and can only place an
upper limit on εtrap. The interrogation time can be increased to extend the range but
noise quickly becomes a problem. One can already begin to see loss of contrast due to
the atom loss and charge build up on the CCD.
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measured given the scroll rate of the camera. The narrow waists are generally the most

convenient way to measure the oscillation period (τbeat = 2π/ωbeat) and the observed

narrowness/sharpness of these small waists improves significantly when the initial slosh

motion is precisely along the imaging axis. By carefully tuning the jumping of the shim

coils one can dramatically increase the visibility of these waists. The width of the widest

sections is dictated by the initial slosh amplitude and, more importantly, increases as

the angle between the initial slosh direction to the major axis of the trap approaches

45o. Thus, with careful observation the width of the wide sections can convey some

information about movement of the major axis as one tries to round the trap. This also

presents a potential problem since the width of the wide sections decreases as the angle

of the initial slosh direction approaches the major or minor axis, and if this angle ever

goes to zero the excitation is along an eigen axis and no beating occurs at all. We are

somewhat blessed in that the natural eigen axes of the magnetic trap tend to be close

to the axes of the TOP coils and 450 from the imaging axis so this zero angle situation

almost never occurs while rounding the trap. Nonetheless, future grad students are

advised to consider this point if their beat measurement is behaving funny.

The limitation of the beat measurement lies in the longest τbeat one can observe.

If one assumes that half an oscillation, like the one in figure 2.5(c), is the minimum

oscillation period one can observe and still determine a τbeat, then the lowest ωbeat mea-

surable is roughly 2π/40 seconds. Using this beat frequency in equation 2.5 and an

ωρ of 2π × 7 Hz yields an εtrap of 0.003. Thus beat measurements have the sensitivity

to bring us close to the desired ellipticity. In the stirring trap, this technique is com-

pletely adequate since the requirements on trap roundness are greatly reduced due to

the relatively small amount of time a rotating thermal cloud spends there. Unfortu-

nately the same cannot be said for the cigar trap. The problem here is two-fold. As

previously noted, the requirements on εtrap in the cigar trap are somewhat higher due

to the need to sustain rotation for a 100 s evaporation. In addition, beat measurements
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are considerably less effective in the cigar trap. While streak mode measurements can

be extended as long as 20 seconds in both the cigar and stirring trap, heating from slosh

that occurs only in the cigar trap limits this interrogation time to at most 8-10 seconds,

thus limiting the sensitivity of this method to εtrap ≈ 0.007. While this is an important

first step, additional techniques are clearly necessary.

To further round out the trap the angular momentum life time of the cloud can

be used as a diagnostic for εtrap. Guery-Odelin [60] has theoretically demonstrated that

a rotating thermal cloud placed in an elliptical trap will spin down with a time constant

of

tdown ≈ 1/(2ε2trapω
2
ρτ). (2.6)

Here τ is the collision rate (roughly 1 Hz for data presented in this chapter) 3 . Thus

by measuring the rotation decay in the thermal cloud one can continue to optimize trap

roundness.

There are a few complications in this method associated with the switching of

traps. The stirring trap is used to provide the initial rotation but we are interested in

studying the cigar trap so the cloud must be transferred. The ramp to the cigar trap is

not completely adiabatic and the thermal cloud under goes a few seconds of rethermal-

ization. This rethermalization complicates the aspect ratio measurements made within

the first few seconds after the ramp. In figure 2.6 this effect is clearly visible. Here

the ramp to the cigar is completed a t = 0 and the black squares show the change in

aspect ratio of a non-rotating cloud due to this rethermalization. When determining

decay rates this rethermalization can be accounted for with a double exponential decay

function none the less the rethermalization time constant limits the fastest decay one

can hope to measure.

While the many-point lifetime measurements in figure 2.6 are a convenient way
3 Equation 2.6 also assumes a relatively small ellipticity. As detailed in Ref. [60] this implies that

εtrap � 1/(4ωρτ) ≈ 0.03 which is generally the case at this stage in the rounding process, but not
universally true.



24

Figure 2.6: Thermal could aspect ratio decay rate in the cigar trap. Red circles and
red triangles show the rotation decay in a trap with εtrap = 0.03 and εtrap = 0.01 re-
spectively. Black squares are taken using a nonrotating cloud and show the effect of
rethermalization to the cigar trap. Rotation decay time constants are found by first
fitting the static cloud with a single exponential decay (black line) and then fitting the
rotating cases with a double exponential where the first exponential is constrained to
match the static case. Note that in the case εtrap = 0.03, rotation decay is nearly indis-
tinguishable from rethermalization. It is this background noise from rethermalization
that limits the maximum εtrap one can measure using this method.

Figure 2.7: Examples of single point trap rounding measurements. These measurements
can be performed with a thermal cloud at higher εtrap’s or, when the system is sufficiently
round to generate a rotating condensate, one can use condensed atoms. SRSamp is the
experimental unit for the amplitude of the counter-rotating bias field. SRSphase is the
phase, in degrees, between the rotating and counter-rotating bias fields.
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to understand rotation decay, they are far too time consuming for the trap rounding

procedure. If one is willing to forgo quantitative knowledge of εtrap, trap rounding can

be performed with a single point measurement by measuring the cloud aspect ratio

after 10 or 20 seconds in the trap. Figure 2.7 shows such an effort as the amplitude of

the counter rotating field is optimized and then the phase. Performing each of these

optimizations twice is generally sufficient to round out the trap for the first time.

Finally, once the cigar trap is round, the roundness can be maintained simply by

evaporating past Tc and optimizing on the condensate aspect ratio after evaporation in

the same manner as one would with the single point thermal cloud measurements. While

this yields no quantitative information about εtrap it is certainly the most sensitive test

of roundness and the most convenient to perform. Typically one can achieve condensate

aspect ratios of 0.5 or lower using in this final step.

2.3 Anti-trapped expansion [1]

The clouds studied in this thesis typically contain between 1-300 vortices, each

of which is too small to be observed in-trap but can be seen after expansion of the

cloud. Our expansion technique is unusual enough to warrant a description. For the

experiments presented here and elsewhere, we need a large radial expansion to make

sure that the vortex cores are large compared to our imaging resolution. Additionally

we need to suppress the axial expansion in order to preserve certain length scales in the

condensate as discussed later in this section. Clearly, given our low and nearly isotropic

trap frequencies, the usual expansion technique of shutting off the magnetic field and

dropping the cloud would not meet such requirements. The solution, which has been

demonstrated by other groups [61], is to perform an anti-trapped expansion. Rather

than simply shutting off the trapping potential, we invert the trap in the radial direction

so that the cloud is actively pulled apart. Simultaneously, the magnetic field gradient

in the vertical direction is used to support against gravity.
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The expansion is achieved in several steps that take place in rapid succession.

First we employ a microwave adiabatic rapid passage technique (ARP) to transfer the

atoms from the weak-field seeking |F = 1,mF = −1〉 state to the strong-field seeking

|F = 2,mF = −1〉 state4 . The microwave field employed is powerful enough to perform

the transfer in 10µs but, as will be discussed shortly, we often take as long as 300µs for

this transfer. After transfer to the anti-trapped state, the cloud still sits in its original

position below the quadrupole zero, which means that both gravity and the magnetic

field are acting to pull it downward. To counter this force a uniform vertical magnetic

field is added to pull the quadrupole zero below the condensate so that the magnetic

field gradient again cancels gravity. The field is applied within 10µs, fast compared

to relevant time scales. In this manner the cloud is again supported against gravity.

To reduce curvature in the z direction, the TOP trap’s rotating bias field is turned

off leaving only the linear magnetic gradient of the quadrupole field. This gradient is

tuned slightly to cancel gravity. Because the condensate is vertically displaced from

the quadrupole center (∼ 800 µm) the axial quadrupole field acts as a bias field for the

radial gradient. Thus for radial displacements from the center, that are less then the sag

distance, the radial anti-trapping potential is well approximated as an inverse parabola.

Using this technique, we are able to radially expand the cloud by more than a

factor of 10 while, at the same time, seeing less than a factor of two axial expansion.

Unfortunately even this much axial expansion is unacceptable in some cases. In the

limit of adiabatic expansion, this factor of two decrease in condensate density would

lead to an additional
√

2 increase in healing length during expansion. Thus, features

that scale with healing length, such as vortex core radius in the slow rotation limit,

would become distorted. The effect of axial expansion on vortex size was first noted by
4 We also investigated transferring to the strong-field seeking |F = 2, mF = −2〉 state used by [61]

but found it unsatisfactory for our trap. The larger magnetic moment of this state made us more
sensitive to bias field drift when cancelling gravity, while the nearly vertical magnetic field orientation
in the cigar trap makes efficient transfer to the |F = 2, mF = −1〉 much easier.
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Dalfovo and Modugno [62].

To suppress the axial expansion, we give the condensate an initial inward or

compressional impulse along the axial direction. This is done by slowing down the rate

at which we transfer the atoms into the anti-trapped state. The ramping direction

of the ARP is such that it transfers atoms at the top of the cloud first and moves

down through the cloud at a linear rate. These upper atoms are then pulled downward

with a force of 2g (gravity plus magnetic potential), thus giving them an initial inward

impulse. Finally, the ARP sweep passes resonantly through the lowest atoms in the

cloud: they, too, feel a downward acceleration but the axial magnetic field gradient is

reversed before they can accumulate much downward velocity. On average the cloud

experiences a downward impulse, but also an axial inward impulse. Normally the ARP

happens much too fast for the effect to be observable but when the transfer time is

slowed to 200 − 300µs the effect is enough to cause the cloud to compress axially by

10-40% for the first quarter of the radial expansion duration. The cloud then expands

back to its original axial size by the end of the radial expansion.

Despite our best efforts to null out axial expansion, we observe that the cloud

experiences somewhere between 20% axial compression to 20% axial expansion at the

time of the image, which should be, at most, a 10% systematic error on measured vortex

core radius. The overall effect of axial expansion can be seen in figure 2.8, where image

(b) and (c) are similar condensates and differ primarily in that (c) has undergone a

factor of 3 in axial expansion while in (b) axial expansion has been suppressed. The

effect on the vortex core size is clearly visible.

Since almost all of the data presented in this thesis is extracted from images ac-

quired after the condensate expands, it is worth discussing the effect of radial expansion

on the density structure in the cloud. In the Thomas-Fermi limit, it is easy to show

that the anti-trapped expansion in a parabolic trap, combined with the mean-field and

centrifugally driven expansion of the rotating cloud, leads to a simple scaling of the
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Figure 2.8: Examples of the condensates used in the experiment viewed after expansion.
Image (a) is a slowly rotating condensate. Images (b) and (c) are of rapidly-rotating
condensates with similar in-trap conditions. They differ only in that (c) was allowed to
expand axially during the anti-trapped expansion. The effect on the vortex core size is
visible by eye.
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linear size [63] of the smoothed, inverted-parabolic density envelope. As the condensate

radius, Rρ, increases, what happens to the vortex-core size? There are two limits that

are easy to understand. In a purely 2D expansion (in which the axial size remains con-

stant), the density at any spot in the condensate comoving with the expansion goes as

1/R2
ρ, and the local healing length ξ then increases over time linearly with the increase

in Rρ. In equilibrium, the vortex core size scales linearly with ξ. The time scale for

the vortex core size to adjust is given by h̄/µ where µ is the chemical potential. In the

limit (which holds early in the expansion process) where the fractional change in Rρ is

small in a time h̄/µ, the vortex core can adiabatically adjust to the increase in ξ, and

the ratio of the core-size to Rρ should remain fixed as the cloud expands.

In the opposite limit, which applies when Rρ expands very rapidly compared to

h̄/µ, the inverted parabolic potential dominates the dynamics, and every point in the

cloud expands radially outward at a rate proportional to its distance from the cloud

center. In this limit, the “fabric of the universe” is simply stretched outward, and all

density features, including vortex core size expand at the same fractional rate. Again,

the ratio of core-size to Rρ should remain fixed.

So in the two extreme limits, the ratio of vortex core size to Rρ (and other density

features, such as nearest-neighbor vortex separation) remains fixed. It is reasonable then

to assume that this behavior will be true in general for the intermediate regime between

the two expansion rates. Extensive numerical simulations were performed to validate

this assumption.

