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Clocks based on optical transitions in ions and atoms are quickly moving

to the forefront of the frequency standards field mainly because of the high spec-

tral resolution, and therefore the potential stability and accuracy, which can be

achieved. In this thesis a new optical clock based on neutral atoms trapped in an

optical lattice is presented, demonstrating spectroscopy of the clock transition free

of any lineshape or accuracy degradation due to atomic motion. The system simu-

lates a single trapped ion clock, but allows use of thousands of atoms for improved

signal to noise ratio, and clock stability. High accuracy can also be achieved as the

lattice can be designed to shift the energy of the two atomic clock states equally,

such that the transition frequency is unchanged. Strontium is a natural candidate

for such a clock as it offers an extremely narrow optical transition (∼1 mHz) based

on atomic states which are very insensitive to external fields. The strontium level

structure allows efficient laser cooling to 1 µK with diode laser sources, and a con-

venient wavelength of 813 nm for the zero-differential Stark shift optical lattice.

The strontium lattice clock system has allowed observation of high signal-to-noise

spectral features with the largest line quality factor ever observed in coherent

spectroscopy (Q > 2× 1014), attesting to the stability of the clock. The effects of

nuclear spin in the Sr isotope used are explored in how it pertains to the potential

accuracy of the clock. The clock accuracy is evaluated at a fractional level of

9× 10−16, representing the first time a neutral atom optical clock has reached an

accuracy comparable to the primary Cs fountains. The optical frequency is then



iv

measured using a fs-comb referenced to the NIST Cs standard via a calibrated

hydrogen maser. The final frequency value of 429,228,004,229,874.0(1.1) Hz is in

excellent agreement with other measurements from labs around the world, and

represents one of the most accurate optical frequency measurements to date.
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Chapter 1

Introduction to Optical Clocks

1.1 The Importance of Clocks

1.1.1 Historical Perspective

For thousands of years, the measurement of time has played an essential

role in mankind’s everyday life. Time keeping and synchronization are required

for the success of many important societal activities, including trade, religious

ceremonies, and other group gatherings. Agricultural endeavors, and therefore a

society’s food supply, also rely on monitoring time, as crops must be planted in

coordination with the seasons. A natural technique for the measurement of time is

to record the motion of celestial bodies such as the position of star constellations

in the sky, the rising and setting of the sun, and the phases of the moon. Use of

such time scales for societal and agricultural purposes have occurred throughout

human history.

Measuring time with astronomical events is a logical and robust technique

for synchronizing activities on timescales of months, days, or even hours, however,

such slow timescales are not practical for dividing time into the smaller intervals

demanded by an increasingly complex society. Hourly precision is insufficient for

seemingly simple activities like cooking, let alone for complex scientific measure-

ments. To improve the resolution of time keeping, a periodic event which occurs

more frequently is needed, such that time can be divided into smaller intervals.
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Because of this need, humans have long pursued alternative ways for time keeping,

based on man-made devices.

The beginning of the mechanical era of accurate time keeping is often at-

tributed to the development of the pendulum clock. While man-made clocks

(based on water flow for example) had been around for thousands of years, Huy-

gens 1656 invention of the pendulum clock provided a significant improvement in

timing precision. The first versions of this clock used the oscillations of a swinging

pendulum to keep time with an accuracy of better than one minute over an entire

day. By late in the 19th century, the best pendulum clocks could keep time within

one second over a duration of 100 days. These high precision mechanical clocks

had applications in both science and daily life. Astronomers used high accuracy

mechanical clocks to time the movement of planets and stars, allowing accurate

mapping of the celestial bodies, which could then be used for science and navi-

gation. These clocks also led to the development of marine chronometers, which

provided an accurate navigation system for ships at sea.

Further improvements in time keeping technology came in the early 20th

century, as oscillators based on electro-mechanical resonances in quartz crystals

were developed. The oscillation period of these systems is much faster than that

of pendulum clocks, allowing time to be divided into even smaller intervals and

hence improving the precision. The oscillation period of carefully designed quartz

systems is so precise that the timing error corresponds to a loss of 1 second in

30 years. These new oscillators also allowed for miniaturization of high accuracy

time keeping devices, as is evident in the watch making industry.

While the development of man-made clocks has allowed dramatic and useful

improvements in precision timing resolution compared to that of celestial motion,

one fundamental limitation remains. The main drawback of mechanical clocks is

that they cannot be used as an absolute timescale, due to limited reproducibility
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in design and implementation. The oscillation period of a pendulum clock, for

example, will depend sensitively on the exact length of the pendulum used. Even

if clock makers could agree on a fixed length, limited tolerances in length mea-

surement and machining will limit the reproducibility of the oscillation period in

different clocks. Because of this limitation, the relatively slow oscillation of celes-

tial bodies, specifically the rotation of the earth, was used as the internationally

accepted time standard well into the 20th century. The more precise mechani-

cal clocks are instead operated as local oscillators which could divide time into

smaller, more useful intervals, but still had to be calibrated by the slow oscillation

period of the astronomical timescale.

1.1.2 The Atomic Age

With the discovery of quantum mechanics in the last century came the

possibility of using clocks more accurate and more precise than any mechani-

cal or celestial reference previously known to man. The structure of atoms and

molecules allows them to emit and absorb electromagnetic radiation by making

transitions between predetermined energy levels. The frequency of the radiation

is precisely given by the difference in energy of the levels involved in the tran-

sition as ν=∆E/h, where h is Planck’s constant. In many atomic systems, the

energy levels are very insensitive to external perturbations, such that the radiation

frequency is robust and reliable.

In an atomic clock, the natural frequency of a transition serves as a reference

to which a laboratory radiation source can be compared. The oscillator of an

atomic clock then consists of two components, a man-made radiation source, and

an atomic system which is measured by that source to determine the man-made

frequency relative to the atomic frequency governed by quantum mechanics. The

beauty of using an atomic frequency standard is that the clock oscillation period
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should be independent of the man-made component of the oscillator. Every copy

of a given atom is identical, such that a clock built using Cs atoms in Boulder

will operate at the same frequency as an independent Cs clock built in Paris, or

anywhere in the universe, presuming environmental effects on the atomic energy

levels are well understood.

The success of clocks based on atomic Cs in the last century has had a

profound impact on science and technology [1, 2]. The unrivaled precision and

accuracy in time keeping provided by Cs clocks led to a new definition of time in

1967. The second is now officially defined as “. . . the duration of 9,192,631,770

periods of the radiation corresponding to the transition between the two hyperfine

levels of the ground state of the caesium 133 atom ” [3]. The use of atomic clocks

has made the second the most accurately realized unit of measurement, such that

other units are now being defined in terms of time. The measurement of the speed

of light [4] allowed redefinition of the meter in 1983 as “. . . the length of the path

travelled by light in vacuum during a time interval of 1/299 792 458 of a second”

[3].

After more than 50 years of development (nicely summarized in [1]), the Cs

fountain clocks of today [5, 6] are now approaching an incredible accuracy level

of a few parts in 1016. A clock with such (in)accuracy loses only one second every

100 million years!

1.1.3 Applications of Atomic Clocks

Atomic clocks play an important role in wide variety of scientific fields [2].

The precise timing of atomic clocks is used in radio astronomy for Very Long

Baseline Interferometry (VLBI), a technique that uses an array of multiple radio

telescopes to increase the effective angular resolution of detection. This technol-

ogy relies on precise synchronization of data signals coming from the individual
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telescopes at a level that only atomic clocks can provide. The same technology

can also be applied to deep space navigation as a tracking system. Measurements

of frequency and time are intimately related to Einstein’s theories of special and

general relativity. Atomic clocks have so far provided the most stringent tests

of these theories via measurements of the orbital period of pulsars and its de-

cay due to emission of gravity waves [7]. Comparison of different atomic clocks

allows researchers to test emerging theories which attempt to unite gravitation

and quantum mechanics. Such theories leave room for a temporal dependence in

fundamental constants, such as the fine structure constant, an effect which can

be constrained by comparing different atomic clock frequencies over time [8]. The

crustal dynamics of the Earth can also be studied with the aid of atomic clocks,

as GPS (discussed below) provides an accurate position measurement system.

Precision spectroscopy, a research area in which clocks are a cornerstone, is

a technology driven (or more appropriately, technology driving) field. To push the

limits of clock performance, new spectroscopic techniques and technologies must

constantly be developed, which often leads to new and exciting fields of study.

For example, a major motivation for early laser cooling work was to improve the

accuracy of atomic spectroscopy and clocks. Today, the study of laser-cooled

atoms, molecules, and ions dominates much of atomic physics. The promise of

ultra high precision optical clocks fueled the invention of the fs-comb laser [9, 10].

These lasers have revolutionized optical metrology, but also have a wide variety

of applications in other fields, including arbitrary waveform generation and time

domain exploration of chemical and biological processes. To get a general idea of

the importance of clocks in the scientific community, one has to look no further

than a list of Nobel laureates in physics, where research related to the development

and application of atomic clocks seems to be acknowledged about once per decade.

The precise timing provided by atomic clocks plays an important role in
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the lives of non-scientists as well. The Global Positioning System (GPS) [11] is

a prime example of the impact that atomic clocks have on our society. Each of

the 24 GPS satellites utilizes an onboard atomic clock for precise synchronization

of the individual coded signals, allowing accurate positioning of ground based

receivers at an amazing level of 1 mm for stationary objects [2]. With a GPS

radio communication link, real-time centimeter level accuracy is now possible [11].

The incredible positioning capabilities of GPS have revolutionized navigation, as

airplanes, boats, and even some personal vehicles rely on the system to get from

point A to B safely and efficiently. The positioning system also allows dramatic

improvement in surveying and map making, as some traditional limitations such

as line-of-sight are eliminated, and the positioning accuracy is unmatched. The

atomic clock based timing signals distributed by GPS also have applications in our

daily lives. The accurate timing information is used to synchronize large computer

networks for banking and the internet, for operation of cell phone networks, and

even to manage large-scale power grids.

With the number technological and scientific advances resulting from de-

velopment of accurate atomic clocks, it is no surprise that researchers a working

hard to push the limits of clock accuracy and precision.

1.2 Optical Clocks: Cranking up the Q

The two main quantities which characterize the performance of a clock are

the accuracy and the precision. The accuracy of an atomic clock is determined

by how well the measured frequency matches that of the atoms natural frequency.

In general, the accuracy will depend on the atomic species used and how well

it can be isolated from environmental effects during spectroscopy. The precision

of the clock is more commonly referred to as the stability (or instability), which

represents the repeatability of the measured clock frequency over a given averaging
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time τ . The stability is typically expressed as the Allan deviation, in fractional

frequency units, given as [12]

σy(τ) =
δν(τ)rms

ν
=

χ

2πQ S/N

√
tc
τ

. (1.1)

Here, Q ( = ν/∆ν) is the line quality factor of the clock transition for a linewidth

∆ν, S/N is the signal-to noise-ratio achieved in the measurement cycle time tc,

and χ is a constant of order unity which depends on the transition lineshape used

for measurements. For quantum projection noise limited measurements, the S/N

is determined by the number of atoms (Na) used in each measurement, as
√

Na.

From Eq. 1.1 we can see that the most precise clock will have a large Q value

and S/N ratio. The Cs clock satisfies these criteria as the 9.2 GHz transition

can be resolved with a transition width of about 0.5 Hz yielding a Q > 1010,

and a large number of atoms can be used for good S/N . In state-of-the-art Cs

clocks, an impressive (in)stability approaching 1×10−14τ−1/2 has been achieved

[13]. The Cs clock transition could, in principle, support a larger line Q allowing

improved stability. However, in current experiments gravity limits the interaction

time (t) with the atoms to about 1 second, resulting in a Ramsey linewidth δν =

1/(2t)= 0.5 Hz. Therefore to improve the stability the S/N must be increased,

which for Cs fountains means increasing the atom number as projection-noise-

limited measurements have already been achieved [14]. The problem with this

tactic is two-fold. For one, the stability depends on the square root of the atom

number, such that large increases in Na result in only moderate improvements in

the stability. Second, atomic collisions are a central concern for the accuracy of

the Cs clock [15], such that the improved precision that comes with large atom

number may degrade the clock accuracy.

Since we can’t dramatically change the linewidth, or the S/N , in the Cs

clock, an alternative option for improved precision and accuracy is to use an atomic
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transition with a higher frequency. In this way, a larger Q can be achieved for the

same interaction time, and the clock stability can be improved. Herein lies the

motivation for developing atomic clocks based on optical transitions. Changing the

clock reference frequency from the microwave region to the optical can provide a Q

enhancement of more than four orders of magnitude [16, 17]. Assuming all other

parameters equal, the improvement in the Q could reduce the needed averaging

time to reach a given level of precision by eight orders of magnitude. As the clock

precision improves, the accuracy is likely to follow, as systematic frequency shifts

can be evaluated with less and less averaging time (read effort). The potential

precision and accuracy gains provided by the larger Q makes clocks based on

optical transitions a very attractive system to explore.

1.2.1 Frequency Combs to the Rescue

The benefits from optical clocks are no secret, so why have microwave clocks

been the focus historically? The problem with optical clock schemes has always

been in the readout of the optical frequency, that is, how to make the gears of

the clock that can measure the ticks. In the Cs case, the clock frequency is

accessible with conventional electronics, making measurement and distribution of

the clock signal relatively straight forward. Optical frequencies on the other hand

are very difficult to measure, as the oscillation is orders of magnitude faster than

electronics can measure. The traditional method for measuring optical frequencies

was to develop complex frequency chains which essentially divide down the optical

frequency in steps by comparison with a number of other oscillators [4]. This

approach was expensive and labor intensive, such that only national standards

labs could realistically pursue high accuracy optical frequency measurement.

In the last decade, the development of octave spanning fs-comb lasers has

revolutionized the business of optical frequency metrology [18, 19, 20, 21]. Briefly,
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in the frequency domain, the output of a fs-laser consists of a large number of lasing

modes which are evenly spaced by the frequency at which pulses are emitted from

the laser, known as the repetition rate frep. Owing to dispersion inside the fs-

laser, the frequencies of the comb modes are not exact harmonics of the repetition

frequency, instead the entire comb is offset in frequency by a small (microwave)

amount fo. If frep and fo are known, then the frequency of the nth comb mode is

given by νn= nfrep+fo. This is a powerful relationship as we have expressed an

optical frequency νn, in terms of two microwave frequencies and an integer n. With

all the comb mode frequencies known precisely, an optical clock frequency can be

measured via heterodyne beat with the nearest comb mode as νclock = νn + fbeat,

such that the optical frequency is completely determined by microwave frequencies

and an integer. The fs-laser provides a coherent link between the optical and

microwave regions of the electromagnetic spectrum, providing a greatly simplified

system for measuring optical frequencies with traditional microwave technology.

1.2.2 Optical Clock Components

With the fs-comb greatly simplifying the business of high accuracy optical

frequency measurement, interest in optical clocks has grown rapidly. The general

design of an optical clock is shown in Fig. 1.1. Here, the light emitted from

an ultra-stable cw laser acts as the local oscillator (or pendulum) for the clock.

However, the laser frequency in general will be sensitive to environment effects,

and cannot be used alone as a standard. To ensure the frequency is maintained at a

fixed value, the light is used to probe an electromagnetic resonance in an atom (or

molecule or ion). This quantum absorption provides a natural frequency marker

for the system, as the resonance will nominally depend only on the fundamental

properties of the atom. The atomic signal can then be used to determine the

difference between the laser frequency and that of the reference atom, allowing
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Figure 1.1: Components of an optical clock.

the laser frequency to be monitored and stabilized to the preferred value. The fs-

comb provides the gears of the clock, allowing measurement of the laser frequency

relative to other high accuracy clocks in either the optical or microwave domain.

The frequency flexibility of the comb technique provides an environment

where clock developers can nominally ignore the actual frequency of the clock

transition in a given quantum reference, and instead choose a system based on

its merit as a potential standard. To make an informed decision on the type of

quantum absorber to employ in our clock, we will take a quick look at the different

state-of-the-art schemes for high accuracy, high precision, optical clocks.

1.2.3 Optical Clocks Using Clouds of Cold Neutral Atoms

Neutral atom optical clocks are a natural extension of the Cs primary stan-

dard, as the basic physics of the measurement is the same but the precision is
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increased. Alkaline-earth atoms are promising candidates for optical clocks as

the level structure allows for laser cooling and provides narrow clock transitions

which can be insensitive to frequency shifts from external fields [22, 23]. The

most intensively pursued neutral atom optical clock has thus far been based on

ballistically expanding clouds of laser-cooled Ca atoms [24, 25]. The reference

frequency for this clock is the narrow (∼300 Hz) 1S0-
3P1 intercombination tran-

sition. In this system a stability of 4×10−15 at 1 s has been achieved, and the

clock inaccuracy has been reduced to 6.6×10−15 [24], with good agreement on the

measured frequency between different labs [26]. The analogous transition has also

been explored in Mg [27] and Sr [28].

Owing to the Doppler effect, the optical spectroscopy in these experiments

is sensitive to atomic motion. This effect will likely limit the eventual accuracy

of clocks based on clouds of atoms in free fall, at a level worse than that already

achieved by the best Cs fountains. In this case, the improved stability comes at a

cost of accuracy due to the Doppler shift.

1.2.4 Optical Clocks Using Single, Trapped Ions

Single trapped ions [29, 30, 31, 32, 33, 34, 35] provide a reference free of

the Doppler shift problems that hinder free space measurements of neutral atoms.

In these systems the ions are tightly trapped in the so-called Lamb-Dicke regime

where the ion motion is much smaller than the wavelength of the spectroscopy

laser. In this case, the atomic motion has a negligible effect of the transition width,

and long interrogation times can be used such that exceedingly large line Q’s are

achieved [16]. The benefits of optical ion clocks are significant, as can be seen in the

recent results of the Hg+ clock at NIST [29]. Owing to the high line Q, The Hg+

system out-performs the stability of current state of the art Cs clocks, reaching

the level of 4×10−15τ−1/2, even with the reduced S/N provided by only one atom.
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Furthermore the elimination of Doppler effects allows an accuracy superior to the

fountain clocks, now at a level below 7× 10−17. While the fundamental stability

limit for ion clocks is not as good as in neutral atoms, the high accuracy and large

line Q keep the ions at the forefront of optical frequency metrology.

1.3 Neutral Strontium as a Frequency Standard

Neutral strontium is an interesting candidate for the development of an

optical frequency standard. Strontium has a level structure similar to Ca, resulting

in two relevant clock transitions. The 1S0-
3P1 transition in Sr is broader than

that of Ca, having a linewidth of 7.4 kHz. However, even with the lower Q, this

transition is of interest as the level structure of Sr allows more efficient laser cooling

than in the Ca system, such that more atoms are available (S/N) and the cloud

temperatures are lower. One can therefore expect the stability to be similar to that

of the Ca system but with a reduced sensitivity to Doppler shifts. The second clock

line of interest is the doubly-forbidden, nuclear spin induced 1S0-
3P0 transition in

87Sr. This transition has a very small linewidth of 1 mHz, and therefore the

achievable Q will only be limited by technical issues such as laser noise, and not

by the transition itself, as is the case of the broader intercombination lines. The

Sr system is convenient in that all of the lasers for cooling and spectroscopy can

be derived from inexpensive diode laser sources, as opposed to many other optical

clocks which require more challenging laser wavelengths.

Table 1.1 compares clock parameters of the high-performance clocks dis-

cussed here. The Q values represent the highest achieved values in current exper-

iments, with the 87Sr result discussed later on in this text. Based on Eq. 5.12, the

strontium clock transitions should have excellent stability performance, with the

87Sr clock potentially outperforming the others on the list.
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Table 1.1: Relevant clock stability parameters for the 133Cs, 199Hg+, and 40Ca
clocks as compared to the two Sr clock transitions. The Q value represents the
best achieved linewidth in the system. In the Cs case the Q is limited by the
interaction time (gravity). In Hg, Ca, and 88Sr the Q is limited by the clock
state lifetime. In 87Sr the Q is limited by oscillator noise. The atom number N
represents the values achieved in current systems. In the final column the stability

is given in units of χ
√

tc
τ
.

Species Transition ν Q N 1/(2πQ
√

N)
133Cs 2S1/2(F = 3)-2S1/2(F = 4) 9.2×109 2×1010 106 7×10−15

199Hg+ 2S1/2-
2D5/2 1.1×1015 1.6×1014[16] 1 7×10−16

40Ca 1S0-
3P1 4.56×1014 2×1012 [24] 105 4×10−16

88Sr 1S0-
3P1 4.34×1014 6×1010 [36] 106 4×10−15

87Sr 1S0-
3P0 4.29×1014 2.4×1014 [17] 104 7×10−18

1.3.1 Optical Lattice Clock: Trapped Neutral Atoms

One of the most exciting motivations for pursuing a Sr clock is a new mea-

surement scheme for neutral atom clocks that has recently come to the forefront of

optical spectroscopy. Taking a lesson from the high accuracy ion clocks, the neu-

tral atoms can be confined in a tight harmonic potential to eliminate broadening

and frequency shifts due to atomic motion. To simulate a harmonic potential, the

atoms are trapped in an optical lattice formed by a standing wave light pattern.

The trap can be carefully designed such that the light shifts on the clock states

are nominally equal and the clock frequency is not perturbed [37]. In Sr, this is

achieved by tuning the lattice to a convenient laser wavelength of 813 nm. With

this scheme one can combine the best features of neutral atom and trapped ion

systems, as Doppler free spectroscopy and long interrogation times are achieved

with the large S/N provided by a neutral atom ensemble. This scheme is particu-

larly well suited for alkaline earth atoms as the clock states are very insensitive to

the lattice polarization and other fields. The precision of the lattice clock can be

expected to out-perform both ion and free-space atom clocks. The accuracy will
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likely exceed that of other neutral atom clocks, including Cs, and may even com-

pete with the accuracy of trapped ion clocks if residual light shifts and collision

shifts are manageable.

The proposal and initial theoretical analysis to use Sr in a lattice clock

configuration came first from the group of Katori in Tokyo [38, 39]. This was

followed shortly after by the first demonstration of optical lattice spectroscopy,

using both the 3P1 [36] and 3P0 [40] clock transitions. In these initial studies,

the magic wavelengths for the two transitions were explored and measured at

the sub-nanometer level, and observation of Doppler and recoil free line spectra

were reported. Since the initial demonstrations by Katori, a number of groups

have begun intensively exploring the lattice clock system, with most of the work

to date being performed with different isotopes of Sr and Yb. In the span of

only a few years, a number of seminal experimental results have been presented,

strengthening the case for lattice clocks as a potential frequency standards.

Most experimental and theoretical work has focused on the issue of clock

accuracy. Some experimental highlights towards this end include: confirmation

that hyperpolarizability effects will not limit the Sr accuracy at the 10−17 level

[41], experimental evaluation of the Sr lattice clock frequency systematics below

the 10−15 level [42, 43], and the excellent agreement of high accuracy Sr clock

frequency measurements between three independent laboratories [44, 45, 46, 42,

43]. The theoretical effort has focused mainly on light shift calculations in Sr and

Yb [39, 47, 48, 49], as well as nuclear spin related field sensitivities [39, 47, 50]. One

of the major systematic effects in the lattice clock system, the clock sensitivity

arising from the nuclear spin [50], has motivated development of a number of

interesting alternative schemes for lattice clocks where bosonic isotopes (which

lack nuclear spin) are used in combination with external fields which induce the

otherwise forbidden clock transition [51, 52, 53, 54, 55]. One of these schemes has
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already been demonstrated in even isotopes of Yb [56] and Sr [57].

In terms of clock stability, it has been confirmed that the lattice technique

does provide nominally motion-free spectroscopy enabling ultrahigh-resolution-

spectroscopy as in trapped-ion clocks [58]. Record level line Q’s have recently

been demonstrated in Sr, with Q exceeding 2×1014 [17]. Similar results have been

achieved in a Yb lattice clock system, reaching Q ∼ 1×1014 [59]. These Q values,

and the large atom number (∼ 104) used in these systems, suggest that 1 second

stabilities of 10−17 (or lower) could be possible with an adequately pre-stabilized

laser.

1.4 Outline of the Thesis

In this thesis the strontium lattice clock system is evaluated as a potential

frequency standard. In Chapter 2, a laser cooling apparatus for strontium is

presented as a tool for the production of ultra-cold (1 µK) strontium samples

for clock spectroscopy. Chapter 3 focuses is spectroscopy in a 1D lattice. This

includes the design and implementation of a lattice clock setup operating at the

“magic” cancellation wavelength. Spectroscopy of confined atoms is explored both

theoretically and experimentally. The combination of the lattice confinement and

a highly stabilized clock laser allows observation of ultra-narrow spectral features

having line Q’s exceeding 2×1014. With the clock precision under control, the issue

of clock accuracy is discussed in the remaining chapters. Specifically, a number

of systematic effects relating to the nuclear spin in 87Sr are investigated in detail

in Chapter 4. With these effects well understood, an experimental clock accuracy

evaluation is performed in Chapter 5. The systematic errors related to the lattice

clock are reduced to below 10−15, similar to the uncertainty of state of the art Cs

clocks. The absolute frequency is measured to be 429,228,004,229,874.0(1.1) Hz,

and is in excellent agreement with our previous measurement, as well as that of
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other groups around the world. The precision and accuracy results presented here

speak strongly for the Sr lattice clock as an optical frequency standard, and as a

potential system for re-definition of the SI second.



Chapter 2

Laser Cooling of Neutral Strontium Atoms

Recent developments in laser cooling and trapping of atoms have opened

the doors for a variety of research fields in precision measurement [60]. The

MOT (magneto-optical trap) has allowed researchers to study atomic physics at

extremely low temperatures while simultaneously increasing the experimental in-

teraction times with the atoms. Access to this ultra-cold atom regime has resulted

in tremendous improvements in precision spectroscopy and atomic clock develop-

ment. Cold trapped atoms have also enabled researchers to reach the ultra-cold,

quantum degenerate gas regime creating Bose Einstein Condensates (BEC) [61]

and Degenerate Fermi Gases (DFG) [62]. The cold, samples provided by MOT’s

and laser cooling are becoming an essential tool in many cutting edge research

areas of atomic physics.

Alkali atoms have historically been the atoms of choice for laser cooling and

trapping due in part to their single unpaired-electron structure, and diode-laser

friendly cooling transitions. Atomic Rubidium, for example, was the first atomic

BEC, Potassium was the first DFG, while cold Cs atoms are used in the atomic

fountain which defines the SI second.

Alkaline earth atoms are relatively new to the playing field, as their more

challenging laser requirements for cooling and trapping have limited the pursuit

of these systems to comparatively few labs. However, the same two electron
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Table 2.1: Naturally occurring isotopes of Sr

Isotope Nuclear Spin (I) Abundance (%)
88Sr 0 82.6
87Sr 9/2 7.0
86Sr 0 9.9
84Sr 0 0.56

level structure that might intimidate the average laser cooler, provides diverse

experimental possibilities which are markedly different than in their alkali counter

parts.

Some common features of Alkaline earths (and similar atoms such as Yb,

Hg) include; a large number of naturally occurring isotopes of both the bosonic

and fermionic type; isotopes without nuclear spin (the bosons); strong cycling

transitions between states with the same electronic spin; forbidden optical tran-

sitions (intercombination), and so on. In the case of Sr, four stable isotopes can

be used for cooling experiments. These isotopes are listed in Table 2.1 along with

their nuclear spin and natural abundance. The work in our lab has been focused

on the most abundant bosonic isotope 88Sr, and the lone fermionic isotope 87Sr.

As discussed in the introduction, we are after the narrow optical clock transitions

in these isotopes. To take advantage of these we need the long interaction time

that only ultracold atoms can provide. This chapter is dedicated to the develop-

ment of such an apparatus for Sr, and exploration of some interesting laser cooling

effects that aren’t found in a typical Alkali MOT.

2.1 Neutral Strontium: Level Structure and Cooling Transitions

The two valence electrons in Sr result in two distinct series of atomic energy

levels as the electron spins can be parallel (triplet states) or anti parallel (singlet

states) as in atomic helium. The energy levels are described in the usual Russell-
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Saunders notation of 2S+1LJ [63], where S is the total spin of the two electrons

(either 0 or 1), L is the orbital angular momentum of the electrons, and J is the

total angular momentum of the state. The ground state of alkaline atoms is that

of the lowest total angular momentum, the 1S0 state. Here we can already see a

departure from the alkalis as the presence of the second electron results in a spin-

less ground state (really spin-less if you chose an I=0 isotope). The low lying level

structure for Sr is shown in Fig. 2.1. The first excited state in the singlet series 1P1

is often used for laser cooling experiments in the group II atoms as the transition

rate Γ = 1/τ is quite strong. The triplet series of states contain more variety and

the lowest lying 3PJ manifold contains the states we are most interested in this

work. If we assume pure LS coupling, the three 5s5p 3P states are forbidden to

decay to the ground state, and are therefore meta-stable. However we will see in

Chapter 4 that the spin-orbit interaction provides a finite lifetime for the 3P1 state,

allowing weak electric dipole transitions to take place. This narrow transition is

called an intercombination transition and comprises much of the current interest

in alkaline earth atoms. A number of relevant transitions from these meta-stable

triplet states are shown as they will be relevant as we move along. Notably, the

ultranarrow 1S0-
3P0 transition we are strongly interested in is only present in the

isotope with nuclear spin (87Sr), as the spin-orbit interaction alone is not enough

to provide a finite lifetime (see Chapter 4).

With the known level structure in Fig. 2.1 we can begin to explore the laser

cooling possibilities for Sr. We gain some insight if we consider the force on the

atom in the typical 1D MOT configuration [60]. The MOT is created using counter

propagating circularly polarized beams with opposite helicity, in the presence of a

magnetic field gradient d ~Bx along the light propagation axis x. The force applied

to the atom from each beam is given by the product of the photon momentum
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Figure 2.1: Low lying states and electric dipole transitions for atomic strontium
(not to scale). The states are labeled by terms 2S+1LJ . The two electron alkaline-
earth structure results in both a singlet (S=0) and triplet (S=1) series of states.
Excited state lifetimes are given along with transition wavelengths (in nm). A
full list of state lifetimes (or transition rates) is given in Table 3.2 along with
references.

(~k) and the photon scattering rate, resulting in a total force

F = ~k
Γ
2

(
s

1 + s + 4(∆− ~k · ~v − gµ0d ~B · ~x)2/Γ2
− s

1 + s + 4(∆ + ~k · ~v + gµ0d ~B · ~x)2/Γ2

)
(2.1)

Here s=I/Isat, where I is the beam intensity, and Isat = hcπ
3τλ3 is the saturation intensity.

∆/2π is the laser detuning from the atomic resonance, ~k is the laser k-vector, v is the

atomic velocity, x is the atoms position along the x-axis, and gµ0 is the magnetic

sensitivity of the excited state sublevel. Here the overall sign difference between the
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two terms is due to the different propagation directions of the beams, as is the sign

difference on the ~k ·~v term. The magnetic term changes signs because the different light

polarizations couple to different ±mJ sublevels in the excited state. Since we want to

cool the atoms, we would prefer that the scattering force slows atoms. From Eq 2.1

we can see that this will take place via the ~k · ~v term if the laser frequency is tuned

below the atomic resonance frequency. In this case, the scattering force is strongest in

the direction opposite the atomic motion and cooling takes place. The magnetic term

provides the restoring force for the atoms (the Doppler cooling provides damping but is

not enough alone to trap the atoms) as it places a spatial boundary where the detuning

and velocity equal the Zeeman shift and the scattering force is maximum.

To estimate the expected feasibility of laser cooling using a given transition, we

need to consider some simple quantities in Eq. 2.1 such as the saturation intensity,

transition rate, and atomic velocity. Typically one considers a few cooling limits as

well, such as the Doppler and recoil limits. The Doppler limit for laser cooling gives the

minimum achievable temperature for a given transition, based on the transition rate, as

[60]

TDoppler =
~Γ
2kB

(2.2)

where here Γ=2π × γ where γ is the transition linewidth (full width at half maximum)

in Hz. In alkali MOTs the Doppler limit is usually not much of a limit as polarization

gradient cooling allows sub-Doppler cooling. In Sr however, this limit is important to

consider since the ground state is without structure. A second cooling limit to consider

is the recoil temperature limit which arises due to the finite energy shift of the atom

when it absorbs a single photon. This limit is given by the atomic mass M and the

cooling wavelength λ as [60]

TRecoil =
h2

λ2M
(2.3)

A third parameter of interest is the saturation intensity. This value quantifies the

required laser intensity for useful cooling and trapping. Isat depends on the excited
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Table 2.2: Laser cooling parameters for different transitions in Sr

Transition (Γ/2π) λ (nm) Isat TDoppler Trecoil vc

5s2 1S0–5s5p 1P1 30.5 MHz 461 40.7 mW/cm3 720 µK 1.02 µK 14 m/s
5s2 1S0–5s5p 3P1 7.40 kHz 689 3.0 µW/cm3 180 nK 460 nK 5.0 cm/s

5s5p 3P2–5s4d 3D3 53.9 kHz 2923 290 nW/cm2 1.3 µK 25 nK 1.6 m/s
5s5p 3P2–5s5d 3D3 8.7 MHz 497 10.2 mW/cm2 230 µK 890 n K 4.3 m/s

state lifetime, and the cooling wavelength as

Isat =
hcπ

3τλ3
(2.4)

A final consideration is the capture velocity for a given transition. If atoms are moving

fast enough that the Doppler shift ~k · ~v is larger than the transition width, then the

atom will be tuned out of resonance, reducing the scattering force, and allowing it to

escape the cooling beam. The cooling beam can therefore only repel atoms moving with

vc ≤ Γ/k=γλ. This can also be expressed as a maximum capture temperature using

the relation T = v2M/k.

Table 2.2 summarizes these parameters for the possible cooling transition in the

lowest lying states of Sr. The first transition of interest is the strong 1S0-1P1 tran-

sition. Although the wavelength is not terribly convenient, and the Doppler limit is

relatively large, the capture velocity for this transition is very large at 14 m/s (T =2

K). Looking at the intercombination transition, we can see why forbidden lines begin

to become interesting. Here the Doppler limit is in the sub-µK range because of the

narrow linewidth. Thus simple Doppler cooling on a narrow line can be an attractive

way to reach ultracold temperatures. The draw back of this transition is the low capture

velocity of 5 cm/s (Tc= 30 µK). The two transitions from the meta-stable 3P2 state are

interesting in that the magnetic structure should allow sub-Doppler cooling. This is

especially interesting for the three micron transition which has a very small recoil limit.
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2.2 Experimental Apparatus

In this section we describe the Sr cooling apparatus used in this work. We

present the laser systems required for cooling the atoms to 1µK, as well as the

vacuum chamber setup. Although one would like to cool using only the narrow in-

tercombination transition, the photon scattering rate is simply too low to capture

thermal atoms. We therefore use a two stage cooling process in our experiments

where we first load the atoms in to a standard MOT operating on the strong

1S0-
1P1 transition where they are pre-cooled to a few mK, and then transfer the

atoms to a second stage cooling MOT operating on the weak 1S0-
3P1 transition

where they are cooled to the µK level. Before we get to the cooling results, we

will discuss the vacuum chamber, and laser systems used for these experiments.

2.2.1 The Sr Vacuum Chamber Apparatus

The pre-cooling MOT is loaded using a Zeeman-slowed atomic Sr beam,

with the apparatus shown in Fig. 2.2. The atomic beam is generated by an

effusive oven which is heated to a temperature of 575 ◦C. A nozzle at the output

of the oven acts as a collimator and is heated to 850 ◦C. The atomic beam is then

transversely cooled by a 2-dimensional 461 nm optical molasses detuned from the

1S0 - 1P1 resonance by -10 MHz. The molasses laser beams have an aspect ratio

of 15:1 along the atomic beam propagation axis to maximize the interaction time

between the atoms and the collimating beams. Separate cooling beams are used

for the horizontal and vertical axes, with each path containing ∼7 mW of power.

After the collimation stage, the atomic beam passes through a 6.4 mm

diameter mechanical shutter which allows us to turn on and off the atomic beam

during experiments. A gate valve also allows the oven to be isolated from the

rest of the vacuum system. After exiting the transverse cooling region, the atomic



24

Approximate Scale

20 cm

Slower
Cooling
Laser

40 l/s 
Ion Pump

Atomic Beam Oven

BA

NI

CC

M

NI

λ/4

DBS

Window
Heater

Slower

Gate
Valve

TSP

ChopperTo Roughing
 Pumps

To Roughing
Pumps

Transverse
Cooling

Figure 2.2: Vacuum chamber system for laser cooling Sr. The chamber is divided
into three main sections. In the first section, a diffusive oven creates a collimated
beam of neutral strontium atoms. Upon leaving the oven, the beam is collimated
transversely by a two dimensional transverse cooling setup. After the collimation
the beam passes into section two of the system via a differential pumping tube.
Here, the atoms pass through a Zeeman slower coil, where they are slowed from
500 m/s to 30 m/s for loading into the MOT. Exiting the slower, the slow atoms
are collected in the singlet MOT where they are pre-cooled before transfer to
the intercombination MOT for cooling to 1µK. The third section of the chamber
contains a glass cell for experiments in an ultra high vacuum environment (∼ 10−10

Torr), and is not used in this work.

beam enters a water cooled 20 cm long constant deceleration σ− Zeeman slower

[64] with a peak magnetic field of ∼ 600 G, corresponding to a capture velocity of

500 m/s. A compensation coil reduces the slower field in the MOT region to less

than 100 mG. The field is further zeroed with use of three sets of Helmholtz pairs.

The 461 nm Zeeman slower cooling laser is detuned from the 1S0 - 1P1 resonance

by -1030 MHz, contains 60 mW of power, and is roughly collimated. It enters the
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apparatus through a viewport opposite the atomic beam. To prevent corrosion of

the viewport window, an optical quality z-cut sapphire flat is used. The sapphire

is AR coated on the side facing away from the atomic beam and transmits 92%

of the light. The window is heated to 200 ◦C to prevent deposits, and physically

forms part of the vacuum seal [65].

The trapping chamber has two large (6”) view ports along the axis of gravity,

and eight 2 3/4” ports in the plane of the optical table, two of which are used

for the Zeeman slower. The vacuum windows are fused silica, and have been AR

coated with a broadband coating optimized for transmission at 461 and 689 nm.

The oven and trapping sections of the chamber are each evacuated by 40 l/s ion

pumps and occasionally by a titanium sublimation pump (TSP), although the

latter had a marginal effect on the pressure. The two chambers are separated

by a 6.4 mm diamter, 45 mm long differential pumping tube just before the gate

valve. Typical vacuum levels in the oven and trapping region during experiments

are 2×10−8 Torr and 1.5×10−9 Torr. The MOT anti-Helmholtz coils are oriented

such that the axial magnetic field gradient, dBz=50 G/cm, lies along gravity, and

the current in the coils is regulated with a Hall probe and servo system. The

current set point (and field gradient) is computer controlled and can be switched

on and off or between different values in ∼1 ms. For detection and imaging of

the atoms in various experiments, atomic fluorescence is monitored in a number

of ways. The atom cloud is simultaneously imaged onto a standard ccd camera,

a blue sensitive photo diode, a photo-multiplier tube (PMT), and an intensified

ccd imaging system.

2.2.2 461 nm Light Source

The light source for the 461 nm radiation is shown in Fig. 2.3. Due to

the large saturation intensity of the cycling transition (41 mW/cm2) an intense
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light source is required to provide the light for the slower, transverse cooling, and

MOT beams. With adequate diode laser sources unavailable at 461 nm, we instead

employ second harmonic generation (SHG) to produce the blue light. Light at 922

nm is generated by an AR coated, grating stabilized, external cavity diode laser

(ECDL) system oriented in the Littman-Metcalf geometry [66]. The free running

linewidth of this master laser is < 300 kHz and the available output power, after

passing through two 30 dB optical isolators, is typically 45 mW. The light is used

to injection lock a tapered amplifier diode chip, which then provides up to 1.6

W at 922 nm. The light is collimated and passed through two additional 30 dB

isolators, before being spatially filtered with a short piece of single mode fiber. In

the end up to 900 mW of light, in a gaussian TEM00 mode, is available for the

SHG.

The 461 nm light is produced by frequency doubling the 922 nm light us-

ing a KNbO3 crystal in a linear build up cavity configuration [67]. The cavity

configuration is very simple and robust consisting only of an curved input/output

coupler, which is transmissive in the blue and reflects 94% of the IR, and the dou-

bling crystal, which acts as the end mirror due to a high reflective coating for both

colors on the back face. The front face of the SHG crystal is AR coated for both

colors. The potassium niobate crystal is a-cut and phase matching is achieved with

temperature tuning, at a temperature of ∼150 ◦C. The master laser frequency is

modulated at 30 MHz via the laser diode current and the doubling cavities are

locked (using a PZT on the output coupler cavity mirror) to the 922 nm cavity

transmission signal. For input powers less than 350 mW, the conversion efficiency

is ∼50% (usable blue power outside the cavity), but for larger fundamental powers

the output beam develops mode structure and becomes unstable. Since we have

ample power in the IR, we simply built two doubling cavities which provide 180

mW and 130 mW each at 461 nm. The frequency of the blue light is stabilized to
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Figure 2.3: The 461nm light source. A master ECDL at 922nm injects a tapered
amplifier (TA) which generates up to 1.6 W for SHG. Two linear doubling cavities
are used for the SHG, each providing ∼150 mW. The first cavity generates the
light which is used for the Zeeman slower, and the saturation spectrometer which
controls the master laser frequency. The second doubler provides light for the
trapping beams, transverse cooling and a strong detection beam. To switch the
461 nm system between 88Sr and 87Sr the AOM frequency within the spectrometer
is changed from 80 MHz to 183.6 MHz.

a 88Sr saturated absorption spectrometer which results in a detuning of -120 MHz

from the 1S0-
1P1 transition for light coming from the two doublers. The spec-

trometer error signal is used to control the PZT of the master laser to stabilize

the frequency of the system. Different AOMs within the spectrometer are used to

change the optical frequency of the blue system for isotope selection.

The Zeeman slower beam is derived from the output of the first SHG cavity

by taking the -1 order diffraction of a 915 MHz AOM. The slower beam typically

contains 60 mW. The second SHG cavity provides the light for the trapping beams,

transverse cooling, and a near resonant probe beam. To ensure a good mode

profile these beams are filtered by a short SMPM fiber. The trapping beams are

detuned by -40 MHz and have a 1/e2 diameter of ∼3 cm. The MOT beams are
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retro-reflected such that only three beams are needed. The total power in the two

horizontal and one vertical MOT beams are 8, 8, and 3 mW respectively. All 461

nm beams in the setup are intensity stabilized using the AOM modulation depth,

and are switched on and off using the AOMs and mechanical shutters.

2.2.3 MOT Repumping Lasers

Due to the presence of the low lying 1D2 state, the singlet cooling transi-

tion is not completely closed. Figure 2.4 shows the decay path from 1P1, which

eventually leads to atoms being shelved into the 3P2 state. This loss mechanism

limits the total atom number in the blue MOT, as the MOT lifetime (in seconds)

can be estimated given the decay rates as [68]

τ = 1.56× 10−3

(
1 +

1 + 4(∆/Γ)2

s

)
. (2.5)

For the trapping beam parameters described above, the saturation is typically

0.5, leading to a MOT lifetime of around 20 ms. This short lifetime will limit the

number of atoms loaded into the MOT, and should be addressed.

To re-pump the 3P2 atoms to the 1S0 state, we drive the 3P2-
3S1 transition

(707 nm) to pump the atoms into the 3P1 state, which eventually decays to the

ground state. To prevent optical pumping to the long lived 3P0 state we also

excite the 3P0-
3S1 transition (679 nm). The 679 nm and 707 nm lasers are grating

stabilized diode lasers in the Littman configuration. The ECDL configuration

provides sufficient frequency stabilization (in terms of laser linewidth) for the

repumping transitions, which have MHz level linewidths. Instead of locking the

lasers to an atomic signal [69], the optical frequency is controlled using a transfer

cavity technique. Each laser is locked to a reference cavity which is simultaneously

locked to a commercial I2 stabilized HeNe laser. The cavities are locked to the

HeNe by measurement of the transmission (side lock) and feedback to a PZT on
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Figure 2.4: Repumping scheme for the blue MOT. Decay to the 1D2 state from
the 1P1 state limits the number of atoms in the blue MOT as they can decay
to the meta-stable 3P2 state. To prevent this loss mechanism the atoms can be
re-pumped into the ground state by exciting the 3P2-

3S1 and 3P0-
3S1 transitions

as shown. To stabilize the repumping lasers, transfer cavities are used which can
be locked to a commercial iodine stabilized HeNe laser which provides excellent
long term stability. The relative cavity frequency can be changed with double
pass AOMs in between the HeNe and the cavity.

one of the cavity mirrors. The correct frequencies of the 707 nm and 679 nm

beams are realized by first tuning the lasers manually by looking at the enhanced

blue MOT signal. The cavity length is then tuned over a few free spectral ranges

until the fringes at 633 nm and the re-pump wavelength roughly coincide. At

this point the cavity is locked to the HeNe fringe, and the ECDL is locked to
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the cavity. Fine tuning of the absolute frequency of the repumps is then done

by tuning double-passed AOMs between the HeNe source and the cavities. This

procedure is typically done once per day, after which the lasers can be relocked

to the cavity without careful frequency tuning. After passing through a single-

mode polarization-maintaining optical fiber, the co-propagating 707 nm and 679

nm laser beams are expanded to a 1/e2 diameter of ∼ 1 cm and delivered to the

1S0 - 1P1 MOT, co-aligned with the MOT beams. The 707 nm (679 nm) beam

contains 1 mW (2.5 mW) of power, resulting in an predicted optical re-pumping

time of < 1 ms.

Interestingly, the leak in the MOT efficiently populates the 3P2 state with

mK temperature atoms, which can be quite useful for some experiments as the

state can be magnetically trapped (for mJ = 1, 2), while the 1S0 state cannot [70].

This results in some interesting possibilities as the atoms can be stored in the

magnet trap provided by the MOT field [68, 71, 72, 73, 74, 75, 76, 77]. We find

that nearly 108 atoms can be loaded in this way, and the magnetic trap lifetime

exceeds 1 s. Thus we can expect the blue MOT lifetime to be extended to similar

timescales if the repumping scheme is employed.

2.2.4 689 nm Light source

The 689 nm light source has more stringent requirements for frequency sta-

bilization than the other laser systems, as the cooling transition width is only 7.4

kHz. Aside from the linewidth requirements, the 689 nm system is fairly simple,

as very inexpensive diodes ($50) are available commercially at 685 nm (although

without AR coating). The complete laser system (shown in Fig. 2.5) is based on

a grating stabilized master ECDL with an AR coated diode tuned to 689.4 nm.

The laser is stabilized to a high finesse cavity (∼3000) using an EOM to modulate

the laser frequency for the Pound-Drever-Hall locking scheme [78]. The cavity
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is isolated from environmental perturbations in a number of ways. The cavity is

suspended by two thin wires inside a temperature stabilized can that is evacu-

ated to < 10−6 Torr, and mounted on vibration damping material. For further

stability, the cavity is completely passive. The electronic feedback provided by

the cavity lock has a bandwidth of ∼ 250 kHz where the high frequency feedback

is coupled directly to the laser current and the lower frequency signal controls

the PZT in the ECDL for slow drift. Locking the laser to the cavity provides a

measured linewidth of less than 300 Hz, more than sufficient for cooling on the

3P1 line. To ensure the laser frequency is accurate and well controlled on slow

timescales, the laser is tuned relative to the cavity by double-passing the 689 nm

light using a 1 GHz AOM. The set point frequency for the AOM is determined

from measurement of the master laser frequency using a signal from a saturated

absorption spectrometer based on the 88Sr 1S0-
3P1(m = 0) resonance. The spec-

trometer signal controls the GHz AOM frequency, and locks the laser system to

40 MHz above the resonance.

Two slave lasers are then phase locked to the master by stabilizing the beat

frequency between the master and slave to a pre-determined frequency for the

experiment of interest. For the 88Sr cooling, only Slave A is needed and the beat

frequency is fixed to -120 MHz, which results in a total detuning of -80 MHz from

the cooling transition. The slave is then double passed through a 40 MHz AOM

such that the light is (nearly) resonant with the cooling transition. The AOM

is used for switching, but also allows modulation of the laser frequency during

the laser cooling stage. For 87Sr cooling the second slave is required (see below)

for efficient cooling trapping. In this case Slave A is the stirring laser and the

appropriate frequency for the beat with the master is +101.64 MHz. While Slave

B is the trapping laser, which is stabilized at -1.2 GHz relative to the master.

Note that using this master/slave combination instead of AOMs to control the
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Figure 2.5: Laser system for narrow-line cooling at 689 nm. A master ECDL laser
is locked to a high finesse cavity, resulting in line width below 300 Hz. To control
the absolute frequency of the laser, a spectrometer is used which control the laser
frequency offset from the cavity via a 1.1 GHz AOM. Due to power considerations,
a second ECDL (Slave A) is phase locked to the master by stabilization of a
heterodyne beat between the two lasers. The slave light is double passed through
a 40 MHz AOM which provides switching, broad band (BB) frequency modulation,
and single frequency (SF) mode for the cooling discussed below. When 87Sr is used
in experiments, a second slave laser is locked to the master to allow the two color
cooling scheme discussed below. The frequency β of the offset locks are given for
the different isotopes.

frequency allows easy changes to accommodate cooling and trapping of different

isotopes, as only the phase lock frequency (and sign) need to be changed on Slave

A. This also provides more optical power for cooling experiments than a single

laser setup combined with AOMs. The two slave lasers are then coupled to the

chamber table using SMPM fibers. Upon exiting the fiber, the 689 nm light

(up to 5 mW at each frequency) is combined such that the two frequencies are

spatially overlapped and have the same polarization. The beam size is expanded

to a 1/e2 diameter of 5.2 mm. The red light is then co-aligned with the 461 nm

trapping beams using dichroic mirrors. Dual wavelength waveplates (3λ/4 at 461

nm and λ/4 at 689 nm) with two inch apertures are used to set the MOT beam
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polarization.

2.3 Laser Cooling 88Sr

In this section, we briefly summarize some of the important features of

cooling Sr on both the strong and narrow transition. A complete exploration of

the mechanical and thermodynamical narrow line laser cooling properties for the

Sr system have been presented elsewhere by our group [71, 79, 80], and a number

of others [81, 82].

2.3.1 Two Stage Cooling Sequence

In the first cooling stage, atoms are continuously loaded from the atomic

beam into a blue MOT operating on the 1S0-
1P1 transition. With the Zeeman

slower and transverse cooling laser beams present, the typical blue MOT lifetime,

population, and temperatures are 20 ms, 3×107, and ∼ 2.5 mK, respectively.

Even without the repumps we see that the cycling transition is “closed enough”

to allow a significant atom number in the trap. When the re-pump lasers are

introduced, the 1S0 - 1P1 MOT population and lifetime are enhanced by 10× and

15× respectively, with both values likely limited by atomic beam induced trap

loss.

With the atoms pre-cooled to the mK level, we are ready to cool on the

narrow intercombination transition. The two stage cooling cycle used here is

shown in Fig. 2.6. After the pre-cooling stage, the 461 nm light is switched

off and the atomic beam is blocked with the mechanical shutter, and the MOT

gradient is reduced to 3 G/cm. At this point the 689 nm cooling light is switched

on, however the Doppler profile of the strontium atoms is still above 1 MHz. To

ensure spectral coverage of all the atoms, the 689 light is frequency modulated

(using the 40 MHz double pass AOM in Fig. 2.5) to broaden the laser spectrum
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Figure 2.6: 88Sr 1S0 - 3P1 MOT timing diagram. Images at the top show the atomic
cloud at various stages of the cooling and compression process. From left to right,
the first four images show in-situ distributions of the cloud at various points in the
cooling cycle, while the last frame gives a time-of-flight (TOF) image taken after
25 ms of free expansion from the δ = -520 kHz, s = 75 single-frequency MOT.
The green line represents the operational mode of the anti-Helmholtz and relevant
field gradient in G/cm. The blue line gives the timing for the blue trapping
beam (on/off). The first red line gives the timing for the red trapping beams
(on/off) while the bottom red line shows the timing for modulation of the red laser
spectrum. For the 87Sr system, the cooling cycle is slightly altered as discussed in
the text.

to a few MHz. At this stage, the atom temperature is roughly 100 µK and about

half of the original mK atoms are captured. The field gradient is then ramped to

10 G/cm resulting in compression of the atom cloud and further cooling to 10 µK.

The cooling lasers are then switched to single frequency mode for operation of the

narrow line MOT. The temperature and atom number of the final atomic sample
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depend on the single frequency stage laser detuning and intensity (see 2.3.2). The

resulting atom temperature at the end of the MOT stage is typically 1µK, and

the total transfer efficiency from the blue MOT to the red MOT can be as large

as 50%. The red MOT lifetime is ∼1 s, and the atomic density is 1011–1012 cm−3.

Note that the atom transfer efficiency from the broad band cooling state to the

single frequency MOT depends strongly on the modulation parameters as shown

in [71].

2.3.2 Narrow Line Cooling

Laser cooling on a narrow transition provides a system where a number of

cooling features, not easily observed for the standard strong transitions which

nearly every laser cooling experiment has been based on [60], can be explored.

One example of this is the importance of gravity. For strong transitions, such

as the singlet line in this work, the maximum scattering force from the cooling

beams (~kΓ/2) is about five orders of magnitude larger than the force of gravity

(F = Mg). Conversely, for the narrow 1S0-
3P1 transition, the light scattering force

is only about 16 times larger than gravity. Therefore, gravity, which can safely

be ignored in traditional experiments, becomes a significant effect for narrow line

cooling. In the case of light alkaline earth atoms with weaker intercombination

lines (e.g. Ca, Mg), the cooling force is weak enough that the force of gravity

dominates and Doppler cooling is not possible, such that other cooling schemes

are required [83, 84]. Another significant difference is the importance of the photon

recoil on cooling dynamics. For broad transitions we have the situation ΓE/ωR >>

1, where ΓE=Γ
√

1 + s is the power broadened transition linewidth and ωR/(2π) =

~k2

4πM
is the photon recoil frequency. For the Sr intercombination line (ignoring

saturation) the ratio Γ/ωR=1.6. We therefore expect the recoil to be an important

feature in low saturation narrow-line cooling. The use of a narrow transition allows
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exploration of three drastically different cooling regimes with the same physical

setup. Here we will follow the regime classification used in Ref. [71].

In cooling regime (I), we assume strong saturation (s >> 1) and a large

detuning, such that ∆ >> ΓE >> Γ. In this regime, atoms at a given position

in the trap experience photon scattering for only one of the beams (along each

axis) at the spatial positions which satisfy ∆/2π = ~k · ~v + µ0dBxx. The atoms

can be thought of as trapped between hard wall boundaries, as opposed to the

traditional dispersion shaped force curve in strong cooling. Here, gravity also plays

an essential role as the trapped atoms can be expected to sag to vertical positions

where the Zeeman shift balances ∆. If the laser detuning is reduced below ΓE

(or if the the power broadened linewidth is made larger than the detuning), the

cooling is described in regime (II) where ∆ < ΓE >> Γ. In this case the cooling

is expected to behave as in a typical strong transition and the scattering force

will provide a dispersion shaped feature. The effect of gravity is expected to be

negligible as the scattering force, determined by ΓE is large. The most exotic

cooling regime studied is that of regime (III) where ΓE = Γ ∼ ωR. In this case

the relevant energy scale is that of a single photon recoil. Consequently, quantum

scattering, as opposed to the semi-classical scattering described by Eq. 2.1 govern

trap dynamics [85].

Fig. 2.7 details the mechanical cooling dynamics in regime (I) for various

detunings, with s=250. In panel (a) the scattering force is calculated as a function

of position (assuming zero velocity for convenience) for the horizontal cooling axis

at different detunings. Here we see that for large detunings, the atoms essentially

see no scattering in the central trapping region. Instead they interact with a

single beam at each end of the trap. Panel (b) shows the significance of gravity

as the force (and potential energy) in the trap is altered in the vertical direction.

The inclusion of the gravitational potential results in a potential minimum in the
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Figure 2.7: Red MOT detuning dynamics. (a) Scattering force is plotted for
different detunings assuming s=248. For large detunings, the MOT beams operate
independently as hard wall boundaries while for small detunings the force has
a dispersion shape. The effect of gravity (b) is significant for this system as
the gravitational potential alters the trapping potential such that the atoms are
trapped in the potential created by only one of the vertical beams. (c) in situ MOT
images showing the effect of gravity on the MOT dynamics. For large detuning,
the atoms are located at the lower resonant boundary (dashed lines) determined
by the field and laser detuning. In this case it is possible to operate the MOT
(once loaded) without the downward propagating laser beam. As the detuning is
reduced, the system begins to resemble a traditional MOT.

trap near the resonant position of the lower beam. Therefore the atoms will be

localized at the lower bound of the trap. This effect is shown in panel (c) where

in-situ images of the MOT are taken at various detunings. As seen in (a) and (c),

when the detuning is decreased, the cooling begins to resemble that expected in

regime (II).

A similar effect is seen in Fig. 2.8 where the intensity is varied over a wide
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Figure 2.8: Red MOT intensity dynamics. (a) shows the position dependence of
the light scattering force for different intensities with δ=-520 kHz. For low inten-
sities we again see the single beam hard wall properties of the MOT, indicative
of regime (I) discussed in the text. As the saturation parameter is increased,
the cooling conditions evolve into the standard semiclassical cooling described by
regime (II). The effect of gravity (b) on the potential energy is reduced as the
beam intensity is increased. The transition from regime (I) to (II) is shown in the
MOT images (c).

range with a fixed detuning of -520 kHz. For low saturation intensities, we are in

regime (I) where gravity is important and the MOT provides a “box” trapping

potential. As ΓE is increased to large values compared to the detuning, the force

and potential energy curves become similar to cooling on a standard transition.

This is evident in the images in panel (c) which show the transition from regime

(I) to regime (II) as the intensity is increased.

The effect of gravity in regime (I) is also seen in the atom temperature. For

normal cooling, we expect a strong detuning dependence on the atom temperature.
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Figure 2.9: The dependence of the red MOT temperature on laser detuning and
intensity. (Left) MOT temperature vs. detuning at different intensities. For large
detunings, the temperature is independent of the detuning. This is because grav-
ity keeps the atoms held against the upward going beam resonance, such that the
photon scattering rate is constant. At small detunings, the temperature depen-
dence on detuning is reminiscent of standard Doppler cooling, but with a lower
absolute temperature scale. Note that for low saturation, the recoil temperature is
reached. (Right) Temperature dependence on intensity for a fixed detuning of -520
kHz. For large intensities, the temperature is in agreement with Doppler theory.
As the intensity is reduced, the regime (I) temperature dependence is lower than
Doppler theory predicts at this detuning, and is instead determined by the tradi-
tional Doppler limit (green line). As the intensity is reduced below the saturation
intensity, the cooling results in temperatures of half the recoil temperature

In narrow-line cooling regime (I) however, the detuning doesn’t change the photon

scattering rate, it only changes the position of the trap boundary. Therefore

the temperature of the atoms is independent of detuning over a large range, as

shown in Fig. 2.9 (left panel). This effect was first observed in [81] and has

some important consequences as it allows manipulation of the MOT geometry

independent of the atomic temperature. In this figure we show the dependence of
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the atom temperature on detuning for different intensities. For small detuning, we

are closer to regime (II) and the expected δ- and s-dependent temperature minima

are observed, although with values globally smaller than standard Doppler theory

predictions. The standard recoil limit TRecoil is achieved at the lower intensity.

For large detuning on the other hand we see that the temperature is completely

independent of detuning, and instead only depends on the saturation parameter,

or more specifically ΓE.

The right panel of Fig. 2.9 shows the intensity dependence of atom tempera-

ture for a fixed detuning of -520 kHz. For large intensities, the temperature agrees

well with standard Doppler theory. As the intensity is decreased into region (I),

the atom temperature deviates from the predicted value (for the given detuning)

and follows the traditional Doppler limit of ~ΓE/2kB. Therefore we can conclude

from these two plots that in region (I) ΓE sets the limit on the temperature, inde-

pendent of detuning. For the smallest intensities, we enter regime (III) where the

recoil energy becomes important and quantum mechanical cooling is expected.

Here we observe temperatures as low as 250(20) nK, in good agreement with the

predicted half recoil limit in quantum cooling [85]. This sub-recoil cooling has

recently been verified in Sr experiments in Florence [86].

2.4 87Sr Cooling Considerations

In the spectroscopic work presented in this thesis, we will report on exper-

iments with cold 87Sr as it is the isotope with the narrow clock transition. The

hyperfine structure, present in only the 87Sr isotope, results in some additional

effects which must be taken into consideration for laser cooling.
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Table 2.3: Relevant hyperfine parameters for the laser cooling and repumping
states in 87Sr. a The g factor for the 1S0 and 3P0 states is determined by the
nuclear g-factor, gI (see Chapter 4) which results in a much smaller sensitivity of
∼200 Hz/G ×mF

State A(MHz) Q(MHz) F gF
1S0 0 0 9/2 0a

1P1 -3.4(4) [87] 39(4) [87] 7/2 -2/9
9/2 4/99
11/2 2/11

3P0 0 0 9/2 0a

3P1 -260.084 [88] -35.658 [88] 7/2 -1/3
9/2 2/33
11/2 3/11

3P2 -212.765 [89] 67.34 [89] 5/2 -6/7
7/2 -1/7
9/2 2/11
11/2 51/143
13/2 6/13

3S1 -542 [90] -0.1(5) [90] 7/2 -4/9
9/2 8/99
11/2 4/11

2.4.1 Hyperfine Structure

The presence of nuclear spin (I) provides additional structure to the states

shown previously in Fig. 2.1, as each 2S+1LJ state will contain multiple levels

denoted by quantum number F (with sublevels mF ), where ~F = ~I + ~J . For J

smaller than I, as is the case for the relevant states here, the angular momentum

coupling results in 2J+1 values for F in a given 2S+1LJ state. The hyperfine states

are shifted in energy (from the assumed 2S+1LJ(I = 0) state) by [63]

∆EHFS/h =
A

2
K +

Q

2

3
4
K(K + 1)− I(I + 1)J(J + 1)

I(2I − 1)J(2J − 1)
(2.6)

where A and Q are the magnetic dipole and electric quadrupole (often written as

B) interaction constants, and K = (F (F +1)−I(I +1)−J(J +1)). Table 2.3 lists

the interaction constants for the states relevant for laser cooling and repumping
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Figure 2.10: Hyperfine Structure of the laser cooling transitions used in this work.
The two excited states are split into levels having F=7/2, 9/2, and 11/2. The rel-
evant frequencies are shown, along with the two color narrow-line cooling scheme
discussed in the text.

in this work. Also shown are the gF factors relevant for each state, where the

Zeeman shift of the magnetic sublevels mF is given by δν ' mF gF µ0B. Here we

assume the effect of the nuclear g factor is negligible, and the Bohr magneton is

µ0 ' 1.4× 106 Hz/G.

The resulting level structure for the 1S0,
1P1, and 3P1 cooling states is

shown in Fig. 2.11. The effect of the hyperfine interaction on the ground state

is negligible. Since J=0, only one energy level is present, which has F = 9/2.

Due to the large nuclear spin, the ground state now consists of ten magnetic

sublevels. The Zeeman sensitivity of these states is very small, determined only

by the nuclear magnetic moment, yielding a shift sensitivity of ∼ 200 Hz/G ×mF ,

which is orders of magnitude smaller than the sensitivity of the J = 1 excited

states (roughly given by the proton-electron mass ratio). The effect on the 1P1

state is more pronounced. The state is split into three levels, having F=7/2, 9/2,

and 11/2, each state having 2F+1 mF sublevels. Since the A and Q coefficients
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are small, the energy spacing between these levels is on the same order as the

transition linewidth of 31 MHz. For cooling, one needs to use a transition with

Fe = Fg + 1, so the F=11/2 state is of interest to us. Note that due to the

small hyperfine shift, any cooling on the F=11/2 will undoubtedly result in some

excitation to the F = 9/2 state. In the 3P1 state the coupling constants are much

larger, such that the three F levels are detuned from each other by hundreds of

MHz. The large splitting and narrow linewidth of the transition ensure that these

levels can be excited completely independently.

2.4.2 Laser Cooling with Jg = 0 and I 6= 0

For alkali atoms, the hyperfine structure doesn’t change the MOT action

significantly, but for alkaline earth atoms the use of a J = 0 ground state has a

dramatic effect. To explore the difference, we will consider an example case of a

MOT operating cooling transition between F=3/2 and F=5/2 states (we consider

here a lower value of F than the real Sr case to reduce the complexity of Fig. 2.11).

In traditional alkali MOTs, the ground (g) and excited (e) states have sim-

ilar gF factors (ge and gg), such that in the presence of a magnetic field, the

resonant frequency for a given polarization is nearly independent of the ground

state sublevel populated by the atom. This situation is shown in the first panel

of Fig. 2.11. To design a 1D MOT using such a transition, we apply an inho-

mogeneous magnetic field of B = ax where a is a proportionality constant and

x is the position from the center of the trap. Counter propagating laser beams,

detuned below the atomic resonance frequency and having opposite helicity, then

provide a restoring force for atoms leaving the trap as shown in Fig. 2.11(b). If

atoms move in the −x direction, the magnetic field gets larger and more nega-

tive, such that eventually the ∆mF =+1 transitions are resonant, and the atom

absorbs photons from the σ+ beam and is pushed back towards the center of the
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trap. Atoms moving away from the center in the +x direction will experience the

same effect from the σ− beam. Since the ground and excited state g-factors are

similar (with the small difference resulting in the slightly different slopes in the

plot), the restoring feature of the MOT is independent of the ground state mF

that the atom is in, and it acts in the same way as the traditional J = 0–J = 1

MOT without hyperfine structure.

In alkaline-earth MOTs, the ground state g factor is determined only by

the nuclear spin, and hence is typically three orders of magnitude smaller than

that of the excited state. As shown in Fig. 2.11 (a), this results in a strong mF -

dependence for the transition frequency in the presence of magnetic fields. In

fact, in some cases the sign of the frequency shift even changes. If we draw the

same MOT design as in the alkali case (lower left panel of the figure) we find that

x position for absorption depends strongly on the ground state sublevel. To see

how this can affect the MOT we consider the case in the lower right panel where

an atom is in the mF =+3/2 ground state. This atom can only absorb a photon

which moves it to the mF =5/2 or mF =1/2 states. Due to the small ground state

g factor, the sign of the zeeman shift of these two transition options both have

the same sign (compared to the alkali case where they always had opposite signs).

This degrades the MOT action in two ways, first if we assume the atom is in

the −x region, it is possible to absorb photons from either beam such that the

atoms can be forced out of the MOT. However, the probability of absorption from

the wrong beam is reduced if one considers Clebsch-Gordan coefficients (in Sr

for the stretched state for example, the ratio is 55:1 for likelyhood to be pushed

in the MOT). So we see that the MOT does not operate purely on the position

dependant resonance condition, but also requires help from the CG coefficients

which are most preferential for trapping in the stretched states. The second effect

we notice is that if the atom is in the mF =+3/2 state in the +x region, there is
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Figure 2.11: Comparison of MOT operation for a F = 3/2-F = 5/2 cooling
transition with ge ∼ gg and ge >> gg. The upper right panel shows 1D MOT
operation for a traditional cooling transition where the state g factors are similar,
where γ is the transition width, ∆ is the detuning, and the magnetic field is B=ax.
The green lines represent positions of the excited state sublevels which can be
excited with σ− radiation (∆mF = −1), while the blue lines give the positions
of the sublevels which can be excited with σ+. Since the g-factors are similar,
the field dependence of the transition resonances are similar and the MOT action
operates independently of the ground state sublevel. The condition ge >> gg

(lower left panel) shows a different feature as the slope (frequency/field) of the
different resonances depend strongly on the ground state sub-level the atom is
in, in some cases even changing sign. The lower right panel shows an example
how this effects the MOT operation. An atom in the mF =+3/2 ground state
can only make transitions to the exited + 5/2 and +1/2 sublevels. Due to small
ground state g-factor, both of these states have the sign of magnetic sensitivity
such that they will both be resonant with the MOT beams in the −x region.
Owing to a stronger Clebsch-Gordan coefficient for the σ+ transition, the atom
is still pushed back towards the trap center. In the +x region however, there
are no states resonant with the laser beam for the mF =3/2 state, so the atom is
lost. State randomization from optical pumping eliminates this problem for strong
transitions as the population is rapidly cycled between different states, some of
which will satisfy the trapping condition. For the narrow transition discussed
here, the optical pumping is in-efficient, and a second “stirring” laser is required.
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no chance for resonant absorption, and the atom is free to leave the trap. So in

this simple picture, we have the situation where the atom is well trapped if in the

stretched state on one side, and not trapped at all on the other side of the trap.

In a more realistic case, for example a strong cooling transition, enough

photons are scattered that we can expect fast randomization of the ground state

population distribution. Thus the original stretched state atom can quickly be

pumped to a different state, and the MOT trapping mechanism will still work

well on both sides of the trap. In our narrow-line cooling on the other hand,

the photon recoil shift is comparable to the transition width, so the atom only

stays on resonance with the trapping beam for a few scattering events, and the

population in not efficiently randomized.

This effect was first observed by the Tokyo group [91] as they found that

the 87Sr red MOT lifetime was nearly ten times shorter than that of the red MOT

88Sr. To combat it, they employed a two color MOT on the intercombination

line. Since the 1S0(F = 9/2) -3P1(F = 11/2) cooling is inefficient for optical

pumping, one can apply additional light near the 1S0(F = 9/2)-3P1(F = 9/2)

resonance. This state has a smaller g-factor than the F = 11/2 state which allows

the optical pumping to take place over a larger spatial area in the MOT, because

the resonance position is less sensitive to the size of the field. While a ∆F = 0

transition does not provide any trapping, this additional laser does provide cooling

and sufficient optical pumping to allow the 1S0(F = 9/2) -3P1(F = 11/2) MOT

to operate more efficiently. Therefore the MOT can be operated using two colors,

one trapping frequency near the F = 11/2 line, and one “stirring” frequency.

Although we have not explored the 87Sr narrow-line cooling at the level of

detail of the 88Sr results above, we have found that we can cool 105 atoms to

as low as 2 µK in agreement with the results of [91]. In our system the cooling

cycle is only slightly changed when switching between isotopes. When cooling
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the fermions, we find the MOT number is optimized when the timing sequence

in Fig. 2.6 is altered such that the broad band, field ramp, and single frequency

cooling times are extended to 60 ms, 100 ms, and 55 ms each. We also find that

the initial and final red MOT gradient fields should be reduced to 1 G/cm and 3

G/cm respectively. The longer cooling times attest to the fact that the cooling is

less efficient, and the lower optimum magnetic field is expected as it reduces the

magnetic effect discussed here.

While the hyperfine structure does alter the cooling process for the inter-

combination line, it does not present a real road block to experiments with the

isotope as the second 689 nm laser is only 1.5 GHz away from the trapping laser.

This gap can be bridged with either an AOM or with a phase locked system as

shown in Fig. 2.5. Furthermore, the slightly higher temperature here can be re-

duced by cooling on the narrow transition while holding the atoms in an optical

lattice [91]. For the clock experiments in this work, the results are more than

sufficient.

2.4.3 Repumping Revisited

Another effect that should be considered when cooling 87Sr is the efficiency

of the repumping scheme. The hyperfine structure provides five F states in 3P2

and three in the 3S1 state such that we can expect the repumping process to

pump a significant number of atoms into states which are not resonant with the

repumping light. We estimate that more than 80% of the atoms which decay from

1P1 → 1D2 → 3P2 end up in the F = 13/2 state. One can therefore tune the

707 nm laser to the 3P2(F = 13/2)-3S1(F = 11/2) transition for pumping but

inevitably some atoms will decay back to the lower F states of 3P2. In practice we

find that the blue MOT enhancement is at most factor of four in the 87Sr MOT

when the re-pumpers are used, compared to a factor of 10 in the bosonic MOT.
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To improve the repumping we employ the technique of the Paris group [41]

where the repumping lasers are scanned during the Blue MOT. Since the 3P2 and

3S1 F states are spread over a few GHz, the repumping lasers must be scanned

over a significant range. This is performed by continuously scanning the ECDL

laser current and cavity mirror PZT. The laser frequency is scanned over 5 GHz

at a modulation frequency of ∼ 5 kHz. The PZT in the ECDL is scanned over

500 MHz at a frequency of 800 Hz. Although the lasers are not single mode over

the entire scanning cycle, by scanning both the current and the PZT one can

find parameters where the repumping is significantly more efficient than in the

fixed-frequency case, resulting in enhancement factors as large as 20 in the atom

number, and 10 in the trap lifetime. Furthermore the laser system is simplified

as the lasers do not need to be locked to a cavity. For the results in this thesis,

however, we used the cavity locking scheme as we had not yet implemented the

scanning method.

2.4.4 A Few Practical Notes

A few other details of interest were discovered in our 87Sr cooling experi-

ments. To optimize the blue MOT number, it was necessary to offset the MOT

position from the slowed atomic beam, suggesting collisions with the 88Sr atoms

(comprising > 80% of the slowed beam) can limit the 87Sr MOT. With the beam

offset, we found that the transverse cooling and repumping gave more enhance-

ment than in the 88Sr case where the atomic beam passed directly through the

MOT. In the 88Sr experiments [71, 79] we found that the MOT number had a

ceiling which was likely limited by collisions with the atomic beam, or possibly

collisions between MOT atoms. So it is not surprising that the enhancement fac-

tors are larger in the 87Sr MOT (by a factor of 2 for repumping and a factor of 2-3

for the transverse cooling) which has more than an order of magnitude less atoms
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and is offset from the beam. While the exact source of the MOT limitation needs

further study, we point it out as an important detail to be considered in designing

future 87Sr experiments.

Another practical issue to consider is the relatively small frequency difference

between the strong cooling transitions in the the 88Sr and 87Sr isotopes. Isotope

selection in the blue MOT involves simply changing the spectrometer AOM fre-

quency (and hence that of all the blue light) to account for the small isotopic shift

of the strong cooling line. With the detuning for the 87Sr MOT trapping beams

set to -40 MHz from the F=11/2 line, the detuning for the 88Sr atoms is only -91.8

MHz, or ∆/Γ ∼ 3. Because of this, a significant amount of florescence is observed

from the bosonic atoms passing through the MOT region, and we are likely to trap

both isotopes in the MOT. Therefore care must be taken in experiments where a

pure 87Sr sample is desired, or even in simple tasks like calibrating the number of

atoms. In our experiments, the pre-cooled atoms pass through a pseudo-isotopic

filter before any measurements are made. This is achieved naturally by second

stage cooling on the 3P1 line where the isotope shift is orders of magnitude larger

than the transition width and detuning. Note that we have verified that scanning

the repump lasers does enhance the red MOT number so we can be sure that the

blue MOT enhancement is not just a result of enhancing the 88Sr contributions

to the MOT signal (although that could still be contributing).

2.5 On to Spectroscopy . . . Almost

With ultracold atoms in hand, we are ready to move on to some high pre-

cision spectroscopy of the clock transition. In the remaining chapters the cold

atoms go through one more step in the preparation stage discussed here, as they

need to be loaded into an optical lattice trap. The design and operation of our

trap is reserved for the next Chapter (Section 3.3.2). In brief, loading of the lattice
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is done simultaneously with the entire cooling cycle, resulting in 104 87Sr atoms

(or 105 88Sr atoms). The presence of the relatively shallow lattice trap (∼ 7 µK

in this work) does not deteriorate the final atom temperature significantly as we

typically measure it to be 2 µK. With that said, we have our cold atomic ruler

ready to measure those precision laser ticks, so lets get started!



Chapter 3

Clock Spectroscopy in an Optical Lattice

3.0.1 Optical Frequency Measurements in Free Space

With samples of µK atoms in hand, we can begin the quest for a Sr optical

frequency standard. In our earlier work [28], cold 88Sr was used for a high accuracy

clock evaluation of the 1S0-
3P1 transition. In this experiment, a 2 µK atom cloud

was probed in free space using light derived from the 689 nm master laser. The

resulting absorption spectrum for the ∼ 106 atoms is shown in Fig. 3.1. Here

we find that the observed transition width is limited to 45 kHz due to Doppler

broadening which results from the gaussian velocity distribution of the atoms. In

this study, it was found that atomic motion limited not only the achievable Q,

but the accuracy as well. Doppler shifts of the resonant frequency, 2πδν = ~k · ~v,

due to atomic motion relative to the propagation of the probe beam resulted in a

number of systematic effects. During spectroscopy, the atoms are not trapped so

gravity causes the atom cloud to fall. If the probe beam ~k vector has a component

along the axis of gravity, the measured frequency will be shifted. Therefore it is

paramount that the probe beam is well collimated and aligned perpendicular to the

axis of gravity. If spectroscopy with a single beam is performed, the measurement

will also be sensitive to cloud drifts along the laser axis. In our experiment, it

was found that the atom cloud drifts horizontally at about 1 mm/s due to the

intensity imbalance of the MOT trapping beams. This small drift results in a
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Figure 3.1: (left) Absorption spectrum for the 1S0-
3P1 transition in free space.

The line width (FWHM) is 45 kHz, limited by Doppler broadening. (right) The
dangers of Doppler. Here a few ways that the Doppler shift can cause frequency
errors are shown. If a single beam is used the inevitable motion of the atom cloud
relative to the beam shifts the resonant frequency. Counter propagating beam
configurations can reduce the sensitivity but one must be careful in considering
the relative tilt angle between the two beams as well as the relative intensity. The
curvature of the probe can also cause frequency shifts which will not be canceled
by the counter-propagating beam configuration.

rather large shift of δν=1.5 kHz. To eliminate this first order Doppler shift, and

that of gravity, a counter-propagating probe set-up is used such that the average

Doppler shift for the two beams is zero. However, to ensure that the Doppler shift

is well canceled, the intensity of the two beams needs to be well calibrated, and

the beams need to be co-aligned with high precision. While the use of counter

propagating probes can reduce residual Doppler shifts, finite beam curvature can

also cause a problem, as illustrated in Fig. 3.1. As the atoms fall, they sample

the k vector of the lower part of the beams which can cause an offset of the same

sign for both probe beams.

In the end, by carefully collimating the probe beams (R > 50 m), controlling

the beam angle relative to gravity (<1 mRad), the mutual tilt angle of the two
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probes (< 50 µRad), and the intensity imbalance (< 2.5 %), the Doppler limi-

tations for spectroscopy were reduced to 26 Hz, allowing an absolute frequency

measurement relative to the NIST Cs-fountain with a final accuracy of ∼ 30 Hz,

or 7×10−14 [28].

Unfortunately the same effect that allows cooling and mechanical control

of our atoms, the Doppler effect, results in a number of limitations on the clock

performance in terms of both accuracy and stability. The line Q, for example, was

limited by the Doppler broadening from motion of the atoms and by the interaction

time constraint from free fall induced by gravity. While the resonance width

could be further reduced by using Ramsey spectroscopy or saturation techniques,

the Doppler shifts arising from MOT drift velocities and probe laser wavefront-

curvature and misalignment are discouraging. These issues have been explored

extensively in the Ca system [24, 25] and, with great care, can be controlled at

the 1 Hz level. Since the laser cooling for Sr provides lower temperatures than

those typically employed in the Ca clock and therefore Doppler systematics could

eventually be reduced to a lower level. However, evaluation of these systematics

will be more difficult since the Sr transition linewidth is more than ten times larger

than in Ca. Even with the orders of magnitude improvement in line Q that the Ca

and Sr measurements provide compared to the Cs clock transition, the Doppler

sensitivity proves a difficult roadblock to reaching the accuracy of Cs fountains.

To push the limits of neutral atom based optical standards it seems a different

approach is needed.

3.0.2 ~k · ~v . . .Now What?

Trapped ion systems [29], on the other hand, have recently surpassed the

accuracy and stability provided by the Cs fountains, a triumphant validation of

this new business of optical clocks. Neutral atom folk can’t help but peek over
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the fence at the greener pastures of trapped ions, and wonder “Do we really need

all that
√

N?”. After all, the recent Hg+ results from NIST have shown that the

huge line Q provided by optical clocks compensates for the lack of S/N since the

stability of the single atom optical clocks now out performs that of their microwave

counterparts which typically utilize ∼ 105 atoms.

The key feature of the ion clocks is the Lamb-Dicke [92] confinement pro-

vided by the trap itself. One obvious advantage provided by a trapped specimen is

the long interrogation time which eliminates transit-time broadening issues. More

important is the altered absorption spectrum of an atom in a harmonic potential.

Free space atoms absorb light at a frequency ν = νc + ~k · ~v/(2π) + νR, with the

last two terms resulting in Doppler broadening, and frequency offsets and un-

certainties, including the photon recoil. In a deep Harmonic potential however,

the absorption spectrum goes as ν = νc ± ∆nΩ/(2π) where Ω/(2π) is the trap

oscillation frequency. The motional levels in the harmonic trap are represented

by n. We’ll get to what exactly “deep” means below, the point is that the confin-

ing potential provides a textbook harmonic oscillator system where the possible

energy of the atomic motion is quantized. Therefore atoms can only absorb light

at frequencies where the above relation is satisfied for ∆n = 0,±1,±2 . . .. The

resulting absorption spectrum is one which is not broadened or shifted by the

atomic motion, but instead the motion modulates the spectrum, resulting in a

strong carrier (∆n = 0) transition with small sidebands located at integer mul-

tiples of the trap frequency [93, 94, 95]. The problem of atomic motion is then

transformed to one of line pulling from the motional sidebands which in most

systems is negligible at the relevant level of accuracy.

So, do we have to give up our
√

N for the advantage of a recoil and Doppler

free spectrum? No, like any good neighbor, we want that green motion-free grass

in our yard, but as a complementary feature in our existing landscaping philos-



55

ophy. For neutral atoms the problem boils down to creating a deep harmonic

potential without perturbing the clock states. For ensembles of neutral atoms,

the traditional route for deep harmonic confinement is to hold the atoms in a

standing wave pattern of laser light, known as an optical lattice. In these systems

perturbation of the energies of the clock states is unavoidable as the trapping

mechanism operates by providing a position dependant shift of the state energies.

Although the dynamic polarizabilities (or equivalently the ac Stark shift) of the

two clock states have a dramatically different form, we can take advantage of the

fact that they each depend on the wavelength and polarization of the trapping

light. The task is then reduced to the design of a trap at a “magic” wavelength

(and appropriate polarization) such that the clock states experience identical per-

turbations and can be measured in a pseudo Stark-shift-free environment.

This wavelength tuning mechanism was first proposed as a way to increase

the coherence time in cavity QED experiments by trapping atoms in a “Stark-

Free” lattice to simulate ion systems [37], and also as a technique for efficient

loading of dipole traps for laser cooling experiments [96]. The idea was then gen-

eralized to the field of optical clocks by Katori [39], specifically using Sr as a test

case for the technique. The design and implementation of a Sr optical lattice clock

is the main focus of this chapter. In section 3.1 the ac Stark shifts of the 1S0,

3P0, and 3P1 states are examined in order to determine the cancelation wavelength

and polarization sensitivity for the two Sr clock transitions. A detailed theoretical

exploration into the spectroscopic features of trapped atoms is presented in sec-

tion 3.2 as a further aid to optimizing the trap design. Finally, section 3.3 gives the

details of our experimental setup and spectroscopic results including calibration

of λm, measurement of motion effects in the trap, and the ultra-narrow Doppler

and recoil free spectrum provided by the lattice confinement.
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Figure 3.2: Level diagram of relevant states for the light shift. The Lattice light
couples the ground state to the excited singlet state, with the largest effect coming
from the first excited 1P1 state. The triplet clock states are coupled to the 3S,
3D, and 5p23P states. The dominant interaction for the triplet states is given by
the specific levels shown.

3.1 Stark Cancellation Technique

Strontium (and other alkaline earth(like) atoms such as Mg, Ca, Yb, and

Hg) is a natural candidate for the lattice clock. The two-electron level structure

(see Fig. 3.2) results in nearly independent series of singlet and triplet states such

that the Stark shift of the clock states can be tuned semi-independently. Consider

first the ground state 5s2 1S0 which, ignoring weak intercombination transitions,

is coupled only to excited 5snp 1P states by the lattice. For all lattice wavelengths
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longer than 461nm (the lowest lying excited state transition wavelength), we have

the situation of a red-detuned trap, in which the ac Stark shift will always be

negative and the atoms will be trapped at the anti-nodes of the standing wave. The

upper clock state, 5s5p 3P1,0, is markedly different as three series of triplet states

are coupled by the trapping laser, specifically the 5sns 3S and 5snd 3D series, and

the 5p2 3P states. The Stark shift for the S and P state contributions will be

negative for all wavelengths above 700 nm. However, the low lying 5s4d 3D state

will contribute a positive shift for wavelengths below 2600 nm. In the wavelength

range 700-2600 nm there must be a sign change in the polarizability and Stark shift

of the 5s5p 3P state while the 5s2 1S0 polarizability changes very little of the same

range. Since we can tune the magnitude and sign of the 3P shift independently

from that of the 1S0 state and rely on nearby resonances in the 3P polarizability

for the needed amplitude swings we are all but guaranteed the existence of a

magic crossing point. For the lattice confined neutral atoms to be a practical

clock scheme, we would like it to satisfy a few key criteria at a trap depth UT =U0:

1. λm is a practical wavelength, and the required frequency stability on the

laser is reasonable.

2. One can perform spectroscopy in the Lamb-Dicke limit (νTrap > νRecoil)

and in the resolved sideband limit (νTrap > γClock).

3. One can efficiently load atoms into the lattice (U0 > kBT )

4. Negligible scattering rate for lattice photons at λm and U0.

5. Negligible polarization dependence of the polarizability at λm and U0

6. Negligible quadratic Stark shift at λm and U0.

The only way to sort out the practical trap design issues is to directly

calculate the ac Stark shift and magic wavelength for our lattice configuration. So

let’s get to it!
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3.1.1 One-Dimensional Lattice Potential

The Stark shift, ∆ν, of an energy level i in the presence of an electric field

with amplitude E is given by [97]

h∆ν = −1

2
αi|E|2 (3.1)

where αi is the polarizability of the atomic state i. For a 1D optical lattice ge-

ometry the potential is described by a longitudinal standing wave with a gaussian

distribution in the radial dimension, given by [98]

U(r, z) = 4Ume
− 2r2

w(z)2 cos2(2πz/λL). (3.2)

Here Um = Pαi/(πcε0w(z)2) where P is the average laser power of the incoming

beam, w(z) is the beam waist at a longitudinal distance z from the focus of

the beam, r is the radial distance from the beam center, and λL is the laser

wavelength. The potential can be approximated by a harmonic trap in both the

longitudinal and radial dimensions yielding vibrational frequencies at the trap

waist (z ≈ r ≈ 0)

νr =
1

2π

√
1

M

(
δ2U(r, z)

δr2

)
r,z=0

=
1

2πw2
0

√
16αiP

cε0Mπ

νz =
1

2π

√
1

M

(
δ2U(r, z)

δz2

)
r,z=0

=
1

2πw0λ

√
32παiP

cε0M
.

(3.3)

Unfortunately describing the trap dynamics in terms of intensity and beam waist

carries some ambiguity as often in the literature terms such as ’peak’ and ’average’

intensity are used loosely, and similarly for the waist. So we would prefer to

characterize the trap by less ambiguous parameters. From equations 3.2 and 3.3

we can also write the trap depth UT in terms of the longitudinal trap frequency

UT = ν2
z

M2λ4
L

h2
ER (3.4)
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where ER = h2/(2Mλ2
L) is the recoil energy associated with the lattice photon.

Writing the potential in this way is natural as the longitudinal trap frequency can

be measured unambiguously and all other parameters in Eq. 3.4 are well defined.

Note also that the ratio of the trap frequencies,

νz

νr

=

√
2πw0

λL

, (3.5)

yields information about the waist without knowledge of P or αi. This can be

very useful for checking for example, polarizability calculations or the position of

the atoms relative to minimum waist of the lattice.

3.1.2 Calculation of the ac Polarizability

For a complete description of the trap properties, the remaining issue is to

evaluate the polarizability of the clock states. In the presence of a laser field of

frequency ωL, the dynamic dipole polarizability of a state i involves the sum over

the dipole interaction between state i and excited states k given as [99]

αi(ωL) = 2e2
∑

k

~ωik|〈φk|D|φi〉|2

~2(ω2
ik − ω2

L)
. (3.6)

Here, e is the electron charge, ~ωik is energy difference between states i and k, and

~ωL is the energy of the lattice photon. The dipole matrix element |〈φk|D|φi〉|2

can be written in terms of transition rates Aik using the fact that

Aik =
e2

4πε0

4ω3
ik

3~c3
|〈φk|D|φi〉|2. (3.7)

Combination of equations 3.6 and 3.7 yields

αi(ωL) = 6πε0c
3
∑

k

Aik

ω2
ik(ω

2
ik − ω2

L)
(3.8)

which depends only on the lattice frequency, the transition rates between states i

and k, and their corresponding energy difference ~ωik. One then needs only the
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measured Aik values and state energies to perform the calculation. Typically, the

literature reports the total transition rate AT from a given excited state to the fine

structure manifold below, or equivalently as a lifetime of the excited state 1/AT .

In either case, one must be careful in consideration of what branching ratio of

the interaction corresponds to the single state of interest. One also needs to take

into account the polarization dependence of the coupling strength. For a given

excited state with quantum numbers S, Lk, Jk, and a lifetime 1/AT , we find that

the fraction of the interaction Ãik/AT , for a state with quantum numbers S, Li,

Ji, is given by

Ãik

AT

=
(2Ji + 1){ Ji Jk 1

Lk Li S }2∑|Li+S|
J=|Li−S|(2J + 1){ J Jk 1

Lk Li S }2

Jk∑
mk=−Jk

(2Jk + 1)
(

Ji 1 Jk
mi p −mk

)2
(3.9)

Here the matrices with curly brackets are the Racah 6-j symbols and the

matrices with parenthesis are the Wigner 3-j symbols. The first term in Eq. 3.9

gives the fraction of the coupling strength between the excited state and a given

lower state. For example, in the case of the 5s5p triplet states, the ratio term gives

the interaction strength for a single fine structure level (say 3P0), divided by the

sum of the interaction for all of the fine structure levels (3P0,
3P1, and 3P2). The

second term differentiates between magnetic sublevels mi of the ground state, as

the interaction is summed over the excited state magnetic levels for a given light

polarization p. Since the total transition rate, or lifetime of the excited state is

usually the available quantity in the literature, this total geometric ratio tells us

how to scale the interaction for a particular state of interest. Table 3.1 gives the

result of Eq. 3.9 for the states of interest, specifically the geometric scaling for the

1S0,
3P0, and 3P1(m = ±1, 0) clock states interaction with the excited 1P1,

3S1,

3D1,2, and 5s2 3P0,1,2 states for linear (p = 0) and circular (p = ±1) polarization.

The individual contributions from single states are given, as well as the sum of

the contributions from the entire fine-structure manifold, with the latter allowing
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Table 3.1: Geometric Scaling Factors (Ãik/AT ) For Different States and Polariza-
tions

Excited State
Ground State and Pol. 1P1

3S1

∑
3P 3P0

3P1
3P2

∑
3D 3D1

3D2
1S0(m = 0; p = 0,±1) 1 – – – – – – – –
3P0(m = 0; p = 0,±1) – 1/9 1/3 – 1/3 – 5/9 5/9 –

3P1(m = 0; p = 0) – – 1/2 1/3 – 1/6 1/2 – 1/2
3P1(m = 0; p = ±1) – 1/6 1/4 – 1/8 1/8 7/12 5/24 3/8
3P1(m = ±1; p = 0) – 1/6 1/4 – 1/8 1/8 7/12 5/24 3/8

3P1(m = ±1; p = ∓1) – 1/6 1/2 1/3 1/8 1/24 1/3 5/24 1/8
3P1(m = ±1; p = ±1) – – 1/4 – – 1/4 3/4 – 3/4

simplification of the calculation when the fine-structure energy splitting is ignored.

The dashes in the table signify that for the given states and polarization, electric

dipole interaction is forbidden (naturally taken into account by the 3-j symbol).

The geometric scaling factors do not include the fact that the 5s5p states

are non-degenerate due to the fine structure splitting. In principle, the ratio term

in Eq. 3.9 should have been modified to include the energy (actually coming in

as ~ω3) of each lower levels resulting in a small departure of the purely geometric

value at the few percent level. The size of this correction depends on the relative

size of the energy difference between the upper and lower state, and the fine

structure splitting in the 5s5p states. The final value of Aik needed to evaluate

the polarizability is then given by total transition rate AT , the geometric scaling

factors Ãik/AT in Table 3.1, and a small energy dependent correction ζ(ωik) given

as

Aik = ζ(ωik)
Ãik

AT

× AT . (3.10)

Values for ζ(ωik) are tabulated in Table 3.2 for both the 3P0 and 3P1 clock states,

for different excited triplet states.

To calculate the wavelength dependent polarizability, we then simply com-

bine Eq. 3.10 with Eq. 3.8, and are left with the task of finding energies and
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Table 3.2: Relevant Transition Rates, Frequencies, and Correction Factors for the
5s2 1S0, 5s5p 3P0 and 5s5p 3P1 States

5s2 1S0 5s5p 3P0 5s5p 3P1

Upper ωik ωik ζ ωik ζ AT

State (2π × THz) (2π × THz) (2π × THz) (×106 s−1)
5s6s 3S1 — 2.77 1.071 2.74 1.043 85b

5s7s 3S1 — 4.36 1.045 4.32 1.027 17.5a

5s8s 3S1 — 4.98 1.039 4.95 1.024 8.22a

5s9s 3S1 — 5.30 1.036 5.27 1.022 4.52a

5s10s 3S1 — 5.49 1.035 5.45 1.021 2.77a

5p2 3P0 — — — 3.90 1.000 127c

5p2 3P1 — 3.97 1.036 3.94 1.017 127c

5p2 3P2 — — — 3.99 1.043 127c

5s4d 3D1 — 0.724 1.053 0.689 0.9489 0.345d

5s4d 3D2 — — — 0.700 1.077 0.345d

5s5d 3D1 — 3.90 1.010 3.86 0.9909 61c

5s5d 3D2 — — — 3.87 1.014 61c

5s6d 3D1 — 4.78 1.008 4.75 0.9926 26.7a

5s6d 3D2 — — — 4.75 1.012 26.7a

5s7d 3D1 — 5.19 1.008 5.16 0.9932 14.2a

5s7d 3D2 — — — 5.16 1.011 14.2a

5s8d 3D1 — 5.42 1.007 5.38 0.9935 8.5a

5s8d 3D2 — — — 5.38 1.010 8.5a

5s9d 3D1 — 5.56 1.007 5.52 0.9937 5.5a

5s9d 3D2 — — — 5.52 1.010 5.5a

5s5p 1P1 4.09 — — — — 190.5e

5s6p 1P1 6.43 — — — — 1.86f

5s7p 1P1 7.33 — — — — 3.19a

4d5p 1P1 7.76 — — — — 12a

5s8p 1P1 7.76 — — — — 14.9 a

5s9p 1P1 8.00 — — — — 11.6a

5s10p 1P1 8.16 — — — — 7.6a

5s11p 1P1 8.28 — — — — 4.88a

a [100] b [36] c [101] d [102] e [103] f [104]

lifetimes (or transition rates) from the literature. Since it is difficult to find data

for higher n states, we truncate the sum at about n=10. This should be a good

approximation for the polarizability since the contribution of the excited states

drops off as 1/(ω2
ik(ω

2
ik−ω2

L)). However, we should note that we are then ignoring
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the effect of the continuum states which can have a significant contribution to the

static polarizability (ωL → 0). Frequency differences ωik, derived from [105], are

given in table 3.2 in units of 2π×1015 Hz, along with the relevant transition rates

AT in units of 106 s−1.

Many of AT values have been calculated by Greene [100] and are used here.

For the lowest lying excited states, which have the most significant effect on the

polarizability at optical frequencies, experimental data is used when available.

Preference is given to data in which direct lifetime measurements are reported,

as opposed to ratios of oscillator strengths or line strengths, to avoid ambiguity

in convention and notation. For the 1S0 calculation, recent photoassociation data

[103] provides an accurate determination of the lifetime of the first 1P1 state which

dominates the ground state polarizability. For the 3P0 and 3P1 states, accurate

and direct lifetime measurements are available for the 5p2 3P [101], 5s4d 3D [102],

and 5s5d 3D [101] states. The lowest lying 3S1 state which provides a significant

portion of the total light shift for the triplet states is more of a problem, as a num-

ber of measurements (summarized in [100]) based on relative oscillator strengths

or lifetimes are in disagreement. Recent light shift measurements by Ido [36] on

the 3P1 state seem the most reliable, providing the value AT =8.5×107 s−1.

With the completion of Tables 3.1 and 3.2 we can now calculate the polariz-

ability for the different clock states. The polarizability for 1S0 and 3P0 is plotted

as a function of wavelength in Fig. 3.3. The result is given in atomic units, for

wavelengths between 200 nm and 5 µm. The most interesting region for this work

is that of the 700-1000 nm range where the 3P0 polarizability gently crosses that

of the 1S0 curve. This is exactly the kind of feature we were looking for in the

polarizability, as the crossing (or magic) wavelength occurs in an area accessible

by commercial lasers, and is far enough away from any resonance features that

the clock sensitivity to deviations from the magic wavelength should be small.
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Figure 3.3: Wavelength dependence of the atomic polarizability. The polarizabil-
ity is calculated for the 1S0 (blue) and 3P0 (red) states using the data in Tables 3.2
and 3.1. The result is scaled by a factor of 1/(4πε0a

3
0) so that the polarizability

is given in atomic units.

Since we have the polarizability, we can now look at the magnitude of the

ac Stark shift for a given laser intensity. For convenience, we will do all of our

calculations at the approximate parameters we use in the experimental sections of

this work. For a laser power of P=150 mW, which is focused to a waist of w0=65

µm and retro-reflected for a lattice configuration, the Stark shift U is given from

Eq. 3.2. Figure 3.4 gives the wavelength dependence of the resulting Stark shift in

kHz for the clock states of interest in this work. The data is plotted for different

mJ values and different lattice polarizations. In the calculation thus far, we have

not included any hyperfine structure, so the 1S0 and 3P0 states only have an

mJ = 0 state and 3P1 has mJ = 0,±1. Inclusion of the hyperfine structure is

discussed in the next chapter (Section 4.3).

For the 3P0 and 1S0 we find again that there is a magic crossing point

around 800 nm which is of interest for our lattice clock. Since both clock states
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Figure 3.4: Wavelength and dependent ac Stark shift for the 1S0,
3P0,

3P1(m = 0),
and 3P1(m = ±1) states for different lattice polarizations. The top panel give the
shift for a lattice with input power P=150 mW focused to a waist of 65 µm. The
second panel gives the differential shift for the triplet states relative to the ground
state. The key in the upper panel applies to both graphs. The inset gives the
clock shift for carrier (∆n = 0) transitions originating from different harmonic
oscillator states is discussed in the text.
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are J=0, we find no polarization dependence on the Stark shift. This is in strong

contrast to the 3P1 case. We find for example that the mJ -dependence in 3P1

is so strong, that in the case of π-polarized trapping light the mJ=±1 states

have a magic wavelength crossing in the wavelength region shown and the mJ=0

state does not. This strong dependence of the shift on |mJ | is due to the tensor

component of the light shift, which provides a m2
J -dependent effect. From the

figure, we can see that for the 3P1 state the tensor shift is on the same order of

magnitude as the scalar (mJ -independent) component. The 3P1 state also has a

significant vector (mJ -dependent) light shift in the case of circular polarization

as can be seen in the figure. A detailed discussion of tensor and vector light

shifts is given in Section 4.3 when we introduce nuclear spin to the problem. For

now we simply note that although a magic crossing does exist for the 3P1 state

if the appropriate mJ and polarization are used, the large size of the tensor and

vector light shifts make this case undesirable for the ultimate clock because of the

significant sensitivity to light polarization. From this point on in this work we will

thus be pursuing the 3P0 clock state which shows no vector or tensor light shift of

electronic-spin origin. We will see later that the nuclear spin does result in some

state dependent shifts, however these effects are orders of magnitude smaller than

those affecting the 3P1 state.

3.1.3 Magic Wavelength: Calculation

The crossings points of the polarizability are of the most interest for this

work. Figure 3.5 shows the Stark-free crossing points of the two most relevant

lattice clock possibilities. The left panel shows that the crossing of 1S0 and 3P0

takes place at just below 815 nm, while the second panel shows the crossing of the

1S0 and 3P1(mJ = ±1) states for linear polarization near 917 nm. Both of these

results are in excellent agreement with the experimental values of 813.428(1) nm
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Figure 3.5: Calculation of the Stark shift crossing points for laser power of 150
mW and a waist of 65 µm. The left panel gives the shift of the 3P0 and 1S0

state, while the right panel gives result for the 3P1(m = ±1) state with linear
polarization. In each case the experimental value is shown as a grey bar with the
width representing the experimental uncertainty. Changing the AT value for the
first 3S1 state by 0.5% to 84.6×106 s−1 changes the calculated magic wavelengths
to 813.4 and 914.7 nm, falling within the experimental errors shown

[58, 44, 41, 42] and 914(1) nm [36] suggesting that the polarizability calculation

is fairly accurate.

In principle one can use the measured magic wavelengths to try and back

out more accurate lifetimes of the excited states. This is in fact how the 3S1

A-coefficient was estimated in Ref. [36]. Since we have two measured magic

wavelengths now we could push that method further and try and fit both the 3S

and another lifetime (say the 5s4d 3D state) to the experimental data. However,

we can see this method could be problematic because in our calculation we find

that using the A-coefficient from [36] does not exactly yield the correct magic

wavelength. The likely reason for this is the use of slightly different oscillator

strengths in the polarizability calculation, as well as the inclusion of the fine

structure splitting correction factor in our code.

Before we try and tweak any state lifetimes we can first learn which ones
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are more important by looking at the relative contributions that the first few

levels have to the total light shift. Table 3.3 gives this data for the 1S0,
3P0, and

3P1(m = ±1) states at the relevant magic wavelengths as well as at 10 µm, which

is where the black-body radiation (BBR) spectrum is centered for T=300 K. From

the table we can see for the clock states that one state is dominant at the magic

wavelength, 1P1 for the ground state and 3S1 for the triplet clock states. We

therefore expect the magic crossing point to be most sensitive to these two values.

Another interesting thing to note is that the first 3D state provides a significant

portion of the light shift in the BBR regime, suggesting that it will be important

for future experiments to accurately measure the lifetime of that state. Ideally one

would like to constrain the 3D lifetime by the magic wavelength measurements.

For example, since the 1P1 state lifetime is known with high accuracy, one can let

the 3S and 3D lifetimes be free parameters in the polarizability calculation and

solve for the result that predicts both magic wavelengths within the measured

uncertainties. The problem with this tactic is that near the magic wavelength,

the 3D contribution is fairly small (in fact it is not even in the top three for

shifts) so tweaking that parameter to induce a small polarizability change at the

trapping wavelength will likely not be effective in reducing the uncertainty of the

3D lifetime unless the lifetimes of the more dominant states are known with higher

precision. Furthermore, that small tweak will have a large effect on the BBR Stark

shift value, so you can see we are heading down a dangerous road.

Since our calculation here is so close to both experimental values, we have

tried to improve the agreement by just changing the A value for 3S1 since that

was the one value which was not based on lifetime measurements. We find that

for AT =84.6×106 s−1, for example, we get magic wavelengths of 813.4 nm and

914.7 nm which are in perfect agreement with the experimental data. So how

do we interpret this value? The one thing our calculation did not include is
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Table 3.3: Fractional Light shift for the 1S0,
3P0 and 3P1(m = ±1) states at the

relevant wavelengths. Value represent the size of the light shift from the excited
state in question, compared to the total light shift given as a percentage. Values
are also included for a wavelength of 10 µm which is relevant for estimating clock
shifts due to black body radiation.

1S0
3P0

3P1

813nm 914nm 10µm 813nm 10µm 914nm 10µm
5s6s 3S1 — — — 92 59 94 66
5s7s 3S1 — — — 0.1 0.2 0.2 0.2
5s4d 3D — — — -1.3 27 -1.8 24
5s5d 3D — — — 3.7 5.2 3.6 4.1
5p2 3P — — — 4.3 6.1 2.9 3.4
5s5p 1P 96 95 94 — — — —
5s6p 1P 0.1 0.1 0.2 — — — —

the effect of the continuum states. So it’s possible that this is not an improved

measurement of any transition rate, because we may just be compensating for the

lack of continuum states in the calculation by boosting the strength of one of the

transitions (the calculation in [36] also ignores the continuum). For now we just

conclude that it is the best rate for predicting the magic wavelengths, and it is in

agreement with the experimental values that vary between 6.7-9.2×107 s−1.

As we can calculate the magic wavelength for the two clock transitions, we

can also calculate the clock sensitivity to wavelength fluctuations. For the 1S0-
3P0

state we find that for our trap depth of UT =120 kHz, or in terms of lattice recoils

UT =35 ER, the wavelength sensitivity for deviations from the magic wavelength

is ∼ 0.35 kHz/nm. Or in terms of an arbitrary lattice depth given in units of

ER, the shift coefficient is 10 Hz/(nm ER). From here we can set the precision

needed for the lattice laser frequency stabilization for a given system to reach an

accuracy of 10−18 (0.5 mHz) at the level of 5×10−5/UT for UT given in units of ER.

For our trapping potential the resulting limit is at the 1.5×10−6 level, meaning

lattice frequency stabilization at the MHz level is more than sufficient. This is an

amazing level of suppression and should be trivial to achieve with current laser
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technology. The sensitivity for the 3P1 transition is even smaller by about a factor

of two.

A final thought on the magic wavelength issue is to consider choosing a

different crossing where the trap is blue detuned. In a blue detuned trap the

atoms are repelled from strong intensity zones and are trapped in nodes of the

standing wave. This could be advantageous in that the actual Stark shift of the

atoms is small compared to the red-detuned case, and therefore may be easier to

control. This might be important if some of the polarization issues discussed in the

next chapter limit the accuracy of the clock. From our polarizability calculation

we find such a crossing at 389 nm which is not unthinkable as a laser wavelength.

At the highest intensity point, for similar power (150 mW) and waist (65 µm)

as before, the Stark shift is similar in magnitude to the red detuned case ∼+150

kHz, while the wavelength sensitivity is larger (but still nice) at 10 kHz/nm. These

number should be dramatically less in practice since the atoms will be repelled

from the highest intensity point. The drawbacks to this scheme include more

complicated generation of the trapping light, and that to implement a trap one

has to go directly to a 3D lattice since the atoms will be radially ejected from

the trap in a 1D system. It will be interesting to see if the Stark shifts in the

red-detuned magic wavelength lattice get difficult enough to prompt exploration

of such a system.

3.2 Spectroscopy in a 1-D Lattice: Theoretical

We now turn our focus to a theoretical discussion of the properties we can

expect for spectroscopy of atoms trapped in the lattice. This will be essential

for the design of a lattice clock system as a number of important effects depend

on trap depth, atom temperature, beam alignment and so on. In this section we

discuss the absorption profile of bound atoms which is well known from trapped
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ion experiments, and generalize it to our specific case of a 1D trap defined by a

standing wave laser.

3.2.1 Spectroscopy of Atoms Confined in a 1-D Harmonic Potential

For an atomic transition with linewidth Γa and frequency ω0, the absorption

signal for atoms trapped in a 1D harmonic potential with trap energy levels Eni
,

and with probability distribution among the n sublevels P (ni) is given by [94, 93]

S ∝
∑
nj ,ni

P (ni)
|〈nj|eikzz|ni〉|2

1 + 4
Γ2

a
(ω0 − ωL + (Enj

− Eni
)/h)2

, (3.11)

where ωL is the frequency of probe laser traveling along the z axis described by a

traveling plane wave eikzz. The positions of the energy levels are given by

En = hνz

(
n +

1

2

)
. (3.12)

with νz being the trap frequency as before. Typically, we assume the Lamb-

Dicke condition that the product of the probe wave vector ~k = 2π/λp and the

characteristic oscillator length z0 =
√

~/4πMνz is much less then one. This

essentially parameterizes the motion of the atom in the trap as compared to the

wavelength of the probing light λp. In the Lamb-Dicke regime, the matrix element

in Eq 3.11 can be found by expanding the exponent to first order and expanding

the z operator in terms of z0 and the usual raising (a†) and lowering (a) operators

such that we find for the matrix element

〈nj|eikzz|ni〉 ≈〈nj|1|ni〉+ 〈nj|ikzz|ni〉 = δni,nj
+ ikzz0〈nj|a + a†|ni〉

= δni,nj
+ ikzz0(

√
niδni+1,nj

+
√

ni + 1δni−1,nj
)

(3.13)

If we then square the matrix element we find that only three terms remain, giving

|〈nj|eikzz|ni〉|2 = δ2
ni,nj

+ η2
z

(
niδ

2
ni+1,nj

+ (ni + 1)δ2
ni−1,nj

)
(3.14)
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Where we have defined the product kzz0 as the Lamb-Dicke parameter ηz

ηz ≡ kzz0 =
1

λp

√
h

2Mνz

=

√
νrecoil

νz

(3.15)

which we can see also parameterizes the trap depth in comparison to the recoil

frequency for absorption of the probe light.

For a general value of kz and z0 (or ηz) the solution to the matrix element

is also well known [93] as

〈nj|eikzz|ni〉 = e−
1
2
(ηz)2

√
n<!

(n< + ∆n)!
(iηz)

∆nL∆n
n<

[(ηz)
2], (3.16)

where n< is the lower of the two motional states, ∆n gives the change in motional

quantum, and L∆n
n<

[(ηz)
2] is the generalized Laguerre polynomial. This reduces to

the results of Eq. 3.14 if it is assumed ηz � 1.

If we combine Eq. 3.14 with Eq. 3.11 we can begin to understand what the

absorption spectrum for a trapped atom will look like. In the Lamb-Dicke regime

we will have only three non-zero situations where absorption can take place. For

simplicity we will first consider the case of a single atom in the ni motional state

and the 1S0 electronic state, in a harmonic potential which is identical for the two

clock states. This situation is shown schematically in Fig. 3.6 for a cos2 potential

with an atom in the ni = 1 motional state. For excitation where ∆n = nj−ni = 0

(known as a carrier transition), only the delta function in the first term of Eq. 3.14

survives and the atoms will absorb light at the frequency ωL = ω0 and be moved

to the excited 3P0 state. Therefore we will have a narrow absorption feature at

the natural frequency of the transition. Two other features will be present in the

absorption spectrum due to the δni+1,nj
and δni−1,nj

terms in the matrix element.

For the first of these two cases, the absorption results in an increase of the motional

quantum number ni by 1, and the position of the resonance is shifted from the

atomic frequency by νz×(ni +3/2)−νz×(ni +1/2)=νz. From Eq. 3.14 we can see
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Figure 3.6: Schematic of lattice spectroscopy (left) shows a ground state atom in
a bound motional state n=1. In the Lamb-Dicke regime we expect to see three
absorption features. The strongest transition is the one where the motional state
does not change (∆n = 0), known as the carrier transition. Transitions where
∆n =-1, known as red side bands are suppressed by a factor of η2n compared
to that of the carrier transition. Transitions where ∆n =+1, known as blue side
bands are suppressed by a factor of η2(n + 1). The right panel shows the effect of
trap anharmonicity on the spacing of the motional states in the lattice. The red
diamonds are given for a trap depth of UT =35 ER = 120 kHz which is assumed to
be purely harmonic. The blue circles show the position of the energy levels for the
more realistic cos2 potential of the same depth provided by calculations in [106].

that the relative strength of this spectral feature compared to that of the carrier

transition is given by η2
z(ni + 1). The δni−1,nj

term in the matrix element results

in a similar feature where this time the motional quantum number is reduced by

1, and the resonance is at a frequency -νz with relative strength η2ni. These two

features are referred to as motional sidebands and from here out are referred to as

blue (∆n = 1) and red (∆n = −1) sidebands due to the relative frequency of the

features compared to the central carrier transition. If we are in the Lamb-Dicke

regime, the trap frequency is large compared to the recoil frequency. If we also

assume the clock transition is narrow compared to the trap frequency, then we

are in the resolved sideband regime of spectroscopy where the motional sideband

are completely resolved from the carrier.
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In the Lamb-Dicke and resolved sideband regimes we have some significant

spectroscopic advantages as compared to free space spectroscopy. In free space,

the absorption feature depends strongly on the temperature of the atoms and

includes the effect of recoil. In the lattice case, the temperature of the atomic

sample determines the distribution among the oscillator states in the trap. From

our analysis above, we found that the frequency of the carrier transition does not

depend on the state ni, whereas the motional sideband features do. Although

the sideband features will have a temperature dependence, they are suppressed

by a factor of η2
z and are at a large detuning compared to the transition width.

Therefore the effect of atomic motion on the carrier transition should be very

small, reduced to an issue of potential line-pulling effects. We can then expect

that if the carrier transition is used, we will be able to perform spectroscopy nearly

free of any Doppler or recoil effects. The magic wavelength concept is crucial for

practical implementation of this idea because we are relying on the fact that the

trap frequencies (which we saw depend on the Stark shift) are the same in the

ground and excited state. If the trap potentials are different, then the carrier

frequency will depend on the motional state ni as

∆ν(λ, ni) = ∆ν(λ) + ∆νz(λ)× (ni + 1/2) (3.17)

where ∆ν(λ) is the differential Stark shift of the clock states at a wavelength λ,

and ∆νz(λ) is the differential trap frequency for the clock states. The inset of

Fig. 3.4 shows this effect as the clock shift for carrier transitions from different

ground states n are shown as a function of trapping wavelength. From the figure

we can understand that deviation from λm results not only in frequency shift, but

also in line shape deformation when multiple levels are populated.
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3.2.2 The Effect of Trap Anharmonicity

So far we have assumed that the trap is purely harmonic. Of course we know

a purely harmonic potential is un-physical here because the trap is not infinitely

deep. In actuality, the standing wave pattern is a cos2 potential having some

anharmonic characteristics which affect the absorption spectrum and should be

considered here. The main effect of the anharmonicity is to modify the energy of

the quantized motional states in the trap. This effect has been explored elsewhere

[106, 107, 108] in detail, here we will only give the final result for the assumed

trapping depth of 35ER. The right panel of Fig. 3.6 shows the calculation of

the energy of the motional states in kHz, for a purely harmonic (red diamonds)

and a cos2 (blue circles) potential. For the first two ladder states, we find that

the harmonic approximation is very good, as can be expected because the cos2

potential is well approximated by a harmonic potential for small deviations from

the potential minimum. As we look at larger n states, the disagreement begins to

show up. In fact, in this case we find that there is actually one less bound state for

the cos2 potential than that of the harmonic potential. Given the deviation from

a harmonic potential, we expect that the absorption spectrum must be altered.

For the carrier transition, as long as the magic wavelength condition is met, we do

not expect any change in the spectrum because the ground and excited trapping

potentials will still be identical. The positions of the motional sidebands on the

other hand depend on the difference in the trap frequency νz for the different

n levels. In the harmonic case the difference in energy for neighboring n states

is independent of n, simply given by νz. In the more realistic anharmonic case,

the energy difference depends on how deep in the potential the state n is, and

Therefore the detuning of the motional sideband will depend on the n level that

the atom is in.
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Figure 3.7: The effect of trap anharmonicity on the absorption spectrum of bound
atoms. The graph shows the simulated absorption spectrum for three atoms in a
trap of depth UT =35ER with one atom in each of the first three n states. For the
harmonic potential (red curve) the motional sidebands are degenerate. For the
cos2 potential (blue curve), the anharmonicity breaks the degeneracy and multiple
side bands are observed. The carrier feature is unchanged by the anharmonicity.

Figure 3.7 gives an example of this difference between purely harmonic and

anharmonic absorption spectra. Here we consider the case where we have three

atoms in the potential, one in each of the first three (n=0,1,2) motional states.

For the harmonic spectrum (red curve), we find that motional sidebands will be

located at ±40 kHz, suppressed in amplitude (relative to the carrier signal) by

a common factor of η2
z ' 0.1. The red sideband amplitude is also scaled by the

average value of n which in this case is 1. The blue sideband is scaled by the

average value of n+1, so it is twice as strong as the red sideband for the case

described here. It is expected that for atoms near the ground state of the trap,

the blue side band feature will be stronger than that of the red side band. This

is easily understood if one considers that for an atom in the ground state there
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is no lower energy bound state in the potential, so the red sideband vanishes.

In the anharmonic case, the positions of the sidebands depend on the motional

state, so we see a number of absorption features. This should not affect the

carrier line shape as long as the frequency separation between the carrier and first

motional sideband is large compared to the carrier width. Analysis of the sideband

spectrum on the other hand, a useful tool for characterizing trap properties and

atom temperature, does become more complex in an anharmonic potential.

For the remainder of this section we will assume that the harmonic approx-

imation is good enough for describing the physics of lattice spectroscopy. For

sufficiently cold atoms, this is certainly a valid assumption.

3.2.3 The Effect of Radial Motion on the Sideband Spectrum

Up to this point, we have neglected the effect of the radial motion (described

by Eq. 3.3) on the spectroscopic properties of the lattice clock system. The radial

motion does in fact alter the absorption spectrum of the confined atoms signifi-

cantly. Here we will consider the effect of radial motion on the sideband spectrum,

in the next subsection we will also see how the radial degree of freedom affects

the Rabi excitation spectrum of the carrier.

The atoms in our trap are tightly confined in the longitudinal direction of

the lattice, however in the radial direction the confinement is much weaker, due to

the gaussian profile of the laser beam (See Eqs. 3.2 and 3.3). The effect of interest

in this subsection is that the atoms can move radially in the trap, which changes

the trap intensity that the atoms see as a function of radial position. Therefore

the atoms will see a different longitudinal trap frequency depending on their radial

position in the trap. Once again we find that at the magic wavelength, the carrier

signal is not affected by this motion because the effect will be identical in the

two clock states. The longitudinal sidebands however are sensitive to this motion
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because their frequency position depends on the local trap intensity. Since any

radial motion from the center of the trap reduces the intensity seen by the atom, we

expect that the motion results in asymmetric broadening of the sideband feature

towards the carrier. The size of which will depend on the average excursion of the

atoms in the trap, or more specifically, the trap parameters and atom temperature.

For our assumed trap parameters of P=150 mW and w0=65 µm, the radial

trap frequency at the magic wavelength is given by Eq. 3.3, yielding νx '125

Hz. With the known trap frequency, we can calculate the 1/e2 waist of the atom

distribution, watoms, for a given temperature T as watoms=2
√
〈x2〉 where

√
〈x2〉 is

the length scale of the trap oscillation given by

√
〈x2〉 = x0(2〈nx〉+ 1) (3.18)

As before x0 =
√

~/2M(2πνx). For an ensemble of atoms in the trap the average

n value in the x direction is simply determined by a Boltzman distribution as

〈nx〉 =
∑
nx

P (nx)nx =

∑∞
nx=0 nxe

−nxhνx/kBT∑∞
nx=0 e−nxhνx/kBT

. (3.19)

To estimate the absorption signal of the blue sideband in the presence of the radial

motion we use the following expression

S ∝
√

2√
πwatoms

∫ ∞

−∞

γNae
−2x′2/w2

atoms

(νL − νze−x′2/w2
0)2 − γ2

dx′. (3.20)

Here we have a convolution of the Lorentzian absorption profile for a transition

width γ, and the atomic distribution with a 1/e2 waist watoms. The numerator of

the integral takes into account the portion of the total atom number Na which

contributes to the signal for a given position along the x′ axis. The first term in

the denominator is an effective detuning of the laser frequency νL from position of

the sideband resonance, which takes into account the fact that the frequency of the

resonance depends on the position of the atom x′ within the gaussian distribution
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Figure 3.8: The effect of Radial Motion on the Sideband Lineshape. The absorp-
tion profile for a single blue sideband, given by Eq. 3.20 with w0=65µm, νz=40
kHz, and νx=125 Hz, for different radial temperatures. As the radial temperature
of the atoms increases, the atoms sample positions of the lattice with lower trap
intensity and Therefore a smaller longitudinal trap frequency. The result is an
asymmetric broadening which gets quite drastic as the temperature rises. Here a
transition width of 500 Hz is assumed for presentation purposes.

of the laser with waist w0. We have assumed that the probe laser waist is large

compared to all other dimensions in the problem such that the probe intensity

is constant for all regions of the trap. Note that the reason the argument in the

exponential term in the denominator is missing the usual factor of two (given

that w0 is the 1/e2 laser waist) is because the frequency of the sideband resonance

depends on the square root of the light intensity. Using Eq. 3.20 we can then

plot the absorption signal for our trap having νz=40 kHz, νx=125 Hz, and w0=65

µm. This is done in Fig. 3.8 where we have plotted the absorption spectrum

of the longitudinal blue sideband for different temperatures (and hence 〈nx〉 and

watoms values) assuming a transition width of 500 Hz for convenience. The figure
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shows that for the trap parameters here, a radial temperature of only a few µK

results in significant asymmetric broadening of the sideband. Note that even in

the limit that the radial temperature goes to zero, some asymmetry remains since

watoms → x0 as T → 0.

Another sideband effect to consider here is that the radial motion in the trap

also results in red and blue motional sidebands at the radial trap frequency of 125

Hz. This could be of great concern for the carrier as these absorption features are

much closer than the longitudinal sidebands. Fortunately, as we will see in the

next subsection, these peaks will be strongly suppressed in a carefully designed

setup.

3.2.4 The Effect of Motion on the Rabi Frequency

The final effect we will consider in this theoretical spectroscopy section is

the effect that atomic motion has on the ability to excite all of the atoms in

a sample. Thus far in all of our absorption profiles we have assumed that the

trapped atoms can absorb the probe photons with unity efficiency such that 100%

of the atoms can be excited by a single spectroscopic pulse. It turns out that

this is not true in practice for a number of reasons. To explore how well we can

excite the population to the 3P0 state we need to first consider how the excitation

fraction depends on different trap parameters. In free space, the probability for

excitation Pe of an atom for a probe resonant with the clock transition is given

by a simple expression

Pe = sin2

(
Ωct

2

)
(3.21)

where Ω2
c=(Ip/2Isat)×(2πγ)2 is the Rabi frequency of the clock transition, t is the

spectroscopic pulse duration, and we have assumed that all decoherences such as

excited state lifetime are negligible for the region of interest. From this expression
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it is simple to calculate the needed probe intensity for a given probe time to excite

100% of the population by setting Ωct = π.

For bound atoms in a 3D potential, the situation is a bit more complicated

as the quantum states n come into play. The Rabi frequency for example is given

by [93]

Ω = Ωc〈n′|ei~k·~x|n〉 = Ωc|〈n′
x|eikxx|nx〉||〈n′

y|eikyy|ny〉||〈n′
z|eikzz|nz〉|. (3.22)

For the carrier transition (∆n = 0) using Eq. 3.16, this simplifies to

Ω∆n=0 = Ωce
−

(η2
x+η2

y+η2
z)

2 L0
nx

[(ηx)
2]L0

ny
[(ηy)

2]L0
nz

[(ηz)
2] (3.23)

Where we have used Lamb-Dicke parameters for a laser propagating along k̂,

probing an atom in motion along the axis î, defined as

ηi = cos(k̂ · î + δθ)
1

λp

√
h

2Mνi

. (3.24)

In our situation we have a probe aligned along the z-axis such that k̂ · x̂ = k̂ · ŷ = π
2

and k̂ · ẑ = 0. The second term in the cosine argument (δθ) allows for a small

mismatch between the spectroscopy and motional axes due to beam misalignment

or differential focusing of the probe and lattice beams. If we assume that we

are probing along the strong confinement axis provided by the standing wave

pattern, then we have ηz ' 1
λp

√
h

2Mνz
. The weak confinement is provided by the

gaussian shape of the lattice beam and results in radially symmetric motion with

a frequency νr. Our solution above (Eq. 3.23) for the Rabi frequency is for an

atom bound independently in x, y, and z so we need to include some additional

assumptions to more accurately describe our real system. First, we make a simple

approximation that the x and y trap frequencies are roughly given by the true

radial trap frequency such that ηx = ηy ' ηr = δθ
λp

√
h

2Mνr
. Second, we constrain

the possible state occupation as nx = ny ' nr to reflect the real situation where
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Figure 3.9: The effect of longitudinal motion on the Rabi frequency is shown by
plotting the Rabi frequency as a function of nz for different trap depths. Here we
have assumed a purely 1D system.

the atom occupation is given only by the states nz and nr. In this way we can

use the well known solution given in Eq. 3.23 for a three dimensional bound atom

but described, albeit as an approximation, in terms of the trap frequency and

quantum states of our quasi 2D system.

From Eq. 3.23 we can see that the Rabi frequency for a bound atom will

depend on the trapping parameters, such as longitudinal and radial trap frequen-

cies, as well as the quantum state of motion. To explore how the Rabi frequency

scales with these various trap properties we first return to the simple 1D case

where the radial contributions are ignored. Figure 3.9 gives the bound atom Rabi

frequency (as a fraction of the free space Rabi frequency) for different trap states

nz and different trap frequencies (or equivalently Lamb-Dicke parameters). The

figure shows quite clearly that the Rabi frequency has a significant dependence

on n, which gets less pronounced as the trap gets deeper. Note also how even
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Figure 3.10: The effect of atomic motion on the excitation fraction. In the left
panel the excitation probability is shown versus the product Ωt to show the usual
Rabi-flopping diagram which allows optimization of the pulse time and intensity
to reach the desired excitation fraction. The excitation is shown for our typical
trap parameters and different temperatures. The right panel show the resulting
excitation for a fixed temperature of 1.5 µK but for varying trap frequencies.

for the deepest bound state n = 0 the fraction never quite gets to 1 because of

the non-zero Lamb-Dicke parameter (i.e. some of the excitation must go into the

change in motional quanta if η > 0).

Turning our attention to an ensemble of bound atoms, since we do see a

strong n dependence for the conditions we expect in our experiment (νz=40 kHz),

we know that the expression for the excitation fraction of a free space ensemble is

insufficient to describe atoms populating the various n levels. We therefore must

sum the contribution of the different n dependent Rabi frequencies weighted by the

thermal distribution of atoms P (n) in the given states n (here we only include one

population factor for the transverse motion because we have previously assumed

that nx=ny' nr is fixed for our trap description). The excitation probability is

then given by

Pe =
∑
nz

∑
nr

P (nz)P (nr) sin2

(
Ω∆n=0t

2

)
(3.25)

Instantly we can see that the total ensemble excitation fraction will depend on
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Figure 3.11: The effect of radial motion on the Rabi frequency is shown in the
left panel as a function of nr for the first three longitudinal motion states. The
calculation is done assuming our typical longitudinal trap frequency of 40 kHz,
and a radial Lamb-Dicke parameter is assumed to be 0.06. The right panel shows
the nr dependence of the Rabi frequency for atoms in the nz = 0 ground state, for
different Lamb-Dicke parameters for the radial axis. From here we can see that
reducing ηr either by beam alignment or radial trap frequency can drastically
reduce the motional dephasing of the Rabi frequencies.

trap temperature as well as trap depth. The excitation probability is plotted in

Fig. 3.10 to show this effect, where we again consider the 1D case only. In the first

panel, the excitation probability is plotted for a trap depth of 35ER for different

ensemble temperatures. The calculation shows that for a fixed trap depth, the

contrast of the standard “Rabi-flopping” fringes is reduced as the temperature is

increased. Again, this is due to the fact that the atoms are filling up more n levels

as the temperature increases, such that the Rabi frequencies become different and

dephase the oscillatory pattern. the second panel shows a similar effect takes place

when the trap depth is varied for a fixed temperature of 1.5 µk. In both graphs

we must conclude that keeping the temperature cold enough to only populate the

first nz state would be ideal if we want to keep our possible excitation fraction

large.

Now that we have a feel for how the temperature and trap depth can play
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an important role, we consider the more complicated case by including the effect

of radial motion. We again need to see how the Rabi frequency depends on dif-

ferent parameters, which now will depend not just on the motional state, but also

on the Lamb-Dicke parameter in the radial direction determined by the k-vector

misalignment angle δθ. We assume that care is taken in aligning the probe along

the lattice axis such that δθ is small, and that the misalignment angle is some-

what of a global factor that accounts for both beam overlap and focusing issues.

Figure 3.11 gives the dependence of the Rabi frequency for different situations

using Eq. 3.23 and our assumptions that ηx = ηy ' ηr and nx = ny ' nr. The

first panel assumes our standard designed trap frequencies of 40 kHz and 125 Hz,

as well as a misalignment angle of about 10 mRad (ηx=ηy=ηr=0.06). The Rabi

frequency is plotted as a function of nr for different values of nz. The second

figure shows the nr dependence of the Rabi frequency (assuming the nz=0 state)

for different radial Lamb-Dicke parameters. As the lamb-Dicke parameter gets

smaller, either by alignment or increased trap frequency, the dependence of Ω on

nr is relaxed.

With the n dependence of the Rabi frequency sorted out we can return

to Eq. 3.25 to see the effect on an ensemble of atoms in the lattice. We can

evaluate how the excitation fraction depends on parameters such as temperature

and radial trap frequency, and beam misalignment. Here we assume our standard

longitudinal trap frequency of 40 kHz and vary the other parameters in the system.

We assume for simplicity that the radial and axial temperatures are the same. The

top panel of Fig. 3.12 gives the excitation fraction plot for our trap parameters

with T=1.5 µK for different misalignment angles. Once again we see a dephasing

of the expected Rabi-flopping due to the atomic motion. From this calculation

we see that alignment to better than 1 mRad is desirable for our trap parameters.

However, in a realistic situation it may be difficult to guarantee such a strict
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constraint on alignment and focusing. If we instead constrain the misalignment

angle to 10 mRad, we can see if it is possible to have a good excitation fraction by

controlling the atom temperature or trap depth. The middle panel in the figure

shows how the excitation can be improved for our fixed longitudinal frequency

and misalignment (θ=10 mRad), by increasing the radial trap frequency. We see

that as the trap gets deeper in the radial direction, the effect of the misalignment

is lessened. The final graph shows the importance of the ensemble temperature

on the excitation. From the figure we see that if we are to use or prototype

trap parameters and θ=10 mRad, it is important that the temperature of the

sample be kept as low as possible. Note we have not included any decoherence

in the calculation due to the excited state lifetime, the laser spectrum, or the

trap lifetime. The decay to 0.5 is instead a result of destructive interference.

Interestingly the beating of the different Rabi frequencies often results in a revival

of the fringe pattern at longer times.

3.2.5 Discussion: How should I Design My Trap?

Now that we have looked into some specifics of our lattice, we can re-visit

the questions we posed earlier to see if the scheme is a viable one for our proposed

optical lattice clock for the 1S0-
3P0 transition with a trap depth of UT =35ER.

1. Is λm is a practical wavelength, and is the required frequency stability

reasonable?

We found that the magic wavelength for the transition is at 813 nm which is a

wavelength easily accessible by either a Ti:Sapphire laser or a diode laser system

with tapered amplifiers. Output power of hundreds of mW from these lasers is

common. The sensitivity of the clock shift to wavelength errors was found to be

350 Hz/nm at our trap depth, such that the trapping laser needs to be stabilized

to about 1 MHz to keep the clock shifts below 10−18. The level of stabilization is
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trivial compared to other lasers in the system, and will not be a concern. X

2. Can we perform spectroscopy in the Lamb-Dicke limit (νTrap > νRecoil)

and in the resolved sideband limit (νTrap > γClock)?

At our trap depth, the trap frequency is about 10 times larger than the recoil

frequency, such that the Lamb-Dicke condition is satisfied. The longitudinal side-

bands are well resolved so we can expect a Doppler-and recoil-free absorption

spectrum. For the radial motion, the trap frequency is smaller than the recoil

frequency, and the sidebands are only 125 Hz away from the carrier. Fortunately,

if we align our probe laser along the lattice axis, the Lamb-Dicke parameter for

the radial motion is suppressed by a factor of δθ, which can be a few mRad, such

that the radial sidebands can be suppressed relative to the carrier signal by orders

of magnitude. We will see in the experimental section, that the carrier will be

narrower than 100 Hz such that we are still in the resolved sideband regime. X

3. Can we efficiently load atoms into the lattice (U0 > kBT )?

Our trapping depth of 35ER can be expressed as a temperature of about 7 µK.

From our narrow line cooling results we can expect the atoms sample to be in the

1 µK range, easily trapped by the lattice potential. X

4. Is the absorption rate for lattice photons at λm and U0 an issue?

The concern here is that the atoms could scatter lattice photons which can heat the

atoms out of the trap and limit the trap lifetime. Since we want a long lifetime for

resolving narrow lines, this effect is important to consider. The photon scattering

rate is related to the trap depth [109] and can be estimated by

Γsc =
Γ

∆

U

~
. (3.26)

For a trap depth of 35 ER the corresponding scattering rate for atoms in the 1S0

state is estimated to be 0.09 s−1. Therefore for our trapping depth the lifetime

limitation from photon scattering can be expected to be tens of seconds, exceeding
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the coherence time of state of the art lasers. X

5. Is the light shift polarization dependence at λm and U0 significant?

In this chapter we have found that for the 3P0 transition there is no polarization

dependence of the light shift. In the next chapter we explore how the hyperfine

structure does introduce a small sensitivity to polarization. In practice, there are

ways to eliminate this effect as we shall see, so for now we can assume the problem

is under control X

6. Is the fourth order Stark shift at λm and U0 negligible?

So far we have not discussed the possibility of higher order light shifts which

scale as U2
T . These can be a concern for the magic wavelength concept as they

result in an additional shift that depends on the trap. The influence of possible

two-photon transitions from the clock states lead to a hyperpolarizability which

provides shift proportional to U2
T . Specifically for the 3P0 states, there are two of

these transitions near the magic wavelength, the first is the 3P0-5s7p
1P1 transition

at 813.36 nm, which is forbidden to leading order but is very close to the magic

wavelength, and the second is the 3P0-5s4f
3F2 transition at 818.57 nm which is

a completely allowed two photon transition. The effect of the hyperpolarizability

has been explored theoretically [39, 48] and experimentally [41, 43] elsewhere and

will not be discussed in detail in this work. The best available experimental limits

[43] for the size of this effect is a frequency shifts of 4.5(4.5) µHz/((UT /ER)2)

which for out trap depth results in a shift of at most 10 mHz. Since this effect

can be characterized by varying the trap depth one expects it will not be a limit

for reaching mHz clock accuracy. X

Our trap seems to satisfy all of the criteria set up in the beginning of this

chapter for a clock, however, these are by no means the best trap parameters to

perform experiments with. Instead, they simply correspond to the values which

are used in the experimental system we use in the rest of this work. From our
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discussion of Rabi frequency effects, we might desire a deeper trap to eliminate

some of the dephasing problems we found. This could also help to reduce any

possible line-pulling effects from motional sidebands, although at the level of 10−17

it appears unimportant. One can go to significantly deeper traps by using a smaller

waist or larger beam power, as long as the hyperpolarizability effect is kept in mind

as it will increase as the square of the trap depth. For shallower traps, one can also

reduce the Rabi dephasing by implementing extra laser cooling for the trapped

atoms [91] such that the 〈n〉 is reduced. Another effect not discussed here is the

effect of site to site tunneling between lattice wells. If a trap is too shallow, one

expects tunneling between different wells which can result in decoherence, and

even lineshape asymmetry limiting both the Q and accuracy of the clock. These

effects are discussed in [110], and are not expected to affect the lattice clock for

depths of 10ER and higher, if a vertically oriented lattice is used.

The best trap parameters for the clock will eventually depend on the largest

systematic in the frequency evaluation. The trap will likely be designed to mini-

mize the effects which are the most difficult to calibrate. Our best guess for now is

that we would like to avoid any hyperpolarizability effects so we chose a relatively

shallow trap.

3.3 Spectroscopy in a 1-D Lattice: Experimental

We have now built up a good understanding of what trap parameters are

desirable for our lattice clock experiment. In this section we describe the im-

plementation of the optical lattice clock, as well as a number of spectroscopic

measurements. We report on measurements of the magic wavelength and sensi-

tivity to deviations from that value. We explore the effect of atomic motion in the

lattice by directly exciting the motional sidebands. Finally we push the system to

the limit in terms of line Q, to see just how well the lattice clock will work for a
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high precision clock. An experimental accuracy evaluation is reserved for a later

chapter, after we have explored the consequences of hyperfine structure in detail.

3.3.1 The Clock Laser @ 698 nm

To take advantage of our expected Doppler free line Q and the ridiculously

small natural linewidth of 1 mHz for the clock transition, we need to eliminate

all sources of decoherence in our spectroscopy system. From our analysis in the

previous sections, it seems the lattice technique solves the motional decoherence

issues for the atomic sample, at least for time scales smaller than the trap lifetime.

The remaining issue then is the interaction of the atomic sample with the clock

laser. The oscillator noise can effect clock performance in a number of ways. The

most obvious effect is that the achievable line Q in a clock will be limited by the

laser linewidth. It is in fact desirable to operate the clock at a Q larger than

the inherent laser noise so that the spectrum is repeatable and the S/N is not

affected by the laser noise. The laser drift can also cause a problem if the free

running oscillator drift is similar to the width of the absorption profile for the

relevant time scales of the experiment. During clock operation, the free running

laser noise typically determines the short-term stability until time scales where

the cold atom signal steers the laser. Even at longer time scales, however the Dick

effect [111] becomes important, as high frequency laser noise can be aliased down

to very low frequencies since the laser is only corrected by the atoms at regular

intervals and not continuously. In light of all of these effects it is crucial to develop

a laser with both a narrow intrinsic linewidth as well as small frequency drift and

low instability. Development of such an oscillator to probe the Sr clock transition

at 698 nm has therefore been one of the central focuses of work in our lab. This

topic could fill an entire chapter (or even thesis) but since this author has not

been the driving force for this particular part of our lattice clock development,
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Figure 3.13: Image of the ULE cavity used for stabilization of our clock laser at
698 nm.

only the general features of the laser are described here. Full details of the laser

system are discussed in detail elsewhere [112].

To create the clock laser, a grating-stabilized diode laser at 698 nm is locked

to a high-finesse (∼ 200, 000) ultra-low-expansion (ULE) cavity, with a free spec-

tral range of 2 GHz, using the Pound-Drever-Hall technique [78]. This configura-

tion allows stabilization of the laser frequency to below the mHz level relative to

the frequency defined by the optical cavity. The problem then boils down to de-

signing the reference cavity in such a way as to minimize mechanical shaking and

expansion which will end up as frequency noise and drift on the clock laser. The

ULE material is chosen to make the reference cavity for two reasons. First, the
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coefficient for thermal expansion of ULE glass can be zero near room temperature

which helps to keep the drift in the length of the cavity small, and equivalently

the frequency drift of the laser. The second reason for choosing ULE glass is

more subtle. Thermal mechanical noise in the cavity material, mirrors, and mir-

ror coatings has recently been brought to attention as a major limiting effect in

the stability of the laser [113, 114]. For a non-zero temperature, the material in

the mirrors for example undergoes Brownian motion causing deformation of the

material, which causes the resonant frequency of the cavity to fluctuate. The

strength of the effect depends on the geometry of the cavity and the mechanical

Q of the material, where it can be understood that higher Q values are better for

suppressing this effect because mechanical resonances will be sharper, having less

effect at low frequencies. ULE has a higher Q than zerodur which is also com-

monly used for cavities. The Q of ULE is smaller than another common material,

fused silica, but with fused silica the coefficient for thermal expansion is much

larger than ULE at room temperature. Low frequency mechanical vibrations are

another very serious concern for cavity design. To even get to the point where

thermal noise becomes an issue, the vibrations must be addressed. Our cavity

is mounted in a vertical orientation in order to reduce fluctuations of the cavity

length due to vibrations [115]. The cavity is under vacuum and mounted on a

compact, passive vibration-isolation table, and is shown in Fig. 3.13.

The clock laser performance has been characterized in a number of ways,

including direct comparison of two similar systems at 698 nm, comparison to

highly stabilized lasers at other colors using the fs-comb, and by precision atomic

spectroscopy (discussed in the upcoming sections of this chapter). Figure 3.14

summarizes the performance of the clock laser as determined by direct comparison

between the two 698nm systems via heterodyne beat. The beat reveals narrow

linewidths sometimes below 300 mHz for integration times of a few seconds. The



94

10-15
2

4

10-14
2

4

10-13

A
lla

n 
D

ev
ia

tio
n

0.001 0.01 0.1 1 10 100
Averaging Time [s]

-6 -4 -2 0 2 4 6 8 10

0

1

2

3

 

 

L
in

ea
r 

Si
gn

al
 (a

. u
.) Optical 

linewidth:
~300 mHz

Hz

Figure 3.14: The graph shows the Allan deviation of a heterodyne beat between
two similar 698 nm systems (linear drift removed). The 1 s stability is at 1×10−15

consistent with the thermal noise limit of the cavity. The inset shows the narrow
beat between the two oscillators for a resolution bandwidth (RBW) of 333 mHz.
The beat linewidth is 340 mHz, suggesting the measurement is RBW limited. If we
assume the two lasers contribute equal noise we can estimate the linewidth in this
case is less than 250 mHz. Multiple measurements with the same conditions show
that the beat linewidth is typically between 340 and 450 mHz. For integration
times of 60 seconds, the beat broadens to nearly 2 Hz.

Allan deviation shown reveals that the fractional frequency noise of the beat is

1×10−15 at 1 s, consistent with the expected limit set by thermal-mechanical noise

in the cavity mirrors and mirror coatings. The drift of the laser is typically less

than 1 Hz/s. This is still on the large side if we hope to scan out Hz level lines. To

further suppress the drift we monitor the laser frequency relative to a hydrogen

maser via the fs-comb. We then apply a frequency ramp to an AOM in the clock

laser system to compensate for the drift relative to the maser. This works well

for long times scales (many 100s of seconds), typically allowing us to reduce the

long-term linear drift to 100 mHz/s. At shorter timescales of course the maser

information is too noisy to be useful for any laser correction (that’s what the Sr
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will be for!!!).

With the sub-Hz linewidth shown here we are in great shape for lattice

spectroscopy and clock operation. For longer integration times of tens of seconds

the beat between our lasers is still less than 2 Hz so we should expect that we

can see spectral features of similar widths from our atoms if all other decoherence

processes are controlled.

3.3.2 The Optical Lattice Setup

Here we describe the setup used for optical lattice spectroscopy. The main

change from the setup discussed in Chapter 2 is the addition of the lattice and

spectroscopy laser to the system. The general features of the apparatus are sum-

marized in Fig. 3.15. The light for the standing wave is generated by a CW

Ti:Sapphire laser operating at a wavelength of 813.4280(5) nm, monitored by a

high precision wavemeter. To improve the spatial mode, the light is spatially fil-

tered by transmission through a single-mode polarization maintaining (SMPM)

optical fiber. At the output of the fiber the light is collimated by a microscope

objective and passed through a linear polarizer which should provide pure linear

polarization at the level of a part in 104. The light is then transmitted through a

long-wave-pass dichroic mirror which allows the probe laser to be co-aligned with

the lattice. The beams are then passed through a second high quality polarizer to

ensure the polarization axes are the same. The two beams are focused at roughly

the position of the MOT with an AR coated achromatic doublet where the beam

sizes before the lens have been chosen such that at the focus, the lattice waist is

roughly three times smaller than that of the probe. This ensures that the intensity

profile (and hence Rabi frequency) of the probe beam is constant over the lattice.

A curved mirror (R' 20cm), which reflects the lattice and transmits (90%) the

probe wavelength, then retro-reflects the trapping laser such that the standing-
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Figure 3.15: Diagram of the experimental setup used for spectroscopy of lattice
confined atoms. The 813 nm light is generated by a CW Ti:sapphire laser and is
brought to the atoms with a single-mode polarization-maintaining (SMPM) fiber.
It is then passed through a high quality linear polarizer before being focused into
the trap by an achromatic doublet. The clock laser (discussed in the previous
section) is transferred to the atoms SMPM fiber as well but in this case special
care is taken to eliminate fiber noise. The clock light is first split into a local
and outgoing beam. The outgoing beam passes through an 80 MHz AOM and
the first order diffracted light is passed through the optical fiber. At the atom
end of the fiber, some of the light is reflected back through the fiber by the
fiber tip. This light passes back through the AOM and the first order diffraction
is compared to the original local copy. The beat between the two beams (now
at 160 MHz) is used to stabilize the transfer. Note that since the light passes
through both the fiber and AOM twice the light is stabilized at both ends of
the fiber. The clock laser is switched on and off using a liquid crystal waveplate
instead of the usual AOM to maintain the spatial mode profile and keep the
fiber stabilization on continuously. The clock and lattice lasers are combined
with a dichroic mirror and pass through a second polarizer together. For some
experiments the second polarizer is removed such that the probe and lattice lasers
can have orthogonal polarization. Pol.=Linear polarizer, D.M.= dichroic mirror,
ECDL=external cavity diode laser, AOM=acousto-optic modulator, W.P.=half
wave plate, PMT=photo multiplier tube.

wave is formed. The position and alignment of the curved mirror is optimized

by ensuring that the trapping light returns through the fiber. The relevant lens

system is designed for a lattice waist of 35 µm.

The available power at the output of the lattice fiber is 350 mW, unfortu-
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nately our vacuum window coatings transmit only 75% at 813 nm so the amount

of retro-reflected light the atoms will see is only 150 mW. If we want to estimate

the expected trap depth then we should use 150 mW as the single pass power in

Eq. 3.2. We then have the situation of a standing wave based on 150 mW, as well

as a traveling wave of about 100 mW. Since the peak intensity of a standing wave

is four times larger than that of a traveling wave we can estimate that this 100 mW

should actually only change the trap depth by about 10% and hence we ignore it.

With P=150 mW and w0=35µm we can expect a trap depth of 120 ER. We will

see in the next section that the measured waist, based on trap frequencies, is 65

µm, yielding a trap depth of 35 ER. Since the work in this thesis was completed,

the cause of this discrepancy has been found to be due to misalignment between

the waist and the atom cloud.

The clock laser described above is on a separate table than the atom trap-

ping apparatus and therefore must be also be transferred via optical fiber. The

transfer process can be a problem for lasers stabilized to this level, as stretching

and shaking of the fiber causes a Doppler effect for the transmitted light. We find

for example that for a 10 m fiber the linewidth of the clock light is broadened to a

few hundred Hz. To combat this effect we stabilize the fiber transfer interferomet-

rically using an AOM by comparing light reflected from the output of the fiber tip

with a local copy at the clock laser table [116, 117]. In the experiment the clock

laser is switched on and off using a combination of polarizers and a liquid crystal

wave plate which can rotate the polarization by 90 degrees on demand. In this

way we can keep the fiber noise stabilization on at all times. After the shutter

the light is combined with the lattice with the dichroic mirror discussed above.

To load atoms into the lattice we take a fairly straightforward approach and

simply leave the trapping beam overlapped with the MOT for the entire cooling

sequence discussed in Chapter 2. Since the strong cooling transition is based on
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a broad transition, the Stark shift provided by the lattice has no effect on the

blue MOT properties. The second stage cooling on the other hand is based on

a narrow transition such that Stark shifts on the order of 100 kHz will have an

effect on the cooling process. While this will likely reduce the cooling efficiency,

it can actually be advantageous as the cold atoms which pass through the lattice

region, will become detuned from the MOT beams and will remain trapped in

the lattice, creating an effective “dark spot” MOT. In practice, we optimize the

atom number in the lattice by varying the detuning and intensity of the red MOT

lasers, resulting in 104 atoms in the lattice. In doing so we end up at trapping

parameters which are not optimized for the transfer from the blue MOT to the

red MOT. This is easily understood if one remembers how both the physical size

and atom number of the red MOT were largest for large trap detuning [71, 79].

The lattice volume on the other hand is small so to optimize the number in the

lattice smaller MOT detunings are used to make the MOT volume small at the

cost of Blue MOT to Red MOT transfer efficiency. In future measurements a

hybrid protocol can be developed where the red MOT parameters are optimized

for initial MOT to MOT transfer and then the detuning can be changed actively

to load the lattice. From scaling arguments it seems if such an approach is taken

one can expect an order of magnitude enhancement in atom number.

Now, since we are interested in long coherence time, we must consider the

lifetime of the atoms in the lattice. Possible trap lifetime limitations include

inelastic collisions with background gas, scattering of lattice photons (we have

already discussed this limit and it is negligible), and trap intensity fluctuations

which can cause heating of the atoms [98, 107, 108]. In the apparatus described

here the typical background gas pressure in the vacuum chamber of < 1 × 10−9

Torr is not expected to limit the trap lifetime at the 1 second timescale. Early

experiments with the optical lattice revealed that the lifetime was ∼700 ms. By
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adding intensity stabilization via measurement of the lattice reflection off of one

of the vacuum windows and feedback to an AOM before the single mode fiber,

the lattice lifetime was extended beyond 1 second. Atomic structure effects must

also be carefully considered for our goal of achieving a narrow resonance width.

The nuclear spin in 87Sr provides additional broadening mechanisms as the 10

mF sublevels in each clock state can have different sensitivity to external fields.

Specifically, the state mixing provided by the hyperfine interaction results in a

differential g-factor between the two clocks states yielding a first order Zeeman

shift of 109 mF Hz/G (this is discussed in detail in the next chapter). Therefore

the magnetic fields in the experiment must be controlled at the mG level. For

this reason 3 pairs of Helmholtz coils (one pair oriented on each axis) are used to

eliminate stray magnetic fields.

After the laser cooling stage, the 104 atoms are ready for spectroscopy. Our

spectroscopy scheme is the following (see Fig 3.16). The cold ground state atoms

are first excited to the 3P0 clock state with a pulse of length tR from the clock

laser. The length of time for the pulse depends on the desired spectral resolu-

tion for a given experiment, as for a square pulse we expect a Rabi (sinc2) line

shape with a fourier limited full width half maximum (FWHM) in Hz given by

∆νFWHM ' 0.89/tR. After the spectroscopy probe, a shelved detection scheme is

used where the remaining ground state atoms are irradiated with a beam slightly

red detuned from the strong 1S0-
1P1 cycling transition. The scattered photons

from this process are collected with a photo multiplier tube (PMT) for measure-

ment of the ground state atom number. This process boils the ground state atoms

out of the trap, however any atoms excited by the clock laser will remain. We

then measure the 3P0 population, by first applying the repumping lasers to drive

the atoms back to the 1S0 state, followed by a second blue pulse on the cycling

transition for population detection. (Note that one should take care during the re-
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Figure 3.16: Spectroscopy sequence used for observing the clock transition. 1)
After the laser cooling sequence, the 698 nm laser provides excitation light for the
atoms. 2) After the spectroscopy pulse, the ground state population is detected
by cycling photons on the strong 1S0-

1P1 transition, and collecting them with a
near by PMT. These atoms are lost from the lattice. 3) The atoms which were
excited to the 3P0 state are then pumped back to ground state by means of a few
ms pulse of the repumping lasers. 4) The 3P0 population can now be measured in
the same way that the original ground state population was measured.

pumping stage, in that if some B-field is applied during clock excitation it should

be shut off to ensure the repumping lasers are still on resonance with all of the

sublevels. IF the repumping lasers are being scanned then it is not important.)

After the two measurements there are no remaining atoms in the trap so atoms

must be re-cooled and loaded into the lattice for each frequency step of the probe

laser.

Measuring both the excited and ground state population may seem redun-

dant, but actually for practical reasons it is important. In our system for example,

we find that the number of atoms available for spectroscopy fluctuates by 5-10%

from shot to shot. Therefore if one uses the ground state measurement to look

for a weak signal it can be washed out by the baseline fluctuation. In the excited
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Figure 3.17: (Left) Recent measurements of the magic wavelength (λm) made by
our group, as well as the Tokyo and Paris groups. The most recent measurement
from our group is discussed later on in this work. The result is 813.4283(12)nm.
(Right) Measurement of the clock sensitivity to lattice wavelength for a 110 ER

lattice operating near λm. The resulting slope is 8(2)(Hz/nm)/(UT /ER), which
for our typical depth of 35 ER means a stabilization of the lattice wavelength of
only ∼1 MHz is required for 1 mHz accuracy in the clock frequency.

state on the other hand, the baseline is zero (or close to it depending on how many

stray photons reach the detector) since no atoms are there when the excitation

is absent, so we are much more sensitive to small excitations. The ground state

measurement is still very useful though because the combination of the two can be

used to normalize the excitation signal to eliminate S/N problems cause by shot

to shot atom number fluctuation. This normalization is not done here, but will

become important as one pushes the clock stability towards the quantum limit.

For the 104 atoms used here for example, a S/N of 100 can be expected if all other

technical noise is removed.

3.3.3 Measurement of the Magic Wavelength, and Wavelength

Sensitivity

A quick aside on the issue of magic wavelength before we get to spectroscopy

results. The first step to take in developing the lattice clock system is to mea-
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sure the magic wavelength of the transition. This is done by measuring how the

transition frequency varies for different trap depths and wavelengths. A high

precision measurement of the magic wavelength is discussed in Chapter 5 along

with our accuracy evaluation of the clock, for now we will just summarize the

results that have been obtained recently. The magic wavelength for the 1S0-
3P0

transition has by now been measured with high precision by three groups, first in

Tokyo[58], then Boulder[44], followed by a measurement from the Paris group[41].

The results are plotted in the left panel of Fig 3.17 along with a follow up mea-

surement from our group [42] which will be discussed later on. We can see from

the figure that the agreement between the three groups is quite good, with the

most recent measurements yielding a value of 813.428(1). The second plot gives

a measurement of the sensitivity of the clock transition frequency to small devi-

ations from the magic wavelength. This data (here taken with a trap depth of

UT =3U0 '110ER) yields a slope of 0.9 kHz/nm, which corresponds to a sensitiv-

ity of 8 (Hz/nm)/(UT /ER) which is good agreement the estimate from our theory

section of 10 (Hz/nm)/(UT /ER). From this point forward it is assumed that all

spectroscopy is performed with a trap wavelength of 813.4280(5).

3.3.4 Resolved Sideband Spectroscopy

With the spectroscopy system ready to go, we first apply a large probe laser

intensity to observe the transition. In doing so we see the expected absorption

features we discussed in the theory section. Figure 3.18 shows the absorption

spectrum for the lattice confined atoms at our typical depth UT =35ER when the

transition is very strongly saturated. In the case of strong saturation we can ob-

serve not only the carrier transition with the expected excitation fraction of 0.5,

but the sideband features as well. We can extract some key information from

spectra such as this. For example, the sharp edge of the blue (higher frequency)
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sideband give a good estimate of the longitudinal trap frequency, which from the

figure we can see is approximately 40 kHz, or equivalently ηz=0.33. The longitu-

dinal temperature of the atom sample can be estimated from the relative heights

of the blue and red sidebands. We see for example that the relative strengths of

the two are about 5:1 which tells us that (〈n〉+1)/〈n〉=5 and Therefore 〈n〉=0.25,

which leads to a temperature of 1.2 µK if we assume a harmonic potential. The

line shape deformation of the sideband can also tell us about the radial temper-

ature of the atom sample. The second panel in the figure shows the excitation

of the radial sidebands. To observe the radial sidebands we have to intentionally

mis-align the probe beam from the lattice axis to increase the Lamb-Dicke pa-

rameter ηr. Here we can see that the radial trap frequency is 125 Hz. With the

misalignment comes a reduced maximum excitation for the carrier as expected.

In the typical operation of our spectroscopy system it is estimated that the radial

sidebands are suppressed by at least a factor of 25 from the carrier transition. Note

that the two graphs are not the same data set, although the trapping potential

was unchanged between them. These trap frequency values have been confirmed

by independent measurements where a parametric oscillation technique was used

[98].

With the measured trap frequencies we can extract the waist of the trap by

the relation given in Eq. 3.5. In this case we find the waist w0 is 65 µm. The

ratio of the trap frequencies is a useful way to back out the waist as it does not

depend on the light power, or polarizability calculation, so it is robust against

rogue factors of two. As discussed above, the reason for a waist of 65 µm instead

of the designed waist of 35 µm was eventually found to be misalignment between

the actual location of the waist and the atom cloud. Given this measured waist we

can check our calculations by using the measured power of 150 mW and Eq. 3.3

and we find that using our polarizability code, the predicted trap frequency is
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Figure 3.18: Spectroscopy of the clock transition in the optical lattice. When the
clock transition is strongly saturated, the motional sidebands are observed. From
these spectra we can extract the trap parameters such as motional frequency, and
Lamb-Dicke parameter, as well as the atom temperature.

indeed 40 kHz.

3.3.5 Hz-Level Carrier Spectroscopy: Rabi

The narrow central feature in Fig. 3.18 is of the greatest interest for clock

development. This carrier transition (∆n = 0) provides a remarkably large line

Q which is not affected by atomic motion in the resolved sideband limit. For

saturation intensities below unity (where we expect to operate to get the narrowest

line), the longitudinal sidebands amplitudes are found to be at the percent level,

while the radial sideband are estimated to be at least a factor of ten smaller. In

this case our absorption spectrum is a single strong feature at the clock transition

frequency with a width determined by the Fourier limit, or other broadening

mechanisms.

Figure 3.19 shows a high resolution scan of the clock transition when a

400 ms spectroscopy pulse is used. The probe laser intensity has been reduced

below saturation such that the line is not broadened. Here we see the remarkable

result we have been working for, the peak is extremely narrow, having a linewidth
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(FWHM) of just 4.5 Hz. This is a Q of 9.5×1013! If we compare this lineshape

to a free space measurement at a similar temperature, as in Fig. 3.1, we see that

we have reduced the resonance width four orders of magnitude by confining the

atoms. If we assume that our S/N can eventually reach the quantum projection

noise limit of
√

N , then for our 104 atoms we could expect the atoms to provide a

1 s stability below 1×10−16. This is an order of magnitude better than our state

of the art laser can even handle. The S/N shown in the plot is closer to 10:1 than

100:1, this is a technical limit in that we have not performed any normalization of

the atom number so we are limited by the shot-to-shot atom number fluctuation.

We also point out that the data is a single scan across the resonance and not

from a number of averages. While trapped ion systems can achieve similar Q’s,

the signal to noise is so poor that to create a spectrum as shown in Fig. 3.19 one

needs to average tens or hundreds of scans together, although we should note that

the total time is not too different since in our current experiment we spend most

of our time cooling (∼700 ms). In the case, where the system is optimized for

stability (i.e. S/N , Q, and duty cycle), there is no question that the 104 atoms

will out perform a single ion with the same Q, even if we consider that the probe

time for ions may be shorter due to a higher transition frequency.

From the spectrum we can extract some additional information about how

our system is performing. The first thing to note is that the lineshape does not

agree with what we would expect. For a square pulse of tR=400 ms we expect

a sinc2 lineshape with a FWHM of 0.89/tR = 2.2 Hz. Instead we find that the

lineshape is best fit by a Lorentzian profile with a 4.5 Hz width. An external

broadening mechanism must be present. Some possible sources of this include

laser noise, lattice lifetime, and lattice wavelength, but these have been checked

independently as discussed above. A more likely reason is that the hyperfine

structure in 87Sr provides ten mF sublevels in each of the clock states which are
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Figure 3.19: High resolution spectroscopy of the carrier transition for weak probe
powers. When the probe intensity is reduced below saturation, the carrier feature
reveals a very narrow line shape with a FWHM of 4.5(6) Hz (Q = 9× 1013). Here
the width is limited by stray magnetic fields which result in a linear Zeeman shift
for the mF sublevel of the clock transition. The excitation fraction is limited by
differing Rabi frequencies between mF levels and the motional dephasing effects
discussed in this chapter.

sensitive to external fields. As we will see in the next chapter, the two clock

states have slightly different sensitivity to magnetic fields such that a small linear

Zeeman shift exists. So we can expect that the broadening in Fig. 3.19 is due

to stray magnetic fields at the few mG level. The hyperfine interaction also

provides the possibility for vector and tensor light shifts due to the lattice beam

which are smaller than the zeeman effect but could still be contributing (see

section 4.3). The amplitude of the signal is also an interesting issue, although not

shown here, we have found that turning up the probe power does not increase the

excitation fraction by a significant amount. While we expect some degradation

due to motional effects, a second effect is that the Clebsch-Gordon coefficients

are very different for the different mF sublevels, such that if the probe intensity
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is optimized for excitation (or linewidth) of one mF transition, other transitions

will not be optimized. Therefore we expect some additional dephasing of the Rabi

frequency when degenerate sublevels are used.

To really test the performance of the lattice clock system then it seems

we should use resolved sublevels to eliminate any broadening from mF -dependent

field sensitivities, or any Rabi dephasing. To probe a single transition we apply an

external magnetic field of a few hundred mG orthogonal to the lattice propagation

axis, and parallel to the polarization of the lattice. The field is sufficient to provide

a frequency splitting between neighboring transition of about 50 Hz. We then

focus on a single transition, in this case the mF =5/2. Until now, we have been

using the 1S0 population measurements to record our spectra since the signals have

been large. However, in this case we expect the population to be evenly distributed

among the sublevels, such that if we excite only one transition our signal can suffer

by a factor of 10, and will be washed out in the 1S0 measurement by the 10% atom

number fluctuation. So we instead use the 3P0 population measurement to record

the spectra. To test our maximum achievable Q we use an even longer probe

time of 480 ms which should provide a Fourier limit to the achievable width of 1.8

Hz. Figure 3.20 summarizes the results when spectroscopy is performed in this

way. The first panel shows a lineshape with a width of 1.9(2) Hz that does show

the expected sinc2 profile for Fourier broadening. From this graph we conclude

that by eliminating the mF dependent broadening, we can achieve fourier limited

linewidths of 1.8 Hz in the system. Thus our system provides a incredible line Q of

2.4×1014. This value exceeds even that provided by the best ion clock [16] by 50%,

and is to our knowledge, the largest Q ever recorded for coherent spectroscopy.

So why not increase the probe time and push further? Well, as the other two

spectra in the figure show, at this narrow width, reproducibility starts to become

an issue. We show three sample spectra that are achieved on a resolved sublevel
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Figure 3.20: High resolution Spectroscopy using the resolved mF =5/2 state in
the presence of a magnetic field. Single sublevel spectroscopy eliminates the effect
of Zeeman broadening allowing exploration of the true limit of our spectroscopic
precision. Here a probe time of 480ms (1.8 Hz Fourier limit) is used and lineshapes
with Q > 2× 1014 are observed. In some cases the lines are Fourier limited. For
the most part the repeatability, shown as a histogram, is limited by the clock laser
with the mean lorentzian linewidth value of the 28 measurements being 2.2 Hz.

with the intent of discussing the reproducibility of the lineshape. The lower panel

for example is more lorentzian in nature suggesting some small additional broad-

ening. A lorentzian fit (red) to the data yields a slightly broadened linewidth

FWHM of 2.1(2) Hz. A gaussian fit of the same data (green) yields a FWHM of

2.1(1) Hz. The upper right panel shows a line shape with a width smaller than

the Fourier limit, likely due to the sharp drop off on the right side of the peak.

The three spectra shown were all taken under identical experimental conditions.
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The bottom right panel summarizes the linewidths of 28 such spectra taken over

the course of about 2 hours. All linewidth values represent lorentzian fits. The

high line Q is obviously reproducible as the data is peaked near the Fourier limit,

with a mean value (determined by the raw data, not the histogram shape which

for small data sets can change as the bining changes) of 2.2 Hz (Q = 2 × 1014).

This mean value suggests that going to longer probe times will not help reduce

the average linewidth significantly (in fact we have tried this and it did not) as

there is an apparent additional broadening mechanism of
√

2.22 − 1.82=1.3 Hz

(on average).

In the resolved transition spectroscopy, the most likely source of additional

broadening and fluctuations in Fig. 3.20 is the probe laser. We have seen with

independent measurements of our two clock lasers that for integration times of 60 s

the beat sometimes broadens to nearly 2 Hz. Our measurements here take roughly

30 seconds so one could imagine that over that time scale the laser noise could

contribute broadening at the Hz level. Furthermore the spread in the linewidths

could be due to residual laser drift which could broaden or reduce the linewidth

depending on the relative drift and scan directions. Mechanical vibrations of our

spectroscopy layout may also be contributing to the width, as we have seen that

the path length shakes a bit when the MOT coils are cycled on an off. Although

we know this doesn’t degrade the lattice lifetime at the 500 ms timescale, it

could result in a residual Doppler broadening if the position of the lattice sites

moves relative to the probe laser. Site to site tunneling could also be a source of

decoherence.

With the resolved sublevel spectrum we can return to the issue of excitation

fraction discussed above. Here we see that only 7-8% of the atoms are excited

by the probe laser. If we assume that the population is evenly distributed, only

10% of the atoms were actually in the mF =5/2 ground state so with resolved
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sublevels our excitation fraction is up to around 75%. Since we have removed the

dephasing effect that originates from the mF dependence of the Rabi frequency, we

can assume the limit of 75% originates from the atomic motion effects discussed in

the theoretical section. The 25% loss of contrast here is well worth the incredible

line Q the lattice technique allows.

3.3.6 Hz-Level Carrier Spectroscopy: Ramsey

Before we are finished with the topic of precision spectroscopy, we will turn

our attention to “that other way” of doing things, Ramsey Spectroscopy. For

clouds of atoms in free space, Rabi spectroscopy is not very practical for achieving

the highest precision. For a cloud of 1 µK Sr atoms for example, one will be limited

by two effects, the Doppler width of about 40 kHz, and the limited spectroscopy

pulse time due to gravity. In the Ca clock system, the Doppler limit on the

Q is eliminated by employing a counter-propagating beam Ramsey spectroscopy

[118, 119] setup, enabling widths of a few hundred Hz [24]. The line shape for

an atomic resonance when Ramsey’s method is used consists of a sinc2 Rabi

lineshape with width given by 0.89/tR (where tR is the pulse times), multiplied by

a sinusoidal fringe pattern with a period given by 1/(tR + tF ) and a fringe width

of half of that, where tF is the free evolution time between the separated pulses

(See Fig. 3.21). The central fringe of the Ramsey spectrum is centered on the

atomic transition frequency and can be used for metrology. In standard Ramsey

spectroscopy the pulse length is set to give a Fourier-limited Rabi envelope equal

to the Doppler width of the atoms. Depending on the temperature, this might

mean that large probe intensities are needed to excite the atoms, which can result

in clock shifts. Fortunately, experimental geometries can be used in which the

Doppler width does not affect the Ramsey fringe width, but it does affect the

number of fringes which can make central fringe identification difficult. For our Sr
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atoms in free space (with a 40 kHz Doppler profile), we would have to deal with

more than 10,000 fringes if we wanted a 2 Hz fringe width. Yikes!!!

For our bound atoms on the other hand, there is no Doppler width, so we can

use long weak pulses in the Ramsey sequence and drastically reduce the number

of fringes in the spectral pattern as well as any light shifts from the probe. Ideally

for these measurement one uses a Ωt = π/2 pulse for the Ramsey experiment for

the best possible fringe contrast. In the lattice then we should stick to resolved

sublevels to keep the Rabi frequency as uniform as possible. Figure 3.21 shows a

Ramsey measurement using a pulse sequence with tR= 20ms and tF =25 ms, where

the pulse intensity has been optimized for maximum fringe contrast. Here we find

a narrow fringe pattern with an oscillation period of 20.8(3) Hz corresponding to

a fringe width of 10.4(2) Hz. The expected period and width for the times above

are 22 Hz and 11 Hz respectively. From the figure, one can see that, in the lattice,

identification of the central fringe is trivial since we can use long Rabi pulses in

the sequence. The right panel of the figure shows a Ramsey spectrum at the

resolution limit of our spectroscopy system. Here a pulse sequence of tR=80 ms

and tF =200 ms are used and the fringe width of 1.7(1) Hz is achieved, consistent

with the predicted value of 1.8 Hz.

A Ramsey sequence certainly adds complexity to the clock system as com-

pared to a single Rabi pulse. It does have its advantages though if one considers

the width of the spectral feature which can be achieved in a given measurement

time. In Ramsey spectroscopy the central fringe width is given by ∆νRamsey =

1/(2(tR + tF )) while in the single pulse case it is given by ∆νRabi = 0.89/tR.

Therefore, if one wants a 10 Hz signal for example, the single pulse fourier limit is

about 80 ms, while in the case of Ramsey spectroscopy the equivalent width can

be achieved with a 45 ms free evolution time. In this light, it could be advanta-

geous in future work to use the Ramsey method for clock operation as a way to
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Figure 3.21: Ramsey spectroscopy of the 1S0-
3P0 transition in an optical lattice.

Ramsey spectroscopy may be a useful alternative to Rabi spectroscopy as narrower
features can be observed for the same probe time. The left panel shows such a
measurement for a pulse length tR of 20 ms and a free evolution time tF =25 ms
resulting in a spectral feature with a fringe width of 10.4(2) Hz. Note the obvious
central fringe identification. The right panel shows a Ramsey fringe where we
have pushed the width as narrow as our system allows (as is apparent from the
data), with tR =80 ms and tF =200 ms. The fringe width of 1.7(1) Hz agrees with
the expected width (1.8 Hz).

reduce the total cycle time of the experiment. Ramsey spectroscopy can also be

used to reduce the fringe width below the limitation resulting from effects such

as natural linewidth of the transition or lifetime of atoms in the lattice, although

one would expect a degradation of fringe contrast in these cases.

3.4 Discussion

Based on the work in this chapter, it seems clear that by using carefully

designed optical fields to confine the atoms we can achieve a large Q competi-

tive with (or in this case slightly larger than) the best trapped ion systems, but
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with the significantly enhanced signal to noise ratio of a neutral atom cloud. For

the precision side of the clock development, we are assured that the lattice clock

system is the real deal. The big question now is whether or not the lattice con-

finement can be achieved experimentally without degrading the accuracy of the

clock. This issue is explored in detail in the remaining chapters.



Chapter 4

Nuclear Spin Effects in Optical Lattice Clocks

4.0.1 “1S0-
3P0 Transition? We Forbid It!”– ~J and ~S

It looks like the lattice clock will be a success after all. We can achieve

record level line Q’s by eliminated Doppler effects, and the magic wavelength

principle seems to work well. But wait, there are a few things that should be

making you uneasy right about now. You must be asking yourself: 1) “1S0-
3P0?

isn’t that transition forbidden by the angular momentum selection rules I know

and love!” 2) “What was the origin of that broadening in figure 3.19? I thought

the magnetic sensitivity of the clock states should be identical.” 3) “If the lattice

clock is a success, then why are there ∼50 more pages of text before you measure

the clock frequency?”. The answer to all three of these valid questions is “the

nuclear spin”.

It turns out, the presence of nuclear spin in 87Sr results in a number of

remarkable effects which are important to consider for the lattice clock, including

the finite lifetime of the 3P0 state, the magnetic sensitivity of the clock transition,

and a small light shift sensitivity of the Zeeman sublevels. Nearly all of the

important effects result from state mixing of the 3P0 state by hyperfine interaction

effects. In this chapter, the state mixing is discussed in terms of the origin of the

1S0-
3P0 clock transition as well as a basis for evaluating external field sensitivities

to explore the potential accuracy of the lattice clock system. In the sections that
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follow, nuclear-spin related shifts of the clock states due to both magnetic fields

and the lattice trapping potential are discussed. The theoretical development is

presented for a general alkaline-earth type structure, using 87Sr as an example

(Fig. 4.1), so that the results can be applied to other species with similar level

structure, such as Mg, Ca, Yb, Hg, Zn, Cd, Al+, and In+. Following the theoretical

discussion is a detailed experimental investigation of these nuclear spin related

effects in 87Sr, and a comparison to the theory section. At the end of this chapter

we take a second look at the feasibility of an optical lattice clock, once the effects

of nuclear spin are well understood.

4.1 State Mixing in the nsnp Configuration

To describe the two-electron system in intermediate coupling, we follow the

method of Breit and Wills [120] and Lurio [121] and write the four real states as

expansions of pure spin-orbit (LS) coupling states,

|3P0〉 = |3P 0
0 〉

|3P1〉 = α̃|3P 0
1 〉+ β̃|1P 0

1 〉

|3P2〉 = |3P 0
2 〉

|1P1〉 = −β̃|3P 0
1 〉+ α̃|1P 0

1 〉.

(4.1)

Here the intermediate coupling coefficients α̃ and β̃ represent the strength of the

spin-orbit induced state mixing between singlet and triplet levels, and can be de-

termined from experimentally measured lifetimes of 1P1 and 3P1 as is discussed in

the next section. This mixing process results in the weakly allowed 1S0-
3P1 tran-

sition (spin-forbidden by angular momentum selection rules for pure LS states),

and has been used for a variety of experiments spanning different fields of atomic

physics, including many discussed already in this thesis. In recent years, these

intercombination transitions have provided a unique testing ground for studies of
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narrow-line cooling in Sr [80, 91, 79, 71, 82] and Ca [83, 84], as well as the previ-

ously unexplored regime of photoassociation using long lived states [122, 123, 124].

These transitions have also received considerable attention as potential optical fre-

quency standards [24, 25, 28], owing mainly to the high line Q and insensitivity

to external fields. Fundamental symmetry measurements, relevant to searches of

physics beyond the standard model, have also made use of this transition in Hg

[125].

In most of the naturally occurring alkaline-earth isotopes, the nuclear spin

is zero, so the complexity of the level structure essentially ends with the spin-

orbit interaction. The absence of hyperfine structure in these bosonic isotopes

is beneficial to many of these fields as the simple level structure lends itself to

straightforward comparisons between experiment and theory. The 3P0 state on

the other hand is not affected by the spin-orbit interaction. Thus in the I = 0

isotopes, the 1S0-
3P0 clock transition is completely forbidden. To explain the

existence of the electric dipole transition we observed in 87Sr (I = 9/2) we need

to consider the effect of the hyperfine interaction.

The hyperfine interaction (HFI) in the fermionic isotopes does provide an

additional state mixing mechanism between states having the same total spin F ,

mixing the pure 3P0 state with the 3P1,
3P2 and 1P1 states.

|3P0〉 = |3P 0
0 〉+ α̃0|3P1〉+ β̃0|1P1〉+ γ̃0|3P 0

2 〉 (4.2)

The HFI mixing coefficients α̃0, β̃0, and γ̃0 (2× 10−4, −4× 10−6, and −1× 10−6

respectively for 87Sr) can be related to experimental values such as the hyperfine

splitting in the P states, the fine structure splitting in the 3P states, and the

coupling coefficients α̃ and β̃ [120, 121]. They are calculated explicitly in the next

section. The 3P0 state can also be written as a combination of pure states using
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Eq. 4.1,

|3P0〉 = |3P 0
0 〉+ (α̃0α̃− β̃0β̃)|3P 0

1 〉+ (α̃0β̃ + β̃0α̃)|1P 0
1 〉+ γ̃0|3P 0

2 〉. (4.3)

From Eq. 4.3 we can see that the state mixing due to both the spin-orbit and

hyperfine interactions play a role in modifying the 3P0 wave function by including

admixtures of the other states in the 5s5p manifold. This result will be crucial to

evaluating a number of effects in the lattice clock including 3P0 lifetime and the

sensitivity to external fields, as it provides a convenient basis of pure LS states for

evaluation. The level structure and state mixing discussed here are summarized

in a simplified energy diagram, shown in Fig. 4.1, which gives the relevant atomic

structure and optical transitions for the 5s5p configuration in 87Sr.
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4.1.1 Calculation of the Mixing Coefficients α̃, β̃, α̃0, β̃0, and γ̃0

Before we get to the effects of state mixing on the lattice clock, we need to

calculate the various mixing coefficients so we can decide just how important each

effect is. The intermediate coupling coefficients α̃ and β̃ are typically calculated

from measured lifetimes and transition frequencies of the 1P1 and 3P1 states and

a normalization constraint α̃2 + β̃2 = 1. From Eq. 4.1 we can evaluate the lifetime

of each state by evaluating the electric dipole matrix element for transitions to

the 1S0 state. For example, using angular momentum selection rules we find for

the 3P1 state 1/τ3P1
∝ ω3

3P1
β̃2|〈1S0|D|1P1〉|2, and the expression for τ1P1

is similar with

β̃ → α̃ and ω3P1
→ ω1P1

. From those two expressions we can eliminate the matrix

element and solve for the mixing coefficients from the measured lifetimes resulting in

the expression
α̃2

β̃2
=

τ
3P1

τ 1P1

(
ν3P1

ν1P1

)3

. (4.4)

The energies are well known and the state lifetimes have recently been measured to

better than a percent in photoassociation experiments to be τ1P1
= 5.22(3) ns [103] and

τ3P1
= 21.4(1) µs [122], resulting in α̃ = 0.9996 and β̃ = −0.0286(3).

The HFI mixing coefficients α̃0, β̃0, and γ̃0 are due to the interaction between the

pure 3P0 state and the spin-orbit mixed states in Eq. 4.1 having the same total angular

momentum F . They are defined as

α̃0 =
〈3P1, F = I|HA|3P 0

0 , F = I〉
ν3P0

− ν3P1

β̃0 =
〈1P1, F = I|HA|3P 0

0 , F = I〉
ν3P0

− ν1P1

γ̃0 =
〈3P2, F = I|HQ|3P 0

0 , F = I〉
ν3P0

− ν3P2

.

(4.5)

Here HA and HQ are the magnetic dipole and electric quadrupole (Q, more traditionally

written as B) contributions of the hyperfine Hamiltonian HHFI, given as

HHFI = HA + HQ = A~I · ~J + Q
3
2
~I · ~J(2~I · ~J + 1)− IJ(I + 1)(J + 1)

2IJ(2I − 1)(2J − 1)
. (4.6)

Evaluation of the matrix elements in Eq. 4.5 is non-trivial due to the radial components
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of the integral which is exceedingly difficult to calculate for many electron atoms such

as Sr. A standard technique for calculating the matrix elements is to relate unknown

radial contributions of the wave functions to the measured hyperfine magnetic dipole

(A) and electric quadrupole (Q) coefficients. Calculation of the matrix elements in this

way is known as the Breit-Wills (BW) theory and it is discussed in detail in Refs. [120,

121, 87, 126, 35]. Here we only outline the calculation. The hyperfine mixing coefficients

(α̃0, β̃0, and γ̃0) can be solved from expressions in Ref. [121, 127] as sums of various

radial contributions, known as single-electron hyperfine a and b coefficients. The a and

b coefficients are labeled by superscripts TT , ST , and SS which denote the origin of the

radial integral. The label TT for example signifies a radial integral between two triplets

states, while ST represents the coefficient for an integral between a singlet and triplet

state, and so on. There are also three types of a coefficients, labeled by subscripts s, 1/2,

and 3/2, corresponding to different pieces of the hyperfine interaction. Also included

are two relativistic corrections, η′ and ξ′ of order unity which have been calculated in

Ref. [87] for a number of alkaline-earth elements. The result of the matrix element

evaluation is

α̃0 =

√
I(I + 1)

E3P0
− E3P1

[
α̃√
6

(
aTT

s − aTT
1/2 −

5
8
ξ′aTT

3/2

)
+

β̃

2
√

3

(
−aST

s + aST
1/2 −

5
4
ξ′aST

3/2

)]

β̃0 =

√
I(I + 1)

E3P0
− E1P1

[
−β̃√

6

(
aTT

s − aTT
1/2 −

5
8
ξ′aTT

3/2

)
+

α̃

2
√

3

(
−aST

s + aST
1/2 −

5
4
ξ′aST

3/2

)]

γ̃0 =
1

E3P0
− E3P2

√
(I + 1)(2I + 3)

I(2I − 1)
η′

4
bTT
3/2

(4.7)

The BW theory allows calculation of the a and b coefficients using measured
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hyperfine splittings A and Q of the 5s5p states given by

A3P1
= α̃2

(
aTT

s

4
+

5
12

(1− ξ′

2
)aTT

3/2 +
aTT

1/2

3

)
+ β̃2

(
5
6
(1 +

ξ′

4
)aSS

3/2 +
aSS

1/2

6

)

+ 2α̃β̃

√
2

3

(
−3

4
aST

s +
5
4
(1− ξ′

8
)aST

3/2 −
aST

1/2

2

)

A1P1
= same as A3P1

with α̃ → −β̃ and β̃ → α̃

A3P2
=

aTT
s

4
+

3aTT
3/2

4

Q3P2
= bTT

3/2

(4.8)

The b3/2 term is trivial if the quadrupole splitting in the 3P2 state is known, and

calculation of γ̃0 using Eq. 4.7 is then complete. The a terms however are too numerous

to be constrained by the measured magnetic dipole terms. Fortunately some of the a

terms are related and we can reduce the number of unknown terms using the following

relations[87, 126]

aSS
s = λsa

ST
s = λ2

sa
TT
s

aSS
3/2 = λpa

ST
3/2 = λ2

pa
TT
3/2

aSS
1/2 = λpa

ST
1/2 = λ2

pa
TT
1/2

aTT
1/2 = 5θ′aTT

3/2

(4.9)

Where θ′ is another relativistic factor, and λs and λp are proportionality constants

that relate a coefficients between different singlet and triplet contributions to the radial

integrals.

In the original BW-Theory, it is assumed that the a-coefficients have no depen-

dence on the singlet or triplet component of the matrix element, and therefore λs and λp

are equal to one and the superscripts on the a coefficients are not needed. In this case

Eqs 4.7–4.9 are drastically simplified and the measured hyperfine A values are enough

to easily evaluate the final hyperfine mixing parameters. The problem then boils down

to using the measured A values to solve for a3/2 and as. In the case of Sr we can also use

the value of a3/2= -24.8 MHz from [87] for further simplification and as can be directly

calculated using the A value for the 3P1 state along with Eqs 4.8 and 4.9. In this way
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we find that as=-768 MHz, leading to α̃0=2.37(1)×10−4 and β̃0=-4.12(1)×10−6, where

the uncertainty is due to the uncertainty in the 1P1 and 3P1 lifetimes. Using the known

3P2 Q value we also find that γ̃0=-1.38(1)×10−6.

The BW theory has been shown to be reliable for predicting the properties of

the triplet states in the 5s5p manifold. However, an accurate description of the singlet

state requires a modified BW theory (MBW) [127, 87, 126]. For example, if we use

the values for as and a3/2 calculated above, in the BW framework (λp = λs = 1) we

can predict the hyperfine A-factor for the 1P1 state using Eq. 4.8 to be -32.7(2) MHz.

The experimental value on the other hand is -3.4(4) MHz [87]. The λ factors in Eq. 4.9

are introduced as a MBW theory to eliminate such discrepancies as they allow for a

difference between radial integrals between singlet and triplet states. This is important

for accurate calculation of the mixing parameters and hyperfine splitting, especially

for β̃0 and A1P1
, which depend more strongly on the λ parameters than α̃0 or A3P1

(since α̃ >> β̃). Note that the evaluation of bTT
3/2 (and thus γ̃0) is unchanged in the

MBW calculation as the 3P2 state is a pure triplet state, not mixed with any singlet

components by the spin-orbit interaction.

In the case of the MBW theory, when we substitute Eq. 4.9 into Eq. 4.8 we are

in the situation of having 4 unknowns (λs, λp, a
TT
3/2, and aTT

s ) and three equations. For-

tunately one of the free parameters can be calculated independently (if the quadrupole

coefficients Q are known) by the formula

λp =

√√√√ 3(Q1P1
+Q3P1

)

Q3P2

− 1
2 + 2η′

1 + 2η′
. (4.10)

such that we can solve for the remaining free parameters from the measured hyper-

fine splitting values A3P1
, A1P1

, and A3P2
. From this calculation we find aTT

3/2=-20.7

MHz, aTT
s =-789 MHz, λs=1.20, and λp=0.750. The resulting mixing coefficients are

α̃0=2.56(1)×10−4 and β̃0=-5.5(2)×10−6 where this time the dominant source for uncer-

tainty is the uncertainty in A1P1
. Table 4.1 summarizes the results of the BW and MBW

calculations performed here, including the values for A, Q, η′, ξ′, and θ′ that are used.
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Table 4.1: Hyperfine Mixing Calculation

Values used in Calculation
α̃ = 0.9996, β̃ = −0.0286(3),

A3P1
= −260.084 MHz, Q3P1

− 35.658 MHz,
A3P2

= −212.765 MHz, Q3P2
= 67.340 MHz,

A1P1
= −3.4(4) MHz, Q1P1

= 39(4) MHz,
ξ′ = 1.018, η′ = 1.044, θ′ = 1.125

Calculation Results
Parameter BW Theory MBW Theory
aTT

3/2 (MHz) -24.8 -20.7

aTT
s (MHz) -768 -789

λp 1 0.750
λs 1 1.20

bTT
3/2(MHz) 67.3 67.3

α̃0 (×104) 2.37(1) 2.56(1)
β̃0 (×106) -4.12(1) -5.5(1)
γ̃0 (×106) -1.38(1) -1.38(1)

We will save an interpretative discussion of the difference between these two calculations

for the end of this chapter, after we have some experimental results in hand. Until then,

the magnitudes calculated here will prove valuable in our theoretical discussion of the

effects this state mixing has on the lattice clock.

4.1.2 Lifetime of the 3P0 State

Now that we have a good idea of the 3P0 wave function in the presence of

state mixing, we can begin to calculate parameters of interest for the clock transi-

tion. Without the hyperfine interaction, the 1S0-
3P0 transition is only allowed via

a E1M1 two photon decay, which has a lifetime of nearly 1000 years [128]. While

a clock transition with a natural linewidth of only a few pico-Hz sounds exciting,

realistically the system is not possible for a clock. This is because the required

probe power to broaden and observe the transition will be significant for realistic

interrogation times of a few seconds, causing unmanageably large ac Stark shifts

of the clock states. For this reason we need to rely on isotopes with nuclear spin
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such that the hyperfine interaction is present.

To calculate the lifetime of the 3P0 state in Eq. 4.3 we can simply evalu-

ate the electric dipole interaction between it and the 1S0 state, yielding τ3P0
∝

(ω3
3P0
|〈1S0|D|3P0〉|2)−1. The matrix element can be simplified using angular momen-

tum selection rules such that 〈1S0|D|3P0〉 = (α̃0β̃ + β̃0α̃)〈1S0|D|1P 0
1 〉. We see then that

the two state mixing mechanisms discussed in the previous sections provide a non-zero

electric dipole transition arising from a small admixture of the 1P 0
1 state. Once again

we can avoid matrix element evaluation by noting that the 3P1 lifetime depends on the

same matrix element as τ3P1
∝ (ω3

3P1
β̃2|〈1S0|D|1P 0

1 〉|2)−1. Then the 3P0 lifetime is given

in terms of the measured 3P1 lifetime as

τ
3P0 =

(
ω3P1

ω3P0

)3 β̃2

(α̃0β̃ + β̃0α̃)2
τ

3P1 . (4.11)

From the mixing coefficients in the previous section, the result is τ3P0
=152(2) s for

the BW theory and τ3P0
=110(1) s for the MBW theory. The transition linewidth is

therefore between 1-1.5 mHz putting a fundamental limit on the achievable line Q of

∼3×1017. This width is out of reach of current state of the art experiments but the

linewidth is small enough to leave plenty of room for improvement on the precision side,

while being large enough that in current experiments the required probe power is small,

only causing shifts at about the 10 mHz level, which can be well characterized. Note

that the life time depends almost equally on the two hyperfine mixing parameters α̃0

and β̃0, while the mixing with the 3P2 state is not important.

4.2 Zeeman Shifts from Magnetic Fields

With the obvious advantages in spectroscopic precision of the 1S0-
3P0 tran-

sition in an optical lattice, the sensitivity of the clock transition to external field

shifts is a central issue in developing the lattice clock as an atomic frequency

standard. To evaluate the magnetic sensitivity of the clock states, we continue to

follow the treatment of Ref. [121] for the intermediate coupling regime described
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by Eqs. 4.1-4.3 in the presence of a weak magnetic field.

We have also explored the Zeeman shifts using a more general treatment for

the case of intermediate fields elsewhere [50], where we found that the results for

the clock states are identical to the weak field approach taken here below, even

for fields as large as 104 G. Interestingly, we also found that an analytic form can

be written for the field dependence of the general alkaline earth 1S0,
3P0,

1P1, and

3P1 state, similar to the traditional Breit-Rabi formula for alkali atoms. These

formulas are presented in [50] and are too cumbersome to be given here.

4.2.1 The Linear Zeeman Effect: Hyperfine-Induced Differential

g-Factor of the Clock Transition

The Hamiltonian for the Zeeman interaction in the presence of a weak mag-

netic field B along the z-axis is given as

HZ = (gsSz + glLz − gIIz)µ0B. (4.12)

Here gs ' 2 and gl = 1 are the spin and orbital angular momentum g-factors, and

Sz, Lz, and Iz are the z-components of the electron spin, orbital, and nuclear spin

angular momentum respectively. The nuclear g-factor, gI , is given by gI=
µI(1−σd)

µ0|I| ,

where µI is the nuclear magnetic moment, σd is the diamagnetic correction and

µ0=µB
h . Here, µB is the Bohr magneton, and h is Planck’s constant. For 87Sr,

the nuclear magnetic moment and diamagnetic correction are µI = −1.0924(7)µN

[129] and σd = 0.00345 [130] respectively, where µN is the nuclear magneton.

In the absence of state mixing, the 3P0 g-factor would be identical to the 1S0 g-

factor (assuming the diamagnetic effect differs by a negligible amount for different

electronic states), equal to gI . However since the HFI modifies the 3P0 wave

function, a differential g-factor, δg, exists between the two states. This can be

interpreted as a paramagnetic shift arising due to the distortion of the electronic
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Figure 4.2: Nuclear structure of the 1S0 and 3P0 clock states in the presence of a
small bias field. The large nuclear spin (I = 9/2) results in 28 total transitions,
and the labels π, σ+, and σ− represent transitions where mF changes by 0, +1,
and −1 respectively. The HFI state mixing modifies the 3P0 g-factor, making the
magnitude about 60% larger than that of 1S0.

orbitals in the triplet state, and hence the magnetic moment [126]. δg is given by

δg = g
3P0 − gI = −〈

3P0|HZ |3P0〉 − 〈3P 0
0 |HZ |3P 0

0 〉
mF µ0B

. (4.13)

Using Eq 4.3, the Zeeman matrix elements [121] provided in Table 4.2, and ing-

noring terms of order 2 or higher in the hyperfine mixing coefficients we find

δg = −
(
α̃0α̃− β̃0β̃

)√ 8

3I(I + 1)
. (4.14)

The mixing results in a modification of the 3P0 g-factor of ∼60%. Note that

the sign in Eq. 4.14 differs from that reported in [126, 35] due to our choice of

sign for the nuclear term in the Zeeman Hamiltonian (opposite of that found in

Ref. [121]). The resulting linear Zeeman shift ∆(1)
B = −δgmF µ0B of the 1S0-

3P0

transition is simply given by the mixing calculation yielding 109.1(1)×mF Hz/G

for the BW theory and 117.9(5)×mF Hz/G for the MBW calculation. This linear

Zeeman shift (shown schematically in Fig. 4.2) is considered a very important
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Table 4.2: Zeeman Matrix Elements for Pure (2S+1L0
J) States

Relevant Elements for the 3P0 State:
〈3P 0

0 , F = I|HZ |3P 0
0 , F = I〉= −gImF µ0B

〈3P 0
0 , F = I|HZ |3P 0

1 , F ′ = I〉 =(gs − gl)mF µ0B
√

2
3I(I+1)

〈3P 0
0 , F = I|HZ |3P 0

1 , F ′ = I + 1〉 =(gs − gl)µ0B
√

((I+1)2−m2
F )(4I+6)

3(I+1)(4(I2+1)−1)

〈3P 0
0 , F = I|HZ |3P 0

1 , F ′ = I − 1〉 =(gs − gl)µ0B
√

(I2−m2
F )(4I−2)

3I(4I2−1)

systematic effect for the development of lattice clocks, as stray magnetic fields

can broaden the clock transition (deteriorate the stability) if multiple sublevels

are used. Furthermore, imbalanced population among the sublevels or mixed

probe polarizations can cause frequency errors due to line shape asymmetries or

shifts. As opposed to the lifetime calculation, the Zeeman sensitivity depends

strongly on the 3P1 mixing and only weakly on the 1P1 effect (|α̃0α̃/β̃0β̃| > 103).

4.2.2 The Quadratic Zeeman Effect

The second order Zeeman shift ∆(2)
B must also be considered for development

of accurate frequency standards. The two clock states are both J = 0 so the shift

arises from levels separated in energy by the fine-structure splitting, as opposed

to the more traditional case of alkali(-like) atoms where the second order shift

arises from nearby hyperfine levels. The shift of the clock transition is dominated

by the interaction of the 3P0 and 3P1 states since the ground state is separated

from all other energy levels by optical frequencies. Therefore, the total Zeeman

shift of the clock transition ∆B is given by

∆B = ∆
(1)
B + ∆

(2)
B = ∆

(1)
B −

∑
F ′

|〈3P0, F,mF |HZ |3P1, F
′, mF 〉|2

ν3P1,F ′ − ν3P0

. (4.15)

The frequency difference in the denominator is mainly due to the fine-structure

splitting and is nearly independent of F ′, and can therefore be pulled out of the
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Figure 4.3: A Breit-Rabi-like diagram for the 1S0-

3P0 clock transition is shown
with δgµ0 = −109 Hz/G and ∆

(2)
B = −0.233 Hz/G2. The top panel gives the shifts

of the different sublevels for fields up to 3000 G. The lower panel shows a close up of
the shift for a smaller range of fields, more relevant to our experiments. This shows
the linear nature of the clock shifts at the fields relevant for the measurements
described in the text. Note that the results here are unchanged if the we include
the Zeeman and hyperfine interaction simultaneously in the Hamiltonian.

summation. In terms of the pure states, and ignoring terms of order α̃0, β̃0, β̃2,
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and smaller, we have

∆
(2)
B ' −α̃2

∑
F ′ |〈3P 0

0 , F,mF |HZ |3P 0
1 , F ′, mF 〉|2

ν3P1
− ν3P0

= −2α̃2(gl − gs)
2µ2

0

3(ν3P1
− ν3P0

)
B2, (4.16)

where we have used the matrix elements given in Table 4.2 for the case F = 9/2.

From Eq. 4.16 the second order Zeeman shift (given in Hz for a magnetic field

given in Gauss) for 87Sr is ∆(2)
B =−0.233B2. This is consistent with the results

obtained in Ref. [53] and [57] for the bosonic isotope. Inclusion of the hyperfine

splitting into the frequency difference in the denominator of Eq. 4.15 yields an

additional term in the second order shift proportional to m2
F which is more than

10−6 times smaller than the main effect, and therefore negligible. Notably, the

fractional frequency shift due to the second order Zeeman effect of 5×10−16 G−2

is nearly 108 times smaller than that of the Cs [6, 5] clock transition, and more

than an order of magnitude smaller than that present in Hg+ [29], Sr+ [31, 32],

and Yb+ [33, 34] ion optical clocks.

A Breit-Rabi like diagram is shown in Fig. 4.3, giving the shift of the 1S0-
3P0

transition frequency for different mF sublevels (assuming ∆m = 0 for π transi-

tions), as a function of magnetic field.

4.3 Sublevel-Dependent Light Shifts from the Optical Lattice

In this section we consider the effect of the confining potential in terms of the

energy shifts of the nuclear sublevels. Our polarizability calculations in Chapter 3

show that the light shift for the 3P1 state (in 88Sr depends strongly on the sublevel

mJ , and the light polarization. For linearly polarized light for example the shift

for the |mJ |=1 states is quite different than that of the mJ=0 state (See Fig. 3.4).

This is because of the tensor component of the polarizability, which provides shifts

proportional to m2
J . For the J=0 clock states the tensor shift vanishes (only a

mJ=0 state exists) as does the polarization sensitivity. The hyperfine interaction
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however provides opportunity for mF and polarization dependent shifts that must

be considered. Also, the nuclear structure does result in tensor (∝ m2
F ) and

vector (∝ mF ) light shift terms in the atomic polarizability, which depend on

the orientation of the relevant electric and magnetic fields. While these effects

are expected to be quite small for J=0 states, their magnitudes are important to

consider for development of an accurate clock.

4.3.1 Case I: Linear Polarization and The Tensor Light Shift

To evaluate the light shift of the clock transition magnetic sub-levels caused

by the trapping beam, we first investigate the tensor component of the atomic

polarizability. The usual form for the light shift of an |F, mF 〉 state is given by

[131]

h∆ν =− 1

2
αiE

2

=−
(

αsc. + αten. 3m
2
F − F (F + 1)

F (2F − 1)

3 cos2 φ′ − 1

2

)
E2

2

(4.17)

where we have separated out the scalar (αsc.) and tensor (αten.) components of

the polarizability explicitly. The scalar term is common for all sublevels, while

the tensor term affects the sublevels with both a common offset, and an |mF |-

dependent term, with the relative sizes of these two tensor parts determined by

F . The magnitude of the tensor shift also depends on the angle φ′ between

the trap polarization axis and the quantization axis (in this section, we assume

that no other external fields are present, such that the lattice geometry defines

the quantization axis). In the absence of other fields, a linear polarized beam

results in the quantization axis along the light polarization, resulting in φ′=0 or

equivalently (3 cos2 φ′ − 1)/2=1.

General expressions for the polarizabilities (in terms of reduced matrix ele-

ments and angular momentum factors) can be found elsewhere [131, 48] making
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the calculation straight forward for a general |F, mF 〉 state. The expression for the

tensor polarizability is identically zero for states with F = 0, 1/2. This is easily

understood if one considers that in both of these cases there is only one value of

|mF |. At this point, if your choice of atoms for the lattice clock is 171Yb(F=1/2)

you can skip to the next subsection, for the rest of us let’s calculate it!

Unfortunately for us (but fortunately for our accuracy evaluations) the usual

expression for the tensor polarizability is insufficient to describe our clock states

with J=0 as it is indeterminant. While we could throw our hands up at the situa-

tion and call it zero, as much of the literature does (for reasonable reasons), deep

down we know there must be some tensor shift with all that hyperfine structure

around. For more insight into the issue we can go back to our original expression

for the total polarizability given previously as

αi(ωL) = 6πε0c
3
∑

k

Aik

ω2
ik(ω

2
ik − ω2

L)
(4.18)

Now that the hyperfine structure is involved, our original expression for Aik must

be modified and the sum above must be over all states J and F . After some

angular momentum reduction on our previous expression, the result for Aik is

similar to that in Eq. 3.9 with the usual additional factor of (2Fi + 1)(2Fk +

1){ Ji I Fi
Fk 1 Jk

}2 along with an appropriate 3J symbol for the mF dependence.

Ãik

AT

=
(2Ji + 1)(2Jk + 1){ Ji Jk 1

Lk Li S }2∑|Li+S|
J=|Li−S|(2J + 1){ J Jk 1

Lk Li S }2
(2Fk + 1)(2Fi + 1){ Ji I Fi

Fk 1 Jk
}2

Fk∑
mk=−Fk

(
Fi 1 Fk
mi p −mk

)2
(4.19)

If we sum Eq. 4.19 over the hyperfine structure of an excited state to determine

the geometric scaling factor for 3P0 , we find that the result is identical to that in

Table 3.1 in which the hyperfine structure was ignored (as expected). So we are

right back where we started with no mF dependent shift for 3P0. However, if we

include the fact that the hyperfine interaction also changes the relevant transition

frequencies (ωik), then we will have an Fk dependent frequency which breaks the
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symmetry and does in fact result in a m2
F dependence. This method of including

the hyperfine splitting was also used in the original lattice clock proposal of Katori

[39]. Note that this is not a contradiction of our previous statement that the tensor

polarizability is undefined for J=0, the derivation used for the other result simply

ignores a small correction due to the hyperfine level shifts because it is negligibly

small in most cases [132].

To estimate the size of this effect, we note that the tensor shift of the clock

transition should be dominated by the shift of the 3P0 state because of the relative

size of the hyperfine splitting in the excited triplet states, as compared to that

of the 1P1 state. Ideally we would like to include the hyperfine splitting of all of

the excited states for the 3P0 shift, but the limited availability of experimental

hyperfine data leads to settling for just the 3S1 state [90]. This is still a reasonable

approximation for the tensor shift since that state provides a significant fraction

of the total 3P0 light shift at the magic wavelength. The total polarizability is

calculated (at 813 nm) using Eq. 4.19 and 4.18 along with the data in Table 3.2,

with the term for the lowest lying 3S1 set to include the hyperfine splitting (HFS)

for different values of Fk. The result is plotted (green circles) in the upper panel of

Fig. 4.4 for different ground state mF values. For comparison, the result without

the hyperfine splitting is shown as black squares. The hyperfine energy correction

does in fact result in an m2
F dependent polarizability. To extract the tensor

polarizability the data is fit to Eq. 4.17 (with φ′=0) resulting in αten. = −1.6×10−7

a.u..

Another interesting calculation is to consider the effect that the hyperfine

state mixing has on the tensor light shift of the 3P0 state. In the previous sections

of this chapter we showed that state mixing is THE important consideration for

a number of effects, suggesting we take that into account for our polarizability

calculation. We can therefore also try an additional approach where we instead
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Figure 4.4: The upper panel shows the result of the polarizability calculation in
atomic units for purely linear polarized light both with (green circles) and without
(black squares) including the hyperfine energy shifts in the 3S1 state. The scalar
polarizability (αSc.) is subtracted off of the total polarizability for convenience.
From the data we find that the scalar portion of the polarizability is not effected
by the hyperfine correction, but the tensor component is increased from zero to
αten.=-1.6×10−7 a. u.. The lower panel shows the result of the polarizability cal-
culation if the 3P1 state mixing is included. Here we find that both the scalar and
tensor component are altered. The scalar component is altered by less than 0.1%
(beyond the precision of our earlier scalar calculations). The tensor component is
drastically altered, increasing by orders of magnitude compared to the hyperfine
splitting calculation, to αten.=-0.051 a.u..

calculate the 3P0 polarizability by taking into account the mixing with the 3P1
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(F = 9/2) state. In light of the results in Fig. 3.4 for the 3P1 state with linear

polarization, where the tensor shift has a similar magnitude as the scalar shift,

this is worth looking into even with the small reduction factor from the state

mixing. We then calculate the total polarizability for the state |φi〉 = |3P0〉 '

|3P 0
0 〉+ α̃0|3P1, F = 9/2〉 by the relation

αi(ωL) =
2e2

~
∑

k

ωik|〈φk|D|φi〉|2

(ω2
ik − ω2

L)

=
2e2

~
∑

k

ωik

(ω2
ik − ω2

L)

(
|〈φk|D|3P0〉|2 + α̃2

0|〈φk|D|3P1, F = 9/2〉|2

+2α̃0|〈3P0|D|φk〉〈φk|D|3P1, F = 9/2〉|
) (4.20)

The first term in the summation in Eq. 4.20 simply yields the 3P0 polarizability

calculated previously. If we ignore the energy difference between the 3P0 and 3P1

states, then the second term is simply the 3P1(F = 9/2) polarizability, scaled

down by the nuclear spin mixing coefficient squared. These first two terms can

then be calculated using the polarizability defined in Eqs. 4.18 and 4.19, and

α̃0=2.4×10−4. As we saw above, the first term does not contribute any tensor

component unless the HFS energy splitting is included. For the second term we

find the tensor component of the 3P1(F = 9/2) polarizability is -125 a.u., yielding

a contribution of -5.0×10−6 a.u. for the tensor polarizability of the 3P0 state. We

therefore see that the state mixing can provide a larger tensor contribution than

the hyperfine energy correction. The third term in Eq. 4.20 (the cross term) can

provide an even larger contribution to the tensor shift since it only has one order

of α̃0. To estimate the contribution for this term we again ignore the 5s5p fine

structure and relate the matrix elements to atomic lifetimes using Eq. 3.7, 4.19,

and 4.18. We find that inclusion of this larger mixing term further increases the

tensor polarizability by a few orders of magnitude compared to the other terms.

The results of the complete polarizability calculation are shown in the lower
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panel of Fig. 4.4. The polarizability of the different mF sublevels is plotted for

pure linear polarization, including the effect of the 3S1 HFS, the α̃2
0 mixing term,

and the larger mixing cross term. The state mixing results in a small change in the

static polarizability (negligible at our calculation accuracy), but more importantly,

the tensor component is dramatically larger than it was in the calculation where

only the hyperfine splitting was included. A fit of the data yields αten.=-0.051

a.u..

We will find later on in this chapter, that the estimated contribution from the

mixing cross term in Eq. 4.20 is actually too large given the experimental data.

This could be because of our approximation used, or the ignoring of the other

state mixing contributions such as 3P2, which has a smaller mixing coefficient but

should have a significant tensor shift due to the larger J = 2. Even if we ignore

the large cross term, we still find enhancement in the tensor component from state

mixing suggesting that for accurate calculation of the tensor light shift, the state

mixing from the hyperfine interaction must be accounted for. The calculation

here predicts that state mixing provides a tensor shift significantly larger than

that in Katori’s original proposal [39]. It also contradicts the suggestion in the

Yb proposal (Ref. [47]) that the tensor shift will vanish. Obviously with the

contradictions in different calculations, it will be essential to measure the effect.

4.3.2 Case II: Circular Polarization and The Vector and Tensor

Light Shifts

For pure linearly polarized light we are finished with the issue of sublevel

dependent light shifts. But, in the real world we know our laser light will have

some small admixture of circular polarization so we would like to see how that

affects the different sublevels. We will first look at light shifts for a pure circularly

polarized beam, and then consider general polarizations in the next subsection.
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For pure circular polarization (still in the absence of other fields), the total light

shift is given by

h∆ν = −
(

αSc. + αvect.mF

2F
ξ − αten. 3m

2
F − F (F + 1)

2F (2F − 1)

)
E2

2
(4.21)

where αvect. is the vector (or axial) polarizability, and ξ is the degree of ellipticity of

the light field. For pure circular (linear) polarization, ξ=+/-1 (ξ=0). The vector

light shift can be simply described as an effective magnetic field d ~B along the

propagation axis, with the magnitude of d ~B determined by the atomic properties,

light intensity, and ξ. The tensor term from Eq. 4.17 is still present in the light

shift, but now the quantization axis is defined by the light propagation axis such

that φ′=π/2 and (3 cos2 φ′ − 1)/2= -1/2. Because of the change in quantization

axis, the tensor light shift is smaller than in the linear polarized case by a factor

of 2, and will have an opposite sign.

Once again we find ourselves in a situation where we cannot rely on the

standard formulas for αvect. and αten. since J=0. We take the same approach as in

the previous subsection and calculate two effects on the polarizabilities. First, we

calculate the polarizability by including the 3S1 hyperfine splitting, again using

Eq. 4.18, this time with circular polarization (p=1). Once again we find that if

the hyperfine splitting is not included, the vector polarizability is zero. With the

splitting included, the result is shown in Fig. 4.5 as green triangles. Fitting the

data using Eq. 4.21, we find αvect.=1.49×10−2 a.u. and αten.=-1.6×10−7 a.u.. As

expected, the tensor polarizability is identical to what we calculated before for

the HFS approximation, so the geometrical factors are correct (a nice consistency

check).

As we did before, we can also include the 3P1 state mixing to calculate the

polarizability. Looking again at the results of Fig. 3.4, the 3P1 vector polarizability

should be similar in size to the tensor polarizability. Unlike with the tensor
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Figure 4.5: Results of the polarizability calculation of the 3P0 mF states. If state
mixing and hyperfine energy splitting is ignored (black squares), the vector and
tensor components are zero, resulting in identical polarizations for different mF

states. If the hyperfine splitting is included (green triangles), vector and tensor
components arise with magnitude 0.0149 a.u. and -1.6×10−7 a.u. respectively.
If we also include the 3P1 state mixing along with the hyperfine splitting (lower
panel), the tensor term drastically increases to -0.051 a.u., while the vector term
is slightly reduced to 0.0106 a.u..

component, the vector shift of the 3P0 state originating from the hyperfine splitting

is larger than any vector component the mixing can provide. The calculation

agrees with this logic, as we find the 3P1(F = 9/2) vector polarizability is -57.5

a.u., leading to values of αvect.=-2.3×10−6 a.u. and αten.=-5.0×10−6 a.u. for
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the 3P0 state using the α̃2
0 mixing term. The contribution is even larger for the

mixing cross term (by roughly a factor of α̃0). The lower panel of Fig. 4.5 shows

the polarizability calculation if the HFS and two state mixing terms are included.

A fit to the data using Eq. 4.21 yields αvect.=1.06×10−2 a.u. and αten.=-0.051 a.u..

Once again we find the state mixing provides a larger tensor shift, however in the

case of the vector shift, the hyperfine splitting in the excited states appears to be

the dominant effect. In Ref. [47] it was found that in Yb the vector contribution

from the state mixing was larger than that from the HFS in the excited states. This

is not necessarily inconsistent with our results here as we found the contributions

to be of the same order, the difference could simply boil down to differences in

the atomic parameters.

From analysis of these two special cases, we can see that for a truly accurate

calculation of these different polarizability values, one needs to carefully take into

account the hyperfine energy correction to all the excited states, as well as the state

mixing caused by the nuclear spin. While the calculations here give reasonable

estimates for these values, more complete analysis will be necessary for comparison

with future experimental data.

4.3.3 Case III: Light Shifts for Arbitrary Light Polarization

With estimates for the various polarizabilities of 3P0 in hand, the sublevel-

dependent light shift calculation (still assuming the 3P0 state dominates the effect)

can be completed for the case of either pure circular or pure linear polarization

as we can use Eq. 4.21 or 4.17. The polarizability values are given in Table 4.3,

organized by the effect considered for each calculation.

For the general case of elliptical polarization, discussion of the light shift

is complicated by the fact that in the two extreme cases (pure linear or circular)

the quantization axis is defined along different axes. To calculate the polarization
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dependence we have to take a more general approach where the full light shift

hamiltonian is evaluated for a given degree of circular ξ or linear l =
√

1− ξ2

polarization. Following the derivation of Ref. [48], where we assume the absence

of other external fields, the diagonal matrix elements wmF ,m′
F

representing the

circular polarization light shift case are given by

wmF ,m′
F

= −1

2

(
αSc. +

mF

2F
αvect. − 3m2

F − (F (F + 1))

2F (2F − 1)
αten.

)
. (4.22)

For pure circular polarization (ξ = ±1, l = 0), the light shift matrix is

diagonal and we recover the result in Eq. 4.21 where the quantization axis is

defined by the light propagation direction. If the light contains some mixture

of linear polarization (ξ 6= ±1, l 6= 0) the matrix is no longer diagonal and the

quantization axis is not well defined. We then introduce off diagonal contributions

given by

wmF±2,m′
F

= −
3
√

1− ξ2
√

(F ±mF + 1)(F ±mF + 2)(F ∓mF − 1)(F ∓mF )

4(2F − 1)(2F )
αten..

(4.23)

In the case when pure linear polarization is used, inclusion of these off diag-

onal elements in the hamiltonian exactly reproduces the result in Eq. 4.17 where

the quantization is defined by the light polarization. Using the matrix elements

above, we can calculate the energy shifts for a general polarization, characterized

by ξ, as long as the polarizabilities are known. Here we are mostly interested in

the shifts of the Zeeman sublevels relative to the scalar shift common to all states,

Table 4.3: 3P0 Polarizabilities: Scalar, Vector and Tensor

3P0 Polarizabilities calculated at 813nm.
Parameter 3S1 HFS α̃2

0 Mixing Term 3S1 HFS, α̃2
0 and α̃0 Mixing Terms

αten. -1.6×10−7 a.u. -5.0×10−6 a.u -0.051 a.u.
αvec. 0.0149 a.u. -2.3×10−6 a.u 0.0106 a.u.
αSc. 282 a.u. 282 a.u. 282 a.u.
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so we will ignore αSc.. We will consider two cases: first we calculate the polariza-

tion dependent light shift assuming the HFS is the only interaction, resulting in

αten.=-1.6×10−7 a.u. and αvect.=0.0149 a.u. from the previous subsections. Sec-

ond, we will use the polarizability found when the state mixing is included with

the HFS yielding αten.=-0.051 a.u. and αvect.=0.0106 a.u.. These two cases allow

us to explore the polarization sensitivity in different regimes where in one case

the vector shift is dominant and in the other, the tensor shift is dominant. While

we expect the second calculation to be more complete, our measurements in a

later section show that the upper limit for the tensor contribution is an order of

magnitude smaller than the calculation predicts. Since the complete polarizability

calculation is apparently not very accurate it is useful to consider both cases until

more exact polarizability values have been measured.

The 3P0 state has F=9/2, so you’ll have to forgive me for diagonalizing the

10 by 10 light shift matrix numerically to solve for the energy shifts. The top panel

of Fig. 4.6 shows the result for the HFS polarizability parameters in Table 4.3,

as ξ is varied between -1 and 1. For convenience, the light shift is reported in

two ways. First, on the left axis, the light shift of the Zeeman levels is given in

relative units, divided by the large scalar light shift. This is useful if the scalar

light shift in an experiment is known (e.g. from the side band spectrum) as it gives

the shifts in terms of a fraction of the scalar shift. The right axis simply gives

the relative shift of the Zeeman levels in units of frequency for the typical lattice

depth U0=35ER, used in this work. Note that the two extreme cases ξ = ±1 and

ξ = 0 are equivalent to the results in Figs. 4.4 and 4.5. We can see that the vector

component of the light shift is dominant for most polarization ranges, such that

the quantization axis is defined by the lattice propagation axis. The middle panel

shows a close up of the HFS calculation for small deviations from perfect linear

polarization. For values of ξ below 10−4 the tensor effect is dominant and the
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quantization axis is well defined by the linear lattice polarization. The magnetic

sublevels are labeled at the special case polarizations where they are well defined

(ξ = 0,±1).

The bottom panel in the Figure gives a similar calculation, this time using

the polarizabilities obtained from the more complete evaluation which includes

the state mixing. In this case we find the tensor contribution is dominant over a

large range of polarizations. According to Fig. 4.6, the tensor shift is significant,

as large at 20 Hz for the |mF | = 9/2 state. As mentioned earlier, this predicted

shift is inconsistent with our experimental data. For example, the 5 Hz spectra

presented in Fig. 3.19 was taken with nearly-zero field and with nearly-linear

lattice polarization such that any mF -dependent light shift is at most causing

a 4 Hz broadening. From Fig. 4.6 we would expect the broadening to be 10s

of Hz. Furthermore in the next section of this chapter (Section 4.4.2, we make

direct measurements of the tensor shift which allow us to constrain the shift to

an order of magnitude less than that predicted here. In light of this overestimate
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from our theory, we also calculate the polarization dependence of the light shift

assuming a worst-case scenario where the experimental upper limit for the tensor

polarizability of −0.006 a.u. is used along with the largest theoretically predicted

(in this work) vector polarizability of 0.0149 a.u.. The result, plotted in Fig. 4.7

represents a more accurate estimate of the potential sublevel light shifts than that

in Fig. 4.6.

We have now completely solved the state dependent light shift issue for

arbitrary polarizations, in the absence of other external fields. In the future,

when the polarizabilities have all been measured, we can return to this issue to

plot the exact dependence.

4.3.4 Case IV: Light Shift in the Presence of an External Magnetic

Field

One final case which is useful to consider for realistic experiments, is the

light shift sensitivity when a bias magnetic field is used to define the quantum

axis. Here we will consider the special case where the bias field is orthogonal to the

lattice propagation axis. If the quantum axis is well defined by a magnetic field,

we know that by changing the polarization of the lattice we cannot completely

change the quantum axis as we did before. The effective magnetic field d ~B caused

by any circular component of the polarization will now be orthogonal to the bias

field B. For a large bias field, B � d ~B, the quantum axis will be essentially

unchanged. As Fig. 4.6 shows, for pure circular polarization at our typical trap

depth, the contribution of the vector light shift for the stretched state is ∼3Hz.

Given the 3P0 total g-factor of 295 mF Hz/G, the vector shift is equivalent to a

magnetic field of 2.2 mG. Thus for fields on the order of 100 mG, B � d ~B is well

satisfied. In this situation the effect of the vector shift is reduced by a geometric

factor of cos ϕ, where ϕ is the angle between the lattice propagation direction and
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the bias magnetic field [133]. The tensor shift term is unchanged, still having the

same 3 cos2 φ′ − 1 dependence, remembering that φ′ is the relative angle between

the light polarization direction and the quantum axis, now defined by the bias

field. In this case, the total light shift is given by

h∆ν = −
(

αsc. + αvect.ξ cos ϕ
mF

2F
+ αten. 3m

2
F − F (F + 1)

F (2F − 1)

3 cos2 φ′ − 1

2

)
E2

2
.

(4.24)

Careful consideration of Eq. 4.24 reveals that the Zeeman light shift sensitivities

in a clock can be dramatically reduced with an appropriate choice of geometry

and polarization. If the light is linearly polarized, we enjoy a reduction factor

of ξ on the vector term, as we saw before. If the bias field is aligned orthogo-

nally to the light propagation axis (ϕ ' π/2), the vector contribution is further

reduced by a factor cos ϕ ≈ δϕ, where δϕ is the misalignment relative to perfect

orthogonal orientation. In this situation, the angle φ′ is the angle between the

linear polarization and the bias magnetic field in the plane orthogonal to the light

propagation. Note that if linear polarization is guaranteed, the tensor component

can then in principle be eliminated if φ′ =∼ 57.4◦ as (3 cos2[57.4◦] − 1) → 0 as

pointed out in [133].

4.3.5 Summary of Nuclear-Spin Related Shifts

Now that we have explored the various nuclear spin-related shifts in the

lattice clock, we will combine all the effects into one master equation which can

be used to estimate frequency shifts when both electric and magnetic fields are

present. For our experimental situation where the lattice field E is linearly polar-

ized (ξ '0) along the quantum axis (φ′ ' 0, ϕ ' π/2) as defined by an external

magnetic field B (see Fig. 4.8), the level shifts for the two clock states (from
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Figure 4.8: Setup for experimental investigation of nuclear spin effects. The lattice
and probe propagate along the z-axis. The lattice polarization ~EL is fixed along
the x-axis while the probe polarization ~EP can be varied by an angle θ relative to
the lattice polarization, in the xy-plane. The magnetic field ~Bext is aligned along
the x-axis such that the angle φ′ between the quantum axis and lattice polarization
is zero, and the angle ϕ between the quantum axis and light propagation axis is
π/2. The right panel shows the orientation of the system relative to gravity, which
is offset from z, in the yz plane, by about 10 degrees.

Eqs. 4.15 and 4.24) are given by h∆ν with

∆νe = −mF (gI + δg)µ0B −
(

αsc.
e + αvec.

e ξδϕ
mF

2F
+ αten.

e

3m2
F − F (F + 1)
F (2F − 1)

)
E2

2h

∆νg = −mF gIµ0B −
(

αsc.
g + αvec.

g ξδϕ
mF

2F
+ αten.

g

3m2
F − F (F + 1)
F (2F − 1)

)
E2

2h
(4.25)

Where the subscripts e and g refer to the excited (3P0) state and ground (1S0)

state respectively. Here we have omitted the second order Zeeman shift ∆
(2)
B for

simplicity, and the reader is reminded that from the previous section, this effect has

negligible dependence on mF . Hyperpolarizability effects (∝ E4) [41, 39, 48, 47]

are ignored as they are negligible in 87Sr at the level of 10−17 for the range of

lattice intensities used in current experiments [41].

As we are nearing the discussion of the measurement of some of these shifts
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(finally), it is convenient to re-write Eq. 4.25 in terms of the lattice trap depth UT

in units of the energy of a lattice photon recoil ER, where UT /ER characterizes

the lattice intensity. This is a naturally way to describe the light shift effects as

UT can be directly measured using sideband spectroscopy. The light shift terms

can then be written as shift coefficients for the scalar (κS), vector (κV ), and tensor

(κT ) interactions, with units of Hz/(UT /ER).

∆νe = −mF (gI + δg)µ0B −
(
κS

e + κV
e ξδϕmF + κT

e (3m2
F − F (F + 1))

) UT

ER

∆νg = −mF gIµ0B −
(
κS

g + κV
g ξδϕmF + κT

g (3m2
F − F (F + 1))

) UT

ER
.

(4.26)

Using Eq. 4.26 we can then write the frequency of π-transitions (∆mF = 0) from

a ground state sublevel mF as

νπmF
=νc −

(
∆κS −∆κT F (F + 1)

) UT

ER
−
(
∆κV mF ξδϕ + ∆κT 3m2

F

) UT

ER

− δgmF µ0B,

(4.27)

where the shift coefficients due to the differential polarizabilities are represented

as ∆κ, and νc is the bare clock frequency. The basic principle of the lattice clock

technique is to tune the lattice wavelength (and hence the polarizabilities) such

that the intensity-dependent frequency shift terms are reduced to zero. Due to the

mF -dependence of the third term of Eq. 4.27, the Stark shifts cannot be completely

compensated for all of the sublevels simultaneously. Or equivalently, the magic

wavelength will be different depending on the sublevel used. The significance of

this effect depends on the magnitude of the tensor and vector terms relative to the

scalar term. The scalar shift coefficient is simple since the trap depth UT is in fact

defined by the scalar light shift of the ground state. Therefore, near the magic

wavelength we have κS
1S0

' κS
3P0

= 3.4×103 Hz/(UT /ER) (where 3.4 kHz is really

just ER/h). Using our polarizability calculations from the previous section, along

with the relevant scaling factors in Eq. 4.25, we find κT
3P0

=-2×10−3 Hz/(UT /ER)
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and κV
3P0

=2×10−2 Hz/(UT /ER) where again we have used the experimental upper

limit for the tensor shift. As before, we estimate that the state-dependent light

shift of the clock transition will be dominated by the 3P0 contribution such that

∆κT ' κT
3P0

and ∆κV ' κV
3P0

.

The frequencies of σ± (∆mF = ±1) transitions from a ground mF state

will also prove useful in our experimental analysis. They are similar to the π-

transitions, given by

νσ±mF
= νc −

(
∆κS −∆κT F (F + 1)

) UT

ER
−
(
(κV

e (mF ± 1)− κV
g mF )ξδϕ

) UT

ER

−
(
κT

e 3(mF ± 1)2 − κT
g 3m2

F

) UT

ER
− (±gI + δg(mF ± 1))µ0B.

(4.28)

4.4 Experimental Determination of Nuclear Spin Effects

To explore the magnitude of the various mF -dependent shifts in Eq. 4.27, a

differential measurement scheme is used to eliminate the large shifts common to

all levels. Using resolved sublevels one can extract mF sensitivities by measuring

the splitting of neighboring transitions. This is the approach taken here. To

resolve the nuclear sublevels, a Helmholtz coil pair provides a field along the

lattice polarization axis. Two other coil pairs are used along the other axes to

zero the orthogonal fields. To explore both π and σ transitions, the probe laser is

linearly polarized at an angle θ relative to the quantum axis. The orientation of

all of the relevant fields in the setup is shown in Fig. 4.8.

4.4.1 Precision Measurement of δg

When the probe polarization is oriented parallel to the quantization axis

(θ = 0 in Fig. 4.8), the ground state atoms undergo π-transitions (∆mF = 0).

The large nuclear spin provides ten possible transitions, as shown in Fig. 4.2.

The high spectral resolution provided by the lattice clock technique allows for the
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Figure 4.9: Observation of the 1S0-
3P0 π-transitions (θ = 0) in the presence of

a 0.58 G magnetic field. Data is shown in grey and a fit to the eight observable
lineshapes is shown as a blue curve. The relative transition amplitudes for the dif-
ferent sublevels are strongly influenced by the Clebsch-Gordon coefficients. Here,
fourier limited transition linewidths of 10 Hz are used.

study of nuclear spin effects at small bias fields, as the ten sublevels can easily

be resolved with a few hundred mG. An example of this is shown in Fig. 4.9,

where the transitions are observed in the presence of a 0.58 G bias field. This is

important for achieving a high accuracy measurement of δg as the contribution

from magnetic-field-induced state mixing is negligible. To extract the desired shift

coefficients we note that for the π transitions we have a frequency gap between

neighboring lines of

fπ,mF
= νπmF

− νπmF−1 = −δgµ0B −∆κV ξδϕ
UT

ER

−∆κT 3(2mF − 1)
UT

ER

. (4.29)

From Eq. 4.29, we see that by measuring the differences in frequency of two

spectroscopic features, the three terms of interest (δg, ∆κV , and ∆κT ) can be

determined independently. The differential g factor can be determined by vary-



148

-300 -200 -100 0 100 200 300
0.0

0.2

0.4

0.6

0.8

1.0

+3/2

+5/2

+7/2

+1/2-1/2
-3/2

-5/2

-7/2

+9/2

 

 

3 P 0 P
op

ul
at

io
n 

(a
rb

)

Laser Detuning (Hz)

-9/2

-500 -250 0 250 500
0.0

0.2

0.4

0.6

0.8

1.0 -9/2 (σ+)

-7/2 (σ−)

 

 

3 P 0 P
op

ul
at

io
n 

(a
rb

)

Laser Detuning (Hz)

+7/2 (σ+)

+9/2 (σ−)

Figure 4.10: Observation of the 18 σ transitions when the probe laser polarization
is orthogonal to that of the lattice (θ = π

2
). Here, a field of 0.69 G is used.

Data is shown in grey and a fit to the eight observable lineshapes is shown as a
blue curve. The peaks are labeled by the ground state sublevel of the transition
and the relevant polarization. The relative transition amplitudes for the different
sublevels are strongly influenced by the Clebsch-Gordon coefficients. Here, fourier
limited transition linewidths of 10 Hz are used.

ing the magnetic field. The contribution of the last two terms can be extracted

by varying the intensity of the standing wave trap, and can be independently

determined since only the tensor shift depends on mF .

While the π transitions allow a simple determination of δg, the measurement

requires a careful calibration of the magnetic field and a precise control of the

probe laser frequency over the ∼500 seconds required to produce a scan such as

in Fig. 4.9. Any linear laser drift will appear in the form of a smaller or larger

δg, depending on the laser scan direction. Furthermore, the measurement can not

be used to determine the sign of δg as an opposite sign would yield an identical

spectral pattern.

In an alternative measurement scheme, we instead polarize the probe laser
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perpendicular to the lattice polarization axis (θ = π
2
) to excite both σ+ and σ−

transitions (∆mF = ±1). In this configuration, 18 spectral features are observed

and easily identified (Fig. 4.10). For now we ignore small shifts due to the lattice

potential, δg is then given by extracting the frequency splitting between adjacent

transitions of a given polarization (all σ+ or all σ− transitions) as fσ±,mF
=νσ±mF

−

νσ±mF−1
=−δgµ0B . If we also measure the frequency difference between σ+ and σ−

transitions from the same sublevel, fd,mF
=νσ+

mF
− νσ−mF

=−2(gI + δg)µ0B, we find

that the differential g-factor can be determined from the ratio of these frequencies

as

δg =
gI

fd,mF

2fσ±,mF

− 1
. (4.30)

In this case, prior knowledge of the magnetic field is not required for the evalu-

ation, nor is a series of measurement at different fields, as δg is instead directly

determined from the line splitting and the known 1S0 g factor gI . The field cal-

ibration and the δg measurement are in fact done simultaneously, making the

method immune to some systematics which could mimic a false field, such as

linear laser drift during a spectroscopic scan or slow magnetic field variations.

Using the σ transitions also eliminates the sign ambiguity which persists when

using the π transitions for measuring δg. While we can not extract the absolute

sign, the recovered spectrum is sensitive to the relative sign between gI and δg.

This is shown explicitly in Fig. 4.11 where the positions of the transitions have

been calculated in the presence of a ∼1 G magnetic field. Figure 4.11(a) shows

the spectrum when the signs of gI and δg are the same while in Fig. 4.11(b) the

signs are opposite. The two plots show a qualitative difference between the two

possible cases. Comparing Fig. 4.10 and Fig. 4.11 it is obvious that the hyperfine

interaction increases the magnitude of the 3P0 g-factor (δg has the same sign as

gI). We state this point explicitly because of recent inconsistencies in theoretical
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Figure 4.11: Calculation of the 18 σ transition frequencies in the presence of a 1 G
bias field, including the influence of Clebsch-Gordan coefficients. The green (red)
curves show the σ+ (σ−) transitions. (a) Spectral pattern for g-factors gIµ0 = −185
Hz/G and δgµ0 = −109 Hz/G. (b) Same pattern as in (a) but with δgµ0 = +109
Hz/G. The qualitative difference in the relative positions of the transitions allows
determination of the sign of δg compared to that of gI .

estimates of the relative sign of δg and gI in the 87Sr literature [46, 45].

To extract the magnitude of δg, data such as in Fig.4.10 are fit with eighteen

Lorentzian lines, and the relevant splitting frequencies fd,mF
and fσ± are extracted.

Due to the large number of spectral features, each experimental spectrum yields 16

measurements of δg. A total of 31 full spectra was taken, resulting in an average

value of δgµ0 = −108.4(4) Hz/G where the uncertainty is the standard deviation

of the measured value. To check for sources of systematic error, the magnetic

field was varied to confirm the field independence of the measurement. We also

varied the clock laser intensity by an order of magnitude to check for Stark and

line pulling effects. It is also necessary to consider potential measurement errors
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due to the optical lattice since in general the splitting frequencies fd,mF
and fσ±

will depend on the vector and tensor light shifts. For fixed fields, the vector shift

is indistinguishable from the linear Zeeman shift (see Eqs. 4.27-4.29) and can lead

to errors in calibrating the field for a δg measurement. In this work, a high quality

linear polarizer (10−4) is used which would in principle eliminate the vector shift.

However, any birefringence of the vacuum windows or misalignment between the

lattice polarization axis and the magnetic field axis can lead to a non-zero value

of ξ and ϕ. To measure this effect in our system, we varied the trapping depth

over a range of ∼ (0.6 − 1.7)U0 and extrapolated δg to zero intensity, as shown

in Fig. 4.12. Note that this measurement also checks for possible errors due to

scalar and tensor polarizabilities as their effects also scale linearly with the trap

intensity. We found that the δg-measurement was affected by the lattice potential

by less then 0.1%, well below the uncertainty quoted above.

The precise measurement of δg provides an opportunity to evaluate the

validity of the state mixing theory in the first 4 sections of this chapter. This is

important for determination of the 3P0 lifetime as we saw it depends strongly on

the type of calculation performed. From the standard BW calculation we found

δgµ0 = −109.1(1) Hz/G which is in excellent agreement with the experimental

value of -108.4(4). Using the mixing values in conjunction with Eq. 4.11 we found

that the 3P0 lifetime is 152(2) s. Since δg is determined mainly by the properties

of the 3P1 state, it is not surprising that the theoretical and experimental values

are in good agreement. Conversely, the lifetime of the 3P0 state depends nearly

equally on the 1P1 and 3P1 characteristics, so in light of the poor prediction of the

1P1 A value, the lifetime prediction deserves further investigation.

The MBW theory calculation resulted in δgµ0 = −117.9(5) Hz/G and τ
3P0 =

110(1) s. Here, the agreement with experiment is fair, but the uncertainties in

experimental parameters used for the theory are too small to explain the 10%
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Figure 4.12: Summary of δg-measurements for different lattice intensities. Each
data point (and uncertainty) represents the δg value extracted from a full σ±

spectrum such as in Fig. 4.10. Linear extrapolation (red line) to zero lattice
intensity yields a value −108.4(1) Hz/G consistent with the mean value reported
in the text. The slope of the line reveals that the δg measurement is effected by
less than 0.1 Hz/G at our typical trap depth

discrepancy. The inability of the BW and MBW theory to simultaneously predict

δg and A1P1
seems to suggest that the theory is inadequate for 87Sr. A second

possibility is a measurement error of some of the hfs coefficients, or the ground

state g-factor. The triplet hfs is well resolved and has been confirmed with high

accuracy in a number of measurements. An error in the ground state g-factor

measurement at the 10% level is unlikely as it has been measured multiple times,

however it could be tested in future measurements by calibrating the field in an

independent way so that both gI and δg can be extracted from our splitting data.

On the other hand, the 1P1 hfs measurement has only been performed once using

level crossing techniques, and is complicated by the fact that the structure is not

resolved (γ=32 MHz), and that the nearby 88Sr transition dominates the spectrum
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for naturally abundant samples. Present 87Sr cooling experiments could be used

to provide an improved measurement of the 1P1 data to check whether this is the

origin of the discrepancy.

With the 1P1 splitting being the most likely source of experimental error

for the calculation, we have also tried to perform a MBW calculation without

using the 1P1 A value. In Eq. 4.14, δg depends strongly on α̃0α̃ and only weakly

(< 0.1%) on β̃0β̃, therefore our δg measurement can be used to tightly constrain

α̃0 = 2.35(1) × 10−4, and then we can use only the triplet hfs data to calculate

β̃0 in the MBW theory framework (we’ll call this MBW II). In this way we find

β̃0 = −3.2(1) × 10−6, yielding τ
3P0 = 182(5) s. The resulting 1P1 hfs A coeffi-

cient is −15.9(5) MHz, which is an improvement compared to the standard BW

calculation as it only disagrees with the experimental value by 12 MHz.

Although one can presumably predict the lifetime with a few percent accu-

racy (based on uncertainties in the experimental data), the large model-dependent

spread in values introduces significant additional uncertainty. Based on the calcu-

lations above (and many other similar ones) and our experimental data, the pre-

dicted lifetime is 145(40) s. A direct measurement of the natural lifetime would

be ideal for constraining β̃0, as has been done in similar studies with trapped

ion systems such as In+ [35] and Al+ [30] or neutral atoms where the lifetime is

shorter. For Sr this type of experiment is difficult due to trap lifetime limitations,

and the measurement accuracy would be limited by blackbody quenching of the

3P0 state [68].

Table 4.4 summarizes the calculations of δg and τ
3P0 discussed here including

the HFI mixing parameters α̃0 and β̃0. Other recent calculations based on the

BW theory [39, 46], ab initio relativistic many body calculations [134], and an

effective core calculation [128] are given for comparison, with error bars shown

when available.
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Table 4.4: Theoretical estimates of δg and τ
3P0 for 87Sr

Values used in Calculation

α̃ = 0.9996 β̃ = −0.0286(3)

Calc. α̃0 β̃0 τ
3P0 δgµ0 A1P1

(s) mF (Hz/G) (MHz)
BW 2.37(1)×10−4 -4.12(1)×10−6 152(2) -109.1(1) -32.7(2)

MBW 2.56(1)×10−4 -5.5(1)×10−4 110(1) -117.9(5) -3.4(4)a

MBW II 2.35(1)×10−4 -3.2(1)×10−4 182(5) -108.4(4)b -15.9(5)
Ref [134] — — 132 — —

Ref [128, 135] 2.9(3)×10−4 -4.7(7)×10−4 110(30) -130(15) c —
Ref [39, 46] — — 159 106d —

a Experimental value [87]
b Experimental value from this work
c Calculated using Eq. 4.14
d Sign inferred from Figure 1 in Ref. [46]

4.4.2 Experimental Limits on the Sublevel-Dependent Light Shifts

In the previous section, we saw that the vector light shift was insignificant

at our precision for the δg measurement (see Fig. 4.12). While we were able to

confirm that the vector shift effect is small and consistent with zero in our sys-

tem, it is difficult to report an upper limit for the vector shift coefficient ∆κV due

to uncertainty in the lattice polarization purity and orientation relative to the

quantization axis. We can however constrain the quantity ∆κV ξδϕ which at least

gives an idea of what kind of shifts can be expected if reasonable care is taken in

the experimental setup. The vector shift was found to effect the splitting by less

than 0.1 Hz, even for the stretched states, therefore as an upper limit we report

∆κV ξδϕ=0(6)×10−4 Hz/(UT /ER). In terms of a pseudo-magnetic field d ~B, the

shift at U0 is equivalent to a field of 0(2)×10−4 G. In future measurements, the

magnetic field could be aligned along the lattice propagation axis, and circular

trap polarization could be used such that ξδϕ = 1, enhancing the measurement

precision of ∆κV by orders of magnitude. From our calculations, we would then
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expect shifts at the few Hz level which would be easily observable if the experi-

ments in the previous section were repeated (specifically Fig. 4.12).

Unlike the vector shift, the tensor contribution to the sublevel splitting is

distinguishable from the magnetic contribution even for fixed fields. Adjacent

σ transitions can be used to measure ∆κT and κT
e due to the m2

F dependence

of the tensor shift. An appropriate choice of transition comparisons results in

a measurement of the tensor shift without any contributions from magnetic or

vector terms. To enhance the sensitivity of our measurement we focus mainly on

the transitions originating from states with large mF ; for example, we find that

∆κT =−
fσ+,mF =7/2 − fσ+,mF =−7/2

42UT
ER

κT
e =−

fd,mF =7/2 − fd,mF =−7/2

84UT
ER

,

(4.31)

while similar combinations can be used to isolate the differential tensor shift from

the σ− data as well as the tensor shift coefficient of the 1S0 state. From the σ

splitting data taken for the δg measurement, we find ∆κT = 0.03(8) Hz/U0 and

|κT
e |=0.02(4) Hz/U0. The error bars represent the standard deviation of many

measurements, with the scatter in the data due mainly to laser frequency noise

and slight under sampling of the peaks. The data for these measurements is shown

in Fig. 4.13. Similarly, we extracted the tensor shift coefficient from π spectra,

exploiting the mF -dependent term in Eq. 4.29, yielding ∆κT = 0.02(7) Hz/U0.

The measurements here are all consistent with zero and were not found

to depend on the trapping depth used for a range of 0.85–1.7 U0, and hence

are interpreted as conservative upper limits to the shift coefficients. From the

previous section, we expect that the total tensor shift would be dominated by

the 3P0 state such that the limit here for κT
e can be interpreted as the tightest

constraint for ∆κT . In comparing the measurements here with the theory section,

we find that the maximum size of the tensor polarizability constrained by our
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Figure 4.13: Measurement of the tensor shift coefficients ∆κT (blue triangles),
and κT

e (green circles), using σ spectra and Eq. 4.31. A given spectrum yields
two measurements of ∆κT (one for σ+ and one for σ−) and one value of ∆κT .
The measured coefficients show no statistically significant trap depth dependence
while varying the depth from 0.85–1.7 U0.

data, 0.006 a.u., is roughly an order of magnitude smaller than that predicted

by the state mixing calculation. While we can’t rule out the importance of state

mixing in the tensor shift, we can say that the simple calculation made here is

insufficient for an accurate prediction. Improvements on the precision of these

limits can be made by going to larger trap intensities to enhance sensitivity, as

well as by directly stabilizing the clock laser to components of interest for improved

averaging. It will be important to improve these measurements as the accuracy

of lattice clocks increase, especially if a 3D lattice geometry is used in which the

polarization depends strongly on the trap design.

Table 4.5 summarizes the measured sensitivities to magnetic fields and the

lattice potential. The Stark shift coefficients for linear polarization at 813.4280(5) nm

are given in units of Hz/(UT /ER). For completeness, a recent measurement of the

second order Zeeman shift using 88Sr has been included [57]. Although only upper
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Table 4.5: Measured Field Sensitivities for 87Sr

Sensitivity Value Units Ref.

∆
(1)
B /mF B -108.4(4) Hz/G This work

∆
(2)
B /B2 -0.233(5) Hz/G2 [57]a

∆κT 6(20) ×10−4 Hz/(UT /ER) This workb

∆κT 9(23)×10−4 Hz/(UT /ER) This workc

κT
e 5(10)×10−4 Hz/(UT /ER) This workc

∆κV ξδϕ 0(6)×10−4 Hz/(UT /ER) This workd

a Measured for 88Sr
b Measured with π spectra
c Measured with σ± spectra
d From Fig. 4.12

limits are reported here for the tensor shift, the result can be used to estimate the

accuracy and linewidth limitations for lattice clocks. In the absence of magnetic

fields, the tensor shift can cause line broadening of the transition for unpolar-

ized samples. Given the transition amplitudes in Fig. 4.9, the upper limit for

line broadening, derived from the tensor shift coefficients discussed above, is 4

Hz at U0. Therefore we cannot fully rule out the tensor shift as the broadening

mechanism in Fig. 3.19, although residual magnetic fields are still a more likely

suspect. The tensor shift also results in a different magic wavelength for differ-

ent mF sublevels, which is constrained here to the few picometer level or below.

These should be considered conservative upper limits however, as in our more

recent measurements (not discussed in this thesis) with spin polarized state we

have so far not observed a change in the magic wavelength of even 1 pm. Of all

of the sublevel shift effects explored here, the differential g factor will have by far

the biggest impact on the clock.

4.5 Implications For the 87Sr Lattice Clock

In the previous sections, the magnitude of relevant shifts of the Zeeman

levels were estimated. Here, we briefly discuss the feasibility of different routes
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to reduce or eliminate the nuclear spin effects for development of a clock with an

inaccuracy of less than 10−17.

4.5.1 Method I: Degenerate Sublevels

The most straightforward approach for reducing nuclear spin effects is to

have the relevant magnetic and optical fields under strict control. This is in fact

the approach taken in the next chapter, in which the accuracy of the lattice clock

is experimentally explored. Here we assume that the population is roughly equally

distributed among the ground state sublevels, and π transitions are excited. To

eliminate the linear Zeeman shift at the 1 mHz ( 2×10−18) level for all of the

mF states, one needs to provide a field-free environment at the level of 2×10−6

G. This level of control could be challenging even if magnetic shielding is used

in the apparatus, and would certainly require a careful design. In practice, the

requirement would not be as stringent since the sublevels are shifted evenly about

the zero field point causing lineshape deformation, the clock shift would then

come into play depending on the imbalance of population in the sublevels, or the

polarization of the probe laser.

For magnetic fields at the µG level the quantum axis of the system is defined

by the lattice, so we expect the Zeeman-like light shifts to be in the worst case

consistent with Fig. 4.7 for a trap depth of U0=35ER. Therefore to eliminate

the vector light shift contribution at the 10−18 level, the polarization ellipticity ξ

should be at the 10−4 level or below. This is easily achieved with commercially

available polarizers, however, one must ensure that other optical components such

as vacuum windows are not deteriorating the polarization purity. The remaining

effect to consider is the tensor light shift. From the HFS calculation we expect

the tensor interaction to broaden the Zeeman spectra by a few mHz. From our

experimental upper limits it could be a few Hz, and the true values likely lies
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somewhere in between. Unlike the magnetic and vector sensitivity, the shift is not

symmetric in mF so the shift will do more than broaden the line, even in the ideal

case of perfect population distribution and probe polarization. This is exacerbated

by the fact that the excitation fraction of the clock transition has a very strong

mF dependence (see Fig. 4.9) such that the line will be strongest for the |mF |=9/2

states. Therefore it’s possible that the tensor shift can result in a clock shift as

large as a few Hz. In real experiments, the lattice depth will always be varied

to check that the scalar light shifts are well canceled. As the tensor shift is also

proportional to the trap depth, this effect should be naturally accounted for in

the scalar evaluation. The sensitivity of the tensor shift to population distribution

will depend strongly on the actual size of the tensor polarizability, and hence to

confidently reach the sub 10−17 level of accuracy with this zero B-field scheme,

the value of the tensor shift needs to be accurately measured. The tensor problem

could be completely avoided if the atoms only populate one mF state (or two

states with the same |mF | such that the tensor shift is completely absorbed in λm

and does not deform the line.

One practical consideration worth mentioning for the case described here, is

that the different excitation fractions for the different sublevels (due to Clebsch-

Gordon coefficients) will limit the final signal size achievable for a given probe

intensity. In our experiments for example we have found that we get a smaller

excitation fraction when the sublevels are degenerate, but that can be increased if

a resolved sublevel is used. This could be avoided if the atoms are spin-polarized

before the measurement.

4.5.2 Method II: Resolved Sublevels and Spin Polarized Samples

A second, more promising path to clock operation free of nuclear spin effects,

is the use of resolved spin states in the presence of a bias magnetic field. In this
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way one could average the positions of two ±mF states to eliminate the mF

dependent linear Zeeman shift. Then we can dramatically relax our demands on

precise magnetic field control as the average frequency of the two measurements

will only be affected by the Zeeman shift in second order. We found that the

magnitude of the shift coefficient was 0.233 Hz/G2, so for fields of a few hundred

mG calibrating the shift to 1 mHz should be possible. As we saw in this chapter,

application of a bias field can also reduce the overall sensitivity to light shifts and

polarization. Moreover, according to Eq. 4.27, the vector shift depends on mF

so the averaging procedure should eliminate it in the same way that the linear

Zeeman effect is removed. The remaining issue then is the tensor shift which will

depend on |mF | and hence will not be removed. This problem will be bypassed

in a natural way, in that for the sake of efficiency, clock measurements will be

focused on only one pair of ±mF states. Therefore when a magic wavelength is

determined experimentally for the chosen mF -pair, the effect of the tensor shift

will be to slightly modify the cancelation wavelength if a different set of sublevels

are employed. One should keep in mind the polarization axis when determining

the magic wavelength in this way, since the magnitude of the tensor shift changes

by a factor of -1/2 as ξ goes from 0 to 1.

In the interest of increased S/N , and the reduction of line pulling effects

from nearby transitions, the resolved sublevel technique is best suited for spin

polarized samples. If the atoms are evenly distributed among the sub levels, they

are essentially wasted as they are not used for clock operation, so we might as well

try an push them all towards the useful states. Additionally, with spin polarized

samples we avoid the issue of limited excitation fraction due to different Rabi

frequencies. Figure 4.14 shows an example of a spin-polarized measurement using

the mF = ±9/2 states for cancelation of the Zeeman and vector shifts. To polarize

the sample, we optically pump the atoms using a weak beam resonant with the
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Figure 4.14: The effect of optical pumping via the 3P1 (F = 7/2) state is shown
via direct spectroscopy with θ = 0. The red data shows the spectrum without
the polarizing light for a field of 0.27 G. With the polarizing step added to the
spectroscopy sequence the blue spectrum is observed. Even with the loss of ∼
15% of the total atom number due to the polarizing laser, the signal size of the
mF = ±9/2 states is increased by more than a factor of 4.

1S0-
3P1 (F = 7/2) transition. The beam is co-aligned with the lattice and clock

laser and linearly polarized along the lattice polarization axis (θ = 0), resulting in

optical pumping to the stretched (mF = 9/2) states. Spectroscopy with (blue) and

without (red) the polarizing step shows the efficiency of the optical pumping as

the population in the stretched states is dramatically increased while excitations

from other sublevels are not visible. Alternate schemes have been demonstrated

elsewhere [91, 46] where the population is pumped into a single mF = ±9/2 state

using the 1S0-
3P1 (F = 9/2) transition. In our system, we have found the method

shown here to be more efficient in terms of atom number in the final state and

state purity. The highly efficient optical pumping and high spectral resolution

should allow clock operation with a bias field of less than 300 mG for a 10 Hz
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feature while keeping line pulling effects due to the presence of the other sublevels

below 10−17. The corresponding second order Zeeman shift for such a field is only

∼21 mHz, and hence knowledge of the magnetic field at the 1% level is sufficient

to control the effect to below 10−18. With the high accuracy δg-measurement

reported here, real time magnetic field calibration at the percent level is trivial.

The use of spin polarized atoms also opens the door for some interesting

physics. With the high precision optical clocks provide, one should be able to

eventually see the effect of atomic collisions on the clock frequency. This effect is

well known in Cs-fountain clocks, coming into play at the 10−13 level. For J = 0

states here, we expect the shift to be significantly smaller, but still non-zero. If the

collisions between mF =9/2 and mF =-9/2 ground state atoms lead to a measurable

frequency shift, then it would be interesting to see if the collision shift can be

suppressed by polarizing the atoms into a single mF state, such as the 9/2 state.

(One would then occasionally alternate clock operation between 9/2 and -9/2 to

ensure the zeeman shifts are still under control.) In this case, s-wave collisions

will be eliminated since the atoms are fermions in the same quantum state. This

would be great for clock operation, as collision shifts are a long standing concern

in the debate of ions vs. neutrals as the best frequency standards. Realistically,

the collisions will not be completely removed because p-wave scattering can still

take place, although this effect can be reduced dramatically if the atoms are

at a temperature of 1 µK in both the longitudinal and radial direction. The

inhomogeneous Rabi excitation considerations (discussed in Chapter 3) will also

likely degrade the suppression of s-wave scattering. One also must also take care

in the state preparation to ensure pure polarization.
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4.6 Man Made Clock Transition for Bosonic Isotopes

Here we discuss a third, drastically different approach to avoid nuclear spin

effects in the lattice clock. Initial concerns that nuclear spin effects would limit the

obtainable accuracy of a lattice clock have prompted a number of recent proposals

to use bosonic isotopes in combination with external field induced state mixing

[51, 52, 53, 54, 55] to replace the mixing provided naturally by the nuclear spin.

The bosonic isotopes present a number of advantages in clock development, first

of all, there are no magnetic sublevels in the clock states, so we can forget about

the linear Zeeman effect, and the tensor and vector light shifts. Therefore, the

constraints on field orientation and polarization purity are diminished. Secondly,

the use of bosons opens up the possibility to use more isotopes in the lattice clock

configuration, as most of the stable alkaline-earth isotopes in fact do not have

nuclear spin. The bosonic isotopes typically are more naturally abundant, which

in many experiments means more available atoms and a larger S/N . Furthermore

in the case of Sr, the laser cooling complexity is reduced slightly for bosonic

isotopes.

The basic principle of these ideas is to use external fields to mix the 3P0

clock state with the 1P1 state, such that 3P0 acquires a small E1 lifetime. If we

remember from Eq. 4.3, the spin orbit and hyperfine interaction provided this

mixing as,

|3P0〉 = |3P 0
0 〉+ (α̃0α̃− β̃0β̃)|3P 0

1 〉+ (α̃0β̃ + β̃0α̃)|1P 0
1 〉+ γ̃0|3P 0

2 〉. (4.32)

For the bosonic isotopes we have α̃0 = β̃0 = γ̃0 ≡ 0, so a new state mixing

mechanism is needed to provide the desired effect of a finite lifetime. One can

dream up a number of schemes to accomplish this, but since we are also worried

about clock accuracy we should take care and consider the effect of the mixing on

the clock frequency. From the nuclear spin mixing, we can take the lesson that
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the 1P1 state is the most important to the interaction, as the natural lifetime of

the 3P0 state was due to that of 1P1, although mediated by the spin-orbit mixing

between 1P1 and 3P1 (see section 4.1.2). Therefore, it should be the easiest to

provide ample state mixing if the 1P1 state is used in any scheme. The 3P1 state

can of course be used as well since it contains an admixture of 1P1, but the required

interaction will be much stronger since the admixture of 1P1 is so small, an effect

that could be detrimental to the final clock accuracy.

4.6.1 EIT Clock

The first approach to induce the state mixing which we shall examine is to

apply an optical field which connects the 3P0 state directly with the 1P1 state. In

this case we will have a modification of the 3P0 state given by

|3P0〉 = |3P 0
0 〉+ ε|1P1〉, (4.33)

and the lifetime will be given by Eq. 4.11 by replacing(α̃0β̃ + β̃0α̃)2 with ε2. For

small detuning of the mixing laser, the mixing coefficient ε is given by the magnetic

dipole coupling matrix element between 3P0 and 1P1 for a given laser intensity,

and optical frequency. This has been evaluated for Sr [52], and for a 1 mHz

linewidth (the same as provided by the nuclear spin in 87Sr), a laser intensity of

3.9 mW/cm2 is required for the magnetic-dipole transition. Based on the atomic

polarizability of the clock states, this external field results in an ac Stark shift

of -21 mHz. This seems like an acceptable trade off as the mixing laser intensity

can be calibrated at the % level, providing uncertainty in the clock shift below

10−18, while eliminating any nuclear spin related issues that arise in 87Sr. This

promising mixing scheme was first proposed [52] at JILA for a bosonic clock in an

EIT configuration (shown in Fig. 4.15) where the state mixing can be detected on

the 1S0-
1P1 transition as a mHz interference feature in the absorption spectrum.
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This EIT clock however has one practical issue which needs to be addressed. The

interaction is so weak (∼1 mHz) that the evolution of the atomic population from

1S0 to 3P0 is very slow, taking hundred of seconds for the system to evolve. This

is no different then the standard case in 87Sr where we have a 1 mHz width but

actually use a Fourier limited width of a few Hz. In those experiments we speed

up the process by simply cranking up the probe power, with the caveat that we

suffer from some addition ac Stark shifts. The same thing can be done in the EIT

case. If we want a width of 10 Hz, we need to increase the mixing laser by a factor

of 105, which increases the corresponding stark shift by the same factor to about

200 Hz. This shift is larger than any of the expected shifts in the 87Sr clock. Ways

around this problem have been proposed by our group at JILA [54] using a pulsed

EIT sequence to reduce the stark shift to the mHz level, but it remains to be seen

if the complexity of the technique will be a problem experimentally. Another EIT

clock proposal, in this case from the University of Washington [51], was made

around the same time as the one reported here involving similar concepts.

4.6.2 Magnetic Field Induced Clock

While the promising EIT proposal above has a few technical issues to con-

sider, it seemed to get the clock community thinking harder about using the

bosons for clocks. The next mixing proposal [53] came from our friends at NIST,

which was to mix the 3P0 and 3P1 state with a DC magnetic field. Here we will

have a modification of the 3P0 state given by

|3P0〉 = |3P 0
0 〉+ εDC |3P1〉 = |3P 0

0 〉+ εDCα̃|3P 0
1 〉+ εDC β̃|1P 0

1 〉, (4.34)

such that the lifetime will be given by Eq. 4.11 by replacing (α̃0β̃ + β̃0α̃)2 with

(εDC β̃)2. Here, the mixing coefficient εDC is given by the magnetic dipole operator

and detuning between 3P0 and 3P1. Since the interaction is with the 3P1 state, the
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effectiveness of mixing in the 1P1 decay rate will be reduced by β̃2 compared to

the optical case, however this is partially compensated by the fact that the energy

difference between 3P0 and 3P1 is small (i.e. the mixing goes as the matrix element

divided by the detuning). This proposal is very promising because of its simplicity,

instead of using additional lasers, the state mixing is done with electromagnets.

Of course, we still must consider clock shifts. For the magnetic scheme, one must

consider the second order Zeeman effect and the Stark shift from the probe laser.

To estimate the shifts, one should consider the required Rabi frequency needed in

the experiment. For maximum excitation, one needs Ωt=π where t is the length

of the spectroscopic pulse. The usable probe time will be limited by the laser

linewidth or other decoherences. If we assume a Fourier-limited linewidth then

we have the situation Ω × (0.89/γ)=π. Assuming equal shifts from probe laser

and second order Zeeman effect, the induced Rabi frequency for Sr is given by

[56] Ω/2π=0.3 δν where δν = δνprobe = δνZeeman. For a Fourier-limited spectral

width of 10 Hz, the required fields of B=9 G and Ip= 1 W/cm2 each contribute

a shift of -19 Hz. Once again, this is not necessarily more desirable than our 87Sr

situation in which none of the Zeeman(-like) shifts were even close to that level.

However, the simplicity of this system is hard to ignore and may well be worth

the effort of calibrating the relevant fields at the 10−5 level.

4.6.3 State Mixing at the Magic Wavelength

A third scheme which has recently been discussed by the Tokyo group [55]

is to use optical fields at the magic wavelength to perform the mixing. Here

the optical field is not resonant with any states, the mixing comes about via the

light (assumed circularly polarized) coupling with the vector component of the 3P1

polarizability. Since the field is at the magic wavelength, one doesn’t have to worry

about the effect of Stark shifts linear in intensity. It is also a convenient approach
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Figure 4.15: Proposed mixing schemes for use of the clock transition in bosonic
isotopes.

because the light source will presumably be well developed at this wavelength

since it is the same as the lattice potential. One still has to consider the clock

probe effect, and more importantly, if the required mixing field grows large, the

hyperpolarizability must be considered. In this mixing scheme the Rabi frequency

is proportional to the mixing intensity, and the square root of the probe intensity.

The light shifts scale linearly with the probe intensity and as the square of the

mixing intensity. Therefore it is difficult to increase the mixing without drastically

increasing the Stark shift. For example, one finds that for a linewidth of 10 Hz,

the total stark shift is minimized at a probe intensity of 1.8 W/cm2 and mixing

intensity of 0.74 MW/cm2, each resulting in stark shifts of -33 Hz.

In looking at these three schemes above we find some interesting differences.

In the first scheme, the EIT method hand cuffs us into cranking up the mixing

field (our only choice) which results in Stark shifts. Here the transition width

is proportional to the mixing intensity Imix, as is the Stark shift. In the second

scheme, the mixing depends proportionally on the magnetic field B and as the

square root of the probe intensity
√

Ip. The shifts on the other hand scale as B2

and Ip. This is similar to the third scheme where the width scales proportionately

with the mixing intensity and as the square root of the probe intensity, while the
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shifts scale as I2
mix and Ip. We can see then that there is a real fundamental differ-

ence between the first method and the next two, in that in the magnetic and magic

wave scheme, the mixing interactions cause quadratic frequency shifts while en-

hancing the mixing linearly. Furthermore, the second two mixing schemes use the

3P1 state as a source of 1P1 characteristic, resulting in significantly smaller mixing

(compared to that of the nuclear spin effect) for a given frequency shift. This may

sound counter intuitive based on the results above, so consider the following: In

the EIT scheme, the mixing laser provides the same linewidth as the nuclear spin

would, while shifting the clock by only 20 mHz. In the magnetic mixing case, the

field mixes about three orders of magnitude less of the 1P1 characteristic for fields

described here, and the clock shift from the mixing field is in the 10 Hz range.

We must therefore conclude that the optical mixing of 1P1 is significantly more

efficient as a means to create a desired state mixture while minimizing the clock

shift. So why do we have bigger frequency shifts in the CW EIT case above?

The one thing we are forgetting is the effect of the probe laser. In the

magnetic scheme for example, the Rabi frequency can get a big boost by using

more power in the probe laser, therefore making up for the weaker mixing field,

doing a bit of damage control if you will. This is just like in the case of 87Sr

where a 1 mHz line is available but we use a stronger light intensity to push the

Rabi frequency up to the Hz level. Fortunately in 87Sr, the linewidth is large

enough that the needed intensity for broadening to 10 Hz only shifts the clock

transition by a few mHz. In the magnetic scheme the mixing field does a poor

job compared to the nuclear spin so the probe intensity has to be pushed harder,

in the end resulting in tens of Hz level shifts. Now, in the EIT scheme, the

probing mechanism is on the 1P1 line, and therefore does not help in broadening

the transition, which is why we had to push the mixing effect harder. So we see

now that the fault of the EIT mixing is not the mixing at all, but the detection.
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Table 4.6: Field Sensitivities For Different Lattice Clock Schemes Using 88Sr.
Relevant clock shift mechanisms and magnitudes are given for each scheme for
both 0.5 and 10 Hz transition widths. When two significant shifts are present
in a given system, field values are chosen which minimize the total shift. In the
87Sr case, it is assumed that the first order Zeeman shift and vector light shift
are averaged out using alternating measurement, while the tensor shift is removed
by convention of measuring the magic wavelength for the polarized states. All
Zeeman shifts listed represent the second order Zeeman effect.

γ=0.5 Hz γ=10 Hz
Spin (I) Method(λdet.) Fields Shift δν Fields Shift δν

9/2 Spin Polarized(698) Ip=100nW/cm2 -5µHz Ip=41 µW/cm2 -2 mHz
HFI Mixing Bsplit=0.3G -21 mHz Bsplit0.3G -21 mHz

0 CW EIT (461) Imix=1.9 W/cm2 -10.5 Hz Imix=39 W/cm2 -210 Hz
0 Pulsed EIT (461) Imix=1.9 W/cm2 < 5 mHz Imix=39 W/cm2 < 5 mHz
0 Magnetic (698) Ip=52mW/cm2 -0.9Hz Ip=1 W/cm2 -19 Hz

Mixing DC Bmix=2G -0.9 Hz Bmix=9G -19 Hz
0 Magic wave (698) Imix=0.16 MW/cm2 -1.6 Hz Imix=0.74 MW/cm2 -33 Hz

Mixing 813 nm Ip=98 mW/cm2 -1.6 Hz Ip=1.8 W/cm2 -33 Hz

This is precisely the effect addressed in the modified EIT scheme in Ref. [54].

4.7 So What Should I Chose? Fermions or Bosons

Now that we have discussed a number of different approaches for lattice

clockery, we can take more of a big picture view and try and sort out which scheme

to choose. Table 4.6 summarizes some of the parameters of interest for Sr which

should help give a fair “apples to apples” type comparison for different boson

schemes, as compared to the fermion case with spin-polarized atoms. We have

given the estimated frequency shifts for different schemes, for transition widths of

0.5 Hz, and the more realistic case of 10 Hz. The shift coefficients will be different

for other species like Mg, Ca, Yb, and Hg, but the basic trends are the same.

In reality, the decision between fermion and boson approaches will depend

on a number of issues. Laser stabilization seems to be the most critical one, for

both accuracy and stability. For the accuracy of the boson clock, the achievable

linewidth, assumed based mainly on the laser limitation, sets the requirement for

the mixing fields, and therefore the size of the frequency shifts that need to be
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calibrated. For the fermionic clock, one can use broader lines without inducing

large shifts, reducing the demands on the laser. One might assume that the

bosonic case will at least be superior for stability, even if the accuracy is reduced,

due to the larger atom numbers possible. But in actuality, the 104 strontium

atoms in our 87Sr system, along with the 2 Hz resonances we have observed, can

in principle support a 1 s stability of a few parts in 10−17. This is well out of

the range of current state of the art oscillators which would limit such a system.

Therefore increasing the S/N by a factor of 3 (via an order of magnitude atom

increase) with the bosons may not improve the stability of current clocks. Another

major difference between the fermion and boson method is dealing with collision

shifts. If atom-atom interaction is eventually the limiting systematic for the lattice

clock, this can be dealt with differently for the two species. For spin polarized

fermions, we may be able to enjoy the absence of s-wave scattering in a 1D lattice

[136]. For bosons, one would have to isolate the atoms in a 3D lattice to remove

the scattering process. Conversely, if line pulling due to radial motion in the trap

becomes the dominant effect, one would desire a 3D lattice setup. A 3D lattice

would suit the bosons well but could cause some problems for the fermions due

to lattice polarization issues. If the situation is that the clock is finally limited by

some other isotope independent shift that wouldn’t depend on the lattice setup,

such as the room temperature black body stark shift, then the choice of isotope

could boil down to a popularity contest as it is very useful to have different labs

exploring the same clock for standard development.

This author’s taste is to stick with the fermion case until a limiting system-

atic arises, or until clock lasers can be developed which can take advantage of the

improved S/N provided by the larger natural abundance. This is partially moti-

vated by the possibility of eliminated collisions without the added complexity of

a 3D lattice. Fortunately, the decision at hand for future lattice clock developers,
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is a choice between very promising techniques. And it is a choice which can easily

be changed as new information on systematic effects comes to light.



Chapter 5

Accuracy Evaluation of the 87Sr Optical Lattice Clock

5.0.1 So What Time Is It? How (un)Certain Are You?

In the last couple of chapters we have seen that the lattice clock technique

can provide an unprecedented level of precision in spectroscopy with line Q’s

exceeding 2×1014. After exploring the effect of the hyperfine interaction, we can

see that the differential g-factor and the vector and tensor light shifts do not

present fundamental road blocks to clock performance. With the precision, and

some interesting physics under our belt, we now turn to the issue of frequency

metrology. To determine the frequency of the clock transition with high accuracy,

we must verify experimentally that systematic shifts of the clock transition are well

understood and controlled. While we have claimed that we expect uncertainties

at the mHz level in the previous chapter, in a real world system we need direct

measurements which show the shifts are under control.

At the end of the last chapter we discussed a few choices for developing an

accurate clock. In this work, we pursue a measurement of 87Sr clock frequency

using Method I, where we use degenerate sublevels. Here we have the drawback

that the transition frequency will be sensitive to various Zeeman shifts, nonetheless

we will find that with the high spectral resolution of the lattice clock, these effects

can be characterized to high precision. There is no doubt that for the ultimate

87Sr lattice clock it would be better to use Method II where spin polarized samples
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Figure 5.1: High resolution spectroscopy of the 1S0-
3P0 transition. A Fourier-

limited resonance profile for typical operating parameters in the absolute fre-
quency measurement experiment. A sinc2 fit is shown in red, giving a linewidth
(FWHM) of 10.6(3) Hz (Q ' 4× 1013). The spectrum is taken without averaging
or normalization.

are used to average mF -dependent shifts, but at the time that this measurement

was made, we had not yet implemented the polarizing scheme shown in Fig. 4.14.

It is interesting to see how far the more simple measurement scheme can take us

so that we know whether it is worthwhile to implement the additional complexity.

Another important choice for the measurement is the spectral width. Ideally

one wants to operate in a regime where the laser noise is small compared to

the absorption feature such that laser fluctuations and drifts do not write noise

or offsets onto the lineshape. One can imagine that trying to lock a laser to

a peak with a width similar to the laser linewidth is not going to work well.

Thus, instead of using our highest possible Q features we typically use shorter

spectroscopy pulses of 80 ms to Fourier broaden the line to ∼10 Hz. At this

width, the lineshape is very robust and the S/N is determined mainly from the
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shot-to-shot atom number fluctuation and not the laser fluctuations. Figure 5.1

shows an absorption feature an 80 ms pulse, revealing the expected sinc2 lineshape

and width of 10.6(3) Hz.

The exploration of systematic spectroscopy shifts is not the only issue in

determining the clock frequency, we also need a high accuracy frequency reference

for comparison. This is where the fs-comb will come into play as we need a way

to compare the optical frequency of our strontium atoms with the standard that

defines frequency and time, the microwave ground state hyperfine transition in

Cs. Fortunately for us, one of the highest accuracy Cs clocks in the world is

located down the street from JILA, at the NIST Time and Frequency Division

[5]. We are able to access the frequency of this standard by comparison with a

NIST H-maser which is directly calibrated by the Cs fountain clock. The maser

signal is transferred to JILA via an optical fiber link [117, 137, 138] providing an

accurate frequency with a stability of ∼ 3× 10−13 at 1 s. The comparison of two

different high accuracy clocks can involve a whole different set of systematic errors

which must be considered when reporting the final frequency.

This chapter is organized in two main sections. First, we explore the sys-

tematic effects associated with lattice spectroscopy of 87Sr atoms. This includes

direct measurement of frequency shifts cause by magnetic fields, atomic collisions,

the lattice potential, and the probe laser. Also included are relevant theoretical

uncertainties based on measured parameters in our system. This component of

the experiment tells us how accurate the Sr lattice clock is, or equivalently how

accurate one would expect the clock frequency to be if one could measure the op-

tical frequency with infinite accuracy. The second part of the chapter is devoted

to an accurate measurement of the clock frequency. Here we discuss the fs-comb

system used for optical to microwave conversion, accurate frequency transfer over

a fiber link, and the frequency measurement of the Sr clock transition. This mea-
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surement is interpreted differently, not as how accurate the Sr clock is, but how

accurately we can measure the frequency of the clock (or any clock) with our

setup. Based on the evaluation in these two sections (and previous chapters), we

discuss the outlook for the strontium lattice clock, in terms of projected accuracy

and stability, as well as an optical frequency standard for possible re-definition of

the SI second.

5.1 Lattice Spectroscopy Accuracy Evaluation

The straight and narrow path to evaluating frequency shift systematics is to

compare the clock of interest to a fixed reference clock, and vary some parameters

to see if you can see a shift. In our lab, the best reference clock available is the

Cs-calibrated hydrogen maser signal from NIST. While we can use this clock as a

fixed reference, and in fact we did just that in our first lattice clock evaluation [44],

the problem is that the stability of the maser signal limits how easily we can do the

evaluation. The maser frequency uncertainty averages down as < 3×10−13τ−1/2

for a measurement time τ in seconds, such that if we want to study systematic

effects at the level of 10−16 we would have to average for 106 seconds (12 days) to

get one data point. Unfortunately, none of the lasers this author built stay locked

for this long so in practice it would take much more time to get that data point.

This long averaging time is of course why we went into the optical clock business

in the first place.

5.1.1 Interleaved Method for Evaluating Systematics

To speed up our evaluation process, instead of measuring systematic shifts

against the microwave clock, we use our clock laser cavity as the reference fre-

quency. The clock laser provides a short term stability of 10−15 which should

dramatically reduce the amount of averaging time we need to evaluate the shifts.
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The big problem here is that the laser cavity drifts so if we measure the transition

frequency under one condition we cannot compare that data to a later measure-

ment because the reference frequency will have drifted. If we are to use the cavity

as a reference we need some way to change the systematic parameters quickly and

reduce biasing from linear drift. As a general approach for evaluating systematics,

an interleaved scheme is used where the parameter of interest is cycled through

different values, synchronized with each frequency step of the probe laser across

the resonance. The interleaved data is then separated into resonance profiles cor-

responding to each parameter value, allowing the center frequency (relative to the

laser cavity), and hence the slope of the frequency shift, to be measured for a

variety of parameters in a short time. An example of the interleaved technique is

shown in Fig. 5.2 where we scan the clock laser across the transition, while the

atom number is being alternated between a high and low value, synchronized with

the laser step. In this way the effect of atomic density on the clock frequency is

measured. The top panel shows the resulting spectrum where every second fre-

quency point on the spectrum is a high atom number point (blue points) and the

other points (green) are data when a low atom number is used. The lower panels

show the low and high atom number data plotted individually.

By interlacing two different experimental conditions during a single scan,

we ensure that the entire spectrum for each condition is effectively taken within

1 s of each other (the time to take one point), drastically reducing the effect of

cavity drift on the relative frequency between the two peaks. Any laser drift will be

common to both spectra and the scan direction can be alternated to further reduce

biasing. For a single trace of the transition this method is very powerful, but one

still cannot trust the positions of the extracted peaks relative to those taken a few

minutes earlier. The useful information we can take from the interleaved method

is the slope of the frequency shift, in the case of Fig. 5.2 that would be dν/dN .
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Figure 5.2: The interleaved measurement scheme for evaluation of systematic
shifts. During a scan of the clock transition, the parameter of interest is varied.
Here we illustrate the idea showing an interleaved scan (top graph) where the
atom number in the lattice is alternated between a high (blue) and low (green)
values synchronized with each experimental cycle. The data can then be separated
into two lineshapes such that the resonant frequency can be determined for each
condition. The useful information we take from such a measurement is the slope,
or change in frequency versus the condition, as that does not depend on the actual
frequency of the laser.

Use of the slope allows us to average many of these measurements together for

improved precision, regardless of what the cavity frequency was at the time the

data was taken. In this way we can take advantage of the high stability laser

oscillator, and save ourselves some serious averaging time compared to the maser.

One can also envision a more complex (but possibly more efficient) scheme where
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a stage of locking the laser to the atomic transition under a fixed condition is

interleaved with a scan or locking of the line under varied conditions. If the

interleaving is fast compared to the laser drift, one could then extract the shift by

looking at how the AOM frequency used for locking changes.

5.1.2 Polarizability Effects: Stark Shifts from the Lattice Laser

Of the many effects to be characterized for an optical lattice clock, the effect

of the lattice laser itself remains a focal point. We have seen from our earlier

discussion that there are a few different effects to consider. The dominant effect

is that of the scalar light shift. Since we don’t know the exact magic wavelength,

we choose a value of 813.4280(5) (which was near the best reported value at the

time of 813.428(1) [41]), and experimentally checked for clock shifts by varying

the depth of the trap. Since the light shift is proportional to the trap depth, we

can vary the trap and extrapolate the light shift to zero depth. An example of

this is shown in Fig. 5.3 where four different values of the lattice intensity are

interleaved during a single scan, taking less than one minute. The resulting shift

coefficient for this scan, 0.4(4.4) Hz/U0, is consistent with zero. To reduce the

uncertainty in the shift, we have taken 776 single measurements (using 2, 4, or

8 interleaved intensity values), with the resulting shift coefficients shown in the

right panel of the figure as a histogram. The distribution of values is gaussian,

and provides an average value for the Stark shift, for a given trap depth UT , of

-108(257) ×(UT /U0) mHz. The mean value of the shift is consistent with zero,

and based on our upper limit for the shift sensitivity of 350 Hz/nm at U0, the

value suggests that the lattice wavelength used in this work differs from the magic

value by -0.3(7) picometers. The magic wavelength we can extract from this

measurement is 813.4283(12) which is in excellent agreement with Ref. [41].

We also should consider the effect of the vector and tensor light shifts. Since
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Figure 5.3: A measurement of the lattice Stark shift is achieved using four in-
terleaved intensities during a scan of the clock transition. For this measurement
the shift is 0.4(4.4) Hz/U0. The Histogram summarizes the result of 776 single
measurements (such as in the left plot) of the Stark shift for our typical intensity
U0.

in this measurement we are operating without a strong bias magnetic field the

quantum axis is defined by the lattice polarization such that the zeeman-like light

shifts can be predicted from our earlier calculations. In our system, the final polar-

izer for the lattice is expected to provide 10−4 purity of linear polarization. From

the polarization purity of the retro-reflected lattice beam we estimate the bire-

fringence of the vacuum windows reduces the polarization purity by at most 10−2,

which would result in a symmetric splitting equivalent to a fictitious magnetic

field of 60 µG. The shift from the symmetric splitting effect must be evaluated

experimentally to take into account the realistic population distribution. From

our magnetic field measurements below (5.1.6) we find Zeeman shift coefficients of

roughly 10 Hz/G, such that we can expect the vector light shift to contribute at

the sub mHz level. We show in 5.1.6 that the Zeeman shift uncertainty obtained

here is on the 100 mHz level such that we can completely ignore the vector shift.

While the exact size of the vector and tensor shift coefficients are only based on
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theory and experimental upper limits, we note that the linear extrapolation to the

zero-trap depth clock frequency performed above is sufficient to characterize the

total Stark shift from scalar, vector, and tensor polarizabilities as the interaction

for all of these effects depends linearly with the trap depth. We thus report only

one total value of the light shift uncertainty based on the measurements above,

which includes shifts from vector, tensor, and residual scalar light shifts. We also

note that no systematic dependence of the lineshape on the lattice depth was

observed again suggesting the tensor and vector contributions are small.

The linear extrapolation inherently assumes the hyperpolarizability effects

are negligibly small. The best measurement for the fourth order electric field

sensitivity is 4.5(4.5) µHz/(UT /ER)2 [41, 43] such that at our fields the shift is

only 1.3(1.3)×10−17. This is orders of magnitude smaller than our scalar light

shift uncertainty above, and can therefore be ignored.

5.1.3 Polarizability Effects: Stark Shifts from the Probe Laser

Systematics related to the probe laser were considered in two respects. First,

the probe can cause Stark shifts of the clock states by coupling to external levels.

This shift will depend on the achievable linewidth and can be estimated from

the polarizability calculation, the probe time, and the saturation intensity for the

clock transition. Assuming a 10 Hz feature (t=80 ms) we can approximate the

intensity needed to excited the atoms with a Ω× t= π pulse as

I = Isat
2Ω2

Γ2
(5.1)

Where the saturation intensity is Isat = 0.41 pW/cm2, Γ=1/150 s, and Ω=π/(80ms).

The resulting intensity required is 28 µW/cm2. Based on our polarizability cal-

culations the shift is less than -10 mHz. However, here we have neglected the

effect of atomic motion in the trap on the Rabi frequency. The longitudinal and
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radial motion will reduce the rabi frequency by a factor 〈n|ei~k·~x|n〉 as discussed

in Chapter 3. This reduction factor depends strongly on the atom temperature

and trap parameters. Therefore, the linewidth and polarizability is not enough to

predict the shift and it must be explored experimentally.

The second effect we considered was whether asymmetric motional sidebands

could cause line pulling. This effect is minimal as the sidebands are well resolved

(even the radial sidebands are detuned by more than ten times the transition

width) and are only observed for large probe intensities.

Both of these effects were checked experimentally by varying the probe power

by more than an order of magnitude during 77 measurements. The final value

for the shift is 8(50) mHz. To eliminate Stark shifts from other sources, all lasers

used for cooling, trapping, and detection are switched with both acousto-optic

modulators and mechanical shutters.

5.1.4 Polarizability Effects: Blackbody Radiation Shift

Systematic shifts from black body radiation (BBR) are another concern for

clock accuracy [49]. Since the static polarizabilities (αtot.(ω → 0)) of the clock

states differ, we can expect that the radiation field from a black body emitter can

provide a differential shift of the levels, which must be accounted for. The clock

shift can be calculated for a temperature T if the differential static polarizability

of the clock state is known, by

δν = − k4
B

60ε0~4c3
∆αtot.(ω = 0)T 4 (5.2)

This formula is a good approximation if there are no atomic transitions within

the BBR spectrum. The T 4 dependence suggests that hot objects near the atoms

can be a concern. Based on our polarization calculations we find that the static

polarizability of the 3P0 and 1P1 states is 351.3 a.u. and 197.4 a.u. respectively.



182

This leads to a BBR clock shift of -1.39 Hz at T=300 K, an effect large enough

that we certainly can’t ignore it. We can check the validity of using the simple

static polarizability by performing a more correct calculation where the shift is

determined by integrating the product of the black-body intensity spectrum with

the differential polarizability over the relevant frequency range of the emission

spectrum, as

δν = − 1

4ε0π3c3

∫
∆αtot.(ω)

ω3

e
− ~ω

kBT − 1
dω (5.3)

Here we find that for at T=300 K we can expect a clock shift of -1.52 Hz. The

small difference in the two calculations is attributed to the presence of the 3P0-
3D1

resonance in the polarizability at 2.6 µm which is within the BBR spectrum at

this temperature.

In comparing our values here with that of high accuracy atomic structure

calculations in Ref. [49] we find a discrepancy in the final value of the BBR shift

where a value of -2.354(32) Hz is reported for T=300 K. The origin in the discrep-

ancy is the calculation of the static polarizability, as they find α(3P0)=458.3(3.6)

a.u. and α(1S0)=197.2(2) a.u.. While the values for the 1S0 state are in excellent

agreement, the 3P0 state calculations disagree by 100 a.u.. The most significant

difference between the two calculations of the polarizability is that in this work

we have not included the effect of the continuum contribution [139]. It is expected

that the 1S0 state will be much less sensitive to the continuum contribution due

to its larger detuning, and the rapid convergence of the total Stark shift after

including only the first few states (see Table 3.3). Therefore we expect that our

1S0 calculation would agree with that of [49], and it does. Convergence of the 3P0

state is much slower, and the state is closer in energy to the continuum state so we

expect a poor agreement there. The interesting thing is that the continuum states

appear to have a significant effect on the 3P0 polarizability in the DC limit, but
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not at optical frequencies since our magic wavelength calculation was spot on. It

is possible that at the magic wavelength we are artificially taking the continuum

into effect by use of the 3S1 strength adapted from Stark shift measurements in

[36], while at DC that state is not as dominant so the polarizability there will be

wrong. For now, we take the calculations of Ref. [49] as the correct value since

the continuum is included, resulting in a final BBR shift of

δν = −2.354(32)

(
T

300K

)4

Hz (5.4)

To estimate the shift of our clock due to the BBR we measure the temper-

ature of the vacuum chamber during measurements (see for example Fig. 5.8).

For the work reported below the temperature during the frequency measurement

was 298.0(1.5) K where the uncertainty is twice the measured fluctuation of the

chamber temperature during the frequency measurement. The frequency shift is

then -2.292(45) Hz where the uncertainty includes the theoretical uncertainty in

the shift coefficient. We also considered the effect of a nearby heated sapphire

window in the experiment which is kept at 200 ◦C. The window is 15.24 cm from

the atoms and had a diameter of 0.95 cm, such that the solid angle subtended

on the atoms is small, as is the resulting shift of -0.045(31) Hz. Here in deter-

mining the uncertainty we have allowed the solid angle to vary by a factor of 2

to account for possible reflections of the BBR radiation within the vacuum cham-

ber and emissivity variation of the materials, while the temperature was assumed

to be known within only 10 ◦C. We consider this a conservative estimate of the

window contribution to the total shift. A third concern is that of the nearby Sr

oven in which the nozzle runs at a smoking 850 ◦C. Although the temperature

is high the effect is considered negligible because of the distance to the atom (60

cm), small solid angle, and most importantly the mechanical shutter in the system

which closes during spectroscopy blocking the radiation from traveling towards the
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atoms. Based on the discussion here, the total BBR shift is -5.44(16)×10−15.

5.1.5 Characterization of Collision Shifts

It is well known that atomic collisions can affect the measured frequency of

a clock transition [15]. In Cs-fountains for example the collision shift in fractional

frequency can be as large at 10−13. The frequency shift of the clock ground state

due to elastic collisions in a cold atom sample is given by [140]

δν =
4π~2ρascat

M
(5.5)

where ρ is the atomic density and ascat is the ground state scattering length.

Assuming the scattering length of the two clock states was known, and only s-wave

elastic scattering was taking place, we could predict the collision shift. For 87Sr

the collision properties such as the scattering length are unknown. Furthermore

we are simultaneously probing states with different nuclear spins which probably

will have different collision properties between different spin states. For example,

atoms in the same spin state will not have s-wave collisions (in addition p-wave

collisions can be frozen out at low temperatures) since they are fermions in the

same quantum state, on the other hand the shift for collisions between different

spin states could be large. The bottom line is that we don’t know enough about

the collision properties to simply calculate the shift, so it must be measured.

The effect of atomic density on the transition frequency is explored in a similar

fashion as the light shift. Densities ranging within (0.2-1) ρ0 are interleaved by

varying the number of atoms in the lattice (by altering the original blue MOT

number) to create plots as in Fig. 5.4, where ρ0 is our typical operating density.

A histogram of 422 measurements of the density effect is shown in the right panel,

resulting in a shift coefficient of 3(140) ×ρ/ρ0 mHz . To calibrate ρ0 we use the

measured atom number from the spectroscopy sequence which is ∼ 104. The
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Figure 5.4: Measuring the effect of density changes on the transition frequency.
The right plot shows a histogram of 422 measurements (such as the left plot) in
which the atomic density is varied by up to a factor of 5 during spectroscopy. The
measured shift is 0.003(0.140) Hz at our typical operating density.

atoms are distributed into about 80 lattice sites, giving an average of about 100

atoms per site. The volume of each lattice site is determined from the measured

trap frequencies and atom temperatures. We estimate our peak density to be ρ0 '

5×1011 cm−3. Notably the upper limit of the density-related fractional frequency

shift recorded here of 5.6× 10−28 cm−3 is ∼106 times smaller than for Cs [5, 6].

5.1.6 Characterization of Magnetic Effects

The ten nuclear-spin sublevels of the clock transition result in systematic

effects related to magnetic and optical fields. For example, the asymmetric distri-

bution of population among the sublevels can be a central systematic issue when

using unpolarized atomic samples, as any mF -dependent magnetic or optical inter-

action can cause a frequency shift, even if the sub-levels are shifted symmetrically

about the center. As discussed in Chapter 4, the differential g-factor of the clock

states provides the most significant effect as it leads to a sensitivity to magnetic

fields of nearly 500 Hz/G for the stretched states. This large splitting can cause
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clock shifts if the population is not symmetric or if the probe polarization excites

σ transitions as well the π transitions. Three orthogonal sets of Helmholtz coils

are used to characterize frequency shifts caused by the Zeeman sensitivity of the

nuclear-spin sublevels. The orientation of the fields relative to the lattice is as

follows. Field-1 is exactly parallel to the polarization axis of the lattice, such

that application of the field does not change to quantum axis of the experiment.

The broadening of the transition on this axis is therefore the most efficient as is

our resolution in field calibration. Field-2 is nearly orthogonal to both the lattice

polarization axis and the lattice propagation axis, while Field-3 is nearly parallel

to the lattice propagation axis. For these axes the broadening is less severe for

small fields than the Field-1 axis. For each direction, the transition linewidth is

used to find the field minimum as shown in Fig. 5.5. For small fields, the data

is well described by a parabola, and the field minimum can typically be deter-

mined within ±3 mG. Due to the broadening mechanism, the use of narrow 10

Hz resonances allows the field zero to also be monitored in real time within ±5

mG for Field-1 and ±10 mG for Fields 2 and 3. This is a nice feature as we will

notice right away if the background field in the lab changes at the few mG level,

just by looking at the spectral lineshape. Frequency shift sensitivity is explored

using the interleaved scheme with the results shown for Field-3, (which we found

causes the largest frequency shift). Here the average values for 112 measurements

on that axis are shown, yielding a slope of 26(4) Hz/G. Similar measurements

were performed for the other two axes yielding 22(7) Hz/G for Field-1 and 12(3)

Hz/G for Field-2. Based on the broadening and shift data, observation of a 10 Hz

spectra then guarantees that the frequency shift from axis 1, 2, and 3 are 110(35)

mHz, 120(30) mHz, and 260(40) mHz respectively. Since, the Field-3 shift is not

as tightly constrained, we also do an occasional full field calibration of that axis

to reduce the field uncertainty to less than 5 mG. In our standard operation the
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Figure 5.5: Effect of a magnetic field on the transition linewidth and frequency.
The magnetic field for each axis is calibrated using the width of the narrow reso-
nance. The data is fit to a parabola, determining the field zero typically to within
3 mG. The result of 112 interleaved measurements where the field-3 is varied dur-
ing spectroscopy is shown. The frequencies of the zero field values are used as a
reference for presentation purposes. The slope of all the measurements for this
axis yields an average value of 26(4) Hz/G.

upper limit for the magnetic field shift is then 5.3×10−16. Again, this gives insight

into the minimal effect of the vector light shift which we discussed was equivalent

to a field of less than 100 µG in our system. Since we are operating near zero

magnetic field, the second order Zeeman shift is also very small, on the order of

2× 10−19.
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Table 5.1: Error budget for the 87Sr lattice clock discussed in the text. Here
the uncertainties are given for our typical operating parameters, UT =U0=35ER,
ρ=ρ0= 5×1011 cm−3, λL=813.4280(5).

Contributor Correction (10−16) Uncertainty (10−16)

AC Stark–Lattice (sca., vec., and ten.) 2.5 6.0
AC Stark–Probe and Line pulling -0.2 1.2
AC Stark–BBR 54.4 1.6
Atomic Density -0.1 3.3
Linear Zeeman 0 5.3
Second Order Zeeman 0 0.002
Second Order Doppler 0 < 0.001
Fourth Order Light Shift -0.13 0.13
Total 56.5 8.8

5.1.7 Summary of Clock Systematics

Table I summarizes the dominant systematic uncertainties for spectroscopy

of the clock transition, reported in terms of fractional frequency. A total uncer-

tainty of 0.88× 10−15 is achieved, representing the first experimental verification

that the lattice technique can reach inaccuracies below the 10−15 level, comparable

with Cs fountains. The largest uncertainties are limited by technical issues such

as a small dynamic range on the lattice intensity and sensitivity to stray mag-

netic fields. The 50-fold reduction of the systematic uncertainty from our previous

work [44] is mainly due to the improved line Q and direct use of the stable optical

reference.

5.2 Absolute Frequency Measurement of the 1S0-
3P0 Transition

With the spectroscopy systematics well characterized, we now turn to the

issue of measuring the optical clock frequency. In this section we describe the

fs-comb setup used for the absolute frequency measurement, as well as the remote

clock comparison system used to link our lab at JILA with the Time and Frequency

Division at NIST. This frequency measurement includes a extra set of potential
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systematics which are discussed here.

5.2.1 The Frequency Comb

A number of excellent reviews are available detailing the principles and uses

of fs-comb lasers in optical frequency metrology [141, 142, 21]. Here we only briefly

discuss some of the relevant details of the comb system used in this work, which

is described at length elsewhere by Foreman [143], and is very similar to the comb

previously reported in [144]. Our fs-comb system has some non-traditional features

which simplify some operational issues. The comb offset frequency is stabilized in

the usual f−2f self-referenced way [19], with the caveat that in this system the use

of microstructure fiber is unnecessary to achieve the full octave spectrum required

for stabilization. Elimination of the alignment sensitive microstructure fiber allows

operation of the comb over many hours without any tweaking by the operator.

The repetition rate (∼ 100 MHz) is stabilized by heterodyning the 698 nm clock

laser with a near by comb mode and stabilizing the beat via feed back to the

comb cavity length. Since the repetition rate is stabilized at an optical frequency,

the accuracy requirements for the synthesizers and counters used are dramatically

relaxed as the microwave noise does not get scaled up by the large comb mode

number. With the offset and repetition frequencies locked, the frequency of all the

comb modes are known (relative to the clock laser frequency) in terms of a mode

number and the different beat frequencies in the locking scheme. Comparison of

the optical frequency with a high accuracy microwave standard can then by done

by measuring the repetition rate of the comb relative to the high accuracy RF

reference.

Stabilizing the repetition rate via the clock laser also allows transfer of

the clock stability over the entire comb spectrum as the comb linewidth is now

determined by that of the clock laser. By comparing of our stabilized comb to
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an independent clock laser at 1064 nm we have shown [143, 138] that the sub Hz

linewidth of the clock is transferred across the spectrum (see for example Fig. 5.11

where this is done in a more complicated situation with the clock lasers separated

by a long fiber link). This optical transfer is a crucial capability of the comb, as

comparison of different high accuracy optical clocks require direct comparison of

different optical frequencies without precision degradation.

5.2.2 Microwave Reference and Transfer

With the frequency comb in place, the next issue is comparison of the comb

to the microwave reference at NIST. The general approach taken in this work is

to use the microwave reference to apply amplitude modulation on a transfer laser

which can then be transmitted to our lab via an optical fiber where the modulation

frequency is detected and compared to the comb repetition rate. Fortunately

in our lab we have access to the Boulder Research and Administration Network

(BRAN) [145] fiber link which connects JILA to a number of buildings on campus,

and most importantly the NIST Time and Frequency Division ∼3.5 km away.

A detailed schematic of the frequency measurement setup is shown in Fig. 5.6.

A commercial RF synthesizer at NIST is stabilized to the 10 MHz H-maser signal

which is calibrated by the Cs fountain primary standard. The synthesizer provides

a 950 MHz signal which is used for amplitude modulation of a CW transfer laser

at 1320 nm. The laser passes through a fiber optic circulator and then into the

3.5 km BRAN fiber towards our lab at JILA [117, 137]. On the JILA end, our

self-referenced fs-comb is tightly locked to the clock laser by stabilizing the beat at

698nm and feeding back to the cavity length of the comb (and thus the rep. rate).

The comb repetition rate is then detected on a photodetector and is compared

to the 950 MHz transfer signal. The difference between these two microwave fre-

quencies is then recorded, such that the frequency of the clock laser relative to
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Figure 5.6: Cartoon diagram of the absolute frequency measurement setup. The
Cs calibrated H-maser signal stabilizes the RF synthesizer used for amplitude
modulation of the transfer laser. The laser is sent through the 3.5 km BRAN
fiber which travels though an urban environment before coming to the JILA lab.
The microwave transfer can be phase stabilized as discussed in the text. On the
JILA end, the amplitude modulation on the transfer laser is compared with the
repetition rate of a self referenced fs-comb, which is phase locked to the 698nm
clock laser.

the Cs standard can be determined. The NIST synthesizer is computer controlled

from the JILA lab such that the modulation frequency can be set to a convenient

frequency, depending on the repetition rate of the laser. The maser and transfer

system provide a 1 s instability of 2.5 × 10−13, and for the work reported here,

the maser is calibrated to 1.7× 10−15 by the Cs fountain. Thus the we can hope

to measure our Sr frequency to a similar accuracy level if the transfer does not
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degrade the microwave frequency.

To check the accuracy of the fiber transfer, the fiber tip at the JILA end is

coated with a thin gold layer such that nearly 90% of the light is reflected back to

NIST. The return light is then extracted from the fiber optic circulator and round

trip modulation signal can be detected on a photo diode. This round trip signal is

compared to the output of the synthesizer with a mixer, providing an error signal

proportional to the phase difference between the two signals. To test the accuracy

of the transfer we monitored the output of the mixer over a period of a few days,

with the results shown in Fig. 5.7. The passive transfer of the microwave reference

using the fiber is seen to introduce phase changes specifically related to periodic

stretching and compressing of the fiber length which are strongly correlated to

daily temperature variations. This effect results in frequency offsets as large at

10−14, with the sign of the correction depending on whether the fiber is expanding

or contracting (i.e. morning or evening). This kind of effect is certainly a concern

for our clock measurement since it can cause frequency biases which are correlated

to the weather and time of day the data was taken. Given that much of our data

is typically taken in the evening when the rest of the lab empties out, this bias is

unacceptable.

To eliminate this effect, the fiber length is stabilized using a PZT fiber

stretcher which is controlled by the output of the comparison mixer which mea-

sures the local microwave phase at NIST compared to that of modulated light

reflected back from JILA [137]. Since the round trip light passes through the fiber

stretcher twice the phase is stabilized at both the JILA and round trip ends. The

locking is fairly robust, providing accurate frequency transfer at the level of a few

parts in 1017 according to in-loop measurements. Since we have not yet made

out-of-loop measurements of the system performance we artificially increase the

uncertainty by an order of magnitude to 10−16, which is conservative considering



193

0 1 2 3 4
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

 

 

M
ix

er
 V

ol
ta

ge
 (V

)

Time (Days, since noon)

δν/ν~10-14

Figure 5.7: Measurement of the phase error resulting from passive microwave
transfer via the BRAN link over a four day period. The phase error is strongly
correlated with daily temperature swings and can result in large frequency errors
of up to 1×10−14 if measurements are taken during the same time every day.

other potential problems should not cause any shifts at this level [146]. It should

be noted that to achieve this level of stabilization it was necessary to replace any

connectorized links in the fiber path with fusion splices, as we found that the con-

nectors reflected an unacceptable amount of light, degrading the locking signal.

The main limitation of this system is the dynamic range of the fiber stretcher

which cannot compensate for the changing BRAN length for longer than about

an hour. Because of this, the fiber servo is occasionally disengaged via computer

control at JILA, and the transfer modulation frequency is slightly changed to

allow a re-set of the fiber servo offset near zero.

The reference synthesizer for the transfer can also cause frequency errors

[147] as we have measured that drifts in the synthesizer’s temperature result in

referencing errors leading to fractional shifts at the level of 4×10−14 (K/Hour)−1.
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For the measurements reported here, the synthesizer is placed in a temperature

stabilized enclosure and the temperature inside and outside the enclosure is mon-

itored. For the data set below, the resulting correction was −1.7(7)× 10−15.

All synthesizers and counters used in the experiment which can effect the

measured frequency were referenced to a commercial Cs clock in our lab which

guarantees accuracy of the RF frequency to better that 10−10. These include

any AOM drivers, or fiber noise cancelation setups for the spectroscopy laser, as

well as the counters and reference synthesizers for the comb. Since these various

microwave frequencies in the experiment are small offsets on optical frequencies,

the precision provided by the commercial Cs clock is sufficient. For example an

80 MHz AOM offset which is controlled by a RF synthesizer with 10−10 accuracy

provides mHz level control, which at our optical frequencies is negligible. The

exception to this rule, in some experiments, is the comb repetition rate, in which

the fraction noise in the microwave regime gets multiplied up to the optical regime

by the mode number n. However, in our case the repetition rate is stabilized by

an optical heterodyne beat with the clock laser such that the microwave noise is

not scaled up, and is therefore negligible.

5.2.3 Gravitational Correction

The final systematic issue that we consider for the clock comparison here

is that of gravity. In a gravitational potential, we expect the clock frequency to

deviate from its natural value. This can cause a problem if labs at different eleva-

tions want to compare frequencies. The standard way of reporting frequencies of

this precision to the international community is to correct the recorded frequency

for ones elevation relative to the earth’s geoid. In this way all clock frequencies

will be reported for the same gravitational potential. For example when NIST

reports the Cs-based timescale to the international community (BIPM), the mea-
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sured value requires some correction to account for the gravitational potential in

Boulder. In our setup on the other hand, we are using Sr and Cs clocks which are

both in Boulder such that the gravitational potential is nearly equal. More simply,

the two clocks are in the same potential and the frequency ratio will not depend

on what that potential is. We therefore only need to consider effects due to the

difference in elevation of the Cs and Sr clocks. The position of the Cs fountain is

well known (for these gravitational reasons), and the elevation of our strontium

clock has been calibrated using a nearby GPS receiver in the JILA building. The

difference in elevation between the two clocks is 11.3(2) m. Since the Sr clock is

at a lower elevation, the frequency runs slow, such that we should apply a posi-

tive correction of 1.25(2)×10−15 where we have used the fractional frequency shift

coefficient of 1.09×10−16 m−1 [148].

5.2.4 Absolute Frequency Measurement

With our frequency measurement system in place, we should be able to

measure the 1S0-
3P0 transition frequency with an accuracy similar to that of the

calibrated maser. Based on the maser stability of < 3 × 10−13τ−1/2, we can ex-

pect that we will need 24 hours of measurement to average down to the maser

uncertainty. To avoid any time of day bias, we measured the frequency continu-

ously over a full 24 hour period. For a measurement of this length, we need to

be sure that the strontium systematics in Table 5.1 do not fluctuate. The lattice

shift is not a problem over this time scale as the laser intensity is servoed and the

wavelength is easily monitored in realtime with a high precision wavemeter that

has been calibrated by the clock laser. The density shift is also not a concern

because the value of ρ0 is the peak density we achieve, and over such a long time,

a drop in atoms is a bigger concern than a sudden gain. Furthermore, the atom

number is naturally recorded in each spectrum taken. The biggest concern is that
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Figure 5.8: Data record for the absolute frequency measurement discussed in
the text. The top panel shows the frequency measurement (including the maser
calibration) resulting from each line scan (blue). The black line shows the fiber
link stabilization signal. The bottom panel show the occasional field-3 calibrations
(green) and the recorded temperature of the vacuum chamber(red).

magnetic fields in the room can drift. To monitor this we look at the transition

width which depends on the field, for example on the most sensitive axis we can

constrain the stray field to within a few mG if the linewidth is 10 Hz. As a second

check we repeat the zero calibration once every few hours for the axis which effects

the linewidth the least. The temperature of the chamber is also monitored during

the entire measurement.
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Figure 5.8 shows the raw frequency measurements over a 24 hour period.

Here the measured frequency (including the maser offset calibration of -401.0×10−15)

is given relative to a convenient value of ν0=429,228,004,229,800 Hz. Each data

point (blue) corresponds to a scan of the transition using 11 Hz features, as in

Fig. 5.1. The frequency uncertainty for the measurement is typically ∼20 Hz, con-

sistent with the maser allan deviation for the 30 second measurement. The breaks

in the data correspond to measurements being stopped for various reasons such

as laser unlocks, fiber transfer unlocks, field calibrations, etc. The recorded mixer

voltage for the stabilized BRAN fiber is given on the same plot (black), showing

that the phase problem in Fig. 5.7 is well controlled with the fiber stabilization.

The lower panel of the figure shows our monitoring of the spectroscopy system-

atics during the measurement. The magnetic field is monitored by the transition

widths of each measurement, and also by occasional complete field calibrations

shown as green data points in the lower panel. Over the 24 hour period it was

found that the field did not drift significantly compared to our tolerances of 5-10

mG. The temperature of the vacuum chamber was also monitored as shown in

the red data of the lower panel. The four large peaks in the temperature data are

times when the atom cooling cycle was stopped for optimization. When this is

done the MOT coils are run constantly, which heats up the surrounding air and

vacuum chamber. After about 10 minutes of running in the typical sequence mode

the chamber cools off again. The temperature data here is used to determine the

systematic in Table 5.1. Note the unfortunate nature of our lab as the baseline of

the temperature data is very steady for the first 12 hours (8pm-8am) but is much

less stable when JILA comes to life in the morning, causing unlocks which require

re-tweaking of the cooling setup.

The graph in Fig. 5.9 shows the same frequency data, after removing data

points in which the fiber transfer was unstabilized, the chamber temperature had
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Figure 5.9: Absolute frequency measurement of the 1S0 - 3P0 transition. (Top)
Counting record of 880 measurements taken over a 24 hour period yields a mean
value of 71.8(6) Hz (corrected for only the maser offset). The uncertainty averages
down as N−0.501(4), where N is the number of measurements (randomized), reach-
ing 1.4×10−15. A histogram of the frequency measurements with a gaussian fit
(red) of the data is also shown. Here the offset frequency, ν0, is 429,228,004,229,800
Hz.

spiked, and one group of data where the temperature of the transfer synthesizer

had been poorly controlled. This final data set contains 880 absolute frequency

measurements which span a the full 24 hour period fairly evenly. The mean value

of the frequency (relative to ν0) is 71.8 Hz. The histogram in the figure attests to

the gaussian nature of the measurement and the third panel in the figure shows

how the uncertainty averages down versus the number of measurements (random-

ized). The data averages down as N−0.501(4), to give a final statistical uncertainty
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Table 5.2: Error budget for the absolute frequency measurement of the 87Sr clock
transition. The measured frequency, preadjusted by -401.0×10−15 for the maser
calibration, is corrected by the Sr spectroscopy offset (Table 5.1), and other small
correction factors. The final frequency of the transition is reported relative to a
convenient offset frequency ν0=429,228,004,229,800 Hz. The total uncertainty for
the frequency is 2.5×10−15, or 1.1 Hz, which is dominated by the maser calibration
uncertainty.

Contributor Correction (10−15) Uncertainty (10−15)

Sr (Table 5.1) 5.65 0.88
Maser Calibration – 1.7
Synth. Temp. Drift -1.7 0.7
Fiber Transfer 0 0.1
Gravitational shift 1.25 0.02

Total Systematic 5.2 2.0
Total Statistical 0 1.4
Total 5.2 2.5

νSr − ν0 74.0Hz 1.1Hz

of 0.6 Hz or 1.4×10−15. This is consistent with the maser allan deviation for the

measurement time of the 880 line scans. The measured frequency is then corrected

by the systematic offsets listed in Table 5.2. The Sr correction, given in Table 5.1,

is 5.65(0.88)×10−15. The synthesizer correction is calculated based on the mean

rate of temperature change during the entire measurement. Applying the cor-

rection locally instead of globally does not change the final frequency within the

uncertainty reported. The only significant corrections in Tables 5.1 and 5.2 not

determined by direct frequency measurements here are the BBR shift and the

gravitational shift arising from the difference in elevation of the NIST Cs fountain

and the JILA Sr lattice. With all of the corrections applied, the frequency of

the 87Sr 1S0-
3P0 transition is 429,228,004,229,874.0(1.1) Hz, with the uncertainty

mainly limited by the maser calibration. At the time of the measurement the

final absolute frequency uncertainty of 2.5×10−15 corresponds to the most accu-
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rate optical frequency measurement for neutral atoms, falling short of only the

recent Hg+ ion result [29] as the most accurate absolute optical measurement of

any system.

5.2.5 An International Effort

The precision and accuracy enhancement provided by the lattice clock has

led to investigations by a number or labs around the world. This type of compe-

tition is very healthy for the development of a frequency standard as independent

results can be compared between different groups with different systems. A sum-

mary of the 87Sr clock transition measurements in an optical lattice is shown in

Fig. 5.10, with the same relative offset ν0 as before. The record spans reported

values from 2005 to present, attesting to the intense pursuit of the lattice clock.

Due to the rapid progress in the field, the measurements are given in order of

the date the research was presented in final form, via journal submission or arxiv

pre-print date. Not shown is the first absolute measurement of the transition

frequency, taken with a free space cloud of atoms, reported by the Paris group

[149]. The value is in agreement with the measurements shown, having a large

uncertainty (on this scale) of 15 kHz.

One can imagine that some uneasiness set in among the community with the

announcement of the first two measurements by the group in Tokyo [58] and our

group [44], as the frequency value disagreed by a few sigma. The first value was

made public while our measurement was under way, causing us to go back and

check, double check, and triple check our frequency (and lose some sleep along the

way). No matter what ”knob” we turned, we could not induce a frequency change

in the lattice clock at anywhere close to the disagreement, so we published the

number we were getting. The main difference between the measurements was that

our group was using the Cs-calibrated maser reference whereas the Tokyo group
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Figure 5.10: International measurement record for the 87Sr lattice clock. Pub-
lished data is shown from our group [44, 150, 151, 42] (blue circles) as well as the
groups in Tokyo [58, 46] (red squares) and Paris [45, 43] (green triangles). Aside
from the first measurement, the agreement between the three labs is excellent, as
can be seen in the inset which shows a closer view of the most recent measure-
ment from each group. Notably, the last two measurements agree at the level of
7×10−16.

was employing a commercial Cs clock calibrated by a GPS signal. The latter

method provides a measurement stability orders of magnitude worse than the

maser system, requiring 105 seconds of integration to reach the level of precision

of 20 Hz (while the maser requires only 30 seconds). This reference was thought by

us to be the cause of the discrepancy, even more so as we repeated the measurement

six months later and found the same clock frequency [150] as our original value.

These thoughts were validated by a third independent measurement by the Paris

group [45] which was in perfect agreement with our value and involved direct

comparison to a Cs-fountain. A revised value was published from Tokyo shortly

thereafter (although close enough in time, not to have been influenced by the

Paris result) where they had employed a maser for the comparison [46]. With

the 4σ disagreement resolved, measurements by all the groups continue with high

confidence.
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The measurement described in this work νSr − ν0=74.0(1.1) Hz [42] is in

excellent agreement with our original value, and provides an accuracy improve-

ment of about a factor of 5 compared to the other measurements. More recently,

the Paris group announced an improved number of νSr − ν0=73.7(1.1) Hz [43].

The agreement between our two labs is remarkable, at the level of 7×10−16. The

agreement is even more exciting if one consider how different the two lattice ex-

periments are. In our system we used degenerate sublevel, a line width of 10 Hz,

a relatively shallow trap of 35 ER, and scans of the transition to determine the

frequency. In the Paris experiment resolved spin polarized samples were used to

eliminate the Zeeman shift, line widths greater than 30 Hz were used, a order of

magnitude deep trap depth was employed, and the clock laser was locked to the

transition. The Sr-Cs comparison setups were also quite different in two labs as

the Paris group used a nearby Cs-fountain and our group used a Cs-calibrated

H-maser signal transferred from a remote location with an optical fiber. Thus two

very different measurement schemes yielded the same result. This speaks volumes

for not only the lattice clock as a frequency standard, but also the Cs fountains, as

comparison between two sets of clocks on different continents yield the same value

to 15 digits. As pointed out by P. Lemonde, the agreement between the two Sr-Cs

measurements is actually too good, given the agreement between the Cs-fountain

results reported to BIPM over the same time period. This could be explained

in a few ways. One possibility is that the agreement was somewhat coincidental

in that different systematics of some of these clocks could be under estimated

or compensating one another. Another, more interesting possibility, is that the

ratio of the Cs-Sr frequencies is in better agreement than the raw Cs frequencies

reported to BIPM because some of the correction terms, such as the gravitational

shift, may not be known as well as we think. Only more measurements with better

and better clocks can answer these questions.
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The inset of Fig. 5.10 shows a zoom in of the most recent measurements

from the three Sr lattice clock groups. The agreement between the three groups

(on three different continents) speaks strongly for the lattice clock as a future

candidate for redefinition of the SI second. The repeatability of the Sr frequency

measurements is also now at a useful level, in combination with the results of

Ref. [8], for constraining the drifts of fundamental constants and local position

invariance [152].

The outlook for the Sr lattice clock is quite promising as experiments are

currently being developed by groups in Florence, PTB, and NPL, and other labs.

So we can expect to see plots similar to Fig. 5.10 to include measurements from

five or six standards labs in the near future. This kind of attention puts the

strontium lattice clock in a special class, as no other optical frequency standard

is being pursued by so many groups.

5.3 Outlook for The 87Sr Lattice Clock: Current Progress

While the prospects for the 87Sr lattice are very encouraging, work must

continue to improve the clock accuracy and stability. With the line Q’s shown in

this work, the lattice clock should eventually surpass the ions in term of stability

as the clock laser is improved. For accuracy concerns, the evaluation here is still an

order of magnitude away from that which has been achieved with the Hg ion [29].

To make further progress on clock precision and accuracy, it is desirable to use

another optical clock for comparison. Comparison of Sr to the maser for example

is limited by the maser stability such that we cannot say with high confidence

what the Sr stability actually is. It would also be useful to have an optical clock

for comparison, to avoid the interleaved scheme used here. In light of this, we

again turn to our colleagues at the NIST Time and Frequency Division where a

number of high accuracy high precision optical clocks are available, including a
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Hg [29] and an Al [30] ion clock, a neutral Ca clock [24], and a Yb [56] optical

lattice clock. In this section we briefly discuss our progress towards all optical

clock comparisons.

To make clock comparisons we again take advantage of the BRAN fiber

link. Since the 698nm light cannot be directly transferred through the fiber,

we instead use the comb to coherently transfer the clock information across the

optical spectrum to a more convenient wavelength. The comb is locked to the

698 nm laser to provide sub-Hz linewidth across the spectrum to 1064nm where a

transfer laser is phase locked to the comb. The transfer laser is then sent to NIST

via the BRAN fiber. To stabilize the fiber link, we follow the same principle as

in the microwave transfer, only in this case an AOM is used as the actuator. A

gold tip at the NIST end of the BRAN reflects most of the light back to JILA

where we can detect and servo out the phase noise added by the fiber transfer.

We have shown that for BRAN fiber of a few km length, the transfer technique

is coherent with stability better than 1 × 10−17τ−1/2 for averaging times as long

as 1000 seconds [138]. Thus the noise floor for the transfer is negligible given

our laser performance. Using the link we can make direct laser comparisons with

NIST as our transfer laser can be beat against a fs-comb on the NIST end of

the link, which is stabilized to the laser of interest. We therefore can make a

beat between two highly stabilized clock lasers in different labs, using the fiber

link, and two frequency combs to bridge the gap (both in spatial, and frequency

dimensions) This complexity may make one suspect that the narrow linewidth

may not be preserved, so we have tested the system using our clock laser at 698

nm and the 1126 nm laser which acts as the oscillator for the NIST Hg ion clock

[153]. The results are shown in Fig. 5.11 where a beat note between the transfer

laser (stabilized to the JILA comb and clock laser) and the NIST comb (stabilized

to the Hg clock laser) reveal a RBW limited linewidth of 1 Hz, showing that
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Figure 5.11: Comparison of the Sr and Hg+ clock lasers using the (AOM) stabilized
BRAN fiber link. The beat between the JILA transfer laser and the NIST comb
reveals the laser linewidth is not deteriorated by the 3.5 km urban fiber, or the
use of two fs-combs.

the complexity of the transfer and 2 frequency combs does not degrade the laser

linewidth.

With the possibility of high precision optical comparisons we have also made

some improvements to the Sr clock system. In looking at Table 5.1 we see that

most of the systematics were statistically limited, such that the optical comparison

should allow further reduction. To further improve the systematic evaluation we

now injection lock the Ti:Sapphire [154] using a ECDL at 813 nm to increase the

output power, and thus the available dynamic range for evaluation. The lattice

wavelength is also stabilized to the comb for improved measurement of the magic

wavelength (or frequency at this level). To eliminate the largest systematic, the

Zeeman sensitivity, we now use Method II where the atoms are spin polarized to

the mF =±9/2 states and the average frequency is measured, such that the shift
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Figure 5.12: Measurement of the Sr clock stability using the NIST H-maser (red)
and the NIST Ca optical clock (blue). The advantages of optical clock comparison
are significant in that the stability is nearly two orders of magnitude better for
the timescale shown, meaning a reduction in averaging time of nearly four orders
of magnitude to achieve a given precision level.

from magnetic and optical Zeeman shifts are nominally removed (but still must

be checked). We have also developed locking protocol such that the clock laser

no longer scans the transition but is locked to it. With these improvements in

place, and some preliminary measurements, we expect the clock uncertainty to be

at about 1× 10−16 by the end of 2007. This value would surpass even the best Cs

fountains and nearly catch the best ion results. The expected limitation in the

next round of measurement is the uncertainty in the BBR shift coefficient and the

temperature distribution of the vacuum chamber.

We have begun re-evaluation of the clock accuracy using an optical compar-

ison with the NIST Ca clock. The Ca clock frequency is not known with as high

of accuracy as the Sr clock, but provides us with a number of advantages. The
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Ca clock provides an excellent stability, and the system can be operated on an

hours notice with robust performance. Figure 5.12 shows a stability measurement

of the Sr clock (in the higher accuracy setup discussed here) compared to the

H-maser and the NIST Ca clock. The Sr-Ca comparison provides a 1 s stability of

3×10−15 which is limited by the Ca laser. The stability typically averages down

as < 5× 10−15τ−15 providing frequency comparison at the 3×10−16 level in 200 s.

To reach the same level with the maser comparison requires 106 s of averaging. So

while we can’t use the the Ca clock to improve the absolute frequency measure-

ment, it is incredibly useful for evaluation of our spectroscopy systematics. The

stability shown here is by no means a fundamental limit to the Sr lattice clock

stability. The data here is likely limited by the Ca system as the Sr stability is

estimated to be limited by laser noise at ∼ 2×10−15τ−1/2. If we assume adequate

laser pre-stabilization, use of 2Hz spectra (which we have already observed), and

quantum projection noise limited measurement of our 105 atoms (which seem pos-

sible to reach with improvements to the loading process), we expect to achieve

stability in the 1×10−17 range for 1 s. The biggest hurdle here is getting the laser

pre-stabilization to that level. Hopefully, the prospects of sub 10−17 stability in a

second will provide sufficient motivation for oscillator development to that level.

To improve the absolute frequency value we can eventually compare the Sr fre-

quency with that of the Hg ion which is known from Cs calibration to 9× 10−16.

Beyond that point we are running out of room with the Cs clock and can only

measure frequency ratios between optical clocks until one species is chosen as the

next standard for the SI second.



Chapter 6

On the Horizon

In this final chapter, some future experiments and applications of the lat-

tice clock system are discussed. Specifically, a few thoughts are given related to

improving the 87Sr accuracy and the prospects of using other atomic species in a

lattice clock.

6.1 Future 87Sr Clockwork

Even with the rapid progress on the 87Sr lattice clock system in the past four

years, there is still much work to do if we wish to catch the accuracy levels of those

elusive ion clocks across the road at NIST. The anticipated accuracy limitation in

our next round of measurements, for example, is that of the BBR shift. To reduce

the uncertainty of this effect in the future, a two pronged attack is likely needed.

The first issue is the actual size of the BBR shift, that is, improving (and confirm-

ing) the theoretical value which currently has a fractional uncertainty of 7×10−17.

Futures measurement of the relevant excited state lifetimes (especially the low-

est 3S1 and 3D1 state), possibly by photoassociation experiments, will certainly

help in determining the polarizability with high accuracy. One can also envision

a more direct measurements in which the lattice clock is operated in a variable

temperature environment. The second issue is control of the environment in order

to keep the temperature stable. At 300 K, the sensitivity of the clock transition
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to temperature fluctuations is ∼ 7× 10−17/◦K. Therefore uniform environmental

control a the 0.1 K level is needed to reach below 10−17 in accuracy.

Atomic collisions in the lattice are also becoming of great interest. As the

clock precision improves we should be able to explore the various collision prop-

erties of the different nuclear spin states. It may even be possible to eliminate

s-wave collisions all together if single spin-states are used in clock operation. How-

ever it remains an open question on whether the same Rabi inhomogeneity effects

that limit the excitation fraction will degrade the “fermionic purity”. If indeed

the rabi dephasing does limit the collision suppression, than the natural course of

action will be to try an cool the atoms further, or to move on to a 3D lattice.

Three dimensional lattice clocks may eventually be more accurate than their

1D counterparts, as collisions can be essentially removed by giving each atom its

own well. For atoms with nuclear spin, the size of the tensor and vector light shift

will be more of a concern in the 3D lattice, due to the polarization dependence.

Therefore, it will be important to improve on the measured upper limits presented

in this work. If the shifts are too large, than EIT or DC field mixing approach

with the bosonic isotopes will be more desirable.

6.2 Other Lattice Clock Candidates

While in this work Sr has been been the main focus, Yb and Hg certainly

are intriguing candidates for the lattice clock system. Although not directly in

the sights of our lab, these systems are certainly interesting and will play (are

playing) a role in the future of this lattice clock business. To this author, the

most intriguing Yb property is the existence of an I = 1/2 isotope 171Yb. Though

the NIST group has focused mainly on the bosonic isotopes. It will fun to see what

happens if/when they play with an F = 1/2 clock transition, where the tensor

shift should be absent and the atoms are “naturally” in the stretched (and only)
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magnetic states from the get go. Neutral Hg also has an attractive I = 1/2 isotope,

and is now under development by P. Lemonde and S. Bize in Paris [155]. The

main benefit in going to a Hg lattice clock, is that the electric dipole transitions

are much further into the UV than Sr or Yb, such that the clock frequency is

larger, and, more importantly, the BBR shift may be significantly smaller. It will

be interesting to see if this systematic gain, is worth the cost (effort and $$!!!) of

operating a lattice at 350 nm, and cooling and clock lasers around 257 nm.

Earlier in this thesis the different methods for lattice clocks were discussed

(in terms of bosons vs. fermions), however this author has, somewhat intention-

ally, reserved any discussion of using different elements for this more speculative

section. Not that use of other species is speculative, but more that this author

feels it’s a bit too early in this young field to be pointing fingers at one element or

another, and instead just focused on the gritty details of the Sr system. But since

it is useful to critically compare the different possibilities, I’ll concede and quickly

give my thoughts on the current situation. In comparing Yb and Sr, one can go

back and forth a number of times on which would ultimately be better. Shift

A (hyperpolarizability, BBR shift uncertainty, . . .), might be larger in Yb than

in Sr, and shift B might be smaller (BBR shift, second order Zeeman, . . .), but

nominally most of the field sensitivities are close enough that it won’t be a deal

breaker either way. The difference may then come down to practicality, although

even here the issue is still somewhat debatable. For example, the laser cooling in

Sr is much more efficient than in Yb, but also more complex. From our discussion

of Rabi frequency effects in lattice spectroscopy we can assume that the colder

the better, especially if it allows use of shallower traps. Sr seems to have the edge

here, in that both Doppler and sideband cooling on the 3P1 transition work better

than in the Yb case. Another practical difference is in the laser sources, where in

Sr they can all be generated from diode sources, but in Yb the wavelengths are
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more challenging. Then again Yb offers more stable isotopes than Sr which may

provide a nice exit strategy if one of those species has its mind set on bullying

neighboring atoms in that awful phase-shifting collisional way.

For now, it seems the international momentum in on the side of Sr, and

with the results in Fig. 5.10 it’s tough to argue that anyone currently pursuing Sr

should make a detour. Admittedly, that momentum may have more to do with

laser colors, cooling, and the already large number of labs pursuing Sr, than any

particular systematic advantages. So we should expect to see similar results from

Yb labs in the near future.
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[107] N. Poli, R. J. Brecha, G. Roati, and G. Modugno, Cooling atoms in an
optical trap by selective parametric excitation, Phys. Rev. A 65, 021401
(2002).

[108] R. Juregui, N. Poli, G. Roati, and G. Modugno, Anharmonic parametric
excitation in optical lattices, Phys. Rev. A 64, 033403 (2001).

[109] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, in Advances in
Atomic, Molecular, and Optical Physics, edited by B. Bederson and H.
Walther (Academic Press, September, 1999), Vol. 42, pp. 95–170, (eprint
arXiv:physics/9902072).

[110] P. Lemonde and P. Wolf, Optical lattice clock with atoms confined in a
shallow trap, Phys. Rev. A 72, 033409 (2005).

[111] A. Quessada, R. P. Kovacich, I. Courtillot, A. Clairon, G. Santarelli, and
P. Lemonde, The Dick effect for an optical frequency standard, Journal of
Optics B: Quantum and Semiclassical Optics 5, S150 (2003).

[112] A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman,
M. M. Boyd, S. Blatt, and J. Ye, Compact, thermal-noise-limited optical
cavity for diode laser stabilization at 1×10−15, Opt. Lett. 32, 641 (2007).

[113] K. Numata, A. Kemery, and J. Camp, Thermal-Noise Limit in the Frequency
Stabilization of Lasers with Rigid Cavities, Phys. Rev. Lett. 93, 250602
(2004).

[114] M. Notcutt, L.-S. Ma, A. D. Ludlow, S. M. Foreman, J. Ye, and J. L. Hall,
Contribution of thermal noise to frequency stability of rigid optical cavity
via Hertz-linewidth lasers, Phys. Rev. A 73, 031804 (2006).

[115] M. Notcutt, L.-S. Ma, J. Ye, and J. L. Hall, Simple and compact 1-Hz laser
system via an improved mounting configuration of a reference cavity, Opt.
Lett. 30, 1815 (2005).



221

[116] L.-S. Ma, P. Jungner, J. Ye, and J. L. Hall, Delivering the same optical
frequency at two places: accurate cancellation of phase noise introduced by
optical fiber or other time-varying path, Opt. Lett. 19, 1777 (1994).

[117] J. Ye et al., Delivery of high-stability optical and microwave frequency stan-
dards over an optical fiber network, J. Opt. Soc. Am. B 20, 1459 (2003).

[118] J. C. Bergquist, S. A. Lee, and J. L. Hall, Saturated Absorption with Spa-
tially Separated Laser Fields: Observation of Optical ”Ramsey” Fringes,
Phys. Rev. Lett. 38, 159 (1977).
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