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Using the spin of the electron to carry information, instead of or in addi-

tion to its charge, could provide advances in the capabilities of microelectronics.

Successful implementation of spin-based electronics requires preservation of the

electron spin coherence. Long spin coherence times have been observed in lightly

n-doped semiconductors, with a maximum at a “magic” electron density. We sys-

tematically study the spin dynamics of the electron in a GaAs quantum well, where

the electron density in the well can be varied through optical excitation. We show

that spin coherence is lost due to the interplay between localization by disorder

and dynamical scattering. The disorder potential is characterized by measuring

the electron Landé g factor dependence on density. Our results show that the

longest spin coherence is obtained for weakly localized spins, which may dictate

a compromise in the design of devices between increasing the spin coherence time

and improving transport properties.

We also explore the intimate connection between electron spin and optical

excitation that initiates and controls the spin states. We study the interplay of spin

dynamics between excitons, negatively charged excitons and the two-dimensional

electron gas in a lightly n-doped semiconductor quantum well. The spin of the

electron gas can be polarized through interband transitions, and the electron spin

can persist long after the recombination of optically excited carriers. We find

that the excitation of spin polarization of the resident electrons depends on the

recombination times and spin relaxation times of the optically excited carriers and

the energy chosen for the light pulses.
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Chapter 1

Introduction

1.1 A perspective on spintronics

Spintronics, or spin-based electronics, involves the study of active control

and manipulation of spin degrees of freedom in solid-state systems [1, 2, 3]. Using

the spin of the electron to carry information, instead of or in addition to its

charge, could provide advances in the capabilities of microelectronics [4]. In a

broad sense, there are already commercial spintronic devices. One example is the

read heads for magnetic hard discs that use the giant magnetoresistance effect.

Those devices normally consist of magnetic and non-magnetic metals rather than

semiconductors, and are more appropriately described as magnetoelectronics [4, 5].

Traditional electronics, on the other hand, is dominated by semiconductors for

obvious reasons. Combining the advantages of semiconductors with the concept

of spins and thereby introducing spin into semiconductor devices is therefore a

logical step and opens a new pathway for spintronics.

The current goal of spintronics is to understand the interaction between

the particle spin and its solid-state (especially semiconductor) environments and

to make useful devices using the acquired knowledge. Fundamental studies in

spintronics include the generation of spin polarization, spin transport, spin dy-

namics and relaxation, and spin detection. We illustrate the above aspects by

showing a prototypical spintronic device, a spin field-effect transistor [6], which is
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Figure 1.1: Scheme of a spin field-effect transistor. The current is controlled by
the gate voltage, being large if the electron spin at the drain is parallel to its
initial direction (top), and small if antiparallel (bottom).

depicted in Figure 1.1. The spin field-effect transistor consists of a source, a drain,

a narrow channel, and a gate for controlling the current. The source and drain

are ferromagnets acting as the injector and detector of electron spins. Specif-

ically, the source injects electrons with spins parallel to the electron transport

direction, and the drain detects electron spins near the drain after the electrons

transport through the channel. An effective magnetic field (in the direction of Ω

in Figure 1.1), arising from the spin-orbit coupling due to the confinement of the

channel and the applied electrostatic potential of the gate [7], will cause electron

spins to precess as the electrons travel through the channel. The magnitude of

this effective magnetic field is tunable by the gate voltage. By modifying the gate

voltage, we can have either parallel or antiparallel electron spins at the drain, and

therefore effectively control the current. Key issues of the device include how long

the electron can preserve its spin coherence as it propagate through the channel

and how fast the electron spin will precess under the magnetic field.
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A quantum-coherent approach to electronics offers the advantage of ultra-

fast device operation resulting from the interference between two coherently oc-

cupied quantum states. This requires the quantum coherence being able to evolve

coherently long enough to be manipulated. In semiconductors, the optical co-

herence (the electric dipoles between the electron-hole pairs after optical pulse

excitation) time is usually tens of picoseconds or less. The electron spin states,

on the other hand, show a more robust resistance to the environmental sources

of decoherence. Long spin coherence times exceeding hundreds of nanoseconds

has been observed in lightly n-doped semiconductors [8, 9]. Spin coherence is

also preserved for transport over distances exceeding 100 micrometers [10]. Spin

therefore offers opportunities to store and manipulate phase coherence over length

and time scales much larger than is typically possible in charge-based devices, and

shows promise for constructing quantum bits in quantum information processing

[11]. Time-resolved optical experiments have been proven to be a good candidate

for generating, manipulating and detecting the spin coherence in semiconductor

systems [12, 13]. Optical pulses are used to create a superposition of the basis

spin states defined by an applied magnetic field, and follow the phase, amplitude

and location of the resulting electronic spin precession (coherence). The work pre-

sented in this thesis will focus on the coherent optical generation and manipulation

of electron spins.

1.2 General background

1.2.1 Spin coherence

The term “coherence” refers to a well-defined phase, or phase memory in

a system. In a quantum system, the evolution of the wavefunction follows its

Hamiltonian in a predictable way, which we call the quantum-coherent evolution
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of the state. Consider an electron spin in a basis defined by a transverse applied

magnetic field (Voigt geometry), i.e. the electron is in a pure spin state initially

whose direction is perpendicular to the magnetic field (Figure 1.2). The electron

Hamiltonian under the magnetic field is

H = gµBS · B/h̄ = ωLSz, (1.1)

with ωL ≡ gµBB/h̄ the electron Larmor precession frequency. Here g is the

electron Landé g factor, and µB is the Bohr magneton. The eigenstates in the

system are |Sz; +〉 and |Sz;−〉, simply denoted as |+〉 and |−〉, which are split in

the magnetic field by the Zeeman energy ∆E = gµBB = h̄ωL. The initial electron

spin wavefunction is in the +x direction,

|Ψ(0)〉 = |Sx; +〉 =
1√
2
|+〉 +

1√
2
|−〉. (1.2)

It is a coherent superposition of the spin-up (|+〉) and spin-down (|−〉) eigen-

states, defined by the applied magnetic field. The electron spin will evolve with

time under the spin Hamiltonian, resulting in oscillation between the two spin

eigenstates. Specifically, the electron spin wavefunction |Ψ(t)〉 at a later time t

follows

|Ψ(t)〉 = exp(
−iHt
h̄

)|Ψ(0)〉 =
1√
2

exp(−iωLt

2
)|+〉 +

1√
2

exp(
iωLt

2
)|−〉. (1.3)

If the projection of electron spin in the x direction is measured, the measured

quantity (averaged over an ensemble) is the expectation value:

〈Sx(t)〉 = 〈Ψ(t)|Sx|Ψ(t)〉 =
h̄

2
cos(ωLt). (1.4)

This is obtained by expressing the operator Sx in the z-basis,

Sx =
h̄

2
[(|+〉〈−|) + (|−〉〈+|)] . (1.5)
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Figure 1.2: An initial spin vector in the +x direction precesses under an applied
magnetic field.

Classically, the oscillation in Equation 1.4 corresponds to Larmor precession of

the spin vector at a frequency ωL in a plane normal to the applied field, with the

projection of the spin vector along its initial direction oscillating as a cosine.

An electron can lose its spin coherence through spin scattering off another

type of spin, spin-orbit scattering off a lattice vibration or impurity, or particle

annihilation through optical recombination with a hole. Spin decoherence can

be represented by adding a phenomenological damping term in the Hamiltonian

shown in Equation 1.1,

H = gµBS · B/h̄− ih̄Γ. (1.6)

Equation 1.3 and 1.4 can then be rewritten as

|Ψ(t)〉 = exp(
−iHt
h̄

)|Ψ(0)〉 =
exp(−Γt)√

2

[

exp(−iωLt

2
)|+〉 + exp(

iωLt

2
)|−〉

]

,

(1.7)

and

〈Sx(t)〉 = 〈Ψ(t)|Sx|Ψ(t)〉 =
h̄

2
exp(−2Γt) cos(ωLt). (1.8)

The characteristic time 1/2Γ is usually termed the transverse spin relaxation time,

or spin coherence time, T2. For an ensemble of electron spins, inhomogeneous

factors such as variations in the electron g factor or in the local magnetic field can

cause different spins to precess at slightly different frequencies. This will produce
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a spreading in the relative phase of spins within the electron distribution, even

when all spins are evolving coherently. This additional decay of spin polarization

due to inhomogeneities is termed spin dephasing, T ∗

2 . T ∗

2 gives the lower bound

on T2,

1

T ∗
2

≈ 1

T2

+
1

Tinh

, (1.9)

unless inhomogeneous effects can be eliminated.

1.2.2 Spin relaxation mechanisms

In this portion of the chapter, some of the most relevant spin relaxation

mechanisms for conduction electrons in semiconductors are discussed. A detailed

review of spin relaxation mechanisms in semiconductors and metals can be found

in Reference [2].

1.2.2.1 Elliott-Yafet mechanism

In the Elliott-Yafet mechanism, the conduction electron spins relax through

ordinary momentum scattering (spin-independent processes). In semiconductors,

the electron wavefunction experiences spin-orbit coupling induced by the lattice

ions, due to the spin-orbit Hamiltonian

Hso =
h̄

4m2c2
∇V (r) × p̂ · σ̂, (1.10)

where V (r) is the crystal potential, p̂ is the momentum operator and σ̂ are the

Pauli spin matrices. Due to the spin-orbit coupling, the energy eigenstates are

no longer the spin eigenstates (Pauli spin-up | ↑〉 and spin-down | ↓〉 states), i.e.

the spin magnetic quantum number ms is no longer a good quantum number.

Instead, the energy eigenstates are a mixture of | ↑〉 and | ↓〉 states, and are la-

beled as pseudospin eigenstates. The spin quantization axis for those pseudospin

states varies with momentum k. One of the consequences of this is that the spin
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quantum state of the electrons is not preserved for an elastic scattering event

(even for spin-independent scattering). The spin decoherence can then be under-

stood as an effective k-dependent rotation of the pseudospin resulting from the

momentum scattering. In the Elliott-Yafet mechanism, the spin relaxation time

τs is proportional to momentum scattering time τp, meaning the more orbital

scattering present in the material the more rapid the spin decoherence.

1.2.2.2 D’yakonov-Perel’ mechanism

Another efficient spin relaxation mechanism for conduction electrons is the

D’yakonov-Perel’ mechanism, resulting from the spin-orbit coupling in systems

lacking inversion symmetry. The zinc-blende semiconductors, such as GaAs and

CdTe, are crystals without inversion symmetry. The inversion symmetry is also

broken by the presence of asymmetric confining potentials in heterostructures, or

by applying an electric field. In this category of crystals, even with the absence

of an applied magnetic field, the pseudospin states are not degenerate. This

spin splitting can be described by introducing an intrinsic k-dependent effective

magnetic field B(k), and Ω(k) = (e/m)B(k) is the resulting Larmor precession

vector. The spin-orbit coupling for conduction electrons now has the form

Hso =
h̄

4m2c2
∇V (r) × p̂ · σ̂ = h̄Ω · σ̂/2. (1.11)

The presence of this k-dependent internal magnetic field implies that spins of

individual electrons will precess at different rate according to their momenta, and

the ensemble electron spins will dephase inhomogeneously in momentum space.

Now consider the case when the momentum scattering time τp is shorter

than the spin precession time due to internal magnetic fields (τpΩ(k) ≤ 1). Spins

of individual electrons will precess about fluctuating magnetic fields, whose mag-

nitude and direction change randomly. The faster the momentum scattering, the
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more random the electron spin precession and the slower the electron spin dephas-

ing. This is the case for D’yakonov-Perel’ mechanism, which is in the motional

narrowing regime. The spin relaxation time τs is therefore inversely proportional

to the momentum scattering time τp. The most important difference between the

Elliott-Yafet and the D’yakonov-Perel’ mechanisms is their opposite dependence

on momentum scattering time τp.

1.2.2.3 Hyperfine interaction mechanism

The hyperfine interaction, which is the magnetic interaction between the

magnetic moments of electrons and nuclei, provides an important mechanism for

ensemble spin dephasing or single spin decoherence of localized electrons. The

spatial variation in the nuclear spins, experienced by localized electrons via the

hyperfine interaction, leads to electron spin dephasing. In the limit of small orbital

and spin correlation between separated electron states and nuclear spin states,

the spins of the ensemble electron dephase inhomogeneously. In a system where a

strong orbital correlation (electron hopping) or spin correlation (electron-electron

exchange interaction) between neighboring electron states is present, the inhomo-

geneous spin dephasing is motionally narrowed, as in the case of D’yakonov-Perel’

mechanism. The spin dephasing due to the hyperfine interaction is shown to be

important in low-dimensional semiconductors but rather weak in bulk semicon-

ductors.

1.2.3 Electron Landé g factor

The electron Landé g factor is one of the basic parameters that describe

the magnitude of the Zeeman splitting of electronic states in magnetic fields. The
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Landé g factor for an atomic electron is given by

gJ =
3

2
+
S(S + 1) − L(L+ 1)

2J(J + 1)
, (1.12)

with an energy splitting under a magnetic field B

∆E = gJµBJ · B. (1.13)

Here, J is the total electronic angular momentum, L is the orbital angular mo-

mentum, and S is the spin angular momentum. In the special case of free electrons

(L = 0), g ≈ 2.0.

An effective Landé g factor (g∗) is commonly used in solid state physics,

with its definition shown in the Zeeman splitting ∆E = g∗µBB. g∗ of conduction

band electrons in semiconductors differs from the free electron value, 2.0, due to

the spin-orbit interaction. Specifically, the g∗ values at the conduction-band edge

are smaller than the free-electron value, due to the spin-orbit interaction between

the s-like (the lowest conduction band) and p-like (both the valence bands and

the next higher conduction bands) states. The k · p perturbation theory predicts

electronic properties such as the effective mass m∗ and the Landé g factor g∗ in

the vicinity of a semiconductor band extremum. A five-band k · p model [14]

was developed to calculate the g∗, where the spin-orbit interaction of the valence

bands and higher conduction bands were taken into account:

g∗ ≈ g0

[

1 − EP

3

(

1

E
− 1

E + ∆0

)

− E
′

P

3

(

1

E(Γc
7) − E

− 1

E(Γc
8) − E

)

+ C
′

]

.

(1.14)

Here E is the electron energy measured from the valence band maximum, EP ,

E
′

P , E(Γc
7), E(Γc

8) and ∆0 are energy parameters of the bands. As shown in

Equation 1.14, the g∗ dependence on the energies of fundamental gaps in semi-

conductors is established.
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1.3 Outline of thesis

This thesis is focused on optical studies of spin dynamics in semiconductor

materials, especially that in quantum well systems. Chapter 2 gives an explana-

tion of the optical techniques used to measure the spin dynamics of the carriers.

Preliminary results on the spin dynamics in bulk GaAs samples are also presented.

In Chapter 3 we present a spectral study of the spin dynamics in semiconductor

quantum wells, where spin dependent nonlinearities of the materials are discussed.

Chapter 4 explores the intimate connection between electron spin and optical ex-

citation that initiates and controls the spin states. This involves studies of spin

interplay between resident electrons and interband transitions. In Chapter 5 we

systematically study the spin dynamics of the electron in a GaAs quantum well.

The focus is on extending spin coherence time through optimum doping. We study

the effects of disorder and dynamical scattering on electron spin decoherence. A

conclusion is presented in Chapter 6. An appendix is included that discusses cal-

ibration and compensation of the birefringence of the cryostat windows, which

is important in polarization-sensitive measurements such as the transient Fara-

day/Kerr rotation experiments.
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Chapter 2

Experimental Techniques

For the study of carrier dynamics in semiconductors, ultrafast pump-probe

spectroscopy techniques are widely used [15]. A pump pulse excites carriers in

semiconductors, and a delayed probe pulse monitors the time evolution of optically

excited carriers. The work presented in this thesis is focused on the study of spin

dynamics in semiconductor materials. For such study, optical spin orientation

is implemented into the pump-probe experiment, to enable optical generation

and detection of carrier spins in semiconductors. The transient Faraday/Kerr

rotation technique, which are essential for most of the experiments presented

in this thesis, uses Faraday/Kerr effects induced by spin magnetization in the

medium to extract dynamical information of carrier spins. With the addition of

an applied magnetic field, the time evolution of the spin coherence, defined by

the applied field, can be followed by optical pulses (refer to Section 1.2.1). We

start this chapter by presenting general aspects of the pump-probe experiments.

The selection rules in semiconductors are then discussed to illustrate carrier spin

polarization through optical orientation. The transient Faraday/Kerr rotation

technique is introduced, with the experimental setup discussed. We conclude

the chapter by presenting preliminary results measured on bulk GaAs samples,

which illustrate information regarding spin dynamics that can be obtained from

Faraday/Kerr rotation measurements.
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Figure 2.1: Schematic for a pump-probe measurement. The temporal dynamics is
monitored by varying the relative time delay between the pump and probe pulses.

2.1 Pump-probe spectroscopy

Pump-probe experiments using ultrafast lasers enable direct measurements

of carrier dynamics, with a temporal resolution limited only by the duration of

the laser pulse. Carrier dynamics initiated by a pump pulse can be monitored

by varying the relative time delay of a probe pulse (Figure 2.1). This is done in

practice by using a translation stage that varies the optical path length of one

beam relative to the other. A pump-probe experiment measures the differential

transmission by the probe pulse, with and without the pump excitation. With

a pump excitation, the photoexcited electrons fill states in the conduction band,

which would otherwise be available for excitation of valence electrons by probe

photons, therefore induce a change in the transmitted probe intensity. The direct

application of pump-probe experiments is to track the carrier population decay

as a function of time, giving information of the optically created carrier lifetime.

To monitor spin dynamics of the carrier, circularly polarized pump and probe

pulses are used. Pump pulse preferentially excite carrier spins in one of the spin

subband, and a co-circular probe pulse measure the spin dynamics in the same spin

subband. In Section 2.3, we will introduce the transient Faraday/Kerr rotation

technique, which is a special version of the pump-probe experiment. The principal
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advantage of Faraday/Kerr rotation over traditional pump-probe is the sensitivity

of the measurement. Before proceeding to the Faraday/Kerr rotation technique,

we first discuss the selection rules through which spin polarized carriers can be

generated with light.

2.2 Generation of spin polarized carriers

The carrier spins in semiconductors can be oriented using optical techniques

in which circularly polarized photons transfer their angular momenta to electrons

(optical orientation). Specifically, a photon of right or left circularly polarized

light has a projection of its angular momentum in the light direction equal to

+1 or -1, respectively. As a consequence of angular momentum conservation, the

photoexcited electron and hole are spin-polarized following the absorption of the

photon, and the angular momentum is distributed between the electron and hole

according to the selection rules.