Once expanded, the cloud is imaged along the vertical direction, and data is

extracted by fitting the integrated (along the line of sight) condensate density profile

with a Thomas-Fermi distribution. We then subtract this fit from the image and easily

fit the remaining vortex-core residuals with individual 2D Gaussian profiles to determine

the core centers and radii. For the purpose of this section the vortex radius rv is defined

to be the RMS radius of the 2D Gaussian that we fit to the core. For clarification, the
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Figure 2.9: The microwave frequency chain has evolved somewhat since originally pre-
sented by Michael Matthews [59]. In order to perform the ARP, an image reject mixer
has been inserted before the microwave amplifier. This mixer allows us to sweep the
microwave frequency using more convenient rf technology. It also generates an account-
ing hazard since it has the effect of adding ∼ 35− 38 MHz to the microwave frequency
depending on settings. This means that microwave values recorded in lab books prior to
9/02 need to be similarly adjusted. Other alterations to the experiment include a stub
tuner to improve coupling to the wave guide, a new solid state amplifier, and SemFlex
cabling between all components. This last alteration in particular has greatly reduced
the sensitivity to bumps and slight movements of the components.
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Figure 2.10: Timing sequence for the ARP (not to scale). The rf frequency ramp can
be performed in as little as 10 µs, but is generally done in 300 µs to suppress axial
expansion. The rf to the atoms is controlled by two switches, rf-mixer and mixer-
amplifier, which have opposite logic. These switches are not actually redundant since
the mixer-amplifier switch kills any leaks from the mixer and the mixer-rf switch helps
to protect the mixer from the near threshold power levels that it would otherwise see
all the time. The vertical bias field is triggered 100 µs before the end of the ARP to
account for delays in the electronics. Horizontal shims are jumped to correct for the,
imperfectly aligned, vertical bias field. It is important that the vertical bias go on very
quickly after the ARP because the atoms feel a 2g downward acceleration prior to this
field jump. The TOP fields are shut off a 5 ms after the ARP to limit field curvature
in the vertical direction. A concurrent 1-3 bit change in the quadrupole voltage is done
to roughly maintain the trap center.
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RMS radius of a 2D Gaussian would be 0.60 times its FWHM. Condensate and vortex

fits can be performed iteratively to reduce error.

Before each expanded image we also take a horizontal, nondestructive, in-trap im-

age of the cloud immediately before expansion. From this image, rotation rate and atom

number are determined. Length scales in the expanded cloud can be scaled back to in-

trap values by dividing by the radial expansion factor, defined as Rρ(expanded)/Rρ(in−

trap).

2.4 Poking, prodding, cutting and blasting beams

Finally, I would like to discuss some of the atom removal and prodding techniques.

My aim here is not to provide a comprehensive description of these techniques, as they

are still in a state of flux and will likely be out dated for most readers of this thesis.

Rather, it is my hope to provide a rough description of the apparatus and a context for

the experiments detailed later in this thesis.

The “poking beam”, as it is often called, is meant to perturb a very localized

section of the condensate in a manner that is axially symmetric. This perturbation is

accomplished by bringing a beam up through the cell along the MOT beam path and

focusing it onto the condensate so that the 1/e2 beam waist is between 10 and 100 µm

depending on the application. Uses of this beam path have included; pushing atoms

away from the center of the cloud with a blue detuned beam to create shock waves [cite

peter], drawing atoms into the center with a red detuned beam to excite Tkachenko

modes, and selectively removing atoms near the condensate center to spin up the cloud

to create giant vortices or excite Tkachenko modes.

Figure 2.11 depicts the beam path that enables us to do this. The poking setup

has several noteworthy features. The fiber output coupler provides both a clean mode

profile and beam pointing stability. Is is also convenient in that it allows for quick

switching between 850 nm light for an attractive dipole potential and 780 nm light used
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for atom removal. Using an FC junction in the middle of the fiber allows for quick

switching at the acceptable cost of some power loss (loss varies but is always less than

50%). Unfortunately, the blue detuned 670 nm beam requires a separate fiber since the

850 nm fiber used for the other two beams supports both the zeroth and first order

spatial modes at this higher frequency.

Following the output coupler is an adjustable telescope that expands the beam.

Given the 12 cm lens that ultimately focuses the light onto the atoms, one needs at least

a 2-4 mm beam waist after the telescope. Placing the second mirror on a translation

stage makes it far easier to focus the beam in real time while monitoring it on the

vertical imaging camera. The other advantage of this translation stage is that, when

needed, a larger beam waist at the atoms can be quickly generated by misaligning the

telescope. It is also conceivable to image complicated patterns onto the condensate by

placing masks in the focus of the telescope.

The second critical alignment tool is the pico motor set. Mounted on the last

mirror on the elevated platform these motors provide the micro-radian angle adjustments

that are needed to not only hit the condensate but also center the beam on it. The

combination of realtime adjustments using the vertical imaging camera and the fairly

reproducible steps of the pico motors makes the otherwise daunting task of hitting the

condensate with the focus of the laser easy. Due to space constraints, most of the set

up is mounted on an elevated platform that sits, on 1 in. posts, about a 30 cm above

the optics table. This elevated platform is surprisingly stable and both long and short

term drifts were not a problem. However, this poking application is forgiving in nature

however and it should be noted that use of the elevated platform was found unsuitable

for optical lattices.
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Figure 2.11: Poking beam setup. Optical fiber couples out into an adjustable telescope
to allow for quick adjustments of the beam spot size at the atoms. Pico motors mounted
on the steering mirror allow for fine tuning of the beam position across the condensate.
A final 12 cm lens focuses the poking beam onto the condensate. Coupling to the MOT
path is done using a polarizing beam splitter.
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2.5 Other adjustments to JILA Mark III

As one can see, JILA Mark III has become increasingly and complex over the

last few years as new functionality is added. The anti-trapped expansion technique and

the vertical poking/blasting beam are just the latest in a long sequence of additions

to the machine. The good news is that trapping laser upgrades and alterations have

made the experiment somewhat simpler and much more robust. While a highly detailed

description of these changes is probably unnecessary I will mention a few of them here

if only to briefly discuss many of the lessons learned.

Arguably the most significant change has been to replace the science MOT laser

with a master slave pair. The old setup (detailed in Jason Ensher’s thesis [57]) was a

particularly well stabilized ECDL made in the standard JILA design. While this laser

was easily the best homemade laser I have worked with, it suffered from the fact that

there was a long beam path from the laser to the MOT. Consequently, small tweaks to

the grating or early mirrors could mean days of realignment, and replacing a burned out

diode was an epic affair. In the new setup, a Vortex laser injects a 100 mW slave laser.

This laser system is fiber coupled and then output coupled into the previous beam path

just before the optical pumping AOM, thus leaving most of the beam path untouched.

After building this system we realized that it offered several advantages some of which

were unexpected.

As we had hoped, the fiber increased the pointing stability of the beam, leading

to much less science MOT maintenance. Additionally, the fiber allows us to tweak the

laser setup or replace a dead laser without altering the MOT alignment. Previously, the

science MOT beam path was so temperamental that something as simple as a grating

tweak could take a day to recover from and replacing a dead laser could take a week.

With the fiber coupling we have been able to replace dead lasers within a few hours.

An additional unforeseen advantage of the fiber is that the clean special profile of the
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trapping light makes the MOT considerably less sensitive to small alignment changes

and consequently much easier to align.

The effect of all this is best quantified anecdotally. With the old system beam

drift and alignment problems would cause use to lose the ability to make a condensate

roughly every two months and recovery time would be on the order of a week. With the

current system, I don’t believe drift has ever caused us to completely lose a condensate,

and MOT alignment typically takes a day or two.

An additional advantage of the Vortex lasers is their temperature stability. It

used to be that a two degree change in lab temperature would make it difficult, if not

impossible, to make condensates. Generally the problem was a bad mode in the science

MOT laser or the collection MOT laser (both of which were the standard JILA ECDL),

and would manifest itself as poor science MOT loading or degradation of the molasses

stage and a corresponding loss of condensates. After replacing both these systems with

Vortex lasers we are able to accommodate 3o C shifts in lab temperature, and still

produce reasonable condensates.

We have also switched to using Vortex lasers for phase contrast imaging, an

application for which they are ideally suited. The 70 GHz tuning range is excellent

protection against the mode hops that plagued our system before, and being able to

tune across the 6.8 GHz splitting of 87Rb is very practical when working with spinor

condensates. Other groups have had trouble using Vortex lasers for absorption imaging

due to the fact that mechanical noise (typically shutters) tends to broaden the line width

of the laser. With phase contrast imaging we are typically detuned by a few hundred

MHz so a few MHz change in the laser line is of no consequence.

I mention these changes primarily because I regret not making them sooner. The

increased robustness of the experiment very quickly made up for the installation time

in terms of hours spent on science, and, as a secondary issue, contributed favorably to

the mental health of those of us in the lab.



37

2.6 Numerical studies

In the later part of this thesis it is useful to compare our experimental results to

a numerically generated condensate wave function. These numerical studies are done

by setting up an initial in-trap condensate wave function with a given atom number (N)

and Ω on a 2048x2048 lattice and then relaxing this wave function by propagating the

Gross-Pitaevskii equation in imaginary time. All work shown in §5.5 and §6.2 is done

in 2D. Additionally a radially symmetric 3D simulation can be performed for a single

vortex, as is done in §5.5 and in §6.3. Once the final wave function is found, we convert

to an atom density profile which can be fit and analyzed in the same manner as the

experimental data.



Chapter 3

Giant Vortices [2]

3.1 Introduction

In dilute gas Bose-Einstein condensates, vortex experiments have ranged from

the study of individual or few vortices [20, 21, 22, 23] and vortex rings [64, 65] to the

first creation of vortex lattices [66] and the study of systems containing large amounts

of vorticity [24, 25]. In this chapter we begin the discussion of non-equilibrium vortex

effects.

Using a refinement of our experimental technique, we are able to generate a giant

vortex. I use the term “giant vortex” to denote a region, containing multiple units

of vorticity, in which the density is completely suppressed such that the individual

vortices are no longer discernible. Note that some authors reserve this term for higher

order phase singularities. The possible existence of stable giant vortices under certain

conditions like supersonic flow in potentials that have strong quartic terms has been

theoretically predicted (Ref. [67, 68, 69, 19], see also Ref. [46]), and in Ref. [70] it

is shown that a pinning potential can lead to stable multiquantum vortices. In our

case, however, the giant vortex formation arises as a dynamic effect. Nevertheless the

lifetime of our giant vortices can extend over many seconds, which we attribute to a

stabilization of density features in a rapidly rotating condensate due to strong Coriolis

forces. Previously, only short-lived regions containing a few phase singularities with

suppressed density have been observed experimentally in Ref. [71] in the form of stripes
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and in Ref. [51] as the result of topological vortex formation. The influence of Coriolis

forces can also induce oscillations of the giant vortex core size in the early stages of its

evolution.

3.2 Experiment

Experimental starting conditions are similar to the ones described in the previous

chapter. We start with a cloud of condensed 87Rb atoms in the |F = 1,mF = −1〉 state,

and held in the cigar trap with trap with frequencies {ωρ, ωz} = 2π{8.3, 5.4}Hz. Cloud

sizes are typically 3×106 atoms and we routinely achieve condensate rotation rates (Ω) of

95% of the radial trap frequency, with no detectable thermal cloud. These condensates

typically contain 180 or more vortices as seen in figure 3.1(a) or figure 3.2(a). After

careful optimization of the trap roundness and in the presence of a quasi 1-D rf-shield

we are able to observe the BEC rotation for times exceeding 5 minutes. While we do

lose atoms from the condensate over this time scale, the rotation rate remains at its

initial value.

The evaporative spin-up mechanism discussed in §2.1 is limited because even-

tually all the uncondensed atoms will be removed or condensed during the quasi one-

dimensional evaporation. However, the angular momentum per particle in the conden-

sate can be further enhanced by selectively removing atoms with low angular momenta

by a resonant, focused laser beam sent through the condensate on the axis of rotation.

Selectivity is provided by having a beam width, at the focus, that is small compared to

the condensate size. For experiments presented here the rotating BEC typically has a

Thomas-Fermi radius of 66µm and the width of the laser beam is about 16µm, stated

here as the full width at half maximum (FWHM) of the Gaussian intensity profile. The

frequency of the laser is tuned to the F ′′ = 1 → F ′ = 0 transition of the D2 line, and

the recoil from spontaneously scattered photons blasts atoms out of the condensate.

