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Solar-like stars exhibit a rich variety of magnetic activity, which is driven by dynamo

action in the stellar interior. In the Sun, strong dynamo action creates global-scale magnetic

fields which undergo cyclic reversals as well as smaller-scale dipolar active regions which have

global-scale organization. Dynamo action is a highly nonlinear process which is enabled by

the interplay of turbulent convection, rotation, and stratification. Seeking to explore the

convective origins of magnetism in sun-like stars, we have used 3D MHD simulations with

the Anelastic Spherical Harmonic (ASH) code to model elements of these dynamos. Previous

simulations have demonstrated that large-scale “wreaths” of toroidal magnetic field can be

achieved in the convection zone without a tachocline of shear at its base, as was thought to

be necessary, and that these wreaths can yield reversals in global magnetic polarity.

We find that cyclic reversals of global magnetic polarity in wreath-building dynamos

can be achieved by increasing the level of turbulence in solar-like simulations. By decreas-

ing the effective diffusion we demonstrate that large-scale magnetic wreaths can persist in

simulations where explicit diffusion has been decreased to levels at which it no longer plays

a significant role in the key dynamical balances required to achieve wreath-building dynamo

action. Magnetic reversals are attained when resistive diffusion of the poloidal magnetic

fields becomes too small to prevent turbulent magnetic induction from generating opposite

polarity poloidal fields.

In order to attain even less diffusive simulations, we explore more a dynamic Smagorin-

sky model. Using the dynamic Smagorinsky model, we achieve a dynamo simulation capable

of building buoyant magnetic loops which rise coherently through our simulated domain.

These loops ascend via a combination of magnetic buoyancy and advection by convective
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giant cells. These buoyant loops originate within sections of the magnetic wreaths in which

turbulent flows amplify the fields to much higher values than is possible through laminar pro-

cesses. We measure statistical trends in the polarity, twist, and tilt of these loops. Loops are

shown to preferentially arise in longitudinal patches somewhat reminiscent of active longi-

tudes in the Sun, although broader in extent. We show that the strength of the axisymmetric

toroidal field is not a good predictor of the production rate for buoyant loops or the amount

of magnetic flux in the loops that are produced.

Finally, we explore the effects of a new upper boundary condition on ASH simulations.

Previous simulations have employed an impenetrable upper boundary condition, which im-

posed an unphysical viscous boundary layer in the upper layers of the convection zone. We

have implemented and tested an alternative boundary condition which imposes small-scale

convective plumes on the upper boundary, mimicking the small-scale convective motions

from the near-surface layers. We find that for suitable choices of plume parameters we can

largely remove the viscous boundary layer and significantly decrease the convective veloc-

ities at mid-convection zone, thus increasing the level of rotational constraint and helping

the simulations to achieve more solar-like behavior.
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Chapter 1

Solar and Stellar Magnetic Activity

1.1 Magnetism in Sun-like Stars

Stellar variability due to magnetic activity is one of the most enduring topics of astro-

nomical research. Scientific observations of sunspots began with Galileo’s regular descriptions

and drawings of sunspots over 400 years ago (see Drake, 1957). Shortly after the turn of the

20th Century, Hale (1908) showed that sunspots contain strong, coherent magnetic fields.

We now know that sunspots appear as dark patches on the Sun’s surface due to the inhibi-

tion of convective heat transport by strong, organized magnetic fields. Solar magnetism is

of course not limited to sunspots. The Sun’s magnetic fields exist on a wide range of scales

from the magnetized solar wind which fills the heliosphere to the smallest resolvable scales

on the photosphere. Magnetic processes in these widely disparate regimes drive much of the

temporal variability of the Sun’s surface and extended atmosphere.

Figure 1.1 illustrates the magnetic nature of sunspots. In visible light they appear as

small, dark patches with temperatures typically lower than the surrounding solar surface by

about 1000K. These lower temperatures are the result of strong magnetic fields inhibiting the

convective mixing present over the solar surface, which constantly replenishes the energy lost

to radiation. Thus material in sunspots is initially of the same temperature and brightness

as the rest of the solar surface, however radiative losses quickly lead to a strong deficit in

temperature in the spot. The dark spots shown here in modern space-based observations

from the Solar Dynamics Observatory are the most easily observed consequences of solar
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Figure 1.1: Sample views of magnetic features on the solar surface taken by the Solar
Dynamics Observatory (SDO) on October 25, 2012. (a) Sunspots are visible as dark spots in
the visible continuum centered at 4500Å using the Atmospheric Imaging Array (AIA). Here
three major sunspot groups can be seen, two in the southern hemisphere and one in the north.
(b) Companion magnetogram from the Heliospheric and Magnetic Imager (HMI) where color
gives line-of-sight magnetic field strength (blue negative, red positive, peak field strengths
are about 10 kG). Here the strongest fields are clearly concentrated in the sunspot groups,
though considerable magnetic fields are also visible in plage regions surrounding sunspot
groups and the magnetic network which extends over most of the solar surface. (c) Zoom-in
view of the region around one sunspot pair indicated in (b), showing the complex nature of
the fields which emerge through the solar surface.

magnetism (see reviews Borrero & Ichimoto, 2011; Rempel & Schlichenmaier, 2011).

When narrow-band imaging is used to detect Zeeman splitting, line-of-sight magnetic

field can be measured and the magnetic nature of these spots becomes easily apparent. The

magnetogram in Figure 1.1(b) reveals the strong magnetic fields which make up the sunspot

pairs (see zoomed-in region in Figure 1.1(c)), but also makes visible the rich topology of the

magnetic network. Sunspots typically have field strengths on the order of 10 kG and areas on

the order of 100 Mm2. Also visible are regions of weaker, less coherent magnetic field known

as plage which surround active regions with magnetic field strengths on the order of 1 kG

(Guglielmino et al., 2012). At even smaller scales and field strengths is the magnetic network,

which roughly traces the boundaries of supergranules with typical field strengths on the order

of 100 G (Rieutord & Rincon, 2010). On granular scales high resolution observations reveal
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Figure 1.2: Azimuthally-averaged magnetic fields on the sun as a function of latitude at
time from 1975 to 2013 (color gives polarity). Clear indications of spatial and temporal
organization can be seen in the equatorward propagation of active latitudes, the 11-year
cycles of magnetic activity, and the 22-year cycles of magnetic polarity. Courtesy David
Hathaway, NASA-Marshall. For more information see Hathaway (2010).

magnetic bipoles as small as 100 km in size which emerge at a rate of roughly four per minute

per granule (Danilovic et al., 2010). It is likely that magnetic fields continue at even smaller

scales, however there are currently no telescopes capable of resolving such small scales (see

review Mackay & Yeates, 2012).

Both sunspots and the magnetic network are most easily observed at the surface.

However they continue up into the solar atmosphere and down into the solar interior. In the

solar atmosphere, magnetism can be monitored using UV and X-ray observations (Mackay

& Yeates, 2012). In the interior it becomes extremely difficult to detect magnetic fields

directly, however considerable effort has been made to map the flows and thermal fields

around sunspots using helioseismology (Hindman et al., 2009; Borrero & Ichimoto, 2011).

Understanding these flows and thermal structures provides clues as to the topology and

magnitude of sub-surface fields.

While sunspots are relatively localized structures whose individual lifetimes, ampli-
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tudes, and locations of appearance are at least somewhat random, collectively these spots

exhibit global-scale organization both spatially and temporally. Figure 1.2 shows one version

of the famous solar butterfly diagram. Sunspots undergo magnetic activity cycle of roughly

11 years in duration. At the start of each cycle sunspots appear at mid-latitudes. Each

sunspot group persists for anywhere from a few weeks to a few months. Over the course

of each cycle new spots appear on average at progressively lower latitudes until they reach

the equator. New spots then begin appearing at mid-latitudes and the cycle begins again.

Upon further inspection, it becomes clear that additional global-scale organization exists

in the form of preferential polarities on the poleward and equatorward sides of each active

band in each hemisphere. For example, in the previous activity cycle from roughly 1997 to

2008 (cycle 23), sunspot pairs preferentially appeared with the negative polarity spot slightly

poleward from the positive polarity spot in the northern hemisphere. In the current cycle

this preference has reversed. Thus the 11-year activity cycle is really part of the longer 22

year magnetic polarity cycle (see review Hathaway, 2010).

Indian, Chinese, Korean, and possibly Native American sources have recorded naked

eye observations of sunspots since at least 165 BC (Whittmann & Xu, 1987). Telescopic

sunspot observations began with Galileo in 1611 (Sakurai, 1980). The 11-year activity cycle

appears in the observational record from at least 1611 until 1645, and then again after 1715 to

the present. Since 1715 there have been 24 11-year activity cycles. From about 1645 to 1715,

the sunspot cycle apparently ceased in what is known as the Maunder Minimum (Hathaway,

2010). Longer-term records through surrogate methods indicate that this pattern of regular

11-year activity cycles with occasional interruptions by Grand Minima, such as the Maunder

Minimum, have been occurring for at least the last 10,000 years (Usoskin, 2008). Usoskin

et al. (2007) calculate that since 9,500 BC the Sun has spent roughly one-sixth of its existence

in Grand Minima.

The Sun is not alone in its ability to generate magnetic spots and cycles of magnetic

activity. Solar-type stars generate magnetism almost without exception, particularly at ro-
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tation rates greater than that of the current Sun (see review Reiners, 2012). Proxies for

stellar magnetism such as Calcium H and K emission and X-ray flux have long indicated

that many sun-like stars are magnetically active (Hall, 2008). More recent developments

in high-precision photometry and spectropolarimetry are providing new and independent

measurements of stellar magnetism (Donati & Landstreet, 2009). These advances in obser-

vational techniques are, for the first time, permitting us to understand the Sun in context

rather than as a single example of stellar dynamo action.

As observations of solar and stellar magnetism improve, there is a need for correspond-

ing advances in theoretical models of convective dynamo action. In this thesis we will explore

how 3D computational models inspired by solar and stellar observations can help us under-

stand the physical mechanisms which drive dynamo action in sun-like stars.

1.1.1 Ingredients for Solar Dynamo Action

The interior of a sun-like star may be divided into three distinct regions. The center-

most portion of the solar interior is the nuclear-burning core, which takes up roughly 25%,

or about 173 Mm (1.73× 108 m), of the solar interior by radius. Moving outward, the next

region is the radiative zone which extends up to 71% of the solar radius or 490 Mm. In

this layer energy is transported by the slow outward diffusion of photons. In the radiative

zone the stratification is stable to overturning motions. The outermost of the three regions

is the convective zone which begins at 71% of the solar interior by radius (a depth of 200

Mm) and extends to the solar surface. In this region the plasma becomes too opaque for

photons to transport the solar luminosity outward and thus energy must be transported by

fluid motions. This convective transport continues up to the solar photosphere where the

plasma becomes largely transparent to visible light, allowing photons to stream freely and

efficiently carry the solar luminosity again. This interior structure has been confirmed by

helioseismic measurements (Christensen-Dalsgaard, 2002). Using continuous observations of
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Figure 1.3: (a) The solar differential rotation profile (in angular velocity Ω) as revealed
by helioseismology using 12 years of data from the Michelson-Doppler Imager (MDI) in-
strument on the Solar and Heliospheric Observatory (SOHO). Areas left white represent
regions where reliable measurements are not currently possible. Adapted from Howe (2009).
(b) Schematic overview of the generally favored model for large-scale solar dynamo action.
Small-scale fields are generated by turbulent convection and pumped down into the lower
convection zone and tachocline. There they are organized into large-scale toroidal structures
by differential rotation. Once they become sufficiently strong and coherent, the large-scale
toroidal structures can rise via magnetic buoyancy effects. Some loops are destroyed by tur-
bulent convection while others emerge through the photosphere to become sunspots. Image
courtesy Nic Brummell, UC-Santa Cruz.

resonant acoustic modes, remarkably precise measurements can be made of the Sun’s average

radial structure. Coupling these measurements with 1D structure models has produced solar

models which match profiles derived from helioseismic measurements and constraints from

solar neutrino observations to within a few percent (Christensen-Dalsgaard et al., 1996).

In the convection zone three general classes of flows are believed to play important roles

in the dynamo mechanism (see review Miesch, 2005). First is the Sun’s differential rotation

as measured by the angular velocity Ω as a function of radius and latitude. While it has

long been known that the solar surface displays faster rotation at the equator than at high

latitudes, global helioseismology has yielded detailed measurements of the solar differential
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rotation as shown in Figure 1.3(a). The magnitude of the shear is quite striking with a

contrast of roughly 30% between equator and pole. The radiative interior rotates as a solid

body (Howe, 2009). The boundary between the radiative and convective regions is home

to the tachocline, which is marked by a sharp transition to differential rotation with a fast

equator and slow poles. How such sharp gradients are maintained is a subject of considerable

interest as the timescale for the spread of differential rotation into the radiative zone is

much shorter than the age of the Sun (e.g., Spiegel & Zahn, 1992; Rudiger & Kitchatinov,

1997; Gough & McIntyre, 1998; Strugarek et al., 2011). However a definitive answer to this

question remains elusive. In the bulk of the convective zone the surfaces of constant rotation

are roughly conical (tilted about 25◦ from the rotation axis), particularly at mid-latitudes.

Finally the outer 5% by radius (35 Mm) of the Sun forms a near-surface shear layer where

the radial gradient of rotation rate becomes negative (see review Miesch & Toomre, 2009).

The total rotational velocity peaks at about 2 km s−1. Subtracting the bulk rotation rate of

the Sun gives differential rotation velocities on the order of 100 m s−1.

The second class of flow is the meridional circulation. Direct observations of the solar

surface show a roughly 10 m s−1 poleward flow in each hemisphere (Hathaway, 1996). Helio-

seismic measurements demonstrate that this flow continues through at least the near-surface

shear layer (e.g., Haber et al., 2002; Ulrich, 2010). Below this layer, however, reliable mea-

surements of the meridional circulation become extremely challenging. The deep meridional

flow plays a key role in many flux transport dynamo models which rely on a single circulation

cell to transport magnetic flux to high latitudes and then down to the base of the convection

zone (Charbonneau, 2010). Recently, Hathaway (2012) has reported measurements of equa-

torward meridional flow at depths of about 50 Mm. The structure of the meridional flow as

a function of depth and latitude in the bulk of the solar convection zone remains a subject

of active debate (e.g., Sivaraman et al., 2010; Dikpati, 2011).

The third class of flows involves the highly turbulent convective motions responsible

for carrying the solar luminosity. These convective motions are inherently three-dimensional,
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highly variable, and chaotic in time. To add difficulty, the turbulence is neither homogeneous

nor isotropic since rotation, stratification, and magnetism play important roles on a wide

range of spatial and temporal scales. The dominant scale of convection changes at different

depths in the solar interior. At the surface convection is dominated by granulation of the

order of 1 Mm in size with typical velocities on the order of 5 km s−1 (Nordlund et al., 2009).

In the near-surface layers supergranulation on scales on the order of 20 Mm becomes the

preferred convective scale with typical velocities of 300 m s−1 (Rieutord & Rincon, 2010).

In the deep interior it is believed that flows on still larger scales exist. Termed giant cells,

these convective structures are realized in theoretical and numerical treatments of solar

convection, where they have typical length scales between 100 and 200 Mm (see review

Miesch, 2005). Local helioseismology has provided detailed descriptions of the near-surface

layers of the solar interior (see review Gizon & Birch, 2005). Detection of the granular and

supergranular convective motions has been achieved, however the deep giant cell convection

remains elusive (Miesch & Toomre, 2009), though their amplitude can be constrained from

theoretical arguments to be at least 30 m s−1 (Miesch et al., 2012).

Given the Sun’s differential rotation, meridional circulation, and turbulent convection,

schematic models of the solar dynamo can be constructed (see review Charbonneau, 2010).

The details vary but many nonlinear dynamo models follow the general outline shown in

Figure 1.3(b). Turbulent motions generate small-scale, incoherent fields that pervade the

bulk of the convection zone. The convective upflows and downflows are continuously pro-

viding shearing motions which can amplify small-scale magnetic fields to magnetic energy

densities in roughly equipartition with the kinetic energy of the convection itself. In the

solar convection zone that suggests disorganized fields on the order of a kilogauss should be

common in the deep interior. Some of these small-scale fields are pumped downward into

regions of strong shear at the base of the convection zone and the tachocline. Figure 1.3(a)

reveals that strong latitudinal and radial gradients in rotation rate can be found in and above

the tachocline. The differential rotation tends to comb the small-scale fields into coherent
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large-scale magnetic structures which are predominantly longitudinal, as radial or latitudinal

fields will tend to be sheared into longitudinal fields by the differential rotation. Portions

of these toroidal structures eventually become sufficiently strong and coherent that their

magnetic pressure begins to replace the gas pressure required to keep them in equilibrium

with their surroundings. This leads to the gas density dropping in regions of very strong

field, which makes them buoyant. Magnetic buoyancy will tend to make regions of strong

field rise through the convection zone. Once these regions of strong field have entered the

convective layer there are also convective upflows which can assist in the flux emergence

process. Some of the loops will be disrupted by unfavorable interactions with the turbulent

convective flows, while others will successfully reach the photosphere where they emerge as

sunspot pairs.

1.2 Guidance and Challenges from Observations

With this general schematic in hand, we can now examine what is known observa-

tionally about dynamo action in sun-like stars. Solar observations can provide exquisitely

detailed data about a single star. Stellar observations are far more limited for any given

star, though the large numbers of stars studied by a wide range of techniques is helping

unlock additional understanding of dynamo processes and their dependence on parameters

like rotation rate and stellar type. Observations of stellar magnetism can be neatly divided

into two groups: our nearby star which has been and continues to be studied in unmatched

detail, and all other stars for which observations are far more difficult but the potential

targets are far more numerous.
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1.2.1 The Magnetism of Our Local Star

Proxies for solar magnetic activity can reliably measure solar magnetic activity much

farther into the past than recorded observations of sunspots. Perhaps the best proxy for

solar activity involves measuring cosmogenic radionuclides such as 10Be and 14C in ice cores,

tree rings, and marine sediments. These radioactive isotopes are primarily generated by

spallation when high-energy cosmic rays strike the upper atmosphere. Stronger and more

variable heliospheric magnetic fields increase the probability that high energy cosmic rays will

be deflected out of the heliosephere or scattered to lower energies. Both mechanisms reduce

the total energy flux of cosmic rays hitting the Earth’s upper atmosphere (Potgieter, 2013).

This drives a strong inverse correlation between solar magnetic activity and the generation

of cosmogenic radionuclides. The concentration of these isotopes provides reliable estimates

of the Sun’s magnetic activity for the last 12,000 years (see review Usoskin, 2008). As useful

as such long-term data are, they are highly limited both in their coarse temporal resolution

and due to their nature as an integrated quantity over essentially the entire heliosphere.

Since the advent of telescopic observations of sunspots in 1611, data have been available

as to the size and position of sunspot groups on the solar surface. Tracking these features

permitted the first measurements of the solar activity cycle as well as the bulk rotation rate

and surface differential rotation (see review Hathaway, 2010). These data have allowed some

of the important large-scale signatures of the solar dynamo to be observed. These include the

equatorward migrations of active latitudes resulting in the “butterfly diagram” of Figure 1.2;

Hale’s polarity law describing the hemispheric preference as to the eastward and westward

polarities of sunspot pairs in each activity cycle; and Joy’s law for the average latitudinal

tilt of sunspot pairs. These patterns were first deduced by Hale et al. (1919) and have been

confirmed many times since (e.g., Babcock & Babcock, 1955; Wang & Sheeley, 1989). Most

recently Stenflo & Kosovichev (2012) have used 16 years of space-based observations with the

Michelson Doppler Imager (MDI) on SOHO to catalogue these patterns in 160,079 pairs of
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bipolar magnetic spots, revealing some previous unknown features of these laws. These data

demonstrate the continuation of Joy’s law to magnetic bipoles much smaller than sunspots,

and show that roughly 5% of sunspot pairs violate Hale’s polarity law.

Helioseismic observations have been used extensively to study the near-surface struc-

ture of sunspots (see review Rempel & Schlichenmaier, 2011). One recent development

of particular interest is the detection of subsurface active regions prior to their emergence

through the photosphere by Ilonidis et al. (2011). Detailed studies of the statistical prop-

erties of pre-emergence active regions are providing some clues as to the physical source of

these detections (Leka et al., 2013; Birch et al., 2013). As these observations improve they

may provide important observational guidance for the process of flux emergence, which is

currently only constrained observationally by surface measurements and near-surface helio-

seismic constraints on flows and thermal structures (Gizon & Birch, 2005).

Advances in spectropolarimetry have permitted measurements of full vector magnetic

fields. These vector magnetograms have revealed a hemispheric helicity law. Helicity rep-

resents the degree of twist in magnetic field lines and plays a key role in many theoretical

models of dynamo action and flux emergence. Sunspot pairs show statistical preferences

for the handedness of their twist in each hemisphere with left-handed twist preferred in the

northern hemisphere and right-handed twist preferred in the south (Pevtsov et al., 1995).

This preference has been confirmed to be constant over the past three magnetic activity

cycles (Pevtsov et al., 2008).

1.2.2 The Challenge and Promise of Observing Stellar Magnetism

The Sun is not alone in its magnetic variability. Solar-type stars generate magnetism

almost without exception, particularly at rotation rates greater than that of the current

Sun. Young, rapidly rotating suns appear to have much stronger magnetic fields at their

surfaces than our Sun (Hall, 2008). Observations reveal a clear correlation between rotation
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and magnetic activity, as inferred from proxies such as coronal X-ray and chromospheric

EUV emission (Saar & Brandenburg, 1999; Pizzolato et al., 2003; Wright et al., 2011).

These measurements, however, are generally only available at a single epoch and thus cannot

comment on the variability of stellar magnetic activity due to cycles. There have been

a number of attempts to monitor the magnetic activity cycles of other stars using solar-

calibrated proxies for magnetic activity such as the Calcium H and K lines which are strongly

sensitive to magnetic activity in the Sun (e.g., Baliunas et al., 1995; Hempelmann et al., 1996;

Oláh et al., 2009; Metcalfe et al., 2013). These programs require long, sustained periods of

consistent observations, and are therefore rare. To date, the largest such project is the

Mount Wilson HK survey, which measured chromospheric Ca lines as a proxy for magnetic

activity for 111 solar-like stars over a 25-year period ending in 1991. In that study almost

half of the stars showed cyclic behavior, including 21 with regular periods between 7 and

25 years (Baliunas et al., 1995). Recently long-term X-ray observations have provided the

first evidence for a companion coronal activity cycle to a previously measured chromospheric

activity cycle on a young solar-like star (Sanz-Forcada et al., 2013). The existence of sun-

like stars both with and without clear cycles of magnetic activity suggest that there may

be families of dynamo models that lie very close together in parameter space but exhibit

markedly different degrees of temporal variability in their large-scale magnetic features.

All of the methods described above are disk-integrated measures of proxies for stel-

lar magnetism. Ongoing developments in new observational techniques are permitting ob-

servations of the magnetic topology of magnetism on other stars (Donati & Landstreet,

2009). Perhaps of equal importance, data are becoming available on stellar bulk and differ-

ential rotation, which play a critical role in stellar dynamo mechanisms (Aerts et al., 2010).

Spot-tracking from Kepler photometry is beginning to permit measurements of the numbers,

latitudes, and migration rate of starspots (Meibom et al., 2011; Llama et al., 2012). Zeeman-

Doppler imaging (ZDI) combines spectropolarimetry with Doppler shifts due to stellar ro-

tation to create surface maps of stellar magnetism (Petit et al., 2008; Gaulme et al., 2010;
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Morgenthaler et al., 2012). This ZDI technique is yielding estimates of the size, frequency,

and magnetic flux of starspots and the topology and spatial variability of photospheric mag-

netic fields. The development of large optical interferometers such as the CHARA array

are allowing resolved imaging of main-sequence stars. To date this capability has primarily

been used in conjunction with spectral and asteroseismic observations to constrain stellar

parameters such as radius, mass, and age with errors on the order of 1% (Huber et al.,

2012; White et al., 2013). The forthcoming optical interferometer at the Magdalena Ridge

Observatory should achieve angular resolution of a few milliarcseconds, allowing it to image

solar-like stars out to distances of about 10 parsecs (Buscher et al., 2013).

1.3 Theoretical Frameworks for Convective Dynamos

Cyclic dynamos are fundamentally three-dimensional, nonlinear, and chaotic. No single

3D numerical model has yet been able to capture all of the physical mechanisms required to

reproduce solar dynamo action (see review by Charbonneau, 2010). This has led dynamo

theorists to explore reduced treatments. Much of the groundwork for modern dynamo theory

has been laid in analytic mean-field models (e.g., Parker, 1955; Moffatt, 1978; Krause &

Raedler, 1980). The generation of toroidal field as differential rotation acts on a poloidal

field, for example, can be well described using these models. The so-called Ω-effect relies on

shear from differential rotation in the convection zone or the tachocline at its base to stretch

poloidal field into bands of toroidal field. The regeneration of poloidal field or the generation

of opposite polarity poloidal field is parameterized in mean-field theory through the α-effect

which is intended to represents small-scale turbulent correlations between the velocity and

magnetic field.

Mean-field models attempt to reduce the dynamo problem to a 2D formulation. As

Cowling (1933) famously showed, the magnetic induction equation does not permit a 2D

dynamo solution. The root of this prohibition is that the axisymmetric induction equation
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for poloidal magnetic field does not contain a source term. Mean-field models circumvent this

problem by approximating the effects of 3D turbulent induction using a Taylor expansion of

the 2D axisymmetric fields. Taking this expansion to first order yields two possible source

terms for the poloidal magnetic field. By far the most favored of these parameters is a

rank-two symmetric tensor αij which seeks to represent turbulent correlations between small-

scale velocities and magnetic fields (Krause & Raedler, 1980). Current mean-field models

favor non-local generation of poloidal field by the unresolved rise and twist of toroidal field

(Babcock, 1961; Leighton, 1964). The Babcock-Leighton mechanism has been employed in a

variety of mean-field models which can be used to obtain cyclic dynamo solutions which can

reproduce the 22-year magnetic cycle, the sunspot butterfly diagram, and Hale’s polarity law

(e.g., Dikpati & Gilman, 2006; Choudhuri et al., 2007). These models are not particularly

reliable when predicting the amplitude of future solar cycles such as the current cycle 24, but

are the only dynamo models to date which can offer any predictive capability (see reviews

Hathaway, 2009; Petrovay, 2010).

To confront the complex nature of solar-like dynamo action, 3D numerical models have

been developed to explore aspects of various dynamo processes. As no single numerical model

can include or resolve all relevant physical processes, modelers are forced to choose between

global and local models. Global models capture the largest-scales of interest and the correct

global geometry, but must approximate the effects of unresolved small-scale dynamics. Local

models can offer much higher resolution over a small volume, which removes much of the

dependence on the unresolved scales, but these simulations cannot then model the large

scales of solar magnetism which are generally of the most interest.

Local simulations have been effectively used to model magnetic flux emergence. Flux

emergence models track the rise of buoyant magnetic structures that have been inserted

into stratified domains and then allowed to rise. One class of models uses the thin flux-

tube approximation where there is no back-reaction of the magnetic structures on the fluid

via the Lorentz force (e.g., Caligari et al., 1995; Moreno-Insertis & Emonet, 1996; Fan &
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Fisher, 1996; Weber et al., 2011, 2012). Thin flux-tube models have the advantage that they

are far less computationally demanding than MHD models and so a much broader range

of parameter space can be explored. MHD models, while computationally expensive, more

faithfully represent the dynamics of rising magnetic structures. By inserting a magnetic

structure into the base of the simulated convective layer, these models can track the buoyant

rise of these structures and assess processes which may disrupt or weaken them as they

rise (e.g., Fan & Abbett, 2003; Fan, 2008; Jouve & Brun, 2009). A third type of flux

emergence model uses a forced shear layer to generate magnetic structures which then become

buoyant, thereby assuring that the magnetic structure can be generated through dynamo

action (e.g., Cline et al., 2003; Vasil & Brummell, 2009). In a variation on this method,

Guerrero & Käpylä (2011) have shown that dynamo action in a domain with convection

and a forced shear layer can produce strong dynamo action and yield buoyant magnetic

structures. Finally, near-surface models which include radiative transfer have succeeded in

reproducing many essential features of sunspots by introducing bundles of magnetic field into

their high-resolution simulations as a time-dependent lower boundary condition (Rempel

et al., 2009; Cheung et al., 2010). These “sunspot in a box” simulations are of sufficient

quality that it can be difficult to distinguish synthetic observations of the model from real

observations of sunspots.

Pioneering work into global dynamo models by Gilman (1983) and Glatzmaier (1985)

produced the first 3D MHD simulations of cyclic dynamo action in a rotating spherical

shell. Major efforts have been made towards building convective dynamo models capable

of addressing the generation of large-scale magnetic fields. In these models correct global

geometry plays a key role. Here we will highlight three major codes which are being used to

address convective dynamo action in stratified, rotating, spherical shells, namely the Pencil,

EULAG-MHD, and ASH codes. Figure 1.4 shows samples of convective patterns from each

of these codes. While the general pattern of rotationally-aligned convection near the equator

and more isotropic convection at mid- to high-latitudes occurs in all three simulations, the



16

Figure 1.4: Radial velocity patterns in three convective dynamo simulations from (a) War-
necke et al. (2012) using the Pencil code, (b) Ghizaru et al. (2010) using EULAG-MHD, and
(c) Nelson et al. (2013a) using ASH. Shown are (a) an orthographic projection for case A5 at
0.89R� (scale not given in original), (b) a Mollweide projection at 0.945R� (scale indicated),
and (c) a Mollweide projection for case D3b at 0.95R� (scale indicated). For all images dark
tones indicate downflows while light tones indicate upflows. All three simulations shown
produce cyclic dynamo action.

details of the flows realized are quite different due to a myriad of factors including the

computational method, the numerical resolution of the simulation, the choices of diffusion

models, the background stratification, the convective driving, and many more. Here we will

not attempt to catalogue all possible sources of these variations, but rather will attempt to

give a brief description of each code in order to give some idea about the major differences in

these three numerical tools. We will return to the ASH code in greater detail in Chapter 2.

The Pencil code uses a high-order finite difference scheme to solve the compressible
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MHD equations in 3D. Numerical cost limits the Pencil code’s ability to reach high lati-

tudes, thus the polar regions are generally excluded from the simulation domain. Using the

Pencil code to simulate spherical wedges, Käpylä et al. (2011) explored the generation and

maintenance of strong, solar-like differential rotation. When magnetic fields are added, these

models achieved cyclic dynamo action with reversals of global magnetic polarity (Käpylä

et al., 2012b). Warnecke et al. (2012) further explored the ability of these models to resolve

the rise and emergence of magnetic flux structures.

The EULAG-MHD code has been used to simulate solar-like dynamo action. Nu-

merically EULAG-MHD uses an implicit large-eddy simulation (ILES) framework in which

there is no explicit physical diffusion and numerical operators are chosen to be as stable as

possible, leading to significant numerical diffusion. It is also capable of simulating entire

spherical surfaces and thus does not require the poles to be excluded from the simulated

domain. Using EULAG-MHD, Ghizaru et al. (2010) have shown large-scale organization

of the toroidal field as well as magnetic activity cycles in a solar-like simulation. Regular

reversals of global magnetic polarity with a roughly 60 year period for a complete cycle were

achieved. Racine et al. (2011) has interpreted these results in terms of mean-field dynamo

theory, while Simard et al. (2013) have used the resulting mean-field dynamo parameters

such as the α-tensor to generate companion mean-field models which display similar cyclic

behavior.

The third code is the Anelastic Spherical Harmonic (ASH) code. All of the simulations

presented here use the ASH code. ASH is a large-eddy simulation (LES) code which requires

an explicit sub-grid scale (SGS) model to parameterize the effects of unresolved scales on

the resolved dynamics. The use of pseudospectral methods allows ASH to treat dynamics

over full spherical shells (Clune et al., 1999). Specifically, ASH uses spherical harmonic

transforms in the longitudinal and latitudinal directions, and can either use a projection

onto Chebyshev polynomials or a finite difference scheme in the radial direction. Miesch

et al. (2006, 2008) have explored the interplay of rotation, stratification, and moderately
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Figure 1.5: Magnetic wreaths from a convective dynamo simulation of a young Sun rotating
at three times the solar rate (case D3) shown in two 3D volume renderings taken at the same
instant. (a) Magnetic fields lines colored by longitudinal magnetic field Bφ which highlight
the strong connectivity between the two wreaths and between each wreath and the rest
of the domain. (b) Isosurfaces of Bφ at 20 kG (brown), 10 kG (red), 5 kG (yellow), -5
kG (green), -10 kG (blue), and -20 kG (purple) between ±30◦ of latitude which highlight
the non-axisymmetric components of the of the wreaths which are strongly modulated by
convective flows. Perspective is looking from approximately 45◦ N through the center of the
star. These magnetic wreaths are able to persist in the bulk of the convection zone for as
long as the simulation was run (here 61.6 years). Case D3 is discussed in detail in Brown
et al. (2010).

turbulent convection to produce strong differential rotation in a hydrodynamic setting. When

magnetism is admitted the resulting dynamo produces reversals of global polarity but is

dominated by non-axisymmetric fields with little global organization (Brun et al., 2004).

By adding an overshooting region of strong shear which mimics the solar tachocline, global-

scale organization of the toroidal field was achieved but without reversals in global magnetic

polarity over about 30 simulated years (Browning et al., 2006). Miesch & Brown (2012) have

explored 3D convective dynamo action with a Babock-Leighton term in order to include flux

transport by means of a parameterization of magnetic buoyancy.
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ASH has also been used to simulate the dynamics within the deep convective envelopes

of young stars rotating faster than our current Sun. Brown et al. (2008) began with hydrody-

namic simulations involving a range of rotation rates up to ten times the solar rotation rate

(10Ω�), finding that strong differential rotation is realized, and that the columnar convection

at low latitudes can exhibit significant modulation in amplitude with longitude, even appear-

ing as nearly isolated active nests. Brown et al. (2010) examined dynamo action achieved in

a MHD simulation carried out at 3Ω�, finding that the convection can build ordered global-

scale magnetic fields that appear as two wreaths of strong toroidal field positioned above

and below the equator. These striking structures shown in Figure 1.5 can persist for long in-

tervals despite being embedded within a turbulent convective layer. These wreaths strongly

interact with the convective flows, causing strong non-axisymmetric components which can

be seen in both Figures 1.5(a) and 1.5(b). However the convection does not destroy the

wreaths. It also does not fully pin them to the base of the simulation, as might be expected

from arguments about magnetic pumping, nor does it quickly eject the magnetic fields out

the top of the domain, as might be expected from considerations of magnetic buoyancy in

convective layers (Thompson & Weiss, 2009).

Turning to dynamo action proceeding at a faster rotation rate of 5Ω�, Brown et al.

(2011) showed that self-consistently generated magnetic wreaths at low latitudes can un-

dergo reversals in global magnetic polarity and even quasi-cycles of magnetic activity. The

complex steps involved in the magnetic field reversals are accompanied by variations in the

differential rotation, including bands of relatively fast and slow fluid propagating toward the

poles. In these models, ASH simulations have made contact with some of the key features

believed to be present in the solar dynamo, specifically the strong toroidal structures which

can yield reversals of global magnetic polarity. The work of Brown et al. (2010, 2011) pro-

vides much of the inspiration for this thesis, which seeks to understand how these wreaths

behave in more turbulent environments and how magnetic reversals are achieved.



20

1.4 Thesis Overview: Wreaths, Cycles, and Buoyant Loops in 3D Dynamo

Models

Encouraged by the results of previous 3D ASH simulations, we have conducted a new

series of related simulations with ASH designed to explore three fundamental science ques-

tions:

(1) How might sun-like stars build large-scale magnetic fields?

(2) How can those fields undergo cycles of magnetic activity and reversals in global

magnetic polarity?

(3) How can magnetic structures rise from their generation sites toward the stellar sur-

face?

In order to address these questions, we will begin with a discussion of the ASH code which

has enabled simulations of convective dynamo action. Chapter 2 will discuss the numerical

implementation of ASH code and how our simulations with ASH compare to other simula-

tions of solar-like convective dynamo action. The implementation and validation of a new

sub-grid scale (SGS) model in ASH will be covered in Chapter 3. Our initial discovery of

buoyant magnetic loops in a convective dynamo simulation will be presented in Chapter 4.

These buoyant magnetic loops are enabled by the use of a dynamic Smagorsinsky SGS model

which greatly reduces the effects of diffusion in our simulations.

In Chapter 5 the effects of reduced explicit diffusion on magnetic wreaths are inves-

tigated. Here we show that strong magnetic wreaths can be maintained as simulations are

made more turbulent and that the fundamental balances which are required to maintain

wreath-building dynamo action can persist as explicit diffusion is reduced. Next we will ex-

plore the cyclic magnetic activity which occurs in our more turbulent models in Chapter 6.

Special attention will be focused on the nature of the magnetic reversals achieved. We then

investigate in Chapter 7 the most turbulent dynamo simulation yet achieved with the ASH
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code, which generates large numbers of buoyant magnetic loops. Chapter 8 discusses the

collective properties of the generation of buoyant loops over a magnetic activity cycle. These

loops mimic some observed properties of solar active regions, specifically Hale’s polarity law,

Joy’s law for latitudinal tilts, and the hemispheric helicity rule.

As ASH is not capable of resolving the small-scales of motion which dominate dynam-

ics near the photosphere, all previous ASH simulations have used an impenetrable upper

boundary condition placed around 0.97 or 0.98R�. Chapter 9 investigates a new boundary

condition which allows plumes modeled on those achieved in local near-surface simulations

to pass through the upper boundary and into the computational domain. Finally, we will

conclude in Chapter 10 with a discussion of the over-arching themes of this work and the

potential for continued advances.



Chapter 2

Modeling Convection and Dynamo Action with ASH

We seek to investigate large-scale convective dynamo action in stellar interiors like

those of our Sun. To do this we need a numerical tool which can include physical processes

such as spherical geometry, rotation, turbulent convection, and magnetic induction on scales

comparable to the size of the solar convection zone. Spherical geometry is required to capture

the convective motions driven in a spherical shell between the base of the solar convection

zone at approximately 0.72R� and the photosphere. As differential rotation plays a key

role in essentially all theoretical models for large-scale dynamo action, our numerical model

must be capable of generating bulk zonal flows, preferably due to redistribution of angular

momentum by the resolved convective flows. Dynamo action is defined as the self-sustaining

generation of magnetic fields without an influx of magnetic energy through either the lower

or upper boundary. Beyond simply permitting dynamo action, if one wishes to study possible

mechanism for the generation of magnetic loops the numerical tools must allow sufficiently

fine resolution and avoid diffusing these magnetic structures on short time scales.

The final and perhaps most challenging element needed is the ability to achieve turbu-

lent flows. The level turbulence as measured by the Reynolds number in our simulations is

many orders of magnitude smaller than the level of turbulence in real stars. As computing

resources continue their exponential growth convective dynamo models have shown a remark-

able ability to keep pace. Gilman (1983) published the first convective dynamo simulation

which reported on models with 16 radial, 36 latitudinal, and 72 longitudinal grid points with



23

roughly 8000 time steps. The largest computational simulation reported in this thesis (case

D3b) uses 145 radial, 512 latitudinal, and 1024 longitudinal grid points over 9.8 million time

steps (see Nelson et al., 2013b). Thus over 20 years the size of convective dynamo models has

increased by a factor of 221. By comparison, Intel Corporation’s state-of-the-art commercial

chip increased in performance by a factor of 214.6 between 1983 and 2013 (Hellemans, 2013).

The largest reason for the improvement of convective dynamo models is that the number of

time steps which can be computed has increase by a factor of 103 while the spatial resolution

has only increased by factors of roughly 10 in each direction. This is in part a product of

the increased availability of large competitively available supercomputing resources funded

by agencies such as the National Science Foundation and NASA.

With the continued growth of computing power, one can speculate on when compu-

tational resources might permit a global simulation resolve the Kolmogorov scale, which

has been estimated based on atomic values to be on the order of 10 to 100 m (Braginskii,

1965). If Moore’s law continues to hold and convective dynamo models continues to mimic

its growth, the answer is roughly 200 years. It is likely, however, that most if not all of

the global-scale behaviors are not dynamically linked to scales over a million times smaller.

Thus we proceed with these models, hopeful that by resolving the largest scales of motion

and achieving the most turbulent states possible with current computational resources, we

may be able to capture some or perhaps all of the physical mechanisms which are essential

to realize large-scale dynamo action as it occurs in sun-like stars.

To conduct these simulations we use the equations of magnetohydrodynamics (MHD).

Specifically for the solar interior where the flows are orders of magnitude slower than the

sound speed, we use the anelastic approximation for subsonic convective flows developed by

Gough (1969) and further formulated for stellar convection by Latour et al. (1976). Our

computational tool for solving these equations is the anelastic spherical harmonic (ASH)

code. The hydrodynamic portion of ASH is described in detail in Clune et al. (1999), while

the inclusion of magnetism is covered in Brun et al. (2004). ASH solves the 3D anelastic
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MHD equations in rotating spherical shells. ASH uses 1D stellar structure models to provide

the background stratification or reference state. The 3D equations of mass conservation,

momentum conservation, energy conservation, and magnetic induction are solved using a

pseudo-spectral or mixed pseudo-spectral and finite difference method for spatial derivatives.

Time evolution is computed using a semi-implicit Crank-Nichelson scheme for linear terms

and an Adams-Bashforth explicit scheme for nonlinear terms.