We illustrate basic principles of optical orientation by the example of GaAs,

which is representative of a large class of zinc-blende semiconductors. A schematic

band structure of GaAs is depicted in Figure 2.2(a). GaAs is a direct bandbap

material, i.e. both the minimum of the conduction band and maximum of the

valence band lie at k = 0 in momentum space. The bandgap is Eg = 1.52 eV

at low temperature, and energy of the spin split-off band is lower than the heavy

and light hole bands by ∆so = 0.34 eV (we ignore optical orientation due to the

split-off band, because of its much higher interband energy).

For the lowest-lying bands in the semiconductors of interest here, the char-

acter of the conduction band is “s-like” while that of the valence bands is “p-like”.

This reflects the relative contributions to the density of states in each band from

atomic s and p orbitals of the atoms that form the solid. An electron state in the
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Figure 2.2: (a) Schematic band structure of GaAs near the interband gap. Eg is
the bandgap and ∆so is the energy splitting of split-off band; cb, conduction band;
hh (lh), heavy (light) hole valence band; so, split-off valence band. (b) Selection
rules for interband transitions between the heavy and light hole valence bands
and conduction band for σ+, σ− and π polarized light. The numbers denote the
relative transition intensities.

conduction band is described by the Bloch wavefunction

ψc
~km

= um(~r) exp(i~k · ~r). (2.1)

Here m represents the electron spin direction (m = ±1/2), ~k is the crystal mo-

mentum and um is the Bloch amplitude, i.e. an invariant under symmetry trans-

formations of the crystal. For the conduction band states, the Bloch amplitudes

can be approximately separated into orbital and spin parts [16]:

u1/2(~r) = S ↑, u−1/2(~r) = S ↓, (2.2)

with S denoting the coordinate part, and ↑ (↓) the spin part of the s-like Bloch

amplitude. Unlike the “s-like” conduction band, the valence band is “p-like”

(L=1), so that the spin-orbit coupling is sizable. This means that the Bloch
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amplitudes for the valence band electrons should be expressed as eigenstates of

the total angular momentum, J = L+S, and its z-component, Jz. We denote the

Bloch amplitudes according to the total angular momentum J and its projection

onto the positive z axis mj as |J,mj〉. Specifically, the eigenstates for the heavy

hole valence band are written as |3/2,±3/2〉, |3/2,±1/2〉 for light holes, and

|1/2,±1/2〉 for split-off holes. The spin-orbit coupling removes the degeneracy

between J = 3/2 and J = 1/2, so that the split-off hole band is ∆so below the

heavy and light hole valence band.

In analogy to atoms, interband optical excitation excites electrons from

the valence to conduction band in semiconductors following selection rules. The

transition probability for an electron excited from the valence to conduction band

under an incident electromagnetic field ~E is given by the Fermi’s golden rule

Rvb→cb =
2π

h̄

∣

∣

∣〈cb| − e~r · ~E|vb〉
∣

∣

∣

2

δ(Eg − h̄ω), (2.3)

with Eg the energy of the bandgap. The interband selection rules are then rep-

resented by the dipole moments, 〈cb|D̂|vb〉, with D̂ ≡ −e~r, corresponding to

transitions between the conduction band and different sub-bands of the valence

band. The matrix elements of the dipole moment between the heavy hole valence

band and the conduction band follows [16]

〈S ↑
∣

∣

∣D̂
∣

∣

∣ 3/2, 3/2〉 = −
√

1/2(λ̂+ iµ̂), 〈S ↓
∣

∣

∣D̂
∣

∣

∣ 3/2, 3/2〉 = 0,

〈S ↑
∣

∣

∣D̂
∣

∣

∣ 3/2,−3/2〉 = 0, 〈S ↓
∣

∣

∣D̂
∣

∣

∣ 3/2,−3/2〉 =
√

1/2(λ̂− iµ̂), (2.4)

and the matrix elements of the dipole moment between the light hole valence band

and the conduction band follows

〈S ↑
∣

∣

∣D̂
∣

∣

∣ 3/2, 1/2〉 =
√

2/3ν̂, 〈S ↓
∣

∣

∣D̂
∣

∣

∣ 3/2, 1/2〉 = −
√

1/6(λ̂+ iµ̂),

〈S ↑
∣

∣

∣D̂
∣

∣

∣ 3/2,−1/2〉 =
√

1/6(λ̂− iµ̂), 〈S ↓
∣

∣

∣D̂
∣

∣

∣ 3/2,−1/2〉 =
√

2/3ν̂. (2.5)
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Here λ̂ and µ̂ are unit vectors in a plane perpendicular to the momentum, and ν̂

is a unit vector along the momentum. The same constant has been removed from

the dipole moments in Equation 2.4 and 2.5 for simplicity. The electric field will

couple to different interband transitions depending on the dot-product between

the field vector and different dipoles (transition probability R ∝
∣

∣

∣〈cb| ~D · ~E|vb〉
∣

∣

∣

2

).

A σ± circularly polarized photon, with the electric field in
√

1/2(λ̂ ± iµ̂) direc-

tion, will couple to both the heavy and light hole transitions, while a π polarized

photon (with field in ν̂ direction) can also couple to the light hole transition. The

complete selection rules for interband transitions between the heavy and light hole

valence bands and the conduction band are depicted in Figure 2.2(b). The relative

transition intensities for the different transitions are also denoted in the figure.

The spin polarization of the photoexcited conduction band electrons de-

pends on the photon energy. For a photon energy tuned to the interband transi-

tion below the split-off energy, only the heavy and light hole subbands contribute.

We define the electron spin polarization as

P = (n+ − n−)/(n+ + n−), (2.6)

with n+ and n− the densities of electrons polarized parallel (ms = 1/2) and

antiparallel (ms = −1/2) to the light propagation direction. For a zinc-blende

structure (such as that of GaAs and CdTe), the spin polarization is equal to

−50% (+50%) at the moment of a σ+ (σ−) photoexcitation. This is due to the

different transition probabilities between the heavy hole and light hole subbands,

as depicted in Figure 2.2(b). Figure 2.2(b) also suggests a 100% spin polarization

in the conduction band in semiconductors where the degeneracy of the heavy and

light hole states is lifted. This is achieved in strained bulk zinc-blende crystals or

in quantum well heterostructures.
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2.3 Transient Faraday and Kerr rotation

2.3.1 Faraday effect

The Faraday effect is the rotation of linearly polarized light as it passes

through a material with a circular birefringence induced by an applied magnetic

field. The medium equation (electric displacement) for materials exhibiting the

Faraday effect is [17]

~D = ǫ ~E + iǫ0γ ~B × ~E, (2.7)

where γ is the magnetogyration coefficient that determines the rotatory power.

With a magnetic field in the light propagating direction ~B = Bẑ, the invariant

states to the above equation are ~E = E0(x̂± iŷ) for σ± circular polarization. The

corresponding index of refraction can be written as

n
′

±
=
√

n± γB (2.8)

for σ+ and σ− helicities, respectively. The induced circular birefringence corre-

sponds to the different indices of refraction for σ+ and σ− light. Because linearly

polarized light can be viewed as a superposition of σ+ and σ− light, the circular

birefringence will add a phase difference between the two components while the

light travels through the medium. This phase difference corresponds to an angle

of rotation of the linear polarization, hence the name Faraday rotation, with the

rotation angle

θF =
π(n

′

+ − n
′

−
)L

λ0

≈ πγBL

nλ0

, (2.9)

with L the medium thickness and λ0 the free space wavelength of the light.

The spin dynamics in semiconductors is measured by implementing Faraday

effect into pump-probe experiments. The Faraday effect is now induced by carrier

spins, which can be generalized as a pump-excited spin magnetization in the

light propagation direction (the origin of Faraday rotation resulting from optical
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Figure 2.3: Schematic setup for transient Faraday rotation measurements. PBS,
polarizing beam splitter; λ/2, half-wave plate; λ/4, quarter-wave plate. An op-
tional quarter-wave plate is inserted for the Faraday ellipticity measurement.

orientation will be discussed in Chapter 3). By monitoring the rotation angle of

the probe linear polarization as a function of the time delay, the dynamics of spin

polarization in the beam direction is directly measured. A schematic of transient

Faraday rotation setup is shown in Figure 2.3.

2.3.2 Experimental details

The pump and probe pulses are provided by a mode-locked Ti:Sapphire

laser system (Coherent Mira 900), pumped by a 5 W CW Diode-Pumped Laser

at 532 nm (Coherent Verdi V5). It provides optical pulses in the near-infrared

wavelength range, with a repetition rate of 76 MHz and a duration less than 200

fs (due to spatial chirp caused by optical components in the setup, the pulse du-

ration is about 300 fs before it arrives at the samples, based on autocorrelation

measurements). The normal spectral linewidth of the laser output is about several

nm, with the center wavelength tuned near the interband transition of the semi-

conductor samples. The laser output is split into pump and probe pulses, with
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the probe pulse time-delayed by a 60 cm translation stage (Newport IMS600PP),

up to a delay of 4 ns. A retroreflecting mirror is mounted on the stage to minimize

beam misalignment due to stage movement. The pump beam is chopped either

by an optical chopper (Stanford Research SR540) that goes up to 3.7 kHz, or an

acousto optical modulator (Isomet 1250C), so that a lock-in amplifier can be used

for phase-sensitive detection.

The pump and probe beams are focused to a ∼ 100 µm and ∼ 50 µm spot

on the sample, respectively. This is to ensure that the probe beam will only

measure a part of the area within that excited by the pump beam and hence

probe uniform excitation. The sample is mounted on a sample mount within a

magneto-optical cryostat (Janis split-coil superconducting magnet cryostat, model

12-CNDT) capable of temperatures from 2−300 K and magnetic fields from 0-6.5

Tesla.

As shown in Figure 2.3, a circularly polarized pump pulse excites spin po-

larized carries in the semiconductor samples, with the spin polarization oriented

in the pump beam direction. They start to Larmor-precess in an in-plane applied

magnetic field (Voigt geometry, with the magnetic field perpendicular to the beam

direction). A linear probe pulse at a later time is used to detect the spin through

the Faraday effect. The circular birefringence created by the spin magnetization

will produce a rotation of the linear polarization of the transmitted probe, which

is detected by a polarization bridge. By varying the time delay between pump

and probe pulse, one can monitor the spin precession of the carriers in the time

domain. A balance detection scheme is employed in order to sensitively detect

small rotation signals. At negative time delays (when the pump has no effect),

the probe linear polarization is rotated by a half-wave plate to be at 45◦ with

respect to a polarizing beam splitter (a Glan Laser prism polarizer in our exper-

iments). This ensures equal intensities for the orthogonal polarizations that exit
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the beam splitter, which are directed to two photodiodes. When balanced, the

difference current between the two photodiodes is zero. At positive delays after

pump excitation, however, the Faraday rotation of the probe is detected as a slight

imbalance of the difference current between the two photodiodes. The nonzero

difference current is amplified by an op-amp (with several amplification settings

from 0.1 MΩ to 10 MΩ), and passed on to a lock-in amplifier (Stanford Research

SR830). The main advantage of the balance detection scheme is that fluctuations

of the laser intensity are manifested simultaneously in both arms of the bridge

and are thus canceled. This is, however, not the case for differential transmission

pump-probe measurements.

Similar to Faraday rotation, a difference in absorption coefficients of the

medium for the two circularly polarized components will induce ellipticity in the

transmitted light, which is called Faraday ellipticity. We will study the Faraday

ellipticity spectrum in Chapter 3. Experimentally, the Faraday ellipticity is mea-

sured by inserting an additional quarter-wave plate before the polarization bridge,

as shown in Figure 2.3. The purpose of the quarter-wave plate is to convert the

left and right circular polarizations into orthogonal linear polarizations, so that

the two photodiodes essentially measure the difference intensity of the left and

right circular polarization components in a linear probe beam. The difference

current from the balanced detector is then proportional to the Faraday ellipticity.

For the study of thick, opaque samples, a transient Kerr rotation technique

is used, which is similar to a transient Faraday rotation measurement, except that

it is the polarization of the reflected probe beam that is measured. A transient

Kerr rotation setup is shown in Figure 2.4. A typical transient Kerr rotation signal

is plotted in Figure 2.5, which is measured in a lightly n-doped CdTe quantum

well sample. The data for delay times over 100 ps can be well described by an
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Figure 2.4: Schematic setup for transient Kerr rotation measurements. Both
pump and probe pulses are spectrally filtered through pulse shaping technique,
to enable independent tuning of their photon energies. The spectral linewidths of
the pulses are also narrowed for spectrally resolved measurements.
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Figure 2.5: Kerr rotation data from a lightly n-doped CdTe quantum well. Pump
and probe photon energies are tuned near the exciton resonance of the quantum
well. The long-delay signal can be well fitted by an exponential oscillation decay,
giving information of the electron spin dephasing time (T ∗

2 ), Larmor precession
frequency (ωL) and the effective g factor (g∗).
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exponential oscillation decay in the form of

θK = A exp(−t/T ∗

2 ) cos(ωLt), (2.10)

with T ∗

2 the spin dephasing time and ωL = g∗µBB/h̄ the Larmor precession fre-

quency. From a nonlinear fit of the data with Equation 2.10, we can obtain the

spin dephasing time, Larmor precession frequency under the magnetic field, and

the effective Landé g factor. A Larmor precession frequency of ωL = 2π 43.3 GHz

is measured at B = 2 T, corresponding to |g∗| = 1.55. A T ∗

2 over 1 ns is retrieved

from the data. As this time constant exceeds lifetimes of optically created car-

riers (∼ 100 ps), it is the spin dephasing time of the resident electrons. A fast

exponential decay at short time delay is related to exciton spin dephasing, which

will be detailed in Chapter 4.

2.3.3 Two-color measurements

In a typical transient Faraday/Kerr rotation measurement, both the pump

and probe photon energies (degenerate) are tuned near the vicinity of some ab-

sorption resonances for resonant excitation and detection sensitivity. A two-color

measurement, where the pump and probe photon energies can be independently

tuned, is preferred when multiple resonances in the samples are present. A two-

color measurement is useful for selective excitation and detection through different

resonances (carrier species). It is especially helpful for spectral studies of the Fara-

day/Kerr rotation, where the pump photon energy is varied with the probe energy

fixed near a resonance, and vice versa, so that different effects from excitation and

detection can be well separated. We perform a two-color transient Faraday/Kerr

rotation measurement by using a pulse shaping technique [18]. Both pump and

probe pulses are spectrally filtered through a 4-f pulse shaper with a movable

slit, to enable independent tuning of their photon energies, which is shown in
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Figure 2.4.

Figure 2.4 shows the basic pulse shaping apparatus, which consists of a pair

of diffraction gratings and lenses and a movable slit. The lenses are 2-inch bi-

convex lenses with f = 15 cm. The diffraction gratings are of 1200 grooves/mm

with a blaze angle at 750 nm. The width of the slit is adjustable with width

ranging from 0 to 4 mm (Melles Griot SLT 201). The frequency components

contained within the incident laser pulse are angularly dispersed by the first dif-

fraction grating, and are focused at the back focal plane of the first lens, where

different frequency components are spatially separated. The second lens and grat-

ing recombine all frequency components into a collimated beam. The adjustable

slit, placed in the back focal plane of the first lens, narrows the pulse spectrum

depending on its width. The center wavelength is controlled by translating the

slit in the focal plane. The 4-f pulse shaper used has a spectral resolution of

∼ 0.1 nm. The spectral linewidths of the pulses are normally adjusted to be ∼0.2

nm for spectrally resolved measurements. By using separate pulse shapers for

pump and probe beams, their photon energies can be independently tuned, hence

a two-color measurement.

2.4 Preliminary measurements on bulk GaAs

A preliminary study is performed by measuring spin dynamics in bulk GaAs.

The importance of GaAs for spintronics and quantum computing applications has

been recently underlined by the observation of rather long spin relaxation times

(on the order of 100 ns) in n-doped samples [19]. We study nominally undoped

and n-doped bulk GaAs (doping densities of 2.4 − 5.3 × 1016, 2 − 3 × 1017, and

2− 3.3× 1018 cm−3) by performing transient Faraday rotation experiments in the

Voigt geometry, under a magnetic field of 4 Tesla. The GaAs samples are thinned

down to 30 µm and mounted on a sapphire disk, for transmission measurements.
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Figure 2.6: (a) g factor and (b) spin dephasing time (T ∗

2 ) as a function of temper-
ature in undoped bulk GaAs. Solid line in (a) is a linear fit for data above 40 K.
B = 4 T. Inset: Transient Faraday rotation signal at T = 4.5 K.

The pump and probe pulses are degenerate in photon energy and are tuned near

the bandgap of GaAs.

2.4.1 Undoped GaAs

We start with the nominally undoped GaAs sample. The transient Faraday

rotation signal at T = 4.5 K and B = 4 T is shown in the inset of Figure 2.6.

A spin dephasing time of T ∗

2 ∼ 200 ps and g factor of g∗ = −0.452 are retrieved

from a nonlinear fit using Equation 2.10. We measure the g-factor as a function

of temperature, which is shown in Figure 2.6(a). For temperature above 40 K,

a rather good linear dependence on temperature is observed, with a linear de-

pendence of g∗(T ) = −0.46 + 5 × 10−4T. This is in agreement with the linear

temperature dependence reported in Reference [20]. Below 40 K, the g factor

substantially deviates from the linear dependence. The donor binding energy for

GaAs is ∼ 4 meV, or 40 K [21, 22]. Below 40 K, electrons are largely localized by
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binding with the donors or impurities, and above 40 K, are largely free. We believe

the deviation of g factor at low temperature is related to electron localization at

donor sites. A theory including effects from donors is however unavailable. In Sec-

tion 1.2.3, a g∗ dependence on the energies of fundamental gaps in semiconductors

is established. The g∗ dependence on temperature can therefore be represented

by the temperature variation of the energy gaps, which are well known with high

accuracies [23]. A calculation of g∗ dependence on temperature was carried out

[23] by using the five-band k · p model discussed in Section 1.2.3 [14]. The theo-

retical prediction by k ·p theory is in the opposite direction than the experimental

results, manifesting the need for appreciable, temperature dependent corrections

of this band model.

The temperature dependence of the spin dephasing time is plotted in Fig-

ure 2.6(b). The spin dephasing time T ∗

2 at first increases with temperature, and

then starts to decrease at temperature over 80 K. The decrease of T ∗

2 with tem-

perature above 80 K has been found to be consistent with the D’yakonov-Perel’

mechanism [24], which is the dominant spin dephasing mechanism for delocal-

ized electrons. At low temperature, the increase of T ∗

2 with temperature is rather

counter-intuitive, because momentum scattering rate is usually increased with in-

creasing temperature. It can be qualitatively explained with a motional narrowing

picture, in which the correlation time decreases with increasing temperature much

faster than the dispersion of local Larmor frequencies.