Using this new technique we are able to substantially increase the vorticity in
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the BEC and can now routinely obtain condensates containing more than 250 vortices

[figure 3.1(b)]. Since these vortex cores are too small to be imaged when the BEC is

held in trap, the images in Figs. 3.1, 3.2, 3.3, and 3.7 are taken after having let the

BEC expand. For this expansion an anti-trapped technique is used as detailed in §2.3.

This technique allows us to expand the condensate to an adjustable diameter that can

exceed 1.4 mm.

If the removal of central atoms is driven strongly enough, a giant vortex appears.

The core is surrounded by a ring-shaped superflow. The circulation of this superflow is

given by summing up all the “missing” phase singularities in the core and can assume

very large values. Using the fact that for large amounts of circulation the rotation of

the velocity field can be obtained classically, we determine that in some cases the BEC

supports a ring-shaped superflow with a circulation of up to 60 quanta around the core.

We can easily control the amount of this circulation by changing the intensity or the

duration of the laser beam that removes atoms along the axis of rotation.

3.3 Giant vortex formation and condensate healing

In our experiment the formation of the giant vortex comes about in a sequence

of very distinct stages as shown in figure 3.1. For this expansion image sequence a

rapidly rotating BEC is first formed by our evaporative spin-up technique. Then the

atom-removal laser is applied with a fixed power of 8 fW for a variable amount of time,

followed by a 10 ms in-trap evolution time and a 45 ms expansion in the antitrap-

ping configuration described above. During the atom removal an rf-shield is left on to

constantly remove uncondensed atoms that tend to decelerate the condensate rotation.

Figure 3.1(a) shows the result of only the evaporative spin-up. This particular conden-

sate contains 180 vortices and has a Thomas-Fermi radius of 63.5 µm when held in the

trap. When the atom removal laser is applied for 14 s as in figure 3.1(b), the number

of vortices is increased to 250 and the Thomas-Fermi radius to 71 µm. The rotation
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Figure 3.1: Different stages of giant vortex formation process. (a) Starting point: BEC
after evaporative spin-up. (b)-(h) Laser shone onto BEC for (b) 14 s, (c) 15 s, (d) 20 s,
(e) 22 s, (f) 23 s, (g) 40 s, (h) 70 s. Pictures are taken after 5.7-fold expansion of the
BEC. Laser power is 8 fW. (i) Zoomed-in core region of (f).
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rate, determined from sideview aspect-ratio images, has increased from Ω = 0.94 ωρ

to Ω = 0.97 ωρ. After atom removal times of 15 to 20 s, the vortex lattice becomes

disordered [figure 3.1(c,d)], and the giant vortex core starts to develop in the center

[figure 3.1(e,f)]. An enlarged view of the core region in this early stage of giant vortex

core formation is seen in figure 3.1(i), which nicely demonstrates how the individual

vortices in the center consolidate. For the larger removal times shown in Figs. 3.1(g)

and (h), a clear elliptical deformation is observed. This deformation is due to m = −2

surface wave modes excited by residual static asymmetries of the trapping potential. As

the condensate rotation rate approaches the trapping frequency of these m = −2 modes

goes to zero [40] and are thus nearly resonantly driven by even a small asymmetry. We

have verified this explanation by deliberately changing the roundness of the trapping

potential and observing corresponding changes in the ellipticity and in the direction

of the ellipse. If the trap roundness is not optimized, the ring-shaped superflow has a

tendency to fragment into 5 to 8 blobs that continue to rotate around the core.

If the atom removal laser is applied only for a limited amount of time, the giant

vortex will fill in and the vortices refreeze [72] into a well ordered lattice again after a

sufficiently long evolution time. An example is shown in figure 3.2. Here, the starting

point is the condensate in figure 3.2(a), containing 190 vortices and rotating at Ω =

0.95 ωρ. A pulse from the atom removal laser creates the core seen in figure 3.2(b).

Crudely assuming that, consistent with the observed atom removal of 35%, all atoms

originally within a cylindrical volume of 0.4 times the Thomas-Fermi radius have been

removed, we can perform an integral over the Thomas-Fermi density profile with a rigid-

body-rotation velocity distribution and find that only 10% of the angular momentum

has been removed. Since in equilibrium the total number of vortices should be linear in

the average angular momentum per atom [45], we would expect that the original 190-

vortex cloud should reequilibrate to form a cloud with 266 vortices, in good agreement

with the value of 260 vortices observed in the reequilibrated cloud shown in figure 3.2(d).
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Figure 3.2: Lattice reforming after giant vortex formation. (a) BEC after evaporative
spin-up. (b) Effect of a 60 fW, 2.5 s laser pulse. (c),(d) Same as (b), but additional
10 s (c) and 20 s (d) in-trap evolution time after end of laser pulse. Images taken after
a sixfold expansion of the BEC.

In our case the formation of the giant vortex is not connected to a repulsive

conservative optical potential produced by the central laser beam, but only due to the

removal of atoms from the axis of rotation by spontaneous photon scattering. To prove

this, we have varied the laser frequency over the range from -6 MHz to +6 MHz around

the F ′′ = 1 → F ′ = 0 resonance and in all cases have been able to generate a giant

vortex.

In Ref. [67, 68, 69, 19] it is shown that quartic terms in the potential can lead to

stable giant vortices. In our experiment, quartic terms are small and the giant vortex

arises as a dynamical effect. We have calculated the term of the TOP trap potential

that depends on the radial position as r4. At the outer edge of the condensate this

quartic term produces a correction to the potential on the order of 10−3, compared to

the effective r2 term, even though the latter is much weakened by the centrifugal force.

Moreover, our anharmonic terms have the wrong sign [67, 68, 69, 19] to generate stable

giant vortices. Empirically, the refilling and refreezing we observe (figure 3.2) indicates

that the giant vortex is not an equilibrium configuration but has instead only dynamical

stability.

We suggest an intuitive, classical picture describing the formation as a dynamical

effect: the removal of atoms from the center of the condensate produces a pressure
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Figure 3.3: Core developing after a 5 ms short, 2.5 pW laser pulse. In-trap evolution
time after end of pulse is (a) 0.5 ms, (b) 10.5 ms, (c) 20.5 ms, (d) 30.5 ms. Images taken
after sixfold expansion of BEC. (e) Zoomed-in core region of (c).

gradient due to mean field energy that tries to drive atoms from the outer regions into

the center, so as to close the hole. Due to Coriolis forces, however, atoms moving radially

towards the center are deflected and assume a fast azimuthal motion around the core

rather than filling the core, thus creating the giant vortex.

Some exotic features of the early stages of core formation are revealed when we

apply only a very short, weak atom removal pulse and observe the subsequent evolution

as in figure 3.3. Here, the atom removal laser has a power of 2.5 pW and a fixed pulse

length of 5 ms. Its FWHM of 16µm is approximately twice the lattice spacing, 7µm. By

varying the delay time between the laser pulse and the expansion, we see (figure 3.3) that

the core formation clearly lags behind the laser pulse. Figure 3.3(e) shows a zoomed-in

view of the core region of figure 3.3(c). It is very interesting to observe that for these

short, weak pulses the density depression appears to develop in discrete steps, and the

step boundaries follow the hexagonal lattice pattern.
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3.4 Giant vortex stability

When applying stronger laser pulses, we detect clear, damped oscillations of the

core area as shown in figure 3.4. We study these oscillations by analyzing in-trap images

taken after a variable evolution time between the end of the atom-removal pulse and the

expansion, such as the ones shown in the inset of figure 3.4. The oscillation frequency

depends on the initial conditions; for the case of figure 3.4 with initially 2.2×106 atoms

at a rotation rate of 0.9 ωρ we obtain a frequency of 3.5 ωρ. Decreasing the initial

rotation rate of the condensate leads to faster core-oscillation frequencies and increases

the amplitude of this oscillation; for condensate rotation rates below Ω = 0.9 ωρ in-trap

images even show a near complete closure of the core, followed by the core opening again

(see inset of figure 3.4). Presumably these oscillations arise when a sudden removal

of atoms leaves forces from the density gradient and Coriolis forces initially out of

equilibrium. The core oscillation is not observed to be related to an overall breathing

mode of the condensate.

To study the dynamics, core size oscillations are measured for a range of con-

densate rotation rates. Figure 3.5 shows a plot of the measured oscillation frequencies

as a function of the condensate rotation rate. A clear decrease of the oscillation fre-

quency with increasing rotation rate is seen. Recently A. Fetter has developed analytic

formulae, based on a variational Lagrangian, that describe the behavior seen in our ex-

periment [73]. His results also imply that the parabolic trap and conservation of angular

momentum, thus the influence of Coriolis forces, are governing the dynamics.

3.5 Giant vortex precession

In addition we can observe the precession [21] of an off-center giant vortex. For

this, the atom removal laser is deliberately offset from the center of cloud rotation.

The duration of the removal pulse is kept short (10 ms) in comparison to the initial
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Figure 3.4: Oscillation of core area after an 8 pW, 5 ms laser pulse. Starting conditions
are 2.5× 106 atoms with rotation rate Ω = 0.9 ωρ.Time given is in-trap evolution time
after end of pulse. Core area is normalized to mean of all data points. Inset: Initial
conditions 3.5× 106 atoms with rotation rate Ω = 0.78 ωρ; in-trap images taken after a
14 pW, 5 ms laser pulse followed by evolution time of (a) 20 ms, (b) 40 ms, (c) 60 ms,
and (d) 80 ms.

Figure 3.5: Measured oscillation frequencies of the aggregate size for different rotation
rates. Oscillations were excited by a 5 ms long, resonant laser pulse that removed all
atoms within a radius of 1/3 the Thomas Fermi radius of the BEC.
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vortex lattice rotation period (2π/(0.95 ωρ) = 126 ms) so as to create only a local

hole. By using different laser powers, we can vary the size of the core from a small

hole as in figure 3.6(a) all the way to the extreme case of a big hole that only leaves a

crescent segment of the BEC as shown in figure 3.6(c). The precession of these holes

can be monitored by applying variable evolution times of the trapped BEC after the

atom removal pulse is finished. In all three cases the measured precession frequency is

approximately ωρ. In the case of figure 3.6(b) and (c) we are able to follow the precession

for more than 20 cycles. If, instead, the laser is left on for approximately a full lattice

rotation cycle, a complete ring can be cut out of the condensate [figure 3.7(a)], which

eventually breaks up into many individual blobs [figure 3.7(c)], each of which supports

remnants of the original lattice. Both the long-lived core precession as well as the ring

structure in figure 3.7 are impressive demonstrations of the stability of density features

due to Coriolis forces in rapidly rotating condensates.
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Figure 3.6: Giant core precession. Cores created by a 10 ms off-centered laser pulse
with a power of (a) 4.2 pW, (b) 33 pW, (c) 470 pW. Time given in figure is in-trap
evolution time after end of laser pulse. For reference, a naive expectation for the lifetime
of a giant vortex given by the radius of the core divided by the speed of sound in the
surrounding cloud would be 13 ms and 30 ms for (a) and (b), respectively.

Figure 3.7: Ring cut out of a BEC by a 125 ms long, off-centered laser pulse. Expansion
image taken (a) directly after end of pulse (b) after an additional in-trap evolution time
of 200 ms after end of pulse and (c) evolution time 2 s.



Chapter 4

Tkachenko Modes [3]

4.1 Introduction

We have all seen a cylindrically confined fluid support azimuthal flow whether

we are watching water flow down a drain or a recently stirred cup of coffee. What is

somewhat harder to imagine is a fluid sustaining oscillatory azimuthal flow. Instinctively

one does not expect a fluid to support shear forces, and this would seem especially true

in the case of zero-viscosity superfluids, but such intuition is incomplete.

The key issue is vortices. In 1955, Feynman [16] predicted that a superfluid

can rotate when pierced by an array of quantized singularities or vortices. In 1957,

Abrikosov [74] demonstrated that such vortices in a type II superconductor will organize

into a triangular crystalline lattice due to their mutual repulsion. Not surprisingly,

the Abrikosov lattice has an associated rigidity. In 1966, Tkachenko proposed that a

vortex lattice in a superfluid would support transverse elastic modes [26]. First observed

by Andereck et al.[27], Tkachenko oscillations have been the object of considerable

experimental and theoretical effort in superfluid helium, much of which was summarized

by Sonin in 1987 [75].

