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Ballard, Joshua (Ph.D., Physical Chemistry) 

Dynamic Phase and Population Control of State Selected Wave Packets in Li2 

Thesis directed by Professor Stephen R. Leone 

 

Pulse shaping of ultrafast pulses with a Liquid Crystal Spatial Light 

Modulator (SLM) is used to control both transient and non-transient state-resolved 

wave packet dynamics in Li2.  In almost all of the experiments, a single launch state 

(generally A1Σu
+ vA=11, JA=28) is prepared via excitation with a cw laser, from which 

a pump pulse excites a superposition of states on an excited electronic potential 

energy curve followed by a photoionizing ultrafast probe pulse. Using feedback and 

an Evolutionary Algorithm (EA), the weak field pump-probe photoionization signal 

at a single time delay is optimized in Li2 for the state E 1Σg
+ (vE=9, JE=27 & 29).  First 

order time dependent perturbation theory is used to explain the mechanism by which 

the photoionization is maximized.  Following this, the transient dynamics of 

excitation of wave packets is studied in detail.  A clear separation is made between 

resonant and nonresonant effects.  Both population and resultant phase in the 

molecule are transiently manipulated.  By varying the polarization of the probe light, 

population dynamics can be separated from interfering wave packet dynamics, 

allowing precise determination of the instantaneous population and wave packet 

dynamics.  A pulse shaping scheme is described that implements a sign inversion for 

one state of a two state superposition, and all sign inversion matrix elements are 

quantified.   Elements of strong field coherent control are also explored in Li2.  From 

the launch state, the strong optical field couples the A and E electronic states, 
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inducing sequential ∆J=±1 transitions to populate states up to ∆J=±4.  Taking 

advantage of Rapid Adiabatic Passage, state selectivity is controlled by manipulating 

chirp parameters on the excitation pulse, achieving selectivity of either Stokes or anti-

Stokes quantum beats of nearly unity.  Finally, wave packet dynamics on highly 

excited electronic states is examined.  Electronic wave packets consisting of beating 

between bound states on the F1Σg
+ and G1Πg electronic states are observed.   
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Chapter 1  

         Introduction       

 

Ultrafast phenomena comprise a vast field of study in chemistry and 

physics, with many types of applications, particularly the direct study of processes 

happening on sub-picosecond timescales.  The short timescales inherent to 

ultrafast pulses correlate to a wide bandwidth in the frequency domain.  During 

excitation, especially to a first order approximation, several transitions can often 

simultaneously become excited.  In the case of dissipative or quasi-continuum 

systems, such as a solid state semiconductor or a repulsive molecular electronic 

potential, a predominant characteristic of the wide bandwidth excitation is a rapid 

decay of signal[1-3].  In an atom or molecule in the gas phase, the energy level 

structure can contain narrow bandwidth resonances, implying the presence of 

slowly decaying states.  In the presence of resonances, the dynamics of ultrafast 

excitation can drastically change from a monotonic exponential decay to series of 

recurrences, or temporal interferences[4-8].  Thus, if more than one state is 

excited, a time dependent wave function, or wave packet, results.  By defining a 

wave packet as a superposition of multiple states, a continuum process—such as 

molecular dissociation—represents the limit of wave packet behavior with an 

infinite number of component states, but in this case a wave packet consists of a 

limited number of states[1, 2, 4, 9-11].  In the presence of a limited number of 

transitions, an oscillatory behavior can show up in time as the time dependent 

wave function returns to a configuration in state space that is favorable for 
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observation.  This regular recurrence of the wave function to a favorable 

configuration can be thought of as a re-phasing process.  Once launched, the 

component states of the wave packet accumulate variable amounts of phase as 

determined by their energy and eventually they can all come into phase at some 

later time.  This re-phasing time depends on both the number of states involved 

and their relative energy spacing, so it is not necessarily predictable.   

The recurrence phenomenon of wave packets leads to the possibility of 

directing the wave packet’s path as it travels through its configuration space and 

has come to be realized in many forms.  Known as coherent control, this study of 

directing wave packet creation and propagation has seen attention in a wide range 

of systems from the relatively simple to the seemingly impossibly complex[9, 12-

26].  Although early hopes that coherent control would be viable as a synthetic 

tool have yet to come to fruition, the process of performing coherent control can 

lead to a better understanding of many types of molecular and spectroscopic 

processes[22].  Many examples of coherent control have been implemented in the 

past, with one primary method of control revolving around manipulating the 

phase and amplitude of the component wave functions of a wave packet by 

manipulating the excitation laser source[16, 21, 27-31].  In effect, a laser is 

manipulated, and information from the laser is written onto the wave packet[32, 

33]. 

This thesis addresses several aspects of using ultrafast pulse shaping to 

control both transient and stable wave packet dynamics.  The dynamics to be 

studied are state resolved, allowing very precise investigations into the spectral 



 3 

aspects of the dynamics of ultrafast excitation.  Most of the studies involved in 

this thesis address the creation and propagation of precisely prepared wave 

packets.  A wave packet is defined as a superposition of stationary state wave 

functions that displays time dependent dynamics.  A basic description of a wave 

packet is included here, where the total wave function is a summation of 

component wave functions: 

( ) ( )∑∝Ψ
i

ti
ii

ietct ωψ ,       (1.1a) 

where n is a normalization constant, ci(t) is simply a weighting coefficient, and ψi 

is a component stationary state wave function, and the exponential factor is a time 

dependent phase factor that depends on the wave function energy.  Since an 

observable consists not of a wave function but a modulus squared of the wave 

function over some coordinate, the above equation needs to be rewritten to reflect 

the qualitative act of observation: 

( ) ( ) ( ) ( ) ( ) ( )ttctctctct ijjijj
i j

ii ωψψ cos
222 ++∝Ψ ∑∑ ,   (1.1b) 

where ωij is the energy difference between states in a wave function, and the 

overlap integral between the component wavefunctions along an observation 

coordinate is assumed to be unity.  In the above equation, the observable time 

dynamics come from the cosine term representing an interference between states, 

accounting for the “rephasing” processes mentioned above.  In the weak field 

limit the non-transient weighting coefficients are expressed as  

( ) igigic µωε∝ ,        (1.1c)   
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where the excited state coefficient depends upon both the transition dipole 

between the launch and excited state (µig) and the electric field strength at the 

resonant frequency between the launch and target state [ε(ωig)].  Note that in the 

presence of an electric field, cn(t) can change but after an excitation pulse, these 

factors are effectively constant over timescales on the order of over a nanosecond.  

Various permutations of Eq. (1) will be invoked several times in the text, and 

additional details will be added in or expanded upon in the following chapters.  

The equations above show that, qualitatively, we observe wave packets that get 

stronger as the excitation laser gets stronger and that contain an oscillatory 

component in time.  At the beginning of each chapter, a justification and a frame 

of reference will first be established, so that it will come as no surprise when a 

specific detail is included. 

 To begin, a summary of important experimental considerations will be 

considered in chapter 2.  The summary will include a short discussion of the 

experimental setup, excitation scheme, and a somewhat detailed analysis of the 

limitations of the pulse shaping apparatus.  This pulse shaper is very similar to a 

number of other pulse shapers and has been analyzed in the literature[30, 34], but 

since its use plays such a large role in many of the experiments of later chapters, a 

discussion is included.  Another experimental technique, here referred to as 

Wavelength Subtraction Spectroscopy (WSS), is examined.  This technique 

consists of looking at a signal as narrow bands within an ultrafast spectrum are 

attenuated.  This is similar to observing an absorbance process, except 
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interference effects between different wavelengths in the ultrafast pulse can be 

examined with WSS.   

Chapter 3 describes the use of an Evolutionary Algorithm (EA) to 

optimize several types of processes in the weak field limit (i.e. peak power <1010 

W/cm2 in these experiments in Li2).  After a brief exposition of the routines used 

by the EA, a sample pulse compression is performed.  In this case, the EA 

performs the same task as a pulse reconstruction algorithm in that it finds the 

spectral phase of an input pulse.  This is followed by an optimization of weak 

field wave packet dynamics at times after the pump pulse is over, in effect 

addressing issues related to resonant absorption processes within ultrafast pulses.  

An optimization of transient weak field wave packets shows that during a pulse, 

various nonresonant processes can be controlled, as verified by the good 

agreement of a modeled optimization with experimental results.   

Chapter 4 explores in more detail the limits of controlling transient 

population transfer processes in the weak field.  It is shown that the spectrum of 

an ultrafast pulse can be divided into multiple spectral regions resulting in spectral 

channels, or groups of wavelengths, that can be used for ultrafast pulse shaping.  

Resonant and nonresonant effects are shown to be independently controllable, 

with the nonresonant effects providing the basis for controlling transient 

dynamics.  Even though this sounds similar to Wavelength Division Multiplexing, 

it differs in that it really pushes the degree to which the control channels can be 

separated, and it takes advantage of nonresonant effects in a way not previously 

exploited. 
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Chapter 5 demonstrates a method for controlling the instantaneous phase 

of a wave function, as observed by a change in wave packet phase.  This is a case 

of an application of the lessons learned in chapter 4.  The observed dynamics are 

shown to transform a superposition of wave functions in a way that is consistent 

with a quantum computational Z-gate.   

One of the limitations of the wave function manipulations described in 

Chapter 5 as applied to quantum computation is that the excited state 

superposition contains significant launch state character.  One way around this 

coherence is to fully transfer the population out of the launch state.  This is 

addressed in chapter 6 as a goal of strong field coherent control (with peak laser 

powers up to ~1012 W/cm2), where significant launch state population depletion is 

possible.  In this regime, Eqs. (1a-c) fail to describe the population dynamics, as it 

is seen that both the ground and excited state populations oscillate as a function of 

electric field strength.  In a two level system, this population oscillation is known 

as a Rabi oscillation[5].  This chapter starts with a theoretical examination of 

wave packet dynamics in the presence of both a uniform electric field and a 

spatially Gaussian electric field.  Finally, a chirped pulse Rapid Adiabatic Passage 

scheme is proposed and implemented to transfer population through specific 

excited states.  Specifically, a Raman transition is excited such that the population 

that transfers through the E electronic states gets depleted to nearly zero along 

with the launch state.  Stokes/anti-Stokes excitation is selected by simply 

changing the sign of chirp. 
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Finally, chapter 7 summarizes studies using a tunable ultrafast laser, with 

the ultimate goal of identifying energetic regions favorable to studying electronic 

wave packets.  Chapter 7 begins with a study of wave packet dynamics between 

two bound electronic states.  In this low lying Rydberg state regime, it is shown 

that quantum beats can be observed between individual states on the separate 

curves.  Additional work verifies that the observations are of primarily rotational 

states, as progressions of rotational quantum beats for increasing vibrational 

quanta are observed.  Within this vibrational progression of rotational beats lie 

additional coherences that are attributed to quantum beats between electronic 

states.  It is shown that the electronic beats are between states with ∆Λ=1, 

suggesting a potential handle for further controlling the wave packet dynamics via 

Stark shifting one state relative to the other.  Chapter 7 concludes with a series of 

experiments exploring an ultrafast transient effect that is ultimately deemed to be 

atomic in nature.  This final series of experiments is left with open questions to be 

revisited at a later date. 
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Chapter 2  

Experimental Setup and Overview 

 

2.1 Experimental Apparatus and techniques 

In most of the experiments in this thesis, a three step excitation scheme is 

used to produce a time dependent photoionization signal, and hence observe time 

dependent wave packet dynamics as presented in the previous chapter.  The 

experimental setup uses a cw launch state preparation laser to excite the transition 

for A 1Σu
+←X 1Σg

+, an ultrafast laser system to produce the pump and variably 

delayed probe pulses, a pulse shaping apparatus, a heat pipe containing the Li2 

sample, various detection apparatuses, and controlling software on a computer.  

 The laser system is pumped by an argon ion (Ar+) laser operating at ~27 

W, which pumps a cw dye laser for launch state preparation, and various ultrafast 

lasers, depending upon the experiment [see Fig. 2.1 for a sample excitation 

scheme].  The experimental laser setup will be discussed in more detail in the 

respective section where data will be presented, since the setup changes 

depending upon the experiment.  Figure 2.2 summarizes the optical table layout, 

with notes where the laser setup is changed.  In almost all cases, three lasers 

interact to produce photoions, and pump-probe experiments are performed.  It is 

duly noted where the excitation scheme deviates from a three laser interaction.  
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Figure 2.1: Typically excited potential energy curves in Li2.  In this scheme, the 
pump and probe pulses are of different colors.  A cw laser excites from the X 
(1Σg

+) electronic curve to a pure launch state on A (1Σu
-).  An 800 nm ultrafast 

laser excites a superposition of states on the E (1Σg
+) curve, which is subsequently 

ionized by a time delayed 640 nm ultrafast probe pulse.  At negative delays 
(dotted lines), the probe-pump pathway (for 640 nm probe pulse) through the F 
(1Σg

+) state, as indicated by the dotted lines, has a much lower yield than the 
positive time pathway due to unfavorable Frank-Condon overlap factors.  Note 
that in some experiments, as described in the appropriate chapters, the excitation 
scheme will deviate from above. 
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Figure 2.2: Schematic experimental setup.  Sections in parentheses indicate 
changeable portions of the setup.  The output from the regenerative amplifier is 
divided into up to two beams.  One beam goes through the pulse shaper.  This 
beam can be either the pump or probe pulse, depending on the pulse timing, but is 
actively shaped only in experiments where it is acting as the pump pulse.  The 
second beam is either split unchanged or goes through the OPA to produce 
tunable ultrafast output from 500-700 nm.   The ultrafast and cw beams intersect 
in the heat pipe which is equipped to detect ions and fluorescence.  Focusing 
optics can be placed into the beam lines to increase peak intensity. 
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2.1.1 Pulse shaper 

Since many of the experiments described in this thesis depend exquisitely 

on the manipulation of ultrafast dynamics by phase and amplitude shaping the 

spectrum of an ultrafast laser pulse, it is necessary to discuss the pulse shaping 

setup in some detail.  The pulse shaper consists of a zero dispersion, four focal 

length imaging system, and uses a spatially addressable, double stack 128 pixel 

SLM between crossed polarizers, in a setup similar to that described by Weiner et 

al.[30] and Wefers et al.[29, 34, 35]  In the Fourier plane, the pulse is dispersed 

linearly with respect to wavelength across the face of the SLM.  Generally, the 

bandwidth of our pulses is dispersed across up to 40 pixels (FWHM) on the SLM.  

With a pulse bandwidth of 9 nm, this results in approximately 4 cm-1 per pixel 

resolution for frequency domain pulse shaping.  By applying specific voltages to 

the pixels, we can manipulate the phase and amplitude of each wavelength of the 

pulse. 

 With a single frequency imaged to a spot size of 170 µm, the broadband 

pulses can be temporally shaped within a time envelope approximately 8 ps wide 

(referred to as the “pulse shaping window”), as derived previously [29] and 

observed experimentally.  This envelope, which will be an important experimental 

constraint, is a result of both the sampling effects of the finitely sized pixels of the 

SLM and the finite spot size for each frequency component.  To shift a pulse in 

time, a linear phase is applied across the pulse according to ∆t=dϕ/dω.  The 

sampling aspect of the SLM gives an approximation to this formula to be 
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∆t=∆ϕ/∆ωpix where ∆ϕ is the phase shift per pixel, and ∆ωpix is the difference in 

central frequencies imaged onto adjacent pixels.  Because of wrap around of 

phases, a phase shift of ∆ϕ can also be represented as ∆ϕ+2nπ, where n is an 

integer.  This produces replicas at ∆t=(∆ϕ+2nπ)/∆ωpix and attenuates the shifted 

pulses with attenuation increasing along with ∆t.  Another limitation is the finite 

spot size: spatial overlap of more than one pixel by a monochromatic wavelength 

causes diffraction of certain wavelengths out of the beam.  This is because the ∆ϕ 

between adjacent pixels introduces a certain amount of destructive interference.  

We thus see some destructive interference in the direction of propagation, as light 

that is produced with the multiple phases is diffracted out of the beam to maintain 

momentum matching conditions[29].  

 In many of the experiments here, we shape the pump pulse, and the 

electric field can be written as 

 )]'(exp[|)'(|')( 2
1128

1
iiiii

i
i tiTdtE ϕωωεω += ∑ ∫

=

∞

∞−

,   (2.1) 

where the summation is over all 128 pixels across the SLM, and ε(ωi’) is the 

amplitude of the electric field at the central frequency ωi’ on each pixel.  The 

amplitude and phase controls over the pulse are included in the Ti
½ and ϕi terms, 

which represent the absolute value of the amplitude transmittance and applied 

phase, respectively.  Without modulation, Ti
½=1, and ϕi=0.  The εi(ωi’) term is 

approximately Gaussian, to reflect the spectrum imaged onto a single pixel, and it 

will be shown that this bandwidth is approximately 6 cm-1, as opposed to the 

separation of central frequencies on adjacent pixels of 4 cm-1.  Note that the 
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integrals of adjacent pixels will have significant overlap, resulting in attenuation 

of the field when phase shifts between adjacent pixels are applied.  In typical 

experiments, excitation is in the weak field, but some experiments will examine 

stronger field effects.  In the experiments described in this thesis, peak electric 

fields range from 105-1011 W/cm2, depending upon the experiment.   

As an experimental demonstration of the capabilities of the pulse shaping 

apparatus, a series of phase locked pulses was generated.  First, Fig. 2.3 shows the 

extent to which a phase locked pulse train can be created with our pulse shaping 

setup.  It is evident from the figure that longer time delays between pulses means 

less intense pulses, as expected from the diffraction effect argument from above.  

The longest time delay between pulses of about 8.5 ps demonstrates a limit of 

pulseshaping.  Notice that as the pulse separation increases, the pulse intensity 

decreases; diffraction due to phase shifts of adjacent pixels decreases the 

transmitted intensity of phase shaped pulses.  In a phase locked pulse replica 

scheme, a phase grating with an alternation between 0 and π phase between 

adjacent pixels is applied to the SLM.   This represents the maximum linear phase 

that can be applied.  Any more than a π phase shift between adjacent pixels, 

because of wrap-around effect, will be equivalent to a smaller phase shift with the 

opposite sign.  In later chapters, several instances of pulse-shaping will be cited, 

and the decrease in pulse intensity seen above will become important. 

A second example of a pulse-shaping scheme can be useful for illustrating 

the limitations of our pulse shaper.  Figure 2.4 shows a two-color pulse train,  
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Figure 2.3: Cross correlation pulse profiles for pulse trains with various interpulse 
delays.  The pulse trains are generated by the application of a phase grating of 
π*round[cos2(2πp)], where round indicates rounding to the nearest integer (0 or 
1), and p indicates a number of pixels from 2 to 16, for the longest to shortest 
interpulse delay, respectively.  The symbols represent scans for different delays 
between phase locked pulses. 
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Figure 2.4: Multi-color pulse train.  The pulse train was generated by applying 
opposing linear phases to the high (E>Ei0) and low energy (E<Ei0) halves of the 
input spectrum centered at Ei0. 
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where two phase related pulses are generated that each correspond to a different 

half of the input spectrum.  The pulse train is generated by applying a linear phase 

ϕ(p)= ±mp where p is the pixel number and m is a constant.  All wavelengths 

with a shorter than average wavelength get a positive slope to the phase, and those 

with a longer than average wavelength get a negative slope.  The net effect of this 

is to create two pulses that are equally spaced around t=0 and have pulse durations 

approximately twice as long as transform-limited pulses.  This pulse train is 

demonstrated here because of its potential importance in strong field control 

schemes such as stimulated Raman adiabatic passage (STIRAP)[36]. 

 

2.1.2 Heat pipe/detection 

The lithium dimer sample is contained in a static heat pipe, which is 

operated at 750o-800o C, with an argon buffer gas pressure of between 1.0 and 3.5 

Torr, depending upon the experiment.  The lithium atom pressure at this 

temperature is approximately 1 Torr (130 Pa), which will give a Li2 pressure of 

approximately 0.02 Torr (2.6 Pa).  The lasers intersect between two parallel plate 

electrodes that are separated by 1 cm with 10 V applied across them.  The current 

generated by the ionization of the molecules is measured by a lock-in amplifier, 

which is synchronized to the modulation of the cw laser at 750 Hz by a 

mechanical chopper.  This technique gives a maximum single scan signal-to-noise 

ratio of up to 10:1. 

Signals are generally normalized to the fluorescence from the launch state.  

This is accomplished by observing fluorescence in a perpendicular geometry [see 
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Fig. 2.2].  All fluorescent light within the small solid angle bounded by a 2” 

collection lens is imaged onto a fiber-optic bundle.  This fiber bundle then couples 

into a monochromator, and the light for a specific transition [e. g. A(11, 

28)→X(2, 29)] is detected with a photomultiplier tube driven at 950 V.  The 

output voltage is then filtered with a lock-in amplifier, and the photoionization is 

divided by the fluorescence in real time.  The net effect of this is that drift in the 

power or wavelength of the cw laser becomes less important. 

 

2.2 Wavelength Subtraction Spectroscopy 

One of the main traits of ultrafast lasers that separates them from other 

pulsed or continuous wave (cw) lasers is the wide spectral bandwidth inherent due 

to the Heisenberg Uncertainty Principle.  Since the ultrafast lasers occur on such a 

short timescale, they are characterized by a wide spectral bandwidth.  In studying 

any sort of ultrafast transition, this wide bandwidth can affect the dynamics of the 

transition.  CW absorption spectroscopy can to a certain extent give complete 

information describing a transition, but interactions between wavelengths can be 

lost.  As an alternative, Wavelength Subtraction Spectroscopy (WSS), where a 

transition is measured with a spectral notch in the excitation spectrum, can be 

used to look at the relationship of different frequencies in an excitation by an 

ultrafast pulse.  This becomes especially important in examining either strong 

field or phase shaped pulses. 

To study the effects of the wide bandwidth on a transition, there are 

several methods one can use.  The first, and perhaps most obvious, is to perform a 
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variant of tunable cw absorption spectroscopy, where a laser is tuned and 

absorption is measured, giving an absorption linewidth, followed by performing 

an Inverse Fourier Transform to infer the time dynamics.  In this regime, the 

signal will simply be a summation of the single frequency components in the 

signal: 

( )2

∫= ωωAdS        (2.2) 

where A(ω) is simply the signal amplitude—such as an excited state coefficient—

expected for any single exciting wavelength; time dependence is implied.  For the 

case of a two state wave packet, it can easily be inferred that the two states 

interact if coherently excited, so that S=|A(ω1)+A(ω2)|2, but as an excitation gets 

more complex, making inferences such as this get more and more complex, as 

well. 

In contrast, WSS can give direct information about the nature of an 

excitation.  As implemented in our experiments, one pixel at a time is blocked on 

the SLM, as shown in Fig. 2.5.  For each gathered data point, the signal is 

characterized by the following: 

( ) ( ) ( )
2

'

''' ∫ ∫−∝
ω ω

ωωωωω AdAdSWSS     (2.3) 

where the integration over ω is the base spectrum, the integration over ω’ is the 

subtracted part of the spectrum, and again A(ω) is a frequency dependent 

amplitude with the time dependence implied.  The crucial difference between this 

spectrum and what one would expect from a cw type experiment is that there are 

now cross terms between the frequency components ω’ and ω: 
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Figure 2.5: Schematic spectra as used in Wavelength Subtraction Spectroscopy 
(WSS).  A signal is acquired for each spectrum as one single pixel at a time is 
blocked.  In the experiment, the light on each pixel is completely attenuated, but 
when the SLM mask is converted to wavelength units, a single frequency is not 
completely attenuated due to focusing effects.  Three wavelength spectra are 
shown in the figure as pixels 63, 65, and 67 are sequentially blocked. 
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In a case where there is only one resonance present, and the field is weak, the 

cross terms are significant only when ω and ω’ are resonant frequencies[7].  In the 

two resonance case mentioned above, the only cross term is where ω and ω’ 

represent the two resonant frequencies, and it only modulates the depth of the 

signals.  In more complex cases, the cross terms can become numerous, 

drastically changing depth and width of the observed signal.  New information, 

including the amplitude of an excitation relative to all other excitation pathways, 

can now be extracted from a simple spectrum.  Since, in pulse shaping schemes, 

interferences between spectral pathways are often invoked to manipulate a 

system, this technique gives a measure of the interference (see chapter 5). 

To illustrate, Fig. 2.6 shows a comparison of the two cases for examining 

an excitation at a specific time during an excitation of a two level system.  In both 

cases, the same phase mask is applied to the SLM.  In one case, it is assumed that 

the SLM transmits the light from only one pixel at a time, and in the second case, 

it is assumed that the SLM attenuates the light on one pixel at a time.  A 

perturbative calculation is then performed to find an excited state population at a 

transient time (details of the calculation procedures are presented in chapter 6).  

The main result to be considered here is that the two types of spectroscopies 

present qualitatively different results under certain conditions.  WSS is basically a 

type of optical heterodyne detection.  In WSS, phase information is gleaned from 

the signal since the data is gathered with a certain coherent background, as 
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Figure 2.6: Comparison of excited state populations for a weak, phase shaped 
input using narrow bandwidth excitation and WSS.  The dots ( ) represent the 
calculated excited state population at t=0.0 ps with an excitation laser bandwidth 
equal to the spectrum imaged onto a single pixel of an SLM, scanned pixel by 
pixel.  The squares ( ) represent the calculated excited state population at t=0.0 
ps using the WSS method.  In both cases, an identical phase mask is used. 
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represented by all  other frequencies in the full pulse.  In following chapters, the 

WSS spectroscopic technique will be used in both the limited-cross-term regime 

and the highly coupled regime. 
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Chapter 3  

Evolutionary Algorithm 

 

3.1 Introduction 

Ultrafast laser sources are promising new tools for research in the area of 

coherent phase control[15, 25]. The wide bandwidth inherent to these lasers is 

conducive to detailed manipulation of the amplitudes and phases of the fields that 

interact with the system of interest.  Several pulse shaping techniques employ 

frequency domain manipulations to generate a desired field[26, 30, 37].  These 

methods provide a large number of amplitude and phase parameters by dividing 

the frequency bandwidth into numerous segments and adjusting the phase and 

amplitude of each frequency component of the pulse.  Directing a system 

response from such a complex parameter space can be tedious, even if a detailed 

mechanistic knowledge of the system is known[13, 38].  Learning algorithms have 

thus far proved to be an advantageous way to control a physical process to 

generate desired photo-induced products, and these algorithms can be 

implemented with little a priori knowledge of the system of interest. 