2.4.2 n-doped GaAs

We study spin dynamics in the four bulk GaAs samples with different doping

concentrations [25]. A comprehensive study of the electron spin decoherence time

over a large range of doping levels in bulk n-GaAs has already been presented

elsewhere [8], with spin coherence time reaching its maximum near the metal-
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insulator transition. We focus our study on the doping concentration dependence

of the electron Landé g factor. In Figure 2.7, g factors for the four GaAs samples

measured at 4.5 K are plotted with their doping concentration. The g factor

increases monotonically with increasing doping density. In Section 1.2.3, g∗ of the

conduction electron is shown to depend on its energy. This energy dependence

can be further simplified as a linear dependence g∗(E) = −0.44 + 6.3 × E (eV),

within a small energy range near the conduction band edge [26]. The variation

of g factor with carrier concentration can then be understood as its dependence

on the Fermi energy, with the electron energy at the Fermi edge increased with

increasing doping density due to filling of conduction band from dopant electrons.

The g factor measured through Faraday rotation should be that of electrons at the

Fermi energy. With the assumption of a linear energy dependence of g∗, a Fermi-

Dirac distribution with T = 0 K, and a parabolic conduction band near the band

edge, we are able to calculate the g factor dependence on electron density, which

is shown as a solid line in Figure 2.7. At low densities, the calculated g∗ is higher

than the experimental values due to the set value (g0 = −0.44) at conduction

band edge. The discrepancy at high electron concentration is probably because

of the assumption of linear energy dependence, which is not valid for energies far

away from the conduction band edge [27].

Figures 2.8(a) and (b) show the electron spin dephasing time T ∗

2 in n-doped

GaAs (2.4−5.3×1016 cm−3) and nominally undoped GaAs as a function of optical

excitation density. While T ∗

2 increases almost linearly with increasing optical

excitation density for the undoped sample, it shows an opposite behavior for the

n-doped sample. By increasing the optical excitation density, we also increase the

carrier temperature of the electrons. The results in Figure 2.8 indicate dramatic

difference in spin dephasing mechanisms under different doping concentration.



Chapter 3

Spectral study of transient Faraday and Kerr effects

For the study of carrier spins in semiconductors, the magneto-optical Fara-

day and Kerr effects, which are measured in transmission and reflection geometry,

respectively, are extensively used [28, 29]. The transient versions of these tech-

niques are especially powerful for extracting spin dynamics in semiconductors

[13, 30]. Spectral studies of the transient Faraday and Kerr effects reveal the un-

derlying spin-dependent optical nonlinearities [31, 32], improve understanding of

the techniques themselves, and, as shown in Chapter 4, distinguish the spin relax-

ation from different species. In this chapter, we experimentally study the spectra

of the transient Faraday and Kerr effects near exciton resonances of an undoped

GaAs multiple quantum well. A multilayer calculation using a characteristic ma-

trix method is performed to account quantitatively for the linear transmission

(reflectivity) spectra and the Faraday (Kerr) spectra. We found that the Faraday

and Kerr spectra do not obey a Kramers–Kronig relation, which should be valid

for a simple slab of nonlinear material. This anomalous behavior is found to be

due to interference with multiple reflections within the sample structure on the

Kerr spectra [33].
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3.1 Introduction

When a linearly polarized light is incident on a sample, a difference in the

index of refraction for the two circularly polarized components causes a rotation

of the polarization axis of the transmitted light, which is referred to as Faraday

rotation. Likewise, a difference in the absorption coefficients induces ellipticity in

the transmitted light, which is called Faraday ellipticity. A difference in optical

coefficients can be created by an external magnetic field or, as in the case of the

photo-induced Faraday effect, by optical orientation due to photoexcitation. In a

transient Faraday measurement, a circularly polarized pump pulse preferentially

excites carriers into one of the two spin subbands and creates an imbalance of

spin population. This population imbalance will cause a change of the index of

refraction and/or absorption coefficient, which is detected by the Faraday effect.

The resultant nonlinearities in the optical response can arise from:

(1) saturation of the resonance owing to phase-space filling (arising from the

Pauli exclusion principle);

(2) shift of the resonance energy due to band-gap renormalization and/or

Coulomb screening of the exciton binding energy;

(3) enhancement of scattering due to excitation induced dephasing.

To distinguish the contribution of the above mechanisms to the Faraday

spectra, we start with the index of refraction and absorption spectra for the exciton

resonance in a quantum well. A good approximation to represent the exciton

resonance is to use the oscillator model [34]. The complex dielectric constant for

a single resonance from the oscillator model follows

ǫ(ω) = ǫb +
f

ω2
0 − ω2 − iγω

, (3.1)
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where ǫb is the background dielectric constant, f is the oscillator strength, ω0 is

the resonance frequency and γ is the damping rate for the exciton. The complex

dielectric constant is equal to the square of the complex index of refraction ñ =

n+ iκ. The index of refraction n(ω) and the absorption coefficient κ(ω) therefore

is equal to Re(ǫ(ω))1/2 and Im(ǫ(ω))1/2, respectively. A dispersive refractive index

and a peak absorption are obtained around the resonance, as shown in Figure 3.1.

In Figure 3.1, schematic of the Faraday rotation and ellipticity near a reso-

nance is shown for a shift of resonance energy and saturation. The Faraday spectra

are obtained based on the linear spectra for opposite helicities of circular polar-

ization, with the nonlinearity described by a small change of resonant energy or a

decrease of the oscillator strength for one helicity, and the linear spectra for the

other helicity unchanged. Figure 3.2(a) shows the spectral behaviors of Faraday

rotation and ellipticity induced by an energy shift, calculated by using an energy

shift of 0.1 γ, with γ the full width half maximum linewidth of the resonance. The

rotation and ellipticity spectra are related by the Kramers–Kronig relation. This

is expected because the rotation and ellipticity spectra are due to the differences

of the linear spectra, each of which obeys the Kramers–Kronig relation.

The Kerr effect can be described as the Faraday effect in reflection, which

is preferred for the study of thick, opaque samples. For a single interface, one

expects the Kerr spectrum to be related to the Faraday spectrum through the

Kramers–Kronig relation, as is the case for linear reflectivity and transmission

spectra. This is shown in Figure 3.2(b) for energy shift induced Faraday and Kerr

rotation spectra.

3.2 Sample characteristics and experiments

Experiments are carried out on a GaAs/Al0.3Ga0.7As multiple quantum well,

which consists of 10 periods of a 10-nm well and a 10-nm barrier. The sample
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Figure 3.1: Schematic of the photo-induced Faraday rotation and ellipticity near
a resonance due to shift of resonance energy and saturation.
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Figure 3.2: Faraday and Kerr effect spectra resulting from an energy shift, calcu-
lated for a slab of nonlinear medium. Reflection from the front interface alone is
considered for the Kerr effect.
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is grown by molecular beam epitaxy on a GaAs substrate. It consists of nomi-

nally a 0.5 µm GaAs buffer layer, a 0.3 µm Al0.4Ga0.6As etch stop layer, 120 nm

superlattice, 0.3 µm GaAs, 0.3 µm Al0.3Ga0.7As, the 10 periods quantum well,

0.2 µm Al0.3Ga0.7As and a 100 Å GaAs cap layer. The sample is mounted on a

sapphire plate (GaAs cap layer facing sapphire plate) with the opaque GaAs sub-

strate removed by etching. The nominal sample structure after etching is shown

in Figure 3.3(a).

The absorption spectrum of the sample is shown in Figure 3.3(b), where

the features at 1.539 eV and 1.545 eV correspond to the heavy-hole and light-

hole exciton resonances in the quantum well. We measure spectrally the transient

Faraday and Kerr effects under a magnetic field of 4 T applied normal to the

quantum well growth direction. The spectral width of the pump and probe pulses

is about 1 nm, and the laser energy is scanned in the vicinity of the heavy-

hole and light-hole exciton resonances of the quantum well. Average powers are

10 mW in the pump beam and 0.2 mW in the probe. The heavy-hole exciton

density due to pump excitation is estimated to be 1011 cm−2 per quantum well.

All experiments are performed at 4.5 K. Care is taken to compensate for strain-

induced birefringence in the cryostat windows (refer to Appendix A).

3.3 Linear spectra

3.3.1 Reflection and transmission

Linear transmission and reflectivity spectra of the sample are measured by

using a white light source and detected by a spectrometer. The reflectivity spec-

tra are plotted in Figure 3.4. Both the transmission (not shown) and reflectivity

spectra show fringe patterns, with a fringe periodicity of ∼ 60 meV near the ex-

citon resonances. The fringes are caused by interference between reflections from
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Figure 3.3: (a) Layer structure of the GaAs quantum well used. (b) Absorption
spectrum near the heavy-hole (hh) and light-hole (lh) exciton resonances of the
quantum well

the front and back surfaces of the sample. As the excitation spot moves across

the sample surface, we observe a shift of the fringes, which is illustrated in Fig-

ure 3.4. This indicates that the sample is slightly wedged (4% across the sample).

The heavy-hole exciton resonance may appear as an absorption dip lineshape, a

dispersive lineshape or a peak line shape, depending on where the exciton reso-

nance sits on the fringes. The exciton resonances in the transmission spectra (not

shown) are always a dip regardless of the sample thickness. The variation of sam-

ple thickness, which is not preferred in most cases, does provide us opportunities

to check the effect of linear optical effects (such as interference) on the Faraday

and Kerr effect spectra, which in general depends on the nature of the optical

nonlinearities. We will discuss it in detail in Section 3.4.

3.3.2 Characteristic matrix method

A calculation of the linear spectra for the specific sample used is a neces-

sary prerequisite to account for the experimental Faraday and Kerr spectra. The
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Figure 3.4: Measured reflectivity spectra across the sample surface. The heavy-
hole and light-hole exciton resonances are denoted in the figure. Spectra are offset
vertically for clarity.

multilayer structure of the sample requires considerations of the multiple inter-

faces and interference effects within the sample, as well as different absorptions

associated with different layers. We use a matrix method to treat the problem

by which the amplitudes and phases of the electromagnetic field to the left of the

multilayer are transformed to those to the right [35, 36]. The characteristic matrix

for each layer is obtained from the optical constants and layer thickness, and the

characteristic matrix of the whole medium is the product of those for each layer.

The reflectivity and transmission are then easily calculated.

For a homogeneous dielectric film situated between air and substrate, the

incident electric field is related to the transmitted electric field by









Eb
0t

Ef
0t









=
1

2u0









u0 −1

u0 1









M









1

u2









Ef
2t, (3.2)
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with the characteristic matrix

M ≡









m11 m12

m21 m22









=









cos δ1
i

u1
sin δ1

iu1 sin δ1 cos δ1









. (3.3)

Here the superscripts f and b refer to fields propagating forward and backward,

respectively, the subscript t refers to the tangential field, and the subscripts 0, 1

and 2 refer to air, dielectric film and substrate, respectively. The change of phase

after the field propagating one-way in the dielectric layer is

δ1 =
2π

λ
n1d1 cos θ1, (3.4)

where λ is the wavelength, n1, d1 and θ1 are the index of refraction, thickness and

angle of refraction of the dielectric layer, respectively. The tangential admittance

uj follows

uj =

√

ǫj
µj

cos θj (3.5)

for a TE wave, and

uj =

√

ǫj
µj

1

cos θj

(3.6)

for a TM wave. From Equation 3.2 and 3.3 we obtain the reflection and trans-

mission coefficients of the film

r =
Eb

0t

Ef
0t

=
u0(m11 +m12u2) − (m21 +m22u2)

u0(m11 +m12u2) + (m21 +m22u2)
, (3.7)

t =
Ef

2t

Ef
0t

=
2u0

u0(m11 +m12u2) + (m21 +m22u2)
. (3.8)

The reflectivity and transmission in terms of r and t are

R = |r|2 , T =
u2

u0

|t|2 . (3.9)

The above formula can be generalized to the case of a succession of stratified

media by using a characteristic matrix

M = M1M2 . . .MN (3.10)

for an N–layer structure.
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3.3.3 Linear spectra: calculation

We calculate numerically the linear spectra of the sample by using the above

characteristic matrix method, based on the nominal sample structure and assum-

ing Lorentzian lineshapes for both the heavy-hole and light-hole exciton reso-

nances. There are some important aspects of this calculation that are worth

mentioning:

(1) The sample is assumed homogeneous with interfaces parallel and optically

flat.

(2) The absorption of the layers are included in the calculation by using com-

plex indices of refraction (ñ) in Equation 3.4–3.6.

(3) Both the heavy-hole and light-hole exciton resonances are included in

the calculation for the GaAs quantum wells, with the complex index of

refraction of the quantum well layers following that of an oscillator model

(Equation 3.1).

(4) The interband transition of bulk GaAs (whose bandgap energy is ∼30meV

below that of the excitons in the quantum well) is also considered in the

calculation for thick GaAs layers. The changes of the index of refraction

and absorption associated with the transition is accounted for by using

the Elliott formula [37].

(5) The background indices of refraction used in the calculation for different

layers are obtained from Reference [38], with nb = 3.656, 3.42, 3.36 and

1.77 for GaAs, Al0.3Ga0.7As, Al0.4Ga0.6As and sapphire, respectively.

(6) Both the linear and Faraday (Kerr) spectra are experimentally measured

under normal incident light. We therefore set θ = 0 in Equation 3.4–3.6.
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(7) The reflectivity and transmission coefficients obtained from Equation 3.7

and 3.8 not only give information of the amplitudes, but also the phases.

The Faraday and Kerr rotation are related to the phase changes of the

transmitted and reflected beams, respectively. We therefore calculate both

the amplitudes and phases of the reflectivity and transmission spectra.

The calculated transmission (not shown) and reflectivity spectra (solid lines

in Figure 3.5) are very similar to the measurements. The reflectivity spectrum

shown in Figure 3.5(a) has an absorption dip lineshape for the heavy-hole ex-

citon resonance. This is because the sample thickness allows for constructive

interference at the heavy-hole exciton wavelength. As the thickness changes, the

heavy-hole exciton resonance appears as a dispersive lineshape, as shown in Fig-

ure 3.5(b), which corresponds to a sample thickness roughly 1/8 of a wavelength

different from that in Figure 3.5(a). We note that the multiple internal inter-

faces play a minor role in the spectra due to the similar indices of refraction of

the GaAs and AlxGa1−xAs layers. We extract the linear optical parameters such

as resonance energies, linewidths and oscillator strengths of the heavy-hole and

light-hole exciton transitions from comparison of the calculated and measured

spectra, which will be used for the analysis of the Faraday (Kerr) spectra in the

next section.

3.4 Faraday and Kerr spectra

We measure the Faraday (Kerr) rotation and ellipticity spectra by scanning

the incident pump and probe pulse wavelength (degenerate) in 0.5 nm steps. The

observed Faraday (Kerr) signal for each wavelength oscillates in time after exci-

tation, due to the Larmor precession of carrier spins about the applied magnetic

field. A Fourier transform of the transient reveals multiple precession frequen-
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Figure 3.5: Measured (dots) and calculated (solid lines) linear reflectivity spectra
near heavy-hole (hh) and light-hole (lh) exciton resonances (indicated by dashed
lines). Spectra in (a) and (b) correspond to different sample thicknesses, which
are described in the text.

cies, which originate from different Landé g factors for different carrier types. By

selecting the single Fourier peak due to the electron spin precession in the quan-

tum well, irrelevant contributions such as Faraday (Kerr) signals from the bulk

GaAs layer, coherence effects from the cross-correlation between pump and probe

pulses, and DC signals due to scattered pump light into the detecting system are

all eliminated. The Faraday and Kerr spectra are then obtained by plotting the

amplitude of the Fourier peak as a function of photon energy, as shown in Fig-

ure 3.6(a)–(d) (circles). The spectra are measured at the same sample thickness as

that in Figure 3.5(a). One sees similar spectral shapes for the Faraday and Kerr

rotation (ellipticity), in contrast to the prediction for a simple absorbing slab, i.e. a

Kramers–Kronig relation, which is shown in Figure 3.2(b). The Faraday and Kerr

spectra are also measured at a different sample thickness [same thickness as that in

Figure 3.5(b)], which is plotted in Figure 3.6(e)–(h) as circles. While the Faraday

effects show similar spectral profiles regardless of the sample thickness, there is a
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clear change of Kerr spectra as the sample thickness is changed by a fraction of

a wavelength. Note that for this sample thickness, the Kerr and Faraday spectra

do approximately obey a Kramers–Kronig relation.

We calculate Faraday (Kerr) spectra based on the calculated transmission

(reflectivity) spectra in the last section. Without any loss of generality, we assume

a σ+ circular polarization of the incident pump pulse, which preferentially excites

spin −1

2
electrons in the quantum well. The optical constants for σ+ helicity are

varied as a result of the nonlinearity created by spin −1

2
electrons, with the non-

linearity described by small changes of exciton resonance energies, linewidths and

oscillator strengths. The change of the linear spectra for σ+ helicity is then cal-

culated following the method described in the last section. The optical constants

and linear spectra for σ− helicity are assumed to be unchanged after optical exci-

tation, because of the absence of spin +1

2
electrons. The Faraday (Kerr) ellipticity

spectra are calculated by subtracting the transmission (reflectivity) spectra for σ−

helicity from those for σ+ helicity. The Faraday (Kerr) rotation spectra are ob-

tained as the product of transmission (reflectivity) spectra with the difference of

the phase of transmission (reflectivity) spectra between σ+ and σ− helicities. The

nonlinear parameters are varied to obtain good agreement between the calculated

and measured Faraday ellipticity spectra alone [Figure 3.6(b)]. We then use the

same nonlinear parameters to calculate the rest of the spectra, and the results are

shown in Figure 3.6 as solid lines. The only difference in the calculation between

Figure 3.6(a)–(d) and (e)–(h) is the use of different sample thickness. To represent

the experimental condition of finite bandwidths of both pump and probe pulses,

averaging of the exciton excitation with the pump spectrum, and averaging of the

Faraday (Kerr) signal with the probe spectrum are included in the calculation.

Good agreement is found between theory and experiment. We note that the the-

oretical lineshapes reproduce the lack of a Kramers–Kronig relation found in the



41

-20

-10

0

10

 

Fa
ra

da
y 

(m
ra

d)
K

er
r (

m
ra

d)

(a)

 

K
er

r (
m

ra
d)

Fa
ra

da
y 

(m
ra

d)

 

 

0

10

20

(b)

 

 

 

 

1.535 1.540 1.545
-10

-5

0

 

(c)

 

EllipticityRotation

 

1.535 1.540 1.545

0

5

 

(d)

  

-30
-20
-10
0

10

(e)

 
 

 

 

0

10

20

(f)
 

 

 
 

1.535 1.540 1.545

-10

-5

0

(g)

 

  

1.535 1.540 1.545

-5

0

(h)

  

Energy (eV) Energy (eV)

Figure 3.6: Measured (circles) and calculated (solid lines) Faraday and Kerr effect
spectra. Spectra in (a)–(d) are obtained for a sample thickness the same as that in
Figure 3.5(a), while spectra in (e)–(h) are for a slightly different sample thickness,
same as that in Figure 3.5(b).
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experiment.