In the last two years it has become possible to achieve a vortex lattice state in

dilute gas BEC [22, 24, 23, 25] and recent theoretical work [28] has suggested that

Tkachenko oscillations are also attainable. In this chapter I discuss the observation of

Tkachenko oscillations in BEC. The particular strengths of BEC are that in the clean en-
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vironment of a magnetically trapped gas there is no vortex pinning, and spatiotemporal

evolution of the oscillation may be directly observed.

When we started our experimental investigation of Tkachenko modes, the only

theory available to compare to was the one given in [28] by Anglin and Crescimanno. As

described during the discussion of our experimental work in the following section, the

oscillation frequencies predicted by this initial theory were not in excellent quantitative

agreement with our experiments. As I will describe in §4.6, it was later pointed out by

Gordon Baym that a more adequate theory for our experiments needs to account for

compressibility effects of the lattice. This hints at a major difference between Tkachenko

wave experiments in liquid Helium and in dilute gas BECs: Our experiments reach into

a new regime that lies outside the region accessible with liquid Helium experiments.

4.2 Exciting Tkachenko modes

As before we begin this experiment with a rotating condensate held in an axially

symmetric trap with trap frequencies {ωρ, ωz} = 2π{8.3, 5.2} Hz. The condensed cloud

contains 1.5-2.9 million 87Rb atoms in the |F = 1,mF = −1〉 state. The cloud rotates

about the vertical, z axis. Condensate rotation rates (Ω) for the experiments described

in this chapter range from Ω = 0.84ωρ to Ω = 0.975ωρ (Ω defined as condensate rotation

rate divided by ωρ). We have no observable normal cloud implying a T/Tc < 0.6. As

before, rotation can be accurately measured by comparing the condensate aspect ratio

to the trap aspect ratio using equation 2.2. Vortices, which are too small to observe in

trap, can be seen by expanding the cloud as detailed in §2.3. At our high rotation rates

the condensate is oblate and the vortex cores are essentially vertical lines except right

at the surface.

We excite lattice oscillations by two mechanisms. The first mechanism presented

is based on the selective removal of atoms that has also been discussed in §3.2. With this

method we remove atoms at the center of the condensate with a resonant, focused laser
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beam sent through the condensate along the axis of rotation. The width of the “blasting”

laser beam is 16 µm FWHM (small compared to an in-trap condensate FWHM of

75 µm), with a Gaussian intensity profile. The frequency of the laser is tuned to the

F ′′ = 1 → F ′ = 0 transition of the D2 line, and the recoil from a spontaneously scattered

photon blasts atoms out of the condensate. The laser power is about 10 fW and is left

on for approximately one lattice rotation period (125 ms).

The effect of this blasting laser is to remove a small (barely observable) fraction

of atoms from the center of the condensate. This has two consequences. First, the

average angular momentum per particle is increased by the selective removal of low

angular momentum atoms from the condensate center. This increase then requires a

corresponding increase in the equilibrium condensate radius [76]. Secondly, the atom

removal creates a density dip in the center of the cloud. Thus, after the blasting pulse,

the condensate has fluid flowing inward to fill the density dip and fluid flowing outward

to expand the radius. The Coriolis force acting on these flows causes the inward motion

to be diverted in the lattice rotation direction and the outward flow to be diverted in

the opposite direction. This sheared fluid flow drags the vortices from their equilibrium

configuration and sets the initial conditions for the lattice oscillation as can be seen

from the expanded images in figure 4.1.

The second method of exciting the Tkachenko oscillation is essentially the inverse

of the previous method. Instead of removing atoms from the cloud we use a red-detuned

optical dipole potential to draw atoms into the middle of the condensate. To do this we

focus a 850 nm laser beam onto the condensate. The beam has 3 µW of power and a

40 µm FWHM. It propagates along the direction of condensate rotation and its effect is

to create a 0.4 nK deep Gaussian dip in the radial trapping potential. This beam is left

on for 125 ms to create an inward fluid flow similar to before. The resulting Tkachenko

oscillation was studied for Ω = 0.95ωρ, and found to be completely consistent with the

atom removal method. It is not surprising that these two methods are equivalent since
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Figure 4.1: (1,0) Tkachenko mode excited by atom removal (a) taken 500 ms after the
end of the blasting pulse (b) taken 1650 ms after the end of the blasting pulse. BEC
rotation is counterclockwise. Lines are sine fits to the vortex lattice planes.
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one works by creating a dip in the interaction potential and the other creates a similar

dip in the trapping potential.

For these experiments, data is extracted by destructively imaging the vortex lat-

tice in expansion and fitting the lattice oscillation. To perform this fit we find a curvi-

linear row of vortices going through the center of the cloud and fit a sinewave to the

locations of the vortex centers, recording the sine amplitude. This is done for all three

directions of lattice symmetry [see figure 4.1], with the amplitudes averaged to yield the

net fit amplitude of the distortion.

4.3 The (1,0) mode

The resulting oscillation [see figure. 4.2] is heavily damped and has a Q value of

3-5 for the data presented. Here Q is given by Q=2πfτdamping, where τdamping is the

exponential-damping time constant for the oscillation. We are able to increase this to a

Q of 10 by exciting lower amplitude oscillations (40% of the previous amplitude) and by

better mode matching of the blasting beam to the shape and period of the oscillation

(40 µm FWHM beam width and 500 ms blasting time). Measured frequencies for the

high-amplitude oscillations are the same as for the low-amplitude, high-Q case so we do

not believe that we are seeing anharmonic shifts1 .

Because of the characteristic s-bend shape and the low resonant frequency of these

oscillations [see figure 4.3(a)] we interpret them to be the (n=1,m=0) Tkachenko oscilla-

tions predicted by Anglin and Crescimanno [28]. Here (n,m) refer to the radial and angu-

lar nodes, respectively, in the presumed quasi-2-D geometry. The calculations of Ref.[28]

predict that these lattice oscillations should have a frequency of ν10 = 1.43εΩ/(2π) for

the (1,0) mode and ν20 = 2.32εΩ/(2π) for the (2,0) mode. Here ε = b/Rρ denotes the

nearest-neighbor vortex spacing, b, over the radial Thomas-Fermi radius, Rρ. For our

1 Note that for all cases the reported frequency is adjusted for damping according to the equation
fo = 1/2π((2πfmeasured)2 + (1/τdamping)2)1/2.
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Figure 4.2: Measured oscillation amplitude for a typical excitation. Data shown is for
a BEC rotating at Ω = 0.92ωρ and containing 2.2 × 106 atoms. Fit is to a sinewave
times an exponential decay and yields a frequency of 0.85 Hz and a Q of 3. The
oscillation amplitude is expressed as the average amplitude of the sinewave fits to the
vortex oscillation in units of the radial Thomas-Fermi radius (roughly the azimuthal
displacement of a vortex a distance 0.33 Rρ from the condensate center). Both values
are in expansion.



55

system these predicted frequencies are around 1-2 Hz and are therefore far slower than

any of the density-changing coherent oscillations of the condensate except for the m=-2

surface wave [25, 77, 40, 78]. In addition, the shape of the observed oscillation agrees

well with theory. Specifically, the prediction[28] that the spatial period of a sinewave

fit to a row of vortices in a (1,0) oscillation should be 1.33 Rρ is in perfect agreement

with our data.

The predicted frequencies are, however, problematic. To make the comparison

to the theory presented in Ref.[28] we excite lattice oscillations in the condensate for

εΩ/ωρ ranging from 0.10 to 0.15. This is achieved by varying number and rotation

rate. Over this range of εΩ the oscillation frequencies measured are consistently lower

than those predicted by theory as can be seen in figure 4.3(b). For the slowest rotations,

Ω = 0.84ωρ (εΩ/ωρ = 0.15, N=2.5×106), we observe frequencies that are as close as 0.70

of the predicted value. However, at larger rotation rates, Ω = 0.975ωρ (εΩ/ωρ = 0.10,

N=1.7 × 106), the agreement is considerably worse (the measured value is 0.31 of the

predicted value). One possible explanation for this general discrepancy is that the

calculations are done in 2-D and ignore the issues of vortex bending at the boundary

and finite condensate thickness [79]. In those cases, however, one would expect better

agreement at high rotation rates where the condensate aspect ratio is more 2-D. A more

likely explanation is that the continuum theory, used in the Anglin and Crescimanno

calculation, is breaking down as the vortex core size to vortex spacing becomes finite

[79]. This suggests that at high rotation and lower atom number we are entering a new

regime. To further explore this possibility we reduced the atom number to N=7−9×105,

while keeping εΩ/ωρ roughly the same. This should increase the core size and exacerbate

the problem. As can be seen in figure 4.3(b) and figure 4.3(c) the agreement with theory

is significantly worse under these conditions. These discrepancies will be discussed in

more detail in §4.6.
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Figure 4.3: Plot (a) shows the damping-adjusted (n=1,m=0) Tkachenko oscillation
frequencies as a function of scaled rotation rate Ω/ωρ. Plot (b) shows the (1,0) frequency
as a function of the theory parameter εΩ/ωρ. The dotted line is the theory line ν10 =
1.43εΩ/(2π) from Ref. [28]. Note that the low number data shows much worse agreement
with theory. Plot (c) demonstrates the divergence of experimental frequency from the
theory frequency as the ratio of vortex core area to unit cell area increases. Avortex is
πξ2 where the healing length ξ = (8πna)−1/2 (here n is density-weighted average density
and a is the s-wave scattering length). Lattice cell area Acell is

√
3b2/2 (here b is the

nearest-neighbor vortex spacing). For all plots black squares and triangles refer to high
and low atom number experiments, respectively.
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4.4 The (2,0) mode

We are also able to excite the (2,0) mode. We note that atom removal creates an

s-bend in the lattice that is centered on the atom removal spot. To write two s-bends

onto the lattice one could imagine removing atoms from an annular ring instead of a

spot. To make this ring we offset the blasting beam half a condensate radius and leave it

on for 375 ms (three full condensate rotation periods). As one can see this does lead to

an excitation of the (2,0) oscillation (see figure 4.4). We measure the frequency of this

mode as before. For 2.3 million atoms and Ω = 0.95ωρ we measure a lattice oscillation

frequency of 1.1± 0.1 Hz, distinctly lower than the theoretical prediction [28] of 2.2 Hz

for our parameters.

4.5 Bulk fluid modes

Vortex motion and condensate fluid motion are intimately linked [75]. In Tkachenko

oscillations, the moving of vortices must also entail some motion of the underlying fluid,

and pressure-velocity waves in the fluid must conversely entrain the vortices. Very gen-

erally, for a substance composed of two interpenetrating materials, one of which has an

elastic shear modulus and one of which does not (in our case, the vortex lattice and

its surrounding superfluid, respectively), one expects to find three distinct families of

sound waves in the bulk: (i) a shear, or transverse, wave, (ii) a common-mode pressure

or longitudinal wave, and (iii) a differential longitudinal wave, with the lattice and its

fluid moving against one another [80]. The presence of strong Coriolis forces makes

the distinction between longitudinal and transverse waves problematic, but the general

characteristics of the three families should extend into the rotating case. For instance,

one can still readily identify the Tkachenko modes discussed thus far as the transverse

wave. Our assumption is that the common-mode longitudinal waves are nothing other

than the conventional hydrodynamic shape oscillations studied previously [40, 78].
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Figure 4.4: On the left are the locations where atoms are removed from the cloud. For
the (1,0) excitations the atoms are removed from the shaded region in the center. For
the (2,0) mode atoms are removed from the shaded ring half a condensate radius out.
Image on the right is the resulting (2,0) mode, where the black line has been added to
guide the eye.
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To excite the common-mode longitudinal wave, we use the dipole force from the

850 nm red-detuned laser described earlier. In order to excite a broad spectrum of

modes we shorten the laser pulse to 5 ms, widen the excitation beam to a 75 µm

FWHM Gaussian profile, and increase the laser power to 1 mW, resulting in a 30 nK

deep optical potential. We find that this pulse excites three distinct m=0 modes: the

first is the (1,0) Tkachenko s-bend mode at about 0.6 Hz already discussed. The second

is a radial breathing mode in which the condensate radius oscillates at 16.6±0.3 Hz (or

2.0± 0.1ωρ

2π ). This mode has been previously observed [81], and our observed frequency

is consistent with hydrodynamic theory for a cloud rotating at Ω = 0.95ωρ [40]. As

the radius of the fluid density oscillates, so does the mean lattice spacing of the vortex

lattice, but we observe no s-type bending of the lattice at this frequency. The fact that

the frequency of the lowest m=0 radial longitudinal mode is more than 20 times that of

the transverse mode demonstrates how relatively weak the transverse shear modulus is.

