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The success of strontium-based optical lattice clocks in the last five years has led to a

recommendation by BIPM of strontium as a future standard of frequency and time. Due

to the excellent agreement between three international labs, the strontium optical clock

transition is the best agreed-upon optical frequency to date. We use the international optical

clock data to limit present-day drift of fundamental constants and their coupling to the

ambient gravitational potential. Strontium lattice clocks are still making rapid progress and

promise a large signal-to-noise improvement over single-ion-based frequency standards by

employing O(104) atoms. Reaching quantum-projection-noise limited measurement requires

a careful study and control of the many-body interactions in the system. We measure

interactions between ultracold fermions at the 10−17 level and relate them to s-wave collisions

due to a loss of indistinguishability during the spectroscopic process. This new understanding

of the many-body effects will increase the precision of current optical lattice clock systems

and can lead to the accuracy level that has so far been pioneered only in single particle

(trapped ion) systems. A second generation strontium system is used to control ultracold

interactions in an otherwise ideal gas of bosonic 88Sr via the optical Feshbach resonance effect.

These new measurement and control capabilities pave the way to reach atomic shot-noise

limited optical clock performance without detrimental effects from large atom numbers.
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Introduction

P
recision spectroscopy of electronic transitions in atomic systems has led to many tech-

nological advances over the last decades. Atomic transition frequencies have become

the most accurately measured physical quantities, which has led to the redefinition of the

second in terms of the 133Cs hyperfine transition frequency. Development of more accurate

atomic frequency standards based on optical transitions has sped up greatly with the inven-

tion of the femtosecond optical frequency comb. These lasers emit a coherent train of laser

pulses at radio frequency repetition rates which provides a coherent link between the optical

and radio frequency domains. Absolute frequency measurements of optical transition fre-

quencies with these devices has become routine over the last decade. Most optical standards

are based on narrow intercombination lines available in two-valence-electron systems such as

neutral alkaline earth atoms. This work focuses on experiments related to such an optical

frequency standard using neutral 87Sr trapped in an optical lattice.

The optical lattice clock entered the scientific scene in 2005 with work on 87Sr by Hidetoshi

Katori’s group at the university of Tokyo [1], our group at JILA [2], and Pierre Lemonde’s

group at LNE-SYRTE in Paris [3]. Since then, several other groups have realized optical

lattice based frequency standards such as fermionic 171Yb [4] and bosonic 88Sr [5, 6]. Their

widespread use in laboratories across the world has made optical lattice clocks very well-

characterized precision measurement systems. The 87Sr standard in particular has been

accepted as a secondary frequency standard by the Bureau International des Poids et Mésures
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(BIPM). The main reason for this choice is the excellent global agreement on the absolute

value of the optical transition frequency in the Sr lattice clock. In fact, the 1S0-
3P0 transition

frequency in neutral 87Sr at 429, 228, 004, 229, 873.65(37) Hz [7] is the best agreed-upon

optical frequency there is [8].

An optical lattice clock consists of ultracold atoms trapped in an optical lattice at a

magic wavelength where the trapping potential is matched for both clock states. The atoms

are interrogated using a highly frequency-stable spectroscopy laser tuned to a narrow clock

transition. The spectroscopy laser is frequency-stabilized to the transition frequency on

timescales of a few seconds by recreating a new sample and repeating the experiment roughly

once per second. This approach combines the advantages of trapped ion clocks with the large

signal-to-noise (S/N) achieved in an atomic beam based frequency standard by creating an

array of identical microtraps that are interrogated concurrently.

Optical lattice clock systems have already exceeded ion clocks in terms of measurement

precision, although their accuracies have not yet reached the levels demonstrated in NIST’s

ion-trap frequency standards. Current lattice clock accuracies are limited by two effects.

The first is due to the influence of the room temperature blackbody radiation (BBR), which

produces an AC Stark shift of the clock transition. This purely single particle effect limits

all state-of-the-art optical and rf frequency standards, and its uncertainty increases with

decreasing clock transition frequency. Uncertainty in the BBR shift will be reduced with

technical advances in controlling the sample environment. The second limiting effect arises

from clock frequency shifts related to the atomic density. Understanding and control of these

shifts is much more interesting and challenging. The main conceptual challenge remains a

clear understanding of the intricacies of the underlying many-body system dynamics. Char-

acterizing and controlling these dynamics will allow even larger S/N gains and should result

in lattice clock systems with unprecedented precision and accuracy.

This thesis is split into three parts. We will describe the experimental setup of the 87Sr

standard only briefly; by now, there are many excellent reviews on how such a standard is
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built. We will provide references to the relevant PhD theses and papers. An important aspect

in understanding the spectroscopic process of atoms trapped in a deep optical lattice are their

motional degrees of freedom. We will investigate the resulting spectroscopic features in detail.

The spectroscopic process is complicated by the fact thatO(10) atoms occupy a typical lattice

site. Even though 87Sr is fermionic, the atoms will experience interactions because of their

necessarily different motional state. We relate these fundamental motional inhomogeneities

to an inhomogeneous excitation process which allows fermionic s-wave interactions. These

interactions modify the spectroscopic lineshapes and introduce small but important frequency

shifts at the 10−16 level. A detailed understanding of the many-body interactions at this

level leads to the counterintuitive idea of suppressing the interactions by increasing their

magnitude. As a demonstration of the high level of understanding gained since 2005, we will

use the unprecedented agreement between all of the groups working on 87Sr to investigate

physics beyond the standard model. What can we say about cosmological problems like the

variation of fundamental constants? Finally, we will investigate whether it is possible to

manipulate the interactions in an alkaline-earth based many-body system using laser light.

Magnetic-field-induced scattering resonances do not exist in the spinless ground state of

alkaline earth atoms. We experimentally demonstrate that the Optical Feshbach Resonance

effect can be useful in manipulating the interactions in these systems.

The work presented here is a summary and extension of the work presented in Refs. [8–

10]. At this point, a complete survey of the experimental setup and all important effects

influencing the operation of an optical lattice clock has grown far beyond the scope of a

single thesis or review article. Related publications and theses about our system and other

optical lattice clocks are listed in Appendix C.





Chapter 1

The 87Sr Frequency Standard

I
n this chapter, we will give a brief summary of the operation of a 87Sr optical lattice

clock. This overview summarizes many important experimental procedures and tools

and detailed descriptions can be found in the papers and theses cited. Also see the list of

theses and papers in Appendix C, especially Refs. [11–14].

1.1. Lattice clock overview

Preparing the atomic sample. Strontium is an alkaline earth, a two-electron system with

corresponding singlet and triplet states, as shown in Fig. 1.1. The main transition is the

30 MHz wide 5s2 1S0-5s6p
1P1 transition at 461 nm which is used in all current experiments

to load a magneto-optical trap (blue MOT) from a Zeeman-slowed atomic beam from an

effusive oven. A sketch of the vacuum chamber with beam directions is shown in Fig. 1.2. In

this way, depending on the Sr isotope used, 106 − 108 atoms are trapped and cooled to mK

temperatures. The MOT transition is not completely closed and roughly one in 105 atoms

leaks to the metastable 5s5p 3P2 via 5s4d 1D2. Since the 3P2 state has a magnetic dipole

moment, those atoms are not lost from the magneto-optical trap, but remain trapped in

the quadrupole field [15–17]. To prepare a ground state sample, a repumping scheme must

be used. There are several excited triplet states that will decay back to 1S0 via 5s5p 3P1

and all of them have been used. In our lab, two lasers on the 5s5p 3P0 − 5s6s 3S1 and
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5s5p 3P2 − 5s6s 3S1 are continuously interacting with the atoms while they are cycling on

1S0-
1P1 in the blue MOT [11, 18].

Figure 1.1.: Electronic level diagram of strontium, excluding hyperfine structure. Note that

the clock transition 1S0-
3P0 only exists in 87Sr due to the hyperfine interaction. In the

bosonic isotopes, is has to be induced by a magnetic field.

After the blue MOT has been loaded with atoms for several hundred ms, the magnetic

field gradient is reduced drastically, the blue light is switched off and atoms are loaded into

a second stage magneto-optical trap (red MOT) operating on the 7.5 kHz wide 5s2 1S0 −
5s5p 3P1 transition at 689 nm. The narrow linewidth allows cooling down to the recoil limit

of several hundred nK [18, 19], and in the presence of hyperfine structure, the red MOT

dynamics require a second laser [20]. Typically, the atoms are cooled to 1−3 µK after about

200 ms of cooling at the end of the red MOT stage.

Magic wavelength optical lattice. The remaining atoms are then transferred into

an optical lattice formed by a vertically oriented, retro-reflected laser beam, as sketched

in Fig. 1.3. The individual microtraps are the pancake-shaped high-intensity regions of

the standing wave. The atoms are further cooled with Doppler cooling in the transverse

directions as well as sideband cooling along the lattice axis. Typically, 103-104 atoms remain
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Figure 1.2.: Sketch of the vacuum system. The atoms emerge from an effusive oven at

∼575 ◦C and are collimated with two retroreflected transverse cooling beams. The resulting

atomic beam is slowed in a Zeeman slower and the beam enters the vacuum chamber. Three

retroreflected beams at 461 nm form a MOT at the chamber center. The magnetic field

gradient is reduced and three retroreflected red beams at 689 nm form another MOT.

The red MOT is overlapped with the retroreflected lattice beam entering from the top

of the chamber. The probe beam at 698 nm is overlapped with the lattice, but is not

retroreflected. Typical lattice lifetimes are ∼1 s.
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at temperatures of 1 µK (2 µK) along (transverse to) the lattice axis. The lattice wavelength

is set to the magic wavelength at 813.4208(5) nm for the 5s5p 1S0−5s5p 3P0 clock transition

in 87Sr [21], where the AC Stark shift for the ground 1S0 and excited 3P0 clock states are equal

to first order. The clock transition at 698 nm is allowed only in the fermionic isotope through

hyperfine mixing of 3P1 into the 3P0 state [22], but can be induced by a large magnetic field

in bosonic alkaline earths as well [5, 6, 23, 24].

Figure 1.3.: The optical lattice is formed by a retroreflected beam at 813 nm. The retrore-

flector is a curved dichroic mirror that transmits the probe light at 698 nm to avoid

standing wave effects in the spectroscopy.

Spectroscopy. In the one-dimensional magic wavelength optical lattice, spectroscopy is

performed by copropagating the spectroscopy laser along the lattice axis (see Fig. 1.3). In this

way, spectroscopic information is obtained in the Lamb-Dicke regime, where motional effects

only appear in vibrational sidebands, well separated from the electronic carrier transition [25,

26]. The clock laser frequency is then stabilized to the clock transition frequency. On short

time scales, the clock laser obtains its frequency stability from a lock to a high-quality-factor

optical cavity [27] (see Fig. 1.4) since information from the atomic sample only arrives at rate

given by the experimental cycle time of ∼ 1 s. The spectroscopy laser typically interacts with

the atoms for 80 ms, resulting in a duty cycle of ∼10%. The stabilized clock laser references
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an octave spanning optical frequency comb [13].

Absolute frequency measurement. The optical frequency comb serves as a distri-

bution center that makes the clock laser frequency stability available at other optical and

microwave frequencies (see Fig. 1.4). To measure the absolute frequency of our Sr standard,

we use a stabilized optical fiber link between our lab and the NIST Time and Frequency divi-

sion [28]. The absolute frequency reference is provided by a hydrogen maser referenced to the

primary Cs standard. The maser references an RF oscillator, which is used to modulate the

amplitude of a telecom laser. The laser light is transferred to our lab, where the amplitude

modulation frequency is detected and compared against the optical frequency comb. In this

way, the absolute frequency of the Sr clock transition can be measured.

Direct optical comparisons. The quality of the RF frequency transfer method is limited

by how well the hydrogen maser can be referenced to the primary Cs standard (NIST F-1).

To compare other optical clocks at NIST to Sr, we use a direct optical frequency transfer

method [28, 29]. Another telecom laser is phase-locked directly to the frequency comb in our

lab. The laser light is then directly transferred via the optical fiber link. At NIST, the light

is beat against another octave-spanning optical frequency comb which serves as the optical

frequency distribution center at NIST [30]. In this way, we measure frequency ratios between

Sr and other optical standards with high precision [12, 31].

1.2. Current 87Sr error budget

Any frequency standard needs to be evaluated carefully for systematic effects that influence

its accuracy. Using the direct optical-to-optical comparison scheme outlined in the previous

section, systematic effects can be studied by modulating one clock’s parameters between two

settings while continuously comparing against the other clock.

An example of a systematic effect is the optical lattice wavelength. The sensitivity of

the clock transition frequency to the optical lattice wavelength in the vicinity of the magic

wavelength can be tested in this way, and a conservative estimate of the lattice wavelength
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Figure 1.4.: Spectroscopic information from the atoms at the center of the vacuum chamber

is used to tune the spectroscopy laser on timescales of the experimental duty cycle. The

laser itself is stabilized to a highly mechanically-stable optical cavity on short timescales.

The spectroscopy laser stabilizes a self-referenced optical frequency comb. The comb

references other lasers, such as a telecom laser that is used to transmit the spectroscopy

laser’s stability to NIST for optical clock comparisons. The optical clock layout at NIST

is similar and another frequency comb is used to compare the telecom laser’s optical phase

to the respective optical clock. The optical length of all fiber links is stabilized.
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stability allows putting an uncertainty on the final result. In principle, such an uncertainty

could also be arrived at by calculating the sensitivity of the spectroscopy to variability in

the lattice wavelength. As far as possible, it is important not to rely on such estimates since

one can never be sure that the calculation has taken all important effects into account. For

this reason, all systematic effects should be experimentally tested. Ideally, every parameter

contributing to the experimental result should be varied individually. Evaluating a full

uncertainty budget thus requires many iterations of the optical clock experiment and any

change to the experimental layout requires the reevaluation of systematic effects.

In Tab. 1.1, we show the uncertainty budget from the last full evaluation of the JILA

87Sr clock against the primary US frequency standard, NIST F-1 . Ref. [7] includes a very

thorough investigation of all systematic effects that influence such a measurement. The

paper is a good example of the metrological procedure required to claim uncertainties below

the Hz level in an optical frequency measurement. A full discussion is beyond the scope of

this introduction, but we highlight the effects that limit state-of-the-art optical frequency

standards below.

The first two entries of Tab. 1.1 describe shifts of the clock transition frequency with respect

to the lattice intensity. The third entry describes the AC Stark shift of the clock transition

frequency with respect to the ambient room-temperature blackbody radiation (BBR). The

next two entries describe sensitivity of the clock transition with respect to the magnetic field.

