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A fluctuating regime associated with the Berenzinskii-Kosterlitz-Thouless (BKT) tran-

sition is studied in a two-dimensional system of near-degenerate bosons (87Rb atoms). Two

imaging procedures, the in-situ imaging method and the focusing-imaging method, are im-

plemented to image the coordinate-space and momentum-space density distributions. The

scaled compressibility is extracted from the coordinate-space density distributions obtained

from in-situ images. Comparing the measured compressibility to the prediction from our

semiclassical mean-field model, an onset of a regime which is beyond the mean-field pre-

diction is identified and first resolved at phase-space density nλ2 & 3. Information about

the coherence of the system is extracted from the momentum-space distributions obtained

from the focusing images. The spatial extent of the coherence at a size of the high den-

sity region in the system only appears at a distinguishably higher phase-space density of

nλ2 ≈ 8. Therefore, a very interesting regime that is beyond mean-field prediction, but not

yet a quasicondensate, is identified. This regime, which does not exist in three dimensions,

is a product of the enhanced interactions associated with reduced dimensionality.
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Chapter 1

Introduction

1.1 My work at JILA

In my early work at JILA (2003–2006), I participated in experiments studying rotating

Bose-Einstein condensates (BEC). My first experiment at JILA studied the dynamics of

two-component vortex lattices [4]. In this experiment, we first prepared our rotating BEC in

one hyperfine state, then used a microwave pulse to transfer some of the atoms into another

state. Because of interactions between two different vortex lattices, interlaced vortex lattices

were observed. In the process of achieving equilibrium, the structure of each vortex lattice

changed from a triangular one to a square one. This interaction-induced structural transition

was studied in the experiment. In the meantime, I also helped in the experiment studying

the equilibrium properties of rotating BECs [5].

In another experiment, we used a two-dimensional (2D) optical lattice to manipulate

a single-component vortex lattice [2]. The optical lattice was made to co-rotate with a

vortex lattice and to provide pinning forces to pin the vortices. After carefully stabilizing

and aligning our experiment, we were able to make the rotating optical lattice co-rotate

such that a vortex lattice saw a stationary pinning potential in its rotating frame. By

using a square optical lattice to pin a triangular vortex lattice, we observed the structure

of vortices changes from a triangular lattice to a square lattice. The structural transition

in this experiment was caused by the pinning force provided by the optical lattice. In this
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experiment, we studied the dynamics of a pinned vortex lattice and interactions between a

vortex lattice and an optical lattice.

Following the pinning experiment, we changed our focus from the physics happening

in the rotating frame to the physics in the stationary frame. We loaded a three-dimensional

(3D) stationary BEC into a 2D trapping array that was provided by the optical lattice.

By changing the height of the optical potential in each trapping site, we were able to go

from the condition of EJ À ET to the condition of EJ ¿ ET , where EJ is the tunneling

energy between adjacent trapping sites, and ET is the thermal energy. In this experiment

[3], we observed how the phase of the small BECs in each trapping site became random by

watching how the small BECs reconnected once the optical lattice was turned off. In the

case of EJ À ET , the atoms in different condensates communicated with each other via

tunneling. Therefore, they maintained their phase coherence. When EJ ¿ ET , the thermal

fluctuations in the system were large enough to destroy phase coherence in the system. In

this case, when we reconnected the small BECs, vortices resulted. In contrast to previous

experiments, vortices occurred in the stationary frame. This phenomenon is related to the

Berezinskii-Kosterlitz-Thouless (BKT) transition in the X-Y model [6, 7]. My work in this

experiment was more than changing the mirrors and tweaking the knobs. I developed a 3D

Gross-Pitaveskii equation (GPE) solver to calculate the tunneling energy between adjacent

trapping sites.

In 2007–2008, Giacomo and I tried a couple of experiments. First, we tried to rotate a

stationary condensate using a rotating optical lattice. We watched its rotation decaying as

a function of temperature. Second, we tried to rotate a 2D condensate in a one-dimensional

(1D) optical lattice. In this experiment, we successfully rotated a BEC, observed tens of

vortices, and kept a similar number of vortices in the optical lattice “more than 10 seconds.”

In the end, we didn’t submit the work for publication. We decided to switch the focus of

the experiment to studying the BKT transition in a continuous system.
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For the work described in the main body of this thesis, we used a similar setup to the

Paris group [8, 9] to create many isolated 2D systems. We then used a microwave-pumping

scheme to image in-situ one layer (or one 2D system) in the trap. We then compared

the measured result with the one predicted from the semiclassical Hartree-Fock mean-field

model. This model is similar to the one reported in [10]. The amazing thing about the

semiclassical Hartree-Fock mean-field model is that there is really nothing amazing about it.

This model discards all the interaction-related magic such as phonons and vortices. As much

as one needs the phonons and vortices to account for BKT physics, which are beyond the

mean-field description, we were able to identify the onset of a deviation in our measurement

from the semiclassical Hartree-Fock mean-field model.

We also used a complementary imaging technique known as the focusing-imaging

method [11, 12] to measure the momentum distribution of the system more accurately than

previous measurements [13, 14]. From the momentum distribution of the system, we observed

the onset of a long spatial extent of coherence in the system. By comparing both the in-situ

and focusing-imaging methods, we were able to identify rather accurately a very interesting

regime that was beyond the mean-field description, but not quite yet a quasicondensate.

Using our data, we also tested the critical phase-space density proposed in [15].

1.2 This thesis

The organization of my thesis is as follows: In chapter 2, I give some “simple” 2D

physics that might help readers understand our work in this experiment. Also, I give a short

review of previous experiments that studied the BKT transition in a continuous system.

In Chapter 3, I give some details of our experimental setup for creating a 2D system and

controlling its temperature. I also discuss a couple of imaging artifacts that influence the

measurements. In the end of the chapter, I discuss two different imaging methods used

for measuring the coordinate-space and momentum-space density distributions. Chapter 4
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gives the model and the method we used to identify a very interesting regime that is beyond

mean-field description. I will detail the development of the model we call the semiclassical,

mean-field, local-density approximations. This model is used to compare with coordinate-

space images. A couple interesting features of the model are also shown in this chapter. In

Chapter 5, I show the identification of the BKT temperature TBKT , below which the system

possesses a coherent fraction. The measurement of the coherent fraction is also presented

in this chapter. In Chapter 6, I summarize our experiment on exploring the interesting

physics around the BKT transition. Next, I present my personal outlook on the studies

of 2D ultracold-atom systems. Appendix A is a Physical Review Letter [2] I wrote on the

interactions between rotating optical lattices and vortex lattices. Appendix B is also a

Physical Review Letter [3] I co-authored on some precursor experiments to the work of this

thesis. There, we looked at the BKT transition in a superfluid on a 2D lattice. More details

about this experiment can be found in Ref. [16]. I am proud of both of these papers, but

they are so far removed from the topic of a 2D Bose gas in a continuous system, that I chose

not to include a discussion of these earlier works in the main body of my thesis.



Chapter 2

Interacting bosons in two dimensions

2.1 Introduction

It is known that the statistical behavior of systems can be very different in lower

dimensions from it is in three dimensions (3D). In 3D, many-body systems can possess a

long-range order (LRO) or undergo Bose-Einstein condensation. Take a Bose gas in 3D for

example. The system can undergo Bose-Einstein condensation at a critical temperature. For

this system at the critical temperature or lower, the atomic populations in excited states are

saturated, and atoms begin to accumulate in the ground state of the system, as shown in

Fig.2.1. For a 3D homogeneous system, the Bose-Einstein condensation happens when the

phase-space density of the system reaches 2.612 [17]. For weakly interacting atoms in a 3D

homogenous system, the BEC transition still exists.

For a two-dimensional (2D) system, things change dramatically. In a 2D crystal, a

long-range order does not exist, as was pointed out by Peierls [18]. In a 2D crystal at a finite

temperature, the uncertainty in the relative position of two atoms is given by

〈(~u(~r)− ~u(0))2〉 ∝ T ln
(r

a

)
, (2.1)

where ~u(~r) is the displacement vector of an atom from its equilibrium position at ~r, and a is

the lattice constant of the 2D crystal. Equation (2.1) diverges as the separation between two

atoms goes to infinity. This fact tells us that at any finite temperature, one cannot predict
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Figure 2.1: At a temperature T > Tc, atoms have a very small probability to populate any
state of the harmonic trap. However, at T < Tc, atoms begin to accumulate in the ground
state of the system. This phenomenon is known as Bose-Einstein condensation.
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the position of an atom far away by knowing the position of another atom at the origin of the

coordinate. In contrast, in a 3D crystal, the uncertainty of the displacement of two atoms is

smaller than the lattice constant a as long as the temperature of the system is smaller than

the melting temperature. After Peierls’ finding, Mermin and Wagner [19] and Hohenberg

[20] proved that the lack of long-range order (LRO) [21] at a nonzero temperature in a 2D

crystal is also true for other systems in lower dimensions.

For an interacting Bose gas in 2D, the above statement says there is no Bose-Einstein

condensation at any finite temperature. In a system with weakly interacting bosons, the

dispersion of excitations of the system at small momentum is linear instead of quadratic

[17, 22]. The linear part of the dispersion is usually referred to as phonons. The existence

of the low energy phonons causes phase fluctuations at finite temperatures. In a lower

dimensional system, the enhanced phase fluctuations can destroy the LRO or the condensate.

The absence of the BEC in a 2D system can be seen by examining the decay of its first-order

correlation functions.

2.2 First-order correlation function

The absence of Bose-Einstein condensation can be equivalently written, using first-

order correlation functions, as

lim
|~r−~r ′|→∞

G(1)(~r, ~r ′) = 0, (2.2)

where G(1)(~r, ~r ′) is the first-order correlation function defined as [23]

G(1)(~r, ~r ′) ≡ 〈Ψ̂†(~r)Ψ̂(~r ′)〉, (2.3)

where Ψ̂†(r) and Ψ̂(r) are, respectively, the creation and annihilation field operators that

create or annihilate a particle at position r. In the case of ~r ′ = ~r,

G(1)(~r, ~r) = 〈Ψ̂†(~r)Ψ̂(~r)〉

= n(~r).

(2.4)
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G(1)(~r, ~r) is also known as the one-body density matrix, which gives the density distribution

n(~r) in the coordinate space.

In an infinite homogeneous system, an important relation exists between the momen-

tum distribution of the system and the first-order correlation function. The momentum

distribution of the system can be expressed as

n(~p) = 〈Ψ̂†(~p)Ψ̂(~p)〉, (2.5)

where Ψ̂†(~p) and Ψ̂(~p) are, respectively, the creation and annihilation operators in momentum

space. These operators are

Ψ̂(~p) =
1

2π~

∫
d~re−i~p·~r/~Ψ̂(~r), (2.6)

Ψ̂†(~p) =
1

2π~

∫
d~rei~p·~r/~Ψ̂†(~r). (2.7)

Putting Eqs. (2.6) and (2.7) into Eq. (2.5), one finds that

n(~p) =
A

(2π~)2

∫
d~sG(1)(s)ei~p·~s/~, (2.8)

where ~s = ~r − ~r ′, A is the area of the 2D system, and G(1)(s) = G(1)(|~s|). As one can see

from Eq. (2.8), the momentum distribution is the inverse Fourier transform of the first-

order correlation function. In other words, the first-order correlation function is the Fourier

transform of the momentum distribution, i.e.,

G(1)(~s) =
1

A

∫
d2p n(~p)e−i~p·~s/~. (2.9)

In the presence of a BEC, the momentum distribution would have a singularity at

~p = 0, and

n(p) = N0δ(~p = 0) + nT (~p 6= 0), (2.10)

where nT is a smooth function of ~p. One can see, after plugging Eq. (2.10) into Eq. (2.9), the

first-order correlation function approaches a constant value of N0/A, which is the condensate
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density, as s →∞. In contrast, in the absence of the condensate, the first-order correlation

function goes to zero when s → ∞. As mentioned earlier, in 2D, there is no condensate at

any finite temperature. Therefore, one would expect the correlation function to approach

zero at infinity for any 2D system with continuous symmetry.

2.2.1 The ideal Bose gas

How G(1)(s) decays depends on the behavior of nT . For a highly nondegenerate ideal

Bose gas in a 2D box, the distribution is well described by the Boltzmann distribution,

nk = e−(~
2k2

2m
−µ)/kbT , (2.11)

where the chemical potential is determined by

N =
L2

(2π)2

∫ ∞

0

dk 2πke−(~
2k2

2m
−µ)/kbT

=
L2

λ2
db

eµ/kbT ,

(2.12)

where λdb is the de-Broglie wavelength, L2 is the area of the 2D box, and N is the total

number of atoms. Using Eqs.(2.9), (2.11), and (2.12), one finds that in the high-temperature

regime, the first-order correlation function can be written as

G(1)(s) = ne
−π( s

λdb
)2
. (2.13)

In this regime, nλ2
db ¿ 1, and G(1)(r) is a Gaussian with a width of λdb/

√
2π.

In the regime close to degeneracy, where nλ2
db ∼ O(1), only the states with ~2k2

2m
¿ kbT

are strongly occupied. In this case, the number of atoms in state k is given by

nk =
kT

~2k2

2m
− µ

. (2.14)

Using Eqs. (2.9) and (2.14), one can get

G(1)(s) =
2

λ2
db

K0(r/lc), (2.15)
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where K0 is the zero order of the modified Bessel function of the second kind [24], and lc =

λdbe
nλ2

db/2/
√

4π. The asymptotic behavior (at large r) of K0 can be found as e−r/lc/
√

r/lc.

As one can see from Eqs. (2.13) and (2.15), the correlation functions for 2D ideal Bose gases

eventually decay to zero at r → ∞. In a system close to degeneracy, the spatial extent of

coherence lc can still be very long and increases exponentially according to its phase-space

density i.e. lc ∝ enλ2
db/2. Interestingly, in the 1D case, the spatial extent of coherence in this

regime increases only linearly according to nλ2
db [25].