The same laser pulse excites a third mode, at the quite distinct frequency of 18.5±

0.3 Hz. This mode manifests as a rapid s-bend distortion of the lattice indistinguishable

in shape from the 0.6 Hz (1,0) Tkachenko oscillation as can be seen in figure 4.5. 18.5 Hz

is much too fast to have anything to do with the shear modulus of the lattice, and we were

very tempted to identify this mode as a member of the third family of sound-waves, the

differential longitudinal waves. Simulations by Cozzini and Stringari [82, 83], however,

show that our observed frequency is consistent with a higher-order, hydrodynamic mode

of the rotating fluid that can be excited by an anharmonic radial potential such as our

Gaussian optical potential. Moreover, they show that the radial velocity field of their

mode is distorted by Coriolis forces so as to drag the lattice sites into an azimuthally

oscillating s-bend distortion that coincidentally resembles the Tkachenko mode. It is

worth noting that without the presence of the lattice to serve as tracers for the fluid

velocity field, it would be very difficult to observe this higher-order mode, since this

mode has very little effect on the mean radius of the fluid. In any case, the mode at
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Figure 4.5: Radial breathing mode and fluid flow driven lattice bending as observed
after a dipole beam pulse. For parameters, see text.

18.5 Hz appears to be yet another member in the family of common-mode longitudinal

waves. The discovery of this longitundnal mode demonstrates the usefulness of vortices

to visualize complicated hydrodynamic flow patterns in a BEC. So far we have been

unable to observe a mode we can assign to the family of differential longitudinal waves.

4.6 Theory responds

In section §4.2 and in our original Tkachenko [84] paper, I suggest that our dis-

crepancy with the Anglin and Crescimanno prediction, seen in figure 4.3, is due to the

finite size of the vortex cores, which turns out not to be completely true. Finite core

size turns out to be tantamount to saying that we are approaching the lowest Landau

level (described in more detail in §5). As it happens, the lowest Landau level dynam-

ics describe only a small part of this discrepancy. Since the original publishing of the

Tkachenko paper there has been an extensive theory response [29, 83, 31, 85, 33, 86, 32].

A central point of nearly all these works is that lattice compressibility must be taken

into account to describe the Tkachenko oscillation in BEC’s.

In a highly rotating condensate the rotation rate can easily approach or even

exceed the speed of sound in the condensate. As the speed of sound is approached, the

lattice becomes compressible, and enters a regime not accessible to superfluid Helium

systems. This compressibility also means that higher-order terms must be taken into

account when determining the Tkachenko dispersion relation. As noted by Baym [29,
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87, 88] the dispersion relation

ν(k)2 =
1

(2π)2
2C2

nm

s2k4

(4Ω2 + (s2 + 4(C1 + C2)/nm)k2)
. (4.1)

Here n in the condensate density2 and m is the mass of Rubidium. The wave num-

ber k for the (1,0) mode is taken, from Anglin and Crescimanno [28], to be k(1,0) =

2π/(1.33Rρ) and s is the speed of sound. C1 and C2 are the compressional and shear

modulus of the lattice respectively. In the incompressible limit, one would expect that

C2 = −C1 = nΩ/8. However, as Baym notes, the shear modulus weakens with higher

rotation and as one approaches the lowest Landau level C2, is know to have the form

C2 ' (81/80π)ms2n [29, 87, 88]. The exact nature of the transition between these two

limits has not been rigorously determined.

Equation 4.1 can be broken into two interesting regimes. At low rotations (Ω �

sk), equation 4.1 simplifies to

ν(k) =
1
2π

√
2C2

nm
k . (4.2)

This low rotation regime is often referred to as the “stiff” Thomas Fermi regime. In this

regime, Tkachenko oscillations are expected to behave much like they do in superfluid

helium systems, and the theory presented in Ref. [28] would be more appropriate.

However, one notes that in our system sk(1,0) ' 0.66ωρ, which means that we are

well out of this regime by the time our vortex lattices are large enough to observe a

Tkachenko oscillation.

Alternatively, at high rotations (Ω � sk) one enters the “soft” Thomas-Fermi

regime where equation 4.1 simplifies to

ν(k) =
1
2π

√
s2C2

2Ω2nm
k2 . (4.3)

The Tkachenko data presented in this thesis generally lies between these two regimes

or in the “soft” regime. This second dispersion relation is striking in its’ quadratic
2 Baym uses peak density in his original paper but we have found that density-weighted density

provides an equally good fit to the data and requires less fudging with the C2 parameter. Density-
weighted density also would seem appropriate as the Tkachenko excitation exists over the entire cloud.
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behavior and is expected to lead to loss of long range phase coherence in the condensate

[85]. Ultimately this loss of phase coherence is expected to lead to melting of the vortex

lattice as one approaches the quantum Hall regime [89].

The Bigelow group has spent some time using numerics to examine the difference

between these two regimes. A striking difference in the flow patterns in these two

regimes can be seen in figure 4.6 which was provided by L. O. Baksmaty [83].

Interesting work has also been done on the condensate density profile during a

Tkachenko oscillation. Using a sum rule method Cozzini et al. [32] has demonstrated

that the condensate density profile dips slightly (∼5%) in the center and the outer

edge during a Tkachenko oscillation. This profile offers some insight into why our

experimental technique of altering the condensate profile at the center, couples so nicely

to the Tkachenko modes. They also suggest an alternate scheme of exciting these modes

by modulating the radial trap frequencies, at the Tkachenko frequency, in order to couple

to this density distribution. While so far untested, this suggestion would provide a way

to perform frequency resolved spectroscopy of Tkachenko oscillations, which may one

day prove useful.
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Figure 4.6: Figure taken from Ref. [83]. Plot a) and b) show the vortex lattice distor-
tion resulting from a (1,0) Tkachenko mode in the stiff and soft Thomas-Fermi regimes
respectively. Dots show the equilibrium vortex positions and the arrows show the di-
rection and magnitude of the calculated vortex displacements. In plot a) one can see
the very ordered nature of the Tkachenko oscillation. A time evolution of this image
shows that each vortex precesses along a highly elliptical path. In soft Thomas Fermi
regime, plot b), individual vortex motion appears more chaotic as the lattice becomes
compressible. A time evolution of this image shows that the precession of each vortex
has become nearly circular. All vortices at the same radii precess in the same manner.



Chapter 5

Lowest Landau Level [4]

5.1 Introduction

Rotating Bose-Einstein condensates provide a conceptual link between the physics

of trapped gases and the physics of condensed matter systems such as superfluids, type-

II superconductors and quantum Hall effect (QHE) materials. In all these systems,

striking counterintuitive effects emerge when an external flux penetrates the sample. For

charged particles this flux can be provided by a magnetic field, leading to the formation

of Abrikosov flux line lattices in type-II superconductors [74], or in QHE systems to the

formation of correlated electron-liquids and composite quasiparticles made of electrons

with attached flux quanta [90]. For neutral superfluids, the analog to a magnetic field is

a rotation of the system, which similarly spawns vortices [91]. In rotating atomic BECs,

the creation of large ordered Abrikosov lattices of vortices [22, 24, 23, 25] has recently

become possible.

Here we examine the vortex lattice of harmonically trapped BECs approaching

the high rotation limit, when the centrifugal force nearly cancels the radial confining

force. The formal analogy of neutral atoms in this limit with electrons in a strong mag-

netic field has led to the prediction that quantum-Hall like properties should emerge in

rapidly rotating atomic BECs [37]. In particular, the single-particle energy states, in

the rotating frame, organize into Landau levels (see figure 5.1), and if interactions are

weaker than the cyclotron energy (approximately the energy splitting between Landau
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Figure 5.1: Harmonic oscillator states in the rotating frame as one approaches the
lowest Landau level. Image a) shows the non-rotating case. With moderate condensate
rotation the positive/negative m harmonic oscillator states shift down/up in energy
as seen in image b). As condensate rotation rate (Ω) approaches the trap frequency
(ωρ) the harmonic oscillator states form bands, or Landau levels, as in image c). The
condensate becomes confined to the lowest Landau level if the chemical potential drops
below the Landau level splitting (2ωρ).

levels), the near-degenerate states of the lowest Landau level (LLL) are primarily occu-

pied. For rotating bosons in the LLL, two regimes have been identified, distinguished

by the filling factor ν ≡ Np/Nv, i.e., the ratio of the number of particles (Np) to vortices

(Nv). For high filling factors (always ≥ 500 in our system), the condensate is in the

lowest Landau level regime [35, 19, 36], but mean-field theory is still a valid way to

deal with interactions. In this state the condensate still forms an ordered vortex lattice

ground state. With decreasing filling factor, the elastic shear strength of the vortex lat-

tice decreases, which is reflected in very low frequencies of long-wavelength transverse

lattice excitations (Tkachenko oscillations [28, 84, 29, 43, 30, 31, 83, 85, 33, 86, 32])1

. For filling factors around ν ≈ 10, the shear strength is predicted to drop sufficiently

for quantum fluctuations to melt the vortex lattice[37, 38]. For smaller ν there exists a

variety of strongly correlated vortex liquid states similar to those in the Fermionic frac-

tional QHE [37]. Starting from the Laughlin state, one can then even create excitations

that obey fractional statistics [39].

In this chapter we report the observation of rapidly rotating BECs in the lowest

Landau level, and provide evidence that the elastic shear strength of the vortex lattice
1 Ref. [84] measured Tkachenko frequencies that showed deviations from existing TF-limit theory

valid at low rotation [28] (also shown in §4.3). These were resolved in subsequent theoretical work
[29, 30, 31].
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drops substantially as the BEC enters the lowest Landau level regime [29]. This effect is

a precursor to the predicted quantum melting of the lattice at lower filling factors. Our

rapidly rotating condensates spin out into a pancake shape and approach the quasi-

two-dimensional regime. We observe a corresponding cross-over in the spectrum of

breathing excitations along the axial direction. The high rotation limit has been studied

experimentally in Ref. [92], focusing on effects of a rotating trap anisotropy, which is

not present in our setup, and in Ref. [93] where the addition of a quartic term to the

trapping potential led to a loss of vortex visibility.

5.2 Experiment

These experiments take place in an axially symmetric harmonic trap with os-

cillation frequencies {ωρ, ωz} = 2π{8.3, 5.3}Hz. Using an evaporative spin-up tech-

nique described in §2.1 we create condensates containing up to 5.5 × 106 87Rb atoms

in the |F = 1,mF = −1〉 state, rotating about the vertical, z axis, at a rate Ω̃ = 0.95

(Ω̃ ≡ Ω/ωρ is the rotation rate Ω scaled by the centrifugal rotation limit, ωρ, for a

harmonically trapped gas). To further approach the limit Ω̃ → 1, we employ an optical

spin-up technique, where the BEC is illuminated uniformly with laser light, and the

recoil from spontaneously scattered photons removes atoms from the condensate. Since

the condensate is optically thin to the laser light, atoms are removed without position or

angular-momentum selectivity, such that angular momentum per particle is unchanged.

Atom loss leads to a small decrease in cloud radius which, through conservation of an-

gular momentum, increases Ω̃. Over a period of up to 2 seconds we decrease the number

of BEC atoms by up to a factor of 100, to 5 × 104, while increasing2 Ω̃ from 0.95 to

more than 0.99. At this point, further reduction in number degrades the quality of

images unacceptably. Ongoing evaporation is imposed to retain a quasi-pure BEC with
2 Rotation rates are accurately determined by comparing the measured BEC aspect ratio to the trap

aspect ratio (see e.g. [40]). At our lowest values of Γ2D we correct for quantum-pressure contributions
to axial size.
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Figure 5.2: Side view images of BECs in trap. (a) Static BEC. The aspect ratio Rz/Rρ =
1.57 (N = 3.8 × 106 atoms) resembles the prolate trap shape. (b) After evaporative
spin-up, N = 3.3× 106, Ω̃ = 0.953, (c) evaporative plus optical spin-up, N = 1.9× 105,
Ω̃ = 0.993. Due to centrifugal distortion the aspect ratio is changed by a factor 8
compared to (a).

no discernible thermal cloud.