Because of the different spectra for different nonlinear contributions [39],

as illustrated in Figure 3.1, one can distinguish among them by the shape of the

Faraday (Kerr) spectrum. We deduce from the comparison between calculations

and measurements a reduction of the heavy-hole exciton transition strength of

1.7% and an increase of its damping by 5.3% after excitation. We also obtain a

decrease (red shift) of the heavy-hole exciton resonance energy by 0.11 meV. The

extraction of parameters is, however, not the goal of this work. Detailed extrac-

tion of the nonlinear parameters requires full knowledge of the sample structure,

which is not available with sufficient precision. Rather, we want to show the am-

biguities in interpreting the Kerr effect spectra, which have been ignored in most

experiments that use Kerr effect.

For the quantum well sample we studied, the spectral profiles of the exci-

ton resonances in the reflectivity spectra are dominated by the interference effect

from the total sample thickness, which gives a dip (peak) lineshape for construc-

tive (destructive) interference and a dispersive lineshape otherwise. The reflec-

tivity spectrum for a multilayer structure is in general different from that for a

single interface, which is a result of multiple interfaces within the sample and

interference effect from finite sample thickness. As a consequence, the Kerr ef-

fect spectra should also differ from what is expected for a single interface. Kerr

spectra of semiconductor heterostructures depend not only on the nature of the

optical nonlinearities, but also on linear optical effects such as the interference

from layer structures. Failure to take this into account may lead to ambiguities in

the extracted nonlinearities from the Kerr effect and in distinguishing signals from

different species. One therefore needs to have complete information of the sample

structures and reflectivity spectra for a correct interpretation of the observed Kerr

spectra.
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The Faraday (Kerr) effect is measured by using degenerate pump and probe

pulses with narrow linewidth. In Chapter 4, a two color experiment is performed

with the pump and probe pulses spectrally filtered individually to enable inde-

pendent tuning of their photon energies and spectral linewidths. By using non-

degenerate pump and probe pulses, different effects from excitation and detection

can be separated, which is not possible with the current degenerate setup.



Chapter 4

Interaction induced spin polarization in a 2DEG

In Section 2.4, the spin dynamics in bulk GaAs samples with different dop-

ing densities have been studied. For future spintronic devices and quantum infor-

mation processing, certain applications perform better in quantum confinement

systems, such as quantum wells and quantum dots. In this chapter and the next

chapter, we will focus our study on the spin dynamics in quantum wells. The dis-

tinction of the spin dynamics in quantum wells from that of the bulk arises from

several aspects due to the well structure: the subband electronic structures, the

enhancement of excitonic interactions, and the high mobility of the carriers. An

example is the slow-down of the valence band hole spin relaxation in the quantum

well compared with the bulk, due to the lifting of the degeneracy between the

heavy-hole and light-hole valence bands in quantum wells.

Long spin relaxation times of the carriers are essential to applications in

spintronic devices and quantum information processing, and have been measured

in lightly n-doped semiconductor quantum wells [9]. These spin relaxation times

are measured by exciting and probing optical transitions. In those systems, the

interband optical properties are dominated by excitons and negatively charged

excitons (trions) at low temperatures, but the electron spin can persist long after

recombination of optically excited carriers. Coherent optical generation and ma-

nipulation of the electron spins require an understanding of how optical excitation
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initiates and controls the electron spin polarization. The purpose of this work is to

provide a full physical picture of how light pulses polarize the spin of the electron

gas in weakly doped quantum wells.

We use a two-color transient Kerr rotation technique to study a lightly

n-doped CdTe quantum well, through which different effects from excitation and

detection can be well separated [40]. We show that the spin of the two-dimensional

electron gas (2DEG) can be polarized instantaneously after resonant excitation

of spin polarized trions. Under resonant generation of excitons, the 2DEG can

also be spin-polarized through the formation of trions via exciton states. The

exciton spin polarization is transferred to the electron gas coherently, with the spin

coherence partially lost through exciton spin relaxation. To characterize the spin

polarization process of the electron gas, the interplay between the exciton, trion

and 2DEG spins and their individual spin relaxation need to be taken into account.

The observed transient Kerr rotation signals are quantitatively explained with rate

equations involving the spin populations of exciton, trion and the electron gas.

Trion spin relaxation also reveals information on the hole spin flip process, giving

the excitation energy dependence of the hole spin relaxation [41].

We also examine the spin coherence of a 2DEG at different density in a set

of modulation-doped CdTe/Cd0.85Mg0.15Te quantum wells with different doping

densities. The spin dephasing times T ∗

2 of the 2DEG are measured as a function of

the applied magnetic field, and the dephasing times in the limit of zero magnetic

field are obtained. The spin dephasing time as a function of the electron gas

density from 5 × 109 to 2.4 × 1011 cm−2 shows a non-monotonic behavior with a

maximum at 8 × 1010 cm−2 [42, 43].
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4.1 Exciton and trion spin dynamics

4.1.1 Exciton spin dynamics

Exciton spin dynamics have been addressed mostly in undoped quantum

wells. The exciton spin can relax via simultaneous spin flips of the electron and

hole in an exciton, i.e. exciton spin flip as a whole [44, 45]. This mechanism has

been recognized as the relevant depolarizing mechanism of excitons under zero

applied magnetic fields. The hole in an exciton undergoes fast spin relaxation due

to strong mixing of the heavy- and light-hole valence band. A combination of the

exchange interaction between the electron and the hole and the hole spin flip itself

is responsible for the spin flip of the exciton from +1 to -1 and vice versa.

The electron and hole in an exciton behave quite differently under an in-

plane external magnetic field (Voigt geometry). In quantum wells, the heavy-hole

spins are constrained to lie normal to the quantum well plane by the effects of

quantum confinements, and are not observed to precess under moderate magnetic

fields due to the vanishing Zeeman splitting in the transverse fields [30]. On the

other hand, the electron spin does undergo Larmor precession about the magnetic

field axis. Assuming a long hole spin flip time in the exciton, this results in an

oscillation between the bright and dark exciton populations [46], and a modified

spin precession frequency due to the electron-hole exchange interaction [47, 48].

The manifestation of exciton spin precession under the electron-hole exchange

interaction relies on the stability of the hole-spin orientation within an exciton.

Besides the individual spin relaxation of the electron and hole in an exciton, the

exciton spin flip as a whole still plays a role in its spin dynamics under a magnetic

field.

In lightly n-doped quantum wells, the interband optical properties are still

dominated by excitonic transitions at low temperatures. Little work has been
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done on the interactions between the spin polarization of excitons and that of

the electron gas in lightly n-doped quantum wells [49], despite the importance of

exciton transition on optical orientation of the electron gas.

4.1.2 Trion spin dynamics

A negatively charged exciton, a trion, was first observed in a CdTe quantum

well [50]. It is formed by two electrons bound to one hole, analogous to a negatively

charged hydrogen ion (H−) in vacuum. Trions play an important role in the optical

spectra of moderately doped quantum wells [51, 52]. II-VI semiconductor quantum

wells (such as the CdTe quantum wells used in this work) are an adequate choice

for the study of trions, because the Coulomb interaction in II-VI semiconductors

is typically twice that in III-V compounds, and because the trion binding energy

is expected to be an order of magnitude larger than that in bulk materials due to

the quantum confinement.

The unique signature of a trion in spin dynamics is that it can only con-

tribute to the spin dynamics by its hole spin, because a trion in its singlet state

consists of a hole and two electrons with opposite spins. However, upon optical

excitation of spin-polarized trions, electrons of a certain spin polarization are re-

moved from the 2DEG to form trions, polarizing the 2DEG with an opposite spin.

The spin orientation of the electron gas from resonant trion excitation has been

previously reported [53, 54], with the 2DEG instantaneously polarized during the

trion excitation. Trion recombination at a later time will release a spin polar-

ized electron to the 2DEG, with the coherent spin polarization of the electron gas

modified depending on the trion recombination time, trion spin relaxation time

and the magnetic field applied [55].
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4.2 Sample characteristics and experiments

The samples are modulation doped CdTe/Cd0.85Mg0.15Te heterostructure

grown by molecular beam epitaxy on a (100) GaAs substrate with a 2 µm CdTe

buffer layer. The samples contain two CdTe quantum wells with widths of 120

and 70 Å, separated by a 50 Å Cd0.85Mg0.15Te barrier. The 120 Å well is one-side

doped by an iodine impurity layer 100 Å from the well. By choosing different

thicknesses of the iodine layer, four samples are grown with 2DEG densities of

5 × 109 (nominally undoped), 8 × 1010, 1.6 × 1011 and 2.4 × 1011 cm−2 in the 120

Å well. The 70 Å quantum well remains undoped. All samples are grown on the

same wafer by the wedge doping technique to guarantee a consistent sample set

[56]. We study the 120 Å quantum well only. First we will focus on the lightly

doped sample (ne = 8 × 1010 cm−2) for the study of spin interactions between

excitons, trions and the 2DEG. In Section 4.6, the electron spin coherence for all

four samples will be discussed.

The low temperature photoluminescence (PL) and photoluminescence exci-

tation (PLE) spectra for the lightly doped quantum well (ne = 8×1010 cm−2) are

shown in Figure 4.1. The spectra exhibit exciton and trion lines with an energy

separation of 2.6 meV, which is the trion binding energy. There is a small Stokes

shift (∼0.5 meV) between the trion peaks in the PL and PLE spectra. The large

trion binding energy (as compared with III-V semiconductors) and the relatively

narrow linewidths of the resonances allow us to selectively generate excitons and

trions by means of optical excitation. The PLE spectrum shows that the peak

exciton absorption strength is about twice that of the trion. The PL spectrum,

however, is dominated by trion recombination. This indicates that the majority of

the optically created carriers relax to the trion states. Under resonant excitation

of excitons, the conversion of excitons to trions is much faster than the exciton
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Figure 4.1: Low temperature PL and PLE spectra for the lightly n-doped CdTe
quantum well (ne = 8 × 1010 cm−2), showing the exciton (X) and trion (T) lines.

recombination.

We measure the transient Kerr rotation with an applied magnetic field of

2 T applied normal to the quantum well growth direction (Voigt geometry) [30].

Pump and probe pulses are spectrally filtered (resulting in ∼5 ps pulses) to enable

independent tuning of their photon energies. The spectral linewidths of the pulses

are adjusted to be ∼0.2 nm for spectrally resolved measurements. By performing

two-color measurements, not only can we selectively excite different populations,

but we are also able to compare experimental results under different excitation

energies with a fixed probe energy. The pump and probe photon energies are

scanned near the vicinity of the exciton and trion resonances of the 120 Å quan-

tum well. Average intensity in the pump is about 1 W/cm2 (except as specified

otherwise in the text) and 0.1 W/cm2 in the probe beam. The pump (probe)

beam is focused onto the sample with a spot diameter of ∼ 100 µm (50 µm). All

experiments are performed at 4 K.
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4.3 Spin dynamics of excitons, trions and 2DEG: experiments

In this section, we spectrally study the spin dynamics in the lightly n-doped

CdTe quantum well (ne = 8 × 1010 cm−2). Transient Kerr rotation signals un-

der transverse magnetic field for resonant excitations of excitons and trions are

shown in Figure 4.2(a). The probe photon energy is tuned at the exciton res-

onance (1.6093 eV) for both pump energies. The oscillation signals correspond

to the Larmor precession of carrier spins in an external magnetic field. A pre-

cession frequency of 43.3 GHz is measured, corresponding to a Landé g factor

of |g| = 1.55. The Kerr rotation signal under exciton generation exhibits two

exponential decays of the oscillation with very different time constants. A non-

oscillating decay component in addition to the double exponential is observed

under trion excitation. We perform a least-square fit to the transient signals with

the form θK(t) = (A1e
−t/τ1 +A2e

−t/τ2)cos(ωLt), where ωL is the Larmor precession

frequency, τ1 and τ2 (A1 and A2) are the long and short spin dephasing times (pre-

cession amplitudes), respectively. A third term of A3e
−t/τ3 is included in the fit to

account for the non-oscillating decay under trion excitation. The time constants

retrieved from the fit are also displayed in Figure 4.2(a). Both signals show a

long-lived oscillation component that lasts over 1 ns. As this time constant ex-

ceeds lifetimes of excitons and trions (measured to be < 100 ps by a streak camera

[52]), we conclude that this is the spin Larmor precession of the 2DEG. The short

time constants should be related to the exciton and trion spin dynamics, which

will be discussed later.

To study how the probe photon energy affects the transient Kerr signal, we

scan the probe energy with the pump photon energy fixed on either the exciton

or trion resonance. The Kerr rotation amplitude of the 2DEG spin polarization

(A1) is plotted in Figure 4.2(b) as a function of probe energy. The similarity
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Figure 4.2: (a) Transient Kerr rotation signals under resonant excitations of ex-
citons and trions, with probe photon energy at the exciton resonance. The time
constants shown are obtained from nonlinear fitting. (b) The Kerr rotation am-
plitude of the 2DEG spin polarization (A1) as a function of probe photon energy
under resonant excitations of excitons (X) and trions (T). Inset: probe energy
spectrum of the electron spin dephasing time (τ1), under resonant exciton gener-
ation. B = 2 T and T = 4 K.

of the probe spectra obtained with exciton and trion excitation confirms spin

polarization of the electron gas for both excitation conditions. The spectra also

indicate a difference in response sensitivity between detection through exciton and

trion resonances (given that the carrier density generated at exciton resonance is

twice that at trion resonance). The remaining experiments in this chapter will
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be performed with the probe energy fixed, so that a comparison of amplitudes

resulting from different excitation energy is possible. The spectra in Figure 4.2(b)

show a peak shape for the exciton resonance and a mixture of dispersive and

peak lineshape for the trion resonance. The different lineshapes of the resonances

result from different nonlinear responses of excitons and trions from spin-polarized

electrons [33]. This is supported by a recent work on CdTe-based quantum wells

[57], where the spin-polarized electron gas is shown to effectively screen excitons,

but not trions. In the inset of Figure 4.2(b), the electron spin dephasing time

(τ1) is measured as a function of the probe photon energy, with the pump energy

on the exciton resonance (similar probe spectrum is observed for resonant trion

generation, not shown). The electron spin dephasing time obtained by probing

the trion resonance is almost two times longer than that by probing the exciton

resonance. The observed results may be related to the inhomogeneous distribution

of the electrons, while the trion resonance is more sensitive for detecting the

localized electrons [58], and the exciton resonance for detecting weakly localized

electrons. The weakly localized electrons may experience different spin relaxation

mechanism than the localized ones, resulting in a shorter spin dephasing time. A

similar behavior has been recently reported [40].

To further explore the short time behavior in the transient Kerr rotation

signals and the origins of the electron gas spin polarization through optical exci-

tation, we study the Kerr rotation spectrum with varying pump photon energy.

Specifically, we selectively generate exciton and trion populations, while the probe

photon energy remains fixed at the exciton resonance (1.6093 eV). The spectral

data are again analyzed by least-square fit to a double exponential, and we plot

the Kerr rotation amplitude for the slow (A1) and fast decay components (A2)

as a function of pump energy, as shown in Figure 4.3(a). The amplitude of the

fast decay component exhibits a sharp peak at the exciton energy, with a FWHM
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linewidth (0.7 meV) agrees well with the exciton linewidth in the PLE spectrum

(0.8 meV). We assign the fast oscillation decay to exciton spin precession and de-

phasing. The decay time (τ2) is a combination of the exciton spin dephasing time

and trion formation time. The relatively weak signal of A2 near the trion energy is

probably related to the ionization of trions into excitons, as the trion itself cannot

contribute to the oscillatory signal. The amplitude of the slow decay component,

which is proportional to the 2DEG spin polarization, is enhanced at both exciton

and trion resonances. This enhancement indicates spin polarization of the elec-

tron gas through optical excitation of excitons. We propose that excitons polarize

the spin of the 2DEG through their conversion to trions, which preserves the spin

orientation, and polarizes the 2DEG. The spin-flip scattering of excitons by single

electrons, for instance, could also polarize the 2DEG. However, since the majority

of the optically excited excitons relax to the trion states (evidenced in the PL

spectrum), we believe the trion formation process dominates.

We obtain further information on the exciton and electron gas spin polar-

ization by varying the pump excitation intensity. In Figure 4.3(b), the excitation

intensity dependence of the Kerr rotation amplitudes is shown for resonant excita-

tion at excitons and trions. The fast decay amplitude (A2) for resonant excitation

at the exciton, related to the exciton spin polarization, increases monotonically

with intensity, and can be well fitted with a saturation function P1I/(P2 +I), with

P1, P2 constants and I the intensity. The electron gas spin polarization (A1), on

the other hand, actually decreases at high intensity for excitation at both exciton

and trion resonances. The absorption strength at the trion energy is about one

half of that at the exciton energy. With this correction [by using different scales

of excitation intensity for the exciton and trion in Figure 4.3(b)], we observe very

similar intensity dependence of the 2DEG spin polarization for resonant excitation

of excitons and trions. By exciting trions directly, the electron spin polarization is
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Figure 4.3: (a) Kerr rotation amplitudes as a function of pump photon energy for
the slow (A1) and fast decay components (A2). (b) Excitation intensity depen-
dence of the Kerr rotation amplitudes (A1 and A2) under resonant excitation at
excitons and trions, with A2 scaled by 0.1 for clarity. The amplitude A2 for reso-
nant exciton generation is fitted with a saturation function (dash line). B = 2 T
and T = 4 K. Probe energy is tuned at exciton resonance.

about twice that from exciton generation [as indicated by the peak A1 amplitudes

in Figure 4.3(b) for the exciton and trion]. We will show later that this is due to a

similar trion formation time and exciton spin dephasing time, and spin coherence

is partially lost before an exciton forms a trion.
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Figure 4.4: Electron spin dephasing time (τ1) as a function of temperature, with
τ1 measured under resonant excitation of excitons and trions. The dash line
(τ1 ∝ T−0.4) is a nonlinear fit to the data under exciton generation. B = 2 T.