What follows is not intended to provide a complete overview of the ASH code but

rather a description of its key elements. Particular attention will be paid to the components

which are of particular importance to this thesis. Specifically, we will provide an overview

of the anelastic MHD equations and how ASH solves them, while providing increased focus

on the sub-grid scale models used in ASH which are crucial for our discussion of buoyant

magnetic loops in Chapters 4, 7, and 8, as well as ASH’s boundary conditions which will

inform our discussion of plume boundary conditions in Chapter 9.

2.1 The Anelastic MHD Equations

The anelastic MHD equations are an approximate version of the fully compressible

MHD equations which have been specifically designed for regions such as stellar convective

layers. The anelastic approximation allows for strong density stratification without requiring

the computational model to track sound waves which can propagate at tens of kilometers per

second in the deep interior while convective motions are orders of magnitude slower. Thus

the anelastic approximation permits much larger time steps than fully compressible codes.

The anelastic formulation also formally decomposes the thermal state into a background

with small perturbations around it. In this way we can avoid the very long timescale for

changing the mean thermal stratification. ASH is thus able to avoid both the very short

time scales of sound propagation and the very long time scales of stellar evolution in order

to focus on the time scales of convective overturning and dynamo action. In the Sun these
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are on the order of weeks to tens of years. For comparison the sound-crossing time in the

Sun is about two hours and the thermal relaxation time scale for the solar convective layer

(or its Kelvin-Helmholtz time) is about 105 years.

The anelastic approximation splits all variables into a spherically-symmetric reference

state and 3D fluctuations about that reference state. The reference state is generally held

constant, but can be updated by periodically removing the mean value at each radial level

from the fluctuations and adding it to the reference state. The reference state for thermo-

dynamic variables such as density ρ̄, temperature T̄ , entropy S̄, and pressure P̄ are assigned

using the results of 1D stellar structure models (where over-bars denote the reference state),

while it is assumed that the reference state for velocity and magnetic field is zero. Fluctu-

ations about the reference state are denoted as ρ, T , S, P , ~u, and ~B, where ~u and ~B are

respectively the velocity and magnetic field. The decomposition into reference and fluctuat-

ing components are written as

ρtot(r, θ, φ, t) = ρ̄(r) + ρ(r, θ, φ, t) (2.1)

Ptot(r, θ, φ, t) = P̄ (r) + P (r, θ, φ, t) (2.2)

Ttot(r, θ, φ, t) = T̄ (r) + T (r, θ, φ, t) (2.3)

Stot(r, θ, φ, t) = S̄(r) + S(r, θ, φ, t) (2.4)

~utot(r, θ, φ, t) = ~u(r, θ, φ, t) (2.5)

~Btot(r, θ, φ, t) = ~B(r, θ, φ, t). (2.6)

The anelastic MHD equations consist of two equations of constraint, seven evolution

equations, and an equation of state for both the reference state and the thermodynamic

fluctuations. The constraint equations are the anelastic conservation of mass equation and

the solenoidal constraint on the magnetic field, given by

∇ · (ρ̄~u) = 0 (2.7)
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∇ · ~B = 0. (2.8)

The evolution equations express conservation of momentum and energy as well as the mag-

netic induction equation. They are solved in a reference frame which is rotating at angular

velocity Ω0. This gives two vector equations and one scalar equation written as

ρ̄
∂~u

∂t
= −ρ̄ (~u · ∇) ~u− 2ρ̄Ω0 × ~u−∇P + ρ~g −∇ · D − 1

4π

(
∇× ~B

)
× ~B (2.9)

ρ̄T̄
∂S

∂t
=− ρ̄T̄ ~u · ∇

(
S + S̄

)
+∇ ·

[
κrρ̄CP∇T̄ + κρ̄T̄∇

(
S + S̄

)]
+

η

4π

(
∇× ~B

)2

+ 2ρ̄ν

[
eijeij −

1

3
(∇ · ~u)2

]
(2.10)

∂ ~B

∂t
= ∇×

(
~v × ~B

)
−∇×

(
η∇× ~B

)
, (2.11)

where ~g is gravitational acceleration, D is the viscous stress tensor, eij is the strain-rate

tensor, and CP is the specific heat at constant pressure. Diffusion coefficients for momentum,

entropy, radiative diffusion, and magnetic fields are given by ν, κ, κr, and η, respectively.

ASH follows the large-eddy simulation (LES) paradigm where those scales of motion

which are smaller than the computational resolution are represented by a sub-grid scale

(SGS) model. The viscous diffusion tensor is dependent upon the SGS model chosen, but

for Newtonian diffusion it can be written as

D = Dij = −2ρ̄ν

[
eij −

1

3
(∇ · ~u) δij

]
. (2.12)

We will reserve further discussion of SGS models in ASH for Chapter 3.

The equation of state used in ASH is that of a perfect gas. For the reference state that

is written

P̄ = Rρ̄T̄ , (2.13)

where R is the gas constant. For our ideal gas it is R = 2CP/5. The equation of state for

the fluctuations is linearized in the anelastic approximation, which leads to

ρ

ρ̄
=
P

P̄
− T

T̄
=

P

γP̄
− S

CP
. (2.14)
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The linearized equation of state prevents ASH from investigating domains where perturba-

tions become significant compared to mean values.

2.2 Numerical Methods

ASH incorporates the equations of constraint on the mass flux and the magnetic field

by solving for streamfunctions. Toroidal streamfunctions Z and A describe, respectively,

streamlines and magnetic field lines which close on a spherical surface, while the poloidal

streamfunctions W and C describe streamlines and magnetic fields which do not. Formally

the decomposition is given by

ρ̄~u = ∇× (Zr̂) +∇× [∇× (Wr̂)] (2.15)

~B = ∇× (Ar̂) +∇× [∇× (Cr̂)] . (2.16)

Thus the evolution variables used in ASH are the mass flux streamfunctions W and Z,

the specific entropy S, the pressure P , and the magnetic streamfunctions C and A. Equa-

tions 2.9, 2.10 and 2.11 lead to evolution equations for W , Z, S, C, and A. The resulting

equation for P is not an evolution equation but rather is elliptic and must be satisfied at each

instant over the entire domain. Physically, this indicates that information about pressure

perturbations in the anelastic approximation is instantly propagated everywhere.

As suggested by its name, ASH uses spherical harmonic transforms to compute deriva-

tives in the latitudinal and longitudinal directions. Spherical harmonics are formally the

angular portion of solutions to Laplace’s equation on a sphere, and as such are the natu-

ral basis functions when working in spherical coordinates. Figure 2.1 shows 3D renderings

of three representative spherical harmonic functions. Following convention, we write these

functions as Y `
m (θ, φ), where m is the azimuthal wavenumber in units of the circumference

and ` represents the latitudinal order of the function. Spherical harmonics are the prod-

uct of sine and cosine functions of φ and associated Legendre polynomials of cos θ. Thus
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Figure 2.1: 3D volume rendering of the real parts of three selected spherical harmonic
functions. Here the radial position gives the amplitude of the function for each value of θ
and φ. Note that the number of nodes in longitude is given by m and the number of nodes
in latitude in given by `−m.

ASH accomplishes the spherical harmonic transform with a combination of a Fast Fourier

Transform (FFT) and a Legendre transform. Unfortunately there does not yet exist a robust

fast Legendre transform, so that aspect of our numerical algorithm scales as the maximum

spherical harmonic degree `max squared, whereas the FFT scales as 2`max ln (2`max).

These equations are solved using one of two numerical methods for the radial spatial

derivatives. The first uses Chebyshev polynomials in the radial direction. This version of

ASH was developed in the late 1990’s. The use of spherical harmonics allows for uniform

resolution over the spherical surface, provides spectral accuracy, and removes the coordinate

singularity at the poles. The use of Chebyshev polynomials in the radial direction also

has many positive properties. Chebyshev polynomials place large numbers of grid-points in

the boundary layers at the top and bottom of the layer where convective boundary layers

require high resolution. This version of ASH also achieves spectral convergence properties

in the spatial derivatives, although the overall accuracy of the scheme is limited by the

time-stepping used. When using Chebyshev polynomials ASH also employs a Chebyshev

colocation scheme in radius, which reduces the Chebyshev transform to a discrete cosine

transform, which scales as Nr lnNr, where Nr is the number of radial grid points. This
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Figure 2.2: Schematic overview of the numerical method used to solve the anelastic MHD
equations in ASH. Three data configurations are represented, as well as the steps needed to
move between each. (Courtesy Nicholas Featherstone, University of Colorado).

colocation scheme concentrates resolution near the boundaries of the domain which can

have negative implications for the size of the time step if significant radial flows exist in

those regions.

The second version of ASH uses a hybrid pseudo-spectral/finite difference scheme for

spatial derivatives. It retains the use of spherical harmonics in the θ and φ directions but

uses a variable-order centered finite difference scheme in the radial direction. All simulations

here use a 5th order scheme. This permits the use of arbitrary grids in the radial direction.

It also reduces the computational cost of the radial derivative scheme, which scales as Nr.

This decrease in cost is accompanied by a decrease in accuracy. The Chebyshev transform

is spectrally accurate while the finite difference scheme is not. This version of ASH is often

referred to as ASH-FD. Both versions have been incorporated into a single ASH framework,

allowing direct comparison between the different radial derivative schemes.

ASH is designed to efficiently operate on modern massively parallel supercomputers.

Thus special attention has been paid to the parallelization of its numerical scheme. The

existence of an elliptic equation for the pressure field requires at least one global communi-

cation at each time-step. In ASH, we chose a numerical technique which incorporates global

communication as required by the elliptic pressure equation and also allows other desirable
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features such as spectrally accurate derivatives and semi-implicit time stepping of linear

terms. This is accomplished through a highly efficient series of data transposes. Figure 2.2

gives a visual representation of the numerical method employed by ASH. Radial derivatives

and implicit time-stepping occurs in our ‘Implicit Solve Configuration’ with spherical har-

monic modes distributed and all radial points at a given ` and m in processor. A global

transpose (achieved using the Message Passing Interface (MPI) command ‘AlltoAllv’) moves

data to our ‘Spectral Space Configuration’ so that radial and m grid points are distributed

and ` in processor. In this configuration linear terms are computed and angular derivatives

are taken. Through a FFT, another global transpose, and a Legendre transform data is

moved to physical space with radial and latitudinal grid points distributed and longitudinal

grid points in processor. This is our ‘Physical Space Configuration’. In physical space the

nonlinear terms can be calculated and then transformed and transposed back to the Spectral

Space Configuration where the next time-step can begin.

When simulating physical systems with ranges of physical and temporal scales beyond

the capacity of computational resources, modeling the behavior of the largest scales requires

some approximation to be made about the behavior of scales below some cutoff so that the

numerical requirements match the computational resources. ASH follows the philosophy of

a Large-Eddy Simulation (LES). The LES paradigm relies on sub-grid scale (SGS) models to

represent the effects of unresolved scales. Explicit SGS models can range from substituting

so-called turbulent diffusivities for the much smaller atomic diffusivities to much more com-

plex schemes which attempt to model the turbulent cascade of energy from large to smaller

scales and use physical arguments such as scale-invariance or self-similarity to extrapolate

the behavior of unresolved scales based on resolved ones. ASH is an explicit LES code, as

are the Pencil (Brandenburg, 2003) and MagIC (Gastine et al., 2012) codes which have been

used extensively for convective dynamo simulations.

Alternatively, implicit SGS models have gained wide-spread popularity in a number

of settings. Outside of the field of convective dynamos, Wachtor et al. (2013) have used
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the radiative combustion code RAGE to simulate inertial confinement fusion and Patnaik

et al. (2012) have used the atmospheric chemical mixing code FAST3D-CT to simulate the

transport of pollution in cities. Both RAGE and FAST3D-CT follow the ILES philosophy

which uses highly stable spatial and temporal derivative schemes in the place of explicit

diffusion terms. These derivative operators include significant numerical diffusion, but only

when needed for numerical stability. ILES models can generally achieve much lower levels

of diffusion than explicit LES codes. However, they have the disadvantage that their dif-

fusion is motivated purely by numerical considerations rather than physical ones, and that

they generally cannot measure their diffusion as it is not explicitly computed. Implicit LES

codes which have been used to model stellar dynamo action include EULAG-MHD (Prusa

et al., 2008). A number of convective dynamo codes have been designed using implicit LES

numerical methods and can also include explicit SGS models, making them either implicit

or hybrid implicit/explict LES codes. These hybrid codes including MuRAM (Cheung et al.,

2010), FSAM (Fan et al., 2013), and Stagger (Beeck et al., 2012).

2.3 Boundary Conditions

As with any system of partial differential equations, the solutions to the anelastic MHD

equations depends strongly on the choice of boundary conditions. In the solar convection

zone the inner and outer boundaries are at the radiative interior and in the solar atmosphere.

While it is possible to simulate a radiative interior (e.g., Browning et al., 2006; Brun et al.,

2011), the simulations presented here chose to omit that region. Whereas simulations which

include a tachocline are extremely interesting, they are also extremely challenging, both

conceptually and computationally. In the past several years there has been significant work

done to address the long-standing question of the maintenance of the tachocline using 3D

simulations (Strugarek et al., 2011; Brun et al., 2011). There has also been significant work

to address the validity of the anelastic approximation in stably stratified layers (Brown et al.,
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2012; Vasil et al., 2013). The effects of a convective over-shooting region with strong shear

on convective dynamo simulations in ASH is an active area of research that is beyond the

scope of this thesis. We will discuss the possibilities for future research in this direction in

Chapter 10.

The upper boundary in ASH is perhaps even more challenging than the lower bound-

ary. Sun-like stars go through extremely large changes in their stratification near their

surfaces. Radiative transport and non-ideal thermodynamic processes such as ionization

play important roles. The preferred scales of convection drop dramatically until at the

surface the granulation is on the order of 1 Mm or at spherical harmonic degree of about

`max ≈ 4500. The largest ASH simulations to date achieve a maximum spherical harmonic

degree of `max = 1360. ASH does not have the resolution or the physics needed to simulate

surface convection. Thus we must place an upper boundary somewhere in the interior of the

Sun.

2.3.1 Thermal Boundary Conditions

The convective driving of our simulations is the result of the transport of thermal

energy through our spherical shell. Heat is input at the base of the domain through a

radiative diffusion term which is taken from a 1D stellar model. This acts as a source term

which carries the entire luminosity at the bottom of the domain and decreases to essentially

zero over the bottom 15% of the domain. Likewise we must transport heat out of the top of

the domain. We generally chose to do this through a diffusive flux, although in Chapter 9

we will discuss an alternative method which uses an imposed pattern of plumes to transport

the energy flux through the upper boundary via convection.

For our entropy equation we can set one of two boundary conditions. Either we can set

the value of S or the value of ∂S/∂r. As we are simulating a convective layer, we generally

chose to set ∂S/∂r = 0 at the lower boundary. By doing so we define the bottom of our
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domain as the base of the convection zone. For the upper boundary we have groups of

simulations which use either condition. Earlier cases were generally run with ∂S/∂r set

such that the diffusive flux out of the domain was exactly one solar luminosity. Our more

recent cases have set S on the upper boundary, thereby allowing the convection to build

a boundary layer self-consistently in order to achieve the same goal. The first method is

computationally cheaper as the thermal equilibration time is quite short, however the second

removes a potentially troubling issue where the total entropy of the domain is unconstrained

when both the upper and lower boundary conditions are of the second type. As the lower

boundary is designed to represent the base of the convection zone where ∂S/∂r = 0 by

definition, we find it conceptually preferable to set the gradient of S to zero at the base of

the domain and the value of S at the top of the domain.

Coupled with the choice of entropy boundary conditions is our choice of the thermal

diffusivity κ. As was mentioned, a radiative flux is responsible for carrying the energy flux

at the lower boundary in both our simulations and real stars. There is no such radiative flux

at the top of our computational domain. In stars the flux would be carried by convection all

the way to the photosphere, though with impenetrable boundary conditions placed below

the photosphere this is not possible. Thus we employ diffusion on the spherically symmetric

entropy profile to carry the required luminosity. This means that our choice of the thermal

diffusion coefficient κ plays an important role in specifying the thermal state of our upper

boundary.

We have several parameters with which to specify κ, but generally the parameter which

has the greatest impact on the upper boundary layer is our specification of the thermal dif-

fusion on the spherically-symmetric entropy, or κ00. We can either strongly taper κ00 so that

it is large at the upper boundary and small though the rest of the domain, or set κ00 = κ

so that thermal diffusion acts uniformly on all modes. In this work, all simulations which

employed a ∂S/∂r boundary condition at the upper boundary also used a strongly tapered

profile for κ00, while all those which set S at the boundaries set κ00 = κ.
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2.3.2 Momentum Boundary Conditions

Previous ASH simulations have employed an impenetrable upper boundary condition

such that the radial velocity

vr = 0. (2.17)

In Chapter 9 we will present a new boundary condition which allows specified flows to cross

through the upper boundary and thus leave or enter the computational domain.

On both the upper and lower boundaries, ASH simulations are generally run with

stress-free boundary conditions. These can be written as

∂

∂r

(vθ
r

)
=

∂

∂r

(vφ
r

)
= 0. (2.18)

The combination of impenetrable and stress-free boundary conditions prevents any hydro-

dynamic torques on the domain from the boundaries, thus conserving angular momentum

to the numerical accuracy of our simulations. As many of our simulations can continue for

millions of time-steps, the total angular momentum of the system can and in practice does

change as a random walk away from the initial values. In order to more precisely conserve

angular momentum over long time evolutions, we can also employ what we term angular

momentum cleaning. This takes advantage of our streamfunction formalism as follows.

The total angular momentum in our computational domain about the axis of rotation

can be written as

Lz =

∫ ro

ri

∫ π

0

∫ 2π

0

(~r × ~u) · ẑ r2 sin θ dr dθ dφ =

∫ ro

ri

∫ π

0

∫ 2π

0

ρ̄uφr
3 sin2 θ dr dθ dφ, (2.19)

where ~r is the radial vector from the origin and ẑ is the unit vector along the axis of rotation.

Note that we have not considered the rotation rate of the frame, so initially Lz = 0. Using

the streamfunction formalism

ρ̄uφ =
1

r sin θ

∂2W

∂r∂φ
− 1

r

∂Z

∂θ
. (2.20)
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Carrying out the φ integral removes the W term which contains a φ derivative, leaving

Lz = −2π

∫ ro

ri

∫ π

0

∂〈Z〉
∂θ

r2 sin2 θ dr dθ, (2.21)

where ∂〈Z〉 is the longitudinally-averaged portion of Z. Thus we can already see that Lz

only depends on the spherical harmonic components of Z with m = 0. Thus 〈Z〉 =
∞∑̀
=0

Z̃0
` Y

0
`

Now let us consider the latitudinal integral such that

Lz = −2π

∫ ro

ri

T r2 dr, (2.22)

where

T =

∫ π

0

∂

(
∞∑̀
=0

Z̃0
` Y

0
`

)
∂θ

sin2 θ dθ. (2.23)

If we now take the derivative through the sum and use a derivative identity for spherical

harmonics (Dennery & Krzywicki, 1996), we find that

∂Y 0
`

∂θ
= CY 0

` , (2.24)

where C is simply a constant which depends on the normalization used. Thus we can write

T = C
∞∑
`=0

(
Z̃0
`

∫ π

0

Y 0
` sin θ sin θ dθ

)
. (2.25)

Recognizing the integral to be an inner product between two spherical harmonics,

T = D

∞∑
`=0

(
Z̃0
` δ`1

)
= DZ̃0

1 , (2.26)

where again D is merely a constant dependent upon the normalization chosen.

Returning to Equation 2.22, we can now write the total angular momentum about the

axis of rotation as

Lz = −2πD

∫ ro

ri

Z̃0
1r

2 dr. (2.27)

We can therefore assure that angular momentum is conserved by keeping∫ ro

ri

Z̃0
1r

2 dr = 0 (2.28)
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at each time step. It can be shown that the other two components of total angular momen-

tum can similarly be expressed as radial integrals of Z̃1
1 and Z̃−1

1 . By choosing the boundary

values of these three components of Z such that Equation 2.28 is satisfied, we can enforce

conservation of angular momentum to machine precision at each time step.

2.3.3 Magnetic Boundary Conditions

While there are clear physical arguments for our standard hydrodynamic boundary

conditions, the choices of magnetic boundary conditions are somewhat more varied. In ASH

we have three choices, which are as follows.

• The boundary is a perfect conductor, such that the electric field ~E is

Eθ = Eφ = 0. (2.29)

Combined with the impenetrable condition described above, this leads to a condition

on ~B given by

Br =
∂Bθ

∂r
+
Bθ

r
=
∂Bφ

∂r
+
Bφ

r
= 0 (2.30)

• The boundary matches to an external potential field with

~B = ∇Φ (2.31)

which means that

∇2Φ = 0. (2.32)

• The magnetic field is required to be purely radial at the boundaries, such as would

happen at the boundary to a highly permeable external medium. This is expressed

at ~B = Brr̂.

For all of the magnetic simulations presented here we have chosen to employ a perfect con-

ductor on the inner boundary and a potential field on the outer boundary. Brown (2009)
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contains additional discussion of the rationale for various magnetic boundary conditions and

their impact on dynamo simulations.

2.4 Overview of Simulations

Using ASH we have conducted three major sets of numerical experiments to explore

questions related to convective dynamo action in ASH. The first set of simulations, containing

cases Na, Nb, and S, were designed to test the dynamic Smagorisnky SGS model in ASH

and compare it to the enhanced eddy viscosity model. This comparison will be discussed

primarily in Chapter 3. They were run in 2009 on the Sun Constellation Linux Cluster

named Ranger at the Texas Advanced Computing Center.

The second set of simulations are convective dynamo models designed to probe physical

mechanisms which may be present in solar-like dynamos. Case D3 was originally begun by

Benjamin Brown and was discussed in detail in Brown et al. (2010). Cases D3-pm1 and D3-

pm2 were also run primarily by Bejamin Brown as part of his thesis work at the University

of Colorado. Working with Benjamin, I ran cases D3a, D3b, and S3 in order to explore the

effects of decreased diffusion on the dynamo-generated magnetic wreaths attained in case

D3. Cases D3a and D3b were run from 2007 through 2010 on a number of systems including

the IBM Blue Gene Cluster at the San Diego Supercomputing Center, the Ranger system,

and the Cray XT5 system Kraken at the National Institute for Computational Sciences.

These models will be discussed in detail in Chapters 4 through 8.
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Table 2.1: Computational parameters for ASH simulations. Shown are the number of radial, latitudinal, and longitudinal grid
points. The SGS model employed for viscous, thermal, and magnetic diffusion (if applicable) is shown as either the enhanced
eddy (EE) model or the dynamic Smagorisnky (DS) model. Thermal diffusion on the spherically-symmetric entropy profile is
either equal to thermal diffusion on all other modes or strongly tapered near the upper boundary. The number of time-steps
taken is given by Nt. Cases are either magnetic or purely hydrodynamic. Boundary conditions are either closed (C) or imposed
plumes (P) (see Chapter 9). All simulations here use stress-free (SF) boundaries. For closed boundaries one can also select if
they impose values of the entropy (S) or the entropy gradient (DS). Magnetic boundary conditions are either perfect conductors
(PC) or match to an external potential field (PF). The method of taking radial derivatives ∂/∂r is either using a projection onto
Chebyshev polynomials (Cheby) or finite differences (FD).

Computational Parameters for ASH Simulations

Case Nr, Nθ, Nφ SGS Model κ00 = κ? Nt Magnetic? Lower B. C.’s Upper B. C.’s ∂/∂r
Na 192, 512, 1024 EE No 1.2× 106 No C, SF, DS C, SF, DS Cheby
Nb 257, 1024, 2048 EE No 4.3× 105 No C, SF, DS C, SF, DS Cheby
S 192, 512, 1024 DS No 7.5× 105 No C, SF, DS C, SF, DS Cheby

D3 97, 256, 512 EE No 5.8× 106 Yes C, SF, DS, PC C, SF, DS, PF Cheby
D3-pm1 145, 256, 512 EE No 5.7× 106 Yes C, SF, DS, PC C, SF, DS, PF Cheby
D3-pm2 145, 512, 1024 EE No 4.8× 106 Yes C, SF, DS, PC C, SF, DS, PF Cheby
D3a 97, 256, 512 EE No 1.2× 107 Yes C, SF, DS, PC C, SF, DS, PF Cheby
D3b 145, 512, 1024 EE No 9.8× 106 Yes C, SF, DS, PC C, SF, DS, PF Cheby
S3 145, 512, 1024 DS No 3.4× 106 Yes C, SF, DS, PC C, SF, DS, PF Cheby

Ia 300, 512, 256 EE Yes 6.5× 105 No C, SF, DS C, SF, S FD
Ib 500, 1024, 512 EE Yes 9.3× 105 No C, SF, DS C, SF, S FD
Ic 500, 1024, 512 EE Yes 8.6× 105 No C, SF, DS C, SF, S FD
P 500, 1024, 512 EE Yes 2.7× 105 No C, SF, DS P FD
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Table 2.2: Dimensional parameters for the ASH simulations. Shown are the location of the inner Ri and outer Ro radial
boundaries in units of the solar radius R� = 6.95 × 1010 cm, the fractional density contrast over the domain ρi/ρo, the RMS
velocity vRMS in m s−1 and RMS magnetic field strength BRMS in kG at mid-convection zone, the bulk rotation rate Ω0 in units
of the mean solar rotation rate Ω� = 2.7 × 10−6 s−1 (thus the period P� = 2π/Ω� = 26.9 days), the viscous ν, thermal κ, and
magnetic η diffusion coefficients in units of cm2 s−1, the mean time step ∆t in seconds, and the total evolution time TE in days for
each simulation. For cases S and S3 using the dynamic Smagorinsky SGS model, the values quoted are based on the time-averaged
rms viscosity, conductivity, and resistivity at mid-depth, noting that these diffusion coefficients have near hundred-fold spatial
variations.

Dimensional Parameters and Diagnostics for ASH Simulations

Case Ri/R� Ro/R� ρi/ρo vRMS BRMS Ω0/Ω� ν κ η ∆̄t TE
Units – – – m s−1 kG – cm s−2 cm s−2 cm s−2 s days
Na 0.719 0.967 24.3 54.4 – 3.0 5.15× 1011 2.06× 1011 – 340 4820
Nb 0.719 0.967 24.3 57.2 – 3.0 3.43× 1011 1.37× 1011 – 142 1120
S 0.719 0.967 24.3 55.2 – 3.0 1.49× 1010 5.98× 1010 – 319 2760

D3 0.719 0.967 24.3 51.6 3.24 3.0 1.44× 1012 5.77× 1012 2.89× 1012 337 22500
D3-pm1 0.719 0.967 24.3 50.1 5.20 3.0 1.44× 1012 5.77× 1012 1.44× 1012 104 6860
D3-pm2 0.719 0.967 24.3 50.5 9.39 3.0 1.44× 1012 5.77× 1012 7.22× 1011 89.9 4980
D3a 0.719 0.967 24.3 53.8 6.13 3.0 9.40× 1011 3.76× 1012 1.88× 1012 175 24500
D3b 0.719 0.967 24.3 55.9 5.79 3.0 5.67× 1011 2.27× 1012 1.13× 1012 54.5 6180
S3 0.719 0.967 24.3 56.4 5.31 3.0 2.18× 1010 8.71× 1010 4.35× 1010 40.0 1520

Ia 0.719 0.983 149 41.8 – 1.0 2.41× 1012 9.64× 1012 – 998 7510
Ib 0.719 0.983 149 70.9 – 1.0 1.20× 1012 4.81× 1012 – 628 6800
Ic 0.719 0.983 149 74.5 – 1.0 6.02× 1011 2.41× 1012 – 280 1960
P 0.719 0.983 149 101 – 1.0 6.02× 1011 2.41× 1012 – 171 830
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Table 2.3: Dimensionless parameters for the ASH simulations. Evaluated at mid-depth are the rms Reynolds number Re =
vrmsL/ν and fluctuating Reynolds number Re′ = v′rmsL/ν, the Rayleigh number Ra = (−∂ρ/∂S)(dS̄/dr)gL4/ρνκ, the Taylor
number Ta = 4Ω2

0L
4/ν2, the Rossby number Ro = ω/2Ω0, and the convective Rossby number Roc = (Ra/Ta Pr)1/2, and the

Prandtl number Pr = ν/κ. For MHD simulations the magnetic Reynolds number Rm = vrmsL/η and fluctuating magnetic
Reynolds number Rm′ = v′rmsL/η, and magnetic Prandtl number Pm = ν/η are also given. Here the fluctuating velocity v′ has
the axisymmetric component removed: v′ = v − 〈v〉, with angle brackets denoting an average in longitude. For cases S and S3
using the dynamic Smagorinsky SGS model, the values quoted are based on the time-averaged rms values of Re, Re′, Ra, Ta,
Rm and Rm′ at mid-depth, noting that these parameters depend on diffusion coefficients which have near hundred-fold spatial
variations (see Table 2.2).

Dimensionless Parameters for ASH Simulations

Case Re Re′ Ra Ta Ro Roc Pr Rm Rm′ Pm
Na 1080 337 2.13× 106 8.03× 107 0.725 0.307 0.25 – – –
Nb 1650 517 4.02× 106 1.81× 108 0.859 0.287 0.25 – – –
S 9210 2870 2.76× 108 1.28× 1011 0.735 0.0293 0.25 – – –

D3 173 104 3.28× 105 1.22× 107 0.374 0.315 0.25 86 52 0.5
D3-pm1 149 102 2.98× 105 1.22× 107 0.372 0.300 0.25 149 102 1.0
D3-pm2 145 101 3.08× 105 1.22× 107 0.370 0.306 0.25 291 202 2.0
D3a 244 154 5.84× 105 2.41× 107 0.447 0.295 0.25 122 77 0.5
D3b 343 273 1.11× 106 6.08× 107 0.566 0.257 0.25 171 136 0.5
S3 8050 5750 7.68× 108 4.46× 1010 0.581 0.262 0.25 4030 2880 0.5

Ia 94 52 6.20× 104 5.66× 105 1.34 0.462 0.25 – – –
Ib 215 177 1.50× 105 2.27× 106 1.88 0.515 0.25 – – –
Ic 458 418 4.97× 105 9.07× 106 2.09 0.568 0.25 – – –
P 328 253 1.60× 105 2.27× 106 2.07 0.532 0.25 – –
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The final set of simulations are four hydrodynamic models designed to explore the

effects of an alternate upper boundary condition in ASH which is designed to more faith-

fully represent the dynamics present in the upper portion of the solar interior. This plume

boundary condition is a novel addition to the ASH code which is described in Chapter 9.

Cases Ia, Ib, and Ic use the standard impenetrable upper boundary condition, but extend to

0.983R� to include as much of the convective layer as possible. Case Ia has moderately high

values of ν and κ and has a solar-like differential rotation profile. It is modeled after case

AB2 from Brun & Toomre (2002). Both diffusion coefficients are reduced by a factor of two

in case Ib, which has a weak solar-like differential rotation profile. Case Ic has diffusivities

that are again reduced by a factor of two and produces an anti-solar differential rotation

profile. Case P uses our plume upper boundary condition with ν and κ equal to those of

case Ib and retains a strong solar-like differential rotation profile. These simulations were

run on the Dell PowerEdge Cluster named Stampede at the Texas Advanced Computing

Center and the SGI ICE Cluster named Pleiades at NASA’s Ames Research Center.

Tables 2.1, 2.2, and 2.3 present, respectively, the computational, dimensional, and di-

mensionless parameters for all the ASH simulations which will be referenced in this thesis.

Though many of these parameters will be restated later in our analysis of the various simu-

lations, this presentation is intended to provide an easy and comprehensive reference to the

reader as well as an overview.

2.4.1 Comparison with Other Dynamo Simulations

As was previously discussed, there are several other codes which are used to conduct

similar simulations to those that we discuss here. It is generally quite challenging to make

direct comparisons between results from ASH simulations and those using other codes. Many

other codes use implicit LES formulations, which generally means that they do not have

access to parameters related to viscous, thermal, or magnetic diffusion. Additionally no two
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Table 2.4: Dimensional parameters from selected simulations conducted with the Pencil
code. These values are adapted from the non-dimensional parameters given in Käpylä et al.
(2011), Warnecke et al. (2012), and Käpylä et al. (2013) (abbreviated K11, W12, and K13).
Dimensional parameters include the RMS velocity in units of m/s, the viscosity in units of
cm2 s−1, the magnetic diffusivity in units of cm2 s−1, the rotation rate, and the luminosity,
both in solar units.

Dimensional Parameters for Selected Pencil Code Simulations

Reference Run vRMS (m s−1) ν (cm s−2) κ (cm s−2) Ω0/Ω� L/L�
K11 A0 10100 8.78× 1013 – 0.0 2.9× 106

K11 A1 9610 8.87× 1013 – 1.1 2.9× 106

K11 A2 9610 8.87× 1013 – 2.1 2.9× 106

K11 A3 9610 8.63× 1013 – 4.3 2.9× 106

K11 A4 12700 8.77× 1013 – 10.6 2.9× 106

K11 A5 9610 8.87× 1013 – 21.9 2.9× 106

K11 A6 7870 8.71× 1013 – 42.5 2.9× 106

K11 B0 8740 5.37× 1013 – 0.0 2.9× 106

K11 B1 8740 5.09× 1013 – 10.4 2.9× 106

K11 B2 7870 5.22× 1013 – 21.4 2.9× 106

K11 B3 6990 5.28× 1013 – 43.0 2.9× 106

K11 C1 3500 9.67× 1013 – 23.5 1.56× 106

K11 D1 5240 1.93× 1013 – 23.6 6.46× 105

K11 D2 5240 1.96× 1013 – 35.8 6.46× 105

W12 A5 3150 3.17× 1014 3.17× 1013 19.6 1.81× 107

W12 A5a 4590 1.52× 1013 1.52× 1013 18.3 1.81× 107

W12 Ar1 1750 1.53× 1013 1.53× 1013 77.6 1.81× 107

K13 A1 404 5.21× 1013 5.21× 1013 3.6 7.92× 105

K13 A2 373 5.21× 1013 5.21× 1013 3.3 7.92× 105

K13 B1 584 8.83× 1013 8.83× 1013 5.2 7.92× 105

K13 B2 531 8.83× 1013 8.83× 1013 4.7 7.92× 105

K13 C1 929 8.83× 1013 8.83× 1013 8.2 7.92× 105

K13 C2 823 8.83× 1013 8.83× 1013 7.3 7.92× 105

K13 D1 473 1.42× 1014 4.73× 1013 4.2 1.31× 105

K13 D2 572 7.59× 1013 3.80× 1013 5.1 1.31× 105

K13 E3 929 8.82× 1013 8.82× 1013 8.2 7.92× 105

K13 E4 897 1.06× 1014 1.06× 1014 8.0 7.92× 105

codes solve exactly the same numerical evolution equations. One notable example can be

found when comparing the energy equations solved by ASH and EULAG-MHD. EULAG-
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MHD includes a thermal drag term which keeps the thermal state from moving away from

the specified background stratification (Prusa et al., 2008; Ghizaru et al., 2010). This term

is small compared to other terms in the EULAG-MHD energy equations. However upon

careful examination this term plays a crucial role in allowing EULAG-MHD simulations at

the solar rotation rate to retain a solar-like differential rotation (fast equator, slower poles)

and achieve cycles of magnetic activity, whereas ASH simulations at the solar rotation rate

which are sufficiently turbulent to achieve magnetic cycles have anti-solar differential rotation

profiles. This is one example of the variations between codes that make direct comparison

difficult.

In contrast, Jones et al. (2011) conducted a detailed comparison of ASH with several

codes designed for planetary dynamo simulations. Included in this analysis was the MaGIC

code, which has also been used in low-mass stellar models (Gastine et al., 2012). They

found that when carefully formulated, benchmark problems can be used to test differences

in numerical methods and computational implementation. Unfortunately, similar work has

not been done to compare ASH, EULAG-MHD, and the Pencil code, in part because these

three codes emily fundamentally different computational approaches.

We have undertaken to compare ASH results with those from the Pencil code, specifi-

cally the simulations presented by Käpylä et al. (2011), Warnecke et al. (2012), and Käpylä

et al. (2013). The Pencil code is especially favorable for comparing with ASH as both codes

generally use explicit diffusion which is only a function of depth. The Pencil code is non-

dimensional while ASH uses dimensional units. Thus to compare the two codes we have

computed dimensional units for the Pencil code simulations with the help of Jörn Warnecke,

which are given in Table 2.4. Simulations using the Pencil code have achieved convective

dynamo simulations with strong solar-like differential rotation, the ejection of magnetic struc-

tures generated by dynamo action, and equatorward propagation of magnetic features. It

is thus very useful to understand the similarities and differences between those simulations

and others using ASH.
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Dimensional parameters from ASH simulations are given in Table 2.2 and similar pa-

rameters for the Pencil code simulations are shown in Table 2.4. Upon comparison it becomes

immediately clear that although some parameters such as the diffusion coefficients are very

similar, the luminosities and RMS velocities are much larger in Pencil code models than the

values in our ASH simulations. The Pencil code simulations also explore a much broader

range of rotation rates than the ASH simulations shown here. The widest range of rotation

rates explored for solar-like stars in ASH was done by Brown et al. (2008) who considered

rotation rates between one and ten times the solar value. The ability to achieve qualitatively

similar physical mechanism in such widely disparate regions of parameter space may indicate

that some aspects of convective dynamo action are robust over a broad range of physical

settings. It may equally inspire caution as one might interpret these results to mean that

one can find regions of parameter space which produce qualitatively similar results for very

different physical reasons. We will discuss the possibility for further comparisons between

the results of ASH, Pencil, and EULAG-MHD models in Chapter 10.



Chapter 3

Enhanced Subgrid-Scale Models for Stellar Convection

As discussed in Chapter 2, the ASH code follows an explicit LES framework in which

the largest scales of the solar interior are simulated and the effects of scales below our numer-

ical resolution must be parameterized using a SGS model. In this chapter we will present

two SGS models, which we term the Enhanced Eddy and Dynamic Smagorinsky models.

The Enhanced Eddy (EE) model has been used in ASH extensively (e.g., Brun & Toomre,

2002; Brun et al., 2004; Miesch et al., 2006; Brown et al., 2010; Brun et al., 2011), while the

Dynamic Smagorinsky (DS) model was only recently implemented in the ASH code. This

chapter outlines an analysis designed to asses the validity and effectiveness of the DS model.

Sections of this chapter follow the text of my Master’s Thesis, submitted to the University of

Colorado in 2009, but with significant revisions and additions. I was the sole author of that

thesis. The DS SGS model was originally implemented in ASH by Mark Miesch. I performed

significant changes to this implementation to make it numerically stable. I conducted and

analyzed all of the simulations presented here.

3.1 The Large-Eddy Simulation Framework

We seek to use computational tools to explore the nature of large-scale solar and stellar

convective and dynamo processes. Turbulence likely plays a key role in both the convection

and the generation of magnetic fields. It links the scales of interest with scales that are
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below the resolution limits of current numerical simulations. In this work we seek to use

subgrid-scale (SGS) models which parameterize the effects of this turbulent cascade in order

to improve our global models of solar and stellar convection.

Convection in the solar interior is a highly nonlinear process that involves a wide range

of scales in both length and time. As an example, the solar convection zone spans roughly 200

Mm in radius while the length scale for diffusion of momentum, or Kolmogorov scale, may

be on the order of meters – a separation in scales of a factor of 108. A brute-force approach

that attempted to resolve all scales of motion in the solar convection zone would require far

more powerful computers than are envisioned in the foreseeable future. The problem is made

tractable by the use of SGS models which parameterize the effects of small-scale motions.

Simulations can then capture large-scale features at reasonable computational costs. The

use of SGS models has allowed remarkable advances towards creating large-scale models

consistent with solar and stellar observations, such as simulating solar differential rotation

(Brun & Toomre, 2002; Miesch et al., 2006) or cycles of magnetic activity and reversals of

magnetic polarity (Brown et al., 2011). By improviFng our SGS treatment, we hope to

achieve even more realistic solar and stellar models.

In all ASH cases, finite computational resources prohibit the use of molecular values

for the diffusion of momentum, heat, and magnetic fields. This requires a SGS scheme which

replaces molecular viscosity, thermal conductivity, and magnetic resistivity with turbulent

values designed to represent unresolved small-scale mixing. Previous ASH simulations have

used an Enhanced Eddy (EE) SGS model that uses a diffusion term of the same form as

that used in the Navier-Stokes equation, but which has a kinematic viscosity that is many

orders of magnitude larger than molecular values. Additionally, this viscosity is scaled by

the background density (in this work ν ∝ ρ̄−1/2), and thus is constant on horizontal surfaces.

This EE viscosity model is computationally convenient and retains the same mathematical

form as a direct numerical simulation (DNS) of the solar interior. It has produced important

insights into convection, differential rotation, and dynamo action in the sun and other stars.
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However this SGS prescription becomes prohibitively expensive for very large Reynolds num-

bers where the simulation cost scales roughly as Re4. This scaling assumes that doubling

the Reynolds number requires doubling the number of grid points in each dimension and

suffering a corresponding halving of the time step due to CFL constraints. More complex

SGS models hopefully represent small-scale effects more faithfully, allowing less diffusively

influenced dynamics to be achieved without increasing resolution, thus reducing computa-

tional cost. In this chapter, we will explore the effects of an additional SGS turbulence

parameterization, the Dynamic Smagorinsky model (hereafter the DS model) developed by

Germano et al. (1991), and compare it with simulations using the EE diffusion model.

