
Dynamics of Bose-Einstein condensates near a

Feshbach resonance in 85Rb

by

Neil Ryan Claussen

B.S., Wake Forest University, 1996

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Physics

2003



This thesis entitled:
Dynamics of Bose-Einstein condensates near a Feshbach resonance in 85Rb

written by Neil Ryan Claussen
has been approved for the Department of Physics

Carl Wieman

Eric Cornell

Date

The final copy of this thesis has been examined by the signatories, and we find that
both the content and the form meet acceptable presentation standards of scholarly

work in the above mentioned discipline.



iii

Claussen, Neil Ryan (Ph.D., Physics)

Dynamics of Bose-Einstein condensates near a Feshbach resonance in 85Rb

Thesis directed by Distinguished Professor Carl Wieman

I describe experiments with Bose-Einstein condensates (BEC) of 85Rb near a

Feshbach resonance. The Feshbach resonance affects the collisions between atoms, allow-

ing us to change the self-interaction energy of the BEC by applying a magnetic field. We

used the Feshbach resonance to study the startling details of the BEC collapse after we

abruptly switched the self-interaction from repulsive to attractive. This change caused a

supernova-like implosion/explosion cycle, leaving behind a small remnant BEC. We also

applied short magnetic field pulses toward the resonance to investigate the possibility of

collisional coupling between atoms and diatomic molecules. We later created an atomic

and molecular BEC superposition state and probed this state’s coherence by applying

two rapid magnetic field pulses. Careful measurements of the atom-molecule oscillation

frequency allowed us to dramatically improve our determination of the Feshbach reso-

nance parameters. All of these experiments have stimulated new theoretical work and

have improved our understanding of the physics of resonant BEC.
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Chapter 1

Introduction

1.1 Breakdown of the thesis

This thesis describes experiments with a novel state of matter that only exists

at very low temperature, known as a Bose-Einstein condensate or BEC. The different

atoms in a BEC are so cold and slow-moving that they cannot be distinguished from

one another. Using Heisenberg’s uncertainty principle, one finds that in a BEC, the

uncertainty in the position of each atom is comparable to the average spacing between

the atoms. Thus, it is almost meaningless to talk about individual atoms anymore —

the BEC is a kind of “super-atom”. The task of creating a condensate is very difficult

and depends on a number of fairly exotic experimental techniques that were developed

quite recently (in the past 10 to 15 years). To make a BEC, one usually starts with a

room temperature sample of alkali atoms, such as lithium, sodium, rubidium, or cesium.

These atoms are confined in a vacuum chamber and then cooled to a few 100 µK using

laser-cooling and trapping techniques. Although the laser cooling can dramatically

reduce the temperature of the atoms, this type of cooling is not sufficient for creating

a condensate. To achieve the conditions for BEC, the atoms must be further cooled

(to 50-100 nK) using evaporative cooling — a method for selectively removing only the

hottest atoms from the sample.

After forming a BEC, one may study a wealth of different quantum-mechanical

phenomena. One of the most interesting properties of an alkali atom BEC is the presence
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of inter-atomic interactions in the condensate, which are mediated by elastic collisions

between the atoms. Due to a fortuitous internal atomic structure, the collisions of 85Rb

atoms can be strongly affected by applying an external magnetic field. This magnetic

field dependence is known as a Feshbach resonance. The existence of the Feshbach

resonance allows one to change the BEC interaction in a highly controlled fashion. We

took full advantage of the tunable interaction to study a number of interesting behaviors

of 85Rb BEC. These experiments are discussed at length in the present thesis.

Before conducting the experiments described in this thesis, I worked with Jake

Roberts on the first experiments with 85Rb Bose-Einstein condensates [1]. Initially, we

developed techniques to cool and magnetically trap the rubidium atoms. We used cold

samples of atoms to locate the Feshbach resonance by studying the effects of a variable

magnetic field on the elastic scattering of the trapped atoms. The discovery of the 85Rb

Feshbach resonance allowed us to improve the efficiency of evaporative cooling so that we

were eventually able to create condensates. This achievement marked the first time that

the 85Rb isotope was cooled to quantum degeneracy. After forming condensates in 1999,

we utilized the Feshbach resonance to control the atomic interactions in the BEC. This

control allowed us to study a number of fascinating effects, including an adjustable size

and shape for the quantum-mechanical wavefunction of the BEC. By changing the sign

of the interaction from repulsive to attractive, we induced an implosion or “collapse” of

the condensate.

The collapse experiments mark the point in time when Jake’s thesis ends and my

thesis begins. The present thesis begins with a detailed description of the dynamics of

collapse in a BEC with attractive interactions. We also describe a series of new exper-

iments involving time-varying magnetic fields applied to the BEC near the Feshbach

resonance. By improving our magnetic field control apparatus, we were able to probe

the response of the condensate to B-field changes on time scales as short as 10 microsec-

onds. Surprisingly, the rapid magnetic field changes caused significant number loss from
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the BEC, which implied the presence of microscopic dynamics occurring between the

BEC atoms. We later showed that the mysterious BEC loss resulted from non-adiabatic

transitions to another state — a diatomic molecular state that was nearly degenerate

with the initial BEC state due to the Feshbach resonance. We observed evidence for

atom-molecule coherence in the BEC and we used this coherence to precisely determine

many detailed properties of the Feshbach resonance and interatomic interactions.

In the rest of the Chapter, we outline each of the subsequent parts of the thesis.

1.1.1 The 155 G 85Rb Feshbach resonance (Chapter 2)

This Chapter provides a brief description of the Feshbach resonance that was so

important for our experiments. We motivate the importance of the Feshbach resonance

by showing how it affects the interactions in a BEC. Some discussion of the two-body

scattering physics is given, and we show how the elastic scattering length varies as a

function of magnetic field near the resonance. We also explain the most important

properties of the weakly bound molecular state that causes the Feshbach resonance.

The magnetic field dependence of the both the energy and spatial size of the molecular

state can be adjusted via the applied B-field.

1.1.2 The 85Rb experimental apparatus: new tools and upgrades (Chap-

ter 3)

Here we explain new techniques and additions to the experiment that allowed us

to collect the data described in Chapters 4-7. The first part of the Chapter describes

a high-power laser upgrade to the experiment. We used the new laser to improve the

process of collecting rubidium atoms from a room temperature vapor. We also devised

a greatly improved method to measure the magnetic field on short time scales using

short pulses of rf radiation. The new B-field measurement technique was essential for

characterizing the magnetic field produced by another addition to the experiment — an
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auxiliary magnetic field coil. We built the auxiliary coil to apply rapid B-field changes to

the BEC. By varying the current through the auxiliary coil, we could precisely control

the magnetic field on short time scales. The final part of the Chapter discusses our

improved methods for measuring the most important properties of the condensed atoms

— their number and temperature. We used the variable interaction strength afforded by

the Feshbach resonance to change the BEC size and shape, which enhanced our ability

to determine the BEC characteristics.

1.1.3 Dynamics of collapsing and exploding 85Rb Bose-Einstein conden-

sates (Chapter 4)

In this Chapter, we describe the startling response of a BEC to a change in the

condensate self-interaction from repulsive to attractive. The sudden change caused a

variety of unusual effects in the condensate. After a short delay that followed the change

in the interaction, the BEC abruptly began to lose atoms. The atoms disappeared from

the condensate over a time scale of a few milliseconds. During the same time period, an

explosion of hot atoms was emitted from the collapsing condensate. We also observed

strange features in the BEC density distribution. After the completion of the number

loss, part of the initial condensate remained visible in a highly excited state of motion.

We discuss the detailed behavior of the BEC collapse dynamics and summarize these

results. At the end of the Chapter, the prominent features of the data are compared to

theory.

1.1.4 Microscopic dynamics in a strongly-interacting Bose-Einstein con-

densate (Chapter 5)

Here we discuss condensate number dynamics resulting from rapid changes to

the magnetic field. Using the auxiliary coil, we applied a short B-field pulse toward

the Feshbach resonance to the condensate. The condensate responded to the pulse
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by losing a large fraction of its initial number. Some of the atoms that left the BEC

were visible in an explosion that was quite similar to the explosion seen in the collapse

experiments of Chapter 4. We studied the dependences of both the BEC loss and the

explosion characteristics on the exact shape and size of the magnetic field pulse. The

time dependence of the loss suggested the presence of non-adiabatic transitions of the

condensate atoms to the molecular state associated with the Feshbach resonance. We

give some justification for this claim using a simple avoided crossing model for the

Feshbach resonance.

1.1.5 Atom–molecule coherence in a Bose-Einstein condensate (Chap-

ter 6)

This Chapter is an extension of the work in Chapter 5. Rather than using a

single pulse, here we applied two magnetic field pulses to the condensate. The pulses

approached the Feshbach resonance and were separated in time by a variable delay. As a

function of the delay time between pulses, we observed oscillations in the number of BEC

atoms. The oscillation frequency matched the binding energy for the molecular state

of the Feshbach resonance. We also observed oscillations in the population of atoms

in the explosion that resulted from the B-field pulses. These atom-molecule coherence

data inspired a flurry of theoretical activity. We present a comparison of the data and

theory at the end of the Chapter.

1.1.6 Very high precision bound state spectroscopy near a 85Rb Feshbach

resonance (Chapter 7)

The atom-molecule oscillations observed in Chapter 6 allowed us to dramatically

improve our knowledge of the Feshbach resonance. We made very precise measure-

ments of the oscillation frequency corresponding to the molecular binding energy. The

frequency measurements were combined with precise measurements of the magnetic field
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using a new experimental technique from Chapter 3. We fit the frequency and magnetic

field data to a theoretical model of the scattering physics. The best fit to the data

allowed us to extract greatly improved values for the Feshbach resonance properties,

including its position and width in magnetic field. We improved the precision of the

position and width determinations by more than a factor of 20. In addition, we used

our data to obtain new values for several important parameters of the interatomic po-

tentials for 85Rb. Our results for the potential parameters had comparable precision to

those of other recent high-precision experiments in rubidium. The agreement between

our results and the results of the other analysis was very good.

1.1.7 Prior publication of our work

Most of the experiments described in this thesis were previously published in

scientific journals. The experiments of Chapter 4 appeared in Ref. [2], while Chapter 5

was published in Ref. [3]. The work in Chapter 6 appeared in Ref. [4]. The observations

of Chapter 7 were submitted but not yet published at the time of writing the thesis.



Chapter 2

The 155 G 85Rb Feshbach resonance

2.1 Introduction

This Chapter provides a brief overview of a Feshbach resonance in the collisions of

85Rb atoms. In addition to allowing the creation of 85Rb Bose-Einstein condensates, the

Feshbach resonance also made possible a variety of experiments involving changes to the

self-interaction of the BEC. The effects of this variable self-interaction were numerous

and they form the subject matter for the rest of this thesis.

2.2 Atomic interactions in a BEC

One of the most interesting properties of Bose-Einstein condensates in dilute

atomic gases is the existence of interactions between the constituent atoms. Although

the BEC is typically 5 orders of magnitude less dense than air, the interatomic interac-

tions strongly affect a number of the properties of the condensate. The interactions in a

BEC have been successfully described by mean-field theory [5], in which each BEC atom

moves in an effective mean-field due to the other atoms. The mean-field interaction is

mediated by the elastic collisions between atoms.

The well-known Gross-Pitaevskii (GP) equation can be used to describe a con-

densate in the limit of zero temperature and neglecting all correlations between the
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atoms. The GP equation for a trapped BEC has the form

i~
∂

∂t
Φ(~r, t) =

[
−~

2∇2

2m
+ Vext(~r) + g|Φ(~r, t)|2

]
Φ(~r, t), (2.1)

where Φ is the BEC order parameter, Vext is the trap potential energy, and the coeffi-

cient g = 4π~2a
m characterizes the pair-wise interatomic interactions in the BEC through

the s-wave elastic scattering length, a. The solution to the GP equation (2.1) is the

condensate order parameter, Φ, which for most purposes can be regarded as the macro-

scopic wavefunction of the BEC atoms. The GP equation has the form of a nonlinear

Schrodinger equation, where the nonlinear term arises from the mean-field interaction

of one atom with all of the others. The mean-field interaction term, often called the self-

interaction energy of the condensate, depends on the density of atoms and the scattering

length. Thus, the GP equation predicts that the sign and magnitude of a determine the

strength of the self-interaction and whether this interaction is attractive or repulsive.

For controlling the BEC self-interaction, it would clearly be desirable to find

some method to change the scattering length. Almost one decade ago, it was suggested

that the scattering length could be influenced using an external magnetic field [6].

The magnetic field would allow one to shift the energy of a molecular bound state to

near-degeneracy with the energy of a colliding pair of atoms, thereby altering the elastic

scattering properties. Such an effect is called a Feshbach resonance and was first studied

in nuclear scattering. The physics of Feshbach resonances will be discussed in the rest

of this Chapter.

2.3 Feshbach resonance

2.3.1 Simple picture of the resonance

In a simplified picture, a Feshbach resonance occurs when the energy of a bound

state of the interatomic potential is equal to the kinetic energy of a colliding pair of

atoms. Assuming a finite kinetic energy, such a degeneracy can occur only when the
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bound state exists in a potential that has a higher threshold energy than that of the

colliding atom pair. This condition can be satisfied in ultracold gases of alkali atoms, due

to the low collision energy of the atoms and the existence of atomic hyperfine structure.

Since the different hyperfine states generally possess different spin configurations and

magnetic moments, one can sometimes tune the bound state energy into resonance with

the colliding atom energy via the different Zeeman shifts in an external magnetic field.

Assuming that both colliding atoms are in the lower hyperfine state, it may happen that

an interatomic potential associated with the upper hyperfine state supports a bound

state nearby in energy, as shown schematically in Figure 2.1.

The schematic curves in Figure 2.1 show the potential energy of the atoms as

a function of their internuclear separation, R. Neglecting the Zeeman interaction, the

large R asymptotic energy is determined entirely by the sum of the hyperfine energies for

the colliding atoms. Each asymptote is called a collision channel and different channels

are labeled by the hyperfine quantum numbers (F,mF ) for the atom pair.

If two atoms begin an elastic collision in the lower channel with kinetic energy

much smaller than the hyperfine splitting, ∆EHF, the atoms cannot exit the collision

in the upper channel because of energy conservation. Thus, the upper channel is ener-

getically “closed”, while the lower channel is “open”. In the case of 85Rb experiments,

the hyperfine splitting of 140 mK greatly exceeds the kinetic energy of the degenerate

gas sample, which is <10 nK. This means that the Feshbach resonance will be “well-

resolved” because the energy spread of the BEC atoms is far smaller than the energy

difference between the two hyperfine states.

In addition to low collision energy and hyperfine structure, another requirement

for the existence of a Feshbach resonance is a coupling between the open and closed

channels. The coupling is provided by the Coulomb (or exchange) interaction, which

couples together different hyperfine states at short internuclear distance [7]. As the

atoms move together during a collision, the strong electrostatic interaction between the
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Figure 2.1: A simplified representation of the interatomic potentials involved in a
Feshbach resonance. The solid lines represent the potential energy versus internuclear
separation for the colliding atoms. The dashed lines show the threshold or asymptotic
energies of the potential curves, which are separated by the hyperfine splitting, ∆EHF.
A bound state of the upper potential, shown by the short horizontal line, is nearly de-
generate with the threshold energy of the lower potential. The definition of energetically
open and closed channels is given in the text.
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nuclei and the electron clouds overwhelms the relatively weak hyperfine interaction,

allowing a spin flip to occur. Due to the symmetry of the binary system, the total

spin projection quantum number mF (tot)=mF (1)+mF (2) is conserved, but the total spin

Ftot=F1+F2 is not. The symmetry requirement determines whether a given closed

channel can couple to the open channel.

2.3.2 Real 85Rb Feshbach resonance

It turns out that the idealized picture of the Feshbach resonance caused by the

interaction of a single closed channel with the open channel is too simplistic. Because

of the complicated hyperfine structure of alkali atoms, any real resonance must involve

coupling of the open channel to a number of different closed channels. As discussed in

section 2.3.1, the symmetry of the Hamiltonian describing the colliding atoms dictates

that only those channels with the same total spin projection as the open channel can

be coupled. For the 155 G 85Rb Feshbach resonance, the open channel is |F1,mF (1)〉+

|F2,mF (2)〉 = |2,−2〉+ |2,−2〉. The symmetry requirement that mF (tot) = −4 restricts

the number of closed channels to four. We list the relevant 85Rb closed channels in

order of increasing threshold energy in Table 2.1.

Table 2.1: Closed channels involved in the 85Rb Feshbach resonance. Each channel is
a sum of two different hyperfine states, as indicated by the quantum numbers in the
second column. The threshold energies and magnetic moments of the closed channels
relative to the open channel are calculated using the Breit-Rabi equation at a magnetic
field of 175 G. Note that ∆EHF = 3.036 GHz.

Label Closed channel Energy/∆EHF at B=175 G Magnetic moment (MHz/G)
(a) |2,−1〉+ |3,−3〉 0.840 −2.72
(b) |2,−2〉+ |3,−2〉 0.900 −1.57
(c) |3,−1〉+ |3,−3〉 1.799 −3.22
(d) |3,−2〉+ |3,−2〉 1.800 −3.14

All of these closed channels can potentially interact with the open channel. There-
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fore the simplified picture of a Feshbach resonance given in Figure 2.1 is inadequate. In

fact, to describe the resonance when the magnetic field approaches the resonance value,

one must include the effects of multi-channel coupling [7, 8, 9]. In a coupled-channels

approach, the wavefunction of the colliding atom pair is expanded as a sum of the open

channel state and the four closed channel states. The expansion coefficients are depen-

dent on collision energy, magnetic field, and the internuclear separation of the colliding

atoms. When one substitutes the expanded wavefunction into the Schrodinger equation

containing an approximate Hamiltonian for the interatomic interactions, one obtains a

set of coupled equations that describe the elastic collision. By solving these equations,

one can accurately determine the most important property of the elastic collision – the

scattering length, a. The existence of the Feshbach resonance profoundly affects the

scattering length by introducing a magnetic field dependence to a.

2.3.3 Variable scattering length

A well-known feature of low energy scattering from an attractive potential well is

resonance scattering [10, 11]. Resonance scattering occurs when a bound state of the

potential is very close to the collision energy of the atoms. The presence of the bound

state near zero energy profoundly affects the scattering physics. This is because the

colliding atoms can make a transition to the bound state and dwell there briefly before

moving apart again after the collision. The biggest effect on the scattering occurs when

the two levels have exactly the same energy, which causes the elastic cross section and

scattering length to reach infinite values. In a Feshbach resonance, one can adjust the

energy of a bound state relative to the collision energy by tuning the magnetic field.

Even though the bound state exists in a different interatomic potential from that of

the colliding atoms, the variable bound state energy can still dramatically alter the

scattering length.

From the coupled-channels scattering theory of Feshbach resonances, one can
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derive an approximate analytic expression for the variation of the scattering length

with magnetic field [7]. In terms of the Feshbach resonance parameters, the scattering

length is [7, 12]

a = abg

(
1− ∆

B −Bpeak

)
, (2.2)

where Bpeak is the resonance position and is defined to be the magnetic field where the

magnitude of a becomes infinite, abg is the background scattering length, and ∆ is the

resonance width in magnetic field. Although equation (2.2) is only approximate, we

have found that the analytic expression works very well. In fact, the scattering length

from equation (2.2) agrees with a calculated from a full coupled-channels theory to

better than 1% percent from 155 G to 250 G [13]. Figure 2.2 displays the scattering

length predictions from equation (2.2).

2.3.4 Bound state properties for the 85Rb Feshbach resonance

Very near the 85Rb Feshbach resonance on the high B-field side, the scattering

length is large and positive. From zero-energy scattering theory [10, 11], we know

that when a is much bigger than the effective range of the attractive potential well

(a >> Reff ∼25 a0), there must exist a weakly bound state just below the threshold

energy. The binding energy of the weakly bound state bears a simple relationship to

the scattering length:

εbind = −~2/(ma2), (2.3)

where m is the atomic mass. The arguments leading to this result are very general,

so the equation must be valid as long as a is big. It is therefore not necessary to deal

with a complicated coupled-channels calculation of εbind in the large scattering length

regime, provided that the parameters of the Feshbach resonance are well known and

one can use equation (2.2) to determine the scattering length.

However, to obtain the full magnetic field dependence of the molecular binding
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Figure 2.2: Magnetic field dependence of scattering length near the Feshbach resonance.
The solid line is the scattering length calculated from equation (2.2) with the current
best values for the resonance parameters (see Chapter 7). For the resonance position
and width, we have Bpeak=155.041 G and ∆=10.709 G, respectively. The value of
the background scattering length is -443 a0. The horizontal dashed line indicates zero
scattering length, which occurs at Bzero=165.75 G. In the inset, we show the scattering
length variation over a larger range of B-field.
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energy, a coupled-channels calculation is needed [9]. When the interactions between

all of the channels are accounted for, one obtains a rather complicated magnetic field

dependence in εbind. The coupling matrix element between the open channel and each

closed channel varies strongly with B-field, which leads to a nonlinear magnetic field

dependence of the binding energy. Figure 2.3 shows this dependence along with the

scattering length variation for magnetic fields above the 85Rb Feshbach resonance.

In addition to the binding energy, another important property of the molecular

state is the spatial size of the wavefunction. Zero-energy scattering theory provides a

useful prediction for the shape of the molecular state wavefunction. Outside the effective

range of the potential, the wavefunction for the molecular state can be shown to have

the form [10]

φ(r) ∼ exp (−r/a)
r

, (2.4)

where a >> Reff is the large, positive scattering length and Reff is the range of the

potential. Equation (2.4) shows that the decay of the bound state occurs over a length

scale equal to the scattering length, which can easily exceed the potential range by

several orders of magnitude. This behavior is possible because of the proximity of the

bound state to zero energy. The elongated spatial size of the molecule has some bizarre

consequences. For instance, when the scattering length is very large, the atoms in the

weakly bound molecule spend the majority of their time at internuclear separations that

are best described by the hyperfine basis. The molecular state is far too large to be

labeled according to the conventional singlet/triplet molecular quantum numbers.

It is worth emphasizing that the characteristics of the weakly bound molecular

state are completely different from those of the single closed channel state of conventional

Feshbach theory. For instance, the weakly bound state extends far past the short-range

part of the interatomic potential. The size of the weakly bound state is basically given

by the scattering length when a >> 0. In contrast, the closed channel bound state



16

∞→a

εεεεbind

2-atom threshold
(BEC atoms)

Bpeak=155 G

molecular state

166 G

E

B

B

(a)

a

(b)

Figure 2.3: Schematic representation of the Feshbach resonance in 85Rb. (a) Variation
of scattering length for B>Bpeak. The two vertical dotted lines indicate the range of
magnetic field where a > 0. (b) Dependence of atomic and molecular energies on B-
field. The dashed line shows the colliding atom threshold energy, while the solid curve is
the molecular state energy, which intersects the atomic threshold at Bpeak. For magnetic
fields significantly above resonance, the molecular energy decreases linearly with B-field
at a rate that is very similar to the magnetic moments of closed channels (c) and (d),
as listed in Table 2.1.
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is confined to the part of the interatomic potential where molecular forces dominate,

which is roughly 25 a0 in extent. Another property of the weakly bound state that sets

it apart from the closed channel state is the magnetic field dependence. While the closed

channel state exhibits a linear variation of energy versus B-field, the weakly bound state

shifts in a highly nonlinear fashion (see Figure 2.3).

2.3.5 Physical relevance of weakly bound state

Prior to the publication of our recent measurements of the molecular state binding

energy (see [4] and also Chapters 6-7), the existing theoretical descriptions of alkali atom

Feshbach resonances [14, 15] were mostly based on the simple picture of a single closed

channel coupled to the open channel (see section 2.3.1). In the course of our studies

of 85Rb condensates, we found that the simple picture was totally incorrect — it failed

to describe the atom-molecule oscillation data in Chapter 6. Our measurements clearly

demonstrated the physical relevance of the weakly bound molecular state. Several new

theoretical models for the 85Rb Feshbach resonance are currently being developed [9,

16, 17, 18] to describe the data.



Chapter 3

The 85Rb experimental apparatus: new tools and upgrades

3.1 Overview

This chapter explains new features added to the original 85Rb experimental ap-

paratus. The vast majority of the apparatus and techniques that we used to produce

85Rb Bose-Einstein condensates were already carefully documented by Jake Roberts [1].

I refer the reader to Ref. [1] for a more comprehensive picture of the 85Rb machine and

the actual BEC production process. In the first part of the chapter, I give a general

overview of our recipe for BEC. The last part of the chapter contains much more detailed

descriptions of several new experimental techniques and additions to the apparatus that

were used to conduct the experiments described in Chapters 4-7. The detailed descrip-

tions begin with an explanation of general physical principles and conclude with the

practical details.

Our procedure for BEC production depends on two cooling techniques — laser

cooling and evaporative cooling — to lower the temperature of a confined gas of atoms

from room temperature (300 K) to a few billionths of a degree (∼10 nK). We accomplish

this cooling without any conventional cryogenic methods; the only cold part of the

system is the trapped atom cloud itself. This is possible because the rubidium atoms

are trapped in a “thermos bottle” of confining optical and magnetic fields that are

housed inside an ultra-low pressure vacuum system. When the 85Rb atom cloud cools

to 10 nK, the quantum behavior of the atoms in the gas becomes apparent and they all
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pile up in the ground state of the trap, forming a Bose-Einstein condensate. The BEC

is remarkable — it is described by a macroscopically-sized quantum wavefunction that

we can observe directly with a suitable microscope.

In our apparatus, we use a pair of magneto-optical traps (MOTs) to laser-cool

and trap a few hundred million 85Rb atoms. One MOT, called the “collection” MOT,

has the important task of cooling the atoms down to roughly 100 µK from a room

temperature vapor. We transfer these collected cold atoms to another (“science”) MOT

by pushing them through a narrow tube that connects the two MOT vacuum chambers.

The chamber that encloses the science MOT is only weakly coupled to the collection

MOT chamber containing the rubidium vapor, so the science chamber has roughly 100×

lower pressure (∼10−11 torr). This low pressure is crucial for the cooling efficiency of

the next experimental stage — evaporative cooling.

Before starting the evaporative cooling process, we first illuminate the atoms with

an optical pumping laser to force them into a particular internal hyperfine state, then

we load the atoms into a purely magnetic trap. The magnetic trap confines the atoms

spatially and has a much longer storage time than the MOT due to the absence of laser

light, which continually excites the atoms and leads to trap loss. However, the magnetic

trap has the disadvantage of being much more shallow than the MOT and lacking the

capability to cool the atoms (because the magnetic trapping potential is conservative,

there is no dissipation and this trap has no intrinsic cooling ability). In our system,

we typically load the magnetic trap with 6 × 108 85Rb atoms in the |F, mF 〉 = |2,−2〉

hyperfine state at a temperature of 40 µK.

We evaporatively cool the sample by applying a radio-frequency (rf) radiation

field that selectively removes the hottest atoms from the magnetic trap. The removal

is accomplished by inducing ∆mF =+1 transitions to an untrapped spin state. After

making such a transition, an atom falls away from the trapped cloud, thereby removing

energy from the sample. The most important feature of evaporative cooling in the
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magnetic trap is the energy selectivity of the rf transitions. Due to the Zeeman energy

shift of the trapped atoms, the most energetic atoms spend the greatest time in higher

magnetic field regions of the trap, where the rf transition frequency is largest. By

lowering the rf radiation frequency in a time-dependent fashion, one can gently lower

the temperature of the trapped atom cloud. The optimal procedure for evaporative

cooling is quite complex and we devoted a great deal of time to studying this process.

If the cooling process can be made efficient enough so that the number of atoms

removed per unit time is relatively low and the energy removed per time is relatively

high, then the phase space density (PSD) of the atom cloud will increase as evaporation

continues. Eventually the PSD approaches unity, which means that the average inter-

particle separation in the gas becomes equal to the deBroglie wavelength of an atom.

Because 85Rb atoms are bosons, their position space wavefunctions overlap with one

another and the system undergoes a transition to a new “superatom” state, the Bose-

Einstein condensate. In our system, we typically see a BEC begin to form at ∼15 nK.

We continue to evaporate the cloud to further lower the temperature until we obtain

condensates of 20,000 atoms at T∼5 nK. Thus, the evaporative cooling process leads to

PSD∼1 after reducing N by four orders of magnitude and reducing T by ten orders of

magnitude.

The resulting 85Rb BEC is a fascinating object. It is a dilute, weakly-interacting,

ultracold gas of atoms whose behavior is entirely quantum-mechanical. The interactions

between atoms in the condensate are mediated by low energy collisions and can be fairly

simply described in terms of the s-wave scattering length, a. Since the scattering length

can be varied near a Feshbach resonance (see Chapter 2) by changing the magnitude

of the magnetic field, our 85Rb BEC in a magnetic trap offers a wealth of possibilities

for studying the atom-atom interactions. In fact, the formation of the condensate at

B=162.3 G (a=210 a0) is only possible because of the proximity of the B-field to the

Feshbach resonance at 155 G. At magnetic fields more than 11 G away from resonance,
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the scattering length is large and negative, so the BEC self-interaction is attractive and

only ∼80 atoms can exist in the BEC ground state (attractive interactions are discussed

in Chapter 4).

After creating a stable 85Rb BEC, we generally change the magnetic field and

study the effect on the condensate. Depending on the details of the B-field change

— its time-dependence and magnitude, one can observe very complex BEC dynamics,

including implosions and explosions of the wavefunction, collision-induced losses, and

coherent transfer between a single atom state and a diatomic molecular state. Our

studies of these phenomena comprise the subject matter for Chapters 4-7 of this thesis.

3.2 New collection MOT laser

3.2.1 General discussion of collection MOT

Perhaps the most important step on the road to BEC is laser cooling and trapping

of the atoms in a magneto-optical trap (MOT). We utilize a double MOT system [19]

consisting of a collection MOT for gathering the atoms from a room temperature vapor

and a science MOT for further cooling and transfer of the atoms into a magnetic trap.

The double MOT apparatus allows us to collect and transfer multiple bunches of atoms

from the collection chamber to the science chamber. After a capturing a sufficient

number of atoms in the science MOT, we load them into the magnetic trap and proceed

to evaporative cooling.

The collection MOT has the important task of cooling a fraction of the atoms in

the room temperature vapor to roughly 100 µK. The fraction that is cooled is deter-

mined [20] by the velocity distribution in the gas and the capture velocity of the MOT,

vc, which is the maximum velocity that an atom can have and still be slowed enough

to become trapped in the MOT. When an atom with larger velocity than vc enters the

trapping region, it slows down but does not remain in the MOT volume. The number



22

of atoms in the MOT depends strongly on vc: NMOT ∝ (vc/vtherm)4, where vtherm is the

average velocity of the atoms in the vapor. The capture velocity increases with increas-

ing laser intensity in the MOT beams because vc depends on the photon scattering rate

from the laser beam(s) that oppose the atom’s motion. It is therefore desirable to use

a relatively high power laser to maximize both loading rate and the number of atoms

trapped in the MOT.

3.2.2 High power MOPA system

In our early work with 85Rb, we used a Hitachi diode laser to supply the trapping

light for the collection MOT. After stabilization with grating feedback, this laser pro-

duced roughly 20 mW of laser power, which was then divided into three retro-reflected

beams. More recently we switched to a much higher power laser system, called a master-

oscillator-power-amplifier (MOPA). The MOPA is capable of producing a power of sev-

eral hundred mW and allows us to significantly increase the number of atoms in the

collection MOT.

The MOPA consists of a frequency-stabilized master laser that sends its light into

the power amplifier. The amplifier is a single-pass semiconductor device with a tapered

shape to maximize the gain while reducing the power density inside the medium. The

PA has high gain and very low reflectivity (<0.1%) on the input/output facets. The

power amplifier thus has a wide (∼10 nm) gain spectrum limited only by the gain

bandwidth of the semiconductor material. This makes the PA flexible enough for a

variety of experiments with different alkali atoms. In addition, one can send multiple

frequencies of laser light into a single PA — either by combining two laser beams or

by simply modulating the MO laser. Modulation is a particularly attractive approach

that allows one to simultaneously trap two different isotopes in overlapping MOTs (we

originally designed our MOPA to trap 85Rb and 87Rb). Another possibility is to generate

trapping light and repump light from the same MOPA.
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One of the nicest features of the MOPA is its adjustable gain. By adjusting the

current flowing through the PA one can vary the gain of the amplifier. The maximum

gain for our PA is ∼100 for a 1.8 A current and an input power from the MO laser of

5 mW. We typically operate at much lower PA gain because we do not need such high

power levels for the collection MOT and also to lengthen the lifetime of the PA.

Our MOPA system is based on Brian DeMarco’s design [21], which was widely

copied at JILA until the manufacturer (SDL) abruptly ceased to make the amplifiers.

However, a similar PA chip is now available from TUI optics that can be used as a

replacement for the SDL chip. Figure 3.1 displays the basic optical setup for our MOPA

and Figure 3.2 shows the beam-shaping optics needed to correct the large astigmatism

and ellipticity of the output from the PA. The PA output is ultimately sent through

a fiber to spatially filter the beam and transport the light from one optical table to

another.