2.2.2 The weakly interacting Bose gas

Let’s consider the first-order correlation function for an interacting 2D Bose gas. At

high temperature, when nλ2
db ¿ 1, the interactions have little effect. Therefore, one expects a

very similar result with ideal-gas model. In the low temperature regime, Petrov et al. [26, 27]

found a similar result for the spatial extent of coherence for weakly interacting bosons in a

harmonically trapped system. They used a method developed for 3D-trapped condensates

to calculate the excitation spectrum of the system. Then, using the excitation spectrum to

calculate the mean-square fluctuations of the phase, they found that at temperatures below

the critical temperature, the characteristic radius of the phase fluctuation was

Rφ ≈ λdbe
nλ2

db
2 , (2.16)

where n is the density of the system. From the exponentially increasing spatial extent of

coherence, one expects a slow decay in the first-order correlation function.

Calculating the first-order correlation function for a weakly interacting Bose gas re-

quires some serious mathematics. However, at low temperature T ¿ TBKT , the calculation

can be simplified by a series of approximations. The approach I adopted here is a 2D version

of the 1D derivation in [25]. A similar 2D derivation can be also found in [28]. First, in the



11

framework of the second quantization, the Hamiltonian of the system can be written as

Ĥ =

∫
dr Ψ̂†−~2

2m
∇2Ψ̂ +

U0

2

∫
dr Ψ̂†Ψ̂†Ψ̂Ψ̂, (2.17)

where U0 is the interaction strength. Here, a contact interaction is adopted. If the fluctuation

of the field is small, one can write the field operator as

Ψ̂(~r) =
√

n + δn(~r) eiθ(~r), (2.18)

where n is the the mean density, δn is the density fluctuation operator, and θ is the local

phase operator. The density and the phase operator obey the commutation relation

[δn(~r), θ(~r ′)] = −iδ(~r − ~r ′). (2.19)

Plugging Eq. (2.18) into Eq. (2.17), one can find a new quadratic Hamiltonian Ĥ ′ in terms

of the operator θ and δn,

Ĥ ′ =
~2n

2m

∫
(∇θ(~r))2 d2r +

∫ [
~2n

2m
(
∇δn(~r)

2
)2 + 2U0n

2(
δn(~r)

2
)2

]
d2r. (2.20)

Next, by expanding the two operators in sinusoidal modes, one gets

θ =
∑

~k>0

√
2
(
θc,k cos(~k · ~r) + θs,k sin(~k · ~r)

)
, (2.21)

δn =
∑

~k>0

√
2
(
δnc,k cos(~k · ~r) + δns,k sin(~k · ~r)

)
, (2.22)

where ~k = 2π
L2 (nxx̂ + nyŷ), which are the eigenmodes of a 2D box with a size of L2. Plugging

Eqs.(2.21) and (2.22) into Eq. (2.20), one can find for each wave vector k the corresponding

Hamiltonian is given by

Ĥk = L2

(
U0

2

(
δn2

c,k + δn2
s,k

)
+

n~2k2

2m

(
θ2

c,k + θ2
s,k

))
. (2.23)

At a sufficiently low temperature, the contribution to Ĥk from the density fluctuation δn/n is

much smaller than the contribution from the phase modulation θ. In this case, one can, to a
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good approximation, keep only the phase modulation term in Eq. (2.23). If the temperature

is still much larger than U0n, only the excitation and a smaller wave vector k are relevant,

and classical statistics apply. Thus, for every quadratic degree of freedom the energy is

kbT/2, and one finds that

〈θ2
c,k〉 = 〈θ2

c,k〉 =
1

nλ2
db

π

k2L2
. (2.24)

Since the density fluctuation is neglected, the first-order correlation Eq.(2.3) can be

written as

G(1)(r) = n〈e−i(θ(~r)−θ(0))〉

= e−〈(θ(~r)−θ(0))2〉/2.

(2.25)

The second equality holds because of the assumption of a Gaussian fluctuation in the phase

fluctuation. The phase fluctuation is given by

〈(θ(~r)− θ(0))2〉 =
∑

k>0

2〈θ2
c,k〉

(
cos(~k · ~r)− 1

)2

+
∑

k>0

2〈θ2
c,k〉 sin(~k · ~r)2. (2.26)

Using Eq. (2.24), one obtains

〈(θ(~r)− θ(0))2〉 = 4(
1

nλ2
db

π

k2L2
)
∑

k>0

1− cos(~k · ~r)
k2

. (2.27)

Taking L →∞, one can replace
∑

with ( L
2π

)2
∫

d2k. Then, one finds

G(1)(r) = ne
−1

2πnλ2
db

R 1/ξ
0

1−cos(~k·~r)

k2 dk

= n

(
ξ

r

)1/nλ2
db

,

(2.28)

where 1/ξ is the cutoff wave vector. Therefore, at a temperature of T ¿ TBKT , one expects

an algebraic decay in the first-order correlation function. At infinity, the spatial extent of

coherence will eventually go to zero. However, for a finite system, the phase fluctuation

can still be very small. This algebraic decay of the coherence is the definition of a quasi-

condensate. This power-law decay of the first-order correlation function at large r is first
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obtained by Kane and Kadanoff [29]. Although there are other different definitions for a

quasicondensate in recent literatures, I use the original definition throughout my thesis to

avoid confusion. Regarding the regime that is beyond mean-field behavior and lacks a long

spatial extent of coherence, we call it “a very interesting regime.”

2.3 Berezinskii-Kosterlitz-Thouless (BKT) transition

In a 2D system, the long-wavelength excitations from phonons are strong enough to

destroy the condensate or LRO, but not strong enough to completely suppress the superfluid.

As was first pointed out by Kane and Kadanoff [29] and then proved by Berezinskii [6],

there exists a normal-to-superfluid phase transition at the critical temperature TBKT . Later,

Kosterlitz and Thouless [7] found that this phase transition is related to the unbinding of

the vortex-antivortex pairs that exist in a 2D system at a finite temperature, as shown in

Fig. 2.2. At a temperature lower than TBKT , the 2D system is a superfluid, but it doesn’t

possess a long-range order. This noncondensate superfluid is called a quasicondensate.

The critical temperature of the BKT transition can be estimated as follows. Consider

the energy of a free vortex Ev that appears in an infinite homogeneous 2D system. The

vortex considered here is a quantum object that appears in a superfluid. The atomic density

at the center of the vortex is zero, and the phase winding around the vortex is 2π. The

antivortex has the same properties, but has a phase winding of −2π. The velocity of the

superfluid is

~vs =
~
m

~∇f(~r), (2.29)

where f(~r) is the function representing the phase variation in a super system. Therefore,

the superfluid velocity around a vortex can be found to be

~vs =
~

mr
θ̂, (2.30)

where r is the distance from the center of the vortex. The energy of the vortex can be written
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Figure 2.2: A 2D system cannot have a long-range order or condensate, but it can still
undergo a BKT transition that is a normal-to-superfluid transition. At T > TBKT , the
thermal fluctuation can proliferate free vortices or free antivortices in the atomic cloud.
Those vortices destroy the phase coherence of the system. However, at T < TBKT , vortex
and antivortex are bound. In this regime, the coherence of the system decays according to
a power law. The phase is often referred to as quasicondensate.
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as

Ev =

∫ R

ξ

1

2
ns

(
~

mr

)2

d2r, (2.31)

where R is the size of the system, and ξ is the healing length of the vortex. Creating a free

vortex increases the entropy of the system as

Sv = ln
R2

ξ2
. (2.32)

Consider the free energy F = Ev − TSv, i.e.,

F = kbT (nsλ
2
db − 4) ln

R2

ξ2
. (2.33)

One can see that the proliferation of free vortices would become energetically favorable

if the phase-space density was smaller than 4. One can also convert this critical phase-space

density to the critical temperature TBKT . Then, one gets

TBKT =
π~2ns

2mkbT
. (2.34)

When the temperature of the 2D system is lower than TBKT , the system is in a superfluid

phase, and the vortex-antivortex pairs are bound. However, when the temperature of the

system is warmed up to TBKT , the vortex-antivortex pairs become unbound, and free vortices

proliferate. Then, the phase of the system becomes normal.

2.4 Experiments on 2D ultracold bosonic atoms

The first effort to create a 2D ultracold atom system was that of Ref. [30]. Next, a

series of papers from the Paris group [8, 9, 13, 31, 32] focused on the fluctuating regime in

a 2D ultracold atom system. The Paris group observed the phase fluctuations of a 2D Bose

gas. First, the group loaded a 3D cloud into a 1D optical lattice. The lattice sliced the 3D

cloud into many 2D layers. Second, the researchers used microwave pumping to get rid of

all but two central layers for interfering. From the interference pattern they obtained, they
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extracted information about correlations in the 2D layers according to the method proposed

in [33]. The exponent that described the coherence changed from 0.5 to 0.25, which was

expected as the system passed the BKT transition. The researchers saw dislocations (or

defects) show up in the interference pattern. They also found that the probability of seeing

dislocations had a temperature dependence. Both experimental results encouraged them to

relate their observations to the BKT physics. Their observations also successfully generated

much interest in theoretical studying the fluctuating regime in a 2D ultracold atom system.

In a later paper [13], the same group identified the BKT transition with an observation

of bimodality (a Gaussian + an inverse parabola) in a time-of-flight (TOF) image. Right

before the observation of the bimodal distribution, the researchers measured the critical

number by integrating the measured optical depth over the whole TOF image. Comparing

their measurements to the predictions of the ideal gas model, they saw a substantial deviation

that was, however, very different from what was expected in a 3D system.

In this paper [13], the researchers identified the BKT transition with the observation

of a bimodal distribution. However, the appearance of bimodality strongly depended on the

two models chosen for fittings. It is not clear to me that the two models, a Gaussian and

a inverse parabola, are accurate enough to describe a 2D cloud at BKT temperature. Also,

since the ideal and mean-field models lack of the magic of phonons and vortices, using either

one to describe a system close to the BKT transition is, in principle, wrong. However, in

a trapped system, the area of the fluctuating regime is small compared to the size of the

system. Therefore, a global parameter like the critical number is not very different for a

mean-field model or for a beyond mean-field model.

In another experiment [14], the Gaithersburg group loaded sodium atoms into a light

sheet that created a single-layer 2D system. After releasing the atoms from the trap, a

three-component (superfluid quasicondensate, non-superfluid quasicondensate, and normal

phase) density distribution was observed. The “non-superfluid quasicondensate” used in
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the Gaithersburg group’s paper represented the regime where the density fluctuation of the

system was suppressed, but without a long coherence length. Considering that an ideal

Bose-gas model would also predict a three-component like distribution, a description of a

three-component distribution was just not very accurate for describing the lower-dimension

gas.



Chapter 3

Experimental details

3.1 Optical lattice

Optical potentials provide a variety of opportunities for studying ultracold atoms.

Laser beams can interfere with each other and create a rich variety of interference patterns.

Even before the creation of the Bose-Einstein condensate (BEC), scientists used this amazing

tool to study cold atoms in optical lattices. In the post-BEC era, superfluids in periodical

potentials have been the focus of studies involving ultracold atoms. Greiner et. al. [34]

loaded a condensate into a 3D optical lattice and transferred the system from a superfluid

state into a Mott state. This work has triggered a new generation of experiments with

the possibility of realizing a quantum computer in an ultracold atom system. Also, the

ease of creating a high spatial frequency in an optical potential is conducive to creating

lower-dimensional systems.

An atom interacts with a light field via an induced-dipole moment. Considering the

atom and light as a classical driven, damped oscillator, one can derive the interaction energy

and the scattering rate, respectively, as [35]

Uint =
3πc2

2ω3
0

Γ

∆
I, (3.1)

Γsc =
3πc2

2~ω3
0

(
Γ

∆

)2

I, (3.2)

where c is the speed of light, ω0 is the natural frequency of the classical atomic oscillator,
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∆ is the detuning of the driven frequency to the natural frequency ω0, Γ is the on-resonant

damping rate, and I is the field intensity. Equation (3.1) and (3.2) give a good approximation

to a real atom if Γ ¿ ∆, and there is no saturation effect.

A couple things can be easily seen from Eqs. (3.1) and .(3.2). First, if the light is red

detuned (∆ < 0), the shift of the interaction energy is negative. If there exists a spatial

dependence in the field, atoms would be pushed towards the field maximum (the nodes of

the optical lattice). If the light is blue detuned (∆ > 0), atoms would be pushed towards the

field minimum (the antinodes of the optical lattice). Second, the interaction energy scales as

(I/∆), whereas the photon scattering rate scales as I/∆2. Therefore, using a large detuning

and a large intensity can keep the photon-scattering rate low while providing a large enough

potential depth for trapping.

For a two-beam interference pattern, the field intensity can be written as

I(z) = I0cos2
(π

d
z
)

, (3.3)

where I0 is the maximum intensity, and d is the period of spatial modulation determined by

d =
λ

2sin
(

θ
2

) , (3.4)

where θ is the angle between the two interfering beams, and λ is the wavelength of the

laser. If the interfering beams are elliptical Gaussian beams with waists of σx and σz and a

power P , the maximum intensity I0 is given by 2P/πσxσz. When an atom placed in such a

field, the interference pattern will create an array of trapping sites. This array of trapping

sites is called a 1D optical lattice. For a single trapping site, the trapping frequency can be

approximated as

ωz =

√
α

∆

(
2P

πσxσz

)
π

d
, (3.5)

where α = 3πc2Γ/mRbω
3
0.