We measure the temperature dependence of the Kerr rotation signal by

pumping at the exciton and trion resonances (with probe energy fixed at the

exciton resonance). We do not observe significant temperature dependence of

the exciton dephasing time (τ2) up to 40 K. The electron spin dephasing time

(τ1), however, decreases rapidly with increasing temperature, which is shown in

Figure 4.4. The τ1 measured under resonant excitation of both excitons and

trions are plotted in Figure 4.4, and close values under both excitation conditions

are obtained. A least-square fit of the data under exciton generation yields a

temperature dependence τ1 ∝ T−0.4. It was suggested that both the D’yakonov-

Perel’ and Elliott-Yafet spin relaxation mechanisms (discussed in detail in the

last chapter) are expected to give a decreased electron spin relaxation time with

increasing temperature in quantum wells [59]. Due to a lack of a comprehensive

theory on temperature dependent spin relaxation in quantum wells, we are unable

to distinguish the two mechanisms in our sample.
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In Figure 4.2(a), a non-oscillating component at short time delay is observed

for trion excitation, with a decay time of τ3 = 33 ps. The trion only contributes to

the spin dynamics through its hole spin, because of the two opposite electron spins

in a trion. The non-oscillating component observed in the transient Kerr signal

is therefore assigned to the hole spin flip in trions, with τ3 the hole spin flip time

[54]. We measure the hole spin flip time as a function of the pump photon energy.

For this measurement, the probe photon energy is set near the trion resonance

at 1.6066 eV, which gives the most sensitivity for measuring the hole spin flip.

The pump energy is scanned, with its excitation intensity varied to ensure roughly

equal optical carrier density (calibrated through the PLE spectrum). The resulting

spectrum for the hole spin flip time is shown in Figure 4.5(a). The hole spin

flip time is maximum around the trion resonance, and decreases rapidly with

increasing excitation energy. Note that the hole spin flip time measured through

transient Kerr rotation belongs to that in trions. For non-resonant excitation of

trions, the measured time sets the upper limit of the hole spin flip time, and needs

to be taken with caution. Hole states are, in general, an admixture of various spin

states, and any energy or momentum relaxation process will lead to their spin

relaxation [44, 49]. This explanation supports our experimental results, where

a fast hole spin flip is observed for hot hole generation. We note that the hole

spin flip under resonant excitation of excitons is much faster than that under

excitation of trions [also illustrated in Figure 4.2(a) as a vanishing non-oscillation

decay for exciton generation]. We believe the enhancement of the hole spin flip

rate in excitons is due to exchange interactions between the electron-hole pairs in

excitons, as detailed in Reference [45]. With the two electrons in a trion having

opposite spins, the exchange interaction vanishes for the hole, giving a longer hole

spin flip time for trions.

We also measure the hole spin flip time as a function of temperature and
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Figure 4.5: The hole spin flip time (in trions) as a function of (a) excitation energy,
(b) temperature and (c) excitation intensity. B = 2 T.

excitation intensity, as shown in Figure 4.5(b) and (c). For those measurements,

the pump photon energy is on resonance with trions, while the probe energy is

set near the trion resonance (1.6066 eV). The amplitude of the non-oscillatory

signal (A3), that originated from the hole spin flip in trions, drops substantially

with increasing temperature, and we are unable to retrieve information of hole

spin relaxation above 12 K. The hole spin flip time does not change too much in

the measured temperature range. It, however, decreases strongly with increasing

excitation intensity, as shown in Figure 4.5(c). Increasing the optically injected

carrier density will increase the momentum scattering rate of the carriers. We can

therefore exclude the D’yakonov-Perel’ spin relaxation mechanism for hole spins,

which gives a spin relaxation rate that is inversely proportional to the momentum
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scattering rate. We believe the hole spin relaxation follows a Elliott-Yafet spin

relaxation mechanism, which arises from momentum scattering during collisions

with phonons or impurities.

4.4 Spin dynamics of excitons, trions and 2DEG: analysis

In this section, we theoretically study the spin dynamics in a lightly n-doped

quantum well system. We derive rate equations involving the spin populations of

exciton, trion and the 2DEG. The individual spin relaxation of excitons, trions

and the 2DEG, as well as their spin interactions, is taken into account. The

results concentrate on the spin polarization of the electron gas through optical

transitions (exciton and trion states). A finite transverse magnetic field (Voigt

geometry) is included to represent the experimental condition. We are able to

quantitatively account for the experimental results in the last section by choosing

the right parameters.

4.4.1 Trion spin dynamics

We start with the case of resonant trion excitation. We consider a system

of trions and 2DEG after optical generation of trions (ionization of trions into

excitons is not considered). In Figure 4.6(a), a schematic diagram reflects the

interplay between trions and 2DEG. Without any loss of generality, we assume a

σ+ polarized pulse at t = 0 with a spin +1

2
electron will generate a spin +3

2
trion,

and leave behind a spin −1

2
electron in the 2DEG:

hνσ+ + e+ 1

2

=⇒ T+
3

2

. (4.1)

The trion spin will not precess under the magnetic field, because of the two op-

posite spins of electrons inside a trion, and a negligible Zeeman splitting of the

heavy-hole spins in the transverse direction. Instead, the trion spin will relax with
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its hole spin flip rate and decay exponentially. We write down the rate equations

for the densities of spin +3

2
trion (NT

+) and spin −3

2
trion (NT

−
):

dNT
+

dt
= −N

T
+

τT
r

− NT
+

2τT
s

+
NT

−

2τT
s

,

dNT
−

dt
= −N

T
−

τT
r

− NT
−

2τT
s

+
NT

+

2τT
s

, (4.2)

with τT
s the trion spin relaxation time and τT

r the trion recombination time. The

total trion density then evolves with trion recombination as

NT (t) = NT
+(t) +NT

−
(t) = NT

+(0) exp(−t/τT
r ), (4.3)

while the spin polarization of trions (the density difference between the spin +3

2

and −3

2
trions) evolves as

∆NT (t) = NT
+(t) −NT

−
(t) = NT

+(0) exp(−t/τT ). (4.4)

Here NT
+(0) is the initial trion density after σ+ pulse excitation. The decay rate

1/τT = 1/τT
s + 1/τT

r combines the decay of ∆NT through trion spin relaxation

(1/τT
s ) and trion recombination (1/τT

r ). The non-oscillating decay component

in Figure 4.2(a) corresponds to trion spin decay described in Equation 4.4, thus

τT = 33 ps.

The spin polarization of the 2DEG under trion excitation is generated

through two different sources, initial polarization upon trion formation (instan-

taneously during pulse duration) and possible spin polarization through trion

recombination (release of a spin polarized electron to the 2DEG after trion recom-

bination). The former, as described in Equation 4.1, creates a spin −1

2
electron

in the 2DEG after σ+ pulse. The spin polarization of the 2DEG generated upon

trion formation at t = 0 will precess around the magnetic field, with the projection

in the quantum well growth direction

∆N e
1 (t) = −NT

+(0) cos(ωLt) exp(−t/τ e
s ). (4.5)
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Figure 4.6: (a) A schematic diagram displaying the interplay between the spin
populations of trions and 2DEG under resonant trion excitation. (b) Calculated
transients of the spin polarization of the 2DEG, trions and the combination of the
two.

Here τ e
s is the electron spin dephasing time, and ωL is the electron Larmor preces-

sion frequency. As described above, the trion recombination can also contribute

to the electron gas spin polarization by returning spin polarized electrons back

to the 2DEG after recombination. This is a reverse process of that shown in

Equation 4.1:

T+
3

2

=⇒ hνσ+ + e+ 1

2

. (4.6)

This spin polarization, however, could be in phase or out of phase with that

generated through trion formation, depending on whether the trion spins have

relaxed and on the phase of the electron spins precessing under the magnetic field.
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The 2DEG spin polarization generated by trion recombination during [t′, t′ + dt′]

is

d∆N e
2 (t′) = (∆NT (t′)/τT

r )dt′, (4.7)

and the 2DEG spin polarization at t is

∆N e
2 (t) =

∫ t

0

(∆NT (t′)/τT
r ) cos(ωL(t− t′)) exp(−(t− t′)/τ e

s )dt′. (4.8)

The total 2DEG spin polarization ∆N e (including contributions from both trion

formation and recombination) is

∆N e(t) = ∆N e
1 + ∆N e

2 = B1 cos(ωLt+ φ) exp(−t/τ e
s ) +B2 exp(−t/τT ), (4.9)

with

B1 = −NT
+(0)

√

√

√

√1 − (2 − τT

τT
r

)
τT

((ωLτT )2 + 1)τT
r

,

φ = arctan
ωL(τT )2

((ωLτT )2 + 1)τT
r − τT

, (4.10)

B2 = −NT
+(0)

τT

((ωLτT )2 + 1)τT
r

.

The results in Equations 4.9 and 4.10 are simplified by assuming a much longer

electron spin dephasing time (τ e
s ) than the trion time constants (τT

s and τT
r ), which

is sufficient for a τ e
s over 1 ns in our sample. The relative contribution of the trion

recombination to the 2DEG spin is related to the term τT/(((ωLτ
T )2+1)τT

r ), which

will only be significant when the trion spin orientation is partially maintained

during its lifetime (τT
s > τT

r ), and the trion time constants are much shorter

than the electron precession period (ωLτ
T < 1), so that the electron spin is not

out of phase with that of the trions. In our sample, the oscillation period is 23

ps for a magnetic field of 2 T, which is comparable to the trion time constants

(τT
s = 33 ps). The trion recombination therefore plays a negligible role in the

spin dynamics of the electron gas in our sample (∆N e
2 ≈ 0), and the 2DEG spin
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is generated mainly from trion formation (∆N e ≈ ∆N e
1 ). The total 2DEG spin

polarization therefore follows that described in Equation 4.5. The spin dynamics of

2DEG, trions and the combination of the two (which corresponds to the transient

Kerr rotation signal measured) are calculated and plotted in Figure 4.6(b), with

τT = 33 ps, τ e
s = 1100 ps and ωL = 2π 43.3 GHz. The combined spin polarization

represents well the measured transient Kerr rotation signal for trion excitation

shown in Figure 4.2(a).

4.4.2 Exciton spin dynamics

The exciton spin precession and dephasing under a transverse magnetic field

is illustrated in Figure 4.2(a) as the fast oscillating decay. In quantum wells, the

heavy-hole spins are constrained to lie normal to the quantum well plane by ef-

fects of quantum confinements, and are not observed to precess under moderate

magnetic fields [30]. The spin of the electron in an exciton does undergo Larmor

precession. With a long hole spin flip time in the exciton, this results in an oscil-

lation between the bright and dark exciton populations [46], and a modified spin

precession frequency due to electron-hole exchange interaction.1 To understand

exciton spin relaxation, both the single-particle spin flips of the electrons and

holes in excitons, and the exciton spin flip as a whole (simultaneous spin flip of

electrons and holes) need to be taken into account. By solving the rate equations

for the spin polarized electrons and holes in excitons (not shown), we obtain the

density of the spin 1

2
(NX

e+) and spin −1

2
(NX

e−) electrons in excitons as

NX
e+(t) =

1

2
NX

+ (0)e
−t

(

1

τXT
+

1

τX
r

)

(

1 − cos(ωLt)e
−t

(

1

τX
es

+
1

τX
s

)

)

,

NX
e−(t) =

1

2
NX

+ (0)e
−t

(

1

τXT
+

1

τX
r

)

(

1 + cos(ωLt)e
−t

(

1

τX
es

+
1

τX
s

)

)

, (4.11)

1 We do not observe any difference of oscillation frequencies between the exciton and electron
spin precession for magnetic fields ranging from 0.5 to 5.0 T. This supports the argument that
the hole spin in the exciton relaxes very quickly in our sample.
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and the density of the spin 3

2
(NX

h+) and spin −3

2
(NX

h−) holes in excitons as

NX
h+(t) =

1

2
NX

+ (0)e
−t

(

1

τXT
+

1

τX
r

)





1 + e
−t

(

1

τX

hs

+
1

τX
s

)





 ,

NX
h−(t) =

1

2
NX

+ (0)e
−t

(

1

τXT
+

1

τX
r

)





1 − e
−t

(

1

τX

hs

+
1

τX
s

)





 . (4.12)

Here NX
+ (0) is the initial exciton density after σ+ pulse excitation, τX

es (τX
hs) is

the electron (hole) spin flip time in exciton, τX
s is the exciton spin flip time (as

a whole), τXT is the trion formation time, and τX
r is the exciton recombination

time. Both the electron and hole in an exciton lose their populations through

exciton recombination and conversion of excitons into trions. They will lose their

spins through exciton spin flip and their individual spin flips. The electron in an

exciton will also precess in a magnetic field, but the hole will only undergo spin

flip. We consider the difference between the bright and dark excitons, because

the measured transient Kerr rotation signal of the exciton corresponds to the spin

population of the bright excitons only. The density of the spin 1 bright excitons

NX
br+ ∝ NX

h+N
X
e− and that of the spin -1 bright excitons NX

br− ∝ NX
h−N

X
e+. The

spin polarization of the bright excitons is therefore

∆NX
br (t) =

1

2
NX

+ (0)(cos(ωLt)e
−t/τX

1 + e−t/τX

2 ), (4.13)

with

1

τX
1

=
1

τX
es

+
1

τX
s

+
1

τXT
+

1

τX
r

,

1

τX
2

=
1

τX
hs

+
1

τX
s

+
1

τXT
+

1

τX
r

. (4.14)

We note that Equation 4.13 consists of an oscillating decay term and a non-

oscillating decay term. From comparison with the experimental results [Fig-

ure 4.2(a)], we find τX
1 = 35 ps, and τX

2 very small with no observable non-

oscillation decay (τX
2 < 10 ps, half period of the oscillation). This indicates a
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very short hole spin flip time in our sample. Both the exciton spin flip as a whole

(τX
s ) and the electron spin flip in excitons (τX

es ) are included in our model (Equa-

tions 4.14). However, they can not be separately determined based on the current

experiments. We therefore treat their combined effects as an overall exciton spin

dephasing time τX
s . Equations 4.14 may be rewritten as

1

τX
1

=
1

τX
s

+
1

τXT
+

1

τX
r

,

1

τX
2

∼ 1

τX
hs

. (4.15)

The calculated TKR from exciton spin dephasing is plotted in Figure 4.7(b),

assuming τX
1 = 35 ps, τX

2 = 0 ps and ωL = 2π 43.3 GHz.

The spin interactions between excitons and the 2DEG are proposed to be

through trion formation via exciton states. The spin interplay between excitons,

trions and electrons under resonant exciton excitation is displayed in Figure 4.7(a).

Any time a trion is formed from an exciton that consists of a −1

2
electron, a

spin polarization of −1

2
is added to the 2DEG. Both bright and dark excitons

can form trions, and contribute to the 2DEG spin polarization. The hole spin

orientation in the excitons does not matter in the spin polarization of the 2DEG,

because it is the spin coherence of the electron in the exciton that is passed to the

2DEG. By considering the electron spin polarization in excitons, as described by

Equation 4.11, the 2DEG spin polarization generated by trion formation during

[t′, t′ + dt′] is determined to be

d∆N e(t′) = −(NX
+ (0)/τXT ) cos(ωLt

′)e−t′/τX

1 dt′. (4.16)

The cos(ωLt
′) term in Equation 4.16 indicates a coherent spin transfer from exciton

to the 2DEG, i.e. the spin of the electron gas will precess in phase with the exciton

spin under the magnetic field. The resulting 2DEG spin polarization at t under
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Figure 4.7: (a) A schematic diagram displaying the interplay between the spin
populations of excitons, trions and 2DEG under resonant exciton excitation. (b)
Calculated transients of the spin polarization of the excitons, 2DEG and the
combination of the two.

resonant exciton generation is then

∆N e(t) = (NX
+ (0)τX

1 /τ
XT ) cos(ωLt)(e

−t/τX

1 − e−t/τe
s ). (4.17)

Equation 4.17 is obtained by assuming long electron spin dephasing time (τ e
s )

and negligible electron spin polarization from trion recombination process. The

2DEG spin precession is shown to first rise due to trion formation, and then decay

according to the electron spin dephasing. The calculated 2DEG spin dynamics, as

well as the overall signal including the exciton spin polarization (corresponds to

the experimental results) is plotted in Figure 4.7(b). The overall spin polarization
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agrees well the measured TKR signal shown in Figure 4.2(a).

4.4.3 Spin coherence loss via exciton spin relaxation

The 2DEG is spin-polarized through trion formation for resonant excitations

of both excitons and trions. The degree of spin polarization, however, differs for

the two excitation conditions. Under resonant trion excitation, a fast hole spin,

or as in the case of our experiments, a high precession frequency of the electron

gas, favors a complete transfer of the spin coherence to the 2DEG (discussed in

detail in Section 4.4.1). An incomplete transfer of the spin coherence, however,

occurs under resonant exciton generation, resulting from exciton spin dephasing.

The 2DEG spin polarization under resonant excitation of trion and exciton are

described in Equations 4.5 and (4.17), respectively, and the ratio between the two

at long delay time is

NT
+(0)

NX
+ (0)

τXT

τX
1

≈ NT
+(0)

NX
+ (0)

(1 +
τXT

τX
s

), (4.18)

under the assumption that the exciton recombination time is much longer than

the trion formation time (evidenced from the small exciton recombination signal

in PL spectrum). The ratio in Equation 4.18 compares the 2DEG spin polariza-

tion at a long delay time for exciton and trion excitations, which corresponds to

amplitude A1 retrieved from the experimental results. With an equal number of

carriers generated initially (NT
+(0) = NX

+ (0)), the 2DEG spin polarization under

trion excitation is (1 + τXT/τX
s ) times that under the exciton generation. In Fig-

ure 4.3(b), the peak 2DEG polarization for trion generation is about 2 times that

for exciton generation, which indicates similar time constants for the trion forma-

tion time and exciton spin dephasing time (τXT ≈ τX
s ). In our sample, excitons

form trions at the same rate as they lose their spin coherence through exciton spin

relaxation. Therefore, only half of the spin coherence is passed to the 2DEG.
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4.5 Spin dynamics in highly doped sample

In the previous sections, we study the lightly doped CdTe sample (ne =

8 × 1010 cm−2), where the interband optical transitions are still dominated by

the excitonic behaviors. In this section, we study the spin dynamics in a highly

n-doped CdTe quantum well (ne = 2.4× 1011 cm−2). The sample belongs to a set

of samples grown on the same wafer, and its characteristics are described in Sec-

tion 4.2. In Figure 4.8(a), the PL and PLE spectra of the sample is shown, with

broad, asymmetric peaks replacing sharp excitonic peaks shown in the spectra for

the lightly doped sample (Figure 4.1). The PLE intensity rises relatively quickly

on the low energy side and falls off slowly on the high energy side, to merge into the

continuum absorption. The enhancement of absorption at 1.6081 eV is identified

as Fermi edge singularity, resulting from multiple scattering processes involving

electrons near the Fermi energy [60]. The PL spectrum is also broadened as a

result of large electron density existing in the quantum well, with the spectrum

peaked near the bottom of the bandgap. In Figure 4.8(b), the Kerr rotation am-

plitude is measured as a function of probe photon energy under a pump excitation

energy of 1.6081 eV. The amplitude is measured as the peak-to-dip amplitude of

the oscillation for a pump-probe delay near 30 ps. The spectrum in Figure 4.8(b)

shows a dispersive lineshape of a single resonance, centered near the energy of the

peak in the PLE spectrum.