3.2.3 Transfer of atoms between MOTs

After collecting 1010 atoms in the collection MOT, we push a small fraction of

them down the transfer tube to the science MOT. This transfer is accomplished by

turning off the collection MOT beams with a mechanical shutter while leaving on a fixed-

power push beam that is directed along the transfer tube axis. Because the transfer

velocity of 12 m/s is less than the capture velocity of the science MOT, all of the

atoms that successfully travel down the tube without sticking to the stainless steel walls

are trapped again by the second MOT. The sticking probability is reduced by a set

of permanent guide magnets arranged in a hexapole configuration around the transfer

tube.

Defining the efficiency of the transfer as the fraction of the initial collection MOT

number that ends up in the science MOT, we find that our efficiency is quite low (0.1

to 0.2 %). Thus, to fill the lower MOT to our typical value N=6× 108 requires 25 to 50
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Figure 3.1: Schematic of MOPA. At top is the overall design of the MOPA, while the
bottom part of the figure shows more of the details of the master oscillator and the
power amplifier. We stabilize the MO using a DAVLL lock [22] and a rubidium cell.
The output beam of the PA is shaped by the optical system shown in Figure 3.2.
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Figure 3.2: Schematic of MOPA beam-shaping optics. The first two lenses are cylindrical
and only affect the vertical axis of the PA beam. After the second lens, the PA beam is
roughly collimated with a square shape (∼1.5 cm on a side). The second pair of lenses
form a telescope to shrink the beam until it will pass through the isolator aperture.
Finally the beam travels through an optical fiber with 60% coupling efficiency before
traveling to the collection MOT chamber. The collection MOT beams are 1” in diameter
and each of the three retroreflected beams contains ∼20 mW for a MOPA current of
0.875 A. An additional pushing beam (with 5 to 10 mW power) is split from the main
MOPA beam and is used to transfer atoms to the science MOT.
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pushes. Since we actually do not allow the collection MOT to completely refill between

pushes, the real number of transfers can be somewhat higher. In fact, a better figure

of merit for the atom transfer is the total number transferred per unit time. For our

typical repetition rate of 0.3 s and loading time of 20 to 40 s, we obtain a total transfer

rate of 1 to 3× 107 atoms/s.

I speculate that the primary bottleneck in the transfer process is going from the

collection MOT to the transfer tube itself. The push beam that accelerates the atoms

toward the science MOT causes a large amount of transverse heating of the atoms before

they enter the tube. Only a small fraction of the collection MOT atoms near the center

of the MOT may have a significant probability of successfully entering the tube.

This picture of the transfer process as being limited by the poor efficiency of

pushing the collection MOT atoms into the transfer tube is supported by experimental

data. We made measurements of the single load size as a function of power in the

science MOT, for a fixed number of atoms in the collection MOT. The power variation

was accomplished by picking off some of the MOPA laser light to supply the science

MOT. Our measurements showed that we could reduce the number of atoms captured

in the science MOT by turning down the beam power until the capture velocity dropped

below 12 m/s. However, as long as we kept the power above this critical value, we could

not further increase the number captured in the science MOT by increasing the power.

The single-load number of atoms saturated as the science MOT power increased, despite

the fact that the overall transfer efficiency from collection MOT to science MOT was

very low (∼0.2 %). This implies that we can capture all of the atoms that enter the

transfer tube in the science MOT, but the number entering the tube must be far below

the number in the collection MOT.

We have also observed that the number of atoms transferred to the science MOT

in a single load is directly proportional to the number in the collection MOT. Using

the MOPA laser for the collection MOT allowed us to increase the single load size by a
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factor of 2 or more, depending on the laser power. In addition, we took advantage of the

higher collection efficiency of the MOPA-powered MOT by decreasing the temperature

of the Rb ampoule by several degrees yet maintaining the same MOT fill rate (1/e time

of 2 s) and maximum build (Nmax=1010). This allows for a lower overall rubidium

pressure in the vacuum system, which improves the magnetic trap lifetime.

3.3 Improved magnetic field measurement technique

3.3.1 Introduction

Studies of the 85Rb Feshbach resonance depend critically on knowledge of the

magnetic field strength. To measure the B-field, we developed a simple, precise method

that relies on the Zeeman effect in a trapped cloud of atoms. In our technique, which is

related to early NMR experiments [23], we induce spin-flip transitions in the atoms with

a short (∼10 µs) pulse of radio frequency (rf) radiation. The rf pulse coherently drives

atoms from the original |F, mF 〉 = |2,−2〉 hyperfine state to the |2,−1〉 state, which is

weakly confined in the B-field range of interest (∼160 G). Due to the weak confinement

of the |2,−1〉 state, atoms that undergo a ∆mF =+1 transition find themselves far from

their equilibrium position in the magnetic trap. These atoms experience a force that

pushes them out of the original cloud of |2,−2〉 atoms. Thus, spin-flip transitions lead to

the loss of atoms from the sample. The loss is frequency dependent; the rf frequency that

maximizes the loss corresponds to the energy splitting between the Zeeman states. After

the energy splitting is inferred from the rf frequency, we use the known hyperfine and

Zeeman Hamiltonians in 85Rb to extract the magnetic field. This B-field determination

can be quite precise (± 10 mG) due to the inherently narrow (Fourier transform-limited)

linewidth of the rf pulse transition lineshape.

The short rf pulse method described here has several important advantages over

our earlier method for magnetic field measurement by rf “carving” [1]. In the carving
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technique, the frequency of the rf “knife” ramps down in ∼10 s from a chosen start

value to a stop value. By varying the stop value and also the direction of the rf ramp,

one can find the frequency at the center of the cloud and the corresponding magnetic

field. Although the precision of such a B-field measurement can be even better than the

precision yielded by the short rf pulse technique, the rf carving method has limited utility

because of its long integration time. The rf carving averages the B-field during a 10 s

window; in contrast, the rf pulse method averages the magnetic field for a time period

equal to the pulse length, which can easily be as short as 10 µs. Clearly, measuring B-

field with an rf pulse is well-suited to studies of the response of a BEC to rapid B-field

changes — as discussed extensively throughout this thesis.

An additional advantage of the rf pulse method is its simple theoretical description

using two-level quantum theory [24]. Although the 85Rb atom is definitely not a spin-1/2

system, the simple two-level theory is still quite valid because of the typical magnetic

field strengths used. At relatively strong magnetic fields, the Zeeman shift for a given

spin state is not linear with B. Also, the splitting between a pair of adjacent spin states

is not degenerate with the splitting of the next closest pair. For example, at B=162 G,

the mF =-2 → mF =-1 transition frequency is 81.1 MHz while the mF =-1 → mF =0

transition frequency is 76.8 MHz. Hence, if the rf radiation is in resonance with the (-2

→ -1) transition, the radiation is blue-detuned from the next closest transition (-1 → 0)

by 4.3 MHz. This means that the short rf pulse cannot couple together more than one

pair of spin states, provided that the spectral width of the pulse is sufficiently narrow.

The spectral width for a typical 10 µs rf pulse is 89 kHz FWHM (full-width at half-

maximum of Fourier transform), easily satisfying the conditions for the applicability of

two-level theory. It is important to note that the different spin states are stable against

spontaneous decay, so the intrinsic energy width of a given state is less than 1 Hz.
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3.3.2 Rf apparatus

To utilize our new rf pulse method, we needed precise and repeatable timing

control of the rf radiation. The apparatus for controlling rf and delivering it to the

atoms is shown schematically in Figure 3.3. Continuous wave rf radiation is created

by an HP8656B frequency synthesizer. The synthesizer output frequency and power is

controlled via a GPIB computer interface.

The radiation was truncated into a short pulse with a Mini-Circuits rf switch

(SPDT), model ZASWA-2-50DR. The switch was controlled by a variable pulse gen-

erator (Wavetek model 801) that could be externally triggered via a TTL signal from

the computer TTL board. Finally, the rf pulse was amplified and applied to the atoms

through a coil situated very near the magnetic trap.

Using our apparatus, we developed a simple procedure to drive rf transitions in a

trapped cloud of cold atoms. First we load the atom cloud into the magnetic trap and

evaporatively cool it to a given temperature (T≤60 nK). Next we apply a short pulse

of rf radiation from the rf coil. After the pulse, the trap remains on for 10-20 ms to

allow the spin-flipped atoms to fall away, then the trap is switched off (B→0) and the

remaining |2,−2〉 atoms are imaged 12.8 ms later. We count the number of atoms in

the absorption image, then repeat the procedure multiple times with different rf pulse

frequencies to obtain a transition lineshape, as shown in Figure 3.4.

3.3.3 Lineshape measurements

The theory describing the response of the atom cloud to an rf pulse was derived

in the early studies of magnetic dipole transitions in molecular beams [24]. When a two-

level atom is subjected to a pulsed oscillatory coupling field, the probability of making

a transition from the initial state (a) to the final state (b) is given by

Pa→b =
Ω2

0

δ2 + Ω2
0

sin2 (

√
δ2 + Ω2

0τ

2
), (3.1)
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Figure 3.3: Schematic of apparatus used to control the rf radiation. A GPIB-controlled
frequency synthesizer produces the rf at a fixed frequency and power. To truncate
the rf wave into a pulse, we use a pulse generator and rf switch. Due to the extreme
sensitivity of the atoms to rf fields, we chose a switch with very high isolation (-90 dB)
and good switching characteristics (10%-90% rise/fall time=5 ns). From the measured
rf transition linewidths (see section 3.3.3), we conclude that the spectral purity of the
frequency synthesizer and the switching behavior of the rf switch are nearly ideal.
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where τ is the pulse length, δ = (ωrf − ω0) is the detuning of the rf pulse from the

resonance frequency, ω0, and Ω0 is the Rabi-flopping frequency at zero detuning. The

Rabi frequency is proportional to the atom’s magnetic moment and to the amplitude of

the oscillating magnetic field: Ω0 = µB/(2~). In a typical lineshape measurement, τ is

fixed and we tune δ until the transition probability reaches a maximum at δ=0. This

detuning causes the maximum loss from the atom cloud in the experiment. To ensure

that Pa→b(δ = 0) is reasonably large (roughly 0.5), we adjust the rf power and pulse

length to achieve Ω0τ ∼ π/2.

The predictions of equation (3.1) agree quite well with experimental data. Fig-

ure 3.4 shows lineshape data and theory for a particular choice of magnetic field, rf

power, and (fixed) rf pulse length. We also varied the pulse length with fixed rf fre-

quency to map out coherent Rabi oscillations (see Figure 3.5).

For most of our magnetic field measurements, we found that using cold thermal

clouds was more convenient than using a condensate. Since a BEC can undergo huge

number losses when the magnetic field is changed in the vicinity of the Feshbach reso-

nance (see chapter 5), a BEC cloud is not suitable for measuring the field during our

fast B-field pulse sequence. With a BEC cloud, it is difficult to separate the Feshbach

resonance-induced number loss from the rf pulse-induced number loss. We therefore

measure the magnetic field with cold, low-density thermal clouds. The low density pre-

vents density-dependent losses from occurring during our rapid B-field changes, while

the cold temperatures allow for fairly narrow rf transition linewidths. Thermal clouds

have the additional advantage of being simpler and faster to produce than BECs. The

cycle time for producing ∼60 nK, low density thermal clouds is roughly 40% shorter

than the time to make a condensate.

There is one disadvantage to using thermal clouds, however. Since thermal clouds

are hotter than condensates, they experience a larger magnetic field variation. The B-

field variation arises from gravitational “sag” in the magnetic trap. Due to our rather
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Figure 3.4: Comparison of lineshape data to theory for a sample of BEC atoms. The
points are the fraction of atoms remaining after the rf pulse. The line shows the quantity
(1-Pa→b) computed from equation (3.1), with τ=10 µs and Ω0 = 2π × 28 kHz (the RF
synthesizer power was +5 dBm). These conditions correspond to a Ω0τ=π/1.9 pulse.
We used a BEC cloud at T∼3 nK for the lineshape, so there is no indication of any
linewidth broadening beyond the Fourier transform-limited theory (FWHM=89 kHz).
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Figure 3.5: Rabi-flopping in a BEC. The points are the number of BEC atoms remaining
after the RF pulse, while the line is given by equation (3.1) with Ω0 = 2π × 28 kHz
and δ = 2π × 23 kHz. The data set is somewhat undersampled, but it seems consistent
with the theory at short times. However, at longer times, the Rabi flopping seems to
damp out. This could be related to the large negative scattering length of the |2,−1〉
state, which does not have a nearby Feshbach resonance like the initial |2,−2〉 state. In
addition, gravity should lead to decoherence because the |2,−1〉 state has a factor of 3
weaker magnetic moment than the initial state.
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weak trapping potential, the atoms sag downward, away from the position of the B-

field minimum, until the force from the (increasing) magnetic field gradient becomes

strong enough to counteract gravity. In equilibrium, this leads to an approximately

linear gradient of 26 G/cm along the vertical direction. Thus, the spread in B-field

across the cloud is simply determined by the cloud’s vertical width, σr, which depends

on temperature as σr ∝
√

T .

The magnetic field width of the cloud translates directly into a spread in rf tran-

sition frequency, which leads to inhomogeneous broadening of the rf lineshape. The

broadening is very simple to model as long as the rf pulse length is much less than a

trap period because the atoms do not move during the pulse. To first order, each atom

experiences a constant magnetic field with a magnitude that depends on the position

of the atom when the pulse begins. One can calculate the correct transition probability

by averaging over the distribution of transition frequencies along the vertical direction

of the thermal cloud. The average probability is

〈Pa→b〉 =
1
N

∫ ∞

−∞
Pa→b(ω0, ωrf )

N

(2π)3/2σrαδ
exp [−1

2
(ω0 − ωrf )2

σ2
rα

2(2πδ)2
]dω0, (3.2)

where Pa→b(ω0, ωrf ) is the single atom probability from equation (3.1), ω0 is the angu-

lar transition frequency at a given position, ωrf is the angular rf frequency, N is the

number of atoms in the thermal cloud, σr is the rms radial width of the gaussian density

distribution, α=2600 G/m is the magnitude of the B-field gradient, and δ is the slope

of transition frequency versus B-field, which is 530 kHz/G near 160 G.

Typically, we observed thermal cloud linewidths (FWHM) of ∼100 kHz with

10 µs pulses and T∼60 nK. To look for effects of inhomogeneous “thermal broadening”

in the lineshapes, we increased the pulse length. For example, a pair of thermal cloud

lineshapes measured with different rf pulse lengths are shown in Figure 3.6. These data

show a significant amount of inhomogeneous broadening from the finite temperature of

the clouds.
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Figure 3.6: Lineshape data and theory for a thermal cloud. The points are the fraction
of atoms remaining after the rf pulse and the lines are predictions from equation 3.2.
The average thermal cloud density is 1011 cm−3. (a) Data and theory for rf pulse
length τ=10 µs, temperature T=50 nK, and Rabi frequency Ω0=2π× 20 kHz. Here the
Fourier transform limited linewidth is 89 kHz; however, thermal broadening increases
the FWHM above the transform limit by 30%. (b) In this case, we have τ=50 µs,
temperature T=60 nK, and Rabi frequency Ω0=2π × 6 kHz. Although the transform
limit decreases to 18 kHz, thermal broadening causes the linewidth from equation (3.2)
to be 82 kHz. The lineshapes in (a) and (b) were measured at slightly different magnetic
fields, so the center frequencies for the lineshapes are different.
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The total width of a thermal cloud rf lineshape depends primarily on the pulse

length (through the Fourier transform limit) and inhomogeneous broadening from spa-

tial magnetic field differences across the cloud. Another potential source of line-broadening

is time variations of the B-field during the rf pulse. We sometimes observed broadening

that was larger than expected from the transform limit and finite temperature alone.

In fact, one can use the observed linewidth to estimate the magnitude of B-field noise

during a rf pulse. The noise can only be estimated in this way if it causes significant

broadening beyond that due to the transform limit and finite temperature of the atom

sample.

As an aside, it is worth mentioning that for the majority of our lineshape mea-

surements, we fit the data to a Lorentzian function. Although this simple function does

not capture the details of the full lineshape described by equation (3.2), the Lorentzian

fit provides a good estimate of the linewidth and center frequency. In general, the data

were not sufficiently precise to distinguish differences between the chosen fit function

and the theoretical form discussed here.

3.3.4 Obtaining the B-field from lineshape data

Once the center frequency for the rf lineshape is measured, we calculate the

magnetic field with the Breit-Rabi equation [24]. The form of this equation for 85Rb is

described in Ref. [1] and will not be repeated here. Since the Breit-Rabi equation is an

exact analytical result for the B-field dependence of the energies of the various hyperfine

states, we simply insert the measured energy difference between two states (the center

frequency from the rf lineshape) and then invert the equation to obtain the magnetic

field. The B-field determination has a precision limited only by the precision of the rf

frequency measurement.

In principle, the accuracy of this B-field determination should also be very good.

However, the measurement is distorted by one significant systematic effect from finite rf
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power. The rf power systematic is a shift to the magnetic field due to interference of the

rf radiation with the magnetic field control circuitry. The current sensor for the auxiliary

coil current servo (described in section “aux-coil hall probes”) detects the rf radiation

and filters it, leading to a change in the current and a “DC” shift to the field. Examples

of rf power shifts to the Hall probe current sensors are displayed in Figure 3.7. We used

the Hall probe signals, which were previously calibrated with respect to magnetic field

(see section 3.4.6), to correct for the rf power shift to the B-field.

We have an additional, independent way to determine the size of the rf power

shift. In this method, we vary the power of the rf pulse and measure a lineshape for

each value of power. The rf power shift causes the center frequency of the lineshape to

decrease linearly with rf power (see Figure 3.8). By extrapolating to zero rf power, we

obtain another estimate of the true rf transition frequency (B-field).

The rf power shift discussed here is only present due to interference of the rf

radiation with the auxiliary coil current servo. There is no noticeable effect of a short

rf pulse on the magnetic field produced by the baseball and bias coil currents, which

provide the majority of the B-field experienced by the atoms.1 Thus, in experiments

where we change the magnetic field slowly, without using the auxiliary coil, there is no

rf power shift to the measured B-field.

Because 85Rb is not a two-level atom, the rf radiation causes another (small)

power shift to the measured rf transition frequency. The shift arises because the rf

radiation — tuned near the |2,−2〉 → |2,−1〉 resonance — simultaneously couples the

|2,−1〉 and |2, 0〉 states. This latter coupling leads to a small AC Stark shift of the

mF =-1 state. The Stark shift is equal to Ω2
0/|4δ| '0.3 kHz, where δ=4.3MHz is the

relevant detuning at 162 G (see section 3.3.1). Of course, the calculated shift is totally
1 The absence of an effect is due to two things: the servo that controls the current for the trapping

coils (baseball and bias coils) has much lower bandwidth than the auxiliary coil servo, so it is not able
to respond to the rf pulse during the time of the pulse. Also, the trapping coils have a larger inductance
than the auxiliary coil and thus they offer a larger impedance to high frequency current changes.
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Figure 3.7: B-field shifts due to finite rf pulse power. Solid lines are the B-fields versus
time calculated from the calibrated auxiliary coil current sensor. Vertical dotted lines
show the 11 µs duration of an applied rf pulse. Each solid line corresponds to a different
rf pulse power. From top to bottom, the rf power from the frequency synthesizer is
-120 dBm, -1 dBm, 2 dBm, and 5 dBm. The current sensor output signals are filtered
using a 2 µs averaging window, so there is no indication of oscillations at the rf frequency
of ∼80 MHz. To estimate the B-field shift, we calculate the average difference between
the line with -120 dBm and the line with a given rf power, within the time window
for the rf pulse. We estimate the uncertainty on the B-field shift from the standard
deviation of the average field difference.
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Figure 3.8: Comparison of two methods to measure rf power shift. Black points with
error bars are B-field shifts as measured by the auxiliary coil current sensor as a function
of rf pulse power (see caption to Figure 3.7). White points with error bars are B-field
shifts determined directly from rf lineshape data. An arbitrary offset was added to the
lineshape data to make the point at ∼0.8 mW overlap the corresponding current sensor
measurement. The solid line is a weighted fit to the lineshape data, showing that the
extrapolation to zero rf power agrees well with the current sensor data. The slope from
the fit is -49(4) mG/mW.
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negligible compared to a typical rf linewidth of 100 kHz, so we can safely ignore it.

Ignoring the shift is reasonable as long as the magnetic field is large enough to break

the degeneracy between adjacent ∆m=+1 spin-flip transitions.

3.3.5 Outlook for rf lineshape measurements

The present technique for measuring the magnetic field made possible the precise

characterization of the 85Rb Feshbach resonance discussed in chapter 7. This method

was also essential for understanding the time-variations of the B-field produced by the

auxiliary coil (see section 3.4). There are at least two other possible experimental

applications for the rf lineshape technique, although we have not fully explored them.

First, one can use the rf lineshapes to determine the nature of magnetic field noise

in the experiment. By increasing the length of the rf pulse (and thereby decreasing the

linewidth due to the Fourier transform limit), one can look for a linewidth “floor”

corresponding to time variations in the B-field. The magnitude of these field variations

could be explored by careful study of the lineshapes.

Second, the rf lineshape technique might be used to measure the average mean-

field energy of a BEC. After subjecting a condensate to a rapid change in magnetic field

(and scattering length), one could then measure an rf lineshape and look for a shift or

broadening of the lineshape from the BEC self-interaction. Perhaps it would be pos-

sible to measure a beyond mean-field energy shift in this way [1]. Unfortunately, such

a measurement would be difficult because condensate atoms experience non-adiabatic

transitions to a molecular state when the B-field is changed quickly near the Feshbach

resonance, as noted in chapter 5. Since the BEC loss occurs on a time scale (∼10 µs)

that is comparable to the minimum rf pulse length needed for a precise frequency mea-

surement, interpetation of the rf lineshape would likely be very complicated. However,

a compromise might be found in which the B-field change was slow enough to avoid

non-adiabatic transitions but fast enough to prevent changes to the condensate density
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(see section 3.5.3).

3.4 New auxiliary coil for rapid B-field pulses

3.4.1 Motivation for auxiliary coil

To study the response of a 85Rb BEC to rapid magnetic field changes near the

Feshbach resonance, we developed a specialized “auxiliary” magnetic field coil. This

coil and its accompanying electronics were designed to provide controlled B-field pulses

toward the resonance, allowing us to explore the resulting BEC dynamics over a wide

range of time scales. In the following sections, the details of the auxiliary coil design

and characterization are given.

Before building the auxiliary coil, we made some preliminary attempts to pulse

the magnetic field quickly by rapidly changing the reference voltage used in the current

servo for our main “baseball” (BB) trap coil. This is the same method we used to study

condensate collapse dynamics, as described in Chapter 4. By using short magnetic

field pulses, we hoped to avoid the issues of condensate heating and 3-body collisional

losses that we previously observed with slower B-field ramps [1]. However, the BB coil

ramping scheme had limited utility. Due to the 8 kHz bandwidth of the BB current

control servo, a 10 G B-field pulse toward the Feshbach resonance from the initial field

of 166 G required a total time of ∼250 µs. Surprisingly, we observed large BEC number

loss under these conditions, with most of the loss occurring during the ramp itself. This

evidence for rapid condensate number variations prompted us to explore even shorter

time scales, so we developed a fast, high current control circuit that drives a separate

auxiliary coil.

We decided there were at least two good reasons to start from scratch and build

a separate coil rather than modifying the existing BB trap/servo system. Most im-

portantly, the current control for the trap coils was previously optimized to give good
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stability during rf evaporation and BEC production [1]. We wished to avoid the possibil-

ity of messing up one of the best parts of the apparatus and/or tying up the experiment

during the extensive debugging process that would follow a change to the trap. In addi-

tion, we realized that we could carefully design the auxiliary coil to meet the specialized

requirements for rapid B-field ramps, including low coil inductance and high bandwidth

for the servo.

3.4.2 Auxiliary coil design

We designed the auxiliary coil to give a relatively large magnetic field at the

position of the trapped atom cloud and to have a low self-inductance, L. Since the

inductance for a solenoid is proportional to the area and the number of turns squared,

we constructed the auxiliary coil with only 3 turns of square magnet wire with a coil

diameter barely big enough to fit over the glass science cell. The coil is placed as close

as possible to the trapped atoms and is oriented coaxially with the BB and bias trap

coils, so that the B-fields in the z-direction add linearly. The position of the auxiliary

coil with respect to the trapped atoms and the other major magnet coils is shown in

Figure 3.9. For this geometry, the self-inductance of the auxiliary coil is ∼2 µH and

the coil produces a magnetic field at the trap center of 10G when driven by a current

of 167A.

3.4.3 Capacitor bank for auxiliary coil current

To switch such large currents rapidly, we built a circuit analogous to a short-pulse

flashlamp driver [25]. We first charge a 170µF capacitor bank to 580V, then discharge it

through the auxiliary coil at a rate determined by a transistor. The large capacitor bank

at high voltage allows for large amounts of stored charge and also a large current ramp

rate, dI/dt. From Faraday’s law, V = LdI
dt , the maximum ramp rate is 2.9×108 A/s! In

practice however, the transistor resistance limits the actual value of dI/dt to the more
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bias coil

bias coil

auxiliary coil

Figure 3.9: Schematic of the main magnetic coils. The shaded grey tube represents the
glass cell and the black dot shows the position of the trapped atom cloud. The bias
coils have average radii of 4.5 cm and are separated by 4 cm. The BB coil has a radius
of 3.2 cm. The auxiliary coil barely fits over the cell with its 1.6 cm radius, and it is
located 4 cm from the atoms.
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modest value of 2.6× 107 A/s.

In the course of testing the discharge rates of various capacitors, we learned that

all capacitors are not created equal. In fact, different types of capacitors with the same

values for C do not necessarily discharge at the same rates. For rapid discharge, i.e.,

ideal capacitor performance, one needs a capacitor with low effective series resistance

(ESR). The ESR of a capacitor depends strongly on its innards — the materials used to

store the charge. For example, electrolytic capacitors have very large ESR compared to

metal film or oil-filled capacitors. To form our capacitor bank, we dug up several ancient,

toxic, PCB-filled capacitors from the JILA electronics shop and also bought some new

paper/polyester film capacitors from CSI Technologies ($100 per 50 µF capacitor). The

capacitor bank voltage is limited by the finite capacitor working voltage of 600 V, which

leads to a total stored charge Q=CV=0.1 Coulombs.

3.4.4 Servo electronics and transistor

To regulate the discharge rate of the capacitor bank, we use a negative-feedback

current servo and a transistor. The servo compares the output of a fast Hall-effect

current sensor (Hall probe model CLN-300) with a reference voltage and sends the

difference signal to the transistor, as displayed schematically in Figure 3.10. The Hall

probe used in this circuit is identical to those used for sensing the BB and bias coil

currents [1]. These current sensors have excellent dynamic range and linearity, as well

as a large bandwidth (150 kHz specification). We verified that the Hall probe was

linear up to dI/dt values of 4× 107 A/s by using a silicon-controlled rectifier (SCR) to

discharge the capacitor bank very quickly.

The auxiliary coil current servo is quite simple — a single op-amp compares

the hall probe signal to the reference voltage, producing an output proportional to the

difference voltage. We chose the feedback loop using a variable RC click-box, also known

as “Terry’s Magic Box”, to optimize the transient response of the servo to an input step
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Figure 3.10: Circuit schematic for the auxiliary coil current control. The auxiliary coil
is shown as the 2 µH inductor and the capacitor bank is the 170 µF capacitor. An
important part of the circuit is the SRS function generator (model DS345), which was
programmed via a GPIB interface with our Labview computer. The function generator
allowed us to apply very precisely-tailored magnetic field pulses to the BEC atoms. The
torroid chokes between the capacitor bank and the auxiliary coil prevent “parasitic”
oscillations, which are created by miniature LC oscillators from the finite inductance
and capacitance of the various circuit elements.
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function pulse on the reference voltage. The best behavior was obtained with a simple

proportional gain of ∼7. Terry’s box allowed us to sidestep the calculation of the

complicated frequency response of various circuit elements, including the Hall probe

and transistor. We empirically determined the best feedback loop by examining the

servo behavior for various R, C, and RC combinations.

The transistor used to control the capacitor discharge is an insulated-gate-bipolar-

transistor (IGBT): Powerex model CM200HA-24H. This device has the useful property

of a very large maximum voltage rating for the collector-emitter voltage (1200 V), which

far exceeds the capacitor bank working voltage of 600 V. The IGBT has a maximum

average power dissipation of 1.5 kW, which is generally not exceeded during our typical

few hundred Amp current pulses. To ensure that we do not kill the transistor during

a given current pulse, we use the minimum capacitor bank voltage necessary to supply

the pulse. In this way we can minimize the voltage drop across the transistor (and

therefore the power dissipation) during the discharge process. The most important

advantage of the IGBT is that it can be used alone; there is no need to put several such

devices in parallel. We found that using multiple transistors in parallel caused massive

oscillations in the current due to competition between the devices. One disadvantage of

the IGBT relative to a more common MOSFET is the higher ON resistance. The ON

resistance of the transistor limits the maximum discharge rate of the capacitor bank

— the auxiliary coil circuit can be modeled as a LCR damped oscillator, where the R

value of the transistor determines the damping rate. Although the IGBT resistance is

higher than a MOSFET, the IGBT is still preferable due to its better voltage and power

ratings.

3.4.5 Auxiliary coil interferes with magnetic trap servo

In our initial attempts to pulse the magnetic field with the auxiliary coil circuit,

we discovered that the auxiliary coil magnetic field change induced a corresponding
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magnetic field change in the BB and bias coils. Mutual inductance between the various

coils causes this effect, which forces the BB and bias servos to oscillate for several mil-

liseconds. To avoid this undesirable interference of the auxiliary coil with the magnetic

trap servos, we devised a scheme to briefly decouple the BB and bias servos from their

respective FETs during the auxiliary coil pulse. We built a sample-and-hold circuit for

the BB and bias coil servos, as shown in Figure 3.11. The operation of the circuit is

as follows. Just before the beginning of the auxiliary coil pulse, we send a HOLD TTL

signal to the LF398 sample-and-hold chip, instructing it to start holding the voltage

constant. Soon afterward, we send a SWITCH TTL signal to the DG201 switches,

causing one switch to open and one to close. Now the servo is decoupled from the FET

gate and the sample-and-hold controls the FET. After the auxiliary coil pulse ends, we

switch back to servo control and allow the LF398 to start sampling the input voltage.

Of course, the sample-and-hold circuit cannot prevent the auxiliary coil from inducing

currents in the other coils, but the circuit does remove the unwanted transient response

to the induced currents.

3.4.6 Calibrating the total magnetic field

Before attempting any experiments to study condensate loss, we had to calibrate

the auxiliary coil. We made a simple estimate of the magnetic field experienced by the

trapped atoms for a given auxiliary coil current using the solenoid equation:

B(z) =
µ0NI

2R

[
1 + z2/R2

]−3/2
, (3.3)

where B(z) is the z-component of the magnetic field evaluated on the axis of the solenoid,

µ0=4π × 10−7 N/A2 is the free-space permeability, N is the number of turns in the

solenoid, I is the current, and R is the radius. Using the measured coil radius and

position (see Figure 3.9), the solenoid equation predicts a B-field to current ratio of

-0.06 G/A, or -3.57 G/VHall, where VHall is the Hall voltage — the voltage produced
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Figure 3.11: Schematic diagram of the sample-and-hold circuit. The circuit is shown
in the HOLD configuration, so the trap servo is effectively disconnected from the FET.
Both the BB and bias coil current servos have a sample-and-hold circuit like this one.
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by the Hall current flowing through a resistor RHall=33.5 Ω. The fractional uncertainty

in this calculation is roughly 20% due to uncertainty in measured values of R and z.

We tested this prediction with two different experiments. In the first experiment,

we connected the auxiliary coil to a DC power supply and used a fixed 16 A current. We

then loaded atoms into the magnetic trap and removed them with rf radiation from the

rf coil. The rf frequency was smoothly ramped downward to cut away more and more

atoms until none remained. We recorded the final rf frequency required to remove all

of the atoms as a function of the auxiliary coil power supply current and converted the

rf transition frequency to magnetic field using the Breit-Rabi equation. This procedure

gave an auxiliary coil calibration of -3.696(2) G/VHall, which agrees quite well with the

rough estimate given above.

We obtained a second calibration of the auxiliary coil using short rf pulse spec-

troscopy (discussed in section 3.3). Two 10 µs rf radiation pulses were applied at

different time delays during the auxiliary coil pulse. The short rf pulse calibration was

-2.26 G/VHall, which is only 60% of the “DC” calibration discussed previously. The

reason for the discrepancy is the difference in induced currents for the two different

calibration experiments. With a steady current flowing through the auxiliary coil, there

are no induced currents in other coils or pieces of metal near the atom cloud. However,

when we apply a short, high current pulse to the auxiliary coil, there is a tremendous

change in magnetic flux through the other coils, leading to significant induced magnetic

fields that oppose the auxiliary coil B-field. The presence of the induced currents limited

the maximum ramp speed of the total field to ∼1 G/µs.