In our experiments, the wavelength for the interfering laser is 532 nm. The angle

between the two interfering beams is 8◦, which gives a lattice constant of 3.8 µm. The
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Figure 3.1: (a) Trapping frequency for a 87Rb atom at the bottom of a single trapping site in
the 1D optical lattice as a function of the optical power per interfering beam. (b) size of the
2D Bose gas in the lattice direction as a function of trapping frequency (c) The dimensionless
2D interaction strength g̃ as a function of trapping frequency.
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waist of the interfering beams, σx and σz, is 225 µm and 84 µm, respectively. Figure 3.1(a)

shows the relation between the input power and the trapping frequency at the bottom of

a single trapping site. We measure the power of a single beam to be 300 mW. Using the

model above, one gets a trapping frequency of 1.55 kHz, which is in fine agreement with the

measured-trapping frequency of 1.4 kHz. Figure 3.1(b) gives the size, lz, of the 2D Bose gas

in the tight confinement (ẑ) direction. Figure 3.1(c) gives the dimensionless 2D interaction

strength, g̃ ≡ √
8π(as/lz), where as is the 3D scattering length of the atom, and g̃ = 0.09

in our experiments, which compares to g̃ = 0.13 [9, 13] and 0.146 [32] in the Paris group

and g̃ = 0.02 in the Gaithersburg group [14]. As one can see from Fig. 3.1(c), g̃ has a

very weak dependence on the power of the interfering beams. To reach g̃ = 1, which is the

value for a strongly interacting system like a 4He film, one has to increase the power by a

hundredfold. Another way to increase g̃ is to reduce the lattice constant, d. As the lattice

constant becomes smaller and smaller, one has to worry about atoms tunneling between

different layers, however.

The experimental setup is shown in Fig. 3.2. The laser light is provided by a Verdi V10,

which has a wavelength of 532 nm. The light passes through an acousto-optic modulator

(AOM), which is used to control and stabilize the intensity of the beam. The intensity-

stabilizing module is made of a microwave source, a microwave amplifier, a mixer, and a

feedback circuit that was designed by the JILA shop. After the AOM, the light is guided

through a single-mode polarization-maintaining (PM) fiber. When the lattice is not in use,

we keep the lattice continuously on at its close-to-maximum value such that the fiber and

the AOM can thermally equilibrate at their operating temperature. The light is blocked

by a mechanical shutter after the fiber. Before the shutter is open, the intensity of the

optical lattice is abruptly turned off by the intensity-stabilizing module. After the shutter

is opened, the optical lattice is gradually ramped up to the desired value in one second.

The two interfering beams are focused onto the atomic cloud by a cylindrical lens. The
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resulting waists of the beams are 225 µm (long axis) and 84 µm (short axis). The laser light

is separated into two beams by a polarizing beam-splitting (PBS) cube. The power of the

two beams is carefully balanced by rotating the λ/2 plate in front of the PBS. The λ/2 plate

after the PBS cube rotates the polarization back for maximal interference. The two mirrors

on the two arms of the interferometer are mounted to the same post to increase the rejection

off common vibration modes.

3.2 Time-averaged orbiting magnetic trap

In our experiments, the optical lattice is blue-detuned. Atoms are trapped in the nodes

of the lattice, which are intensity minima. The optical lattice only provides confinement in

the z (or gravity) direction. The radial confinement comes from a time-averaged orbiting

magnetic trap, a so-called TOP trap [36]. The TOP trap was used for the creation of the

first BEC in 1995 [37]. It is made of an anti-Helmholtz coil (quadrupole field) along the

z-axis and a pair of Helmholtz coils (bias field) along the x- and y- axes. The bias field

generated by the Helmholtz coils can be made to rotate according to

Bb = B0xcos(ωT t)x̂ + B0ysin(ωT t + φ)ŷ. (3.6)

The rotating bias field shifts the center of the quadrupole trap generated by the anti-

Helmholtz coil in a circular trajectory. To be able to confine atoms in the trap, the condition

ω ¿ ωT ¿ ωL (3.7)

must be met [38]. Here ω is the trap frequency, and ωL is the Larmor frequency splitting

between the spin states of an atom in a magnetic field. One of the advantages of the TOP

trap is its ability to become very round. By changing the value of B0x/B0y and φ separately,

we are able to minimize the difference of the trapping frequencies in two independent axes

in the horizontal plane to within 3%. A 3% is far from the record roundness achieved in this
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lab [39]. However, it is good enough for the current experiment. Using a transverse round

trap allows us to easily take an azimuthal average of our data to minimize statistical noise.

Because of gravity, the position of the cloud often sags from the trap center. The

trapping potential under the influence of gravity can be written as

U(x, y, z) =
1

T

∫ T

0

µ
∣∣∣ ~BTOP (x, y, z, t)

∣∣∣ dt + mgz, (3.8)

where µ is the Zeeman-dependent magnetic moment of an atom, m is the mass of an atom,

g is the gravitational acceleration, T is the oscillating period of the bias field ~Bb, and

~BTOP =

√
(
B′

z

2
x + B0cos(ωT t))2 + (

B′
z

2
x + B0sin(ωT t))2 + (B′

zz)2. (3.9)

The equilibrium position can be found by solving

∂U(0, 0, z)

∂z
= 0, (3.10)

which gives

zmin =
−(B0/B

′
z)√

(µB′z
mg

)2 − 1
. (3.11)

If the bias field is suddenly (1/ω À t À 1/ωL) turned off, the magnetic field around

the equilibrium position, (0, 0, zmin), can be expressed as

|B(x, y, z)| =
√

(B′
zzmin + B′

z(z − zmin))2 + (
B′

z

2
x)2 + (

B′
z

2
y)2. (3.12)

If zmin is large enough such that B′
zzmin À (B′

z/2)δR, where δR is the extent of the atomic

sample, the field can be approximated as

~B(x, y, z) ≈ (B′
zzmin + B′

z(z − zmin))ẑ. (3.13)

In the experiment, an extra bias field of 24 G is added along the the z direction to further

reduce the magnetic-field curvature in the x and y directions. This magnetic gradient is

used, in conjunction with a microwave pumping pulse, for selecting a single atomic layer for

imaging.
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Figure 3.3: Instantaneous X-Z cross-section of the TOP trap. The contours represent the
same magnitude of the magnetic field at a particular time. The blue cross indicates the
center of the quadrupole trap, and the red blobs indicate atoms loaded into a 1D optical
lattice. The circle in the x-y plane with radius R is called the “circle of death.” Atoms can
escape from here after a Majorana spin flip. Because of the gravity sag, the equilibrium
position is offset by zmin from the center of the TOP trap. With the current experimental
setup, zmin is larger than the size of the cloud. Therefore, the only atom-ejection mechanism
comes from the RF knife.



26

Since the radial confinement only comes from the TOP fields, it is possible to implement

rf evaporative cooling in the system. Evaporative cooling provides an easy and accurate

handle for manipulating the temperature of the system. The working principle of evaporative

cooling is selectively forcing hotter atoms in the atomic distribution away from the trap,

which lower the temperature of the system after thermal equilibration. This selective removal

comes from two mechanisms in a TOP trap. First, the applied radio-frequency field (RF

knife) pumps atoms with higher energy from a trappable state to an untrappable state at the

edge of the cloud. Second, atoms with higher energy can move to the center of the rotating

magnetic-quadrupole field where atoms can undergo a Majorana spin flip and escape from

the trap. Both mechanisms help in the early stage of the evaporative process. In the final

stage of evaporation, only the selective removal from the RF knife is relevant, as shown in

Fig.3.3. The temperature of the central layer vs frequency of the RF knife is plotted in Fig.

3.4.

3.3 Imaging

Our detection of atoms is the absorption-imaging method. The advantage of absorption

imaging is that it is easy to set up compared to other imaging methods. One locks the probing

light to one of the atomic transitions and shines the light onto the atoms. The photons in the

probing beam will be scattered by the atoms and cast a shadow on the probing beam. This

shadow is then imaged onto a CCD camera. Two separate images are often taken during

the imaging process, one with atoms and the other without atoms. A quantity called optical

depth (OD) is often extracted after an imaging sequence. If the atomic transition is a cycling

transition, a single atom can scatter many photons, which helps increase the signal-to-noise

ratio (SNR) of the images. Assume that the probing beam is fired for a long enough time,

such that the photon scattering process reaches a steady state and can be faithfully described
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Figure 3.4: Temperature vs frequency of the RF knife. The temperature is obtained from
the fit of the in-situ images of the atoms in the central layer of the 1D optical lattice. The
red line is the linear fit to the data.
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as

Is(x, y) = (1− α)I0e
−OD(x,y) + αI0, (3.14)

where α represents the small fraction of the light in I0 that cannot interact with the atomic

sample because of polarization imperfection and tails in the laser-frequency distribution.

Here OD(x, y) is defined as

OD(x, y) =

∫
n(x, y, z)σ0dz, (3.15)

where n(x, y, z) is the density of the atomic sample, and σ0 is the scattering cross-section.

As one can see, OD(x, y) can be found by taking

OD(x, y) = ln
(1− α)I0

Is(x, y)− αI0

. (3.16)

However, the CCD camera does not distinguish the light that can interact with the atom

from light that cannot. The quantity we actually measure from the camera is ODmeas which

is defined as

ODmeas = ln
I0

Is(x, y)
. (3.17)

Equation (3.16) can be rewrittten using ODmeas. One can show that

OD(x, y) = ODmeas(x, y) + ln (1− α)− ln (1− αe−ODmeas(x,y)). (3.18)

If α and αeODmeas are both small numbers (¿ 1), the difference between OD(x, y) and

ODmeas(x, y) can be approximated as

OD −ODmeas = α(eODsat − 1). (3.19)

In our experiment, α ≈ 3%, which gives about a 10% correction if the maximum OD reaches

2. ODmeas reaches its saturation value ODsat, when (1 − αeODsat) = 0. Thus, α can be

determined by saturating ODmeas according to

α = e−ODsat . (3.20)
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Although one can correct this saturation effect, it is not recommended because the ODmeas

is particularly sensitive near ODsat. Any imaging imperfection can cause large fluctuations

in the OD correction. Often times, α is also position dependent. If one can stay away

from the saturation value of ODmeas, one can still have a relatively linear mapping from

ODmeas to OD. However, a 3% non-interacting light gives a saturation value of 3.5. The

linear range (< 10% correction) for the ODmeas would just be 0 < ODmeas < 2. This lack of

a linear dynamic range is one of the drawbacks of the absorption-imaging method. In our

experiments, we limited ODmeas to a value smaller than 2 by putting only a small number

of atoms into the imaging state. We also allowed the atomic cloud to expand axially for 1

ms, which helps reduce the atomic density by a factor of 8, before the probing beam was

fired. This trick does not change the optical depth of atoms, but does help reduce imaging

artifacts. To convert the optical depth to a real atomic density, one has to know σ0, which

is the scattering cross-section. However, the scattering cross-section depends strongly on

the polarization, the detuning of the probing beam, and the population of the atoms. This

makes accurate determination of the value of σ0 difficult. In our experiments, the scattering

cross-section, together with the transfer percentage, is the fitting parameter η. For a two-

level atom interacting with resonant light, the on-resonant scattering cross-section σ0 can be

easily calculated [40]; σ0 = 3λ2/2π.

Our line-of-sight is along the axis of tight confinement, which means we do not need

to do a deconvolution of our images to get the 2D density distribution. After the probing

sequence, we extract the OD image according to Eq. (3.17). As mentioned earlier, our

trap is axially symmetric. Thus, the OD images also share the same symmetry. The axial

symmetry in the image of the atomic sample allows us to take azimuthal averages to minimize

the statistical noise in the absorption images, as shown in Fig. 4.3.

In our experiment, the intensity of the probing beam I is approximately 0.1 Is, where

Is is the saturation intensity for the atomic transition. The photon-scattering rate of the
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atoms, Y , is given by

Y = Γρee, (3.21)

where Γ is the decay rate of the excited state, which is (26 ns)−1 for the transition of |F =

2〉 → |F ′ = 3〉, and ρee is the population in the excited state, which is obtained by solving

the optical Bloch equation [40]. ρee is given by

ρee =
S0/2

1 + S0 + (2∆
Γ

)2
, (3.22)

where S0 ≡ (probing beam intensity I / saturation intensity Is), ∆ is the probing detuning,

and Γ is the natural linewidth of the excited state. In the low-intensity regime, the scattering

rate is proportional to the intensity, i.e., Y ' Γ(S0/2). In this case, the attenuation of the

light passing the atomic sample is well described by the Beer’s law, which leads to Eq. (3.14).

The intensity of the probe beam is 0.1 Is with a resonant frequency. The duration of

the probing time is set to 50 µs. During this time duration, an atom can scatter on average

100 photons. This scattering gives a 0.75 MHz Doppler shift and moves the atom 1.4 µm

away from its original position (the imaging plane). These are both negligible effects.

3.3.1 In-situ imaging method

In this method, the atoms are first prepared in the |F, mf〉 = |1,−1〉 state in the TOP

trap. Then, the 1D optical lattice is turned on. The 1D optical lattice slices the atomic

cloud into many layers. Tunneling between layers is negligible. Therefore, every single layer

can be viewed as an isolated 2D system. Atoms in individual layers are allowed to thermally

equilibrate before probing occurs.

We implement the in-situ imaging method as follows: First, we turn off the rotating

bias field such that the atomic cloud sees a transient magnetic-field gradient B′
z . Second,

we turn on an extra bias field along the ẑ direction to reduce the magnetic-field curvature

across the 2D cloud. Third, we apply a weak microwave pulse to pump a small fraction of
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the atoms in one layer from |1,−1〉 to |2,−1〉, as shown in Fig. 3.5(a). Fourth, we turn off

the the optical lattice to reduce the stray light on the camera. We also turn off most of the

magnetic fields to increase the pumping efficiency for the probe light. Finally, we fire the

probing beam, which is resonant at the |F = 2〉 → |F ′ = 3〉 transition with σ+ polarization.