The seventh entry characterizes the shift of the clock transition with respect to the atomic

density in the optical lattice. The next entry is a conservative estimate of spectroscopic

lineshape modification due to imperfect nuclear-spin polarization. The servo error estimate

bounds the effect of possible integrator offsets in the digital servo that stabilizes the clock

laser to the atomic transition. Due to the tight confinement along the optical lattice axis,

the second order Doppler effect is very small.

The total 87Sr optical clock systematic uncertainty is much smaller than the uncertainty

in the calibration of the intermediate hydrogen maser used to compare Sr versus the Cs

fountain, since the Sr error budget was measured in a direct optical-to-optical comparison
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Correction Uncertainty

Contributor (10−16) (10−16)

Lattice Stark (scalar/tensor) −6.5 0.5

Lattice hyperpolarizability 0.1 0.1

BBR Stark 54.0 1.0

AC Stark (probe) 0.15 0.1

1st order Zeeman 0.2 0.2

2nd order Zeeman 0.36 0.04

Density 3.8 0.5

Line pulling 0 0.2

Servo error 0 0.5

2nd order Doppler 0 ≪ 0.01

Sr systematics total 52.11 1.36

Maser calibration −4393.7 8.5

Gravitational shift 12.5 1.0

Total −4329.1 8.66

νSr − ν0 73.65 Hz 0.37 Hz

Table 1.1.: 87Sr error budget from Ref. [7].
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against the NIST Ca optical clock. The large discrepancy between the quality of rf frequency

measurements and direct optical comparisons is a strong indicator of why a future redefinition

of the second in terms of an optical standard is being pursued.

Another effect that will become more and more important as remote optical frequency

standards are compared is the gravitational red shift. Our lab at JILA and the NIST Time

& Frequency division are separated by 3.5 km and a height difference of 11.3(2) m between

the Sr clock and the Cs fountain has been estimated by GPS receivers in each building. The

height difference by itself introduces a frequency correction on the 10−15 level. However, the

uncertainty in the red shift correction not only includes the mere height difference but also an

upper limit on the“transverse”variation in the gravitational field from the nearby mountains.

The gravitational potential also fluctuates in time and these effects will become more and

more important as optical clock comparisons become more accurate or are performed over

longer distances. The red shift uncertainty here includes an estimate of the gravitational

isosurface variation between JILA and NIST at the 10 cm level using the National Geodetic

Survey markers next to either lab [7].

The largest systematic effects related to the atomic system are the AC Stark shifts induced

by the room-temperature BBR and transition frequency shifts when the atomic density is

varied. Those two shifts are also the conceptually most worrying and interesting effects. In

Cs fountains, these effects appear at much larger magnitude, but with the increase in optical

clock accuracy, all state-of-the-art optical standards are becoming limited by the same effects.

The BBR correction was first introduced by W. Itano [32] and since then, atomic fre-

quency standards have been defined at zero temperature. The correction here is based on

theoretical calculations of the clock state polarizabilities at the BBR wavelengths [33]. Half

of its uncertainty comes from insufficient knowledge of these polarizabilities, the other half is

experimental. Even though the temperature of the vacuum chamber is measured in multiple

spots and rolling corrections are applied, the metallic vacuum chamber is not a black body.

For these reasons, the BBR shift in optical clocks has received much attention in the last few

years [34, 35]. Work on measuring the shift experimentally is under way in many labs, but
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any such measurement requires a specialized setup [36] and there are no experimental results

so far. Nevertheless, the BBR is a pure single-particle effect and will be understood and

controlled with a technical solution involving a temperature-controlled environment similar

to the ones employed in Cs fountain clocks.

The next largest uncertainty are clock frequency shifts related to the atomic density. These

effects are intellectually much more challenging and interesting since they can potentially

compromise both precision and accuracy. For this reason, recent work in our lab has focused

on understanding and controlling these shifts. The density shift is an intrinsically many-body

effect arising from atomic interactions. Its appearance is especially surprising since the atoms

are at temperatures of ∼1 µK and s-wave interactions should be suppressed by the Pauli

exclusion principle. The density shift will be discussed in detail in Chapter 3. To understand

its origin, however, we need to understand the spectroscopic process in considerable detail.



Chapter 2

Laser Spectroscopy of

Lattice-Trapped Atoms

L
aser spectroscopy of tightly confined atoms has been investigated in the context of ion

traps for more than three decades [25, 26]. The key advantage of trapping particles

for laser interrogation is signal-to-noise (S/N) gain by extending the coherent light-atom

interaction time. However, the atom needs to be tightly trapped with respect to the in-

terrogating wavelength to suppress contamination of the signal by the atomic motion. In

addition, the trapping potential needs to be the same for ground and excited state coupled by

the spectroscopy light to avoid coupling the motional and spectroscopic degrees of freedom.

The same advantageous spectroscopic conditions as for ion traps can now be achieved for

neutral atoms by trapping them in a tight optical lattice. The theoretical description of the

spectroscopic process still applies, but has to be modified to account for the conditions in

optical lattices.

The second, and much more important, difference between ion trap and optical lattice

spectroscopy is that spectroscopy in optical lattices allows interrogating many sites of the

lattice simultaneously. The lattice can act as an array of identical microtraps and thus the

S/N is in principle enhanced by a factor of
√
N , where N is the overall number of atoms

interrogated. If, additionally, the particles in different lattice sites can be entangled, one can
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hope to increase the spectroscopic S/N by another factor proportional to
√
N .

For these reasons, high-resolution spectroscopy in optical lattices has been investigated

actively over the last decade, mostly based on the “magic wavelength lattice clock” pro-

posal [37, 38] building on parallel ideas for applications in cavity QED experiments [39].

First 87Sr spectroscopy results were available shortly thereafter [1, 40, 41]. The first system-

atic investigation of high-resolution 87Sr spectroscopy for application in an optical atomic

clock was published in 2006 [2], followed by similar results from the Paris [3] and Tokyo [42]

groups. Soon after, we used the same system to achieve the highest quality factor in any

kind of coherent spectroscopy [43].

To achieve higher resolutions and to make use of the full enhancement factor due to N ,

the spectroscopic process must be investigated in deeper detail. The main obstacle to high-

resolution spectroscopy was overcome by using the magic wavelength lattice [21], and the

Paris group verified that higher order polarizability contributions are small [44]. Next, the

effect of the hyperfine interaction on spectroscopy was investigated in detail [22], leading to

spin-polarized operation of the lattice clock used in all groups today [7, 42, 45].

Soon after, it became obvious that the number of atoms trapped in an individual lattice

site is an important factor in spectroscopy. A significant systematic shift of the optical

frequency with number of atoms per lattice site was first observed in direct optical clock

comparisons [31]. These comparisons still used simultaneous spin polarization tomF = ±9/2,

but the density shift persisted even with a single spin species [46]. The dominant role of

Rabi frequency inhomogeneity due to populating different transverse motional states was

described qualitatively as due to inhomogeneity-induced s-wave interactions [9], which led

to several theoretical models trying to describe the underlying effect [47–50].

The importance of understanding the interactions in a many-body system for clock spec-

troscopy using more than one particle was highlighted recently by demonstrating that density

shifts can be suppressed if the interparticle interactions are increased by placing the particles

in a two-dimensional optical lattice [51].

In this Chapter, we will introduce the framework for understanding the optical lattice
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spectroscopy and introduce optical sideband spectroscopy as an important tool to understand

the system parameters. With these methods, we will proceed to model collisions between

ultracold fermions and understand the density shift as arising from system inhomogeneities.

The framework for understanding spectroscopy of trapped particles builds on the results

available from laser spectroscopy of ions trapped in RF traps. The main ideas have been

developed early on and have been described in many theses from our lab [11, 12, 14] and

the Paris group [52–54]. The main parameter to understand spectroscopy of tightly bound

particles is the Lamb-Dicke parameter [26]

η = νprec/νtrap, (2.1)

given by the ratio of probe light recoil frequency νprec = h/(2mλ2
p) to trapping frequency

νtrap, where λp is the probe light wavelength and m is the mass of the particle. In the limit

η ≪ 1, the particle’s motional wave function has a small extent with respect to the probing

wavelength and the probing process will not change the motional state of the particle. This

limit is called the Lamb-Dicke regime and the process is very similar to what happens in

Mössbauer spectroscopy: the particle is so tightly bound that the recoil from absorption and

reemission of a probe photon gets absorbed by the crystal lattice (the optical lattice here).

2.1. Carrier and Sideband Transitions

The response of a particle to the probing light in the dipole approximation is given by the

Rabi frequency

Ω ∝ 〈ψf |eikp·x|ψi〉, (2.2)

between initial and final motional state |ψi〉 and |ψf〉, and we assumed the probe to be a

plane wave with wave vector kp = 2π/λpk̂p, and x is the position operator of the particle.

The Lamb-Dicke approximation consists of expanding the matrix element in orders of kp ·〈x〉:

Ω ≡ Ω0 [〈ψf |ψi〉+ ikp · 〈ψf |x|ψi〉+ . . .)] . (2.3)
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If we assume three-dimensional harmonic confinement with trap frequencies (νx,νy,νz) and

initial (final) trap state |n〉 = |nx, ny, nz〉 (|m〉 = |mx,my,mz〉), this expansion can be

summed up analytically and reduces to the well-known expression [25, 26, 55]

Ωm←n = Ω0

∏

j∈{x,y,z}
〈mj|eiηj(âj+â†j)|nj〉

= Ω0

∏

j∈{x,y,z}
e−η

2
j /2

√

n<
j !

(n<
j +∆nj)!

(iηj)
∆njL

∆nj

n<
j
(η2

j ),

(2.4)

where âj (â†j) are bosonic annihilation (creation) operators, n<
j = min(nj,mj), ∆nj =

|nj −mj|, Lα
n is a generalized Laguerre polynomial, and the ηj are the per-axis Lamb-Dicke

parameters

ηj ≡ (k̂p · x̂j)kpaj/
√
2 = (k̂p · x̂j)ν

p
rec/νj = (k̂p · x̂j)

√

h

2mλ2
pνj

, (2.5)

for oscillator length 2πaj ≡
√

h/(mνj), and trap axis direction x̂j. In most of the following,

we are interested in the carrier transition

Ωc(n) ≡ Ωn←n = Ω0

∏

j

e−η
2
j /2Lnj

(η2
j ), (2.6)

where the motional state is unchanged. However, the first blue (red) sideband, where one

motional quantum is added (removed) is also of interest (change in quantum number assumed

along ẑ here)

Ωbsb(n) ≡ Ω(nx,ny ,nz+1)←n = Ωc(n)
iηz√
nz + 1

L1
nz
(η2

z)

Lnz(η
2
z)

Ωrsb(n) ≡ Ω(nx,ny ,nz−1)←n

nz>0
= Ωc(n)

iηz√
nz

L1
nz−1(η

2
z)

Lnz(η
2
z)

,

(2.7)

In the Lamb-Dicke regime, we can expand the Laguerre polynomials in orders of ηj to simplify

the expressions

Ωc(n) = Ω0

∏

j

e−η
2
j /2[1− njη

2
j ]

Ωrsb(n) = Ωc(n)iηz
√
nz

[

1 +
nz

2
η2
z

]

Ωbsb(n) = Ωc(n)iηz
√
nz + 1

[

1 +
nz + 1

2
η2
z

]

.

(2.8)

Remarks
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• The red sideband does not exist if the particle is in the ground state initially, consistent

with the original expression in terms of âj and â
†
j.

• The first order sideband Rabi frequencies Ωrsb and Ωbsb are 90◦ out of phase with the

carrier frequency Ωc.

• The atomic response always depends on the initial motional state |n〉 of the particle

and decreases with increasing |n|.

• The atomic response distributes among all target states |m〉 such that |Ω0|−2
∑

m
|Ωm←n|2 =

∏

j

∑

mj
〈nj|e−ikp·x† |mj〉〈mj|eikp·x|nj〉 =

∏

j〈nj|nj〉 = 1.

2.2. Spectra for a harmonic trap

Using the results from the last Section, we can discuss the absorption spectrum of a harmon-

ically trapped particle. The spectrum will be dominated by the carrier transition at the base

frequency. The first sideband transitions are detuned from the carrier by the energy added or

removed due to the extra motional quantum (or phonon). Here, the extra detuning is given

by +νz (−νz) for the blue (red) sideband. If νz is larger than the power-broadened carrier

linewidth Ωc and the natural linewidth of the carrier transition, the system is said to be in

the resolved sideband regime. The first blue and red sideband transitions produce spectral

features that are well separated from the carrier transition and addressable by tuning the

spectroscopy laser to the corresponding detuning ±νz from the carrier.

In the following, we will limit our discussion to completely coherent population dynamics,

and neglect all decoherence processes. In this regime, we can describe the response of an en-

semble of particles as mixture of single particles. In the absence of decoherence, each particle

responds to the spectroscopy light according to its carrier and sideband Rabi frequencies. In

the resolved sideband regime, the relative phases of carrier and sideband Rabi frequencies
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can also be neglected and the excited state population at time t can be written as

pe(nz,∆, t) =
|Ωrsb(nz)|2

|Ωrsb(nz)|2 + (∆ + νz)2
sin2

[
√

|Ωrsb(nz)|2 + (∆ + νz)2
t

2

]

+
|Ωc(nz)|2

|Ωc(nz)|2 +∆2
sin2

[
√

|Ωc(nz)|2 +∆2
t

2

]

+
|Ωbsb(nz)|2

|Ωbsb(nz)|2 + (∆− νz)2
sin2

[
√

|Ωbsb(nz)|2 + (∆− νz)2
t

2

]

(2.9)

For a thermal mixture in a truncated harmonic oscillator, we find the thermally averaged

excited state population

Pe(Tz,∆, t) =
1− qz

1− q1+Nz
z

Nz∑

nz=0

qnz
z pe(nz,∆, t), (2.10)

with Boltzmann factor qz = exp(− hνz
kBTz

) and maximal quantum number Nz.

An example spectrum of pe with respect to ∆ for a particle in the nz = 1 state of a harmonic

trap probed along the ẑ direction is shown in Fig. 2.1(a). First order blue and red motional

sidebands appear detuned by the trap frequency from the central carrier transition. We

have assumed negligible transition linewidth, resulting in the sinc2 sidelobes around carrier

and sidebands. Note that the sidebands are only suppressed with respect to the carrier

because the sideband Rabi frequencies are attenuated by ηz, and Ω2
bsb/Ω

2
rsb ≃ 1+ 1/nz. In a

completely homogeneous system, the Rabi flopping on the sidebands has the same contrast

as the carrier.