There are several recent applications of learning algorithms (such as 

evolutionary or genetic algorithms or simulated annealing) to find optimal 

solutions to various physical problems[20, 25, 26, 39-41].  Three main aspects of 

these algorithms have been studied in the context of chemical physics: (1) the 

ability to control molecular processes[20], (2) the methods for reaching the 
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optimized solution[25, 39], and (3) what can be learned about a physical process 

from the form of the optimized driving laser field[39].  The benefits of using these 

algorithms to glean physical information from an unknown system have been 

difficult to realize, and thus far they have been limited to evaluating just a few 

parameters such as degree of chirp or pulse train timing[20, 39].  Additionally, 

few examples exist that address concepts such as the competition between 

optimization pathways or motion through solution spaces.  The effect of 

manipulating physically irrelevant parameters has been addressed only on a 

limited scale.  This chapter will take these considerations a step further by 

applying a simple evolutionary algorithm to a system with variable complexity, 

illustrating multiple mechanisms at play simultaneously and evaluating non-

contributing parameters. 

This chapter will primarily examine optimization conditions for the 

preparation step of a wave packet in lithium dimer followed by ionization of the 

wave packet.  The Li2 E 1Σg
+ state has been studied both spectroscopically and 

through wave packet dynamics.[7] Here we use phase and amplitude 

manipulation of an ultrafast preparation pulse to control a wave packet on the E 

state with learning algorithm optimizations of the ionization probability by a time-

delayed probe pulse.  Wave packets composed of either two or ten rovibrational 

states are investigated.  The physical processes for one optimization condition 

involve using only a limited number of wavelengths, and in the second involve 

optimization of the entire spectrum of the preparation pulses.  Actual wave packet 

traces will be compared to frequency domain solutions to help identify 
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optimization mechanisms and to show which mechanisms become optimized first.  

It will be shown that non-resonant wavelengths play a role in photoionization 

even in the weak field limit, but only at pump-probe time delays when the 

preparation pulse may temporally overlap the probe pulse. 

Sections 2 and 3 of this chapter will provide a characterization of the 

optimization routine used in the experiments in this and subsequent chapters.  A 

simple pulse compression calculation will be examined in order to performed to 

perform an analysis of what can be learned about the physical system from the 

dynamics of the EA operations.  Section 4 will show an experimental 

implementation of the pulse compression calculation of section 2.  Section 5 will 

show experimental results of an optimization of wave packet dynamics under the 

restriction that transient phase and amplitude effects can not play a role in the 

optimization.  It will be shown in this section that only resonant wavelengths play 

a role in the dynamics of long time wave packets in the weak field regime.  

Sections6-8 will show a similar optimization as in Section 4, except transient 

phase and amplitude effects will both be optimized.  Included in this section is a 

modeled optimization using first order time dependent perturbation theory.  

Finally, an optimization of the photoionization at 0.0 ps will be analyzed.  The 

solution of this final optimization will form the basis for the work of upcoming 

chapters. 

 
3.2 Algorithm characterization 

The experiments described in this chapter use a multiple membered 

evolutionary algorithm (EA), similar to several that have been used before[3, 23, 
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25, 26, 42, 43].  The EA begins with a population of 25 random SLM phase 

patterns (128 phases each), called individuals. The EA assigns each individual a 

fitness value proportional to the total ionization signal at a specific pump-probe 

time delay, then reproduces the fittest individuals and operates on the new 

population.  The process is repeated with each new population until a stopping 

condition is reached [usually simply a pre-determined number of generations].  In 

general, any number of operators, or population manipulators, can be used to 

achieve optimal configurations[43], among which can be both time and frequency 

domain mutation, crossover, smoothing, averaging, and many others specific to a 

physical system of interest[25, 40, 41].  In the experiments described here, only 

mutation is used significantly. 

 The algorithm used here consists of an elitist reproduction method, 

followed by a simple mutation operator, as shown in Fig. 3.1.  All specific 

parameters below were found to both quickly and reliably optimize a pulse 

compression [see section 3.3], so these parameters are used in all optimizations.  

The reproduction method used here chooses the top 24% of the population, 

ranked according to their fitness, and propagates them to the next generation.  The 

proportion of the subsequent generation that descends from a particular individual 

is further weighted according to the rank, R (R=1, 2, 3,…), of the parent, giving 

the number of children descended from a single individual as approximately 8(R-

0.6).  Individual pixels are chosen at random from among the entire new 

population regardless of individual and are mutated.  Approximately one in  
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Figure 3.1: Evolutionary Algorithm Flowchart.  First, a population of individuals 
consisting of phase masks is created and evaluated.  The best individuals are 
reproduced then mutated.  This procedure is repeated until a suitably optimized 
condition is met.   
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twenty pixels gets mutated each generation.  Here, mutation means that a random 

phase is added to the phase already on a pixel.  The random additional phase is 

generated according to a normal distribution about zero with a distribution width 

that goes as the generation number to the -0.75 power, or δϕ=A(G-0.75), where δϕ 

is the standard deviation of the mutation amplitude for a single generation, A is a 

constant phase (pre-determined to be about 30o), and G is the generation number.  

This rate of mutation proceeds the same throughout all the optimization 

experiments so as to act consistently on different systems.  The complexity of the 

EA is kept to a minimum for ease in interpretation of the optimization dynamics.  

Additionally, physical intuition concerning the well characterized Li2 system is 

usually left out of this EA to better simulate the experimental conditions for 

optimizing unknown processes.  The lack of physical intuition written into the EA 

has the tradeoff of longer convergence times, but the simplicity of the process 

facilitates interpretation of solutions during optimization. 

 The fitness function is simply the ratio of an individual’s total ionization 

signal to a reference: F(i)=S(τ, i)/S(τ, 0,), although later experiments not included 

here use more complex fitness functions[6].  The pump-probe delay is set to a 

single delay (τ), and the total chopper-modulated ionization signal (S) for each 

individual (i) is monitored.  To correct for experimental instabilities, each fitness 

value is normalized to a signal generated by an unshaped pump pulse [S(τ, 0)], 

probed at the same delay.  The simplicity of the fitness function can give insight 

into the physical processes being optimized.  As individual pixels that have 

relatively large effects on the total ionization signal are manipulated, there is a 
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correspondingly large change in the fitness function upon optimization, so these 

pixels are the first to be optimized. 

The actual signal is the average current generated by the fixed delay pump 

and probe pulses.  Typically, each individual is evaluated for 0.5 seconds, 

resulting in a maximum coherent oscillation signal-to-noise ratio of 10:1.  

Occasionally, individuals are evaluated for up to 4 seconds each.  When 

computation and system control times are taken into account, a single generation 

with 0.5 second averaging takes 40 seconds.  When the EA has nearly converged, 

the 10:1 signal-to-noise ratio masks the differences in the individuals, so that is 

when a longer averaging time might be used.  There are advantages to averaging 

for shorter periods since low frequency drift in the cw preparation laser has been 

observed to change the signal on a timescale of approximately a half hour.  This 

will have little effect on the relative fitnesses of individuals within a single 

generation, but it may affect the average fitness of one generation with respect to 

another. 

3.3 Convergence speed and schema size 

One of the advantages of having a fitness value that is linearly related to 

the physical observable is that when coupled with a simple optimization routine, 

predictable optimization dynamics can be observed.  It is intuitive that 

optimization of a complex parameter space would take longer to converge than 

the optimization of a very simple parameter space.  It has been empirically 

observed that the simple EA used in the experiments described here does indeed 

take a shorter time to converge for problems of reduced dimensionality.  
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Figure 3.2: Calculated pulse compression dynamics using an evolutionary 
algorithm, according to Eq. (3.1a) in text.  Panel (a): average fitness (F) versus 
generation number ( ) and single exponential rise fit for the inset pulse with 20 
pixel FWHM Gaussian spectral profile.  The fit has a 28 generation 1/e rise time.  
Panel (b): relation between model spectral FWHM and optimization rise time.  
This shows that the more pixels required for the optimization, the longer it will 
take to reach the optimum. 
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Evidence for the processes occurring in the physical system can be 

inferred from the dynamics of an optimization by this simple EA.  To illustrate, 

first we examine the effects of changing schema—i.e. groups of pixels that are 

coupled and physically relevant, or active—on the time required to optimize a 

certain fitness value.  Different processes can be seen by examining the widths of 

independent schema that are being optimized. For example, optimizing a non-

transient incoherent ionization signal for a single quantum state on the E1Σg 

surface requires an optimization of approximately two pixels.  The fact that there 

are two relevant pixels can be attributed to an effect of the single frequency spot 

size on the SLM being approximately Gaussian and 1.7 pixels wide. 

The dynamics of this EA have been studied using a simple model of our 

current system, as illustrated in Fig. 3.2.  In the model, the same EA is used as 

under experimental conditions, with the determination of the fitness value being 

the only difference.  A few different processes are modeled to generate a fitness 

value (F), one mimicking a pulse compression, S(t)pc , and one mimicking a two 

state wavepacket optimization, S(t)wp, whose form is based on perturbation 

theory: 

S(t)pc = |Σjajexp(i(ωjt+ϕj))|2      (3.1a) 

S(t)wp = |Σk(ck exp(iϕk))|2+|Σl(cl exp(iϕl))|2    

+|Σk(ckexp(iϕk))||Σl(clexp(iϕl))|cos[(ω0c-ω0(c-10))t+ϕ0c-ϕ0(c-10)]  (3.1b)  

aj = exp[-(2/log(2))(ωj-ω0a)2/w2]      (3.1c) 

ck = exp[-(2/log(2))(ωk-ω0c)2/n2]      (3.1d) 

cl = exp[-(2/log(2))(ωl-ω0(c-10))2/n2]      (3.1e) 
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where ωj (ωk) is the central frequency on pixel j (k), ϕj (ϕk, ϕl) is the phase 

applied to light on pixel j (k,l), ω0a is the central frequency of the pulse, w is the 

pulse FWHM in pixels, ω0c and ω0(c-10) are the frequencies resonant with 

transitions to the wavepacket states, ϕ0c and ϕ0(c-10) are the phases applied to those 

frequencies, and n is the resonant frequency imaged spot size (in pixels).  In Eq. 

(3.1b), the summation factors with the square of the same index account for the 

incoherent ionization signal, analogous to the ai term of Eq. (3.1c), and the cosine 

term accounts for the coherence between wave packet states.  They include 

variable resonant linewidths and the fact that phase jumps between adjacent pixels 

on the SLM result in some light being diffracted out of the beam.  These 

equations have been normalized so that at their maxima, S(t)pc and S(t)wp have 

equal amplitude.  For simplicity, all models have a pump-probe delay set to t = 0, 

and the wavepacket state spacing is assumed to be 10.0 pixels.  The integrals over 

the range ω=- ∞ : ∞ from Eq. (2.1) have also been left out of the above equations, 

resulting in a sampling of the wavelengths on each pixel, giving the summation 

expressions.  

Using Eq. (3.1a) as the model system response [i.e. F = S(t=0)pc], we 

investigated the effect of the schema size (w from equation 3.1c) on the 

convergence to the optimum.  As shown in Fig. 3.2a, the convergence of a single 

optimization to the final solution fits very well to a single exponential decay.  As 

w is varied, the decay time does increase as seen in Fig. 3.2b, although the 

correlation between schema size and decay time is not analytical.  One conclusion 

that can be drawn from this data is that “inactive” pixels have minimal effect on 
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the EA optimization dynamics.  The constant rate of selection of pixels to be 

mutated assures that this is the case.  In every physical case, each active pixel has 

the same probability of being mutated each generation, regardless of how many 

other pixels are involved in the EA.  These experiments were conducted on 

various spectral profiles (i.e. Lorentzian and square spectra) and qualitatively 

similar results were found, with only slight deviations from exponential decay 

seen in the evolution of the fitness functions, and increasing optimization times 

for increasing spectral widths.  

In this case of pulse compression, every pixel that is involved in the 

optimization depends on every other one, so there is a high dependence of each 

pixel’s phase on all of the other pixels’ phases.  This is in contrast to a situation 

where there are groups of optimized pixels that do not interact, or that interact 

minimally.  One intuitive case of this would be to optimize average laser power, 

which is simply the sum of the intensities of all laser frequency components.  

Expressed algebraically (from eq. 3.1a), |Σiaiexp(i(ωit+ϕi))|2 ≠ Σiai
2, which 

indicates that the maximum intensity expression contains cross terms between 

pixels [i.e. |aiak|cos(ϕi-ϕk)], and the average intensity does not.  The presence of 

the cross terms defines the pulse compression as a single process that tries to 

make ϕi=ϕk for all i and k, whereas optimization of average power is more of a 

series of “independent” parallel processes, each process being the optimization of 

a single spectral amplitude component.  The effect seen would be that the 

optimization of peak intensity will occur more slowly than for average power.  
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A multiple mechanism optimization was modeled by including both Eqs. 

(3.1a) and (3.1b) in the optimization [i.e. F = S(t=0)pc + S(t=∞)wp].  Although this 

particular case is a highly simplified example of the true S(t)wp, it is still 

instructive for showing the dynamics of multiple embedded processes.  As the 

width (n in eq. 3.1d) of the wavepacket absorption schema increases for this 

multiple mechanism process, we see that there is a transition in the dynamics of 

the optimization from double exponential to single exponential behavior.  The 

solid line in Fig. 3.3 shows the evolution of the average fitness function for a 

simultaneous optimization of a pulse compression with a 30 pixel FWHM schema 

size and a wave packet with two schema of 1.5 pixels each.  In this curve, the 

average fitness F avg(g) increases quite quickly in the first few generations, then 

follows a different exponential decay to the optimum, for a form F avg(g)=a0-

a1exp[-g/g1]-a2exp[-g/g2].  The two lifetimes (g1 & g2) in the double exponential 

correspond to schema sizes expected from Fig. 3.2b.  This effect will be most 

pronounced when the interacting schema are of vastly differing sizes.   As the 

processes become more comparable in schema size and interaction, the 

separability of the two components in the optimization, and hence the fitness, is 

not apparent.  Another instructive trait of the EA is that in this case of two largely 

different schema sizes, the leading coefficients (a1 & a2) correspond to the relative 

influence of the two processes at play.  Since the offset at g=0 is not necessarily 0 

in experimental cases, information can only be gathered from the ratio of the two 

coefficients.  In the calculation of Fig. 3.3, the two leading coefficients are both 

very nearly 1.0, as is expected from this analysis. 
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Figure 3.3: Optimized fitness (F) of a two part process showing double 
exponential behavior.  The optimization (solid line) consists of one small schema 
size process embedded in another larger schema process.  The average fitness as a 
function of generation number was fit with a double exponential (dotted line). 
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3.4 Pulse compression 

As a simple test case, a pulse compression of the pump pulse was carried 

out, similar to work previously done in other groups[3, 28, 44].  The motivation 

for performing this experiment is twofold.  First, the intuitive dynamics of a pulse 

compression makes the mechanism of optimization by the EA easy to grasp—we 

are minimizing an intrinsic phase profile.  This makes it easy to verify that the EA 

is actually performing as expected.  A second motivation is that the optimized 

pulse compression phase mask contains information about the phase applied by 

nonidealities in the pulse shaping optical setup.  The EA optimization acts as a 

type of analytical instrument for understanding our input pulse’s phase function. 

The experimental procedure is as follows.  First, the pulse shaping setup is 

slightly misaligned so that it induces a small amount of dispersion into the pump 

pulse.  This slightly modified output pulse and the reference pulse are then 

focused onto a GaAsP photodiode (bandgap~14,000 cm-1) and the peak in the 

two-photon absorption signal as a function of interpulse delay is found.  Next, the 

EA is allowed to run as described in the previous section with 32 effective pixels 

(each group of 4 pixels is treated as a single unit), with the pump-probe delay set 

to the peak in the signal as found with the unoptimized pump pulse.  The total raw 

current from the photodiode is the fitness.  Since the raw current is the cross 

correlation signal, the fitness F at τ=0 is proportional to the following, assuming 

no saturation of the signal: 

( ) ( ) ( )∫ −=
t

prpu dttEtES
22

ττ     (3.3) 
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where pu and pr correspond to the optimized pulse and the reference pulse, 

respectively [these are the same as pump and probe in the rest of the text].  

Assuming that the reference pulse is either transform limited or contains only 

linear chirp (quadratic phase versus wavelength), the greatest signal will 

correspond to the optimized pulse being transform limited.  The EA searches for a 

solution that compensates for any intrinsic phase on the pulse to be optimized. 

After performing the optimization as described above for 50 generations, 

the cross correlation time was indeed reduced slightly from the unshaped case, as 

shown in Fig. 3.4.  The cross correlation of the unshaped pulses with the reference 

pulse was approximately 331 fs FWHM, and the optimized cross correlation 

showed a FWHM of 316 fs.  This change is indeed small, indicating that the pulse 

shaper imparts a small degree of chirp in these experiments.  The overall 

amplitude of the cross correlation is not quite as high as in the unshaped case, 

which is attributed a limitation of the EA.  The reduced timescale of the optimized 

pulses shows that the overall signal response deviates slightly from Eq. (3.3).  In 

contrast to most experiments, here we did not adjust the alignment of the pulse 

shaper to minimize the intrinsic dispersion it adds, so we can assume that the 

added phase in the experiments described here represents a maximum expected 

added phase. 

The optimized phase pattern contains information that can be helpful for 

analyzing the pulse shaper output.  Assuming the reference pulses are transform 

limited, the optimized phase pattern essentially extracts identical information 

(within a factor of -1) as a frequency resolved optical gating (FROG)—a phase 
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Figure 3.4: Optimized cross correlation.  The dotted line is the cross correlation 
for an unshaped pulse, and the solid line is the cross correlation for the shaped 
pulse.  Notice the small decrease in pulse length in the optimized case.  The inset 
shows the optimized phase profile (+) and fit ( ) along with the pulse spectrum.   
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and amplitude spectrum of the pulses to be studied[45].  Since a cross-correlation, 

instead of auto-correlation, technique is used, there is no time ambiguity 

characteristic of several FROG techniques[45].  At t=0.0 ps, the output from the 

pulse shaper can be rewritten as the following based on Eq. (3.1a): 

|E(t=0)|2 = |Σjajexp(iϕ'j)|2 ,     (3.4) 

where ϕ'j refers to the intrinsic phase applied by the pulse shaper apart from that 

intentionally added by the SLM.  To maximize the output, the negative of the 

intrinsic phase must be applied, so that the depleting phase contributions are 

minimized, or ϕintrinsic(ω)-ϕoptimized(ω)=C, where C is a constant.   The optimized 

phase mask in the inset of Fig. 3.4 compensates for the intrinsic phase imparted 

by the pulse shaping assembly.  A fit to the data between pixels 25 and 95 (where 

there is input intensity) shows an intrinsic group velocity dispersion (GVD) from 

the pulse shaper of Dν of -577 fs2 ± 100 fs2, which was calculated based on a fit to 

the data of d2β/dω2=0.0033*(∆pixel)2, where Dν=-2πd2β/dω2[46]; the third order 

dispersion is calculated to be approximately -102 fs3 based upon the same 

polynomial fit.  The lack of observed high order dispersion distortions such as 

pulse replicas in the cross correlation verifies a small maximum error (~20 fs2) 

due to reference pulse distortions; the large GVD error is approximate and results 

from the assumption in the fitting procedure that all pulse distortions are 

characterized by second and third order dispersion.  A second order only fit gives  
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Dν=-347 fs2.  This data fits well with the observation that the cross correlation 

FWHM was decreased by 15 fs.  Using the EA as an analytical tool has proven to 

be useful for later interpretations, setting a benchmark for how much chirp to 

expect on our input pulses.      

3.5 Optimizing launched wave packet 

 To analyze the EA even further, we optimize the relative phases of the two 

eigenfunctions in the two state wave packet.  By setting the pump-probe delay to 

a time outside of the temporal pulse shaping region, we can optimize the wave 

packet signal without concern for the temporal shape of the ultrafast pulses.  The 

advantage of this is that the system responds only to two resonant frequencies.  

This permits quantification of the relative accuracy of the EA, and the results are 

straightforward to interpret.  Additionally, an optimization of the ten state wave 

packet, also at long time delay, will be briefly discussed.  This multiple discrete 

state wave packet will show a more obvious global maximum of the 

photoionization signal than the phase shifting of a single beat, while still requiring 

manipulation of only resonant wavelengths. 

 First, we analyze the two state wave packet, which has a beating period 

corresponding to a 42 cm-1 (or 11 pixel) energy separation between the 

eigenstates.  In Fig. 3.5 is shown the WSS spectrum for the two state wave packet 

at a long time delay.  Also shown is the normalized transmittance recorded with a 

monochromator while blocking one pixel at each resonant transition wavelength.  

From the excellent agreement, the effective full width at half maximum (FWHM) 

attenuation width of each resonantly excited state is approximately 1.7 pixels, 
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Figure 3.5: WSS ( ) Spectrum with the probe set to t>5.0 ps. Spectral 
attenuation ( ) of the pump pulse light [1-I(unattenuated)+I(attenuated)] 
recorded with a monochromator while blocking pixels 56 and 67 on the SLM.  
The linewidth of approximately 1.7 pixels is attributed to non-ideal focusing 
conditions in the pulse shaper. 
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which is almost entirely an effect of the single frequency spot size on the SLM 

and not an effect of the absorption lineshape of Li2.  It is confirmed that there are 

two discrete resonances within the bandwidth of the pump pulse.  

Figure 3.6 shows the coherent ionization signals of the two state wave 

packet following various EA optimizations.  In Fig. 3.6(a), the pump-probe delay 

(dashed line at 5.4 ps) is set so that the wave packet should be in phase with the 

signal generated by unshaped pulses.  This optimization was run for 30 

generations, with all 128 pixels involved in the optimization.  A full signal versus 

pump-probe delay was then acquired using the optimized phase pattern.  Note 

how the optimized wave packet signal builds up over a long period.  Additionally, 

the optimized wave packet shows no obvious multiphoton burst as seen at 0.0 ps 

pump-probe time delay in the unshaped wave packet signal.  The traces in Fig. 

3.6(b) are optimized for 20 generations under conditions chosen to be out of phase 

with the reference signal, verifying that an arbitrary wave packet phase can be 

achieved.  In the top trace, only those pixels near the resonances were allowed to 

be manipulated by the EA, while the rest were kept at a constant phase of π.  In 

the middle trace, the same pixels were manipulated by the EA, but the light on the 

other pixels was attenuated.  The amplitude of the coherent oscillations in all three 

of these optimized cases is similar in amplitude to the unshaped wave packet 

signal, regardless of whether or not the non resonant frequencies are manipulated 

during the optimization.   

 To analyze further the ability of the EA to find the expected result, shown 

in Fig. 3.7 are several optimizations that were run to find the repeatability of the  
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 Figure 3.6:  Two state wave packet signals for different optimization conditions.  
In both panels, the vertical dotted line marks the pump-probe time delay at which 
the signal optimization is sought.  Panel (a): Wave packet signal for optimized 
phases ( ) for a pump-probe delay of 5.4 ps, using all 128 pixels in the 
optimization, and an unshaped wave packet (solid line).  The optimized wave 
packet has been offset for visualization purposes.  Note the multiphoton signal 
burst at zero time delay in the zero phase (unmodified pulse) wave packet signal, 
which is absent when the phases are manipulated.  This is due to the overlap of 
the pump and probe pulses at t=0.  Panel (b): wave packet signal optimized at 4.2 
ps when only two regions of four pixels each centered at each resonance (i.e., 
λresonant ±2 pixels) are used, with non-resonant wavelengths either held at a 
constant phase of π ( ), or attenuated ( ).  Wave packet signals are offset 
vertically for clarity. 
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Figure.3.7. Long time delay optimization convergence.  Panel (a): optimized 
phases after five generations for five different optimizations with the pump-probe 
delay set to 5.1 ps.  Phase profiles have been offset so that the average phase of 
pixels 52 and 53 is the same for all optimizations.  Resonant wavelengths are 
marked with vertical lines.  Note the convergence of optimized phases at pixels 63 
and 64.  Panel (b): evolution of the average fitness ( ) by generation number for 
one of the long time delay optimizations.  The fit line is an exponential with a 
time constant of 1.4 generations. 
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solutions.  Figure 3.7a shows the optimized phase difference of the two resonant 

wave packet states for the best individual after five generations of each 

optimization, allowing all 128 pixels to be manipulated.  The average phase 

difference for the best individual from each of the five separate optimizations is 

1.0π ±0.12π radians, where the pump-probe time delay was set to be π radians out 

of phase with an unshaped wave packet.  This shows that even after just a few 

generations, the EA converges to a consistent phase difference between the 

transition frequencies.  Another characteristic of the optimized phases in Fig. 3.7a 

is that at least two pixels are optimized around each transition frequency.  This 

reflects the width of a monochromatic spot on the SLM, which is approximately 

1.7 pixels.   