3.2 SGS Models

In the LES framework the resolved scales are formally expressed as a convolution of

the true velocity and thermodynamic fields with some filter function which removes the

unresolved scales. In practical terms this filter is usually the discrete grid on which the

numerical equations are solved. We consider the resolved velocity field ûi to be the true

velocity field ui convolved with a grid-scale filter G, which we write as a hat for convenience.

We can write the evolution equation for ~u as

∂~̂u

∂t
= −

(
~̂u · ∇

)
~̂u−∇ · (ûiuj − ûiûj) + ... (3.1)

where we have omitted the additional terms which include the effects of density stratifica-

tion, viscosity, gravity, and magnetism for brevity. The full set of terms can be found in

Equation 2.9. Clearly, the evolution of the resolved velocity field depends on not only the

resolved scales but on correlations in the unresolved scales as well. To close the equation we

must write

ûiuj − ûiûj ≈ T , (3.2)
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where T is the unresolved stress tensor. This approximation becomes exact if one can a find

the correct form of the stress tensor on the grid scale, which is not possible in most, if not

all, physical systems. In computational settings T must be calculable. Thus the components

of T can be constants or functions of position, the background thermal state, or the resolved

3D thermal and velocity fields. Choosing to make T a function of the evolutionary variables

introduces additional nonlinearities into the mathematical system, which may or may not

be undesirable for a given numerical scheme. This term is given by the divergence of a

second-rank tensor, which is the same form as the viscous diffusion term in the momentum

equation. If small-scale motions are purely dissipative, it then makes sense for the SGS model

to take the general form of a diffusive operator and set T = D. This is of course a significant

assumption and there are likely non-dissipative effects from small-scale turbulence, but the

leading effect is likely to be diffusive in nature.

Previous ASH simulations using the EE viscosity model have used a stress tensor of

the form

D = Nij = −2ρ̄νEE

[
eij −

1

3
(∇ · ~u) δij

]
, (3.3)

where D is the viscous stress tensor found in Equation 2.12 and νEE is a function of radius

only (for a derivation see Kundu & Cohen, 2004). Since molecular values of ν and κ are be-

yond current computational capabilities, much larger values must be used for computational

stability. In practice, values of ν and κ are chosen to be as small as possible for a given level

of resolution. In this work those coefficients are on the order of a few times 1012 cm2 s−1

(see Table 2.2).

The EE viscosity model has several drawbacks. First, the Sun operates at very large

Reynolds numbers, possibly as high as 1014. With the EE diffusion model the computational

cost of a simulation scales roughly as Re4. This makes continued progress towards the

Reynolds number of the solar convection zone slow at best. Additionally many of the smallest

scales in models using the EE SGS scheme are dominated by diffusive effects rather than truly
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resolving convective dynamics, causing a simulation’s effective resolution to be less than the

total computational resolution. In other words, one must pay for scales that one knows are

not reproducing physical behavior. More advanced SGS treatments can provide much lower

levels of diffusion at lower computational cost. The DS model uses the scale-invariance of the

inertial range in a turbulent cascade to encode effects from unresolved scales. It attempts to

limit diffusion on resolved scales, increasing the effective resolution of the simulation.

A second motivation for more advanced SGS treatments is that the viscosity in the

EE model is required to be large across the entire domain. If the eddy viscosity represents

small scale mixing one might imagine that it should be lower in regions with small gradients

in flows or thermal fields. The EE viscosity model uses a uniform viscosity across horizontal

surfaces that is set to be as small as computationally allowed. The viscosity is allowed to

vary with radius, but the radial contrast is generally quite small (here νtop/νbot ≈ 5) and

is input into the model as a parameter. Thus the viscosity over the entire domain is set by

the minimum viscosity allowable at any grid point. While some small number of grid points

demand high viscosities for computational stability, the majority of the domain could run

at much lower values of ν. The EE model sets the viscosity for the entire domain based on

its worst handful of grid points. The DS model allows for lower levels of viscosity in regions

that computationally permit lower viscosities in a self-consistent fashion.

There exist a number of SGS models beyond the DS model referenced here. Some

of the most used SGS models that will not be covered here are similarity models (Bardina

et al., 1980) and the Lagrangian-averaged Navier Stokes (LANS) alpha model (Hecht et al.,

2008). We hope to extend our analysis to include these models at a later date. For a review

of various SGS models, see Meneveau & Katz (2000).

Additionally a number of numerical diffusion models which are not designed to model

sub-grid scale behavior but rather are numerical techniques to reduce diffusion or limit it to

a very small range of scales exist. These models include hyperviscosity (e.g., Stein & Nord-

lund, 2006; Trampedach & Stein, 2011) and slope-limited diffusion models (e.g., Cheung
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et al., 2010; Augustson et al., 2011). These numerical diffusion models proceed essentially

along the same philosophical direction as Implicit LES codes. Though we will not explore

them here, we do anticipate doing so in the near future.

3.3 The Dynamic Smagorinsky Model

The EE viscosity model uses a stress tensor (see Equation 3.3) of the form expected

in a DNS simulation. In a true DNS, molecular values of the diffusion coefficients would be

functions of the thermodynamic state and thus would essentially be functions of radius with

very small variations due to perturbations of the thermodynamic state caused by convection.

However the effective diffusion due to the scales of motion not resolved by our simulations

should be orders of magnitude greater than mixing due to atomic diffusion. If the eddy

viscosity represents unresolved small-scale mixing, one might expect it to depend on the

characteristics of the resolved flow. The Smagorinksy model defines a stress tensor Sij of the

same form as Dij except replacing ν(r) with a spatially varying νs(r, θ, φ, t), resulting in

D = Sij = −2ρ̄νs

[
eij −

1

3
(∇ · ~u) δij

]
. (3.4)

In the original model put forward by Smagorinsky (1963), νs = Cs∆
2√eijeij, where ∆ is

the local grid spacing and Cs is a constant of order unity that depends on the geometry,

Reynolds number, boundary conditions, and other simulation parameters. For anisotropic

grids like those used in ASH simulations, ∆ is defined as the geometric mean of the grid

spacings in each direction ∆ = (∆r∆θ∆φ)1/3. By defining νs as a function of the local shear,

a strong nonlinearity is introduced in what was previously a linear term. For an extensive

discussion of this model refer to Pope (2000). In this work, we also use a dynamic thermal

diffusivity κs that is defined, using an eddy Prandtl number Pre, to be κs = νs/Pre. As in

the cases using the EE model, Pre = 1/4 and is constant over the computational domain.
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3.3.1 The Dynamic Procedure

A major limitation to the usefulness of the Smagorinsky model is the constant Cs which

must be hand-tuned for each simulation. Using scale-invariance arguments Germano et al.

(1991) have formulated a dynamic procedure to calculate Cs from resolved components of

the flow. The dynamic procedure is not a SGS model but rather a way to use the resolved

flow and an assumption of scale-invariance to set any undetermined coefficients in a given

SGS model.

The resolved flow fields are spectrally filtered at some test filter scale β∆. Traditionally

and in this work β = 2, which is assumed to be in the inertial range of the turbulent spectra.

Only high resolution ASH simulations with a maximum spherical harmonic degree of 340

or higher were able to assure that β∆ (`β = `max/β & 170) was suitably within an inertial

range. Lower resolution simulations produced essentially noise-dominated values of Cs and

were computationally unstable. This requirement for high spatial resolution indicates that

this dynamic procedure would have been unfeasible as little as a decade ago.

We define the stress tensor at the grid-scale ∆ as

Ŝij = ûiuj − ûiûj (3.5)

with hats denoting the grid-scale filtering. If we have this term exactly then our closure ap-

proximation is no longer an approximation. It encodes the difference between the unresolved

velocity correlations (which we do not simulate) filtered on the grid scale, and the resolved

velocity correlations. The stress tensor at the test filter scale β∆ is defined as

˜̂Sij = ˜̂uiuj − ˜̂ui ˜̂uj (3.6)

with tildes denoting test-scale filtering. This encodes the difference between the stresses at

the test scale the true correlations filtered on the test scale. Finally, the resolved stresses

can be written as

Rij = ˜̂uiûj − ˜̂ui ˜̂uj. (3.7)
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Figure 3.1: Schematic diagram of correlations between two components of a fictitious
velocity field on the test scale β∆, the grid scale ∆, and the true scale set by atomic
dissipation in the physical system. Circles represent discrete cells in a numerical simulation
while the velocity field in the physical system is continuous.

The resolved stresses are simply the difference between the correlations in the test scale

velocities and the correlations in the grid scale velocities filtered at the test scale. Note

that Rij can be computed directly from the resolved flows while Ŝij and ˜̂Sij require an SGS

model, such as the Smagorinsky model, to represent the unresolved correlations.

Figure 3.1 illustrates a sample velocity field on the three scales of interest – the test

scale β∆, the grid scale ∆, and the true scale of the physical system, which is of course

not a single scale but a range of scales which is limited only by atomic diffusion. In a

numerical code we must compute filtered values of the field at discrete grid points, which

are represented by the circles, which each contain values for two vector components. The

nonlinearity of the correlation procedure means that it does not commute with the filtering

procedure, hence taking the correlations at the grid scale and filtering them is not equal to

filtering the velocity fields and then taking the correlations.

By assuming scale-invariance in the inertial range of the turbulent spectra, one can

state that

Rij = ˜̂Sij − Ŝij. (3.8)

This simple statement hides a profound assumption about the nature of turbulence. We
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are using the resolved stresses which encode the difference between the test and grid scales

to determine the difference between the true correlations in the velocity field filtered at the

test and grid scales with the correlations in the filtered velocity field at the test and grid

scales. Essentially, this is demanding that the behavior between the test and grid scales be

replicated when comparing the differences between the test and true scales with the grid and

true scales. Thus Equation 3.8 is stating that the behavior between the test and grid scales

is representative of the behavior all the way down to the scales of atomic dissipation. This

constitutes the dynamic procedure. Other SGS models with undetermined coefficients can

also be put through this dynamic procedure by invoking scale-invariance.

3.3.2 Implementation of the DS Model in ASH

Now that we have defined the dynamic procedure, we must apply it to the Smagorinsky

SGS model. This constitutes an additional assumption, namely that unresolved correlations

on both the test scale and grid scale can be represented by the same parameterization. This

again requires that the test scale be well beyond any of the convectively-driven scales in the

simulation. Applying the Smagorinsky model and contracting with êij to obtain a scalar

equation results in

Rij êij = −2Cs

(
β2∆2

∣∣∣ˆ̃eij∣∣∣ ˆ̃eij êij −∆2 |êij| êij êij
)
. (3.9)

Solving for Cs gives

Cs = − Rij êij

2
(
β2∆2

∣∣∣ˆ̃eij∣∣∣ ˆ̃eij êij −∆2 |êij| êij êij
) . (3.10)

To prevent the denominator from becoming zero it is generally averaged in some way. In

this work a spectral filter is applied that removes high wavenumber components in both the

numerator and denominator. Additionally a nearest-neighbor averaging is applied to Cs in

physical space to prevent grid-scale ringing in the Cs field. Note that the strain-rate tensor

and therefore νs are not subject to these averaging and smoothing procedures. Equations

3.4, 3.7, and 3.10 constitute the DS model.
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Figure 3.2: Radial profile of νS in case S. Kinematic viscosities in case S showing the
horizontal and temporal mean value of νs as a function of radius (dashed red line) with ±1σ
variations shown in the orange shaded region, along with the EE viscosity (solid blue line)
at the top and bottom of the domain for stability, and the viscosity ceiling (solid green line)
to prevent large viscosities near the top and bottom of the domain from limiting the time
step. The dynamic procedure attempts to produce the required viscosity at the boundaries,
but is not successful in stabilizing the simulation without additional EE viscosity.

One of the known problems with the DS model is its inability to mimic behaviors near

boundaries. As a turbulent flow nears a wall it becomes laminar in the viscous boundary

layer and anisotropic due to the introduction of a strongly preferred direction perpendicular

to the wall. Both of these violate the assumption of scale-invariance, which occurs in isotropic

turbulence, upon which the dynamic procedure is predicated. In our implementation of the

DS model we also find that viscous boundary layers are not correctly formed at the top

and bottom of the domain. This results in convective plumes hitting the upper and lower

boundaries at high speeds, causing excessive ringing. To resolve these problems, we include

a smoothly-varying EE viscosity that is significant over a distance of 0.02 R� at the bottom

boundary and 0.01 R� near the top of the simulation.
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In the DS model the nonlinear nature of the diffusion term requires an explicit time

stepping scheme which imposes an upper limit on the size of our time-step. In order to control

the time-step, an artificial ceiling is placed on the DS viscosity. In case S, on average, the

ceiling is applied to 700 out of 76 million grid points at each time step. The functional form

of the ceiling is given by

νmax = tmax∆2
min, (3.11)

where ∆min is the smallest local grid-spacing in any direction and tmax is the desired size

time step. In case S tmax is set to 400 seconds.

Both the near-boundary EE diffusion buffers and the DS viscosity ceiling effects are

illustrated in Figure 3.2, which also clearly shows that the DS viscosity is dominant through-

out the bulk of convection zone. Future simulations could add a stable radiative zone at the

bottom of the simulation, which would remove the need for the EE viscosity buffer and

possibly the DS viscosity ceiling at the bottom of the domain.

In astrophysics, the non-dynamic version of the Smagorinsky model has been used

in low-resolution (Nr = 32, `max = 31) simulations of stratified, rotating solar convection

(Glatzmaier, 1985), similar to those proposed here, and more recently in simulations of

the geodynamo at low to moderate resolution (Buffett, 2003). In both cases, however, the

dynamic procedure would likely have failed. The DS model has been used in simulations of

turbulence in the interstellar medium (Chernyshov et al., 2008) and in convective excitation

of solar p-modes (Jacoutot et al., 2008).

Figures 3.3(a) shows the values for νs over a spherical shell at 0.84 R� at a single

instant in time. The largest values of νs are concentrated at the edges of downflow lanes

where strong horizontal gradients of vertical velocity are present. Figure 3.3(b) shows the

time-averaged probability distribution function of the DS viscosity. Probability distribution

functions (PDF) are denoted FC (a), where a is the desired variable and C represents the

simulation. All PDFs in this work are given as the amount of surface area covered on average
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(a) νS (b) FS (νS)

Figure 3.3: (a) Kinematic viscosities from the DS SGS model νs at 0.84 R� in Mollweide
projection. Values are in units of cm2 s−1. Colors are on a logarithmic scale, showing small
values in dark tones and large values in light tones. High-viscosity regions tend to occur on
the edges of downflows while upflows tend to have very little diffusion. (b) Probability distri-
bution function of kinematic viscosities FS(νs) from case S averaged over roughly 1000 days.
The distribution peaks at about 8.2 × 109 cm2 s−1 and then follows a roughly exponential
decay towards higher values. Peak values of νS at mid-convection zone are about 1.5× 1011

cm2 s−1. For comparison Case Nb has a value of 3.4× 1011 cm2 s−1 at the same depth.

by the chosen field over a small range of values of the field at mid-convection zone. Surface

area is computed rather than number of pixels to account for the non-uniform grid spacing

over spherical surfaces. As expected the bulk of the domain has relatively low viscosity with

the peak of the distribution at 8.26 × 109 cm2 s−1 and then follows a roughly exponential

decay to a maximum value of about 1.5× 1011 cm2 s−1.

3.3.3 Non-dimensional Parameters with the DS Model

The strong spatial and temporal variations in the coefficients of viscosity, thermal con-

ductivity, and magnetic resistivity make it difficult to construct meaningful non-dimensional

parameters involving diffusive processes for comparison with simulations using other SGS

models. In Table 2.3 we used the RMS values for νS, κS, and ηS which were averaged over
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long times, however other possible methods of estimating parameters exist.

Let us take the Reynolds number as an example. In case S we report a value for the

Reynolds number of 9210 when calculated as

Re =

√
(v2)L√
(ν2
S)

, (3.12)

where the overbars denote averages over a spherical shell, which here are taken at mid-

convection zone, and L is the depth of the convection zone. This includes the differential

rotation; thus we also define a fluctuation or convection Reynolds number with the axisym-

metric flows removed, given by

Re′ =

√
(v − 〈v〉)2L√

(ν2
S)

, (3.13)

where brackets denote the longitudinal average. For case S this yields a value of 2870. When

compared with case Nb, which has Re = 1650 and Re′ = 517, and, as we will show, exhibits

comparable or even greater levels of turbulence by other metrics, the values for case S seem

inflated.

Alternatively, we can construct another Reynolds number, which we will term the mean

local Reynolds number or Rem, by

Rem = L

(
|v − 〈v〉|

νS

)
. (3.14)

For case S the mean local Reynolds number is 8530, which still seems to over-estimate the

level of turbulence achieved in the simulation. This is caused by correlations between high

velocities and low levels of diffusion. Those areas with strongest shear (and hence strongest

diffusion) tend to be the downflow lanes where the velocities are highest. In case S regions

with v − 〈v〉 > 100 m s−1 have an average local Reynolds number of 11600, while regions

with v − 〈v〉 < 100 m s−1 have an average value of 6450.

Finally, we can estimate the Reynolds number by using a scale-analysis on the DS



58

viscosity itself. We can approximate νS using scale arguments as

νs = Cs∆
2√eijeij ≈ Cs∆v, (3.15)

thus yielding a Smagorinsky Reynolds number ReS as

ReS =
L

Cs∆
. (3.16)

The Smagorinsky Reynolds number can be thought of as simply the range of scales in the

simulation scaled by the dynamic parameter, which for case S yields a value of 2040.

We have shown four possible methods for computing a Reynolds number for case S

which yield values differing by as much as a factor of four. Clearly a range of possible values

for any non-dimensional parameter involving diffusion coefficients become viable when using

the DS SGS model. This discussion is not aimed to provide a definitive conclusion as to

which method for computing these parameters is best but rather to illustrate the difficulty

in interpreting these parameters, whichever method is chosen.

3.4 Simulation Parameters

We have conducted three simulations that compare the two SGS models. Various

properties of these three simulations are listed in Table 3.1 (see also Tables 2.1, 2.2, and

2.3). Two cases labeled Na and Nb use the EE diffusion SGS model and case S uses the DS

model. Cases Na and S have a maximum spherical harmonic degree of 341 while case Nb

has a maximum spherical harmonic degree of 682. In the EE diffusion cases the values of ν

were chose to be as small as permissible at the given levels of resolution. Although they are

not DNS, cases Na and Nb will be used as benchmarks to assess the performance of case S.

All three simulations are conducted at a rotation rate of three times the solar value.

Previous studies with ASH have shown that for high levels of turbulence and rotation rates

less that the solar rate, the simulations produce an anti-solar differential rotation profile
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Table 3.1: Shown are the number of radial, latitudinal, and longitudinal grid points. The
SGS model employed for viscous and thermal diffusion is shown as either the enhanced eddy
(EE) model or the dynamic Smagorisnky (DS) model. The total evolution time TE for each
simulation is given in days. The viscosity ν in units of cm2 s−1 is shown at mid-convection
zone. For case S the RMS value is used. The fluctuating Reynolds number Re′ = v′rmsL/ν
gives some indication of the relative level of turbulence in each model. Again the RMS value
for νS was used for case S.

Selected Parameters for Cases Na, Nb, and S

Case Nr, Nθ, Nφ SGS Model TE (days) ν (cm s−2) Re′

Na 192, 512, 1024 EE 4820 5.15× 1011 337
Nb 257, 1024, 2048 EE 1120 3.43× 1011 517
S 192, 512, 1024 DS 2760 1.49× 1010 2870

(Brown, 2009). This transition is caused by inertial forces becoming dominant compared

to Coriolis forces, removing the rotational influence which drives the equatorward transport

of angular momentum needed to maintain solar-like differential rotation. By using a more

rapid rotation rate, differential rotation retains some aspects of a solar differential rotation

profile, including a fast equator and slow mid-latitudes. Thus while these simulations may

be at a dimensional rotation rate faster than that of the current Sun, their non-dimensional

Rossby number is on the order of 0.5. Without direct measurements of convective giant

cell velocities the exact value of the solar Rossby number is somewhat uncertain, but can

be constrained from observations of differential rotation and meridional circulation to be no

more than about 0.5 (Miesch et al., 2012).

All cases are qualitatively similar to case G3 in Brown et al. (2008), from which case

Na originated. Case G3 was evolved for approximately 4000 days when case Na was spawned

from it. Case Na was then run for roughly 3000 days to a statistically steady state in terms

of its volume-averaged energy densities and angular momentum transport. Cases Nb and S

were then created using case Na as initial conditions. Case S was evolved to a statistically

steady state, while case Nb was run for as long as available resources would allow.
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SGS models are designed to more faithfully represent turbulent processes at lower

resolution, thus reducing the computational expense. In our discussion of the various SGS

models, it is also important to keep in mind the computational cost associated with each

model. Table 3.1 shows the total time over which each case was evolved. Cases Na and S were

able to be run as long as desired to achieve a statistically steady state. For case Na additional

evolution was computed in order to provide very long time averages for computation of

spectra and probability distribution functions. Case Nb is more than an order of magnitude

more expensive than case Na and therefore has not been evolved as long as the other cases.

In addition to considering the effectiveness of the DS SGS model, we must also consider

the additional computational resources required to compute the Smagorinsky viscosity. The

DS model is roughly four times more expensive than case Na while case Nb is roughly twelve

times more expensive than case Na. This means that to be worthwhile case S needs to only

show a third as much improvement in the desired aspect of a simulation over case Na as case

Nb shows over case Na. While it is difficult to define quantitative metrics for this improve-

ment, one might be interested in a simulation very low levels of explicit diffusion. We will

show that case S displays more than a order of magnitude less viscous force per unit volume

than case Na or case Nb without any obvious pathologies in other aspects of the simulation

(e.g., differential rotation, convective transport, etc.). As the objectives of simulations using

the DS SGS model will vary, we do not attempt to compute a single metric for simulation

quality. Rather we will describe several possible methods for comparing aspects of cases

Na, Nb, and S. Hopefully this will permit the reader to assess the usefulness of the DS SGS

model for their specific numerical experiment.

3.5 Direct Comparisons of SGS Models

There are two important ways to compare and evaluate SGS models. One can either

examine the form of the diffusive terms added to the equations in each model or use statis-
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tical measures to compare solutions evolved with each SGS treatment. We will call these

direct and statistical comparisons. Meneveau & Katz (2000) refer these two classes of tests,

respectively, as a priori and a posteriori comparisons. Evolved comparisons involve examin-

ing simulations using various SGS models, as we have done with cases Na, Nb, and S, where

the solution has experienced feedback from the SGS model and settled into a statistically

steady state. The ultimate objective of any SGS treatment is to reproduce the results of

observations, so it may be argued that evolved comparisons are all that matter. As these

are highly nonlinear systems, altering the diffusive processes will also alter the flow patterns,

energy transport mechanisms, angular momentum transport, and potentially any number of

other features of our simulations. By comparing the statistically steady states into which

each case evolves, we can assess how the effects of a SGS model propagate through the

simulation.

In contrast to evolved comparisons, direct comparisons involve directly examining the

changes to the viscous term in the momentum equation. They can provide valuable insight

into the physical processes that are changed by a SGS model. In implementing a SGS

model one is modifying the underlying physics of diffusion of momentum and entropy in

sometimes non-intuitive ways. Once the system has begun to feedback upon itself, it becomes

extremely difficult to track the origin of changes in behavior. Thus it is useful to perform

direct comparisons because they isolate the immediate changes to the diffusive terms in our

equations in a way that permits detailed comparisons to be made between the two SGS

treatments.

In this work, we will directly compare the diffusion term in the radial component of

the momentum equation, which is given by

(∇ · D)r =
1

r2

∂

∂r

(
r2Drr

)
+

1

r sin θ

∂

∂θ
(sin θDθr) +

1

r sin θ

∂Dφr
∂φ
− Dθθ +Dφφ

r
, (3.17)

where the rr, θr, φr, θθ, and φφ components of the stress tensor for both the EE and DS
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models are, respectively,

Drr = −2ρ̄ν

[
∂ur
∂r

+
ur
3

∂ ln ρ̄

∂r

]
(3.18)

Dθr = −ρ̄ν
[

1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

]
(3.19)

Dφr = −ρ̄ν
[

1

r sin θ

∂ur
∂φ

+
∂uφ
∂r
− uφ

r

]
(3.20)

Dθθ = −2ρ̄ν

[
1

r

∂uθ
∂θ

+
ur
r

+
ur
3

∂ ln ρ̄

∂r

]
(3.21)

Dφφ = −2ρ̄ν

[
1

r sin θ

∂uφ
∂φ

+
ur
r

+
cot θuθ
r

+
ur
3

∂ ln ρ̄

∂r

]
. (3.22)

The difference between the EE and DS models comes purely from the definition of ν, which

in the EE model only varies with radius, whereas in the DS model it is a strongly varying

function of all three dimensions and time.

We chose to examine the radial viscous force in order to gain some intuition into the

modified physics of the DS model. We could have just as easily looked at the viscous force

in another direction, but the radial component is particularly important as it impacts the

process of acceleration of the convective plumes and their entrainment of the surrounding

fluid. Entrainment is essential to compressible convective transport, making it an appropriate

diagnostic. To do this we have run three simulations matching the parameters of cases Na,

Nb, and S but starting all three simulations from identical initial conditions taken from case

Na in an evolved state. Since the starting point for each simulation was taken from case Na,

we would expect no ringing in the diffusion term for case Na due to the transition (or lack

thereof). If the radial viscous force in case S shows large deviations from the morphology

seen for cases Na or Nb, we may reasonably conclude that it is not appropriately capturing

the diffusive dynamics around convective plumes.

When the form of the equations being solved changes abruptly, some Gibbs ringing is

expected from the transition, which is essentially a small temporal discontinuity. Each case

was evolved for exactly five time steps of exactly 100 seconds each to allow most of the Gibbs

ringing from the transition to dissipate but not enough time for any significant evolution of
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Figure 3.4: Radial viscous force for the EE and DS SGS models with an identical flow field
Radial diffusion terms (see Equation 3.17) in units of force per unit volume (dyn cm−3) for
cases Na, Nb, and S shown in Mollweide projection at 0.84 R� for an identical flow field.
The highlighted region in the top panel corresponds to the regions shown in Figures 3.5(a) -
3.5(d). In all cases the underlying flow field is virtually identical, allowing direct comparisons
between these images.
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the velocity fields. The velocity and thermodynamic fields were compared to ensure no sig-

nificant evolution had occurred. The maximum variation at mid-convection zone between

any two simulations was less than roughly 1 part in 105. By using identical flows, we can

then examine the direct effects of the SGS model without considering secondary effects or

feedback mechanisms.

3.5.1 Global Properties of Diffusion in SGS Models

Figure 3.4 shows the diffusion term for each of the three cases for the mentioned

identical flows over the entire spherical surface at mid-convection zone. One can see clear

similarities between the cases and identify common structures in each, however the ranges

of values achieved in each case is surprisingly different. Case Na and Nb have, as expected,

almost identical morphologies for their viscous force term, since the velocity field ~u is the

same in both as is the form of the diffusion operator. The only difference is the magnitude

of the viscosity, hence we should expect that the point-by-point ratio of the two fields will be

the ratio of their viscosities. In fact if we divide each pixel in case Na by each corresponding

pixel in case Nb, after filtering case Nb in order to have equal resolution, we find that the

result is almost exactly 3/2 = νNa/νNb over the entire domain. This verifies that the the

underlying flows are nearly identical and that our procedure behaves as expected for the EE

model.

The diffusion term in Figure 3.4 for case S also looks qualitatively similar to cases Na

and Nb, however scaling has changed dramatically. If we take a pixel by pixel ratio of the

displayed shell slices for cases Nb (spectrally filtered to the correct resolution) and S, we find

that on average the diffusion in case Nb is larger by a factor of 86.5. However, in the 2% of

regions in case Nb where the diffusion is strongest that ratio drops to 31.4. As expected, the

DS model is focusing the diffusion in areas where it is needed and greatly reducing diffusion

over the majority of the domain.
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(a) vr (b) Radial Viscous Force for Case Na

(c) Radial Viscous Force for Case Nb (d) Radial Viscous Force for Case S

Figure 3.5: Local radial viscous force for a convective plume in the EE and DS SGS models.
(a) Radial velocity field and (b) - (d) radial viscous force terms in units of force per unit
volume (dyn cm−3) for the EE viscosities used in cases Na and Nb and the DS viscosity from
case S zoomed in on a region spanning 40 degrees in latitude and 45 degrees in longitude.
Regions correspond to the highlighted region in the top panel of Figure 3.4. All three viscous
force fields are morphologically similar. Downflow plumes are characterized by their strong
positive (upward) cores surrounded by negative (downward) entrainment regions. The DS
model yields lower amplitudes at all points. Away from the three downflow plumes values
can be as much as a hundred-fold smaller in case S than in case Nb.
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3.5.2 Local Examples of Diffusion in SGS Models

To gain further physical insight into these SGS models, we have highlighted one small

area from the three images in Figure 3.4 for a more detailed examination. This area, which

is indicated by the outlined region in the top panel, stretches from 20 degrees below the

equator to 20 degrees above the equator and covers 45 degrees in longitude. Figures 3.5(a) -

3.5(d) show the radial velocity field in this region as well as the diffusion term for all three

cases. The region contains three strong downflows each interacting with a broader, slower

upflow. Two of the downflows have strong latitudinal alignment while the downflow on the

left appears to be a more circular event. All three events are also resolved in each of the

diffusion fields. In all three plumes, the diffusion is qualitatively similar for cases Na, Nb,

and S.

Let us now examine the strong downflow plume on the right of Figures 3.5(a) - 3.5(d),

indicated by the green box in Figure 3.5(b). This downflow plume is plunging into a relatively

strong upflow and therefore exhibits some of the strongest gradients in the velocity field in

the domain. For cases Na, Nb, and S the viscous structure associated with this downflow

shows a surprising degree of complexity. The viscous force in the core of each structure is

strongly positive, which would lead to an upward acceleration on the core of the downflow,

slowing it down. This braking region is surrounded by a region where the viscous term

becomes negative, producing a downward acceleration on the fluid. This happens at the

interface of the downflow structure with the surrounding upflow as the downflow entrains

fluid from the upflow. In Figures 3.5(b) - 3.5(d), there is evidence for even more complex

internal structure in the plumes, indicating that there may be important dynamics on scales

smaller than the scale of the plumes.

The net effects of diffusion on the downflow plume on the right of Figures 3.5(a) -

3.5(d) vary strongly between the two SGS models considered here. For case Na and Nb the
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Figure 3.6: Radial diffusion terms in units of force per unit volume (dyn cm−3) for cases
Na, Nb, and S after significant time evolution, shown in Mollweide projection at 0.84 R�.
The top panel is identical to the top panel of Figure 3.4. For each case the flow field is unique
and has been taken from each case near the end of their computed evolution (see Table 2.1).
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net forces per unit volume of fluid over the highlighted area are −1.85× 10−2 dyn cm−3 and

−1.28×10−2 dyn cm−3 respectively. This net downward acceleration indicates that while the

core of the plume is decelerating, the plume structure at this depth is entraining new fluid

at a high rate to compensate for the slowing of the core, coming to a rough force balance.

For case S, the net force per unit volume on this plume is 7.35 × 10−3 dyn cm−3. Here the

plume structure is decelerating on average, as would be expected from a fast plume passing

through a viscous medium. The plume is clearly still entraining fluid, but strong upward

viscous forces in the core of the downflow dominate the downward forces on the edges of the

plume. For comparison the average buoyant force on this structure is−5.76×10−3 dyn cm−3.

Clearly changing the amplitude of the viscous force by switching to the DS model will have

significant impacts on the radial acceleration of this plume. Thus while the morphological

similarities of the viscous force fields are encouraging, the change in the detailed balance

between the core of the plume and the surrounding entrainment region indicates that we can

expect changes to the structure and transport properties of the convection once feedbacks

are allowed.

3.5.3 Comparison with Evolved Diffusion Fields

One of the problems with a direct examination of the diffusion fields is that the flow field

to which each diffusion operator is applied is not a relaxed solution of the evolution equations.

For example, when a DS viscosity is computed using the flow field from a simulation that

has been evolved using an EE model, there are natural questions about validity of that test.

Since the flow fields are also modified as the SGS model is changed, as will be shown in

the following evolved comparison tests, it is useful to compare the diffusion fields computed

in the direct comparison to those taken from evolved, relaxed simulations. This will help

provide a means to gauge the usefulness of the direct comparison.

Figure 3.6 shows the diffusion fields for each of the three cases after significant time
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evolution. A comparison with Figure 3.4 reveals that for each case, the diffusion fields have

qualitatively similar properties with cases Nb and S demonstrating more small-scale variabil-

ity than case Na. The magnitude of the diffusion in each case, however, has changed from

the direct comparison test. For case Nb the root-mean-squared (RMS) value of the diffusion

field for the direct comparison is 1.76×10−3 dyn cm−3, while the RMS value for the evolved

state is 1.06× 10−3 dyn cm−3. This reduction by a factor of two may be explained partially

by reduced ringing, but modifications in the flow field have probably also reduced gradients

in the flow field. This seems to indicate that for case Nb the decrease in diffusion over

case Na is more than the 50% reduction in the enhaced eddy viscosity ν, possibly reducing

diffusion by as much as a factor of 4. For case S, the RMS value of the diffusion field for

the direct comparison is 4.61× 10−5 dyn cm−3, while the RMS value for the evolved state is

1.82×10−5 dyn cm−3. As in case Nb, this reduction by a factor of roughly 2 can be partially

attributed to ringing, though again the values are close to those from the direct comparison.

For both cases Nb and S we can therefore be somewhat confident in the trends shown by

direct comparisons.

3.6 Evolved Comparisons of SGS Models

The objective of any SGS model is to reproduce observed features of a turbulent sys-

tem. Here we will compare various aspects of the flows, thermodynamic fields, and transport

properties of the three cases. This is often referred to as a posteriori testing of a SGS model

(see Meneveau & Katz, 2000). Although all cases trace back to the same initial conditions,

the chaotic nature of these solutions make it impossible to compare any two cases at a single

point in time after significant time evolution. Instead, we will compare temporal averages of

large-scale features and statistical descriptions of small-scale behaviors. In the optimal case,

the changes in moving from case Na to case S would be of the same form as the changes seen

in comparing cases Na and Nb, although possibly of different amplitude We will show that
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Figure 3.7: Radial velocities, rotation profiles, and meridional circulation streamlines for
the three cases. Left: Radial velocities at 0.95 R� seen in Mollweide projection with broad,
warm upflows in light tones and narrow, cool downflows in dark tones. Center: Mean rotation
profiles averaged in time and longitude showing some aspects of solar-like differential rotation
with fast equators and slow mid-latitudes. All three cases display a fast south pole, which
may be a transient phenomena that would decay if significant additional time evolution were
undertaken. Right: Mean meridional circulations averaged over time and longitude, where
red shows counter-clockwise flow, blue shows clockwise flow and darker colors indicate faster
flows.
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while case S succeeds in this metric for some features of case Nb, it does not reproduce all

important aspects of the higher resolution EE case.

3.6.1 Radial Flows

All three of the cases exhibit patterns of turbulent, compressible convection character-

ized by broad upflows and small, fast downflows. Examining the radial velocity plots in the

lefthand column of Figure 3.7, all three cases exhibit large, rotationally-aligned convective

structures at the equator, referred to as banana cells, as well as more vortical, smaller-scale

convective structures at high latitudes. Similar convective patterns have been previously

seen in solar simulations (Miesch et al., 2008) and in case G3 in (Brown et al., 2008). There

is a qualitative increase in small-scale motions from case Na to case Nb, as expected, which

is evident in both the banana cells at low-latitudes and the smaller-scale cyclonic convection

at high latitudes. Case S looks qualitatively more similar to case Nb than to case Na with

enhanced small-scales features in both low- and mid-latitudes.

The mean meridional circulation patterns for all three cases are shown in the right-hand

column of Figure 3.7. In all three cases the circulations are multi-cellular and highly variable

in time. Cases Na and Nb show similar patterns, with a large cell in both hemispheres inside

the cylindrical region tangent to the inner boundary (or tangent cylinder) which fill the

domain in radius. Case S produces very similar behavior to cases Na and Nb.

We can examine the small-scale flow patterns quantitatively using a time-averaged PDF

of the radial velocity field at mid-convection zone. Time averages are taken over about 1000

days for cases Na and S and 500 days for case Nb. Figures 3.8(a) shows that case S produces

velocity distributions that generally follow those from cases Na and Nb. If we look at the

fractional variation between cases Na and cases Nb and S, we can highlight the differences in

the distributions which otherwise look extremely similar. We define the fraction difference
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(a) F (vr) (b) ∆F (vr)

Figure 3.8: Time-averaged probability distribution functions (PDFs) for radial and latitu-
dinal velocities at mid-convection zone for the three cases. (a) PDFs are extremely similar
in amplitude and shape. (b) By examining the fractional change relative to case Na we can
see that case Nb has become less peaked (has a larger kurtosis) with a decrease in the core
of the PDF and an increase in the wings. Case S follows the trend established by case Nb
but to a lesser degree. Averages are carried out over roughly 1000 days for cases Na and S
and over roughly 500 days for case Nb. Note that the extreme wings of the PDFs are not
shown in order to highlight the core of the distributions.

as

∆FC (a) =
FC (a)− FNa (a)

FNa (a)
. (3.23)

Figure 3.8(b) shows the fractional difference for all three cases.

The PDF for case Nb’s radial flows becomes less Gaussian compared to that of case

Na with a decreased core and increased wings. Statistically this is described by the excess

kurtosis of the distribution increasing (becoming more leptokurtic) for the more turbulent

case, as expected from turbulence theory (see Pope, 2000). Excess kurtosis is defined as the

kurtosis relative to a Gaussian distribution. It is formally defined as

kurt{a} =

∫∞
−∞ (a′ − ā)4 f (a′) da′[∫∞
−∞ (a′ − ā)2 f (a′) da′

]2 − 3, (3.24)

where f(a) is the probability distribution function for quantity a. The time-averaged distri-

bution of radial velocity for case Na shows a standard deviation of 54.1 m s−1 and an excess
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(a) v̆2r (b) v̆2r for 15 < ` < 130

Figure 3.9: Power spectra for radial velocities latitudinal velocities at 0.84 R� shown with
(a) logarithmic scales over all spherical harmonic modes, and (b) linear scales over modes
dominated by convective driving with 15 < ` < 130. Case Nb shows a slight reduction of
power at near the peak of the spectra with more power at high-`, as would be expected from
an increased level of turbulence. Case S generally follows the other two cases, however it has
more power at peak convective scales around ` ≈ 30 than either case Na or Nb. At higher
values of ` case S generally lies between cases Nb and Na, matching onto case Nb for ` > 120.
Note that the ` = 0 component of v̆r is zero to machine precision, since the net mass flux
ρvr into any radius is required by the anelastic approximation to be zero. For convenience
and ease of viewing, the ` = 0 component is not shown. For case Nb the spectra continue
beyond the plotting range out to ` = 682.

kurtosis of 1.36, while the distribution for case Nb has a standard deviation of 57.0 m s−1

and an excess kurtosis of 1.67. This is caused by increased turbulence levels, which drive

more high velocity small-scale motions and increase the probability of extreme events on the

tails of these distributions. Case S does an excellent job of broadening FS(vr) to imitate case

Nb, though it does not achieve the same magnitude of fractional difference. For case S the

standard deviation in the distribution is 55.8 m s−1 and the excess kurtosis is 1.52.

Figures 3.9(a) and 3.9(b) show the time-averaged power spectra for the radial flow

field at mid-convection zone. We examine the spherical harmonic spectra at mid-convection

zone after summing over m values and averaging the spectra in time. We denote spherical

harmonic transforms with a breve and therefore define ă (r, `,m, t) as the spherical harmonic
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transform of field a at a given radius and over a given time interval. The power spectra of

a is given by

ă2 (r, `) =
1

∆t

∫ te

ts

∑̀
m=0

ă (r, `,m, t) ă∗ (r, `,m, t) dt, (3.25)

where ∗ denotes the complex conjugate and ∆t = te − ts. For all spectra in this chapter

∆t > 500 days in order to reduce noise and average over many convective overturning times

and rotation periods.

In Figures 3.9(a) and 3.9(b) we can see several features. The spectra of case S shows

roughly the same level of agreement with the spectra of both cases Na and Nb. The spectra

of case S diverges from the spectra of case Nb for ` > 60, while the spectra from case Na

diverges from case Nb for ` > 50. Case S shows peak values in excess of either case Na or Nb

and then quickly falls, crossing the power in case Nb at about ` = 60 and finally matching

on to case Na for ` > 120. Case S diverges from case Na again at the smallest scales of the

simulation. We can compute the RMS variation in the power spectra for cases Na and S,

and for cases Nb and S at each ` as

∆v̆r
2(A,B) =

√√√√ 1

`max

`max∑
i=0

(
2
(
v̆r

2
A − v̆r2

B

)
v̆r

2
A + v̆r

2
B

)2

, (3.26)

where A and B denote the two cases being compared. In doing so we find that ∆v̆r
2(Na, S) =

0.137 and ∆v̆r
2(Nb, S) = 0.522. For comparison ∆v̆r

2(Na,Nb) = 0.619. By this metric case

S more closely replicates case Nb than case Na, though the differences are fairly small.