In panel (b) of the same figure, we added a slight inhomogeneity to the system by assuming

a thermal distribution truncated at Nz = 6 and plot the thermally averaged excited state

population for Tz = 3 µK. Note that the inhomogeneity reduces the initial rise of the

sidebands, with respect to the carrier. The difference in the excited state fraction dynamics

is small as long as the exposure time is short. This can be seen in panels (c) and (d)

which compare the carrier Rabi flopping for the two cases (a) and (b). The Rabi frequency

inhomogeneity in (b) and (d) causes decay and revival of the Rabi flopping contrast in

panel (d). Even with the added inhomogeneity, we can thus always find an exposure time –

experimental conditions permitting – where the carrier or the sidebands have full contrast.
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(d) Thermal average at Tz = 3 µK, Nz = 6.

Figure 2.1.: Example absorption spectrum of a harmonically bound particle. The trap

frequency νz = 80 kHz and the Lamb-Dicke parameter ηz = 0.3, and the harmonically

bound particle is probed purely along z. Natural linewidth is neglected and Ω0 = 1 kHz.

The exposure time t is set to t−1 = Ω0e
−η2z/2 to produce a π pulse on the carrier for nz = 0

in panels (a) and (b). Panels (c) and (d) show coherent carrier Rabi flopping over 80 ms

corresponding to the situations in (a) and (b).
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The situation shown in panels (b) and (d) corresponds to typical parameters used in the

optical lattice clock experiment. The simulated data, however, does not at all look like what

is seen in the experiment. The maximal carrier contrast is 90% and the sidebands never

reach the excited state fraction observed in the carrier. The imbalance between red and blue

sideband is always present as well. Clearly, there is more inhomogeneity in the experiment

than we have assumed so far.

2.3. 1D Optical Lattice Potential

To find a more realistic description of the inhomogeneity of the vertical one-dimensional

lattice system, we need to look at the trapping potential more carefully. In the following, we

assume a one-dimensional magic-wavelength optical lattice formed by a retro-reflected laser

beam. The crucial role of atomic polarizability, the effects pertaining to lattice polarization

and magnetic field, and the effect of nuclear structure on spectroscopy will be completely

omitted. For more information on these effects refer to the detailed explanations in Refs. [11].

For our purposes, imagine a conservative trapping potential that is exactly the same for

both clock states. In this Section, we would like to exhibit the effect of the motional degrees

of freedom on spectroscopy in the context of Eq. 2.2. The material here summarizes and

extends previous discussions in Refs. [9, 11, 14, 51–54, 56].

In this spirit, we approximate the optical lattice potential around its focal point as

U(x) = U(x, y, z) = −U0e
−2r2/w2

0 cos2 κz, (2.11)

where w0 is the Gaussian waist of the retro-reflected beam, and κ = 2π/λ is the wavevector

of the beam for the magic wavelength λ = 813.43 nm. The trap depth U0 is given by the

time-averaged laser power P and the dynamic AC polarizability at the lattice wavelength

α(λ) as

U0 =
4P

πǫ0cw2
0

α(λ). (2.12)

Experimentally, P , w0, and α(λ) are hard to know accurately enough. Instead, knowledge

about the trap geometry is usually inferred from measured trap frequencies under the as-
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sumption of the overall form of Eq. 2.11. To understand this relation clearly, the potential

has to be understood in more detail.

If we neglect gravity for now, U has the form of a periodic potential and is cylindrically

symmetric around z. Atoms are trapped in the anti-nodes of the periodic potential and

are thus confined longitudinally on the order of λ/2. The transverse confinement along r

is much weaker, since the waist w0 of an optical beam is typically much larger than λ.

We conclude that the aspect ratio (∝ w0/λ) of a microtrap will be large. Even if we had

allowed the Gaussian beam waist to vary with z, the shape of adjacent microtraps would be

very similar, as long as only pancakes within the Rayleigh range zR = πw2
0/λ are populated.

Since the number of similar pancakes ∝ zR/λ ∝ (w0/λ)
2, it scales as the aspect ratio squared.

From these simple arguments, we conclude that it is reasonable to think of atoms trapped

in identical pancake-shaped microtraps. For each microtrap, we can calculate longitudinal

and transverse trapping frequencies which can then be compared to the spectroscopically

measured results.

2.4. Tunneling in the WKB approximation

A complication to the simple picture above is that the potential is periodic in z which allows

tunneling between different microtraps. The tunneling rate gives each microtrap level a

finite energy width. For shallow lattices, tunneling can dominate the system dynamics and

we cannot speak of isolated microtraps anymore. As a first estimate, we will try to use the

WKB approximation to describe the tunneling rates in fairly deep lattices that are typical

for optical clock experiments.

In the semi-classical WKB approximation, the tunneling rate is given by a collision attempt

rate with the potential wall and a tunneling amplitude that exponentially decays with the

wall height and width (see e.g. Ref. [57]). For U(z) = U0(1 − cos2 κz), we find a tunneling

rate

ΓWKB =
Erec

~

√

E/Erec

ξ0

exp

[

−2

√

U0

Erec

∫ π−ξ0

ξ0

dξ

√

1− E

U0

− cos2 ξ

]

, (2.13)
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with lattice recoil energy Erec ≡ h2/(2mλ2) ≃ h × 3.47 kHz and atomic mass m = 87 amu.

We use the dimensionless excursion ξ = κz, and the classical turning point is given by

ξ0 = arccos
√

1− E/U0 with ξ0 ∈ [0, π/2]. Numerical results for a lattice depth U0 = 120Erec

are shown as the solid red curve in Fig. 2.2. This trap depth is a typical value for our optical

clock experiments and would correspond to a longitudinal trap frequency of ∼75 kHz. The

tunneling lifetimes predicted from 1/ΓWKB are basically infinite unless the particle is very

highly excited. For reference, the black dashed line indicates a tunneling rate of 1 s−1 for

87Sr in the magic wavelength lattice.
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Figure 2.2.: WKB approximation to the tunneling rate in a cos2 lattice (red solid curve)

versus full band structure calculation (blue circles) in a 120 recoil deep lattice. The black

dashed line indicates a tunneling rate of 1 s−1 for the 87Sr magic wavelength lattice. The

WKB approximation fails to describe tunneling in the infinite lattice because only two

adjacent sites were included.

The blue circles in Fig. 2.2 show the tunneling rates calculated using the full lattice band

structure for an infinite lattice. Even for the relatively deep lattice used here, the WKB

approximation clearly underestimates the tunneling rate in a periodic potential with many

sites. Including the periodicity correctly is hard, since the transverse and longitudinal po-

tentials are multiplied instead of added in the Schrödinger equation and thus do not allow

separable solutions.
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2.5. Lattice Band Structure

To treat tunneling to all orders, we need to think of the potential as an array of longitu-

dinal lattices, one for each transverse motional quantum state. This picture is supported

by the following argument: because the microtrap aspect ratio is large (typically ≫ 50),

we can think of the transverse motional dynamics as much slower than the longitudinal dy-

namics. This separation of time scales means that tunneling happens instantaneously on

the transverse time scale. For the same reason, there are also many more transverse than

longitudinal quantum states occupied at a given temperature. This means that we can think

of the transverse degrees of freedom as a classical parameter that parametrizes the quantum

mechanical degree of freedom along the longitudinal direction. For this reason, tunneling

events that change the transverse quantum number are not important since such a change

will not influence the system dynamics drastically.

To understand the longitudinal tunneling dynamics, we consider r as a classical parameter

that simply scales the trap depth and focus on describing the longitudinal problem. A

detailed derivation [14] shows that the one-dimensional longitudinal Schrödinger equation

reduces to the Mathieu equation

d2φ

dξ2
+ (a− 2q cos 2ξ)φ = 0, (2.14)

for the longitudinal spatial wave function φ(ξ), with ξ = κz. The Mathieu parameters

q =
U0(r)

4Erec

,

a =
E

Erec

− 2q,

(2.15)

describe the kinetic energy E and the trap depth U0(r). The Mathieu equation only has

stable solutions for certain combinations of a and q and stability diagrams can be found

in standard mathematical works [58], works on ion traps [59], or in the context of band

theory [60]. A plot of a+ 2q versus 4q is shown in Fig. 2.3 and directly shows the evolution

of the energy structure from isolated harmonic oscillator levels to broad energy bands with

decreasing trap depth from infinity.
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Figure 2.3.: Band structure of the infinite one-dimensional optical lattice without gravity

plotted as allowed kinetic energy E versus trap depth U0 in recoil units. Bands with odd

(even) band index n are shown in blue (red). The dashed line indicates the lattice depth

E = U0.
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A spatial wavefunction basis (Wannier basis) that is localized at the position of each

microtrap can be constructed and for small band width and band index n, the Wannier

wave functions for lattice site m can be written in terms of the Mathieu equation’s standard

solutions [14]

wm
n (ξ) =

√

2

π
Θm(ξ) cen(ξ), (2.16)

where

Θm(ξ) =







1 ξ ∈ [mπ, (m+ 1)π)

0 else

(2.17)

is the supporting function of the m-th lattice site. In this approximation, matrix elements

in the Wannier functions can be easily calculated, for example to estimate lattice heating

rates [14]. However, the approximation is based on completely isolated sites and is applicable

only for low band index n in a deep lattice. To estimate, for instance, the effects of tunneling,

we need to use a numerical method to generate more realistic Wannier states that also apply

to shallower lattices. A useful method is based on representing the Schrödinger equation in

momentum space, since the potential term will then couple only two specific momenta to

the particle momentum. We rewrite the periodic Schrödinger equation as1

H =
~

2k̂2

2m
+
U0

2
[1− cos 2κẑ], (2.18)

In a plane wave basis 〈x|k〉 ∝ eikz, the periodicity in the potential transforms into coupling

only two other momenta to a given momentum k:

H|k〉 =
(
~

2k2

2m
+
U0

2

)

|k〉 − U0

4
(|k + 2κ〉+ |k − 2κ〉). (2.19)

The periodicity of the potential leads to periodic Bloch waves |n, q〉 as the eigenfunctions of
this operator. Here, the dimensionless quasimomentum q is limited to the first Brillouin zone

κq ∈ (−κ, κ] and n indexes the band structure as above. We let q be a fixed value within

the first Brillouin zone, and transfer Eq. 2.18 into a plane wave basis parametrized by q. We

1Many references describe the application of Bloch’s theorem and the Wannier basis to optical lattices.

This summary is based on [56, 61–64].
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can omit odd multiples of κ in the basis, since they are not coupled by Eq. 2.19. We let

〈ξ|j, q〉 ∝ ei(2j+q)ξ, (2.20)

with integer j, and we truncate the basis such that −J ≤ j ≤ J . This choice is equivalent

to treating a system of 2J + 1 lattice sites with periodic boundary conditions. As above, we

use the dimensionless position ξ ≡ κz. In this basis, the Hamiltonian matrix (in units of the

recoil energy) is sparse and has tridiagonal structure [56, 62]

H(q) =
u

2
I2J+1+





















(−2J + q)2 −u
4

−u
4

(−2J + 2 + q)2 −u
4

−u
4

. . . . . .

. . . . . . . . .

. . . . . . −u
4

−u
4

(2J − 2 + q)2 −u
4

−u
4

(2J + q)2





















,

(2.21)

where u ≡ U0/Erec and I2J+1 is the (2J+1)-dimensional identity matrix. Diagonalizing H(q)

numerically gives a set of (2J + 1) real q-dependent eigenvector coefficients cnj (q) which are

normalized to
J∑

j=−J
[cnj (q)]

2 = 1, (2.22)

as well as the q-dependent eigenenergies En(q). Here, n indexes the band structure and the

eigenvectors are sorted according to their eigenvalue. The band structure for u = 120 is

shown in Fig. 2.4(a). There are seven trapped bands, and all but the two highest are very

flat, indicating well-separated microtraps.

To quantify the tunneling rates with respect to trap depth, we calculate the band widths

as the difference between the q = 0 and the q = 1 energy structure in Fig. 2.4(b). The

tunneling rate is given by the inverse of the band width. For the magic wavelength lattice,

the recoil frequency is h/(2mλ2) ≃ 3.47 kHz, so that a bandwidth of 2.9 × 10−4Erec would

correspond to a tunneling rate of 1 s−1. Even at typical trap depths of 120Erec, tunneling
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(a) Band structure for U0 = 120Erec. The dashed
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(b) Band widths as a function of U0. The dashed

line indicates a tunneling rate of 1 s−1 at Erec =

h× 3.47 kHz.

Figure 2.4.: Quasimomentum-resolved band structure calculations from diagonalization of

Eq. 2.21 with J = 30.
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can be significant if the particles are in higher longitudinal bands or are highly excited in

the transverse direction (reducing the effective lattice depth).

It is instructive to also calculate the tunneling rates from a Wannier function perspective.

The Bloch vectors in the truncated plane wave basis used here are

〈ξ|n, q〉 = 1√
π

J∑

j=−J
cnj (q)e

i(2j+q)ξ, (2.23)

which are normalized over [−π, π] ∋ ξ. If we choose a sufficiently dense set of quasimomenta

qk ∈ (−1, 1], the Wannier function for lattice site m can be represented as

wm
n (ξ) =

1√
N

N∑

k=1

e−iqπm〈ξ|n, q〉. (2.24)

The prefactor makes the resulting Wannier function site-normalized.

Figure 2.5 shows the site-localized Wannier functions (solid blue), the Mathieu function

approximation (dotted red), and the harmonic oscillator approximation (dotted green) for all

trapped bands in a 120Erec lattice. The agreement between Wannier function and Mathieu

function is almost perfect within a lattice site, even for the high-lying bands with finite

width. The harmonic oscillator approximation shows discrepancies even in the n = 2 band.