Figure 3.7b shows the evolution of the average fitness of each generation 

for one of the optimizations above, extended to 20 generations.  From this data, 

there is little change in the average fitness after five generations.  This indicates 

that the optimization has largely converged, with a fit to an exponential 

characterized by a lifetime of 1.4 generations.  

In the two state optimizations above, the complexity of the EA is varied by 

allowing either 128 or 8 pixels to be involved in the optimization of the two state 

wave packet.  The success of the optimization is similar for both cases.  This 

supports the notion that in the weak field limit the EA only sees the pixels 

relevant for the transition wavelengths.  However, the speed of the optimization 

can be affected by how many pixels are involved in a particular optimization.   



 46 

This dependence of the optimization time on the number of active pixels 

can be seen experimentally in Li2.  For the long time delay optimization of the 

two state wave packet, which has about 4 relevant pixels, the average fitness is 

characterized by a rise time of 1.4 generations.  A similar optimization performed 

on the ten state wave packet showed a rise time of approximately 13 generations.  

In this case, the 128 pixel resolution was divided into ten regions (blocks) with 

each block centered on a transition for each of the ten states in the wave packet, 

giving ten effective pixels.  

To better illustrate that the EA can in fact find a global maximum, the 

photoionization signal of a ten state wave packet was optimized for 30 

generations at a time delay of 6.9 ps, again manipulating all 128 pixels.  The EA 

was able to optimize the photoionization signal, as shown in Fig. 3.8.  Notice how 

the EA has essentially time-shifted the unshaped wave packet dynamics by 6.9 ps.  

A similar time shift can be accomplished with a knowledge of the state energies 

and their positions on the SLM, but the result has been obtained here with none of 

that knowledge applied. 

The two state wave packet photoionization signal, which consists of both 

incoherent and coherent components, was optimized at pump-probe time delays 

outside of the temporal pulse shaping window.  Assuming that little of the 

resonant wavelength light gets directed out of the beam from abrupt phase shifts, 

the incoherent signal from the first term in Eq. (1.1) will remain a constant.  This 

leaves the coherent oscillation as the predominant component of the 

photoionization signal that can be optimized.
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Figure 3.8. Multiple state wave packet optimization.  Panel (a): wave packet 
resonances (vertical lines) superimposed on the pump pulse spectrum.  Panel (b): 
the unshaped wave packet ( ) shifted by 6.9 ps to display its similarity to the 
wave packet optimized at 6.9 ps ( ).  Note the multiphoton burst at zero delay in 
the unshaped wave packet, similar to that in Fig. 3.6.  The optimized wave packet 
has been offset for better visualization. 
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 The main process by which the coherent oscillation gets optimized is the 

establishment of the correct relative phases of the wave packet states to produce 

the maximum of a recurrence at the desired time delay.  The presence of the 

single, phase shifted cosine wave in the coherent signal indicates that the EA is 

setting the relative phases of the two participating eigenstates to be a specific 

value, with no requirement as to the absolute phase of either state relative to the 

rest of the pulse.  The optimized phases for multiple runs by the EA, as shown in 

Fig. 3.7, all show a convergence of the relative phase of the resonant wavelengths.  

The actual phases of pixels 52 and 53, which have been offset in the figure, were 

distributed fairly evenly between 0 and 2π radians, indicating that the phase 

relative to any non-resonant wavelength is irrelevant. 

 These experiments were set up to optimize the photoionization signal after 

the pump pulse light is no longer present.  As can be seen from the onsets of the 

oscillatory signals in Fig. 3.7, the timescales for the wave packet coefficient 

amplitude buildup under three different optimization conditions is not defined by 

the EA, with the E←A population transfer happening variably over a period of ~6 

ps (i.e., -2 to 4 ps).  The buildup of the coefficients depends in a complex way on 

both resonant and non-resonant wavelengths, but the similarity of the final wave 

packet amplitudes under several conditions where the non-resonant wavelenths 

were either restricted (or not) shows that at long time delays non-resonant 

frequencies in the pump pulse play little to no role in the optimization.  

Consequently, how the wave packet amplitude builds up does not matter as long 

as it reaches its maximum value by the optimized pump-probe time delay, which 
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is the same as its value predicted by the t=∞ approximation implied in Eq. (1.1).  

Numerous trials show that the wave packet amplitude at long times cannot be 

distinguished between the unshaped and optimized cases, even though many 

different coefficient buildup timescales have been observed in using various 

optimized and randomized phase pulses.   

 Since the EA uses a constant mutation rate, the mechanism for 

optimization of the simple two state system is computationally equivalent to that 

of a more complex system; during any one generation, the EA is only aware of 

that generation, so historical information such as the number of relevant pixels 

has no effect on which pixels are mutated.  Using this fact, we can observe just a 

few pixels of the 128 pixel optimization and treat the system as if it contained 

only four parameters, which in this case are the pixels on which the resonant 

wavelengths have been imaged.  With this simplified physical case, we can 

develop a measure of the precision of the EA in general.  Figure 3.7a shows the 

phases from the best individual for each of five different optimizations after five 

generations.  The standard deviation of the relative phases between the pixels of 

the resonant transitions is ± 0.12π radians.  We expect the precision of the best 

individual of each generation to have a lower bound defined by the average 

fitness of all individuals in each generation of a single optimization, which 

experimentally shows a 1.4 generation rise time.  Assuming the modulated signal 

is simply the phase of a cosine wave, the root mean square deviation from the true 

optimum is ∆θ = acos (1-exp[-gen/τ]) where gen is the generation number, and τ 

is the optimization time constant.  If we take τ to be 1.4 generations, then at five 
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generations, the lower bound to the precision of the optimizations should be 

±0.09π radians.  This slight discrepancy with observation is most likely a result of 

a slight miscalibration of the applied phases on the SLM in the experiments, 

adding error to the readout of the applied phases.  

 
 
 
3.6 Optimizing transient wave packet 

 In this section, we consider a more complex process that has multiple 

pathways and requires the optimization of the phases of many more frequencies 

than the previous experiments.  This is accomplished by setting the pump-probe 

time delay to be within the temporal pulse shaping window, as was described in 

section 2.1.  We consider a two state wave packet, and the EA again uses the full 

128 pixel resolution, with elitist reproduction and mutation operators only.   

 We set the pump-probe time delay to the peak of the second recurrence 

(1.6 ps) of the unshaped coherent oscillation signal.  This time delay was chosen 

for optimization so that the maximum possible transient component of the 

photoionization signal would be equal to the t=∞ oscillation amplitude.  By 

optimizing the ionization signal at the second recurrence, as produced by 

unmodified laser pulses, the results from the previous section indicate that the 

phases of the wavelengths at the two resonant transitions should be the same, i.e., 

∆ϕij=0. 

 An EA optimization at this short time delay was carried out for 30 

generations, and the results are shown in Fig. 3.9.  In Fig. 3.9(a), from the  
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Figure 3.9. Short time delay optimization results.  Panel (a): optimized wave 
packet signal ( ) for a pump-probe delay of 1.6 ps.  The solid line shows the 
wave packet signal produced by unshaped pulses.  The shaded region shows the 
pump-probe cross correlation on a photodiode.  Peak 1 has been optimized and 
clearly exceeds the maximum multiphoton burst (peak 3) of the unshaped trace.  
Peak 2 was not monitored in the fitness function.  Panel (b): optimized phases for 
a pump-probe delay of 1.6 ps, after 30 generations.  The resonant transitions are 
marked with solid vertical lines, and the spectral intensity is denoted with the 
dotted line.  Note the regions with a linear slope of the phase (most of region 
shown), the marked deviation from linear slope of the phase around the resonant 
transitions, and the unequal phase of the resonant transitions. 
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complete pump-probe signal versus time delay, we see that the EA clearly 

optimizes the ionization, but at a slightly longer time delay than was desired.  

Because of the effects of time-dependent wave packet coefficient phase and 

amplitude maximization, the signal at 1.6 ps is actually larger than the t=∞ two-

state recurrence alone.  For comparison, a wave packet generated using unshaped 

pulses is included as a reference.  As can be seen, the ionization maximum at 1.6 

ps far exceeds that of the unshaped pulse at the same time delay, but at time  

delays longer than 4 ps the amplitudes are the same in both cases. The wave 

packet signal also shows no discernible phase shifting relative to itself over the 

course of its buildup.  There is a constant 0.4 radian phase shift of the optimized 

wave packet recurrences relative to the unshaped wave packet from -2 ps to 7 ps.  

This phase shift is an artifact of competing processes that apply a phase shift to 

the overall signal in early generations, and it is observed that the wave packet 

phase does converge on the desired phase as the EA progresses.   

 A cross correlation of the shaped pulse with an unshaped pulse obtained 

on a GaAsxP1-x photodiode, also shown in Fig. 3.9(a), indicates that the peak light 

intensity at the 1.6 ps optimized time is much less than what occurs in the 

unshaped, near-transform limited case (not shown).  At first glance, this may 

appear to be a highly suboptimal solution compared to an intuitive solution of a 

temporally shifted transform limited pulse.  However, the photoionization signal 

at 1.6 ps significantly exceeds the signal at t=0 for the unshaped pulse, in spite of 

the very low optimized light intensity. 
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 Examination of the phase pattern for the optimization shows some of the 

processes that are occurring.  The phase pattern in Fig. 3.9(b) shows a roughly 

linearly phase (modulo 2π) as a function of wavelength across much of the pulse, 

which is characteristic for a pulse that is being shifted in time.  Indeed, the 

shifting of light intensity to longer times is what is observed in the cross 

correlation.  Looking at the phases near the wave packet resonances, however, the  

linear phase is far from preserved.  Finally, the relative phases at the wavelengths 

resonant with the wave packet transitions show a slight phase shift (0.4 radians) 

which agrees with that seen in wave packet signal.   

Figure 3.10 shows an evaluation of the solutions found by the EA at 

various stages of an optimization.  In Fig. 3.10(a) the average fitness versus 

generation number is shown; note that the optimization takes much longer to 

converge than in the long time delay optimization cases presented earlier.  In Fig. 

3.10(b), it is shown that the manipulation of the long time wave packet at 5.6 ps is 

achieved on a shorter timescale than the optimization of the photoionization at the 

short pump-probe delay time of 1.6 ps. 

 At short pump-probe delays (<4 ps) the pulse shaping apparatus has the 

ability to produce a pump pulse electric field that overlaps in time with the probe 

pulse.  The simultaneous presence of electric field from both beams can create 

transient coefficient amplitudes that depend on frequencies that are not resonant 

with the wave packet preparation frequencies [see Eq. (1.1)].  The EA finds a 

phase pattern that creates a maximum in the photoionization signal at 1.6 ps, and  
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Figure 3.10. Evolution of the fitness versus generation number for the 1.6 ps time 
delay optimization.  Panel (a): average fitness ( ) as monitored during the 
optimization.  The solid line is a double exponential fit with time constants of 5 
and 35 generations.  Panel (b): total coherent ionization signal at 1.6 ps ( ) and 
5.6 ps fitness value ( ) assigned after completion of the optimization using 
phases from the individuals with the highest fitness values of selected generations.  
The long time fitness value was 4 times the ratio of the total ionization signal 
divided by the reference (i.e. unoptimized) ionization signal at 5.6 ps (note that 
this value was not monitored during the optimization).  The fits show a 17 
generation rise time at 1.6 ps pump-probe delay and an 8 generation rise time at 
5.6 ps pump-probe delay. 
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it also generates substantial electric field at 1.6 ps, possibly indicating the 

presence of multiphoton burst effects. 

 The EA finds the best maximum in the ionization signal when the pump-

probe delay is set within the temporal pulse shaping window.  As seen in Fig. 

3.9(a), the amplitude of the oscillating photoionization signal around 1.6 ps [peak 

(1)] is larger than the long time oscillation amplitude; additionally, it exceeds the 

peak signal in the unshaped case [peak (3)].  At the optimized time delay, the 

cross correlation data shows a peak in the pump pulse intensity, which suggests 

that the EA does optimize somewhat a time-ambiguous (i.e. pump-probe + probe-

pump), or multiphoton burst, component of the signal.  However, the large 

amplitude of the peak [peak (2)] preceding that at the optimized time delay does 

not coincide with significant pump pulse intensity.  This peak cannot then be 

attributed to a multiphoton burst.  This observation is consistent among repeated 

optimizations, with little obvious correlation of the wave packet oscillations and 

the light intensity (except at the optimized time), verifying that the wave packet 

amplitude coefficients of Eq. (1.1) are transiently pumped while maintaining their 

correct relative phase relationship. 

 Notice in Fig. 3.9b that the relative phase of the resonant frequencies is 0.4 

radians, which is consistent with the observed phase shift of the optimized 

experimental wave packet oscillations.  Even though first order perturbation 

theory predicts that wave packet coefficients can change phase during their 

buildup [see chapter 5], it is not apparent in this data.  The phases of each 
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coefficient may be changing during the pump pulse, but it appears that the 

transient relative phase (∆ϕij) remains relatively constant at time delays after -2 

ps, as judged by the positions of the optimized wave packet recurrences relative to 

the unshaped wave packet recurrences.  The constant non-zero phase shift is due 

to competition in early generations of the optimization of the wave packet 

recurrences, wave packet amplitude coefficients, and a multiphoton burst effect.   

Although there is no obvious physical requirement that the coefficient 

phase evolution during the pump pulse must be the same for both wave packet 

states, the effect of the EA is such that both states have the same transient phase 

relative to long time [i.e., ϕi(t=1.6ps)-ϕj(t=1.6ps) = ϕi(t=∞)-ϕj(t=∞)].  As the EA 

begins to optimize the photoionization signal at 1.6 ps, one dominant early effect 

to be optimized is the relative phase of the wave packet states.  The reason is 

twofold: the phase shift of the wave packet can cause a large change in the fitness, 

and very few pixels are involved in determining the phase of the wave packet.  

Out of random phase configurations, the correct relative phases of the few 

resonant pixels will be more likely to occur than the correct phases of all the 

resonant and non-resonant phases.  Figure 3.10 shows the evolution of the fitness 

of an optimization at a time delay of 1.6 ps.  It is shown in panel 3.10(b) that 

while the average fitness rises with an approximate lifetime of 16 generations, the 

optimization of the long time delay component of the signal (representative of 

resonant wavelengths) proceeds about twice as fast as the optimization of the peak 

ionization signal.  As the EA proceeds through many generations, the optimal t=∞ 

phase persists, for it represents a “ridge” in the total photoionization solution 
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space, leading to a final solution that is a combination of the correct resonant 

frequency phase shift, transient wave packet amplitude, and possibly multiphoton 

burst effects.   

 

3.7 Modeled optimization  

A calculated model of this system was studied in a situation free from 

noise and where the optimization could be extended up to 200 generations in 

order both to compare the form of the perturbation theory solution of Eq. (3.1) 

and to investigate the competition between coefficient buildup and multiphoton 

effects.  The EA was chosen to modulate 128 phases, similar to how it would 

normally modulate phases on the SLM.  The fitness function given to the 

computer included both a wave packet oscillation term and an undefined 

multiphoton burst term, respectively: 

f(i,t) = |a1(t)||a2(t)|cos[ϕ1(t)-ϕ2(t)] + 1.25|Σjbjexp[i(ωjt+ϕj)]|2, (3.5) 

where the a1 and a2 are derived using time dependent perturbation theory as in Eq. 

(3.1), ϕ1 and ϕ2 are from Eq. (3.1), and bj is the amplitude of light with central 

frequency ωj and phase ϕj imaged onto pixel j.  The multiphoton burst term is 

normalized so that |Σjbj|2 = |a1(∞)||a2(∞)|.  The spectral profile (bj) is Gaussian and 

has a FWHM of 35 pixels (156 cm-1), centered at 12500 cm-1.  States 1 and 2 are 

set to have energies of 12480 cm-1 and 15020 cm-1, respectively.   

After 200 generations, the calculated optimal solution has a linear phase 

applied across almost the entire pulse, with a deviation from linear phase applied 

near the resonant wavelengths (see Fig. 3.11), and no phase shift between wave 
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Figure 3.11. Model optimization results.  Panel (a): optimized phases ( ) 
as modeled by Eq. (4) after 200 generations.  Resonant transitions are marked by 
solid vertical lines, and the spectral intensity is indicated by the dotted line.  
Notice the linear phase applied across most of the pulse, except in regions near 
the resonant transitions.  Panel (b): progression of the average fitness ( ) during 
the optimization (scaled to reflect experimental background effects in Li2) and 
four times the average multiphoton component of the fitness (solid line), offset by 
0.75.  The average long time fitness was not a component of the observed fitness 
and is simply a measure of the long time wave packet amplitude and phase.  Panel 
(c): wave packet coefficients |a1| and |a2| (dotted line), four times the optimized 
electric field intensity (shaded region), and a simulated wave packet (solid line).  
The coefficients have been normalized to their values at t=∞, and the pulse 
intensity has been normalized to reflect its correct contribution to the calculated 
fitness at the optimized time delay.  Both coefficients follow the same buildup 
path, obscuring one in the figure.  Notice the very low light intensity at the 
optimized time.  Panel (d): optimized pulse intensity at 200 generations (solid 
line), with the derivative of the absolute value of the wave packet coefficient 
(dotted line).  Notice that immediately after the optimized time the wave packet 
coefficients are driven down to their final values. 
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packet states: ϕ1(1.8 ps)-ϕ2(1.8 ps) = ϕ1(∞)-ϕ2(∞).  This behavior closely mimics 

the result found in the experimental optimization in Li2.  One important result 

obtained in this modeled optimization is that the laser pulse intensity at 1.8 ps is 

virtually zero, as can be seen in Fig. 3.11c.  Instead, its peak intensity is found at 

1.73 ps.  Note that even though there cannot be a multiphoton burst contribution 

to the photoionization at 1.8 ps delay, the signal exceeds by 50% what would be 

predicted assuming a simple temporal pulse shift coupled with the normal wave 

packet oscillation amplitude at long time delays.  The difference is the time 

dependent wave packet amplitude coefficients. 

In this model, the wave packet amplitude coefficient buildup is in direct 

competition with the multiphoton effect, with the coefficient buildup dominating 

the calculated photoionization signal.  Figure 3.11b shows that even though the 

multiphoton term plays a role early in the optimization with a maximum 

contribution at generation 16, it is later overwhelmed by the wave packet 

oscillation term.  Experimentally, a -70 fs time shift of the peak intensity from the 

optimized time is difficult to resolve, especially given that our experimental cross 

correlations are convolutions of the shaped pulse with an unshaped pulse with a 

width of up to 180 fs.  Also, the experimental optimization was concluded at 30 

generations, at which point it is reasonable to expect that the multiphoton effect 

may not have been fully suppressed yet.  Regardless, this calculation does show 

that the optimal pulse shape has low intensity at the optimized pump-probe delay. 

The average fitness for the modeled optimization also shares several 

common traits with the experimental optimization of Li2 photoionization, 
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including an initial quick rise attributable to a wave packet phase shift followed 

by a slower further rise to the optimum.  To illustrate, when the modeled fitness is 

fitted with a double exponential decay function, two lifetimes of 7.2 and 60 

generations can be seen.  This is similar to the experimental average fitness in Li2, 

which also shows a quick initial rise followed by a slower decay, with a double 

exponential rise fit with lifetimes of 5 and 35 generations (Fig. 3.11).  The 

evolution of the model and experiment show qualitatively similar behavior, 

suggesting a similar mechanism of optimization.  

Given that this model calculation qualitatively reflects the Li2 system, 

hypotheses regarding the excited state coefficient evolution can be put forward.  

In the calculation, before the optimized time delay, most of the pulse intensity 

goes into building up the amplitude of the coefficients, as shown in Fig. 3.11d.  

Immediately after the optimized time, there is a π phase shift of the carrier 

frequency of the pulse, with all subsequent light intensity driving the coefficient 

amplitude down.  This is made possible by correctly timing the buildup 

attributable to non-resonant frequencies.  In other words, the phases of non-

resonant oscillations in |apu,i| are optimized so that, collectively, they come into 

phase at 1.6 ps and quickly dephase just after that. 

 

 

 

 

 



 61 

3.8 t=0.0 ps Optimization  

The previous sections showed that indeed it is possible to optimize the 

phase of a coherent oscillation as well as transient population transfer type 

processes.  Even in the case of the model optimization, whose solution shows 

little noise, the nature of the optimized phase mask seems somewhat hidden by 

the linear part of the applied phase mask.  To try to reduce this difficulty, an 

optimization was performed to get the greatest photoionization signal at t=0.0 ps.  

As in the previous sections, the launch state of (vA, JA)=(11,28) was used so that a 

wave packet consisting primarily of (vE, JE)=(9, 27) & (9,29) gets optimized. 

Figure 3.12 shows the optimal phase mask found by the EA while 

monitoring the photoionization at t=0.0 ps.  For the positively and negatively 

detuned frequencies, there is a clear phase shift of approximately 1.2π radians 

around each resonance.  This phase shift is a result of the EA finding an optimal 

population transfer condition.  Additionally, right at each resonance, there is 

approximately the same phase.  Since the size of the resonant spot on the SLM is 

about two pixels, the exact phase of the resonant frequency can not be known 

exactly in this case, but it is approximately π for each resonance.  Additionally, 

there is a significant jump in the optimized phase around pixel 75.  This is 

attributed to a competition between optimizing the phase of the quantum beat 

while simultaneously optimizing the transient wave function coefficients.  This 

will be studied in more detail in the next chapter.   

Figure 3.13 shows the pump-probe trace corresponding to the optimal 

phase mask compared to a pump-probe trace with an unshaped pump pulse.  Also  
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Figure 3.12: Phase mask ( ) found by EA when optimizing photoionization at 
t=0.0 ps.  Resonances are marked ( ), and the laser spectrum is noted by the 
solid curve.  Note the phase shifts of the frequencies to the left and right of the 
resonant frequencies is approximately 1.2π radians. 
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Figure 3.13: Optimized photoionization with cross correlations.  The top traces 
show the optimized photoionization ( ) pump-probe trace along with an 
unshaped pump-probe trace (solid line).  Below are cross correlations with the 
unshaped probe pulse for the optimized pump pulse ( ), and the unshaped pump 
pulse (dotted). 
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shown in the lower part of the figure are cross correlations with the probe pulse of 

the optimized and unshaped pump pulses.  The photoionization shows a large 

peak at the optimized time, as should be expected from earlier work.  The peak at 

t=0.0 ps barely exceeds that found in the transform limited case, but there are 

some interesting traits to the optimized dynamics.  First, even though the 

photoionization does show a maximum similar to the transform limited case, the 

background offset and the coherent oscillation amplitude are both smaller for the 

optimized case.  Since the optimization considers the photoionization at only one 

time, the physical requirements for optimization only “see” an optimal transient 

state.  In this case, the transient coefficient is optimized at the cost of the final 

state amplitude.   

The cross correlation measurements (Fig. 3.13, heavy line) also show an 

interesting feature.  The optimized cross correlation shows that the amplitude at 

t=0.0 ps is only approximately one quarter that in the transform limited case.  

Even so, the photoionization remains strong.  In the optimized case, it could be 

argued that the transient effects exceed the transform limited case even with this 

low peak intensity.  This observation hints at the power of using transient 

processes to control dynamics, as will be explored in the next chapters. 

Unfortunately, at t=0.0 ps, the actual mechanism for the optimized 

photoionization is unclear, since at that time, the shaped pulse is simultaneously a 

pump pulse as well as a probe pulse.  A mechanism for simultaneous optimization 

of the probe pulse can be imagined, introducing some ambiguity into the 

photoionization mechanism.  At the very least, we should expect minimization of 
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diffraction of the light at those frequencies of light that are resonant with the 

primary autoionizing Rydberg states in the probe section of the pulse[47].  Also, 

we should expect that the phase difference between the resonant probe regions for 

states (9, 27) and (9, 29), respectively, should be approximately zero[48].  These  

considerations complicate the optimization, so a means to eliminate the pump-

probe ambiguity at t=0.0 ps has been used, and it will be examined in the 

following chapter. 
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Chapter 4  

Weak Field Population Control 

 

4.1 Introduction 

Coherent control remains a primary goal of ultrafast laser dynamics 

studies [1,2].  Research so far addresses several key categories, such as the use of 

resonant frequencies to control quantum wave packet interferences [2-5] and 

novel pulse shapes to control multi-order processes [2,6-10].  Optimization of 

coherent control has been achieved using various types of learning algorithms 

[8,11-13] [see previous chapter], but the nature of the mechanisms for the optimal 

results is not always readily apparent.  This chapter will identify a class of pulse 

shapes that enhance the population transfer from a single state to multiple excited 

states, providing a basis for understanding the nature of optimal pulse shapes for 

both population transfer and quantum interferences in the superpositions.  Pulse 

shapes that have been shown to enhance transient excited state population in a 

two level system will be applied to multiple excited states.  All experiments will 

be analyzed using first order perturbation theory. 

Much work has been devoted to the field of population transfer dynamics 

in the continuous wave regime [14], but only recently have well-established 

population transfer theoretical tools been applied to the wide bandwidth inherent 

to ultrafast spectroscopy [13,15-18].  For example, it has been shown that chirped 

pulses can be used to enhance population transfer dynamics in a multiphoton 

process [15,19] or even transiently in a single photon process [13,17].  It has been 
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shown that optimal enhancement of multiphoton dynamics can be achieved not by 

chirped pulses, but by applying constant phases to blocks of nonresonant 

frequencies relative to resonant frequencies [13,16,18], based on the t=0.0 ps 

optimization described in the previous chapter.  By using a frequency domain 

analysis, the optimal pulse shape is shown to depend primarily on frequencies that 

are near resonant, as will be discussed in detail in a later section. 

This chapter considers the simultaneous control of both time dependent 

population transfer dynamics and superposition state quantum interferences using 

analytically optimal pulse shapes, in comparison to simple chirped pulse shapes 

and near transform-limited pulses.  Of interest are the effects of resonant and 

nonresonant frequencies involved in the excitation of superposition states.  By 

independently controlling not only quantum interferences between wave packet 

states, but also the population transfer dynamics to each state, the coherently 

controlled ionization yield at specific time delays is more than double that 

produced by a transform limited pulse in a two-state superposition pump-probe 

experiment.  A two-color ultrafast laser experimental system, with pulse shaping, 

is used to isolate the coherent population transfer dynamics of a two-level 

superposition in Li2 molecules.  The criteria for independent control of the 

coherent population transfer dynamics and quantum interferences are established.  

Extensions to more than two states are also discussed. 

 Simultaneous coherent control of two well-defined excited states unifies 

concepts concerning the dynamics between interfering superposition states and 

population transfer dynamics to individual states.  As long as the interfering states 
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are sufficiently separated in energy from each other, the population transfer 

dynamics to each state can largely be independently controlled.  Additionally, the 

relative phases of the multiple states are controlled during the process of 

population transfer.  In the following sections, a theoretical framework for these 

experiments is first presented, followed by a summary of experimental 

considerations.  Finally, experimental results are presented and discussed in the 

next section, along with a quantification of the limitations of enhancing 

photoionization using various pulse shapes.  The degree to which the population 

transfer for two states can be independently controlled is quantified in that final 

section. 

 

4.2 Theory 

In the weak field limit, first-order time-dependent perturbation theory can 

be used to describe a single photon absorption.  The excited state amplitude 

coefficient for a single state is described in the time domain [20]: 

c t i t i t dtn
eg

eg

t

( ) ( ) exp( ' ) '=
−∞
∫

µ
ε ωη ,     (4.1) 

where µeg is the dipole moment matrix element between the excited and ground 

states, ε(t) is the electric field as a function of time, and ωeg = (Ee−Eg)/ η  is the 

transition frequency.  Using similar logic to earlier work [16,18,21], this excited 

state amplitude can be approximated for positive time t by the frequency domain 

expression 
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where ~ ( )ε ω∗
eg  is the amplitude of the electric field at the transition frequency, 

ε ω( )  is the amplitude of light at frequency ω, ∆ = −ω ωeg  is the detuning, and ℘  

is the Cauchy principal value.  The first term in Eq. (2) represents the resonant 

contribution to the excited state amplitude, and the second term represents 

nonresonant contributions.  As t approaches infinity, the second term averages to 

zero, and Eq. (2) reduces to the resonant component; however the second term 

does not necessarily average to zero for small t (i.e., within the pulse width).  In 

the absence of any phase manipulation (i.e., transform limited pulses), the 

nonresonant term will be greatly diminished for all t, since the ∆ term for ω>ωeg 

is π out of phase relative to ω<ωeg [18]. Additionally, the i/2π leading factor of 

the nonresonant term places the nonresonant contribution π/2 out of phase with 

the resonant term.  This phase relationship suggests that to bring all frequency 

components into phase at small t, an additional +π/2 and −π/2 phase must be 

added to the nonresonant frequencies above and below ωeg, respectively.  

Additionally, the 1/∆ dependence of the nonresonant term shows that the most 

influential frequencies will be those with the smallest detuning.  These results 

may then be generalized to multiple excited states. 

The 1/∆ dependence of the nonresonant wavelengths lends itself to the 

possibility that frequencies with a large ∆ can be manipulated with minimal 

influence on the excited state coefficient dynamics.  This will allow for the 

manipulation of multiple states, provided that the energy separation between 
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states, ∆ω, is great enough that all frequencies near one state have little effect on 

any other states.  For a two-state superposition, a lower limit of the degree to 

which the population transfer to state i can be independently controlled, IPTi, is 

quantified as  

Ι ∆ ∆ ∆
∆

PT i ii
n d= −

±∞

∫1 2
2

2

' ( ' ) '
/

ε
ω

,      (4.3) 

where ∆ω is the difference in energy between the superposition states 

(∆ω=ωi−ωj), the second limit of integration (±∞) has the same sign as ∆ω, and 

ε( ' )∆  is the amplitude of the electric field at a specific detuning.  The factor of 2 

accounts for destructive interference, and n normalizes the expression so that the 

second term reaches a maximum of 1.  Physically speaking, IPTi is a measure of 

the cumulative intensity of all nonresonant contributions to a particular population 

at a specific time relative to the ideal case (i.e., single control channel).  In the 

case where two states have degenerate energies (i.e., ∆ω=0) with a uniform 

energy spectrum, ΙPT=0, the states can not be independently controlled.  On the 

other hand, in the limit of ∆ω=±∞, the second term goes to zero, and the states are 

completely independent of each other.  This analysis assumes a regime where the 

spectrum is divided into an arbitrary number of “control channels,” with a 

specified bandwidth devoted to the control of each state. The spectrum is divided 

into two or more regions, and the integrated value of ')'( ii ∆∆ε  inside the control 

channel for state i is compared to ')'( ii ∆∆ε  outside of its control channel.  

Increasing the number of states involved in a control scheme will likely decrease 

the spectral width of the control channel for any state, decreasing the degree to 
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which that state can be independently controlled.  In the discussion below, we use 

“control channel” to refer to large blocks of wavelengths surrounding each 

resonant transition and “resonant control channel” or “resonance” to refer to very 

small bandwidth regions centered on each resonant transition. 

 Lithium dimer (Li2) is used as a model system to investigate the extent to 

which nonresonant frequencies can be used to control multiple excited state 

coefficients with a single pulse.  The relevant potential energy curves in Li2 are 

shown in Fig. 2.1 [22-24].  From a single launch state, two rovibrational states 

(vE=9, JE=27 & 29) are accessible within the bandwidth of the pump laser, 

creating a time-dependent wave packet.  A probe pulse ionizes the coherent 

superposition at various pump-probe time delays to obtain the signal.  For parallel 

pump and probe polarizations (referred to as “parallel probe”), the presence of 

multiple rotational states in the wave packet produces a coherent superposition 

state with oscillations at a frequency equal to the energy difference between the 

states [25] [see Fig. 4.1]: 

        ( )[ ]S t pr c t pr c t pr pr c t c t t t( ) ( ) ( ) ( ) ( ) cos≅ + + +1
2

1
2

2
2

2
2

1 2 1 22 ∆ ∆ω ϕ  (4.4a) 

where pr1 and pr2 are constants related to the probe step (not discussed here); the 

energy separation, ∆ω, is 42 cm-1 (1.5 Thz); and ∆ϕ is the relative phase between 

the wave packet states at time t.  In contrast, for a probe polarization oriented at 

the magic angle (~55ο) with respect to the pump polarization (“magic-angle 

probe”), the coherent oscillation is completely suppressed, so  

S(t) = |pr1|2|c1(t)|2 + |pr2|2|c2(t)|2.       (4.4b) 



 72 

 
 
 
 
 
 

 
Figure 4.1: Pump-probe traces at parallel ( ) and magic angle (solid line) pump-
probe polarizations, along with the difference ( ) between the traces for 
unshaped pump pulses.  These traces correspond to the total, incoherent, and 
coherence portions of the signal, respectively, with the raw signals normalized to 
an average value of 1. 
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This suppression is possible because the coherent oscillation is rotational in 

nature.[6,24]  Hence, by manipulating the probe polarization, we can select 

whether the signal reflects a full wave packet trace or simply the ground to 

excited state population transfer dynamics.  Furthermore, by subtracting the 

magic-angle probe signal from the parallel probe signal, we are left with just the 

coherent oscillation piece  

S(t) = 2|pr1pr2||c1(t)c2(t)|cos(∆ωt + ∆ϕ).    (4.4c) 

 The probe step consists of an ultrafast pulse of a different color than the 

pump pulse [26].  This aspect of the signal was not considered above for 

simplicity.  The color of the probe pulse is chosen so that the probability for a 

probe-pump (i.e., t<0) ionization pathway is below the noise level, allowing time 

dependent ionization to occur only at positive time delays.  There is a constant 

background component to the photoionization signal at all time delays, and this 

has also been subtracted out of the signals.  Hence, the observed photoionization 

signal only shows the time dependent coefficient buildup behavior and the 

quantum interference of the superposition state as described in Eq. (4.4). 

4.3 Experiment 

The lithium sample is contained in a heat pipe at 1050 K and is 

photoionized by a three step excitation process.  An overview of the laser system 

is given below, but details can be found in previous work [13,26], and in chapter 

2.  In this experiment, a narrow bandwidth continuous wave (cw) laser, an 

ultrafast amplifier system, and an optical parametric amplifier (OPA) are used, 

and all but the OPA are pumped by a 27 W argon ion laser.  The frequency of the 
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cw laser is tuned to a specific A1Σu
+←X1Σg

+ resonance (606.954 nm) of Li2, 

producing a pure launch state (vA=11, JA=28) on the first excited electronic state.  

The ultrafast regenerative amplifier is seeded by a 76 MHz oscillator to produce 

180 fs [full width half maximum (FWHM)] ultrafast pulses at a 200 kHz 

repetition rate, near the 800 nm central wavelength with 8 nm (FWHM) 

bandwidth.  These ultrafast pulses are split into two beams, with 25% of the light 

becoming the pump pulse and 75% of the light frequency doubled to pump the 

OPA.  The resulting 15 mW OPA output is a train of nearly transform limited 

pulses with a 200 fs FWHM pulsewidth and a central wavelength of 640 nm.  The 

OPA output is variably time-delayed relative to the pump pulse via a precision 

delay stage.  This OPA wavelength is used since in the pump-probe regime, it 

yields a strong photoionization while producing very little photoionization in the 

probe-pump regime [see Fig. 2.1]. 

 To shape the pump pulse, it is sent through a dispersion free pulse shaper 

[27,28].  In the pulse shaper’s Fourier plane, a liquid crystal spatial light 

modulator (SLM) is used to shape the spatially dispersed pump light by 

independently attenuating and/or applying phase to 128 individual frequency 

components (SLM pixels) of the pump light.  The central frequencies imaged onto 

the SLM pixels are separated by approximately 4 cm-1 with a single frequency 

spot size of approximately 1.7 pixels.  Normally, the 8 nm FWHM pulses are 

imaged onto the SLM to achieve a bandwidth of 40 pixels FWHM.  Pixellation 

and finite spot size effects limit the temporal pulse shaping to be within a window 

of about ± 4 ps around time zero. 
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 The cw laser, pump, and probe pulses intersect in the interaction region in 

the center of the heat pipe.  The ions are produced between two parallel plates 

separated by 1 cm with a 10 V potential applied across the interaction region.  The 

cw light is optically chopped, and the resulting current is detected with a lock-in 

amplifier that is synchronized to the cw modulation. 

 To study the effects of nonresonant frequencies, two classes of pulse 

shapes have been used to enhance transient photoionization effects, shown in Fig. 

4.2.  The first class, which has previously been studied in the context of a single 

resonance [17] (“chirp-type spectrum”), has a quadratic phase applied across the 

frequency spectrum around each resonance with the form ϕ(ω)=c∆2 + ϕk, where 

∆=ωi-ω is the detuning from the nearest resonance, and ϕk is a constant phase [see 

Fig. 4.2a].  The constant phase, ϕk, is applied to the entirety of one of the control 

channels to control the phase of the wave packet interferences.  Here, the time 

delay is adjusted by varying the magnitude, c, of the quadratic phase.  An optimal 

phase mask for population transfer comprises the second class, called the “phase-

jump spectrum”; this phase mask involves the application of π/2 and -π/2 radians 

above and below resonance, as established in several recent works [see Fig. 4.2b] 

[13,18].  The resonant portion of the control channel is defined here as a block of 

two pixels (~8 cm-1 FWHM) centered on a specific transition, chosen to avoid 

attenuating the long time delay signal by diffraction [13].  So, in effect, 

“resonance” actually refers to the smallest practical bandwidth achievable by our 

pulse shaper around each transition.  To vary the timing of the optimal 

photoionization, a linear phase versus wavelength is added to the nonresonant  
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Figure 4.2. Phase mask classes used in this chapter.  In both panels, quantum state 
resonances (vE=9, JE=27 & 29) are marked with vertical lines.  Relative phase 
offset of 0.0 and π radians between control channels are represented by crosses 
(X) and squares ( ), respectively.  Panel a: Chirp-type spectra.  The degree of 
quadratic phase, c, is defined by ϕ(pixel) = c x (∆pixel)2 where ∆pixel is the 
separation in pixels from the nearest resonance.  Panel b: Phase-jump spectra.  A 
phase of +π/2 and -π/2 is added to the frequencies above and below resonance, 
respectively.  A linear phase of ϕ(pixel) = c x ∆pixel is added to the phase masks to 
induce a time shift in the population transfer (not shown).  The phase on pixel 56 
is always the same as that on pixel 55, and the phase on pixel 66 is always the 
same as that on pixel 65. 
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portion of the phase-jump phase profile.  As in the case of the chirp-type 

spectrum, the relative phase of the wave packet states using the phase-jump 

spectrum is manipulated by adding a constant phase to only one of the control 

channels. 

 

4.4 Results and Discussion 

This section will first analyze the ability to control quantum beats while 

applying a previously studied chirp-type phase mask around each state, but 

extended to a quantum superposition.  Next it will be shown that the phase jump 

spectrum gives a much greater enhancement in the transient photoionization.  It 

will further be shown that the timing of the peak photoionization for the phase 

jump spectrum can be much more precisely controlled than the chirp-type 

spectrum.  Finally, the nonresonant contributions to the photoionization will be 

compared to a simple model to quantify the degree to which the quantum states in 

the superposition can be independently controlled.   

To demonstrate the separability of the population transfer dynamics from 

the wave packet oscillations, we first examine the previously studied case of the 

chirp-type spectrum, with results for the two states at the magic angle [Eq. 4.4b] 

and parallel probe minus the magic angle [Eq. (4.4c)], shown in Fig. 4.3[49].  The 

population transfer dynamics in the upper part of the figure show several traits of 

the buildup produced by a strictly chirped pulse. After time zero, there is a peak in 

the excited state population followed by a short period of ringing.  After just a few 

picoseconds, this ringing decays, leaving a constant value for the  
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Figure 4.3. Chirp-type pump spectrum transients.  The upper solid line and circles ( ) 
represent the magic-angle probe transient for π and 0 radians relative phase between 
control channels, respectively, and a chirp factor of 0.2.  The lower solid line and circles 
( ) represent just the coherent oscillations produced with the same phase masks as 
above.   
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excited state population.  Notice that these traits are present for both zero and π relative 

phase between the control channels, and in both cases there is a peak in the excited state 

population around a planned delay time of 1.2-1.3 ps, depending on the degree of chirp, 

in this case 0.2 chirp factor.  The coherent oscillations, which are simply the difference 

between the parallel and magic-angle probes, are also predictably controlled.  Clearly, a π 

phase shift of one coherent oscillation relative to the other can be induced, which is 

simply a result of adding π phase to only one of the resonant control channels.  

Additionally, around 1.2 ps, the amplitude of the coherent oscillations passes through a 

maximum, as expected from Eq. (4.4a).  The combination of the population transfer 

dynamics and the wave packet interferences produces a clear peak in the photoionization 

signal at 1.2 ps despite the slightly decreased population transfer using zero phase offset 

between control channels. 

 The analysis of the chirp-type spectrum above establishes that both the population 

transfer dynamics and wave packet interferences can be independently controlled.  This 

section now explores more optimal phase masks to maximize the photoionization due to 

the population transfer dynamics in conjunction with the interference of two states at 

specific short pump-probe time delays.   

Several magic angle and parallel pump-probe data are summarized in Fig. 4.4.  A 

pump-probe transient obtained with the phase-jump spectrum of Fig. 4.4 clearly shows an 

enhancement in the excited state population, in addition to the proper phasing of the 

coherent oscillation at t=0, shown in Fig. 4.4a.  In these signals, the background signal 

has been subtracted out, and the remaining  
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Figure 4.4. Phase-jump pump spectrum transients.  Panel a: Magic angle probe traces 
produced using zero phase offset ( ) and π phase offset (solid line) between the control 
channels, and parallel probe photoionization signal ( ) for zero control channel phase 
offset.  A trace produced by an unshaped pump pulse with magic angle probe (+) is 
included for reference.  Panel b:  Population transfer traces adding varying degrees of 
linear phase to nonresonant frequencies with π phase offset between wave packet 
resonances. The nonresonant contributions were timeshifted to have peak photoionization 
occur at 0.0, 0.25, 0.5, 1.0, and 2.0 ps ( , X, , +, and , respectively).  The solid line 
represents an attempt to shift the nonresonant contribution to a time beyond the 
capabilities of the experimental apparatus, resulting in a purely resonant excitation effect.  
Panel c: Nonresonant effects on the population transfer at various time delays.  Traces 
were generated by subtracting the purely resonant contribution of the population transfer 
trace from the total population transfer signal (same symbols as in panel b). 
photoionization signal has been normalized to the signal at t=∞, which has been shown to 

depend only on resonant wavelengths and hence is constant in these studies[25].  Two 
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population transfer traces (magic-angle probe) are shown, along with a total wave packet 

signal (parallel probe) that is designed to have a maximum in the quantum beat at the 

same delay (0.0 ps) as the maximum in the population transfer.  The population transfer 

traces use phase masks with 0 and π relative phase between two control channels, and the 

full wave packet signal is set to have 0 relative phase between the two control channels 

[the X’s in Fig. 4.2b].  Both population transfer traces show a peak at the same pump-

probe time delay, with the case of π relative phase between control channels [the ’s in 

Fig. 4.2b] having the larger peak amplitude. 

Of all relative phases between control channels of the phase-jump class, the case 

of zero relative phase is the least optimal for population transfer.  This is so because all of 

the wavelengths between the two wave packet states in one control channel maximally 

destructively interfere with the buildup of the other control channel.  For example, the 

light on pixels 57-60 maximally and destructively interferes with the buildup of state 

(9,29), where the control channel includes pixels 61-128.  Even so, the wave packet 

interference produces a global maximum in the photoionization at 0.0 ps pump-probe 

delay.  A net gain in the photoionization relative to a non-interfering condition can 

always be achieved as long as the wave packet interference amplitude exceeds one minus 

the degree of independent control, or when |pr1pr2||c1(t)c2(t)|>1-IPTi from Eqs. (4.3) and 

(4.4).  Note that for a multiple state superposition, 1-IPTi increases, but simultaneously 

multiple coherent oscillations can constructively interfere, counteracting the decrease in 

degree of independent control inherent to the smaller control channel sizes of a multiple 

state system. 
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In Fig. 4.4b several population transfer traces are shown for the phase jump 

spectra with varying amounts of linear phase added just to the nonresonant frequencies; 

these traces are generated using only π relative phase between the wave packet 

resonances.  The peak height and time for each trace is noted and will be discussed later.  

Evident in this figure is that for each trace there is a slow, monotonic buildup (>4 ps) of 

population attributable to resonant (and very near resonant) frequencies coupled with a 

much shorter timescale population transfer attributable to nonresonant frequencies.  By 

subtracting the resonant portion of the traces from the full traces, purely nonresonant 

effects can be analyzed [see Fig. 4.4c].  The time-shifted nonresonant contributions to the 

population transfer show peak widths between 750 fs and 790 fs FWHM.  This data will 

be used later to quantify the degree to which the superposition states can be 

independently controlled. 

 The phase-jump spectrum permits a higher degree of coherent control than the 

chirp-type spectrum by obtaining a greater enhancement in the population transfer and by 

allowing more precise timing of the peak of the photoionization signal [see Fig. 4.5].  

Figure 4.5a shows the peak excited state populations as a function of time for the two 

pulse shape classes.  At short times, the phase-jump spectrum doubles the excited state 

population, whereas the chirp-type spectrum shows a maximum of 30 percent 

improvement of the photoionization signal.  The  
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Fig. 4.5. Comparison of control capabilities using the phase-jump spectrum versus the 
chirp-type spectrum. In all panels, peak photoionization was monitored for various 
degrees of chirp type pulse shapes (triangles) and time shifted phase jump pulse shapes 
(circles).  Filled symbols denote 0 relative phase between control channels, and open 
symbols represent π relative phase.  Panel a: Peak photoionization comparison as a 
function of designed peak time delay.  Data is collected by analyzing peak heights as 
shown in Fig. 4.4b, for example.  The peak photoionization for the unshaped spectrum 
(i.e., degree of chirp = 0) is represented by the chirp type spectrum data point at 0.4 ps 
and is normalized to 1. Panel b: Peak times as a function of degree of linear phase added 
to the standard phase-jump spectrum. Panel c: Peak times as a function of the degree of 
quadratic phase applied around each resonance for the chirp-type spectrum.   
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phase-jump spectrum shows greater population transfer enhancement than the chirp-type 

spectrum because the phase-jump shape assures that all non-resonant contributions come 

into phase simultaneously.  This is in contrast to the chirp-type situation, in which only 

certain nonresonant contributions are in phase at any one time.  For the phase jump 

spectrum, the timing of the peak of the photoionization signal can be controlled precisely, 

as shown in Fig. 4.5b.  Note that in this regime the time delays of the peak 

photoionization signals are chosen by time-shifting the nonresonant contributions to the 

population transfer by simply adding a linear phase to the basic phase-jump pattern, 

based on the relation ∆t d d= φ ω .  Relative to the phase-jump spectrum, the timing of the 

peak population transfer in the chirp type spectrum is not controlled as successfully.  

Notice in Fig. 4.5c that the peak timing follows a roughly linear relationship with the 

degree of chirp, but the deviation from a linear relationship is substantial.  This can 

partially be attributed to wrap-around effects (i.e. the phase can only be defined modulo 

2π) and “overlap” between the separate shaping channels of the phase mask.  For 

example, the truly quadratic phase for the control channel around state (vE, JE)=(9,27) is 

defined to stop at pixel number 60, but with chirp factor c=0.2 and π relative phase 

between wave packet states [see Fig. 4.2b], pixel 61 fits well onto the quadratic 

progression.  This in essence extends the size of the control channels.  While this will be 

true for some chirp factors, it will not be true for others, accounting for the scatter in Fig. 

4.5c. 

 The mechanism for the increase in population transfer for the phase jump 

spectrum can be attributed to off resonant Rabi oscillations.  In the weak field limit, the 

Rabi frequency ( )[ ]Ω ∆ ∆ ∆( ) /
/

= + +








2
2 1 2

µ ε ωeg eg η reduces to Ω(∆)=∆, since 
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( )[ ]µ ε ωeg eg∆ ∆+ <<
2

2  for values of ∆ with non-negligible electric field amplitudes [14].  

Additionally, given that the amplitude of any nonresonant oscillation is proportional to 

ε(∆+ωeg)/∆ [29], the total of all nonresonant contributions to the excited state populations 

can then be formulated as ( ) ( )[ ] ( )( )c t d teg∝ + +
−∞

∞

∫ ∆ ∆ ∆ ∆ ∆ε ω φ
2

2 2sin .  Notice the similarity 

of this representation to Eq. (4.2).  To bring all of these sine waves into phase at t=0, a 

phase mask with +π/2 and -π/2 radians applied to the positive and negative detuned 

wavelengths, respectively, must be implemented.  At the resonant wavelength (i.e., where 

∆=0), the optimal phase will be intermediate between the positive and negative detuning, 

or zero degrees.  Thus we have the same optimal phase pattern as predicted by Eq. (4.2).  

In contrast, for the chirped phase pattern, not all nonresonant Rabi oscillations come into 

phase simultaneously.  Rather, there is a series of partial recurrences in time; this is 

observed as a ringing in the signal. 

To quantify the degree to which the two states in the experiments described here 

can be independently manipulated, a model based upon Eqs. (4.1) and (4.2) is 

implemented.  This model accounts for the nonresonant and resonant contributions to the 

signal and is summarized in Fig. 4.6.  Equation (2) is used to account for the nonresonant 

contributions to the population transfer: 

c t
h

i t i
n

eg p p p

pp
( )

( )exp[ ( ) ]
=

−
∑

µ ε ω ϕ∆
∆

,      (4.5) 
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Fig. 4.6: Comparison of model results with experiment.  Panel a: phase ( ) and 
amplitude (• ) [ε(ωp)/∆p from Eq. (4.5)] of the oscillations created by each pixel used to 
generate the nonresonant contribution to the model population transfer dynamics. 
Resonances are marked with vertical lines, and the electric field spectrum is given by the 
solid line.  A second state (dashed line) is included for reference.  Panel b: Comparison of 
model and experiment.  The experimental nonresonant ( ) and full population transfer 
traces ( ) are compared to the model nonresonant (dotted line) and full population 
transfer (solid line) traces.  The model resonant contribution is given by the dot-dashed 
line. 
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where the summation is over all pixels (p) of the SLM, with each pixel representing light 

of a specific frequency ωp and phase ϕp.  In essence, each pixel creates an oscillation with 

frequency ∆p and amplitude ε(ωp)/∆p.  Transform limited pulses with Gaussian spectral 

widths equal to experimental observations are assumed, giving ε(ωp), and the quantum 

states are assumed to be symmetrically located under the spectral envelope.  In Fig. 4.6a, 

the values of ε(ωp)/∆ and ϕp are plotted.  The amplitude of the light at the two pixels 

around each resonance is assumed to be zero here, but it is accounted for in the resonant 

portion of the model.  The signal is then computed as a convolution of the excited state 

population, |cn(t)|2 with a 180 fs FWHM Gaussian probe pulse.  The model population 

transfer dynamics fit very well with the experimental data, as shown in Fig. 4.6b.  Using 

this model to quantify the influence of nonresonant frequencies, Eq. (4.2) shows that each 

state can be controlled up to 90% independently (i.e. IPTi=0.90).   

The resonant contribution to the signal is modeled using Eq. (4.1). The electric 

field is assumed to be transform limited with a bandwidth for excitation equal to 

approximately 10 cm-1 FWHM, which corresponds to the light imaged onto two pixels.  

Each quantum state is assumed to be located at the central frequency of its respective 

narrow bandwidth region to best mimic experiment and to minimize computational 

artifacts related to the singularity at ∆=0.  This component of the modeled signal shows a 

slow, monotonic increase in the excited state population, just as one would expect from a 

several picosecond transform limited pulse.  When the resonant and nonresonant 

components of the model are added together, they closely follow the experimental signal, 

as shown in Fig. 4.6b.  A similar analysis was performed on the results using phase jump 

spectra with 0 radians relative phase, with similar outcomes, further supporting the 
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validity of this model.  In future work, the effects of changing the energetic spacing 

between states will be used to experimentally verify the bandwidth considerations 

presented earlier. 

 We have shown the ability to independently implement the coherent control of 

both the population transfer coefficients and quantum interferences to two states in a 

superposition.  Additionally, we have shown that the optimal pulse shape for transient 

population transfer in the weak field regime is characterized by nonresonant wavelengths 

that are shifted by π/2 and -π/2 radians relative to the resonant wavelengths.  Using a 

simple model based upon the assumption that an ultrafast transition can be described by a 

collection of driven oscillators, we have quantified the degree to which the two states in 

the superposition can be independently controlled.  This work should be instrumental for 

designing coherent control pulse schema and for understanding solutions found by 

various learning algorithms. 
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Chapter 5  
Dynamic Phase Control 

 

5.1 Introduction 

The study of coherent control to manipulate molecular systems has 

generated numerous tools that can be useful for directing a system under optical, 

especially ultrafast, excitation[12, 13, 22, 26, 32, 50-57].  The tools of coherent 

control may be applicable to quantum computing, where superpositions of 

quantum states, or qubits, are used to perform computational operations[58].  

Crucial to being able to perform quantum operations is the ability to manipulate 

individual states within qubits.  Basic computations have been performed on spin 

systems using Nuclear Magnetic Resonance with considerable success[59-62].  

Optically manipulated systems using trapped atoms and ions also show promise 

for quantum computation by using narrow bandwidth lasers to resonantly control 

particular transitions between states[63, 64].  Wide bandwidth, ultrafast pulses 

have been proposed as a means to implement quantum computational operations 

using the relatively dense states inherent to single quantum dots and even 

molecules[32, 54-57].  Given the relatively short decoherence times (<100 ns) of 

these more complex systems, the use of ultrafast laser sources is valuable to 

perform sufficient numbers of operations for meaningful computations.  This 

chapter explores a mechanism for using ultrafast pulse shaping techniques to 

manipulate individual states in a molecular superposition, specifically multiple 
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rotational states in an excited electronic state of the lithium dimer.  As an example 

of using nonresonant frequencies to control the amplitude of molecular rotational 

states, a transient Z-gate is implemented.  Using an ultrafast pulse with sufficient 

bandwidth to encompass resonant transitions to two excited states, one state of the 

two state superposition will have its sign unchanged while the other will undergo 

a sign inversion.  The operation is transient in nature, so it can not be used for 

actual computation, but the results illustrate new possibilities of using optical 

pulse shaping techniques for individual state manipulation. 

In the previous chapter, it has been shown that resonant frequencies can be 

used to control the phases of states involved in a wave packet[7, 48], and it has 

also been shown that nonresonant frequencies can be used to transiently 

manipulate the absolute amplitude of resonant transitions, even in the weak field 

[33, 65].  One additional aspect of transient, ultrafast control of wave packet 

phases has not been demonstrated: i. e. the transient phase of a wave packet can 

be controlled by using nonresonant frequencies.  As in any first order process, 

though, the final wave packet phase and amplitude at long times are determined 

by the resonant frequencies, as is expected[12].  This will be demonstrated by 

observing the coherence only portions of the signal as written out in Eq. (4.4c) 

We show in this chapter that the wave packet phase can be induced to 

undergo a π phase shift at time zero relative to long times.  Assuming that one 

contributing state in the superposition has a constant phase at all times, the signal 

shows a change in sign because of a transient sign inversion of the second state.  

This dynamics is accomplished by summing resonant and nonresonant 
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contributions with the same sign for one state while summing resonant and 

nonresonant contributions with opposite sign for the other.  The amplitudes of the 

relative contributions of each effect are manipulated so that the nonresonant 

contribution dominates at short times for the opposite sign but disappears at long 

times.  This process of inverting the sign of one state of a superposition while 

leaving the second unaltered is characteristic of a quantum computational Z-gate, 

which in this case is constructed in a transient fashion. 

 This example of controlling the dynamic phase of a wave function in the 

weak field regime provides a rather clear illustration of the limitations and 

possibilities of precise control of molecular systems.  As long as the intensity of 

the electric field is weak enough to disregard intensity dependent Rabi oscillation 

effects, pure phase shaping of the ultrafast pulses fully controls the dynamics of 

the effects observed.  In Sec. 5.2, a theoretical framework for these experiments is 

presented using first-order perturbation theory.  In Sec. 5.3 is presented a 

categorization of the resonant and nonresonant effects that are used as tools in 

these experiments.  Finally, experimental results are presented, discussed, and 

quantified in Sec. 5.4.   

5.2 Theory 

This chapter develops a method to induce a transient sign change in one state of a 

two state superposition, or wave packet, using language consistent with the 

formalisms of quantum computing.  The wave packet consists of two states that 

are excited coherently, so that: 

 ( ) ( ) 21)(0)(' 210 tctctct ++=Ψ ,    (5.1a) 
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where c0(t) is the launch state wavefunction amplitude, c1(t) and c2(t) are the 

complex excited state wavefunction amplitudes to be described below, and |0>, 

|1> and |2> are the time dependent rovibrational wavefunctions [i. e. 

( ) ( ) tieRtR 1,1,,1 ωθθ = ] in the superposition [see Fig. 5.1].  The detection 

scheme is only sensitive to |1> and |2>, so the effective wave packet can be 

reformulated as 

 ( ) ( ) 21)( 21 tctct +=Ψ .     (5.1b) 

As described previously[33, 48], the photoionization signal using parallel, linear 

pump and probe polarizations can be written as 

( )[ ]S t pr c t pr c t pr pr c t c t t t( ) ( ) ( ) ( ) ( ) cos≅ + + +1
2

1
2

2
2

2
2

1 2 1 22 ∆ ∆ω ϕ , (5.2)  

where the only change from Eq. (4.4a) is the explicit time dependence of ∆ϕ(t).  

Since the multiphoton ionization pathway from the launch state (pr0) is weak,  

pr0<<pr1, pr2, so all launch state terms are left out of the signal, and the time 

dependent signal only shows the dynamics of the excited states.  

 In these experiments, the probe step consists of an ultrafast pulse of a 

different color (645 nm) than the pump pulse (801 nm) [33] so as to avoid any 

ambiguities in the contributions to the signal when the probe comes before the 

pump.  With the 645 nm probe pulse, the probability for a probe-pump (i. e., t<0) 

ionization pathway is below the noise level, allowing time dependent ionization to 

occur only at positive time delays.  This allows the transient populations and 

coherent oscillations to be measured reliably around t=0. 

In Eq. (5.2), the cn(t) factors have the same functional form as Eq. (4.2), 

with nonresonant contributions to the coefficient being ±π/2 out of phase with  
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Figure 5.1. States involved in excitation scheme.  A cw laser excites from the X 
electronic state to a pure launch state (state |0>) on the A electronic state.  A wide 
bandwidth 801 nm ultrafast pump pulse excites a superposition of states (states 
|1> and |2>) on the E electronic state, which is subsequently ionized by a time 
delayed 645 nm ultrafast probe pulse.   
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respect to the resonance and with a 1/∆ dependence.  Notice that these effects 

result in a complex amplitude cn(t), which under the conditions imposed in these 

experiments will remain primarily real.  The manner in which the various 

contributions interact is explored in the next section where it is demonstrated how 

to change the wavefunction sign. 

In this chapter, a transformation of the qubit in Eq. (5.1b) is 

mathematically equivalent to a quantum computational Z-gate.  Using a matrix 

formulation, the action of the ultrafast pulse on the prepared superposition 

transforms the system as a single qubit Z-gate: 

 
( )
( )

( )
( )














−

≈







ic
ic

fc
fc

2

1

2

1

10
01

.     (5.3)  

First, a superposition is prepared such that at t=0.0 ps, the two excited states have 

amplitudes of opposite sign so that c1≈1, and c2≈-1.  The electric field then drives 

the system so that the sign of c2 changes, leaving c2=1.  Although this 

transformation can be analyzed in terms of a series of three correlated pulses (i.e. 

pulses with a defined relationship between the carrier frequency phases), it will be 

explained in terms of the spectral contributions to the signals, as given in Eq. 

(4.2).   

 

5.3 Experiment 

In the experiments described in this chapter, the experimental setup is the same as 

chapter 4.  What are varied are the pulse shapes that are investigated as well as the 

analysis of the data.  As a result, this section will focus on the basics of different 
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types of excitation mechanisms and pulse shapes, as if they were simply 

experimental tools.   

 To investigate phase mask effects, the available spectrum is defined as 

consisting of two spectral channels separated at the energetic midpoint between 

the two resonant transitions.  A global phase offset can be added to the channel 

for state |2> in order to control the long time wave packet phase.  Within each 

channel, i. e. for each state, resonant and nonresonant contributions to the excited 

state wave function coefficient are independently controlled.  See Fig. 5.2 for one 

phase mask that is used to add the resonant and nonresonant contributions of the 

excited state coefficients along with the corresponding observed time domain 

evolution.  In Fig. 5.2a, it is shown that a small bandwidth region around each 

resonance (~8 cm-1 each) is assigned a phase halfway between the positive and 

negative detuned nonresonant frequencies.  The effect of these narrow bandwidth 

regions is a monotonic increase in the excited state coefficient, as shown by the 

triangles in Fig. 5.2b , taken with magic angle probe so there are no wave packet 

recurrences.  This will be referred to as the resonant contribution.  The applied π 

phase shift between positive and negative detuned frequencies around each 

resonance compensates for the intrinsic spectroscopic π phase shift of the 

nonresonant contributions above and below the resonances.  This allows the 

nonresonant contributions to cooperate on short timescales, as seen by the circles 

in Fig. 5.2b.  The solid line in Fig. 5.2b gives |c1(t)|2 + |c2(t)|2, which has been 

normalized.  Assuming that the crosstalk between control channels for the two 

coefficients is insignificant [see previous chapter][33], which is achieved when  
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Figure 5.2. Phase shaped population transfer traces.  Panel a: Phase mask used to 
maximize population transfer at t=0.0 ps.  The applied phase mask is given by 
( ), and resonances are marked with (X).  The applied phase masks near each 
resonance (i. e .in each channel) are identical, assuring that both states follow the 
same excitation pathway.  Panel b: Magic angle traces (to suppress the rotational 
quantum beats) using the applied phase mask of panel a.  The solid line represents 
the total population transfer signal, the ( ) shows the resonant only contribution, 
and the ( ) gives the nonresonant contribution, which is just the difference 
between the two traces. 
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the two resonances are spaced far apart energetically, |c1(t)| ≈ |c2(t)|.  By taking 

the square root of the signal and renormalizing, a measure of each coefficient is 

obtained.  This signal shows that at the times of interest in this paper, t=0 and 

t=∞, |c1(t)| = 1.4 and 1.0, respectively.  This information will be used later to 

quantify the manipulations of coefficient c2(t). 

 Figure 5.3 is a schematic diagram of the signed amplitude [i.e., cn(t), not 

|cn(t)|2] of the excited state coefficients.  The traces in Fig. 3a-b are calculated 

from parameters of the square root of the cooperative signal as described above.  

Given that these contributions add to yield the amplitude of cn(t), the resonant and 

nonresonant effects within each channel can be subtracted as well as added.  This 

is done by multiplying either the resonant or nonresonant contribution by -1.  

Fortuitously, in the complex plane, multiplication by -1 is identical to the addition 

of π phase, which is accomplished by the application of π phase to the appropriate 

pump wavelengths.  As can be seen in the modeled coefficients in Fig. 5.3b, 

simply subtracting the nonresonant contribution from the resonant gives a value 

of -0.7 for c2(0).  In these experiments, state |1> is manipulated to be a sum of the 

resonant and nonresonant contributions with the same sign, while state |2> 

consists of a sum of contributions with opposing signs.  Since the coefficient for 

|2> reflects a difference, the absolute amplitude of this negative coefficient can be 

increased in one of two ways: by increasing the negative part or by decreasing the 

positive part.  Here, the positive contribution due to the resonant frequencies has 

been time shifted by 1.0 ps by applying a simple linear phase mask to the resonant 

regions [solid line in Fig. 5.3a] with the nonresonant contribution unaltered.  To  
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Figure 5.3. Resonant/nonresonant interaction scheme for inducing sign inversion.  
Panel a: Calculated resonant and nonresonant contributions to the population 
transfer.  The solid line is the resonant contribution time shifted by 1.0 ps.  The 
( ) and ( ) reflect the nonresonant contribution for states |1> and |2>, 
respectively, when inducing a sign inversion.  Panel b: Total excited state 
coefficient evolution using contributions from panel a.  The ( ) show the time 
evolution for state |1>, and ( ) shows the time evolution for state |2>.  Panel c: 
Experimental photoionization traces for a single state with a phase mask that adds 
resonant and nonresonant contributions ( ), and a phase mask that subtracts the 
resonant and nonresonant contributions ( ).  Note that the photoionization 
correlates with the square of the amplitude coefficients. 
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demonstrate the effects experimentally, each type of phase mask was applied to a 

pulse exciting the vE, JE=7, 39 state, and the results are shown in Fig. 5.3c.  The 

light near state vE, JE=7, 41, spaced over 62 cm-1 away, was attenuated to make 

sure that it was not excited.  Excitation with the additive phase mask shows the 

expected transient peak at t=0.0 ps.  Excitation with the subtractive phase mask 

shows the photoionization goes nearly to zero at 0.42 ps.  It is at this time that the 

sign of the coefficient inverts and the phase quickly changes.  These traces show 

the total photoionization, so they actually reflect |c(t)|2, but it is quite clear from 

the data that the subtractive phase mask changes the coefficient sign of this 

isolated state. 

 

5.4 Results and Discussion 

 To serve as a reference, a case where the dynamics of the population 

transfer is controlled identically for both states involved in the wave packet is 

shown in Fig. 5.4 {see [33]}.  Here, the resonant and nonresonant contributions to 

the signal are added together with the same sign for both states |1> and |2>.  The 

upper part of Fig. 5.4a shows that there is a peak in the excited state coefficients 

at t=0.0 ps.  The difference between the full signal and the excited state 

coefficient signal yields purely the coherence signal, which is shown as the circles 

in the lower part of Fig. 5.4a.  This is obtained from parallel and magic angle 

pump-probe polarization signals, respectively.  Notice that the coherence signal 

only appears after the excited state coefficients become nonzero (i.e. after t=-1.0 

ps), and that it has an overall constant temporal phase of π radians. 
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Figure 5.4. Phase evolution using the same phase mask for each resonance.  Panel 
a: Pump-probe signals using phase mask of Fig. 5.2.  Total signal ( ) and 
population transfer (solid line) traces are shown on the top.  Also shown is the 
coherence-only signal ( ) as well as a single cosine fit (dotted line).  The 
coherence-only signal and fit have been vertically offset for visibility.  Panel b: 
Instantaneous wave packet phase.  The maxima and minima of the coherence-only 
signal are compared to the fit to generate the instantaneous phase.  The wave 
packet phase remains relatively constant from the onset of the signal until long 
times. 
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To show that the phase of the wave packet oscillation remains constant 

during the population transfer process, the signal up to 6.0 ps pump-probe delay 

was compared to a cosine wave that is generated to fit the coherence signal 

between t=6 ps and t=30 ps.  The signal is fit only at times after 6 ps to avoid 

potential uncertainties introduced by a changing wave packet phase during the 

population transfer process.  The maxima and minima of the coherence signal are 

compared to the fit, and the time offset of each peak relative to the fit is used to 

determine the instantaneous phase, plotted in Fig. 5.4b.  As is evident in Fig. 5.4b, 

the phase shift of the experimental trace is centered around 1.16π ± 0.25π 

(maximum range) radians over all time delays up to 6 ps.  This comes as no 

surprise, since no effects have been introduced to change the instantaneous wave 

packet phase. 

The case of subtracting the nonresonant contributions from the resonant 

contribution is the main point of this paper and is shown in Fig. 5.5.  The phase 

mask that is used to induce a sign change in state |2> is shown in Fig. 5.5a.  Note 

that the phase applied to the nonresonant contributions around |1> is not changed 

from the additive case, as shown in the previous section.  In contrast, the phase 

applied to the nonresonant contributions around |2> is inverted; the nonresonant 

contributions have an additional π phase shift relative to the resonant ones, which 

is equivalent to a multiplication by -1, as explained previously.  The 

corresponding signal traces from Fig. 5.5b show the expected population peak 

around t=0.0 ps, just as when the contributions were added together.  Note that 

this trace must remain positive, since the observed signal is a sum of squares for  
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Figure 5.5.  Sign inversion wave packet data.  State |1> is programmed to behave 
the same as in Fig. 5.4, but state |2> is programmed to change sign.  Panel a: 
Phase mask applied to induce sign inversion.  The applied phase is given as ( ), 
and the resonances are given by (X).  Notice that the relative phase between 
resonances is 0.0 radians.  Panel b: Pump-probe signals using the phase mask of 
panel a.  Population transfer (solid line) trace is shown in addition to the 
coherence-only signal ( ) as well as a single cosine fit (dotted line).  The 
coherence-only signal and fit have been vertically offset for visibility.  Panel c: 
Instantaneous wave packet phase from onset of excited state population.  The 
wave packet phase undergoes a π shift from t=0.0 ps to t>1.0 ps.   
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both states |1> and |2>.  A critical difference in this case occurs in the coherence 

only portion of the signal, which contains information about the wavefunction 

sign.  In Fig. 5.5b it is apparent that around t=0.0 ps, the quantum beat portion of 

the signal exhibits a phase of ~π even though the relative phase between the 

resonant frequencies is 0.0 radians.  The instantaneous phase graph of Fig. 5.5c 

displays a π phase shift in the region around t=0.0 ps relative to t>2.0 ps.  This 

shows that there is indeed a temporally dynamic phase of one state in the wave 

packet relative to the other.  In fact, it shows that the sign of one state has changed 

temporarily relative to the other. 

A full discussion of the effects seen here can not be made without a brief 

mention of the nonidealities at play in this pulse shaping scheme.  As was 

mentioned earlier, the resonant contribution to the signal was shifted to a more 

positive time to minimize the interactions between it and the nonresonant 

contributions.  An example when the nonresonant contribution to the signal is not 

shifted in time is shown in Fig. 5.6.  It is quite clear in this figure that the phase 

deviates substantially from either 0 or π phase.  The dynamics at play here are 

highly sensitive to the positions of the resonances relative to the cutoffs between 

those spectral regions treated as “resonant” and “nonresonant.”  Within the 

“resonant” portion of the bandwidth, there are variable amounts of positive and 

negative detuned wavelengths that have no compensating phase added.  The net 

effect of this is that the instantaneous phase of the nonresonant contribution is not 

necessarily zero or π.  When this nonideality interacts with the transiently 

prepared state, there can be a large shift in instantaneous phase, as demonstrated  
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Figure 5.6: Sign inversion wave packet data without time-shifting the resonant 
contribution.  All symbols are the same as Fig. 5.5.  Notice the deviation in 
instantaneous phase away from 0 or π phase at short times.  Also notice that the 
oscillation amplitude fails to approach zero between 0.0 and 2.0 ps. 
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in Fig. 5.6b.  For this reason, the instantaneous phase is most predictable as the 

resonant and nonresonant contributions are separated in time. 

 Around t=0.0 ps, when the sign of the wave function for state |2> is 

inverted from that expected for the purely resonant phases, there is a certain 

degree of destructive interference in the contributions to the signal.  By 

performing Wavelength Subtraction Spectroscopy (WSS) with the shaped pulses, 

a measure of the relative contributions of the various spectral contributions can be 

made.  The traces shown in Fig. 5.7 illustrate destructive interference at play 

around t=0.0 ps for state |2>.  The data were acquired by setting the pump-probe 

delay to a specific time delay, either 6.0 ps or 0.0 ps, with either unshaped or 

shaped pulses, respectively, and attenuating the light imaged onto one pixel at a 

time.  The circles in Fig. 5.7 show the WSS spectrum for unshaped pulses at a 

pump-probe time delay of 6.0 ps.  The trace shows a narrow bandwidth of 

contributing pixels, as one would expect since resonant frequencies determine the 

ultimate behavior of each state at long times in the weak field limit.  The 

approximately two-pixel bandwidth is primarily an effect of spot size on the 

pulseshaper and not intrinsic transition bandwidth.   

The squares show the spectral contributions to the signal at t=0.0 ps for 

both states |1> and |2> using the phase mask of Fig. 5.5a.  The overall lineshape 

for state |1> only partially reflects the 1/∆ behavior expected from Eq. (4.2), but it 

unambiguously shows an increase in the contributing bandwidth.  The increase in 

effective bandwidth is attributed to the application of ± π/2 phase to positively 

and negatively detuned frequencies.  The spectral asymmetry is a result of a  



 18 

58 60 62 64 66 68 70 72 74 76 78 80 82

-1.0

-0.5

0.0

|2>

si
gn

al
 c

on
tri

bu
tio

n 
(a

rb
. u

ni
ts

)

Pixel number

|1>

 
 

 
Figure 5.7:  Wavelength Subtraction Spectroscopy traces for shaped and unshaped 
pulses.  Here, the signal reflects the change in photoionization relative to 
background.  The ( ) is the WSS photoionization spectrum for an unshaped pulse 
at a fixed pump-probe delay of greater than 6.0 ps.  The observed linewidths 
represent the resolution of the pulse shaper.  The ( ) show the WSS 
photoionization spectrum for the phase mask of Fig. 5.5a at a fixed pump-probe 
delay of 0.0 ps.  The ( ) spectrum around pixel 65 shows the effect of adding 
resonant and nonresonant contributions, and that around 75 represents subtracting 
resonant from nonresonant.  Note the increased linewidth of the shaped pulses, 
and the increase in signal while blocking pixel 74. 
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combination of diffraction effects in the SLM and an asymmetric laser pulse 

spectrum.  The WSS spectrum at t=0.0 ps for state |2> similarly shows that there 

is an increase in the contributing bandwidth relative to the long time delay.  More 

interestingly, the results show that blocking the resonant wavelength actually 

increases the signal at t=0.0 ps, indicating a destructive interference.  Even 

though the lineshape remains ambiguous, the increase in signal by blocking the 

resonant frequency on pixel 74 relative to the baseline is unambiguous.  Since the 

wave packet signal at long times consists of recurrence oscillations with a phase 

offset of approximately zero, the resonant contribution to the signal can be 

concluded to have a positive sign relative to state |1>.  This suggests that the total 

wave function coefficient for state |2> around t=0.0 is negative, in agreement with 

the wave packet phase data. 

 The results can be quantified in terms of the Z-gate representation as in 

Eq. (5.3), with the initial state taken to be the superposition at t=0.0 ps, and the 

final state taken to be the superposition at t=∞: 
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where resi(t) and nonresi(t) are the resonant and nonresonant contributions to state 

i at time t.  The off diagonal elements are a result of cross-talk between control 

channels which have previously been quantified with respect to the resonant 

contribution to the coefficients[33].  These off diagonal elements are essentially a 

measure of the degree to which the dynamics of each state can be independently 



 20 

controlled.  The diagonal elements of Eq. (5.4a) can be taken directly from the 

experimental data.  The first diagonal element is determined to be 0.71, based 

upon the data from Fig. 5.2.  The second diagonal element can be determined 

from the coherent oscillation amplitude shown in Fig. 5.5.  Around t=0.0 ps, the 

peak-to-peak amplitude of the coherent oscillation is approximately 1.1 times 

greater than that at long time delays.  Given that the coherent oscillation 

amplitude is proportional to |c1||c2|, and that |c1|≈1.4, then |c2(t=0)| ≈ 0.79|c2(t=∞)|.  

This gives a value of -1.3 for the second diagonal element of the transient Z-gate 

matrix, to yield an experimental transformation of 

( )
( )

( )
( )














±−<

<±
=








ic
ic

fc
fc

2

1

2

1

2.03.11.
1.2.07.0

.    (5.4b) 

Ideally, as long as a phase of ± π/2 is applied to the various nonresonant 

contributions to the wave packet, there will only be an addition or subtraction of 

those components relative to resonance, so the matrix components in this case can 

be assumed to have very little imaginary component.  In other words, all 

contributions to the signal have been manipulated to have phases of either zero or 

π, which lie along the real axis of the complex plane.  Experimentally, we observe 

the phase to be centered around zero or π, but limitations in the instantaneous 

phase detection introduce substantial error, see Fig. 5.5.  

The instantaneous wavefunction phase could be better controlled and 

determined if the energy spacing between states were greater.  The ability to 

control one state versus another increases as the state spacing increases as a result 

of the intrinsic 1/∆ Rabi oscillation amplitude of Eq. (4.2)[33].  In the current 
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case, state |1> is used for a type of heterodyne detection of the phase of state |2>, 

where the first state is used to serve as a reference for the second.  The 

interference between |1> and |2> permits effective viewing of the phase of state 

|2>, but only at the maxima and minima of the interference signal, giving a data 

point every 2/ω12 ps, where the state spacing ω12 is given in units of THz.  With 

the current state spacing of 42 cm-1, one data point is retrieved every 0.3 ps, which 

is nearly half of the timescale over which the phase of state |2> changes from π to 

0 radians.  Increasing the state spacing, or increasing the coherent oscillation 

frequency, will provide a more accurate probe for how the phase change occurs.  

Additionally, a more rapid coherent oscillation will provide a more accurate 

amplitude of the coherent oscillation. 

In this chapter, we outlined a system for temporarily switching the relative 

sign of one state in a superposition while keeping the sign of a second state 

constant.  We showed that this can be done by simply using weak field, phase 

shaped ultrafast pulses.  Additionally, we showed, using established spectral 

techniques, that the resonant and nonresonant contributions to a specific transition 

can be programmed to add together or to work in opposition on short timescales.  

This work expands upon established methods for controlling transient processes 

in molecular systems and presents a case where both the phase and amplitude of 

an excited state depend upon more than resonant frequencies. 

  
 



 22 

Chapter 6  

Strong Field Population Control: Theory and Experiment 
 

6.1 Introduction 

Ultrafast lasers have come to be used all over the world to study chemical 

and physical dynamics on the shortest of timescales.  With the short timescales 

inherent to ultrafast lasers often comes high peak laser power.  This can 

sometimes be problematic, since a system response to a strong field, such as that 

produced for a short time by an ultrafast laser, can cause interesting, or 

confounding, effects.  Among these effects are multiphoton absorption[6, 20, 23], 

transition saturation effects[66], ultrashort X-ray generation[26, 67], or even 

nuclear fusion[68, 69].  Before the advent of ultrafast lasers, studies into strong 

field dynamics with nanosecond lasers have illuminated several of the same 

processes now also observed by ultrafast lasers[5], and there have even been 

examples of coherent control using cw lasers[36].   

The study of wave packet dynamics and coherent control has a fairly 

broad base with respect to weak field processes where the outcomes are 

conveniently described using perturbation theory[9, 12, 17, 18, 70, 71].  There is a 

well established formalism for describing the response of molecules in the 

stronger field regime using the dressed state approach[36].  Somewhere in 

between these two regimes lies what would be considered stronger than 

perturbative, but which is not conveniently described using the dressed state 

approach.  This chapter will investigate this middle ground, first theoretically and 

then experimentally.   
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One of the major goals of the analyses and experiments described here is 

to verify the complete depopulation of a single state in a molecule.  This has been 

shown in many types of regimes, with and without pulse shaping[5, 36, 72].  

Besides dynamic processes such as population inversion in lasers, stable 

population inversion can be seen in isolated systems with the application of a 

single pulse, producing Rabi oscillations in an excited state population[5].  

Besides simple atomic systems, this effect has been observed or predicted in 

complex systems such as semiconductor quantum dots or molecules[52, 73].  

With a little bit higher fields and even rudimentary pulse shaping, full population 

transfer to an excited state via Rapid Adiabatic Passage or to a third state with 

stimulated Raman via adiabatic passage (STIRAP) has been demonstrated on 

numerous systems[36, 66, 72, 74-79].  Often, in these cases, the systems are 

characterized by a single resonance or a series of resonances that are well 

separated in energy.   

One way the theory and experiments in this chapter will expand upon this 

previous groundwork is that all transitions are embedded within the spectrum of a 

single broadband laser pulse, introducing a level of richness only recently 

addressed[23, 75, 80, 81].  Another is that these experiments are rotationally 

resolved, allowing a precise level of bookkeeping.  Since the theory and 

experiments described here focus on second and third order coherences (i. e. 

involving two or three photons, respectively), some similar types of coherences 

can be created using various four wave mixing techniques[39, 82].  Two traits 

separate these experiments, however.  First, these experiments will show evidence 



 24 

for a depopulation of states, and second, these methods can be extended to study 

an arbitrary order of coherence without any intrinsic changes in methodology.   

The successful development of this higher order pumping could be a 

means for easily selecting rotational quanta by coherent control.  It is also a good 

model system for studying moderately dispersed processes such as population 

transfer among several vibrational states in a real molecule[24, 83, 84].  In fact, 

the system described here simply represents the dynamics at play for a single 

rotational state in a typical ground state ensemble—this study provides a basis for 

understanding the limitations of population transfer within an ensemble of 

rotational states.  The techniques described in this chapter create what is 

essentially a rotational analog to vibrational ladder climbing[72, 78, 84-87].  In 

essence, the lessons learned here can eventually be used to generate highly 

excited rotational states, but with state specificity.  One other important 

application of the lessons learned here is the potential for manipulating quantum 

information systems.  In some material systems (such as trapped ions), series of 

unshaped population inverting pulses are used to switch qubit states, but an 

alternate method of population switching based upon ladder climbing with 

chirped pulses is presented here[63].  

This chapter will only focus on the requirements that need to be met to 

measure state-resolved population transfer.  We study an optically coupled system 

consisting of a progression of J values for a single vibrational level on each of two 

electronic states, so that the total wavefunction consists of a superposition of 

optically excited J states on the A1Σu
+ and E1Σg

+ electronic potential energy 
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curves.  Experimentally, to measure populations, quantum beating between states 

will act as the primary sensor.  One difficulty with excitation by higher fields is 

that the strong excitations on a theoretically isolated system may induce too many 

transitions.  To see state resolved population transfer within the coupled system 

requires that the finite starting population not spread out among many different 

rotational states in the coupled system via optical pumping.  This process of 

spreading out of wave function via optically induced ∆J=±1 transitions will be 

referred to as wavefunction dissipation.  This wavefunction dissipation reduces 

the amplitude of a single observed quantum beat between two states since each 

individual state will have a reduced population, even if no population is lost out of 

the target coupled system.  A second requirement for observation is that 

population not get optically excited out of the coupled system; this will be 

referred to as wavefunction depletion since the population in the coupled system 

decreases.  In a molecule exposed to strong field laser pulses, processes such as 

multiphoton ionization and excitation to continuum states can play a significant 

role in population losses.  Besides dissipation and depletion effects, certain 

physical phenomena such as the spatial beam profile and molecular alignment 

make observing oscillations in population as a function of electric field strength 

difficult[88-90], since these effects introduce inhomogeneities in the overall 

transition strength. 

This chapter will begin with a theoretical treatment of the background 

issues required to consider strong field dynamics.  The first section focuses on 

calculations related to the effect of field strength on the populations in the coupled 
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system.  The calculations will start with a simple model, with the model 

complexity increasing step by step to account for experimental nonidealities.  It 

will be shown that as the field strength increases, the degree of dissipation of the 

population over various J states increases to create a superposition of many J 

states at surprisingly low field strengths.  Next, the influence of a spatially 

nonuniform electric field, as expected by a Gaussian beam, will be addressed, as 

well as the effect expected from using a specific probe beam profile.  The 

reduction in the visibility of molecular Rabi oscillations because of alignment 

effects will also be discussed.  Following this theoretical section, the field strength 

dependence of rotational quantum beats will be analyzed, and an example of wave 

packet dissipation will be shown.  Depletion mechanisms are proposed, and a 

means to overcome this via spectral filtering is tested.  The possibilities of 

controlling time and field strength dependent dynamics will be considered in both 

the theoretical and experimental sections with a simple case of implementing a 

Rapid Adiabatic Transfer Passage (RAP) using a chirped pulse[91], with the 

secondary goal of finding a population transfer scheme that shows robustness 

with respect to electric field strength. 

 

6.2 Theory 

This section will focus on the interactions between an electric field and 

two optically coupled progressions of J states.  The goal of this theoretical section 

is to define and then control wavefunction dissipation.  First, the theoretical 

formalism will be established, followed by an analysis of the response to a strong 
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ultrafast laser pulse of a system with numerous (~15) transitions embedded within 

the laser bandwidth.  Here, the term strong refers to a breakdown of the normal 

weak field assumption that the population in the launch state remains near unity.  

Instead, the observed population of the launch state goes through a series of 

decaying oscillations as the total wavefunction dissipates to larger and larger 

numbers of J states on the A and E potentials.  This will be followed by an 

analysis of expected trends in electric field strength dependence assuming 

selected probe pulse characteristics and alignment issues.   

 

6.2.1 Spatially uniform fields 

The dynamics used to model the system under the assumption of a 

spatially uniform laser intensity are summarized below.  First, it is assumed that a 

pure launch state is used (vA,JA=11,28), as in all previous chapters.  Disregarding 

depletion of the population out of the A1Σu
+(vA=11) and E1Σg

+(vE=9) vibronic 

states, the time dependent wave function has the following form: 

( ) ( ) ( )
2

00

∑∑
∞

−=

∞

−=

=Ψ
Jj

j
Jj

jjj tcJtct ν
.    (6.1a) 

where each wavefunction jj Jν  represents one of the rovibrational 

wavefunctions shown in Fig. 6.1, and cj(t) represents the amplitude of each 

wavefunction.  It is instructive to note that all odd J states are on the E electronic 

potential, and all even J states are on the A electronic potential.  All J quantum 

numbers are offset relative to the launch state of J=28, so the summations go from 

-28 to ∞.  To reduce calculation times, the summations are over J=22-34, and P  
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Figure 6.1: Summary of resonant frequency positions.  Panel a: Energy levels 
considered in this theoretical treatment.  Resonant transitions are notated by their 
greatest proximity from the launch state of J=28.  For example, a transition 
between J=31 & 32 is noted 4 (32-28=4) regardless of whether it is a “pump” or 
“dump” process.  Panel b: Resonance locations as imaged onto the SLM.  The 
dotted line represents the Gaussian spectral envelope. 
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and R branch pump (and dump) transitions are notated relative to their greatest 

proximity to the J=28 state in J space.  In all of the calculations presented here, 

the wavefunction fails to dissipate to the J limit, justifying the J space truncation.  

Each of the coefficients cj(t) are calculated as 

( ) ( ) ( )∫ ∑
∞

∞−

∝
k

ti
jkkj

jketctdtitc ωσε     (6.1b) 

where the summation is over all states k, ε(t) is the electric field, σjk is the 

transition moment, and ωjk is the resonant frequency between any two of the 

coupled states.  With a typical minimum pulse length of ~150 fs compared to the 

optical cycle of ~2.87 fs, the slowly varying envelope approximation is applied, 

giving a temporally varying electric field as 

( ) ( ) ( ) ( )[ ]ttttENt FS φωε +≈ cos .     (6.1c) 

where |E(t)| is the pulse envelope, and NFS is a field strength normalization 

parameter, to be described below.  The time dependence of the frequency and the 

phase has been made explicit to account for pulse shaping situations.  Since only 

P and R branch transitions are strongly allowed between the A and E states, the 

oscillator strength varies only slightly with J (<5% for mJ=0)[92], so if we assume 

that all states are in mJ=0, σjk =δ(j, k=j±1).  Following the first few calculations, 

the mJ dependence of the transition dipole will be made explicit.  With the JA=28 

launch state, this selection rule establishes that all even J states are on the A state, 

and all odd J are on the E state.  The exploitation of the ∆J=±1 selection rule 

simplifies the above scheme to 14 coupled differential equations.  For a two level 

system, this dynamical model reduces to the classic Rabi formula: 
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 ( ) ( ) ( )( ) ( )[ ]∫ ΩΩ∆−∆=−= tdtctc egegegge
2222 sin11 εσ  (6.2a) 

 ( )[ ]22 ∆+∆=Ω εσ egeg ,     (6.2b) 

where ∆=ωeg-ω is the detuning away from resonance, and σeg is the transition 

moment from the ground to excited state[93].   

In the dynamics modeled here, we express the electric field as outlined in 

the literature[34], and summarized in Eq. (3.1a), with a central wavelength of 

801.7 nm and a Gaussian bandwidth of 9 nm, imaged onto the SLM over 35 

pixels with a single frequency spot size of 1.7 pixels, with all extents expressed as 

FWHM (see Fig. 6.1).  In many of the calculations and experiments in this 

chapter, the system dynamics as a function of the normalized field strength, NFS 

from Eq. (6.1c), are explored.  The excitation pulses are normalized so that for a 

two level system [i.e. σ28,29=1, all other σjk=0, see Eq. (6.2)] with an unshaped 

pulse, the time integrated product of ε(t)σ28,29t=π holds for NFS=1.  The unit NFS is 

used instead of pulse area to avoid confusion with the beam size (see [5]).  Given 

that several of the calculations and experiments involve phase and amplitude 

shaped pulses, NFS for a shaped pulse is expressed in terms of the unshaped parent 

pulse.  This allows the comparison of shaped and unshaped pulses. 

In contrast to the two state calculation, when all of the strongly allowed 

transition moments (σJ,J±1) are set to 1, the wavefunction will dissipate to an 

increasing number of rotational states as NFS increases.  Figure 6.2 shows the 

results of this dynamical model as applied to this system for an unshaped input 

pulse.  In this calculation, probe beam and alignment effects have not yet been  
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Figure 6.2: Dissipation of wavefunction over various J states for mJ=0.  An 
unshaped spectrally Gaussian pulse is used, and the populations are normalized.  
In both panels, the launch state ( ), ∆J=±1 ( , ), ∆J=±2 ( , ), and ∆J=±3 
(solid lines) are included, along with the average of the shown E state populations 
( ).  Panel a: The t=∞ population distribution as a function of field strength 
normalization parameter NFS.  Panel b: The time evolution of the J-state 
distribution as a function of time for NFS=3.  Notice in both panels how states at 
+J and –J are approximately the same. 
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implemented.  The population transfer in this unshaped case shows similar 

dynamics as a function of both time and NFS, demonstrating oscillating 

populations.  First, the launch and ∆J= ± 1 states show an immediate onset of 

oscillatory behavior, with a phase shift between the two, and the oscillations for 

the ∆J=±2 and ±3 states show a delayed onset of oscillations.  This approximately 

means that starting with ∆J=0, population goes to ∆J=±1, then to ∆J=0, ±2, then 

to ∆J=±1, ±3, etc., all via ∆J=±1 transitions.  The J states more remote from the 

launch state (not shown) show a similar delayed onset of population followed by 

the expected oscillatory behavior.  Since all even states are on the A state, and 

odd states on E, this will produce oscillations in the population between electronic 

states, with almost complete inversion at high field strengths as all of the even 

(and odd, respectively) oscillations come into phase at the same field strengths.  

One interesting observation here is that the oscillation frequency for electronic 

inversion is twice that for an isolated two state system.  Of course, this is easily 

explainable because in the full model, each state gets depopulated via two 

channels, namely the P and R branch transitions. 

The observed signal is slightly more complicated than a simple 

observation of populations, since the observable is actually a quantum 

interference, or coherence, between states that share a common final state[33, 48].  

In the experimental system, photoionization occurs via a weak excitation to a 

narrow band of incoherently autoionizing Rydberg levels, converging on the v=0 

vibrational state of the ion[47].  Although multiphoton ionization out of the E 

state has been observed, the primary coherence producing mechanism involves a 
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single photon.  To observe a wave packet, this means that the observed wave 

packets will have a ∆J=2 component (i.e. JE=27 interfering with JE=29), as these 

states share the common final state of the average J between the interfering state 

via the ∆J=±1 single photon ionizing probe, which is accessible by half of the 

population from each of the interfering states.  Similar arguments suggest that the 

primary wave packets seen on the A state will have a ∆J=2, even though they are 

photoionized with at least two photons of the probe pulse which has a selection 

rule of ∆J=0, ±2[6, 94].  As applied to Fig. 6.2, these beats will follow pairs of 

populations that satisfy the ∆J interference requirements for a common final state.  

In an analysis of beat amplitudes as a function of pulse amplitude, the oscillatory 

behavior will be seen, with beats on the A and E states having a phase shift in 

their oscillations, like individual populations on the A and E potentials.  At lower 

pulse amplitudes, this behavior will be more complicated, but the qualitative trend 

remains. 

As will be discussed later, the ability to observe wave packet dynamics in 

the high field requires little dissipation of population within the coupled system of 

interest.  One potential method for minimizing this dissipation is to attenuate 

wavelengths of light that do not participate in the dynamics that one wants to 

investigate.  For this reason, it is useful to quantify the importance of various 

spectral contributions to the signal.  To perform this, WSS spectra were calculated 

for a variety of pulse amplitudes in a two level system, shown in Fig. 6.3.  The 

bottom of the figure represents the excited state population as it would appear in 

our current setup with the sequential attenuation of light on single pixels.  As  
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Figure 6.3: Calculated WSS spectrum as a function of normalized field strength 
for a two level system.  Here, NFS is equivalent to the total pulse area multiplied 
by π.  The figure shows the WSS spectrum based on the experimental traits of the 
pulse shaping setup, with a single resonance centered on pixel 63.  White 
indicates excited state population.  The population inversion seen while blocking 
pixel 63 indicates a nonresonant Rabi oscillation.  Note how, at the lowest 
powers, a notch in the excited state population appears when blocking the pixel 
63. 
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highly nonresonant frequencies are attenuated, we see no significant change in the 

excited state population: Rabi oscillations in the excited state population are 

observed.  As the resonant frequency is blocked (pixel 63), the population 

inversion occurs at NFS= 4 instead of at NFS=1, indicating that the Rabi 

oscillations have a frequency of approximately 8 instead of 2.  This is primarily a 

result of some resonant frequencies being imaged onto pixels adjacent to that 

where the spectrum is centered.  To try to get a more refined sense of what is 

happening near resonance, sub-pixel resolution on the SLM was assumed.  This 

calculation confirms that at relatively low powers, the population transfer 

dynamics can be considered almost as resonant processes.  Unless the electric 

field amplitude exceeds 4π, the effective bandwidth for each transition remains 

below 4 pixels.  This suggests the possibility of attenuating frequencies more than 

4 pixels from any resonance without concern for significantly changing the 

energy dependent dynamics.  Of course, as should be expected from previous 

chapters and other published work[6, 8], the highly nonresonant wavelengths 

become more important if the pulses are phase shaped, as will be addressed in 

future work not included here. 

 

6.2.2 Alignment effects 

An additional mechanism for limiting the visibility of Rabi-type 

oscillations is attributed to alignment effects, or mJ effects.  In all of the 

calculations in this and the previous section, it was assumed that mJ=0, which is 

not necessarily the case.  The presence of multiple mJ states in the initial 
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wavefunction will result in two different types of effects: dispersion of Rabi 

oscillation frequencies and a tendency to drive population toward high J.  The 

dispersion of Rabi oscillation frequencies stems from the polarization of the 

excitation laser.  Defining the laboratory coordinate relative to the excitation laser 

polarization, the transition strength for a parallel transition, such as between the A 

and E states, decreases as |mJ| increases[92].  In order to study this, the above 

model was modified to fully account for the presence of multiple mJ states: 
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where all terms are the same as Eq. (6.1) except the mJ quantum numbers are 

explicit.  The coupled equation scheme of Eq. (6.1c) does not change except that 

σjk is futher modified by Clebsch-Gordon coefficients coupling the various 

rotational states.  It should be noted that intrinsic to the transition strengths is the 

requirement that |mJ|≤J, so a transition from J,mJ=29,29 to J,mJ=28,29 has a 

transition strength of zero, since the 28,29 state does not exist.  Since the time or 

NFS dependence of population evolution show similar dynamics for an unshaped 

Gaussian pulse (see Fig. 6.2), the time evolution of the population dynamics will 

be shown here and inferred to reflect the NFS evolution.   

If multiple mJ states are populated, there will be multiple mJ dependent 

Rabi oscillation frequencies, as seen in Fig. 6.4.  Shown is the evolution of the 

launch state population for three selected mJ from a uniform distribution of mJ 

states under an excitation by a field with NFS equal to 2 with the transition dipole 

moment and electric field polarizations parallel to mJ=0.  At short times, all mJ  
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Figure 6.4: Evolution of J=28 population for various mJ states under excitation 
with a laser field with NFS=2.  mJ quantum numbers of 0, 14, and 28 are 
represented as the solid line, (+) and ( ), respectively.   
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states are equally populated, but at longer times the mJ distribution clearly 

deviates from uniform.  To describe the nature of the evolution of the mJ 

distribution, a measure of alignment (Al) for a specific J follows: 

( ) ( )∑∑=
J

J

J

J
m

mJ
m

mJJJ tcJtcmtAl
2

,

2

,)(    (6.4) 

where the cJ,mJ(t) coefficients describe J, mJ states, and the J in the denominator is 

included since the approximate angle of a single mJ state depends on J.  Assuming 

that the total observed population is an incoherent sum of mJ states, the presence 

of this distribution will reduce the depth of modulation of any observed Rabi-type 

oscillations and cause the molecules to come into and out of alignment as a 

function of time or NFS[89, 90].   

Figure 6.5 summarizes the population evolution as a function of time for 

J=28 and NFS=2.  In Fig. 6.5a, the limiting case of a uniform mJ distribution case 

shows a significant decrease (~20%) in the observed depth of modulation of the 

oscillations in population.  In experiment, the cw and probe lasers are most 

sensitive to small |mJ| for the same reasons cited above, in effect sampling small 

|mJ|, so the calculation was also performed assuming an additional alignment 

inducing laser.  The time dynamics of the J=28 population initially prepared by a 

weak field cw launch laser shows a depth of modulation of ~95% of the mJ=0 

case, also shown in Fig. 6.5a.  A second weighting laser (such as an ultrafast 

probe) will further sample small |mJ|, but subsequent calculations take a 

conservative approach and assume a single mJ sampling laser.  Pulse shaping 

strategies can be put into effect to account for this effective spread in mJ 

dependent transition strengths, and they will be analyzed in section 6.3.2.
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Figure 6.5: Effects of alignment on total population in J=28 state.  Panel a: total 
J=28 population as a function of time for NFS=2.  Circles represent the population 
with a uniform distribution of mJ starting states.  Plusses represent the J=28 
population assuming the presence of a mechanism that samples the mJ space—
such as a single weak probe pulse.  The solid line shows the evolution of the mJ=0 
state.  All populations have been normalized to a starting population of 1.  The 
inset expands the peak around t=50 fs.  Panel b: alignment as a function of time 
for J=28 state.  Circles and plusses indicate the same conditions as in panel a.  In 
the sampled case, the alignment more closely approaches zero, which is explained 
by preferentially sampling low |mJ| states.  The peaks around -20 fs represent 
times when population has been transferred out of the low |mJ| states, leaving 
primarily high |mJ|. 
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In accounting for the total mJ distribution, an interesting alignment trait 

comes out of the calculation.  Consider the J=28 launch state, for example.  Early 

in the evolution of its population, the first |mJ| states to be taken out of its total 

population will be parallel small, leaving large |mJ|, as is shown in Fig. 6.5b.  For 

NFS=2, the alignment, as defined by Eq. (6.4), goes through a maximum at t=-20 

fs, in effect creating an incoherent rotation, or wobble, as the incoherent sum of 

mJ states oscillates between a parallel and perpendicular net alignment.  Even in 

the presence of a low |mJ| weighting laser that preferentially aligns the population 

parallel to the laser polarization, this wobble still exists at short times.   

Alignment effects can also influence the preferred direction (+J instead of 

–J) of a transition with linear laser polarization, since we expect a selection rule of 

∆mJ=0.  Given this selection rule and the basic degeneracy limitation that |mJ|≤J, 

choosing a launch state of J=28 imposes the condition that |mJ|≤28 for J≥28 and 

|mJ|≤J for J<28, referred to here as population “degeneracy filtering”.  Figure 6.6 

shows that high J states are favored in this rotational system due to these 

degeneracy effects using spatially uniform pulses.  The time dynamics for the 

∆J=±3 (i.e. J=25&31) states under excitation with an NFS=2 pulse is shown in Fig. 

6.6a, with the J=25:J=31 population ratio equaling 0.81.  This ratio is very close 

to the ratio of the J state degeneracies between the states, but it should be noted 

that the population ratio does not rigorously have to match the ratio of J state 

degeneracies.  For example, after excitation using NFS=2 the +∆J:-∆J population 

ratios for the ∆J= ±1, ±2, ±3, ±4, ±5, ±7 states are 0.97, 0.95, 0.81, 0.90, 0.98,  
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Figure 6.6: Degeneracy dependent selectivity for high J vs low J.  Panel a: 
population evolution for J=25 ( ) and J=31 (+) for a pulse amplitude with NFS=2 
and an initially uniform mJ.  The final J=25:J=31 population ratio is about 0.8.  
Panel b: Ratio of the sum of all J state populations below the launch state versus 
those above the launch state as a function of pulse amplitude NFS.   
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0.98, and 0.94, respectively.  This deviation is primarily a result of the fact that 

this degeneracy filtering is occurring where |mJ| is large, and hence has a 

relatively weak transition probability.  As the optical transitions become stronger, 

the population ratio for those states with low J versus high J will decrease 

[Σ(J<28):Σ(J>28)], as shown in Fig. 6.6b.  Plotted is the ratio of the sums of 

populations for J<28 versus J>28, where it is shown that increasing NFS increases 

the selectivity to higher J.  In the figure, the low to high J ratio for low NFS 

approaches .965 and reaches 0.84 at NFS=5.  At lower NFS, the ratio is fairly 

insensitive to changes in the field amplitude since the primary states to be 

involved in a transition will have small  |mJ|.  The ratio of low to high J 

approaches the average ratio of degeneracies between the low and high J states, 

0.75, only at the highest powers.  This can only occur in a system that can be 

saturated, such as this case of a 15 J state model, illustrating a limitation of this 

model at the highest powers.  In the experimental system, since J can approach 

infinity, saturation will not occur, so the ratio of populations will remain above 

the ratio of J state degeneracy.  Additionally, our experimental laser fields only 

approach the equivalent of NFS=~2, reducing the importance of this effect.   

 

6.2.3 Spatially Inhomogenous Fields 

In the above analysis, a single value of NFS represents the strength of the 

electric field.  In experimental situations, a single value often fails to describe the 

electric field[88].  In a typical case, the laser beam used to excite any transition is 

not uniform, rather spatially Gaussian.  In our gas phase sample, the nonuniform 
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beam excites molecules in different regions of space.  The molecules respond as if 

the excitation comes from a number of independent lasers with varying powers 

since the molecules are basically uncorrelated with respect to our method of 

signal detection.  For this reason, the spatial extent of our laser beam will be made 

explicit in further calculations.  Since our signal is a result of a pump-probe 

process, the excitation produced by the pump laser gets spatially sampled by the 

non-uniform probe pulse, so that pulse will be included in the calculations.   

The spatial cross section of a Gaussian beam is described by the 

following: 

( ) ( )( )[ ]22
00 2ln/2exp FWHMRRNR FS −−= εε   (6.5) 

where NFS |ε0| is the normalized electric field amplitude at the center of the beam, 

the spatial extent R is relative to the center of the beam, and FWHM is the full 

width at half maximum of the beam radius.  This effective field amplitude then 

gets plugged into Eq. (6.1c) and Eq. (6.2) giving a spatially dependent Rabi 

frequency.  Since the signal has spatial dependence, each of these frequencies gets 

weighted by a radial factor R.  Now the time dependent wave function of Eq. 

(6.1a) contains an R dependence, and the overall signal is related to it: 
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Above, Pr(R t) simply refers to a spatial sampling condition fulfilled by the 

spatially inhomogenous probe pulse, and all summations are relative the launch 

state J0=28.  In this particular subsection, alignment effects will be ignored to 
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more accurately illustrate spatially specific effects.  Additionally, the detected 

signal is an incoherent integral over R since the ions are detected via an 

incoherent autoionization of weakly excited Rydberg states[47], so there will be 

no evidence for spatial coherences in R when taking the modulus squared of the 

wave function.  The R coordinate will only act as a weighting factor. 

In experiment, the probe pulse is approximately spatially Gaussian of the 

same size as the pump, but this assumption carries with it a few caveats.  The 

calculated dependence of the Rabi oscillation visibility versus the size of the beam 

in the probe step for a two level system is given in Fig. 6.7.  In these calculations, 

the diameter of the probe pulse changes relative to the pump pulse, but the 

integrated flux remains constant, as if the probe is focused relative to the pump.  

As the probe size decreases, the observed excited state population behavior 

evolves from a monotonically increasing type dynamic to a more oscillatory type 

dynamic.  This simply results from sampling a smaller range of field amplitudes 

of the pump pulse as the probe size decreases.  The limit of excitation with a 

uniform field would look similar to the smallest probe size, except that probe size 

would not affect depth of modulation of the Rabi oscillations.  On the other hand, 

using a detection scheme that does not sample a small volume in the pump beam 

would resemble the large probe limit, with virtually no depth of modulation of the 

NFS dependent Rabi oscillations.  An example of such a detection scheme would 

be in an experiment studying laser induced fluorescence with a single photon 

excitation. 
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Figure 6.7: Rabi oscillation visibility for various probe sizes.  The probe is 
assumed in all cases to have a constant fluescence, but changing relative focusing 
conditions.   The detected signal is further assumed to be linear in probe power.  
The full width at half maximum of the probe is given by w in units of the pump 
width.  
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To demonstrate the possibilities for using pulse shapes to control the 

dynamics of population transfer in this particular system, we examine chirped 

pulse excitation as a function of NFS.  The form of the basic wavefunction now 

contains aspects of Eq. (6.6b) and Eq. (6.3): 

( ) ( ) ( )
2

00

,,, ∑∑ ∑
∞

−=
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−= −=

=Ψ
Jj

j
Jj

j

jm
Jjjj tRcmJtRctR

J

ν ,   (6.7) 

where both alignment and beam inhomogeneity effects have been taken into 

account.  In these calculations, an alignment inducing (or mJ sampling) cw laser is 

assumed.  For a probe, a beam with the same spatial extent as the pump is 

assumed, and a single photon is used to photoionize all E (odd J) states, and two 

photons are used to photoionize all A (even J) states.  In experiment, the A state is 

photoionized via a two-photon process at approximately 75% of the efficiency of 

the E state since its signal reflects a smaller sampling region of the excitation 

region [see Fig. 6.10].  To account for this, the spatially integrated observed 

population for the A state is set to be 70% of an equally populated E state.   

Figure 6.8 shows several states’ population dependence on NFS using an 

excitation pulse with a chirp of 4500 fs2.  This chirp was chosen for its energetic 

robustness relative to other chirps not shown here.  This figure deviates 

substantially from the example of excitation with transform limited pulses.  First, 

recurrences in observed populations no longer exist except at fairly high NFS; 

instead the population transfers to the ∆J=2 state for a large variety of NFS[86].  In 

fact, at specific NFS values, there is essentially full population transfer between the 

launch and final states, but it is not completely visible in the presence of a 

nonuniform excitation pulse.  The populations of the ∆J= ±1 states show signature  
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Figure 6.8: Calculated populations as a function of normalized field strength for 
positively chirped pulse.  J0 indicates the launch state of J=28.  Note that all even 
J states lie on the A electronic state and odd lie on the E electronic state.  The 
chirp is set to 4500 fss.  The ∆J=-2 state is essentially zero at all NFS.  The E (odd) 
and A (even) states are probed by a beam with the same diameter of pump with 1 
and 2 photons, respectively. 
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dynamics of going through a maximum at fairly low NFS then slowly decaying to 

near zero, with a small recurrence at very high NFS, and the ∆J=-2 state gets very 

little population transferred to it at all times shown here.  Again, the only reason 

the ∆J=±1 populations do not go to zero is that the electric field is not uniform. In 

the case of a uniform electric field, the amplitude of all states except ∆J=2 will go 

to zero over a wide range of energies.  The mechanism behind this energetically 

robust process is that there are two sequential Rapid Adiabatic Passage events that 

are separated in time because of the overall chirp of the excitation pulse[52, 66, 

71, 72, 78, 86].  This effect has been shown in theory and in atomic excitation 

where only a single pathway is possible[95], and theoretically with respect to 

vibrational excitation[81]. Inverting the sign of the chirp will reverse the time 

ordering of the wavelengths in the pulse, subsequently inverting the Rapid 

Adiabatic Passage events, giving final state selectivity (not shown).  

 

6.3 Experimental Observations 

The goal of this section is the show dissipation of the wave function from 

a single rotational pair into a much more complex set of states, and then to control 

the dissipation.  Next, it is shown that different quantum beats have different 

electric field amplitude dependence, reflecting the order of the beats.  Finally, a 

sequential Rapid Adiabatic Transfer dynamical scheme is implemented.  

Selectivity between final state populations is shown to depend on the sign of the 

chirp.   
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To accomplish the experiments described here, the only change to the 

experimental setup relative to experiments described in previous chapters is that 

the pump and probe beams pass through a 25 cm focal length lens just at their 

input to the heat pipe.  This gives a spot size of approximately 100µm FWHM.  

For the pump beam, the average power in the heat pipe is approximately 200 mW.  

Given a pulse duration of approximately 200 fs, and with a repetition rate of 200 

kHz, the peak power density is approximately ~1011 W/cm2, several orders of 

magnitude greater than the weak field experiments described in earlier chapters.  

As it has been shown in the previous calculations, many of the effects that we 

expect to observe depend primarily on resonant wavelengths.  This allows us to 

attenuate much of the nonresonant pump light, resulting in a peak power closer to 

1x1010 W/cm2.  Still, this intensity will adequately induce Rabi oscillations as 

described above.   

As the power of the pump pulse increases, higher order states become 

populated at the expense of the population in the launch state.  One way of 

observing this is to identify quantum beats at new frequencies, as summarized in 

Table 6.1, and shown in Fig. 6.9.  In Fig. 6.9, the quantum beat spectrum for two 

different pump energies using the JA=28 launch state clearly shows the population 

of a new set of states when the peak pump power increases.  The high field trace 

shows not only the quantum beat between the JE=27&29 states, but also a set of 

beats between JA=28&30 and JE=29&31.  The JE=29&31 beat require at least a 

third order process to populate the JE=31 state, so its appearance at higher fields  
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Beat frequency 
(cm-1 . ±0.7 cm-1) 

Electronic  
state 

J 
states 

Beat  
Order* 

39.8 E 29-31 4 

42.5 E 27-29 2 

43.8 A 30-32 6 

44.8 E 25-27 4 

46.9 A 28-30 2 

50.0 A 26-28 2 

53.1 A 24-26 6 
Table 6.1: ∆J=2 Quantum beat frequencies for JA=24through 32. 
 
*Beat order is defined as the sum of the |∆J| of the states involved in the quantum 
beat relative to the launch state.  From Eq. (6.7), this means that the beat order is 
defined relative to NFS instead of pulse intensity.  
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Figure 6.9: Fourier Tranforms for quantum beats at two different peak field 
strengths.  The ( ) represent the FT for a peak pump power of ~108 W/cm2 
(unfocused beam), and the ( ) represent the FT for a peak pump power of ~1011 
W/cm2.  Notice the appearance of new beats in the stronger field case.  In the low 
power case, the A state beats were not observed due to insufficient probe power to 
drive multiphoton ionization.  At the high power case here, the low J beats 
(JE=25-27 and JA=26-28) are minimal due to spectrally weak probe light at the 
frequencies that photoionize these states, i.e. the optimal pulse for E ←A 
population transfer is slightly suboptimal for low J photoionization.  
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should come as no surprise.  An additional quantum beat at 44.8 cm-1 between 

JE=25&27 on the E state is sometimes present, but is not observed here for two 

reasons: the probe spectrum favors the higher J quantum beats, and the beat 

frequency slightly overlaps the JA=28&30 frequency.  Also, the lack of the 

JA=26&28 beat at 50 cm-1 suggests that photoionization yield for low J is small.  

This occurs here because the wavelength to which the laser is tuned to optimally 

pump the states of interest is suboptimal for multiphoton ionization of the lower J 

part of the rotational manifold of states.   

Quantum beats that are composed of states excited via high order process 

will show energy dependent dynamics that vary wildly from linear[66].  The 

quantum beats as we observe them consist of an interference between two states.  

As a reminder, the coherence term from Eq. 1.1 has a cosine term with a leading 

factor that contains the wave function coefficients for each interfering state: 

Coherence ∝ |pr1pr2||c1||c2|cos(ω12t+ϕ)   (6.7) 

where all terms have been previously defined.  Of particular interest is the 

relationship between the coefficients cn and the electric field amplitude.  In the 

weak field, first, second, third, etc. order processes are related to the electric field 

to the first, second, third, etc. power.  The quantum beat for a pair of first order 

states (i.e. JE=27-29) goes as the electric field squared, so it is considered a second 

order beat.  The primary type of quantum beat with the launch state on the A state 

will also go as the electric field squared, since it involves a product of a second 

order and a zero order state, giving a net second order process.  As the transition 

strength moves out of the weak field, these simple assumptions become more 
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difficult to apply.  Figure 6.10 shows the quantum beat amplitudes for three types 

of beats as a function of pulse amplitude.   

To gather this data, first the spectrum was manipulated so that the only 

light to pass through the SLM was a narrow band of ±8 cm-1 around each 

resonance between the JA=28 and JE=27 and 29 states, enough bandwidth to 

encompass all first, second, and third order transitions [see Fig. 6.1b].  Next, the 

bandwidth allowed to pass was attenuated, and a pump-probe trace was taken for 

each pump intensity.  Next, we performed a Fourier Transform of the time-

dependent signal.  The 42 cm-1 beat (JE=27&29) shows an initial rise followed by 

a longer decay with a recurrence at the highest NFS.  The 47 cm-1 (JA=28&30) beat 

shows similar behavior, except it shows no recurrence at the highest energies.  If 

both of these beats are second order processes, they should follow the same 

trajectories vs. NFS at the lowest powers.  A third beat at 39 cm-1 (JE=29&31) is 

shown in the figure.  This beat clearly differs from the first two, verifying that this 

is indeed a fourth order beat as defined in Table 6.1.  It shows a threshold at 

which the quantum beat appears, much like the threshold behavior of calculated 

third order populations in Fig. 6.2.  At the point where the quantum beat appears, 

significant population has departed from the state of JA=30 to create the third 

order (JE=31) state.   

The fact that the fourth order quantum beat starts to approach the same 

amplitude as the second order beats suggests that it is being produced in parts of 

the laser beam where the pulse area approaches 2π (see Fig. 6.7).  This 

observation suggests that pulse shaping schemes may be applied to the system in  
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Figure 6.10: Field strength dependence of quantum beat amplitudes.  A spectrum 
containing only first order resonances (ω±1±8cm-1) and nearby wavelengths was 
created by attenuating all light except for one window four pixels wide around 
each first order resonance.  The relative electric field amplitude dependence of the 
quantum beats was then recorded.  The 42 cm-1, 47 cm-1, and 39 cm-1 beats 
correspond to the coherences between JE=27-29, JA=28-30, and JE=29-31, 
respectively. 
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order to control the population transfer to various states.  To test the degree to 

which the populations can be transferred through the first order states, a 

sequential Rapid Adiabatic Passage pulse shape was tested[95].  To perform this 

test, the input pulse was attenuated outside a band that contained all of the 

resonant transitions [see Fig. 6.11].  The light that was able to pass was chirped by 

the application of a quadratic phase in the frequency domain.  The net chirp 

amounted to ±4500 fs2, as in the calculation of Fig. 6.11.   

The result of the application of this pulse is illustrated in Fig. 6.12.  Figure 

6.12a shows a Fourier Transform of the recurrence signal for a pulse with zero 

phase as well as for positively and negatively chirped pulses; all traces have the 

same intensity spectrum.  The unshaped case shows  second and fourth order 

beating.  In contrast, the positively chirped case shows a very large quantum beat 

corresponding to a second order beat (JA=28&30).  Also observed is a sixth order 

beat (JA=30&32) at 43.75 cm-1.  The second order JE=27&29 beat is almost 

completely attenuated, indicating that the second (and fourth) order states are 

populated at the expense of the first order states.  Here, the beat at 46.9 cm-1 is 

identified as an A state beat since there is a large beat involving the ∆J=32 state, 

which is very far removed in J space from the J=25 state involved in the E state  
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Figure 6.11: Phase and amplitude mask used to induce sequential rapid adiabatic 
passage events.  A window of 84 cm-1, centered to encompass all resonances up to 
6th order, allowed light to pass through the pulse shaper ( ).  Within that window,  
a chirp of 4500 fs2 was applied ( ). First order resonances are marked ( ). 
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Figure 6.12: Implementation of Raman state selectivity based on the sign of chirp.  
Panel a: Fourier Transform of quantum beats for non-phase-shaped pulse ( ), 
positively chirped pulse ( ), and negatively chirped pulse (+).  Quantum beats 
are labeled by their electronic state, as well as the J state quantum numbers.  Panel 
b: Ratio of A state beats and the E state beat at 42 cm-1.  In both chirped cases, the 
ratio of A state beats is measured to be greater than 20, and is limited by the 
signal to noise ratio.   
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beat also at 44.8 cm-1.  Similar results, except with the opposite direction of the J 

transfer, is seen for negatively chirped pulses.  For the negatively chirped case, 

the E state beat is reduced significantly, but the overall amplitude of the A state 

quantum beats is also small since the probe wavelength for small J is suboptimal, 

as in Fig. 6.9. 

Fig. 6.12b contains a comparison of the amplitudes of various beats as the 

sign of the chirp is changed.  It is quite clear that changing the sign of the chirp 

effectively selects the pathway being excited by the sequential Rapid Adiabatic 

Passage mechanism proposed above, with a selectivity between the Stokes and 

anti-Stokes quantum beats approaching unity.  Also remarkably striking is the fact 

that the observed ratio of the A state quantum beats relative to the JE=(27&29) 

beat approaches a factor of 2, even in the presence of the nonuniform laser beam.  

Based on the calculations of Fig. 6.8, this selectivity can only be reached at field 

strengths above 2π, and even at the maximum the ratio in the calculations only 

reaches 5.  This number should be even lower in the experimental situation, since 

the A state beats are detected via a two-photon ionization, as opposed to the first 

order photoionization of the first order beats.     

In addition to the ladder climbing technique described above, another 

technique has been developed by other groups that shows a high degree of 

robustness with respect to power: STIRAP[79].  In the STIRAP Λ excitation 

scheme—where there are two ground states and one excited state (e.g. only JA=28 

& 30, JE=29 in the above model)—the three level system is “dressed” by two 

resonant excitation sources corresponding to the pump and dump frequencies.  In 
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the case where the dump frequency slightly precedes the pump frequency, robust 

excitation of the Stokes state is seen.  Unfortunately, in this experimental system, 

the dump then pump pulse order that corresponds to the excitation of the ∆J=2 

state is nearly identical to the pump then dump excitation to ∆J=-2.  This pathway 

ambiguity prevents the implementation of STIRAP in the previously described 

rotational system. 

In these experiments, the degree of population transfer is not the observed 

quantity.  Instead, the observed characteristics are coherences between states, as 

in Eq. (6.7); if all population were transferred to a single state, then the coherence 

would be zero.  Still, it can be tentatively concluded that most of the population is 

transferred to the ∆J=±2 states as a result of the large amplitude of the second and 

sixth order beats.  Also, the good agreement with the theoretical mechanism 

supports the conclusion that most population finds its way to the target states.  

Further experiments that are sensitive to individual populations, such as 

fluorescence detection, will verify these final state populations.  One expected 

loss in quality of data by using fluorescence detection is the probe pulse beam 

sampling effect, as described in Eq. (6.7) will be lost.  This can be overcome by 

carefully creating a spatially uniform electric excitation field, or by using a 

variant of Stimulated Emission Pumping to detect final state populations. 

These experiments can also be improved by more carefully selecting the 

chemical system being studied to minimize loss mechanisms such as pump pulse 

multiphoton ionization.  An attempt to overcome this in our current experiment by 

attenuating nonresonant wavelengths in the pump has shown some promise, but 
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more study is necessary to fully characterize the spectral extent to all multiphoton 

ionization pathways.  We have shown that quantum beat amplitudes can be 

increased by up to 70% by attenuating nonresonant frequencies.  A potential 

solution could be to perform these experiments on a system with a much higher 

ionization potential, or even to lower the energy of the launch state so that an 

additional photon of light is needed to reach the ionization continuum. 
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Chapter 7  

Electronic wave packets 
 

7.1 Introduction 

Wave packet dynamics have been studied extensively on single electronic 

states (see previous chapters) and on multiple highly excited molecular Rydberg 

states[96].  Interactions between electronic states have also been observed in the 

context of observing unimolecular reactions such as dissociation[2, 4].  Yet the 

interactions between simultaneously propagating wave packets on intermediate 

energy electronic surfaces has received little attention[97-101].  Vast amounts of 

research have been undertaken to study interactions of electronic wave packets in 

atoms, but little has been addressed yet in molecules[102].  Calculations have 

addressed simple molecular systems such as H2[97-99], and some experiments 

have been performed on the hyperfine splitting in molecular NO[101].  In all of 

these cases, the approximation can be made that the differences between 

interacting electronic states are small; all electronic states are approximately 

identical except for a total energy offset.  Recently, experiments have been 

performed that control the angular momentum of electronic wave packets in 

atoms[103].  The primary reasons for this lack of study of electronic wave packets 

in molecules include the lack of efficient detection schemes or overall signal 

strength and lack of knowledge of the states[96].  In the case of Li2, both of these 

conditions can be overcome.  Much study has gone into the optimization of state 

resolved photoionization of Li2, and significant excited state spectroscopy         
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has been performed, making the understanding of wave packets on highly excited 

electronic states possible[47, 104-110].  The experiments described in this chapter 

will examine an energetic region of Li2 that is at the upper end of those states that 

have proven theoretically tractable using standard spectroscopic experiments 

coupled with ab initio theory, while at the same time is at the lower end of those 

states whose description using “top down” techniques such as multichannel 

quantum defect theory is valid. 

Using ultrafast pump-probe spectroscopy, we observe quantum beating 

between rovibrational states on the G1Πg
+ and F1Σg

+ electronic curves of Li2.  

Using a narrow bandwidth cw laser, a launch state is prepared on the A1Σu
+ 

electronic potential energy curve (vA=11, JA=28).  From this launch state, a wave 

packet is prepared on these low lying Rydberg levels using the output from the 

OPA (λ0 = 550 - 590 nm) and is subsequently probed by a second near IR ultrafast 

pulse (λ0 = 800 nm).  As the OPA wavelength is scanned, quantum beats between 

P, Q,  and R branch rotational states for a progression of vibrational states on the 

G curve is observed.  At a pump wavelength of 560 nm (Ge=35,000 cm-1, 

IP=41490 cm-1), in addition to rotational beating on the G curve (vG=10-14, 

JG=27-29), electronic beating between the G (vG=13, JG=27-29) and F (vF=26, 

JF=27) states is observed.  As a result of the relatively low lying electronic states 

involved (n~4), there is a clear breakdown of the simplifying ∆v=0 propensity 

rule for quantum beating in high lying molecular Rydberg wave packet work[96, 

102], indicating a complex vibrational structure. 



 63 

The fact that the interfering states occupy different electronic states with 

different angular momenta suggests a potential handle for controlling dynamics.  

It has been shown in atoms that states with higher angular momentum are more 

sensitive to external fields than those with less angular momentum[111].  Through 

this mechanism, electric fields can be used to Stark shift one electronic state 

relative to the other[112].  This process has been exploited in designing molecular 

wave packets based upon the splitting of an electronic fine structure within a 

series of states with identical angular momentum[113].   

This first part of this chapter will be divided into several sections, 

including a summary of the experimental techniques and a general overview of 

the energetic region being studied followed by presentation of the experimental 

results.  Quantum beating between rotational states for a progression of 

vibrational levels on the G 1Πg potential energy curve is shown as well as beating 

between states on the G and F1Σg
+ potential energy curve.  An analysis and 

discussion of the experimental results including prospects for improvements in the 

experimental scheme will be posited.  This chapter will then conclude with a 

summary of some experiments performed to understand a spurious transient 

signal observed with excitation by 670-690 nm light. 

 

7.2 Experimental and Theoretical Overview 

The experiments here focus primarily on the observation of wave packet 

dynamics in two excited electronic states that are accessible from launch state 

A1Σu
+, vA,JA=11,28 (Etot=17,151 cm-1).  After preparation of this launch state, as 
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described in chapter 2, output from the OPA pumps accessible excited states, then 

~800 nm ultrafast pulses photoionize those states pumped by the OPA output.  

The central wavelength of the OPA output is scanned over a range from 17,000 to 

18,000 cm-1, with a bandwidth of ~150 cm-1 FWHM.  The pump-probe delay is 

scanned over a range from about 0.0 ps to greater than 30 ps.  In the weak field, 

parallel polarization, non-transient limit, the coherent signal can then be expressed 

as a variation of Eq. (1.1): 

( ) ( )∑∑ ∑∑∑
>

++∝
f m f m mn

fnmnmnifnmifmmifm aaaaaatS ,
22 cos|||| φω , (7.1a) 

where i, f, and m (n) refer to the launch, final, and intermediate states, 

respectively.  All other terms have previously been defined, but an additional 

detail pertaining to the an coefficients will be helpful: 

( ) ( ) 11222121 ˆ JRJa elec νµνωε∝ ,    (7.1b) 

where 2 and 1 refer to the final and initial states of a particular single photon 

transition.  Note that the transition dipole moment operator ( )Relecµ̂  is now 

dependent on both the specific pair of states in a transition and the vibrational 

coordinate R[105].  The implications of this are twofold: the transition dipole 

moment operator may lead to an element that can be controlled, and the FCF is 

more complex than a simple vibrational overlap[105].   

Several bound electronic states are energetically accessible from the 

launch state with a pump pulse energy of 17,800 cm-1[104, 107-110].  See Fig. 7.1 

for the potential energy surfaces in the region examined here.  Five singlet 

electronic states are bound with a total energy around 35,900 cm-1 total energy.   
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Figure 7.1: Potential energy curves in excitation region.  Also shown is the launch 
state wavefunction superimposed on the relevant energy regions, as bounded by 
the horizontal dotted lines.  The F, G, and 5 & 6 curves are taken from references 
[104], [109], and [108], respectively.  At the  relevant energies here, the low lying 
E1Σg

+ state is bound by less than 500 cm-1, so it is not included in the figure. 
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displaying the discrete wave packet dynamics that will be examined later.  The 

The E 1Σg
+ state is bound, but is very near its dissociation limit (35,700 cm-1) in 

the experiments examined here, and its near continuum behavior precludes it from 

51Σg
+  and 61Σg

+  states are included in the figure, but with the v=11 launch state, 

the low lying vibrational levels that are accessible have small vibrational overlap 

with this launch state wavefunction.  The inner and outer turning points of the 

51Σg
+ and 61Σg

+ states fall within the spatial extent of the launch state wave 

function that is completely oscillatory.  In contrast, the inner walls of the F and G 

potentials nearly touch, and overlap well with the inner part of the launch state 

wave function.  In fact, calculations predict three orders of magnitude smaller 

vibrational overlap between the launch state and accessible states on the 5 and 6 

states compared to accessible levels on the F and G states.  This analysis is only a 

first approximation, neglecting overlap with the vibrational wavefunction of the 

final, autoionizing Rydberg state.  Also, small deviations in the functional form of 

the transition dipole operator with respect to R can introduce uncertainties to the 

simple calculation referred to above, but for the large differences in vibrational 

overlap such as this, the above conclusions remain qualitatively valid. 

Working from the assumption that only the F and G states play a role in 

the dynamics seen here, a portion of the spectrum of states that can be excited via 

strongly allowed transitions from the launch state is shown in Fig. 7.2.  The F and 

G states are based upon fits to experimental data and are calculated according to 

the following expression[109, 110]: 

( )[ ] ( )[ ] ( )[ ]11111 2 ++−+−−++= JJqJJDJJBGE vvtot   (7.2)
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Figure 7.2: State locations accessible from the vA, JA=11, 28 launch state with a 
central pump energy of 17,550 cm-1 to 18, 100 cm-1.  P and R branch transitions 
are included for the F1Σg

+ state, and P, Q, and R branches are included for the 
G1Πg

+ state.  States are labeled as (v, J). 
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where Gv is the energy for vibrational level v, Bv is the rotational constant for 

vibrational level v, D is the centrifugal distortion constant, and q is the Λ doubling  

parameter.  The centrifugal distortion constants are calculated based upon the 

Dunham fit parameters for the rotational constant Y01 and vibrational frequency 

Y10 so that D=4Y01
3/Y10

2[114]—approximately 4.31x10-6 cm-1 and 7.84x10-6 cm-1 

for the F and G states, respectively.  The Λ doubling parameter only applies to 

vibrational levels on the G state, splitting each rotational level into two, hence the 

term “doubling” parameter.  For even JG, the higher lying state has (+) parity, and 

the lower lying state has (-) parity, and for odd JG, this is reversed.  To maintain 

the +↔- parity selection rule, this means that the P and R transitions excite the 

higher level, and the Q branch the lower level, of each JG doublet[112].  This 

means that in Eq. (7.2), the Λ doubling parameter only applies to the P and R 

branches of the G state.  All constants for the F state are taken from refs. [107, 

115], except for the centrifugal distortion constant which is taken from ref. [116].   

V, B, and q for vG=11 and 12 are taken from ref. [109], and the rest of the 

constants for the G state are taken from ref. [110].  The state energies for the F 

state around vF, JF=26, 27&29 have not been experimentally determined 

elsewhere, so the fit values have been given with an error of 0.25 cm-1 assumed.  

In the G state, similar errors should be assumed. 

7.3 Results 

As stated previously, the observed wave packets show very slowly 

decaying behavior, as shown in Fig. 7.3.  Figure 7.3a shows the time domain 

pump-probe signal using a pump pulse with a central energy of 17,850 cm-1, and a 
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Figure 7.3: Pump-probe signal for a pump energy of 17,850 cm-1 for a launch 
state of vA, JA=11,28.  Panel a shows the photoionization signal as a function of 
pump-probe delay.  Panel b shows the Fourier Transform of the signal from panel 
a.  Beats at energies of 4, 21, 41, and 45 cm-1 are clearly present.  Possible peaks 
are also located at 8 cm-1 and 25 cm-1. 
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bandwidth of 150 cm-1 FWHM.  Notice that there is a very pronounced low 

frequency oscillation present along with several higher frequency oscillations.  To 

analyze the nature of the beats, an FT is performed on the signal after t=0.0 ps.  

The Fourier Transform of this signal shows four pronounced peaks in the beat 

spectrum.  Beats are observed at approximately 4, 21, 41, and 45 cm-1.  Each of 

these peaks is very narrow, in fact their width is defined by the pump-probe scan 

length.  This narrow linewidth suggests that the interfering wavefunctions are 

relatively stable and do not quickly decay to secondary states.   

To identify the quantum beats in Fig. 7.3, the pump pulse energy was 

varied in an attempt to view any spectral trends.  Figure 7.4 shows the FT spectra 

of the quantum beats observed for a variety of central pump energies ranging 

from 17,100 cm-1 to 18,200 cm-1.  In the figure, each spectrum has been offset on 

the vertical axis to show the relative pump pulse energy.  The spectral amplitudes 

have been normalized so that the beats around 45 cm-1 have similar amplitudes.  

In the case where no beats were observable above the noise level, the spectra were 

normalized so that the strongest peak in the spectrum coincides with the 

amplitude of the observable beats around 45 cm-1 [see spectra at 17,500 cm-1 and 

17,600 cm-1].  Due to large instabilities in the experimental apparatus, the 

amplitudes of the beats are generally unreliable, so an analysis of the spectral 

amplitudes is generally intractable.  However, the frequencies of the quantum 

beats can be reliably observed since, in the weak field limit, the frequencies are 

independent of the laser intensity or overlap and only need to be sufficiently 

above the noise to detect [see Eq. (7.1a)].  Each of the peaks that have amplitude  
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Figure 7.4: Fourier Transform quantum beat spectra for varying pump energies.  
All traces have been rescaled to show peaks at around 45 cm-1, if present.  Where 
no significant peaks are visible (solid lines), the spectra have been amplified to 
show the noise baseline.  All spectra have been offset to reflect their respective 
pump pulse energy.  Where peaks are clearly above the noise level, the frequency 
is recorded. 
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more than twice the noise level were fit with a Gaussian lineshape, and the central 

frequency is obtained. 

A summary of the observed beats as a function of central pump energy is 

plotted in Fig. 7.5.  The error bars for the beat frequencies reflect the widths of the 

peaks as recorded in Fig. 7.4, except the lowest frequencies which have a higher 

error due to laser drift as a function of delay stage position.  Also included in the 

figure are the predicted beat frequencies assuming rotational quantum beating in 

the G1Πg
+ state, and where they are expected to be at their respective maxima. 

Several trends in the quantum beat frequencies should be noted.  First, the beat 

around 45 cm-1 shows a trend toward lower frequencies as the pump energy is 

increased.  The beat around 21 cm-1 shows similar behavior, although the degree 

of change falls within the error bars of the quantum beats.  Around pump energies 

of 17,700 cm-1 to 18,100 cm-1, additional beats around 2, 4, 25, and 41 cm-1 are 

observed.  These beats are clearly not a part of the overall progression, lending 

credence to the possibility that the beats are something other than simple 

rotational beats in the G state.  Also included in the figure is a schematic spectrum 

with a central wavelength of 17,880 cm-1 and a FWHM bandwidth of 200 cm-1.  

This illustrates that quantum beats can be present even if the central pump pulse 

energy is shifted from the location of the peak beat amplitude.  Given that the 

quantum beats have energies around 45 cm-1, it is concluded that the predominant 

state at play in this case is the ∆J=2 rotational beat in the G 1Πg
+ state.  This fits 

well with previous cw type spectroscopy since the ∆J=2 rotational spacing in the 

F 1Σg
+ and 5 1Σg

+ states are 34 cm-1 and 52 cm-1, respectively.  Additionally, the  
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Figure 7.5: Quantum beat energy as a function of central pump pulse energy for 
11,28 launch state.  A sample spectrum with central energy of 17,880 cm-1 is 
included as a measure of pump pulse bandwidth.  Closed circles are experimental 
quantum beat frequencies for different pump energies.  Open circles are predicted 
rotational quantum beats in the G state, and stars are predicted beat frequencies 
between the F and G states around 17,850 cm-1 and 18,000 cm-1 as tabulated in 
Table 7.1. 
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progression of rotational beats around 21 cm-1 fit well with a ∆J=1 beat 

(JG=27&28) that is only possible in the G state due to the ∆Λ=1 electronic 

component of the transition from A 1Σu
+ state.  It is interesting to note that the 

JG=28&29 beat around 23 cm-1 is predominantly absent from these spectra.  Since 

this beat is observed with a rather weak amplitude in several of the traces, the 

predominant absence of these higher frequency ∆J=1 beats is attributed to a 

systematically weak transition dipole moment to the Q-branch JG=28 state as well 

as a preferential excitation to JG=27 over JG=29.  Even though the observed 

quantum beat amplitudes involving the Q-branch states are less than predicted by 

Hönl-London factors, the line positions coincide with the expected positions[92]. 

To further verify that the main progressions seen are indeed rotational 

beats in the G state, a similar series of experiments was carried out for a different 

launch state.  To make sure that any effects related to FCFs are minimized, the 

same vibrational launch state is chosen but the J state is changed, so that vA,JA=9, 

16.  Assuming the main progression is due to pairs of rotational states 

(JG=15&17), the progression should be reproduced.  Due to different rotational 

constants for the F and G potentials, a change in J would result in a shift of the 

states on one potential relative to the other.  Figure 7.6 shows that the vibrational 

progression of rotational beats is reproduced, with no other beats present, failing 

to disprove the “extra” beats of Fig. 7.5 are beats between electronic states.  

Again in this lower J case, the rotational quantum beats involving the Q branch 

are weaker than those between the P and R branch states and only show the lower 

frequency beat, except for one low amplitude 14 cm-1 beat at E0=17,530 cm-1.   
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Figure 7.6: Quantum beat frequencies as a function of central pump energy from 
11,16 launch state.  Closed circles are experiment, and open circles are predicted 
rotational beats for different vibrational levels of the G state.  The beat at 
E0=17,530 cm-1 has large error bars because its presence was determined in the 
presence of significant noise. 
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The absence of additional beats in this progression is attributed to a shift in the F 

state energy levels due to different rotational constants for the F versus the G 

states. This further verifies that the beats are in fact rotational and not vibrational 

in nature.  If the additional beats seen for the 11, 28 launch state were confined to 

the G state, they would be observed from this second launch state, but they are 

not. 

 

7.4 Discussion and Future Directions 

Previously completed high resolution spectroscopy suggests the wave 

packet excited with 17,850 cm-1 contains contributions from both the G and F 

states, although the reported state to state energy fits deviate up to 0.3 cm-1, 

depending upon the source[107, 109, 110, 115, 116].  Since the G←A transition 

consists of ∆Λ=1, single photon selection rules allow ∆J=0, ±1 transitions, hence 

the presence of the P, Q, and R branch states.  The F←A transition corresponds to 

∆Λ=0, so parity selection rules allow ∆J=±1, so only the P and R branch states of 

the F state are excited.  Again, here only the line positions are shown; information 

regarding transition strength is not included.  To identify quantum beats, energy 

differences must be taken into account, and these values have been summarized in 

Table 7.1.  

Upon examining the expected quantum beat frequencies, the participating 

states can be inferred.  Around 17,850 cm-1, the P-R beat in the G state [i.e. 

G(13,27)-G(13,29)] is seen as the 45.0 cm-1 beat, as was established before.  The 

P-Q beats are near their expected values at slightly less than half the P-R 
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Epu=17,850cm-1 State (v, J) 
  F(26,27) G(13,28) F(26,29) G(13,29) 

State (v, J) 
Etot-

Elaunch/ 17821.3 17836.6 17854.9 17859.7 
G(13,27) 17816.0 (5.3) 20.6 38.9 43.7 
F(26,27) 17821.3   (15.3) (33.6) (38.4) 
G(13,28) 17836.6     18.3 23.1 
F(26,29) 17854.9       4.8 

      
      
Epu=18,000cm-1 State (v, J) 
  F(27,29) G(14,27) G(14,28) G(14,29) 

State (v, J) 
Etot  - 

Elaunch/ 17993.0 17996.3 18016.5 18039.4 
F(27,27) 17959.9 (33.1) (36.4) (56.7) (79.5) 
F(27,29) 17993.0  3.3 (23.5) (46.4) 
G(14,27) 17996.3   (20.3) 43.1 
G(14,28) 18016.5    (22.8) 

 
 
Table 7.1: Expected quantum beat frequencies.  For pump pulses centered around 
17,850 cm-1 and 18,000 cm-1, optically allowed rovibrational states on the F and G 
electronic curves are listed, along with their total energies.  The quantum beat 
frequency is the difference in energies.  Unobserved quantum beats are in 
parentheses.  
 



 78 

frequency due to the Λ doubled spectrum of the G state.  Interestingly, when they 

are observed, the Q-R beats are very weak and have a frequency over 1.0 cm-1 

away from the predicted frequency.  Almost all of the beats involving the F(26, 

27) state are observed, with the beats at 4.2 cm-1 and 40.9 cm-1 observed.  The 

absence of beats involving state F(26, 29) indicate that the photoionization 

pathway for that state is weak.  Calculations show the vibrational overlap between 

the F(26, 29) and the ion ground state X+(25, 28) is very near zero.  At the 

energies observed here, ionization proceeds through the X+(24, 28) state which 

has nonzero vibrational overlap with F(26, 29), but it should be remembered that 

there is a small difference in the meanings of the vibrational contribution to a 

transition dipole and the vibrational overlap between states: ( )Relecµ̂ .  Vibrational 

overlap calculations assume that ( )Relecµ̂  is constant over all R, but even at the 

small R where there is appreciable vibrational wavefunction in the states observed 

here, there will be small variations in the transition dipole operator.  This means 

that the vibrational overlap calculations provide qualitative information, but fail to 

quantitatively characterize the transition strength. 

Future experiments can be undertaken that can improve or exploit the 

effects seen here.  In these experiments, quantum beat frequencies are observed as 

the pump wavelength is tuned.  Since the probe light is the 800 nm fundamental 

from the regenerative amplifier, the final energy of the system is tuned along with 

the intermediate energy.  In order to reduce the number of degrees of freedom in 

the analysis of the data, it would be advantageous to keep the final energy fixed.  

This could be overcome somewhat by simultaneously tuning the regenerative 
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amplifier output along with the OPA wavelength.  This will technique will be 

limited since the optimization of the OPA output depends a great deal on the input 

pulse characteristics.  An alternate means to keep the final energy fixed would be 

to include the addition of either a second OPA or the use of a second order of 

output from the OPA in these experiments.  Since the signals are still rather weak 

at this point, the addition of a second OPA is possibly not feasible due to losses in 

the production of OPA light.  

In this series of experiments, we have shown progressions of P-R, Q-R, 

and Q-P rotational quantum beats on various vibrational levels of the G1Πg
+ state 

of Li2.  In addition to these single electronic surface quantum beats, we have 

observed and identified various quantum beats between states on the G state and 

the F1Σg
+ state.  This observation of low lying Rydberg wave packets begins to 

bridge the gap between relatively low energy, hence isolated, wave packets on 

single electronic curves and high lying, nearly ionic Rydberg levels.  

Additionally, this work sets a benchmark for the types of signals to be expected as 

the total energy of a system increases towards the ionization limit. 

 
 

7.5 Ultrafast transient behavior with 

680 nm excitation  

In the previous sections of this chapter, a type of electronic interaction was 

examined, where bound wave functions on separate electronic states beat against 

each other.  In an effort to identify as many regions with observable wave packet 

dynamics such as in the previous section, we scanned other wavelength ranges.  
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In the process, another interesting spectroscopic feature was found: we observe a 

very large, transient, photoionization (PI) signal for a pump energy around 14,700 

cm-1 while exciting the vA, JA=11,28 launch state.  In fact, we see up to 100 times 

the total PI signal at short times relative to longer times, as shown in Fig. 7.7.  

Since this effect is so strong, it is studied to try to identify potentially useful traits.  

Much of the data support the conclusion that the fast decaying signal is an atomic 

ionization, motivating us to preempt further study of this effect with several of the 

studies presented in chapters 5 and 6. 

The following section will begin with an examination of the spectral 

extent of the large transient peak.  To verify that the transient effect is not a result 

of an isolated predissociative rovibrational state, launch states with JA=16, 28, and 

40 are compared.  Next, the dependence of the transient signal on the pump 

polarization is presented.  Finally, the results are discussed, and a very simple 

atomic mechanism will be proposed to explain the ultrafast effect.  A significant 

unanswered question regarding the observed decay time is also presented. 

 
7.5.1 Experiment and Results 

The experimental setup for this section is nearly identical to that in the 

previous section, except that the wavelength range scanned by the OPA is slightly 

longer.  In the experiments described here, a central wavelength range of 

approximately 650-700 nm (14000-15400 cm-1) will be examined.  Generally, the 

pump bandwidth is about 200 cm-1 FWHM.  Since the wavelengths studied here 

are at the edge of the spectral output from the OPA, the bandwidth can be greatly 
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expanded due to nonidealities in the OPA alignment, further limiting the 

reliability of the spectral studies in this section.  In all discussions, the central 

 

 
 
 
 

 
Figure 7.7: Pump-probe signal for Epu=14,700 cm-1.  Probe polarization is 
parallel, and the photoionization (PI) has been normalized so that PI=0 for t<-4.0 
ps, and PI=1 for t>20 ps. 
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 energy of the approximately Gaussian spectral envelope will be cited as Epu.  

Typical OPA output power is approximately 60 mW, but the power at the heat 

pipe is considerably less (~20 mW) due to losses along the optical path. 

To test whether the transient peak was unique to a specific cw frequency, 

launch states with vA=11 and JA=16, 28, and 40 are excited with cw light at 603, 

606.955, and 613. nm, respectively.  Figure 7.8 shows the transient peak 

amplitudes for Epu for JA=16, 28, and 40.  From all launch states, pump-probe 

transients show a similar transient behavior with a quickly decaying peak 

followed by a stable incoherent photoionization signal.  Obviously, from this 

figure, there is no reliable JA dependence to the transient signal.  The spectral 

profile of the JA=28 data shows a small (~100 cm-1) shift relative to JA=16 and 40, 

but there is still significant overlap of the profiles.   

Finally, the pump polarization was rotated relative to the cw and probe 

pulses from parallel to the magic angle and perpendicular.  Figure 7.9 shows a 

semilog plot of the pump-probe traces at each of these three critical polarizations 

for Epu=14700 cm-1, giving unexpected results.  In the Fig. 7.9a, the traces have 

been normalized so that the signal for t<4.0 ps is set to zero, and the signal for 

t>10 ps is set to 1.  Clearly, the transient signal goes down relative to the long 

time signal.  The traces are characterized by an initial exponential rise time where 

t1/2=0.16 ps, as should be expected from the timescale of the pump pulse.  After 

t=0.0 ps, all of the traces exhibit exponential decay behavior with halflives of 

between 0.43 and 0.59 ps.  The parallel and perpendicular signals both show 

slower (t1/2~8 ps) decays, but with much lower amplitude, making quantitative 
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Figure 7.8: Dependence of transient peak height on central pump energy and JA.  
The peak photoionization is been plotted as a function of central pump energy for 
JA=16 ( ), JA=28 ( , ), and JA=40 ( ).  In all cases vA=11.  The solid circle 
dataset was taken before a lab relocation, and the open symbols were taken after; 
this is given to show the repeatability of the data.  The error bars given for one 
data set are similar for the others. 
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Figure 7.9: Polarization dependence of peak photoionization for parallel, 
perpendicular, and magic angle pumps.  Panel a: Pump-probe traces for each 
probe polarization.  The solid lines are single exponential decay fits, with 
halflives ranging from 0.43 to 0.59 ps. Panel b: Peak photoionization (relative to 
t>20 ps) as a function of pump polarization.   
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conclusions difficult.  Figure 7.9b shows the peak amplitude as a function of 

probe polarization.  It is clear that there is a dramatic decrease in the transient 

signal as a function of degrees off parallel.   

 

7.5.2 Discussion 

The data suggest that the main transient peak is an atomic, not molecular, 

effect.  The predominant transient time dependent effect appears to come from an 

excitation to the quickly decaying 2p→2s atomic transition, resulting in a 1+3 

photoionization pathway.  To ionize, a total energy of 43,300 cm-1 is needed.  

This means that the 2p electron needs an additional 28,400 cm-1, so a three photon 

resonance enhanced photoionization pathway with the 800 nm probe is suggested. 

The resonant enhancement may be possible since the energy between the 2p and 

3p electronic levels is only 13,000 cm-1, very near the probe energy, and to reach 

the ion an additional 15,900 cm-1 are needed.  Three primary pieces of evidence 

support this atomic photoionization pathway conclusion: the polarization 

dependence of the signal, the fluorescence linewidth for the 2p→2s transition, and 

the similarities of the transient signal with and without the cw laser  

present.  The observed lifetime of the transient peak is three orders of magnitude 

shorter than the literature value for spontaneous decay for the suggested 

transition; this large deviation from literature values requires further study before 

making a definitive conclusion for the transient effect seen. 

That the main transient effect is atomic in nature is supported by the 

dependence of the photoionization on the polarization of the pump and probe 
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pulses.  As it was shown in Fig. 7.9, the transient signal is nearly completely 

depleted by a simple rotation of the pump polarization relative to the probe.  In a 

molecular system, this should not necessarily be the case.  Assuming that there is 

a non-uniform mJ distribution in the state prepared by the probe (i.e. the state is 

aligned), the perpendicular signal should not go to zero.  By setting the probe 

polarization to perpendicular relative to the probe, or rotating the frame of 

reference by 90o, the effect (disregarding coherences) is approximately a swap of 

the effective mJ assignments from high to low and vice versa.  We can quantify 

the alignment dependent contribution to the signal, assuming a uniform mJ 

distribution in the launch state, as the following: 

2

ˆˆ∑
−=

=
J

Jpu
puipupufpriprprfalign MMMMS µµ ,   (7.3) 

where M is the aligned spherical harmonic wavefunction with a specific J, i and f 

refer to the initial and final states of a transition, and pu and pr refer to the pump 

and probe steps.  Here, it is assumed that all transitions follow the selection rule 

∆mJ=0.  In the parallel case, the mJ quantum numbers pu=pr.  For the 

perpendicular case, the quantum numbers can be approximated by |pr|≈ J-|pu|, so 

that in effect, the mJpu=0→mJpr=±(J-1) and mJpu=±(J-1)→mJpr=±1.  The effect of 

this transformation is that for J=27, the signal decreases by at most 13%.  In Li2, 

only the electronic ground state of the ion, which is known to have sigma 

symmetry, is reachable with a single photon from each of the pump and probe 

pulses.  This requires that both pump and probe dipole moment operators lie along 

the same axis relative to the molecular axis, further justifying the analysis above.  
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This is all in contrast to the atomic case, where it is well known that a 1+3 photon 

absorption by an electron shows cos2(θ) dependence where θ is the angle between 

photon polarizations.   This is the first bit of evidence that the transient effect seen 

in Fig. 7.7 is an atomic effect. 

In the dispersed fluorescence spectrum under excitation by the 606.955 

nm cw laser, many doublet lines appear that correspond to P and R branch decays 

from the launch state, as well as regularly spaced collisionally induced satellite 

lines.  An additional line appears that is not part of these progressions at 670.5 

nm.  Figure 7.10 shows a portion of the dispersed fluorescence spectrum with a 

doublet at 14,770 and 14,830 cm-1 along with an additional prominent line at 

14,910 cm-1.  The line at 14,910 cm-1 corresponds to the exact expected 

wavelength of the 2p→2s atomic transition, and in fact appears in the dispersed 

fluorescence spectra for many different excitation wavelengths.  Higher resolution 

spectra even show the spin orbit splitting of less than 0.3 cm-1 for the 2p state.  

The linewidth is clearly wider than the molecular lines (the molecular linewidth 

here is primarily determined by the instrument response).  The observation of a 

broadened line in the dispersed fluorescence spectrum only suggests a short 

lifetime.  Since the linewidth is so much greater than expected from tabulated 

lifetimes, a significant problem exists with concluding a mechanism based upon 

this evidence.   

One final piece of evidence supports the argument that the observed effect 

is a result of an atomic, not molecular process.  The pump-probe traces observed 

above were gathered using a three beam interaction, but they can also be seen  
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Figure 7.10: Fluorescence spectrum with excitation by 606.955 nm cw laser.  The 
narrow peaks are molecular fluorescent lines with widths limited by the 
monochromator.  The marked line corresponds to the 2p→2s line of atomic 
lithium.   
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without any cw laser present.  While optically chopping the pump pulse, it is seen 

that the timescales and spectral profiles of the transient peaks match remarkably 

well with those in the presence of the cw laser.  This evidence supports the 

mechanism where the OPA excites the 2p←2s transition from the atomic ground 

state followed by multiphoton ionization by the 800 nm pulse. 

The proposed mechanism for the transient effect is a simple excitation of a 

fast decaying atomic state is supported by four primary pieces of evidence: the 

spectral profile of the ultrafast transient peak height coincides with the 2p→2s 

transition in atomic lithium, the dramatic polarization dependence of the peak 

height, the presence of a wide bandwidth fluorescent line, and the presence of the 

effect without the cw laser.  The fact that the effect is seen to depend on the cw 

laser (when optically chopping the cw laser) indicates that the cw laser somehow 

participates in the dynamical effect, but a mechanism is not proposed.  Due to the 

evidence supporting the ultrafast effect being primarily atomic, further study on 

this system was preempted in favor of studies that are more directly molecular in 

nature [see chapters 1-6]. 

This chapter has summarized a series of experiments that address a 

transient signal in our pump-probe signals.  Several series of experiments were 

performed in an attempt to infer the nature of the transient effect, but with little 

success since all of the molecular explanations are characterized by significant 

flaws.  This argument was supported by several pieces of evidence including a 

dramatic pump-probe polarization dependence, the presence of an atomic 
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fluorescence line in an ostensibly molecular fluorescence spectrum, and the 

presence of the effect both with and without the cw laser. 
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Chapter 8  
Conclusion 

 

This thesis demonstrates several aspects of coherent control of the well 

defined lithium dimer using ultrafast lasers and pulse shaping.  Primary 

experimental results include a demonstration of feedback mediated control of 

photoionization of Li2 using an evolutionary algorithm.  Lessons learned by using 

the evolutionary algorithm were used to control both the transient amplitudes of 

contributing wavefunctions in a two-state wave packet.  The effects of resonant 

and nonresonant wavelengths have also been elucidated.  Further study into 

strong-field dynamics were also performed, showing that as the field strength 

increases, the complexity of the produced wave packets increases as the driving 

electric field increases.  Finally, the possibilities for creating electronic wave 

packets in lithium dimer were studied, with some electronic wave packets 

observed. 
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