3.6.2 Azimuthal Flows and Differential Rotation

Previous ASH simulations have explored differential rotation in sun-like stars (Brun &

Toomre, 2002; Miesch et al., 2008; Brown et al., 2008). There is little reason to expect that a

SGS model should directly influence the differential rotation of the simulations, but the non-

linear nature of these models means that any change in the system leads to often unexpected
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changes elsewhere. Thus it is prudent to establish that a SGS model can achieve solar-like

differential rotation under similar conditions to where such a profile may be achieved with

the EE SGS model.

All three cases were initiated with a solar-like differential rotation profile. Cases Na

began using case G3 of Brown et al. (2008) as initial conditions while both cases Nb and S

used case Na as initial conditions. Case G3 has a solar-like differential rotation profile with

a fast equator and monotonically decreasing angular velocity with increase latitude, however

case Na developed a region of faster rotation at the southern pole before cases Nb and S were

created from it. The center column of Figure 3.7 shows the mean differential rotation profiles

established by each case with a high-angular velocity region at each south pole. These polar

vortices regularly appear in hydrodynamic models of sun-like stars as well as those of F-type

stars. We have found that by adding magnetism these fast poles are quickly spun down,

resulting in monotonic differential rotation profiles as a function of latitude.

Radial and latitudinal shear are important factors in dynamo calculations, so for sim-

ulations related to solar and stellar dynamos, the mean differential rotation profile achieved

should mimic the solar differential rotation. All three cases show comparable solar-like dif-

ferential rotation at the end of their time evolution, with the exception of their south poles.

It is possible that case Nb might experience continued evolution in its rotation profile, as we

were limited by computational expense to only about 1100 total days of evolution. There is

no indication that case Nb was undergoing strong changes at the time these averages were

computed, but we have observed significant changes to the differential rotation of other sim-

ulations over timescales of thousands of days. Thus while we feel confident in our analysis,

we cannot preclude the possibility that case Nb has not reached a fully equilibrated state.

We define the mean latitudinal differential rotation contrast by averaging over both

hemispheres to get a measure of latitudinal differential rotation. All cases, irrespective of

the symmetry about the equator at their poles are roughly symmetric about the equator

for latitudes up to about 60◦. We therefore chose to compute the latitudinal differential
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rotation between the equator and ±60◦ latitude for a rotation profile averaged over at least

200 days at the end of each simulations’ temporal evolution. By this measure cases Na and

Nb have latitudinal differential rotation contrasts at the upper boundary of the domain of

28.9% and 28.6% respectively. The radial differential rotation between the top (0.96R�) and

bottom (0.72R�) of the domain at the equator for cases Na and Nb are 14.6% and 15.0%

respectively. For comparison, in the sun the latitudinal differential rotation contrast at 0.96

R� is roughly 18% and the radial differential rotation contrast at the equator is roughly 7%

(Howe, 2009). These values are close to those in a similar ASH model, (case G3) reported

by Brown et al. (2008).

For case S the differential rotation profile has remained very similar to cases Na and

Nb. The latitudinal differential rotation contrast at the top of the domain in case S is 29.0%

and the radial contrast at the equator is 14.7%. Overall the differential rotation is case

S appears to have remained largely unchanged by the use of the DS model. One should

bear in mind, however, that the diffusion time across the domain has increased by more

than an order of magnitude, so it is possible that if diffusive processes are still important

in modifying the differential rotation of case S, it may not have been simulated for a long

enough time to capture the change. However no trend in the differential rotation of the sim-

ulation is seen in either a sequence of 50 day time-averages spanning over 1,500 days or the

volume-averaged differential rotation kinetic energy over the same period. This indicates

that the DS SGS model does not disrupt the transport of angular momentum needed to

sustain solar-like differential rotation, either directly or through feedbacks on the properties

which drive convective transport.

3.6.3 Convective Transport

In addition to looking at the flows themselves, we can also examine the balance of

energy transport in these models. The average radial flux of energy in the anelastic approx-
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imation can be written as

Lr = LKE + LEN + LVD + LTD + FRD, (3.27)

where the terms represent to luminosity flux due to kinetic energy, enthalpy, viscous diffusion,

thermal diffusion, and radiative diffusion, respectively. Each term can be written as

LKE =
ρ̄ur
2

(
u2
r + u2

θ + u2
φ

)
(3.28)

LEN = CP ρ̄ur
(
T − T̄

)
(3.29)

LVD = (~u ·D)r (3.30)

LTD = −κ00ρ̄T̄
∂
(
S̄ + S

)
∂r

(3.31)

LRD = −κradρ̄CP
∂T̄

∂r
. (3.32)

The viscous diffusion flux depends on the SGS model chosen and so is left in a general form

here.

Figure 3.10 shows the transport of the solar luminosity through the domain by kinetic

energy flux, enthalpy flux, and the total flux as functions of radius. For cases Na, Nb,

and S we have chosen to use identical values for κ00 and κrad. Additionally, LVD is always

less than 3% of the solar luminosity for all three cases. We have chosen to omit the three

diffusive fluxes from Figure 3.10 for visual clarity. The primary balance through the bulk of

the convection zone is between outward enthalpy and inward kinetic energy transport. All

three cases produce similar balances, though case Nb shows a slightly larger inward kinetic

energy flux and case S shows a slightly larger enthalpy flux. This illustrates that on a basic

level the DS SGS model can achieve an average convective transport which settles into an

appropriate balance.

Figures 3.11(a) and 3.11(b) show the time- and shell-averaged root-mean-squared val-

ues of the temperature perturbations
〈√
〈T 2〉θ,φ

〉
t

and their fractional difference from those

in case Na. Time averages are taken over about 500 days for each case. All three cases
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Figure 3.10: Shell- and time-averaged (over at least 500 days) luminosities as a function
of radius for each case, showing the total luminosity as well as the luminosity from the
outward enthalpy flux and inward kinetic energy flux for each case. All cases achieve an
approximate balance. In all cases, a radiative flux carries a solar luminosity into the bottom
of the domain and an unresolved flux representing small-scale convective transport from
granular scales carries a solar luminosity out of the domain. All cases use identical radiative
and unresolved fluxes. Also note that the viscous luminosity flux is not shown, but is small
(< 0.03L�) through the bulk of the domain for all cases.

show the same general pattern with roughly the same amplitude of thermal perturbations

at each radial level. When we examine the variations from case Na in Figure 3.11(b) we

see that case S has not changed in same way as case Nb. Case Nb shows slightly larger

perturbations in temperature near the surface and in the lower half of the convective layer

as might be expected from increased levels of turbulence, though there is an odd dip around

0.90R�. Comparing with Figure 3.10 we notice that this dip corresponds to the peak in the

convective enthalpy transport. Case S shows smaller values for the entire convection zone

below about 0.93R� with a small rise near the top of the domain. This inability to mimic

case Nb is somewhat troubling as it indicates that the DS SGS treatment has altered the

thermal structure of the plumes in a way that differs from that of a higher resolution EE

SGS treatment. Although there is a clear morphological difference between cases Nb and S,

both changes are very small relative to the RMS values in case Na. With variations from
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(a)
〈√
〈T 2〉θ,φ

〉
t

(b)
〈√
〈T 2〉θ,φ

〉
t

Relative to Case Na

Figure 3.11: (a)Time-averaged RMS temperature perturbations as a function of radius for
cases Na, Nb, and S. All three cases show similar radial variation with thermal perturbations
decreasing in amplitude with increasing radial location. (b) Fractional variation of the same
temperature perturbations for cases Nb and S relative to case Na, highlighting that case S
has changed in a very different way relative to case Na than case Nb has changed relative to
case Na.

case Na on the order of 1%, these changes may not produce significant modifications to the

overall convective dynamics.

Another spectral measure of convective energy transport can be found by examining the

enthalpy flux spectrum. Continuing to use breves to denote spherical harmonic transforms,

we can define the enthalpy flux spectra as

ε̆ (r, `) = Re

[
cpρ̄

∆t

∫ te

ts

∑̀
m=0

T̆ (r, `,m, t) v̆r (r, `,m, t) dt

]
, (3.33)

where Re[x+ iy] = x for real x and y. The enthalpy flux spectra shows the scales on which

enthalpy transport from convection is occurring. As the energy flux due to enthalpy LEN is

the product of only two terms which vary on spherical surfaces, the enthalpy flux spectra can

be compute such that it represents the scale-by-scale contribution to the total enthalpy flux

through a given spherical surface. It should also be noted that both the entropy variance and

the enthalpy flux spectra use the entropy and temperature perturbations about the mean,
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(a) ε̆ (b) ε̆C

Figure 3.12: (a) Signed enthalpy flux spectra ε̆ at 0.84R� showing the mode-by-mode con-
tribution of the temperature and radial velocity fields to the total enthalpy flux. Convective
scales (roughly 20 < ` < 100) dominate the energy transport. Case Nb shows a lower peak
and slower decline than case Na, while case S shows a higher peak value and then asymp-
totically approaches the value case Na at high `. (b) Cumulative enthalpy flux spectra ε̆C at
the same depth, highlighting that case S does not follow the trend from cases Na to Nb but
rather moves in the opposite direction of higher peak values and overall more total enthalpy
flux.

and so the ` = 0 component of both are zero to machine precision. We can also construct

the cumulative enthalpy flux spectra ε̆C (r, `) such that

ε̆C (r, `) =
∑̀
i=0

ε̆ (r, i) . (3.34)

This gives the total enthalpy flux at a given radial level for all modes with spherical harmonic

degree of ` or less.

Figure 3.12(a) shows the enthalpy flux spectra for all three cases. The spectrum for

case Nb has a lower peak and slower fall-off at high ` compared to case Na. Case S has

increased enthalpy flux for 20 < ` < 60 compared to both case Na and case Nb. At ` ≈ 65

the spectrum for case S crosses the spectrum of case Nb, and by ` ≈ 100 matches onto the

spectrum of case Na. The increase in the energy carried at the peak of the spectra by case

S while case Nb showed a decrease for the same modes indicates that the DS model is not



81

correctly capturing more turbulent convective transport. On the other hand, the increase

in enthalpy transport by case S relative to case Na for the high-` tail of the distribution

is mimicking the behavior of case Nb. The DS model is therefore simultaneously failing to

behave as a more turbulent simulation for the peak of the spectrum while succeeding to do

so for the tail of the distribution.

This picture is reinforced by the cumulative enthalpy flux spectra shown in Fig-

ure 3.12(b). In this view case Nb has clearly moved to a flatter cumulative distribution

compared to case Na. The increased flux from the moderate ` modes in this view has com-

pletely overwhelmed the flattening that should occur at higher `. These are small changes

and are partially explained by the higher total enthalpy flux in case S, but they do show

that the DS model does not provide the same effect as a higher resolution case with the EE

SGS treatment, particularly at moderate scales.

3.7 Discussion

In this work we have numerically investigated the application of SGS models in global-

scale 3D simulations of the convection zone of a sun-like star rotating at three times the

solar rate. We have found that the DS model, while expensive, reproduces the form of the

diffusion term at mid-convection zone of higher resolution simulations with much lower RMS

values of the diffusion term in the radial momentum equation, even compared to the highest

resolution case using the EE SGS model. The DS model also mimics the effects of higher

resolution simulations in turbulent flows while maintaining the overall form of the differential

rotation and meridional circulations. The DS model, however, mimics only some aspects of

the convective transport in our higher resolution simulation using the EE model. While the

general properties of the temperature perturbations and enthalpy flux spectra are similar to

those using the EE SGS model, using the DS model does not drive changes in these quantities

of the same sense as are seen in higher resolution EE viscosity cases. These deviations are
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generally small and do not seem to impact large-scale behaviors such the differential rotation

or meridional circulation.

Perhaps it should not be surprising that the DS SGS model applied to anelastic con-

vection performs best in metric which consider the viscous force term and the turbulent

convective velocities. The DS model was designed to produce a turbulent viscosity which

mimics the turbulent diffusion of momentum by unresolved scales. This would produce the

most immediate impact on the velocity fields, which seem to yield the best results. We

have additionally applied it to the thermal diffusion in our system by means of a fixed eddy

Prandtl number. It may be more appropriate to construct a separate thermal SGS model.

However if SGS diffusion primarily represents small-scale mixing by turbulent eddies it may

be perfectly acceptable to apply a constant Prandtl number of order unity.

Unfortunately, compressible convective turbulence has been far less studied than in-

compressible turbulence, so this remains an area of active research. Of particular note is the

on-going work in the mesoscale meteorology community where thermal effects due to solar

heating of the Earth’s surface, as well as water condensation and evaporation, play large

roles (see Sullivan & Patton, 2011). We have also not considered magnetic fields here. MHD

turbulence is far less understood than hydrodynamic turbulence. Suitable SGS models for

MHD turbulence are the focus of considerable ongoing study (e.g., Chernyshov et al., 2008,

2010).

The DS SGS model shows potential as an effective method for reducing diffusion in

ASH simulations without the computational expense of increased resolution required by the

EE model. The DS model does not cause drastic changes to the fundamental properties of

the underlying convection. While expensive, the DS model is less expensive than comparable

simulations using the EE model. Effective resolution can be defined in many ways, but on

a rough level we can gauge that the effective resolution increase in moving from case Na to

case S must be less than the increase from case Na to case Nb. Since we know that case

Nb has twice the resolution of case Na, we can state that case S must have an effectively
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higher resolution than case Na but not by more than a factor of two. Judging from the

radial velocity PDFs, we might estimate that the DS SGS model in ASH provides roughly

a 50% increase in effective resolution while increasing computational expense by a factor

of three. This is considerably less than the factor of roughly twelve cost increase required

from simply increasing the resolution of the simulation and using the EE SGS model with

smaller coefficients of viscosity and thermal conductivity. Additionally, the DS model allows

for levels of effective diffusion which are on average smaller than a comparable simulation

by factors of 20 or more. As we will show in Chapters 4, 7, and 8, the ability to achieve

extremely low levels of diffusion plays a key role in the creation of buoyant magnetic loops

which rise through our simulated domain.



Chapter 4

The Discovery of Buoyant Magnetic Loops

We begin our discussion of convective dynamo action in ASH simulations of sun-like

stars by describing our discovery of buoyant magnetic loops which are self-consistently and

spontaneously generated by convective dynamo action. This chapter will largely focus on

cases D3b and S3, discussed in Tables 2.1, 2.2, and 2.3. The processes in case D3b which build

and maintain the magnetic wreaths and which are responsible for the reversals in magnetic

polarity will be discussed further in Chapters 5 and 6. The buoyant magnetic loops from

case S3 will be explored in further detail in Chapters 7 and 8. This chapter is based on

work published in Nelson et al. (2011b)1 and is largely a restatement of that paper. I was

the primary author of that paper and conducted the simulations presented here. I was also

chiefly responsible for all of the analysis in this chapter. My co-authors provided invaluable

advice and guidance in recommending and developing the parameters of these simulations

and the analysis techniques used on them.

4.1 Overview

The current dynamo paradigm for the Sun and sun-like stars places the generation

site for strong toroidal magnetic structures deep in the solar interior. Sunspots and star-

spots on sun-like stars are believed to arise when sections of these magnetic structures

become buoyantly unstable and rise from the deep interior to the photosphere. Here we

1 Nelson, N. J., Brown, B. P., Brun, A. S., Miesch, M. S., & Toomre, J. 2011b, Buoyant Magnetic Loops
in a Global Dynamo Simulation of a Young Sun, ApJ, 739, L38
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present the first 3-D global magnetohydrodynamic (MHD) simulation in which turbulent

convection, stratification, and rotation combine to yield a dynamo that self-consistently

generates buoyant magnetic loops. We simulate stellar convection and dynamo action in

a spherical shell with solar stratification, but rotating three times faster than the current

solar rate. Strong wreaths of toroidal magnetic field are realized by dynamo action in the

convection zone. By turning to a dynamic Smagorinsky model for subgrid-scale turbulence,

we here attain considerably reduced diffusion in our simulation. This permits the regions of

strongest magnetic field in these wreaths to rise toward the top of the convection zone via a

combination of magnetic buoyancy instabilities and advection by convective giant cells. Such

a global simulation yielding buoyant loops represents a significant step forward in combining

numerical models of dynamo action and flux emergence.

4.2 Convection, Rotation and Magnetism

The clearest signature of the global solar dynamo is the emergence of sunspots at the

photosphere. Creating these coherent magnetic structures likely requires several dynami-

cal processes operating at various locations in the solar interior. A single 3-D numerical

simulation of solar magnetism that extends from the deep interior through the Sun’s upper

atmosphere, while resolving all relevant scales, is intractable with current computational

resources. This leads to three main classes of simulations that address elements of solar-like

dynamo processes (see reviews Fan, 2009; Charbonneau, 2010). One approach to study how

loops may emerge is to insert a compact magnetic field structure into a spherical domain

and track its buoyant rise (e.g., Caligari et al., 1995; Fan, 2008; Jouve & Brun, 2009; Weber

et al., 2011). Another approach uses local planar models with mechanical forcing to generate

large-scale shear that drives dynamo action and creates buoyant magnetic loops (e.g., Cline

et al., 2003; Vasil & Brummell, 2009; Guerrero & Käpylä, 2011). Planar models have also

been used to study 3-D buoyancy instabilities in a magnetized layer that can lead to rising

elements (e.g., Kersalé et al., 2007). The third approach uses global convective MHD models.
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These incorporate the rotating spherical-shell geometry needed to self-consistently generate

differential rotation and meridional circulation through Reynolds stresses (see review Miesch,

2005). Such models have captured the formation of magnetic structures and cycles in solar

(Ghizaru et al., 2010; Racine et al., 2011) and rapidly-rotating sun-like stellar models (Brown

et al., 2010, 2011), yielding differential rotation, dynamo action, and large-scale magnetic

fields, but not buoyant magnetic loops that rise toward the top of the convective layer.

Here we report on a global convective dynamo simulation of a sun-like star rotating at

three times the mean solar angular velocity (3Ω�), such as our Sun did when it was younger

and as do many solar analogues (Petit et al., 2008). This simulation (i) attains a differen-

tial rotation profile created by the interplay of convection, rotation and stratification (e.g.,

Brun & Toomre, 2002; Miesch & Toomre, 2009), (ii) forms global-scale toroidal magnetic

structures that undergo cycles of magnetic activity and reversals of global polarity, and (iii)

achieves buoyant magnetic loops from the strongest portions of the toroidal structures which

rise from the base of the convection zone. This work extends the work of Brown et al. (2010,

2011) in which simulations of rapidly-rotating suns with moderate levels of diffusion were

able to accomplish (i) and (ii). The formation of buoyant loops is facilitated in our current

work by adopting a dynamic Smagorinsky subgrid-scale model (Germano et al., 1991), which

serves to minimize the diffusion of well-resolved structures.

4.3 Simulation Parameters and Properties

We have conducted 3-D MHD simulations of turbulent convection and dynamo action

in a spherical shell spanning the bulk of the convection zone from 0.72R� to 0.97R� involving

a density contrast of 25, and rotating at 3Ω� (1240 nHz, once every 9.3 days). We use the

anelastic spherical harmonic (ASH) code (e.g., Brun et al., 2004). The anelastic treatment

lets us follow the subsonic flows in the deep convection zone. Within this nearly adiabatically

stratified region, we expect that magnetic buoyancy instabilities captured by our anelastic
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Figure 4.1: Snapshots of flows and fields in case S3 when a buoyant loop begins to rise
at time tb. (a) Radial velocity vr in global Mollweide projection (equator is dashed) near
the top of the computational domain, showing fast, narrow downflows (dark tones) and
broad, slower upflows (light tones). (b) Companion view of toroidal magnetic field Bφ at
mid-convection zone. Effects of turbulent convection contribute to the ragged nature of the
wreaths. Several buoyant magnetic loops (see Figure 4.3) are generated in the negative-
polarity wreath segment just above the equator and right of image center. (c) Time and
zonal average of rotation profile 〈Ω〉, possessing an equatorial region with fast rotation and
slower rotation at higher latitudes. (d) Longitudinally-averaged toroidal magnetic field 〈Bφ〉
revealing a prominent axisymmetric field component.

treatment differ from fully compressible treatments by no more than a few percent in either

growth rate or scale (Berkoff et al., 2010). ASH is a large-eddy simulation (LES) code that

resolves the largest scales of motion and uses a subgrid-scale (SGS) model to parameterize

the effects of unresolved, small-scale turbulence. The dynamo simulations of Brown et al.

(2010) and Brown et al. (2011) used a SGS model where the turbulent magnetic diffusivity

ηt was constant on spherical shells and in time, and varied only slowly with depth as the

inverse square-root of the background density. Brown et al. (2010) examined a simulation

(case D3, at 3Ω�) which exhibited persistent toroidal magnetic structures, whereas Brown

et al. (2011) studied a simulation that achieved cycles of magnetic activity and global polarity

reversals (case D5, at 5Ω�). These simulations had ηt = 2.64× 1012 and 1.88× 1012 cm2 s−1

respectively at mid-convection zone.

Here we consider a new ASH simulation, case S3, which achieves much lower levels of

diffusion through the use of a dynamic Smagorinksy (DSMAG) SGS model. This assumes

self-similar behavior in the resolved portion of the inertial range of scales in a turbulent flow
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in order to extrapolate the effects of unresolved small-scale motions on the resolved scales.

The resulting viscosity νS is determined by the properties of the grid and the flows, and

varies by orders of magnitude in all three spatial dimensions and in time. To determine

the thermal and magnetic diffusion coefficients we assume constant thermal and magnetic

Prandtl numbers. In cases D3, D5 and S3 these are set to 0.25 and 0.5 respectively. We

reserve further discussion of the properties of ASH simulations using the DSMAG SGS model

for Chapters 7 and 8. In case S3 the DSMAG SGS model allows a simulation (with 1024

longitudinal, 512 latitudinal, and 193 radial grid points) to achieve a mean magnetic diffusion

coefficient at mid-convection zone of η̄t = 4.8× 1010 cm2 s−1. This reduction in diffusion by

a factor of about 40 from case D3 is critical for the formation and coherent rise of buoyant

magnetic loops.

Case S3 exhibits turbulent convective patterns shown in Figure 4.1(a) which are largely

vortical at high latitudes and aligned with the rotation axis near the equator. The convec-

tion builds and maintains a strong differential rotation that is prograde at the equator and

retrograde at mid to high latitudes (Figure 4.1(c)). This organized shear drives the creation

of toroidal magnetic structures at low latitudes in each hemisphere, as demonstrated in B10.

Here the increased level of turbulence enhances the power in smaller-scale components of the

toroidal field Bφ (Figure 4.1(b)) while still retaining a substantial zonally-averaged toroidal

field 〈Bφ〉 (Figure 4.1(d)).

In addition to creating strong magnetic structures near the base of the convective

region, case S3 also undergoes cycles of magnetic activity and reversals of global magnetic

polarity similar to those described in case D5 in B11. This is consistent with results from

parameter surveys with ASH simulations, which indicate that decreasing both ν and Ω can

yield cyclic behavior seen at 5Ω� at lower rotation rates (Brown et al., 2011). Because

of the large computational cost of the DSMAG SGS model, case S3 was started using a

less diffusive descendant of case D3 in B10, which we label case D3b, as initial conditions

(Nelson et al., 2011a). Figure 4.2(a) shows the temporal evolution of the hemispherical
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Figure 4.2: Field reversals with time. (a) Hemispherical volume-averaged toroidal magnetic
field [Bφ] of progenitor case D3b over nearly 6000 days, displaying irregular magnetic activity
cycles. Case S3 branched from case D3b at time ts (dotted line). (b) [Bφ] for case S3 over
about 800 days. Case S3 continues the cyclic behavior of D3b, but additionally produces
buoyant loops. The creation of loops which pass 0.90R� are indicated by tick marks in the
lower panel. Detailed information on the buoyant loop at time tb = ts + 683 days (dotted
line) is shown in Figures 4.1 and 4.3.

volume-average of toroidal magnetic field, [Bφ], in the progenitor case over approximately

5000 days, demonstrating the irregular cycles this model yields. Case S3 continues this

behavior over about 1300 simulated days starting from time ts. The temporal evolution of

[Bφ] in case S3 is shown in Figure 4.2(b), revealing two reversals of global magnetic polarity.

Some caution should be used in interpreting any LES dynamo simulation, given the

potential sensitivity of dynamo action to magnetic dissipation and the nonlinear, nonlocal

nature of turbulent magnetic induction, which makes reliable SGS modeling difficult. How-
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ever, we believe the essential large-scale dynamics exhibited in this simulation are robust and

are largely insensitive to the SGS model. Indeed convective dynamo simulations with dif-

fering prescriptions for SGS diffusion exhibit similar large-scale magnetic structures (Brown

et al., 2010, 2011; Ghizaru et al., 2010; Racine et al., 2011).

Here we will discuss buoyant magnetic structures which coherently rise above 0.90R�

while remaining connected to the large-scale toroidal wreaths. Using these criteria, we have

identified nine buoyant magnetic loops, indicated by hash marks in Figure 4.2(b). Eight

loops are seen in the northern hemisphere and one in the southern hemisphere. We expect

that the apparent asymmetry is simply the result of having studied only two magnetic cycles.

4.4 Buoyant Magnetic Loops

Buoyant magnetic loops arise from the cores of toroidal magnetic wreaths near the base

of the simulated domain. These wreaths have significant 〈Bφ〉 components that peak around

5 kG while also having strong non-axisymmetric fields. Figure 4.1(b) shows a typical Bφ

configuration involving a negative polarity wreath in the northern hemisphere spanning 95◦

in longitude and a positive polarity wreath in the southern hemisphere extending over 270◦

in longitude. As demonstrated in cases D3 (B10) and D5 (B11), these magnetic wreaths

are highly nonuniform and display significant internal variation as well as a high degree

of connectivity with the rest of the domain. In case S3 portions of the wreaths can have

coherent cores in which Bφ can regularly exceed 25 kG and have peak values as high as

54 kG. In these cores, bundles of magnetic field lines show very little local connectivity with

the rest of the domain or even the other portions of the wreath. A single wreath of a given

polarity may not form a coherent core at all or may have more than one core, and a single

core may produce multiple buoyant loops. Of the nine buoyant loops investigated here to

rise past 0.90R�, one coherent core produces four buoyant loops, another produces three,

and two more cores each yield a single buoyant loop.
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Figure 4.3: Analyzing a rising loop. (a) 2-D cuts in longitude at successive times (tracking
in longitude at the local rotation rate of the loop) showing toroidal magnetic field over radius
and latitude. The rising magnetic loop A is seen in cross-section starting at 0.81R� at t = tb
and rising to 0.91R� after roughly 15 days. Proto-loop B is also seen rising starting at 8.6
days, but the top of loop B never rises above 0.88R�. (b) 3-D visualization of magnetic field
lines in the core of a wreath which produces four loops (two shown here, one of which is
loop A) at tb + 14.6 days. Perspective is looking down along the rotation axis toward the
equatorial plane. Coloring indicates field magnitude. Dashed lines indicate radial position.
Dotted line shows the cutting plane used in the left-most panel above. (c) Radial location of
the top of a buoyant loop as a function of time since tb, along with movement attributable
to magnetic buoyancy (red lines) or to advection by convective upflows (blue lines).

Some of the coherent wreath cores can become buoyant magnetic loop progenitors

or proto-loops. In these proto-loops the strong Lorentz forces result in highly suppressed

convective motions. If we examine extended regions in the cores of wreaths with a local ratio

of magnetic to kinetic energy above a fiducial value of 100, we identify at least 35 proto-loops

at the times where the nine buoyant loops arise. Thus the large majority of proto-loops do not
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evolve into mature buoyant loops, generally due to unfavorable interactions with convective

flows. When magnetic field strengths exceed 35 kG the proto-loops become significantly

underdense as magnetic pressure displaces fluid, causing buoyant acceleration. With some

rise a proto-loop can enter a region of less suppressed giant cell convection. These flows will

advect portions of the proto-loop downward at cell edges and upward in the core of the giant

cells. The rise of the top of a magnetic loop is shown in cross-section by sampling Bφ roughly

every 2 days in Figure 4.3(a). Not all proto-loops become buoyant loops by our criteria. For

example, loop B in Figures 4.3(a,c) begins to rise but is prevented from passing 0.88 R�

when the top of the loop encounters a strong downflow.

One way to track these buoyant loops is to use 3-D tracings of magnetic field lines using

the VAPOR software package (Clyne et al., 2007). In our simulations with finite resistivity,

individual field lines do not maintain their identity in time. However, one can achieve some

measure of consistency as the structure moves and evolves by tracking field line ensembles.

We track the very strong fields at the bottom of the loops near the base of the domain

and we randomly seed large numbers of field lines (here 1000) in those highly magnetized

footpoints at each time step. Figure 4.3(b) shows a 3-D rendering of magnetic fields lines for

two sample loops near the peak of their rise. Similar field line tracings have been studied at

various times during the rise of these loops.

At maximum rise, the sample magnetic loop A extends from 0.73R� to 0.93R�. The

magnetic fields exceed 40 kG at the base of the loop but become much weaker near the top

of the loop, with field strengths as low as 2 kG. Such loops are embedded in the much

larger wreaths which have an average cross-sectional area of 13800 Mm2. The cross-sectional

area of loop A is 120 Mm2 at 0.795R� and 520 Mm2 at its peak radial position of 0.923R�.

Accounting for the continued expansion that would likely occur if this loop were able to

rise further, the cross-sectional area is reasonable compared with the typical area of a large

sunspot at the solar surface, which is roughly 2500 Mm2 Zwaan (1987). If the loop were

rising adiabatically over the same interval, the cross-sectional area should change in inverse
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proportion to the change in background pressure, which decreases here by a factor of 17.1,

rather than the observed expansion by a factor of 4.3. The top of the loop must then have

a net outflow of heat or material in order to avoid expanding adiabatically. The loops show

a measurable deficit in density and thermodynamic pressure relative to their surroundings,

but they do not possess any detectable signature in temperature or entropy. This indicates

that they are thermally “leaky” and able to equilibrate quickly compared to the timescale for

radial motion. A simple estimate of the thermal diffusion time across one of these structures

at mid-convection zone is on the order of 50 days, implying that there is likely also a divergent

flow at the top of the loop, moving fluid along field lines. We see some evidence for such

flows with roughly 1 m s−1 speeds.

Once a loop has begun to rise, its radial motion is dominated by advection and mag-

netic buoyancy. Figure 4.3(c) illustrates the motion of loop A which begins to rise buoyantly

at tb, while also indicating the components of the motion due to advection and magnetic

buoyancy. To compare motion due to magnetic buoyancy, we define a magnetic buoyancy

velocity vmb at the times sampled in Figure 4.3(c). Magnetic buoyancy acceleration is here

the fractional density deficit in the loop compared to the average density of the surrounding

fluid times the local gravitational acceleration. For a magnetic structure in local thermal

equilibrium, this reduces to the ratio of magnetic pressure inside the loop to thermody-

namic pressure in the surrounding fluid times gravitational acceleration. To compute vmb

we integrate the magnetic buoyancy acceleration over the intervals between times plotted in

Figure 4.3(c) (roughly 2 days), which likely provides a lower bound on this velocity. The

advective velocity vad is the volume-averaged velocity of the surrounding fluid. The pressure

and velocity of the surrounding fluid are calculated by taking averages over the convective

updraft while excluding regions with field magnitude greater than 4 kG. Initially the sample

proto-loop experiences an upward vmb = 46.1 m s−1. After 3 days of movement dominated

by magnetic buoyancy, the loop gets caught in a convective updraft and vad becomes greater

than vmb. Even though advective motions dominate, magnetic buoyancy continues to drive
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an average upward motion at 32.3 m s−1 relative to the surrounding fluid. Continued buoyant

acceleration of the loop as the magnetic pressure weakens is achieved because its density per-

turbation decreases at roughly the same rate as does the background density stratification.

Once the top of the loop has entered the main convective upflow it experiences advection at

an average velocity of 53.1 m s−1. The presence of magnetic buoyancy forces allow this loop

to rise in 14.6 days while the average upflow traverses the same distance in 21.7 days and

magnetic buoyancy alone would require 30.6 days.

Additional accelerations are present but not shown, including thermal buoyancy, which

is significant early in the rise of the loop, and magnetic tension, which is of the same order

of magnitude as the advective motion near maximum radial extent at 14.6 days and helps

tether the loop to that height. Thermal buoyancy is distinguished from magnetic buoyancy

by averaging over the convective updraft but excluding regions with magnetic fields above

4 kG. An additional apparent motion at early times is produced as toroidal magnetic field

used to track the loop is converted to radial magnetic field in the sides of the loop. Because

advection plays a crucial role in the transport of these magnetic loops, their size scale is set

by the size of the convective giant cells. The nine loops studied here have an average extent

of 15.4◦ in longitude when measuring across the bottom of the loop, whereas the average

distance between convective downflows in the equatorial region is 16.4◦ in longitude.

4.5 Reflections

In this chapter we have presented a 3-D MHD simulation that combines turbulent

convection, rotation, and stratification to produce solar-like differential rotation and wreaths

of large-scale toroidal magnetic field at the base of the convection zone. These undergo cycles

of magnetic activity and reversals of global magnetic polarity. Most notably the wreaths also

exhibit buoyant magnetic loops capable of coherently traversing much of the convective layer.

Such loops can only be realized when the field amplitude in a portion of a wreath exceeds
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35 kG, the diffusion timescale across the proto-loop (here 50 days) is much longer than the

timescale for rise due to magnetic buoyancy, and the interactions between rising loops and

convective flows are favorable. These buoyant loops which appear at cycle maximum can

have toroidal field strengths of 45 kG at their base and 5 kG at their top. Their size scales

are set by the size of the convective giant cells and they have cross-sectional areas at 0.90R�

that are reasonable compared to the area of a large sunspot.

We must be cautious in suggesting that these rising magnetic loops can make it through

to the surface of the star. Our global simulations here only extend to 0.97R� and currently

place an impenetrable boundary there, for we cannot cope with the intense small scales of

convection seen as supergranulation and granulation near the surface. The presence of the

domain boundary deflects all flows, leading to some uncertainty about the fate of the rising

loops that could only be resolved by linking flows and magnetism in the upper reaches of

ASH to another high-resolution compressible domain closer to the surface. This is a task we

are now pursuing in parallel with global modeling.

It is noteworthy that within this simulation convection generates differential rotation

which in turn generates toroidal flux which then buoyantly destabilizes and rises. Each link

in this chain is physically well established. Our primary accomplishment here is to capture

all these processes self-consistently within a single simulation. This represents an essential

step toward unifying numerical models of global-scale convective dynamos and surface flux

emergence.



Chapter 5

Magnetic Wreaths

Having discussed the discovery of buoyant magnetic loops in a convective dynamo

simulation at 3Ω�, we now turn to a more systematic survey of dynamo action at the same

rotation rate with varying levels of explicit diffusion. We study the large-scale magnetic

fields which can be achieved at various levels of turbulence. In Chapter 6 we will further

examine the temporal variability of these large-scale magnetic fields and the possibility of

cyclic reversals in global magnetic polarity.

This chapter is the first of two based on the work published in Nelson et al. (2013b) 1

and is largely quoted from that publication. I was the primary author of that paper. I ran

most of the simulations presented here and conducted all of the analysis. Notably Benjamin

Brown ran cases D3, D3-pm1, and D3-pm2. My co-authors provided essential contributions

in formulating the simulations and the analysis, and in providing significant guidance in the

writing process.

5.1 Overview

Solar-type stars exhibit a rich variety of magnetic activity. Seeking to explore the

convective origins of this activity, we have carried out a series of global 3D magnetohydro-

dynamic (MHD) simulations with the anelastic spherical harmonic (ASH) code. Here we

1 Nelson, N. J., Brown, B. P., Brun, A. S., Miesch, M. S., & Toomre, J. 2013a, Magnetic Wreaths and
Cycles in Convective Dynamos, ApJ, 762, 73
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report on the dynamo mechanisms achieved as the effects of artificial diffusion are system-

atically decreased. The simulations are carried out at a nominal rotation rate of three times

the solar value (3Ω�), but similar dynamics may also apply to the Sun. Our previous simu-

lations demonstrated that convective dynamos can build persistent toroidal flux structures

(magnetic wreaths) in the midst of a turbulent convection zone and that high rotation rates

promote the cyclic reversal of these wreaths. Here we demonstrate that magnetic cycles

can also be achieved by reducing the diffusion, thus increasing the Reynolds and magnetic

Reynolds numbers. In these more turbulent models, diffusive processes no longer play a

significant role in the key dynamical balances that establish and maintain the differential

rotation and magnetic wreaths. Magnetic reversals are attributed to an imbalance in the

poloidal magnetic induction by convective motions that is stabilized at higher diffusion lev-

els. Additionally, the enhanced levels of turbulence lead to greater intermittency in the

toroidal magnetic wreaths, promoting the generation of buoyant magnetic loops that rise

from the deep interior to the upper regions of our simulated domain. The implications of

such turbulence-induced magnetic buoyancy for solar and stellar flux emergence are also

discussed.

5.2 Dynamos at 3Ω�

We study convection and dynamo action in the deep interior of solar-like stars using

the anelastic spherical harmonic (ASH) code (Clune et al., 1999; Brun et al., 2004). Our sim-

ulation approach is briefly described here, but is more fully explained in Brown et al. (2010).

ASH solves the anelastic MHD equations in a rotating spherical shell with a background

stratification taken from a 1D model of solar structure. We focus on simulating the bulk of

the solar convection zone from 0.72R� to 0.97R� (R� is solar radius) with a density contrast

of about 25. We do not model the near-surface layers of the sun, for we are limited by the

anelastic approximation to subsonic flows. Additionally we cannot resolve the small-scales

of motion needed to simulate granular and supergranular scales. We also do not include the
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stably-stratified radiative zone or the tachocline in these simulations, although simulations

including those components are an active area of research (see Brun et al., 2011). We have

done some preliminary work in adding a tachocline to these simulations and found that it

does not drastically change the dynamo action in the bulk of the convective layer. The effects

of a tachocline will will explored further in a future paper. Our results tend to support the

recent studies with mean-field dynamo models, which suggests that the differential rotation

of the convection zone may play a greater role in the generation of toroidal magnetic field

than the tachocline (e.g., Dikpati & Gilman, 2006; Muñoz Jaramillo et al., 2009). We use

impenetrable and stress-free boundary conditions on both the top and bottom of the domain.

We impose the entropy gradient at the top and bottom of the domain for the thermal bound-

ary conditions. For the magnetic fields we use a perfect conductor condition on the bottom

boundary and match to an external potential field on the top boundary. These conditions

and our evolution equations are described in detail in Brown et al. (2010).

ASH is a large-eddy simulation which employs a subgrid-scale model to account for

the effects of unresolved scales of motion. The standard subgrid-scale (SGS) model in ASH

simulations uses enhanced values of viscosity, thermal diffusivity, and magnetic resistivity

relative to those expected from atomic values in order to represent additional mixing due

to unresolved turbulent motions. In this enhanced eddy SGS model, viscosity ν, thermal

diffusivity κ, and magnetic resistivity η all scale as ρ̄−1/2, where ρ̄ is the spherically-symmetric

background density of the simulation. This prescription, along with constant Prandtl and

magnetic Prandtl numbers throughout the domain, follows that of Brown et al. (2010, 2011).

All cases presented in this paper use Pr = ν/κ = 0.25, but variable Pm (see Table 5.1).
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Table 5.1: Dynamo simulations at three times the solar rotation rate. All simulations have inner radius rbot = 5.0 × 1010cm
and outer radius of rtop = 6.72× 1010cm, with L = (rtop − rbot) = 1.72× 1010cm the thickness of the spherical shell. Evaluated
at mid-depth are the Rayleigh number Ra = (−∂ρ/∂S)(dS̄/dr)gL4/ρνκ, the Taylor number Ta = 4Ω2

0L
4/ν2, the rms Reynolds

number Re = vrmsL/ν and fluctuating Reynolds number Re′ = v′rmsL/ν, the magnetic Reynolds number Rm = vrmsL/η and
fluctuating magnetic Reynolds number Rm′ = v′rmsL/η, the Rossby number Ro = ω/2Ω0, and the convective Rossby number
Roc = (Ra/Ta Pr)1/2. Here the fluctuating velocity v′ has the axisymmetric component removed: v′ = v − 〈v〉, with angle
brackets denoting an average in longitude. For all simulations, the Prandtl number Pr = ν/κ is 0.25 and the magnetic Prandtl
number Pm = ν/η ranges between 0.5 and 4. The viscous and magnetic diffusivity, ν and η, are quoted at mid-depth (in units
of 1011 cm2 s−1). The total evolution time TE for each simulation is given in years. The values for case S3 with the dynamic
Smagorinsky SGS model utilize the mean viscosity at mid-convection zone averaged on horizontal surfaces as well as in time. For
case S3 using the dynamic Smagorinsky SGS model, the values quoted are based on the time-averaged rms viscosity, conductivity,
and resistivity at mid-depth, noting that these diffusion coefficients have near hundred-fold spatial variations.

Case Nr, Nθ, Nφ Ra Ta Re Re′ Rm Rm′ Ro Roc ν η Pm TE
D3 97× 256× 512 3.28×105 1.22×107 173 104 86 52 0.374 0.315 13.2 26.4 0.5 61.6

D3a 97× 256× 512 5.84×105 2.41×107 244 154 122 77 0.447 0.295 9.40 18.8 0.5 67.1
D3b 145× 512× 1024 1.11×106 6.08×107 343 273 171 136 0.566 0.257 5.92 11.8 0.5 16.9

D3-pm1 145× 256× 512 2.98×105 1.22×107 149 102 149 102 0.372 0.300 13.2 13.2 1 18.8
D3-pm2 145× 512× 1024 3.08×105 1.22×107 145 101 291 202 0.370 0.306 13.2 6.60 2 13.6

S3 145× 512× 1024 7.68× 108 4.46× 1010 8050 5750 4030 2880 0.581 0.262 0.218 0.435 0.5 4.01



100

In addition, we have also implemented a more complex SGS treatment, the dynamic

Smagorinsky model developed by Germano et al. (1991). By using the dynamic Smagorinsky

model in ASH simulations we are able to reduce the mean diffusion at mid-convection zone

by a factor of 50 without an increase in resolution. Our implementation of the dynamic

Smagorinsky model is summarized in Appendix A. This SGS treatment is only used in case

S3, which was first presented in Nelson et al. (2011b).