To compensate for the effects of induced currents, we had to first measure their

time-dependence. As displayed in Figure 3.12, we used short rf pulses to map out B(t)

for a trapezoidal auxiliary coil current pulse. In this experiment, the current remains

constant during the hold time, thold. Although the auxiliary coil magnetic field, Baux,

must therefore be constant during thold, we observe that the total field decreases with
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time, which means that the induced B-field is decreasing in magnitude (Lenz’s law

predicts that the induced B-field is opposite in sign to that of the auxiliary coil). Clearly,

in the limit that thold → ∞, the induced fields should decay to zero and the auxiliary

coil calibration must return to its DC value of -3.696 G/Vhall.

By tailoring the reference voltage waveform, we changed the time-dependence of

Baux until the total B-field was approximately constant during thold. In most cases the

required correction is a linear “droop” of the auxiliary coil current, as in Figure 3.12.

We adopted an iterative procedure and found this linear slope empirically because a

detailed model of the coupled coil system would be very complex. Figure 3.13 shows

the measured dependence of the droop rate of the induced magnetic field on the auxiliary

coil pulse height. This plot proved very useful for many of our BEC experiments, where

a constant evolution B-field was important.

3.5 Improved BEC diagnostics

To conduct the experiments described in this thesis, we developed new methods

to measure the number and temperature of the condensed sample. Accurate knowledge

of these properties (especially the number of atoms) is crucial for studying the dynam-

ics of the BEC when subject to changes in the magnetic field and scattering length.

In our number and temperature measurements, we made extensive use of the Feshbach

resonance to change the ground state size of the BEC wavefunction in a very highly-

controlled fashion. Our manipulation of the wavefunction via the tunable scattering

length in the 85Rb condensate can be viewed as an example of quantum engineering,

where the detailed quantum-mechanical characteristics of a system may be changed at

will. Basically, we can use the well-understood mean-field interaction that depends on

a to either expand or shrink the BEC wavefunction, allowing us to count the conden-

sate number or measure its temperature. We then use these techniques to study the

condensate dynamics in regimes that are not well-understood, such as the collapse of an
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Figure 3.12: Compensating for induced currents. The black line shows the auxiliary
coil B-field calculated from the Hall probe with the calibration -2.26 G/V. In this case,
the auxiliary coil current was roughly constant during the hold time. The Hall probe
voltage was filtered with a 2 µs averaging window. Black points with error bars are
measurements of the total magnetic field experienced by the atoms from rf pulse spec-
troscopy (pulse length=22 µs) corresponding to the conditions of the black line. The
decrease in total B-field is related to the droop in the induced magnetic field. The grey
line shows the auxiliary coil magnetic field when a linear correction is applied to the
servo reference voltage. The white points are the rf pulse B-field data corresponding
to the grey line. By precisely adjusting the auxiliary coil current, we made the total
magnetic field constant to within 30 mG for over 400 µs.
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Figure 3.13: Dependence of induced B-field decay rate on auxiliary coil pulse height.
The black points with error bars are obtained by fitting a straight line to a series
of consecutive magnetic field measurements, as in Figure 3.12. The induced B-field is
calculated to be the difference between the total magnetic field (measured by the rf pulse
spectroscopy) and the auxiliary coil magnetic field, Baux(t)=-2.26 G/VHall × VHall(t).
The pulse height of the auxiliary coil current pulse, which is used on the x-axis, is defined
as the initial value of the Hall probe voltage after the completion of the first rapid B-field
ramp(s). We used this plot as a look-up table for adjusting the auxiliary coil droop rate
to make the total magnetic field constant for a particular value of magnetic field, Bhold.
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initially stable BEC (Chapter 4) or the non-adiabatic mixing of atomic and molecular

states (Chapters 5 and 6).

3.5.1 Absorption imaging

All of our measurements of BEC properties depend on absorption imaging of the

atom cloud. We illuminate the cloud with an on-resonant laser beam and then image

the shadow onto a CCD camera. The “darkness” of the shadow gives information about

the number of atoms casting the shadow. To obtain the most sensitive and accurate

measurements of number, we find that the magnetic trap must be turned off and the

condensate spatial size must be significantly larger than the 7 µm resolution limit of the

optical system. Turning off the magnetic trap is important to maximize the number of

photons scattered by each atom, which improves the signal-to-noise ratio of the shadow

images.

The detection of the BEC number by absorption imaging is necessarily a destruc-

tive measurement because of the photon scattering and the trap turn-off. The BEC

atoms are dramatically heated by the recoil momenta of the scattered photons, effec-

tively destroying the ultracold condensate. Even if the photon heating could be reduced

by turning down the laser intensity, turning off the magnetic trap would also destroy

the condensate because when B→0, the scattering length changes sign and magnitude

(a → -470 a0). This leads to a strong attractive self-interaction in the BEC, which

should cause the condensate to self-destruct by collapsing (see Chapter 4).

To count the number of atoms in the BEC, we use the well-known relationship

between the amount of absorption (the optical depth) and the number [1]. We typically

fit the shadow image to a Gaussian function and then calculate the number of atoms

from the fit parameters. Although the Gaussian function does not always fit the im-

ages perfectly, it provides a good approximation for most cases. A more robust way to

estimate the number of atoms is to calculate the total optical depth by summing all of
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the pixels in the shadow image. The number of atoms is directly proportional to this

optical depth summation. One advantage of the pixel sum method is its insensitivity

to the density distribution of the atoms that determines the precise spatial shape of

the shadow image. Even non-standard density profiles or multi-component spatial dis-

tributions of atoms can be accurately counted using the pixel sum. We also developed

more specialized fitting routines that combine Gaussian fitting and pixel sums for the

dynamics experiments described in Chapters 4,5, and 6.

3.5.2 Motivation for expanding the BEC

There are a number of systematic effects that plague the experimenter attempting

to measure the number of atoms in his 85Rb BEC. The student cannot simply use the

“standard” approach of turning off the magnetic trap, waiting for the condensate to

expand for a few milliseconds, then finally taking a picture. In fact, there are a number

of unusual features of the 85Rb BEC that render the standard procedure given above

quite useless. Some of the unusual features of the 85Rb BEC system are the small spatial

size of the BEC (comparable to the finite resolution limit of the optical system), the

relatively low kinetic energy of the BEC owing to the weak magnetic trap confinement,

the large density-dependent losses experienced by the condensate as the B-field crosses

the Feshbach resonance [1, 26], and the large negative scattering length of 85Rb at zero

magnetic field (a=-470 a0).

Fortunately, one can avoid all of these potential problems by expanding the BEC

while it remains in the magnetic trap. Expanding the wavefunction above the resolution

limit removes any systematic effects due to imaging a small object. Also, by expanding

the condensate in the magnetic trap, we can dramatically reduce the density before

crossing the Feshbach resonance at the trap turn-off. Finally, we have found that a low-

density, rapidly expanding BEC does not collapse at B=0, despite the large negative

scattering length.
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3.5.3 Increasing repulsion to expand the wavefunction

We devised a simple method to expand the BEC wavefunction that utilizes the

tunable scattering length in 85Rb. We ramp the B-field to quickly increase the scattering

length and excite a large amplitude collective oscillation of the BEC. In this case, the

energy imparted to the condensate comes directly from the changing magnetic field,

which is provided by a changing current in a Hewlett-Packard power supply.2 After

increasing the mean-field repulsion, the BEC does not expand indefinitely in the trap;

the confining potential provides a restoring force that causes large amplitude breathing

mode oscillations. The period for the radial oscillation is roughly 1/(2 νr) = 29 ms.

We therefore turn off the magnetic trap well before the condensate reaches the outer

turning point of its radial oscillation, as shown in Figure 3.14. We set the timing of the

expansion ramp to maximize the outward expansion velocity of the condensate at the

moment that the trap turns off. This allows the condensate to continue to expand quasi-

ballistically at B=0 (a=-470 a0), despite the strong attractive mean-field interaction.

For the conditions of Figure 3.14, the expansion velocities of the BEC radial and axial

widths were measured to be ∼1 mm/s, corresponding to an average kinetic energy per

atom of 5 nK.

As the BEC expands, the volume of the atom cloud increases and takes on a

roughly spherical shape. The density of the BEC decreases, so that the probe beam

used in absorption imaging becomes less heavily absorbed. The decrease in absorption

occurs because a given laser photon has a lower probability of encountering an atom

as it passes through the BEC. We typically expand our N=16000 atom condensates

until the on-resonant optical depth of the cloud decreases to approximately unity. This

corresponds to a volume increase of the BEC of a factor of 1600, assuming that the
2 The change in energy is really very small: for an average excitation energy of 5 nK per atom,

the total energy of an expanding 16000 atom BEC is ∼80 µK or 10−8 eV. As a side note, it is quite
interesting to think about the way that the energy is transferred from power supply to atoms — the
transfer is ultimately mediated by atomic collisions!
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Figure 3.14: Increasing the repulsion to expand the BEC. (a) The scattering length
versus time is shown as the thin solid line. The magnetic trap is turned off near 11 ms,
when the scattering length changes sign. The thick black line represents the probe laser
pulse for the absorption image, for a particular choice of expansion time. (b) Here we
compare the observed expansion of the BEC to the prediction of the PG model. Black
points show the measured rms radial width of the BEC versus time, as determined from a
Gaussian fit. The white points connected by a line show the PG model prediction for the
BEC rms width during the scattering length ramp shown in (a). The small disagreement
between the data and theory is likely due to a systematic underestimate of the width
in the PG model due to the Gaussian approximation for the BEC wavefunction. We
estimate this effect to be of order 15% when the scattering length is large enough that
the BEC is in the Thomas-Fermi limit.
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BEC starts near zero scattering length. To emphasize the effect of the expansion on the

absorption imaging, we show an actual image of an expanded condensate in Figure 3.15.

For a simple intuitive explanation of the BEC expansion resulting from the change

in scattering length, one can use a mean-field picture. The equilibrium BEC radius along

a given direction is determined by a balance of forces consisting of outward quantum

pressure due to the curvature of the confined wavefunction, a repulsive mean-field force

that is proportional to the gradient of the atom density, and the confining force of the

harmonic trap. When we quickly jump the scattering length to a larger value, the

BEC wavefunction retains its shape immediately after the jump, but now the repulsive

mean-field force is much larger. Although the mean-field force increases due to the

jump, the confining force from the trap potential remains constant. Thus, the repulsive

and attractive forces no longer balance one another and the BEC will begin to expand

in size. Expansion continues until the trap force dominates the mean-field repulsion and

causes the BEC to contract. As a function of time, a periodic oscillation occurs in the

BEC radius, which is called a breathing mode oscillation [5].

To obtain a quantitative understanding of the BEC expansion, we use a model

developed by Pérez-Garćıa et al. [27], hereafter referred to as the “PG model”. This

model involves an analytic variational solution to the nonlinear Gross-Pitaevskii (GP)

equation using a Gaussian trial wavefunction. When adapted to our cylindrical trap-

ping geometry, the PG model yields a pair of coupled nonlinear ordinary differential

equations for the condensate widths in the radial and axial directions. We numerically

solve these equations in Maple to predict the BEC expansion (or contraction) for an

arbitrary scattering length ramp. A comparison of the results of the PG model with

the observed BEC expansion rate is given in Figure 3.14. In addition to modelling

condensate excitations, we also utilize the PG model for predicting the equilibrium size

and density of the condensate for different values of the scattering length.

It is important to note that the PG model is limited to the conditions of appli-
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280 mµ

Figure 3.15: Absorption image of an expanded condensate. Here we used the scattering
length ramp in part (a) of Figure 3.14 to expand the BEC. The false color image
indicates the optical depth as a function of position in the expanded condensate. The
white ellipse represents the equilibrium size of a 16000 atom condensate after formation
at 162.3 G (210 a0), as calculated with the PG model (see text). The principal axes of
the ellipse are equal to 4 × σi, where σi is the Gaussian rms width along a particular
direction. Comparing the BEC to the ellipse, we see how the signal-to-noise ratio of the
number measurement can be improved by expansion because of the increased number
of pixels in the absorption image. The area of the BEC image is 22 times larger than
that of the ellipse.
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cability of mean-field theory because the model is based on the GP equation. Another

limitation of the model is the assumption of a Gaussian wavefunction for the conden-

sate, which leads to a systematic error in the predicted BEC radii for the strongly

repulsive interaction limit (Thomas-Fermi limit). Nevertheless, the PG model provides

a useful and accessible analytic theory that can interpolate reasonably well between

the non-interacting and strongly interacting limits. One can even model the attractive

interaction regime for the condensate fairly well, as long as the BEC is not on the verge

of collapse.

3.5.4 Low temperature calorimetry: shrinking the BEC

Since evaporative cooling to form Bose-Einstein condensates cannot remove all of

the entropy from the atom cloud, there will always be a significant number of “thermal”

atoms that do not occupy the ground state. The ratio of the number of thermal atoms,

Ntherm, to the total number of atoms, Ntotal = N0 + Ntherm , provides a measure of

the temperature of the sample. Thus, we need to determine both Ntherm and Ntotal in

a given experiment. Unfortunately, the mean-field expansion described in the previous

section only provides a method to accurately measure Ntotal; the expansion method does

not distinguish between BEC atoms and thermal atoms. In fact, the thermal cloud is

probably not static during the mean-field expansion due to coupling between thermal

atoms and the expanding BEC. We observe that the thermal cloud and the condensate

have significant spatial overlap in the absorption images of expanded BECs.

To separate the two components of our BEC samples and accurately measure

Ntherm, we again make use of the tunable self-interaction of the condensate. In this case,

we shrink the BEC wavefunction by slowly decreasing the scattering length toward zero.

As a approaches zero, the condensate wavefunction shrinks inward (while the thermal

cloud remains unaffected) until the BEC radii match the harmonic oscillator lengths of

the trap (aho, radial=2.6 µm, aho, axial=4.2 µm). After dividing these widths by
√

2 to
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account for the difference between the widths of the BEC wavefunction and the observed

BEC density profile, one finds that the BEC widths are 5 to 8 times smaller than the

corresponding radii of a 10 nK thermal cloud. We can therefore spatially resolve the

BEC from the surrounding thermal cloud “halo”. Our low-temperature calorimetry

procedure and the data from an example absorption image are given in Figure 3.16.

There is a small gloss in the above description of the Ntherm determination.

Shortly after the completion of the adiabatic decrease in the scattering length to shrink

the BEC, we also impart a small outward velocity to the condensate before we turn

off the magnetic trap. Although this seems counter-productive for the goal of spatially

separating the two components, it turns out that a small amount of BEC expansion is

very useful for two reasons. First, the expansion velocity decreases the density before

we cross the Feshbach resonance and this reduces density-dependent losses and burst

production (see Chapter 5). Second, the outward velocity of the BEC prevents the con-

densate from collapsing at B=0, which also produces a burst of hot atoms (Chapter 4).

Whether the burst atoms are generated during the magnetic trap turn-off or during the

brief delay time at B=0, the presence of the burst atoms can potentially distort the the

determination of Ntherm.

In practice, we determined the parameters of the expansion ramp by finding the

best compromise between minimum spatial size of the BEC and minimum number of

burst atoms created. The best expansion ramp consisted of a 1 ms linear B-field ramp

to 161.5 G (a '290 a0) followed by a 2.4 ms hold. The trap was then turned off and

an absorption image was taken 1.6 ms later. This ramp was used to obtain the image

shown in part (b) of Figure 3.16 (to avoid confusion and because of its short duration,

the ramp was not shown in part (a)). Our sensitivity limit to thermal atoms with the

condensate shrinking technique is very low — roughly 500 thermal atoms.
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Figure 3.16: Shrinking the BEC to extract the thermal fraction. (a) Scattering length
versus time and probe laser pulse. The scattering length is adiabatically (∼0.5 s) ramped
down to a value near zero, then the magnetic trap is turned off. We take an image after
a short delay of 1.6 ms to allow induced currents to die away. The slow decrease in a
causes the BEC to contract as the mean-field repulsion vanishes. (b) Absorption image
axial cross-section for a BEC plus thermal cloud after the scattering ramp shown in
(a). Black points are the measured optical depth versus pixel position on the camera.
One pixel length equals 2.54 microns. The dashed line and solid line are simultaneous
Gaussian fits to the condensate and thermal cloud, respectively. From the thermal cloud
fit, we find Ntherm ' 5000 atoms. The condensate fit is subject to systematic effects
(resolution limit and optical depth ceiling), so we do not use this to determine N0.
When we combine the accurate Ntherm measurement with a subsequent measurement
of Ntotal ' 16000 as in section 3.5.3, the BEC temperature is quite well-known.
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3.5.5 Making bigger and better condensates

As a result of our clever schemes to manipulate the BEC wavefunction, we have

been able to produce larger condensates with smaller thermal fraction than we could

previously [1]. The ability to accurately measure both Ntotal and Ntherm for each cloud

of atoms enabled us to re-optimize the final stages of evaporative cooling. We adjusted

the trajectory of the rf frequency versus time to minimize the thermal number while

maximizing the total number in the condensed sample. As a result, in our day-to-day

experiments we typically work with Ntotal=16,000 and Ntherm ≤500, which corresponds

to a condensed fraction of 97 %. This represents a dramatic improvement over our

earliest BEC experiments in August 1999, when the optimum value for the condensed

fraction was roughly 10 %. The very best condensates created in our experiment had

Ntotal=30,000 with fewer than 500 thermal atoms. As we have not been able to repro-

ducibly obtain such low temperature condensates, we suspect there may have been a

particularly advantageous planetary alignment at that time.



Chapter 4

Dynamics of collapsing and exploding 85Rb Bose-Einstein condensates

4.1 Introduction

This Chapter presents a description of our experiments with 85Rb BEC in the

attractive self-interaction regime, where the condensate may become unstable and un-

dergo a “collapse” if the attraction is sufficiently strong. The first part of the Chapter

provides some background information about BEC collapse physics, including our early

experiments to study them. We move on to a detailed description of the response of

the BEC when the sign of the scattering length is quickly switched from positive to

negative. At the end of the Chapter, we compare our data to recent theoretical models

for the collapse dynamics.

The 85Rb BEC system is an ideal candidate for studying the collapse instability

because of the condensate’s tunable interactions. By ramping the magnetic field, we

can easily change the sign and magnitude of the scattering length (and interaction

strength). As discussed in Chapter 2, the BEC self-interaction is repulsive when the

scattering length is positive, and attractive when a is negative. The existence of the

85Rb Feshbach resonance, which leads to a magnetic-field-dependent scattering length,

allowed us to gain tremendous insight into the collapse physics.

Before our experiments in 85Rb, condensates with attractive interactions had re-

ceived only limited study in a 7Li BEC system with fixed negative scattering length.

The early 7Li BEC studies [28] showed evidence for an instability, but the data did
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not allow for stringent tests of theory. More recent experiments in 7Li have focused

on the collapse process in a high temperature condensate, where the BEC was continu-

ally replenished by a cold thermal cloud, leading to a sequence of growth and collapse

cycles [29, 30]. In contrast, our 85Rb BEC experiments were conducted with nearly

thermal-atom-free condensates, and we took full advantage of our experimental control

of the scattering length to extract more information about the collapse process.

4.1.1 Stability condition for BEC with a<0

A stable, harmonically trapped condensate with negative scattering length has a

maximum or critical allowed number of atoms, Ncrit. When the number in the conden-

sate exceeds the critical number, NBEC >Ncrit, the attractive self-interaction dominates

the repulsive zero-point energy of the confined condensate wavefunction. The stability

condition for the BEC is defined as

Ncrit|a|
aho

= kcollapse, (4.1)

where aho =
√
~/(mω) is the mean harmonic oscillator length of the trap potential

(with mean frequency ω = 3
√

ω2
rωz) and kcollapse=0.55 is a constant [31]. One can

also view equation (4.1) as defining a critical value for the magnitude of the negative

scattering length, acrit, if the number of BEC atoms is assumed to be fixed. The stability

condition expressed in equation (4.1) was determined by studying the ground state of

the GP equation as a function of the product N |a| [31, 32]. When this product exceeds

the stability condition, then no stable solution can be found for the ground state. Thus,

one expects an initially stable BEC that experiences a change in scattering length such

that (ainit > 0) → (afinal < acrit) to become unstable and collapse in some fashion.

In our early experiments [33], we found that an initially stable BEC undergoes a

dramatic (∼ 50%) number loss some time after the scattering length is decreased below a

critical value. Typically, we label this number loss as the BEC “collapse”. By measuring
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the critical number of atoms for collapse at several different values of negative scattering

length, we verified the functional form of equation (4.1). We also determined the value

of kcollapse, which was significantly lower than the prediction of existing theory [32].

However, our more recent high-precision measurement of the Feshbach resonance pa-

rameters (see Chapter 7) has allowed us to revise our previous estimate of kcollapse. The

new value is completely consistent with theory [31].

The collapse of the condensates was an all-or-nothing process. We never observed

partial collapses; a given BEC would either collapse at negative a or remain stable,

depending on whether or not the number exceeded Ncrit. We saw no evidence for

a macroscopic quantum tunneling phenomenon in the collapse process, as some theory

work had suggested(see Ref. [34] and references therein). In fact, collapse process turned

out to be so reproducible that we could use it to precisely measure the magnetic field.

We accomplished this by first measuring Ncrit and acrit and then using our knowledge

of the variable scattering length due to the Feshbach resonance.

On a daily basis, we found the initial magnetic field using a fairly simple proce-

dure. We first prepared a stable BEC at some initial value of B-field that corresponded

to a positive scattering length. We then ramped the B-field to change the sign and mag-

nitude of the scattering length to a negative value near acrit. We observed the resulting

BEC number and noted which final magnetic fields (final scattering lengths) caused

large BEC number loss. After determining Ncrit and acrit in this way, we found the

absolute magnetic field using equation (4.1) in combination with the known dependence

of scattering length on magnetic field. We extrapolated from Bcrit to Bzero, the field

where the scattering length vanishes (corresponding to Ncrit = ∞). The value of Bzero

provided us with a useful calibration point.

Utilizing the BEC collapse to measure the magnetic field proved to be a rapid

and precise technique. We repeated the experimental cycle with different B-field ramps

until Ncrit and acrit were known. In a period of about one-half hour, we could determine
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the initial magnetic field to a ∼5 mG precision. Precise knowledge of Binit and ainit

was quite useful for a variety of other experiments described in this thesis.

4.1.2 Overview of collapse dynamics

Although our early BEC experiments in the attractive self-interaction regime

verified the stability condition and showed that condensate collapse involves number

loss, our data actually raised more questions than they answered. For instance, we

could not initially determine the fate of the atoms that left the BEC. We had other

unanswered questions regarding the details of the number loss: how quickly were the

atoms going away and what was setting the timescale of the collapse? Furthermore,

what exactly happened to the BEC wavefunction during the collapse process?

At the time of our experiments, existing theories of BEC collapse [35, 36, 37]

predicted that an unstable BEC would implode on itself. The contraction of the BEC

would presumably take place on the time scale of a trap oscillation, and the density

would sharply increase after Trad/4 ' 14 ms, where Trad is the radial trap period. As

a result of the density growth, 3-body recombination losses were expected to cause a

rapid depletion of the BEC, preventing the formation of a true singularity in the density

of the atom cloud.

To explore the dynamics of the collapse process and check the validity of the

proposed theoretical pictures, we took full advantage of the variable scattering length of

85Rb condensates. We changed the sign of a and observed the time-dependent response

of the BEC. We were quite surprised by the complexity of the BEC collapse. Various

phenomena were observed — an initial gradual contraction was followed by a supernova-

like explosion of hot atoms. At the end, a small remnant condensate was left behind in an

excited oscillatory state, and much of the initial condensate had completely disappeared

from view. In the rest of this chapter, we detail the prominent features of the collapse

process as well as the methods used to study them.
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4.2 Preparing and manipulating the condensate

The first stage in our experiment was to form a stable 85Rb condensate[26]. A

standard double magneto-optical trap (MOT) system[19] was used to collect a cold

sample of 85Rb atoms in a low-pressure chamber. Once sufficient atoms had accumulated

in the low-pressure science MOT, the atoms were loaded into a cylindrically symmetric

cigar-shaped magnetic trap with frequencies νradial = 17.5 Hz and νaxial = 6.8 Hz.

Radio-frequency evaporation was then used to cool the sample to ∼3 nK to form pure

condensates containing >90% of the sample atoms. The final stages of evaporation were

performed at 162.3 G where the scattering length is positive and stable condensates of

up to 20,000 atoms could be created. After evaporative cooling, the magnetic field

was ramped adiabatically to 166 G, where the scattering length was near zero. This

provided a well-defined initial condition — the BEC would shrink to approach the size

and shape of the harmonic oscillator ground state (see section 3.5.4). We note that in a

few cases, the initial scattering length was chosen to be significantly different from zero;

this allowed us to vary the initial density of the condensates over a wide range.

We developed various different magnetic field ramps into useful tools for studying

the BEC collapse dynamics. The B-field control allowed us to adjust the mean-field

interactions within the BEC to a variety of values on time scales as short as 0.1 ms. The

obvious manipulation was to jump to some value of a < acrit to trigger a collapse, but

the tunability of a also greatly aided in imaging the sample. Usually the condensate size

was below the resolution limit of our imaging system (7µm FWHM). However, we could

ramp the scattering length to large positive values and use the repulsive interatomic

interactions to expand the BEC before imaging, thus obtaining information on the pre-

expansion condensate shape and number. A typical a(t) sequence is shown in Figure 4.1.

We have used a variety of such sequences to explore many aspects of the collapse and

enhance the visibility of particular components of the sample.
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Figure 4.1: An example of experimental control of the scattering length. The thin
solid line is the time dependent scattering length while the thick vertical line indicates
the timing of the probe laser pulse for absorption imaging. We used a variety of a(t)
sequences similar to what is shown here to study the dynamics of the BEC collapse. To
determine a(t), we first calculated the magnetic field using a calibrated current sensor
on the magnetic trap coil. Then we converted the B-field into scattering length using
equation (2.2), the Feshbach theory expression for a(B).
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In Figure 4.1, the scattering length is jumped at t = 0 in 0.1 ms from ainit ' 0

to acollapse < 0, where the BEC evolves for a time tevolve. We carefully control the

B-field so that magnetic field noise translates into fluctuations in acollapse on the order

of ∼ 0.1 a0 in magnitude. After the time tevolve, the BEC collapse process is then

interrupted with a jump to aquench, and the field is ramped in 5 ms to a large positive

scattering length which makes the BEC expand. After 7.5 ms of additional expansion,

the trap is turned off in 0.1 ms and 1.8 ms later the density distribution is probed using

destructive absorption imaging with a 40 µs laser pulse (indicated by the vertical bar in

Figure 4.1). In some instances, we increased the expansion time after the trap turn-off

to further expand the BEC wavefunction.

As discussed in section 3.5.3, the increase in a from acollapse to aexpand is far too

rapid to allow for the BEC to expand adiabatically. On the contrary, the smaller the

BEC before expansion, the larger the cloud at the moment of imaging. Thus we can

readily infer the relative size of the BEC wavefunction just prior to the jump to aquench.

After the mean-field expansion, the density of the expanded BEC is so low that the

rapid transit of the Feshbach resonance [38] during the trap turn-off and the subsequent

time spent at B = 0 (a = −470 a0) both have a negligible effect.

4.3 BEC number loss

4.3.1 BEC number versus tevolve

When the scattering length is jumped to a value acollapse < acrit, the BEC kinetic

energy no longer provides a sufficient barrier against collapse. After making such a

scattering length jump, we observed a delayed and abrupt onset of number loss from

the condensate. As a function of the time spent at a < 0, the BEC number remained

steady for a while, then dropped exponentially with a time constant τdecay. This trend

is illustrated by Figure 4.2, which is a plot of the condensate number NBEC versus the
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evolution time, tevolve at a negative scattering length. Here the observed delay time

before the onset of number loss is defined as the collapse time, tcollapse. The exponential

number decay finally leveled off at a value Nrem, which we define as the remnant BEC

number. Nrem was typically ' 40% of the initial number, Ninit.

Although NBEC was constant for a short time after the jump to acollapse, we did

observe some slight changes to the expanded condensate radius during tevolve. These

radius changes indicated that the BEC was contracting during the evolution time. Since

the pre-expansion BEC was smaller than our resolution limit, we could not observe the

contraction directly; however, we could infer the extent of the contraction by observing

the degree of mean-field expansion. In fact, the BEC expanded more and more during

the expansion ramp of Figure 4.1 as it contracted more and more during tevolve. We

actually observed that the post-expansion condensate widths changed very little with

time tevolve before tcollapse. For the data in Figure 4.2, the expanded radial BEC width

increased by only 10% as tevolve increased from 0 ms to 3.5 ms. The axial BEC width

showed even less of a change.

From this we infer that the cloud of condensate atoms did not contract dramati-

cally before loss began. To obtain a quantitative estimate for the amount of contraction,

we use the equations in Ref. [27]. The PG model results provide a fairly good match to

the observed expanded BEC shape over a moderate range of acollapse and time before

collapse. We can therefore have some confidence in using the equations of Ref. [27] to

estimate the density before collapse. Surprisingly, we find that the predicted contrac-

tion corresponds to only a 50% increase in the average density (to 2.7 × 1013 cm−3)

before the beginning of the number loss. Using the inelastic collision rates for 85Rb that

we measured in Ref. [39], this density predicts a loss time that is far longer than what

we observe (τinelastic ∼2.5 s) and does not have the observed sudden onset. Thus, our

simple estimates of the BEC contraction and inelastic loss do not jibe with the observed

behavior in Figure 4.2. The disagreement implies that the conventional simple picture



71

tevolve (ms)

0 2 4 6 8 10 12 14 16 18 20 22

B
E

C
 n

um
be

r

4000

8000

12000

16000

�

collapse

Nrem

Ninit

Figure 4.2: The condensate number versus time after a jump to a negative scattering
length. Points are the number of atoms remaining in the BEC versus tevolve at acollapse =
−36 a0. The initial scattering length before the jump was ainit = +8 a0 and the initial
number of condensate atoms was Ninit=16,000. These conditions produced an estimated
average initial density of 1.8×1013/cm3. We observed a delayed and abrupt onset of loss
from the BEC number. The solid line is a fit to the data using a delayed exponential
function with a best fit value of tcollapse ' 3.7(5) ms for the delay. The number of atoms
remaining in the condensate after the end of the decay process is Nrem ∼ 5000.
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of the collapse as a global implosion of the entire BEC wavefunction is incorrect. We

will provide additional discussion of this point in section 4.5.3.

For the data in Figure 4.2 and most other data presented in this Chapter, we

jumped to aquench = 0 in 0.1 ms after a time tevolve at acollapse. We believe that

the number loss stopped immediately after the jump. This interpretation is based on

the surprising observation that the quantitative details of curves such as that shown

in Figure 4.2 did not depend on whether the collapse was terminated by a jump to

aquench = 0 or aquench = 250 a0. Presumably, if there were a significant amount of loss

occurring after the “quenching” ramp, then quantities such as Nrem and tcollapse should

depend on the precise value of aquench; however, this was not the case.

4.3.2 Variations in tcollapse

We have measured number decay curves like that in Figure 4.2 for many different

values of the negative scattering length. The measured collapse time versus |acollapse|

for fixed initial density is presented in Figure 4.3. As we increased |acollapse| from 7 a0

to 65 a0, the collapse time decreased by more than one order of magnitude. The data

display a nearly perfect inverse dependence on the magnitude of the scattering length,

as shown by the solid line.

We also studied the dependence of tcollapse on the initial BEC density. By reducing

Ninit, we decreased the initial density from 〈ninit〉 = 2.8 × 1013 cm−3 to 〈ninit〉 =

1.1 × 1013 cm−3 (a factor of ∼ 2.5). This change caused the collapse time to lengthen

by a factor of 2.4(8) at acollapse=-8 a0. We verified that tcollapse was truly proportional

to density and not only to Ninit by reducing the density through a volume change to

the initial condensate. Holding NBEC fixed at roughly 16,000 atoms, we decreased the

initial density by a factor of 3.5 (with a corresponding increase in volume) by setting

ainit = +105 a0 instead of our more typical value, ainit = +8 a0. At acollapse = -15 a0,

the volume-induced density change caused tcollapse to grow by roughly a factor of 3.



73

|acollapse| / a0

0 20 40 60

t co
lla

ps
e 

(m
s)

0

2

4

6

8

10

12

14

Figure 4.3: The collapse time versus acollapse for 6000 atom condensates. Points with
error bars are the measured values of tcollapse. The solid line is a weighted fit to the
function: t = Q/acollapse, with Q=57(6) ms a0. The vertical dashed line indicates acrit

for N0 = 6, 000. The data were acquired with ainit = aquench = 0(2) a0, so that the
initial BEC density was 〈ninit〉 = 3(1) × 1013 cm−3. The average BEC densities given
here were computed using the PG model (section 3.5.3) to determine the volume of
the BEC wavefunction for a given value of the initial scattering length. We found that
the PG model accurately predicts the mean density over the entire range of repulsive
interactions, from the Thomas-Fermi limit of strong interactions to the non-interacting
limit.
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The observed dependences of the collapse time on scattering length and density

indicate that there is some critical condition that must be reached before the onset of

number loss. The time to reach the critical condition becomes smaller as we increase

〈ninit〉 and |acollapse|. All of our evidence supports the idea that tcollapse is inversely

proportional to the magnitude of the attractive mean-field interaction: Emf ∝ 〈n〉a.