5.3 Breathing mode spectrum in the lowest Landau level

With increasing rotation, centrifugal force distorts the cloud into an extremely

oblate shape [see figure 5.2] and reduces the density significantly - thus the BEC ap-

proaches the quasi-two-dimensional regime. For the highest rotation rates we achieve,

the chemical potential µ is reduced close to the axial oscillator energy, Γ2D ≡ µ
2h̄ωz

≈ 1.5,

and the gas undergoes a cross-over from interacting- to ideal-gas behavior along the axial

direction.

To probe this cross-over, we excite the lowest order axial breathing mode over a

range of rotation rates. For a BEC in the axial Thomas-Fermi regime, an axial breathing

frequency ωB =
√

3 ωz has been predicted in the limit Ω̃ → 1 [40], whereas ωB = 2ωz

is expected for a non-interacting gas.

To excite the breathing mode, we jump the axial trap frequency by 6%, while

leaving the radial frequency unchanged (within < 0.5%). To extract the axial breathing

frequency ωB, we take 13 nondestructive in-trap images of the cloud, perpendicular to

the axis of rotation. From the oscillation of the axial Thomas-Fermi radius3 in time

we obtain ωB. Rotation rates are obtained from the aspect ratio by averaging over
3 For the smallest values Γ2D, the axial density profile is slightly better fitted by a Gaussian. To

avoid bias however we fit all data assuming a TF profile.
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all 13 images to eliminate the effect of axial breathing. As shown in figure 5.3(a), we

do indeed observe a frequency cross-over from ωB =
√

3 ωz to ωB = 2 ωz as Ω̃ → 1.

To quantify under which conditions the cross-over occurs, we plot the same data vs.

Γ2D [figure 5.3(b)], where the chemical potential is determined from the measured atom

number, the rotation rate and the trap frequencies. For Γ2D < 3, the ratio ωB/ωz starts

to deviate from the predicted hydrodynamic value, and approaches 2 for our lowest

Γ2D ≈ 1.5.

As Ω̃ → 1, the dynamics in the radial plane are also affected. For the highest

rotation rates, interactions become sufficiently weak that the chemical potential µ drops

below the cyclotron energy 2h̄Ω, which is only a few percent smaller than the Landau

level spacing 2h̄ωρ. Then, ΓLLL ≡ µ
2h̄Ω < 1, and the condensate primarily occupies

single-particle states in the LLL. These form a ladder of near-degenerate states, with

a frequency splitting of ε = ωρ − Ω. The number of occupied states is NLLL ≈ µ
h̄ε .

We are able to create condensates with ΓLLL as low as 0.6, which occupy NLLL ≈ 120

states, with a splitting ε < 2π × 0.06 Hz. In this regime of near-degenerate single-

particle states a drastic decrease of the lattice’s elastic shear strength takes place. The

elastic shear modulus, C2, is predicted by Baym [29] to decrease with increasing rotation

rate from its value in the “stiff” Thomas-Fermi (TF) limit, CTF
2 = n(Ω)h̄Ω/8 (where

n(Ω) is the BEC number density) to its value in the mean-field quantum Hall regime,

of CLLL
2 ≈ 0.16 × ΓLLL × CTF

2 . We directly probe this shear strength by exciting

the lowest order azimuthally symmetric lattice mode ( (n = 1,m = 0) Tkachenko

mode [28, 84, 29]). Its frequency ω(1,0) ∼
√

C2 is expected to drop by a factor ≈ 2.5

below the TF prediction when ΓLLL = 1.

5.4 Tkachenko spectrum in the lowest Landau level

Our excitation technique for Tkachenko modes has been described in §4.2. Here

the lower interaction strength of the condensates makes it preferable to use the focused,
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Figure 5.3: Measured axial breathing frequency ωB/ωz (a) as a function of rotation rate
Ω̃ and (b) vs. Γ2D. Solid line: Prediction for the hydrodynamic regime [40]; Dashed
line: ideal gas limit. For Ω̃ > 0.98 (Γ2D < 3) a cross-over from interacting- to ideal-gas
behavior is observed. Representative error bars are shown for two data points.
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red-detuned laser (850 nm). This laser draws atoms into the center, and Coriolis force

diverts the atoms’ inward motion into the lattice rotation direction. The vortex lattice

adjusts to this distortion, and after we turn off the beam, the lattice elasticity drives

oscillations at the frequency ω(1,0). We observe the oscillation by varying the wait

time after the excitation, and then expanding the condensate before imaging the vortex

lattice along the z-axis [see figure 5.4(a),(b)]. In figure 5.4(c), we compare the measured

frequencies ω(1,0) to the predictions of Ref. [29] for the TF limit and for the mean-

field quantum Hall regime. For Ω̃ < 0.98 (ΓLLL > 3), the frequency ω(1,0) follows the

prediction for the TF regime, whereas by Ω̃ = 0.990 (ΓLLL = 1.5), ω(1,0) has dropped

to close to the prediction for the LLL, thus providing evidence for the cross-over to the

lower shear modulus C2 predicted for the LLL.

While we are able to produce clouds with ΓLLL measured to be substantially

lower than ΓLLL = 1.5, we are unable to accurately measure Tkachenko frequencies

under these extreme conditions, due at least in part to the very weakness of C2. The

Tkachenko mode frequencies become so low that it takes multiple seconds to track even

a quarter oscillation [figure 5.4(a),(b)]. Concurrently, the very weak shear strength

means that even minor perturbations to the cloud can cause the lattice to melt and

the individual cores to lose contrast4 in a matter of seconds. These perturbations

can result from residual asymmetry of the magnetic trapping potential, or from spatial

structure in the optical beam used to reduce the atom number, or perhaps from thermal

fluctuations. In contrast, for a “stiff” cloud of 3×106 atoms at Ω̃ = 0.95 (ΓLLL ≈ 7) we

observe that the lattice remains ordered, and Ω̃ can be kept constant, over the entire

1/e lifetime of the BEC (≈ 3 minutes).
4 Melting and loss of contrast are also reported in Ref. [93].
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Figure 5.4: (a), (b) Tkachenko mode at ΓLLL = 1.2 (N = 1.5 × 105, Ω̃ = 0.989): (a)
directly after excitation, (b) after 1 sec - the lattice oscillation has not yet completed 1/4
cycle. (c) Comparison of measured Tkachenko mode frequency ω(1,0) (solid symbols) vs.
Ω̃ to theory, using vortex lattice shear modulus CTF

2 in the Thomas-Fermi (TF) limit
(circles), and CLLL

2 in the mean-field quantum Hall regime (stars). Note that both N
and ΓLLL decrease as Ω̃ increases. For ΓLLL ≈ 3 (reached at N = 7.8× 105, Ω̃ ≈ 0.978)
the data cross over from the TF to the quantum Hall prediction.



72

5.5 Fractional core area

The fractional condensate area occupied by the vortex cores, as one approaches

the lowest Landau level, is also a quantity that has been of much theoretical interest [19,

36, 45, 46]. It is argued by Fischer and Baym [19] and Baym and Pethick [36] that

the fractional core area reaches a limiting value as one enters the LLL regime. A

corollary to this argument is that fractional core area is a reasonable way to monitor

the transition to the lowest Landau level regime. We examine this saturation with

experimental and numerical work, which we can push further into this regime than we

can achieve experimentally. Additionally we examine some of the systematic errors that

can affect the experimental data. To this end numerical calculations were performed

as previously described (§2.6), for 3× 106,5× 105,and 1× 105 atoms, and for rotations

ranging from Ω/ωρ =0.15 to 0.998. For the experimental data, actual condensates were

generated over a similar range with Ω/ωρ =0.15 to 0.98 and N=4 − 50 × 105. The

numerical data as well as the experimental data are fit in the same manner as described

in §2.3.

We define the fractional area, A, occupied by the vortices to be A = nvπr2v, where

nv is the areal density of vortices and r2v is the 2D RMS vortex core radius. To determine

a theoretical value for rv, we perform a numerical simulation of the Gross-Pitaevskii

(GP) equation of a BEC containing an isolated vortex. We obtain rv = 1.94 × ξ with

ξ = (8πna)−
1
2 , where a is the scattering length and n is the density 5 .

Ignoring density inhomogeneity effects (discussed later), and in the limit of many

vortices, the expected vortex density nv is mΩ/(πh̄). The resulting prediction for A

can be expressed as A = 1.34× Γ−1
LLL. This value exceeds unity for ΓLLL < 1.34, which

has led to the prediction that vortices should merge as the condensate enters the LLL
5 The density n = 7/10 npeak is density-weighted along the rotation axis and is radially averaged

over the vortex cores within 1/2 the TF radius, as it is only in this region that we fit the observed vortex
cores.
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regime. An alternate treatment from Baym and Pethick [36] predicts that A saturates

at 0.225 as the vortices go from a Thomas-Fermi profile to the profile of a LLL wave

function. Our numerical data for A, together with experimental points, are plotted in

figure 5.5 (a,b). For Γ−1
LLL < 0.1, the data agree reasonably well with the Thomas-Fermi

result. For larger Γ−1
LLL, the data clearly show a smooth transition to the LLL regime,

and a saturation of A at the LLL limit.

The experimental data in figure 2.8(b) tend to lie above the numerical data. This

is likely due to the fact that there are many systematic errors that tend to bias the data

toward larger core size. Consequently, we tend to overestimate the core size. Of all the

systematic errors we have studied, axial expansion of the cloud during the expansion

process is by far the most prevalent. Figure 2.8(c) demonstrates the dangers of axial

expansion in this measurement. For the data presented, the condensate undergoes a

factor of 2-3 in axial expansion, and we see a corresponding increase in A. This clearly

illustrates the importance in suppressing axial expansion for these measurements. It

is interesting to note that with our rapid axial expansion the fractional core area can

overshoot the LLL limit, which in principle should still be valid in the limit of adiabatic

expansion.

5.6 Vortex core density profile

We can also observe the transition to the LLL regime in the numerical data by

examining the shape of the condensate vortex cores. In the Thomas-Fermi regime, the

vortex-core density profile is well described by the form n(r) = (r/
√

2ξ2 + r2)2 [94],

where r is measured from the vortex center. Alternatively in the LLL regime, the core

is no longer dictated by the interactions but rather by kinetic energy considerations.

In this case, within the Wigner-Seitz unit cell, the vortex is thought [36] to have a

simple oscillator p-state structure n(r) = ((Cr/b) · exp[−r2/2l2])2 for 0 ≤ r ≤ l, where

C is a normalization constant, and l is the radius of the Wigner-Seitz unit cell and is
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Figure 5.5: Fractional condensate area occupied by vortex cores (A) as a function of
Γ−1

LLL = 2h̄Ω/µ, the inverse lowest Landau level parameter. Plot (a) shows a smooth
transition in the numerical data from the Thomas-Fermi limit where A is linear in Γ−1

LLL

to the LLL limit where A saturates. Here the Thomas-Fermi theory is represented
by the dashed line and the LLL limit by the dotted line. Plot (b) is a comparison
of the numerical data to experimental data. Plot (c) demonstrates the effect on the
experimental measurement of allowing the condensate to expand axially during the
expansion process.
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related to the nearest-neighbor lattice spacing b by l = (
√

3/2π)1/2b. Figure 5.6 is a

comparison of the central vortex, in three numerically generated condensates, to both

Thomas-Fermi and LLL predicted core shapes. The simulation for figure 5.6(a) was

performed for 3 × 106 atoms and Ω/ωρ = .15 and is well inside the Thomas-Fermi

regime (ΓLLL = 117). Here the density profile of the numerical data (solid line) seems

to fit quite well to the Thomas-Fermi vortex form (dotted line), but the LLL form is

a poor description of the vortex core (dashed line). The simulation for figure 5.6(b)

was performed for 5 × 105 atoms, Ω/ωρ = .95 and ΓLLL = 3.6. One can see from

figure 5.5 that this is in the transition region. Not surprisingly both vortex forms fit

about equally well. In Figs. 5.6(b) and figure 5.6(c), the vertical line represents the edge

of the Wigner-Seitz unit cell at r = l. The simulation for figure 5.6(c) was performed

with 1 × 105 atoms, Ω/ωρ = .998 and ΓLLL = .72. One can see that LLL is a much

better description of the vortex.