Table 5.1 presents the computational resolution, relevant non-dimensional parameters,

diffusion coefficients, and total evolution time for each of the six cases we will discuss here.

We have explored two main branches in parameter space. The first branch includes cases

D3, D3a, and D3b, where viscosity ν, thermal diffusivity κ, and magnetic resistivity η have

all been dropped together, thus keeping a constant magnetic Prandtl number. The second

branch includes cases D3, D3-pm1, and D3-pm2, where ν and κ are held constant and only

η is decreased, resulting in increasing magnetic Prandtl numbers. We will refer to the two

branches as the constant Pm and increasing Pm branches, respectively. The constant Pm

branch was found to be more compelling, as cases D3a and D3b generally produced strong

magnetic wreaths that were anti-symmetric about the equator, whereas the high Pm branch

produced a wider variety of symmetric and anti-symmetric toroidal field states and was

therefore less amenable to study. Such behavior is not unexpected as dynamos with higher

magnetic Prandtl number tend to promote small-scale dynamo action. We will generally

focus on the constant Pm branch of simulations while referencing the increasing Pm branch

to provide additional insight.

Case D3 was initiated from a well developed hydrodynamical simulation that was

seeded with a small random magnetic field. Each subsequent case along both branches was

started from the preceding case. Thus both cases D3a and D3-pm1 were started using case

D3 as initial conditions, case D3b was started using case D3a, and so on. We have re-

started case D3a from a random seed field to verify that it settles into a similar region of

solution space as the version continued from case D3 and found no strong differences in the
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Figure 5.1: Magnetic wreaths. (a)-(c) Shown in global Mollweide view (equator at middle,
poles at top and bottom) is the radial velocity of the convection at 0.95R� in cases D3,
D3a, and D3b, respectively. (d)-(f) Also in Mollweide few, longitudinal magnetic field Bφ at
mid-convection zone at times t1 indicated in Figure 6.1. (g)-(i) Shown at the same times for
each case is a 3D field line rendering of the magnetic wreaths near the equator. In both types
of display for the magnetic field, color gives the polarity and amplitude of the longitudinal
field (red positive, blue negative). Times shown correspond to t1 for each case in Figure 6.1.

time-averaged behavior over several thousand days.

5.3 Magnetic wreaths

The dominant magnetic structures built by each of these simulations are the low lat-

itude bands of predominately toroidal field, which we term wreaths. These wreaths are

generally anti-symmetric about the equator, though symmetric states are observed along

with states where one hemisphere displays a wreath while the other does not. These ir-

regular states are most common along the increasing Pm branch of our simulations. The

wreaths in case D3 are discussed extensively by Brown et al. (2010) and additional wreaths
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are analyzed at somewhat faster rotation rate (5Ω�) by Brown et al. (2011).

5.3.1 Magnetic Topology

Figure 5.1 shows snapshots of the turbulent convection and the wreaths for cases D3,

D3a, and D3b at mid-convection zone in global Mollweide view as well as at low latitudes

in a 3D volume rendering of magnetic field lines colored by Bφ. In all three cases strong

longitude-averaged fields are present at low latitudes, however the nature of the wreaths

change from case D3 where axisymmetric fields dominate to case D3b where a significant

axisymmetric field component is present but not dominant. In case D3b the morphology has

changed such that the wreaths are confined in longitudinal extent. Figure 5.1 shows a typical

field configuration, but the wreaths are observed at various times to extend over as little at 45

degrees and as much as 270 degrees in longitude. All three cases show extensive connectivity

between the wreaths and the surrounding domain where magnetic fields are moderate in

strength but far less coherent. The wreaths are strongly modulated by the convective flows,

producing a ragged appearance that is particularly noticeable in case D3b but present in all

three cases. In the more turbulent cases there are also significant small-scale magnetic fields

at moderate to high latitudes, and occasional locally-generated wreath-like structures near

the poles which persist for less than about 100 days at a time.
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Table 5.2: Volume-averaged magnetic and kinetic energies for dynamo simulations at three times the solar rotation rate, as well
as the magnitude of the differential rotation contrast in radius at the equator ∆Ωr and the average contrast at the top of the
simulated domain between the equator and ±60◦ latitude ∆Ωθ. Shown in units of 106 erg cm−3 are the total magnetic energy
(Total ME), axisymmetric toroidal magnetic energy (TME), axisymmetric poloidal magnetic energy (PME), fluctuating magnetic
energy (FME), total kinetic energy (Total KE), differential rotation kinetic energy (DRKE), meridional circulation kinetic energy
(MCKE), and fluctuating kinetic energy (FKE). The percentage of the total energy is shown for total magnetic energy (Total
ME) and total kinetic energy (Total KE). The percentage of the total magnetic or kinetic energy for each component is shown in
parentheses. Values for differential rotation rates are in units of nHz (3Ω� = 1240 nHz). Values are averaged in time over long
intervals.

Case Total ME TME PME FME Total KE DRKE MCKE FKE ∆Ωr ∆Ωθ

D3 0.68 (9%) 0.29 (43%) 0.029 (4%) 0.36 (53%) 6.67 (91%) 4.35 (65%) 0.010 (0.1%) 2.31(35%) 112 192

D3a 0.88 (12%) 0.32 (36%) 0.030 (3%) 0.52 (59%) 6.41 (88%) 3.71 (58%) 0.011 (0.2%) 2.68 (42%) 101 163
D3b 0.82 (13%) 0.10 (12%) 0.011 (1%) 0.70 (85%) 5.42 (87%) 2.45 (45%) 0.012 (0.2%) 2.96 (55%) 95 131

D3-pm1 1.04 (18%) 0.26 (25%) 0.033 (3%) 0.75 (72%) 4.87 (82%) 2.63 (54%) 0.010 (0.2%) 2.23 (46%) 87 139
D3-pm2 1.17 (21%) 0.15 (13%) 0.028 (2%) 0.99 (85%) 4.34 (75%) 2.29 (53%) 0.009 (0.2%) 2.04 (47%) 74 121

S3 0.83 (13%) 0.072 (9%) 0.0060 (0.7%) 0.75 (91%) 5.50 (87%) 2.32 (42%) 0.013 (0.2%) 3.17 (58%) 95 133
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The shift from structures dominated by axisymmetric fields in case D3 to the patchy

wreaths in case D3b is illustrated by the changes in the time- and volume-averaged energy

densities shown in Table 5.2. Between cases D3 and D3b there is a roughly 30% increase

in the total magnetic energy of the simulation, though the energy in both the axisymmetric

toroidal (TME) and poloidal (PME) fields decreases by roughly a factor of three. The

doubling of the energy in the non-axisymmetric magnetic fields more than compensates for

the decrease in mean fields. When compared with the kinetic energy densities, the changes in

the magnetic energies becomes even more striking. Viscous, thermal, and magnetic diffusion

in case D3b are all reduced by the same factor relative to case D3. However the total kinetic

energy in case D3b dropped by 19%. The non-axisymmetric kinetic energy (FKE) rose

only moderately compared to the decrease in differential rotation kinetic energy (DRKE).

The high magnetic Prandtl number cases also show a tendency towards larger total and

fluctuating magnetic energies, as well as reduced axisymmetric toroidal magnetic energy as

the magnetic diffusion is reduced.

It is illustrative to compare cases D3b and D3-pm1, as they have roughly equal levels of

magnetic diffusion, with case D3b having comparatively lower levels of viscosity and thermal

diffusion. The largest differences are in the axisymmetric magnetic energies which are both

about three times greater in case D3-pm1 than in case D3b. This may be due to the more

laminar flow in case D3-pm1, which would tend to create fewer sharp gradients in the large-

scale magnetic structures and thus lower the effective dissipation in case D3-pm1 compared

to case D3b, even though the diffusion coefficients in the induction equation are nearly the

same. Case D3-pm1 also show significantly less differential rotation contrast both in radius

and latitude compared to case D3b, pointing to the key role of magnetic torques in decreasing

differential rotation, which will be discussed further in §5.
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Figure 5.2: Probability distribution functions for unsigned Bφ at mid-convection zone
for cases D3 (purple), D3a (green), D3b (red), and S3 (blue) showing the surface area
covered by fields of a given magnitude. Distributions are averaged over about 300 days when
fields are strong and as steady as possible. Dashed vertical lines show the field-strength
at which equipartition is achieved with the maximum fluctuating kinetic energy (FKE) at
mid-convection zone for each case. Case D3b shows a deficit of field in the 10 kG range, but
an excess of surface area covered by extremely strong fields above 25 kG range, as well as
higher peak field strengths. Case S3 shows significantly greater regions of fields in excess of
20 kG than all other cases.

5.3.2 Non-axisymmetric Fields

Our discussion of the magnetic wreaths to this point has focused on the axisymmetric

fields, which are progressively weaker in moving from case D3 to case D3b. While the ax-

isymmetric fields weaken with increased turbulence, very strong fields become more common

when measured by the fraction of the domain they occupy. Figure 5.2 shows the probability

distribution function for Bφ at mid-convection zone in cases D3, D3a, D3b, and S3. While

case D3b has a deficit of fields around 10 kG compared to case D3a, there is a clear excess of

fields above 20 kG. Interestingly the distribution for case D3b is greater than that for case

D3 for all but the smallest bin, indicating that while case D3 may have stronger axisym-

metric fields in the low latitude wreaths, case D3b compensates by having higher amplitude
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fluctuating fields throughout the domain. The peak field strength at mid-convection zone is

32 kG in case D3, 36 kG in case D3a, and 38 kG in case D3b. Near the base of the convection

zone case D3b exhibits even stronger fields of up to 44 kG. Case S3 posses magnetic fields

of up to 45 kG at mid-convection zone and 52 kG near the base of the convective layer.

For all four cases fields are seen well in excess of equipartition energies with the maximum

fluctuating kinetic energy of the flows. This is a clear indication of turbulent intermittency

in the magnetic fields.

A statistical measure of turbulent intermittency is the time-averaged excess kurtosis

given by

kurt{Bφ} =

∫∞
−∞

(
B′φ − B̄φ

)4
f
(
B′φ
)
dB′φ[∫∞

−∞

(
B′φ − B̄φ

)2
f
(
B′φ
)
dB′φ

]2 − 3, (5.1)

where f(B′φ) is the probability distribution function (see Pope, 2000). For reference a Gaus-

sian distribution would have an excess kurtosis of 0. The level of turbulent intermittency is

measured by how leptokurtic the distribution is found to be, with large values corresponding

to increased intermittency. For case D3 kurt{Bφ} = 9.6, while for case D3a kurt{Bφ} = 10.5,

and for case D3b kurt{Bφ} = 12.1. Leptokurtic distributions are likely to experience strong

coherent structures, such as the strong regions of coherent toroidal field in these simulations.

At even lower levels of diffusion than can be realized with the enhanced eddy SGS model,

the strong-field regions become sufficiently buoyant and coherent so as to form buoyant mag-

netic loops as realized in case S3 (Nelson et al., 2011b), for which kurt{Bφ} = 15.6. Highly

leptokurtic distributions like these indicate that extreme events are enhanced relative to a

Gaussian distribution, and the trend towards increasing kurtosis as simulations become more

turbulent points to turbulent amplification of magnetic fields. As we will discuss further in

§7, this provides an alternate pathway to produce regions within the larger wreaths which

can be amplified through turbulent intermittency to produce coherent regions of strong mag-

netic field, which can then become buoyant. We term this the turbulence-enabled magnetic

buoyancy paradigm.
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5.4 Maintaining Rotational Shear

A crucial component in the construction of magnetic wreaths is the strong latitudinal

and radial shear from the differential rotation. The Ω-effect has previously been shown to

be the primary production mechanism for the magnetic wreaths in cases D3 and D5 (Brown

et al., 2010, 2011), and it plays a key role in these simulations as well. Thus the angular

momentum transport required to maintain the differential rotation is an important physical

process in these dynamo models. In the hydrodynamic models explored by Brown et al.

(2008), angular momentum transport in simulations at 3Ω� was shown to be a balance

between Reynolds stress supporting solar-like differential rotation with the meridional cir-

culation and viscous diffusion tending to dissipate gradients in the rotation profile. With

the addition of magnetic fields, Maxwell stress and mean magnetic torques can also trans-

port angular momentum, changing the balance supporting the strong differential rotation

achieved in the hydrodynamic cases. Even in cases without magnetic cycles such as case D3,

Brown et al. (2010) showed that there are significant feedbacks on the differential rotation

profile due to variations in the strength of the magnetic fields over time. It is thus useful to

examine not only the steady state balance of angular momentum transport over long time

averages covering many magnetic cycles, but also to look at the temporal variability of those

balances.

In order to explore the transport of angular momentum, let us examine the physical

mechanisms which come into play. The balance of specific angular momentum along the

rotation axis is determined by taking the product of the cylindrical radius λ = r sin θ and

the longitudinal component of the longitude-averaged momentum equation, which can be

expressed as

∂Lz
∂t

= ∇ · ~F . (5.2)

We decompose the flux vector of mean angular momentum ~F into radial and latitudinal

components following prior convention (Elliott et al., 2000; Brun et al., 2004; Brown et al.,
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Figure 5.3: Differential rotation and the terms contributing to the accompanying redistri-
bution of angular momentum in case D3b averaged over many magnetic cycles. (a) Angular
velocity Ω profile with radius and latitude, accompanied in turn by profiles of specific angu-
lar momentum flux in cylindrical radius (λ) by Reynolds stress (RS), meridional circulation
(MC), viscous diffusion (VD), Maxwell stress (MS), and mean magnetic torques (MT), re-
spectively. Terms are defined in detail in Equations A.1 and A.2. They are here averaged
in time and longitude, and given in units of 1015 g s−2. (b) Scalar plot of z-integrated
fluxes of angular momentum with cylindrical radius λ in units of 1038 g cm2 s−2 . Reynolds
stress (RS, red) balance Maxwell stress (MS, blue), with viscous diffusion (VD, green) and
magnetic torques (MT, purple) playing less of a role. Contribution from the meridional
circulation (MC, brown) are small. The sum of all five terms are also plotted (black dashed
line).

2011). We also decompose the flux vector into cylindrical coordinates along cylindrical radius

(λ) and along the rotation axis (z), which in many ways is advantageous for displaying

these quantities. A detailed description of this decomposition is given in Appendix B. The

cylindrical flux of angular momentum is shown for case D3b over a long time average in

Figure 5.3. The differential rotation is again clearly maintained by the Reynolds stress

(RS), however here the terms opposing the differential rotation have changed compared

to similar hydrodynamic cases. In case D3b the Maxwell stress (MS) is the largest term

opposing the Reynolds stress with viscous diffusion (VD) and the mean magnetic torques

(MT) each playing a small role, while contribution of the meridional circulation (MC) is

almost insignificant.
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Table 5.3: Total production and dissipation of kinetic energy in the axisymmetric differ-
ential rotation profile over the entire simulated volume and averaged in time. Values for
energy production rates are in units of 1032 erg s−1. Production and dissipation terms are
split following Equation (5.3) into contributions from viscous dissipation, Reynolds stress,
meridional circulations, Maxwell stress, and mean magnetic torques, respectively. Produc-
tion terms are defined in Appendix A.

Production and Dissipation of Differential Rotation Kinetic Energy

Case LRS LMC LVD LMS LMT

D3 4.26 -0.020 -2.45 -1.36 -0.68

D3a 3.18 -0.032 -1.11 -1.36 -0.70
D3b 2.59 -0.003 -0.64 -1.94 -0.19

D3-pm1 3.64 -0.014 -1.68 -1.87 -0.35
D3-pm2 3.32 -0.024 -1.61 -1.95 -0.31

We can write the evolution of the total energy of the differential rotation EDR as

∂EDR

∂t
= LVD + LRS + LMC + LMS + LMT, (5.3)

where the terms on the right-hand side represent the sources and sinks of kinetic energy in

the differential rotation due to, respectively, viscous diffusion, Reynolds stress, meridional

circulations, Maxwell stress, and mean magnetic torques. Appendix A provides a derivation

of Equation (5.3) and an expansion of the sources and sinks.

Using this decomposition, we can examine the balance of production and dissipation

of EDR averaged over long time intervals in each simulation. The balances are represented

in Table 5.3 and Figure 5.4. For the increasing Pm branch the Reynolds stress change only

slightly while the mean magnetic torques and viscous diffusion are systematically replaced

by the Maxwell stress. Similar trends are observed in the constant Pm branch of cases,

though here the magnitude of the Reynolds stress and viscous diffusion terms decrease more

dramatically. This shift from unresolved dissipation in the form of SGS viscosity to resolved,

small-scale torques from the Maxwell stress indicates that the balances which maintain strong
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Figure 5.4: Companion to Table 5.3, showing the balance of time-averaged generation
terms for the kinetic energy in the differential rotation profiles for each case indicated. In
all cases the differential rotation is maintained by a balance between the Reynolds stress
and a combination of viscous diffusion and fluctuating and mean magnetic torques. The
contribution from meridional circulations are not shown due to their small magnitude.

differential rotation can persist in less diffusive regimes, assuming that magnetic energies

remain significantly smaller than kinetic energies.

Turning to the temporal variability in these balances, we find that for case D3b the

departures from the values presented in Table 5.3 and Figure 5.4 are about 10% for LMS and

LMT when averaged over about 10 days, whereas those in LRS, LMC and LVD are about 1%.

This leads to decreases in the differential rotation when magnetic fields are strong, such as

near the peak of the magnetic activity cycles. Conversely, we observe modest increases in

the differential rotation when magnetic fields are weak, such as during reversals of magnetic

polarity.

Figure 5.5 shows the differential rotation in case D3b over several magnetic reversals.

The differential rotation profile at mid-convection zone in Figure 5.5(a) is persistent, though

there are small systematic variations in Ω revealed in Figure 5.5(b) during each magnetic
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Figure 5.5: Temporal variability of differential rotation in case D3b over the same interval
as in Figure 6.9. (a) Longitudinally-averaged rotation rate at mid-convection zone as a
function of time and latitude. (b) Temporal variations are accentuated by subtracting the
time-averaged Ω at each latitude. Bands of faster rotating fluid move poleward on about
the cycle period. (c) Rotation contrasts in radius at the equator ∆r (red, solid) and in
latitude between the equator and ±60◦ in the upper convection zone ∆θ (red, dashed). The
volume-averaged toroidal field strength is also shown (blue, solid), with a phase-lag between
peaks in magnetic field strength and decreases in differential rotation. Dotted lines indicate
times t2 through t6 from Figure 6.2.

cycle. Figure 5.5(c) shows the differential rotation contrast in both radius and latitude over

time as well as the volume-averaged toroidal magnetic field strength, indicating that the

modest variations in the differential rotation are related to those in the magnetic field.

5.5 Generation of Toroidal Magnetic Energy

The transition from persistent wreaths in case D3 to cyclic wreaths and global polarity

reversals in case D3b indicates that by reducing the levels of diffusion in these simulations

we have fundamentally altered the balance of terms in the magnetic induction equation.

The details of the reversal mechanism are likely to be very subtle in these highly nonlinear
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systems. In order to better understand the reversal mechanism, we explore the nature of

the balances in the production and dissipation of toroidal and poloidal magnetic fields and

provide indications of where and why changes in those balances are occurring, as well as

some hints as to the nature of the reversal mechanism.

In Brown et al. (2010) a detailed analysis of the balance of toroidal component of the

axisymmetric induction equation was presented. We write the toroidal component of the

induction equation as

∂Bφ

∂t
=
[
∇×

(
~v × ~B

)]
φ
−∇×

(
η∇× (Bφφ̂)

)
. (5.4)

Using vector identities, the first term on the right-hand side can be written as the sum of

shearing terms, advection terms, and a compression term; additionally all of these terms can

be decomposed into mean and fluctuating components (for a full derivation, see Appendix

A in Brown et al., 2010). That work also showed that the wreaths in case D3 are primarily

generated by the Ω-effect and dissipated by a combination of small-scale advection, shear,

and diffusion.

Here we perform a similar analysis, but instead of examining the generation of 〈Bφ〉,

we choose to examine the generation of the volume-integrated energy of the axisymmetric

toroidal fields over the entire computational domain V , given by

ETME =

∫
V

〈Bφ〉2

8π
dV . (5.5)

We can construct an evolution equation for ETME by multiplying Equation (5.4) by 〈Bφ〉.

The result can be written as

∂ETME

∂t
= GMS +GFS +GMA +GFA +GAC +GRD, (5.6)

where the six terms on the right-hand side represent, from left to right, the shearing of

axisymmetric magnetic fields by mean flows associated with the Ω-effect (GMS), the average

of fluctuating flows shearing fluctuation fields (GFS), the advection of mean fields by mean
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flows (GMA), the average of fluctuating flows advecting fluctuating fields (GFA), the anelastic

compression of fields (GAC), and the resistive diffusion of mean fields (GRD). Unlike in

previous analyses which looked at the generation of magnetic field vectors, here we are

concerned with scalar quantities.

The terms on the right-hand side of Equation (5.6) are computed as

GMS =

∫
V
〈Bφ〉

[(
〈 ~B〉 · ∇

)
〈~v〉
]
φ
dV , (5.7)

GFS =

∫
V
〈Bφ〉

[〈(
~B′ · ∇

)
~v′
〉]

φ
dV , (5.8)

GMA = −
∫
V
〈Bφ〉

[
(〈~v〉 · ∇) 〈 ~B〉

]
φ
dV , (5.9)

GFA = −
∫
V
〈Bφ〉

[〈
(~v′ · ∇) ~B′

〉]
φ
dV , (5.10)

GAC =

∫
V
〈Bφ〉

〈
vrBφ

∂ ln ρ̄

∂r

〉
dV , (5.11)

GRD = −
∫
V
〈Bφ〉∇ × (η∇× 〈Bφ〉) dV . (5.12)

For consistency, angle brackets denote longitude averages.

Figure 5.6 shows the temporal evolution of the integrated energy of the axisymmetric

toroidal field for cases D3 and D3b and the behavior of the production terms governing the

variation of ETME. We have chosen to combine the contributions of the mean shear and

advection terms and the fluctuating shear and advection terms for ease of viewing. The

mean advection term GMA is generally positive and always much smaller than the mean

shear term GMS. The fluctuating shear and advection terms are both generally negative, of

approximately the same magnitude, and tend to vary in phase with each other.

Let us first look at the average levels of each term plotted in Figure 5.6 to get a

sense for the basic balance of terms. The production of ETME is dominated by the mean

shear term which is large and always positive in both case D3 and D3b. The compression

term in both cases is roughly an order of magnitude smaller but is again always positive

due to the asymmetry in upflows and downflows in compressible convection, which gives
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Figure 5.6: Volume-integrated production terms of magnetic energy in the mean toroidal
fields from Equation (5.6) for (a) case D3 and (b) case D3b. We have combined the mean
shear and mean advection terms (blue line) and the fluctuating shear and fluctuating ad-
vection (purple line). In both simulations, energy is produced primarily by the shearing of
mean fields by mean flows. Also in both cases compression of fields (green line) plays a very
small role. In case D3 diffusion (red line) and the advection and shear of fluctuating flows on
fluctuating fields destroy energy, with diffusion generally a factor of 2.5 larger. In case D3b,
however, the dissipation of energy by fluctuating advection and shear is 2.2 times greater on
average than diffusion. Thus in case D3b resolved turbulence is the primary mechanism for
dissipating the magnetic wreaths.

preference to downward pumping of magnetic field causing an increase in magnetic energy

due to compression. The production of magnetic energy is opposed by the resistive diffusion,
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fluctuating advection, and fluctuating shear terms. In case D3 resistive diffusion is roughly

three times larger than the sum of the two fluctuating terms, while in case D3b the roles

are reversed and resolved turbulent dissipation does most of the destruction of ETME while

the unresolved turbulent dissipation represented by our explicit resistivity is relegated to

a less prominent role. Supporting this transition from unresolved to resolved dissipative

processes, in case D3 the sum of the fluctuating terms does not show noticeable changes in

behavior when the magnetic energy is high versus when it is low. Instead the response is

seen primarily in the resistive dissipation term. In case D3b, however, the fluctuating terms

show strong variations in response to changes in the magnetic energy.

This transition from wreath-building dynamos that rely on our SGS diffusion to wreath-

building dynamos that are sufficiently turbulent to be dominated by resolved turbulent dis-

sipation answers one important question relative to the extension of this dynamo mechanism

to even more turbulent states. It had long been postulated that global-scale magnetic struc-

tures could not exist in the convection zone as they would be quickly destroyed by the intense

turbulence. While it is clearly possible that our wreaths may not be able to survive if we

were able to simulate far more turbulent conditions, case D3b marks an important milestone

along the path towards the possibility of magnetic wreaths coexisting with highly turbulent

convection.

Returning to Figure 5.6, let us now look at the time-variation in the production terms.

Both cases show variability of ETME, but for case D3b we have chosen to show a time period

that includes states before, during, and after a reversal in global magnetic polarity. For both

cases, careful examination shows that changes in ETME are initiated primarily by changes in

GMS, not by changes to the terms dissipating energy. The terms representing both resolved

and unresolved diffusion respond to changes in ETME rather than drive them. In case D3 this

is supported by the cross-correlation of GMS and GRD peaking at a 39 day lag, while there is

no significant cross-correlation between GMS and either GFS or GFA for any shift in time. In

case D3b both the cross-correlation of GMS with GFS, and GMS with GFA both peak at a lag
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of 11 days. Resistive diffusion responds faster in case D3b with a peak in cross-correlation

for a lag of only 5.6 days. This demonstrates that the variability in the toroidal fields is

driven by changes in the generation of field by the Ω-effect.

If we more closely examine the structure of GMS from Equation (5.7), we can expand

it to

GMS =

∫
V

(
〈Bφ〉〈Br〉

∂〈vφ〉
∂r

+
〈Bφ〉〈Bθ〉

r

∂〈vφ〉
∂θ

+
〈Bφ〉2〈vr〉

r
+
〈Bφ〉2〈vθ〉
r tan θ

)
dV . (5.13)

The third and fourth terms are geometric terms from the spherical coordinate system which

are generally small. In order to produce a change in GMS, the dynamo can either change

the axisymmetric poloidal field or modify the differential rotation of the domain. We have

examined both the amplitude and geometry of the mean shear due to differential rotation

and find only very small changes in any of the cases presented here. Additionally, reversals

in the polarity of the wreaths such as those seen in cases D3a and D3b require a change in

sign for the generation term (obtained by dividing by 〈Bφ〉) and there is never a change of

sign in the shear profile of the differential rotation observed in any of these cases. Thus we

are left with the conclusion that reversals in the polarity of the axisymmetric toroidal fields

must be initiated by changes in the axisymmetric poloidal fields.



Chapter 6

Cycles of Magnetic Activity

We now turn to a discussion of the temporal variability of the magnetic wreaths dis-

cussed previously. Specifically, we will examine the cycles of magnetic activity and reversals

of magnetic polarity which can be achieved by reducing the explicit diffusion in our sim-

ulations. This chapter is the second of two based on the work published in Nelson et al.

(2013b)1 and is largely quoted from that publication. I was the primary author of that

paper. I ran most of the simulations presented here and conducted all of the analysis. No-

tably Benjamin Brown ran cases D3, D3-pm1, and D3-pm2. I wrote most of the text, with

significant contributions from Mark Miesch in what is now Section 6.2.

6.1 Cyclic Reversals Achieved by Reducing Diffusion

In addition to building strong magnetic wreaths, cases D3a and D3b exhibit cyclic

reversals of global magnetic polarity. As is believed to occur in the Sun, the general pattern

of the cycles is that the toroidal fields peak at roughly the time when the poloidal field

is reversing sign, and the poloidal fields peak in amplitude when the toroidal fields are re-

versing sign. There are also a number of variations on this pattern, where one hemisphere

may develop considerably stronger fields than the other or where both hemispheres have the

same sense of toroidal field, pointing to large contributions at these times from quadripolar

1 Nelson, N. J., Brown, B. P., Brun, A. S., Miesch, M. S., & Toomre, J. 2013a, Magnetic Wreaths and
Cycles in Convective Dynamos, ApJ, 762, 73
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poloidal fields. Cases D3-pm1 and D3-pm2 also display strong variations in the strength and

topology of their axisymmetric fields. However the irregularities are more pronounced for

these cases over the time simulated.

6.1.1 Reversals in Global Magnetic Polarity

Figure 6.1 shows the temporal evolution of the longitude-averaged toroidal field 〈Bφ〉

at mid-convection zone over the history of cases D3 (Figure 6.1(a)), D3a (Figure 6.1(b)),

and D3b (Figure 6.1(c)). In case D3 we see persistent wreaths centered at about 20◦ above

and below the equator. These wreaths persist for about 68 years or as long as we have

run the simulation. The polarity of the wreaths is constant in time, though variations on

roughly 6 year time scales can be seen in both the amplitude of the low latitude wreaths as

well as the propagation of field to higher latitudes. The behavior of this case is discussed in

detail in Brown et al. (2010). Figure 6.1(b) shows case D3a over a comparable length of time

as in the first panel. Case D3a undergoes reversals in global magnetic polarity as well as

three significant irregular states. Additionally there are modulations in the amplitude of the

wreaths and poleward movements of field on roughly 3 year time scales. These variations

are not always synchronized between the two hemispheres, and neither are the reversals,

indicating that the poloidal field can have a complicated structure.

Figure 6.1(c) shows the temporal evolution of 〈Bφ〉 at mid-convection zone for case D3b

over about 13 years, with indications of cycles of magnetic activity and reversals of global

polarity. We have simulated 10 reversals as measured by the time-smoothed antisymmetric

component of 〈Bφ〉 changing sign. The time between reversals ranges from 0.6 to 1.9 years

and, as in case D3a, the two hemispheres are not always synchronized. There are several

times when one hemisphere shows significantly stronger fields than the other or when both

hemispheres have the same sense of fields. This is partly due to the averaging procedure used

to create these figures and the fact that we are only looking at a single depth. Analysis of the
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Figure 6.1: Time-latitude plots of longitude averaged toroidal magnetic field 〈Bφ〉 at 0.79R�
for (a) case D3 over about 56 years, (b) case D3a over the same amount of time, and (c) case
D3b over about 13 years. Dotted lines show times referenced in Figures 5.1, 6.2, 6.5, 6.6,
and 6.9. Dashed lines on (b) indicate the time period covered by (c). Case D3b was started
from case D3a at t2 (dotted line). The evolution of case D3b is limited by the increased
computational cost of the higher resolution required for computational stability.
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full 3D data shows that there is almost always a wreath-like structure in each hemisphere.

Figure 6.2 shows a sequence of snapshots of Bφ at mid-convection zone in case D3b

over a full spherical shell and of 〈Bφ〉 over the domain before, during, and after a reversal in

the polarity of the wreaths. Each snapshot is roughly 120 days after the previous snapshot.

The wreaths start appearing as strong mean-field structures in the longitudinal average,

but the non-averaged cut at mid-convection zone shows that there is significant longitudinal

variation in the wreaths, with the northern wreath covering roughly 120◦ and the southern

wreath covering 180◦ in longitude. There is also substantial evidence for interactions be-

tween the wreaths near the center of the image in Figure 6.2(a). As time progresses, the

axisymmetric fields weaken as the non-axisymmetric components begin to dominate. Small

patches of strong field persist, but they are largely washed out in the longitudinal averages.

After about 480 days (Figure 6.2d) strong patches of opposite polarity field begin to appear

and by the final frame (Figure 6.2e) the strong mean fields have been reestablished in the

opposite hemispheres from the initial configuration.

6.1.2 Variability at Higher Magnetic Prandtl Number

The simulations on the increasing Pm branch also show increased temporal variability

relative to case D3. There is also evidence for a change in the nature of the dynamo action in

these simulations. Figure 6.3 shows the evolution of 〈Bφ〉 at 0.79 R� over the history of case

D3-pm1, along with snapshots of the toroidal magnetic field at mid-convection zone at three

representative times. This case has selected a configuration of toroidal field that is largely

symmetric about the equator and of essentially the same polarity at most times. Some

periods of positive polarity field are seen, though the dominant field in both hemispheres is

clearly of negative polarity. Unlike cases D3a and D3b, case D3-pm1 does not undergo a true

global reversal of magnetic polarity. It does, however, exhibit strong temporal variability in

the wreaths seen in both hemispheres to an extent not seen in cases D3 or D3a.
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Figure 6.4 shows a similar view of case D3-pm2 over its temporal evolution. Again

it tends to avoid the anti-symmetric states characteristic of cases D3, D3a, and, to a lesser

extent, D3b. This case, however, does exhibit clear reversals of global magnetic polarity.

Interestingly, these reversals do not appear to occur at regular intervals, and often one

hemisphere can reverse without a noticeable change in the other hemisphere. As an example,

the southern hemisphere maintains a positive polarity wreath between about t = 5.5 years

and t = 10.5 years while the northern hemisphere exhibits four reversals in that same time

interval.

The preference for irregular polarity states in Bφ along the increasing Pm branch is

clearly related to the decreased level of magnetic diffusion, though it may also be indicative

of a shift in behavior due to the transition from small to large magnetic Prandtl number.

In cases D3, D3a, and D3b magnetic diffusion occurs on scales larger than those related to

the diffusion of momentum. This tends to promote the concentration of magnetic energy

at large scales. For high Pm dynamos, the resistive scale is smaller than the viscous scale,

which tends to promote the growth of magnetic energy at small scales (e.g., Schekochihin

et al., 2004). There is still considerable large-scale organization of magnetic field by the

differential rotation, but the increasing Pm branch exhibits less ordered behavior than the

constant Pm branch of simulations.

When examining the relative importance of decreased magnetic diffusion and increased

levels of turbulence, it is perhaps most instructive to compare cases D3b and D3-pm2. Ta-

ble 5.2 shows that the division of magnetic energies between the axisymmetric toroidal,

axisymmetric poloidal, and fluctuating magnetic fields are roughly equivalent in the two

cases, although case D3-pm2 has more magnetic energy overall. The kinetic energies in case

D3-pm2 are, however, more similar to case D3 than case D3b with the exception of decreased

differential rotation kinetic energy due to enhanced Lorentz force feedbacks. This suggests

that the onset of reversals is driven primarily by decreasing magnetic diffusion rather than by

some subtle shift in the velocity fields or correlations between magnetic fields and velocities
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on small scales.

6.1.3 Collapse of Resistive Balance Leading to Reversals

The key to understanding the reversals seen in cases D3a and D3b lies in the generation

of poloidal field. When the poloidal field reverses sign the Ω-effect can then build wreaths

of the opposite polarity and reverse the sign of the axisymmetric toroidal field. It is difficult

to identify a simple model for the generation of poloidal field in these cases, particularly in

case D3b. We can, however, identify the change in the generation mechanism that occurred

between cases D3 and D3b.

Following the work of Brown et al. (2010, 2011), we choose to examine the evolution

of the φ component of the mean vector magnetic potential 〈 ~A〉. This is convenient as 〈Aφ〉

completely specifies the components of the axisymmetric poloidal magnetic field by

∇×
(
〈Aφ〉φ̂

)
= 〈Br〉r̂ + 〈Bθ〉θ̂. (6.1)

The temporal variations in the magnetic wreaths are driven by changes in the shear of

mean poloidal magnetic fields by mean differential rotation and that only the axisymmetric

poloidal fields can change sign, hence changes in the polarity of the wreaths can be traced

back to the evolution of 〈Aφ〉. Further, the key region of the domain in which we should

monitor 〈Aφ〉 is near the equator where the gradients in differential rotation are largest and

where the wreaths are primarily generated.

The evolution of 〈Aφ〉 is governed by

∂〈Aφ〉
∂t

=
(
〈~v〉 × 〈 ~B〉

)
φ

+ (〈v′ ×B′〉)φ − η〈Jφ〉. (6.2)

We have ignored a gauge term in Equation (6.2) which is permissible for any longitudinally-

periodic gauge. We take a time-integral of this equation to look at the changes in 〈Aφ〉 over
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about 500 days in cases D3 and D3b, and define the time-integral of each term as

(∆Aφ)ME =

∫ t2

t1

(
〈~v〉 × 〈 ~B〉

)
φ
dt (6.3)

(∆Aφ)FE =

∫ t2

t1

(〈v′ ×B′〉)φ dt (6.4)

(∆Aφ)RD = −
∫ t2

t1

η〈Jφ〉dt. (6.5)

Thus the change in 〈Aφ〉 can be written as

∆〈Aφ〉 = (∆Aφ)FE + (∆Aφ)ME + (∆Aφ)RD . (6.6)

Figures 6.5 and 6.6 show the evolution of 〈Aφ〉 in cases D3 and D3b, respectively, as

well as the time-integrated production of terms shown above and the net change over the

time interval. For case D3b we chose a time period spanning a reversal in global magnetic

polarity. In both cases (∆Aφ)ME is small and the evolution is primarily governed by the

balance between fluctuating EMF and resistive diffusion. The primary difference between

cases D3 and D3b is the collapse of the resistive balance. Both cases show similar patterns

in (∆Aφ)FE, namely that the fluctuating EMF in both cases is seeking to create a region

of opposite polarity poloidal field near the equator while reinforcing the current sense of

poloidal field at mid-latitudes. Thus in both cases D3 and D3b the turbulent correlations

between the existing field and the convective turbulence tends to build poloidal field near

the equator of the opposite sense than the field that built the current wreaths through the

Ω-effect. The difference between cases D3 and D3b is that in case D3 the diffusion term is

sufficiently large to prevent the reversal by diffusing away the opposite polarity poloidal field

at the equator before it can accumulate sufficiently to cause a reversal.

What causes the fluctuating EMF to display this propensity towards reversing the

polarity of 〈Aφ〉 near the equator? It would seem that there should be some link back to the

strong toroidal wreaths, however when we expand the fluctuating EMF, we find that

(〈v′ ×B′〉)φ = 〈v′rB′θ − v′θB′r〉. (6.7)
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Clearly, neither the axisymmetric nor fluctuating components of Bφ come into play here,

indicating that to complete a reversal we need to connect the large-scale toroidal fields to

correlations between small-scale poloidal fields and poloidal flows. As shown in Figure 5.1(i),

the wreaths are not purely toroidal structures, thus the small-scale fields needed in Equa-

tion 6.7 may be supplied by the wreaths themselves. However, we have not been able to

definitively link the poloidal components of the wreaths to the reversal process. While the

subtle nature of this process remains difficult to pin down, we do have some hints at its origin.

6.1.4 Exploring An α-Like Effect

The final step in the reversal process is what is often described in the parlance of

mean-field dynamo theory as the α-effect (see Charbonneau, 2010). Generally, the α-effect

is the source of the axisymmetric component of the turbulent EMF, defined as

〈~ε′〉 = 〈~v′ × ~B′〉. (6.8)

Specifically, we are interested in the zonal component which generates the mean poloidal

field and its connection to the axisymmetric toroidal field, which might be expressed as

〈ε′φ〉 = αφr〈Br〉+ αφθ〈Bθ〉+ αφφ〈Bφ〉. (6.9)

In its simplest formulation, the components of αij in Equation (6.9) are constants, however

more complex formulations exist.

For case D3b, we have computed the value of the three components of the α tensor

in Equation (6.9) using a singular value decomposition following the work of Racine et al.

(2011). We compute values for αij at each radial and latitudinal location, assuming that

αij is constant in time. The results of Figure 6.7 demonstrate that the αφφ〈Bφ〉 is the most

important term in the generation of the fluctuating toroidal EMF. Thus, it is particularly

intriguing to focus on the connection

〈ε′φ〉 = αφφ〈Bφ〉. (6.10)
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Brown et al. (2010) showed that for one formulation of an α-effect in case D3, αφφ was

spatially nonlocal, which would not be picked up in our fitting procedure.

The exact mechanism for connecting mean fields and the fluctuating EMF is subtle,

but we find that in case D3b an α-like effect emerges, which is nonlocal in time, acting

on the same time scale as convective overturning. If we consider correlations between the

volume-averaged magnetic field components and similarity the fluctuating toroidal EMF,

we find evidence that the α-like effect in case D3b is not instantaneous but rather acts on

a time scale (47 days) which is commensurate with the convective overturning time. The

volume averages, denoted by curly braces, are computed separately for each hemisphere over

all depths and longitudes, and between the equator and ±30◦ in latitude. Combining the

data for both hemispheres, the cross-correlation is computed and shown in Figure 6.8 as a

function of the temporal interval ∆τ by which {ε′φ} is offset relative to {Br}, {Bθ}, and {Bφ}

in turn. The peaks in the cross-correlation which exceed 2σ in significance occur when {ε′φ}

leads {Bφ} by 312 days and when {Bφ} leads {ε′φ} by 47 days.