Transient Kerr rotation signal is measured by tuning the pump photon en-

ergy to 1.6075 eV and probe energy to 1.6062 eV, which is shown in Figure 4.9(a).

The Kerr rotation signal again exhibits two exponential decays of the oscilla-

tion with different time constants, as measured with the lightly-doped sample.

We fit transient data with a double exponential oscillation decay, (A1e
−t/τ1 +

A2e
−t/τ2) cos(ωLt), with τ1 and τ2 (A1 and A2) the long and short spin dephasing
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Figure 4.8: (a) Low temperature PL and PLE spectra for the highly doped CdTe
quantum well (ne = 2.4 × 1011 cm−2). (b) The Kerr rotation amplitude as a
function of probe photon energy under a pump excitation energy of 1.6081 eV.
Arrows in both figures indicate the energy of the peak in the PLE spectrum.

times (precession amplitudes), respectively. The time constants retrieved from

the fit are also displayed in Figure 4.9(a). It is a little surprising to observe a dou-

ble exponential decay of the Kerr signal, since the excitonic transitions already

disappear for this highly doped sample, and the optical properties of the sample

are dominated by that of the 2DEG. A spectral study of the Kerr rotation is per-

formed for the pump photon energy, and the amplitude spectra of A1 and A2 are

plotted in Figure 4.9(b). The probe photon energy is fixed at 1.6062 eV for the

various pump energies. Both the A1 and A2 spectra show a similar shape as that

of the PLE spectra. This indicates that both Kerr rotation components probably

originate from the 2DEG spin polarization. We propose that the observed Kerr

rotation signals correspond to the spin relaxation of the 2DEG, with its spin re-

laxing with different rates at different stages. The short decay time (τ2 = 71 ps)

is very close to the hole lifetime measured by time-resolved PL experiments in a

similar sample [52]. It is, however, well beyond the typical hole spin flip time in
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Figure 4.9: (a) Measured transient Kerr rotation signal with pump photon en-
ergy at 1.6075 eV and probe energy at 1.6062 eV. The time constants shown are
obtained from nonlinear fitting. (b) The Kerr rotation amplitude of A1 and A2

(described in the text) as a function of pump photon energy, with probe energy
at 1.6062 eV. B = 1 T and T = 4 K.

quantum wells (several ps). We therefore believe the hole recombination corre-

sponds to the initial electronic spin relaxation observed in the Kerr rotation signal.

With the presence of spin unpolarized holes, the electron-hole spin exchange in-

teraction contributes to a faster electronic spin relaxation rate. The electron spin

relaxation slows down after the recombination of the spin unpolarized holes, and

a longer electronic spin relaxation time is observed (τ1 = 453 ps).
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Figure 4.10: Low temperature (a) PL and (b) PLE spectra for the 120 Å CdTe
quantum wells with 2DEG densities of 5 × 109, 8 × 1010, 1.6 × 1011 and 2.4 ×
1011 cm−2. T = 4 K.

4.6 Electron spin coherence vs. 2DEG density

We study the electron spin coherence at different 2DEG density by using a

set of modulation-doped CdTe/Cd0.85Mg0.15Te quantum wells with different dop-

ing densities (see Section 4.2 for sample characteristics). For this study, only the

spin relaxation of the electron gas is concerned, with the short time spin relaxation

(such as that of the excitons and trions) ignored. We measured the low tempera-

ture PL spectra [Figure 4.10(a)] of the quantum wells. For the nominally undoped

sample with 5 × 109 cm−2 both the trion and exciton lines are clearly visible as

the two peaks separated by ∼ 3 meV, which is the trion binding energy. With

increasing carrier density the exciton loses intensity, while the trion resonance

broadens and evolves into a broad emission band with a linewidth approximately

equal to the 2DEG Fermi energy [60]. Because all the quantum well samples are
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Figure 4.11: Spin dephasing rate 1/T ∗

2 as a function of the magnetic field of
the 120 Å CdTe quantum wells with various electron densities. Lines are fits to
Equation 4.19. Inset: Spin dephasing time T ∗

2 vs. 2DEG density at zero magnetic
field. T = 2 K.

grown on thick, opaque GaAs substrate, direct absorption measurement is not

possible. Instead, we measure the PLE spectra of the samples, which are shown

in Figure 4.10(b). With increasing electron density, the excitonic absorption peaks

(both exciton and trion) evolves into a broad, asymmetric peak, corresponding to

the absorption of a 2DEG [60].

The transient Kerr rotation signals are measured by using degenerate pump

and probe pulses with spectral width of 0.5 nm. The pump and probe photon
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energy is tuned near the bandgap of the quantum wells. A transverse magnetic

field up to 6 T is applied. After the initial polarization, the spin of the 2DEG

precesses under the magnetic field, and decays on a nanosecond timescale. This

decay time corresponds to the electron spin dephasing time, T ∗

2 , under a transverse

magnetic field. For measuring reliable values of T ∗

2 , it is important to analyze the

contribution to spin dephasing arising from a spread of the electron g factor, which

results in an inhomogeneous dephasing of the electron spin under magnetic field.

This is shown as a linear dependence of the spin relaxation rate on the magnetic

field,

1/T ∗

2 (B) ≈ 1/T ∗

2 (0) + ∆gµBB/2h̄, (4.19)

with µB the Bohr magneton, h̄ the Planck’s constant, and ∆g a Gaussian variance

of the g factor [24]. Our goal is to compare the electron spin dephasing times in

the limit of zero magnetic field, T ∗

2 (0). Figure 4.11 shows the magnetic field

dependence of the electron spin dephasing rate for all four quantum wells. T ∗

2

values are derived by a single exponential fit to the Kerr rotation transients at

delays longer than 1 ns to measure only 2DEG dynamics. The lines in Figure 4.11

are fits to Equation 4.19. These fits provide the zero field spin dephasing time,

which is plotted as a function of the 2DEG density in the inset of Figure 4.11. A

non-monotonic behavior with increasing electron density can clearly be seen. T ∗

2

first increases with electron density, then goes through a maximum of 5.5 ns at

8 × 1010 cm−2, and finally decreases to 0.9 ns at high carrier densities.

Although a quantitative description of the non-monotonic behavior is not

possible due to the limited numbers of the available samples (2DEG densities) (a

systematic study on electron density will be presented in Chapter 5), the density

dependence of the electron spin coherence can be nevertheless qualitatively under-

stood: at low carrier densities most electrons in the quantum well are localized. In
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this regime the dominant spin dephasing mechanism is the hyperfine interaction

with lattice nuclei spins, which generate an effective “hyperfine magnetic field”

[61, 62]. The T ∗

2 increases as the electron becomes more delocalized. When the

2DEG density crosses the metal-insulator transition [63, 8], the spin dephasing

time decreases drastically due to the D’yakonov-Perel’ mechanism [64]. Similar to

bulk material [8], this overall behavior leads to an optimum doping concentration

in quantum wells for achieving longest spin dephasing times.



Chapter 5

Effects of disorder on electron spin dynamics in semiconductor

quantum wells

Successful implementation of spin-based electronics requires preservation of

the electron spin coherence. Extending spin coherence times in semiconductors is

therefore of great interest for future practical devices. In the previous chapters,

a nonmonotonic dependence of the electron spin coherence time on the doping

density in n-doped semiconductors has been established. A long spin coherence

time is observed for either lightly n-doped bulk or lightly n-doped quantum well

samples, which has also been observed in Reference [9] and [24]. It has been shown

that the spin dephasing rate of the electrons is suppressed close to the metal-

insulator transition [8, 63]. Below and above the critical electron density, different

spin dephasing mechanisms dominate and are detrimental to spin preservation

[22]. A systematic study of spin dephasing on the electron density is therefore

very useful, not only for finding the maximum spin coherence time, but also

for a better physical understanding of the various spin dephasing mechanisms at

different carrier densities.

Samples with different doping levels can be used for this kind of study.

However, particularly at low temperature, the dephasing of the carrier spin is

found to vary widely between different samples [2]. One reason for this is that

spin dephasing can be very sample dependent since it is strongly affected by
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impurities and defects. It is therefore desirable to use the same sample within a

study. However, circumstances may prevent this, as in studies of the dependence

of spin dephasing on background doping level (Section 2.4), where different wafers

must be used. Even for samples grown on the same wafer (Section 4.6), complexity

of spin dephasing could result from different donor concentrations. In this work,

we avoid the use of multiple samples for varying carrier concentrations. Instead,

a specially designed quantum well sample is used, in which the electron density in

the quantum well can be optically controlled in a continuous way. We are therefore

able to systematically study the spin dynamics as a function of two-dimensional

electron gas (2DEG) density by using the transient Kerr rotation technique.

We vary the density in a 2DEG, and show that spin coherence is lost because

of the interplay between localization by disorder and dynamical scattering. By

measuring the electron Landé g factor dependence on density, we determine the

density of states (DOS), which characterizes the disorder potential. Using our

knowledge of the DOS, a simple model estimates the temperature and excitation

intensity dependence of the g factor, qualitatively agreeing with experiments. This

agreement confirms the importance of disorder and provides predictive power for

designing spin-based electronic devices. We are able to compare the measured

spin dephasing times to the degree of localization by concurrently probing the

DOS from the electron g factor measurements. Our results show that the longest

spin coherence time is obtained for weakly localized spins, which may dictate a

compromise in the design of devices between increasing the spin coherence time

and improving transport properties [65].

5.1 Electron Landé g factor

Electron spin dynamics probe fundamental physical processes in condensed

matter systems. One example is the electron Landé g factor, which has been
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discussed briefly in Section 1.2.3. It is of importance in quantum transport [66]

as well as being a useful test of band-theory calculations [67]. Gate-voltage-

mediated control of electron coherent spin precession has also been demonstrated

by utilizing materials with different g factors [68]. Under a magnetic field B, the

electron spin will precess with frequency ωL = g∗µBB/h̄, where g∗ is the effective

Landé g factor, µB is the Bohr magneton and h̄ is the Planck’s constant. g∗

in semiconductors differs from the free electron value, 2.0, due to the spin-orbit

interaction, and varies with the energy in the band. The variations of the electron

g factor in quantum wells from the bulk values are shown to arise mainly from

the change of quantum confinement energy [69], with lesser contributions from

anisotropy of the quantum well potential, carrier penetration into the barriers

and strain [27]. This is confirmed by measurements of g∗ for conduction electrons

as a function of quantum well width [69, 27], where g∗ is sampled at different

energies determined by the electron confinement energy for each quantum well

width. The energy dependence of the electron g factor for quantum wells has also

been studied with electron spin resonance [70] and cyclotron resonance [26], and it

has been found that within a small energy range the g factor can be approximated

by

g∗ = g0 + βE, (5.1)

with β a constant and E the energy. The measured g∗ through transient Kerr

rotation should correspond to that at the Fermi energy due to Fermi blocking.

Measurements of the electron g factor as a function of the electron den-

sity also provide information on the electron DOS. The electron DOS follows

D(E) = dn/dE, with n the electron density. The g factor, on the other hand,

satisfies dg∗/dE = β within a small energy range (following Equation 5.1). Given

a measurement of g∗ as a function of electron density, the electron DOS at the
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Fermi energy can therefore be determined by

D(n) = β(dg∗/dn)−1, (5.2)

with n the electron density up to the Fermi energy. In an unperturbed 2DEG,

a linear dependence of g∗ on the 2DEG density is expected, given that the DOS

of the 2DEG is a constant as a function of energy. As will be shown later, this

expectation does not agree with our experimental results, where a nonlinear de-

pendence of g∗ on the electron density is observed. We will show that the observed

nonlinearity of g∗ vs. density is due to the presence of the localized states, which

modifies the electron gas DOS. We characterize the disorder potential by deter-

mining the DOS based on Equation 5.2. The localized states have important

implications for the electron spin dynamics in quantum wells.

5.2 Sample characteristics and experiments

5.2.1 Mixed type I/type II quantum wells

The sample used for this study is an asymmetric GaAs/AlAs mixed type

I/type II double-quantum-well system [71, 72]. The double quantum well struc-

ture is schematically shown in Figure 5.1(a). It consists of a wide and narrow

GaAs quantum well, separated by a AlAs barrier layer. The thicknesses of these

layers are specially chosen (in particular, the thickness of the narrow GaAs layer

is less than 35 Å) to ensure that the lowest electronic subband in each layer forms

a “staircase” [see Figure 5.1(b)]. The lowest electron state is localized at Γ in

the wide GaAs quantum well, the second lowest at the X minimum in the AlAs

barrier,1 and the third at Γ in the narrow GaAs well. This arrangement neces-

sitates the narrow quantum well being type II with respect to the barrier, while

1 The bandgap of AlxGa1−xAs is indirect for x > 0.4, with the energy at X minimum lower
than that at Γ for the conduction band.
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Figure 5.1: (a) Schematic diagram of the conduction and valence band edges
showing the lowest confined X and Γ electron states and hole states in a mixed
type I/type II quantum well. (b) Band diagram showing the conduction and
valence bands (in the in-plane direction of layers, kx and ky) in the two quantum
wells and the barrier. The limiting electron and hole relaxation mechanisms are
indicated by arrows.



79

the wider well is type I, hence the nomenclature “mixed type I/type II” for the

double quantum wells. Under photoexcitation with energy above the gap of the

narrow well (HeNe excitation for our experiments), electron-hole pairs are gen-

erated in the narrow well. The electrons in the narrow well can scatter into the

wide GaAs well via the AlAs X states on a picosecond time scale. On the other

hand, the lowest hole states in the two quantum wells are essentially uncoupled,

and holes in the narrow well can only tunnel through the AlAs barrier into the

wide well (in tenth of microsecond for the sample we use) at low temperatures.

We therefore have spatially separated electrons and holes in the wide and narrow

quantum wells, respectively. The drastic difference between the electron scatter-

ing time and hole tunneling time means that the density of the carriers can be

very large (∼ 1012 cm−2) for optical excitation intensity of only a few mW/cm2

[73]. By varying the optical excitation intensity, we are able to continuously vary

the electron density in the wide quantum well, in which we will study the spin

dynamics through transient Kerr rotation technique.

The sample is grown by molecular beam epitaxy on n+ GaAs substrate.

It consists of nominally a 6800 Å GaAs buffer layer, a 6000 Å Al0.6Ga0.4As

etch stop layer, a multiple quantum well consisting of 20 periods of 25- and 68-

Å GaAs double quantum wells separated by AlAs barriers with a width of 80 Å,

a 6000 Å Al0.6Ga0.4As etch stop layer, and a 1000 Å GaAs capping layer. The

quantum wells are nominally undoped.

5.2.2 Experimental setup

We perform transient Kerr rotation measurements in a magneto-optical

cryostat, in which a magnetic field of 6 T is applied normal to the quantum well

growth direction (Voigt geometry) [30, 33]. Pump and probe pulses are produced

by a mode-locked Ti:sapphire laser, and are circularly and linearly polarized, re-
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spectively. Both pulses are spectrally filtered to enable independent tuning of

their energies. The energies of the pump and probe pulses are tuned to the trion

resonance of the wide quantum well for low energy excitation, except for spectral

study. The spectral width of the pulses is adjusted to be 0.2 nm (resulting in ∼5

ps pulses) for spectrally resolved measurements. Average powers are 100 µW in

the pump (except as specified in the text) and 20 µW in the probe beam. The

carrier density upon pump pulse excitation is estimated to be 3 × 108 cm−2/well.

For time resolved photoluminescence measurement, we modulate the HeNe laser

beam with an acousto-optic modulator and detect the photoluminescence (from

HeNe excitation) by a 1/4-m grating spectrometer followed by a photomultiplier

and lock-in amplifier. The photoluminescence signal is processed with a digital

oscilloscope. All experiments were performed at 4 K except for the temperature

dependence measurements.

5.2.3 Photoluminescence

Photoluminescence (PL) spectra at low temperature as a function of HeNe

excitation intensity reveal electron accumulation in the wide quantum wells. We

measure the PL spectra of the sample at a temperature of 4 K as a function of

the HeNe excitation intensity, as shown in Figure 5.2. For this measurement, the

sample is excited by both a CW Ti:sapphire laser at 1.676 eV (below the effective

gap of the narrow quantum wells) and a HeNe laser (above the gap of the narrow

wells). The PL spectrum due to HeNe excitation alone is removed from the total

measured spectrum by subtraction. The resulting PL spectra shown in Figure 5.2

therefore originate from photoexcitation into the wide quantum wells only, with

the electron density in the wide wells varied by varying the HeNe intensity. Under

no HeNe excitation, the spectrum is dominated by the heavy hole exciton emis-

sion (1.6072 eV) in the wide quantum wells. As the HeNe excitation intensity
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Figure 5.2: Low temperature (T = 4 K) PL spectra under photoexcitation into
the wide wells only for various HeNe excitation intensities. The spectra are offset
for clarity. X and T stand for exciton and trion, respectively.

is increased, a low energy shoulder emerges at 1.6047 eV, which is ascribed to

recombination involving negatively charged excitons, or trions. We measure the

spin dynamics in the wide quantum wells with a HeNe excitation intensity up

to 1.9 × 10−1 W/cm2. Above this intensity, the trion PL line gradually evolves

into a broader peak, associated with the PL of a two-dimensional electron gas.