5.7 Condensate radial density profile

On a separate but interesting note, as we enter the LLL regime, our numerical

solution of the GP equation shows that the radial profile of the overall smoothed conden-

sate fits much better to a parabola than to the Gaussian that was originally predicted

[35]. We can also confirm this experimentally by imaging clouds with ΓLLL as small

as 0.6. Images are taken in-trap, to increase signal, and after 3 sec equilibration time.

Examining the radial density profile we find that these images also fit better to a TF

profile than to a Gaussian, showing no signs of a cross-over in the radial density profile

as the LLL is entered.

The reason the Gaussian-density-profile prediction fails to pan out can be extrap-

olated from data presented in the next chapter. The density-profile prediction for the

radial profile in the LLL arose from an elegant argument that was based on an assump-

tion that the vortex nodes were on a perfect triangular lattice. As was originally pointed
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Figure 5.6: Numerically generated vortex core density profiles approaching the lowest
Landau level regime. Density n is scaled by the peak debsity n0. Solid lines represent
the numerical result for (a) ΓLLL = 117, (b)ΓLLL = 3.6, (c)ΓLLL = .72. The dashed
line is the expected profile for a LLL wave function [36] given the condensate rotation.
The dotted line is the expected vortex form in the Thomas-Fermi limit [94] given the
condensate density. The vertical lines in figure (b) and (c) designate the edge of the
Wigner-Seitz unit cell. As ΓLLL decreases, one can see a clear transition from the
interaction-dominated Thomas-Fermi regime to a LLL function where kinetic energy
concerns and the vortex core spacing dictate the shape and size of the vortex.
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out to us by A. H. MacDonald [43] and has been the subject of two recent theoretical

works [41, 42], a slight radially dependant perturbation in the areal density of vortices

is enough to convert a Gaussian density distribution into an inverted parabola. The

analytic description of this perturbation in [41] (calculated in the LLL) bears a striking

resemblance to the one measured in §6.2 in the Thomas-Fermi regime and also to the

analytic form [44] calculated in the Thomas-Fermi regime. The surprising result of this

perturbation in the areal density of vortices is that one of the most striking features

of the Thomas-Fermi regime, the parabolic Thomas-Fermi density profile, still exists in

the LLL regime where the condensate kinetic energy is clearly non-negligible compared

to interaction energy.



Chapter 6

Experimental studies of equilibrium vortex properties in a

Bose-condensed gas [1]

6.1 Introduction

After the initial observations of vortex lattices in Bose-Einstein condensed gases

[22, 24, 25, 23], most of the experimental work has focused on dynamical behavior of

vortices and lattices, including Kelvons [77, 95, 96], Tkachenko waves [28, 84, 29, 83,

31, 85, 33, 86, 32], and various nonequilibrium effects [71, 76]. Equilibrium properties,

in contrast, have been relatively neglected by experimenters. This imbalance is not

indicative of a lack of interesting physics in equilibrium behavior, but simply reflects

the usual experimentalist’s preference for measuring spectra rather than static structure.

Theorists, on the other hand, have investigated equilibrium properties extensively [36,

44, 45, 94, 46, 35, 89, 97, 98, 41, 42, 99, 19], and our purpose in this chapter is to partially

redress this imbalance with a series of experimental studies focusing on equilibrium

properties of rotating condensates.

The vortex lattice in a rotating Bose-condensed gas naturally organizes into a

regular triangular lattice, or Abrikosov lattice, originally observed in superconductors.

The lattice can be well characterized by the nearest-neighbor lattice spacing and by

the radius of each vortex core (b and rv, respectively). The nearest-neighbor lattice

spacing, b, is generally thought to be determined only by the rotation rate when in the

high-rotation regime where the rotating BEC exhibits nearly rigid-body behavior. Nu-
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merical work [45] and early analytical work [28], however, suggests that this rigid-body

assumption yields lattice constants that are smaller than would be seen in the case of

a finite-size trapped BEC. Recent work by Sheehy and Radzihovsky [44] has tackled

this discrepancy analytically and found it to be a necessary consequence of the inhomo-

geneous density profile of the condensate. With this theory they address the question

of why the lattice is so remarkably regular given the condensate density profile. They

also derive a small, position-dependent, inhomogeneity-induced correction term to the

lattice spacing. An interesting implication of this theory is that the vortices must move

slightly faster than the surrounding superfluid even near the rigid-body limit. More

striking still is the prediction that the superfluid should exhibit a radially-dependant

angular velocity (or radial shear flow), which directly follows from their calculation of

inhomogeneous vortex density. While a differential rotation rate is not directly ob-

servable in our system, the position-dependent variation of the nearest-neighbor lattice

spacing is studied in §6.2. It should also be noted that the inhomogeneity in the areal

density of vortices, predicted in Ref. [44], can also be derived in the limit of the lowest

Landau level (LLL). This property of the LLL was first brought to our attention by

A.H. MacDonald and has been the subject of two recent publications by Watanabe et

al. [41] and Cooper et al. [42].

The second effect we study in this chapter concerns the core size of the vortices.

Once rotation rate and density are fixed, the vortex core size is a length scale that the

condensate chooses on its own. In this sense vortex core size constitutes a fundamental

property of the system and has therefore been the subject of much theoretical work [94,

97, 98]. By analogy to superfluid 4He, the core size is dictated by the atomic interactions

and is of order of the healing length. For our system the healing length is only one and

a half times the average interatomic spacing. As a result of this diluteness one might

wonder if there are certain regimes of sufficiently low or high density where one would

see a deviation from mean-field theory. Investigation of core size makes up §6.3.
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Finally in §6.4 we examine the proposal that a measurement of the contrast of

vortex cores could serve as a sensitive thermometer for a condensate in the regime

for which the temperature is less than the chemical potential and other methods of

thermometry become unreliable. We discuss our preliminary efforts to realize this vision.

We are able to see an effect, but we have not yet been able to extend this measurement

technique below the usual limits.

Note that our original paper on equilibrium effects [100] also contained a section

examining the rotational suppression of quantum degeneracy. A description of this effect

can be found in the thesis of Paul Haljan [54] or in [100].

6.2 The lattice constant

At first sight, vortex lattices, such as the one seen in figure 2.8(b), appear perfectly

regular. However as noted in the introduction, Sheehy and Radzihovsky [44] predict

that there should exist a small correction to the vortex density in the condensate due

to the condensate, density inhomogeneity. One result from Ref. [44] is that the areal

density of vortices is

nv(ρ) =
Ωm

πh̄
− 1

2πR2
ρ(1− (ρ/Rρ)2)2

ln[h̄/(2.718 mΩξ2)] , (6.1)

where m is the mass of rubidium and ξ is the healing length (calculated from the

measured density). This equation can conveniently be thought of as the rigid body

rotation (first term) plus the density inhomogeneity correction that reduces vortex den-

sity. We compare to experimental measurements by converting vortex density to a

nearest-neighbor lattice spacing, conveniently expressed in units of condensate radius

b(ρ) =
√

2/(31/2nv(ρ))
1

Rρ
. (6.2)

To study this lattice inhomogeneity effect experimentally, we generate conden-

sates with rotation rates between Ω/ωρ = 0.5and0.9. To extract the vortex separation,
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we expand the cloud by a factor of 10 in the radial direction using the anti-trapped

expansion technique. The condensate and vortices are fit as described in §2.3. The

nearest-neighbor separation for a given vortex is measured by averaging the distance

from the vortex center to the centers of the six nearest vortices. Due to low signal,

vortices further than 0.9 Rρ from the condensate center are disregarded. Any remaining

vortex with fewer than six nearest neighbors (i.e., a vortex in the outer ring) is used as

a neighbor to other vortices but is not itself included in the final data. Obviously using

the six nearest neighbors assumes a triangular lattice structure, so before fitting, each

image is checked for defects in the lattice. Any image exhibiting broken lattice planes

is not considered. Once the nearest-neighbor separation is measured, it is normalized

by the expanded condensate radius to compare to equation 6.2. For this comparison,

Rρ, Ω, and ξ are measured or calculated from an in-trap image. To improve the theory

fit, we allowed Rρ to float, but, in each case, the fit value for Rρ was within 5% of

the measured value. Noise is suppressed by binning the lattice-spacing data by radial

displacement of the vortex from the center.

Figure 6.1 shows a comparison to theory for three physical condensates and one

numerically generated condensate density profile. Figure 6.1(a) is data taken from the

condensate in figure 2.8(a). The two points shown correspond to the measured vortex

density for the center vortex (first point) and the average vortex density for the first ring

of vortices. Also plotted is equation 6.2 (solid line) and the expected nearest-neighbor

lattice spacing for rigid body rotation (dashed line). The imperfect fit may be partly

due to the discrete nature of the data, vis-a-vis a continuum theory [44]. Plots (b) and

(c) are condensates with increasing rotation rates where (c) is taken from image 2.8(b).

Plot (d) is a comparison with numerical data prepared with parameters similar to the

experimental situation in (c). Figure 6.1(e) is the same data in figure 6.1(c) but plotted

without the suppressed zero to emphasize the smallness of the position dependant effect.

The areal density of vortices is constant to 2% over a region that experiences an atom-
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Figure 6.1: Measured and binned lattice spacings as a function of radial position ρ. The
solid curve is the theory result (equation (6.2)) of Sheehy and Radzihovsky [44]. The
rigid-body–rotation rate lattice spacing is also plotted for comparison (dashed line).
Plots (a-c) are experimental data with increasing rotation. Plot (a) and (c) are data
taken from the condensate in Figs. 2.8(a) and (b), respectively. Plot (d) is the same
effect observed in the numerical data. One can see that theory and experiment show a
similar dependence on radial position and that the fractional amplitude of the density
inhomogeneity effect is suppressed at higher rotation. Plot (e) is the data in (c) plotted
without suppressing the zero. The vortex lattice spacing changes less than 2% over a
region in which the atom density varies by 35%.
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density variation of 35%.

6.3 Vortex core size

The other defining length scale of the vortex lattice is the core radius. Here we

study the core radius in the Thomas-Fermi regime (as opposed to the lowest Landau

level regime, described later) where it should scale with the healing length. A theoretical

value for the vortex core radius was generated by performing a numerical simulation for

a 3D BEC containing an isolated vortex and comparing the fitted radius of this vortex

to the corresponding healing length. Fitting the simulation in the same manner that

we later treat the experimental data (described in §2.3) we obtain an expression for the

core radius of

rv = 1.94× ξ , (6.3)

with healing length ξ=(8πnasc)−1/2, where asc is the scattering length and n is the

density-weighted atom density. For the data presented, n is determined from the in-

trap image before expansion.

Core size measurements and fractional core area (discussed in the next subsection)

measurements require considerable attention to detail. In pursuing these measurements,

we find that nearly everything — from focusing issues, to lensing due to off resonant

imaging light, to even imperfect atom transfer into the anti-trapped state before ex-

pansion — can lead to an overestimation of the vortex core size. By far the biggest

potential systematic error in our system is axial expansion, which, as noted in §2.3,

requires careful attention.

A range of core sizes is achieved by varying the initial number of atoms loaded

into the magnetic trap prior to evaporation. To avoid the core size saturation effect,

due to high condensate rotation [36], we consider only clouds with ΓLLL > 10, where

ΓLLL ≡ µ/(2h̄Ω) is the LLL parameter and µ is the chemical potential. This ratio of



84

Figure 6.2: Comparison of measured core radii with the Thomas-Fermi prediction (equa-
tion (6.3)) represented by the solid line. Black squares are the core size in expansion
scaled by the radial expansion of the condensate so that they correspond to the in-trap
values. Data shows reasonable agreement with theory. The fact that the measured core
size is consistently larger is likely due to the fact that nearly all our imaging systematics
lead to an overestimation of the vortex core size.
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chemical potential to rotational energy approaches unity as we enter the LLL regime,

while at values of 10 or greater we should be firmly in the Thomas-Fermi regime. In

practice this requires only that we keep the condensate rotation rate low. Core size

is measured by fitting the expanded image with a Thomas-Fermi profile and each core

with a 2D Gaussian. For figure 6.2 the measured core radius in expansion is scaled back

to the corresponding in-trap value using the radial expansion factor discussed in §2.3.

To reduce scatter we consider only vortices located less than half a condensate radius

out from the center. Additionally we find that some vortices appear to have some

excitation or bending which leads to a poor fit. To filter these out we consider only

vortices that have a contrast greater than 0.6. Here contrast is defined, with respect to

the integrated (along the line of sight) condensate profile, as the peak of the “missing”

column density at the vortex position divided by the smoothed Thomas-Fermi profile

at the same position.