The Mathieu functions are periodic in the lattice spacing and the Wannier functions are

localized in each site. However, the localization of the Wannier functions is so good that

the cut-off Mathieu function approximation in Eq. 2.16 is almost perfect (see right hand

side plots). Although the harmonic oscillator functions could be improved by simple first-

order perturbation theory in the anharmonic z4 term, we recommend the cut-off Mathieu

functions for any site-local calculation at this lattice depth since they are readily available

in mathematical packages.2

In the tight-binding approximation [64], the tunneling dynamics can be described by parti-

cles hopping from site to site and the band width is determined by a single tunneling matrix

element

Jn ≃ −
∫ ∞

−∞
dx [wm

n (x)]
∗Hwm+1

n (x). (2.25)

2For instance, as the MathieuC function in Mathematica.
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Figure 2.5.: Wannier functions (solid blue), periodic Mathieu functions (dotted red), and

harmonic oscillator wave functions (dotted green) for the 120Erec lattice and all trapped

bands n = 0 to 6.
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Within the validity of the tight-binding approximation, the relation between J and the band

width (or tunneling rate) is given by

4Jn = En(q = 1)− En(q = 0), (2.26)

and from Eqs. 2.23 one can show that calculation of J in the numerical eigenvalues reduces

to a simple integral over the complex unit circle

Jn = − 1

N

N∑

k=1

En(qk)e
iπqk ≃ −

∫ 1

−1

dqEn(q)e
iπq = −2

∫ 1

0

dqEn(q) cos πq. (2.27)

2.6. Adiabatic Wannier-Stark ladder

So far, we have neglected gravity in the description of the optical lattice potential and

especially in the models used to describe the tunneling rates. Suppression of tunneling in

optical lattice clocks has been a concern from the very beginning. To prevent the atoms from

tunneling while the clock laser is interacting, two steps were taken. As we have seen in the

last section, the lattices for optical clocks are typically fairly deep (> 100Erec). In addition,

the lattice is oriented along gravity, which breaks the symmetry between lattice sites.

This effect is fairly simple to understand: the energy shift between lattice sites due to

gravity is given by

∆g ≡
mg

κ
≃ 0.79 Erec, (2.28)

for gravitational acceleration g ≃ 9.81 m/s2. If this energy splitting is larger than the lattice

bandwidth (without gravity), energy levels in neighboring sites are no longer degenerate and

the band width becomes suppressed. Each band n separates into individual states in isolated

lattice sites. Since the acceleration is uniform along the lattice, the new energy states are

evenly split by ∆g and this structure is called a Wannier-Stark ladder.

Tunneling from a higher-lying state in the Wannier-Stark ladder to a lower-lying state

becomes exponentially suppressed with the ratio of ∆g over the original bandwidth Γn. If

the mismatch becomes large enough, such that ∆g becomes on the order of the interband

splitting, resonant tunneling can be allowed from a lower-lying Wannier-Stark ladder to a



33

higher lying one. As we will see, this is not an issue in deep optical lattices and we only have

to consider tunneling within an isolated ladder.

The new eigenstates that describe particles in isolated sites can be easily obtained within

the tight-binding approximation. The Wannier-Stark states are given by superpositions of

the original Wannier states [64]

ψℓ
n(ξ) =

1√
M

M∑

m=−M
zmn w

m
n (ξ), (2.29)

where ℓ is the new Wannier-Stark site index. The new energy levels can be obtained by

diagonalizing the tridiagonal Hamiltonian matrix in the Wannier states

H ′n = εnI2M+1 +





















V−M −Jn

−Jn V−M+1 −Jn

−Jn
. . . . . .

. . . . . . . . .

. . . . . . −Jn

−Jn VM−1 −Jn

−Jn VM





















, (2.30)

where Vm = m∆g/Erec and εn =
∫
dx[wn

0 (x)]
∗Hwn

0 (x).

However, calculating the tunneling lifetimes of the new Wannier-Stark states is hard. A

numerically involved method is based on calculating the poles of a scattering matrix [63].

None of the work available treats the transverse potential, and tunneling in the vertical

one-dimensional optical lattice remains hard to calculate accurately.

Following the arguments in Section 2.3, we will treat the transverse coordinate as a clas-

sical parameter that adiabatically follows the longitudinal dynamics since any longitudinal

tunneling event is much faster than the transverse oscillation time. For these reasons, we

model the full potential as an “adiabatic”Wannier-Stark ladder and disallow any change in

r during a tunneling event.

A plot of the adiabatic band structure is shown in Fig. 2.6(a), where the infinite lattice

energies and their band widths are shown as a function of r/w0, where the radial trap profile
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is modeled by replacing U0 7→ U0e
−2r2/w2

0 . None of the lower-lying bands become very wide,

unless we go to large radii r ∼ w0. For transverse temperatures T , the thermally averaged

radius is given by

ρ2
rms ≡ 〈ρ2〉 ≃

∫∞
0
dρρ3 exp

[

− 2U0

kBT
ρ2
]

∫∞
0
dρρ exp

[

− 2U0

kBT
ρ2
] =

kBT

2U0

≃ 3.0×
(
T

µK

)(
U0

Erec

)−1

(2.31)

with ρ ≡ r/w0, and kB × 1 µK ≃ 6.0 Erec. Typical transverse temperatures are 2 − 4 µK,

resulting in ρrms ≃ 0.2 − 0.3. Longitudinal temperatures can be as low as 1 µK, when

the sample is laser-cooled in the optical lattice. In this regime, the lowest bands are not

significantly broadened, but their energy is strongly dependent on ρ.

The longitudinal Wannier states are thus parametrized by ρ and we can find a tunneling

rate for each band and each transverse position. A thermal average over ρ will give an

order-of-magnitude estimate for the tunneling rate. Since we do not have a full model for

the tunneling, we give upper and lower bounds on the thermally averaged tunneling rate

from the following considerations.

An upper bound on the tunneling rate is given by the lattice band structure in the absence

of gravity. Fig. 2.6(b) shows the radially varying tunneling rate without gravity as solid

colored lines. A lower bound on the tunneling rate is given by the WKB approximation

Eq. (2.13), since it completely neglects the effect of many sites, but handles the shape cos2

shape of the longitudinal potential. The results from the WKB calculation are shown as the

dotted colored lines in Fig. 2.6(b). The dashed black line indicates ∆g. A full model for the

tunneling rate should smoothly interpolate between the WKB expression (valid for Γ ≪ ∆g)

and the lattice structure without gravity (valid for Γ ≫ ∆g).

A thermal average over the radial coordinate is shown in panel (c). Note that the first three

longitudinal bands have a bandwidth that is always much smaller than ∆g, indicating that

tunneling is negligible even in a thermal sample. For typical lattice depths and longitudinal

temperatures of 1 µK, more than 99% of the population resides in the lowest longitudinal

band. We conclude that tunneling is not an issue in a vertical one-dimensional lattice at

temperatures of a few µK.
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(c) Thermal average over radial direction of panel

(b). The full trap depth is U0/kB ≃ 20 µK.

Figure 2.6.: Adiabatic longitudinal band structure in a transverse Gaussian beam potential

U0 7→ U0e
−2r2/w2

0 , with U0 = 120Erec. The tunneling rate in the Wannier-Stark lattice

should interpolate between the band structure without gravity and the WKB tunneling

around the gravitational splitting between lattice sites.
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Note that transitions between neighboring Wannier-Stark states can also be driven by

the spectroscopy laser [56], but that the amplitude of these transitions becomes negligible

already at lattice depths of a few recoil. Recent experimental work shows control of tunneling

dynamics in a Wannier-Stark ladder by probing these transitions, but at lattice depths of

≤ 4Erec [65].

2.7. Single-site potential

As shown in the last section, we can ignore tunneling dynamics in the vertical one-dimensional

lattice. However, the lattice band structure is still important, since the energies of the

Wannier-Stark states are given by the lattice without gravity. In this Section, we will develop

a simplified model of the single-site potential to finally describe the optical sideband spectra

we observed.

We approximate the lattice potential Eq. 2.11 around an antinode of the cos2 term up to

second order in r and fourth order in z

U(z, r) ≃ U0

(

−1 + κ2z2 +
2

w2
0

r2 − κ4

3
z4 − 2κ2

w2
0

z2r2

)

, (2.32)

where the gravitational shift is absorbed into an offset of the z coordinate. Treating the

quartic distortion and the r-z coupling term in first order perturbation theory for harmonic

oscillator states |n〉 gives an energy spectrum

En/h = νz(nz+1/2)+νr(nx+ny+1)− νrec

2
(n2

z+nz+1)−νrec
νr
νz
(nx+ny+1)(nz+1/2), (2.33)

with recoil frequency νrec = Erec/h and longitudinal and transverse trap frequencies

νz = 2νrec

√

U0

Erec

νr =

√

U0

mπ2w2
0

.

(2.34)

Measuring both trap frequencies determines the trap parameters U0 and w0 completely. The
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number of states in the trap is approximately given by NzN
2
r , with

Nz ≃
U0

hνz
=

√

U0

4Erec

,

Nr ≃ Nz
νz
νr
.

(2.35)

Typical values in our experiment are νz ≃ 80 kHz and νr ≃ 450 Hz, giving Nz (Nr) ≃
6(1000). As shown in the last Section, the longitudinal trap frequency changes with the radial

coordinate. Here, this relation is encapsulated in the r2z2 coupling term. The frequency gap

between longitudinal states is

γz(n) ≡ (Enx,ny ,nz+1 − Enx,ny ,nz)/h = νz − νrec(nz + 1)− νrec
νr
νz
(nx + ny + 1). (2.36)

We will use the single-site approximation in the next Section to describe the spectral

features in absorption spectroscopy of particles trapped in the one-dimensional optical lattice.

2.8. Sideband spectra in a one-dimensional optical

lattice

We finally arrived at the important quantity γz(n) that describes the spectroscopic features

in a one-dimensional optical lattice and can model the equivalent of the harmonic confinement

features in Fig. 2.1. Two example absorption spectra are shown in Fig. 2.7.

The first spectrum (red squares) represents a sample loaded directly from the 1S0-
3P1

MOT into the optical lattice without any further cooling. The second spectrum (blue circles)

represents the same situation, but with longitudinal sideband cooling and transverse Doppler

cooling applied to the sample before spectroscopy. Several features are evident. As in Fig. 2.1,

there is a central sharp carrier transition as well as a red and a blue first order sideband.

The relative height of the blue and red sideband is an indication of the temperature along

the probe direction (see Section 2.2). However, the sidebands are not symmetric, but slope

towards the carrier, while maintaining a sharper edge that faces away from the carrier.

In this Section, we will build a detailed model of the spectroscopic features in Fig. 2.7 to

extract important system parameters such as longitudinal and transverse temperatures by
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Figure 2.7.: Example absorption spectra in the one-dimensional optical lattice probed along

the lattice axis with a Rabi pulse time of 80 ms. Three features are evident: a central

carrier transition, where the longitudinal motional state nz is unchanged, and a red (blue)

sideband where nz is reduced (increased) by one. The data points in red represent a sam-

ple loaded from the 1S0-
3P1 MOT. Data points in blue show the change in the spectral

features after the sample is cooled in-trap using longitudinal sideband cooling and trans-

verse Doppler cooling. Fits to the data (solid lines) are based on the single-site expansion

of the lattice potential.
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fit. Based on the model, we will also be able to explain spectroscopy on the carrier transition

in detail.

The sideband features can be well understood in the single-site potential picture derived

in the previous Section. From Eq. 2.36, we see that the first-order longitudinal sidebands

nz → nz ±1 will appear at different detunings from the carrier for each nz. In addition, each

longitudinal sideband depends on its radial state through the r2z2 coupling term. Even if only

the nz = 0 state is populated, the sideband spectrum will not be Lorentzian as in a harmonic

trap, but will be smeared out towards the carrier since γz(n) decreases with increasing nr.

The sharp sideband edge indicates the highest γz(n) at the lowest n in the sample. The

position of the sharp edge thus lets us determine γz(nx = ny = nz = 0) = νz − νrec precisely.

Since the sidebands are still well separated from the carrier, we will derive a lineshape ex-

pression valid for the blue sideband first. Similar to Eq. 2.10, we assume a thermal distribu-

tion with transverse temperature Tr and find the thermally averaged excited state population

for the nz-component of the ℓ-th order longitudinal sideband as

P ℓ
e (nz, Tr,∆, t) =

(
1− qr

1− q1+Nr
r

)2 Nr∑

nx=0

Nr∑

ny=0

qnx
r qny

r ×

|Ωℓ(n)|2
|Ωℓ(n)|2 + [∆− ℓγz(n)]2

sin2
√

|Ωℓ(n)|2 + [∆− ℓγz(n)]2
t

2
,

(2.37)

with radial Boltzmann factor qr ≡ exp(−hνr/kBTr). Since there are many Rabi frequen-

cies Ωℓ(n) contributing to the sum, we simplify the problem by cycle-averaging the time

dependent Rabi oscillations and set sin2(·) 7→ 1/2.

To allow for experimental imperfections, we allow for a slight angular mismatch ∆θ be-

tween the probe pointing k̂p and the lattice direction ẑ and for this discussion, we choose

the x̂ and ŷ axes in the radially-isotropic harmonic confinement such that

k̂p ≃ kp[ẑ +
∆θ

2
(x̂+ ŷ)]. (2.38)

The transverse extent of the probe beam is large and can be approximated by a cylindrically

symmetric function with respect to the net probe direction k̂p. The extent of the probe

beam wp is generally chosen to be much larger than the trap waist w0. The resulting Rabi
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frequency from Eq. 2.2 is

Ω(n) = Ω0〈n|eikp·x[1 +O(a2
r/w

2
p)]|n〉, (2.39)

with transverse oscillator length 2πar ≡
√

h/(mνr). For typical parameters, a2
r/w

2
p ≃ 10−4,

and we conclude that the transverse shape of a cylindrically symmetric probe beam with

large cross section cannot influence the spectroscopic results. The Lamb-Dicke parameters

become

ηz =
1

λp

√

h

2mνz

ηx = ηy = ηr =
∆θ

2λp

√

h

2mνr
.