This dependence seems reasonable since the rate of implosion of the BEC should depend

on Emf .

In contrast to tcollapse, the atom loss time constant τdecay depended only weakly on

acollapse and 〈ninit〉. For the range of acollapse shown in Figure 4.3, τdecay did not depend

on acollapse or 〈ninit〉 by more than the ∼20% experimental noise in the τdecay determina-

tion. On average, τdecay was 2.8(1) ms. For the very negative value of acollapse ' −290 a0,

however, τdecay did decrease to 1.8 ms for Ninit = 6, 000 and 1.2 ms for Ninit = 15, 000.

4.4 Energetic burst of atoms

Thus far we have not explained what happens to the atoms after they exit the

condensate during a collapse. As displayed in Figure 4.2, a large fraction of the atoms

leave the BEC during the exponential decay. There are at least two components to

the expelled atoms. One component (known as the “missing atoms”) is not detected

in the absorption images. The other component emerges as a burst of detectable, spin-

polarized atoms with energies much greater than the initial condensate’s energy but

much less than the magnetic trap depth. The bizarre properties of the burst and its

surprising formation during the BEC collapse prompted Carl Wieman and Eric Cornell

to name it a “Bosenova”, in analogy with a supernova. In our attempts to understand

the origins of the burst, we have studied the details of the burst atom distribution under

a wide range of conditions. The average energy and number of the burst atoms depend

in a complex manner on acollapse and Ninit. Although the details are complicated, we

present them here because they provide a stringent test of collapse theories.
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The angular kinetic energy distribution with which the burst atoms are expelled

from the condensate can most accurately be measured by observing the harmonic oscil-

lations of the atoms in the trap, as illustrated in Figure 4.4(a). For example, one-half of

a radial period after the expulsion (Trad/2), all burst atoms return to their initial radial

positions. At times significantly before or after this radial “focus”, the burst cloud is

too dilute to be observed. Fortunately, at the radial focus, the oscillation trajectories

along the axial trap axis are near their outer turning points. Therefore the axial energy

can be found from the length of the stripe of atoms along the axial direction. The radial

energy can be found with an identical procedure in an axial focus.

One can also define the “sharpness” of the burst focus as the minimum width

in the narrow dimension. The harmonicity of the magnetic trap potential ensures that

the sharpness of the burst focus should only depend on the duration of time that burst

atoms are expelled from the BEC (the length of the explosion) and the initial spatial

distribution of the atoms before the explosion. In principle we can therefore determine

the formation time for the burst atoms by measuring the narrow width of the burst focus.

However, this technique only allows us to set an upper limit on the burst creation time

because of significant broadening of the images from our finite optical resolution limit.

The upper limit from the burst focus sharpness is consistent with a direct measurement

of the burst generation time (∼1.2 ms) in section 4.4.1.

Figure 4.4(b) shows an image of a radial focus. The size scales for the burst focus

and the remnant were always well separated since the latter was not expanded when we

imaged the burst. Figure 4.4(c) shows axial cross sections of the image in part (b) and

the fit cross sections for the burst and thermal clouds. The burst spatial distribution

was well fit by a 2-D Gaussian function whose width in the long dimension corresponded

to the average energy of the burst atoms.

Since the burst atom cloud extended far out into the edges of the absorption

images and the optical depth was fairly low in the outer wings of the atom distribution,
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Figure 4.4: A burst focus. (a). Conceptual illustration of a radial burst focus. (b) An
image of a radial burst focus taken 33.5 ms after a jump from ainit = 0 to -36 a0 for
N0 = 15, 000. Here Trad/2 = 28.6 ms, which indicates that the burst occurred 4.9(5) ms
after the jump. The average axial energy for this burst was 〈Eburst,axial〉 = 62 nK. The
image dimensions are 60 × 310 µm. (c) Radially averaged cross section of the image
in (b) along with a Gaussian fit to the burst spatial distribution. The central 100 µm
were excluded from the fit to avoid fitting distortions from the condensate remnant
and the thermal cloud. The rms widths of the BEC remnant and thermal cloud were
σ = 9µm and σ = 17µm, respectively. A small cloud of thermal atoms is present in the
pre-collapse sample due to the finite temperature; these atoms appear to be unaffected
by the collapse. The dashed line indicates the fit to this initial thermal component.
There is a clear offset between the centers of the burst and the remnant. This offset
varies from shot to shot by an amount comparable to the offset shown.



77

we utilized an image-processing tool to reduce background noise and improve the image

signal-to-noise ratio. Much of the “noise” in the absorption images is actually due to

interference fringes from the coherent probe laser beam. We could therefore improve

the fitting procedure by removing the periodic stripes from the images. The removal

was done by calculating the spatial Fourier transform of the optical depth data, then

removing the probe laser stripes from the image, and finally transforming back to real

space. In this way, we could obtain reliable measurements of the average burst atom

energy along the radial and axial directions.

The average energy was generally different for the two trap directions. The burst

energy fluctuated from shot to shot by up to a factor of 2 for a given acollapse. This

variation is far larger than the measurement uncertainty or the variation in initial num-

ber (both ∼ 10%), and its source is unknown. The burst energy and the dependences

of 〈Eburst〉 on Ninit and acollapse will be described in section 4.4.2.

4.4.1 Nburst versus tevolve

One of the most interesting aspects of the burst behavior was the increase in

Nburst during the collapse process. When we interrupted the BEC collapse with a jump

back to aquench = 0 (see section 4.3.1), we also interrupted the growth of the burst.

The “interrupted” burst atoms still refocused after sitting at a = 0 for the requisite

one-half of a trap period. We found the energy of the atoms in the interrupted bursts

to be the same, but the number of atoms was smaller than in the uninterrupted case.

By changing the time at which the collapse was interrupted we could measure the time

dependence of the creation of burst atoms.

The increase in the burst number with tevolve is illustrated in Figure 4.5. The

number of burst atoms Nburst grows exponentially with a time constant of 1.2 ms,

starting at tevolve=3.5 ms and reaching an asymptotic final number of ∼2500 atoms for

all times ≥7 ms. Nburst also levels off at roughly the same time as the remnant BEC
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number displayed in part (b) of the figure. Despite the observed large variations in

the burst number, the average energy of the burst atoms (∼ 85 nK) does not change

significantly over the range of tevolve shown in Figure 4.5.

The interrupted burst data clearly show that the growth of the burst with time at

negative scattering length mirrors the decay of atoms from the condensate — the time

dependences for these two processes are quite similar. However, by comparing parts

(a) and (b) of Figure 4.5, one can see that the number of burst atoms is far smaller

than the number of atoms leaving the BEC — there are at least 11000 − 2500 = 8500

missing atoms. At present, the fate of the missing atoms has not been determined by

experiment. The prevailing hypothesis is that the missing atoms are due to 3-body

recombination into molecules, where the molecular binding energy is converted into

kinetic energy that is shared by the collision partners. We discuss the scattering length

dependence of the missing fraction of atoms in section 4.5.2.

Somewhat surprisingly, the number of atoms in the burst did not depend on

the scattering length, acollapse. Although Nburst varied randomly by ∼20% as |acollapse|

increased from nearly 0 a0 to 350 a0, on average the fraction of atoms going into the burst

remained fixed at roughly 20% of the initial BEC number. Larger initial condensates

produced larger bursts in direct proportion, so that the burst fraction remained constant

as a function of Ninit.

4.4.2 〈Eburst〉 versus acollapse

We carefully examined the scattering length dependence of the burst energy as

one part of our collapse dynamics experiment. Although the burst energies were seen

to vary from shot to shot, the average value for the energy was well defined and showed

large-scale trends that dominated the shot-to-shot variations. We show the axial and

radial burst energies versus acollapse in Figure 4.6(a) and 4.6(b) for Ninit = 6, 000 and

15,000, respectively.
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Figure 4.5: Growth of burst number with tevolve. The data were collected under the
same conditions as for Figure 4.2. (a) The points are Nburst versus evolution time at
acollapse=-36 a0. The solid line shows the best fit of the data to a rising exponential
function with time constant τ=1.2(3) ms. The dashed vertical line indicates the best fit
value for tcollapse from a fit to the BEC loss data in part (b). Figure (b) displays the
BEC number decay for comparison to the burst growth data. The burst growth begins
and ends at about the same time as the condensate loss. The time constants for BEC
loss and burst growth are also comparable: τBEC=2.7(3) and τburst=1.2(3) ms.
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Figure 4.6: Average burst atom energy versus scattering length. (a) and (b) show the
average axial and radial burst energies versus |acollapse| for Ninit ' 6, 000 and Ninit '
15, 000, respectively. Filled points are the radial burst energies; open points are the axial
energies. The average energy is calculated from the rms width, σ, of the 2-D Gaussian
fit to the data as shown in Figure 4.4. For a given dimension, the average energy is
〈Eburst, i〉 = mω2

i σ
2/2, where ωi is the trap frequency in the ith dimension. On average,

ten burst focuses were measured for each trap direction at each value of acollapse studied.
The vertical and horizontal error bars indicate the standard error of the measurements
and the uncertainty in acollapse arising from the magnetic-field calibration, respectively.
For some of the points, the uncertainties are comparable to the symbol size.
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The most striking feature of the data is the strong dependence of the average

energy on the number of condensate atoms. Comparing (a) and (b), one sees that for

fixed |acollapse| ' 30 a0, the radial and axial burst energies increase by a factor of ∼3

as the initial condensate number increases by 2.5×. In fact, the energies were higher

for the larger Ninit condensates over the full range of acollapse studied. An additional

observation is the overall trend of increasing energy with increasing |acollapse| in the low

Ninit data (Figure 4.6(a)). However, the high Ninit data in part (b) display much more

complex behavior that is not monotonic with acollapse.

We also note that over much of the scattering length range shown in Figure 4.6

there is a significant anisotropy in the burst energy. The radial energy is always greater

than or equal to the axial energy. We discovered that the burst energy anisotropy

depended on Ninit, acollapse, and ainit. The anisotropy showed a peaked behavior for

15000 atom condensates, with maximum near |acollapse| ∼100 a0. For values of |acollapse|

only slightly larger than |acrit|, the burst was isotropic for both Ninit ' 6, 000 and

Ninit ' 15, 000. At larger values of |acollapse|, condensates with larger number gave rise

to stronger anisotropies.

We cannot rule out a possible dependence of the burst energy anisotropy on

the initial aspect ratio of the cloud, λ. We define λ as the ratio of the axial and

radial rms widths of the BEC: λ = σz/σr. For the data with Ninit = 6000, the initial

scattering length was ainit ' 0 a0, leading to λ = 1.6. In contrast, the high number

data with Ninit = 15,000 had ainit ' +8 a0 and λ = 2. When instead we started at

ainit = +100 a0 (Ninit=15,000), the BEC was initially more anisotropic (λ = 2.4), but

the burst became more isotropic, with 〈Eax〉 going up by ∼40% and 〈Erad〉 dropping

by ∼60% at acollapse = −100 a0. These various results for the burst energy and the

energy anisotropy are clearly very complicated. It is impossible to say how much of the

observed differences between the low number and high number data in Figure 4.6 are

due to the change in Ninit because we also changed the initial scattering length between
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these two data sets. Nevertheless, the measured burst energy dependences can be used

to test the validity of several mean-field models that were recently proposed to explain

our results (see section 4.7).

4.5 Remnant BEC

4.5.1 Nrem exceeds Ncrit

After each collapse, a “remnant” condensate containing a fraction of the atoms

survived with nearly constant number for more than one second. The remnant BEC

oscillated in a highly excited collective state with the two lowest breathing modes at

ν ' 2νaxial and ν ' 2νradial being predominantly excited. The measured frequencies

were ν = 13.6(6) Hz and ν = 33.4(3) Hz. To find these oscillation frequencies, we

measured the widths of the condensate as a function of the time spent at acollapse. As

usual, we utilized a mean-field expansion of the BEC to measure the widths. While

the expansion leads to large increases in the widths, it does not distort their periodic

modulation in time.

The number of atoms in the remnant depended on acollapse and Ninit, and in

general was not limited by the critical number, Ncrit. Although the stability condition

in equation (4.1) certainly determined whether or not the condensates experienced a

collapse event [33], the number of atoms left behind was often significantly larger than

Ncrit. This behavior is shown in Figure 4.7, where we plot the remnant number as a

function of scattering length.

In Figure 4.7, the 6000 atom data do mostly lie on or below the line showing

the value of the critical number. In fact, for Ninit = 6, 000 and |acollapse| < 10 a0,

more atoms were lost than the number required to lower Nrem below Ncrit. Since

we did not take the large Ninit data until much later, we initially believed that Ncrit

truly did constrain Nremnant. However, the agreement observed in the Ninit=6000 data
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Figure 4.7: Remnant BEC number versus initial BEC number. The dashed line is
the critical number of BEC atoms as calculated from the stability equation (4.1) with
kcollapse=0.55 [31]. The black points and white points are the values of Nrem for different
initial number, as explained in the legend. Note that the Ninit=6000 remnant data
(black points) correspond to the data we used for determining the collapse time as a
function of scattering length in Figure 4.3.
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turned out to be entirely coincidental; when we increased the initial number to ∼16,000

atoms, the remnant number always exceeded Ncrit for the entire range of |acollapse| that

we investigated. The fraction of initial number of atoms that went into the remnant

decreased with |acollapse|, and was ∼40% for |acollapse| < 10 a0 and ∼50% for |acollapse| >

100 a0.

We found that a fixed fraction of Ninit went into the BEC remnant independent

of the value of Ninit, so that smaller condensates often ended up with Nrem < Ncr, but

larger condensates rarely did. After discovering this surprising result, we studied the

remnant dependence on initial number in the condensate. Figure 4.8 demonstrates the

direct proportionality between Nrem and Ninit for fixed scattering length. Increasing

the value of |acollapse| merely shifts the proportionality constant downward — the linear

dependence remains.

The observation that the remnant number routinely exceeded the critical num-

ber is surprising, but not impossible to explain. One reason that we might expect this

behavior is the highly excited state of the remnant. Due to the excitations and large

number losses, it is difficult to know the proper temperature of the cloud. It is possible

that the remnant is not actually a condensate, although the observed mean-field expan-

sion of the atom cloud indicates that the phase space density is comparable to unity.

Another possible explanation for Nrem exceeding Ncrit is an inherent stabilizing nature

of the excitations. Pattanayak et al. [40] have shown that a BEC with a particular type

of collective excitation known as a quadrupolar shape oscillation can impart enough

angular momentum the BEC to provide a centrifugal barrier to collapse. The excita-

tion can stabilize a condensate by creating an additional quantum pressure beyond that

provided by the confining trap potential. However, Ref. [40] also predicts that radial

breathing mode excitations should destabilize a BEC with attractive interactions. Since

we have observed breathing mode oscillations in the condensate widths, the Pattanayak

et al. mechanism for stabilization is unlikely to explain our results. It would be inter-
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esting to return to the issue of the BEC excitations and the apparent stabilization of

the remnant in the future. One observable that might give useful information, but was

not yet studied carefully is the excitation amplitude of the remnant cloud. Perhaps we

could determine whether the oscillation amplitude is bigger for the collapse events in

which Nrem greatly exceeds Ncrit.

4.5.2 Missing atoms

In the collapse process, a large fraction of the initial BEC disappears. The missing

atoms do not show up in the absorption images of the post-collapse BEC. Although

we cannot yet say what happens to these expelled atoms, we are able to discuss the

dependence of the missing atoms on scattering length and initial number because we

know the corresponding trends for the burst and remnant numbers. Since Nburst was

independent of |acollapse| but Nrem decreased with |acollapse|, the number of missing

atoms grew larger with |acollapse|.

Interestingly, the absolute number of missing atoms also increased with Ninit.

The increase was proportional to the initial number so that the missing fraction de-

pendence on |acollapse| was identical for both Ninit = 6, 000 and Ninit = 15, 000. For

|acollapse| < 10 a0, we measured a missing fraction of ∼40%, while the fraction was

∼70% for |acollapse| ≥ 100 a0. The missing atoms were presumably either expelled from

the condensate at such high energies that we could not detect them (> 1 µK), or they

were transferred to untrapped atomic states or undetectable molecular states.

We made an attempt to test the hot atom hypothesis for the missing atoms by

turning off the magnetic trap immediately after a collapse and then recapturing the

atoms in the MOT. Because the MOT trap depth of order ∼1 K is much deeper than

that of the magnetic trap (∼100 µK), the recapture process should collect atoms with

much higher energy than we could ever observe with absorption imaging. An additional

advantage of the MOT is its large trap volume, which greatly exceeds the magnetic
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trap volume. However, recapture in a MOT and subsequent fluorescence detection

suffers from two major defects that we could not surmount. The first defect is the poor

sensitivity of fluorescence detection versus absorption imaging. For small atom samples,

there simply is not much light scattered by the atoms for detection. The sensitivity

problem can be solved by careful design of a high-gain photodiode circuit. However,

there is another problem with the MOT recapture, namely, the large background signal

due to hot “Oort cloud” atoms in the magnetic trap. The Oort cloud is thought to

form during the evaporative cooling process and to interact only very weakly (if at all)

with the BEC [41]. In fluorescence detection, the Oort cloud atom signal swamps the

BEC signal due to a difference in the numbers of atoms of many orders of magnitude.

As a result, we could not make a quantitative search for the missing atoms with the

magneto-optical trap.

4.5.3 Strange density patterns: jets

Under certain experimental conditions, we observed streams of atoms with highly

anisotropic velocity distributions emerging from the collapsing condensates. Atoms in

the “jets” possess distinctly different properties from the burst atoms. First, the jets

have much lower kinetic energy than the burst (a few nK compared to ∼100 nK). The

average velocity of the jet atoms is nearly purely radial, so that the energy anisotropy

is at least 10. In addition, we have discovered that the jets appear only when the

BEC collapse process is interrupted (i.e., by jumping to aquench = 0) during the period

of BEC number loss. When the collapsing condensate was allowed to complete the

collapse process so that NBEC →Nrem, no jets were emitted from the BEC. In contrast

to this behavior, the burst atom explosion always seemed spontaneous; bursts would

form whether or not we quenched the collapse by quickly ramping to zero scattering

length.

Examples of the strange jet density patterns we have observed are shown in
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Figure 4.9 for different values of tevolve and the same conditions as Figure 4.2. We

observed that the jet size and shape varied from image to image even when all conditions

were unchanged, and as many as three jets were occasionally emitted from the collapse

of a single condensate. Surprisingly, the jets were not always symmetric about the

condensate axis. We even observed that some jets were emitted at a slight angle with

respect to the radial direction.

We hypothesize that the jets are manifestations of local “spikes” in the condensate

density that grow while the BEC is imploding and then expand when the balance of

forces is changed by quenching the collapse. If this interpretation is correct, we can

estimate the size of the density spikes using the uncertainty principle. After a jump to

aquench = 0, the kinetic energy of the atoms in the resulting jet must be equal to the

confinement energy that the spike had prior to quenching the collapse. If we assume

a Gaussian density spike in the BEC wavefunction with a width σ, then the average

kinetic energy of the jet atoms is related to the width of the spike by

〈T 〉 =
1
2
m〈v〉2 =

~2

4mσ2
. (4.2)

In the context of the spike picture, the observed anisotropy of the jets indicates

that the spikes from which they originated were also highly anisotropic, being narrower

in the radial direction. From the calculated widths (using equation (4.2)) and the

measured number of atoms in the jets, we can estimate the density in the spikes. We

present plots of the number of jet atoms and the inferred spike density versus tevolve in

Figure 4.10. The jet data exhibited variability in energy and number significantly larger

than the ∼ 10% measurement noise.

The jets expanded with velocity v ' 1 mm/s, which corresponds to a kinetic en-

ergy of ∼5 nK and a radial pre-quench Gaussian rms width of ∼ 0.5 µm. Since the axial

size of the jets was below our optical resolution limit, we could not measure the axial
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Figure 4.9: Jet images for a series of tevolve values. The absorption images were taken
with the conditions of Figure 4.2. The evolution times were 2, 3, 4, 6, 8, and 10 ms (from
(a) to (f)). Each image has dimensions 150 × 255 µm. The shaded bar indicates the
optical depth scale. For these data, we applied an expansion ramp to aexpand = +250 a0,
so the jets are longer than for the quantitative measurements explained in the text. The
jets were longest (i.e., most energetic) and contained the most atoms at values of tevolve

for which the slope of the number loss curve (Figure 4.2) was greatest. A tiny jet is
barely visible for tevolve ' 2 ms (image (a)), which is 1.7 ms before tcollapse. The central
component of the images is the remnant BEC, which clearly decreases with time. The
time between the application of aquench and the acquisition of the images was fixed at
5.2 ms.
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Figure 4.10: Quantitative jet measurements. (a) The number of atoms in the jets versus
tevolve for the conditions of Figure 4.2. (b) The spike density inferred from the kinetic
energies of the jets. The vertical bars indicate the full range of shot-to-shot variability,
which was rather high. For the analysis, we assumed the jets were disk-shaped since
the magnetic trap has cylindrical symmetry. The images were taken perpendicular to
the axial trap axis, corresponding to an edge-on view of the disks.
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expansion rate. We therefore assumed an axial width equal to the harmonic oscillator

length for estimating the spike density. The atom density in the spikes decreased for

larger values of |acollapse|, and was half as large for acollapse = −170 a0 as for −36 a0.

The observation of jets in the collapsing condensates suggests that the collapse

process involves a clumping of atoms into bunches. The implosion of the BEC probably

cannot be simply characterized as an overall contraction with a single density peak

at the center of the cloud [37]. In fact, we have evidence from mean-field expansion

of the collapsing condensates (see section 4.3.1) that the overall density contraction is

relatively small — with an average density increase on the order of 50%. So a more

plausible picture of the collapse is one with internal structure, as suggested by more

recent theoretical models. A discussion of the recent theory is given in section 4.7.

4.6 Collapse at B=0

In addition to the measurements described in this Chapter, it is potentially very

interesting to examine the collapse of an 85Rb BEC after turning off the magnetic trap.

When the trap potential is switched off, we have the novel situation that the scattering

length is large and negative (∼-470 a0 at B=0). We have not extensively studied the

collapse dynamics at B=0 because most of the special techniques we have developed,

such as mean-field expansion of the BEC and focusing the burst atoms, do not work at

zero field.

However, when we quickly turn off the magnetic trap after forming a high density

condensate, we do observe a burst of energetic atoms emerging from the BEC. At

the same time, the number of condensate atoms decreases rapidly. Unfortunately, it is

somewhat difficult to determine how much of the burst and number loss is due to collapse

physics and how much is due to ramping the B-field across the Feshbach resonance (see

Chapter 5). Nevertheless, the BEC collapse at B=0, and also at magnetic fields slightly

below the Feshbach resonance, may provide an interesting avenue for future research.
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4.7 Discussion of theoretical models

4.7.1 Overview of observations

Collapsing 85Rb condensates display very dramatic and complex behavior. At

the time that the data were collected, most of the observed details of the collapse could

not be easily explained in terms of existing theoretical models for the collapse [36,

37, 42, 43, 44]. These theories were developed to describe 7Li experiments, where

the scattering length was fixed and the BEC interactions with a large thermal cloud

proved very important. The peculiar and complex collapse behavior seen in our 85Rb

experiment prompted a number of theorists [45, 46, 47, 48] to adapt their models to our

experimental conditions. To facilitate comparison of the prominent features of our data

with the predictions of the theories, we can summarize our main observations.

(1) There is a delayed and abrupt onset of number loss from the condensate after

a → acollapse.

(2) The delay time before the loss depends inversely on both the initial density and

|acollapse|.

(3) The loss decay constant τdecay is independent of both Ninit and |acollapse| for

|acollapse| < 100 a0, and only weakly depends on these quantities for larger

|acollapse|.

(4) Part of the BEC number loss is due to formation of an energetic burst of atoms.

The average burst energy and energy anisotropy exhibit dramatic variations

with initial condensate number and |acollapse|.

(5) The number of cold remnant BEC atoms surviving the violent collapse varies

between much less and much more than Ncrit, depending on Ninit and acollapse.
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4.7.2 Mean-field models for collapse

All of the papers that model the collapse dynamics experiments described in

this Chapter [46, 47, 48] use a mean-field approach that includes density-dependent

decay from the BEC. To account for 3-body recombination losses and also describe

the attractive self-interaction in the BEC, the authors of Refs. [46, 47, 48] integrate a

modified Gross-Pitaevskii (GP) equation that possesses an imaginary loss term [37].

Santos and Shlyapnikov [46] numerically integrate the modified GP equation for

our anisotropic magnetic trap potential, using a particular value for the 3-body recom-

bination loss coefficient, L3. The authors choose L3 to be within the limits set by our

previous experiments [39], with a typical choice being L3 = 2×10−26 cm6/s. The model

of Ref. [46] shows that 3-body recombination losses set an upper to the contraction of

the collapsing BEC. The density should grow until the loss “burns” a small number

of atoms in the dense central region, then the region is quickly refilled by surrounding

atoms. Santos and Shlyapnikov observe a series of such intermittent collapses of the

BEC, with each collapse destroying only a small number of the condensate atoms. As

the number decreases due to the losses, the balance of forces controlling the conden-

sate wavefunction changes. The attractive mean-field interaction becomes weaker and

is overcome by a repulsive force from the tight compression of the BEC wavefunction.

Thus, each intermittent collapse has a compression phase followed by a rapid expansion

or explosion of BEC atoms.

The authors of Ref. [46] therefore identify the burst atoms observed in the experi-

ment as excited condensate atoms produced during the intermittent collapses. Obviously

then, the missing atoms are the atoms that are burned off by 3-body recombination.

Santos and Shlyapnikov make quantitative predictions for several experimental quanti-

ties, including tcollapse, τdecay, and 〈Eburst〉 in the axial and radial directions. The model

reproduces several of the prominent features of the experimental data, including the
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BEC loss characteristics (features (1)-(3) above) and the observed fact (5) that Nrem is

often much greater than Ncrit. There is no explanation given for Nrem > Ncrit in the

model — the authors simply state that this is “expected”!

Santos and Shlyapnikov assert that the energetically expanding BEC atoms are

the burst atoms. The calculated burst energies are predicted to scale with the ratio

a2
collapse/L3. By allowing L3 to vary with scattering length from ∼ 2 × 10−27 cm6/s at

a ' −30 a0 to ∼ 2× 10−25 cm6/s at a ' −250 a0, Santos and Shlyapnikov obtain good

agreement with the experimental data for 〈Eburst〉 with Ninit=6000 atoms. However,

the agreement with the larger Ninit=15,000 data is quite poor. Overall then, Santos and

Shlyapnikov cannot model the full experimental burst behavior (feature (4) above), even

when they allow the loss rate coefficient to vary by a factor of 100. While Ref. [46] has

intuitive appeal and does qualitatively explain all of the observations, it is impossible to

fully evaluate the validity of the theory without better knowledge of the 3-body decay

rates in the negative scattering length regime.

Other theoretical models have been developed to explain the collapse dynam-

ics [47, 48]. Most notably, Saito and Ueda [47] have proposed a mean-field model that is

nearly identical to that of Ref. [46], with the only quantitative difference being a smaller

choice for the 3-body decay rate coefficient (L3 = 2×10−28 cm6/s). Saito and Ueda also

predict details of the BEC loss that agree with experiment and they observe a burst of

energetic atoms. However, the authors make no attempt to model the burst energy be-

cause of the unknown L3 dependence on scattering length. One unique prediction from

Saito and Ueda regards the jets. The authors explain that the jets do not result from

the released confinement energy of density spikes but instead are due to interference of

matter waves emanating from different density clumps in the imploding BEC.
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4.7.3 Beyond mean-field theory

Although the published theoretical models for the 85Rb BEC collapse behavior

are all based on conventional BEC mean-field theory, it is possible that the physics

might require more complicated theories that go beyond the level of the GP equation.

Murray Holland has expressed the opinion that the 85Rb collapse is special because of

the Feshbach resonance. He suggests that a quantum field theory that includes higher-

order correlations between the atoms is necessary to fully explain our observations. In

addition, T. Kohler and K. Burnett have also been pursuing a beyond-GP-equation

approach to explain the burst atoms we observed during the collapse process (Ref. [46]

contains a note about this). It will be interesting to see whether a full theory of resonant

BEC can be developed to explain both the collapse experiments and the atom-molecule

coherence experiments in Chapter 6.

On a related note, Jake Roberts has proposed an interesting experiment to study

the collapse by changing the scattering length in a different way. We could use an

RF π pulse to change the spin state of the atoms from |2,−2〉 to |2,−1〉. This state

has a large negative scattering length and no nearby Feshbach resonance. Thus, by

studying the collapse dynamics (especially the possible presence of burst atoms), one

could potentially separate the physics of the collapse at fixed scattering length from the

physics of resonant BEC.



Chapter 5

Microscopic dynamics in a strongly-interacting Bose-Einstein

condensate

5.1 Introduction and motivation

This chapter describes experiments that explore the response of an 85Rb BEC to

rapid magnetic field variations. We begin by giving a motivation for the experiments.

Next comes a detailed explanation of the experimental methods and data. Finally, we

review some of the relevant theory for modeling the experiments.

In contrast to the negative scattering length experiments of Chapter 4, here we

discuss BEC behavior in the positive a region near the 85Rb Feshbach resonance, where

the condensate self-interaction is large and repulsive. We used rapid magnetic field

variations to probe the strongly interacting regime in the condensate. We changed

the magnetic field to approach the Feshbach resonance from above, which causes the

positive scattering length to increase. As na3 becomes comparable to or larger than

one, the customary mean-field description of the dilute gas BEC, which assumes no

correlations between the atoms, breaks down. Correlations between the atoms become

increasingly important and a BEC with sufficiently large na3 will eventually reach a

highly correlated state such as that found in a liquid. We are interested in the nature

of this transition to a highly correlated state and the time scale for the formation of the

condensate correlations. In a strongly-correlated BEC with large scattering length, it

should be possible to discover effects that go beyond the standard mean-field theoretical
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description.

In addition to such interesting physics, our time dependent experiments also allow

us to investigate the possibility of collisional coupling between pairs of free atoms and

bound molecules. Since the atomic and molecular BEC states are degenerate at the

Feshbach resonance, a number of authors [14, 49, 50, 15, 51, 52, 53] have predicted that

atom-molecule transitions can occur during a B-field ramp. These theories were mainly

inspired by the Na BEC experiments at MIT [12, 38], in which very large number losses

to the condensate were seen when the magnetic field was ramped through a Feshbach

resonance. However, these observations always revealed that the more time spent near

the Feshbach resonance, the greater the number loss. This time dependence is consistent

with a basic mean-field description of the BEC that includes a density-dependent loss

process, such as three-body recombination into molecules [54, 41]. Thus, the Na BEC

experiments could neither prove nor disprove the hypothesis that coherent molecule

creation was the cause of the observed BEC number loss.

We also observed BEC number loss due to ramping the B-field across the reso-

nance. In fact, after producing 85Rb condensates in 1999, our most important task was

to determine the effect on the BEC of crossing the Feshbach resonance. Except in spe-

cial cases, we always turn off the magnetic trap before imaging the BEC, which requires

that we ramp the magnetic field quickly from ∼160 G to 0 G. Any perturbations to the

condensate caused by crossing the Feshbach resonance at 155 G could potentially distort

our measurements of BEC dynamics in the trap. In our early tests, we saw number loss

from the BEC of up to 75% when we crossed the Feshbach resonance. The number loss

became steadily smaller as we ramped more quickly to zero B-field, until the fastest

ramp we could produce (∼1 G/µs) caused N0 to drop by less than 10% [26]. In later

experiments, we found that the BEC number loss was density-dependent [1]; therefore,

we could completely eliminate the loss by expanding the condensates in the magnetic

trap before crossing the resonance (see section 3.5.2). These measurements stimulated
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our curiosity. We wanted to discover how much of the number loss was due to ordinary

inelastic collisions, which become increasingly frequent as one approaches the Feshbach

resonance [39], and also whether any of the loss might be due to the coherent formation

of molecules suggested by Refs. [14, 49, 50, 15, 51, 52, 53].

5.2 Experimental methods

5.2.1 Producing short B-field pulses

To understand time dependence of loss in our 85Rb BEC, we examined the re-

sponse of the condensate when we briefly approached the Feshbach resonance by apply-

ing a short magnetic field pulse (much shorter than the period for collective excitations).

We initially generated these B-field pulses using a time-dependent current in the base-

ball coil. From the outset, it was clear that the pulse had a dramatic effect on the BEC

— depending on how closely we approached the resonance, we saw large number loss

from the condensate and also a relatively hot (∼150 nK) burst of atoms (this burst

was similar in character to that produced during the collapse dynamics experiments in

Chapter 4). The most obvious feature of the BEC response to the magnetic field pulse

was a loss of atoms that increased when we made our pulses shorter, until the loss be-

came very large for very short pulses. Since the BEC number loss occurred very quickly

(pulse duration < 100 µs), we had to improve our B-field control to make very short

pulses. We designed an auxiliary B-field coil (details given in Chapter 3) for generating

precisely tailored pulses toward the Feshbach resonance, as shown in Figure 5.1.

Our ability to carefully control the B-field allows us to probe the effects of micro-

scopic physics in the BEC. By applying a short B-field pulse, we obtain a remarkable

separation of the time scales for microscopic versus macroscopic changes to the con-

densate. For instance, we can change the magnetic field by 10 G in a time of 10 µs,

which is a factor of 103 shorter than the oscillation period of the atoms in the trap.
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Figure 5.1: Magnetic field vs. time for a typical auxiliary coil pulse. The solid line is the
field calculated from measurements with calibrated Hall-effect current sensors. On the
right vertical axis, the corresponding variation in scattering length is shown. The open
circles are independent measurements of the magnetic field obtained by determining the
resonant frequency for a 10 µs RF radiation pulse that drives atoms to the mF =–1 spin
state (error bars are smaller than the points). The dashed line shows the position of the
Feshbach resonance, where the scattering length becomes infinite. The field variation
on the peak of the pulse was typically ∆B . 0.1 G.
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This means there is negligible motion of the atoms during a short pulse – the BEC

wavefunction remains static for the pulse duration. In fact, the brevity of the pulse

prevents any BEC expansion despite the fact that the repulsive self-interaction energy

of the condensate typically increases during the pulse. We have verified this assertion

by modeling the BEC density with the PG model (see section 3.5.3) for the pulses used

in the experiment.

5.2.2 Counting the BEC atoms

To study BEC number loss we first form a 85Rb condensate, following the proce-

dure given in Ref. [26]. A sample of 85Rb atoms in the F=2 mF =–2 state is evaporatively

cooled in a cylindrically symmetric magnetic trap (νradial = 17.5 Hz , νaxial = 6.8 Hz).

The magnetic field at completion of evaporation is 162.3 G, corresponding to a scat-

tering length of 210 a0. Typically, the cooled sample has N0=16,500 BEC atoms and

fewer than 1000 noncondensed atoms. The magnetic field is then ramped adiabatically

(in 800 ms) to ∼166 G where the scattering length is positive but nearly zero [33], and

the BEC assumes the shape of the harmonic trap ground state.

We next apply a short magnetic field pulse (duration < 1 ms) so that the field

briefly approaches a value moderately close to the Feshbach resonance at ∼155 G, as

displayed in Figure 5.1. We use destructive absorption imaging to look at the number

of atoms remaining in the condensate. This experiment is repeated with a variety of

differently shaped magnetic field pulses.

We find that the magnetic trap must be turned off and the condensate spatial

size must be significantly larger than our resolution limit to obtain the most sensitive

and accurate measurements of number (see section 3.5.2). To expand the BEC after

the short pulse, we ramp in 5 ms to ∼157 G (a=2000 a0), and then hold at that B-

field for 7.6 ms. The mean-field repulsion during the ramp and hold times decreases

the density by about a factor of 30 before the trap is turned off. The density decrease
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avoids density-dependent losses that we have observed during the trap turn-off (see

section 5.1). After turning off the trap, we allow the BEC to continue to expand for

12.6 ms at B=0 before taking an absorption image. From the absorption image of the

expanded BEC we calculate the number of atoms remaining after a given auxiliary coil

pulse.

5.2.3 Determining burst properties

The burst atoms generated by the B-field pulse have a very different energy

distribution from the condensate, so we employ a different procedure to determine their

properties. The best way to find the total number, Nburst, and average energy, 〈Eburst〉,

of the burst atoms is to image them at a focus of their simple harmonic motion (see

section 4.4). To focus the burst atoms onto the axial axis of the trap, we allow them

to oscillate in the harmonic potential for 20.4 ms, which is more than one-half of a

radial period (Trad/2=29 ms). We obtain this delay without interfering with the BEC

expansion ramp by adding a 7.8 ms delay between the end of the short B-field pulse and

the start of the BEC expansion ramp. After 20.4 ms in the trapping potential, all of

the burst atoms have an inward radial velocity. We then turn off the trap and the burst

atom spatial distribution continues to contract ballistically until reaching a minimum

radial size or focus 12.6 ms later.

A typical absorption image of the burst atom distribution superimposed on the

BEC remnant is shown in Figure 5.2. This image was taken after preparing the sample

of atoms according to the procedure given above. We use a 2-D Gaussian to fit the burst

atom image, but we exclude the central region containing the condensate remnant from

the fit. The excluded Gaussian fit easily separates the burst from the BEC remnant

because of the large difference in the spatial extent of the two parts of the image.

The Gaussian fit parameters for a particular absorption image allow us to extract

both Nburst and the value of 〈Eburst〉 for either the axial or radial direction. The focused
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Figure 5.2: Determination of burst properties from an absorption image. At top we show
a false-color absorption image taken after applying a short B-field pulse to the BEC,
then expanding the condensate and focusing the burst as described in the text. Here
we used a B-field pulse from Binit=165.5 G to Bfinal=157.1 G with ramp times of 13 µs
and thold=30 µs. The images show the measured optical depth times 1000 versus spatial
position on the camera pixel array (see colorbar). With the three images, we show how
the central region of the image containing the BEC is excluded from the 2-D Gaussian
fit. The excluded region size is chosen to be large enough so that the fit parameters are
independent of the box size. At the bottom is an axial cross-section of the data and fit.
Note the dramatic difference between the two spatial distributions, owing to the large
difference in their mean energies (〈Eburst〉 = 150 nK ' 50× 〈Eremnant〉).



103

burst looks like an elongated cigar with an aspect ratio of roughly 20. In a fit to the

burst focus, the long dimension of the Gaussian (usually along the axial direction) gives

an estimate of the rms energy of the burst atom distribution. The short dimension of

the Gaussian is very narrow; we find that the observed size of the burst is limited by the

finite resolution of our imaging optics. In principle, with perfect imaging optics and a

truly harmonic potential, we could determine the burst formation time from the extent

of the narrow focused dimension.

We can use the observed signal-to-noise (S/N) ratio in images such as Figure 5.2

to estimate our sensitivity to higher energy atoms in the burst. From the typical imaging

S/N we believe there are no burst atoms with energy between 300 nK and 1 µK. Of

course, it would be harder to see such atoms if there were two distinct components to

the burst energy distribution, but this seems unlikely given the observed smooth spatial

distribution that is fit very well by a Gaussian function.

To determine the BEC number from an image such as Figure 5.2, we first perform

an excluded Gaussian fit to the burst atoms, then we subtract the Gaussian fit from

the absorption image. The remaining image pixels due to the BEC remnant are then

summed to find the total optical depth of the remnant. We compute the number of

BEC atoms from the optical depth sum.

5.3 BEC number loss from short B-field pulses

In this section, we simplify the description of the BEC response to the magnetic

field pulses by concentrating on the most obvious effect — the time dependent number

loss from the condensate. We also observed that a significant fraction of the initial

BEC number was converted into burst atoms by the short B-field pulses. However, the

burst atoms did not account for all of the BEC number loss — there were also some

undetected or missing atoms as in Chapter 4. Discussion of the burst atoms will be

postponed until section 5.4.
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5.3.1 BEC number loss versus pulse amplitude

One of our first experiments was to explore the amount of BEC loss as a function

of the approach distance to the Feshbach resonance. We used triangular magnetic

field pulses with variable amplitude and ramp time. The amplitude was varied to

examine fields from 158.0 G (a=1200 a0) to 156.0 G (a=4500 a0). Here we list the

corresponding scattering lengths that we have observed by slowly adjusting the magnetic

field, as in Ref. [26]. The scattering length was calculated from the equation: a(B) =

abg(1−∆/(B−Bpeak)) with the Feshbach resonance parameters as given in section 7.3.3.

For the range of magnetic fields examined here, the maximum value of the diluteness

parameter for the BEC varied from na3 = 0.01 for a=1200 a0 to na3 = 0.7 for a=4500 a0.

The resulting BEC loss data are displayed in Figure 5.3. Here the dominant trend

is an increase in the number loss as the pulses approach closer to resonance. For a fixed

pulse amplitude, the BEC remnant number, Nrem, is largest at the shortest ramp time

and then decreases with ramp time until it reaches a minimum. Then longer ramp times

cause Nrem to increase over a time scale of tens of microseconds. The minimum in Nrem

versus ramp time corresponds to a maximum in the number of lost atoms. The data in

Figure 5.3 demonstrate that the ramp time that induces maximal loss becomes longer

as the pulses approach the Feshbach resonance. In addition, the width of the minimum

is largest for the pulses that come closest to resonance.

The triangular B-field pulses produce a very interesting and non-intuitive time

dependent number loss. Under some conditions, we see that the loss increases for less

time spent near resonance. Of course, the loss is not instantaneous; as the pulse lengths

approach zero time, the loss time dependence reverses and the loss also goes to zero. Here

it is useful to recall that conventional condensate loss is characterized by a rate constant

for a density-dependent decay process, and thus the loss increases monotonically with

time. In contrast, we measure an enhanced loss when the ramp time decreases, which
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Figure 5.3: Ramp time dependence of BEC number for different triangular pulse am-
plitudes. The legend gives the magnetic field (and scattering length) at the peak
of the pulse, which may be compared the Feshbach resonance B-field of 155 G.
The BEC number and density at the beginning of the pulse were N0=16,600 and
〈n〉0 = 1.9 × 1013 cm−3. The initial scattering length was ainit=7 a0. The scaled
ramp time on the x-axis is equal to the actual pulse ramp time divided by four, show-
ing the time required to ramp from 75% to 100% of the pulse amplitude. This scaling
reflects the observed fact that most of the loss occurred at fields closest to the Feshbach
resonance. The pulse hold time was fixed at 1µs for these data. Data points are larger
than the error bars.
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suggests the presence of microscopic BEC physics such as non-adiabatic transitions to

another state.

5.3.2 BEC loss versus pulse shape

We also measured how the BEC number loss depends on the ramp time of the

magnetic field pulse for a variety of different pulse hold times. As shown in Figure 5.4,

we varied the ramp time from 12.5 µs to 250 µs and changed the hold time at the pulse

peak from 1 µs to 100 µs. For hold times thold ≤ 15 µs, there is an initial decrease in

Nrem as the ramp time increases. Then the slope changes and fewer atoms are lost for

longer ramp times. Thus, the short hold time data show a distinct minimum in Nrem

vs. ramp time, which shifts toward shorter ramp times as the hold time is increased. All

of the hold time data display an upward slope in Nrem versus ramp time over some range

of times, but the range is largest for the 100 µs hold time. This increase in remnant

number for longer ramp time provides clear evidence that the loss is not conventional

inelastic decay that is characterized by a rate constant.

Of course, the above interpretation of our data would be modified if the density

of the BEC were changing due to the rapid increase in the mean-field interaction, but

the characteristic time for such readjustments in cloud shape is far longer (of order

1/(2νradial)=29 ms) than the time scales for the B-field pulses considered here. For

example, using the analytic PG model (section 3.5.3), we calculate that for a 250 µs

ramp to Bfinal=156.0 G (4500 a0), the change in mean-field energy causes the BEC

density to decrease by only 1% from its initial value. Thus, the observed dependences

on ramp time must reflect microscopic physics in the BEC and not any macroscopic

changes in the shape of the condensate.
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Figure 5.4: Dependence of remnant BEC number on pulse ramp time for various hold
times (see legend) with N0=16,500 (〈n〉0 = 1.9 × 1013 cm−3). For the majority of the
data points, the symbol is larger than the statistical error bar (not shown). The lines
are spline fits to guide the eye. The ramp times were multiplied by a factor of 1/4 as in
Figure 5.3. The magnetic field during the hold time was Bhold=156.7 G (2400 a0).
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5.3.3 Unconventional loss: Rabi-like oscillations

An alternative way to demonstrate the unconventional time dependence of the

BEC number loss is by measuring the remnant BEC number as a function of hold time

for the magnetic field pulse. For example, we can take the data from Figure 5.4 and

plot Nrem versus thold for a B-field pulse with fixed ramp time. Using a linear ramp of

12.5 µs duration, we observed BEC number loss of 10-20% when the hold time was set

to zero (corresponding to a triangular pulse). The number of BEC atoms then showed

a smooth exponential drop as the hold time increased (see Figure 5.5).

At first glance, the exponential time dependence of the data in Figure 5.5 seems

to support the hypothesis that the number loss came from density-dependent decay, as

in Refs. [54, 41]. However, we showed that this was not true because the decay rate

was insensitive to the initial BEC density. The BEC density before the short magnetic

field pulse can be varied over a wide range by slowly changing the scattering length [26].

Surprisingly, when we used this method to reduce the initial BEC density by more than

a factor of 2, the time constant for number decay was nearly unchanged. In addition,

the low[high] density data exhibited a decay time constant that was over 2[1] orders of

magnitude shorter than predicted by our previous inelastic loss measurements with cold

thermal clouds [39].

To further explore the BEC number loss with hold time, we also varied the mag-

netic field at the peak of the pulse, Bhold. At Bhold=157.1 G, we observed a striking

damped oscillation in Nrem versus thold. As displayed in Figure 5.6, the initial number

loss actually reverses sign near thold=20 µs! Clearly this behavior cannot be explained

in terms of a monotonic density-dependent number loss. To the contrary, the oscillation

data suggest that the BEC number loss may involve coherent transitions to another

state that are analogous to Rabi-flopping oscillations. However, the actual physical

process appears to be more complex — there is a strong damping to the Nrem oscilla-
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Figure 5.5: Fraction of BEC remaining versus pulse hold time. The pulse ramp times
were 13 µs and the magnetic field during the hold was Bhold=156.7 G (2420 a0). Number
decay was measured for two different initial densities: 〈n〉 = 1.9 × 1013 cm−3 (•) and
〈n〉 = 0.7 × 1013 cm−3 (◦). Fitting the data to exponential functions (solid lines) gave
time constants of 13.2(4) µs and 15.4(14) µs. Thus, reducing the density by a factor of
2.6 caused an increase of only 17(11)% in the decay time constant.
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tions and there is an overall irreversible number loss from the BEC. From a damped

sinusoidal fit to the data, we find an oscillation frequency of roughly 25 kHz, which is

similar to the binding energy of the weakly bound molecular state associated with the

Feshbach resonance. Attempting to extract the frequency precisely from the data is

quite difficult, however, because of the rapid damping of the oscillations and the overall

exponential decay of the BEC number.

Experimentally, the Rabi-like oscillations were quite difficult to observe and could

only be seen with Bhold centered in a ∼0.1 G wide window of magnetic field around

157.1 G. We believe this narrow window results from a trade-off between being close

enough to the resonance to have strong coupling with the molecular state and far enough

from the resonance to have an oscillation period that is short compared to the overall

BEC number decay time. We have discovered a way to avoid these limitations with an

improved method for inducing atom-molecule oscillations. As described in Chapter 6,

we use two magnetic field pulses separated in time to obtain Ramsey-like oscillations [24]

in the BEC number.

5.4 Burst atoms created by short pulses

In our short pulse experiments, we always observed the formation of a relatively

hot burst of atoms accompanying the disappearance of the BEC atoms. This section

begins with an overview of the burst characteristics and then describes a more detailed

experimental study of the burst.

5.4.1 Overview of burst characteristics

When we first realized that it was possible to generate an explosion or burst

of atoms using a short magnetic field pulse toward the Feshbach resonance, we were

shocked. The existence of this burst was very surprising because of its extremely rapid

formation time of less than 20 µs. For comparison, the qualitatively similar burst
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Figure 5.6: Rabi-like oscillation in the number of BEC atoms. Black points with error
bars are the measured BEC number as a function of hold time for a trapezoidal B-field
pulse. The ramp times for the pulse were fixed at 13 µs and the pulse decreased the
B-field from the initial value of ∼165.5 G to the value Bhold=157.12 G (1840 a0). The
black line is a fit to the data using a damped oscillation superimposed on an exponential
decay, with the functional form N(t) = N0 − γ exp (−t/τ) + A exp (−βt) sin (ωet + φ).
For this fit, the BEC number decay time τ=110 µs is somewhat longer than the damping
time for the oscillation, 1/β=32 µs and the oscillation period 2π/ωe=40 µs.
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of atoms observed in the BEC collapse experiments (Chapter 4) was generated in a

time of several milliseconds.1 The BEC collapse process seemed to create burst atoms

spontaneously during the slow implosion of the condensate at fixed magnetic field. In

contrast to that scenario, we saw that short B-field pulses allowed us to generate an

atom burst from a stable BEC and to influence the burst during its formation. In

fact, we observed that the short-pulse burst characteristics were quite sensitive to the

magnetic field pulse shape and amplitude, as discussed in section 5.4.2. Note that for

the remainder of the Chapter, the short-pulse burst will simply be referred to as “the

burst” or “the burst atoms”.

Because the burst formation time is much less than the harmonic oscillation

period of the magnetic trap, Tr = 2π/ωr=57 ms, the trap potential focuses the burst

atoms onto a symmetry axis after a time t=Tr/2. The cylindrical anisotropy of the trap

potential leads to radial and axial burst focuses at different delay times in the magnetic

trap. Depending on whether the atoms form an axial or radial focus, we measure a

different average burst atom energy, with the radial energy being roughly 2× the axial

energy. Presumably this energy anisotropy results from the initial spatial anisotropy of

the BEC before application of the short B-field pulse. We could study this by varying

the initial condensate aspect ratio using the tunable scattering length, but we have not

tried this yet.

It is interesting to note that the energy anisotropy of the burst atom distribution

can persist indefinitely in the magnetic trap due to the absence of thermalizing collisions.

The density of the burst atoms remains very low throughout their motion in the trap.

Simply put, the burst atoms do not form an equilibrium distribution! We may therefore

be able to use the observed energy anisotropy to glean information about the history of

the burst, i.e., the mechanism for the burst generation.
1 Despite the fact that it was created under very different conditions, the short-pulse burst atom

distribution had comparable number (∼3000) and average energy (∼150 nK) to the collapse burst.
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In addition to their energy, another important characteristic of the burst atoms is

their spin-polarization. From the observed occurrence times and spatial locations of the

burst focuses, we can infer that the oscillation frequency of the burst atoms corresponds

to the |F, mF 〉 = |2,−2〉 state, which is the same as that of the BEC atoms. We looked

for any additional burst atoms in other spin states with comparable energies to those of

the |2,−2〉 atom burst. This was done by reducing the total time delay before taking an

absorption image to the rather short value of 2.1 ms. Since our absorption imaging is

sensitive to all spin states of 85Rb [1], the short delay time should allow us to count burst

atoms not in the |2,−2〉 state before they could expand appreciably. We saw no evidence

for any such “extra” burst atoms in other spin states — our experimental sensitivity

was ∼500 atoms, or 8% of the |2,−2〉 burst number. This observation indicates that

the burst generation mechanism does not involve Zeeman spin flip transitions.

We have found that the rapid magnetic field variations only create burst atoms

from Bose-Einstein condensates and not from cold thermal clouds. We searched for

burst atoms after subjecting a 40 nK thermal cloud with density < n >= 7×1011 cm−3

to a standard B-field pulse, but we did not observe any trace of a burst. The absence

of the burst may have been due to a strong density-dependence in the burst formation

process, or perhaps the burst cannot be formed from a thermal cloud at all. For instance,

the observed burst formation from a BEC might depend on the fact that the atoms are

initially all in the same ground state of the harmonic trap instead of being distributed

over many trap states, as in a thermal cloud. Since we have not repeated the experiment

with condensates that have similar density to the thermal cloud, we cannot presently

distinguish between the two possibilities.

5.4.2 Burst dependence on pulse shape

As a complement to the experiments on BEC number loss described in Section 5.3,

we carefully examined the dependence of the burst properties on magnetic field pulse
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shape. We first studied the burst number and energy as a function of the B-field pulse

length, as shown in Figure 5.7. Here we see Nburst smoothly grows with increasing thold

before saturating at roughly 4000 atoms. During the same time period, the average

axial energy of the burst atoms shows a significant decrease from 200 nK to 100 nK.

We did not measure the radial energy of the burst atoms for these conditions, but we

assume that this energy obeys a similar time dependence.

One possible mechanism for the burst energy that was initially quite appealing

to us is the sudden increase in mean-field energy due to the change in scattering length

during the fast B-field pulse. The idea is that the BEC suddenly finds itself far from

equilibrium due to the dramatically increased repulsive interactions. After completion of

the first magnetic field ramp, the BEC should therefore immediately start to expand as

the increased mean-field energy (potential energy) converts into kinetic energy. Ramping

back to the initial B-field before the expansion has proceeded very far should halt the

process by removing the excess potential energy.

To investigate the validity of the mean-field impulse hypothesis, we again utilized

the PG model. With the magnetic field pulse of Figure 5.7 as input to the model, we de-

termined the time dependent scattering length and integrated the PG model equations.

The prediction of the PG model for the amount of mean-field energy that is converted

into kinetic energy is shown in the inset to part (b) of Figure 5.7. Not only is the

magnitude of the predicted impulse energy far too small, but it also shows the opposite

time dependence to that observed in the data. There is simply not enough time for the

increase in mean-field potential energy to be converted into significant kinetic energy.

Although the changing mean-field energy of the BEC clearly cannot explain the

hold time dependence of burst energy, the energy for burst formation certainly must

be related to the time-varying magnetic field. For the data in Figure 5.7, the most

energetic burst atoms are produced by the shortest values of thold, which correspond

to the B-field pulses that are closest in shape to a spike or triangle pulse. Perhaps
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Figure 5.7: Dependence of burst characteristics on pulse length. (a) Burst number
versus pulse length. Black points with error bars are the measured number of burst
atoms versus hold time for a trapezoidal pulse. In this pulse, the magnetic field was
ramped in 13µs from ∼165.5 G to Bhold=157.12 G (1840 a0). After the completion of
the hold time, the B-field was ramped back to roughly 165 G. (b) Burst energy versus
pulse length. Black points with error bars are the measured average burst atom energy
in the axial direction. The inset shows the same data plotted on a log scale for the
y-axis. The black line is the PG model prediction for the mean-field impulse energy
imparted to the BEC.
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there is some relationship between the Fourier transform of the pulse and the energy

imparted to the burst atoms. Murray Holland is conducting simulations to investigate

this idea for the burst energy dependence on pulse shape [55] using a quantum field

theory approach [56]. Some discussion of this theory will be given in section 5.5.4.

5.4.3 Burst dependence on pulse amplitude

The characteristics of the burst atoms produced by the magnetic field pulses also

displayed a strong dependence on the pulse amplitude. Figure 5.8 gives the measured

variation of both Nburst and average radial burst energy versus pulse height. In this

figure, we combine data from two slightly different magnetic pulses. The black points

were taken with a ramp time of 100 µs and hold time of 1 ms, while the white points

had tramp=50 µs and thold=200 µs. We believe it is reasonable to plot the B-field

dependent data for these two different pulse shapes on same graph because both pulses

were sufficiently long so that the burst should have reached “steady state” values for

the number and energy, as observed in Figure 5.7.

The burst number shows very little magnetic field dependence over most of the

range given in part (a) of Figure 5.8. From ∼155 G to 159 G, the number of atoms in

the burst remains fairly constant. However, Nburst decreases very sharply as Bhold rises

above ∼159 G. For pulses with values of the hold B-field greater than 160 G, we did

not observe any burst atoms.

In contrast to the saturating dependence of the burst number with B-field, the

average radial energy grows in a linear fashion with increasing pulse amplitude (decreas-

ing Bhold). This behavior continues all the way down to magnetic fields very near the

Feshbach resonance at 155 G. It would be interesting to see whether the linear trend

continues past 155 G, because this would imply that the burst formation has relatively

little to do with the Feshbach resonance. We note that the average axial burst energy

depends on magnetic field in a similar fashion to the radial energy, but the axial energy
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Figure 5.8: Dependence of burst properties on B-field pulse amplitude. (a) Number of
atoms in the burst versus Bhold for an initial field Binit ∼166 G. Black points with error
bars are the number of atoms measured in a radial burst focus after a trapezoidal pulse
with tramp=100 µs and thold=1 ms. White points show the burst number generated by
a slightly different B-field pulse shape with tramp=50 µs and thold=200 µs. (b) Average
radial burst energy as a function of pulse amplitude, for the same B-field pulses as in
part (a).
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is consistently about a factor of 2 smaller in magnitude (the axial energy data were

omitted to improve the clarity of Figure 5.8).

5.4.4 Search for secondary collision mechanism

In an attempt to explain some of the observed burst properties, we looked for

evidence that the burst atoms might be generated by secondary collisions with “super-

hot” (∼0.1 to 1 mK) atoms. Beijerinck and co-workers [57, 58] have proposed that the

energetic decay products of 2- and 3-body collisions might cause considerable heating

of a BEC if these super-hot atoms collide with the near-stationary BEC atoms while

exiting the cloud. The density-dependent inelastic decay rates are highest in the dense

central region of a condensate, so the decay products usually must travel through a

significant region of space containing many BEC atoms before escaping. If the cross-

section for collisions with BEC atoms is high enough, there should be many secondary

collisions during this time. The authors in Ref. [58] also suggest the possibility that the

secondary collision products may also collide with the BEC atoms, leading to a sort of

positive-feedback or avalanche effect.

Originally, these ideas seemed somewhat plausible to us. After the fast B-field

pulses, we had observed missing atoms, burst atoms, and the BEC remnant. We sus-

pected that the missing atoms might correspond to the super-hot inelastic decay prod-

ucts while the burst atoms could be created in secondary collisions. We believed that we

should be able to test this possible burst generation mechanism by varying the elastic

cross-section of the BEC atoms after producing a bunch of super-hot atoms.

To test the secondary collision hypothesis, we devised a special B-field pulse

consisting of an initial brief triangular spike followed by a long plateau with an adjustable

height (see Figure 5.9). The idea was to generate the hot 3-body recombination products

during the brief spike toward the Feshbach resonance, then to alter the s-wave elastic

cross-section, σs = 8πa2, by changing the level of the plateau. If the burst atoms
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were coming from secondary collisions, then we should be able to strongly influence the

number and energy of the burst by varying the plateau scattering length.

Unfortunately, the BEC number loss and burst data resulting from the spike/plateau

pulse did not allow for a conclusive test of the hypothesized burst generation mecha-

nism. For instance, while Nburst did grow as the plateau scattering length was increased,

the average burst energy was reduced. In addition, the total number of missing atoms

increased with increasing plateau scattering length. This means that we cannot obtain a

consistent secondary collision picture because it is impossible to say that the super-hot

atoms were only generated during the initial brief spike part of the pulse. Also, the

observed values for the burst energy 〈Eburst〉 ' 100 to 200 nK seem far too small for the

predictions of the secondary collision model. If the posited super-hot atoms really have

energies of 100 to 1000 µK, then it is difficult to understand how they could impart such

a tiny fraction of their energy to the burst atoms. Due to the difficulties with the sec-

ondary collision mechanism, we decided to abandon these studies. While there may be

some 3-body recombination and subsequent secondary collisions occurring in our short

B-field pulse experiments, we believe that most of the observations can be explained in

terms of non-adiabatic transitions to another state, as described in section 5.5.

5.5 Modeling BEC loss and burst production

The observed time dependence of the BEC number loss from magnetic field pulses

suggests the presence of non-adiabatic transitions to another state. In our case, the ob-

vious candidate for this other state is the weakly-bound molecular state that causes the

Feshbach resonance. At B-fields larger than the resonant value of 155 G, the molecular

bound state lies just below the zero-energy threshold for two colliding BEC atoms. As

one decreases the magnetic field to values below 155 G, the molecular state rises above

threshold and becomes a quasi-bound state with a finite lifetime due to coupling with a

continuum of scattering states with finite collision energy. These considerations suggest
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Figure 5.9: Schematic of the B-field pulse for testing the secondary collision mechanism.
At top, we show the time-dependent magnetic field during the pulse. The total length
of the spike part of the pulse is 50 µs and the plateau length is typically 200 µs. The
lower part of the figure displays a simplified picture of the secondary collision mechanism
proposed in the text. The ellipses show the condensate spatial extent. In the condensate
at left, the explosion represents hot products of 3-body recombination. The next BEC
picture shows the expansion of these decay products into the BEC volume during the
B-field pulse plateau.
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the possibility of modeling the Feshbach resonance as an avoided crossing of the atomic

and molecular states, as in the well-known Landau-Zener (LZ) model. In this section,

we discuss a simple “toy” model for the Feshbach resonance to gain some qualitative un-

derstanding of our experimental data. To improve upon the toy model, we also consider

a more elaborate curve-crossing model from Josh Dunn and Chris Greene that includes

many trap states. Finally, we give a brief review of published atom-molecule coupling

theory as it applies to our data, including theory work from JILA (Servaas Kokkelmans

and Murray Holland) and Oxford (Kohler, Gasenzer, and Burnett).

5.5.1 Toy Landau-Zener model for BEC loss

In an attempt to understand the BEC number loss in terms of non-adiabatic

transitions, we developed a simple toy model for the Feshbach resonance. Although the

model is totally useless for quantitative comparison with experiment, it does provide

some insight into the time dependence of the BEC loss for various magnetic field pulses.

By investigating the limitations of the toy model, one can learn more about the real

physics of the Feshbach resonance. For instance, one major flaw of the toy model is

its neglect of the burst atoms. In the toy model avoided crossing (see Figure 5.10),

there are only two states – the initial colliding atom state and the molecular state.

These states are coupled by an off-diagonal matrix element in the Hamiltonian so that

transitions between the atomic and molecular states are possible. Using this model,

one might postulate that the BEC number loss observed in the experiment is due to

the formation of molecules (the “missing atoms”), but then how do the burst atoms

fit into the picture? In fact, the burst atoms do not fit into a two-level picture at all!

This point caused us considerable confusion when we first observed the burst atoms and

were unable to identify them with a particular state of the 2-level toy model. The burst

atoms can only be explained in terms of excited states with higher energy than the BEC

ground state. The excited states may form a series of discrete levels of the harmonic
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trap or a continuum of states if the trap is neglected.

Before calculating transition probabilities with the toy model from a pulsed mag-

netic field, it is illuminating to review the standard Landau-Zener theory. Let us assume

that the initial state of the system is a stable BEC of atoms at a magnetic field above

the Feshbach resonance. This initial condition corresponds to a probability of unity of

being in the colliding atom state of the toy model (the upper dashed line to the right

of the avoided crossing in Figure 5.10). For a single linear ramp through the avoided

crossing, the probability of making a non-adiabatic transition from one adiabatic or

dressed state to the other is [59, 60]

p = exp (−2π
ω2

0

4ω̇
), (5.1)

where ω0 is the coupling matrix element divided by ~ and ω̇ is the time rate of change

of the detuning between the uncoupled atomic and molecular states. The single-passage

transfer probability becomes smaller as the ramp rate decreases, so that an infinitely

slow ramp produces zero transition probability. In the toy model, this infinitely slow,

adiabatic ramp causes the atomic state to smoothly change into the molecular state

while gaining potential energy from the magnetic field. In contrast, a very fast ramp

through the crossing leads to a large non-adiabatic transition probability p'1, so the

state of the system during the ramp is best described by the uncoupled atomic state,

shown as the horizontal solid line in Figure 5.10.

For our pulsed magnetic field experiments, a much more relevant case to consider

is that of a double passage through the avoided crossing, in which the field is ramped

linearly from far above resonance to far below resonance, then back again. In the limit

that the initial, intermediate, and final detunings are infinitely far away from resonance,

the probability of making a non-adiabatic transition from the upper dressed state to

the lower dressed state is

Pdouble = 2p(1− p), (5.2)
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Figure 5.10: Toy model for 85Rb Feshbach resonance. Here the resonance is represented
as a simple avoided crossing of two states: the zero-energy state of two colliding BEC
atoms and the molecular state (solid lines). The different magnetic moments of the two
states cause them to cross at 155 G, but this degeneracy is broken by a weak coupling
between the states. The adiabatic or dressed state eigenvalues of the total Hamiltonian
are shown by the dashed lines.
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where p is the single-pass transition probability from equation (5.1). The structure of

this equation leads to a very different time dependence of the transition probability. For

fast ramps (short magnetic field pulses), the single-pass probability is near unity, so that

Pdouble is almost zero. The state of the system during the entire pulse is approximately

that of the uncoupled or diabatic atom-atom state. The opposite condition of very

slow ramps (long magnetic field pulses) causes p→0, which again leads to a vanishingly

small value for Pdouble. In this case, the atoms “ride along” the adiabatic energy level

during the pulse before coming back to where they started at the beginning. The only

way to get a significant double-pass transition probability out of the initial state is to

use intermediate ramp speeds such that p has an intermediate value between 0 and

1. In fact, the largest transition probability is obtained for p=1/2. The different time

dependences for single- and double-passages through resonance are shown graphically

in Figure 5.11 for a particular choice of the avoided crossing parameters.

5.5.2 Modifying the LZ model for triangular B-field pulses

After discussing the standard LZ model predictions in the context of the toy model

for the Feshbach resonance, we are now in a position to explore the effect of finite B-field

pulses. In the actual experiment, we mostly use magnetic field pulses that approach,

but do not cross the Feshbach resonance B-field of 155 G. To predict the effects of

such a pulse in the toy model, it is necessary to move beyond the simple LZ analytical

expressions presented above. To do this, we use the concise formulation of a standard

avoided crossing from Ref. [61]. We numerically integrate the coupled Schrodinger

equations for the two-level system and calculate the non-adiabatic transition probability.

The numerical integration allows us to simulate various differently-shaped B-field pulses

subject to the initial condition that all of the probability resides in the atomic state

corresponding to a pair of BEC atoms.

We observe that the behavior when the B-field approaches and then backs away
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Figure 5.11: Comparison of the Landau-Zener model predictions for single- and double-
passages through an avoided crossing. The dashed line is the non-adiabatic transition
probability, p, as a function of ramp time for a single-passage through resonance. In
the context of the toy model, the dashed line gives the probability of remaining in the
atomic state after the ramp. The solid line is the quantity 1-2p(1-p), which corresponds
to the probability of remaining in the atomic state after sweeping over resonance and
coming back. Although both predictions show a decrease in probability as the ramp
time increases from zero, the minimum in the double-passage probability versus ramp
time leads to a strikingly different time dependence for longer, slower ramps. For both
the dashed and solid line predictions, the B-field is swept so that the detuning changes
by |∆ω| = 4.3 × 108 s−1 during the ramp time and the coupling strength is fixed at
ω0 = 1.4× 106 s−1.
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from the crossing point with a triangular pulse is qualitatively similar to the more

familiar double-passage case discussed previously.2 As shown in Figure 5.12, the

finite B-field pulses still produce a minimum in the probability remaining versus pulse

ramp time. However, the depth of the probability minimum depends strongly on the

approach distance to resonance and is generally less than for the infinite ramp case.

This behavior can be understood in terms of the magnetic field width of the avoided

crossing, defined as the ratio of the coupling strength to the slope of detuning with

B-field: ω0/(dω/dB). The transition probability goes up as the pulses penetrate more

deeply into this strong coupling region. Another notable difference between the finite

B-field pulse result and the infinite double-passage result is the ramp time at which

the minimum occurs (∆tmin) . For finite pulses, the probability minimum occurs at a

ramp time that is proportional to the inverse of the squared dressed state splitting at

closest approach. The dressed state splitting decreases as one approaches resonance,

so that ∆tmin becomes larger. It is very interesting to observe these trends in the toy

model because the same qualitative features are observed in the experimental data for

triangular B-field pulses (see Figure 5.3). In those data, the number remaining in the

condensate after a triangular pulse toward resonance has a clear minimum as a function

of ramp time. The depth and position of the minimum vary with approach distance to

resonance, as in the toy model.

Given the qualitative agreement between the toy model predictions and the tri-

angle pulse experimental data, one might hope to make a quantitative comparison or

even try to fit to the data. In principle, this would allow a determination of the ap-

propriate Feshbach resonance coupling strength and relative magnetic moment between

the atomic and molecular states. However, all of our attempts to fit the toy model to
2 Even when the B-field pulse does cross resonance, there is one conspicuous difference between the

numerical integration and the LZ prediction – the integration yields large amplitude, high frequency
probability oscillations, called Stückelberg oscillations, as a function of the ramp time. The LZ model
expression 2p(1-p) is a result of phase-averaging over these rapid oscillations. Stückelberg oscillations
were never seen in the experiment.
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Figure 5.12: Toy model predictions for finite magnetic field pulses. The probability of
remaining in the initial atomic state is shown versus ramp time for a triangular pulse.
The conditions are Bcross=155 G, Binit=165.6 G, and Bpulse=158 G (white points) and
156 G (black points). The coupling strength and relative magnetic moment between
the atomic and molecular states are (arbitrarily) set to be 11 kHz and 7.6 kHz/G,
respectively. We are unable to obtain quantitative agreement with the experimental
data of Figure 5.3 even when we allow these two parameters to float freely.
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the data have failed. We find that the toy model does a rather bad job at reproducing

quantitative features of the data, even when we allow the coupling strength and relative

magnetic moment between the two states to be arbitrary parameters in the numerical

simulation. In addition, the production of the burst atoms in the experiment cannot

be explained by the two-level toy model. It is clear that a more sophisticated avoided

crossing theory is needed to accurately model the real Feshbach resonance.

5.5.3 A better avoided crossing model

Josh Dunn, Chris Greene, and coworkers developed a fairly simple theory of the

85Rb Feshbach resonance [62, 63] (see also Ref. [64] for related picture) that has several

advantages over the toy model discussed above. They model the Feshbach resonance

as a series of avoided crossings between the resonance state (molecular state) and the

eigenstates of the harmonic trapping potential. In the context of the Dunn/Greene

model, one can see how a B-field pulse toward resonance could generate burst atoms.

Because the molecular state is coupled to many trap states, the molecular state can

serve as an intermediate state for transitions from the lowest trap level (BEC) to the

excited levels. This provides a potential mechanism for the production of burst atoms in

the experiment. While this model has some appealing features, we have not successfully

applied it to the Feshbach resonance data discussed in Section 5.3 and Section 5.4. Here

we provide a brief discussion of the model and its limitations.

The Dunn/Greene theory is based on the exact quantum mechanical description

of a pair of harmonically-trapped atoms that interact via a short range (δ function)

potential characterized by the scattering length, a [65]. While the δ function potential

is an approximation to the real one, this approximation is justified when the atoms

collide at low energy so that their deBroglie wavelength greatly exceeds the range of the

physical potential. This means that the scattering length is sufficient to describe the

interaction between pairs of condensate atoms. For the atom pair, the total Hamiltonian
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can be broken into two parts — one for the center-of-mass motion and one for the relative

motion. Since the relative motion Hamiltonian describes the atomic collisions, this part

contains the interaction potential that depends on the scattering length. The eigenvalues

of the relative motion Hamiltonian are simply the standard harmonic oscillator levels,

but shifted according to the sign and magnitude of a. At positive scattering length or

repulsive atom-atom interaction the energy levels are shifted upward. The opposite is

true for negative a. Because the Feshbach resonance causes a large variation in a with

magnetic field, the eigenvalues of the atom pair show a pronounced B-field dependence,

as shown by the solid lines in Figure 5.13.

The actual calculation of the energy eigenvalues of the interacting atom pair

involves solving a transcendental equation containing the energy and B-field-dependent

scattering length. One can solve the equation iteratively or graphically, but there is

no analytic expression for the eigenvalues as a function of magnetic field. Since this is

rather cumbersome for predicting transition probabilities when the B-field is ramped

near resonance, the authors of Ref. [62] create an approximate model Hamiltonian in

which the molecular state undergoes repeated avoided crossings with all of the harmonic

trap states. The uncoupled molecular state energy is assumed to vary linearly with

B-field and the coupling matrix elements to the excited trap states obey the Wigner

threshold law [52] (ω0 ∝
√

E). By adjusting the parameters of the model Hamiltonian

and diagonalizing it, one can obtain very good agreement with the exact eigenvalues

over a small range of magnetic field close to the Feshbach resonance (see part (a) of

Figure 5.13). However, the agreement becomes quite terrible as the B-field increases

by a few tenths of a Gauss above the resonance. The disagreement clearly shows that

the curvature in the molecular bound state energy is not due to a simple coupling with

the trap states! In fact, the binding energy curvature is very strong even outside the

B-field region where the trap states mix strongly with the molecular state. In the exact

solution to the interacting atom pair, the binding energy curvature is determined by
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Figure 5.13: Energy eigenvalues versus B-field for an interacting atom pair near the
Feshbach resonance. (a) Solid lines are the exact eigenvalues calculated by Josh Dunn.
Black points are the eigenvalues of an approximate model Hamiltonian in which the
diabatic bound state crosses zero energy at 155.3 G with a slope of -244,108 ~ω/G.
The coupling matrix elements are equal to (113 ~ω) n1/4, where n ≥ 1 is the quantum
number of a given excited state. The agreement between the model Hamiltonian and
the exact solution is quite good near resonance. (b) Same as in (a), but with a larger
energy and magnetic field range. Here the molecular bound state (solid line) lies well
below the excited trap states, which are visible as a thick bar of black at the top. White
points are the bound state energies from a coupled-channels calculation by Servaas
Kokkelmans. These calculations agree quite well with the eigenvalues from the atom-
pair model. However, the model Hamiltonian eigenvalues (black points) disagree very
strongly with both the atom-pair model and the CC calculation over this B-field range.
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the variation of scattering length with B-field.

Because of the failure of the model Hamiltonian to reproduce the molecular bind-

ing energy curve over the relevant magnetic field range, we have not attempted to model

the effects of the experimental B-field pulses with the approximate Hamiltonian of the

Dunn/Greene model. In the experiment, the pulses typically jump from ∼166 G to

∼156 G. This magnetic field range corresponds to the region where the model Hamilto-

nian from Ref. [62] fails to accurately describe the energy difference between the atomic

and molecular states. Another potential obstacle to modeling the number loss and burst

formation is the large number of trap states that we would need to include. Since the

burst energy is of order 100 nK or 2 kHz, we expect that the number of trap states

required would be roughly Eburst/~ω = 2 kHz/12.7 Hz ' 160. However, calculating

transition probabilities to a large number of trap states might not be necessary; one

alternative is to reduce the number of states by changing the trap frequency used in

the model (and adjusting the coupling matrix elements accordingly). We believe this

would be justified because the exact structure of the harmonic trap potential should

not affect the details of the non-adiabatic transitions, which occur on a time scale far

shorter than an actual trap oscillation period. In the future, it may be possible to devise

an improved model Hamiltonian that would allow one to predict the dependences of the

experimental observables on the magnetic field pulses. Another possibility would be to

find a way to integrate the Schrodinger equation using the exact eigenvalues from the

transcendental equation in the Dunn/Greene model. Whether or not the BEC number

loss and burst formation can be understood quantitatively in terms of simple 2-body

interactions remains to be seen.

5.5.4 Modeling the resonance physics with quantum field theory

Servaas Kokkelmans and Murray Holland have developed a quantum field theory

to describe the physics of near-resonant 85Rb BEC [56, 9]. This theory has been highly
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successful in describing the atom-molecule coherent oscillation experiments of Chapter 6,

so it is reasonable to expect good agreement with the single pulse observations of the

present Chapter. However, a detailed comparison between theory and single pulse data

has not yet been made.

The Kokkelmans/Holland theory moves far beyond the level of the two-body scat-

tering models discussed in the previous sections. In this theory, the BEC is described by

a mean-field theory that includes pair correlations between atoms. Although all corre-

lations between atoms are usually neglected in the standard Gross-Pitaevskii equation,

the authors of Ref. [56] argue that the pair correlations are essential for understanding

the BEC physics near a Feshbach resonance. The resonant two-body scattering physics

is accurately contained in the effective field theory, where atomic and molecular field

operators describe the open and closed channel states of the Feshbach resonance. The

closed channel is coupled to a continuum of scattering states above the open channel

threshold.

The effect of rapid B-field variations on the BEC can be determined by numer-

ically solving the equations in Ref. [56]. As in the experiment, the model shows that

a magnetic field pulse leads to number loss from the BEC. Most of the loss is due to

formation of relatively hot noncondensate atoms (identified by Kokkelmans and Holland

as the burst atoms). These noncondensate atoms are very strongly correlated because

they are created as pairs of atoms with equal and opposite momenta (±p). Each pair

of burst atoms can be viewed as a dissociated molecule. The model also predicts the

creation of a fairly small number of bound molecules, which are assumed to be unde-

tected or missing in the experiment. Focusing on the burst, the Kokkelmans/Holland

theory predicts values for both the number and energy distribution of these atoms. The

predictions for Nburst and Eburst agree quite well with the double magnetic field pulse

experiments in Chapter 6 and we expect that the model will also accurately describe

the single pulse experiments [55].
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While the mean-field theory from Kokkelmans and Holland is conceptually much

more complex than the avoided crossing models described previously, the field theory has

the important advantage that it has successfully described the atom-molecule coupling in

our double magnetic field pulse experiments. We will therefore provide more discussion

of the Kokkelmans/Holland theory and its relationship to the experimental data in the

next chapter.

A different quantum field theory for our BEC experiments was recently proposed

by the Oxford theory group [16]. This theory shares some similar features with the

Kokkelmans/Holland work, but the authors use a different method to incorporate the

underlying two-body scattering physics into the many-body Hamiltonian. In addition,

Kohler et al. examine the effect of a harmonic trapping potential on the physics of the

atom-molecule coupling. Like the Kokkelmans/Holland theory, the theory of Ref. [16]

yields a number of predictions that agree with experimental observables. More discus-

sion of the Kohler et al. model will be postponed until Chapter 6.



Chapter 6

Atom–molecule coherence in a Bose-Einstein condensate

6.1 Introduction

The strange time dependence of BEC number loss described in Chapter 5 strongly

suggested the presence of non-adiabatic transitions to an undetected molecular state.

To further explore this loss process, we utilized a pair of carefully controlled magnetic

field pulses, separated in time, in the vicinity of the Feshbach resonance.

The original motivation for the double B-field pulse sequence was to measure the

BEC recovery time after a single pulse. We hypothesized that the first pulse would

cause a large amount of 3-body recombination-induced number loss to the condensate.

The abrupt increase in recombination should produce a multitude of tiny holes or voids

in the BEC wavefunction. The sudden creation of voids would lead to condensate

excitations because of the localized changes in the mean-field interaction potential [66].

One might ask the question of how long does it take for these voids in the BEC to refill

as the surrounding atoms move in. Presumably the condensate recovery time could

be determined by applying a second, identical B-field pulse shortly after the first one.

One could increase the delay time between pulses until the 2nd pulse produced the

same BEC loss as the first pulse; this delay time would define the recovery time and

it should give information about the microscopic physics occurring inside the BEC. By

measuring the BEC response on such short time scales, one might hope to find evidence

for a breakdown in the predictions of mean-field theory.
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However, the recovery time picture proved too simplistic. The main defect of this

hypothesis lies in its assumption that the BEC number loss is incoherent; in contrast, we

actually discovered that a significant part of the loss is due to coherent transfer to an-

other state. We measured coherent oscillations in the BEC atom number as the spacing

between the two magnetic field pulses was varied. The observation of coherent oscilla-

tions provides us with definitive evidence for coupling between the atomic and molecular

states associated with the 85Rb Feshbach resonance. These experiments demonstrate

a remarkable quantum superposition between two distinct chemical species: free atoms

and weakly bound molecules.

Although the single B-field pulse data from Chapter 5 also suggest that there

is nonadiabatic mixing of the atomic and molecular states, these data were not as

convincing as the results described here. The experiments discussed in this Chapter have

led to a much more accurate theoretical picture of Feshbach resonances; in particular,

the physical importance of the shallow s-wave bound state has become clear. As a result

of our observations, the phenomenon of atom-molecule coupling and the role of the s-

wave bound state in the dynamics of the near-resonant 85Rb BEC have been explored

recently by several theoretical groups [56, 16, 67, 68]. A discussion of the present

agreement between experiment and theory will be given at the end of the Chapter.

6.2 Experimental methods

To study atom-molecule coherence, we first created 85Rb condensates typically

containing 16,500 atoms, with fewer than 1,000 non-condensed thermal atoms. The

initial number, Ninit, fluctuated from shot to shot by ∼500 atoms (∼ 3% number noise).

After producing a condensate at a B-field of 162.3 G, we ramped the magnetic field

adiabatically to 165.5 G, corresponding to an initial scattering length ainit ' 7 a0. The

spatial distribution of the atoms was Gaussian with a typical average atom density of

〈ninit〉 = 1.8 × 1013 cm−3. For some experiments where a lower initial density was
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desired, the adiabatic ramp to 165.5 G was omitted so that the mean field repulsion at

162.3 G (ainit ' 200 a0) reduced the average initial density to 〈ninit〉 = 3.5×1012 cm−3.

After preparing the condensate, we applied a selected fast magnetic field pulse

sequence by sending an appropriate time-dependent current through the auxiliary mag-

netic field coil. A representative set of double B-field pulses is shown in Figure 6.1.

The sequence is composed of two nearly identical short trapezoidal pulses separated by

a region of constant magnetic field (Bevolve). In our experiments, we varied the evolu-

tion time between pulses, tevolve, from 0 to 400 µs, while Bevolve ranged from 162 G to

156 G. We determined the value of Bevolve between the two pulses using the short rf

pulse technique described in section 3.3.3. We also found it useful to alter the initial

magnetic field, Binit, to change the initial BEC density and distance from the Feshbach

resonance. Usually, Binit was 162.3G or 165.5 G. We chose the B-field pulse amplitude

so that the pulses always approached to within ∼2 G of the Feshbach resonance.

Upon completion of the fast-pulse sequence in Figure 6.1, we ramped the magnetic

field from 165.5 G to ∼157 G in 5 ms and held the B-field constant for an additional 7 ms

to allow the repulsive mean-field energy to expand the condensate (see section 3.5.3).

Then we turned off the magnetic trap and used destructive absorption imaging 12.8 ms

later to observe the condensate and burst atoms. Our detection scheme was not sensitive

to atoms with kinetic energies larger than ∼ 2 µK nor to atoms in off-resonant molecular

states.

As we observed for single pulses toward the Feshbach resonance, there were two

distinct components of atoms visible in the absorption images and a third missing com-

ponent that we could not detect. One of the observed components was a cold remnant

BEC which was not noticeably heated or excited by the fast-pulse sequence (< 1 nK

kinetic energy was imparted by the pulse sequence), while the other component was a

relatively hot (∼200 nK) burst of atoms that remained magnetically trapped during the

BEC expansion time. Using the PG model to simulate the mean-field expansion that
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Figure 6.1: Magnetic field pulse shape. B-fields shown for pulses #1 and #2 correspond
to scattering lengths of ∼3300 a0, and the free precession field, Bevolve, corresponds to
a scattering length of ∼600 a0. The dashed line indicates the position of the Feshbach
resonance, where the scattering length diverges to infinity. In the text, we refer to the
free precession time as tevolve. The average ramp time for most of the pulses was 14 µs.
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Figure 6.2: An absorption image taken after the fast magnetic-field pulse sequence
and the mean-field expansion. The horizontal bar indicates the optical density. The
horizontal and vertical directions coincide with the axial and radial axes of the trap,
respectively. The dimensions of the image are 366 × 52 µm. The BEC remnant is
the roughly spherical cloud at the center, while the burst atoms are focused into a
thin line along the axial direction. There is a dramatic difference between the two
spatial distributions, owing to the large difference in the mean energies of the burst and
expanding BEC remnant (〈Eburst〉 ' 50× 〈Erem〉).
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we applied to the BEC remnant to measure its number, Nrem, we found that we should

impart ≤ 3 nK expansion energy to the remnant before imaging. This estimate agrees

well with the expansion velocity that we measured after the trap turn-off. Thus the

remnant BEC was more than 60× colder than the burst. A typical absorption image

of the atoms remaining after the double B-field pulses and time-of-flight expansion is

shown in Figure 6.2.

To find the number of atoms in the remnant BEC and the number of burst atoms,

we allowed the magnetic trap to focus the burst cloud before imaging. We fit the focused

burst (which had a much larger spatial extent than the remnant) with a two-dimensional

Gaussian surface, excluding the central region of the image that contained the remnant.

This fit yielded the number of burst atoms, Nburst. Subtracting the fit from the image

and performing a pixel-by-pixel sum of the central region of the image gave the remnant

number, Nrem.

6.3 Observation of population oscillations

6.3.1 BEC and burst number oscillations versus tevolve

We observed large-amplitude oscillations in the number of BEC and burst atoms

as we varied the delay time between magnetic field pulses. Representative number

oscillation data for the condensate and burst atoms are displayed in Figure 6.3. The

number oscillations were only visible after two B-field pulses; in fact, with only pulse #1

and the subsequent constant B-field but with no pulse #2, Nrem showed no variation

except for a slow decay. The gradual decay rate of a few atoms per microsecond is

consistent with the loss rate expected for a single pulse to the evolution magnetic field,

as discussed in Chapter 5. Although we studied the oscillations under a wide variety

of different conditions, we never observed the double-pulse value of Nrem to be larger

than the single-pulse value, implying that each B-field pulse causes some incoherent or
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irreversible loss to the BEC.

6.3.2 Nmissing oscillations

The BEC and burst atom oscillations in Figure 6.3 have very similar amplitudes

and frequencies and they appear almost completely out of phase. Nburst grows larger

when Nrem decreases, and vice versa. However, the measured phase shift between the

two oscillations is actually 154(4)◦, which is significantly different from 180◦. Thus, the

BEC and burst number oscillations do not exactly cancel out — if one calculates the

total number of atoms, Ntot=Nrem+Nburst, this quantity also displays clear oscillations

versus evolution time. As shown in Figure 6.4, the amplitude of the Ntot oscillations is

significantly smaller than that of the other two number components.

Figure 6.4 clearly demonstrates that the time-averaged total number of atoms

after the two B-field pulses does not equal the initial number of BEC atoms. There are

a number of missing atoms, Nmissing, and the measured oscillations in Ntot correspond

to oscillations in Nmissing. We therefore have evidence that some of the BEC atoms are

oscillating into and out of a different state that is not detectable by the experiment.

This phenomenon of oscillations to a state that is invisible to the detector may be

compared to the well-known neutrino oscillations in astrophysics. We assume that the

undetected state in our BEC experiment is the weakly bound molecular state of the

Feshbach resonance.

As a side note, the data in Figure 6.4 were measured with fairly low-density

condensates to minimize the number of missing atoms that do not oscillate and thereby

allow for more atoms in the remnant BEC.1 This improved the visibility of the remnant

and the signal-to-noise ratio for the absorption images. To produce condensates with

low density for these measurements, we altered the magnetic pulses somewhat from
1 We observed that the B-field pulses always produce some missing atoms whose number does not

oscillate with tevolve. These atoms may or may not be converted into the weakly bound molecular state.
In any case, we found that reducing the BEC density decreased the number of non-oscillating missing
atoms. For further discussion of this point, see section 6.4.2.
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Figure 6.3: Coherent oscillations in BEC number and burst number. (a) Black points
are the remnant BEC number, Nrem, versus evolution time, tevolve, between the two
magnetic field pulses. The solid line is a fit to the data using a damped sine wave with
a frequency of 196(1) kHz and a damping rate of 11(4) × 103 s−1. The open circles
near Nrem = 13000 indicate the number remaining after only pulse #1 and tevolve at
159.84 G. (b) Black points are the number of burst atoms versus tevolve. The fit (solid
line) yields an oscillation frequency and damping rate that are consistent with those
from the fit to the BEC number in part (a). The clear circles are the burst number
measured after a single pulse plus a plateau at Bevolve. For the data in (a) and (b), the
initial BEC density was 〈ninit〉 = 3.5×1012 cm−3 and Binit=162.25(5) G. The evolution
B-field was Bevolve=159.84(2) G.
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Figure 6.4: Number versus tevolve for low density condensates (〈ninit〉 = 3.5×1012 cm−3).
From bottom to top, the data are Nburst (open circles), Nrem (filled circles), and the total
number of observed atoms (gray squares). Each data set is fit by a damped sine wave as
shown by the lines. Here the fitting function is y = y0+A exp (−t/τdecay) sin (2πν0t + φ),
where ν0 is the frequency and τdecay is the decay time constant. The initial BEC number,
Ninit = 17,100, is indicated by the flat dashed line. The fit to the BEC remnant data
gives an oscillation frequency of 196(1) kHz and τdecay = 91(33) µs (the longer time
data used to determine τdecay are not shown).
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the shapes shown in Figure 6.1. We set the initial magnetic field before the fast-pulse

sequence to 162.25(5) G and reduced the amplitudes for pulses #1 and #2 to ∼7 G.

The evolution B-field was Bevolve = 159.84(2) G. Under these conditions, the initial

BEC density was relatively low: 〈ninit〉 = 3.5× 1012 cm−3.

6.3.3 Oscillation frequency versus Bevolve

Very strong evidence for the importance of the weakly bound molecular state to

the observed BEC dynamics can be obtained from the magnetic field dependence of

the number oscillation frequency. We have discovered that the oscillation frequency

(ν0) for the BEC, burst, and missing atom populations matches the binding energy of

the molecular state: hν0=εbind. We explored the B-field dependence of the oscillation

frequency by applying different values of Bevolve during the evolution time between the

magnetic field pulses. As shown in Figure 6.5, we mapped out ν0 versus B-field over

a ∼5 G range above the Feshbach resonance field of 155 G. The oscillation frequency

varied by almost two orders of magnitude as Bevolve increased from 156.6 G to 162 G.

Along with the measured frequencies and magnetic fields, Figure 6.5 also displays

theoretical predictions for the molecular bound state energy relative to the atomic state.

One prediction, shown by the dotted line, comes from basic zero-energy scattering the-

ory. In the regime where the scattering length is positive and much larger than the

radius of the interatomic potential well, the bound state energy for an arbitrary attrac-

tive potential can be approximated by ε = −~2/ma2 [11], where ~ is Plank’s constant

divided by 2π, m is the atomic mass, and a is the scattering length. The same equation

relates the bound state energy to the effective scattering length, which is calculated from

the Feshbach resonance parameters through the relation a = abg× (1− ∆
B−Bpeak

), where

abg is the background scattering length, ∆ is the width of the Feshbach resonance, and

Bpeak is the resonant magnetic field. The quantity |ε|/h is plotted with no adjustable pa-

rameters in Figure 6.5. The measured oscillation frequencies are in excellent agreement
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Figure 6.5: Oscillation frequency versus magnetic field. The points are the measured
frequencies. The solid line is the energy difference between the atom–atom threshold
and the bound molecular state found by S. J. J. M. F. Kokkelmans with a coupled-
channels scattering calculation. The dotted line is a plot of |ε| = ~2/ma2. The inset
is an expanded view of the lower-frequency data. The magnetic-field measurements for
the points with the smallest horizontal error bars were performed on the same days as
the corresponding frequency measurements. The error bars for the points with larger
field uncertainties were inflated by 100 mG to account for estimated day-to-day field
drifts.
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with this simple model over the range of magnetic fields where the model is expected

to be valid.

The solid line in Figure 6.5 is a prediction of the binding energy from a coupled–

channels (CC) scattering calculation by Servaas Kokkelmans. This calculation is based

on the results of a recent determination of the rubidium collisional interactions from

several high-precision data for 85Rb and 87Rb [69]. We see that the coupled-channels

predictions for the binding energy are in excellent agreement with the oscillation fre-

quency data over the entire range of magnetic field. It is important to emphasize that

both the simple expression and the more sophisticated CC calculation provide predic-

tions for the binding energy; they are not fits to the oscillation frequency data. The

magnetic field dependence of ν0 is discussed in greater detail in Chapter 7, where we use

precision measurements of the frequency and B-field to tightly constrain the parameters

of the Feshbach resonance.

6.3.4 Interpreting the oscillations

The fact that the population oscillations occur at exactly the frequency corre-

sponding to the molecular binding energy clearly indicates that we are creating a co-

herent superposition of atoms and molecules with the sudden magnetic-field pulses.

We suggest the following interpretation of our observations. Each magnetic field pulse

provides a sufficiently rapid perturbation to result in coherent nonadiabatic transitions

between the atomic and molecular states. The first B-field pulse produces an atom-

molecule superposition state and the relative phase between the two states in the super-

position evolves according to their relative energy difference during tevolve. This energy

difference is determined by the B-field-dependent binding energy at Bevolve. Because

of the relative phase evolution, the final transition probability from the atomic state to

the molecular state after the second pulse depends on tevolve. The observed population

oscillations are due to a quantum-mechanical interference between the transition am-
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plitudes for pulse #1 and pulse #2. Another way to understand the oscillations is to

consider that the 2nd pulse transfers some population from the molecular part of the

superposition to the atomic state. This “new” probability amplitude in the atomic state

can interfere with the amplitude that remained in the atomic state during tevolve. The

observed oscillation behavior is somewhat analogous to that seen in Ramsey’s method

of separated oscillatory fields [24], in which two microwave pulses, separated in time,

drive transitions in a two-level atom.

Although our experiment possesses some similarities to the Ramsey 2-pulse ex-

periment, there are also many differences. It is illustrative to explore these differences.

For instance, we observe three distinct components of atoms oscillating as a function of

evolution time, each with a different oscillation phase and amplitude. In contrast, the

conventional Ramsey oscillations occur in a two-level system where the populations of

the two states are always exactly out of phase with one another. An additional differ-

ence between our experiment and the Ramsey case is the precise nature of the coupling

pulses. In the Ramsey experiment, the two states are coupled by a pair of rf or mi-

crowave radiation pulses that are nearly resonant with the transition frequency between

the two states. Each radiation pulse has a duration that is much longer than the period

of the rf or microwave radiation. Our coupling pulses, on the other hand, involve non-

periodic time-variations of a magnetic field. We achieve coupling between the atomic

and molecular states by briefly ramping down the relative energy difference between

the states toward zero, as in a Landau-Zener experiment. In fact, our experiment is

probably best pictured as a combination of Landau-Zener magnetic field coupling pulses

separated by a Ramsey-like relative phase evolution between the atomic and molecular

states.

The experimentally observed population oscillations in the BEC number indicate

that we have produced a coherent superposition of atomic and molecular Bose-Einstein

condensates. We propose a simple argument to justify our claim for the existence of
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the molecular BEC (mBEC). First, we know from the phase coherence property of

condensates that the initial atomic BEC possesses a common phase across the sample

of atoms. After the double B-field pulses, we measure large contrast oscillations in

the number of BEC atoms, which implies that there is a large fraction of the atomic

BEC participating in the population oscillations. If a large fraction of the atomic BEC

participates in the oscillations, then the atom/molecule superposition must exist at

significantly different spatial positions within the original atomic BEC volume. Thus,

we produce molecules that are distributed in space and are phase coherent — these are

two important properties that identify a BEC! The creation of a molecular BEC is a

remarkable achievement and should provide an abundance of avenues for future study.

6.3.5 Mechanisms for missing atoms

If our interpretation of the BEC number oscillations is correct, then one might

ask how it is that we distinguish between the atomic and molecular states. In any

interference experiment, there must be some way to discriminate between the two states

that are interfering with one another. Since we find that some atoms are missing from

the absorption images, we evidently do have a discriminating mechanism that is “built-

in” to the experiment.

In our experiment, missing atoms could be created by at least two different mech-

anisms involving the molecular state. One possibility is that the molecules formed by

the double B-field pulses are destroyed when we turn off the magnetic trap and cross the

Feshbach resonance. A related idea is presented in Ref. [15]. By turning off the trap,

we cause the molecular state to become unbound (the molecular state lies far above the

colliding atoms threshold energy for B=0). The molecules could therefore dissociate

into sufficiently high energy atoms during the trap turn-off (> 1 µK) that we would not

detect them in the absorption imaging.

Another mechanism for the generation of missing atoms is the possibility of in-
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elastic molecule-atom or molecule-molecule collisions during the ∼30 ms time between

the double pulse sequence and the magnetic trap turn-off. In principle the molecules

should be confined in the magnetic trap because their magnetic moment is very simi-

lar to that of the |2,−2〉 atomic state for magnetic fields near the Feshbach resonance.

During the time that a given molecule resides in the magnetic trap, if the molecule

collides with an atom or another molecule, it may drop to a lower energy vibrational

level, gaining substantial kinetic energy in the process. In this case, the deeply bound

molecule would not experience a Feshbach resonant coupling to the atomic state and the

molecule would remain a molecule after the magnetic trap turnoff. However, we would

not see the molecule because of its large kinetic energy and low probability of scattering

photons from the probe laser. It is important to note that the cross-sections and rates

for collisions between highly-vibrationally-excited molecules and ultracold atoms have

not been calculated for the heavy alkali atoms [51, 70], although some results have been

obtained for He-H2 collisions [71]. Measuring such a cross-section for Rb2 would be a

major experimental breakthrough.

To investigate the mechanism for missing atom generation, we attempted to mea-

sure the number oscillations by imaging the BEC in the magnetic trap. The goal was

to look at the BEC immediately after the fast pulse sequence or even during tevolve

between the pulses. In theory, the presence or absence of oscillations in the data would

then help us to identify how the missing atoms are removed from the sample under our

normal operating conditions.

Unfortunately, our attempts to extract useful information from the in-trap imag-

ing of the condensates proved inconclusive. Due to a number of systematic effects related

to the small size of the unexpanded BEC, the large Zeeman shift of the trapped atoms,

and optical pumping effects that reduce the number of photons scattered by each atom,

the absorption images were difficult to interpret. For example, one consequence of not

allowing the BEC and burst atoms to expand is the inability to distinguish between the
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BEC and burst populations in the images. When we tried to circumvent this problem

by expanding the BEC in the trap and then imaging the atoms, the data indicated that

the missing atoms were still missing before the trap turn-off. However, this result should

be considered preliminary and needs to be confirmed with more data. Although we may

return to this experiment in the future, at present we have not definitively determined

the mechanism for the missing atoms.

6.4 Controlling the oscillation characteristics

After making some preliminary measurements of the atom-molecule population

oscillations, we made a detailed study of the oscillation characteristics. To learn more

about the physics of this unique system, we explored the dependence of the oscillations

on the initial BEC density as well as the particular shapes of the two magnetic field

pulses. The behavior of the atom-molecule oscillations under a variety of different

conditions is described in this section.

6.4.1 Amplitude of BEC number oscillations

The first property of the number oscillations that we studied was their amplitude.

We desired to increase the amplitude as much as possible, both to increase the number

of molecules created and also to improve the signal-to-noise ratio for determining other

properties, such as the frequency and phase.

Keeping the pulse lengths fixed at 15 µs, we varied the double pulse amplitudes

to change the approach distance to the Feshbach resonance. For pulses to ∼156.3 G,

we measured a BEC number oscillation amplitude of roughly 1700 atoms. Increasing

the pulse amplitudes to reach ∼155 G caused no change to the oscillation amplitude.

The lack of a change is not surprising when one considers that the molecular binding

energy has very little B-field dependence from ∼156.3 G to ∼155 G (see Figure 6.5) even

though the scattering length increases from ∼3000 a0 to more than 20,000 a0. Since
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the magnetic field dependence of εbind is nearly quadratic with B-field to the right of

the Feshbach resonance, we expect that the population oscillations should dramatically

decrease in amplitude for pulses that only approach to within 3 or 4 G from resonance.

We did not attempt to study this expected decrease in oscillation amplitude. We felt

that the single pulse data on BEC number loss versus pulse amplitude (see section 5.3)

should be adequate for predicting the trend.

Based on the single pulse data for BEC loss, we suspected that varying the pulse

lengths of the double pulses could substantially change the amplitude of the population

oscillations. Although this proved to be true, nevertheless our original choice of 15 µs for

the pulse lengths turned out to produce the largest number oscillations. We studied the

pulse length dependence of the oscillation amplitude as the length was increased from

5 µs to 50 µs. The shortest pulses produced very little loss from the condensate, so the

oscillation amplitude was small. In contrast, the longest pulses caused huge losses from

the condensate (more than 50%), but the oscillation amplitude actually decreased. We

found that simply increasing the overall number of missing atoms does not necessarily

increase the missing atom oscillation amplitude, implying that there may be two parts

to Nmissing. Some of the loss is coherent and leads to number oscillations while another

part of the loss is incoherent. The incoherent number loss grows very rapidly with

increasing magnetic pulse length.

6.4.2 Strong density dependence of Nmissing

In addition to the dependence of Nmissing on pulse length for the double pulses,

we also observed a strong dependence on the initial condensate density. When the

BEC density was increased from 〈ninit〉 = 3.5 × 1012 cm−3 by more than one order

of magnitude, the missing fraction increased from ∼8% to ∼40% of the initial BEC

number. In addition, the number of burst atoms increased dramatically. As a result,

the average number of BEC remnant atoms was less than the average number of burst
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atoms.

We show the three populations of atoms versus tevolve for high initial BEC density

in Figure 6.6. While the burst and condensate numbers apparently still oscillate at the

same frequency for these data, the phases and amplitudes of the oscillations in Nrem

and Nburst are such that the total number oscillations are not visible. Under these high

density conditions, the number of missing atoms is huge — roughly 10,000 atoms! Here

Nmissing exceeds the average value of Nrem, which is about 7000.

We took data similar to those shown in Figure 6.6 for several values of the BEC

density and studied the resulting number of missing atoms. To isolate the density

dependence of Nmissing, we used fixed values of Bevolve and pulse length. We varied the

initial density by two different techniques. In the first method, we changed the number

of atoms in the BEC by holding the BEC in the magnetic trap for 5 to 10 s after

completion of evaporative cooling. Density-dependent losses then reduced the number

of BEC atoms without appreciably heating the condensate [1]. Our second method

for changing the density was by adiabatically varying the initial magnetic field before

the set of double pulses, thereby altering the repulsive self-interaction strength in the

condensate. This caused the volume occupied by the BEC ground state wavefunction

to vary with the magnetic field. In the latter method, we also adjusted the amplitude

of the double pulses to ensure that they maintained the same approach distance to the

Feshbach resonance.

The dependence of Nmissing on BEC density is illustrated in Figure 6.7. Over

the range in the plot, the missing fraction rises from nearly zero to 0.4. For some

reason, the smooth growth of the missing fraction with density saturates above 〈ninit〉 '

2× 1013 cm−3. Further investigation of the missing atoms is needed to understand this

trend as well as the origin of Nmissing.
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Figure 6.6: Number versus tevolve for high density condensates (〈ninit〉 = 4.4 ×
1013 cm−3). As in Figure 6.4, we show Nrem (filled circles), Nburst (open circles), and
the total number of observed atoms (gray squares). The lines are damped sinusoidal
fits to the different populations of atoms. The initial BEC number, Ninit = 27,800,
is indicated by the flat dashed line. The fit parameters for the remnant oscillations
are ν0 = 133(1) kHz and τdecay = 38(8) µs. We added an additional term to the fit
function to account for an overall linear loss rate to the number. The fit gave a loss
rate of -19(6) atoms/µs. The evolution B-field was Bevolve = 159.35(5) G. Because the
initial magnetic field before the fast-pulse sequence was 165.71(15) G, we used pulse
amplitudes of ∼10 G to closely approach the Feshbach resonance.
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Figure 6.7: Fraction of missing atoms as a function of the initial BEC density. The
missing fraction is defined as 1-〈Ntotal〉/〈Ninit〉, where 〈Ntotal〉 is the average sum of the
burst atoms and the BEC remnant atoms and 〈Ninit〉 is the average number of BEC
atoms before the double pulse sequence. We can determine the density by measuring
the initial magnetic field (scattering length) and calculating the volume of the BEC
using the PG model. After finding the volume, we use the measured value of 〈Ninit〉 to
calculate the average density. The typical uncertainty in this density determination is
∼20% due to uncertainty in the measured number of atoms and the initial scattering
length used in the PG model.
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6.4.3 Damping of Nrem oscillations

Damping of the number oscillations can be seen in most of the data that we

collected. For values of Bevolve between 157 G and ∼161 G, the number oscillations are

underdamped, so that the damping time is much longer than the oscillation period. To

obtain a high precision measurement of τdecay it is therefore necessary to measure the

number oscillations over many cycles. One obvious method to obtain the damping time

without requiring too many points is by taking closely-spaced data in windows that are

separated by longer time intervals, ∆t >> 1/ν0. Then one can fit the entire set to a

damped sine wave that interpolates in the intervals between the data windows.

Unfortunately, we found this method did not work well in practice because of the

presence of phase noise in the data. We observed shot-to-shot noise in the oscillation

phase for different repetitions of the experimental cycle. The noise was bigger for longer

tevolve, indicating that the source of the noise was shifts to the oscillation frequency.

The frequency noise was likely due to shot-to-shot magnetic field noise. We provide

further discussion of this point in section 7.2.3.

To determine the damping rate despite the presence of phase noise, we adopted

another technique for data measurement. We measured Nrem versus tevolve in several

windows having a length of one or two oscillation periods. The spacing between windows

was chosen to be comparable to our estimated 1/e time for the damping. We analyzed

the data by computing the maximum variation in remnant BEC number within each

time window. We plotted ∆Nmax versus tevolve and fit the data to a decaying exponential

function, as shown in Figure 6.8.

We discovered that the damping rate was quite insensitive to both initial BEC

density and magnetic field in the B-field range from 157 G to ∼161 G. Recently, we have

found that the rate (1/τdecay) actually increases rapidly as the magnetic field increases

above ∼161 G, which is possibly related to the rapid variation in binding energy with



155

tevolve (µs)

0 100 200 300 400

∆N
m

ax
 in

 1
4 

µs
 w

in
do

w

0

500

1000

1500

2000

2500

3000

(b)

tevolve (µs)

0 50 100 150 200 250 300 350 400

B
E

C
 n

um
be

r

8000

8500

9000

9500

10000

10500

11000

(a)

Figure 6.8: Damping of BEC number oscillations. (a) BEC remnant number (Nrem)
versus tevolve. The data are grouped into 4 windows with each window consisting of
2 oscillation periods. (b) Peak-to-peak variation in remnant number, ∆Nmax, versus
tevolve (black points). ∆Nmax is calculated for a single oscillation period, which is
roughly 14 µs in length. The line is an exponential decay fit to the data, with the
baseline fixed at the average of the four longest time data: Nbase=640 atoms. The
damping time from the fit is 82(14) µs (damping rate γ = 12(2)×103 s−1). The baseline
of 640 atoms is quite reasonable considering the peak-to-peak number noise observed
during the measurement. Note that the peaks of the oscillations in part (a) decrease
more rapidly than the troughs due to an overall loss of BEC atoms during tevolve. We
find that the loss is linear with time and occurs at a rate of -2.2(2) atoms/µs.
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magnetic field. Both the B-field dependence and possible mechanisms for the damping

are presently under investigation and will be the subject of a future publication by our

group.

We also looked for a temperature dependence of both the damping and the oscil-

lation frequency at ν0 ∼ 200 kHz and did not see any. The high-temperature data were

much noisier than the data for pure condensates, due to unexplained enhanced noise

in the number of thermal atoms after the magnetic field pulses, but when the initial

thermal fraction was increased from <5% to 30%, the data still displayed oscillations

with frequency, amplitude, and damping consistent with what was observed with low

temperature data. Since we changed Ntherm by more than a factor of 6 and saw no

effect, any dependence of the damping rate on temperature must be very weak.

6.4.4 Relative phase between Nrem and Nburst oscillations

A particularly intriguing aspect of our data is the observation of three distinct

oscillations in the various number components visible from the absorption images. Be-

cause the relative phase between the BEC remnant and the burst oscillations does not

equal 180◦, there is a third oscillation visible in Nmissing (or Ntotal). We believe that the

Nmissing oscillation amplitude may correspond to the number of molecules produced by

the double pulse sequence.

For reasons that will be elucidated later in this section, we suspected that the

number of molecules might be increased by ramping the B-field more slowly at the

end of magnetic field pulse #2. We therefore examined the amplitude of the Nmissing

oscillations as a function of the final ramp time of the second B-field pulse. As a

result of changing this ramp time, there were variations in the relative phase between

the BEC remnant and burst number oscillations, ∆φ = φburst − φBEC . The relative

phase variations caused the Nmissing oscillation amplitude to change significantly. For

example, increasing the final ramp time of pulse #2 from our default value of 11 µs to
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160 µs caused the missing number oscillation amplitude to increase from 1000 atoms to

nearly 2800 atoms. The number oscillations for the 160 µs final ramp time are displayed

in Figure 6.9.

By comparing different data sets such as those shown in Figure 6.9, we observed

that the relative phase shift , ∆φ, decreased as the final ramp time for pulse #2 became

longer. The phase shift behavior was entirely due to a phase shift in the burst number

oscillations; the BEC remnant phase remained fixed. As the final ramp time increased,

the burst oscillation phase shifted in such a way that the lowest curve in Figure 6.9 moved

smoothly to the right. We show the quantitative details of this trend in Figure 6.10.

There ∆φ is seen to decrease from ∼150◦ to ∼80◦ as the ramp time goes from 10 µs

to 330 µs. After an initially rapid decline, the relative phase eventually levels out for

slower and slower ramps.

After demonstrating that the relative phase shift could take on values very dif-

ferent from 180◦, we scratched our heads and wondered about the origins of the shift.

Since we had generally observed that fewer atoms in the BEC correspond to more atoms

in the burst, we speculated that the phase shift between the Nrem and Nburst oscilla-

tions might originate in a time delay between the disappearance of the BEC and the

creation of the burst atoms. To determine whether ∆φ was a true phase shift or was

simply a shift caused by a fixed time delay, we measured ∆φ at two different values of

the oscillation frequency. While holding the pulse #2 final ramp time fixed at 160 µs,

we changed Bevolve to alter the oscillation frequency. Decreasing ν0 from ∼200 kHz to

56 kHz caused the relative phase shift to change from 68(7)◦ to 88(9)◦. The relative

phase shift therefore increased by a factor of 1.3(2). However, if the phase shift were

due to a fixed time delay, then decreasing the frequency by a factor of 4 should cause

∆φ to drop by a factor of 4 also (so we would expect 68◦/4 = 17◦ in this case). Thus,

the time delay idea is clearly not correct.

Nevertheless, it remains true that the second magnetic pulse shape affects the
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Figure 6.9: Enhanced Nmissing oscillations. Number versus tevolve for a relatively long
pulse #2 final ramp time of 160 µs. From bottom to top, the data are Nburst (open
circles), Nrem (filled circles), and the total number of observed atoms (gray squares).
The different data sets are fit by damped sine waves as shown by the lines. The relative
phase between burst and remnant oscillations is φburst − φBEC=68(7)◦, which is more
than 2× smaller than the 147(8)◦ phase difference for our typical 11 µs final ramp time
(see Figure 6.4 and related discussion in the text).
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Figure 6.10: Relative oscillation phase versus final ramp time of 2nd B-field pulse. Black
points with error bars are the phase difference φburst − φBEC . To calculate the phase
difference, we first fit each population oscillation (remnant BEC atoms, burst atoms, and
total number of atoms) to a sinusoidal function. From these three fits, we then compute
the weighted average oscillation frequency. We next fit each component of atoms again,
constraining the oscillation frequency for the fit to be equal to the weighted average
value. This procedure allows us to determine the phase shift between the burst and
remnant BEC number oscillations with improved precision.
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ratio of BEC atoms to burst atoms at fixed evolution time. For instance, if we choose

tevolve such that Nrem is at a minimum or trough of the oscillation, then lengthening

the 2nd pulse final ramp time causes the number of burst atoms to decrease and the

missing number to increase. Another way to see this is to compare the phases of the

oscillations in Nrem and Nmissing. As the final ramp time becomes longer, the remnant

oscillations become more and more out of phase with the missing number oscillations.

Concurrently, the amplitude of the Nmissing oscillation grows larger.

These observations suggest that we preserve more molecules (more missing atoms)

after pulse #2 by slowing down the final ramp. We believe that increasing the 2nd

pulse final ramp time enhances the probability that the molecules formed during the

coupling pulse survive the ramp back toward higher B-field (∼166 G). The justification

for this claim is based on the arguments of Chris Greene and Murray Holland. Since

the radial wavefunction of the weakly bound molecular state has a size characterized

by the scattering length (see Chapter 2), a longer pulse should allow a more gradual or

adiabatic decrease in the size of the wavefunction toward smaller and smaller radius. In

contrast, the shorter ramp times are more sudden and they lead to a higher probability

that the molecule will simply dissociate into a pair of free atoms during the ramp.

It is possible that the hugely extended molecules that are created near the Feshbach

resonance are very fragile and they dissociate when the B-field jumps quickly back to

small a. If this interpretation is correct, then the data imply that the dissociation of

the molecular state can be influenced by the magnetic field ramp rate — with slower

ramps leading to less dissociation.

One must take some care when talking in this way about the state of the molecule

at a particular B-field (scattering length) because of the time variation of the field.

During the double magnetic field pulses, the state of the system is far from equilibrium.

We only observe the populations of the BEC remnant and burst atoms long after the

atom-molecule coupling dynamics have ended.
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While the “fragile molecule” hypothesis discussed above appears to have some

validity, it is far too simple to describe all of the effects of changing the ramp time of

pulse #2. In addition to the relative oscillation phase shifts and the oscillation amplitude

of Nmissing, we observed that several other observables depended on the 2nd pulse final

ramp time. For example, the oscillation amplitude of Nrem and Nburst exhibited a slight

decrease as the final ramp lengthened. There was also a decline in the average energy of

the burst atoms for slower ramps. These trends have not been explained at the present

time.

6.4.5 Burst energy oscillations

The final feature of the atom-molecule coherence experiments that we describe in

this Chapter involves the energy of the burst atoms. We measured a periodic modulation

of the average energy of the burst atoms as a function of tevolve, as shown in Figure 6.11.

The data in the Figure are the average energies corresponding to the burst atom number

data that was plotted previously in Figure 6.6. For these data, number of burst atoms

was the highest we ever observed, so that Nburst >Nrem. The large number of burst

atoms in the absorption images facilitated the determination of the average energy of

the distribution along the axial direction. As described in section 5.2.3, we fit each burst

atom distribution to a 2-D Gaussian function and used the width of the Gaussian in the

long dimension to calculate the average energy. In Figure 6.11, the observed variation

in energy of ∼50 nK is equivalent to a modulation of ∼17 µm in the rms width of the

focused burst atom cloud. The energy oscillations appear to damp out fairly rapidly

until they become lost in the noise after ∼35 µs. Our measurements show that both

the number of burst atoms and their energy distribution change with tevolve.
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Figure 6.11: Average axial burst energy versus tevolve. Black points are the average
axial burst energy at different values of the evolution time between the double pulses.
The line is a damped sine wave fit to the data for tevolve ≤30 µs. The fit yields the
parameters: 222(2) nK average energy, 83(15) nK oscillation amplitude, 133(3) kHz
oscillation frequency, and 70(16)×103 s−1 damping rate. The oscillations in the average
energy occur at the same frequency and phase as the burst number oscillations (see
Figure 6.6), while the damping of the energy oscillations is roughly 3× faster than in
the burst number oscillations.
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6.5 Discussion of theoretical models

The observations of atom-molecule coherence described in this Chapter raise a

number of outstanding questions. First, do the magnetic field pulses really produce

molecules and if so, do the molecules form a molecular BEC? As discussed in sec-

tion 6.3.4, the fact that we see an oscillation involving a large fraction of the atomic

BEC strongly supports the existence of a molecular BEC. There are many remaining

questions, however. For instance, exactly how many molecules can we produce and how

can we increase this number by optimizing the shape of the B-field pulses? Another

outstanding issue is the precise relationship between the burst atoms and the molec-

ular state. Finally, what happens to the molecules after they are created? Are there

collisions and/or mean-field interactions with the surrounding atoms [72]?

For a definitive experimental answer to these questions, we need to devise a

method to directly detect the molecules and their spatial distribution in the magnetic

trap. New experiments are currently being developed at JILA that should allow molecule

detection by photo-ionization and subsequent detection of the molecular ions. However,

many useful insights and possible answers to the questions raised by our data can be

obtained from recent theoretical work. A number of theorists [9, 16, 67, 73, 68], inspired

by our oscillation data, have studied the 85Rb BEC system. Some of the theorists have

developed models that capture most of the prominent experimental features, especially

the existence of the different oscillating components of atoms that we observe. We

describe the successes of some of the relevant theories in this section. We also point out

areas that remain unexplored theoretically. At the end of the section, we use a table to

present a concise comparison of the theories to the relevant experimental observables.
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6.5.1 Kokkelmans and Holland model

Kokkelmans and Holland’s theoretical description of the atom-molecule coupling

experiments [9] was briefly described in Chapter 5. The authors emphasize that it is very

important to properly incorporate the two-body scattering physics into their effective

quantum field theory. The Feshbach resonance in the two-body atomic scattering can be

described most accurately by a coupled-channels calculation, which predicts the B-field-

dependent scattering length, the binding energy of the molecular state, and the bound

state wavefunction (see Chapter 2). Kokkelmans and Holland show how to include

the complex scattering physics into a simple effective Hamiltonian used in mean-field

theory [56]. This effective Hamiltonian can then be used to predict the response of a

near-resonant condensate to variations in magnetic field.

Kokkelmans and Holland solve a set of time-dependent equations for their effective

Hamiltonian, which depends on magnetic field. Using the experimental B-field pulses,

they integrate the equations for a homogeneous BEC. To model the inhomogeneous

density distribution of the real condensates, Kokkelmans and Holland conduct their

calculations for a range of densities, finally performing a Gaussian weighted average

of their results. This corresponds to a local density approximation for the BEC. The

authors assert that they can safely ignore any other physics due to the trapping potential

because of the short time duration of the magnetic field pulses (much shorter than the

magnetic trap oscillation period).

The theory successfully predicts a number of details of the experiment. Kokkel-

mans and Holland identify the condensate remnant as the atomic BEC field in their

theory, while the burst atoms of the experiment correspond to noncondensate atoms

that are created in strongly correlated pairs. The missing atoms are identified as a

molecular BEC. Kokkelmans and Holland suggest that the reason the molecules turn

into missing atoms in the experiment is because of inelastic collisions with BEC atoms
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before the magnetic trap turn-off.

For a double pulse sequence beginning at Binit=162 G (low initial BEC density),

the Kokkelmans/Holland theory predicts striking oscillations in the number of BEC

and burst atoms, with an oscillation frequency that matches the binding energy of the

molecular state. In the theoretical results, there is a phase shift between the remnant

and burst oscillations that agrees with the experiment. In addition to these predictions,

Kokkelmans and Holland find that the average energy of the burst atoms is similar to

that observed experimentally.

There are only two important aspects of our experimental data that are not de-

scribed by this theory. First, the theory does not contain any mechanism to cause

the large numbers of non-oscillating missing atoms that we observe. We found in sec-

tion 6.4.2 that increasing the BEC density caused the average value of Nmissing to

increase dramatically. These missing atoms may be removed from the BEC by 3-

body recombination, which is not contained in the Kokkelmans/Holland model. In

the recombination process, two atoms spontaneously form a molecule during a collision

with a third atoms. An alternative explanation to the recombination idea is that the

non-oscillating missing atoms are in fact coherently formed molecules, but the Kokkel-

mans/Holland theory fails to predict their presence. An additional feature of the exper-

iment that is not explained by the theory is the strong dependence of the relative phase,

∆φ, between burst and BEC remnant oscillations, on the final ramp time of the second

B-field pulse. While Kokkelmans and Holland did observe a such a dependence, it was

much weaker than in the data. Since we have interpreted the relative phase variation

in terms of making more molecules, it would be interesting to further study the trend

in the context of the Kokkelmans and Holland theory.

Overall, the success of this theory is remarkable. The Kokkelmans/Holland theory

provides an explanation of the burst atoms — they are noncondensate atoms that

develop strong pair correlations due to the B-field ramps near the Feshbach resonance.
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According to the model, the burst atoms significantly outnumber the molecules due to

the large spatial overlap of the weakly bound molecular state with the pairing field that

describes the two-body correlations. For the B-field pulse and initial BEC density used

in Ref. [9], the molecular fraction is predicted to be much smaller than the burst — only

∼ 2% compared to ∼ 25%. In addition, the authors identify the oscillating population

of missing atoms as a molecular BEC.

6.5.2 Kohler, Gasenzer, and Burnett model

Another theoretical paper describing our 85Rb BEC experiments was recently

produced by the theory group at Oxford [16]. In this work, Kohler, Gasenzer, and Bur-

nett utilize a generalization of the mean-field theory leading to the well-known Gross-

Pitaevskii equation. The theory goes beyond the GP equation by including first and

second-order correlations between the atoms. This leads to a nonlinear Schrodinger

equation for the atomic mean field (atomic BEC). The Schrodinger equation describes

the relative motion of two colliding atoms through a time evolution operator. The oper-

ator and its related coupling function capture the full time-dependence of the magnetic

field or scattering length in the experimental B-field pulses. The authors of Ref. [16]

assert that their microscopic dynamics approach avoids any assumptions about the type

of states involved in the system of colliding BEC atoms. They determine the state of the

atoms after a double pulse sequence by projecting onto a given set of basis states, but

the results are not dependent on the choice of the states. In addition, Kohler, Gasenzer,

and Burnett examine the effect of including the magnetic trap potential. They compare

their results for both a homogeneous gas and a trapped gas to learn more about the

physics of the atom-molecule coupling.

Like the Kokkelmans/Holland effective field theory, the model of Ref. [16] predicts

oscillations in the number of BEC atoms as a function of tevolve between a pair of

magnetic field pulses toward the Feshbach resonance. Kohler, Gasenzer, and Burnett
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also identify a relatively hot component of noncondensate atoms in their theory with the

burst atoms observed in the experiment. A population of bound molecules exists after

the B-field pulses as well; according to the authors, these bound molecules correspond to

the missing atoms in the experiment (no consideration is given as to how the molecules

actually become missing atoms). The properties of the weakly bound molecular state

near the Feshbach resonance are explored by the authors of Ref. [16] in a useful appendix

to the paper.

For the case of a homogeneous BEC subject to a set of B-field pulses similar to

those used in the experiment, the theory predicts that the BEC and burst populations

oscillate slightly out of phase with one another, so that their sum, Ntotal, also oscillates.

The amplitude of the Ntotal oscillations is reduced relative the that of the BEC and

burst numbers, as was seen in experimental data.

When Kohler, Gasenzer, and Burnett include the magnetic trap in their simula-

tions, they observe the same qualitative behavior in the number oscillations, but there

are significant quantitative differences. The average number of burst atoms and missing

atoms is seen to depend strongly on the presence of the trap potential. For instance,

adding the trap potential causes the average burst fraction to increase from ∼15% to

∼40% while the average missing fraction decreases from ∼10% to ∼5%. However, the

phases and frequencies of the population oscillations remain unchanged when the mag-

netic trap is included in the Schrodinger equation. The authors of Ref. [16] explain that

the dependence of the quantitative details of the oscillations on the presence of the trap

potential arises from the first B-field pulse toward the Feshbach resonance. During this

pulse to 155.5 G, the magnitude of the scattering length approaches the harmonic oscil-

lator length of the trap, which strongly affects the interactions of the atom pairs. Since

the oscillator length does not appear in the homogeneous theory, it seems reasonable

that the results should depend somewhat on the inclusion of the trap potential.

One interesting aspect of the theory is its explanation of the origin of the burst
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atoms. The authors of Ref. [16] point out that the magnetic field pulses provide energy

for the relative motion of the noncondensate atom pairs, but there is no transfer of

momentum. Thus, the center-of-mass motion of the burst is unaffected by the magnetic

field ramps.

In addition to providing energy for the relative motion of the burst atoms, the

time-dependent B-field can remove energy from the system so that atom pairs can

become bound together. Kohler, Gasenzer, and Burnett also predict the formation of

a molecular BEC due to the B-field pulses. The authors state that after the pulse

sequence, the mBEC remains overlapped with the atomic BEC while the burst atoms

undergo a ballistic expansion. A density distribution for the molecular BEC is given in

the paper.

There are some results of the experiments in this Chapter that remain unexplained

by the Kohler, Gasenzer, and Burnett model. The large, density-dependent fraction of

missing atoms that do not show an oscillating population are not predicted by this

model. In addition, there is no modeling of our observed phase shift dependence on

second B-field pulse final ramp time. Presumably this could be done and compared to

data to further test the applicability of the theory; however, as in the model of Ref. [9],

heavy numerical work is required to evaluate the predictions of the Kohler, Gasenzer,

and Burnett theory. It is difficult for experimentalists to apply this model to the data

to gain further intuition about the observed trends. For instance, we would like to use

one of these successful theoretical models to investigate the dependence of the Nmissing

oscillation amplitude on the second pulse final ramp time. Of course, it is not really

fair to complain that the theory is too complicated because an accurate description of

the physics probably does require an effective field theory.
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6.5.3 Overview of experiment and theory

To clarify the comparisons between theory and experiment described here, we

summarize them in Table 6.1. Here we list the experimental observables and trends and

a brief note on the current status of agreement with theory.

Table 6.1: Comparison of experimental observables and trends with the two theoretical
models described in this section.

Observation Kokkelmans/Holland Kohler/Gasenzer/Burnett

Nrem, Nburst osc. amplitude calculated; agrees with expt. calculated; agrees with expt.

〈Nrem〉, 〈Nburst〉 avg. values calculated; agrees with expt. calculated; agrees with expt.

Nmissing oscillations calculated; agrees with expt. calculated; agrees with expt.

∆φ = φburst − φBEC '150◦ calculated; agrees with expt. calculated; agrees with expt.

∆φ vs. tramp, final of pulse #2 calculated; does not agree not yet calculated

νosc = εbind/h calculated; agrees with expt. calculated; agrees with expt.

Damping of Nrem osc. not yet calculated not yet calculated

Nmissing vs. 〈ninit〉 calculated; does not agree not yet calculated

〈Eburst〉 calculated; agrees with expt. calculated; agrees with expt.

〈Eburst〉 oscillations not yet calculated not yet calculated

In addition to the theoretical models described here, there are several other pa-

pers that study the atom-molecule coupling in 85Rb [67, 73, 68]. In particular, the

predictions of Mackie et al. [67] bear some similarities to the observations of the experi-

ments. However, the agreement is not particularly good. Since the Kokkelmans/Holland

and Kohler, Gasenzer, and Burnett models have been so successful in describing our

experiments, we do not include discussion of the other theories here.



Chapter 7

Very high precision bound state spectroscopy near a 85Rb Feshbach

resonance

7.1 Atom-molecule coherence as a novel Feshbach resonance probe

7.1.1 Introduction

The phenomenon of a Feshbach resonance in ultracold collisions of alkali atoms

has received much theoretical and experimental interest in recent years and has sparked

interest in the subject of resonant Bose-Einstein condensates (BEC). In addition to

providing the subject matter for this thesis, Feshbach resonances were used to control

elastic and inelastic collisions in ultracold gases [74, 75, 76, 77] and for tuning the

self-interaction in BEC [12, 26, 2] by changing the magnitude of an external magnetic

field.

The magnetic field controls the self-interaction in the BEC by affecting the s-

wave scattering length, a. Close to resonance, the scattering length varies with B-field

according to

a = abg

(
1− ∆

B −Bpeak

)
, (7.1)

where Bpeak is the resonance position and is defined to be the magnetic field where

the magnitude of a becomes infinite, abg is the background scattering length, and ∆ =

Bzero − Bpeak is the resonance width where Bzero is the B-field where the scattering

length crosses zero. Measurements of Feshbach resonance positions and widths have
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been used in a variety of alkali atoms to improve the determination of the interatomic

potentials. These potentials have then been used to precisely calculate a multitude of

important properties for trapped atomic gases [75, 78, 79, 13, 77, 69].

In 85Rb, our recent production of an atom-molecule superposition state has al-

lowed us to dramatically improve an existing determination of the Feshbach resonance

position and width. The phenomenon of atom-molecule coherence was described in de-

tail in Chapter 6. By inducing periodic oscillations in the number of condensate atoms,

we obtain a direct, high precision measurement of the molecular bound state energy.

Exploiting the resonance, we tune the molecular state very close to threshold — to our

knowledge, this is the most weakly bound state ever observed.

This chapter discusses the experimental techniques for mapping out the B-field

dependence of the molecular binding energy and how the data were fit to a theoretical

model based on 2-body scattering theory. As a result of the fitting, there was a sub-

stantial improvement in the determination of the Feshbach resonance parameters. The

strengths and limitations of the present method for studying the Feshbach resonance are

emphasized. The final section of the chapter discusses our search for many-body effects,

which manifest themselves in a mean-field shift to the observed oscillation frequency.

7.1.2 Sensitivity of binding energy to Feshbach resonance parameters

The atom-molecule coherent oscillation frequency, ν0, is directly related to the

molecular state binding energy by εbind=ν0/h. Since the magnitude of this binding

energy depends strongly on the distance from the Feshbach resonance, one can use

measurements of the binding energy and corresponding magnetic field to constrain the

Feshbach resonance parameters, such as the position (Bpeak), width (∆), and back-

ground scattering length (abg). To understand the close relationship between εbind and

the Feshbach resonance parameters, it is useful to consider the approximate expression

εbind = −~2/(ma2), (7.2)
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which is valid when the scattering length, a, is large and positive.1 Substituting

equation (7.1) for a versus B-field into equation (7.2) leads to an equation relating the

oscillation frequency to the Feshbach resonance parameters:

ν0 =
~

2πma2
bg

(B −Bpeak)2

(B −Bzero)2
. (7.3)

For magnetic field changes near resonance (B≥Bpeak), the numerator of equation (7.3)

varies much more rapidly than the denominator and the B-field dependence is nearly

quadratic. To first approximation, a plot of binding energy versus B-field is simply a

parabola centered at Bpeak and with a curvature that depends on 1/a2
bg. Clearly, one

can obtain information about the Feshbach resonance parameters from the magnetic

field dependence of εbind, as indicated schematically in Figure 7.1.

One of the best uses we found for equation (7.3) was to determine the optimal

data-gathering strategy for precisely determining a given Feshbach resonance parameter.

For example, if we hold other parameters fixed, Bpeak can be best determined by mea-

surements of high oscillation frequencies, where the slope ∆ν0/∆B is large. Using simple

error propagation and making reasonable assumptions for experimental uncertainties in

a typical (B, ν0) measurement, we estimated that we should be able to measure Bpeak

to a precision of 0.047 G and abg to a precision of 4.5 a0. Although these estimates

turned out to be fairly conservative (see section 7.3.3), they motivated us to pursue the

measurement because such precision would represent a dramatic improvement over that

obtained in earlier experiments (0.4 G for Bpeak and 21 a0 for abg [1]).

Although the present discussion of equation (7.3) provides motivation for pre-

cise measurements of the binding energy, the actual theoretical analysis used to model

the data was considerably more complex. Servaas Kokkelmans collaborated with us to

model the binding energy data. He utilized a highly accurate coupled-channels scatter-

ing model to fit the experimental data and extract the Feshbach resonance parameters,
1 In fact, equation (7.2) only underestimates the actual binding energy by ∼30% for a '300 a0

(B'161.5 G).
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Figure 7.1: Sensitivity of binding energy to Feshbach resonance parameters. The solid
line is the binding energy versus magnetic field as calculated from the approximate
equation (7.3), with our current best determinations for the Feshbach resonance param-
eters (section 7.3.3). The dashed line shows the effect of increasing the value of Bpeak

by 0.1% (0.15 G), while the dotted line corresponds to a reduction in |abg| by 7%. The
relative difference in sensitivity to the different parameters can be understood from a
simple Taylor expansion of equation (7.3).
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providing strong constraints on the exact shape of the interatomic potential.

7.1.3 Advantages of the present method over previous ones

The present method for studying the Feshbach resonance through atom-molecule

oscillations offers all of the many inherent advantages of a frequency measurement, in-

cluding the possibility of high measurement precision, a lack of sensitivity to errors in

the absolute atom number calibration, and a simple interpretation of the oscillation

frequency in terms of the relative energy difference between the atomic and molecular

states. When these advantages are combined with an improved method for magnetic

field calibration [3], the present technique for probing the Feshbach resonance is much

more precise than previous experiments that examined such Feshbach resonance observ-

ables as variable rethermalization rates in a trapped cloud of atoms [75, 13], enhance-

ments of photoassociation rates [74] and inelastic loss rates near the resonance [80], and

variations of the mean-field expansion energy of a BEC [12]. In particular, the present

atom-molecule coherence experiments have exposed a systematic error in our previous

determination of the background scattering length, abg, as discussed in section 7.3.4.

Our new measurement of abg agrees with the value obtained from an analysis of several

other high precision experiments with ultracold rubidium [69].

7.1.4 Improved determination of Bzero

To complete the precise characterization of the Feshbach resonance, we also made

an improved measurement of Bzero, the magnetic field where the scattering length van-

ishes. This experiment is very similar to our previous work [1, 13, 33], where we deter-

mined the a=0 field by measuring the critical number (Ncr) for collapse of a BEC. For a

given magnetic field (scattering length), there is an upper limit to the number of atoms

the condensate can contain before becoming unstable. To measure this critical number,

we prepare a large (N0 ∼16000) condensate with fewer than 5% thermal fraction. The
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condensate is formed at a B-field where the scattering length is positive (a ∼200 a0.

We next apply an adiabatic magnetic field ramp to change the sign of the scattering

length from positive to negative, then we slowly increase the B-field until the condensate

collapses, which causes an abrupt drop in the number of atoms. From the measured

value of the collapse B-field (Bcollapse) and the known slope of 1/Ncr versus magnetic

field [33] we can extrapolate to the magnetic field where Ncr would be infinite, thereby

determining the value of Bzero. We have improved the measurement precision of Bzero

by about a factor of 4 by improving our magnetic field calibration and using a larger

number of condensate atoms to measure the collapse. We find Bzero=165.750(13) G.

7.2 Measuring the B-field dependence of oscillation frequency

7.2.1 Production of BEC and measurement of total number

The procedure used to generate atom-molecule oscillations in 85Rb Bose-Einstein

condensates has been described in chapter 6, so we merely outline the method here.

After creating condensates with initial number of atoms N0 '16000 at a magnetic field

B'162 G, we apply two short B-field pulses (∼40 µs duration) that approach and

then recede from the Feshbach resonance at Bpeak '155 G. The intermediate value of

magnetic field between the pulses, Bevolve, and the time spacing between pulses, tevolve,

are variable quantities. The double pulse sequence is followed by a slow change in the

B-field to expand the BEC [2], then the trap is switched off (B→0) and destructive

absorption imaging is used to count the number of atoms remaining in the condensate.

7.2.2 Atom-molecule oscillations

As in Ref. [4], periodic oscillations in the BEC number were observed as a function

of tevolve (see Figure 7.2). We fit the BEC number oscillation to a damped harmonic
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Figure 7.2: BEC number versus pulse spacing tevolve. (a) Bevolve=156.840(25) G. At
this magnetic field, which is relatively close to resonance, the oscillation frequency is
very low (ν0=9.77(12) kHz) so that the damping and atom loss significantly affect
the observed time dependence (here β=3640(750) s−1 and α=7.9(4) atoms/µs). (b)
Bevolve=159.527(19) G. Farther from resonance, the time dependence of the BEC number
is dominated by the higher oscillation frequency of ν0=157.8(17) kHz. Damping of the
oscillations and atom loss are negligible in the relatively short time window used to
determine ν0.
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oscillator function with an additional linear loss term:

N(t) = Navg − αt + A exp (−βt) sin (ωet + φ), (7.4)

where Navg is the average number, A is the oscillation amplitude, α and β are the num-

ber loss and damping rates, respectively, and ωe = 2π
√

ν2
0 − [β/(2π)]2. The quantity

of interest here is ν0, the natural oscillator frequency corresponding to the molecular

binding energy, ν0=εbind/h.

We measured the oscillation frequency for values of Bevolve from 156.1 G to

161.8 G. Over this range, the frequency varies by over 2 orders of magnitude (10-

1000 kHz), but the linear loss rate changes very little. The damping rate shows a

significant B-field dependence, increasing from β ' 2π × 0.8 kHz near 156 G to β '

2π × 22 kHz near 162 G. We find no significant density dependence to the damping

at Bevolve=158.60(5) G; increasing the total atom density by a factor of 4.3(5) leads

to a damping rate increase of only a factor of 1.3(3). Atom loss from the BEC is well

described by a linear rate of -2 to -7 atoms/µs over the field range of interest. The rate

is consistent with previous measurements of number loss due to a single B-field pulse

toward the Feshbach resonance, although we have not determined the mechanism for

this loss [3].

7.2.3 Limits to precision of frequency measurement

The oscillation frequency measurements have a typical fractional uncertainty of

1%. In principle, the precision of the oscillation frequency determination could be im-

proved indefinitely by increasing the integration time, tevolve. However, there are several

effects that prevent us from simply increasing tevolve without limit. First, time variation

in the applied magnetic field limits the number of oscillations we can observe. Since

we destroy the condensate each time we measure the number of atoms, any variation in

B-field from one shot to the next causes the B-field-dependent oscillation frequency to
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shift slightly. This frequency shift manifests itself in the BEC number oscillations as a

phase shift. If the phase shift between successive measurements is large enough, then

the oscillations “wash out” and become impossible to measure. Because the phase shift

is proportional to tevolve, our sensitivity to phase noise increases for longer integration

time. Evidence for phase noise can be seen in the BEC number oscillations displayed

in Figure 7.3.

Another limitation to the precision of the oscillation frequency determination is

the finite coherence time for the oscillations. The oscillation amplitude decays with time

until the amplitude becomes similar in size to the experimental noise on the number

measurement. We typically find that the effects of phase noise dominate over decoher-

ence in limiting the precision of a given frequency measurement, except for the lowest

frequency data taken near resonance, where the oscillations damp out on the same time

scale as the oscillation period (see section 7.5.1).

In addition to shot-to-shot B-field variations, it is possible to have time variation

of the magnetic field during tevolve that is reproducible from shot-to-shot. For example,

if the magnetic field from the auxiliary coil is not adjusted to properly compensate

for eddy current effects (described in section 3.4.6), the B-field may change as tevolve

increases. This variation leads to an oscillation frequency variation or “chirp”. Such

a chirp significantly complicates the process of accurately determining the oscillation

frequency as a function of magnetic field.

7.2.4 Magnetic field determination

To characterize the Feshbach resonance it is necessary to know Bevolve precisely

as well as the oscillation frequency. As described in section 3.3, we measure Bevolve by

transferring atoms to an untrapped spin state by driving ∆m=+1 spin flip transitions

with an applied pulse of rf radiation (pulse length=5→25 µs). The spin flip frequency

is determined from the rf lineshape for the loss of atoms from the magnetic trap. After
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Figure 7.3: Phase noise in BEC number oscillations. Black points are the measured
number of BEC atoms versus tevolve while the black line is a fit to the short time data
tevolve ≤42 µs. The scatter in the data near 50 µs and 80 µs indicates phase noise
that is at least π radians in magnitude. From the observed phase noise and the known
dependence of frequency on magnetic field, ∆ν0/∆B, one can estimate the minimum
amount of magnetic field noise required. The data near 50 µs imply shot-to-shot B-
field noise of 0.05 G (peak-peak). Because ∆ν0/∆B increases rapidly as the B-field
increases above the Feshbach resonance, the higher magnetic field (and higher oscillation
frequency) data are more susceptible to phase noise.
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measuring the rf transition frequency, we invert the Breit-Rabi equation to obtain the

corresponding B-field. To ensure that the magnetic field is sufficiently constant during

tevolve, we map out B(t) using rf pulses with lengths short compared to tevolve. Due

to interference of the rf radiation with the magnetic field control circuitry, there is a

small systematic shift of the field as a function of the rf power used. The uncertainty

for each magnetic field determination is the quadrature sum of the uncertainty due

to the lineshape measurements (10→15 mG) and the uncertainty in the extrapolation

to zero rf power(∼20 mG). Typically, the total uncertainty in the average B-field was

∼25 mG and was dominated by the rf power shift. Although we were aware of the rf

power shift when we gathered the data, at that time we did not realize how the power

shift would dominate all other uncertainties in the magnetic field determination. Only

after extensive analysis did this become apparent. In the future, it should be possible to

reduce the effects of rf interference in the experiment by adding shielding at appropriate

places in the auxiliary coil circuit.

7.3 Coupled-channels analysis of data

7.3.1 Coupled-channels theory

To accurately model the nonlinear magnetic field dependence of the binding en-

ergy near the Feshbach resonance, a coupled-channels (CC) scattering theory is required.

Coupled-channels scattering theory was first applied to ultracold alkali atom collisions

by Verhaar and coworkers [81, 8]. This theory offers a full quantum mechanical descrip-

tion of the 2-body scattering process, including the hyperfine and Zeeman Hamiltonians

of the separated atoms as well as the short-range molecular interactions and long-range

van der Waals interactions. The CC theory can be used to predict the energy and mag-

netic field dependence of various quantities, such as the phase shift, scattering length,

and the energy of molecular bound states. In principle, the accuracy of the CC calcula-
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tions is limited only by the incomplete knowledge of the precise shape of the interatomic

potentials, which cannot be calculated ab initio [82].

The coupled-channels model presented here for 85Rb was developed by Servaas

Kokkelmans, who collaborated with us to analyze the magnetic field dependence of

the molecular binding energy [83]. Servaas’ model is based on the coupled-channels

analysis of van Kempen, Kokkelmans, Heinzen, and Verhaar (KKHV) [69], in which

several high-precision data for 85Rb and 87Rb were combined to perform an inter-isotope

determination of the rubidium interactions with unprecedented accuracy. The predictive

power of the KKHV analysis can be seen from Ref. [4], where the initial data on the

atom-molecule coherence were already in good agreement with the predicted binding

energy of the molecular state. Another example of the accuracy of the KKHV analysis

is its agreement with more than 40 Feshbach resonances recently discovered in 87Rb

[84].

7.3.2 Fitting the CC model to the data

The measured oscillation frequencies and magnetic fields are listed in Table 7.1

and plotted in Figure 7.4. For the purposes of the coupled-channels fitting, we choose

B-field as the independent variable and assume the magnetic field uncertainty, σB, is

zero. We then increase the frequency error to include the B-field uncertainty according

to the formula [85]:

σν, tot =

√
σ2

ν + (σB
∂ν

∂B
)2, (7.5)

where ∂ν
∂B is the slope of binding energy versus magnetic field and σν and σB are the

actual measured uncertainties, as given in Table 7.1. For most of the data, the total

frequency error (σν, tot) is dominated by the second term under the square root because

of the magnitude of σB. This B-field uncertainty comes mainly from a systematic

uncertainty related to the rf power shift (section 3.3.4). In fact, the magnetic field error

becomes even more significant for the highest oscillation frequency data, where a given
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B-field uncertainty corresponds to a much larger frequency uncertainty due to the steep

slope of binding energy with B-field (see Figure 7.4). After determining the appropriate

uncertainties, we fit the binding energy data and the zero-crossing field Bzero to the CC

model with a numerical nonlinear regression in Mathematica.

Table 7.1: Measured values of magnetic field and oscillation frequency. The
data were combined with a recent measurement of the magnetic field where a=0
(Bzero=165.750(13) G). We fit the combined data set with a coupled-channels scattering
theory.

B (G) σB (G) ν (kHz) σν (kHz)
156.840 0.025 9.77 0.12
158.211 0.025 47.4 1.0
158.655 0.010 73.6 1.1
159.527 0.019 157.8 1.7
160.529 0.021 383.1 3.7
160.887 0.025 509 12
161.771 0.017 1072 11

7.3.3 Extracting Feshbach resonance parameters from best fit

The authors of Ref. [69] used the best known values [13] for the resonant magnetic

field Bpeak and zero crossing Bzero. In our analysis, we ignore the relatively imprecise

value of Bpeak from Ref. [13], and instead use the measured dependence of binding

energy on magnetic field along with the new Bzero measurement given above to determine

the interaction parameters. We observe that the fitting procedure is mainly sensitive

to only three parameters: the van der Waals dispersion coefficient, C6, and the non-

integral vibrational quantum numbers at dissociation, vDS and vDT , which determine

the position of the last bound state in the singlet and triplet potentials, respectively.

Varying the additional parameters C8, C10, φE
T (the first-order energy-dependence of the

phase of the oscillating triplet radial wave function), and J , the strength of the exchange

interaction, does not improve the fitting because these changes can be absorbed in

small shifts of vDS , vDT and C6. Therefore, we take the mean values for these four
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parameters [86] from the most recent determination in Ref. [84].

The best fit to Bzero and the seven highest frequency data points yields a re-

duced χ2=0.30 for 5 degrees of freedom. This value of χ2 is improbably low due to

the fact that the uncertainty in the data is dominated by the systematic uncertainty

in magnetic field related to the magnitude of the rf power shift. Figure 7.4 shows the

resulting theoretical binding energy as a function of the magnetic field together with

the experimental values. From the fit, we find substantially improved values for the

Feshbach resonance position Bpeak=155.041(18) G, width ∆=10.71(2) G, and back-

ground scattering length abg=-443(3) a0. These results may be compared to previ-

ously obtained results Bpeak=154.9(4) G and ∆=11.0(4) G [13], and abg=-450(3) a0

[87]. Our best interaction parameter values are C6=4707(2) a.u., vDS=0.00918(17),

and vDT =0.94659(29). Here the error bars do not include systematic errors due to the

uncertainties in other interaction parameters that are not constrained by our data. To

compare our values with those of Ref. [69], we determined the sensitivity of our three

interaction parameters to systematic shifts in the other parameters, as shown in Ta-

ble 7.3.3. Using the fractional uncertainties in C8, C10, φE
T , and J from KKHV, we

find C6=4707(13) a.u., vDS=0.0092(4), and vDT =0.9466(5). All of these values agree

with those given in KKHV: C6=4703(9) a.u., vDS=0.009(1), and vDT =0.9471(2). Our

value for vDS is more precise than that of Ref.[69], while vDT and C6 are slightly less

precise. However, if future experiments allow improvements to the other interaction

parameters, then our results will also become more precise since the systematic errors

are comparable to or larger than our statistical errors from the fit.

To understand the strong parameter constraints we obtain with our bound state

spectroscopy, it is important to consider the nonlinear dependence of the binding en-

ergy on magnetic field. The magnetic field dependence of εbind as it approaches the

collision threshold depends sensitively on the exact shape of the long range interatomic

potentials, which are mainly characterized by the van der Waals coefficient, C6. At
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Figure 7.4: Molecular binding energy versus magnetic field, Bevolve. (a) The points
are measured values of the atom-molecule oscillation frequency, ν0, while the solid line
represents the molecular binding energy, which we fit to the data by adjusting the
parameters of a coupled-channels scattering theory. Only black points were included in
the fit; white points were excluded because they experienced a statistically significant
mean-field shift. To improve visibility, the points are larger than the error bars. (b)
Same as in (a), but with a linear scale for the vertical axis. The inset shows the deviation
of the lowest frequency data from the fit to the rest of the data.
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Table 7.2: Sensitivity of the determined interaction parameters vDS , vDT and C6 to
fractional uncertainties in C8, C10, φE

T and J . For instance, the systematic error in C6

due to a 10% uncertainty in C8 is 123× 0.10 = 12.3 a.u.

∆C8/C8 ∆C10/C10 ∆φE
T /φE

T ∆J/J

∆vDS −1.53× 10−4 −6.80× 10−5 −2.59× 10−3 1.72× 10−3

∆vDT −4.14× 10−4 −1.39× 10−4 2.31× 10−3 1.71× 10−3

∆C6 123 33.4 −47.8 19.3

magnetic fields far from resonance, the bound state wave function is confined to short

internuclear distance and the binding energy varies linearly with magnetic field. The

linear dependence on B-field gives relatively little information about C6. As the B-

field approaches resonance, the detuning decreases until the bound state lies just below

threshold. Now the bound state wave function penetrates much deeper into the clas-

sically forbidden region, which causes εbind to curve toward threshold as a function of

magnetic field. Because the energetically forbidden region stretches out as C6/r6, the

observed curvature depends sensitively on the C6 coefficient. One can show [17] that

an analytical Feshbach model that includes the correct potential range and background

scattering processes [56] can reproduce the binding energy curve over the full range of

magnetic field.

7.3.4 Revised stability prediction for condensates with a <0

As a result of the improved determination of the 85Rb Feshbach resonance pa-

rameters, we find that our new value for the off-resonant or background scattering

length, abg=-442.9(23) a0, is inconsistent with the value given in Ref. [13], where abg=-

380(21) a0. The most plausible explanation we can find for disagreement is that the

theoretical expression used to relate measured rethermalization rate to cross section [1]

is insufficient for the requisite level of accuracy. However, the new value for abg allows

us to revise our previous estimate for the stability condition of a BEC with negative

scattering length [33]. We use equation (7.1) to obtain the linear slope of scattering



186

length versus B-field near B=Bzero. We then find the stability coefficient for BEC col-

lapse, kcollapse, by combining the value of ∆a/∆B=-39.86(22) a0/G with the measured

slope of 1/Ncrit versus magnetic field [33] of 0.00128(3) (atoms G)−1. Thus, we obtain

the revised value kcollapse=0.547(58), where the error is dominated by a 10% systematic

uncertainty in the determination of Ncrit. The present determination agrees with the

theoretical value of 0.55 [88].

7.4 Search for collective effects: mean field shifts

7.4.1 Inadequacy of 2-body scattering theory

The coupled-channels theory used in this work applies to 2-body scattering; there-

fore, this theory cannot account for many-body effects in the atom-molecule BEC sys-

tem, such as a mean-field shift to the observed oscillation frequency [9, 68]. Any such

mean-field shift must be fractionally largest near the Feshbach resonance, where the

coupled-channels theory predicts that the binding energy approaches zero while the

atom-atom scattering length increases to infinity. We searched for a mean-field shift

to the oscillation frequency when Bevolve was decreased to ∼156 G. As shown in Fig-

ure 7.4, the lowest magnetic field data display a clear frequency shift with respect to

the coupled-channels theory prediction. As Bevolve approaches resonance, the observed

shift increases to 1.7 kHz, which significantly exceeds a simple estimate for the average

atom-atom mean-field shift in the BEC: 4π~2〈n〉a/m ' 0.5 kHz at Bevolve=156.1 G.

We expect the mean-field shift to depend on the density of atoms (and molecules), but

we have not yet studied the density dependence. In practice, the initial BEC density

can be changed by adiabatically varying the initial scattering length before the rapid

magnetic field pulses as discussed in section 5.3.3.
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7.4.2 Statistical method for determining mean-field shifts

Since the lowest frequency data show evidence for a mean-field shift, we exclude

these points from the (2-body) theory fit. We determine the cutoff magnetic field for

the excluded region by the following procedure. First, we fit the data set that includes

all frequency measurements satisfying ν0 ≥ 73 kHz. For these data, the expected

fractional effect of any mean-field shift is negligible; for example, the average mean-

field interaction energy in the atom BEC is ≤0.1 kHz, and we expect atom-molecule

interactions to be similar in magnitude. After fitting this minimal data set, we add the

next lower frequency/B-field measurement to the data set and repeat the theory fit.

Finally, we compare the two fits according to their minimum χ2 values. As long as the

increase in χ2 that results from addition of a new data point is reasonable (on the order

of unity), we conclude that there is no significant mean-field shift associated with the

frequency measurement.

Table 7.3: Total χ2 and Bpeak as a function of the number of included data points in the
coupled-channels fit. The abrupt jump in χ2 and Bpeak as the data set increases from
7 to 8 points indicates the presence of a mean-field frequency shift in the 8th point.
The mean-field shift magnitude increases as the added points approach closer to the
Feshbach resonance; since the shift is non-statistical, χ2 increases very rapidly as more
points are added to the set.

Included pts. Total χ2 Bpeak from fit
5 0.42 154.971
6 0.77 154.994
7 1.3 155.042
8 10.0 154.965
9 15.4 154.922

10 24.4 154.885
11 41.7 154.847

In Table 7.3 we give the variation of total χ2 and Bpeak as a function of the

number of points included in the fit. Both χ2 and Bpeak shift abruptly when the number

of points increases from 7 to 8 (corresponding to a decrease in Bevolve from 156.840 G
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to 156.390 G). The observed behavior seems sensible since we expect mean-field shifts

to increase rapidly as one moves toward resonance (see Figure 7.4). Our χ2 exclusion

criterion allows us to fit the data in a manner that avoids systematic errors in the

Feshbach resonance parameters. By extrapolating the coupled-channels binding energy

prediction to lower magnetic fields, we determine the magnitude of the mean-field shifts,

which are listed in Table 7.4.

Table 7.4: Measured values of magnetic field and corresponding mean-field shifts to the
molecular binding energy. The mean-field shifts were determined by subtracting the
extrapolated coupled-channels binding energies from the lowest oscillation frequency
data. The shift error, σmf , is simply the error from the frequency measurement.

B (G) σB (G) ∆νmf (kHz) σmf (kHz)
156.076 0.024 1.69 0.12
156.185 0.023 1.26 0.06
156.352 0.023 1.07 0.08
156.390 0.024 1.00 0.13
156.840 0.025 −0.15 0.12

7.5 Low frequency oscillations: a simple model

7.5.1 Damping of oscillations: experiment and theory

The low frequency oscillations that show evidence for a mean-field shift are quite

strongly damped, so only one or two wiggles are observed before the signal-to-noise ratio

approaches unity. In addition, the number loss rate, α ' 7 atoms/µs, causes a significant

decrease in the average number of BEC atoms during tevolve. The combination of these

effects leads to a rather complicated time dependence of the measured BEC number, as

shown in Figure 7.5.

We use a simple model to explain part of the observed damping as due to inhomo-

geneous dephasing from a density dependent mean-field shift. This idea was suggested

to us by Murray Holland and Servaas Kokkelmans [9]. Assuming that the atom-molecule
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Figure 7.5: Low frequency BEC number oscillations. Black points corre-
spond to Bevolve=156.390(24) G; white points were at a lower magnetic field of
Bevolve=156.076(24) G. The solid line is a fit to the black points using equation (7.4)
with ν0=5.93(13) kHz, β=4500(1200) s−1 and α=6.1(8) atoms/µs. The dashed line fit
to the white points gives parameter values of ν0=4.34(12) kHz, β=7600(1000) s−1, and
α=6.4(5) atoms/µs.
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oscillation frequency depends on the local density in the sample, we have

ν(~r) = νbare + An(~r), (7.6)

where νbare is the “bare” oscillation frequency at zero density (i.e., the molecular binding

energy), A is the (positive) frequency shift per density and is determined empirically,

and n(~r) is the local density in the BEC cloud. For simplicity, we assume that the

density distribution of the condensate has an isotropic parabolic form:

n(~r) =





n(0)[1− r2/R2] r ≤ R

0 r > R

(7.7)

where n(0) = 15N
8πR3 is the peak density, N is the total number of atoms, and R is

the radius of the parabolic condensate. Although we neglect the anisotropy of the

BEC, this is a fairly reasonable approximation since the aspect ratio is at most 2.5 in

the Thomas-Fermi limit (we approximate a football-shaped object by a sphere). The

Thomas-Fermi approximation of a parabolic density distribution is well satisfied by

the condensates since we typically prepare them at the evaporation magnetic field of

162.3 G, corresponding to a ∼200 a0. For this scattering length, the ratio of mean field

interaction energy to kinetic energy in the BEC is Na/aho=55, which is far into the

Thomas-Fermi limit.

Using the above density distribution, we next obtain the probability distribution

of the atoms in oscillation frequency space. We simply find the probability of being in a

given spherical shell of constant density (constant frequency). The probability per unit

frequency is

P (ν) =
2πR3

NA

(ν − νbare)
∆νmax

√
1− (ν − νbare)

∆νmax
, (7.8)

where ∆νmax = An(0) is the maximum frequency shift corresponding to the peak density

in the sample and P (ν) is normalized so that
∫ νbare+∆νmax

0 P (ν)dν = 1.

After obtaining the probability distribution in equation (7.8), we numerically

calculate the Fourier transform of P (ν) and study the oscillation amplitude versus time.
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One can then look for the effects of density-dependent dephasing in the oscillations.

7.5.2 Comparison of dephasing model to data

In Figure 7.6, we plot the theoretical oscillation amplitude as a function of time for

two choices of the quantities νbare and ∆νmax. We chose these values based on empirical

estimates for the mean-field shift — we estimated the average shift by extrapolating the

coupled-channels prediction for εbind and then calculating the difference between this

prediction and the measured oscillation frequency.

The dephasing model predicts damped oscillations that are qualitatively similar

to the experimental measurements, as can be seen by comparing Figures 7.5 and 7.6.

To make a more quantitative test of the dephasing model predictions, we show the

mean-field shift and damping rate versus magnetic field in Figure 7.7. Here the ob-

served oscillation frequency shifts and damping rates can be directly compared to the

predictions of the dephasing model. Figure 7.7 demonstrates that the damping rates

predicted from the dephasing model are significantly smaller than those observed in

the experimental data. There appears to be an additional B-field-independent damping

mechanism in the experiment. The most obvious additional source of damping is the

observed loss of BEC atoms during the evolution time between magnetic field pulses.

This loss has no apparent B-field dependence over the range of magnetic fields in Fig-

ure 7.7. Although the mechanism for the loss is unknown, the process must be distinct

from that of the inhomogeneous dephasing discussed here and should lead to a loss of

coherence in the oscillations.

7.5.3 Additional damping from atom loss

To predict the expected damping rate due to the measured atom loss rate, we

assume that the only the atomic state in the atom-molecule superposition experiences

decay of population. One can show [89, 90] that if the number of atoms decreases at
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Figure 7.6: Theoretical model for density-dependent dephasing. Points are the cal-
culated Fourier transform of the frequency probability distribution in equation (7.8)
versus time. A phase shift of 0.8 rad was added to the Fourier transform to better
approximate the initial phase in the experiment (see Figure 7.5). The black points
correspond to a bare oscillation frequency of νbare=4.9 kHz with an average mean-
field shift of ∆ν=0.99 kHz. The white points had νbare=2.7 kHz and ∆ν=1.7 kHz.
The solid and dashed lines are fits to the two different model data sets. From these
fits, we extract values for the oscillation frequency of an equivalent damped oscillator,
ν0 (see equation(7.4)), and its damping rate, β. The fits yield ν0=5.90(1) kHz and
β=2250(120) s−1 (solid line) and ν0=4.42(3) kHz and β=3560(220) s−1 (dashed line).
The fits allow us to compare the dephasing model directly to the data.
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Figure 7.7: Comparison of data and theory for oscillation damping rates versus B-
field. (a) Mean-field shift of the oscillation frequency as a function of magnetic field.
Black points with error bars are empirically determined values of the mean-field shift,
as discussed in the text. White points are the values of the mean-field shift used in the
dephasing model. (b) Damping rates versus B-field. Black points with error bars are
damping rates from fitting the BEC number oscillation data, as in Figure 7.5. White
points connected by straight lines are the predicted damping rates due to inhomogeneous
dephasing from the mean-field shifts in part (a). The dotted line shows the effect of
adding a constant rate of 3500 s−1 to the dephasing model prediction.



194

an exponential rate, Na = N0 exp (−γt), the amplitude for population oscillations will

decay according to exp (−γt/2). In the magnetic field range of interest (from 156-157 G),

we observed a roughly linear loss rate from the atom BEC of -α=-7.2 atoms/µs. To

convert this linear loss rate into an effective exponential decay rate, we determine the

time interval required to decrease the total number of BEC atoms by a factor of 1/e.

The initial average number of BEC atoms at our shortest evolution times (tevolve '0)

was 6000, so the time to reach 6000/e=2210 with a linear loss rate of -7.2 atoms/µs is

527 µs. This 1/e time corresponds to an effective number decay rate of γ=1900 s−1, so

we expect the atom-molecule oscillations to decay at the rate γ/2=800 s−1.

As can be seen from Figure 7.7, the additional damping rate due to atom number

loss is too small to explain the discrepancy between the data and the simple dephasing

theory. In fact, to explain the observations, there must be an additional damping rate of

∼3500 s−1, which is more than 4 times larger than the expected damping from decay of

the BEC number. There may be other sources for decoherence in the system, including

a possible loss from the molecular state during tevolve. Whatever the source of the

additional damping, our data suggest that this damping is not strongly sensitive to

magnetic field. We also have evidence that the additional damping rate is insensitive

to density — at Bevolve=158.60(5) G, where the mean-field shift is negligible, we find

that increasing the BEC density by a factor of 2.5(3) leads to a damping rate increase

of only a factor of 1.24(25). Future investigation of the mean-field shifts and damping

rates should improve our understanding of the physics of atom-molecule decoherence

near the Feshbach resonance.

7.5.4 Magnitude of mean-field shifts

The magnitude of the mean-field shift shown in Figure 7.7 increases as the mag-

netic field approaches the Feshbach resonance. Over the 1 G range shown in this figure,

the shift increases from 0 to 1.7 kHz. The shift for the lowest magnetic field data is
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significantly larger than one would expect from a simple estimate of the average mean-

field energy in the BEC, based on the GP equation: 4π~2〈n〉aevolve/m ' 0.5 kHz at

Bevolve=156.1 G. The observed shift also exceeds a recent calculation for the equilib-

rium mean-field shift using an effective quantum field theory [68] (<0.1 kHz). One

intriguing possibility for the discrepancy is that there is a positive mean-field shift due

to atom-molecule (or molecule-molecule) interactions. We believe that the current data

are interesting and suggestive, but we have really only touched the tip of the iceberg in

this area.

Since a mean-field shift must depend on the density of atoms and molecules, it

would be desirable to study the density dependence. Ideally, one would like to change

the density of atoms and molecules independently to identify the source of the shift(s).

At the present time, we have not measured any density dependence to the mean-field

shifts.

7.5.5 Limitations of current method and possible future experiments

As discussed above, the observed time dependence of the BEC number arises

from the interplay between the bare atom-molecule oscillation frequency and a density-

dependent frequency shift. The data suggest the presence of highly interesting many-

body physics, but the information we can glean from the oscillation data is limited. For

example, as we decrease the magnetic field to approach closer to the Feshbach resonance,

we observe that the oscillations rapidly damp out due to increased dephasing. Eventu-

ally the damping rate becomes comparable to the oscillation frequency and it becomes

impossible to reliably extract the underlying frequency because the system is critically

damped. One way to avoid this limitation would be to measure the atom-molecule

oscillations as a function of position in the condensate. If we could “bin” the cloud

into different spatial regions, then we could avoid the effect of inhomogeneous dephas-

ing [89]. However, our present method of measuring the BEC number involves a large
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time-of-flight expansion before imaging, which effectively blurs any spatial information

about the pre-expansion condensate (see section 3.5.3).

Another practical limitation of our experiment comes from the finite amount of

charge stored in the capacitor bank used to control the magnetic field (see section 3.4.3)

The finite amount of charge prevents us from holding the magnetic field constant for

more than ∼1 ms, so we cannot observe an atom-molecule oscillation with a period

longer than this limit.

However, we are investigating novel techniques to determine mean-field shifts

to the atom-molecule system near the Feshbach resonance. For example, it may be

possible to use rf pulse spectroscopy, as discussed in section 3.3.5, to measure the mean-

field energy. Such a method allows one to probe the energy of the system on shorter

timescales and has proven useful in studies of 40K Feshbach resonances [91].
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