The red shift of the peaks with increasing intensity is a result of the bandgap

renormalization [74].
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As the HeNe beam passes through the sample, it is attenuated due to the

absorption by the quantum wells. This attenuation could result in a decrease in

the electron density as a function of depth. This electron density inhomogeneity

in the wide wells, if any, will result in different PL spectra originating from the

front and back wide quantum wells (the PL spectrum is very sensitive to the

electron density by the relative strength between exciton and trion emissions, as

shown in Figure 5.2). We check the electron density inhomogeneity in the 20 wide

quantum wells by measuring the PL spectrum with co-propagating and counter-

propagating CW Ti:sapphire beam and HeNe beam. For this study, the sample is

mounted on a sapphire plate with the opaque GaAs substrate removed by etching,

to enable optical measurements from both sides of the sample. We measure the PL

spectra from photoexcitation into the wide wells only, with the CW Ti:sapphire

excitation at 1.624 eV (light hole exciton resonance in the wide wells, at which

the absorption strength is comparable to that at HeNe energy). The luminescence

is detected at the same side of the sample as the CW Ti:sapphire excitation

enters. Assuming a significant attenuation of the CW Ti:sapphire beam by the

quantum wells, the PL spectrum detected will have more contributions from the

beam entrance side (if there is no significant attenuation of the Ti:sapphire beam,

the HeNe beam intensity should also be fairly uniform in different wells). By

directing HeNe excitation to the sample from either side, we are able to monitor

the electron density inhomogeneity. We adjust the HeNe excitation intensity to

obtain a PL spectrum with equal peak amplitudes of the exciton and trion lines

(similar to the PL spectrum for 9.3 mW/cm2 in Figure 5.2), and record the HeNe

intensity for excitation from either side. We obtain almost identical intensities for

excitation from both sides (10.6 mW/cm2 for co- and 10.8 mW/cm2 for counter-

propagating), and therefore conclude that there is negligible difference of electron

densities in the front and back quantum wells. We also measure the absorption
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Figure 5.3: Low temperature (T = 4 K) PLE spectra of the wide wells for various
HeNe excitation intensities. The spectra are normalized and offset for clarity. hh
and lh stand for heavy hole and light hole exciton, respectively.

of HeNe by the sample and observe no saturation for the whole HeNe intensity

range used.

5.2.4 Photoluminescence excitation and absorption spectra

The PL spectra shown in Figure 5.2 provide information on interband tran-

sitions near the wide quantum well bandgap. The energy position and strength of

the electronic transition obtained from the PL spectrum are, in general, different
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from those obtained from the absorption spectrum. With the existence of local-

ized states in quantum wells (especially in narrow wells), there is a shift in energy

between positions of the band maxima of the absorption and luminescence spectra

of the same electronic transition (Stokes shift). It is therefore desirable to measure

the absorption spectrum of the sample. The mixed type I/type II quantum wells

is grown on thick GaAs substrate and a direct absorption measurement of the

sample is not possible. We measure the photoluminescence excitation spectrum

(PLE) instead. Figure 5.3 shows the low temperature PLE spectra of the wide

quantum wells for various HeNe excitation intensities. The PLE spectrum is mea-

sured by scanning the excitation photon energy (from a CW Ti:sapphire laser)

and monitoring the PL signal strength at an energy of 1.6025 eV (below the trion

resonance, as shown in Figure 5.2).2 At low HeNe intensity, the PLE spectrum

shows the heavy hole and light hole excitonic peaks, as well as the absorption of

the continuum states, which are labeled in the figure. At high HeNe intensity,

the excitonic peaks are replaced by a broad, asymmetric peak called the “Fermi

edge singularity” [60], with the absorption enhanced near the Fermi level. The

intensity of the absorption spectrum rises relatively quickly on the low energy side

but falls off slowly on the high energy side, to merge into the continuum absorp-

tion. The shift of resonance to higher energy with increasing HeNe intensity is a

direct evidence of electron accumulation in the wide wells, due to the band-filling

of electrons. By comparing the PLE spectrum with the PL spectrum shown in

Figure 5.2, we observe a Stokes shift of ∼1.5 meV between the exciton PLE peak

and the corresponding PL peak at low HeNe excitation intensity, indicating carrier

localization in the quantum wells.

2 The low energy PL signal monitored originates from CW Ti:sapphire excitation only. This
is achieved by modulating the Ti:sapphire beam with an optical chopper and detecting the PL
signal with phase-sensitive lock-in detection. The HeNe excitation does not contribute to the
PL signal monitored, and is only used to vary electron density in the wide wells.
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Figure 5.4: Low temperature (T = 10 K) absorption spectra near the wide quan-
tum well bandgap for various HeNe excitation intensities. The spectra are taken
with a sample with its substrate etched away. The spectra are offset for clarity.
hh and lh stand for heavy hole and light hole exciton, respectively. Data provided
by P. Dawson.

We measure the absorption spectrum by mounting the sample on a sap-

phire plate with the opaque GaAs substrate removed by etching. The process of

mounting and etching, however, strains the sample, which shifts and broadens the

resonances as compared to the unetched sample used in our study. Therefore, the

absorption spectra are only measured as a reference. The absorption spectra near

the wide quantum well bandgap are plotted in Figure 5.4 at different HeNe inten-

sity. They are very similar to the corresponding PLE spectra. We again observe

the heavy and light hole exciton peaks, and observe a blue-shift of the resonances
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with increasing HeNe intensity. The resonances are also somewhat broadened by

an underlying Fabry-Pérot fringe (resulting from the interference effect of the thin

sample) which can be clearly seen on a wider range spectrum.

5.2.5 Electron density estimation

The optically excited 2DEG density (through HeNe excitation) in the wide

quantum well can be calibrated through time-resolved PL (from HeNe excitation

only) [73]. The basic idea behind this work is that if the decay of the PL from the

wide quantum well is monitored following pulsed HeNe excitation, not only will

we observe the fast (<ns) recombination of carriers excited directly in the wide

well but also we should observe a much slower transient. This slow decay should

arise from the sequential process of hole tunneling and subsequent recombination

of holes with electrons in the wide well. The time constant associated with this

sequential process will be governed by the hole tunneling rate, which is expected

to be much less than the rates associated with scattering and recombination. In

Figure 5.5 we show the photoluminescence transient after pulsed HeNe excitation

for several HeNe intensities. The PL is measured by sampling all the light emitted

by the sample. The slow decays, corresponding to the hole tunneling process from

the narrow well to the wide well, can be clearly seen after the fast decay of the

directly excited electron hole pairs. The measured decay of the initial fast transient

is limited by the system response. In the inset of Figure 5.5, the hole tunneling

time is plotted as a function of HeNe excitation intensity. The time constants

are obtained from exponential fit of the photoluminescence transients. The hole

tunneling time remains fairly constant (∼ 50 µs) over the whole HeNe intensity

range, expect at low intensities, where the measured PL signals becomes noisy to

provide reliable time constants.

As discussed in Reference [73], this method can only give estimated values of
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Figure 5.5: Time-resolved photoluminescence from pulsed HeNe excitation (T =
4 K). The transients are normalized and offset for clarity. Inset: Hole tunneling
time (from narrow well to wide well) as a function of HeNe excitation intensity.
The time constants are obtained from exponential fit of the photoluminescence
transients.

the 2DEG density due to multiple processes in the PL decay. Therefore, the values

of the excitation intensity instead of the equivalent excited electron densities are

quoted in the text. However, given that our measured hole tunneling time remains

fairly constant over the whole HeNe intensity range used in our measurements,

the 2DEG density should be proportional to the HeNe intensity. At the relatively

low HeNe intensities used in this experiment, saturation of electron accumulation

due to the space-charge field set up by the spatially-separated electrons and holes

is negligible. The electron density in the wide quantum well is estimated to be

∼ 1 × 109 cm−2 per mW/cm2 per well.
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5.3 Electron spin dynamics

5.3.1 Data analysis

The transient Kerr rotation signal oscillates under the transverse magnetic

field due to Larmor precession of the electron spin. The oscillatory dynamics

reveal the electron spin dephasing time and the precession frequency (which gives

g∗). CW HeNe excitation is used to continuously vary the electron density in the

wide quantum well, with the electron density proportional to the HeNe intensity

over the intensity range used in our measurements, as detailed in Section 5.2.5.

Only the data after 400 ps are analyzed, so that our results are not affected

by short time delay properties such as exciton spin dephasing [transient grating

measurements yield a carrier lifetime of ∼100 ps (not shown)]. With the optically-

created electrons and holes recombined already, only the spin precession of excess

electrons is measured, and the resulting spin dephasing time and g factor should

be that of the electrons without exchange interaction with the holes [47].

The transient signal measured normally consists of oscillations with two dif-

ferent frequencies, and their relative strengths depend on where the pump and

probe photon energies are set. Figure 5.6 shows the transient signals with one

or two frequency components at different pump and probe energies, with a HeNe

intensity of 4.7mW/cm2. As will be discussed in Section 5.3.2, the low frequency

component originates from the main quantum well width, while the high frequency

component is believed to correspond to several quantum wells with slightly nar-

rower well width, which will not be considered in this study. To retrieve infor-

mation only related to the main quantum well width, we perform least-squares

fitting on the data using a formula with two oscillation frequencies and decay

times, θK(t) = A1e
−t/τ1cos(ωL1t) +A2e

−t/τ2cos(ωL2t), which give the electron spin

dephasing times. The precession frequency (g∗) is obtained from fast Fourier
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Figure 5.6: Transient Kerr rotation signals measured at two different pump and
probe photon energies, with a HeNe intensity of 4.7mW/cm2. The transient signal
for pump energy of 1.6091 eV is fit with a single-frequency oscillation decay, while
the signal for pump energy of 1.6104 eV is fit with a formula with two oscillation
frequencies and decay times.

analysis, with the value being the peak position of the Fourier spectra.

5.3.2 Spectral study

In general, the transient Kerr rotation signal measured consists of beating

signals from two different precession frequencies under magnetic fields. We check

the origin of the two frequencies by a spectral study of the pump excitation en-

ergy. We plot the spectrum of Kerr rotation amplitude for the two frequency

components in Figure 5.7(a), with the amplitude obtained from least-square fit

of the transient signal. The probe photon energy is set at 1.6108 eV for this

measurement. The amplitude of the low frequency component peaks at the heavy

hole exciton resonance, while that of the high frequency component peaks at a

higher energy (∼3 meV above). The PLE spectrum of the wide quantum well
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Figure 5.7: (a) Kerr rotation amplitude for the two frequency components as a
function of pump excitation energy, with the probe photon energy set at 1.6108 eV.
(b) Circles: PLE spectrum of the wide quantum well under no HeNe excitation;
full lines: Fit of the spectrum with two Gaussian lines centered at different photon
energies.

under no HeNe excitation is plotted in Figure 5.7(b), which can be well fit with

two Gaussian lines centered at 1.609 eV and 1.612 eV, respectively. The similar-

ity between the spectra in Figure 5.7(a) and (b) suggests that the two frequency

components correspond to the electron spin precession in quantum wells with two

different well widths (supported by the dependence of the electron g factor on

quantum well width). While the low frequency components originates from the

main quantum well width, the high frequency component is assigned to electron

spin precession in several quantum wells with slightly narrower width, which ex-

citon peak is also visible in the PLE spectrum (centered at 1.612 eV). In the

following experiments, we will be using low energy pump and probe excitation

(near trion resonance), so that the narrower quantum well contribution to the

Kerr rotation signal is minimized.
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5.3.3 Electron localization

In quantum wells, especially narrow wells in our sample, fluctuations of the

well width may result in the formation of localized electronic tail states. This is

due to the dependence of the quantization energy on the well width. As shown

by the diagram in Figure 5.8(a), the conduction band electrons tend to localize

at areas with slightly wider well width. Electrons in the quantum well will first

occupy these localized states, since they have a lower energy. As the electron

density in the quantum well is increased, electrons become more delocalized and

can finally move freely in the quantum well plane after the localized states are

completely filled. We therefore have a transition from localized to delocalized

electrons with increasing electron density. The electrons can also be localized

by random potential fluctuations produced by the laterally localized holes in the

narrow quantum in a mixed type I/type II structure [75]. For simplicity, we

model the electron localization by only considering the effects from well width

fluctuations.

The unperturbed DOS (per unite area) of a two-dimensional system, i.e.

without considering electron localization, is expressed as

D(E) =
m∗

πh̄2
Θ(E − Ec), (5.3)

with m∗ the effective mass of the conduction band electron, Θ(E) the Heaviside

step function, and Ec the cutoff energy. This steplike DOS is plotted in Fig-

ure 5.8(b) as dashed line. Now consider a quantum well with a distribution of

the well widths. The DOS for each well width still follows Equation 5.3, with

Ec for each width differs due to quantum confinement. The overall DOS of the

perturbed two-dimensional system is then obtained by integrating the DOS for

each width over the well width distribution [P (E)], which follows,

D̄(E) =
∫

∞

−∞

D(E − E
′

)P (E
′

)dE
′

. (5.4)
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Figure 5.8: (a) Schematic diagram of electron localization in a quantum well with
well width fluctuation. (b) DOS of a two-dimensional system with a localization
tail (full line) and that of the unperturbed two-dimensional system (dashed line).

We model the DOS with well width fluctuations by assuming a Gaussian distrib-

ution of the well width

P (E) = (
√

2π∆E)−1 exp
(

−1

2
(E/∆E)2

)

, (5.5)

with ∆E the fluctuation width. The DOS of the perturbed two-dimensional sys-

tem is then carried out by inserting Equation 5.5 in Equation 5.4:

D̄(E) =
m∗

2πh̄2

(

1 + erf(
E − Ec√

2∆E
)

)

. (5.6)

The calculated DOS is plotted in Figure 5.8(b) as a full line. The electron local-

ization is represented by the tail states at low energies, which have smaller DOS
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Figure 5.9: (a) Measured g∗ dependence on the HeNe excitation intensity. (b)
Calculated g∗ dependence on electron density, as described in the text. The
arrows indicate the electron density and energy of the mobility edge. Inset: DOS
of a two-dimensional system with a localization tail (full line) and that of the
unperturbed two-dimensional system (dashed line).

than the unperturbed two-dimensional system. The mobility edge, the critical

point at which a transition from localized to extended electronic states, is at Ec.

5.3.4 Electron g factor nonlinearity

The g factor dependence on HeNe excitation intensity is plotted in Fig-

ure 5.9(a). The sign of the g factor is determined to be positive for our sample.3

The value of g∗ increases nonlinearly with increasing HeNe excitation intensity, in

contrast with a linear dependence expected for an unperturbed two-dimensional

system (see Section 5.1). The g∗ data in Figure 5.9(a) have a bigger increase

3 The sign of the g factor is not available from transient Kerr rotation measurements. We
measure the anisotropy of the g factor and obtain a larger absolute value of g for field perpen-
dicular to the growth axis than that for field parallel. According to Reference [76], this indicates
a positive sign of g factor for our sample.
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at low HeNe intensity (electron density) than at high HeNe intensity, indicating

smaller densities of states for low electron densities (refer to Equation 5.2). We

therefore propose that the nonlinearity of the electron g factor is associated with

a transition from localized to delocalized electrons. We model the g∗ dependence

on electron density by using a DOS following Equation 5.6, which is for a dis-

ordered quantum well system resulting from a Gaussian distribution of the well

width fluctuation. We also assume a linear dependence of g∗ on electron energy,

g∗ = g0 + βE. The linear coefficient β in the energy dependence of g∗ has been

calculated using five-band k · p perturbation theory [14]. Based on the calculated

DOS and the energy dependence of g factor, we calculate the electron g factor

dependence on electron density, which is shown in Figure 5.9(b). The calculation

assumes zero temperature and equal spin-up and spin-down electron populations,

with the width of the Gaussian distribution set at 1.5 meV to account for the

Stokes shift and g0 as the only free parameter. The calculation represents the

form of the experimental data well except at low HeNe intensity. The deviation

is probably due to increased electron temperature resulting from pump excita-

tion, which has a bigger effect on g∗ at low carrier density (discussed in detail

later). We therefore confirm the presence of localized states, which have a smaller

DOS, and thus produce a more rapid change in the g factor with electron density

(Equation 5.2).

5.3.5 Spin dephasing time vs. electron density

Figure 5.10 shows the electron spin dephasing time as a function of the

HeNe intensity. The electron spin dephasing time shows a nonmonotonic depen-

dence on carrier concentration, with a maximum time constant at an intensity

of 25 mW/cm2 (see Section 5.2.5 for electron density). The presence of localized

and delocalized states accounts for the opposite trends in the spin dephasing time
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Figure 5.10: Electron spin dephasing time vs. HeNe excitation intensity. The
inset shows the measured spin dephasing rate dependence on magnetic field for
several HeNe intensities, with solid lines the linear fits to the data. Error bars are
plotted except where they are smaller than the symbol size.

at low and high electron densities, as displayed in Figure 5.10. At high electron

concentrations, the decrease of spin dephasing time with increasing density sug-

gests a D’yakonov-Perel’ (DP) mechanism [64], in which the spin dephasing rate is

inversely related to the momentum scattering rate. The 2DEG efficiently screens

the potential fluctuations, and suppresses the momentum scattering rate, result-

ing in a decrease of the spin dephasing time with carrier density. Below the critical

electron density, the electrons become localized in the potential fluctuations, and

the electron spins dephase from the inhomogeneous environment, which is often

attributed to strong hyperfine interactions with the nuclear magnetic moments.

The critical density should correspond to the crossover between the localized and

delocalized states, where different spin dephasing mechanisms dominate.

An additional contribution to the spin dephasing may arise from a spread in
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the electron g factor (due to distribution of electron energies over localized states),

which results in an inhomogeneous dephasing of the electron spin under magnetic

field. This is shown as a linear dependence of the spin dephasing rate on the

magnetic field, 1/T ∗

2 (B) ≈ 1/T ∗

2 (0) + ∆gµBB/2h̄, with ∆g a Gaussian variance

of the g factor [24]. In the inset of Figure 5.10, spin dephasing rate is measured

as a function of the magnetic field for several HeNe intensities. For the two lower

HeNe intensities, the spin dephasing rate increases linearly with field. A ∆g of

0.0026 (0.0014) for 4.7 (47) mW/cm2 is retrieved from a linear fit, which supports

an inhomogeneous spin dephasing for the localized electrons. The decrease of ∆g

with increasing electron density suggests a decrease of the g factor inhomogeneity

as the electrons become less localized, which is evidenced by the measured g factor

dependence on electron density, as shown in Figure 5.9. At a HeNe intensity of 93

mW/cm2, where electrons become delocalized, we observe a small decrease of the

dephasing rate with field, which suggests a DP mechanism under magnetic field

[24]. Thus, as the electron density is increased, the electron spin relaxation under-

goes a transition from being limited by inhomogeneous dephasing to homogeneous

decoherence.