From figure 6.2 we can see that the data and the Thomas-Fermi theory agree

reasonably well. The data do seem to be slightly above the theory value, but we are

hesitant to make too much of this because, as noted before, there are many systematic

errors that tend to bias the data toward larger core size. Measurement is easier and the

agreement better, on the low density, large-core side of the graph.

At an early stage in this work, we speculated that the mean-field Gross-Pitaevskii

equation might not give a good quantitative description of vortex core size because the

core size is particularly sensitive to the healing length ξ. At our highest densities,

while the gas is nominally dilute (na3
sc < 10−5, where asc is the interatomic scattering

length), the mean interatomic distance n−1/3 is only a factor of 1.5 less than ξ. Our

data, however, do not support this hypothesis. The roughly 25% discrepancy between

our measurements and the mean-field prediction shown in figure 6.2 is comparable to

possible systematic errors in our measurements of the smaller cores that exist at high

densities. In retrospect, our experimental design is such that we are unlikely to be able
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to see a mean-field failure even if one were to exist. During the radial expansion, the

density drops. Thus the accuracy of the mean-field approximation is likely to improve

significantly during the expansion. Our anti-trapped expansion, while more rapid than a

conventional ballistic expansion, is still slow compared to the rate at which a vortex can

adiabatically relax its radius [36] (approximately µ/h̄). Any non-mean-field corrections

to the vortex core size will likely relax away before the cores have expanded to be large

enough for us to reliably image them.

6.4 Core contrast and condensate temperature

Since the very first observations of dilute-gas BEC, the temperature of the sample

has been determined by imaging the “skirt” of thermal atoms that extends beyond the

radius of the condensate. In practice, it is difficult to extend this measurement below

about T/Tc = 0.4, except in very special cases (for instance when a Feshbach resonance

is used to set the scattering length to zero). For low temperatures, the density of

thermal atoms becomes so low that they are difficult to image. Moreover, when the

temperature becomes lower than or comparable to the chemical potential of the self-

interacting condensate, the spatial extent of the thermal cloud is no longer appreciably

larger than the condensate itself.

It was suggested that vortex cores might serve as “thermal-atom concentration

pits”, in order to enhance thermometry at low temperatures. In a simple Hartree-Fock

(HF) picture of the interaction between thermal atoms and the condensate, the conden-

sate density represents a repulsive interaction potential to the thermal atoms. Along

the nodal line of a vortex core, the condensate density and presumably its repulsive

interaction potential vanish. Thus, the thermal atoms would experience the lowest

combined interaction and magnetic potential within the cores of vortices. As a result,

their density would be highest there. Additionally, images of thermal atoms in the

vortex core could be taken against a vanishing background condensate density. Moving
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beyond the HF approximation, one finds a more complicated picture. The Bogoliubov

spectrum of very long wave-length thermal phonons extends all the way down to the

chemical potential. One should contrast this energy with the energy of a thermal atom

confined to a vortex core. Perhaps the atom experiences no interaction energy. How-

ever, the kinetic energy cost of bending its wave function to fit inside a core with a

radius of the order of healing length must, by definition, be comparable to the chemical

potential. In the limit of very elongated vortex cores, there can be very low-energy,

core-bending modes [77, 101]. Thermal excitations of these modes would manifest as a

temperature-dependent contrast ratio. We expect this effect is unlikely to be important

in the relatively flattened geometry of our highly rotating condensates. In any case,

without more rigorous analysis, it is not easy to predict how the contrast ratio of our

vortices should vary with temperature, but we nonetheless set out to do a preliminary

study of the effect.

We vary the final condensate temperature by changing our rf-evaporation end

point. This produces a cloud with temperatures between 5− 50 nK or T/Tc between 1

and less than 0.4. Here Tc is calculated from the trap frequencies and a measurement of

total atom number using the formula Tc = 0.94h̄ω̃hoN
1/3, where ω̃ho has been adjusted

for rotation according to the equation ω̃ho = ωho(1 − Ω2/ω2
ρ)

1/3. When possible, T is

extracted from a two-component fit to the in-trap image. Because our rotation rate and

temperature are linked through the 1D evaporative process, it is unavoidable that Ω

also varies during the data set.

To measure core contrast, we expand the cloud using the usual expansion proce-

dure. The atom cloud is expanded radially by a factor of 13 to ensure that the cores

are large compared to our imaging resolution. However, because we no longer care

about the precise core size we do not suppress the axial expansion. Additionally, the

axial expansion actually reduces background fluctuations in the measured core contrast.

With a factor of two axial expansion, cores become much rounder and clearer as shown
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in figure 2.8(c). These changes allow us to achieve a higher core contrast and quieter

signal than we can without expansion.

The term core brightness (1-contrast ratio) will be our metric for this experiment.

We define core brightness (B) as n2D(core)/n2D(cloud), where n2D(core) is the observed

atom density, integrated along the line of sight, at the core center, and n2D(cloud) is

the projected integrated atom density at the same point, based on a smoothed fit to

the overall atom cloud. To determine n2D(cloud), we fit the condensate image to a

Thomas-Fermi profile and the surrounding thermal atoms to a Bose distribution. We

find n2D(core) by fitting each vortex with a Gaussian to determine its center and then

averaging five pixels around the center point to determine the integrated density. Bright-

ness is calculated for each vortex and then averaged with other vortices in the cloud.

To suppress noise from low signal, vortices further than 0.4 Rρ from the condensate

center are disregarded for this measurement. The n2D(core) term necessarily contains

signal from the surrounding thermal atoms because the vortices do not penetrate the

thermal component. Thus, one expects to see a steady decrease in B with decreasing

temperature, as atoms not necessarily in the vortex core, but still in the integrated line

of sight, disappear. One would hope that B continues to decrease even for T/Tc below

0.4 for this analysis to be a viable means of extending condensate thermometry.

We are in the awkward position of comparing our core contrast measurement

to a temperature measurement that, as previously described, is expected to fail at

low temperatures. To monitor this failure, we calculate a simplistic core brightness

(Bsimple) by comparing the fitted in-trap condensate and thermal cloud profiles. Here

Bsimple ≡ ñ2D(thermal)/(ñ2D(condensate) + ñ2D(thermal)) where ñ2D(condensate)

and ñ2D(thermal) are the smoothed condensate and thermal cloud profiles integrated

along the z-axis and averaged over a region of radius less than 0.4 Rρ from the condensate

center. The term Bsimple can be thought of as the core brightness one would expect

based on the undoubtedly false assumption that the condensate and thermal atoms do
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not interact. It is interesting to compare B to Bsimple since this same dubious assumption

is implicit in the standard thermometry technique of fitting the thermal “skirt”.

In figure 6.3, B and Bsimple are plotted versus the final evaporative cut. For our

experiment, the thermal cloud can be reliably fit for T/Tc > 0.6 and less reliably fit

for T/Tc > 0.4. In both these regions T/Tc decreases continuously with lower final

evaporative cut. It is assumed that for T/Tc just below 0.4, this trend continues. For

reference, three values of T/Tc (measured from the thermal “skirt”) are included in the

plot. One can see that B does steadily decrease with lower temperature for T/Tc > 0.4.

It is interesting to note that Bsimple closely tracks B at the higher temperatures and then

diverges from B as the cloud gets colder. Presumably, this divergence occurs because

thermal atoms are pushed away from the condensate center as interactions between the

condensate and the thermal cloud become important. The fact that Bsimple diverges

upwards is likely due to the tendency of our fitting technique to overestimate the thermal

cloud density at high condensate fractions. The failure of Bsimple at low temperatures

also throws into suspicion the quoted T/Tc since they are determined from the same

two-component fit.

In contrast, as Bsimple begins to fail, B continues its previous smooth downward

trend. It is also interesting to note that at an rf of 2.35 MHz, we see a B of 0.13-0.15,

which is not that far off from the work of Virtanen et al. [98] who predict that atoms

trapped in the core would lead to a B of 0.1 at a T/Tc of 0.39. Unfortunately, our efforts

to observe a B of less than 0.125 have failed so far, as can be seen from the data points

at 2.3 MHz in figure 6.3. This limit impedes our ability to measure temperatures colder

than 0.4 T/Tc. Currently, it is unclear what the source of this limit is. Perhaps the

same imaging systematics that make our vortex radius unreliable at the 10% level are

also preventing us from seeing a core brightness level less than 0.13, or a very slight tilt

of the vortices may occur during expansion.

As a caveat to the previous discussion, the same limitations that inhibit conden-
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Figure 6.3: Measured core brightness as a function of final rf evaporative cut. Within
our ability to measure, T/Tc decreases continuously with the rf frequency. For the black
squares brightness (B) is defined as the 2D atom density at the vortex core divided by
the 2D atom density of the overall smoothed condensate plus thermal cloud profile at
the same point. For the open triangles a simplistic brightness (Bsimple) is calculated
from the ratio of the 2D atom density of the thermal cloud to the 2D atom density
of the overall smoothed condensate and thermal cloud profile. At high temperatures
B and Bsimple exhibit a clear dependance on the final rf cut. At lower temperatures
it is encouraging that as Bsimple, begins to fail B is still continuing a smooth trend
downward. Disappointingly at very low temperatures, B plateaus at about 0.14.
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sate thermometry below T/Tc of 0.4 will also reduce the efficacy of evaporative cooling

in the same regime. Additionally, the already inefficient 1D nature of our evaporation

would exacerbate such a cooling problem. Perhaps the simplest explanation for the

failure of B to decrease with very deep rf cuts is that the condensate fraction is no

longer increasing. One could imagine that our measured B is faithfully following the

temperature we achieve.

In summary, the conclusions of our preliminary attempt to extend thermometry

with core brightness are encouraging but ambiguous. New ideas are needed before we

can make further progress.
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Appendix A

Numerical TOP trap model

What follows is a brief outline of the numerical TOP trap simulator that has been

passed down through the generations. In this code the condensate position is found

from locating a minimum in the combined magnetic plus gravitational potential. Trap

frequencies are then determined from the second derivative of this potential at the

condensate position. For this model we define the total potential as.

Epotential = EBreit−Rabi + mgz (A.1)

Here m is the mass of 87Rb, g is 9.8 m/s2 and z is the displacement from the quadrupole

center. EBreit−Rabi is an augmented form of equation 3.7 of Heather Lewandowski’s

Thesis [105]1 .

EBreit−Rabi = −hνhs

8
− gIµbohrBmF ± hνhs

√
1 + mF x(B) + x2(B) (A.2)

x(B) = (gJ + gI)
µbohr

hνhs
B (A.3)

Here νhs is hyperfine splitting for 87Rb and h is planks constant. F and mF refer to

the magnetic state of the atom being trapped (F=1 and mF = −1 for the purpose of
1 Note that this is not the same as equations 3.2 and 3.3 of Matthews [59] which appears to contain

a typo
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this thesis), and B is the magnitude of the instantaneous magnetic field. Using the full

Breit-Rabi equation is clearly over kill for the application described in §2.3, but the

generality of this method is useful in calculating two-photon transition frequencies [59]

not discussed in this thesis. The magnetic field, B, can be broken into two key parts:

the magnitude of the bias field B0, and the gradient to the quadrupole field along the

z axis B′
q. In these terms B can be written

B =

√
(
B′

q

2
x + B0ξ1sin(2πνt))2 + (

B′
q

2
y + B0

√
1− ξ2

1cos(2πνt))2 + (B′
qz + (−1)(f+1)

2hν

µbohr
)2 .

(A.4)

This is a slightly more concise form of equation 3.16 from Matthews [59]. Note

that the 2hν/µbohr term is an effective field that arises from the inability of the atom

spin to adiabatically track the rotating bias field, otherwise known as the wierd Bohn

effect (see [59]). The TOP frequency, ν, is 1800 Hz for the purpose of this thesis. The

parameter is ξ1 inserted to model the effect of the distorted bias field. Using the notation

from §2.2 the distortion of the rotating bias field has the form

ε =
1− ξ1/

√
1− ξ2

1

1 + ξ1/
√

1− ξ2
1

. (A.5)

Table A.1: Table of useful constants, largely from Lewandowski [105]

constant value unit
µbohr 9.27400899(37)× 10−28 J/G
νhs 6834.68261090434(3) MHz
gJ 2.00233113(20)
gI .9951414(10)× 10−3
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Figure A.1:


