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A powerful set of universal relations, centered on a quantity called the contact, connects the

strength of short-range two-body correlations to the thermodynamics of a many-body system with

delta-function interactions. For bosons, the fact that contact spectroscopy can be used to probe the

gas on short timescales is potentially useful given the decreasing stability of BECs with increasing

interactions. Successfully measuring the contact requires careful control of experimental parameters

such as the magnetic field and the RF probe pulse. In this thesis I report on measurements of the

contact, using RF spectroscopy, for an 85Rb atomic Bose-Einstein condensate (BEC). The measured

contact exhibits beyond-mean-field behavior, the degree of which is dependent on the rates of change

of the scattering length. A potential complication is the added possibility, for bosons, of three-body

interactions. In investigating this issue, we have located an Efimov resonance for 85Rb atoms with

loss measurements and thus determined the three-body interaction parameter.
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Figures

Figure

1.1 Sketch of RF transition rate Γ. (a) Shows the ideal noninteracting spectrum, where

the whole population is resonant at a single frequency. (b) Correlations brought

about by interactions give rise to a ω−3/2 tail, shown by the red line, as well as

a small shift of the resonance frequency. (c) The experimental broadening of the

lineshape obscures this shift. Nearly all the atoms are within the area of the resonant

lineshape, which gives us a measure of the single atom Rabi frequency. We use

different methods to probe the resonant lineshape and the tail regimes, and the final

contact measurement involves a ratio of these excitation rates. The magnitude of

the tail has been greatly exaggerated for illustrative purposes. . . . . . . . . . . . . . 6

2.1 The scattering length in units of the Bohr radius a0 as a function of magnetic field.

We create our cold atom clouds on the high-field side of the resonance to optimize

collisional properties. From there, we can easily tune the value of the scattering

length to either large positive or negative values. . . . . . . . . . . . . . . . . . . . . 11

2.2 A schematic of our evaporation. The optical trap ensures overlap between the 85Rb

(red points) and the 87Rb (blue points), and is centered on the 85Rb magnetic equi-

librium position. Lowering its trap depth evaporates 87Rb. The 87Rb cools the 85Rb

via collisions until all the 87Rb has fallen out, and only 85Rb remains in a purely

magnetic trap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
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3.1 Our scheme to create a uniform field. We start with a BEC in a purely magnetic

trap, whose center is shifted upward by a set of large shim coils. We then quickly

ramp down the coils, causing the minimum of the magnetic field to move to the

location of the atoms. A small shim coil fine tunes this location. . . . . . . . . . . . 17

3.2 Measuring the magnetic-field gradient. We create a large thermal cloud (pink circle

with dashed outline) and perform RF spectroscopy on a magnetically sensitive tran-

sition (in this case the |2,−2⟩ to |2,−1⟩ transition). As long as the spectral width

of the pulse is smaller than the cloud, different parts of the cloud are resonant at

different fields, and will outcouple at different positions in space. The resulting slope

can be converted to a magnetic-field gradient. . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Correlating noise to the 60 Hz AC line. Part (a) shows how we correlated the noise

to the AC line. (a) Taking data on the side of a transition and using the slope al-

lowed us to convert a scatter in signal to a scatter in B-field. Correlating this scatter

to the phase of the AC line at the time we applied the RF pulse shows a modula-

tion in agreement with the 60 Hz line. A histogram (c) of the scatter reveals the

characteristic double-peaked shape of sinusoidally distributed values. This structure

essentially disappears in (d), where we have synchronized the experiment to the AC

line 1 second before the B-field measurement. The bin size and axis range of (c) and

(d) are identical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 The B-field resonance giving rise to 2-photon transitions. Part (a) shows Fourier

transforms of oscilloscope traces taken with a hand held pickup coil close to the

trap. The blue curve shows the problem-causing 40 kHz feature. Changing the gain

of the B-field servos allowed us to eliminate the feature, as illustrated by the green

curve. A schematic of the 2-photon transition is shown in (b). . . . . . . . . . . . . . 24
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4.1 Some RF pulses in frequency space. In (a) we see the power spectrum of two standard

pulses (inset). A square pulse in time becomes a Sinc2 function, which looks much

like a Gaussian down to the first minimum, but then exhibits significant wings far

from the center (red curve). A Gaussian in time, however, becomes a Gaussian in

power (black curve). The curves have been scaled to give similar peaks and widths.

In (b) we see the same curves on a logarithmic scale, which makes the difference

clear. An ω−3/2 line has been added (blue), to show that the problematic wings of

a Sinc2 function persist with detuning. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 The Fourier transform of the RF power at system saturation. The labels correspond

to the output power of the synthesizer before all amplification. At 9 dBm output

we begin to risk damage to the amplifiers. The dashed black line shows a perfect

Gaussian for reference (a parabola on this scale). We see that saturation does not

affect the nicely Gaussian shape of the pulse down to at least 60 dB below the peak

power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 The Fourier transform of truncated Gaussians. The inset shows the shape of the

truncated Gaussians, at ±1 (blue), 2 (green), and 4 τ (black). The Fourier transform

of the power shows the resulting frequency spectrum. The ±4τ truncation looks

unaffected, whereas the ±1τ truncation clearly begins to look similar to a square

pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Atoms spin-flipped by truncated Gaussians. A truncated pulse is less efficient at

transferring atoms between magnetic sublevels. The pulse still exhibits lower ef-

ficiency at 2τ , but is fully Gaussian at 4τ . The theory line is scaled to the final

value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
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4.5 Effect of RF rectification. (a) We send out a τ = 100 µs Gaussian pulse, and probe

the resulting field with a 50 µs square pulse. The 100 µs delay gives the servo time

to respond and shift the field. (b) At our maximum allowable power (8 dBm at the

synthesizer), we see rectification amounting to 17 mG. At 8 dB lower power (c), the

rectification has all but disappeared (d). Our contact measurements required powers

no more than -9 dBm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 A measurement of our effective saturation intensity. We measure the OD vs Ii in

counts per pixel, and then invert the axes for plotting and fitting via Equation

5.3. The red line shows this fit. The measured OD is highly sensitive to the probe

intensity, especially at low intensities, where one might think that the correction due

to I/Isat is negligible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Comparison between measured and predicted BEC size. The different shapes corre-

spond to different ARP efficiencies, giving rise to different ODs. The red line is the

modeled BEC size in expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Effect of photon re-absorption on OD. The black circles show the measured OD

of a BEC, calculated with Equation 5.6, as a function of I/Isat. For intensities

near Isat, the high scattering rate in conjunction with the high OD causes a large

fraction of atoms to re-absorb photons emitted from surrounding atoms. This makes

them unavailable to absorb from the probe beam, lowering the apparent OD. As the

intensity increases, the scattering rate remains roughly constant, translating to a

smaller fractional amount of rescattered light present in the cloud. The red squares

show the same experiment on thermal clouds with lower OD, where this effect does

not occur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
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5.4 State diagram showing transfer to the imaging state. The atoms (shown in blue) start

in the |2,−2⟩ state, and the RF pulse for contact spectroscopy moves a small fraction

to the |2,−1⟩ state. These are transferred via shaped ARP to the |3,−2⟩ state and

RF π pulse to the |3,−3⟩ state (solid green arrows). Once there, the probe beam

cycles them to the F’=4 manifold (dotted green arrow). The entire procedure, from

the |2,−1⟩ state to imaging, takes < 200 µs The transition of the cloud remainder

to the |3,−1⟩ state (red dashed arrow) is unwanted and would produce significant

false signal. The energy splittings are given in MHz, calculated for a field of 160 G. 47

5.5 Shaped ARPs. A standard ARP is shown in part (a), where the RF power and

therefore the energies of the dressed states are constant in time. The frequency must

start far from resonance and end far from resonance for a well behaved ARP. A

shaped ARP (or ShARP) seen in (b) starts at low detuning and low power. The

power is adiabatically increased as the frequency ramps through resonance and then

decreased the same way. This allows for a quick, efficient ARP, sweeping over a very

small frequency range around the resonance. . . . . . . . . . . . . . . . . . . . . . . 48

5.6 Simulation of pixelation effects. An absorption profile is incident on a 2-dimensional

array of pixels, and the resulting pixelated OD, the sum over the pixles Σpx, is com-

pared to the integral, IG, of the OD that gave rise to the absorption profile. Part (a)

shows the two configurations under which the simulation was run. In one configura-

tion, the Gaussian profile was centered on the center of a pixel in both dimensions.

The corner configuration formed the other “extreme”. Simulation results can be

seen in part (b). When the Thomas-Fermi (TF) radius is roughly the size of a pixel,

the effects can become very pronounced, even exhibiting unintuitive structure. The

error increases linearly with OD, but stays at a 3% or less correction for our normal

operating conditions of peak OD<1 and a TF radius of 2.4 pixels. . . . . . . . . . . 51
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5.7 Schematic of the pixelsum technique. Shown is a standard image of a BEC with

30% thermal component, taken in the magnetic trap. For the pixelsum analysis, we

sum all the values of the inner square, and subtract the background as determined

by the “sidewalk” (hatched area). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1 Schematic of the interparticle potential (a) and scattering wavefunction (b). The

potential V (r) looks like an attractive potential down to a distance given by the van

der Waals potential. Outside of this effective range re, which is ignored in the zero-

range limit, the wavefunction can be universally described by the scattering length

a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 RF contact spectroscopy for a 85Rb BEC. (a) Schematic of the contact transition. We

drive the interacting state into a lower magnetic sublevel, but the interaction-induced

energy requires less energy from the RF photon to effect the spin-flip. This results in

the transition frequency of the contact to be lower than the single atom transition.

(b) Example of spectroscopy signal S(ω), normalized so that
∫∞
−∞ S(ω)dω = 1 s−1.

(c) The same signal as (b), shown on a smaller scale. The solid red line is a fit to

the expected frequency dependence from Equation 6.6, while the dotted blue line

shows a fit ignoring β(ω). The green line shows the expected Gaussian signal from

the resonant lineshape. On the positive side of the transition the signal is consistent

with zero. (d) The tail signal multiplied by |ω|3/2. This is how the fits to the tail

were performed, and more clearly shows the final-state effects. The density here

is ⟨n⟩ = 5.8 × 1012 cm−3. The data from the tail and main lineshape come from

different experimental runs, but are shown together for illustration purposes. . . . . 59
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6.3 Expansion of the outcoupled atom cloud. (a) The size of the cloud of outcoupled

atoms after the contact pulse with |ω| = 2π×50 kHz detuning. The black line shows

a sketch of a truncated Gaussian RF pulse for reference. The cloud expands with a

kinetic energy of 1
2~ω, as the excess energy is shared between two atoms. The red

line is the predicted size due to the kinetic energy, added in quadrature with the

resolution limit of our imaging system. (b) The peak OD of the clouds plotted in

part (a). The red line is a fit to a 1
w2 dependence (∼ 1

t2
), varying only an overall

scaling factor. (c) The energy of the outcoupled cloud as a function of detuning,

at 4.5 ms time-of-flight expansion. We calculate the energy from the size of the

outcoupled cloud, accounting for the size of the cloud of non-spin-flipped atoms at

ω = 0. The solid line is 1
2
|ω|
2π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.4 Deviation from signal linearity. On both the peak (a) and tail (b) of the transition,

we measure the outcoupled fraction fmeas of atoms vs RF pulse time and/or power,

and plot it vs the fraction expected fexp if the dependence were linear. We fit this to

the simple saturation model of Equation 6.13 to extract a value for the asymptote

faysm and calculate the magnitude of the correction to the data. In (b) we combine

data from two different scattering lengths for a larger range in signal. Individual fits

to the two sets give the same result within the error bars. . . . . . . . . . . . . . . . 64

6.5 The contact vs a, measured at |ω| = 2π × 40 kHz. (a) Here I plot α(a)
β(ω)

C2
N0

, which is

directly proportional to the strength of the measured ω−3/2 RF tail. (b) The contact

per particle C2
N0

. The solid lines in (a) and (b) are the mean-field predictions. The

final-state effects shift what is a parabola centered about a = 0 in (b) to one centered

about a′ = −565 a0 in (a), which enhances our signal at small a. . . . . . . . . . . . 66
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6.6 Contact measurements as a function of the LHY energy ELHY. (a) The contact per

particle normalized by density1/3. The red curve shows the mean-field prediction for

the contact, and the blue curve shows the total contact including the LHY term.

In (b) the data are normalized to the mean-field value of the contact to compare

to theory more clearly. In the limit of low interaction strength, the data match the

theory but cannot distinguish the LHY contribution. At higher values, the data

are systematically low. At values of ELHY approaching unity, we do not expect the

perturbative LHY theory to be valid. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.7 Contact measurements as a function of ramp rates, expressed in terms of the “adia-

baticity parameter” R. Higher values of this parameter correspond to faster ramps,

which show a value of the contact closer to the mean-field prediction. Slower ramps

result in higher values closer to the LHY prediction. Different shapes correspond to

different days on which the data were taken. The small upper plot is a reproduction

of Figure 6.6b, to illustrate the values of ELHY shown here. For lower interaction

strength, the LHY term is too small compared to the error bars to discern a ramp rate

dependence. To calculate the mean-field and LHY energies, we require knowledge

of the cloud density. The change in densities due to the ramp in a were calculated

using a model for expansion that included only the expected mean-field energy, and

vary from 40% for the slowest ramps to 10% for the fastest. This reasoning is some-

what circular, but including the LHY term in this model causes at most an extra

5% decrease in density for the slowest ramps, and the resulting change is shown by

the open circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



xvii

7.1 A sketch of Efimov states. The vertical scale gives the wave number K = ±
√

m|E|/~2,

and the horizontal gives 1/a, such that the origin corresponds to unitarity (a → ∞).

The green line shows the state corresponding to a bound dimer plus a free atom,

and the blue lines show the bound trimers, for which there is an infinite series ap-

proaching unitarity. Note that the scaling factor here is ∼ 2 to make the behavior

visible and to match the literature on Efimov states. A realistic Efimov state with

scaling factor 22.7 would have an energy that is nearly indistinguishable from the

dimer energy on the scale of this plot. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2 Example of a loss rate measurement to extract K3. These data correspond to a

scattering length of 730 a0. Heating of the cloud causes its size to increase as seen

in (a). The parameters extracted from a linear fit to the volume go into a fit to

the atom number via Equation 7.10, as seen in (b), resulting in a value of K3 =

5.64× 10−22cm−6/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.3 A three-body loss resonance for 85Rb. We plot the three-body event constant K3

vs the scattering length a, for clouds with a temperature of roughly 8 nK. From

fitting Equation 7.11 to the black points, for which a < 1/kthermal, we extract a− =

−759(6)a0 and η = 0.057(2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.4 Measurement of η vs temperature. (a) The loss resonances. For the data at 30 and

140 nK, we did not calibrate the scattering length as carefully as the data at 80 nK,

which is the same data as in Figure 7.3 shown over a smaller range of a. Moreover,

the 30 nK clouds are likely not in thermal equilibrium, and the ensuing error in

the average density will cause a systematic error in the calculated value of K3. (b)

Measured values of eta vs temperature. We do not see a significant change in η over

a large range in temperature, suggesting that the experiments are performed in the

low-temperature limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
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7.5 GRF as a function of ω, with κ∗=39(1) µm−1. We plot GRF for negative ω to ease

comparison with the measured RF tail, which occurs at negative detunings in our

experiment. GRF has a node at ω ≃ 2π × 27 kHz, suggesting that one should look

for a C3 contribution to the RF tail for smaller detunings. . . . . . . . . . . . . . . . 81

7.6 Changing the scattering length for increased density. We jump the scattering length

a (green curve) to 50 a0, causing an inward breathe with a period of roughly 50 ms.

Close to the turnaround point we ramp to 982 a0 and apply the RF pulse to measure

the contact (grey line). The blue curve shows the prediction for the relative density

of the PG model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.7 (a) The calculated frequency dependence of GRF(ω), shown again on a logarithmic

ω scale for reference. (b) The measured frequency dependence of the tail of the RF

spectrum for a = 982 ± 10 a0. The solid red line is a fit to the expected frequency
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Chapter 1

Introduction

1.1 Universality

Scientific advancement has historically been reductionist, wherein humanity has aspired to

explain things by simpler underlying principles. All the complex matter in the world was found to

consist of combinations of only a hundred or so different elements. The elements were then found

not to be so different after all, as they are merely made of different combinations of the same three

particles. And even some of these particles have been broken down to their constituents. However,

although this method of understanding the world has brought us extremely far, knowing everything

about a constituent part may tell us very little about the whole. For example, detailed knowledge

of a single water molecule does not readily lead to the prediction that a collection of water will

freeze at a certain temperature, much less that this solid form will actually be less dense than the

liquid. Although determined by the constituent parts, such emergent behavior is too complex to

predict only using knowledge of the parts. We cannot predict complex chemical behavior if we

know everything about the atoms, just as we cannot predict a person’s actions by knowing exactly

how a neuron works. Instead, we study the different levels of complexity in their own right, with

the hope to sometime connect the emergent behavior with our knowledge of the constituent parts.

An example of this is liquid Helium. In 1908, Helium was finally cooled to such low tem-

peratures as to liquefy it [1] (Helium has the lowest boiling point of all gases). The liquefaction

itself was expected, since all other gasses behaved similarly. But one can imagine the astonishment

that emerged when its superfluid properties were discovered in 1938 [2, 3]. It behaved like no other
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liquid, flowing completely without friction and over the sides of any open container. Similarly, some

metals exhibit superconductivity when cooled enough, allowing currents to flow through them with-

out resistance (a superfluid of electrons, if you will). These quintessential examples of unexpected

emergent behavior have been subject to intense study, but trying to predict this behavior from de-

tailed knowledge of the individual parts proves impractical at best. Instead, we attempt to explain

these systems using only a few “universal” properties.

The concept of universality is a powerful tool that allows one to study analogues of complex

and diverse systems in simpler, more controlled conditions, and to make theoretical predictions

based on the “most important” parameters. The basic idea behind universality is that many systems

can be completely described by a small number of parameters and do not depend strongly on details

specific to the constituents. For example, much of astronomical behavior can be explained using

the universal concept of gravity, where the universal parameter is the mass of an object. Knowing

only the masses of objects involved, we can very accurately predict the motions of heavenly bodies

regardless of their size, shape, and constitution. Of course, an object’s shape could affect the path

of a very nearby mass, so one must make sure that predictions and experiments stay within relevant

limits of the universal regime. An atomic example of a universal parameter is the scattering length.

When two atoms interact via low energy s-wave collisions, the scattering length, a, describes

how strongly these atoms interact with each other (where a small magnitude scattering length

corresponds to weak interactions). The usefulness comes from the fact that details such as the

type of atom or particle, or the specific shape of the interatomic potential are irrelevant, and the

system of atoms can be completely described by the scattering length. Liquid Helium is not fully

in this regime, since its density is so high that the details of the interparticle potential can not

necessarily be ignored completely. Nevertheless, much theory has been developed in the universal

framework to approach some of the universal physics involved. To realize these universal systems

and test the theories, we need low temperature dilute gasses, the difficulty of which has kept the

science on a mostly theoretical level through most of the twentieth century. In 1995, however,

Bose-Einstein condensation was achieved in dilute gasses [4, 5, 6], making quantum mechanical



3

many-body systems described by the universal parameter a experimentally accessible.

1.2 Strongly correlated systems

Weakly interacting dilute gases have been well understood in the framework of mean-field

theory, where the interactions between particles are characterized simply by the mean-field energy

gn, where n is the density of the atoms and g = 4π~a
2m , m being the atomic mass [7]. This provides

a highly accurate description of the system in the dilute limit [8], which assumes na3 → 0. For

interacting Bose gases, however, the interactions give rise to correlations that modify the energy.

Systems with strong quantum correlations, such as liquid Helium, represent a frontier in our un-

derstanding of the complex quantum systems found in nature. A first step to understanding these

correlated systems was taken by Lee, Huang, and Yang in 1957, who found that the leading order

correction to the energy density of a BEC is given by [9, 10]

E =
2π~2an2

m

(
1 +

128

15
√
π

√
na3 + ...

)
, (1.1)

where the term proportional to
√
na3 is often called the LHY correction.

However, it has proven difficult to study strongly interacting atomic BEC, and only a few

groups have successfully measured beyond-mean-field effects in these system [11, 12, 13]. The main

difficulty is a fundamental one, as increasing a in order to increase the interaction strength brings

with it a rapidly increased rate of inelastic three-body collisions [14, 15]. In one of these collisions,

two atoms bind to form a molecule, and the third atom recoils with a kinetic energy equal to 2/3

of the binding energy of the molecule for a single-species BEC. This results in the loss of all three

atoms from the BEC, as well as heating. The heating comes from collisions, as they leave the cloud,

of the energetic particles with other BEC atoms, as well as the fact that loss is density dependent,

which causes more loss from colder parts of the cloud (anti-evaporation). Moreover, this three-body

recombination rate scales as a4, so experiments on these systems either must stay at relatively low

interactions strength (done successfully by the groups around Salomon [13] and Hadzibabic [12]), or

must probe the system very quickly, before the losses become significant. The latter is our strategy;
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our measurement technique uses a short radio-frequency (RF) pulse to measure a quantity called

the contact. I will introduce the contact below, and a more thorough treatment will be given in

Chapter 6. Previously, our group has probed strongly interacting gasses using Bragg spectroscopy,

whereby an excitation is created with a two-photon transition [11]. The appeal of this method was

the same; it allowed for a fast probe of the system before three-body losses became significant.

However, we were trying to resolve the extra energy provided by the LHY term, meaning that our

probe pulses had to be long enough to provide the required energy resolution. The contact is not

an energy measurement, so this otherwise fundamental trade-off between probe time and energy

resolution is not an issue, as explained below.

1.3 Contact spectroscopy

Measuring the contact through RF spectroscopy is a way to quickly probe the BEC, and is

based on measuring short-range correlations in the gas. In 2005, Shina Tan introduced a parameter

termed the contact, which quantifies the strength of short-range correlations in an ultracold gas,

and showed how this quantity connects quantitatively to macroscopic thermodynamic properties

of the many-body system via a set of universal relations [16, 17, 18]. Tan’s predictions have been

explored theoretically [19, 20, 21, 22, 23, 24] and experimentally [25, 26] for ultracold Fermi gases.

One of these relations pertains to its measurement technique. The contact manifests itself in

the tail of an RF spectrum, which can be thought of as due to RF “dissociation” of pairs of atoms

that are close to one another. The rate of transferring atoms to a non-interacting state in this tail

is given by

lim
ω→∞

Γ(ω) =
Ω2

4π

√
~
m

α(a)

β(ω)

C

ω3/2
, (1.2)

where the integrated RF lineshape is
∫∞
−∞ Γ(ω)dω = πΩ2N , ω is the detuning from the single-atom

resonance, and Ω is the single atom Rabi frequency [27]. Further discussion of this will follow in

Chapter 6, but the point here is that one can measure the outcoupled number of atoms on the tail

of an RF lineshape as a measurement of the contact.



5

A sketch of how we actually measure the contact is shown in Figure 7.1. The frequency

spectrum of a single atom (or of a cloud of noninteracting atoms) looks like a delta function

(Figure 7.1a), but interactions give rise to the tail in the frequency spectrum (Figure 7.1b), as

parameterized by the contact in Equation 1.2. The interactions also cause a slight shift in the

resonant frequency, but to resolve this sub-kHz shift would require long interrogation times on the

order of milliseconds. In reality, of course, the single atom resonance is widened by things such

as inhomogeneous magnetic fields and finite probe times. This results in a spectrum more akin to

Figure 7.1c, where the tail has been greatly exaggerated compared to the resonant lineshape. We

use different methods to probe the different regimes of this spectrum. We use a short, spectrally

broad pulse to probe the resonant lineshape, which tells us the resonant frequency ω0 and gives us

a measure of the single atom Rabi frequency Ω. Longer, spectrally narrow pulses are used to probe

the tail of the transition, giving us the excitation rate Γ(ω).

Another powerful relation states that the contact, C, is connected to the derivative of the

total energy of the system, E, with respect to a via the adiabatic sweep theorem [28, 29]:

dE

da
=

~2

8πma2
C. (1.3)

With this, we can rewrite the LHY result in terms of the contact for a condensate as

C = 16π2na2
(
1 +

5

2

128

15
√
π

√
na3 + ...

)
N0, (1.4)

where N0 is the number of atoms in the BEC. This enables us, for instance, to look for deviations

from the mean-field prediction for the contact, where the lowest order correction comes from the

LHY term of Equation 1.1.

Since this method inherently measures an amplitude instead of a frequency, we can use very

short RF pulses to probe the system at timescales short compared to three-body loss rates, even

though the spectral broadening of these pulses would be much too wide to measure the change in

energy (via Equation 1.1) directly. Of course we are not evading the uncertainty principle, and this

method does not actually tell us what the energy is. Instead, it tells us how the energy changes
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(a)
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resonant lineshape

tail

0
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0

Figure 1.1: Sketch of RF transition rate Γ. (a) Shows the ideal noninteracting spectrum, where the
whole population is resonant at a single frequency. (b) Correlations brought about by interactions
give rise to a ω−3/2 tail, shown by the red line, as well as a small shift of the resonance frequency. (c)
The experimental broadening of the lineshape obscures this shift. Nearly all the atoms are within
the area of the resonant lineshape, which gives us a measure of the single atom Rabi frequency. We
use different methods to probe the resonant lineshape and the tail regimes, and the final contact
measurement involves a ratio of these excitation rates. The magnitude of the tail has been greatly
exaggerated for illustrative purposes.
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with scattering length (Equation 6.3). This provides a solution to overcome the major hurdle of

short lifetimes caused by inelastic losses. Of course, that does not make the experiment easy, and

the technical requirements to make this approach work provide many smaller experimental hurdles.

Overcoming these hurdles required much work, and the resulting solutions form a large part of this

thesis.

1.4 Technical challenges and thesis contents

What are the experimental capabilities then, required to measure the contact? First, we need

to be able to create stable condensates, and we must be able to tune the interaction strength to

access the mean-field and LHY regimes. We want to do this quickly to minimize three-body losses

over the duration of the ramp. When we increase the scattering length on a timescale shorter than

the trap period, the BEC will be out of equilibrium. This starts a breathe mode and the density

initially drops very quickly along with our signal. Yet working at sub-millisecond times is difficult

due to experimental constraints. For example, coil inductances and current-servo bandwidths often

cause magnetic fields to ring down before stabilizing. In order to alleviate that less fundamental

but still problematic issue, we need a weak spherically symmetric trap to maximize the density

oscillation period. These requirements were already met by our BEC machine before we started

thinking about the contact, as explained in detail in the thesis of Dr. Juan Pino [30]. I will merely

give an overview in Chapter 2, where I will also give a rundown of our cooling process.

To measure the contact via RF spectroscopy, we need the frequency width of our resonant

lineshape to be smaller than the detuning at which we are measuring the tail. This requires us to

minimize the large magnetic-field gradients present in our magnetic trap. Also, since the magnitude

of the signal on the tail is a strong function of the RF detuning ω, we have strict requirements on

our trap magnetic-field stability. These requirements and our solutions are discussed in detail in

Chapter 3.

The RF pulse must also meet certain requirements. The transition rate on the tail is much

smaller than on the resonant lineshape, so great care must be taken to prevent any spectral “wings”
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on the pulse from giving us a false signal. For this reason we require Gaussian shaped pulses, and

our RF system must in general be well behaved and not have adverse effects on the rest of the

experiment. These issues are illuminated in Chapter 4.

Another important element is that of detection. Our weak, spherical trap has the effect

that the condensate does not expand much when the trap is turned off, which causes two major

challenges for imaging. Even after 30 ms expansion, the optical depth (OD) is still too large to avoid

severe saturation problems with standard absorption imaging techniques. Also, the large, negative

background scattering length causes the BEC to collapse once the magnetic fields are turned off,

and the low expansion energy is not enough to overcome it. Aside from problems associated with

imaging the condensate, we must also be careful about our detection schemes for the tail and for

the resonant lineshape, so that in the end we can claim an accuracy on the contact measurement to

within better than 10%. The imaging and detection techniques and systematics will be described

in Chapter 5.

With these technical issues properly delineated, I will talk about the contact in more detail.

I will illustrate its origins and limits, and will show data that exhibit beyond mean-field behavior,

as well as interesting time-dependent behavior in Chapter 6.

Recently, there has been made some theoretical advancement predicting a three-body contact

for bosons, related to Efimov physics [31]. Chapter 7 will expand on this subject, show data on

Efimov effects in our system, and show recent developments on the three-body contact.



Chapter 2

Experimental Basics

In this chapter I will give an overview and general background of our experiment. This

experiment hinges mostly on the fact that we can produce a Bose-Einstein Condensate (BEC), and

that we can tune the interactions of the constituent atoms, which are characterized by the two-body

scattering length a. I will describe the various steps and processes we utilize to give us that ability.

First, I will describe how we tune a via a Feshbach resonance. Then, I will describe our sympathetic

cooling techniques and various trapping schemes that result in a magnetically trapped, spherically

symmetric BEC. This chapter is included mostly for the sake of completeness and many details

will be left out, as more complete descriptions can be found in the theses of Dr. Scott Papp [32]

and Dr. Juan Pino [30].

2.1 85Rb and its Feshbach resonance

Bose-Einstein Condensation is a hugely interesting phenomenon that has sparked countless

studies of basic quantum mechanics (and since they’re so countless, I will refrain from filling this

page with references to back up my claim). One of the workhorses of these studies has been 87Rb,

and by now its cooling and trapping properties are so well developed and documented that one

needs a good reason to work with a different atom. This is especially the case for 85Rb, which has

such unfortunate scattering properties that it is difficult to cool to degeneracy [32]. Our reason,

then, for working with 85Rb is that it has a Feshbach resonance at an experimentally accessible

magnetic-field strength of 155 G.
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A Feshbach resonance occurs when a two-body bound state is tuned to become degenerate

with the atomic scattering threshold. More in-depth explanations can be found here [33, 34], but

the point is that the two-body scattering length behaves as

a(B) = abg

(
1− ∆

B −Bpeak

)
(2.1)

near the resonance, where for 85Rb, abg = −443(3) a0 is the background scattering length in

units of the Bohr radius, ∆ = 10.71(2) G is the width of the resonance, and Bpeak = 155.041(18)

G is its location in magnetic field B, as measured in [35]. The shape of this resonance can be seen

in Fig. 2.1. Thus, by tuning the magnetic field at the position of the atom cloud, we can access a

huge range of interaction strengths, allowing us to study condensates beyond the mean-field limit.

2.2 The road to BEC

By now, the production of BEC in alkali atoms alone no longer makes the headlines, and

methods for trapping and cooling are omitted from papers to make room for more interesting

scientific results. Nevertheless, there can be interesting variations in the standard methods, and

the painful truth is that graduate students often spend disproportionately large amounts of time

on the optimization of these methods; this warrants a section devoted to the various trapping and

cooling stages in our experiment. Again, this is just a quick overview, and more information can

be found in [32, 30].

Most of the cooling on 85Rb happens via collisions with colder 87Rb (this process is referred

to as sympathetic cooling), since cooling 85Rb by RF evaporation directly has proven difficult due

to its collisional properties. Thus, the 85Rb and 87Rb clouds follow much of the same path through

the experiment. We start out with a dual-species magneto-optical trap (MOT) to initially cool 85Rb

and 87Rb from a room temperature gas. After the MOT stage, we load the atoms into a magnetic

trap and transfer the atoms to our science chamber, where the significantly higher vacuum gives us

long lifetimes of ∼ 500 seconds. This transfer uses pairs of coils that turn on and off in succession,
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Figure 2.1: The scattering length in units of the Bohr radius a0 as a function of magnetic field. We
create our cold atom clouds on the high-field side of the resonance to optimize collisional properties.
From there, we can easily tune the value of the scattering length to either large positive or negative
values.
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as well as a moving coil mounted on a track. In the science chamber we load the atoms into a Ioffe-

Pritchard (IP) style magnetic trap, and perform standard RF evaporation on 87Rb, thereby also

cooling the 85Rb sympathetically. However, since the 85Rb and 87Rb atom have different magnetic

moments (in the |2,−2⟩ and |1,−1⟩ states, respectively), the cloud centers are spatially separated

due to gravitational sag, and the sympathetic cooling will only be efficient until the sizes of the

clouds are on the order of their spatial separation. This occurs at ∼ 10 µK and 1 million 85Rb

atoms, which is still far from degeneracy for a trap where ωx = 2π × 13 and ωy = ωz = 2π × 210

Hz, and our cooling procedure requires a change in strategy. At this point things become more

interesting, as we have developed a hybrid optical and magnetic trap to continue the sympathetic

cooling process and end with a BEC of 85Rb in a 10 Hz spherical trap.

As mentioned in the Introduction, we require a weak, spherical trap to give us more time to

probe our strongly interacting BEC. This trap has the effect of increasing the separation between

the species’ equilibrium positions (800 µm), as well as lowering the intraspecies collision rate by

nearly a factor of ten (given constant phase-space density). That would increase our evaporation

time accordingly, and slow the experiments down to unacceptable rates. To avoid these issues,

we change the currents in our various IP and shim coils to create our 10 Hz magnetic trap, and

quickly turn on a single-beam optical trap (OT) with a 230 Hz radial confining potential. The

atoms are now confined by the OT, ensuring that the two species are in the same location and

that collision rates remain high. The tricky part here is to shim the magnetic trap fields in a

way such that the 85Rb magnetically trapped equilibrium position is aligned with the optical trap

location. A graphical depiction of this trapping scheme can be seen in Figure 2.2. Then we simply

decrease the OT intensity down to zero at a rate slow compared the relevant collision rates. The

87Rb experiences normal evaporation, with high energy atoms falling out of the optical trap (we

apply RF to then transfer them to an untrapped state), and continuously cools the 85Rb cloud,

which stays centered on the OT/magnetic trap throughout the whole procedure. When the OT is

completely off, all of the 87Rb atoms have fallen out of the trap, and the 85Rb exhibits a significant

condensate fraction, which we purify with some RF evaporation at the end. This evaporation
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scheme regularly results in 85Rb condensates of 60,000 atoms, although we have seen condensates

upwards of 100,000 atoms.

This method proved to be an effective and reliable scheme to create 85Rb condensates for

several reasons. For one, we can be certain that the atoms in our cloud are only 85Rb and only

in the |2,−2⟩ state, as the 87Rb or other spin states are trapped at very different positions. The

same can not be said for optical dipole traps, for which contamination from other atomic species

or spin states can be an issue. Also, since evaporation is performed almost entirely on 87Rb, we

only need to load relatively few 85Rb atoms into the MOT at the very beginning. This means that

the 85Rb density remains low up until the end of the cooling cycle, suppressing losses of 85Rb due

to three-body recombination. Loading fewer 85Rb atoms also means that it presents a smaller heat

load for the coolant (87Rb), which means that the same amount of initial 87Rb can reach lower final

temperatures. As long as we load just enough 85Rb into the MOT to suppress 87Rb condensation

at the end of the cycle, the overlap between the two species is guaranteed and we reliably make

85Rb condensates.

Of course, all methods have their drawbacks. The weakest link in the evaporation is ensuring

that the OT is centered on the 85Rb equilibrium position. If the two traps are misaligned, then

the 85Rb will slosh out of the OT, causing heating and ending the sympathetic cooling process. To

align the traps, we use external coils to shim the magnetic trap position to coincide with the OT

position, which roughly coincides with the center of the IP trap. For the vertical direction, we use

a pair of coils to apply a uniform vertical field of about 35 G, shifting the magnetic field minimum

upward. For the horizontal direction perpendicular to the OT, we use a set of coils that produce a

5 G field at the atoms along the OT, with a gradient perpendicular to the OT, producing a force

on the atoms. We tune the magnetic trap rather that the OT position, since in our setup we can

control the currents in our shim coils much more precisely than the mirror mounts of our optical

trap. Due to experimental drift, this alignment generally has to be done every few weeks. However,

with the traps aligned, we often do not need to optimize our system in the morning to achieve our

standard BEC conditions, owing to the general reliability of this cooling scheme.
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Figure 2.2: A schematic of our evaporation. The optical trap ensures overlap between the 85Rb
(red points) and the 87Rb (blue points), and is centered on the 85Rb magnetic equilibrium position.
Lowering its trap depth evaporates 87Rb. The 87Rb cools the 85Rb via collisions until all the 87Rb
has fallen out, and only 85Rb remains in a purely magnetic trap.



Chapter 3

Magnetic Field

As mentioned in the Introduction, measurement of the contact via RF spectroscopy involves

transferring atoms from one magnetic sublevel to another, at frequencies detuned from the center

of the resonant lineshape (the single atom resonant frequency) by 10-100 kHz. We require our

line width to be much smaller than this detuning, since the transition rate for the tail can be

several hundred times smaller than for the resonant lineshape. This puts a significant limit on the

width caused by magnetic-field gradients, which cause different parts of the cloud to be resonant at

different frequencies. Also, because the contact signal on the tail is a strong function of detuning

(C ∼ ω−3/2), it is crucial to know the resonant frequency to within < 1 kHz (a 1 kHz uncertainty

at 20 kHz detuning results in an 8% uncertainty in the contact). This means that our absolute

magnetic-field noise must be less than 2 mG at 155 G, or ∼ 12 ppm.

In this chapter I will discuss these problems in two parts. First I will talk about our methods

of magnetic gradient cancellation to decrease the RF line width. In the second section I will reveal

our techniques for characterizing and stabilizing our magnetic fields, which will be of interest to

anyone with magnetic traps and stringent stability requirements.

3.1 Gradient cancellation

One of the problems we were faced with from the beginning was making the width of our

resonant lineshape small enough for contact measurements. We needed to probe the tail at low

detuning without outcoupling a significant number of atoms due to this width. This problem came
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up time and again, and represents one of the main difficulties of RF contact spectroscopy.

One cause of this problem is fundamental to our trap. The fact that we have our BEC in a

purely magnetic trap means that we have a strong magnetic-field gradient in the vertical direction

to support the atoms against gravity. Specifically, since the atoms are all in the |F = 2,mf = −2⟩

state, the gradient comes to 2mg
3µB

= 22.4 G/cm, where m is the mass and g = 9.8 m/s2. For 50,000

atoms in our trap, the 14 µm Thomas Fermi radius [36] results roughly in a 14µm ·22.4 G
cm · µB

3h ≃15

kHz rms width on our |2,−2⟩ to |2,−1⟩ transition. We quickly found out that this would not be

nearly narrow enough to measure a decent contact signal, so before we even worried about RF

pulse widths and field noise and such, we had to find a way to circumvent this “trapping gradient”

issue.

Our solution to this problem is in no way unique or even necessarily the best solution.

It just turns out that with our system it represented the quickest and easiest way to solve the

problem satisfactorily. In Chapter 2 I explained that we have to shim the magnetic trap fields

so that the cloud’s sag position overlaps with the optical trap. The optical trap loads from a

much tighter 230 Hz magnetic trap, so its vertical position essentially coincides with the magnetic

minimum (geometric center) of the Ioffe-Pritchard trap. The exact center, of course, corresponds

to a vanishing vertical magnetic gradient. The simple solution, then, is to turn off the large vertical

shim coils so that the position of the magnetic minimum once again corresponds to the position of

the atoms (see Figure 3.1).

This solution is slightly too simple (as most simple solutions simply are), since the position

of the atoms (i.e. the optical trap) does not exactly coincide with the magnetic minimum when the

large shims are turned off, leaving us with a 5 G/cm vertical gradient. To cancel this gradient, we

then turn on another small vertical shim coil to fine tune the position of the magnetic minimum.

One might ask why we do not just use the large coils to do the final shimming, which would be a

fine question (and our initial mode of operation). But it turns out that those coils are used to carry

high currents and supply strong fields several times in the experiment, and the weak currents and

fine adjustments necessary for the final shim were in a regime where the high-current servo fails to
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Figure 3.1: Our scheme to create a uniform field. We start with a BEC in a purely magnetic trap,
whose center is shifted upward by a set of large shim coils. We then quickly ramp down the coils,
causing the minimum of the magnetic field to move to the location of the atoms. A small shim coil
fine tunes this location.
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Figure 3.2: Measuring the magnetic-field gradient. We create a large thermal cloud (pink circle
with dashed outline) and perform RF spectroscopy on a magnetically sensitive transition (in this
case the |2,−2⟩ to |2,−1⟩ transition). As long as the spectral width of the pulse is smaller than the
cloud, different parts of the cloud are resonant at different fields, and will outcouple at different
positions in space. The resulting slope can be converted to a magnetic-field gradient.

reliably operate. Since we already had a small coil in place to handle smaller currents and produce

weaker fields (labeled as the “anti-gravity coil” in Scott Papp’s thesis [32]), it was a simpler solution

to use it instead.

This small coil is a 60 turn coil with a 7.6 cm diameter, about 5 cm below the atoms, through

which we put about 3 A of current just before we ramp down the large shim coils in 0.5 ms. We tune

this current by creating large, thermal clouds of 85Rb and taking an RF spectrum of the atomic

resonance. In a gradient, different parts of the cloud will be resonant at different frequencies, so

plotting the position of the outcoupled cloud vs frequency gives us a measure of the magnetic-field

gradient (see Figure 3.2).

Of course, when we turn off the gradient several things happen. First of all, the cloud begins

to fall under gravity, but since the trap is still on and the curvature unchanged, it does not expand

like it would if we simply turned the trap off. The falling of the cloud does not pose a problem,

since it occurs relatively slowly. In 5 ms of falling, the cloud moves only 120 µm (20 pixels on our

camera), and the magnetic field stays constant to within our detection sensitivities. As I explain

in Appendix B, we perform all of our experiments within 2-3 ms of turning the gradient off.
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Another issue is that we actually change the magnitude of the magnetic field when we ramp

off the large shim coils. Those coils create a 26 G magnetic field perpendicular to the trap bias

field, which corresponds to an overall decrease of
√

(155 G)2 + (26 G)2−155G = 2 G when we turn

them off. Since we make BEC near a Feshbach resonance (see Equation 2.1), this will cause the

scattering length to jump from 100 a0 (where we generally make BEC) to 260 a0. For our data in

Chapter 6 we simply worked with this, since we then continued ramping the field to higher values

anyway. However, for experimental procedures where this ramp is unwanted, we have developed a

simultaneous ramp in the bias field that compensates the shim ramp and keeps the field magnitude

constant.

This scheme to temporarily create a spatially uniform field works well and rarely requires

optimization, but limits us to short times. Perhaps a better and more robust solution would be

to work with an optical trap in the first place. To reach similar trapping frequencies and aspect

ratios, the obvious setup would be a crossed beam optical trap with a large waist and high power.

If this is achieved, then the magnetic fields can be made very uniform with few coils, for as long as

is required. For a time we investigated using this setup ourselves, but problems with optical access

convinced us to pursue the magnetic route.

3.2 Magnetic-field stabilities

For us to perform trustworthy measurements, the magnetic field (i.e. the resonant transition

frequency) must be uniform not only in space but also in time. A typical measurement of the

contact (more on that in Chapter 6) involves measuring the resonant transition frequency, and

then taking enough data on the tail of the transition (the contact) and the peak of the resonant

lineshape (for the Rabi frequency) to achieve fractional error bars no larger than 10%. Any drift in

the resonant frequency during the measurements would create a systematic error in the measured

contact. So we had two goals for stabilizing our fields. On the one hand, we needed to minimize

the shot-to-shot variation, so that we can find the resonance and measure the contact with as few

points as possible. On the other hand, we needed to ensure that the field does not drift significantly
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over the total time this requires. Our experimental cycle time is about 90 seconds, which sets the

former time scale, and we tended to take one half to one hour to complete the measurement, setting

the latter.

3.2.1 60 Hz AC line noise

Luckily, we did not have to start from scratch. Scott Papp designed the magnetic trap and

controlling servos very well [32], and we already had a stability of about 4 mG shot-to-shot to work

with. To improve on this, we first set out to measure the noise from the AC power line. As any

table top experimentalist knows, the 60 Hz (50 Hz in Europe) frequency noise is difficult to shield

completely, and makes it onto most electronics if you look closely enough. To investigate how much

this moved our field, we measured an RF spectrum and took statistics on the side of the gaussian

line shape. Assuming the scatter was purely due to the field moving, we could convert the scatter

around the expected line to a value of magnetic field for every point. Taking a histogram of these

points clearly shows a double-peaked structure, which one would expect for a random sample of a

sine wave. We also measured the phase of the AC line for each point, and the oscillation roughly

agrees with the expected 60 Hz signal (see Figure 3.3a).

The brute force solution to this problem would be to try to track down the path by which the

60 Hz noise reaches the magnetic trap. However, given that we separately control 5 magnetic field

coils with as many servos, and that it would be difficult to suppress the noise without adversely

affecting the servo bandwidth, we opted for a more elegant solution. We decided to synchronize

the experiment to the AC line such that the RF pulse would always occur at the same phase

of the AC line. Our experiment is controlled by a DIO-128 board by Viewpoint Systems with

64 programmable digital output lines, which we load with our timings and output values at the

beginning of the experiment, and then trigger to run the experiment off an internal clock. Our

change was to set the trigger to wait for the rising edge of the AC line to start its output cycle.

However, we found that simply synchronizing the beginning of the experiment to the AC line was

insufficient because the phase randomizes too quickly. After just 10 seconds, we measured the phase
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noise to be 12% of a full 16.7 ms cycle. Therefore, we synchronize 1 second before the sensitive

measurements, where the phase jitter is at a mere 1% of a cycle. This resulted in a shot-to-shot

standard deviation of ∼ 2 mG with a more Gaussian distribution (Figure 3.3b).

However, there are important issues with this solution, which have to do with experiment

timing. Mainly, the extra wait for an AC line trigger introduces timing uncertainties between

the times before and after the synchronization. This includes up to 17 ms of hold time from

the AC phase, and several hundred milliseconds due to the fact that the DIO board has to load

new values for the final part of the experiment. The latter might be circumvented with creative

programming and different hardware, but the former is fundamental to the synchronization. This

timing uncertainty is a problem when measuring things like cloud oscillations in the trap, which

are affected (and usually caused) by various trap changes 10-20 seconds earlier. For this reason we

only synchronize the experiment to the AC line when we perform field-sensitive measurements.

3.2.2 Field monitoring

With the synchronization we reached our 2 mG field stability requirement on the 90 second

timescale. However, as we were taking numerous frequency spectra throughout the day, we noticed

occasional random jumps in the field on the order of 10 mG (5 kHz for the contact transition).

If such a jump occurred in the time between measuring the resonant transition frequency and

measuring the contact signal on the tail, it would result in a large systematic error in the final

value for the contact (20% error for 40 kHz detuning). Therefore we had to start monitoring the

fields in order to track down the cause of the jumps.

One monitoring system we use is a 61
2 digit multimeter (Agilent 34401A) to record the voltages

from the Danfysik current probes that we use to servo the fields. To achieve the necessary precision

(40 µV on the probe correspond to 6 mG in the Bias field), it was required to use the “slow 5

digit” multimeter setting, which averages for 167 ms. Thus, we could only take measurements of

the steady-state B-field before our field ramps. However, we did notice occasional jumps in the

voltages on our Bias coils, which we could correlate with similar measurements of the servo control
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(a)

(d)(c)

(b)

Figure 3.3: Correlating noise to the 60 Hz AC line. Part (a) shows how we correlated the noise to
the AC line. (a) Taking data on the side of a transition and using the slope allowed us to convert a
scatter in signal to a scatter in B-field. Correlating this scatter to the phase of the AC line at the
time we applied the RF pulse shows a modulation in agreement with the 60 Hz line. A histogram
(c) of the scatter reveals the characteristic double-peaked shape of sinusoidally distributed values.
This structure essentially disappears in (d), where we have synchronized the experiment to the
AC line 1 second before the B-field measurement. The bin size and axis range of (c) and (d) are
identical.
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voltage, which corresponded in magnitude and direction to jumps that we saw in the magnetic field.

It turns out that a 100 µV jump in the control voltage caused a 4 mG jump in field. We found that

these tiny voltage jumps were caused mostly by faulty BNC cable connections between our National

Instruments PCI-6733 analog output board and the servo control box. Reducing the number of

connections, as well as cleaning them with off-the-shelf cleaner for electrical connections essentially

solved this problem, and our current probe readings became stable to a B-field equivalent 0.5 mG.

We also monitored external fields, with the worry that there might be changes in the magnetic

field environment. To measure external fields, we set up a fluxgate magnetometer roughly 1.5 meters

from the position of the magnetic trap, and set it to take and record a measurement of the ambient

magnetic field in between each cycle of the experiment, i.e. when all of our magnetic trap coils

were turned off. Surprisingly, we noticed and tracked down several effects that could change the

magnetic field at the atoms.

The first of these was the freight elevator of the physics building. The elevator is located

roughly 13 meters from our experiment and is used numerous times per day mostly for janitorial

equipment. We noticed a total change of 1.5 mG, which happened to be parallel and therefore add

linearly to our bias field, when we moved the elevator from the basement to the third floor (our lab

is on the second floor). It is not enough to cause us problems, but I include it for the interested

reader. If the experiment were adjacent to the elevator, the change in field could have been large

enough to adversely affect our experiments.

The more relevant findings were related to magnetized metal objects within our laboratory.

We found that several items were magnetized enough that moving them toward or away from

the 2 meter vicinity of the science cell cause field fluctuations upwards of 5 mG. These included

metal stools, trash cans, stepladders, and carts that carried equipment such as oscilloscopes and

spectrum analyzers. Also, small magnets attached to large pieces of metal (specifically equipment

racks) created significant field variations. Our solution is to avoid placing portable pieces of metal

on the side of the room with our science cell, and to simply not move anything in the lab while we

take sensitive data.
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Figure 3.4: The B-field resonance giving rise to 2-photon transitions. Part (a) shows Fourier
transforms of oscilloscope traces taken with a hand held pickup coil close to the trap. The blue
curve shows the problem-causing 40 kHz feature. Changing the gain of the B-field servos allowed us
to eliminate the feature, as illustrated by the green curve. A schematic of the 2-photon transition
is shown in (b).

3.2.3 Magnetic-field-induced atomic transitions

In this last section I will mention an admittedly peculiar problem we encountered in the

hopes that it might be interesting (or perhaps even useful) to the reader. Contact spectroscopy

relies on detecting low RF transition rates on one side of an atomic resonance at detunings where

one would expect negligible rates on the other side. However, for a while we were detecting spurious

transitions on both sides, which the widths of our RF pulses could not account for (more on that

in Chapter 4). We finally tracked it down to a problem with our magnetic fields. It turns out that

the trapping fields were ringing slightly at around 40 kHz, which we detected by placing a hand

held pickup coil next to the trap and taking the Fourier transform of the resulting scope trace,

seen in Figure 3.4a. The atoms could then absorb a 40 kHz photon from the trap along with an 80

MHz photon from our RF pulse to undergo a 2-photon transition to the final state (Figure 3.4b).

Analogously, we can think of the oscillating field as modulating the transition frequency, resulting

in sidebands at ±40 kHz with respect to resonance, and it was the blue sideband photon, along

with the carrier photon, that was causing the spin flips. Changing the servo parameters of the

system eventually allowed us to eliminate the 40 kHz peak, along with the spurious transition rate.



Chapter 4

Radiofrequency pulses

A recurring theme of this thesis is that the contact measurement on the tail via RF spec-

troscopy gives a small signal, constantly in danger of being swamped by the nearby resonant atomic

transition. To avoid this, we must be very careful to shape our RF probe pulse. This will be the

main focus of this chapter, with a note on RF rectification in our system at the end.

4.1 Gaussian pulses

Ideally, one would be able to perform RF spectroscopy using a perfectly narrow function in

frequency space. However, since that is experimentally not feasible, we are required to do the best

we can with a wider feature. From undergraduate physics courses we know that the shape of a

pulse in frequency space is simply the Fourier transform of that shape in time [37]:

F (ω) =
1√
2π

∫ ∞

−∞
f(t)e−iωt dt. (4.1)

This applies to the fields, so squaring the result gives the pulse shape in power. The standard

and easiest RF pulse shape is a square pulse, usually created by a simple RF switch. However, its

power spectrum is a Sinc2 function, which has oscillatory wings with an appreciable amplitude out

to many times the full-width-half-max (FWHM) of the main line (see Figure 4.1a). This would

be unworkable, since the spectral component has to decrease much faster with detuning than the

ω−3/2 tail from the contact. The logical choice, then, is to use a Gaussian shaped pulse, because

its Fourier transform is also a Gaussian and falls off extremely rapidly with detuning, as seen in

Figure 4.1b.
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Figure 4.1: Some RF pulses in frequency space. In (a) we see the power spectrum of two standard
pulses (inset). A square pulse in time becomes a Sinc2 function, which looks much like a Gaussian
down to the first minimum, but then exhibits significant wings far from the center (red curve).
A Gaussian in time, however, becomes a Gaussian in power (black curve). The curves have been
scaled to give similar peaks and widths. In (b) we see the same curves on a logarithmic scale, which
makes the difference clear. An ω−3/2 line has been added (blue), to show that the problematic wings
of a Sinc2 function persist with detuning.
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We create the actual Gaussian shape using an Agilent 33220A programmable arbitrary func-

tion generator with 800 points per Gaussian. Initially, we tried to create our pulses simply by

connecting the output of the function generator to the amplitude modulation (AM) port of our

Agilent E4420B frequency generator. However, we found that the frequency generator’s 10 kHz

bandwidth began to distort the shape of the Gaussian for τ < 25µs, where τ is the rms width.

Instead we opted for the LMH6503 linear variable gain amplifier, which has a 100 MHz gain control

bandwidth and 70 dB adjustment range. It takes the unmodulated frequency from the synthesizer

and the Gaussian shaped voltage pulse from the function generator as inputs, and outputs a Gaus-

sian RF pulse. The power and frequency is controlled by the synthesizer, and the rms width of the

pulse by the function generator. It is important to note that the amplifier linearly modulates the

voltage of the rf signal with the Gaussian

V (t) = e−
t2

2τ2 , (4.2)

which is squared to get the power as a function of time. As already mentioned, to get the rms width

in frequency, one takes the Fourier transform of the magnetic field (proportional to the voltage),

and then squares the result to get the power. This results in a final frequency width of σω = 1
2τ .

4.2 Shape checks

Of course, this is all nice and tidy in theory, but just because we tell our pulse to be a well

behaved Gaussian does not mean that it is one. In fact, several issues could conspire to change the

shape of our pulse and create non-Gaussian spectral components at nonzero detuning (wings) on

our spectral function.

One of these is the intrinsic nonlinearity of our RF system. The variable gain amplifier will

begin to saturate above 0 dBm (1 mW) of peak output power. Later down the line we have another

5 W amplifier (Minicircuits ZHL-5W-1), with a 1 dB compression rating at 5W output. The main

result of these nonlinearities are that the peak of the Gaussian is slightly suppressed. We measure

this suppression and ensure that the change in overall power is always below a few percent. But that
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Figure 4.2: The Fourier transform of the RF power at system saturation. The labels correspond
to the output power of the synthesizer before all amplification. At 9 dBm output we begin to risk
damage to the amplifiers. The dashed black line shows a perfect Gaussian for reference (a parabola
on this scale). We see that saturation does not affect the nicely Gaussian shape of the pulse down
to at least 60 dB below the peak power.

does not answer the question of the wings. To measure the spectral function, we used a pickup coil

to record the RF pulse on a fast oscilloscope (Tektronix DPO4034), and took its Fourier transform

(similar to Section 3.2.3). The results can be seen for several different powers in Figure 4.2. The

saturation corrections for the three powers were 2.6% for -3 dBm synthesizer power, 5% for 0dBm,

and 11% for 3 dBm (i.e. higher powers than we actually use in the experiment), yet we do not see

any broadening above the noise floor.

Another issue is the fact that a true Gaussian extends to positive and negative infinity, yet

we have to choose a time to open and close our RF switch, which effectively truncates the Gaussian.

We want to give the Gaussian enough of its shape to be well behaved, yet truncate it enough to

allow for maximum experimental timing flexibility. We can explore this by creating a Gaussian

pulse and truncating it with an RF switch, and then once again calculating the Fourier transform.

Figure 4.3 shows the effects of truncating the Gaussian at different multiples of its width. One
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Figure 4.3: The Fourier transform of truncated Gaussians. The inset shows the shape of the
truncated Gaussians, at ±1 (blue), 2 (green), and 4 τ (black). The Fourier transform of the power
shows the resulting frequency spectrum. The ±4τ truncation looks unaffected, whereas the ±1τ
truncation clearly begins to look similar to a square pulse.
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Figure 4.4: Atoms spin-flipped by truncated Gaussians. A truncated pulse is less efficient at
transferring atoms between magnetic sublevels. The pulse still exhibits lower efficiency at 2τ , but
is fully Gaussian at 4τ . The theory line is scaled to the final value.

can clearly see how the spectral function begins to look more and more like that of a square pulse

as the truncations become tighter. At ±4τ , we no longer notice any wings above the noise floor,

which is at an appreciable 60 dB below the peak power.

Truncating the Gaussians also decreases the total power in the pulse. Calculations of the

Rabi frequency tend to be much easier if we can just assume an ideal Gaussian, so we need to ensure

that the integrated power in the truncated pulse is essentially equal to the full pulse. To test this,

we resonantly drove our favorite 85Rb atomic transition (|2,−2⟩ to |2,−1⟩), in the limit of low

excitation fraction, with various truncated Gaussians. The results can be seen in Figure 4.4. The

blue line is the integrated power of a truncated Gaussian, divided by the integral of a full Gaussian.

It is then scaled to the maximum transferred fraction. We see reasonable qualitative agreement

between the measured outcoupled fraction and the expected shape from our calculations, where we

have only adjusted an overall scaling factor.

Given the results from the Fourier transform and the power tests, we eventually decided on

truncating our Gaussians at 4τ (8τ total pulse length). A 3τ truncation should be usable as well,

but we decided to be conservative in that respect. It essentially guaranteed a highly Gaussian
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shape, and timing issues turned out not to be a problem. Typical Gaussian pulses for the contact

have a τ = 100µs. We have found this RF system to be very robust and repeatable. For pulses

longer than τ = 25µs, the option of using the AM port on the frequency synthesizer seemed to also

work very well. Another option is to use a voltage variable attenuator such as ZX73-2500 from

Minicircuits, which has a much higher frequency range. However, its gain curve is highly nonlinear,

which would have to be carefully accounted for in order to produce clean Gaussian pulses.

4.3 Rectification

One final important issue related to the RF system is that of RF rectification. The contact,

as mentioned numerous times already, gives rise to a low transition rate on the tail of the resonance.

To be able to measure something, then, we must be able to either increase the pulse length or the

pulse power enough for the signal to become detectable. What originally attracted us to measuring

the contact is the fact that the system can be probed quickly with respect to three-body loss rates,

so increasing the pulse length by many orders of magnitude is somewhat counterproductive. Thus,

it is generally the RF power that we increase to bring the contact up to detectable levels. However,

although it is relatively simple to buy very powerful RF amplifiers to keep throwing more power at

the problem, eventually one is limited by RF rectification.

Rectification, in the sense that we care about, means that the RF that is intended solely

for the atoms is transmitted throughout the room and makes it onto the servos that control our

magnetic fields. Inside the servos are op-amps, which ideally would reject noise outside their

bandwidth (in the hundreds of kHz range). However, internal interferences actually cause the op-

amp components to produce a DC offset on the “out” pin [38], which manifests itself in a change

in the magnetic field. Great care can be taken with electronics design to avoid this problem, but it

is nearly impossible to eliminate completely.

To measure the effect of rectification, we produce two RF pulses: a strong Gaussian pulse

to modify the DC magnetic field via rectification, and a weak square pulse to probe the magnetic

field using an atomic transition. The strong pulse is detuned from resonance by 1.0 MHz. We can
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then compare to the magnetic field without the strong pulse to see if it caused a shift. The results

of such a test can be seen in Figure 4.5. We see significant rectification for the strongest pulses our

system allows, as seen by the 17 mG magnetic field shift. However, rectification becomes negligible

at powers 9 dB higher than the maximum powers needed to probe the contact. We can therefore

rule out rectification as a possible mechanism that would give us a systematic shift in the measured

contact.

The net results of all these systematic RF pulse checks are that we can be confidently measure

the tail of an RF transition. The clean Gaussian spectral line allows us to rule out that we are

inadvertently exciting atoms via the resonant transition.
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Figure 4.5: Effect of RF rectification. (a) We send out a τ = 100 µs Gaussian pulse, and probe the
resulting field with a 50 µs square pulse. The 100 µs delay gives the servo time to respond and shift
the field. (b) At our maximum allowable power (8 dBm at the synthesizer), we see rectification
amounting to 17 mG. At 8 dB lower power (c), the rectification has all but disappeared (d). Our
contact measurements required powers no more than -9 dBm.



Chapter 5

Detection

Detection is one of the most important parts of any experiment. It connects us to the object

of our studies as an extension of our natural senses, and what it tells us forms the basis of everything

we can say about it. However, it is often seen as a black box that “just works” by anyone new in

the lab, and not understanding its complexities and subtleties can cause serious problems for the

unaware. More specifically, it turns out that accurately calculating atom number from absorption

images is not at all straightforward, and many systematics can cause errors in the measured signal.

This applies to simply measuring condensate number in expansion, as well as to the in-trap imaging

we perform when making measurements of the contact.

5.1 Condensate absorption imaging

5.1.1 Imaging corrections

One of the effects of our 10 Hz trap is a slowly expanding BEC when the trap is turned

off, which is a problem when it comes to imaging. In “standard” time-of-flight (TOF) absorption

imaging, the trap is released, and the cloud expands until the optical density (OD) is low enough

to be imaged. However, the slow timescales our trap causes means that our BEC would have to

expand for 70 ms or more before the OD drops to measurable levels. Such long expansion times

are not feasible, since the cloud would hit the floor of our science cell in about 30 ms. Our initial

solution to this problem (see Section 5.1.3 for our current solution) was to transfer a small fraction

(20-30%) of the atoms from our |F = 2,mf = −2⟩ trapping state to our |3,−3⟩ imaging state via
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a deliberately inefficient adiabatic rapid passage (ARP). This reduces the OD of our imaging state

by a factor of 3-5, which we then simply multiply up by a correction factor which we calibrate using

thermal clouds. But even for clouds with low OD, much care must be taken to correctly calculate

the atom number.

The reason that a low OD is required in the first place is twofold. One problem is the limited

dynamic range of the camera, which will be addressed in Section 5.1.3. The other is that images

usually saturate at some value of OD with standard absorption imaging. A picture of our cloud

is generated using three images: the first image uses resonant light to probe the atoms, which

casts a shadow onto the camera (Ishadow). The second image contains the probe pulse again, but

without the shadow of the atoms (Ilight). The final image triggers the camera and opens all the

same shutters, but does not include the probe beam (Idark). This dark frame is then subtracted off

the other two frames to account for room lights and a camera offset. I will redefine the resulting

frames using the convention in [39]: If = Ishadow − Idark and Ii = Ilight − Idark. This is done for

every pixel, and the simply measured ODmeas is then

ODmeas = ln
Ii
If

. (5.1)

However, if any light in the probe beam cannot be absorbed by the atoms due to being off-resonant

(what we call “bad light”) or simply by scattering around the atoms, then If cannot become

arbitrarily small, and the ODmeas will saturate to some value ODsat, regardless of how optically

thick the cloud actually is. Also, if the dark frame does not effectively subtract light that is not

resonant, the OD will saturate at lower values. For example, vibrations of the optics or non-

repeatable shutter timings could cause less ambient light to enter the dark frame than the shadow

frame. For our experiment, ODsat is typically around 3.5, and its finite value can be corrected for

to get a modified OD using [40]

ODmod = ln
1− e−ODsat

e−ODmeas − eODsat
. (5.2)

Also, the probe intensity can saturate the atomic transition, which causes a significant change



36

0 0.2 0.4 0.6 0.8
0

10k

20k

30k

40k

50k

60k
I

sat
  = 5200 ±400 cts/px

OD = 0.72 ±0.03

 

I i (
ct

s/
px

)

OD

I eff

Figure 5.1: A measurement of our effective saturation intensity. We measure the OD vs Ii in counts
per pixel, and then invert the axes for plotting and fitting via Equation 5.3. The red line shows
this fit. The measured OD is highly sensitive to the probe intensity, especially at low intensities,
where one might think that the correction due to I/Isat is negligible.
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in the measured OD even for low intensities. This effect can be corrected for using

ODactual = ODmod + (1− e−ODmod)
I

Isat
, (5.3)

where I is the intensity of light at the atoms, and Isat is a constant, which is 1.16 mW/cm2 for

Rb on the cycling transition. To make this correction, then, one can try to carefully measure

the intensity of the probe beam at the atoms, taking into account losses at optical surfaces. It is

much simpler, however, to measure an effective saturation intensity Ieffsat in the same units as one

measures Ii, in counts per camera pixel. One can then replace I/Isat with the equivalent Ii/I
eff
sat.

To do this, we create thermal clouds and image them using different probe intensities. We can then

use Equation 5.3 as a fitting function with ODactual and Ieffsat as the fit parameters. An example of

this can be seen in Figure 5.1.

The resulting corrections to our total BEC numbers come to about 5% for the ODsat cor-

rection and about 10% for the I/Isat correction, given a measured OD of 1 and an I/Isat = 0.1.

But since imaging can be so important, we wanted an independent confirmation of our methods.

To get an independent measurement, we can look at the sizes of the clouds (which depend on

BEC number) and compare to expected sizes. The expected values come from a variational model

developed by Pérez-Garcia et al. [41] to simulate BEC dynamics using a Gaussian cloud ansatz.

This will be referred to as the PG model. Equations 10a-c in [41] reduce to

ẅ + ν2w =
~2

m2w3
+

√
2

π

a~2N
m2w4

(5.4)

for a spherical trap, where w/
√
2 is the rms width of the Gaussian cloud, ν is the trap frequency,

m is the mass, a is the scattering length, and N the total BEC number. Setting ẅ to 0, we

first solve for the equilibrium size w0 of this Gaussian condensate given our initial number and

scattering length. We then plug in an a(t) that corresponds to the scattering length vs time in our

experiment, and numerically integrate Equation 5.4 to get the size as a function of time w(t). Then

we must convert the size of the modeled cloud w to our fit size σfit. The Thomas-Fermi radius RTF

of a BEC is calculated to be 1.78 times larger than the equilibrium width w0 independent of the
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parameters. To go from the Thomas-Fermi radius RTF to our fits, we simulate a three dimensional

spherical Thomas-Fermi distribution and integrate it through one dimension (as is the effect of

imaging). We then fit the resulting distribution to a two-dimensional Gaussian, resulting in a ratio

σfit/RTF = 0.44, which is also independent of the specific initial parameters. Thus, to convert the

PG results to the imaging fits, we use σfit/w = 1.78 ·0.44 = 0.78. Using it, we predict the size of the

BEC vs number after 28 ms expansion and compare it to our measured sizes, seen in Figure 5.2.

For this test, we expanded at 500 a0 and subtracted our 8 µm resolution limit σres in quadrature

via σ =
√

σ2
fit − σ2

res. The good agreement between the data and the theory provides additional

confirmation of the validity of the OD corrections. Unfortunately, the dependence of BEC size on

the number is too weak to allow spatial extent to be our primary measure of condensate number.

This method of calculating OD via Equation 5.1 and then applying ARP, ODsat, and Isat

corrections works well enough, but can be quite tedious. Also, the corrections can change with

experimental drift. ODsat, for example, can change drastically with a small change in probe beam

alignment or frequency components of the probe laser, and the ARP calibration has to be measured

every day. Carefully performing these necessary corrections is certainly manageable, but in the end

we decided to switch to a more robust high-intensity probing scheme described in Section 5.1.3.

5.1.2 BEC collapse and high-field imaging

Another imaging difficulty related to our system arises from the collisional properties of

85Rb. As explained in Chapter 2, 85Rb has a background scattering length abg of -443 a0, so the

condensate begins to collapse as soon as the magnetic fields are turned off (the low expansion energy

is not enough to overcome this). We allow the condensate to expand by simultaneously increasing

the bias field as we turn the trap off, such that the magnitude of the magnetic field stays constant.

The BEC then expands at a positive scattering length for ∼30 ms until the size has increased to

about twice the resolution limit. At this point, the original mode of operation was to turn off the

fields as fast as we can and image the BEC once the field stabilizes. Even so, the condensate has

about 2 ms time at its background scattering length to ponder the merits of collapsing and act on
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Figure 5.2: Comparison between measured and predicted BEC size. The different shapes correspond
to different ARP efficiencies, giving rise to different ODs. The red line is the modeled BEC size in
expansion.
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the result. In order to predict the outcome we return once again to the Pérez-Garcia (PG) model.

If we take a 85Rb BEC of 50,000 atoms at 100 a0 at rest in our trap and then instantly

turn off all the trapping fields, the PG model predicts that the BEC as a whole will collapse in

about 27 ms. But one of the limitations of this model is that the cloud shape is always conserved,

meaning that the cloud shrinks nicely as a whole. In reality however, smaller clumps of the cloud

can collapse locally on much faster timescales. To get an idea of this timescale, we use the fact

that small condensates can be stable at negative scattering length. Assuming no trapping potential

(ν = 0), we again solve for the stability condition by setting ẅ in Equation 5.4 to 0:

wstable = −aN

√
2

π
(5.5)

(This illustrates another reason for making spherical clouds...to make the math easier). Here a

is the background scattering length. If we constrain the peak density of this stable cloud to be

equal to the initial peak density of our BEC, then we can solve for the width and atom number Np

that will form the smallest element of collapse in our BEC. Then we simply increase the number

by
√

Np, the statistical number fluctuation in that packet, and use the PG model to predict the

collapse time of the packet, which comes out to be about 2 ms. This is certainly just a rough

calculation, as it does not take into account the expansion energy the cloud already has, but it tells

us that we cannot assume that 2 ms is too short to see losses from local implosions.

Our previous way to avoid collapse was simply to increase the scattering length during ex-

pansion to provide more kinetic energy and lower the density, but increasing a also greatly increases

the rate of three-body losses. And when varying the scattering length in expansion, we did not

see a regime that clearly avoids both collapse and three-body loss problems. Thus we decided to

instead image at high field. We still need to transfer the atoms to the |3,−3⟩ imaging state, but

we can do that using a 7 µs RF π pulse, drastically reducing the time at negative a.

To image at high field on the cycling transition, we need to shift the probe laser’s frequency by

252 MHz from the zero field cycling transition. As explained in detail in [32], our lasers are controlled

via an offset lock. The probe laser is overlapped with a master laser, and the resulting beat note
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mixed down with a voltage-controlled oscillator (VCO) to produce a signal that eventually feeds

back to control the frequency of the probe laser. The VCO frequency is changed by our computer

controller, but does not have enough tunability for both low and high-field applications. To increase

its range, we ramp the VCO to its maximum detuning, and then switch over to a different VCO that

works at higher frequencies to continue the ramp. We have not had any problems with switching

between VCOs, and that method of increasing the laser tuning range has proven to be quite robust

for offset lock lasers.

Unfortunately, our imaging axis does not coincide with the bias field direction, meaning that

we cannot probe with pure σ− polarization. Instead, we change the polarization such that it is

linear and perpendicular to the quantization axis. This is achieved by a waveplate mounted on

a flipper, which we manually put into or out of the beam depending on which imaging scheme

we want to use. The polarization geometry results in a superposition of σ+ and σ− light (a nice

table of different geometries and their resulting transitions can be found in [40]). Since we image

in a ∼160 Gauss field, the σ+ and σ− transitions are separated by many linewidths, giving us a

pure cycling transition. In fact, the only result of the superposition is that it reduces the effective

transition strength by a factor of 2.

The ability to image at high fields enables us much more flexibility than before, as we do

not have to wait for fields to turn off to probe our system. The downside is that it is somewhat

of a nuisance to have to change the probe frequency every time we decide to image at a different

field. However, the 6 MHz natural linewidth of the transition is much larger than the magnetic

field fluctuations, so that we can just dial in the correct probe frequency once we know the field

without recalibrating every time.

5.1.3 High-intensity imaging

In Section 5.1.1, I described a workaround to deal with the fact that our condensates have very

high OD, which involved performing inefficient ARPs to transfer only a small fraction of the cloud to

the imaging state. However, the calibration of that fraction is cumbersome and possibly introduces
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systematic errors. Also, the move to imaging at high fields means that the RF frequency for that

transfer depends on the field, which increases the calibration requirements and the possibility of

error. But there is another solution. Fundamentally, a high OD leads to problems because of the

limited dynamic range of the camera CCD. Our camera has a 16-bit output, meaning a single

pixel can read 216 ≈ 65, 000 different values. Thus, all else being perfect, the maximum OD the

camera can display is ln(216) = 11.1. However, as there is noise in the dark frame of the camera

and shot noise in the beam, a workable limit to the maximum OD is much lower. We measure

12 counts/pixel rms noise in the dark frame, so with I/Isat = 0.1, an OD signal-to-noise ratio

of 2 will limit the maximum workable OD to 5.3. We numerically calculate this based on error

propagation through Equation 5.1. To beat this problem we clearly need more light to make it

through the atom cloud. I mentioned in Section 5.1.1 that high probe intensity causes problems,

because saturation decreases the amount of light that gets absorbed. However, we understand how

this happens and can account for it, and if we significantly increase the intensity that gets through,

the noise becomes fractionally insignificant. Thus, imaging with intensities much higher than Isat

can allow for accurate quantitative measurements of optically thick clouds [39].

Instead of using the simple definition of OD (Equation 5.1) to create the image and then

correcting for the saturation intensity, we use the full OD definition given by

ODnew = ln
Ii
If

+
Ii − If

Ieffsat
, (5.6)

which is just a rewritten form of Equation 5.3, assuming that the effect from bad light is negligible.

Our imaging software uses this formula, with an empirically supplied Ieffsat from data such as shown

in Figure 5.1, to calculate the ODnew for each pixel. Using this method, we have been able to image

clouds with an OD on the order of 8 with negligible noise, and higher ODs should be possible.

But with all new and fancy techniques come new issues and systematics. One of these is

the problem of photon re-absorption. The calculations for OD assume that photons emitted from

the atoms leave the system. However, there is a finite chance that another atom will absorb this

photon, which will make it unavailable to absorb from the probe beam, and therefore decrease the
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apparent OD. The higher the optical depth, the stronger this effect. But for very high intensities,

the scattering rate eventually saturates to 1/2 the excited state decay rate [42]. At that point, the

intensity from surrounding atoms stays constant as the probe intensity is increased, and an atom

will be increasingly likely to absorb from the probe beam. In other words, once you commit to high

intensity imaging, you have to really let loose. An illustration of this effect can be seen in Figure

5.3.

As we could not simply turn up the power of our probe laser to reach intensities of 15×I/Isat,

we mounted a 1 m focal length lens roughly 1 m upstream of the atoms to reach higher intensities

by decreasing the beam waist. The lens is also mounted on a flipper mount, which allows us to

easily switch between imaging schemes. Such high intensities saturate the camera pixels, so we

also use a neutral density filter in front of the camera to decrease the intensity by a factor of 2.

One might naively think that this is counterproductive, but the important thing is to have a high

intensity incident on the atoms. The neutral density filter does not change the fraction of light

absorbed, and all we have to do is to measure our Ieffsat with the filter in place to account for it.

But one must be careful with high-intensity beams. If too many photons are absorbed by

the atoms during the pulse, the resulting momentum transfer will result in a Doppler shift, and

the atoms are pushed out of resonance. This again decreases the apparent OD, leading to another

systematic. To ensure this does not happen, the probe pulse times t must be kept very short. The

scattering rate Γ, the doppler shift δD, the photons absorbed Nph, and the velocity v of an atom

after absorbing photons are related via the coupled equations:

Γ =
I

Isat
γ
2

1 + I
Isat

+
(
4πδD
γ

)2

Nph = Γ · t

v =
Nphh

λm

δD =
c

λ

(
1− 1

1 + v
c

)
,

(5.7)

where γ = 2π × 5.98 MHz is the natural linewidth of the transition, λ = 780 nm is the probe
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Figure 5.3: Effect of photon re-absorption on OD. The black circles show the measured OD of
a BEC, calculated with Equation 5.6, as a function of I/Isat. For intensities near Isat, the high
scattering rate in conjunction with the high OD causes a large fraction of atoms to re-absorb
photons emitted from surrounding atoms. This makes them unavailable to absorb from the probe
beam, lowering the apparent OD. As the intensity increases, the scattering rate remains roughly
constant, translating to a smaller fractional amount of rescattered light present in the cloud. The
red squares show the same experiment on thermal clouds with lower OD, where this effect does not
occur.
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wavelength, m is the mass of the atom, and c is the speed of light. We numerically solve these

equations vs time to calculate the expected error due to this effect and ensure that it is small. We

use 5 µs probe times, which for an I/Isat = 10 and an OD of 6 corresponds to an error of 0.5%.

Finally, if the OD is low, imaging with high intensities results in unwanted noise. The light

and shadow frames will both have high intensity light, but the fractional difference between the

two will be small. If we assume shot noise (a lower limit) on the beam and an I/Isat = 10, then

an OD of 0.1 results in a signal-to-noise ratio of 1.5 on the OD. Luckily, this is a per pixel noise

figure, and low OD regions usually spread over many pixels. The spatial extent of thermal clouds

therefore help average down this noise to workable levels. However, because of this noise issue we

use high intensity imaging only when there is a high-OD feature we are interested in. For the lower

OD pure thermal clouds we switch back to low-intensity imaging.

Overall, the high-intensity imaging technique works very well for us. The value of Ieffsat is

dependent mostly on the reflectivity of the optics between the atoms and the camera, as well as

the camera’s quantum efficiency. Therefore it is generally not subject to experimental drift and

does not have to be recalibrated unless the optics change (such as with the addition of the neutral

density filter). We have found that the best measurements of Ieffsat (see Figure 5.1) are performed

with thermal clouds of low OD. Higher ODs can exhibit photon reabsorption, as well as cause

problems in the region of low intensity, where imperfections in the dark frame subtraction can

cause significant deviations from the saturation curve in Figure 5.1.

5.2 In-trap imaging for contact measurements

5.2.1 Transfer to the imaging state

We still use absorption imaging for our contact measurements, but we require several different

additional techniques for our purposes. Mainly, when we perform RF spectroscopy to measure the

contact, we transfer 1-2% of the atom cloud from the |2,−2⟩ to the |2,−1⟩ state. The (difficult)

trick is to image and count that small fraction in the |2,−1⟩ state, without imaging any of the large
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cloud left in the |2,−2⟩ state, which would cause significant systematics. So the imaging process

must be highly efficient and highly state-specific.

One important step toward enhancing imaging efficiency, or rather the signal-to-noise ratio,

is to wait for as little time as possible between the RF contact pulse and the probe pulse. The

atoms that we outcouple on the tail have high momentum, and their expansion energy is 1
2~ω,

where ω is the detuning from resonance (see Chapter 6). For a typical 2π×40 kHz detuning, the

atoms move at a velocity of 14 µm/ms. Given that the starting size of our BEC is 14 µm, the OD

will drop significantly if given more than a millisecond to expand. This is another reason that we

do not turn off the trap, but instead image at high field.

To perform state-specific imaging, we need to efficiently transfer the |2,−1⟩ atoms to our

|3,−3⟩ imaging state without putting any of the |2,−2⟩ atoms up there as well. We do this via

a two-step RF and microwave (µ-wave) process, as seen in Figure 5.4. A 2.8 GHz µ-wave photon

transfers them to the |3,−2⟩ state, followed by a ∼ 85 MHz RF photon to get to the |3,−3⟩ imaging

state. Since we already have to find the resonant frequency of the |2,−2⟩ to |2,−1⟩ transition for

every contact measurement, we can exactly calculate the other transition frequencies using the

Breit-Rabi formula [43]. Initially, we used a short π pulse for both frequencies to transfer the

atoms as quickly as possible (22 µs for the µ-wave and 16 µs for the RF), but we found that this

caused noise in our signal. The µ-wave transition has a large field sensitivity of 1.4 MHz/Gauss,

and the shot-to-shot field fluctuations were large enough to make this transfer highly unstable.

The obvious solution would be to sweep the frequency and transfer them using an adiabatic rapid

passage (ARP), which tends to be insensitive to magnetic-field noise. However, the |2,−2⟩ to

|3,−1⟩ transition (shown by the red dashed line in Figure 5.4) is only about 140 kHz away, and a

standard ARP would transfer the 99% of atoms remaining in the |2,−2⟩ state into the |3,−1⟩ state

with very high efficiency. Unfortunately we found that, although we do not send out resonant RF

purposefully, some of the many atoms in the |3,−1⟩ state always make it into the |3,−2⟩ state and

then get pumped into the |3,−3⟩ state and get imaged. We solved this issue by shaping the ARPs

to avoid the unwanted transition.
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Figure 5.4: State diagram showing transfer to the imaging state. The atoms (shown in blue) start
in the |2,−2⟩ state, and the RF pulse for contact spectroscopy moves a small fraction to the |2,−1⟩
state. These are transferred via shaped ARP to the |3,−2⟩ state and RF π pulse to the |3,−3⟩ state
(solid green arrows). Once there, the probe beam cycles them to the F’=4 manifold (dotted green
arrow). The entire procedure, from the |2,−1⟩ state to imaging, takes < 200 µs The transition
of the cloud remainder to the |3,−1⟩ state (red dashed arrow) is unwanted and would produce
significant false signal. The energy splittings are given in MHz, calculated for a field of 160 G.
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Figure 5.5: Shaped ARPs. A standard ARP is shown in part (a), where the RF power and therefore
the energies of the dressed states are constant in time. The frequency must start far from resonance
and end far from resonance for a well behaved ARP. A shaped ARP (or ShARP) seen in (b) starts at
low detuning and low power. The power is adiabatically increased as the frequency ramps through
resonance and then decreased the same way. This allows for a quick, efficient ARP, sweeping over
a very small frequency range around the resonance.



49

In the dressed-state picture, the resonant energy splitting between two states is given by ~

times the Rabi frequency Ω. To complete a very efficient ARP, one must start and end the frequency

sweep far away from resonance to be completely in a bare atom state at the beginning and end

of the sweep. What constitutes “far away” is, not surprisingly, relative to Ω. A “standard” ARP,

with constant power and a linear frequency ramp, is shown in Figure 5.5a. To be able to perform

an efficient ARP quickly (one of our requirements), one needs a high Rabi frequency. But the only

way to perform a standard efficient ARP and not have to ramp through the nearby resonance would

be to use low power and sweep too slowly for our needs. We found a way around this by shaping

both the power and the ramp rate of the ARP as shown in Figure 5.5b. By creating a Gaussian

envelope on the power, we start at low detuning and low power to avoid the nearby unwanted

transition. As we ramp through the “good” resonance, the power adiabatically increases, which

also lets us increase the ramp rate. Using this method, we can ARP ∼80% of the atoms from the

|2,−1⟩ to the |3,−2⟩ state in 100 µs, without transferring any detectable atoms from the |2,−2⟩

to the |3,−1⟩ state. The total sweep covers 100 kHz, making this ARP very insensitive to the

shot-to-shot fluctuations of the magnetic field.

Once the atoms are in the |3,−2⟩ state, we pulse a 16 µs RF π pulse to transfer to the |3,−3⟩

imaging state with 97% efficiency. This transition only has 0.47 MHz/Gauss sensitivity (same as

the transition for the contact), so magnetic-field noise is not an issue.

Unfortunately, as mentioned in Section 5.1.2, the fact that we image at high field, with a

beam perpendicular to the quantization axis, means that we automatically lose a factor 2 in OD

signal. But since we can image the outcoupled atoms <200 µs after the end of the contact pulse,

we probe much higher ODs than we would by waiting for the fields to turn off. When we first

started contact measurements, we imaged the atoms at low field about 4 ms after the RF pulse

for the contact. The downside of this was that the expanded clouds were not easily discernible on

the CCD image due to the low OD, and we had to trust the fitting program to average out the

noise and fit a cloud. But imaging after some expansion time also brings a great benefit. Since the

expansion energy can be very large for the contact signal, the expanded size can serve as a clear
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confirmation that the atoms really are from the tail of the RF spectrum, rather than a systematic

unrelated to the contact.

5.2.2 Small cloud effects

With in-trap imaging also comes the problem of resolution. The Thomas-Fermi radius of our

BEC is generally 14 µm, corresponding to 2.4 pixels. With a cloud so small, one might wonder if

there are systematics associated with the pixelation. For example, the calculated OD is a nonlinear

(logarithmic) function of the intensity, yet for each pixel we get simply a sum of the photons that hit

it. Thus, a significant variation of the cloud OD over a length scale corresponding to a single pixel

can systematically lead to an error. To get an idea of the size of this error, we simulated a Gaussian

absorption profile divided onto a 2-dimensional array of pixels, used the fraction of missing light in

each pixel to calculate that pixel’s OD value via the simple OD formula (Equation 5.1), and then

summed up all the OD values from the pixels. Comparing the integral of the Gaussian OD that

produced the shadow profile IG to the summed pixels Σpx gives an idea of the error associated with

the pixelation. Some results of this simulation can be seen in Figure 5.6. This simulation does not

account for the diffraction-limited resolution, which blurs the image and decreases the intensity

variation on a pixel, so the simulation shown in Figure 5.6 represents a worst-case scenario. Our

total resolution limit is about 1.4 pixels, or 8 µm (representing the rms width of the Gaussian that

fits the smallest clouds we can observe with our imaging system). Note that the effect is dependent

on the position of the Gaussian with respect to the pixels, and increases with OD. For the ODs in

trap and a Thomas-Fermi radius of ∼2.4 pixels, we expect that this pixelation effect adds an error

< 3% to the atom number.

When measuring the contact, we alternate taking a measurement on the tail of the transition

and the peak of the transition, with the final value for the contact involving a ratio of these two

measurements. Since the tail signal is dominated by the high-density BEC in the center, we use a

single, two-dimensional Gaussian fit to find the outcoupled number. However, on the peak of the

resonant transition the rate is independent of density, and we outcouple equal fractions from the
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Gaussian on pixel center Gaussian on pixel corner

Figure 5.6: Simulation of pixelation effects. An absorption profile is incident on a 2-dimensional
array of pixels, and the resulting pixelated OD, the sum over the pixles Σpx, is compared to the
integral, IG, of the OD that gave rise to the absorption profile. Part (a) shows the two configurations
under which the simulation was run. In one configuration, the Gaussian profile was centered on
the center of a pixel in both dimensions. The corner configuration formed the other “extreme”.
Simulation results can be seen in part (b). When the Thomas-Fermi (TF) radius is roughly the size
of a pixel, the effects can become very pronounced, even exhibiting unintuitive structure. The error
increases linearly with OD, but stays at a 3% or less correction for our normal operating conditions
of peak OD<1 and a TF radius of 2.4 pixels.
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BEC and the thermal components. To measure the total number accurately, we require a double-

Gaussian fit to account for each component. But as both BEC and thermal are near the resolution

limit and similar in size, the fits often cannot clearly distinguish the two components. Also, in

terms of general experimental wisdom, using different techniques to measure the tail and the peak

allows for unexpected measurement systematics. To ensure that this does not happen, we came up

with a technique based on summing over pixels. We choose a small region centered on the cloud

and simply calculate the sum of all the pixel values. Then we create another region, a “sidewalk”

around the first, and use it to calculate the average value of the background signal (Figure 5.7). We

subtract this average value from the inner region, leaving us with the signal from our atom cloud,

independent of shape. To decrease the noise, we want the inner box to be as small as possible while

still enclosing all of the signal. For the “sidewalk”, a smaller size allows less chance of a systematic

offset from different parts of the CCD, but it must be large enough to average out local noise. We

analyzed numerous data sets, varying the sizes of the two regions, and find the optimum sizes to

be 15 pixels on a side for the inner box and 35 for the outer (see Figure 5.7).

The main result from the analysis was that the method of summing over pixels agrees with

the fitted Gaussian method as long as the subtracted background is small. This independently

verifies that using the Gaussian fits does not produce a systematic error due to the difficulty of

fitting very small clouds. We do not, however, use the pixelsum method for taking our data. When

the signal was relatively strong (as in Figure 5.7), we find that the pixelsum method works very

well, often even giving smaller errors than the Gaussian fits. However, for small peak ODs, when

the signal was comparable in magnitude to the subtracted background, we find that this pixelsum

method results in very large fluctuations compared to the Gaussian fits.
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Figure 5.7: Schematic of the pixelsum technique. Shown is a standard image of a BEC with 30%
thermal component, taken in the magnetic trap. For the pixelsum analysis, we sum all the values
of the inner square, and subtract the background as determined by the “sidewalk” (hatched area).



Chapter 6

Two-body Contact

In this chapter I will explain what the contact is and try to elucidate its physical meaning.

I will also present data of contact measurements versus interaction strength, as well as some inter-

esting dependences on timescales. In much of the literature up to the writing of this thesis, the

contact is presented for fermions. I will only deal with the contact for bosons which, for the most

part, merely changes some prefactors in the equations by a factor of 2. However, the possibility of

three-body interactions among bosons gives rise to a three-body contact, which I will describe in

Chapter 7. For this reason, I will refer to the two-body contact as C2 and the three-body contact

as C3. In this thesis, as well as in papers regarding fermions or ignoring three-body interactions,

the contact refers to the two-body contact, C2, unless specified otherwise.

6.1 What is the contact?

There are numerous working definitions of what the contact is, but I will begin with what

I think may be the most intuitive. The contact, C2, is essentially the non-classical probability of

finding two particles close to one another. Specifically, this probability due to the contact is higher

than in a classical, non-interacting gas. With atoms that interact only via s-wave collisions, the

presence of a two-body potential (Figure 6.1a) means that the scattering wavefunction will look

something like Figure 6.1b. In the zero-range limit we ignore the complicated and species-dependent

short-range potential that gives rise to an effective range re, and assume that the smooth, longer-

wavelength part of the wavefunction extends all the way to zero. Another way of representing the
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Figure 6.1: Schematic of the interparticle potential (a) and scattering wavefunction (b). The poten-
tial V (r) looks like an attractive potential down to a distance given by the van der Waals potential.
Outside of this effective range re, which is ignored in the zero-range limit, the wavefunction can be
universally described by the scattering length a.
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two-particle wavefunction Ψ(r) in the zero-range limit is to say

lim
r→0

rΨ(r) =
(
1− r

a

)
A, (6.1)

where r is the interparticle distance, a is the scattering length, and A is a constant that depends

on the problem [44]. Given this wavefunction, we can calculate the probability of finding a particle

near another particle at r = 0, given by 4π
r′∫
0

Ψ(r)2r2dr, which is proportional to r′ in the limit of

r′ ≪ a. The probability of finding the particle at 0 just goes as the volume 4
3πr

′3, so the probability

of finding a pair in a spherical volume of radius r′ goes as r′4. Indeed, the coefficient of the pair

correlation for small volume is given by the contact density, C2(R), and the number of pairs of

atoms in a sphere of radius r′ is

Npair =
r′4

4
C2(R). (6.2)

The contact is obtained by integrating C2(R) over all space. If the contact is zero, there is no

enhanced correlation as r → 0, and you would expect the probability of finding pairs of particles

to go as r′6 (volume2) as in a non-interacting gas. This classical probability is unrelated to the

contact.

With only short-range interactions, the number of pairs close to one another, as parameterized

by the contact, has far-reaching consequences to the system as a whole. Indeed, if we change

the scattering length, the resulting energy change of the system depends on the contact. This

dependence was first derived by Shina Tan in 2005 (published in 2008) [16] and is referred to as

the adiabatic sweep theorem:

dE

d(1/a)

∣∣∣∣
s

= − ~2

8πm
C2, (6.3)

where E is the total energy or the gas, and m is the mass of one atom. Combining the adiabatic

sweep theorem (Equation 6.3) with the LHY result (Equation 1.1) gives us

C2 = 16π2na2
(
1 +

5

2

128

15
√
π

√
na3 + ...

)
N0, (6.4)

where N0 is the number of atoms in the BEC. Not only can the LHY result be recast in terms of

the contact, the fractional contribution of the LHY part of the contact has the added benefit of a
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factor 5/2 compared to the fractional contribution of the LHY energy, aiding its measurement.

Perhaps one of the best aspects of the contact is the way by which we can measure it. If

we look again to Figure 6.1b, we can ask ourselves what other effects are due to this shape of the

wavefunction. To get the momentum distribution nk of the system, one takes the Fourier transform

of the two-particle wavefunction. A noninteracting state looks just like a sine wave, giving a delta

function momentum distribution. However, the interacting wavefunction at low a results in a high-

momentum tail in the momentum distribution that falls off as 1/k4 and is also proportional to the

contact:

lim
k→∞

nk → C2

k4
. (6.5)

Indeed, this relation is sometimes used as the definition of the contact. The momentum distribution

can be (and has been) used to measure the contact in fermions [26], but we need a much faster

probe than time-of-flight (TOF) imaging to avoid the timescale restrictions due to bosonic three-

body losses. If we project the atoms into a noninteracting state via RF spectroscopy, the tail

in the momentum distribution gives rise to a tail in the RF spectrum with an ω−3/2 dependence

[45, 46]. This is a key result, since we can use very short RF pulses to probe the RF spectrum

before significant three-body losses can occur. It turns out that atoms in the final spin state do

interact with atoms in the initial state, modifying the scattering rate to [27]:

lim
ω→∞

Γ(ω) =
Ω2

4π

√
~
m

α(a)

β(ω)

C2

ω3/2
, (6.6)

where the integrated RF lineshape is ∫ ∞

−∞
Γ(ω)dω = πΩ2N (6.7)

and Ω is the single atome Rabi frequency. In Equation 6.6, α(a)/β(ω) describes the final-state

effects; the a-dependent part is α(a) = (a′/a− 1)2, where a′ is the scattering length for interactions

between atoms in the final spin state and atoms in the initial spin state, while the frequency-

dependent part is β(ω) = 1 + ~|ω|/E′, where E′ = ~2/ma′2. For our system, the final-state effects

are characterized by a′ = −565 a0 [47] and E′/h =133 kHz.
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Of course, there are limits of applicability of this analysis. In Equation 6.1, the wavefunction

was assumed to continue in the given form all the way to r = 0. However, once the distances are

comparable to the effective range re, the wavefunction can no longer be described by the single

scattering parameter a, and the details of the interatomic potential must be taken into account.

Since these details vary between specific species of atoms, we no longer consider it the universal

regime. Hence the above derivation is only valid for k ≪ 1/re, or ω ≪ ~
2mr2e

. The effective range is

given by [48]

re =
Γ
(
1
4

)
6π2

√
8

Γ
(
3
4

)
Γ
(
5
4

) (mC6

~2

)1/4

(6.8)

where C6 is the coefficient of the van der Waals potential, giving the limit ω ≪ 2π × 3.5 MHz. We

can include a first-order correction due to the effective range, which turns out to be small for the

ranges of a and ω that we probe. A derivation and the effect of this correction can be found in

Appendix A. On the other side of the scale, the limit is set by the interparticle spacing. We only

consider the two-body wavefunction in the limit r → 0, and the above equations are valid only

for k ≫ n1/3, or ω ≫ ~n2/3

2m , where n is the density, resulting in the limit ω ≫ 2π × 300 Hz for

n = 1013 cm−3. Experimentally we stay within these limits by about a factor of 10 on each side,

so the contact formulation is valid for all our experiments.

6.2 The contact signal and its characteristics

For our RF contact spectroscopy, the RF drives a transition to a lower energy spin state

and one expects the |ω|−3/2 interaction-induced tail on the low frequency side of the lineshape.

This is schematically illustrated in Figure 6.2a. We drive the interacting |2,−2⟩ state into the

free-particle-like |2,−1⟩ state with extra kinetic energy. Since the absolute energy of the final state

is lower, but with added kinetic energy, the transition frequency is lower than the bare transition.

Consistent with this expectation, we observe a tail for large negative detunings, while for similar

detunings on the positive side we find that the signal is consistent with zero.

An example of RF contact spectroscopy at a = 1016 ± 10 a0 is shown in Figure 6.2b. We
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(a)

(b)

(c)

(d)

Figure 6.2: RF contact spectroscopy for a 85Rb BEC. (a) Schematic of the contact transition.
We drive the interacting state into a lower magnetic sublevel, but the interaction-induced energy
requires less energy from the RF photon to effect the spin-flip. This results in the transition
frequency of the contact to be lower than the single atom transition. (b) Example of spectroscopy
signal S(ω), normalized so that

∫∞
−∞ S(ω)dω = 1 s−1. (c) The same signal as (b), shown on a

smaller scale. The solid red line is a fit to the expected frequency dependence from Equation 6.6,
while the dotted blue line shows a fit ignoring β(ω). The green line shows the expected Gaussian
signal from the resonant lineshape. On the positive side of the transition the signal is consistent
with zero. (d) The tail signal multiplied by |ω|3/2. This is how the fits to the tail were performed,
and more clearly shows the final-state effects. The density here is ⟨n⟩ = 5.8× 1012 cm−3. The data
from the tail and main lineshape come from different experimental runs, but are shown together
for illustration purposes.
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define our signal, S(ω), as Γ(ω) normalized by the integrated lineshape. A detailed explanation

of the experimental procedure and timings is found in Appendix B. The solid line in Figure 6.2b

shows a fit to the expected frequency dependence from Equation 6.6, while the dotted line shows

a fit to |ω|−3/2. One can clearly see the data deviate from the |ω|−3/2 line, owing to the final-state

effects manifested in β(ω). The corrections due to α(a) will be illustrated in Section 6.4.

The atoms outcoupled on the |ω|−3/2 tail have kinetic energy from the interactions, and

the kinetic energy released is given by the detuning from resonance. This excess energy is shared

between two pairwise interacting atoms, meaning that each atom will have a kinetic energy equal to

1
2~ω. The absolute direction of this motion is random, so on average the energy is divided equally

into the three degrees of freedom. Thus we expect the radius w of the outcoupled cloud to expand

in time t due to the kinetic energy as wKE(t) =
√

~ω
3m t. Adding our imaging resolution wres = 7.5

µm in quadrature gives us the expected size versus time, w(t) =
√

wKE(t)2 + w2
res. We see precisely

this expansion in Figure 6.3a. The Gaussian RF pulse, in this case cut off at ±2τ , is shown for

reference. Here the cloud was still confined in a trapping potential, but as the breathe period is

50 ms, we expect the initial behavior to resemble that of an untrapped cloud. Also shown is the

measured peak OD of the cloud in Figure 6.3b, which falls off as 1/w2, and illustrates the benefit

of imaging as soon as possible after the RF pulse to maximize the signal (as described in Chapter

5). Conversely, if we look at the energy of the expanded cloud versus detuning, we again see the

expected kinetic energy, shown by the line in Figure 6.3c. In this case the measurement was taken

in expansion at t = 4.5 ms. We calculate the energy from the width of the expanded cloud using

E = 3
2m

w2−w2
0

t2
, where w0 is the size of the expanded cloud measured at ω = 0.

6.3 Extracting the contact

The derivations in the literature assume an infinitely narrow probe in frequency that measures

the RF spectrum, along with an easily measured Rabi frequency. But in reality, we must limit

ourselves to finite probe times, which necessarily broadens the RF probe pulse in frequency. In

Chapter 4 I explained that we utilize Gaussian-shaped RF pulses for our contact measurements.
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RF power

Figure 6.3: Expansion of the outcoupled atom cloud. (a) The size of the cloud of outcoupled
atoms after the contact pulse with |ω| = 2π × 50 kHz detuning. The black line shows a sketch of
a truncated Gaussian RF pulse for reference. The cloud expands with a kinetic energy of 1

2~ω, as
the excess energy is shared between two atoms. The red line is the predicted size due to the kinetic
energy, added in quadrature with the resolution limit of our imaging system. (b) The peak OD of
the clouds plotted in part (a). The red line is a fit to a 1

w2 dependence (∼ 1
t2
), varying only an

overall scaling factor. (c) The energy of the outcoupled cloud as a function of detuning, at 4.5 ms
time-of-flight expansion. We calculate the energy from the size of the outcoupled cloud, accounting
for the size of the cloud of non-spin-flipped atoms at ω = 0. The solid line is 1

2
|ω|
2π .
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This section describes is greater detail how we rewrite the equations for the contact in terms of

finite Gaussian pulses, and how we extract a value of the contact from our measured quantities.

In Equation 6.6, the single atom Rabi frequency Ω is really a Gaussian function of time given by

Ω(t)2 = Ω2
pe

− t2

τ2 , where Ωp is the peak Rabi frequency of the Gaussian. If we integrate over all

time, we get a slightly modified version of Equation 6.6:

∞∫
−∞

lim
ω→∞

Γ(ω, t)dt = Ntail =
τΩ2

p

4
√
π

√
~
m

α(a)

β(ω)

C2

ω3/2
, (6.9)

where Ntail is the number of atoms we measure on the tail for a single pulse at ω. We do not directly

measure the Rabi frequency, but instead use the integral of the main lineshape to normalize the

data. This ensures that issues such as imaging efficiencies and efficiencies of the transfer to the

imaging state are common-mode and cancel out. As above, the Rabi frequency in Equation 6.7 is

also a Gaussian in time, so ∫ ∞

−∞
Γ(ω, t)dω = πΩ2

pe
− t2

τ2 N. (6.10)

Integrating this over both time and frequency, and solving for Ω2
p, we get

Ω2
p =

√
2

π

Npeak

Ntot

σLS
τ

, (6.11)

where Npeak is the number of atoms we measure on the peak of the transition, Ntot is the total

number of atoms, and σLS is the Gaussian frequency width of the lineshape. If we assume that we

have a condensate fraction f and only BEC number N0 contributes to the contact, then we can

combine Equations 6.9 and 6.11 to solve for the contact per particle:

C2

N0
=

4π2

I · f

√
m

~
α(a)

(
Ntailβ(ω)|ω|3/2

)
, (6.12)

where I =
√
2πNpeakσLS is the integrated lineshape. We use different powers and pulse lengths

for measuring Npeak and Ntail to outcouple a small fraction of the cloud, so we have to scale the

numbers accordingly. We check that for both cases the outcoupled numbers are linear in time and

power, and correct for a small deviation from linearity. We have found that the deviation seems to

be dependent only on the outcoupled fraction, as long as we stay far below the saturation point of
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our RF amplifier. In Figure 6.4 we show the deviation from linearity of both the peak (a) and the

tail (b) as a function of expected outcoupled fraction fexp, where the expected fraction is calculated

such that it asymptotes to the measured fraction fmeas for low values. The fit is a simple saturation

model given by

fmeas =
1

1
fexp

+ 1
faysm

, (6.13)

where fmeas

faysm−fmeas
is the deviation from linearity. We outcouple 1-2% of the atoms on the tail of the

transition, and 2-3% on the peak, resulting in a ∼ 5% correction for both. These mostly cancel, so

the final correction due to nonlinearities is on the order of 1%.

We also know that non-condensed (thermal) atoms contribute to the contact signal as well, so

we have to account for them. In order to know what our thermal fraction is, we make sure to leave

enough thermal component in the cloud to be able to clearly measure two separate components,

while keeping the condensate fraction as high as possible. This results in a condensate fraction of

∼ 70% for most of our data. We then model the contribution of the thermal atoms to the contact

based on the energy density and the spatial overlap of the two components. The total interaction

energy is given by (see Equation 13.15 in [36]),

Eint =

∫ [
g

2

(
nB(r)

2 +
128

15
√
π

√
nB(r)5a3

)
+ 2gnB(r)nT (r) + gnT (r)

2

]
dr, (6.14)

where nB is the density of BEC atoms and nT the density of thermal (non-condensed) atoms,

and we have included the LHY correction to the energy in the first term. We then use this result

in conjunction with the adiabatic sweep theorem (Equation 6.3) to calculate the total contact

including the thermal contribution. We repeat the calculation for the BEC atoms (just the first

term in Equation 6.14), and compare the two to get a fractional contribution from the thermal

atoms, with which we adjust our data. The calculated correction due to thermal atoms is 5-12%

for our range of data. We check that the contact on a purely thermal cloud is consistent with the

calculated value of

Ctherm

N
= 32π2na2. (6.15)
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Peak saturation Tail saturation(a) (b)

Figure 6.4: Deviation from signal linearity. On both the peak (a) and tail (b) of the transition, we
measure the outcoupled fraction fmeas of atoms vs RF pulse time and/or power, and plot it vs the
fraction expected fexp if the dependence were linear. We fit this to the simple saturation model
of Equation 6.13 to extract a value for the asymptote faysm and calculate the magnitude of the
correction to the data. In (b) we combine data from two different scattering lengths for a larger
range in signal. Individual fits to the two sets give the same result within the error bars.
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The very low signal (due to the low densities) currently prevents us from measuring it with high

precision, but future technical improvements should be able to allow the experimenters to further

explore the thermal contact.

Finally, to compare the contact to the theory prediction given by Equation 6.4, we need to

know both the scattering length and the density of the cloud during the RF probe pulse. Precise

measurements of the Feshbach resonance, which are used to determine the scattering length as a

function of magnetic field, were performed in [35]. Since we determine the resonant RF frequency

for every contact measurement, we can exactly calculate the magnetic field, which gives us the

scattering length a. The error bars from the Feshbach resonance measurements, along with the

uncertainty in the magnetic field, result in final errors on the scattering length of roughly 1% in

the range that we probe (300 to 3500 a0). We determine the density of the BEC using a numerical

model based on mean-field interactions (the PG model described in Section 5.1.1), calculating the

space- and time-averaged density of the cloud after ramping to various values of a. Since we have

a weak spherical trap and a fast probing technique, our average density does not drop more than

20% for fast ramps in a over our full range of scattering lengths.

6.4 Contact measurements

To investigate LHY physics represented by Equation 6.4, we measure the contact for different

values of the scattering length. Here is where the final-state effects due to α(a) manifest themselves.

The contact signal comes from the fact that we project the wavefunction of the interacting particles

onto a state with different interactions. If the interactions of that final state were exactly the same

as the initial state, we would not expect to outcouple any atoms. Thus the size of the signal is

highly dependent on the difference between the scattering lengths of the final and initial state. The

effect of α(a) then, is to shift what would be a parabola centered about a = 0 to one centered about

a′ = −565 a0, which enhances our signal at small a. This effect can be seen in Figure 6.5. The

solid line is the mean-field prediction including final-state effects, whereas the dotted line ignores

them. For these data, the space-averaged density has been averaged over the different points to
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Figure 6.5: The contact vs a, measured at |ω| = 2π × 40 kHz. (a) Here I plot α(a)
β(ω)

C2
N0

, which is

directly proportional to the strength of the measured ω−3/2 RF tail. (b) The contact per particle
C2
N0

. The solid lines in (a) and (b) are the mean-field predictions. The final-state effects shift what is
a parabola centered about a = 0 in (b) to one centered about a′ = −565 a0 in (a), which enhances
our signal at small a.
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(a)

(b)

Figure 6.6: Contact measurements as a function of the LHY energy ELHY. (a) The contact per
particle normalized by density1/3. The red curve shows the mean-field prediction for the contact,
and the blue curve shows the total contact including the LHY term. In (b) the data are normalized
to the mean-field value of the contact to compare to theory more clearly. In the limit of low
interaction strength, the data match the theory but cannot distinguish the LHY contribution. At
higher values, the data are systematically low. At values of ELHY approaching unity, we do not
expect the perturbative LHY theory to be valid.
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be ⟨n⟩ = 5.8 × 1012 cm−3. Since the data generally have varying densities, depending on the

scattering length that we ramp to, we have to normalize out the density. If we normalize C2 to the

interparticle spacing n1/3 and BEC number N0, we can rewrite Equation 6.4 to give the contact in

its dimensionless form C ′
2:

C ′
2 =

C2

N0n1/3
= 16π2

(√
na3

)4/3
(
1 +

5

2

128

15
√
π

√
na3 + ...

)
. (6.16)

In Figure 6.6a we plot C ′
2 versus ELHY, where ELHY = 128

15
√
π

√
na3 is the value of the fractional

LHY correction to the energy. The red line is the mean-field prediction, and the blue line includes

the contribution from the LHY term. The advantage of our measurement method is clearly evident

in the range of the x-axis. We can measure the contact up to such high interaction strengths that

ELHY can no longer be said to be a perturbation on the mean-field energy, and we no longer expect

the LHY result to hold.

In order to see the data more clearly, we then normalize the contact per particle by the

mean-field prediction to get

C2

N016π2na2
=

(
1 +

5

2
ELHY + ...

)
, (6.17)

shown in Figure 6.6b. The mean-field value is now 1, and the LHY term is a line with a slope of

5/2. For the lowest values of ELHY, where the separation between the mean-field and the LHY

prediction is on the order of the error bars, the data show excellent agreement with the predicted

value. At values of ELHY approaching unity, we would not expect the perturbative LHY theory to

be valid, so the mismatch between data and theory comes as no great surprise. However, we do

expect the LHY theory to be valid in the intermediate regimes, so we must take a closer look at

our methods.

When we change the scattering length, we ramp a as quickly as possible to avoid the destruc-

tive three-body loss rates. The resulting increase of interaction energy brings the system out of

global equilibrium and starts a breathe oscillation of the cloud. However, an ongoing assumption

is that the system is in equilibrium locally, because we change a on a timescale that is adiabatic
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with respect to the binding energy of a dimer, with ȧ/a never reaching more than 0.01~/(ma2) (ȧ

being the time derivative of a). One might then wonder if we are possibly ramping too quickly

for the physics underlying the LHY correction to evolve. Going one step further, we can ask what

determines the relevant timescale. One (possibly naive) guess would be to say that the relevant

time scale is given by the mean-field chemical potential µ = 4π~2
m na. We then look at how large the

fractional rate of change µ̇/µ of this energy is, compared to the characteristic time given by that

energy, µ/~. This gives us a unitless “adiabaticity paramater” (R) for our ramps,

R =
µ̇/µ

µ/~
. (6.18)

For the data in Figure 6.6, R ranges ranges between 2 and 3. When we ramp to our final scattering

lengths, we ramp in such a way to keep R roughly constant throughout the ramp.

In Figure 6.7 we show the results of changing our ramp rates at two values of ELHY. Here

the data are normalized to represent where, fractionally, they lie between the mean-field and LHY

predictions. The red line at 0 represents the mean-field contact, and the blue line at 1 is the full

contact with the LHY term. We can clearly see a dependence on the ramp rate, suggesting that

we are indeed ramping too quickly for the LHY energy to completely manifest itself. Also, the

fact that the value of the contact is in between the mean-field and the LHY values right around

when our R is equal to 1, suggests that the chemical potential is the relevant energy scale. For

lower values of ELHY, the LHY term is too small compared to the error bars to discern a ramp rate

dependence.

A more convincing argument would be to show that the contact actually saturates to the

LHY and mean-field values for very slow and very fast ramps, respectively. Unfortunately, achieving

these rates present a nontrivial experimental challenge. The fastest ramps we are currently able to

achieve are limited by the gain of our servos and the inductance of our magnetic-field coils. This

limit could be surpassed by installing a separate low-inductance coil pair driven by a capacitor

bank, which could change the fields by the necessary amount as fast as ∼ 5 µs [49], giving us

another factor of 20 in ramp rate. This is quite feasible, and it is likely that the experiment will
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Figure 6.7: Contact measurements as a function of ramp rates, expressed in terms of the “adia-
baticity parameter” R. Higher values of this parameter correspond to faster ramps, which show a
value of the contact closer to the mean-field prediction. Slower ramps result in higher values closer
to the LHY prediction. Different shapes correspond to different days on which the data were taken.
The small upper plot is a reproduction of Figure 6.6b, to illustrate the values of ELHY shown here.
For lower interaction strength, the LHY term is too small compared to the error bars to discern
a ramp rate dependence. To calculate the mean-field and LHY energies, we require knowledge of
the cloud density. The change in densities due to the ramp in a were calculated using a model for
expansion that included only the expected mean-field energy, and vary from 40% for the slowest
ramps to 10% for the fastest. This reasoning is somewhat circular, but including the LHY term in
this model causes at most an extra 5% decrease in density for the slowest ramps, and the resulting
change is shown by the open circles.



71

move in this direction in the not-too-distant future. The other extreme for the ramp rate is more

problematic.

Achieving very slow ramp rates is technologically trivial, but two major issues prevent us

from easily obtaining trustworthy measurements. One of these is the change in density. When we

change a, the resulting change in interaction energy causes the cloud to expand for the start of a

breathe mode. We rely on the PG model to calculate the change in density of our cloud from the

interaction-induced breathe and obtain the value of ELHY. But the results of that model depends

on the energy of the gas, and whether or not we must include the LHY corrections to the energy.

For fast ramps the density drop is on the order of 10%, and the inclusion (or exclusion) of the

LHY energy in the PG model will not incur a significant total error. For slow ramps the density

will drop more like 30% from the initial density, and exact knowledge of the energy is much more

important. For the slowest ramps shown in Figure 6.7, using the LHY rather than the mean-field

energy causes a density change of ∼ 5%, which moves it closer to the LHY prediction as shown by

the open circles. Because of this, measuring an LHY term tends to be circular when large density

corrections are made. The other major issue is the ever-recurring problem of three-body losses. RF

contact spectroscopy is an appealing measurement technique because it can be performed quickly

to avoid the loss issues. Taking a long time to ramp a means we once again have to account for

significant losses in the condensate for every measurement. Again, this is a fundamental issue

inherent in bosons.

To summarize, we have used RF contact spectroscopy to measure beyond-mean-field effects in

strongly interacting BEC. At low interaction strengths, where the LHY term is a < 5% perturbation

on the energy, the measured contact shows excellent agreement with theory. At higher interaction

strengths, we see clear deviation from the mean-field contribution to the contact. These beyond-

mean-field effects are dependent on ramp rate, and evidence suggests that the relevant time scale is

determined by the chemical potential. Nonetheless, RF contact spectroscopy is a powerful tool for

probing strongly interacting Bose gasses before three-body losses become significant, even letting

us reach a regime where the LHY contribution to the energy is calculated to be of order 1.



Chapter 7

Three-body Contact

Beyond some prefactors in the formulas due to particle statistics, the two-body contact

applies equally to bosons and fermions. However, the possibility of three-body interactions in

bosonic systems means that one has to take into account the possibility of a three-body contact.

The three-body contact, similar to its counterpart, measures the probability for triples of identical

bosons to be close to one another [31]. Continuing the analogy, just as the two-body universal

parameter is the scattering length, a, the universal parameter describing the three-body physics is

the Efimov parameter κ∗. An important thing to keep in mind is that the three-body contact also

connects a few-body interaction parameter with many-body effects. One fundamental property of

Efimov physics is that it predicts an infinite series of successively more weakly bound trimers with

discrete scaling factor eπ/s0 ≈ 22.7, where s0 ≈ 1.00624 for identical bosons [50]. A sketch of this

behavior can be seen in Figure 7.1. The parameter κ∗ can be defined by the energies of trimers at

unitarity, where a → ∞, as

Etrimer =
~2κ2∗
m

(
e−2π/s0

)l
, (7.1)

where l is an integer, and m is the mass of one atom. In this way, we can understand κ∗ to be the

characteristic momentum of the most tightly bound trimer, and its inverse gives the approximate

size of the trimer molecule [50].

The three-body contact C3 has an “adiabatic sweep theorem” like Equation 6.3, which defines
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Figure 7.1: A sketch of Efimov states. The vertical scale gives the wave number K = ±
√

m|E|/~2,
and the horizontal gives 1/a, such that the origin corresponds to unitarity (a → ∞). The green
line shows the state corresponding to a bound dimer plus a free atom, and the blue lines show the
bound trimers, for which there is an infinite series approaching unitarity. Note that the scaling
factor here is ∼ 2 to make the behavior visible and to match the literature on Efimov states. A
realistic Efimov state with scaling factor 22.7 would have an energy that is nearly indistinguishable
from the dimer energy on the scale of this plot.

C3 in terms of the derivative of the energy(
κ∗

∂E

∂κ∗

)
a

= −2~2

m
C3. (7.2)

The three-body contact also manifests itself in an additional contribution to the tail of the momen-

tum distribution that goes as

lim
k→∞

n(k) =
F (k)

k5
C3, (7.3)

where the log-periodicity of Efimov physics manifests itself in the function

F (k) = A sin[2s0 ln(k/κ∗) + 2ϕ] (7.4)

with numerical constants A = 89.2626 and ϕ = −0.669064 [31]. This results in an additional term

to the RF tail at large detunings that should be added to the right-hand side of Equation 6.6:

~Ω2

2m

GRF(ω)

ω2
C3. (7.5)

Here, GRF(ω) is a log-periodic function given by

GRF(ω) = 9.23− 13.6 sin

[
s0 ln

(
mω

~κ2∗

)
+ 2.66

]
. (7.6)
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As of the writing of this thesis, there is no prediction for final-state effects on the C3 contribution

to the RF tail.

Our aim, then, is to see if we can find a contribution to the interaction-induced RF tail

from three-body effects, or to show that possible three-body effects are dominated by two-body

correlations and can be ignored in measurements of the contact. Although four-body interactions

(or greater) can occur, it is expected that they do not require extra universal parameters, which

means that there is no need to define a four-body (or higher) contact. The total contact in the

universal regime can be completely described by C2 and C3 [51].

7.1 The Efimov resonance

To measure a three-body contact via Equation 7.5, we need to know the value of κ∗. This

will tell us the frequencies for which GRF = 0 and the ones for which GRF is high, which can in

turn aid us in maximizing the chances of detecting C3. One way to measure κ∗, which is a value

unique to each atomic species, is to find the value of the scattering length a− on the negative side

of the Feshbach resonance where the energy of a trimer becomes degenerate with the energy of

three free atoms (see Figure 7.1). At this value of a we expect that the probability of three atoms

close together is resonantly enhanced, manifesting itself in a peak in the three-body recombination

rate. Similar measurements of Efimov resonances have been reported for several other ultracold

atom systems [52, 53, 54, 55, 56]. For identical bosons, the value of a− is related to the three-body

parameter through κ∗ = −1.56(5)/a− [57].

We measure the 85Rb Efimov resonance using non-condensed clouds of 1.5×105 atoms at a

temperature T = 80 nK. We ramp the magnetic field to realize the desired scattering length on the

a < 0 side of the Feshbach resonance and wait for a variable time t. We then turn off the magnetic

fields (except for a small quantization field), ARP all the atoms to the |3,−3⟩ imaging state, and

use high-intensity imaging (see Section 5.1.3) to probe the clouds at 3 ms expansion time. This

time is small compared to the trap frequency, so the clouds still exhibit position information (we

expect the cloud size to have increased by 2% during this time). We measure the number and size
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vs time, and extract the three-body event rate constant K3 for various values of the scattering

length.

The three-body event rate constant for a homogeneous gas with a number density n is defined

by

d

dt
n = −3K3n

3, (7.7)

where the factor of 3 in front comes from the fact that, in our case, three atoms are lost per

event. But since losses also cause heating, which contributes to a decrease in density, we integrate

Equation 7.7 over all space for the number loss rate

d

dt
N = −3K3⟨n2⟩N, (7.8)

where ⟨n2⟩ is the density-weighted mean square density ⟨n2⟩ =
∫
n3dr∫
ndr

. Our 500 s vacuum-limited

lifetime and previous experiments on 85Rb suggest that one- and two-body losses can be ignored

for the range of magnetic fields we probe [58]. For a thermal distribution in a harmonic trap, we

can rewrite this as

d

dt
N = −3K3

8√
27

N3

V 2
, (7.9)

where the volume V = 8π3/2w3 and w is the rms width of the spherical cloud. We perform a linear

fit to the volume of the cloud given by V (t) = A+Bt. Plugging this into Equation 7.9 and solving

for N(t) gives us our fitting function for the rate:

N(t) = N0

√
A(A+Bt)

48√
27
N2

0K3t+A(A+Bt)
. (7.10)

Figure 7.2 shows an example of this procedure. The volume vs time is fit in Figure 7.2a,

setting A and B for the fit to the number data in 7.2b via Equation 7.10. Using this procedure,

we extract K3 values for a range of a, plotted in Figure 7.3. We fit the measured K3 vs a to the

expected form for an Efimov resonance for non-condensed atoms [57],

K3 =
4590 sinh(2η)

sin2[s0 ln(a/a−)] + sinh2 η

~a4

m
. (7.11)
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Figure 7.2: Example of a loss rate measurement to extract K3. These data correspond to a
scattering length of 730 a0. Heating of the cloud causes its size to increase as seen in (a). The
parameters extracted from a linear fit to the volume go into a fit to the atom number via Equation
7.10, as seen in (b), resulting in a value of K3 = 5.64× 10−22cm−6/s.
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Figure 7.3: A three-body loss resonance for 85Rb. We plot the three-body event constant K3 vs
the scattering length a, for clouds with a temperature of roughly 8 nK. From fitting Equation 7.11
to the black points, for which a < 1/kthermal, we extract a− = −759(6)a0 and η = 0.057(2).
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Because this expression comes from a T = 0 theory, we only fit the data for a < 1/kthermal,

where kthermal =
√
2mkBT/~ and kB is Boltzmann’s constant. From the fit, we extract a− =

−759(6) a0 and η = 0.057(2). The error in a− is relatively small because of the fact that the

Feshbach resonance for 85Rb was measured with very high precision in [35], and the uncertainty

from those measurements dominate our errors. Uncertainties of our measurement of the magnetic

field or from the fit to Equation 7.11 are negligible. In fitting our observed loss rates to Equation

7.11, we initially included an overall multiplicative scaling factor, to account for systematics in our

measurements, but found it to be consistent with one. We do not expect to be able to measure

another resonance a factor of 22.7 more negative in scattering length (-17,000 a0) due to the finite

temperature of the gas. A factor of 22.7 lower (-33 a0), is smaller in magnitude than the van der

Waals length, where universality no longer applies.

Since the η parameter essentially determines the width of the resonance, we can think of it

as proportional to the inverse lifetime of the trimers. The trimers can decay into a deeply bound

dimer and a free atom. The width can conceivably increase if the temperature of the cloud is too

hot, due to the increased thermal de Broglie wavelength moving the system closer to unitarity. To

check that we are in the regime where η is independent of temperature, we repeat the measurement

of η for 30 and 140 nK. The results are plotted in Figure 7.4. We can see that over a factor

of four in temperature, η does not show significant change, suggesting that we are indeed in the

low-temperature limit.

The value of a− is not expected to be universal, since it comes from the details of the short-

range potential [15, 59, 57]. However, it gets interesting when expressed in units of the mean

scattering length of the van der Waals potential [60]

ā =
1√
8

Γ
(
3
4

)
Γ
(
5
4

) (mC6

~2

)1/4

, (7.12)

where C6 is the coefficient of the van der Waals potential. For 85Rb, ā = 78.5 a0, so we find a

value for a−
ā of -9.67(7). Note that in other works, a− is sometimes normalized instead by the van

der Waals range RvdW = 1
2

(
mC6
~2

)1/4
[34]. It turns out that other experiments that have measured
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(a)

(b)

Figure 7.4: Measurement of η vs temperature. (a) The loss resonances. For the data at 30 and 140
nK, we did not calibrate the scattering length as carefully as the data at 80 nK, which is the same
data as in Figure 7.3 shown over a smaller range of a. Moreover, the 30 nK clouds are likely not in
thermal equilibrium, and the ensuing error in the average density will cause a systematic error in
the calculated value of K3. (b) Measured values of eta vs temperature. We do not see a significant
change in η over a large range in temperature, suggesting that the experiments are performed in
the low-temperature limit.
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Efimov resonances have found very similar result in 133Cs [61], 6Li [62], and 7Li [55, 56, 63],

with values for a−
ā ranging 8-10. This empirical evidence suggests that the three-body parameter

depends only on the coefficient of the 1/r6 part of the two-body potential and not on the details

of a three-body potential at short range [61].

7.2 Searching for C3

From the measured location of the Efimov resonance, we can extract κ∗=39(1) µm−1. This

gives us the expected shape of GRF(ω), which is plotted in Figure 7.5. Note that GRF(ω) has a

node at ω ≃ 2π × 27 kHz and a smaller magnitude at larger ω. Since the C3 term in Equation 7.5

goes as GRF(ω)/ω
2, this suggests that the largest contribution from C3 will be for ω < 2π×27 kHz.

Like the C2 term, the prediction for the C3 term is valid for ω → ∞. For the case of the C2 term,

the RF tail arises from two-body short-range correlations at distances that are small compared to

the interparticle spacing, which is always satisfied. However, for the case of C3, the prediction for

the three-body contribution to the RF tail may have a more limited range of applicability [64]. In

particular, the C3 theory may only be applicable for ω > ~
ma2

[65], where the frequency dependence

makes it less likely to contribute significantly to the RF tail.

The results of our search for C3 can be seen in Figure 7.7, where we examine the frequency

dependence of the RF tail for a BEC at a = 982 ± 10 a0. To maximize our chances of measuring

a C3 contribution, we increase the density of the clouds by 65% by jumping the scattering length

from 100 a0 to 50 a0 and waiting 1/4 of the trap period before ramping to the final value of 982

a0. This creates a density oscillation as seen in Figure 7.6, which we predict using the PG model

(see Section 5.1.1). We fit the data to the predicted frequency dependence of the C2 contribution,

shown by the solid line. The dotted line is the same fit but shown without including the final-state

correction 1/β(ω). We can see that our data fit very well to the expected frequency-dependence

for the two-body contact with final-state effects, and we do not observe any deviation consistent

with a three-body term. Fitting the data to both contributions gives an upper limit for C3/N0 of

0.07 µm−2. Also shown is a trial C3/N0 term of 0.1 µm−2 with the dashed line. For reference,
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Figure 7.5: GRF as a function of ω, with κ∗=39(1) µm−1. We plot GRF for negative ω to ease
comparison with the measured RF tail, which occurs at negative detunings in our experiment. GRF

has a node at ω ≃ 2π × 27 kHz, suggesting that one should look for a C3 contribution to the RF
tail for smaller detunings.
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Figure 7.6: Changing the scattering length for increased density. We jump the scattering length
a (green curve) to 50 a0, causing an inward breathe with a period of roughly 50 ms. Close to the
turnaround point we ramp to 982 a0 and apply the RF pulse to measure the contact (grey line).
The blue curve shows the prediction for the relative density of the PG model.
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Figure 7.7: (a) The calculated frequency dependence of GRF(ω), shown again on a logarithmic ω
scale for reference. (b) The measured frequency dependence of the tail of the RF spectrum for
a = 982± 10 a0. The solid red line is a fit to the expected frequency dependence of the two-body
contact C2/N0 including final-state effects. The dotted blue line corresponds to the same value of
C2/N0, but ignores final-state effects. For comparison, the fit plus a trial C3/N0 term of 0.1 µm−2

is shown with the dashed black line. Our measurements are consistent instead with a C3/N0 of
zero. For these data the density is ⟨n⟩ = 1.0× 1013 cm−3.
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~
ma2

= 277 kHz for this scattering length.

Another idea was to look for a C3 contribution on the peak of the Efimov resonance. The

thought was that the final-state effects suppress the two-body contribution to the contact, while

the presence of the Efimov resonance might enhance the contribution from the three-body contact.

Since a BEC begins to implode at negative scattering length, we first create condensates at 100

a0, then we decrease the density by a factor of 5 by jumping a to 400 a0 and waiting 1/4 of a

trap period, before jumping the magnetic field to the Efimov resonance. This should give us ∼4

ms to measure the RF spectrum before the condensate begins to collapse locally (see Section 5.1.2

for an explanation of this prediction). The results of that test are shown in Figure 7.8, where all

measurements of the tail are consistent with zero. The error bars roughly represent our detection

limit. The two-body contact prediction is shown by the green line, which is below our detection

limit due to the aforementioned final-state suppression. The blue line shows a heuristic prediction

for the three-body contact from the loss rate, given by [65]

d

dt
N = −4η

~
s0m

C3. (7.13)

Given that this prediction lies significantly above our detection limit, the data suggest that the

ω > ~
ma2

limit does define the range of applicability for the C3 theory, and/or that final-state effects

for the three-body contribution also cause significant suppression of the signal, or that Equation

7.13 is incorrect. Of interest is the prediction of Equation 7.5, that if the scattering length were

chosen such that the C2 term is zero, the transition rate goes negative, indicating that the theory

is at this point still incomplete.

In short, our investigations for a three-body contribution to the contact have shown that

the short-range correlations in the BEC are dominated by two-body effects, as we see no clear

signature of three-body effects in the frequency dependence of the interaction-induced tail in RF

spectroscopy.
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Figure 7.8: Searching for a tail in the RF spectrum at -760 a0. We detected no signal indicative
of a tail on the RF spectrum. The error bars give an estimate of our detection limit. The green
line shows the prediction for the contribution to the signal S from the two-body contact, which
is highly suppressed due to final-state effects and expected to be below our detection limit. A
heuristic calculation from loss rates via Equation 7.13 predicts a three-body contribution shown by
the blue line. The density here is ⟨n⟩ ≃ 7× 1011 cm−3.



Chapter 8

Summary and Outlook

8.1 In Essence

In this thesis I presented an experiment on 85Rb BEC near a Feshbach resonance, for which we

measured the contact via RF spectroscopy. To fulfill the technical requirements for this experiment

we stabilized our trapping magnetic fields to ∼ 2 mG rms fluctuations, and minimized the magnetic

field variation across the cloud to a ∼ 4 kHz rms width on a 0.47 MHz/G transition. We also created

Gaussian-shaped RF probing pulses without stray spectral components down to 60 dB below the

peak power. To probe our BECs we developed imaging technology that easily spans imaging in

magnetic fields of zero to upwards of 200 G, giving us the ability to probe clouds with optical depths

greater than 6. We also developed a technique to efficiently measure only the atoms outcoupled

from the tail of an RF lineshape, without letting the 99% of atoms in the original state contaminate

our images.

With these technical requirements resolved, we measured the two-body contact, experimen-

tally probing the tail of the RF spectrum to high precision. We clearly see a deviation from the

1/|ω|3/2 tail consistent with predictions for the final-state effects. From the ratio of the transition

rate on the tail to the resonant transition rate, we extracted a value for the two-body contact. We

then measured the contact for varying values of the scattering length, ranging from a regime that is

well-described by the mean-field approach, through a regime where we expect the correction to the

energy to be described by the Lee-Huang-Yang (LHY) formalism, all the way to a regime where na3

is so high that we no longer expect the LHY theory to be valid. In the low a regime our data match
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the mean-field prediction, and at higher interaction strengths we see beyond-mean-field behavior.

The data do not match the LHY prediction, likely due to the physics underlying the LHY energy

not evolving adiabatically with fast changes in the interaction strength. When we vary the ramp

rate, we see a clear trend towards the mean-field prediction for the contact for faster ramps and

toward the LHY prediction for slower ramps. This opens up an exciting area of research regarding

the dynamics of strongly interacting bose gasses.

We also investigated the possibility of a three-body contact, related to Efimov physics. In

order to predict the shape of the three-body contribution to the RF tail of the frequency spectrum,

we measured the location of an Efimov resonance on the a < 0 side of the Feshbach resonance. We

measured loss rates on non-condensed clouds to extract the three-body event rate constant K3 as a

function of the scattering length. This gives us a resonance located at a− = −759(6) a0 and a width

given by η = 0.057(2). Evidence suggests this data was taken in the low-temperature regime. From

the location of the Efimov resonance we calculate the three-body universality parameter κ∗ = 39(1)

µm−1. Our subsequent measurements for a three-body contribution to the RF tail are consistent

with zero. In the regime of perturbative interactions, such as assumed in the LHY calculation, one

would expect that the short-range correlations in the BEC are dominated by two-body effects. In

general, this paves the way for using RF spectroscopy to measure the two-body contact for BECs

and thus measure beyond-mean-field physics and probe non-equilibrium many-body dynamics.

8.2 The next few weeks...

Strongly interacting systems have long been a challenge for theorists and experimentalists

alike, and the 85Rb experiment is poised to investigate much that has not been explored by either

group. The dynamics of the LHY correction that we have already measured lack a theoretical

foundation, and the experiments on those dynamics will likely be refined and extended to give

clear results in the future. The two-body contact in general has proven such a useful tool that

the experiment will probably continue to use it to study strongly-interacting BECs. Specifically,

work is currently in progress to measure the contact at unitarity, where the scattering length is no
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longer a relevant length scale. Instead, the interparticle spacing becomes the relevant parameter,

changing the density dependence of three-body losses. Also, I imagine that the book on the three-

body contact away from unitarity is not yet completely closed, as the current team will come up

with new ideas and techniques to search for it in different regimes. It will be exciting to see what

sorts of new and interesting science the 85Rb experiment (through its capable keepers) will reveal

in the future.
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Appendix A

Effective range contribution

We calculate the transition rate for a dimer for a first-order approximation to include effects

from the short-range potential in the two-body contact. We start with Equation 7 of [66] for the

Frank-Condon factor between the initial state with scattering length a and the final state with a′,

F (K) =
2m

π~2k
(1 + k2a2)−2(sin δ′ + ka cos δ′)2, (A.1)

where δ′ is given by

k cot δ′ = − 1

a′
+

r′e
2
k2 + ..., (A.2)

and the effective range r′e is defined in the limit |a′| ≫ ā by

r′e =
Γ
(
1
4

)4
6π2

ā. (A.3)

The mean scattering length of the van der Waals potential ā is given by

ā =
1√
8

Γ
(
3
4

)
Γ
(
5
4

) (mC6

~2

)1/4

. (A.4)

This results in an effective range for 85Rb of 229 a0. Following the derivation in [66], we express

k2a2 = K/Eb and k2a′2 = K/E′
b where, K = ~2k2/m and Eb = ~2/ma2 is the binding energy, and

combine Equations A.1 and A.2. After quite a bit of algebra, this comes out to be

F (K) =
2

π

(
a′

a
− (1− ρ)

)2 K1/2E
1/2
b E′

b

(K + eb)2(K + E′
b(ρ− 1)2)

, (A.5)

where ρ = r′ek
2a′

2 . If we used only the first term in Equation A.2, then ρ = 0 and Equation A.5

reduces to Equation 10 in [66]. Now we define the RF offset energy E = Eb+K, and take the limit
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of E ≫ Eb (large detuning) to get

F (K) =
2

π

E
1/2
b

E3/2

(
a′

a − (1− ρ)
)2(

(1− ρ)2 + E
E′

b

) . (A.6)

Now we plug in E = ~ω and Eb = ~2/ma2 to put things into more familiar units:

F (K) =
2

π

1

aω3/2
√
~m

(
a′

a − (1− ρ)
)2(

(1− ρ)2 + ma′2ω
~

) . (A.7)

We can also substitute in the two-body contact for the dimer, C2 = 8π
a , using the adiabatic sweep

theorem (Equation 6.3). Finally, we use Γ(ω) = hΩ2

2 F (ω) from Equation 3 of [66] to get

Γ(ω) =
Ω2

4π

√
~
m

α′(a)

β′(ω)

C2

ω3/2
, (A.8)

where the only difference between this result and Equation 6.6 is a modified definition for the terms

that include final-state effects:

α′(a) =

(
a′

a
− (1− ρ)

)2

(A.9)

β′(ω) =

(
(1− ρ)2 +

ma′2ω

~

)
. (A.10)

The effect of including this effective range contribution is seen in Figure A.1. It may be

measurable as a slight deviation from the ω−dependence, but the expected deviation is on the

order of our error bars and as of yet too small to detect. Since the total contribution of final state

effects to the contact go as β(ω)/α(a), the corrections largely cancel, as seen in Figure A.1c.
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(a) (b)

(c)

Figure A.1: Effects of the first-order correction due to a finite effective range. (a) and (b) show
the fractional corrections introduced by using α′(a) and β′(ω), respectively. For the calculation of
α′(a), a detuning of ω = 2π×40 kHz was assumed. The magnitude of the effect roughly corresponds
to the size of the error bars in our data, putting it just below our detection limit. (c) The combined
effect on the total contact is on the order of a few percent.



Appendix B

Detailed procedure for the contact measurements

The procedure described below is typical for our experiment, but may not be the exact

procedure used for any specific set of data. Before and after a contact measurement, we take

measurements of BEC number using high-field and high-intensity imaging as described in Chapter

5. We check that those measurements do not vary greatly, and average them to determine the

condensate number during the contact measurements. The contact measurement itself consists of

three parts, for which the magnetic-field ramps are identical. For mostly historical reasons, I will

define 0 ms to be the time when we turn off the trapping fields. We ramp off the large shim coils

to minimize the magnetic-field gradient at -4 ms in 0.5 ms, while simultaneously ramping the bias

field to compensate and keep the scattering length constant. At -3.5 ms, we begin a 1 ms ramp in

the bias field to reach our final value of a. The Gaussian RF pulse is always centered on -1.5 ms.

We first determine the center frequency of the single-atom transition. For this measurement

we make non-condensed clouds, and probe the |2,−2⟩ to |2,−1⟩ transition with Gaussian pulses

of an rms width τ = 100 µs, outcoupling 10-20% of the atoms with a Gaussian line width of ∼ 4

kHz. We also include the RF pulses that normally transfer the |2,−1⟩ atoms to the |3,−3⟩ imaging

state, but detune them by 5 MHz to avoid this transfer. This ensures that any RF rectification

will be common-mode between the measurement of the center frequency and the measurement of

the RF tail. We then turn off the magnetic fields at 0 ms, and expand for 15 ms, applying a

vertical magnetic gradient for 5 ms to physically separate the magnetic sublevels. This imaging is

performed like standard absorption imaging, at low field and with low probe intensities. We find
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that fitting both clouds and looking at the outcoupled fraction significantly reduces noise due to

number fluctuations, enabling us to reach < 1 kHz uncertainties in the center frequency with 5-6

well-picked points on the lineshape.

Once we know the single-atom frequency, we calculate and set the resonant frequencies for the

RF transfer to the imaging state, as well as the probe laser frequency. To measure the integrated

lineshape of the BEC, we tune the |2,−2⟩ to |2,−1⟩ RF to resonance and probe with a short, τ = 5

µs Gaussian pulse, outcoupling on the order of 2-3% of the atoms. Such a short pulse is always

pulse-width limited, and we only need the peak of the lineshape to determine its integral to within

a small correction described in Section 6.3. The RF transfer pulses occur at -1 ms and -0.9 ms to

pump the atoms to the imaging state. We then probe at high-field (in-trap) but with low intensity,

using a 25 µs probe pulse.

For the measurement on the tail of the transition, we change only the initial RF pulse length

to τ = 100 µs, and increase the power, always outcoupling ∼ 1 − 2% of the atoms. Since we

“truncate” our Gaussians at ±4τ , this pulse “begins” at -1.9 ms (600 µs after the end of the

magnetic field ramp) and ends at -1.1 ms (100 µs before the first RF transfer pulse). In order to

avoid systematics caused by experimental drift, we alternate between measuring the peak and the

tail of the transition. A sketch of the timings can be seen in Figure B.1.
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Figure B.1: Timing schematic of a typical contact measurement. The vertical scale is arbitrary.
The widths of the grey RF pulses and the red probe pulse have been exaggerated to show up at
this scale. The relative timings and the width of the blue RF pulse are to scale.