Details of the experimental sequence are shown in Fig. 3.6.

By sweeping the frequency of the microwave pulse, we can see a layer structure on the

number of atoms we transfer into the imaging state, as shown in Fig. 3.7. Given that the

magnitude of B′
z is 7.8 G/mm, a measured energy splitting of h ∗ 40 kHz between adjacent

layers gives a lattice constant of 3.8 µm. This measured lattice constant is in good agreement

with the one calculated from Eq. (3.4), which using the measured angle, θ = 8◦, between

the two interfering beams.

3.3.2 Focusing-imaging method

Measuring momentum-space distribution is more difficult than it first sounds. Con-

ceptually, it can be done by turning off atom-atom interactions, turning off the confinement,

allowing the cloud to expand ballistically for a very long time, and delaying the absorp-

tion image until the position of each atom is determined by its initial momentum (not by

its initial position in the cloud). Comparing this process to the well-known time-of-flight

method, we anticipate two difficulties: turning off interactions and obtaining a sufficiently

long expansion time.

To remedy these problems, one needs to find a way to turn off the interactions and make

the required expansion time shorter. The method we use is a temporal-focusing technique

that we refer to as the“focusing” imaging method. We first select a single layer via microwave

pulses. Then, we turn off the optical lattice and let the layer expand into a purely magnetic

trap (TOP). Because of the 140:1 aspect ratio of the cloud, the resulting expansion is initially

purely axial, which very rapidly reduces the 3D density (and thus the strength of the atom-
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Figure 3.6: Qualitative schematic (not to scale) of the experimental timing of the in-situ
imaging method. (a) The magnitude of the rotating bias field B0 is 7.3 G. The rotating bias
field is turned off 1 ms before the microwave pulse fires. (b) The duration of the microwave
pulse is 50 µs. (c) The 1D optical lattice is turned off 1 ms before the probing occurs. (d)
The magnitude of the extra bias field Bex is 24 G. This extra bias field is turned on at the
same time as the rotating bias field is turned off. (e) The magnitude of the magnetic-field
gradient is 7.8 G/mm. (f) The duration of the probing beam is 50 µs.
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Figure 3.7: Atom number N vs microwave frequency f of the short pumping microwave pulse.
This plot shows a layer structure of the atomic sample. The data is taken continuously over
one hour. The lattice constant derived from the data is 3.8 µm.
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atom interactions). This expansion does not affect the in-plane coordinate- or momentum-

space distributions. After the near-instantaneous suppression of the (repulsive) atom-atom

interactions, each atom undergoes essentially free motion in the radially symmetric harmonic

confinement in the x-y plane. At the focused time, tf = 1
4

2π
ωr

, the initial radial-momentum

distribution is mapped onto the final-coordinate space distribution, and vice versa. At

the point, we take an absorption image and scale the spatial coordinate by mωr to get

the momentum-space distribution that existed just as the focusing sequence began. This

focusing technique is an extension to 2D of a procedure originally developed for imagining

1D momentum distributions [11, 12].

The focusing-imaging method proceeds as follows: First, we turn off the rotating bias

field in the TOP trap. Then we use a short microwave pulse to pump a small fraction (5%)

of the atoms that are in one single layer from |1,−1〉 to |2,−1〉. An extra bias field is added

to reduce the magnetic curvature across the 2D cloud. This step is identical to step 1 of

the in-situ imaging method. Second, we turn off the optical lattice, and fire the second

microwave pulse and ramp down the extra bias field. This step exchanges the population

in |1,−1〉 and |2,−1〉 through an adiabatic rapid passage (ARP), as shown in Fig. 3.5(b).

Third, we turn the rotating bias field back on and shift the extra bias field to a new value.

Fourth, we wait until the momentum-space distribution is mapped onto the coordinate space.

Finally, we turn off most of the magnetic fields before firing the probing beam. The details

of the experimental sequence are shown in Fig. 3.8.

The mapping of the in-plane momentum-space distribution and the in-plane coordinate-

space distribution at the focused time tf can be understood using a classical harmonic oscil-

lator model. This model works well for describing the in-plane motion of a 2D Bose gas since

the interaction between atoms is greatly suppressed soon after the optical lattice is turned

off. The equations of motion of an atom with a initial velocity ṙ(0) at the initial position
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Figure 3.8: Qualitative schematic (not to scale) of the experimental timing of the focusing-
imaging method. (a) The rotating bias field is switched back after the second microwave
(ARP) pulse. The magnitude of the bias field is changed from its original value of 7.3
G to 35 G. Therefore, the trapping frequencies of the TOP trap change from (ωr, ωz) =
2π(10.2, 22.4)Hz to 2π(4.5, 10.8)Hz. We switch to a weaker trap to increase the focused time
tf , and thus, increase the sensitivity of the imaging method. (b) The second microwave
(ARP) pulse is on for 400 µs. (c) The optical lattice is turned off after the first microwave
pulse. (d) The extra bias field is ramped down during the ARP pulse, then switched to 13 G
to bring the center of new TOP trap back to the imaging plane (its original position). The
magnetic fields (a), (d), and (e) are turned off before the probing occurs to avoid off-resonant
pumping. During the probing process, a pumping beam is added to pump atoms from the
|1,−1〉 state to the |2,−1〉 state to interact with the probing beam. (f) Within 1 ms, after
most of the magnetic fields are turned off, the probing beam fires.
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r(0) in a harmonic potential are

r(t) = r(0)cos(ωrt) +
ṙ(0)

ωr

sin(ωrt), (3.23)

ṙ(t) = −r(0)ωrsin(ωrt) + ṙ(0)cos(ωrt), (3.24)

where ωr is the trapping frequency of the confining harmonic potential. At the focused time,

tf = π/2ωr, one gets

mṙ(0) = mωrr(tf ), (3.25)

ωrr(0) = −ṙ(tf ). (3.26)

From Eqs. (3.25) and (3.26), one can see the initial radial momentum-space distribution is

mapped onto the final coordinate-space distribution at the focused time tf , and vice versa,

to within a scaling factor of mωr. At this point we can probe the cloud and reconstruct the

momentum distribution more accurately as compared to previous experiments [13, 14].

If the ratio of the trapping frequencies, ωz/ωr, is set to 2, at the focused time, the

axial motion of atoms makes a half oscillation and returns to its original size, while the

radial motion of atoms bring them to the center of the trap. At the focused time, the

density of the focused cloud might have an even higher density than it had before focusing.

The trapping frequency ratio in our experiment is set to a value slightly below 2. In this

case, when the in-plane momentum-space distribution is mapped to coordinate space, the

size of the cloud in the axial direction is not yet at its minimum. Therefore, it lowers the

density of the cloud at focused time such that the interactions do not influence the focussing

dynamics.



Chapter 4

Analysis of in-situ images

In our experiment, the thermal energy of the system, kbT , is on the same order with

~ωz. Therefore, there will be populations on the axial excited state. The line of sight of our

imaging system aligns along the ẑ axis. Therefore, in the images we cannot distinguish those

populations from a ground-state population, which is the one that we are really interested

in. To extract a ground-state signal for BEC physics from our data, we calculate the axial

excited-state populations via a model, which is, in essence, the same model that the Paris

group calls the Hartree-Fock, mean-field, local-density approximation [10].

4.1 The semiclassical mean-field model

For bosons, the mean occupation of a single-particle state with wavevector k is given

by the the Bose-Einstein distribution, Nk = 1
e(Ek−µ)/kbT−1

, where Ek is the energy of the state.

For our system, the thermal energy kBT À ~ωr, but kBT ∼ ~ωz. We treat the atomic mo-

tion semiclassically in the horizontal direction, while preserving discrete harmonic-oscillator

quantum levels in the z-direction. Thus, we get the two dimensional (2D) coordinate-space

density in the jth axial level

nj(~r) =
1

h2

∫∫
d2~p

1

e(ε(~p)+θj(~r)−µj)/kbT − 1
, (4.1)
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where h is Planck’s constant, ε(~p) = p2

2m
is the free particle dispersion, and the local chemical

potential for the jth level is given by

µj = µglobal − 1

2
mω2

rr
2 − j~ωz −

∑

l 6=j

2(
4π~2

m
asfljnl(~r)). (4.2)

The intralevel interaction energy is given by

θj(~r) = 2(
4π~2as

m
)fjjnj, (4.3)

and the relevant mean-field interaction energies depend on fjl, which are the appropriately

normalized overlap integrals over the axial dimension between densities associated with the

axial quantum states j and l. With per-particle interaction energies comfortably less than

the axial energy spacing ~ωz, it is safe to treat interlevel axial interactions with what is, in

essence, first-order perturbation theory. Evaluating the integral in Eq.(4.1), one gets

nj(~r) = − ln(1− e(−(θj(~r)−µj(~r))/kbT ))/λ2
db, (4.4)

where the deBroglie wavelength λdb =
√

2π~2
mkbT

. For any given value of µ and T , nj are

determined self-consistently. For kbT . ~ωz, the model converges in just a few iterations.

To get a better understanding of Eq. (4.4), one can break down the model into three

approximations: (1) the local-density approximation (2) the semiclassical approximation,

and (3) the mean-field approximation. These approximations are discussed below:

4.1.1 Local-density approximation

The local-density approximation can be applied to a system where the density of the

atomic cloud does not change significantly over the distance of the de Broglie wavelength of

an atom. This approximation works surprisingly well with magnetic traps, especially a weak

trap, like the one with ωr = 2π ∗ 10 Hz in our experiment . The local-density approximation

divides the system into many small boxes. Atoms inside each box are treated as if they were

in a homogeneous potential with a potential offset determined by the external potential.
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In this way, we can define a “local” chemical potential, a “local” density, and a “local”

phase-space density in each box.

4.1.2 Semiclassical approximation

The benefit of using the local density approximation is that it is very easy to find the

energy excitations for a free particle inside a box. For an ideal Bose gas confined in a box

potential, the total number of atoms in excited states as a function of the chemical potential

is given by

Nex =
∑
i>0

1

e(Ei−µ)/kbT − 1
, (4.5)

where Ei = ~2
2m

(2π
L

~ni)
2, and µ is the chemical potential. Replacing the summation in Eq. (4.5)

with the integral, one gets

Nex =
Lq

(2π~)q

∫
dq~p

1

e(ε(p)−µ)/kbT − 1
, (4.6)

where ε(p) = p2/2m, and q is the dimensionality of the system. As one can see, the dispersion

relation is a classical single-particle dispersion. This is the “classical” part of the model. For

two dimensions, q = 2, and the integral in Eq. (4.6) can be carried out, leading to Eq. (??).

In a 2D harmonic trap, as a result of the local-density approximation, the chemical

potential in Eq. (??) is offset by the external potential; it should be replaced by the “local”

chemical potential, i.e.,

µ′ = µ− 1

2
mω2

rr
2. (4.7)

This substitution leads to the semiclassical model for an ideal Bose gas in a 2D harmonic

trap without mean fields, i.e.,

nex =
1

λ2
db

ln(1− e( 1
2
mω2

rr2−µ)/kbT ). (4.8)
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4.1.3 Mean-field approximation

Considering an interacting Bose gas, the easiest way to take into account the interac-

tions might be via the introduction of mean fields. In the framework of mean-field theory,

a many-body system with interactions is replaced with a free particle moving in an effective

potential. The mean field in our system consists of two parts: Intralevel and interlevel in-

teractions. The “level” here means the energy levels of the axial-confining potential, which

we assume is quadratic.

Consider a quasi-2D system where the horizontal-confining potential is homogeneous

and the axial-confining potential is quadratic. If Nj is the number of atoms in the jth axial

excited state, the density in the jth level is

Nj

L2
|ψj(z)|2 , (4.9)

where L2 is the area of the quasi-2D system. An atom in the jth axial level feels a mean field

created by the other atoms in the same level:

θj =2
U0Nj

L2

∫
dz |ψj(z)|4

=2(U0fjj)nj

=2ujjnj,

(4.10)

where nj is the 2D density and U0 = 4π~2as/m. The factor of two arises from an implicit

assumption that the second-order correlation function at zero distance is two, as it would be

for fully fluctuating nondegenerate ideal bosons. The overlap integral represents the joint

probability of finding two atoms in the same level at the same position, z. As one can see

from Eq. (4.10), the 3D interaction strength U0 is renormalized by the overlap integral, fjj,

to get the effective 2D interaction strength ujj. The assumption that the scattering process

is still 3D is verified by the fact that the axial length of the quasi-2D system is still much

greater than the 3D-scattering length, i.e., lz À as [41].
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Similarly, for an atom in the jth level, the mean field created by all the atoms in the

ith level is 2uijni. uij is defined as

uij =U0fij

=U0

∫
dz |ψi(z)|2 |ψj(z)|2 .

(4.11)

Thus, the total interlevel mean field is

∑
i>j

2uijni. (4.12)

For convenience, the interlevel mean-field energies are bundled with the chemical potential µ,

radial-confining potential 1
2
mω2

rr
2, and the axial-excitation energy j~ωz such that the local

chemical potential is

µj = µ− 1

2
mω2

rr
2 − j~ωz −

∑
i>j

2uijni(~r), (4.13)

which is is identical to Eq. (4.2). With Eqs. (4.8), (4.10), and (4.13), one recovers Eq. (4.4).

4.1.4 The “no-condensate” model

Looking at Eq. (4.4), it’s clear why we call this the no-condensate model. For a given

value of T, we can choose a value of µ0 such that the model predicts an arbitrarily large n0,

even one for which n0λ
2
db À 1, without requiring a singularity at p = 0. More importantly,

however, this is a model from which all the many-body “magic” associated with degenerate

bosons has been intentionally omitted. There’s no hint of the presence of anything like a

phonon or other collective excitation. Still, the no-condensate model should do very well

where the phase-space density ρj ≡ njλ
2
db < 1. As for the calculated value of n0(~r), a

comparison with the naive no-condensate n0 allows us to quantify the tell-tale discrepancy.

Several interesting features can be found by solving Eq. (4.4). Figure 4.1 shows the

solutions of Eq. (4.4) graphically for five different chemical potentials. First, from Fig. 4.1,

one can see that as µj/kT reaches 0.24 and beyond, the density that satisfied Eq. (4.4) is
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well approximated by (π/g̃)(µ′j/kbT )λ2
db. With the fact that µ′j ∼ µ − 1

2
mω2

rr
2, the density

profile is an inverse parabola, as shown in Fig. 4.2. Since Eq. (4.4) is a no-condensate model,

the appearance of bimodality does not imply the existence of a condensate phase, as opposed

to the 3D case. Second, one can see from Fig. 4.1 that there always exists a solution for Eq.

(4.4) for any chemical potential. This is another way of saying that this model predicts no

condensate.

4.2 Compressiblity

The isothermal compressibility is a quantity that measures a system’s ability to be

compressed at fixed temperature. The definition of the isothermal compressibility is given

by

κ ≡ − 1

V

(
∂V

∂P

)
. (4.14)

Using a thermodynamic relation, one can prove that

(
∂N̄

∂µ

)

T,V

=
N̄2

V
κ,

or

(
∂n̄

∂µ

)

T,V

= n̄2κ,

(4.15)

where N̄ is the average number of atoms in the system, and n̄ = N̄/V . The quantity

(
∂n̄

∂µ

)

T,V

, (4.16)

which we call scaled compressibility, is extracted from our data and compared to the no-

condensate model.

An analysis of a coordinate-space image proceeds as follows. The interesting physics

lie in n0(~r), but we measure a density integrated through all the axial states, nmeas(~r) =

∑
nj(~r). Initially, we get an estimate of T , µ, and the OD scale (a multiplicative factor

that relates the observed OD to the nmeas). In principle, the OD scale is calculable from the

crosssection of an atom absorbing light from a probing laser beam. However, drifts in the
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Figure 4.1: The solution of Eq. (4.4) for five different chemical potentials. The blue curves
represent y = − ln(1 − e(−(θj(~r)−µj(~r))/kbT )) for five different chemical potentials µ′/kbT , -
0.14, 0 , 0.1, 0.24, and 0.5 (from left to right). The black curve represents y = nλ2

db. The
intersection for each blue curve and the black curve gives the density that satisfies Eq. (4.4).
The three dashed lines indicate the values of the phase-space density where the last three
blue curves diverge.
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Figure 4.2: Coordinate-space distributions calculated from Eq. (4.4). The blue curve is
calculated with a chemical potential µ = 50 nK and a temperature T = 70 nK. The black
curve is calculated with µ = 6 nK, and T=180 nK. The dashed line is an inverse parabola
for comparison with the central part of the distribution from the blue curve.
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efficiency of our microwave-selection pulse cause uncertainties in the OD scale. The estimate

comes from comparing the results of the no-condensate model to observed nmeas and fitting

the parameters T , µ and OD scale to the low phase-space regions of the cloud. With the

chemical potential and temperature obtained from the fit, we can use Eq. (4.4) to evaluate

the excited-state distributions. Then, we find numerically a self-consistent solution to solve

nj and n0, where n0 = nmeas −
∑

nk, as shown in Fig. 4.3.

Once the corrected ground-state distribution, n0, is extracted from nmeas, we calculate

the scaled compressibility, κs, at each imaging pixel, according to

κs =
dn0

dµlocal

=
dn0

dr

∣∣∣∣
r=i

∗ dµ0

dr

∣∣∣∣
−1

r=i

, (4.17)

where i is the number index for camera pixels. Although µ is not a quantity we can know

with great accuracy in a model-independent way, dµ0/dr = −dVeff/dr ≈ −mωrr is readily

determined quite precisely, as the corrections to Veff arising from the mean field of the axially

excited atoms are small and calculable. dn0/dr is determined pixel by pixel from the values

extracted from our coordinate-space images. Combining the two spatial variations for each

pixel according to Eq. (4.17), we then get the scaled compressibility at every discrete radius

in our images. We plot the result vs the local ground-state phase-space density, ρ0 = n0λ
2
db,

in Fig.4.4.

We compare our empirically scaled compressibility with the value given by the no-

condensate model at the same density. For an observed value of n0, we numerically solve

the no-condensate prediction, n0 = − ln(1 − exp(µ0 − θ0(n0))/kbT )/λ2
db, for µ0. We then

numerically determine how n0 would change for a small change in µ0. Thus, we extract a

scaled no-condensate compressibility, which is plotted in Fig.4.4.

As a check of the local-density approximation that is central to our analysis, we show

images from two very different classes. The first, Fig. 4.4(a), for images with T = 171 nK

and a central ρ0 of about 9, and the second, Fig. 4.4(b), for images with T = 128 nK and a

central ρ0 of about 30. In both cases, the shape of the data is the same, and, in particular,
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Figure 4.3: Azimuthally averaged data from a coordinate-space image. The thin line shows
the measured density nmeas obtained from an in-situ image. The dashed lines are the cal-
culated distributions from excited axial levels nj, j=1 to 5, from top to bottom. The thick
line shows the pure axial ground-state distribution after correcting for nj>0.
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the value of ρ0 for which the empirical κ begins to deviate strongly from the no-condensate

model κ in both cases is about 4.

A note on the overall reliability of our data: when we allow our fitting routine to

consider only low phase-space regions of images, so that we can extract model-independent

fit values of T , µglobal, and the OD scale, we find that the fits are insufficiently orthogonal in

the latter two parameters. Large uncertainties in µglobal and OD scale result. We improve

the precision by fixing the OD scale using independent measurements of very low T clouds

in which the atoms are in a Thomas-Fermi inverted parabola with negligible noncondensed

wings. In this limit, we make the assumption that µglobal=u00n0(0). Fixing our OD scale

with this assumption means that our scaled values of κ, as shown in Fig. 4.4, are constrained

to saturate to 2.0 at very high ρ0. In essence, we get high-precision measurements of the

behavior for exotic intermediate values of ρ0, for the price of assuming a priori a good

understanding of low-degeneracy, mean-field behavior at high T , and long-coherence pure-

condensate behavior at low T .

4.2.1 Discussion

From the thermodynamic relations [42, 43], the number fluctuation for an ideal Bose

gas can be expressed in terms of scaled compressibility (∂nk/∂µ), i.e.,

〈n2
k〉 − 〈nk〉2 = kbT

∂〈nk〉
∂µ

, (4.18)

where k represents the kth excited state for a 2D box. The mean occupation number for the

state k is given by Bose statistics as

nk =
1

e(~
2k2

2m
−µ) − 1

. (4.19)

Differentiating Eq. (4.19) with respect to µ, one can rewrite Eq. (4.18) as

(∆nk)
2 = 〈nk〉+ 〈nk〉2, (4.20)
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Figure 4.4: Compressibility κ vs phase-space density ρ0. (a) Measured κ extracted from
images of samples at the same T as for the image in Fig. 5.2(c). Black circles are data
averaged over the values calculated from images of three separate clouds. The blue curves
are κnc derived from the no-condensate model. (b) Same but with κ extracted from images
of lower-T samples. The paired vertical dotted lines indicate the location of the jump in
coherence discussed in the text.
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where ∆nk =
√
〈n2

k〉 − 〈nk〉2. One can see that the number fluctuation of state k comes from

two parts: The first term in Eq. (4.20) is atom shot noise, and the second term is excess

noise coming from the bunching effect [44, 45]. If there are N atoms occupying α states in

a 2D box, one can show, using Eq. (4.20), that the number fluctuation of those N atoms in

the 2D box can be written as

〈N2〉 − 〈N〉2 = 〈N〉+
α−1∑

k=0

〈nk〉2, (4.21)

where N =
∑
k

nk.

What we measured In Fig. 4.4 is the scaled compressibility of atoms in every camera

pixel projected in coordinate space. Therefore, the measured compressibility is

∂N

∂µ

∣∣∣∣
i

, (4.22)

where i is the number index of camera pixels. Using Eq. (4.18), (4.20), and (4.21), one can

show

∂N

∂µ
=

∑

k

∂〈nk〉
∂µ

=
1

kbT

∑

k

(〈nk〉+ 〈nk〉2
)

=
1

kbT
(∆N)2.

(4.23)

Therefore, one can that see our measured scaled compressibility is proportional to the number

fluctuation, and the proportionality constant is kbT . I would like to emphasize that the above

derivations come from considering an ideal Bose gas model. If interactions exist in the regime

close to degeneracy, the above relations will become inaccurate. The number fluctuation can

be directly measured from the experiment [46]. However, those measurements require careful

calibration of the imaging system and a more stringent control over experimental conditions.

The plateau in Fig. 4.4(b) (ρ0 & 8) can be understood as follows. We know that the

chemical potential is defined as the energy change due to adding one particle into the system
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while keeping the entropy fixed, i. e.,

µ =
∂E

∂N

∣∣∣∣
s

. (4.24)

The entropy of the system is kept constant if the atom is added into the ground state, and

there is only one ground state. In this case, the only energy associated with adding one

particle is the interaction energy with other atoms in the ground state, i.e.,

µ = n0u00 + 2
∑
i>0

ui0ni, (4.25)

where uij is defined in Eq. (4.11). If the temperature of the system T is much smaller than

TBKT , one can ignore the contribution from the second term on the right-hand side of Eq.

(4.25). Then, the scaled compressibility is given by

∂n

∂µ
∼ 1

u00

. (4.26)

Therefore, for a pure condensate, one expects the value of the plateau in Fig. 4.4 to be 1/u00.

Of course, we won’t reach that value at any finite temperature. However, the plateau indi-

cates a macroscopic population in the ground state, thus, the existence of a quasicondensate

in our system.

The plateau can also be understood as the interactions suppressing the number fluctu-

ations. Assume there are N particles confined in a 2D box, and those atoms equally occupy

the lowest α states. From Eq. (4.21), one can show that the number fluctuation of the box

is given by

〈N2〉 − 〈N〉2 = 〈N〉+
〈N〉2

α
. (4.27)

In the case of 〈N〉 À 1 and α ∼ O(1), one would expect the number fluctuation of the

system to show a quadratic dependence on the mean number of atoms 〈N〉. However,

number (or density) fluctuations require energy when interactions become important. In

this case, these interactions will suppress the number (or density) fluctuation. Therefore,
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the plateau indicates that the interactions in the system have become important. This also

signals the existence of a quasicondensate.



Chapter 5

Analysis of focusing images

For an infinite homogenous system, the first-order correlation function is the Fourier

transform of the momentum-space distribution. Thus, the inverse width of the momentum-

space distribution gives the spatial extent of the coherent fraction in the system. At the

temperature T . TBKT , the first-order correlation function starts to decay algebraically

instead of exponentially. In a small system like ours, the system is still pretty coherent.

Therefore, one expects a sharp peak with a width of ∼ 1/R, where R is the size of coherent

part of the cloud, to appear in a momentum-space distribution, as shown in Fig. 5.1(a).

In Fig.5.2, we show the azimuthally averaged coordinate-space and momentum-space

distributions side by side. These images are taken back and forth between coordinate space

and momentum space to ensure that the effects of temporal drifts in the experiment are

minimized. As the temperature decreases, a sharp peak emerges from the center of the

momentum-space density distribution at T = 171 nK, as shown in Fig.5.2(g); however, down

to this temperature, there is no obvious change in the shape of the ground-state distribution

in coordinate space, as shown in Fig.5.2(a)-(c). A more peaked distribution in coordinate

space appears at a lower temperature, as shown in Fig.5.2(d). The width of the peak in

momentum distribution is inversely proportional to the spatial extent of coherence of the

high density part of the cloud. One would expect a delta-function-like distribution for a

highly coherent system at T ¿ TBKT . However, because of finite imaging resolution, we are

not able to see that. Still, the width we observe from the images gives a spatial extent of
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coherence of about 9 µm in diameter, which is comparable to the spatial extent of the high

density region in the cloud. From coordinate-space images taken under the same conditions

for which the coherence spike first appears in momentum space, we determine that coherence

happens when the central phase-space density ρ0 reaches a value of 8.0(0.7) [47] (this critical

value ρc is determined from looking at many more pairs of images than are presented in Fig.

5.2).

We emphasize that from the coordinate-space distribution alone, the identification of

a transition temperature would require model-dependent analysis of the smoothly varying

distribution. With access to both distributions at once, we readily see that a modest change

in the central phase-space density of < 15% causes the distribution at p = 0 to jump by a

factor of three. Unambiguous, qualitative bimodality appears only in the coordinate-space

images at values of ρ0 that are 50% higher.

5.1 Mean-field model for momentum-space distribution

Can we model momentum-space density distributions? One reasonable starting point

for calculating the momentum-space density distribution is using the ideal-gas model. In

this model, there is no phonon, no vortex, no mean field, and no quasicondensate. Not only

is this the simplest model, but also it gives us a good estimate of the temperature because

interactions have little effect on high-energy atoms. Using the semiclassical, local-density,

and mean-field approximations, the number of atoms with momentum p at position r is

given by

N(p, r) =
1

e(p2/2m+mω2
rr2/2−µ)/kbT − 1

, (5.1)

where ωr is the radial trapping frequency of the harmonic trap. Integrating Eq. (5.1) over

the coordinate space, one then gets the momentum-space density distribution, i.e.,

n(p) =
1

(λmωr)2
ln

(
1− e−( p2

2m
−µ)/kbT

)
. (5.2)
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Figure 5.2: (a)-(d) Coordinate-space distributions and corresponding (e)-(h) momentum-
space distributions. Two distributions in the same row are taken under near-identical con-
ditions. The thin black curves give the azimuthal averages of nmeas from the raw images.
The thick blue curves in the coordinate-space distributions are the ground-state distribution
n0 after correcting for nk>0. The spike in momentum that first appears in (g) has no corre-
sponding dramatic change in coordinate space (c). The vertical dotted line in (c) represents
the inverse of the momentum resolution limit indicated in (g) and is thus a lower limit on
the coherence length of the population of low-p (high-coherence) atoms represented by the
area (about 1.4 % of total) under the spike in (g).
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Figure 5.3 shows a fit to our data using Eq. (5.2). In the fitting routine, temperature T

is the only fitting parameter. The fitting points are weighted linearly according to their

distance to the center of the system. Because Eq. (5.2) does not include contributions

from density-dependent mean fields, quasicondensates, or phonons, we therefore exclude the

central region, r <
√

2µ/mω2
r , from the fitting routine.

At large r, Eq. (5.2) shows the asymptotic behavior as

ηe
µ

kbT e−
1
2
mω2

rr2

. (5.3)

One can see in Eq. (5.3) that the OD scale η and the chemical potential µ are strongly

coupled. Therefore, it is very difficult for the fitting routine to get both the correct η

and the correct µ at the same time. However, one can at least get the temperature right

from fitting at large r. In this case, the signal-to-noise ratio in the tail of the distribution

becomes very important. We improve the precision by fixing the OD scale using independent

measurements of very low T clouds in which the atoms are in a Thomas-Fermi inverted

parabola with negligible noncondensed wings.

To include the mean-field contribution, I first use Eq. (4.4) to calculate the in-trap

distributions for a trial set of T and µ. Once the in-trap distributions nj are found, the total

mean-field potential at the jth axial level, Mj, can be calculated, which gives

Mj(r) =
∑

i

2uijni(r). (5.4)

Then, according to Bose-Einstein statistics, the atoms with momentum p at the jth level are

given by

nj(p) =
1

(2π~)2

∫ ∞

0

d2p
1

e( p2

2m
−µj)/kbT − 1

, (5.5)

where µj = µ− 1
2
mω2

rr
2−Mj(r). Considering the fact that the image is taken in coordinate

space, one has to multiply the coordinates in real space by mωr to get the momentum

coordinates. Also, one has to consider that an image is taken pixel by pixel. With these
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Figure 5.3: The ideal-gas model fit to the azimuthally averaged data that is shown in Fig.
5.2(g). The full-scale plot is shown in (a), while in (b), only 0 < n2D < 10 is shown to
emphasize the departure of the measured data (Black curve) and the fitting curve (Blue
curve). The five red curves represent nj(p) with j = 0 to 5 from top to bottom. In this fit,
the chemical potential is fixed at zero, and a central area with a radius 80 µm is ignored
by the fitting routine. The boundary of this ignored area indicates the highest possible
momentum for a phonon in the system. The fitting curve shows a sharp peak at the center
of the distribution, which comes from the distribution of the lowest axial level, j = 0. As
one can see in the figure, the fitting is not satisfactory.
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consideration, Eq. (5.5) can be written in the form of

nj(p) =
1

(2π~)2

∑
i

1

e( p2

2m
−(µ− 1

2
mω2

r(iδ)2−M(iδ)))/kbT − 1
∗ 2πiδ2, (5.6)

where i is the the number index of camera pixels, and δ is the pixel size in momentum

space. After summing up all the jth that are populated, one can compare the resulting total

momentum-space density distribution to the azimuthally averaged data pixel by pixel.

To summarize the fitting procedure, one has to (1) choose a trial set of µ, T , and OD

scale; (2) find a consistent solution for nj(r); (3) from nj(r), calculate M(r); (4) once M(r) is

found, calculate the jth-level momentum-space distribution; (5) summing contributions from

all j levels, compare the resulting value to the data and calculate the total deviation-square

value, and (6) stop the routine if a stable minimum of the total deviation-square value is

found; otherwise return to step 1.

Figure 5.4 shows the fit to a focusing image. As one can see from Fig. 5.4(b), the

two curves from the data and the mean-field model start to resolve at the momentum which

corresponds to the chemical potential. Since the mean-field model does not include any

phonon contribution, this deviation is understandable. Although this mean-field model in

momentum space can not account for contributions from phonons and vortices, this model

gives an accurate description on the nondegenerate part of the system. This part of the

system is what we are least interested in. However, by subtracting the mean-field model

curve from a measured momentum-space density distribution, one can obtain the part in

an image that is beyond the mean-field description. For an image taken at T . TBKT , the

residual distribution has a Gaussian-like shape. This residual density distribution includes

the contribution from a quasicondensate as well as atoms in the fluctuating region, as shown

in Fig. 5.5. We then fit the residual distribution to a Gaussian, and determine the extent of

the coherence by the inverse of the fitted-Gaussian width. Considering the broadening from

imaging errors to the measured density distribution, the measured width of the sharp spike

in the density distribution is overestimated. Therefore, the broadened width sets the lower
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Figure 5.4: The mean-field model fit to the azimuthally averaged data shown in Fig. 5.2(g).
In the fitting routine, chemical potential µ and temperature T are the fit parameters. The
full-scale plot is shown in (a), while in (b), only 0 < n2D < 10 is shown to emphasize the
departure of the measured data (black curve) and the fitting curve (blue curve). The five
red curves represent nj(p) with j = 0 to 5 from top to bottom. One can see the sharp central
peak in the fitting curve of Fig. 5.3 is suppressed by mean fields. After including mean-field
contributions, the fit is now satisfactory.
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bound of the real spatial extent of coherence. Considering our imaging resolution, the mini-

mum detectable width of a Gaussian distribution in momentum space implies that coherence

extends over a central disk of radius 4.5 µm. Figure 5.6 shows the fitting temperatures of

several focusing images. The temperatures from fitting momentum-space images shows a

good agreement with the temperatures obtained from fitting of in-situ images, of course, as

one expects.
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Figure 5.5: Residual density distribution. The density distribution is obtained by subtracting
the mean-field model fit (blue line) from the measured density distribution (black line) in
Fig. 5.4. The distribution includes the atoms that are beyond mean-field description. The
width of the distribution is limited by the imaging resolution, not by the coherence of the
system.
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Figure 5.6: Temperatures obtained from fitting focusing images vs final rf-knife frequency.
The temperatures fit by the mean-field model in momentum space show a good agreement
with the temperature obtained from fitting in-situ images in coordinate space. The red line
comes from the fitting of the temperatures shown in Fig. 3.4



Chapter 6

Conclusion and outlook

6.1 Conclusion

In Fig. 4.4, we see that the deviation of the measured scaled compressibility κ from

the mean-field predicted value κnc starts at a phase-space density of ρ0 ∼ 3. From Fig. 5.2,

we see that the long coherence does not appear in an atomic cloud until κ/κnc = 1.7, or

the phase-space density ρ0 = 8. When 3 < ρ0 < 8, a very interesting regime is identified.

A 2D Bose gas in this regime is beyond the mean-field description, but it does not yet

possess a coherent fraction, or quasicondensate. This regime, which does not exist in three

dimensions, is a product of the enhanced interactions associated with reduced dimensionality.

The appearance of a long coherence in a 2D Bose gas starts at ρ = 8(0.7), which is in a very

good agreement with the prediction of the BKT transition from the Monte-Carlo simulation

[15].

We tried very hard to present our data in a model-free fashion. Of course, there are

assumptions in our analyses. We assumed that the semiclassical, mean-field, and local-

density approximations are good for describing the atomic populations in the axial-excited

states. We don’t assume any model for the ground-state population. Nor as we assume the

phase-space density at which the BKT transition occurs. All our measurements are done

locally, pixel by pixel. We do not measure global quantities, e.g., the critical number Nc of the

system for the BKT transition. I would like to emphasize that the goal of our measurements
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was not to prove the existence of the BKT transition in a 2D system, which had already

been proven first in 2D systems [48, 49, 50] and then in a 2D ultracold-atom system [9].

Our goal for the experiment described in this thesis was to provide better measurements to

compare with theory.

6.2 Outlook

How interactions participate in the statistical behavior of a many-body system is always

an interesting topic. In lower dimensional systems, enhanced interactions come from reduced

dimensionality. In an extreme 2D case, the microscopic collision behavior of atoms will

be also influenced by reduced dimensionality. These properties make a 2D ultracold-atom

system an extremely interesting playground for physicists. I think there are still many

interesting experiments to be done and many interesting questions to be answered. From

my perspective, I list some of these experiments and questions here.

(1) The first possible extension of this work would be to go to a more strongerly inter-

acting regime, where g̃ & 1. In this regime the interaction between atoms is so large

that any quasicondensate would be seriously depleted. How the quasicondensate

becomes depleted as a function of g̃ is an interesting question.

(2) The second possible extension would be to measure directly the first-order correlation

at a temperature T < TBKT . The theory tells us the first-order correlation function

has an algebraic decay on the separation between two points in the system. Can we

measure it? How does the decay change as a function of temperature? How does

the finite-size effect influence the first-order correlation function?

(3) How does a 2D quasicondensate establish its phase coherence? By controlling how

quickly the system enters the BKT regime, one can study couple interesting ques-

tions: How much time does the system need to establish its coherence? How many
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excitations will this process induce into the system as a function of the ramping

speed?

(4) What are the properties of a vortex state in a 2D system? A vortex lattice should

be melted by the increasing effect of thermal fluctuations. Can one see the melting

process? How does a vortex lattice melt? There are also predictions that at an

extremely high rotation rate and at extremely low temperature, the system will

show a quantum Hall-like behaviors. Can we realize this regime?
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incommensurate vortex lattice melting in periodic pinning arrays, Phys. Rev. B 64,
144509 (2001).

[66] J. W. Reijnders, and R. A. Duine, Pinning of vortices in a bose-einstein condensate by
an optical lattice, Phys. Rev. Lett. 93, 060401 (2004).

[67] H. Pu, L. O. Baksmaty, S. Yi, and N. P. Bigelow, Structural phase transitions of vortex
matter in an optical lattice, Phys. Rev. Lett. 94, 190401 (2005).



72

[68] C. Wu, H. D. Chen, J. P. Hu, and S. C. Zhang, Vortex configurations of bosons in an
optical lattice, Phys. Rev. A 69, 043609 (2004).

[69] R. Bhat, L. D. Carr, and M. J. Holland, Bose-Einstein condensates in rotating lattices,
Phys. Rev. Lett. 96, 060405 (2006).

[70] Mask (b): φ1= 2.5 mm and d1= 11.5 mm. The lattice constant of the triangular optical
lattice is 7.8 µm, giving ωc= 0.806 ωr.; mask (c): φ2 = 2.5 mm and d2= 13.5 mm. The
lattice constant of the square lattice is 7.0 µm, giving ωc= 0.866 ωr. The focal lens of
two lenses are 300 mm and 250 mm, respectively. .

[71] I. Coddington, P. C. Haljan, P. Engels, V. Schweikhard, S. Tung, and E. A. Cornell,
Experimental studies of equilibrium vortex properties in a bose-condensed gas, Phys.
Rev. A 70, 063607 (2004).

[72] D. E. Sheehy, and L. Radzihovsky, Vortex lattice inhomogeneity in spatially inhomoge-
neous superfluids, Phys. Rev. A 70, 051602 (2004).

[73] The chemical potential is determined from the axial Thomas-Fermi radius of the con-
densate obtained from in-trap images, and is proportional to the peak density of the
condensate .

[74] There is a constant measurement offset to the values of θOL − θV L in this data set.
we have used in-trap images of vortex lattices to confirm that the absolute value of
θOL − θV L is zero for locked lattices .

[75] |s(ksq)|=a2+
A1−A2

1+Exp[
U−U0

δU
]
; A1, A2, U0, and δU are fit to the data. .

[76] L. J. Campbell, M. M. Doria, and J. B. Kadtke, Energy of infinite vortex lattices, Phys.
Rev. A 39, 5436 (1989).

[77] A. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts,
Rev. Mod. Phys. 73, 307 (2001).

[78] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Cold bosonic atoms
in optical lattices, Phys. Rev. Lett. 81, 003108 (1998).

[79] S. Richardr, F. Gerbier, J. H. Thywissen, M. Hugbart, P. Bouyer, and A. Aspect,
Momentum spectroscopy of 1d phase fluctuations in Bose-Einstein condensates, Phys.
Rev. Lett. 91, 010405 (2003).

[80] D. Hellweg, L. Cacciapuoti, M. Kottke, T. Schulte, K. Sengstock, W. Ertmer, and J. J.
Arlt, Measurement of the spatial correlation function of phase fluctuating bose-einstein
condensates, Phys. Rev. Lett. 91, 010406 (2003).
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Appendix A

Observation of vortex pinning in Bose-Einstein condensates [1, 2]

We report the observation of vortex pinning in rotating gaseous Bose-Einstein condensates

(BEC). Vortices are pinned to columnar pinning sites created by a co-rotating optical lattice

superimposed on the rotating BEC. We study the effects of two types of optical lattice,

triangular and square. In both geometries we see an orientation locking between the vortex

and the optical lattices. At sufficient intensity the square optical lattice induces a structural

cross-over in the vortex lattice.

Some of the most appealing results from recent work in superfluid gases have had to

do with lattices, either optical lattices [34, 52, 53] or vortex lattices [54, 55, 56]. These two

kinds of lattices could hardly be more different! The former is an externally imposed periodic

potential arising from the interference of laser beams, while the latter is the self-organized

natural response of a superfluid to rotation. As distinct as these two periodic structures

may be, there are reasons for trying to marry them in the same experiment. For one thing,

the extreme limits of rapid rotation (in the case of vortex lattices) [57] and deep potentials

(in the case of optical lattices) [58] both lead to the same thing: correlated many-body

states. For another, there is considerable precedent, from various subdisciplines of physics,

for interesting effects arising from the interplay between competing lattices [59, 60, 61].

Moreover, the pinning of superconducting flux vortices to an array of pinning sites in solids

is an area of very active research as well [62, 63, 64, 65]. With these considerations in mind,

we undertook a preliminary experimental study of the effects of a rotating optical lattice
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on a vortex lattice in a Bose-condensed sample of 87Rb. The density of the superfluid is

suppressed at the antinodes of the two-dimensional standing wave pattern of the optical

lattice. These antinodes then become pinning sites, regions of low potential energy, for the

superfluid vortices. Vortices can lower their interaction energy by arranging themselves to

be as far apart as possible from one another. The competition between these effects has

been examined in several theoretical works [66, 67]. Also [68, 69] discuss similar systems in

the strong interacting region

The setup for creating a rotating optical lattice is shown in Fig. A.1(a). A mask with

a set of holes is mounted onto a motor-driven rotary stage, and a laser beam (532 nm) is

expanded, collimated, and passed through the mask. After the mask the resulting three

beams are focused onto the BEC. The interference pattern at the focus constructs a quasi-

2D optical lattice. The geometry and spatial extent of the triangular or the square optical

lattice is determined by the size and layout of the holes and the focal length of the second

lens. For the pinning sites to appear static in the frame of a rotating BEC, the rotation

of the two lattices must be concentric, and mechanical instabilities and optical aberrations

(which lead to epicyclic motion of the pinning sites) must be particularly minimized. Even

so, residual undesired motion is such that the strength of the optical lattice must be kept

at less than 30% of the condensate’s chemical potential or unacceptable heating results over

the experiment duration of tens of seconds. We work perforce in the weak pinning regime.

The experiments begin with condensates containing ∼ 3× 106 87Rb atoms, held in the

Zeeman state |F = 1,mf = −1〉 by an axial symmetric magnetic trap with trapping fre-

quencies {ωr, ωz} = 2π{8.5, 5.5}Hz. Before the optical lattice, rotating at angular frequency

ΩOL, is ramped on, the BEC is spun up [55] close to ΩOL. This leads, before application of

an optical lattice, to the formation of a near perfect triangular vortex lattice with a random

initial angular orientation in inertial space. Through dissipation a vortex lattice can come to

equilibrium with an optical lattice, with their rotation rates and angular orientations locked.
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Figure A.1: (a) Schematic diagram of our setup for the rotating quasi-2D optical lattice.
Layouts of the masks for a triangular (b) and square (c) optical lattices. (d) and (e) are
pictures of triangular and square optical lattices, respectively. For details of the layouts see
[70].
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In the absence of pinning sites, a vortex lattice with areal density of vortices nv will rotate

at (approximately [71, 72]) Ω = (~π
m

)nv. This suggests that for an optical lattice with an

areal density of pinning sites nOL, locking between the two lattices will be facilitated if the

optical lattice rotates at the commensurate frequency Ωc ≡ (~π
m

)nOL.

We measure the angular difference θOL − θV L between the orientation of the optical

and vortex lattice in reciprocal space (see Figs. 2(a)–2(b)). Fig. A.2(c) shows θOL − θV L as

a function of the pinning strength with an optical lattice rotation rate ΩOL = 1.133Ωc =

0.913ωr. The strength of pinning is characterized by the ratio Upin/µ (µ is the chemical

potential of the condensate [73]), which gives the relative suppression of the superfluid density

at pinning sites. We can see the initially random angular difference between the two lattices

becomes smaller as the pinning strength Upin/µ increases. For Upin/µ & 0.08 , the angular

differences become very close to the locked value. Figure A.2(d) shows the phase diagram.

The data points and error bars mark the minimum pinning strength (Upin/µ)min above which

the lattices lock. We observe two distinct regimes. First, for small rotation-rate mismatch,

(Upin/µ)min is rather independent of the rotation-rate mismatch. Second, for rotation-rate

mismatch beyond the range indicated by the dashed line in Fig. A.2(d), angular orientation

locking becomes very difficult for any Upin/µ in our experiment. Instead, an ordered vortex

lattice with random overall angular orientation observed at low Upin/µ transforms into a

disordered vortex arrangement at high Upin/µ.

This box–like shape of the locked region in Upin − ΩOL space is worth considering. In

a simple model, vortex motion in our system is governed by a balance of the pinning force

and the Magnus force. The pinning force is
−→
F pin(x) ∝ Upin/d, where Upin and d are the

strength of the pinning potential and its period, respectively. The Magnus force, acting on

a vortex moving with velocity −→v vortex in a superfluid with velocity −→v fluid is
−→
F mag(x) ∝

n(x) (−→v vortex −−→v fluid)×−→κ where −→κ = ( h
m

)ẑ, and n(x) is the superfluid density. A locked

vortex lattice will co-rotate with the pinning potential, giving −→v vortex(r) = −→v OL(r) =
−→
Ω OL×
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Figure A.2: (a) Triangular optical lattice and (b) vortex lattice in reciprocal space. Inset are
the corresponding original real-space CCD-camera images. (c) The difference in orientation
θOL−θV L versus the strength of pinning Upin/µ ( the peak of the optical potential normalized
by the condensate’s chemical potential) for the rotation rates ΩOL = 1.133Ωc = 0.913ωr.
With increasing pinning strength, θOL−θV L tends towards its locked value [74]. (d) Minimum
pinning strength needed for orientation locking between two lattices as a function of the
rotation rate of the optical lattice. The dashed and dotted lines are discussed in the text.
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−→r , whereas the superfluid velocity in a solid-body approximation is −→v fluid(r) = ~π
m

nvrθ̂ =

−→
Ω fluid × −→r . Comparing the magnitudes of both forces at r = R(Ω)/2, where R(Ω) is the

centrifugal-force modified Thomas-Fermi radius, we obtain a minimum strength for pinning

(Upin/µ)min ≈ ( 1
2
√

3
R(Ω)/d)× (ΩOL − Ωfluid)/Ωc.

What will be the fluid rotation rate Ωfluid in the presence of the pinning potential? On

the one hand, if vortices are tightly locked to the optical lattice sites, we have Ωfluid = Ωc.

The minimum strength (Upin/µ)min resulting from this assumption is plotted as solid line in

Fig. A.2(d). The lack of predicted decrease of (Upin/µ)min to zero around Ωc may be due

to long equilibration times in a very shallow pinning potential, as well as slight mismatches

in alignment and initial rotation rate of the BEC and the pinning potential. The ease of

orientation locking with increasing rotation rate mismatch is less easy to explain in this

model. On the other hand, in the weak-pinning regime, the vortex lattice can accommodate

a rotation rate mismatch by stretching/compressing away from the pinning sites. This allows

the fluid to co-rotate with the optical lattice (Ωfluid ≈ ΩOL) and reduce the Magnus force.

This leads to a very low minimum pinning strength, as suggested by our data. However, the

vortex lattice’s gain in pinning energy decreases rapidly in the locked orientation when the

mismatch between vortex spacing and optical lattice constant increases to the point where

the outermost vortices fall radially in between two pinning sites. Then the preference for the

locked angular orientation vanishes. This predicted limit is indicated by the vertical dotted

lines in Fig. A.2(d).

In the absence of a pinning potential, the interaction energy of a square vortex lattice

is calculated to exceed that of a triangular lattice by less than 1% [76], thus it is predicted

[66, 67] that the influence of even a relatively weak square optical lattice will be sufficient

to induce a structural transition in the vortex lattice. This structural cross-over of a vortex

lattice is observed in our experiment. Figure A.3 shows how the vortex lattice evolves

from triangular to square as the pinning strength increases. Over a wide range of pinning
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Figure A.3: Images of rotating condensates pinned to an optical lattice at ΩOL = Ωc =
0.866ωr with pinning strength Upin/µ=(a) 0.049 (b) 0.084 (c) 0.143, showing the structural
cross-over of the vortex lattice. (a)–(c) are the absorption images of the vortex lattices
after expansion. (d)–(f) are the Fourier transforms of the images in (a)–(c). ko is taken by
convention to be the strongest peak; ktr1, ksq, and ktr2 are at 60◦, 90◦, and 120◦, respectively,
from ko.
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Figure A.4: Structure factors (a) |S(ksq)| (¥), (b) |S(ktr)| (N) (average of |S(ktr1)| and
|S(ktr2)|), and (c) |S(ko)| (F) versus the strength of the pinning lattice at the commensurate
rotation rate Ωc. |S(ksq)| is fitted by [75]. The fitting leads to a maximum value 0.707 of
|S(ksq)|. An ideal square vortex lattice would have |S(ksq)|=1.



83

strengths, we observe that there is always at least one lattice peak in reciprocal space that

remains very strong. We define this peak to be ko. Lattice peaks at 60◦ and 120◦ from ko are

referred to as ktr, and, together with ko, their strength is a measure of the continued presence

of a triangular lattice. A peak at 90◦, referred to as ksq, is instead a signal for the squareness

of the vortex lattice. With increasing pinning strength (Fig. A.3(a–c), or (d–f)), we see the

triangle to square crossover evolve. At intermediate strengths (Upin/µ = 0.084), a family of

zigzag vortex rows emerges, indicated by the dotted lines in Fig. A.3(b); in reciprocal space

we see the presence of structure at ktr and ksq.

We quantify the crossover by means of an image-processing routine that locates each

vortex core, replaces it with a point with unit strength, Fourier transforms the resultant

pattern, and calculates structure factors |S| [67] based on the strength of the images at

lattice vectors ksq, ktr, and ko. In Fig. A.4, we see with increasing optical potential the

turn-on of |S(ksq)| balanced by the turn-off of |S(ktr)|. We use a fitting function to smooth

the noisy data of |S(ksq)|. The structure crossover takes place around Upin/µ ≈ 8%, in rough

agreement with predictions of Upin/µ ≈ 5% from numerical simulations [67] and Upin/µ ≈ 1%

from analytic theory for infinite lattices [66]. The fact that one lattice peak remains strong

for all pinning strengths (the stars (F) in Fig. 4) suggests that as the pinning strength is

increased, one family of vortex rows represented by ko in Fourier space locks to the square

pinning lattice and remains locked as the shape cross-over distorts the other two families of

vortex rows into a square geometry. The effects of various rotation rates and optical potential

strengths on the squareness of the vortex lattice is summarized in Fig. A.5. We surmise that

there are a number of effects at play. When ΩOL differs from Ωc, pinning strength is required

not only to deform the shape of the vortex lattice from triangular to square, but also to

compress or expand it to match the density of the optical lattice sites. At higher optical

intensities, we know from separate observations that imperfections in the rotation of the

optical lattice lead to heating of the condensate, which may limit the obtainable strength of
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the square lattice.

A dumbbell-shape lattice defect (Fig. A.6) is sometimes observed in the early stages of

the square vortex lattice formation when ΩOL > Ωc. In the weak-pinning regime, the defect

will relax towards the equilibrium configuration by pushing extra vortices at the edge of the

condensate outside the system. Defects of this nature, involving extra (or missing) vortices,

are the exception and not the rule in our observations, even for ΩOL 6= Ωc. In an infinite

system, the physics of the lattice-lattice interaction would likely be dominated by these

point defects. In our finite system, would-be incommensurate lattices can accommodate by

stretching or compressing.
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Figure A.5: Effect of square pinning lattice. (a) Contours of |S(ksq)| are plotted, showing the
effect of the rotation rate and pinning strength on the squareness of the vortex lattice. (b)
The maximum observed squareness. In (a) and (b), for each rotation rate, the data points
are extracted from fits such as that shown in Fig. A.4 for ΩOL = Ωc. The vertical dotted
line plus arrow shows the possible range of Ωc consistent with the uncertainty in nOL.
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Figure A.6: Image of a dumbbell-shape defect consisting of two vortices locked to one pinning
site during the formation of the square vortex lattice. Dotted lines are to guide the eye.



Appendix B

Vortex proliferation in the Berezinskii-Kosterlitz-Thouless regime on a

two-dimensional lattice of Bose-Einstein condensates [1, 3]

Appendices We observe the proliferation of vortices in the Berezinskii-Kosterlitz-

Thouless regime on a two-dimensional array of Josephson-coupled Bose-Einstein condensates.

As long as the Josephson (tunneling) energy J exceeds the thermal energy T , the array is

vortex-free. With decreasing J/T , vortices appear in the system in ever greater numbers.

We confirm thermal activation as the vortex formation mechanism and obtain information

on the size of bound vortex pairs as J/T is varied.

One of the defining characteristics of superfluids is long-range phase coherence [77],

which may be destroyed by quantum fluctuations, as in the Mott-insulator transition [34, 78],

or thermal fluctuations, e.g. in one-dimensional Bose gases [79, 80] and in a double-well

system [81]. In two dimensions (2D), Berezinskii [6], Kosterlitz and Thouless [7] (BKT)

developed an elegant description of thermal phase fluctuations based on the unbinding of

vortex-antivortex pairs, i.e. pairs of vortices of opposite circulation. The BKT picture

applies to a wide variety of 2D systems, among them Josephson junction arrays (JJA), i.e.

arrays of superfluids in which phase coherence is mediated via a tunnel coupling J between

adjacent sites. Placing an isolated (free) vortex into a JJA is thermodynamically favored if

its free energy F = E − TS ≤ 0. In an array of period d the vortex energy diverges with

array size R as E ≈ J log(R/d) [82], but may be offset by an entropy gain S ≈ log(R/d) due

to the available ≈ R2/d2 sites. This leads to a critical condition (J/T )crit ≈ 1 independent
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of system size, below which free vortices will proliferate. In contrast, tightly bound vortex-

antivortex pairs are less energetically costly and show up even above (J/T )crit. The overall

vortex density is thus expected to grow smoothly with decreasing J/T in the BKT crossover

regime.