(2.40)

Since the mismatch ∆θ is assumed to be small, we can approximate the Laguerre polynomials

in the Rabi frequency as in Eq. 2.8 and find a carrier Rabi frequency

Ωc(n) ≃
[

Ω0

∏

j

e−η
2
j /2

]

(1− nzη
2
z)[1− (nx + ny)η

2
r ] (2.41)

and blue (red) first-order longitudinal sideband Rabi frequencies

Ωbsb(n) = Ωc(n)iηz
√
nz

(

1 +
nz

2
η2
z

)

,

Ωrsb(n) = Ωc(n)iηz
√
nz + 1

(

1 +
nz + 1

2
η2
z

)

.
(2.42)

Note that with the symmetric misalignment choice ηx = ηy ≡ ηr and that all transverse

motional quantum numbers appear as the combination nx + ny in Eq. 2.38. If we introduce

a radial quantum number nr and a corresponding degeneracy factor nr + 1, we can collapse

one of the sums in the equation and find the time averaged and radially averaged excited

state population for the carrier ℓ = 0 and blue (red) sideband ℓ = +1 (−1):

〈P ℓ
e (nz, Tr,∆)〉t ≃

1

2

(
1− qr

1− q1+Nr
r

)2 Nr∑

nr=0

(nr + 1)qnr
r Ωc(nz, nr)

2fℓ(nz)

Ωc(nz, nr)2fℓ(nz) + [∆− ℓγz(nz, nr)]2
, (2.43)

where we neglected fourth order terms in ηz in

fℓ(nz) =







η2
z(nz + 1) ℓ = −1

1 ℓ = 0

η2
znz ℓ = +1

(2.44)
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On the shallow sideband slope, (∆/γz ≪ 1), the sum can be simplified further by realizing

that its main contribution arises from the term where ∆ = ℓγz(nz, nr), which leads to a

relationship

nr + 1 ≃ − νz
νrecνr

[∆− γ̃z(nz)], (2.45)

between radial quantum number and base longitudinal frequency gap γ̃z(nz) ≡ νz−νrec(nz+

1). If we approximate the radial sum by this main term, we find a simple functional form

σnz
bsb(∆) ≡ 〈P bsb

e (nz, Tr,∆)〉t ∝
(

1− ∆

γ̃z(nz)

)

e−α[1−∆/γ̃z(nz)]Θ[γ̃z(nz)−∆], (2.46)

with α ≡ [γ̃z(nz)/νrec](hνz/kBTr). The applicability of this approximation is ensured by

cutting off the the line shape at ∆ = γ̃z(nz) with the Heaviside function Θ. For the relevant

parameters, this lineshape can be approximately area-normalized to three significant figures

with a prefactor α2/γ̃z(nz).

The longitudinal trap anharmonicity produces a blue sideband for each nz at a different

detuning. Assuming a thermal distribution in z with temperature Tz, we can describe the full

blue sideband shape as a Boltzmann-weighted superposition of area-normalized components

σbsb(∆) ≡
(

Nz∑

nz=0

e−Enz/kBTz

)−1 Nz∑

nz=0

e−Enz/kBTzσnz
bsb(∆), (2.47)

where the longitudinal energy Enz/h = νz(nz+1/2)−νrec/2(n
2
z+nz+1) includes the quartic

distortion of the longitudinal trap as an approximation to the full lattice band structure in

Section 2.5. The red sideband lineshape is derived analogously.

A nonparametric method to extract the longitudinal temperature Tz from sideband spectra

can be derived by comparing the integrated areas underneath the first order blue and red

sidebands. Regardless of the details of the component lineshapes σnz , the only difference

between the red and blue sidebands is that the Boltzmann weights are shifted according to

nz 7→ nz + 1. Since nz = 0 does not contribute to the red sideband, the ratio of sideband

areas is
∫
d∆ σrsb(∆)

∫
d∆ σbsb(∆)

=

∑Nz

nz=1 e
−Enz/kBTz

∑Nz

nz=0 e
−Enz/kBTz

= 1− e−E0/kBTz

∑Nz

nz=0 e
−Enz/kBTz

. (2.48)
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After extracting νz from the sharp sideband edge, and given a calibration measurement of νr

and νz for a particular lattice laser power and waist, we can calculate the energy structure Enz

as shown previously. With this information, Eq. 2.48 can be solved numerically for Tz. Note

that comparing the sideband peak heights is generally not accurate since power-broadening

of the underlying individual components is dependent on the motional state through Ω(n).

The fits (solid lines) in Fig. 2.7 are based on fitting the sideband lineshapes using Eq. 2.47.

However, the underlying functional form for σnz
bsb(∆) does not use the main-term approxi-

mation in Eq. 2.46. For most applications, Eq. 2.46 is sufficient and easy to implement in a

fitting routine to extract the transverse temperature Tr from longitudinal spectra after fixing

Tz to the number extracted from the sideband area ratio. Note that the sideband lineshape

is not very sensitive to the value of η2
r and thus ∆θ because the main term approximation

describes the overall shape fairly accurately and η2
r appears only in Ωc(nz, nr), which cancels

in the main term.

2.9. Carrier spectroscopy and effective misalignment

We have seen in the last Section that the sideband shapes are fairly insensitive to a possible

effective misalignment ∆θ between the probe beam and the lattice axis. However, it is clear

that ∆θ would introduce Rabi frequency inhomogeneity through Eq. 2.41.

Describing the carrier spectroscopy for non-zero ∆θ leads to simpler formulas if we rotate

the coordinate system such that the inhomogeneity is along a particular trap axis, say

kp ≃ kp(ẑ +∆θx̂), (2.49)

such that ηx = ∆θ
λp

√
h

2mνr
, and ηy = 0. For a particular nz, we retain the time dependence in

Eq. 2.43, set ℓ = 0, and let Nr → ∞:

P c
e (nz,∆, t) =(1− qx)

∞∑

nx=0

qnx
x

Ωc(nz, nx)
2

Ωc(nz, nx)2 +∆2
sin2

(
√

Ωc(nz, nx)2 +∆2
t

2

)

. (2.50)

This expression can be directly fit to carrier lineshapes and Rabi flopping data. However,

for our purposes, it is instructive to expand the Rabi frequencies in terms of η2
x to exhibit a
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simple dependence on the misalignment ∆θ. Care must be taken with expanding the Rabi

frequencies but leaving the sinusoidal behavior unchanged, and we find

Ωc(nz, nx)
2

Ωc(nz, nx)2 +∆2
sin2

(
√

Ωc(nz, nx)2 +∆2
t

2

)

≃
[

1− 2nxη
2
x

∆2

Ωc(nz)2 +∆2

]

sin2

[
√

Ωc(nz)2 +∆2

(

1− Ωc(nz)
2

Ωc(nz)2 +∆2
nxη

2
x

)
t

2

]

.

(2.51)

To describe carrier Rabi flopping in a simple fashion adequate for a fitting routine, we set

∆ = 0. In this case, we obtain

P c
e (nz, t) =

∞∑

nx=0

(1− qx)q
nx
x sin2[φ(nz)(1− η2

xnx)/2]

=
1

2
+

1− qx
2

qx cos[φ(nz)(1− η2
x)]− cosφ(nz)

1 + q2
x − 2qx cosφ(nz)η2

x

,

(2.52)

with

φ(nz) ≡ Ω0e
−η2x/2e−η

2
z/2Lnz(η

2
z)t. (2.53)

If more than one longitudinal state nz is occupied, a Boltzmann-weighted superposition of

Eq. 2.52 is used as before. For zero misalignment ηx → 0, Eq. 2.52 reduces to completely co-

herent Rabi flopping sin2 φ(nz)/2. In the presence of misalignment, the Rabi fringes dephase

to 1/2 because the nx dependence introduces many different Rabi frequencies. With higher

transverse temperature Tr, more transverse states nx will contribute, and the Rabi frequency

inhomogeneity increases. Larger misalignment angle ∆θ increases the inhomogeneity in a

similar way, by introducing a larger change in Rabi frequency for the same nx. Note that

the dephasing of the oscillations is a completely coherent process and that rephasing of the

oscillations still occurs. However, because many nx contribute, the revivals will take many

seconds.

Experimentally, we obtain the excited state fraction by first measuring the population

in the ground state by recording fluorescence on 1S0-
1P1. This process is destructive and

removes the ground state atoms from the lattice. After the measurement pulse, the excited

state population is repumped back to the ground state via 3P1. These atoms are then mea-

sured again by fluorescence detection. The experimentally measured excited state fraction

is given by the ratio of excited state fluorescence counts over the sum of ground and excited
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state counts. The repump efficiency β ≤ 1 can vary, which causes dephasing of the Rabi

flopping to β/(β + 1) instead of 1/2.

Figure 2.8 shows the effect of transverse temperature and misalignment angle on the carrier

Rabi flopping. The top panel shows the excited state fraction as a function of Rabi pulse

time for sample temperatures of 1 µK (blue circles) and 3 µK (red squares), as determined

from sideband spectra and time-of-flight expansion. The Rabi oscillations are visible for

about 10 cycles in the cold sample, but decay quickly after 5-6 cycles in the hotter sample.

The data is fit with Eq. 2.53 and we obtain Ω0 = 59 Hz and 76 Hz, respectively. Both fits

result in a misalignment angle ∆θ ≃ 10 mrad.

In the lower panel, ∆θ is increased by misaligning the probe beam with respect to the

lattice axis and the effect on the visibility is even more drastic than when increasing the

temperature. Fits with Eq. 2.53 give Ω0 = 55 Hz and ∆θ = 10 mrad for the least misaligned

case (blue circles). A fit to the red squares results in Ω0 = 56 Hz and ∆θ = 17 mrad,

consistent with a geometrical estimate of ∆θ. For the largest misalignment (green triangles),

the small η2
x approximation used in deriving Eq. 2.53 starts to break down and the fit

looks much worse. However, the fit still predicts ∆θ = 40 mrad, again consistent with

the geometrical estimate.

Each data point in the figure is obtained by scanning out a full carrier spectrum for a given

pulse time and measuring the central fringe height. An example spectrum fit with Eq. 2.50

is shown in Fig. 2.9 for a probe time of 1.7 ms. In this case, the temperature is allowed to

vary when fixing the misalignment to 10 mrad from Fig. 2.8. The resulting temperatures

Tz = Tr = 2.1(2) µK agrees well with the sideband method and time-of-flight expansion.

In our experimental apparatus, even in the experimentally best aligned case, the carrier

spectroscopy data is consistent with a misalignment angle ∆θ ≃ 10 mrad. From geometrical

estimates, the alignment precision should be much be better than that. The angle ∆θ should

be interpreted as an effective misalignment that is due to the geometrical overlap between

the probe wave vector and the lattice shape. Both probe and lattice beams pass through the

same optical elements after being combined on a dichroic beamsplitter. The main suspect for
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Figure 2.8.: Carrier Rabi flopping as the central peak excited state fraction in a lineshape

scan for varying Rabi pulse time. The top panel shows the faster dephasing with an

increase in temperature from 1 µK (blue circles) to 3 µK (red squares). The bottom panel

shows similar behavior with an intentionally misaligned probe beam, where the blue circles

correspond to the most well aligned case (see text).
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Figure 2.9.: Carrier line shape for the best-aligned case. The data (blue circles) are fit with

Eq. 2.50 and the temperature is allowed to vary while fixing ∆θ = 10 mrad.

introducing the effective angular mismatch are aberrations caused by the vacuum viewports

that both the probe and lattice beams traverse.

As we have seen above, the main result of both effective misalignment and temperature is

to increase the inhomogeneity in Rabi frequencies. Note, however, that the inhomogeneity

discussed here is Rabi frequency inhomogeneity due to variation of the atomic response

to a perfectly homogeneous optical field over the small extent of a single lattice site. To

characterize these kinds of effects in a source-independent way, we define a single-site mean

Rabi frequency Ω̄ and an rms spread ∆Ω by

Ω̄ =
∑

nx,nz

w(nx)w(nz)Ω(nx, nz),

∆Ω =

√
∑

nx,nz

w(nx)w(nz)Ω(nx, nz)2 − Ω̄2,
(2.54)

using the appropriately normalized Boltzmann weights w. The ratio ∆Ω/Ω̄ characterizes the

single-site inhomogeneity in a dimensionless way and we plot results for temperature and

misalignment induced inhomogeneity in Fig. 2.10. Typical values for this experiment are
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0.05-0.4 for the misalignment angles determined from the data in Fig. 2.8.
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Figure 2.10.: Contour plot of the single-site Rabi frequency inhomogeneity parameter

∆Ω/Ω̄ when assuming an effective misalignment ∆θ along x and a homogeneous sample

temperature Tz = Tr = T . The dashed contours indicate points where Ω̄ becomes smaller

than ∆Ω, because the transverse Laguerre polynomials in the Rabi frequency expression

can become negative for sufficiently large nx.

To summarize: we have shown how optical spectroscopy of carrier and motional sideband

transitions in a vertical one-dimensional optical lattice can be used to extract important

system parameters. We have determined the full potential from measurement of sideband

frequencies, extracted information about the kinetic energy in all directions, and found a

way to characterize the single-site Rabi frequency inhomogeneity.
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The inhomogeneity characterization in terms of ∆Ω/Ω̄ is useful because it allows a gen-

eral discussion of inhomogeneity-induced effects. In particular, we will extensively use the

inhomogeneity parameter to characterize inhomogeneity-induced optical clock shifts in the

next Chapter.



Chapter 3

Ultracold Collisions in Lattice

Spectroscopy

W
e have seen in the previous Chapter that spectroscopy of many particles can enhance

the signal-to-noise of the measurement by using many atoms simultaneously to

measure a spectroscopic feature. A major limitation to making the particles evolve equally

under the influence of the spectroscopy laser is that their response depends on the individual

atom’s motional state. This simple fact is in principle unavoidable if using fermionic particles

since their motional state cannot be the same if there is more than one particle per site.

The main reason for using fermionic particles for clock spectroscopy is that interactions

between identical particles (they only differ in their spatial wavefunction) are suppressed by

the Pauli exclusion principle. The suggestion of building an optical clock using Fermions arose

because one of the main limitations to the Cs frequency standard are interaction-induced

clock frequency shifts during the Ramsey dark time. In a Cs fountain clock, the atoms are

prepared in a MOT and then are launched upwards through a microwave cavity where the

first Ramsey pulse takes place. The atomic cloud slows under the influence of gravity and

falls back down through the same microwave cavity and a second Ramsey pulse interacts

with the atoms. The problem is that that the Cs atoms interact during this whole sequence.

In contrast, in an optical lattice clock, the atoms are confined to the sites of an optical lattice
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and their motional state is an eigenstate of the trapping potential. The thought is then that

the Pauli exclusion principle should prevent the egregious clock frequency shifts that limit

the Cs fountain clock accuracy.

With the increasing performance of the Sr optical lattice clock, in particular after reaching

accuracies below 10−15, our experiments have shown that the above picture is too simple.

When the single-site occupation number is varied by loading more or less atoms into the

optical lattice, we have found that the optical clock frequency experiences a shift proportional

to the atomic density.

How can we reconcile this experimental fact with the Pauli exclusion principle? Remember

that the Pauli exclusion principle only holds for indistinguishable particles. The Sr atoms

in our experiments are optically pumped into a single spin state and their electronic state is

prepared in either 1S0 or 3P0. This means that the particles are initially indistinguishable

in their internal degrees of freedom. However, because their external degrees of freedom are

distinguishable (they are in different motional states), they react to a perfectly homogeneous

spectroscopic excitation in an inhomogeneous way. If we consider two atoms in different

motional states, their Rabi frequency will be slightly different. This difference makes their

evolution on the Bloch sphere different and the atoms slowly become distinguishable as the

spectroscopic excitation progresses. As soon as they are not completely indistinguishable

anymore, they are allowed to interact. This interrogation-induced distinguishability is fun-

damental to the spectroscopic process and will lead to density-dependent clock frequency

shifts.

Our experimental data [9, 46] has led to multiple theoretical models that try to relate the

underlying interactions to the spectroscopic results [47–50]. We will present an introduc-

tion to the many-body model developed by A. Rey and co-workers [47], since its generality

allows specialization to all other published models. The understanding gained from apply-

ing the model to explain the experimental data has led to rapid progress in understanding

and controlling the density shifts in both our Sr system and NIST’s Yb lattice clock [4],

although the underlying interaction mechanics are very dependent on the atomic species



51

and the particulars of the system under consideration. The model has been generalized to

bosonic atoms [66] and predicts the paradoxical fact that density shifts can be suppressed

by increasing the interaction energy in a two-dimensional optical lattice. This suppression

has also been experimentally verified [51, 67] and work on measuring more of the important

interaction parameters is in progress.

Here, we will limit the discussion to the results obtained in a one-dimensional optical

lattice and present a general introduction to modeling the loss of indistinguishability and its

influence on spectroscopic lineshapes in Rabi spectroscopy.

3.1. Experimental procedure and results

For this experiment, all atoms were initially prepared in the same nuclear spin state and the

excited electronic state 3P0. The remaining ground state atoms were removed from the lattice

by scattering blue light on the 1S0-
3P1 transition. This preselection via the spectroscopy light

results in a slightly more homogeneous sample by removing atoms with very different Rabi

frequencies.

The atoms are prepared in either one of the mF = ±9/2 magnetic sublevels in the presence

of a small bias magnetic field, resulting in a splitting of about 250 Hz between the ±9/2

transitions. The spectroscopy light propagates along the lattice axis and is linearly polarized

along the magnetic field axis and the lattice polarization [22]. To initialize the stabilization

procedure, the polarization alternates between ±9/2 on every cycle and a spectroscopic trace

that contains both transitions is built up by scanning the detuning inwards from the outer

edges of both spectra. Each half of the initial spectrum is fit with a model lineshape and its

center, maximal amplitude and FWHM are extracted.

The clock laser is then frequency-stabilized to the clock transition; the stabilization pro-

cedure is shown schematically in Fig. 3.1. The sample is polarized to ±9/2 alternating every

two experimental cycles. Two points on each component lineshape are measured by detun-

ing the clock laser by η FWHM from the component center. The choice of η determines
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the final ground state fraction Pg targeted during each interrogation. Four values of Pg are

obtained at the four lock points indicated by the green circles in Fig. 3.1 for η = 0.5. The

four values are fed into two separate digital servos that estimate the component line centers.

The estimate for line width and peak excited state fraction are assumed to be constant. The

servos adjust the detuning steps such that all four lock points have equal Pg when measured.

The clock transition frequency is then defined by the average of the two component line

center estimates. In this way, the atomic response stabilizes the noisy clock laser to the atomic

reference and makes the clock frequency first-order insensitive against anymF -antisymmetric

systematic effects such as a varying bias field.

Figure 3.1.: The clock laser is stabilized to a spectroscopic lineshape by alternatively prob-

ing at a negative or positive detuning and comparing the final ground state fraction. The

sample is alternately polarized into mF = ±9/2 every two cycles. A separate servo for

each case equalizes the final ground state fraction. A virtual clock transition frequency is

defined by the average of both servoed line centers.

As we discussed in the introduction to this Chapter, the density-related clock frequency

shifts considered here arise from interactions between the atoms during the spectroscopic

pulse. The shifts are quite small (10−16 level) and a lot of averaging is necessary to determine

their magnitude accurately. The shifts were measured by modulating the atomic density
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every 30 s for an experimental cycle time of ∼1 s which corresponds to a locking duty cycle

of ∼4 s. The (virtual) Sr clock frequency was continuously compared against the NIST Ca

standard over the optical fiber link [31, 46] and the difference between consecutive segments

of low and high density clock frequency data was averaged over long time scales.

By varying η, the locking point on the lineshape was varied. When scanning η in fine

enough steps, the measurement determines the differential line shape asymmetry between

low and high density settings. It is important to note that the value of mF is assumed to

have no influence on the component lineshapes. Both clock states have no electronic spin

(J = 0) and the only difference between different magnetic sublevels is the orientation of

the nuclear spin with respect to the bias field. The collision process is determined by the

interaction of the electron shells. Because of the full outer electronic shells in the spinless

states, the coupling between electronic spin and nuclear spin is extremely weak and it is very

unlikely that a collision event induces a nuclear spin flip. For these reasons, the value of mF

should have no influence on the scattering process and all component lineshapes look the

same.

The experiment was performed over a range of locking points η and for two sample tem-

peratures. Each setting of η required at least a full day of continuous averaging against

the Ca standard. The resulting clock frequency shift data [46] at the reference density

ρ0 = 1 × 1011 cm−3 is shown in Fig. 3.2. We note two features: (1) the magnitude of the

clock frequency shift decreases with locking points closer to the peak of the line profile; (2)

the magnitude of the shift increases with increasing temperature.

In the remainder of this Chapter, we will develop a model that describes the spectroscopic

response of N particles in the presence of interactions. Using the N -particle model, we

can then make predictions about the relative influence of interactions and Rabi frequency

inhomogeneity on the lineshapes.
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Figure 3.2.: Clock frequency shift [46] as a function of locking point on the spectroscopic

lineshape when varying the single-site density. The shift decreases when locking closer to

the top of the peak and the shift increases for higher sample temperature. The data are

scaled to the reference density ρ0 = 1× 1011 cm−3.
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3.2. Spin model

In this Section, we will derive an N -particle pseudo-spin model that can be used to de-

scribe the spectroscopic process within a single lattice site. The derivation here is based

on the theory by A. Rey [47], which can be extended to bosonic atoms [66] and has been

successfully used to model the s-wave collisional dynamics in our system for both one- and

two-dimensional optical lattices [51, 67]. More recently, the theory has also been adapted to

describe p-wave collisions in a Yb optical lattice clock [68].

For nuclear-spin-polarized fermionic atoms in a single-site, the general description requires

a fully many-body Hamiltonian [47]

H =
∑

α∈{e,g}

∫

d3r Ψ̂†α

[

− 1

2m
∇2 + V (r)

]

Ψ̂α

+
~ωeg

2

∫

d3r (ρ̂e − ρ̂g)−
~Ω

2

∫

d3r
[

Ψ̂†ee
−i(ωLt−k·r)Ψ̂g + h.c.

]

+ u−eg

∫

d3r ρ̂eρ̂g,

(3.1)

that includes both ground (g) and excited (e) electronic states. Here, the field operator Ψ̂†α

creates a fermion in electronic state α, and the density operator ρα ≡ Ψ̂†αΨ̂α measures the

atomic density in state α. The first term describes the kinetic energy within the single-site

potential V , which we assume to be the same for both electronic states. The second and third

terms describe the energy splitting ~ωeg and the bare Rabi frequency coupling Ω0 between

the clock states with laser frequency ωL. Here, Ω0 is defined as the Rabi frequency in the

absence of any motional effects. The final term introduces the fermionic s-wave interactions

between ground and excited state atoms via u−eg = 4π~2a−eg/m. The singlet scattering length

a−eg describes the energy shift of two atoms in an antisymmetric superposition of electronic

states. For bosonic atoms, more interaction terms would need to be included [66].

To specializeH to the situation at hand, we expand the field operators in terms of fermionic

creation (annihilation) operators c†α,n (ĉα,n) that create (destroy) a particle in electronic state

α and motional state n. We find

Ψ̂α =
∑

n

ĉα,nφn(r), (3.2)
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using motional state eigenfunctions φn. In Chapter 2, we found that the longitudinal mo-

tional wavefunctions are well described by the cut-off Mathieu functions and that the trans-

verse degrees of freedom can be modeled as a degenerate two-dimensional harmonic oscillator.

We assume separable wave functions along the trap axes x̂i and write

φn(r) =
∏

i

ψni
(xi), (3.3)

An important limitation to the applicability of this operator expansion is that we have

assumed particles to be in particular motional eigenstates. The eigenenergy picture is not

necessarily valid when considering spectroscopic time scales shorter than typical trap oscil-

lation periods. Here, a typical spectroscopy time scale is 80 ms and a typical longitudinal

(transverse) oscillation period is 12 µs (2 ms). For time scales ∼2 ms, we cannot consider the

atoms to be in a transverse motional eigenstate and wavepackets of many motional states

would have to be considered. In this regime, any inhomogeneity-induced collisions should

also be suppressed which can be explained by a local picture. The atoms are effectively

confined to a volume determined by their velocity and the spectroscopy pulse time. If this

volume is significantly smaller than the trapping volume, the excitation process becomes

more homogeneous. No collisions can occur since the atoms cannot travel far enough to

encounter collision partners that have been excited in a slightly different way. Here, we will

focus on long pulse times, use motional eigenstates and neglect to describe such effects. How-

ever, these effects would become important when trying to describe Ramsey spectroscopy

with short pulse times such that interactions only have to be considered during the Ramsey

dark time.

Using the operator expansion, we find a simplified Hamiltonian under the rotating wave

approximation in a rotating frame at the laser frequency ωL

H =− ~δ
∑

n

ĉ†e,nĉe,n +
∑

α,n

Enĉ
†
α,nĉα,n −

∑

n

~Ωn

2

(
ĉ†g,nĉe,n + h.c.

)

+ u−eg
∑

n1,n2,n3,n4

An1,n2,n3,n4 ĉ†e,n1 ĉe,n2 ĉ†g,n3 ĉg,n4 ,
(3.4)

with laser detuning δ ≡ ωL − ωeg, and motional-state dependent Rabi frequency Ωn as

in Eq. 2.6. The interaction term is proportional to the number of ground and excited state
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atoms and the probability amplitude of a given collision process is given by the wave function

overlap between the motional states involved

An1,n2,n3,n4 ≡
∏

i

∫ ∞

−∞
dxi ψ

∗
n1
i
(xi)ψn2

i
(xi)ψ

∗
n3
i
(xi)ψn4

i
(xi). (3.5)

Since the probability amplitude is an overlap integral over different motional states, we

can immediately conclude that the dominant contributions will arise from terms where the

nj are as similar as possible. However, there are still many contributing terms, and it is

necessary to simplify the sum considerably. The complexity of the collision term for N ≥ 2

is the main limitation in modeling the 1D optical lattice. However, a detailed discussion

of the assumptions made will lead to a simpler model that contains all other density shift

models in the literature as limiting cases [9, 48, 50].

If we require strict energy conservation for elastic collisions, the energy of the creates

particles 1 and 3 has to be equal to the destroyed particles 2 and 4. Thus the motional state

indices nj in the interaction term are constrained by

En1 + En3 = En2 + En4 . (3.6)

We consider the collision process as a simultaneous motional index conversion

n2 7→ n1,

n4 7→ n3,
(3.7)

and would like to limit the allowed index mappings to simplify the collision term. We make

the following assumptions

(i) Although the anharmonicity along the transverse directions is small for typical tem-

peratures, the full trap potential is anharmonic along each axis (see Section 2.7). The

anharmonicity suppresses collision processes that conserve energy by changing two

quantum by forbidding simultaneous change of two quantum numbers within index

vector nj to conserve energy. In other words, processes, where one particle reduces

its motional quantum number and the other particle increases its motional quantum
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number according to

(n1
k = n2

k +m ∧ n4
k = n3

k −m) ∀ k,m (3.8)

are forbidden.

(ii) We assume that the degeneracy in the transverse degrees of freedom is lifted and that

there are no accidental degeneracies such that

En 6= Em ∀ n,m. (3.9)

Under this assumption, the motional quantum numbers n uniquely determine the

energy of a state.

(iii) We assume that only the full motional quantum number vector can be exchanged

during a collision. Processes that only swap the motional state along one axis are

forbidden.

Within these assumptions, the only allowed collision processes are

n2 = n1 ∧ n4 = n3,

n2 = n3 ∧ n4 = n1,
(3.10)

which conserve the number of particles occupying each mode n.

Since we consider fermionic particles, initially, there is only particle in each occupied mode.

Under our assumptions, this fact does not change during the spectroscopy process which

allows us to parametrize the Hamiltonian by a fixed set of motional states. The population

dynamics can then be calculated within that set of modes and a final description of a thermal

sample can be obtained by thermal averaging over the motional modes considered. We

conclude that the drastic simplifications in the collision term are necessary to separate the

motional dynamics from the electronic degrees of freedom in the presence of interactions.

The interaction term becomes

u−eg
∑

n 6=m

(
An,n,m,m ĉ†e,nĉe,nĉ

†
g,mĉg,m + An,m,m,n ĉ†e,nĉe,mĉ

†
g,mĉg,n

)
. (3.11)
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Using the symmetry of A and defining the per-mode number operator N̂α,n ≡ ĉ†α,nĉα,n, we

can simplify this term to

u−eg
2

∑

n 6=m

An,n,m,m

(

N̂e,nN̂g,m + N̂e,mN̂g,n + ĉ†e,nĉe,mĉ
†
g,mĉg,n + ĉ†e,mĉe,nĉ

†
g,nĉg,m

)

. (3.12)

We introduce a per-mode pseudo-spin operator Sn with components

S1
n
≡ 1

2
(ĉ†e,nĉg,n + ĉ†g,nĉe,n),

S2
n
≡ 1

2i
(ĉ†e,nĉg,n − ĉ†g,nĉe,n),

S3
n
≡ 1

2
(ĉ†e,nĉe,n − ĉ†g,nĉg,n) =

1

2
(N̂e,n − N̂g,n).

(3.13)

Noting that N̂e,n + N̂g,n = 1 and using the fermionic anticommutator relations ĉj,nĉ
†
k,m +

ĉ†k,mĉj,n = δj,kδn,m we obtain

S3
n
S3
m

− 1

4
1 =

1

4
(N̂e,n − N̂g,n)(N̂e,m − N̂g,m)− 1

4
(N̂e,n + N̂g,n)(N̂e,m + N̂g,m)

= −1

2
(N̂e,nN̂g,m + N̂g,nN̂e,m),

S1
n
S1
m

+ S2
n
S2
m

= −1

2
(ĉ†e,nĉe,mĉ

†
g,mĉg,n + ĉ†e,mĉe,nĉ

†
g,nĉg,m).

(3.14)

This allows us to write the interaction term as a spin-spin interaction in the electronic

pseudo-spins

−u−eg
∑

n 6=m

An,n,m,m(Sn · Sm − 1/4). (3.15)

Since the motional quantum number distribution is conserved, the kinetic energy term only

introduces a constant energy shift

∑

α,n

Enĉ
†
α,nĉα,n =

∑

n

En(N̂e,n + N̂g,n) =
∑

n

En, (3.16)

and can be omitted.

We finally find a simplified N -particle pseudo-spin Hamiltonian that is parametrized by

the initial motional state configuration {n1, . . . ,nN} under the collision term assumptions

given in the above derivation. The Hamiltonian is

H/~ = −δ
∑

n

S3
n
−
∑

n

ΩnS
1
n
−
∑

n 6=m

Un,m(Sn · Sn − 1/4), (3.17)
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with Un,m ≡ u−egAn,n,m,m/~. Note that this Hamiltonian is basically a Heisenberg Hamil-

tonian used to model spin dynamics in a solid state system:

H = −gµBB ·
∑

i

Si −
1

2
J
∑

〈i,j〉
Si · Sj. (3.18)

Here, the set of occupied motional modes represents the sites of the Heisenberg lattice.

The system here has more inhomogeneity than Eq. 3.18, since the “external field” B is

site-dependent. In addition, the interaction term J becomes site-dependent and we allow

longer-range interactions than between nearest neighbors. However, we can still define a

metric of nearness between the motional modes, since the interaction term Un,m decays

quickly according to
∏

j |nj −mj|−1 [51]. Hamiltonians of the general form of Eq. 3.17 have

been extensively studied in condensed matter physics to calculate the magnetization in solid

state materials under the influence of external and internal fields. For instance, a classic

paper by Holstein and Primakoff [69] discusses the eigenvalues and solutions of an even more

general Hamiltonian than Eq. 3.17 for a large number of sites. The Hamiltonian Eq. 3.17

is also very similar for the one used in describing spectroscopy of nitrogen-vacancy color

centers in diamond that couple to a background spin bath [70]. For our purposes, we can

simulate the dynamics of Eq. 3.17 directly for small N , since typical atom numbers per site

are small. For larger samples, a solid-state type approximation method might become more

appropriate.

We can gain a simple understanding of the pseudo-spin dynamics produced by H by letting

the Rabi frequencies Ωn 7→ Ω be homogeneous and neglecting the interactions Un,m 7→ 0. If

we introduce a total spin operator

S ≡
∑

n

Sn, (3.19)

we find

H/~ = −δS3 − ΩS1 ≡ −V · S, (3.20)

with V ≡ (Ω, 0, δ)⊤. In the Heisenberg picture, the expectation values of the total spin

follow

〈Ṡ〉 = −i〈[S, H/~]〉. (3.21)
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Using the commutation relations for the components of angular momentum operators [Sk, Sℓ] =

i~
∑

m ǫkℓmS
m [71], we find the equations of motion for an N -particle Bloch vector

〈Ṡ〉 = −V × 〈S〉 (3.22)

which describes a simple rotation of 〈S〉 around axis V . The rotation conserves the length

of the Bloch vector |〈S〉| = N/2.

The same result is obtained when considering the Hamiltonian in Eq. 3.20 as a sum of N

identical single particle Hamiltonians. Each single-particle pseudospin evolves in the same

way within its own Bloch sphere and their sum evolves in the same way. If we allow a Rabi

frequency inhomogeneity again, each particle will evolve within its on Bloch sphere according

to its Rabi frequency Ωn. Each individual evolution is norm-conserving, but the ensemble

of Bloch vectors dephases and rephases according to the distribution of Rabi frequencies.

Summing the individual Bloch vectors produces a total Bloch vector that exhibits periodic

changes in length while it rotates on the total Bloch sphere. These inhomogeneous dynamics

are exactly what we derived in Sec. 2.9 and can be qualitatively characterized by the mean

Ω̄ ≡ N−1
∑N

j=1 Ωnj and standard deviation ∆Ω ≡
[

(N − 1)−1
∑N

j=1(Ωnj − Ω̄)2
]1/2

of the

Rabi frequency distribution. Note that the Rabi frequency distribution moments here are

not defined with respect to a thermal distribution, but with respect to the set of initially

populated motional modes under consideration.

If we limit ourselves again to homogeneous Rabi frequencies and homogeneous interactions,

another interesting limit of the dynamics can be explored. We let

H/~ = −V · S − US · S = −(V − US) · S. (3.23)

The interaction thus acts like an additional external field that depends on the current spin

state. If we replace the self-interaction term with the solution for U = 0, we obtain

H/~ ≃ −V · S − U(V × 〈S〉) · S. (3.24)

In the Heisenberg picture, this iterative approximation leads to

〈Ṡ〉 = −V × 〈S〉 − U(V × 〈S〉)× 〈S〉, (3.25)
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which is known as the Landau-Lifshitz equation for the magnetization of a solid under the

influence of an effective magnetic field V in the presence of damping (proportional to U).

This equation was first introduced phenomenologically and includes the simplest nonlinear

term that leads to damping of the magnetization [72]. The Landau-Lifshitz equation is

widely used to model the ferromagnetic response of solids [73, 74]. We conclude that our

problem at hand is very similar to what happens in an isolated magnetized domain of a solid

when a magnetic field is applied.

Including inhomogeneous interactions makes algebraic calculations significantly more dif-

ficult, but for low N , the spin Hamiltonian is still relatively easy to simulate using numerical

matrix calculations. Matrix representations of the spin operators are easily obtained by

tensor products1

Sj
nk = I2 ⊗ · · · ⊗ I2

︸ ︷︷ ︸

k−1

⊗1

2
σj ⊗ I2 ⊗ · · · ⊗ I2

︸ ︷︷ ︸

N−k

Sj =
N∑

k=1

Sj
nk

(3.26)

where I2 is the 2-dimensional identity matrix and σj is the j-th Pauli matrix. Using these 2N -

dimensional matrices to represent H makes it immediately obvious that simulating the full

evolution of more than a few particles with inhomogeneous Rabi frequencies and interactions

is hard. Note that the Hamiltonian should only be used with a pure pseudo-spin polarized

initial state

|ψ〉0 = ⊗N
j=1|g〉 or ⊗N

j=1 |e〉, (3.27)

which guarantees the assumptions about motional mode populations that led to the spin

Hamiltonian. In the spin-matrix representation, the polarized states correspond to the first

1Kronecker products of matrices can be calculated with kron in Matlab and KroneckerProduct in Math-

ematica, for example. More optimized object-oriented representations of tensor products can be found

in specialized toolkits such as the Matlab Quantum Optics toolbox (http://qwiki.stanford.edu/

index.php/Quantum_Optics_Toolbox) or C++QED (http://www.uibk.ac.at/th-physik/qo/research/

cppqed.html)
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and last entry in the state vector. The propagator is a simple matrix exponential

U(t− t0) = exp[−iH/~(t− t0)] (3.28)

and the excited state fraction is given by

Pe ≡ N−1〈Ne〉 = N−1〈S3 +
N

2
I2N 〉

= N−1[U(t− t0)ψ0]
†[S3 +

N

2
I2N ][U(t− t0)ψ0]

(3.29)

Thermal averaging of Pe is done by averaging results for different sets of initial motional

modes {nj} according to their Boltzmann factor
∏N

j=1 e
−E

n
j /kBT . To model a realistic sam-

ple, we also have to average the results of calculations over a distribution of N over the

occupied lattice sites.

3.3. Spin model fit to experimental data

The experimental data in Fig. 3.2 was fit with the N -particle spin model derived in the last

Section by A. Rey and coworkers [47]. The result of thermal averaging for T = 1 µK (3 µK)

is shown in Fig. 3.3 as the pink (blue) shaded region. The uncertainty in the fit is mostly

due to allowing a 10% variation in the pulse area. Each data point consists of at least one

full day of averaging against the NIST Ca clock. A conservative estimate of the clock laser

intensity variation on long time scales results in an uncertainty of about 10% on the π-pulse

condition. For the fits here, the singlet scattering length is set to a−eg = 200 a0, which is

consistent with the unitarity limit given by the thermal wavelength

λT
2π

≡ ~/
√

2πmSrkB(T + Tzp)

≃ 221 a0 @ T = 3 µK

(3.30)

where Tzp ≃ 3.5 µK corresponds to the ground state energy of the single-site potential.

The inset of Fig. 3.3 shows the 1 µK Rabi flopping data from Fig. 2.8 and the dotted purple

line corresponds to the fit from the same figure using ∆Ω/Ω̄ = 0.05. The solid blue curve

is a fit using the thermally averaged N -particle model. To match the data when including
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Figure 3.3.: (Figure from Ref. [47]). The shaded regions indicate fits of the experimental

data in Fig. 3.2 with the thermally averaged N -particle spin model. The singlet scattering

length is set to the unitarity limit a−eg = 200 a0 and the uncertainty region results from

allowing the π-pulse condition to vary by 10%. The inset also shows a fit of the Rabi

flopping data in Fig. 2.8 with the full N -particle spin model. The dashed black curve is

the result for setting a−eg = 0 and the solid blue curve is the fit for a−eg = 200 a0 when

using ∆Ω/Ω̄ = 0.15. The dotted purple line results when extracting ∆Ω/Ω̄ = 0.05 from

the theory in Sec. 2.9 and setting a−eg = 0.
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interactions, the Rabi frequency inhomogeneity has to be increased to ∆Ω/Ω̄ = 0.15. For

comparison, the black dashed curve shows the N -particle model with ∆Ω/Ω̄ = 0.15 when

the interactions are neglected. Note that all three fits agree almost perfectly during the first

Rabi cycle, because ∆Ω/Ω̄ is still small enough to take several cycles to develop a significant

effect.

We conclude that it is necessary to include interactions to fit carrier Rabi flopping in the

presence of Rabi frequency inhomogeneity. Note that the agreement between the data and the

theoretical model is fair. However, the large amount of averaging necessary to describe the

spectroscopy makes it hard to make general statements. In particular, predicting the behavior

of the thermally averaged N -particle model from simulations of the 2-particle Hamiltonian

are not reliable. Predicting a zero crossing (or no zero crossing) from the two-particle model

as a function of locking point is too simplistic.

Even though the optical lattice spectroscopy has been made as clean as possible, the

large number of degrees of freedom still requires a full model. Performing optical lattice

spectroscopy for optical frequency standards still requires a precise measurement of the

density shift. This important systematic cannot be neglected, but we will show that the

density shift can be suppressed by engineering the trapping potential.

3.4. Two particles

Although the two-particle model does not easily generalize to N particles, it is instructive

to consider the dynamics for N = 2 since several parameter regimes become obvious. The

matrix representation of H for N = 2 is

H/~ =
1

2












−2δ −Ω2 −Ω1 0

−Ω2 U12 −U12 −Ω1

−Ω1 −U12 U12 −Ω2

0 −Ω1 −Ω2 2δ












(3.31)
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where the subscripts j indicate motional modes nj and we have used Un,m = Um,n. The

matrix is written in the tensor product basis |g1g2〉, |g1e2〉, |e1g2〉, |e2e2〉. We see that the

interactions only manifest in the e− g subspace. The tensor basis is the most convenient for

numerical calculations, but for our purposes, H becomes much more informative in a singlet

and triplet basis of symmetrized and antisymmetrized pseudo-spin superpositions. The basis

transformation is defined by

P =












1 0 0 0

0 0 0 1

0 1/
√
2 1/

√
2 0

0 1/
√
2 −1/

√
2 0












, (3.32)

which rotates the e − g subspace into a symmetric and antisymmetric superposition |±〉 ≡
(|eg〉 ± |ge〉)/

√
2 and rearranges the Hamiltonian such that the triplet states |ee〉, |gg〉, |+〉

(symmetric under particle exchange) form the top left block.

H2 ≡ ~
−1PHP−1 =












−δ 0 −Ω̄/
√
2 ∆Ω/

√
2

0 δ −Ω̄/
√
2 −∆Ω/

√
2

−Ω̄/
√
2 −Ω̄/

√
2 0 0

∆Ω/
√
2 −∆Ω/

√
2 0 U12












, (3.33)

where we have defined Ω̄ ≡ (Ω1 +Ω2)/2 and ∆Ω ≡ (Ω1 −Ω2)/2. The antisymmetric (under

particle exchange) singlet state |−〉 is the only state that interacts, as shown by U12 in the

bottom right corner of H2. This Hamiltonian was first considered in the context of optical

clock density shifts in Ref. [48]. As we have seen, it is not general enough to describe thermal

averaging over motional modes and sites with N > 2. As we will see, it is nevertheless an

important conceptual tool to understand the system dynamics.

From Eq. 3.33, we can immediately see that if the system is initially prepared in a pseudo-

spin polarized state |ee〉 or |gg〉, the induced dynamics will be constrained to the non-

interacting triplet manifold unless there is a Rabi frequency inhomogeneity ∆Ω that couples

to the interacting singlet. Unless there is non-zero Rabi frequency inhomogeneity, the inter-

action cannot influence the lineshape.
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To simulate the influence of nonzero inhomogeneity and interactions for nonzero inhomo-

geneity and interactions, it is useful to rescale H2 by Ω̄. Figure 3.4(a) shows the total spin

dynamics for ∆Ω/Ω̄ = 0.4 and u = U12/Ω̄ = 0.4 when δ/Ω̄ is scanned across the resonance.

The system is prepared in the |ee〉 state at the south pole of the Bloch sphere and the evolu-

tion of the Bloch vector from t = 0 to t = π/Ω̄ is shown as a colored trace. The trace colors

are interpolated from red δ/Ω̄ = −2 (red detuning) to blue δ/Ω̄ = 2 (blue detuning). The

light green trace indicates δ = 0 and we see that even for two particles, the individual Bloch

vector dephasing can be significant. Panel (b) shows the resulting spectroscopic line shape

for t = π/Ω̄: the maximal excited state fraction is attenuated and the spectrum becomes

skewed. Switching the sign of u mirrors the lineshape around δ = 0.
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(a) Total spin expectation value 〈S〉 on Bloch

sphere for detuning δ/Ω̄ ∈ (−2, 2). Red (blue)

traces indicate the evolution of 〈S〉 for Ω̄t ≤ π

and negative (positive) values of δ.
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(b) Spectrum of 〈S3〉 versus detuning for the same

conditions as in panel (a) at Ω̄t = π.