Analysis of the autocorrelation of both {Bφ} and{ε′φ} indicates that the two peaks are

not due to periodicities in either of the two time series individually. Further, the widths of

these peaks largely originates from the coherence time for 〈Bφ〉 of about 100 days. The first

peak at 312 days represents the time scale for the Ω-effect and agrees well with the estimate

from mean-field theory τΩ given by

τΩ = Prot
Ω0

∆Ω

〈Bφ〉
〈Bpol〉

, (6.11)

where Prot is the rotation period, Ω0 is the frame rotation rate, ∆Ω is the differential rotation

rate, and 〈Bpol〉 is the strength of the poloidal field. For case D3b, this yields a value of 324

days. The second peak in the cross-correlation between the two fields occurs when τ∆ = −47

days. This peak suggests that the correlations which generate the turbulent zonal EMF

are related in some way to the axisymmetric toroidal fields, and that whatever mechanism

establishes this correlation, it has a time scale of about 50 days. This temporally and
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spatially nonlocal α-effect clearly points to convection as a key player, as other mechanisms

like the meridional circulation are at least an order of magnitude slower.

In addition to a timescale for an α-like effect which is commensurate with the convective

overturning time, we also find evidence for an upscale transfer of magnetic energy related

to magnetic reversals. Figure 6.9 shows the temporal evolution of 〈Bφ〉 at mid-convection

zone over both latitude and spherical harmonic degree `. Several reversals of global magnetic

polarity are evident in Figure 6.9(b), including the reversal shown in detail in Figure 6.2.

Figure 6.9(a) shows the coefficients of the spherical harmonic expansion of the axisymmetric

toroidal field for the anti-symmetric (odd `) modes with 1 ≤ ` ≤ 29 over roughly three

magnetic activity cycles. In both physical space and spectral space, it is clear that each

cycle has opposite polarity from the preceding cycle.

There is a preference for antisymmetric modes with odd values of `, as would be

expected from the Ω-effect acting on a poloidal field that is preferentially symmetric about

the equator (even `). The upscale cascade involving odd modes is expected from both

theoretical and observational studies families of dynamo modes (see Nishikawa & Kusano,

2008; DeRosa et al., 2012). As a reversal occurs we see power showing up first at moderate

` and then cascading upscale to smaller ` values until it peaks at ` = 3 or 1 depending on

the cycle. The reversal starts at 25 . ` . 29 and then each successive mode reverses. There

is considerable overlap between cycles, in some cases reversals are seen in the high-` modes

in as little as a hundred days after the previous reversal is completed at low-`. We note

that convective power peaks at spherical harmonic degrees between about 25 and 40 in these

simulations. This suggests that the reversals are caused by turbulent processes interacting

with the wreaths, yielding an upscale energy transfer which organizes the large-scale fields.

Combined with our cross-correlation analysis, this upscale transfer indicates the key role of

convection in connecting mean toroidal magnetic fields with the fluctuating toroidal EMF.

As illustrated schematically in Figure 6.10, the reversal mechanism involves three main

processes. First, axisymmetric wreaths of toroidal magnetic field (Figure 6.10(a)) lead to
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correlations in the non-axisymmetric poloidal velocity and magnetic fields which drive an

axisymmetric turbulent EMF through an α-like effect. The upscale transfer of magnetic

energy and the fact that the correlation between the magnetic energy of the wreaths and the

turbulent EMF peaks on roughly a convective overturning time would seem to point towards

the convective motions as a key player in this α-like process. In the second step, the tur-

bulent EMF reinforces the dominant poloidal field at mid-latitudes but is the opposite sign

near the equator (Figure 6.10(b)), creating an octopolar configuration, with strong radial

field concentrations at low latitudes (Figure 6.10(c)). As the reversal progresses, the region

of new poloidal field shown in red in Figure 6.10(c) will expand and eventually replace the

old sense of field shown in blue. The third step involves axisymmetric poloidal magnetic field

being sheared by differential rotation. Here the differential rotation is largely cylindrical,

thus radial poloidal field is primarily converted into toroidal magnetic field through the Ω-

effect, which results in axisymmetric toroidal fields of the opposite polarity (Figure 6.10(d)).

The process then repeats with the opposite polarity.

6.2 Turbulence-Regulated Flux Emergence

Photospheric active regions are thought to arise from the buoyant destabilization, rise,

and emergence of coherent, subsurface toroidal flux structures. It is often argued that these

subsurface flux structures originate below the convection zone, where the strong shear of

the tachocline promotes toroidal flux generation and the subadiabatic stratification of the

overshoot region promotes flux storage by inhibiting the buoyancy instability (Galloway &

Weiss, 1981; van Ballegooijen, 1982). In this section we offer an alternative viewpoint that

is inspired and supported by the numerical models presented here. Namely, we argue that

buoyant flux structures may be produced in the Sun and stars not only in the tachocline

but also in the lower convection zone through the combined action of rotational shear and

turbulent intermittency.
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In previous papers we have demonstrated that organized systems of toroidal flux can

persist within a turbulent convection zone despite the inhibiting influence of turbulent dis-

persal (Brown et al., 2010, 2011). Here we have demonstrated that this continues to hold

as we decrease the diffusion, crossing a threshold beyond which resolved motions replace

artificial dissipation in the dynamical balances that sustain mean flows and fields. Further-

more, as the diffusion is decreased, intense, localized wreath cores form where the magnetic

energy density exceeds the surrounding kinetic energy density (Figure 5.2). This trend is

highlighted most dramatically by case S3, where the much lower diffusion promotes coher-

ent wreath cores strong enough to become buoyant, as first demonstrated by Nelson et al.

(2011b).

Here we explore in more general terms the link between magnetic wreaths and flux

emergence, addressing in particular on how it might operate in real stars where the dis-

sipation is many orders of magnitude less than in simulations. We begin by noting that

the Ω-effect does not just operate on axisymmetric fields; poloidal fields of all longitudinal

wavenumbers (m) in the convection zone are converted to toroidal fields (of the same m) and

amplified by rotational shear, blurring the distinction between mean and fluctuating fields.

Turbulent intermittency in the surrounding convection can further amplify shear-generated

flux structures, promoting the generation of fibril magnetic fields and coherent, localized

wreath cores (Figure 5.2).

The low Mach number of stellar convection zones ensures that the gas pressure adjusts

rapidly to any imbalance of mechanical and magnetic stresses. Thus, the formation of

fibril, intermittent flux concentrations (wreath cores) will induce a pressure perturbation

δP ∼ Pt−Pm, where Pt is the turbulent (kinetic plus magnetic) pressure of the surrounding

medium and Pm is the magnetic pressure associated with the coherent flux that defines

the wreath core. We have neglected the turbulent pressure within the wreath core which

may be suppressed by magnetic tension, providing a positive feedback mechanism that can

further promote the formation of coherent, superequiparition wreath cores and buoyant loops
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(Kleeorin et al., 1989; Rogachevskii & Kleeorin, 2007; Käpylä et al., 2012a).

Weak magnetic flux concentrations, Pm < Pt, are not susceptible to buoyancy insta-

bilities because their magnetic pressure is insufficient to balance the surrounding turbulent

pressure, resulting in δP > 0. It is only the strongest wreath cores that develop a pressure

deficit δP < 0, in particular only those cores in which the magnetic pressure Pm exceeds the

stabilizing influence of the surrounding convective motions. This implies that a necessary

but not sufficient condition for the wreath cores to become buoyant is that they must be su-

perequipartition relative to the surrounding convection. The surrounding flows may in turn

enhance or retard the tendency for such structures to rise. As demonstrated in Figure 5.2,

this is indeed achieved in our simulations and it becomes more pronounced as the artificial

diffusion is reduced, eventually inducing buoyant rise.

If these superequipartition wreath cores form adiabatically, this pressure deficit will be

accompanied by a density deficit ε = δρ/ρ ∼ δP/(γP ), established by diverging flows along

the axis of the wreath core. Radiative heating can further warm and rarify the wreath cores,

enhancing the the density deficit to ε ∼ δP/P = (Pm − Pt)/P on a time scale of

τ−1
r =

ε

r2ρTCp

∂

∂t

(
r2ρTCPκr

∂T

∂r

)
(6.12)

where κr is the radiative diffusivity (Fan & Fisher, 1996). Inserting values from Model S

(Christensen-Dalsgaard et al., 1996) for ε ∼ 10−6 yields τr < 100 days through most of the

solar convection zone. This value of ε corresponds to an emergence time τe ∼ (2D/εg), of

about 10-15 days, where D is the depth of the convection zone, and a magnetic field strength

of B ∼ (8πεP )1/2 ∼ 20-40 kG over and above the equipartition value.

Convection can also promote the buoyant rise of a wreath segment by introducing a

finite-amplitude undular displacement, resulting in a draining of fluid from from the apex

of the loop (Jouve & Brun, 2009; Nelson et al., 2011b; Weber et al., 2011). This could

in principle operate for any field strength but in practice weak fields will by shredded and

reprocessed by convection before they emerge (e.g., Fan, 2009).
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The dynamics discussed here are indeed exhibited by our most turbulent simulation,

case S3. Relative to more diffusive simulations, this case generates more regions of strong,

superequipartition fields, as demonstrated in Figure 5.2, and these regions are located in

coherent, intermittent wreath cores, as illustrated in Figure 6.11. Figure 6.12 highlights two

examples in which such wreath cores become buoyant and rise. As discussed in Nelson et al.

(2011b) and Nelson et al. (2013a), the loops rise through the convection zone through the

combined influence of magnetic buoyancy and advection, reaching as high as 0.94R before

they are dissipated by diffusion. The wreath which formed these two loops (and two others

not shown) is not axisymmetric; rather, it spans about 180◦ in longitude, reaching peak

field strengths of 45 kG. We expect the process to be even more efficient in stars where the

intermittency is presumably much more extreme.

In summary, this paradigm of turbulence-induced flux emergence postulates that the

combined action of turbulent intermittency and rotational shear generates a broad distribu-

tion of toroidal magnetic structures and it is only the most extreme events, in the high-B

tail of the pdf, that become buoyant. It is analogous to the theory of turbulence-regulated

star formation, whereby supersonic turbulence in interstellar molecular clouds generates a

spectrum of density fluctuations but only the extreme events on the tail of the pdf are dense

enough to trigger the Jeans instability and condense to form protostars (Krumholz & McKee,

2005). It is also closely related to the negative magnetic pressure instability described by

Kleeorin et al. (1989) (see also Rogachevskii & Kleeorin, 2007; Käpylä et al., 2012a; Kemel

et al., 2012), although it does not necessarily rely on the assumptions that underlie that

instability analysis, namely scale separation, the invariance of the small-scale turbulent en-

ergy, and the proportionality between variations in the mean and turbulent magnetic energy

(attributed to kinematic shredding).

The radial location of the flux bundles that ultimately form active regions depends on

the kinetic energy density in the convection (FKE) relative to that in the differential rotation

(DRKE), as well as the efficiency of magnetic pumping. In the simulations presented here,
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DRKE/FKE & 1, suggesting that the generation of the wreaths is efficient enough that they

can persist in the convection zone despite magnetic pumping. If this ratio falls much below

unity, as might be expected for lower rotation rates, the wreaths may get pushed toward the

base of the convection zone. Likewise, if the simulations are over or under-estimating the

efficiency of magnetic pumping, this will influence the location of flux generation and the

threshold to trigger the magnetic buoyancy instability. However, the basic paradigm should

still be valid.

The scenario outlined here may resolve several current observational and theoretical

puzzles. In particular, the non-axisymmetric nature of turbulence-induced flux emergence is

consistent with the results of Stenflo & Kosovichev (2012) who find that many large bipolar

active regions on the Sun violate Hales’s polarity rules, and furthermore, that the anti-Hale

regions often occur at the same latitude as bipoles that obey Hale’s rules. The fraction

of anti-Hale magnetic regions increases from about 4% for the largest active regions (flux

Φ & 1023 Mx) to more than 25% for smaller bipoles with Φ ∼ 1020 Mx. The result that

more than 70% of intermediate-sized bipoles (Φ ∼ 1020 Mx) obey Hale’s laws suggests the

presence of organized toroidal flux systems throughout the convection zone since all of these

regions are unlikely to be anchored in the tachocline. Meanwhile, the diminishing of magnetic

activity patterns with decreasing flux, including an increasing fraction of anti-Hale bipoles as

well as an increased scatter in tilt angles and emergence latitudes, is often attributed to the

influence of convection on rising flux tubes (Jouve & Brun, 2009; Weber et al., 2011, 2012;

Jouve et al., 2013; Weber et al., 2013). We propose that this intimate coupling between flux

tubes and convection exists not only in their rise, but also in their very formation. Finally,

the non-axisymmetric nature of turbulence-induced flux emergence may also account for the

phenomenon of active longitudes (Nelson et al., 2013a).

The observed tilt angles and emergence latitudes of bipolar magnetic regions on the

Sun is best reproduced by models of rising flux tubes with initial field strengths of 20-100kG

(e.g., Fan, 2009; Jouve & Brun, 2009; Weber et al., 2011; Pinto et al., 2011). However,
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generating such super-equipartition fields is not a trivial matter and in fact represents a

formidable, unresolved problem in solar dynamo theory (e.g., Rempel & Schüssler, 2001).

Laminar amplification of toroidal fields by rotational shear, the Ω-effect, tends to saturate at

field strengths well below equipartition due to the back-reaction of the Lorentz force (Vasil &

Brummell, 2009; Guerrero & Käpylä, 2011). Turbulent intermittency can help by tapping the

energy in the convection that is ultimately provided by the solar luminosity. It is clear from

Figure 5.2 that the coupled action of turbulence and shear can generate superequipartition

fields of the required amplitude.

The paradigm proposed here may also help address other difficulties with tachocline-

based dynamos discussed by Brandenburg (2005). For example, toroidal flux generation does

not rely on the radial shear of the tachocline, which is maximum near the poles. Instead,

the expected location of flux generation is where |∇Ω| is maximum in the convection zone.

This corresponds to the latitudinal shear at mid-latitudes, precisely where active regions first

emerge at the beginning of a cycle, as emphasized by Spruit (2011). Note that the potential

role flux emergence plays in establishing the solar cycle is a separate question that we do

not address here.

6.3 Richness of stellar dynamos

In this chapter we have explored the complex behavior of a class of numerical simula-

tions of convective dynamo action in rapidly rotating solar-like stars. More broadly, however,

we have also touched upon the rich landscape of convective dynamo simulations by discussing

both persistent wreath-building dynamos such as cases D3 and D3-pm1, and cyclic wreath-

building dynamos including cases D3a, D3b, D3-pm2, and S3. Although the simulations

considered here are ostensibly rotating three times faster than the Sun (3Ω�), the Sun may

actually be in a similar Rossby number regime, as noted in §1. Thus the results presented

here may have some bearing on the solar dynamo as well as the dynamos of younger, more
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rapidly-rotating solar analogues.

We have focused on two open questions that arose out of our previous work on wreath-

building dynamos. The first is “Can magnetic wreaths persist in the highly turbulent con-

ditions of a stellar convection zone” and the second is “What physical mechanisms establish

and regulate the magnetic cycles we see in our simulations?” We have also touched upon a

third question that all solar and stellar dynamo models must eventually face, and that is

“How are sunspots and bipolar active regions produced from dynamo-generated magnetic

fields?”.

The principal issue with regard to the first question is whether magnetic wreaths can

persist in stellar convection zones where the magnetic, viscous, and thermal diffusion coef-

ficients are many orders of magnitude lower than in our simulations. We have investigated

this question by systematically decreasing the diffusion in our simulations along two comple-

mentary paths, one in which only the magnetic diffusion coefficient, η, was reduced, and one

in which the magnetic and viscous diffusivitiy, η and ν, were reduced together, keeping the

magnetic Prandtl number constant (at a value of 0.5). In both cases magnetic wreaths with

quasi-cyclic polarity reversals were attained, although the constant Pm branch exhibited

more regular spatial and temporal behavior and thus became the focus of our analysis (see

Figure 6.1).

Although no simulation can approach the extreme parameter regimes of stellar interi-

ors, we have demonstrated a shift in the dynamical balances that bodes well for the possible

persistence of magnetic wreaths at much higher Reynolds and magnetic Reynolds numbers.

In short, our simulations suggest that the answer to the first question may be “Yes, magnetic

wreaths may indeed occur in actual stars”. We have investigated in particular the balance

of angular momentum transport which maintains the differential rotation in our simulations

and the balance of processes responsible for creating and destroying the magnetic energy of

the wreaths. In both cases, as we move from case D3 to case D3b we find that resolved

turbulent dissipation has taken the place of SGS dissipation (see Figures 5.4 and 5.6). This
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is an important milestone towards demonstrating that wreaths can exist in highly turbulent

settings and that they are not reliant on the explicit diffusion in previous simulations.

We have found that magnetic wreaths persist in our higher-resolution, lower-dissipation,

more turbulent simulations, yet their nature is altered in a fundamental and significant way.

Most notably, they are no longer axisymmetric. In our more turbulent simulations such

as case D3b, the nearly axisymmetric wreaths of case D3 are replaced by coherent wreath

segments, typically spanning between 45◦ and 270◦ in longitude. This is associated with a

shift in the magnetic power spectrum from longitudinal wavenumber m = 0 to moderate m

values. It also has important implications for flux emergence, as discussed with regard to

question 3 below.

The first clues as to the origin of magnetic cycles in our simulations (question 2) were

uncovered by Brown et al. (2010, 2011), showing that one can move from a persistent wreath-

building dynamo state to a cyclic one by increasing the rotation rate. Here we have shown

that a similar transition from persistent to cyclic wreaths can be achieved by decreasing

the effective magnetic diffusion, and thereby increasing the magnetic Reynolds number at

a fixed rotation rate. As mentioned above, the constant-Pm branch of solutions exhibited

more regular cyclic behavior despite the higher degree of turbulence.

We have not obtained a definitive exposition of the physical mechanisms that give rise

to and regulate magnetic reversals. However, we have traced their operation to the zonal

component of the turbulent electromotive force (EMF) near the equator. In case D3 diffusion

prevented reversals in the polarity of the axisymmetric poloidal field by locally offsetting the

creation of mean poloidal field by turbulent fluctuations. In the lower-dissipation case D3b,

this balance breaks down, leaving a residual turbulent EMF near the equator that creates

poloidal field with a polarity that is opposite to that of the pre-existing field, as shown in

Figure 6.6. Once magnetic reversals are thus initiated, the overall reversal process follows

the schematic description found in Figure 6.10.

Our simulations cannot directly address the third question regarding how solar and
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stellar dynamos produce sunspots and bipolar active regions. The detailed dynamics of flux

emergence are too intricate to reliably capture in any current global dynamo simulation.

However, the change in the nature of the wreaths as the dynamical balances shift suggests

that they may play an important role in generating buoyant magnetic loops in actual stars.

As discussed in §7, these simulations suggest that strong, coherent magnetic structures of

moderate angular extent can be created in the cores of the magnetic wreaths. If this trend

were to continue to the extremely low diffusion regimes of actual stellar convection zones,

one would expect these flux bundles to become buoyantly unstable and rise. Indeed, this

expectation is confirmed by our simulation Case S3 that employs a less diffusive SGS model

and that exhibits the self-consistent generation of buoyant toroidal flux tubes in a global

convective dynamo simulation. This picture of flux emergence as a fundamentally turbulent

process contrasts strongly with more idealized scenarios where the principal role of convection

is simply to produce a differential rotation. One might expect this revised paradigm to

have observable consequences in such active region characteristics as distribution, tilt angle,

and helicity. Furthermore,it may call into question our traditional reliance on sunspots

as a straightforward proxy for the axisymmetric toroidal field at or below the base of the

convection zone.

The rich behavior of these systems provides important insight into the dynamo models

for the Sun and solar-type stars. The trend towards non-axisymmetric fields with enhanced

turbulence, while still maintaining global-scale organization, pushes at the boundaries of our

understanding of dynamo theory in solar-like settings. That these mechanisms are accessible

with current computational resources clearly invites further intensive study of these topics.
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Figure 6.2: Reversal in magnetic polarity of the toroidal wreaths in case D3b shown in Bφ

in Mollweide projection at mid-convection zone on left, and in 〈Bφ〉 in longitudinal average
over latitude and radius on right. Color indicates strength of toroidal magnetic field with
the color table saturating at ±7 kG for the Mollweide images and ±3 kG for the longitudinal
averages. Five snapshots corresponding to t2 through t6 from Figure 6.1(c) are shown each
separated by roughly 120 days.
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Figure 6.3: (a) Time evolution in case D3-pm1 of the axisymmetric toroidal magnetic field
at 0.79 R� over roughly 15 years of simulated time. Strong variability of the mean fields
is seen in both hemispheres. (b, c) Companion snapshots of Bφ at 0.84 R� showing the
spatial variability and non-axisymmetric nature of the wreaths. Successive snapshot times
are indicated by dashed lines in (a).
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Figure 6.4: (a) Time evolution in case D3-pm2 of the axisymmetric toroidal magnetic
field at 0.79 R� over roughly 13 years of simulated time. Strong variability of the mean
fields is seen in both hemispheres, along with irregular reversals in polarity, at times in only
one hemisphere and at other times globally. (b, c) Companion snapshots of Bφ at 0.84
R� showing the spatial variability and non-axisymmetric nature of the wreaths. Successive
snapshot times are indicated by dashed lines in (a).
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Figure 6.5: Time-evolution of 〈Aφ〉 between ±45◦ latitude for case D3 over about 500 days.
Times t1 and t2 for case D3 correspond to times indicated in Figure 6.1. Shown are 〈Aφ〉
at (a) the beginning and (b) end of the time interval, (c) the net change between those
times ∆〈Aφ〉, the changes in 〈Aφ〉 due to (d) the fluctuating EMF (∆Aφ)FE, (e) the mean
EMF (∆Aφ)ME, and (f) resistive diffusion (∆Aφ)RD. Of particular importance is the region
of positive production in (∆Aφ)FE, which if left unimpeded by diffusion would lead to a
reversal in global magnetic polarity. The color table has been chosen with a sharp transition
from light blue to yellow around zero, thus low-amplitude signals, such as seen in (c) and
(e), are highlighted.

Figure 6.6: Same as Figure 6.5, but for case D3b. Times t2 and t6 for case D3b correspond
to times indicated in Figures 6.1 and 6.9. The turbulent EMF induces field of the opposite
sense to that which was present at t2 and is opposed by the resistive diffusion. Note that
(∆Aφ)FE and (∆Aφ)RD for both cases are topologically similar, but that (∆Aφ)RD is smaller
in case D3b, rendering it unable to prevent the reversal of 〈Aφ〉 by the fluctuating EMF
which begins with the positive region near the equator.
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Figure 6.7: (a-c) Values for the three components of α tensor relevant to the generation
of 〈ε′φ〉 as a function of radius and latitude. Values are computed using a singular value
decomposition over approximately 3000 days of simulation time with the assumption that
these components of α are spatially local and do not vary in time. The αφr component
is very small, whereas the αφθ and αφφ components show significant spatial variability and
comparable amplitude. (d-f) Values for components of αφj〈Bj〉, showing the effect of each
component on 〈ε′φ〉. Magnetic fields have been averaged over the same interval as in Figure 6.6
(about 480 days). Here the contribution of αφφ〈Bφ〉 is dominant, with a smaller but still
significant contribution by αφθ〈Bθ〉. This figure has been corrected from the version included
in Nelson et al. (2013b). A minor error was discovered after publication that changed the
details of this figure, but did not substantially alter the conclusions drawn from this figure.
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Figure 6.8: Magnitude of cross-correlation in time of {ε′φ} and {Br} (green), {Bθ} (red),
and {Bφ} (blue) for case D3b. Cross-correlation is computed as a function of the temporal
offset τ∆,/ with negative offsets indicating magnetic fields precede the toroidal EMF. Also
shown are the 2σ confidence levels (dashed), computed using a Markov chain Monte Carlo
method (Wall & Jenkins, 2003). The only statistically significant peaks are those relating
{ε′φ} and {Bφ}.
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Figure 6.9: Companion plots of the time evolution in case D3b of (a) the spherical harmonic
coefficients for antisymmetric modes with 1 ≤ ` ≤ 29 and m = 0 for Bφ, and (b) 〈Bφ〉 in
physical space as a function of latitude, both at mid-convection zone. Dashed lines show
times referenced in Figures 6.1, 6.2, 6.5, and 6.6. A factor of (−1)(`−1)/2 is applied to
the spherical harmonic coefficients to remove the effect of the wreaths confinement to low
latitudes. There is a clear progressive spectral transfer of magnetic energy from high ` modes
to low ` modes as each cycle progresses. Reversals begin at moderate scales (high `) and
then progress to large scales (low `).
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Figure 6.10: Schematic description of the reversal mechanism for cyclic convective dynamos
in four steps. (a) Two toroidal wreaths at low latitude which generates a turbulent EMF
via a nonlocal “α”-effect, either through nonlinear interactions across the equator or via
helical convection. The sign of the EMF changes at roughly the location of the wreaths. (b)
Correlations in turbulent poloidal velocities and fluctuating magnetic field drive an induction
of mean poloidal field which is roughly octopolar. (c) Mean poloidal field near the equator is
sheared by differential rotation to generate mean toroidal field through the Ω-effect. In these
simulations, the largest component is the shearing of radial field lines by radial gradients in
the differential rotation. (d) Toroidal wreaths of opposite polarity are generated.
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Figure 6.11: Three-dimensional volume renderings of isosurfaces of magnetic field ampli-
tude in case S3. Blue surfaces have amplitudes of 10 kG, green surfaces represent 25 kG,
and red surfaces indicate 40 kG fields. Grid lines indicate latitude and longitude at 0.72 R�
as they would appear from the vantage point of the viewer. Small portions of the cores of
these wreaths have been amplified to field strengths in excess of 40 kG while the majority of
the wreaths exhibit fields of about 10 kG or roughly in equipartition with the mean kinetic
energy density (see Figure 5.2).
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Figure 6.12: Buoyant magnetic loops evolving from small-scale wreath sections amplified
by turbulent intermittency. (a) Field line rendering of magnetic wreaths at low latitudes in
case S3. Field lines are colored by Bφ (negative in blue, positive in red) to highlight the two
wreaths present. (b) Zoom-in on region indicated in (a) showing field line tracings of the

core of the buoyant magnetic loops at the same instant colored by magnitude of ~B (weak
fields in purple, intense fields in yellow). Volume rendering shows Bφ using the same color
scheme as in (a). (c) The same region 4 days later, showing the continued rise of the loops
through the stratified domain and their expansion.



Chapter 7

Buoyant Magnetic Loops Over Magnetic Activity Cycles

The dynamo models discussed in the previous three chapters offer a new paradigm in

flux emergence. Previous models had sought laminar generation mechanisms for the strong

toroidal field at the base of the convective layer. In contrast we have provided an example

of a dynamo simulation where turbulent intermittency can create relatively highly coherent,

small-scale magnetic fields with energies well in excess of equipartition with the convective

kinetic energy which surrounds them.

Now we turn to a detailed analysis of the data set for case S3, which yields a large

number of buoyant magnetic loops. In this chapter we will explore the properties of these

wreaths and the variety of buoyant magnetic structures this simulation can achieve. In the

following chapter we will examine the statistical properties of these loops over a magnetic

activity cycle. This is the first of two chapters which are largely quoted from Nelson et al.

(2013a)1 . I was the primary author of this paper, and as such I carried out all of the

simulation and analysis work. I primarily wrote the text of the paper. My co-authors

provided essential contributions in formulating the simulations and the analysis, and in

providing significant guidance in the writing process.

1 Nelson, N. J., Brown, B. P., Brun, Sacha A., Miesch, M. S., & Toomre, J. 2013b, Buoyant Magnetic
Loops Generated by Global Convective Dynamo Action, Sol. Phys. Online First, DOI:10.1007/s11207-012-
0221-4
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7.1 Overview

Our global 3D simulations of convection and dynamo action in a Sun-like star reveal

that persistent wreaths of strong magnetism can be built within the bulk of the convention

zone. Here we examine the characteristics of buoyant magnetic structures that are self-

consistently created by dynamo action and turbulent convective motions in a simulation

with solar stratification but rotating at three times the current solar rate. These buoyant

loops originate within sections of the magnetic wreaths in which turbulent flows amplify

the fields to much larger values than is possible through laminar processes. These amplified

portions can rise through the convective layer by a combination of magnetic buoyancy and

advection by convective giant cells, forming buoyant loops. We measure statistical trends

in the polarity, twist, and tilt of these loops. Loops are shown to preferentially arise in

longitudinal patches somewhat reminiscent of active longitudes in the Sun, although broader

in extent. We show that the strength of the axisymmetric toroidal field is not a good predictor

of the production rate for buoyant loops or the amount of magnetic flux in the loops that

are produced.

7.2 Flux Emergence and Convective Dynamos

Convective dynamo action in the interior of the Sun is source of the magnetism which

creates sunspots and drives space weather. Such magnetism is not limited to the Sun, as

magnetic activity is observed to be ubiquitous among sun-like stars. To understand the

origin of sunspots and starspots, the processes which generate magnetic structures and then

transport them through the convection zone to the surface must be explored. Here we

present the results of a global numerical simulation, called case S3, which self-consistently

generates wreaths of strong magnetic field by dynamo action within the convective zone.

Case S3 models the convection zone of a sun-like start nominally rotating at three times the

current solar rate, or 3Ω�. The wreaths reverse polarity in a cyclic fashion, yielding cycles
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of magnetic activity. Portions of these wreaths form buoyant magnetic structures, or loops,

which rise through our convective envelope. Initial results on the behavior of a small number

of these loops were reported in Nelson et al. (2011b).

Here we discuss the properties of a much larger number of loops in order to get a sta-

tistical description of their properties. We find coherent magnetic structures with a variety

of topologies, latitudinal tilts, twists, and total fluxes. Additionally, we observe only a weak

correlation between the unsigned magnetic flux in a buoyant loop and the axisymmetric

toroidal magnetic field at that latitude and time, indicating that the generation mechanism

for these loops relies on local, coherent toroidal field structures amplified by turbulent inter-

mittency rather than large-scale instabilities of axisymmetric fields. We also find evidence

for longitudinal intervals which preferentially produce buoyant loops, hinting at a possible

origin for active longitudes for sunspots (Henney & Harvey, 2002), though out intervals are

quite broad.

7.3 Nature of the Simulation

We use the 3-D anelastic spherical harmonic (ASH) code to model large-scale convective

dynamo action in the solar convective envelope. ASH solves the anelastic MHD equations

in rotating spherical shells (Clune et al., 1999; Brun et al., 2004). ASH is limited to the

deep interior due to the anelastic approximation, which limits us to low Mach number flows.

Additionally we stay away from the near-surface layers because we cannot resolve the small

scales of granulation and super granulation realized near the photosphere. Our simulation

extends from 0.72 R� to 0.965 R�, covering a density contrast of about 25 from top to

bottom. The details of the numerical scheme used in case S3 are described in Brown et al.

(2010), and the specific parameters are given in Nelson et al. (2013b). Of special note, in

case S3 the Rossby number is 0.581, which is in the same rotationally influenced regime as

the giant cell convection realized in the solar interior (Miesch, 2005). Thus the dynamics

in case S3 may be broadly applicable to stars like the Sun in which rotational influences on
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Figure 7.1: (a) Snapshot of radial velocities vr at time t1 = 716 days in case S3 on a spherical
surface at 0.95R� shown in Mollweide projection (equator at center, lines of constant latitude
parallel) in proportional size (outer ellipse represents photosphere). (b) Rotation rate Ω
averaged in longitude and time. Strong differential rotation is achieved in radius and latitude
over the simulated domain. (c) Companion snapshot of toroidal magnetic field Bφ at 0.84R�,
with a strong coherent magnetic wreath in each hemisphere (blue negative, red positive,
ranges labeled), with considerable small-scale fields also present. (d) Azimuthally-averaged
toroidal magnetic field 〈Bφ〉 at the same instant. Low-latitude wreaths are evident in both
hemispheres .

convective motions are significant.

To achieve very low levels of diffusion, we employ a dynamic Smagorinsky subgrid-

scale (SGS) model which uses the self-similar behavior in the inertial range of the resolved

turbulent cascade to extrapolate the diffusive effects of unresolved scales. In this model

the viscosity at each point in the domain is proportional to the magnitude of the strain
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Figure 7.2: Evolution in time of the longitudinally-averaged toroidal magnetic field 〈Bφ〉
at mid-convection zone shown in a time-latitude plot. Three magnetic reversals are realized,
each with a period of about 280 days (reversals indicated by hash marks, cycles labeled 1-3
for convenience). Considerable asymmetry is seen between hemispheres in both the phase
and amplitude of the reversals. The time t1 at which snapshots in Figures 7.1 and 7.3 are
sampled is indicated by the dotted line at 716 days.

rate tensor and the constant of proportionality is determined using the resolved flow and an

assumption of self-similiar behavior. A detailed description of the dynamic Smagorinsky SGS

model is provided in Chapter 3. Here we employ constant SGS Prandtl and magnetic Prandtl

numbers of 0.25 and 0.5, respectively. In practice this permits a reduction in the average

diffusion by about a factor of 50 compared to a simulation with identical resolution and a less

complex SGS model, such as in Brown et al. (2011). This reduction in diffusion is critical not

only in enhancing the turbulent intermittency of the magnetic field, but also in permitting

the buoyant loops to rise through the convective layer without diffusive reconnection altering

their magnetic topology.

Figure 7.1(a) shows a snapshot of the convective radial velocities vr in case S3 at a single

instant. The convection near the equator is dominated by convective rolls aligned with the

rotation axis, while the higher latitudes have more vortical motions. The rotational influence

on the convective motions is key to achieving a pronounced differential rotation (Miesch et al.,
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2006). Case S3 maintains strong gradients in angular velocity Ω (Figure 7.1(b)), which are

key to generating the large-scale magnetic wreaths through the Ω-effect. Figures 7.1(c-d)

show snapshots of the wreaths, both on a spherical surface at mid-convection zone and in

their axisymmetric component. The wreaths are dominated by non-axisymmetric fields and

thus have a limited longitudinal extent, while clearly still retaining global coherence.

Remarkably, the wreaths are generated and maintained in the bulk of the convec-

tive layer without a tachocline of shear. It had been reasonably postulated that coherent,

large-scale fields in the convection zone would be shredded by the intense turbulence of

the convective motions. However, the convective turbulence evidently does not destroy the

wreaths. In fact, Nelson et al. (2013b) showed that while the axisymmetric fields show some

decrease in amplitude with increased turbulence, regions of extremely strong fields actually

become more common due to increased turbulent intermittency. In regions of particularly

strong magnetic fields, the convective motions are diminished by the Lorentz force, resulting

in even less convective disruption of the wreaths.

The dynamic Smagorinsky procedure requires additional computational expense, lim-

iting the time evolution of our simulations. Case S3 presented here was run for 3.4 million

time steps, with an average of 40 seconds of simulated time per step. In total, case S3 cov-

ers about 4 years of simulated time, compared to the rotational period of 9.3 days and the

convective over-turning time of about 50 days. Figure 7.2 shows the time evolution of the

axisymmetric toroidal magnetic field 〈Bφ〉 in case S3 over about 1100 days. In this interval

there are three reversals of global magnetic polarity. While the true polarity cycle involves

two reversals, we term the interval between each reversal an activity cycle in the same way

the Sun’s 11-year activity cycles are just about half of the true 22-year polarity cycle. These

three activity cycles have durations of about 280 days, although the reversals are not gen-

erally synchronized between the two hemispheres. This nonuniform behavior hints at the

important role of asymmetries in the flows between the two hemispheres (DeRosa et al.,

2012).
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7.4 Identifying Magnetic Loops

In order to provide a consistent treatment, we define a magnetic loop as a coherent

segment of magnetic field which extends from below 0.80R� to above 0.90R� and back down

again (Nelson et al., 2011b). Additionally, we require that the buoyant loops have peak

magnetic field strengths greater than 5 kG above 0.90R� at selected samples in time. To find

magnetic loops fitting that description, we have developed a pattern-recognition algorithm

which searches the 3-D volume of our simulation. The most direct method of finding loops

is to look for magnetic field lines which pass through a region where |Bφ| > 20 kG below

0.80R�, then pass through a region above 0.90R� with |Bφ| > 5 kG, and then again through

a region where |Bφ| > 20 kG below 0.80R� over less than 50◦ in longitude. In practice, this

can be done much more efficiently by recognizing that the loops start as primarily toroidal

magnetic field structures, but that as they rise into a region of faster rotation the loops are

tilted in longitude so that one side of the loop retains a strong component of Bφ while the

other becomes almost totally radial. Thus we initially identify loop candidates by looking

for this pattern of Bφ and Br. The loop candidates are then verified using field line tracings.

Case S3 uses 1024 grid points in longitude, 512 in latitude, and 192 in radius for 8

evolution variables (velocity ~v, magnetic field ~B, entropy S, and pressure P ), thus each

snapshot in time requires over 3 GB of data. We are therefore limited in the number of time

steps we can analyze. For the 278 days of cycle 1 we have run our loop finding procedure

on snapshots of the simulation spaced roughly every 4 days. In doing so we have identified

131 buoyant loops. Additionally we have sampled cycle 2 for 20 days and cycle 3 for 40 days

with the same 4 day cadence and found 27 additional loops. We anticipate that we would

find many more loops if we carried out a more complete search through cycles 2 and 3.

For a subset of the 158 loops found in case S3, we have carried out detailed analyses

of the dynamics of the rise of 22 of the loops (11 from cycle 1 and 11 more from cycle 3).

To do this we have used data with a time resolution of about 10 hours, which is sufficient to
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Figure 7.3: (a) Volume-renderings of magnetic field lines at low latitudes colored by toroidal
field Bφ (red positive, blue negative, amplitudes labeled). Strong magnetic wreaths exist
in each hemisphere with considerable modulation in longitude. The location of two sample
buoyant loops (labeled loops 93 and 98) are indicated. In this view it is difficult to distinguish
the loops from the surrounding magnetic fields. (b-c) Close-up views of loops 93 and 98 at
the same instant with only field lines comprising the buoyant loops rendered for visual clarity.
Color shows magnitude of magnetic field strength (yellow weak, purple strong). Loop 93 is
part of the negative polarity wreath in the northern hemisphere, while loop 98 is part of
the positive polarity wreath in the southern hemisphere. Time shown corresponds to the
snapshots in Figure 7.1 and t1 in Figure 7.2.

track loops backward in time from their peak radial position to their origins in the magnetic

wreaths. We find that while the specific evolution of each of these 22 loops varies due to the

chaotic nature of the turbulent convection, all 22 loops have significant acceleration due to

magnetic buoyancy and are embedded in convective upflows which aid their rise. This agrees

with the dynamics of the sample loop studied in detail in Nelson et al. (2011b). While we

cannot with certainty say that magnetic buoyancy was a significant factor in the rise of all

158 magnetic loops, we find that for all 22 of the loops studied at high time resolution the

average ascent speed due to magnetic buoyancy alone is at least 28% of the total average
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ascent speed. Thus we assume that magnetic buoyancy is at least an important factor in the

rise of these loops.

Figure 7.3 displays the complex nature of the magnetic fields in case S3 with a volume

rendering of magnetic field lines in the convection zone at low latitudes, forming two promi-

nent magnetic wreaths of opposite polarity. We also indicate the location of two buoyant

magnetic structures, labeled loops 93 and 98. The simulation continuously exhibits magnetic

fields throughout the convection zone, including strong, small-scale magnetic fields, coher-

ent buoyant loops, and large-scale wreaths with global scale organization. Prior studies of

magnetic buoyancy typically involved specified buoyant magnetic structures whose rise was

studied in a largely unmagnetized domain. In contrast, our convection zone has on average

77% of our simulated volume containing magnetic fields in excess of 1.5 kG, and 21% posses

field amplitudes in excess of 5 kG. This makes identification of the buoyant loops difficult.

Figures 7.3(b-c) show close up renderings of only the field lines comprising buoyant loops 93

and 98. We have omitted rendering other field lines in those regions for visual clarity. Mag-

netic fields in the loops can be quite strong even near the top of our domain, with portions

of loop 93 exceeding 25 kG at 0.92R�.

7.5 Properties of Rising Loops

Unlike many previous models of buoyant magnetic transport in which convective turbu-

lence is presumed to play a purely disruptive role, the buoyant loops in our models fall under

the turbulence-enhanced magnetic buoyancy paradigm discussed in Nelson et al. (2013b).

In this model turbulent intermittency plays a key role in the formation of strong, coherent

structures which are magnetically buoyant and can be advected by convective upflows. As

was shown in Nelson et al. (2011b), these loops rise through a combination of magnetic

buoyancy and advection by giant cell convection. Thus convection plays a key role both in

the dynamo which generates the buoyant magnetic fields, and also in the transport of the

magnetic loops. Due to the cooperation between convective motions and magnetic buoy-
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Figure 7.4: Location of three buoyant loops (labeled loops 1, 15, and 18) as a function of
time as they rise from the core of the toroidal wreaths in the lower convection zone through
the simulated domain to their peak radial positions between 0.91 and 0.95 R�. Times are
given relative to the launch of the loops with offsets for clarity. Also plotted are the mean
motions of the loops at each time interval due to magnetic buoyancy (red lines) and advection
by the surrounding convective upflows (blue line). Additional motions due to forces such as
thermal buoyancy, viscous drag, and magnetic tension are not plotted, and account for what
may appear to be missing in this display.

ancy, the loops are able to rise from below 0.80R� to above 0.90R� in as little as 12 days,

as suggested by Figure 7.4.

7.5.1 Dynamics and Timing of Loop Ascents

Buoyant loops are born from the much larger and less coherent magnetic wreaths

shown in Figures 7.1 and 7.3. The wreaths in case S3 are not axisymmetric structures and

are typically coherent over spans of between 90◦ and 270◦ in longitude. Wreaths exhibit a

high degree of magnetic connectivity with the rest of the convection zone, with field lines

threading in and out, suggesting rather leaky overall structures. Wreaths in case S3 generally

have average field strengths of between 10 and 15 kG and are confined in the lower half of

the convection zone by magnetic pumping. In the core of the wreaths convective motions

can be limited by Lorentz forces to as little as a 1 m s−1.

Portions of these wreaths can be amplified by intermittency in convective turbulence.
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Figure 7.5: Sequence of volume renderings of magnetic field lines which comprise three
buoyant loops (labeled loops 1, 2 and 3) as they rise through the convective layer with three
days between each frame (times indicated, progressing downward). The expansion of each
loop is here evident as they rise. Magnetic buoyancy and advection by convective upflows
allow the loops to traverse the radial interval shown here in roughly 10 days. Loop 1 is also
shown in Figures 7.4 and 7.7. Loop 3 is also shown in Figure 7.6.
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Turbulence has been shown to generate strong, coherent structures in a variety of settings

(Pope, 2000). In case S3 localized portions of the wreaths are regularly observed to attain

field strengths of 40 kG and be highly coherent over as much as 50◦ in longitude. These

magnetic structures with strong fields are able to rise into regions where vigorous convective

motions are present. Many structures are seen to emerge from the core of the wreaths only to

be pummeled by a convective downflow, disrupted by a region of unusually strong turbulence,

or limited by the development of a particularly unfavorable magnetic configuration. Whether

any given magnetic structure becomes a buoyant magnetic loop is therefore not due to the

passing of some threshold, but largely a conspiracy of favorable events.

Figure 7.4 shows the radial location of the top of three different loops as they rise from

roughly 0.77R� to above 0.90R�. Also plotted are the contributions to the radially outward

motion due to magnetic buoyancy and advection by convective upflows. The buoyant ac-

celeration due to magnetism is deduced by comparing the density in the region within the

loop and the density of the surrounding convective plume. We do this to separate magnetic

and thermal buoyancy effects. Each of these three loops starts in a region where convective

motions are largely suppressed by Lorentz forces due to the very strong magnetic fields in the

cores of the magnetic wreaths. As they begin to rise, the magnetic energy at the core of the

wreath exceeds the kinetic energy of the flows locally by a factor of 10 to 100. As the loops

rise, they enter regions of strong upflows and are advected upwards by the convective giant

cells. Averaged over their entire ascent, magnetic buoyancy drives an average upward speed

of about 50 m s−1 for these three loops, in addition to the surrounding upflows which move

at an average of about 80 m s−1. At their maximum radial extent, the loops are prevented

from rising further by our impenetrable upper boundary condition.

Figure 7.5 shows three sample loops (labeled loops 1, 2, and 3) as they rise over 10

days. The loops remain coherently connected as they rise. Here again all three loops are

aided by convective upflows while convective downflows pin the ends of the loops downward.

The direction of motion is largely radial with a deflection of as much as 10◦ in latitude toward
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higher latitudes. This deflection is largely due to the roughly cylindrical differential rotation

contours realized in this simulation.

Loops expand as they rise through the stratified domain, but less than would be ex-

pected for a purely adiabatic rise. Without any diffusion or draining of material along the

field lines, the cross-sectional area of the loops should be inversely proportional to the back-

ground pressure, leading to expansion by roughly a factor of 20. Instead loops are seen

to expand by a factor of 5. This is consistent with previous studies of buoyant magnetic

structures in which expansion of magnetic structures is seen to be inversely proportional to

the square root of the change in pressure (Fan, 2001; Cheung et al., 2010) .

The expansion of the loops is slowed by draining flows of higher entropy fluid along

magnetic field lines, which serves to cool the material at the top of the loop. These divergent

flows are too small to be measured in individual loops due to the turbulent background, but

when averaged over 158 loops, a mean divergent flow of 47 cm s−1 is obtained along the top of

the loops. This compares well with estimates from a simple model (neglecting viscosity and

thermal diffusion) which assumes that the draining flows are constant in time and uniform

perpendicular to the axis of the loop.

Axial flows along loops are also seen as the loops rise through regions of faster rota-

tion. When averaging over many loops, a net axial flow of 5.1 m s−1 is detectable in the

retrograde direction, consistent with the fluid inside the loop tending to conserve its specific

angular momentum as the loop moves radially outward. Loops often become distorted as

this retrograde motion interacts with the surround prograde differential rotation as the loop

rise across rotational contours (see Figure 7.1(b)).

The geometry of each loops we have examined is uniqued in its details, but Figure 7.6

shows three different perspectives on a single 3D volume-rendering of a typical loop. Loop

3, which is also shown in Figure 7.5, is in the northern hemisphere and its top is roughly

centered at 76◦ N latitude and 12◦ W longitude. Its parent wreath-segment runs slightly

north-west to south-east at this location and time, causing the western foot-point to be
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Figure 7.6: Three viewpoints the same volume-rendering of magnetic field lines in Loop
3 at t = 683 days (same as in Figure 7.5(d)). Color indicates amplitude of magnetic field
(purple strong, yellow weak). Views are looking (a) south along the rotation axis with grid
lines in radius (in units of the solar radius) and longitude, (b) radially inward with grid lines
in longitude and latitude, (c) westward along the axis of the magnetic wreath.

centered further north than the eastern foot-point. The deflection away from the equator is

evident in Figures 7.6(b and c) as the top of the loop is roughly 10◦ further north than the

foot-points. The roughly five-fold expansion of the loop’s cross-sectional area can be seen,

particularly in Figure 7.6(c). This loop also shows an asymmetric top due to a downflow

plume impacting the eastern side of the top of the loop, causing the western wide to extend

further in radius.

Loops start with a wide variety of field strengths and sizes and at a variety of initial

radial positions. Most loops start between 0.75 and 0.78 R�, although loops starting as low

as 0.73 R� are evident. When loops are traced backward in time to their starting location in

order to identify the flux which will become buoyant and rise, we find that most progenitors

of loops begin with about 1025 Mx of flux. The structures loose roughly 90% of their flux

as they rise to their peak radial positions between 0.90 and 0.96R�. Much of the flux is

lost as convection in a stratified fluid requires a large fraction of the fluid to overturn prior

to reaching the top of the domain. Figure 7.7 shows the magnetic flux as a function of the
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Figure 7.7: Unsigned magnetic flux in five sample loops as they rise through the convective
layer, including loop 1 (see Figures 7.4 and 7.5). Loops continuously loose magnetic flux
through both diffusion and leakage of fluid. Their ascent is faster than the convective upflows
in which they are embedded, leading to the loss of fluid and flux due to drag-like effects.
Here and in the 22 loops for which detailed tracking is possible, the initial and final magnetic
flux are not correlated.

radial position of the top of the loop for five sample loops. Initial flux and initial radial

location do not appear to be good predictors of either final radial location or final magnetic

flux.

In the specific case of loop 1, 92% of the magnetic flux it started with is lost over the

course of its ascent while 69% of the mass flux at 0.78R� turns over below 0.91R�. The

overturning mass flux carries away 61% of the magnetic flux, as regions of lower field strength

preferentially are lost. The next largest contributor is resistive diffusion, which dissipates

19% of the initial flux. The remaining 12% of the flux is lost through a combination of small-

scale turbulent advection and shear. Eventually diffusive reconnection realigns the fields so

that the loops are no longer distinct from the surrounding MHD turbulence.



Chapter 8

Collective Properties of Emergent Magnetic Structures

Having discussed the dynamics of our buoyant magnetic loops, we now turn to a

discussion of their collective properties. This is the second of two chapters which are largely

quoted from Nelson et al. (2013a) 1 . I developed and applied the analysis presented here. I

was also the primary author for the text of that paper.

8.1 Statistical Distribution of Twist and Tilt

Previous MHD simulations of flux emergence have emphasized that magnetic structures

must be twisted to remain coherent as they rise (see review Fan, 2009). Twist in this context

can be defined by a parameter qA, which for a uniformly twisted flux tube is defined as

B‖ = a± qAλ
∣∣∇× A‖∣∣ , (8.1)

where B‖ and A‖ are, respectively, the magnetic field and magnetic vector potential along the

axis of the flux tube, a± is 1 in the northern hemisphere and −1 in the southern hemisphere,

and λ is the distance from the axis of the flux tube. For the tube to remain coherent as

it rises, previous numerical simulations have suggested that twist must exceed some critical

value QA (Moreno-Insertis & Emonet, 1996). Fan (2008) used 3-D simulations of buoyant

magnetic structures rising through a quiescent, stratified layer and found a critical level of

twist QA ≈ −3× 10−10 cm−1.

1 Nelson, N. J., Brown, B. P., Brun, Sacha A., Miesch, M. S., & Toomre, J. 2013b, Buoyant Magnetic
Loops Generated by Global Convective Dynamo Action, Sol. Phys. Online First, DOI:10.1007/s11207-012-
0221-4
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Figure 8.1: (a) Histogram of twist rate parameter qJ values for the 131 loops observed in
cycle 1 along with the best-fit Gaussian distribution of those values. The distribution shows
a slight preference for negative twist rates, though the mean twist rate is (−1.8 ± 2.4) ×
10−11 cm−1. (b) Histogram of latitudinal tilt ∆θ values for the same 131 loops. Positive tilts
indicate that the leading edge of the loop is closer to the equator than the trailing edge, as
used with Joy’s law. Tilts have been calculated so that all values fall between ±90◦ for this
analysis. Positive tilts are preferred and the mean latitudinal tilt is 7.3◦ ± 12.6◦ in latitude.

For our simulation, the loops are clearly not uniformly twisted flux tubes, so we cal-

culate another measure of twist following the procedure used in observational studies (e.g.,

Pevtsov et al., 1995, 2003; Tiwari et al., 2009). Sunspots often show large variations in the

level and even sign of twist, so a weighted average of the twist parameter is employed, which

we call qJ . We compute the twist parameter as

qJ = a±

[
Jφ
Bφ

]
, (8.2)

where braces denote an average over radius and latitude for a longitudinal cut taken through

the loop and a± is 1 in the northern hemisphere and −1 in the southern hemisphere. We

restrict our averages to contiguous regions with the correct polarity and where fields are

stronger than 2.5 kG. Figure 8.1(a) shows a histogram of values for the twist parameter qJ

for the 131 loops identified in cycle 1, as well as the best-fit Gaussian to that distribution

which peaks at q̄J = −1.8 × 10−11 cm−1. For comparison,Tiwari et al. (2009) report an

average twist parameter of q̄J = −6.12× 10−11 cm−1 for a sample of 43 sunspots.
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It is difficult to make a direct comparison between the two measures of twist mentioned

here. In practice our loops are poorly represented by uniformly twisted tubes. It is possible

to compute the value of qA at each point in the loop and create an average value, but we

find that those averages are highly sensitive to the weighting of the points and the region

over which the average is taken. Alternatively, we have computed the value of qJ for the

formulation employed in Fan (2008) and find that the value varies with the location and size

of the magnetic structure in radius and latitude. For most reasonable parameter choices,

the qJ/qA is between 1 and 2. When comparing with photospheric measurements, we must

also remember that considerable changes may take place as magnetic flux passes through

the upper 5% of the solar convection zone. The dynamics of twisted buoyant loops in that

region is beginning to be studied in local domains (Cheung et al., 2010).

Of the 131 loops in cycle 1, only 13 had current-derived twist parameters qJ within

an order of magnitude of the critical value QA. One explanation may be that convective

upflows assisting the rise of these loops reduces the drag that they experience, thus making

them less susceptible to disruption as they rise and therefore less dependent on twist for

coherence. Whatever the cause, we do not see a critical value of twist beyond which loops

are unable to traverse our domain.

Additionally, we can look at the latitudinal tilts of the buoyant loops. We calculate

these tilts by computing the center of each loop at all longitudes where the center is within

0.02R� of its peak position and then fitting a linear trend to latitudinal locations of the loop

center. We define positive tilts to be those with the eastern side of the loop closer to the

equator than the western side, as used in Joy’s law. Here we do not consider the polarity of

the loops, so values are restricted to the interval [−90◦, 90◦]. The distribution of tilts seen

in the 131 loops found in cycle 1 is shown in Figure 8.1(b), along with the best-fit Gaussian

to that distribution, which peaks at 7.3◦ but is quite broad. This is similar to observations

of tilts in sunspots where the trend towards Joy’s law is part of broad distribution in tilt

angles (Li & Ulrich, 2012).
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Figure 8.2: Time-latitude display of toroidal magnetic field averaged in longitude and
radius during the peak of cycle 1. Over-plotted symbols indicate the time and latitude of
131 buoyant loops in the style of a synoptic map, with positive polarity loops shown as pink
squares and negative polarity loops as green diamonds. Some loops may be present from the
previous cycle, particularly prior to day 550 in the southern hemisphere. Time t1 at which
the snapshots in Figures 7.1 and 7.3 are taken is indicated by the dotted line.

8.2 Magnetic Cycles with Buoyant Loops

Case S3 achieves three magnetic activity cycles with reversals in global magnetic polar-

ity. If we define the cycle period as the time between changes in the sign of the antisymmetric

components of the toroidal field at low latitudes, as in Brown et al. (2011), then cycles 1

and 2 have periods of 278 and 269 days, respectively. Cycle 3 had not ended at the present

end of the simulation, but has been simulated for 228 days. The coexistence of cyclic mag-

netic activity and buoyant loops provides an opportunity to probe the relationship between

axisymmetric fields which are commonly used in 2-D dynamo models (see review by Char-

bonneau, 2010) and the buoyant transport of magnetic flux.

We have chosen to conduct our analysis primarily using cycle 1 since the process of

finding and characterizing buoyant loops is too data intensive to be carried out conveniently

for all three cycles. Figure 8.2 shows a time-latitude plot of the mean toroidal field (averaged

in longitude and in radius over the lower convection zone from 0.72 to 0.84 R�), as well as

the location in time and latitude of the 131 buoyant loops detected in cycle 1. It is evident
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Figure 8.3: (a) Relative probability that a region with given mean Bφ will produce a
buoyant loop compared to the production rate of buoyant loops in cycle 1 averaged over all
events. For cycle 1 the average occurrence rate for loops was 7.6 × 10−3 day−1 degree−1.
We normalize all probabilities by this rate, thus the dashed line represents the average loop
production rate. Note that nearly 60% of the times and latitudes considered have mean field
strengths of less than 1.5 kG. (b) Total magnetic flux as a function of axisymmetric toroidal
magnetic field averaged in radius at the latitude and time of each of the 131 buoyant loops in
Figure 8.2. While most loops are associated with mean magnetic fields of the correct sense,
there are 15 loops in quadrants II and IV. These loops arise from wreath segments which
are canceled in the longitudinal averaging procedure by large or stronger wreath segments
at the same time and latitude of the opposite polarity.

from this representation that the loops do not arise uniformly in time. Although loops tend

to appear at times and latitudes when the mean toroidal fields are strong, they can also

appear at times and latitudes with relatively weak mean fields. There are even examples

in which loops have the opposite polarity to the longitudinally-averaged mean fields at that

time and latitude. This is consistent with the non-axisymmetric nature of the wreaths shown

in Figures 7.1(c-d) where smaller-scale segments of intense toroidal field can be masked in

the longitudinal average by larger segments of the opposite polarity.

8.2.1 Relation of Loop Emergence and Mean Field Strength

In many mean-field models it is assumed that buoyant magnetic flux (which can be

used as a proxy for the sunspot number) at a given latitude and time is proportional to the

axisymmetric toroidal field strength at that location and time at the generation depth. In
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particular, the Babcock-Leighton model postulates that the buoyant transport of magnetic

flux occurs whenever the axisymmetric magnetic field exceeds some threshold value (e.g.,

Durney, 1995; Chatterjee et al., 2004). Here we can test this assumption by looking at the

probability that a region with a given axisymmetric field strength will produce a buoyant

loop. Figure 8.3 shows the relative probability that a region with a given mean field strength

will produce a buoyant loop. Over cycle 1, the average production rate of buoyant loops is

roughly one loop every two days within 30◦ of the equator. Regions with 〈Bφ〉 ≤ 1.5 kG

cover about 60% of the time-latitude domain and produce loops at or below the average

rate. The generation probability per unit time and latitude rises to five times the mean

rate for regions with 〈Bφ〉 ≈ 3.9 kG. Interestingly, the generation probability then falls for

the regions of the strongest 〈Bφ〉. Indeed, the strongest regions of axisymmetric field are

only about three times more likely to produce buoyant loops than the average production

rate. The relatively small sample size invites further study on this topic, as only 5% of

the domain is covered by fields above 4.2 kG, which fall in the last four bins. However the

implication that axisymmetric toroidal fields above some threshold value are less likely to

produce buoyant loops may have significant implications for mean-field models of the solar

dynamo.

To further explore the correlation between the axisymmetric field strength and the

amount of buoyant magnetic flux, we can look for correlations between the amount of flux

in a given buoyant loop and the axisymmetric fields at the time and latitude of its launch.

Figure 8.3(b) shows the magnetic flux in each of the 131 buoyant loops from cycle 1 as a

function of the average value of axisymmetric toroidal field in the lower convection zone at

the time of launch. Out of 131 loops, 15 were launched when the axisymmetric Bφ was of

the opposite sense. Interestingly, Stenflo & Kosovichev (2012) report that roughly 5% of

moderate to large active regions violate Hale’s polarity law.
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Figure 8.4: Time-averaged toroidal magnetic field on a spherical surface between ±45◦ of
latitude at 0.79R� during cycle 1. Symbols indicate the rotational phase in longitude of the
131 buoyant loops from Figure 8.2 at the time they were launched. Squares indicate positive
polarity loops while diamonds indicate negative polarity loops. Both the wreaths and loops
are confined in longitude. Loops are particularly concentrated in the strong positive wreath
segment in the southern hemisphere.

8.2.2 Preferential Longitudes for Loop Creation

The longitudinal concentration of sunspots into so-called active longitudes has been

observed for the past several solar cycles (Henney & Harvey, 2002). These active longitudes

provide observational evidence that the creation of buoyant magnetic structures is not a

purely axisymmetric process. Magnetic wreaths in case S3 tend to be confined in longitude,

as was shown in Figure 7.1(c). These wreath segments are generally between 90◦ and 270◦

in longitude. Loops tend to be generated in these wreath segments, and thus more likely

to appear in those longitudinal patches than other longitudes. Figure 8.4 shows the time-

averaged value of Bφ at 0.80R� over cycle 1 with the longitudinal position of the 131 buoyant

loops over-plotted. Loops are much more likely to appear over a roughly 180◦ patch in

longitude in the southern hemisphere. Whereas we have some longitudinal modulation, it is

still far from the 10◦ to 20◦ confinement seen in active longitudes on the Sun.

The existence of longitudinal patches of both magnetic polarities in case S3 also pro-
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vides a potential explanation for the small fraction of active regions of the “wrong” polarity

seen in Figure 8.3(b). This provides a possible mechanism for the analogous phenomena in

which a small fraction of solar active regions violate Hale’s polarity law. While active longi-

tudes in the Sun are more confined than those seen here, the longitudinal confinement of the

wreaths in case S3 may provide a possible pathway toward understanding active longitudes.

8.3 Summary and Reflections: Buoyant Loops in Convective Dynamos

Chapters 7 and 8 have explored in detail the first global convective dynamo simulation

to achieve buoyant magnetic loops which transport coherent magnetic structures through

the convection zone. These buoyant structures arise from large-scale magnetic wreaths,

which have been previously described in both persistent (Brown et al., 2010) and cyclic

states (Brown et al., 2011; Nelson et al., 2013b). In this work we have focused on case S3,

which possesses large-scale magnetic wreaths which undergo cycles of magnetic activity and

produce many buoyant magnetic loops. Case S3 was able to achieve buoyant loops due to

the use of a dynamic Smagorinsky SGS model which greatly reduced diffusive processes in

the simulation.

Although case S3 has a rotation rate greater than the current Sun, the dynamics

achieved may be applicable to solar dynamo action. The most salient non-dimensional

parameter for the creation of toroidal wreaths is the Rossby number, which considers the

local vorticity ω and rotation rate Ω as Ro = ω/2Ω. In case S3 the Rossby number at

mid-convection zone is 0.581, indicating that the convection is rotationally constrained as is

also expected in the bulk of the solar convection zone.

Much of the work on buoyant magnetic flux has generally regarded convection as a

purely disruptive process. In our dynamo studies here, convection plays a key role in both

the creation of the strong, coherent magnetic fields and the advection of magnetic flux radi-

ally outward. Turbulent intermittency provides an effective mechanism for the amplification

of magnetic fields to energy densities well above equipartition with the resolved flows (Nel-
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son et al., 2013b). Convection also assists in the transport process by the upflows helping

to advect the loops. Without convection, buoyant transport of magnetic flux is generally

regarded as a low-wavenumber instability on axisymmetric fields. With convection, buoyant

loops are formed on convective length scales as the result of non-axisymmetric processes.

The loops realized in case S3 are not large-scale instabilities of axisymmetric flux tubes,

but rather they result from turbulently amplified coherent structures becoming buoyant and

being advected by convective upflows. Similar upward advection of magnetic structures by

convection has been seen when considering the impact of convection on flux tubes (Weber

et al., 2011, 2012, 2013) or specified magnetic structures (Jouve & Brun, 2009).

When we consider moderate numbers of buoyant loops over an activity cycle, we find

a number of trends in their collective behavior. In all of these trends, it is important to note

that our statistical sample of 158 loops is significant but still relatively small. First, loops in

our simulation clearly show a hemispheric polarity preference analogous to Hale’s polarity

law for solar active regions, although case S3 shows a slightly higher rate of violations to

this trend compared to the Sun. Second, the buoyant loops tend to show latitudinal tilts

similar to Joy’s law for solar active regions. As in the Sun, a wide variety of tilt angles are

observed, though the average tilt angle places the leading edge of the buoyant loop closer

to the equator than the trailing edge. Third, the buoyant loops tend to show a degree of

twist similar to the twist inferred from photospheric measurements of vector magnetic fields.

Again a wide variety of twist parameters are measured centered about a relatively small,

negative mean value. Finally there are ranges in longitude which demonstrate repeated

emergence of magnetic flux. This longitudinal modulation in the creation of magnetic loops

is reminiscent of active longitudes observed in the Sun, but on larger longitudinal ranges

than active longitudes in the Sun.

Buoyant transport of magnetic fields is a key ingredient in many models of the solar

dynamo. Mean-field models often use parameterizations to represent this buoyant transport.

We have considered connections between the axisymmetric toroidal fields in case S3 and the
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magnetic flux in the buoyant loops. We find that total flux in a given buoyant loop is

only weakly dependent on the strength of the mean field from which that buoyant loop was

generated. Additionally, we find that the probability that a buoyant loop will be generated

in regions of relatively weak mean fields is significant, and that the strongest mean fields

may be less likely to generate buoyant loops than regions of moderate axisymmetric fields.

This simulation is a first step towards connecting convective dynamo models and flux

emergence in the Sun and sun-like stars. As we consider the role of turbulent convection, we

find clear indications that it plays important roles in the dynamo which generates buoyant

magnetic loops and the transport of those loops. This simulation invites continued effort

towards linking convective dynamo models and simulations of flux emergence.



Chapter 9

Plume Boundary Conditions in ASH

After discussing convective dynamo models which have achieved very low levels of

diffusion both through very high resolution and the use of the Dynamic Smagorinsky SGS

model, we now turn to another way in which we can improve our ASH models. In this

chapter we will discuss the implementation of and preliminary results from a new boundary

condition in ASH which we term a plume boundary condition. This work began in 2011

and is on-going. While I have taken a lead role in this effort, I have benefitted greatly from

collaborations with Kyle Augustson, Regner Trampedach, Mark Miesch, Brad Hindman, and

Juri Toomre who have provided invaluable assistance. I wrote, debugged, and analyzed this

a new module in the ASH code which applies this boundary condition. This work will the

subject of a forthcoming journal article.

9.1 Challenges at the Upper Boundary

In the previous chapters we have explored the dynamo processes which yield magnetic

wreaths, cycles of magnetic activity, and buoyant magnetic loops in solar-like simulations.

With all of these models we have faced two significant challenges. First, all of the models

to this point have used an impenetrable upper boundary condition at about 0.97R�. This

requires us to use a diffusive process to transport the solar luminosity through the upper

boundary of the simulation. This boundary layer has no physical analogue in the real Sun. In

the real Sun convection on progressively smaller scales should transport the solar luminosity
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all the way to the photosphere. As we outlined in Chapter 2, a global simulation of convective

dynamo action that extends to the photosphere is beyond the capabilities of the ASH code

for both computational and physical reasons. The scales of motion at the photosphere would

require an order of magnitude increase in the maximum spherical harmonic degree of our

models. The physical assumptions built into ASH such as low Mach number flows, small

variations about the background thermal state, the ideal gas equation of state, and diffusive

radiative transfer all become invalid near the photosphere. With these limitations we must

place the upper boundary of ASH simulations in the solar interior. If this boundary is

impenetrable, we will also induce a significant boundary layer in the solar interior as well.

This has serious implications for the behavior of our simulations, particularly in models

where buoyant magnetic loops enter this diffusive boundary layer.

The second major challenge in the models of convective dynamo action is maintaining

solar-like differential rotation. Differential rotation is crucial to the operation of our dynamo

models. As we seek to study solar-like dynamo mechanisms, we require solar-like differential

rotation. Fast rotation at the equator requires a sustained transport of angular momen-

tum equatorward by rotationally aligned convective cells in the bulk of the convection zone

(Miesch, 2005). Rotational influence relative to inertial forces is measured by the Rossby

number. Rotationally-constrained systems such as the Earth’s atmosphere or liquid core

have low Rossby numbers. Solar surface convection of granulation and supergranulation,

which operates on much smaller scales and at higher velocities than the deeper giant cell

convection, has a high Rossby number and shows almost no rotational alignment. While

there is on-going debate as to the amplitude of the flow speeds in giant cells, by almost all

estimates the Sun’s giant cell convective flows sit below a Rossby number of unity (Hanasoge

et al., 2010; Miesch et al., 2012). ASH simulations at the solar rotation rate yield solar-like

differential rotation for moderate levels of turbulence (e.g., Brun & Toomre, 2002; Miesch

et al., 2006), but when these models are made less diffusive we see an increase in their

convective velocities which pushes them into a higher Rossby number regime with a slowly
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rotating equator and fast poles. We term this anti-solar differential rotation. Similar be-

havior is reported by Gastine et al. (2013) in simulations of giant planet interiors. As much

of the convective driving in these simulations occurs near the upper boundary, we believe

that the diffusive boundary layer imposed there is leading to excessive convective driving.

These over-driven flows are then too fast, allowing their inertial forces to overwhelm their

rotational constraints. When we move to slightly faster rotation rates, such as 3Ω�, we find

that we can maintain solar-like differential rotation, as shown in Chapters 3 and 5.

Both of these challenges are at least partially related to our choice of boundary con-

ditions. By choosing an “open” boundary condition that mimics the convective dynamics

occurring in the Sun’s near surface layers, we can achieve a simulation without a diffusive

boundary layer at its top and with more realistic convective driving. This chapter will fo-

cus on the implementation of such a boundary condition. We will also present preliminary

results from ASH simulations using a plume boundary condition which has solar-like dif-

ferential rotation for a moderately turbulent simulation at the solar rotation rate. We will

compare this simulation, which we label case P, with three cases using impenetrable upper

boundary conditions labeled cases Ia, Ib, and Ic that sample decreasing diffusive processes.

Although we here look at the implication of imposing small-scale plumes entering ASH

simulations through the upper boundary, in the longer term these inflows will be largely

specified by the properties of smaller-scale solar convection studied with local simulations of

the near-surface layers. Advances in local near-surface models have paralleled the progress

made in global simulations, reaching high spatial and temporal resolution, and capturing

solar-like behaviors which can be compared with observations (e.g., Stein & Nordlund, 2006;

Rempel et al., 2009; Augustson et al., 2011). We expect that these models will provide

statistical descriptions of the downflowing plume structures and their associated thermal

structures which could thence be imposed through our plume boundary condition. These

plumes from near-surface convection models would then replace our simplified plume model,

described here. We have taken care to define this plume boundary condition to conform
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to some of the known properties of surface convection models, though the implementation

here relies on somewhat simplified descriptions. Imposing downflows from a near-surface

model, even in a statistical sense, is likely to be a challenging undertaking. This chapter

will focus on the design and implementation of our plume boundary condition and report on

preliminary results from its application to global solar convection models.

9.2 The Consequences of Impenetrable Boundaries

ASH simulations generally use an impenetrable, stress-free condition on their upper

boundaries in which

vr =
∂

∂r

(vθ
r

)
=

∂

∂r

(vφ
r

)
= 0. (9.1)

This formulation ensures that mass and angular momentum are conserved within our domain

for hydrodynamic simulations. In addition the domain is heated by a radiative flux at the

base of the simulation and energy leaves through the top of the domain via thermal diffu-

sion. All simulations discussed in previous chapters used this formulation. In this manner

our hydrodynamic simulations resemble a spherical version of the classic Rayleigh-Benard

convection problem which has been studied through theory, simulations, and experiments for

close to 90 years (see Chandrasekhar, 1961; Getling, 1998). The major difference, however,

is that in Rayleigh-Benard convection the overall heat flux through the horizontal layer is

determined by how the convective flows respond to the boundary layers formed at the upper

and lower walls, which are typically maintained at fixed temperatures. Thus in Rayleigh-

Bernad convection the convection itself determines the heat transport. In ASH simulations

we demand that a solar luminosity of energy enter the system at the lower boundary and

that one solar luminosity exit the system through the upper boundary. This has important

consequences for the resulting flows.

The primary dimensionless parameter that measures convective driving is the Rayleigh
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number given by

Ra = −
(
dρ

dS

)
P

∂S

∂r

gL4

ρνκ
. (9.2)

In this formulation Ra is proportional to the entropy gradient −∂S/∂r and inversely pro-

portional to each of the diffusion coefficients ν and κ. If we want to drive a more turbulent

system by lowering ν and κ, we should get a correspondingly higher value of the Rayleigh

number. However by lowering κ we also find there is a nonlinear feedback that yields a

narrower upper boundary layer. We demand that thermal diffusion carry a solar luminosity

out of the top of our domain. This provides an additional constraint on ∂S/∂r at the upper

boundary such that

∂S

∂r
= − L�

4πR2
oκρ̄T̄

, (9.3)

and thus ∂S/∂r ∝ 1/κ. A real physical system such as the solar convection zone would

not experience this additional increase in Rayleigh number as it does not rely on a diffusive

boundary layer to transport energy.

In practice we have found that when we decrease the viscous and thermal dissipation

in our models at the solar rotation rate, we see the differential rotation in these models

decrease and eventually switch sign to yield a slow equator and fast poles. This state is in

many ways conceptually very simple: convection is trying to mix the angular momentum

of the layer leading to fast rotation where the lever arm is short and slow rotation where is

long. This trend is likely the result of a number of mechanisms which are all interrelated,

but the influence of the impenetrable boundary layer is likely to play a significant role.

9.3 Formulation of the Plume Boundary Condition

Conceptually, open boundaries present a number of challenges. On a very basic level

an open boundary is an attempt to admit dynamics into a simulation which are not being

explicitly treated. Here we make a distinction between truly open, semi-open, and permeable
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boundary conditions. Truly open boundary conditions allow the resolved interior dynamics of

the simulation to control the behavior of the boundaries. They are particularly challenging

because they can permit net fluxes of quantities like mass or momentum, destroying the

global conservation properties of a simulation. We are not aware of any solar convective

models which use a truly open boundary condition.

Semi-open boundary conditions are those which are designed to be as open as possible

while using minimally invasive techniques to preserve global conservation properties. This

may be accomplished using an open boundary condition on the velocity fields while imposing

pressure gradients at the boundary to regulate the balance between upflows and downflows,

or by applying a volumetric forcing near the boundary to counteract the net fluxes through

the boundary. Semi-open boundaries have been used in several codes designed for near-

surface solar convection, including MuRAM (Rempel et al., 2009; Cheung et al., 2010),

Stagger (Trampedach & Stein, 2011), and CSS (Augustson et al., 2011). In these codes the

bottom boundary condition is open rather than the upper boundary as we are considering for

ASH. As the strongest driving in solar and stellar convection is generally believed to occur

at the photosphere, opening the lower boundary may be less problematic than opening the

upper boundary. Additionally these are all finite difference codes. Stagger, for example,

applies open boundary conditions on outflows but imposes flows and thermodynamic fields

on inflows in order to preserve the global conservation of momentum and mass, as well as

the solar energy flux.

The final category of open boundary conditions is what we term permeable boundary

conditions. These models impose flows through their boundaries in a specified way. They

may be constant in time or they may vary. A permeable boundary permits flows to enter or

exit the domain, but only in a specified manner. Permeable boundaries can easily control

the fluxes of conserved quantities since the fluxes are specified with the boundary condition.

Our plume boundary condition in ASH is composed of three permeable boundary

conditions and one semi-open condition. In ASH we impose small-scale plumes of radial
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velocity and entropy as a time-dependent boundary condition. We also impose a condition

on the opening angle of the plumes in order to mitigate pressure perturbations. Finally

we impose a semi-open boundary condition designed to permit the internal dynamics of the

simulation to set the differential rotation profile on the boundary and use a volumetric torque

on the near-boundary layers to enforce conservation of angular momentum.

Semi-open boundaries are perhaps more challenging in ASH than in some of the other

codes mentioned due to ASH’s pseudospectral nature. ASH applies boundary conditions

through its semi-implicit solve (see Figure 2.2). This is done in spherical harmonic space

rather than physical space, thus boundary conditions are applied to spherical harmonic

modes rather than physical locations. This makes it essentially impossible to apply different

boundary conditions to different structures in our current computational framework. For

example, we cannot allow radial outflows to continue unperturbed through a radial gradient

boundary condition while at the same time imposing inflows elsewhere.

9.3.1 Plume Boundary Conditions on vr and S

Perhaps the most straight-forward of our boundary conditions in our plume boundary

scheme are those we apply to the radial momentum and entropy equations. Formally, the

boundary condition for radial momentum is

vr (Ro, θ, φ) = R (θ, φ, t) (9.4)

and the boundary condition for the entropy equation is likewise

S (Ro, θ, φ) = S (θ, φ, t) , (9.5)

where Ro is the radius of the outer boundary and R (θ, φ, t) and S (θ, φ, t) are arbitrary

functions of θ and φ and time t. We then choose R (θ, φ, t) and S (θ, φ, t) to be composed of

Np small-scale plume structures, each with some velocity amplitude V and entropy amplitude
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E . Thus we can write these fields as

R (θ, φ, t) =

Np∑
i=1

ViPi (θ, φ)F (t) (9.6)

S (θ, φ, t) =

Np∑
i=1

EiPi (θ, φ)F (t), (9.7)

where the time dependence is encoded in F (t). The plume profiles are designed such that

they have compact support (locally specified generating functions). This greatly reduces the

computational cost of applying the plumes. Additionally, we choose R (θ, φ, t) and S (θ, φ, t)

such that ∫
S

R (θ, φ, t) sin θ dθ dφ =

∫
S

S (θ, φ, t) sin θ dθ dφ = 0, (9.8)

where the integrals are taken over the spherical surface. Thus our plumes carry no net mass

flux and set the mean entropy on the boundary to zero, as was done in previous ASH models

(see Table 2.1). We have investigated several possible plume profiles to date. Here we will

focus on a zero-flux plume profile P which is designed so that each plume individually has

no net mass-flux or entropy because∫
S

P sin θ dθ dφ = 0. (9.9)

We have also considered a scheme which imposes plumes that are only downflows, and then

shifts the mean of the radial velocity field to zero by adding a constant term to all points.

Locally mass-conserving plumes are truly local structures, so we choose to investigate them

here.

We choose our locally mass-conserving plumes to follow the profile

P (ψ) =


−1 + 20ψ2 − 50ψ3 + 45ψ4 − 14ψ5 if φ ≤ 1

0 if φ > 1

(9.10)

where ψ is the angular distance from the center of the plume ∆σ divided by the width of

the plume δ. This polynomial representation is continuous in its value, and first and second
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Figure 9.1: (a) Profile of the shape of the imposed plumes as a function of angular distance
from the plume center σ divided by the width of the plume δ. (b) 3D surface rendering of
the plume shape. The plumes consist of the strong negative core of downflowing low-entropy
material surrounded by a weaker positive ring of higher entropy upflows. Surface integrals
of this shape are identically zero by design.

derivatives at all points. Figure 9.1(a) shows the polynomial, and Figure 9.1(b) shows a 3D

surface rendering of the plume profile. The profile has a large negative core of low-entropy

downflow surrounded by a low-amplitude positive ring of higher entropy upflow. This mimics

the shape of plume profiles seen in near-surface models (Rast, 2003).

We assign these plumes initially to uniform random locations on the outer boundary,

accounting for the spherical geometry. Each plume is assigned an angular width δ. We must

then determine the angular distance from each grid point to each plume center in order to

apply the piecewise function P (∆σ/δ). This is a surprisingly difficult task. The distance

between two points over the surface of a sphere is given by

∆σ (~γ,~γp) = cos−1 (sin θ sin θp + cos θ cos θp ∆φ) , (9.11)

where ~γ = [θ, φ], no subscripts are used for coordinate locations, and subscript p represents

the position of the plume. Unfortunately, this representation suffers from large round-off

error for small angular separations, such as those we seek here for small plumes. A number
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of different versions of this formula have been constructed to improve the computational

accuracy of this formula. For an extended discussion of this topic at the intersection of

ancient geometry and modern numerical methods, see Gade (2010). We here use a numerical

implementation designed to be accurate for small angular separations given by

∆σ (~γ,~γp) = 2 sin−1

[
sin2

(
∆φ

2

)
+ cosφ cosφp sin2

(
∆θ

2

)]
. (9.12)

This implementation suffers errors for separations larger than 90◦, but is highly accurate and

computationally inexpensive for small angles.

We also choose to have our plume field vary in time. Each plume is assigned a lifetime

τ . The plume’s amplitude is then modified by T (t, t0, τ), which is defined as a function of

the time since the plume was initiated t− t0 by

T (t, t0, τ) =



t−t0
0.1τ

if 0 ≤ t−t0
τ

< 0.1

1 if 0.0 ≤ t−t0
τ

< 0.9

1− t−t0−0.9τ
0.1τ

if 0.9 ≤ t−t0
τ

< 1.0

. (9.13)

This provides linear ramp-up and cool-down phases for the plumes, minimizing the spurious

pressure perturbations which can plague these simulations. A plume expires when t−t0 = τ .

It is then randomly restarted with new parameters. We have applied an additional constraint

that new plumes must be at least their width from any existing plumes to avoid extremely

fast downflows which limit the size of our time step.

Having decided on the shape of our plumes and their temporal dependence, we are now

left to apply plumes to our boundary fields R and S. Each plume is assigned an angular

position ~γ, an amplitude in both radial velocity Vi and entropy Ei, an angular width δi, and

a lifetime τi. With all of these parameters, the boundary fields are simply given by

R (θ, φ, t) =

Np∑
i=1

ViP
(

∆σ (γ, γi)

δi

)
T (t, t0i, τi) (9.14)

S (θ, φ, t) =

Np∑
i=1

EiP
(

∆σ (γ, γi)

δi

)
T (t, t0i, τi) . (9.15)
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Table 9.1: Parameters for plume boundary condition used in case P

Plume Boundary Parameters

Parameter Range Correlation with V
V [240, 360] m s−1 –
E [8.8, 13.3] 104 erg K−1 g−1 0.5
δ [0.056, 0.084] rad. 0.5
τ [2.0, 4.0] days 0.2
θp [0, π/2] rad. 0.0
φp [0, π/2] rad. 0.0

Here we have chosen to use the same widths for both the momentum and entropy profiles.

This is done for simplicity, but one might expect that plume structures should have different

sizes in entropy and radial velocity. For that matter one might expect that the profiles used

for the two fields may be of different shapes. We anticipate addressing these questions in

future work.

Clearly there are a large number of free parameters in this model. Each plume requires

six parameters, for a total of 6Np parameters to choose. Correlations between these param-

eters for a given plume could be argued. For example, one might expect faster plumes to be

larger in size, or smaller plumes to have shorter lifetimes. We chose to correlate the velocity

amplitude, entropy amplitude, plume width, and plume lifetime. The number of plumes

has a significant impact on the dynamics as well. We have conducted some preliminary

explorations of possible parameter choices guided by preliminary results from near-surface

models run with the Compressible Spherical Shell code Augustson et al. (2011), and the

constraint that we would like a solar luminosity of enthalpy flux to be transported by the

plumes through the boundary on average. None of these sources of guidance are in any way

definitive and we plan to conduct extensive additional exploration of these parameters. At

this stage we have found that using Np = 1000 with four-fold longitudinal periodicity in

ASH (thus 4000 plumes for a full spherical shell), and the parameters shown in Table 9.1,
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yields an instructive simulation in the form of case P, along with a series of test simulations

that preceded it.

The angular widths of the plumes is chosen to be as small as possible for a given spatial

resolution. We find that under-resolved plumes led to significant ringing in our spherical

harmonic transforms. For ASH simulations with `max = 682 we find that plumes must be at

least resolved by placing 12 grid points across their radius. As our grid-spacing is largest at

the equator, we have an angular spacing between points there of 0.0031 radians, giving us a

minimum plume width of 0.037 radians. We elect to make our minimum plume width 0.056

radians to avoid any potential problems. We have done some tests with plumes widths as

small as 0.040 radians which appear stable over time evolutions of roughly 100 days.