Transport measurements, both in continuous superfluids [48, 49] and superconducting

JJA [50] have confirmed the predictions of BKT, without however directly observing its

microscopic mechanism, vortex-antivortex unbinding. A recent beautiful experiment [9] in a

continuous 2D Bose gas measured the phase-phase decay function through the BKT cross-

over, and saw evidence for thermal vortex formation. For related theoretical studies see

e.g. [84]. In this work we present more detailed vortex-formation data, collected in a 2D

array of BECs with experimentally controllable Joephson couplings. The system was studied

theoretically in [85].

Our experiment starts with production of a partially Bose-condensed sample of 87Rb

atoms in a harmonic, axially symmetric magnetic trap with oscillation frequencies {ωx,y, ωz} =

2π{6.95, 15.0}Hz. The number of condensed atoms is kept fixed around 6× 105 as the tem-

perature is varied. We then transform this system into a Josephson junction array, as

illustrated in Fig. B. In a 10 s linear ramp, we raise the intensity of a 2D hexagonal optical

lattice [86] of period d = 4.7µm in the x-y plane. The resulting potential barriers of height

VOL between adjacent sites [Fig.B(b)] rise above the condensate’s chemical potential around

VOL ≈ 250− 300 Hz, splitting it into an array of condensates which now communicate only

through tunneling. This procedure is adiabatic even with respect to the longest-wavelength

phonon modes of the array [87, 88] over the full range of VOL in our experiments. Each of

the ≈ 190 occupied sites (15 sites across the BEC diameter 2 × RTF ≈ 68 µm [89]) now

contains a macroscopic BEC, with Nwell ≈ 7000 condensed atoms in each of the central wells

at a temperature T that can be adjusted between 30 − 70 nK. By varying VOL in a range

between 500 Hz and 2 kHz we tune J between 1.5 µK and 5 nK, whereas the “charging”
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Figure B.1: Experimental system. (a) 2D optical lattice intensity profile. A lattice of
Josephson-coupled BECs is created in the white-shaded area. The central box marks the
basic building block of our system, the double-well potential shown in (b). The barrier height
VOL and the number of condensed atoms per well, Nwell, control the Josephson coupling J ,
which acts to lock the relative phase ∆φ. A cloud of uncondensed atoms at temperature T
induces thermal fluctuations and phase defects in the array when J < T . (c) Experimental
sequence: A BEC (i) is loaded into the optical lattice over 10 s, suppressing J to values
around T. We allow 2 s for thermalization. To probe the system, we ramp off the lattice on
a faster timescale tr [83] and take images of the recombined condensate. When J is reduced
below T (ii)-(vii), vortices (dark spots) appear as remnants of the thermal fluctuations in
the array.
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energy Ec, defined in [77], is on the order of a few pK, much smaller than both J and T . In

this regime, thermal fluctuations of the relative phases ∆φTh ≈
√

T/J are expected, while

quantum fluctuations ∆φQ ≈ (Ec/4J)1/4 are negligible [77].

The suppression of the Josephson coupling greatly suppresses the energy cost of phase

fluctuations in the x-y plane, between condensates, J [1− cos(∆φ)], compared to the cost of

axial (z) phase fluctuations inside the condensates [51]. As a result, axial phase fluctuations

remain relatively small, and each condensate can be approximated as a single-phase object

[90].

After allowing 2 s for thermalization, we initiate our probe sequence. We first take

a nondestructive thermometry image in the x-z plane, from which the temperature T and,

from the axial condensate size Rz, the number of condensed particles per well, Nwell, is

obtained (see below). To observe the phase fluctuations we then turn down the optical

lattice on a time-scale tr [83], which is fast enough to trap phase winding defects, but slow

enough to allow neighboring condensates to merge, provided their phase difference is small.

Phase fluctuations are thus converted to vortices in the reconnected condensate, as has been

observed in the experiments of Scherer et al. [37]. We then expand the condensate by a

factor of 6 and take a destructive image in the x-y plane.

Figure B(c) illustrates our observations: (ii)-(vii) is a sequence of images at successively

smaller J/T (measured in the center of the array [91]). Vortices, with their cores visible as

dark “spots” in (iii)-(vii), occur in the BEC center around J/T = 1. Vortices at the BEC edge

appear earlier, as here the magnetic trap potential adds to the tunnel barrier, suppressing

the local J/T below the quoted value. That the observed “spots” are indeed circulation-

carrying vortices and antivortices is inferred from their slow ≈ 100 ms decay after the optical

lattice ramp-down, presumably dominated by vortex-antivortex annihilation. From extensive

experiments on vortices in our system we know that circulation-free “holes” fill so quickly

due to positive mean field pressure, that they do not survive the pre-imaging expansion.
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Vortices with identical circulation would decay by dissipative motion to the BEC edge, in

our trap over & 10 s.

To investigate the thermal nature of phase fluctuations, we study vortex activation

while varying J at different temperatures. For a quantitative study, accurate parameter

estimates are required. The Josephson-coupling energy J is obtained from 3D numer-

ical simulations of the Gross-Pitaevskii equation (GPE) for the central double-well sys-

tem [92, 81] [Fig.B(b)], self-consistently including mean-field interactions of both condensed

and uncondensed atoms [93]. A useful approximation for J in our experiments is [91]:

J(VOL, Nwell, T ) ≈ Nwell × 0.315 nK exp[Nwell/3950− VOL/244Hz](1 + 0.59 T/100nK). The

finite-T correction to J arises from both the lifting-up of the BEC’s chemical potential and

the axial compression by the thermal cloud’s repulsive mean field, but does not take into

account the effects of phase fluctuations on J (in condensed-matter language, we calculate

the bare J). Nwell is determined by comparison of the experimentally measured Rz, to

Rz(VOL, Nwell, T ) obtained from GPE simulations. Both experimental and simulated Rz are

obtained from a fit to the distribution of condensed and uncondensed atoms, to a Thomas-

Fermi profile plus mean-field-modified Bose function [93]. In determination of all J values,

there is an overall systematic multiplicative uncertainty ∆J/J = ×
÷1.6, dominated by un-

certainties in the optical lattice modulation contrast, the absolute intensity calibration, and

magnification in the image used to determine Nwell. In comparing J for “hot” and “cold”

clouds (see Fig. B) there is a relative systematic error of 15% associated with image fitting

and theory uncertainties in the thermal-cloud mean-field correction to J .

The qualitative results of our work are consistent whether we use an automated vortex-

counting routine or count vortices by hand, but the former shows signs of saturation error

at high vortex density, and the latter is vulnerable to subjective bias. As a robust vortex-

density surrogate we therefore use the “roughness” D of the condensate image caused by

the vortex cores. Precisely, we define D as the normalized variance of the measured col-
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Figure B.2: Quantitative study of vortices. The areal density of vortices is quantified by
the plotted D defined in the text. D is extracted only from the central 11% of the con-
densate region [circle in inset (a)] to minimize effects of spatial inhomogeneity. (b) D vs J
for two datasets with distinct “cold” and “hot” temperatures. Each point represents one
experimental cycle. The increase in D with decreasing J . 100 nK signals the spontaneous
appearance of vortices, while the “background” D . 0.01 for J & 200 nK is not associated
with vortices. Vortices clearly proliferate at larger J for the “hot” data, indicating thermal
activation as the underlying mechanism. The large scatter in D at low J is due to shot noise
on the small average number of vortices in the central condensate region. (c) same data
as in (b), but averaged within bins of size ∆[log(J)] = 0.15. Error bars of D are standard
errors. (d) same data as (b), but plotted vs J/T . “Cold” and “hot” datasets almost overlap
on what appears to be a universal vortex activation curve, as confirmed by averaging [inset
(e)], clearly revealing the underlying competition of J and T .
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umn density profile from a fit to a smooth finite-T Bose profile [93], with a small constant

offset subtracted to account e.g. for imaging noise. To limit spatial inhomogeneity in J ,

caused by spatially varying condensate density and optical lattice intensity, to < 10%, D is

extracted only from the central 11% of the condensate area which contains 20 lattice sites

[Fig. B(a)]. Comparison to automated vortex-counts shows that D is roughly linear in the

observed number of vortices, irrespective of the sign of their circulation, with a sensitivity

of ≈ 0.01/vortex.

Figure B shows results of our quantitative study. In Fig. B(b), we plot D vs J for

two datasets with distinct temperatures. At large J & 200 nK a background D . 0.01 is

observed, that is not associated with vortices, but due to residual density ripples remaining

after the optical lattice ramp-down. Vortex proliferation, signaled by a rise of D above

≈ 0.01, occurs around J ≈ 100 nK for “hot” BECs and at a distinctly lower J ≈ 50 nK

for “cold” BECs [confirmed by the averaged data shown in Fig. B(c)], indicating thermal

activation as the vortex formation mechanism. Plotting the same data vs J/T in Fig. B(d)

shows collapse onto a universal vortex activation curve, providing strong evidence for thermal

activation. A slight residual difference becomes visible in the averaged “cold” vs “hot” data

[Fig.B(e)], perhaps because of systematic differences in our determination of J at different

temperatures.

The vortex density D by itself provides no distinction between bound vortex-antivortex

pairs and free vortices. In the following we exploit the flexibility of optical potentials to

distinguish free or loosely bound vortices from tightly bound vortex-antivortex pairs. A

“slow” optical lattice ramp-down allows time for tightly bound pairs to annihilate before

they can be imaged. By slowing down the ramp-down duration τ [inset of Fig. B (a)], we

therefore selectively probe vortices at increasing spatial scales. This represents an attempt

to approach the “true” BKT vortex unbinding crossover that is complementary to transport

measurements employed so successfully in superconductive and liquid Helium systems.



94

Figure B.3: (a) Vortex density D probed at different optical lattice ramp-down timescales τ .
A slow ramp provides time for tightly bound vortex-antivortex pairs to annihilate, allowing
selective counting of loosely bound or free vortices only, whereas a fast ramp probes both
free and tightly bound vortices. A fit to the vortex activation curve determines its midpoint
(J/T )50%, its 27% − 73% width ∆(J/T )27−73, and the limiting values D< (D>) well below
(above) (J/T )50%. (b) A downshift in (J/T )50% is seen for slow ramps, consistent with the
occurrence of loosely bound or free vortices at lower J/T only. (c) Mapping between ramp-
down timescale τ and estimated size of the smallest pairs surviving the ramp (upper axis).
The difference D< − D> measures the number of vortices surviving the ramp (right axis).
Comparison to simulated vortex distributions yields a size estimate of the smallest surviving
pairs (upper axis). Inset: smallest possible pair sizes in a hexagonal array, I: d/

√
3, II: d,

III: 2d/
√

3.
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Figure B(a) shows vortex activation curves, probed with two different ramp-down

times. Two points are worth noticing: First, a slow ramp compared to a fast one shows

a reduction of the vortex density D< in arrays with fully randomized phases at low J/T .

The difference directly shows the fraction of tightly bound pairs that annihilate on the long

ramp. Second, a slower ramp shows vortex activation at lower (J/T )50%, confirming that free

or very loosely bound vortices occur only at higher T (lower J). Specifically, the data clearly

show a range around J/T ≈ 1.4 where only tightly bound pairs exist. Figure B(b) quanti-

tatively shows the shift of (J/T )50% from 1.4 to 1.0 with slower ramp time. We can make

a crude mapping of the experimental ramp-down time-scale to theoretically more accessible

vortex-antivortex pair sizes as follows: In Fig. B(c), we see the decrease of the saturated

(low-J/T ) vortex density D< with increasing ramp timescale τ . The right axis shows the

inferred number of vortices that survived the ramp. We compare this number of surviv-

ing vortices to simulations [94] of a 20-site hexagonal array with random phases. In these

simulations we find, on average, a total of 10 vortices, 6 of which occur in nearest-neighbor

vortex-antivortex pairs [configuration I in Fig. B(c)], 1.7 (0.4) occur in configuration II (III)

respectively, and 1.9 occur in larger pairs or as free vortices. Experimentally ≈ 11 vortices

are observed for the fastest ramps, in good agreement with the expected total number of

vortices. For just somewhat slower ramps of τ ≈ 5 ms, only 3 vortices survive, consistent

with only vortices in configuration II & III or larger remaining (indicated in Fig. B, top

axis) [95]. For τ & 30 ms ramps less than 2 vortices remain, according to our simulations

spaced by more than 2d/
√

3. Thus we infer that ramps of τ ≈ 30 ms or longer allow time

for bound pairs of spacing . 2d/
√

3 to decay before we observe them. The downward shift

of (J/T )50% in Fig. B(b) thus tells us that loosely bound pairs of size larger than 2d/
√

3, or

indeed free vortices, do not appear in quantity until J/T ≤ 1.0, whereas more tightly bound

vortex pairs appear in large number already for J/T ≤ 1.4.

A further interesting observation concerns the width of the vortex activation curve.
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The relative width, determined from fits to data such as the ones shown in Fig. B(a), is

∆(J/T )27−73/(J/T )50% ≈ 0.3, independent of ramp-down duration. This width is neither

as broad as in a double-well system [96, 81], where the coherence factor rises over a range

∆(J/T )27−73/(J/T )50% ≈ 1.4, nor as broad as expected from our simulations [94] of an array

of uncoupled phases, each fluctuating independently with ∆φRMS =
√

T/J , for which we

find ∆(J/T )27−73/(J/T )50% ≈ 0.85. Presumably collective effects in the highly multiply

connected lattice narrow the curve. On the other hand, the width is 3 times larger than

the limit due to spatial inhomogeneity in J , suggesting contributions to the width due to

finite-size effects or perhaps revealing the intrinsically smooth behavior of vortex activation

in the BKT regime.

In conclusion, we have probed vortex proliferation in the BKT regime on a 2D lattice

of Josephson-coupled BECs. Allowing variable time for vortex-antivortex pair annihilation

before probing the system provides a time-to-length mapping, which reveals information on

the size of pairs with varying J/T .