5.3.6 Electron g factor vs. temperature and excitation intensity

The temperature dependence of the electron g factor provides further in-

sight into the electron localization. Figure 5.11(a) shows the measured g∗ as a

function of temperature for a series of HeNe intensities. Drastic temperature de-

pendence differences are observed for different intensities. Two aspects need to be

considered to account for the variation of g factor on temperature: the variation

due to lattice temperature changes, and the ensemble average of the electron g

factor due to thermal distribution of electrons. The former comes mainly from

the temperature dependence of the fundamental energy gap, but predictions from
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Figure 5.11: (a) Measured g∗ dependence on temperature for a series of HeNe
intensities. (b) Calculated carrier temperature dependence of electron 〈g∗〉 for
several 2DEG densities (lattice temperature effect not included). (c) Calculated
temperature dependence of 〈g∗〉 with contributions from both the lattice and
carrier temperature.

k · p perturbation theory fail to describe the experimental results [23]. The lat-

ter contribution can be accounted for by calculating the average g factor from

its dependence on the energy, weighted by the DOS, along with a Fermi-Dirac

distribution of the electrons:

〈g∗〉 =

∫

∞

0 g(E)D(E)(f+(E) − f−(E))dE
∫

∞

0 D(E)(f+(E) − f−(E))dE
, (5.7)

with D(E) the modified DOS of the 2DEG [Figure 5.8(b)] and f+ (f−) the Fermi-

Dirac distribution for the spin-up (spin-down) electrons. The calculated results for

the carrier temperature dependence are shown in Figure 5.11(b) (lattice temper-

ature effect not included). Increasing carrier temperature will transfer electrons

from below to above the Fermi energy. For a degenerate electron gas which has a

constant DOS with energy, 〈g∗〉 should be that at the Fermi energy since g factor

increases linearly with energy. This is however not the case for localized electrons,
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Figure 5.12: (a) Measured 〈g∗〉 vs. the pump excitation intensity for different
HeNe intensities. (b) Calculated 〈g∗〉 as a function of degree of the electron spin
polarization.

which have a rapid change of the DOS. The average g factor will increase with

carrier temperature due to the greater DOS above the Fermi energy. This effect

is well represented in Figure 5.11(b) for localized and delocalized electrons. In

Figure 5.11(c) we calculate 〈g∗〉 by including contributions from both the lattice

and carrier temperature. Given the lack of theoretical results that match exper-

imental lattice temperature dependence [23], we empirically represent the lattice

temperature contribution by adding a linear term to the carrier temperature de-

pendence, so that the combined dependence at high density matches the measured

results at the highest HeNe intensity. The calculation represents the trend of the

experimental data.

Increasing the pump excitation intensity has previously been shown to pri-

marily increase the temperature of the electron gas rather than the crystal lattice

[77]. The excitation intensity dependence should be a good check to our theory on
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the electron g factor, since the carrier and lattice temperature have different effects

on the 〈g∗〉 [as seen in Figure 5.11(a) and (b)]. In Figure 5.12(a), the measured

〈g∗〉 is plotted against the pump excitation intensity for several HeNe intensities.

The carrier density due to pump excitation is estimated to be 3 × 108 cm−2 per

1 W/cm2. The 〈g∗〉 shows strong variation with excitation intensity at low 2DEG

density, but has little variation at high density. The figure also shows a similar

trend as the calculated carrier temperature dependence [Figure 5.11(b)]. The lat-

tice temperature dependence of the 〈g∗〉 [Figure 5.11(a)], however, behaves quite

differently. This further establishes that increasing the excitation intensity does

heat up the carriers rather than the lattice. By increasing the excitation intensity,

we also increase the degree of spin polarization of the electron gas, which alone

should also affect the g factor. We calculate the electron 〈g∗〉 dependence on the

degree of spin polarization of the 2DEG, as shown in Figure 5.12(b). The degree

of spin polarization is defined as (n+ − n−)/(n+ + n−), with n+ (n−) the density

of the spin-up (spin-down) electrons. The calculation is based on Equation 5.7,

with the degree of spin polarization represented by a difference between the Fermi

energy for the spin-up electrons (f+) and that for the spin-down electrons (f−).

The results show that spin polarization of the 2DEG does not affect the 〈g∗〉 as

much as increasing the carrier temperature, and g factor variation with excitation

intensity is mainly related to the change of the electron temperature.

Transient Kerr rotation measurements provide reliable values of the g factor

of bare electrons, as opposed to those obtained from magnetoquantum oscilla-

tions, which can be strongly enhanced by many-body exchange interactions [78].

We therefore ignore the exchange interactions between carriers in our model. The

variation of electron g factors in quantum wells arises mainly from the change in

electron energy, where the assumption of a linear dependence on energy should be

precise for the energy range (several meV) present in the measurements. Other
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contributions, such as anisotropy of the quantum well potential, strain and elec-

tron wavefunction penetrating into barriers, should have minimal effects, because

of the use of the same sample, and the small change of 2DEG density in the mea-

surements. The non-parabolicity of the conduction band has negligible effect on

the variation of the g factor over the change in Fermi energy studied.

In summary, we systematically study the spin dynamics of the electron gas

in a GaAs quantum well sample, where the electron density in the quantum well

can be varied through optical excitation. We show that the electron spin coher-

ence is limited by the interplay between localization by disorder and dynamical

scattering processes. For localized electrons, disorder limits the spin dephasing

time due to inhomogeneous g factor distributions. The measured electron g factor

dependence on electron density directly characterizes the disorder potential. Using

our knowledge of the DOS, a simple model estimates the temperature and exci-

tation intensity dependence of the g factor, in agreement with our experimental

results. This work confirms the importance of disorder in spin coherence in semi-

conductors, which provides predictive power for designing spin-based electronics

devices.



Chapter 6

Conclusion

In this thesis we focus on the optical manipulation of spin coherence in

semiconductors. We use transient Faraday/Kerr rotation and other optical spec-

troscopy techniques (such as absorption, reflection, PL and PLE) to study spin

dynamics in various semiconductor quantum well systems. In Chapter 3, we

experimentally study the spectra of the transient Faraday/Kerr rotations near

the exciton resonances of an undoped GaAs multiple quantum well. While the

transient Faraday/Kerr techniques have been widely used for spin study, spec-

tral studies can reveal the underlying spin dependent nonlinearities. They are

also useful in selectively generating and detecting spin polarizations of different

species. A spectrum calculation with a multilayer characteristic matrix model is

performed, with the results quantitatively agree with the measured linear spectra

and Faraday/Kerr spectra. We show that the Kerr spectra depend not only on the

optical nonlinearities but also on linear optical effects such as interference from

layer structures. In Chapter 4, we study the interplay of spin dynamics between

excitons, negatively-charged excitons (trions) and the two-dimensional electron

gas with lightly modulation-doped CdTe quantum wells. In these systems, the

interband properties are dominated by excitons and trions at low temperatures,

but the electron spin can persist after recombination of optically excited carri-

ers. Coherent optical generation and manipulation of the electron spins require
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an understanding of the connection between electron spin and optical transitions

through which the spin polarization is initiated and controlled. By a spectral

study of Kerr rotation, spin relaxation of individual species is resolved. The spin

dynamics is quantitatively described by solving rate equations involving the spin

populations of excitons, trions and the electron gas. Under resonant excitation of

excitons, spin polarization of the electron gas is generated through trion formation

process, with the spin coherence partially lost through exciton spin relaxation. In

Chapter 6, we study the effects of disorder on electron spin dynamics in a GaAs

quantum well. A mixed type I/type II GaAs/AlAs quantum well is used, where

the carrier density in the quantum wells can be continuously varied with CW

optical excitation. We vary the electron density in a two-dimensional electron

gas, and show that the electron spin coherence is lost due to the interplay be-

tween localization by disorder and dynamical scattering processes. By measuring

the electron Landé g factor dependence on electron density, we are able to de-

termine the density of states, which characterizes the disorder potential. Using

our knowledge of the density of states, a simple model estimates the tempera-

ture and excitation intensity dependence of the g factor, in agreement with our

experimental measurements. Our results show that the longest spin coherence is

obtained for weakly localized spins, which may dictate a compromise in the design

of spintronic devices between increasing the spin coherence time and improving

transport properties.
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[2] I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: Fundamentals and
applications,” Rev. Mod. Phys. 76, 323 (2004).

[3] D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, and
M. L. Roukes, editors, Spin Electronics (Kluwer, Dordrecht, 2004).

[4] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von
Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics:
a spin-based electronics vision for the future,” Science 294, 1488 (2001).

[5] G. A. Prinz, “Magnetoelectronics,” Science 282, 1660 (1998).

[6] S. Datta and B. Das, “Electronic analog of the electro-optic modulator,”
Appl. Phys. Lett. 56, 665 (1990).

[7] C. F. Klingshirn, Semiconductor Optics (Springer, Berlin, 2005).

[8] R. I. Dzhioev, K. V. Kavokin, V. L. Korenev, M. V. Lazarev, B. Y. Meltser,
M. N. Stepanova, B. P. Zakharchenya, D. Gammon, and D. S. Katzer, “Low-
temperature spin relaxation in n-type GaAs,” Phys. Rev. B 66, 245204
(2002).

[9] J. M. Kikkawa, I. P. Smorchkova, N. Samarth, and D. D. Awschalom, “Room-
temperature spin memory in two-dimensional electron gases,” Science 277,
1284 (1997).

[10] J. M. Kikkawa and D. D. Awschalom, “Lateral drag of spin coherence in
gallium arsenide,” Nature 397, 139 (1999).

[11] D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,”
Phys. Rev. A 57, 120 (1998).

[12] A. P. Heberle, W. W. Rühle, and K. Ploog, “Quantum beats of electron
Larmor precession in GaAs wells,” Phys. Rev. Lett. 72, 3887 (1994).



104

[13] J. J. Baumberg, S. A. Crooker, D. D. Awschalom, N. Samarth, H. Luo, and
J. K. Furdyna, “Ultrafast Faraday spectroscopy in magnetic semiconductor
quantum structures,” Phys. Rev. B 50, 7689 (1994).

[14] C. Hermann and C. Weisbuch, “~k ·~p perturbation theory in III-V compounds
and alloys: a reexamination,” Phys. Rev. B 15, 823 (1977).

[15] J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor
Nanostructures (Springer, New York, 1996).

[16] F. Meier and B. P. Zakharchenya, editors, Optical Orientation (North-
Holland, Amsterdam, 1984).

[17] B. E. A. Saleh and M. Teich, Fundamentals of Photonics (Wiley, New York,
1991).

[18] A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,”
Rev. Sci. Instrum. 71, 1929 (2000).

[19] D. D. Awschalom, “Manipulating and storing spin coherence in semiconduc-
tors,” Physica E 10, 1 (2001).

[20] M. Oestreich, S. Hallstein, A. P. Heberle, K. Eberl, E. Bauser, and W. W.
Rühle, “Temperature and density dependence of the electron Landé g factor
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Appendix A

Birefringence of cryostat windows

The windows in our magneto-optical cryostat could carry strain-induced

birefringence, which could be largely enhanced at low temperatures. In a transient

Faraday/Kerr rotation measurement, a circularly polarized pump beam is needed

to optically create spin polarized carriers in the samples, while a linearly polarized

probe beam is required to measure the photo-induced Faraday/Kerr rotation. The

birefringence in the cryostat windows, if any, will vary the polarization states of

the otherwise circularly polarized pump and linearly polarized probe beams. This

in turn affects both the degree of spin polarization in the samples after pump

excitation [due to optical selection rules (Chapter 2)], and the detection sensitivity

due to the ellipticity in the linear probe. It is therefore necessary to check any

birefringence in the cryostat windows, and if any, compensate the birefringence.

A.1 Birefringence detected by Kerr rotation measurements

Circular polarization of the pump pulse is generated by inserting a quarter-

wave plate in the pump beam path, with the azimuth angle of the quarter-wave

plate at 45◦ with respect to the initial linear polarization of the laser output. If

the pump polarization is not pure circular, there is a reduction of the observed

Faraday/Kerr rotation amplitude as a result of optical selection rules. We measure

the transient Kerr rotation in an undoped GaAs multiple quantum well sample
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Figure A.1: Kerr rotation amplitude (absolute value) as a function of the azimuth
angle of the quarter-wave plate (λ/4). Data are taken with an undoped GaAs
multiple quantum well. Data are fitted with a Jones matrices calculation, which
gives a window birefringence with a phase retardation of ∼ 90◦ (close to a quarter-
wave plate).

(Section 3.2). To check the birefringence in the cryostat windows, we vary the

polarization state of the pump pulse by rotating the azimuth angle of the quarter-

wave plate in the pump beam path, and record the absolute value of the Kerr

rotation amplitude. The Kerr rotation amplitude as a function of azimuth angle

of the quarter-wave plate is plotted in Figure A.1. Without any birefringence in

the cryostat windows, the Kerr rotation amplitude should have a 4-fold rotation

symmetry, because the pump polarization varies from linear to circular to linear

polarization as the quarter-wave plate is rotated from 0◦ to 45◦ to 90◦. As shown

in Figure A.1, the measured Kerr rotation amplitude does not show a 4-fold

symmetry. This is due to the additional birefringence in the cryostat windows

(front windows through which the pump beam passes before it hits the sample).
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Figure A.2: Schematic setup for calibrating birefringence in the cryostat windows.
The polarization state after the polarizer and birefringence windows is detected
by measuring the output power as a function of the analyzer angle α. s.a., slow
axis.

The dependence of Kerr rotation amplitude on the quarter-wave plate angle can

be calculated by Jones matrices calculation [79], with the birefringence in the

windows represented by an arbitrary phase retardation. We fit the data with

Jones matrices calculation (discussed in detail below). This is shown as a solid

line in Figure A.1, which corresponds to a phase retardation of ∼ 90◦ for the

windows. The front cryostat windows work almost as a quarter-wave plate.

A.2 Calibration of birefringence

The birefringence in the cryostat windows is checked above through the mea-

surements of Kerr rotation amplitude. This method is however not an ideal way

for calibration of the window birefringence, because it requires accurate knowledge

of optical selection rules in the sample used. A general method for birefringence

calibration would be through the use of linear optical components such as polar-

izers and waveplates. Specifically, a polarizer (Newport Polarcor linear polarizer)

is inserted into the sample chamber in the cryostat (where the samples normally
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sit). The laser beam after the polarizer is then directed through the back birefrin-

gence windows and another polarizer (analyzer). The polarization state after the

birefringence windows can be detected by measuring the output power (through

a photodiode) as a function of the analyzer rotation angle (Figure A.2).

In order to calibrate the window birefringence, we first go through Jones

calculus for the system shown in Figure A.2. The Jones matrix for a polarizer at

a rotation angle φ is

Mp =









cosφ − sinφ

sinφ cosφ

















1 0

0 0

















cosφ sinφ

− sinφ cosφ









=









cos2 φ cosφ sinφ

cosφ sinφ sin2 φ









.

(A.1)

An initial arbitrary beam polarization is converted into a pure linear polarization

after the polarizer, in the state of









cosφ

sinφ









. Similarly the Jones matrix for the

analyzer at an angle α is

Ma =









cos2 α cosα sinα

cosα sinα sin2 α









. (A.2)

The window birefringence is represented by a Jones matrix for a birefringence

medium with a phase retardation Γ and a slow axis at an angle θ,

Mw =









cos θ − sin θ

sin θ cos θ

















eiΓ 0

0 1

















cos θ sin θ

− sin θ cos θ









=









eiΓ cos2 θ + sin2 θ (eiΓ − 1) cos θ sin θ

(eiΓ − 1) cos θ sin θ cos2 θ + eiΓ sin2 θ









. (A.3)

The polarization state of the output field is then in the form of








Ex

Ey









= MaMw









cosφ

sinφ









. (A.4)

The output power at the detector can be expressed as

P ∝ |Ex|2 + |Ey|2 =
1

2
+ A cos(2α− 2Ψ), (A.5)
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Figure A.3: Output power as a function of the analyzer rotation angle α for
measuring front window birefringence. The data are fitted by using Equation A.5.

with

A cos 2Ψ = −1

4
(cos Γ − 1) cos 4θ +

1

4
(cos Γ + 1),

A sin 2Ψ = −1

4
(cos Γ − 1) sin 4θ. (A.6)

For simplicity, α, θ and Ψ in Equation A.5 and A.6 are expressed with respect to

φ (which is known experimentally), so that φ can be omitted in the equations.

Experimentally, we set the polarizer at φ = −36◦ from the horizontal direc-

tion. The output power is recorded as a function of the analyzer rotation angle

α, for the back and front windows (by measuring in the reverse direction), and

for several laser wavelengths. Figure A.3 shows the result for a measurement of

the front window birefringence at a wavelength of λ = 780 nm. A nonlinear fit

to the data using Equation A.5 gives A = 0.148 and Ψ = −33.7◦ (solid line in

Figure A.3). The parameters A and Ψ are then used to solve Equations A.6,
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Figure A.4: Birefringence retardation as a function of wavelength for the (a) back
and (b) front cryostat windows. Retardation for the back windows at a different
temperature and magnetic field is also shown in (a).

which gives a phase retardation of Γ = 88.3◦ and θ = 0.45◦ (from horizontal

direction). The results indicate that at λ = 780 nm the front windows in the

cryostat have a birefringence similar to a quarter-wave plate (Γ = 90◦), and have

the fast or slow axis almost in the horizontal direction. The above method does

not distinguish the fast and slow birefringence axis, because both Γ and −Γ are

solutions to Equations A.6. To identify whether the fast or slow axis is associated

with θ, an additional quarter-wave plate is inserted between the windows and the

analyzer [if the fast axis of the quarter-wave plate is parallel to the fast (slow)

axis of the windows, the polarization before the analyzer is almost linear, and is

parallel (perpendicular) to the linear polarization immediately after the polarizer].

We find that it is the fast axis that is close to the horizontal direction.

The birefringence retardation for the back and front cryostat windows are

shown in Figure A.4 for different wavelength. The fast axis is found to be at

horizontal directions for all wavelengths. We also check the effect of temperature
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and magnetic field on the birefringence [shown in Figure A.4(a)]. The retardation

reduces drastically at a higher temperature (T = 100 K) in the sample chamber.

This confirms a strain-induced birefringence in the cryostat windows, which be-

comes significant at low temperatures. The magnetic field is shown to have little

effect on the window birefringence.

A.3 Birefringence compensation

In order to get pure circular polarization for the pump beam and linear

polarization for the probe beam (before they hit the samples), the birefringence in

the cryostat windows needs to be compensated. By using a pair of half-wave plate

and quarter-wave plate and adjusting their rotation angles, any polarization state

can be generated. In the special case of a wavelength around λ = 760 − 780 nm,

the front windows work roughly as a quarter-wave plate with its fast axis in the

horizontal direction (as shown above). A circularly polarized pump beam can

be easily generated by first rotating the linear polarization 45◦ away from the

horizontal direction through a half-wave plate. The birefringence windows will

then convert the linear polarization to an almost pure circular polarization. For

birefringence other than Γ = 90◦ (for example, at other wavelengths or for the

back windows), a careful birefringence compensation using both the quarter- and

half-wave plates is needed. The rotation angles for the waveplates can be decided

through Jones matrix calculus, or by analysis using the Poincaré sphere, which

provides a convenient way of predicting how a series of waveplates and retarders

will change the polarization form. The probe beam will remain linear as long as its

polarization axis is parallel to the fast or slow axis of the birefringence windows.