Once we have determined the size of the plumes we then choose the number of plumes

such that, on average, three-quarters of the boundary is covered by a plume. Simulations

with more of the surface covered make it difficult to avoid placing new plumes on top of old

plumes, which can produce extremely fast downflows and thus constrain our time step to be

smaller than desired. The plumes are placed at uniformly random locations over the sphere.

We avoid putting the center of a plume within another plume, thus plumes can initially be

no closer to the center of another plume than their width.

Our choice of the peak downflow velocity is motivated partly by near surface models

which show radial velocities on the order of a few hundred meters per second. Additionally we

require the plumes to carry a solar luminosity of enthalpy flux through the upper boundary.

Energy transport due to enthalpy flux is defined as

LEN = CP ρ̄ur
(
T − T̄

)
=
ρ̄ur
T̄

(
S − CP +

CPP (γ − 1)

P̄ γ

)
, (9.16)

where CP is the specific energy at constant pressure and γ is the adiabatic index. As long

as S/CP > P/P̄ in our plumes, our entropy perturbations will drive enthalpy transport

across the boundary. This places a constraint on the product of the velocity and entropy

perturbations needed to maintain a given enthalpy flux. Thus if we want faster plumes
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we must make them less entropy deficient and vice versa. We have experimented with R

ranging from 50 to 1000 m s−1. For high speed plumes we see rapid deceleration and large

amounts of viscous heating as the plumes slam into the higher density maternal below them.

For very slow plumes we find that they must be so cold that they experience rapid buoyant

acceleration away from the boundary. In extreme cases they can coherently penetrate all

the way through the domain, reaching speeds of as much as 2 km s−1 at mid-convection

zone despite starting with speeds of 50 m s−1 We find that when the radial velocity plume

amplitude V is V ≈ 300 m s−1 the plumes are fairly well behaved.

We have also included the ability for horizontal flows to advect the plumes around the

outer boundary. This is done by solving a simple advection equation for the plumes as if

they were Lagrangian test particles in the horizontal flow. This advection procedure uses

a velocity field that is smoothed somewhat over the area of the plume to provide smoother

trajectories. Advection using the unsmoothed horizontal velocities has been found to gen-

erate some ringing in the pressure field on the boundary. The advection procedure adds

measurable computational cost as it forces the processors responsible for the boundary to

solve an additional equation that is not solved by the rest of the computational domain. This

leads to load imbalance. It is anticipated that ASH could be rebalanced by assigning fewer

grid points to processors responsible for the boundary. We have tried test cases both with

and without plume advection and find no systematic differences between them over roughly

100 days. Due the additional computational cost, the test cases discussed in this chapter

and case P were run without plume advection.

9.3.2 Plume Boundary Conditions on P

As discussed in Chapter 2, the anelastic approximation leads to an elliptic equation for

pressure. Rather than directly solving this equation in ASH, we implicitly solve for pressure

by solving evolution equations for both the radial momentum and its horizontal divergence.
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ASH uses a streamfunction formalism where

ρ̄~u = ∇× (Zr̂) +∇×∇× (Wr̂) . (9.17)

Solving for each component of the mass flux, this equation yields

ρ̄ur = −∇2
⊥W (9.18)

ρ̄uθ =
1

r

∂2W

∂θ∂r
+

1

r sin θ

∂Z

∂φ
(9.19)

ρ̄uφ =
1

r sin θ

∂2W

∂φ∂r
− 1

r

∂Z

∂θ
, (9.20)

where ∇2
⊥ is the horizontal Laplacian operator. The evolution equations for ASH in spherical

harmonic space are equations for the evolution of W , ∂W/∂r, and Z. To specify the radial

velocity field we must specify W over the outer boundary. This means that our choice for

∂W/∂r has two immediate consequences. First, it will implicitly set the boundary condition

on the pressure field; second, if ∂W/∂r is not set to zero our radial velocity boundary

condition will partial specify vθ and vφ.

Initially, we chose to simply set ∂W/∂r = 0 on the boundary. However, if we look at

the evolution equation for ∂W/∂r we find that this choice leads to problems elsewhere. The

evolution equation for ∂W/∂r is given by

∇2
⊥
∂

∂t

(
∂W

∂r

)
=−∇2

⊥P + ν∇2
⊥

(
∂3W

∂r3
+

[
d ln ρ̄

dr
− d ln ν

dr

]
∂2W

∂r2

+

[
∇2
⊥ −

2

r

d ln ρ̄

dr
− d2 ln ν

dr2
− 2

r

d ln ν

dr
− d ln ρ̄

dr

d ln ν

dr

]
∂W

∂r

−
[
d ln ρ̄

dr
+

2

3

d ln ν

dr
+

2

r

]
∇2
⊥W

)
+QCOR +QADV, (9.21)

where we have condensed the Coriolis and advective terms into QCOR and QADV, respectively.

If we calculate these terms explicitly, we find that the Coriolis and advective terms are

generally much smaller than the viscous term and the pressure term. If we examine the
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balance of these terms we find that if we choose a boundary condition such that ∂W/∂r = 0,

then we implicitly force the existence of large horizontal variations in the pressure field one

grid point in from the boundary. In fact if we run in this manner we find that pressure

fluctuations on the order to of P̄ build up on timescales of about 500 days. These pressure

perturbations soon overwhelm the dynamics of the simulation.

If instead we look at Equation 9.21 in one of these models, we find that the two largest

terms of the four viscous terms are those which concern ∂W/∂r and W . If we simply choose

a boundary condition for ∂W/∂r such that

∂W

∂r
=

(
d ln ρ̄

dr
+

2

3

d ln ν

dr
+

2

r

)
W = CGW, (9.22)

where we have collected the terms due to geometry, stratification, and viscosity variation into

CG, we find that pressure perturbations due to the plumes are several orders of magnitude

smaller. In effect, this boundary condition is setting an opening angle for the plumes as they

enter the domain that is constant with the spherical geometry and the variations in density

and viscosity. If we substitute Equation 9.22 into Equations 9.18, 9.19, and 9.20 and take

the horizontal divergence of the flow, we find that this boundary condition leads to

∇⊥ · (ρ̄~u) ∝ ρ̄ur
r
, (9.23)

indicating that inward plumes with negative ur should be slightly converging as they enter

the domain, as one might expect from the spherical geometry.

9.3.3 Plume Boundary Conditions on Horizontal Velocities

The last remaining boundary condition in our plume boundary formulation concerns

the behavior of horizontal flows on the boundary. Ideally we would like these flows to be

as unconstrained as possible so that their impact on the differential rotation profile of a

simulation is minimal. This could be done, for example, by simply setting radial gradients
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of the horizontal components of momentum to zero with

∂ (ρ̄uθ)

∂r
=
∂ (ρ̄uφ)

∂r
= 0. (9.24)

If we examine Equations 9.19 and 9.20 we can immediately see that to do so will require a

boundary condition on ∂W/∂r as well as boundary condition on Z. Unfortunately we have

already used the ∂W/∂r boundary condition to minimize pressure perturbations. Thus the

best we can do is to derive a condition on the toroidal streamfunction Z which will make the

radial gradient of the contribution from Z to the horizontal mass fluxes vanish at the upper

boundary. The can be done by imposing

∂Z

∂r
− Z

r
= 0. (9.25)

With these boundary conditions, the horizontal velocities are partially constrained such that

they must avoid large pressure perturbations and partially free to be determined by the

behavior of the interior of the system.

This boundary condition combined with our choice of imposing non-zero radial veloc-

ities on the boundaries leads to the possibility of a net flux of angular momentum across

the boundary. This would led to a net accumulation or deficit of angular momentum in the

system, effectively spinning up or down the domain. Test cases have shown that for most

choices of plume parameters there tends to be a net outward flux of angular momentum

through the boundary, causing the domain to spin down. For a case at the solar rotation

rate, this spin down can be as large as 1% of the mean solar rotation rate roughly every 300

days. Clearly this is not desirable.

To avoid the net change of angular momentum in our simulations caused by these

boundary conditions, we have two options. The first employs the angular momentum clean-

ing discussed in Chapter 2 and the second uses a corrective volumetric torque. Both methods

present difficulties. The angular momentum cleaning is achieved via∫ ro

ri

Z̃m
1 r

2 dr = 0, (9.26)
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where Zm
1 are coefficients for the spherical harmonic modes of the toroidal mass-flux stream

function Z with ` = 1 and m = −1, 0, and 1. This is a non-local condition designed to

prevent the accumulation of numerical noise in the net angular momentum of the system.

When the net change in the angular momentum of the system is on the order of the accuracy

of our numerical scheme this condition works quite well. When we apply it here we find that

although it does conserve the total angular momentum of the system, it also introduces

infrequent but intense radial pressure perturbations which can drive strong ringing in our

system. This ringing is not confined to the near-boundary layers but is seen at all depths

in our domain. Simulations using this condition are generally numerically stable, but the

accuracy of our numerical algorithm becomes less certain under these conditions. While this

is an area that deserves further study, we have chosen not to use this method to enforce

global angular momentum conservation in case P.

The second mechanism for enforcing global angular momentum conservation is to mea-

sure the net flux of angular momentum across the outer boundary and then use a volumetric

torque to add or subtract the correct amount of angular momentum from a thin layer near

the top of the domain. The net torque from the boundary is on the order of 10−6 of the

average angular momentum of the bulk rotation rate. Thus a torque on the same order ap-

plied to a thin layer near the boundary can prevent the accumulation of angular momentum

in the system. The question then is what latitudinal and radial profile should be used for

this corrective torque. We have chosen a radial profile given by a Gaussian generated on the

outer boundary with an adjustable width. In all tests discussed here we have used a width

or 0.2∆R, where ∆R is the depth of the convective layer.

We have tried four latitudinal profiles for the volumetric torque: a uniform weighting,

a uniform plus sin θ weighting, a uniform plus sin2 θ weighting, and a latitude-by-latitude

replacement scheme. The latitude-by-latitude scheme attempted to measure the net flux of

angular momentum at each latitude in the simulation and then applied a corrective torque at

that latitude. This model was found to exhibit numerical instabilities in that it was possible
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for run-away latitudes to emerge where both the boundary flux of angular momentum and

the local torque grew to very large values. The other three models are all numerically stable

and so we can assess their usefulness. This can best be done by examining the latitudinal

profiles of the average total torque on the volume Ŷtot (θ). We define

Ŷtot (θ) = Ŷcor (θ) +

∫
V
∇ · ~F dV
V

= Ŷcor (θ)− Ŷp (θ) , (9.27)

where Ŷcor is the latitudinal profile of the corrective torque, ~F is the angular momentum

flux vector (see Equation A.1 and Appendix A for more details), and hats represent averages

in radius and longitude. Using the divergence theorem we can convert the volume integral

into a surface integral where we take all but the θ integral to preserve the latitudinal profile,

which we label Ŷp. By definition if we average Ŷtot in latitude the result will be zero. Our

three corrective torque profiles have the functional forms

Ŷ u
cor (θ) = Y0 (9.28)

Ŷ s
cor (θ) = Y0 + Y1 sin θ (9.29)

Ŷ s2
cor (θ) = Y0 + Y2 sin2 θ. (9.30)

Similarly the torques due to angular momentum flux across our upper boundary in these

three test cases will be Ŷ u
p (θ), Ŷ s

p (θ), and Ŷ s2
p (θ).

Figure 9.2 shows the torques due to cross-boundary angular momentum flux and cor-

rective procedure for all three latitudinal profiles. Each profile was averaged in time over

roughly 100 days. In all three cases there is a large negative torque being applied by the

cross-boundary flux at the equator. At high latitudes that is reversed although at much

lower amplitudes. The three profiles lead to an effective poleward transport of angular mo-

mentum, which promotes anti-solar differential rotation. If we take the average value of

Ŷp (θ)− Ŷcor (θ) between ±30◦ latitude for each case we find that the uniform case on average

transports nearly twice as much angular momentum towards the poles as the sine weighted

case, and nearly four times more than the sine-squared weighted case. Interestingly all three
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Figure 9.2: Total volumetric torque as a function of latitude in three models using a
corrective torque to conserve angular momentum. For three test cases the average volumetric
torque due to cross-boundary flows Ŷp (θ) and the corrective torque applied to conserve global

angular momentum Ŷcor (θ) are plotted. The case using a uniform corrective torque (purple
lines) shows a net removal of angular momentum at the equator and a net gain at the poles.
The case using a sine weighting in latitude (blue lines) again shows a latitude-by-latitude
imbalance but one that is much less severe. The case using a sine-squared weighting (red
lines) shows moderately low levels of local imbalance between the corrective torque and the
cross-boundary flux torque, although there is still a net transport of angular momentum
towards the poles.

profiles shown here under-correct for the angular momentum flux across the boundary at low

latitudes and over-correct at high latitudes. In the future we will investigate the use of other

latitudinal profiles which may yield even better results. Unfortunately, we find that each

torque profile produces feedback on the latitudinal profile of the angular momentum flux

through the boundary, so we cannot simply measure the profile of the angular momentum

transport for one simulation and then assume that it will remain constant if we change the

profile of the volumetric torque. This can be seen, for example, by comparing the high-

latitude regions of the three cases in Figure 9.2.
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9.3.4 Applying the Plume Boundary Model

Even with a complete set of boundary conditions specified, the plume boundary model

is sufficiently complex that a wide range of morphologies and amplitudes in our velocity and

thermal fields can be imposed, either explicitly or implicitly, on the boundary. The condi-

tions for vr and S include time-dependent plumes whose parameters are selected randomly.

The condition on P is applied implicitly via a condition on the opening angle of the plumes.

The conditions on the horizontal velocities are perhaps most opaque as they are only par-

tially specified. Figure 9.3 shows, for case P, the radial velocity and entropy fields applied

as boundary conditions, as well as the pressure fields which is implicitly applied, and the

horizontal velocity fields which are both partially imposed and partially determined by the

behavior of the interior of the simulation. With large numbers of plumes, it is common for

plumes to at least partially overlap, creating larger plume complexes. This becomes even

more likely for the largest plumes. Due to the imposed correlations between plume size and

amplitude, these plumes tend to create strong downflow regions.

The implicit pressure boundary condition produces well-behaved pressure signatures

for the plumes. These are generally low pressure regions, signaling the horizontal conver-

gence of the plumes as well as their low temperatures. With low entropy and low pressure

signatures in the downflows, their enthalpy transport is radially outward, producing the

desired energy transport properties. The horizontal flows show evidence of the converging

flows indicated by the pressure field, but also contain significant flows which are unrelated to

single plumes. Interestingly, complexes of plumes can be seen producing coherent horizontal

flows on scales larger than individual plumes.
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Table 9.2: Shown are the number of radial, latitudinal, and longitudinal grid points. The
total evolution time TE for each simulation is given in days. The viscosity ν in units of cm2

s−1 is quoted at mid-convection zone. The fluctuating Reynolds number Re′ = v′rmsL/ν gives
some indication of the relative level of turbulence in each model. The convective Rossby
number Roc = (Ra/Ta Pr)1/2 demonstrates the level of rotational constraint. See Tables 2.1,
2.2, and 2.3 for additional parameters.

Selected Parameters for Cases Ia, Ib, Ic, and P

Case Nr, Nθ, Nφ TE (days) ν (cm s−2) Re′ Roc
Ia 300, 512, 256 7510 2.41× 1012 48 0.462
Ib 500, 1024, 512 6800 1.20× 1012 177 0.515
Ic 500, 1024, 512 1960 6.02× 1011 418 0.568
P 500, 1024, 512 830 1.20× 1012 253 0.503

9.4 Simulation Parameters

As we now have defined our plume boundary conditions, we can begin a preliminary

investigation into the behavior of a simulation using this choice of boundary condition. To

do this we have selected our most promising test case and evolved in for roughly 800 days to

date. We label this simulation case P. For comparison we have also run three cases using the

standard impenetrable boundary condition, which we term cases Ia, Ib, and Ic. Table 9.2

gives selected parameters for these models. Further details can be found in Tables 2.1, 2.2,

and 2.3. Case Ia is designed to be analogous to case AB2 from Brun & Toomre (2002), which

showed a strong solar-like differential rotation profile at the solar rotation rate. Case Ib is like

case Ia, but with a decrease in ν and κ by a factor of two. Case Ic reduces ν and κ again by

a factor of two. Case P has the diffusivities of case Ib. In order to reduce the computational

expense of these models, we have run them in domains which cover only 90◦ in longitude

and are thus four-fold periodic. This allows us to have high spatial resolution at moderate

expense, which is especially important for resolving the plumes in case P. This four-fold

periodicity precludes flows from crossing over the poles, which can cause the generation of

polar vortex structures of very fast rotation. These simulations all rotate at the solar rate.
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They extend from the base of the convection zone at 0.72R� to 0.983R�. The additional

radial extent compared to simulations in previous chapters provides more density contrast,

thus requiring the plumes to mix and entrain fluid more rapidly as they encounter steeper

density gradients.

Case Ia was initiated from a solar structure model and run for nearly 7000 days before

case Ib was created from it, thus using case Ia as its initial conditions though interpolating

to a higher spatial resolution. Case Ia was then run for roughly an additional 500 days. Case

Ib was run for about 3000 days, at which stage case Ic was created from it, using it as initial

conditions. Case Ib was then run for almost another 4000 days. Case Ic was only run for

about 1900 days due to limited computational resources. It appears from examinations of

the time variation in the volume-averaged differential rotation kinetic energy that case Ic is

still experiencing significant evolution in its differential rotation. From past experience, we

anticipate that this will eventually led to strong anti-solar differential rotation.

Case P was initiated from case Ib at the end of its time evolution. Initially all plumes

we given the same t0 and allowed to turn on gradually according to the time dependence

shown in Equation 9.13. Each time a plume expires, it is given new randomly generated

parameters and reinitiated. Thus initially there was some synchronization in the plumes

turning on and off, however we would expect each plume to move away from that collective

behavior as a random walk with a step size of about 1 day compared to a mean plume

lifetime of 3 days. Thus we would expect almost no correlation after about 9 plume lifetimes

or roughly 30 days. Indeed when we examine the start times of plumes after about a hundred

days, we find that they form a uniform random distribution.

When evolving case P, we find that there is a very slow timescale for the equilibra-

tions of flux transport in the model. Cases with impenetrable boundary conditions must

store considerable energy in their mean entropy stratification in order to build the necessary

boundary layer to achieve a sufficient diffusive flux at the top of the simulation. Case Ib has

1.2× 1041 ergs stored in this entropy gradient, or roughly enough energy to power the solar
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luminosity for a year. Initially both thermal diffusion and enthalpy flux from the plume

boundary condition transport a solar luminosity of flux out of the domain which begins to

remove the excess energy stored in the entropy gradient, but this quickly reduces the gra-

dient in the upper layers of the domain. Within 100 days of the start of case P the total

luminosity through the outer boundary was down to 1.11L�. By 400 days the luminosity

was still at 1.07L�. This process asymptotically approaches a state of flux balance, but the

rate of convergence is slow. At this stage case P still shows a total luminosity through the

bulk of the convective layer and out the upper boundary that is 1.04L�.

9.5 Understanding the Effects of the Plume Boundary Condition in ASH

We have conducted a preliminary investigation of the impact of this plume boundary

condition compared to similar cases with our standard impenetrable boundary. In doing so,

we have tried to answer three major questions:

(1) How does a plume boundary condition change the portion of ASH models which

were previously dominated by the thermal and viscous boundary layers?

(2) How does the plume boundary condition modify the flows seen at mid-convection

zone?

(3) Can a plume boundary condition promote solar-like differential rotation for moder-

ately turbulent simulations?

While our investigations into these topics are on-going, we can offer some insights into these

questions for one possible realization of the plume boundary condition.

Figure 9.3 shows a 3D visualization of a snapshot of radial velocity patterns in case Ia,

Ib, Ic, and P. These snapshots are most useful as qualitative tools to give us an impression

of the flows in each case. We can see that case P clearly shows higher velocities near the
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outer boundary than any of the other cases. It also appears to have convective patterns

most similar to those of case Ic even though the diffusion parameters in case P are equal

to those in case Ib. Also apparent is case P are the plume trajectories that begin as small

downflows on the boundary and then rapidly coalesce into progressively larger downflows as

they descend. In contrast, case Ic shows velocity structures which form lanes of downflows.

These lanes remain coherent over most of the convective layer, though they must decelerate

as they approach the upper boundary.

9.5.1 Replacing Diffusive Boundary Layers with a Boundary Interface

The plume boundary condition was designed to remove the diffusive boundary layers

imposed in ASH simulation by our impenetrable boundary condition. The plume boundary

condition achieves this goal, however it replaces the diffusive boundary layers with what we

term an interface layer where the flows and thermal fields imposed on the boundary interact

with the flows in the bulk of the domain. As we have not solved a physical equation to

generate our plumes on the boundary there is little reason to expect that they will match

solutions to the hydrodynamic equations solved in the interior of the domain. Our plumes

have a small range in scales and are all of the same shape, whereas the convection in the

bulk of the domain exhibits a range of scales and shapes. Convection tends to form cellular

patterns whereas our plume field is simply a uniform random distribution. For this reason

we can expect that there will be some layer over which we observe a collision between the

giant cells in the interior of our domain and the convective plumes applied on our outer

boundary.

Figure 9.5 presents the radial profile of energy transport in case Ib and case P which

have identical coefficients of thermal and viscous diffusion. Both cases show very similar

fluxes due to entropy diffusion LTD ≈ 0.2L� through the bulk of the convective layer,

indicating that the efficiency of convection is roughly equal in both cases through the bulk of
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the domain. The profiles of LTD diverge at about 0.93R�, climbing for case Ib and flattening

out at around 0.5L� for case P. We may expect that this will decrease somewhat with

further thermal equilibration. The fluxes of enthalpy and kinetic energy are morphologically

similar for the two simulations up until near the upper boundary, though case P shows higher

magnitudes in both components.

Near the upper boundary, case P shows a sharp dip in the enthalpy flux before re-

covering to carry the solar luminosity specified by the boundary condition. This dip is a

result of the Prandtl number of our simulation interacting with our choice of relative shapes

for the velocity and entropy components of our plumes. Our Prandtl number is 0.25, and

the plumes imposed on the boundary have identical shapes in both vr and S. The thermal

structure of the plumes diffuses faster than the momentum signature, causing the plumes

to decelerate as they lose their initial thermal driving. The effective Prandtl number of the

plumes could be thought of as the size scale of the velocity structures divided by the scale

of the entropy structure. The location of this peak tells us that the bulk of the enthalpy

transport is coming from convective structures consistent with the Prandtl number in the

bulk of the domain within about the first 0.01R� from the upper boundary. As we will

see this does not mean that the plumes penetrate only that far, but rather that significant

modification to the plumes occurs very quickly as they enter the domain. This is further

demonstrated by strong viscous heating within 0.01R� of the upper boundary, which points

to rapid reorganization of the plume structures as they enter the domain. Thus in some

sense we have replaced a spherically-symmetric viscous boundary layer with one that acts

on much smaller scales but where diffusive processes still play a key role.

We can get a feel for the changes the plumes experience in case P by looking at Fig-

ure 9.6 which shows radial velocity snapshots over a 60◦ by 60◦ region at nine successive

depths. Plumes rapidly merge into downflow structures on larger scales and with different

morphologies. While patterns can be seen imprinting downward from one level to the next

there is little correlation with the surface at or below 0.884R�. As the plumes applied on the
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boundaries coalesce they appear to seed the strong downflow lanes seen at mid-convection

zone. Very little impact if any is seen on the upflows. This seems to support our choice

of plume parameters, for they have not created a pattern which simply imprints through

the domain, but rather seems to be influencing the upper portion of the domain without

dominating it. It is possible that a better choice of parameters may be able to create even

less of a mismatch between the plumes applied on the boundary and those in interior of the

simulation, creating a gentler interface layer.

9.5.2 Changes in the Bulk of the Domain

Having examined the near-boundary layers for case P, let us now turn to the bulk of

the convective layer. It has long been known that the dynamics of convective flows can

be largely determined by their boundary layers. By removing the diffusive thermal and

viscous boundary layers and replacing them with an interface layer, we can then expect that

changes will not just be limited to regions near the boundary. Figure 9.7 shows snapshots of

radial velocity patterns for all four cases at 0.95, 0.85, and 0.79 R�. While there is a clear

difference between the impenetrable and plume boundary condition cases near the top of the

domain, there is surprisingly little morphological difference between cases Ib or Ic and P at

mid-convection zone or deeper. The largest difference may be in the amplitude of the flows,

which are somewhat larger in case P. This is at least partially due to case P not being fully

thermally relaxed, but there is likely also some additional effect from the increase in both

enthalpy and kinetic energy transport shown in Figure 9.5. It does appear that case P may

achieve smaller-scale convective structures than case Ib, perhaps more like those of case Ic.

Additional tests are needed to assess the differences in the flows in the bulk of the do-

main, but a preliminary analysis seems to support the conclusion that the plume boundary

condition does not dramatically alter the convective patterns achieved in the bulk of the

domain either in morphology or amplitude.
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9.5.3 Strengthening Solar-like Differential Rotation

Figure 9.8 shows the time- and longitudinally-averaged differential rotation as a func-

tion of latitude and radius for all four cases (the helioseismically measured profile is shown

in Figure 1.3). Case Ia shows strong solar-like differential rotation similar to case AB2 of

Brun & Toomre (2002). Moving to higher levels of turbulence, case Ib shows weak solar-

like differential rotation while case Ic shows very little differential rotation. From previous

experience we believe that case Ic will produce anti-solar differential rotation if allowed to

evolve further in time. In contrast case P shows strong solar-like differential rotation similar

to case Ia.

The processes which control solar differential rotation are complex and closely con-

nected with other topics such as the thermal structure of the convection zone (see reviews

Miesch, 2005; Miesch & Toomre, 2009). As we have shown, our plume boundary condition

includes a volumetric torque designed to correct the non-zero flux of angular momentum

allowed by our plume boundary condition. This adds another layer of complexity to analy-

ses of angular momentum transport carried out for previous ASH simulations (e.g., Brun &

Toomre, 2002; Miesch et al., 2006; Brown et al., 2008; Nelson et al., 2013b). The solar-like

differential rotation in case P is fascinating since it possesses somewhat higher radial veloc-

ities at mid-convection zone than even case Ic, though smaller values of both the Rossby

and convective Rossby numbers. A full analysis of this case will require the development of

additional analysis tools, which are beyond the scope of this thesis at this stage.

Closer examination of the differential rotation profile reveals some additional interest-

ing features. The polar vortices present in the cases with impenetrable boundary conditions

are stronger in case P, though there is a thin layer of slower rotation fluid within 0.02R� of

the upper boundary. Case P’s differential rotation profile as a function of latitude at 0.96R�

is essentially flat between 75◦ and 45◦, then there is a shaper increase between 45◦ and 30◦
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followed by a much more gradual increase in Ω from 30◦ to the equator. In contrast both case

Ia and the solar profile show a much more steady increase in rotation rate at a fixed depth

when moving toward the poles. Contours of constant rotation in case P are less cylindrical

at mid-latitudes that in case Ia, though not as conical as the solar profile. Finally near mid-

latitudes the radial gradient of Ω becomes slightly negative above 0.96R�, perhaps providing

a hint of the near-surface shear layer seen above 0.95R� in the Sun. Studies of supergranular

scale convection have postulated that an interface between rotationally-constrained giant cell

convection and more isotropic convective motions on supergranular scales may be required to

achieve the near-surface shear layer (Augustson et al., 2011). This type of model may permit

investigations of that idea. It bears repeating that all of these findings are preliminary and

that we have yet to understand the mechanisms driving these behaviors, but the potential

is tantalizing.

9.6 Discussion of the Preliminary Analysis

In this chapter we have formulated a boundary condition that applies a specified set

to small-scale plumes to the upper boundary in ASH in an attempt to explore an alternative

to our standard boundary conditions which impose an unphysical diffusive boundary layer

in a region where convective transport should dominate. We then presented some initial

analysis of a simulation, labeled case P, which utilizes this plume boundary condition. Case

P was compared with cases at a variety of turbulence levels with impenetrable boundary

conditions. This has been conducted essentially as a proof-of-concept study rather than a

definitive exploration of this novel boundary condition. We reserve that worthy undertaking

for future efforts.

Case P demonstrates that a plume boundary condition in ASH can be implemented

and applied in such a way that it greatly reduces the diffusive boundary layers near the upper

boundary of an ASH simulation without producing dramatic changes in the morphology or
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amplitude of the convective flows through the bulk of the layer. This condition can also

drive flows that yield a solar-like differential rotation profile at the solar rotation rate. This

differential rotation gives hints of some aspects of the solar differential rotation profile such

as conical surfaces of isorotation and the near-surface shear layer.

In addition to the extensive analyses which will be conducted on case P moving for-

ward, this also lays the groundwork for more complex plume models based on statistical

descriptions of convective patterns from near surface models. The plumes used in case P

follow a simple analytical perception. Real convective downflows at this layer of the solar

interior would be expected to be far more complex. By developing improved plume models

which can incorporate additional information from near-surface models, we hope to achieve

better models of giant-cell convection in the bulk of the convective layer. This would also

provide a first step towards coupling ASH with a near-surface code, enabling further develop-

ment of a coupled simulation capable of treating dynamics over perhaps the entire convective

interior of sun-like stars.
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Figure 9.3: Sample snapshot of the upper boundary condition for case P in Mollweide pro-
jection. (a) Radial velocity field applied at the outer boundary. (b) Pressure field implicitly
applied by a boundary condition on the plume opening angles. The pressure is generally
negative in the cold downflows. (c) Entropy field for the same plumes with low entropy in
the downflows and high entropy in the upflows. (d) Latitudinal velocity field which is both
applied by the implicit boundary condition on pressure and determined by the interior of
the domain by a zero radial gradient condition on the toroidal mass flux streamfunction
Z. (e) Similarly for longitudinal velocity. We have removed the longitudinally symmetric
component to highlight the converging flows around strong plume systems.
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Figure 9.4: 3D volume rendering of vr at all depths in the northern hemisphere in cases Ia,
Ib, Ic, and P. The three impenetrable boundary cases show a wide variety in their convective
patterns. Generally more turbulent cases show smaller scale features and posses larger
ranges in values. Case P seems qualitatively most similar to case Ic although its diffusion
parameters are identical to case Ib. Case P also clearly shows plumes with strong negative
radial velocities on the boundary, while cases Ia, Ib, and Ic are required to have small radial
velocities near the upper boundary.



202

Figure 9.5: Mean radial energy transport by advection of enthalpy (LEN, dashed lines),
advection of kinetic energy (LKE, dash-dot lines), and thermal diffusion (LTD, solid lines) for
case Ib (purple) and case P (green). Not shown are the radiative diffusion fluxes which carry
the solar luminosity through the bottom of the domain and is identical for both models,
and the viscous heating flux, which is never greater than 0.02L� for case Ib. For case P the
viscous heating flux is only significant near the upper boundary, reaching −0.09L� there.
In case P the plume boundary condition imposes an outward enthalpy flux of 1.0L� and an
inward kinetic energy flux of 0.03L�; these quantities are required to vanish at the upper
boundary in case Ib.
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Figure 9.6: Simultaneous snapshots in case P of vr over a 60◦ by 60◦ patch centered on
the equator at nine depths between the upper boundary at 0.983R� and mid-convection
zone at 0.851R�. Individual plumes rapidly merge into larger structures as they enter the
domain. Upflow structures disappear almost immediately. By 0.934R� downflow patterns
are larger and clearly non-circular, although the influence of groups of plumes are still seen.
By 0.884R� it is difficult to identify any unambiguous correlation between structures at that
level and those at the surface.
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Figure 9.7: Snapshots of vr at three depths in cases Ia, Ib, Ic, and P. Cases Ia, Ib, and Ic
show clearly cellular patterns near their upper boundary, while case P shows much less co-
herent structures as plumes coalesce into larger structures. At mid-convection zone (0.85R�)
cellular patterns are less evident, particularly for cases Ib and Ic, while the fairly laminar
convection of case Ia retains its cellular pattern. All four cases show some rotational align-
ment near the equator. Case P shows a particularly strong upflow/downflow pair which do
not appear to be caused by the plume boundary condition.
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Figure 9.8: Differential rotation profiles in angular velocity Ω (r, θ) for case Ia, Ib, Ic, and P
averaged over about 100 days each. All cases display polar vortices which may be a result of
the four-fold longitudinal periodicity of these models. Cases Ia and P shows strong solar-like
differential rotation. Case Ib shows weaker but still solar-like differential rotation. Case Ic
possess very little differential rotation. We believe case Ic will produce an anti-solar profile
if allowed to continue evolving.



Chapter 10

Ongoing Puzzles and Future Challenges

In the preceding chapters we have sought to explore the fundamental physical processes

that enable stars like our Sun to generate magnetic fields which undergo cycles of magnetic

activity and emerge from the deep interior toward the surface. The models presented here

have made progress on some of the important current questions in convective dynamos.

Specifically, we have shown that:

(1) The dynamic Smagorinsky sub-grid scale model can be reliably used to significantly

reduce diffusion in ASH simulations while preserving essential elements of the con-

vective flows.

(2) Magnetic wreaths can exist in simulations where explicit diffusion has been reduced

and replaced in fundamental balances by resolved turbulent dissipation.

(3) Turbulence plays a key role in the initiation of global reversals in magnetic polarity.

(4) Buoyant magnetic loops can be spontaneously generated in ASH models using the

dynamics Smagorinsky SGS model. These loops can rise through the convection

zone via a combination of magnetic buoyancy and advection by convective giant

cells. Their typical size is set by the size of the giant cells.

(5) The buoyant magnetic loops in our ASH models mimic the statistical distribution

of solar active regions in properties such as their tilt and twist. Further these loops
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preferentially appear in confined longitudinal patches reminiscent of active longitudes

in the Sun.

(6) The standard impenetrable upper boundary condition in ASH can be replaced with a

plume boundary condition which imposes large numbers of small-scale plumes on the

upper boundary. This plume boundary condition has yielded promising preliminary

results for a proof-of-concept model.

As is often the case, these discoveries have led to a series of new questions and directions

for future research, as well as reminded us of the existence of continuing puzzles. We will

not attempt to outline all of these here, but instead discuss three which we find particularly

noteworthy. First, our work with reversals in convective dynamo models has reminded us

that we still fundamentally do not understand the mechanism whereby toroidal magnetic

field regenerates the poloidal magnetic field. The dynamo community has long sought to

identify the physical mechanism which provides the α-effect, namely the connection between

the large-scale toroidal magnetic fields and the induction of correlations between small-scale

magnetic fields and flows. We have come tantalizingly close in identifying aspects of this

connection with case D3b, going so far as to identify a timescale for this process and that

it results in an upscale progression of polarity reversals. It is likely that with additional

models showing cycles of magnetic activity we will be able to further identify trends in this

elusive mechanism. With current advances in the availability of computational resources and

the scalability of ASH, all that remains is for an intrepid soul to carry out the simulations,

perform the analyses, and discover the final clues that we have overlooked.

Second, the plume boundary condition work has provided a tool for further study of

the nature of convective driving in the bulk of the convection zone, possibly providing a way

to explore how the Sun’s differential rotation is maintained, as well as a means to further

explore the possible modes of giant cell convection in that may exist in the Sun. Giant cells

are essential components of any realistic model of convective energy transport in the deep
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solar interior and are required to provide the angular momentum transport which maintains

the solar differential rotation. The giant cells are on solid theoretical footing, but they have

not been reliably detected despite considerable observational effort. Advances in helioseismic

techniques may be able to finally achieve detection of these structures if they have good

models of what they should be looking for. Convection in many settings has a multitude of

preferred scales, as can be seen in our models with impenetrable boundaries, however the

convection resulting from our plume boundary condition did not show clear cellular patterns

with a preferred scale. It may be that giant cells remain undetected because they exist as

coalescing smaller-scale plumes forming tree-like structures of downflows rather than cellular

patterns. The plume boundary condition in ASH may provide a means to test these ideas

which simply was not possible with impenetrable boundaries.

Finally, the plume boundary condition in ASH is designed to remove the diffusive

boundary layer at the top of the domain. This boundary layer effectively limits the rise

of the buoyant magnetic loops generated in case S3. A number of loops rose coherently

all the way to the impenetrable boundary where they were diffused away by the boundary

layer. Creating a simulation which combines case S3 with our plume boundary condition

may provide a way to allow further rise of the buoyant magnetic loops through and possibly

out the top of our simulations. This would be an exceptionality demanding simulation as

the number of parameters would be immense. Additionally, feedbacks between the dynamic

Smagorinsky model and the plume boundary condition may be very challenging to manage.

The current implementation may not be sufficiently open to permit the buoyant loops to

emerge through our upper boundary. However the possibility for a model which can self-

consistently generate buoyant magnetic loops and monitor their rise from the base of the

convection zone to within a few percent of the Sun’s radius below the photosphere is enticing.

These three projects have provided only a small sampling of possible future direction

this work could inspire. On a basic level they all attempt to provide better models of com-

ponents of dynamo action in stars like our Sun. With the accelerating rate of advance in this
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field, we are enthusiastic about the prospects for answering long standing questions about

the origin and variability of solar and stellar magnetism.
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Appendix A

Generation of Differential Rotation Kinetic Energy

As shown in Equation (5.2), the time evolution of angular momentum in our domain can

be written in conservative form as the divergence of a flux vector ~F . The radial component

is given by

Fr = ρ̄λ

[
−νr ∂

∂r

(vφ
r

)
+ v̂′φv

′
r + v̂rv̂φ + v̂rΩ0λ

− 1

4πρ̄
B̂′φB

′
r −

1

4πρ̄
B̂φB̂r

]
, (A.1)

where the terms are from left to right due to viscous diffusion, fluctuating Reynolds stress,

mean Reynolds stress from the meridional circulation, the Coriolis force with Ω0 representing

the frame rotation rate, the Maxwell stress, and mean magnetic torques. The latitudinal

component is given by

Fθ = ρ̄λ

[
−ν sin θ

r

∂

∂θ

( vφ
sin θ

)
+ v̂′φv

′
θ + v̂θv̂φ + v̂θΩ0λ

− 1

4πρ̄
B̂′φB

′
θ −

1

4πρ̄
B̂φB̂θ

]
(A.2)

where the terms have the same ordering and identities as in the radial component. We

ignore the flux due to the Coriolis force because while it can be large locally, it cannot do

any net work on the system when averaged over the full domain. We can also write the

fluxes in cylindrical coordinates in terms of the cylindrical radius λ and the distance from

the equatorial plane z. The flux in cylindrical radius is given by

Fλλ̂ = Fr sin θr̂ + Fθ cos θθ̂, (A.3)
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while the flux in z is given by

Fz ẑ = Fr cos θr̂ − Fθ sin θθ̂, (A.4)

If we multiply equation (5.2) by the longitude-averaged rotation profile Ω̂, we are left

with an equation for the time evolution of the kinetic energy density in the mean differential

rotation profile 〈EDR〉,
∂〈EDR〉
∂t

= Ω̂
(
∇ · ~F

)
. (A.5)

We take a volume integral over the entire domain in order to calculate the total rate of

change in the kinetic energy of differential rotation and rewrite the right-hand side as∫
V

∂〈EDR〉
∂t

dV =

∫
V

[
~F · ∇Ω̂−∇ ·

(
Ω̂ ~F
)]
dV. (A.6)

The second term in the integral can be rewritten using the divergence theorem as a surface

integral, leaving us with∫
V

∂〈EDR〉
∂t

dV =

∫
V

~F · ∇Ω̂dV −
∫
S

Ω̂FrdS. (A.7)

Our choice of impenetrable and stress-free boundaries causes all of the hydrodynamic terms

terms in the surface integral to vanish on both the inner and outer boundaries. Likewise

our choice of a perfect conductor boundary condition on the lower surface causes both the

fluctuating and mean magnetic torques to vanish there. The choice of a potential field

boundary condition on the upper surface forces the mean magnetic torques to be exactly

zero, however it does in principle allow the Maxwell stress to be non-zero. This reduces the

surface integral to

−
∫
S

Ω̂FrdS =

∫ π

0

∫ 2π

0

Ω̂

4π
B̂′φB

′
θR

3
o sin2 θ dθ dφ. (A.8)

We have calculated this term to be about five orders of magnitude smaller than the volume

integral term in Equation (A.7) when averaged over long periods in cases D3, D3a, and D3b.

We chose to ignore this surface term in our analysis of time-averaged quantities.
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The generation and dissipation of differential rotation kinetic energy can be written

as the sum of five terms, as was done in Equation (5.3). Those terms, which represent vis-

cous diffusion, Reynolds stress, meridional circulations, Maxwell stress, and mean magnetic

torques, are given in turn by

LVD = −
∫
V
ρ̄νr sin θ

[
r
∂

∂r

(vφ
r

) ∂Ω̂

∂r

+
sin θ

r2

∂

∂θ

( vφ
sin θ

) ∂Ω̂

∂θ

]
dV, (A.9)

LRS =

∫
V
ρ̄r sin θ

[
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′
r
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1
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′
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]
dV, (A.10)

LMC =

∫
V
ρ̄r sin θv̂φ

[
v̂r
∂Ω̂

∂r
+
v̂θ
r

∂Ω̂

∂θ

]
dV, (A.11)

LMS = −
∫
V

r sin θ

4π
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B̂′φB

′
r

∂Ω̂
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+
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]
dV, (A.12)

LMT = −
∫
V

r sin θB̂φ

4π

[
B̂r
∂Ω̂

∂r
+
B̂θ

r

∂Ω̂

∂θ

]
dV. (A.13)

The time-averaged values of these terms are reported in Table 5.3 and Figure 5.4.
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