Figure 3.4.: Two-particle spin model for ∆Ω/Ω̄ = u = 0.4, where 〈S3〉 = −1(+1) indicates

that both particles are in the ground (excited) state.

The lineshape skewing is very dependent on the interplay of ∆Ω/Ω̄, u, and the pulse time.

The position of the locking points on the central fringe adds to the complexity. This complex

interplay makes it difficult to formulate general descriptions that do not require numerical
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simulation. The spectroscopic lineshape parameter-dependence becomes even more complex

when considering a Ramsey scheme. Ramsey pulses that are short enough such that interac-

tions can be neglected require a separate description not covered by either the full spin-model

or the simpler two-particle model in this Section. In the presence of interactions, a Ramsey

sequence can easily be generated by chaining the spin-model propagators (Eq. 3.28). How-

ever, even long dark times do not simplify the resulting lineshape parameter dependence

significantly.

A full description of the spectroscopic lineshape in the presence of interactions remains

a difficult problem as long as all the parameters in H are on similar orders of magnitude.

We will show that the description becomes much simpler when the interaction parameter u

dominates over all other energy scales in the Hamiltonian.

3.5. Interaction-dominated regime

Another instructive way of looking at the two Hamiltonian is a dressed basis at the mean

Rabi frequency Ω̄. The dressed eigenstates can be obtained by diagonalizing H2 when letting

∆Ω 7→ 0. As discussed in the last Section, the triplet manifold becomes decoupled from the

singlet state and the triplets are split by twice the effective Rabi frequency
√
Ω̄2 + δ2. If we

label the dressed states by their original triplet labels, we find the situation schematically

shown in Fig. 3.5(a). When admitting a small inhomogeneity again, the spin-polarized

dressed states |ee〉 and |gg〉 can couple to the singlet via ∆Ω. The singlet |−〉 is split off

from |+〉 by the interaction energy U = U12. Since all energy scales are on similar orders

of magnitude, the ∆Ω-induced dynamics become a detuning-dependent interference pattern

between all allowed transitions in the energy diagram. The interference mainly occurs within

the central fringe of the spectroscopic lineshape. This complex interplay is exactly why the

lineshape and thus the density shift is so parameter-dependent.

The situation simplifies drastically if we allow the interaction energy U to become large

with respect to Ω̄ and ∆Ω. In the small detuning regime δ ≪ U , the singlet becomes
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(a) Dressed states and coupling when the inter-

action U ≪ Ω̄,∆Ω is a perturbation. Transfer

between the Ω̄-dressed triplets and the singlet

state in the perturbative regime resulting in a

modified lineshape.

(b) When U is the largest energy scale, the dressed

triplets cannot couple to the singlet and U does

not influence the lineshape.

(c) Same as panel (b), but if we detune far enough,

resonant transfer with ∆Ω between one of the

triplets and the singlet results in a spectroscopic

feature when δ = U .
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(d) Example spectrum for N = 2, u = 8, ∆Ω/Ω̄ =

0.4. The interaction separates into its on spec-

tral feature and does not perturb the carrier

spectrum.

Figure 3.5.: Dressed triplet states for N = 2 with mean Rabi frequency Ω̄ and singlet state

that is separated by the interaction energy U . Panel (a) shows the regime where U is

a perturbation on the Rabi dynamics. Panel (b) indicates that a large interaction will

suppress transfer to the singlet, and thus suppress effects of U on the lineshape. Panel (c)

shows that if U ≫ Ω̄, a detuning of δ = U will produce resonant transfer to the singlet

and result in a single well-separated interaction sideband. An example spectrum for case

(c) is shown in panel (d).
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separated from the triplets by a large energy gap, as shown in Fig. 3.5(b). Transitions

between triplets and the singlet are in principle still allowed, but their amplitude becomes

strongly suppressed by the energy separation as long as |U | ≫ ∆Ω. In this regime, the

coupling between triplets and singlet can be treated perturbatively for small detuning. In

other words: the influence of U on the central fringe is suppressed.

However, if we increase the detuning until the triplet splitting matches the singlet energy,

resonant transfer between one of the stretched triplets and the singlet becomes allowed. This

situation is shown in Fig. 3.5(c). The Rabi frequency inhomogeneity allows transitions to

the singlet, even if ∆Ω ≪ Ω̄, U . The effect on the spectrum is shown in panel (d), where

we let U/Ω̄ = 8 and ∆Ω/Ω̄ = 0.4. The central fringe is symmetric and not influenced. At

δ = U , a separated interaction sideband appears, corresponding to resonant Rabi flopping

between a stretched triplet and the singlet. In this way, larger interactions can suppress the

influence of interactions on the relevant parts of the spectroscopic lineshape.

The interaction energy U can be strongly enhanced in a two-dimensional optical lattice

where the atoms are confined to the lowest motional state in two axes. The overlap integrals

contributing to U become less suppressed and U can become the dominating energy scale in

the Rabi flopping dynamics. A density shift suppression by more than an order of magnitude

has been shown recently [51] in a two-dimensional optical lattice, and separated interaction

sidebands have been observed [67].

These new developments show that the presence of atomic interactions does not necessarily

put a hard limit on the number of atoms that can be used to enhance the spectroscopic

signal-to-noise ratio. The combination of precision measurement and ultracold many-body

systems will allow the future development more precise and also more accurate optical lattice

frequency standards.

On the other hand, many new proposals for quantum simulation with alkaline earth atoms

will have to rely on manipulation of the internal and external atomic degrees of freedom with

high fidelity. The measurement, control, and understanding of the density shift demonstrates
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that combining insights from different fields yields a better understanding of all of them. In

this spirit, we will apply the high precision of Sr optical lattice clocks to study fundamen-

tal physics by using the clock data to put limits on present day variation of fundamental

constants in the next Chapter.





Chapter 4

Variation of Fundamental

Constants

M
any landmark physical experiments have succeeded in finding new physical phenom-

ena, particles, or forces by testing accepted theories such as Newton’s theory of

gravitation. The surprising results from such experiments have led to improved theories of

physics, such as general relativity. Within the last century, general relativity has become

one of the most well-tested physical theories. One of the main driving forces behind high-

accuracy tests of general relativity are theories beyond the standard model, because their

scope can be experimentally constrained by null results from high-accuracy tests.

Fundamental constants determine the relative scale of different physical forces. For in-

stance, the fine-structure constant α is the coupling constant between electromagnetic fields

and matter, and also sets the energy scale of electronic transitions in atoms. Since the equa-

tions of physics are parametrized by fundamental constants such as α, a natural question

to ask is whether they have to have particular numerical values such as α = e2/(4πǫ0~c) ≃
1/137, with electron charge e, vacuum permittivity ǫ0, Planck’s constant h = 2π~, and speed

of light c.

Such questions arise in the course of trying to describe all physical forces in a unified way

or in modeling the physics of the early universe. The experimental search for variations
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in fundamental constants has gained much momentum from an analysis of astronomical

data from quasar spectra which indicated a non-zero fractional variation δα/α ∼ 10−6 on

cosmological timescales [75], although later analyses showed a much smaller variation [76].

Limits on variation of α on geological timescales have also been extracted from analyses of the

natural fission reactor at Oklo [77]. Present-day limits on variations of fundamental constants

can be obtained from long-term absolute frequency records of atomic clocks, since atomic

transition frequencies are sensitive to fundamental constants such as α. A full review of this

subject is beyond the scope of this introduction, but many reviews [78–80] and extensive

lecture notes are available [81].

In this Chapter, we will analyze the international frequency record obtained from absolute

frequency measurements of 87Sr optical lattice clocks to put limits on present-day drifts in

α and the electron-proton mass ratio me/mp [30, 82–85]. We also check the same data for

a violation of local position invariance by testing for a coupling of fundamental constants to

the solar gravitational potential [30, 86–89].

4.1. Sensitivity constants

The energetic structure of an atom is determined by the interaction between many fun-

damental particles: quarks form the nucleons and nucleons bond via nuclear forces. The

electromagnetic charge Ze of the resulting atomic nucleus determines how many electrons

can be bound into electronic shells orbiting the nucleus. Almost all chemistry can then

be understood as resulting from the energetic structure of this cloud of electrons. Most of

atomic physics and chemistry is based on the fact that the outermost (valence) electrons

determine an atom’s behavior almost completely. However, their quantized energy structure

is of course dependent on the full underlying many-body system.

Modern atomic structure calculations can model the electron cloud ab-initio. The resulting

valence electron energy levels relate the wavelengths of spectroscopic transitions in atoms

to the underlying physics and especially the fundamental constants. By continual checks
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against experimental data across many atomic species, these calculations have become very

accurate over the last decades. Because of their accuracy, one can extract the sensitivity of

the resulting electronic structure to the value of the underlying fundamental constants.

Assume that we are interested in a dipole-allowed optical transition. In atomic units,

the transition frequency can be expressed via the atomic unit of energy, the Hartree energy

Eh ≃ 27.2 eV which is roughly twice the energy required to dissociate an electron from a

proton. The resulting expression for the atomic unit of frequency

ωopt ∝ Eh/~ = α2mec
2

~
, (4.1)

exhibits the energy scale of electronic transitions as the product of the Compton frequency

of the electron mec
2/~ and α2.

The notation here is slightly modified from the review article by S. Lea [80] to conform

better to the notation used in our paper [8]. There is no standard notation for the sensitivity

constants and functions mentioned here. The confusing use of the SI value of the Rydberg

cR∞ to represent variations in frequency units is avoided, especially when talking about

frequency variations in the Cs standard. Since it is the current definition of frequency, there

can be no frequency variation of the Cs standard. Clock comparisons are either performed

against the Cs standard to obtain absolute frequencies or they are not. If they are not, then

the result of a clock comparison cannot be represented in SI frequency units. Instead, the

result of a clock comparison must be converted to a dimensionless fractional frequency ratio.

Any absolute frequency measurement is a comparison of a frequency ω to the Cs frequency

ωCs and the measurement also returns the dimensionless value ω/ωCs. Only with the defi-

nition 1 s ≡ 9, 192, 631, 770 × (2π/ωCs) can such a result be converted to a frequency in SI

units, but we emphasize that in reality all such experiments measure dimensionless frequency

ratios.

A fractional variation in measured dimensionless fractional frequencies can be expressed

as the logarithmic derivative

δ(ω/ωCs)

ω/ωCs

= ∂t lnω/ωCs = ∂t lnω − ∂t lnωCs. (4.2)
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We now write the proportionality factor in Eq. 4.1 as a dimensionless function F ({ηk}),
where {ηk} denominates the set of fundamental constants ηk determining the atomic struc-

ture:

ω = F ({ηk})× (units)

ωCs = FCs({ηk})× (units).
(4.3)

A dimensionless variation in these frequencies is then seen to separate into a variation of F

and a variation of the units used in the atomic structure calculation

∂t lnω = ∂t lnF ({ηk}) + ∂t ln (units)

∂t lnωCs = ∂t lnFCs({ηk}) + ∂t ln (units).
(4.4)

from which we see that the units in the atomic structure calculation do not matter when

comparing against the experimental data:

δ(ω/ωCs)

ω/ωCs

= ∂t lnω − ∂t lnωCs = ∂t lnF ({ηk})− ∂t lnFCs({ηk}). (4.5)

Any measured fractional frequency variation can thus be directly compared to the sensitivity

calculations from the atomic structure calculations (usually done in atomic units).

The numerical variation in atomic structure calculations is fit with a simple model

F ({ηk}) = const×
∏

k

ηckk , (4.6)

and numerical constants ck are extracted for the transitions of interest. In this parametriza-

tion,

∂t lnF ({ηk}) = ∂t
∑

k

ln ηckk =
∑

k

ck∂t ln ηk ≡
∑

k

ck
δηk
ηk
. (4.7)

The fractional frequency variation of a species j compared against the Cs standard thus

becomes a simple linear combination of the fractional variation of fundamental constants

δ(ωj/ωCs)

ωj/ωCs

=
∑

k

(cjk − cCs
k )

δηk
ηk
. (4.8)

In this way, we can extract information about δηk/ηk from absolute frequency measurements

since the sensitivity constants ck are known.
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Also note that any other atomic clock comparison producing dimensionless frequency ratios

can be checked for variation in fundamental constants via

δ(ωj/ωi)

ωj/ωi

=
∑

k

(cjk − cik)
δηk
ηk
. (4.9)

4.1.1. Sensitivity of the 133Cs clock transition

Which fundamental constants are important for the 133Cs standard based on a hyperfine

transition? Hyperfine transition energies are given by the nuclear magnetic moment

µN = gNµp = gN
e~

2mp

, (4.10)

with nuclear g-factor gN, nuclear magneton µp, and with proton rest mass mp. A typical

atomic energy scale for a hyperfine transition is thus

ωhfs ∝ α2µN

µB

mec
2

h
= gN

me

mp

a.u., (4.11)

where µB = e~/(2me) is the Bohr magneton, and a.u. indicates the atomic unit of frequency

Eh/~.

The Schmidt model relates gN to the proton g-factor across many species [78, 80, 90, 91].

If we assume that these relations hold even when the fundamental constants are varying,

and that the proton g-factor itself is constant, we can isolate the electron-proton mass ratio

me/mp as one of the contributors to the sensitivity function F .

The main contributor to F is the fine structure constant α. For transitions between ground

state hyperfine levels, the contribution can be written as α2Frel(Zα), where Frel summarizes

relativistic corrections that scale with the nuclear charge Z [80, 87, 91]. Other contributions

are small, and we can write

ωhfs = const× α2Frel(Zα)
me

mp

a.u., (4.12)
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such that

∂t lnωhfs = ∂t lnFrel(Zα) + ∂t ln
me

mp

+ ∂t ln a.u.

=

(

2 +
∂ lnFrel(Zα)

∂ lnα

)
δα

α
+
δ(me/mp)

me/mp

+ ∂t ln a.u.

≡ cα
δα

α
+ cme/mp

δ(me/mp)

me/mp

+ ∂t ln a.u.

(4.13)

For the clock transition in 133Cs, we find [92]

cCs
α ≃ 2 + 0.83

cCs
me/mp

= 1,
(4.14)

where the integral numbers are exact from the analytical powers of α and me/mp given

above.

4.1.2. Sensitivity of optical clock transitions

For optical transitions, only the relativistic corrections related to Zα contribute significantly,

and we find

ωopt = const× Frel(Zα) a.u., (4.15)

such that

∂t lnωopt =
∂ lnFrel(Zα)

∂ lnα

δα

α
+ ∂t ln a.u. ≡ cα

δα

α
+ ∂t ln a.u. (4.16)

For the 87Sr 1S0-
3P0 optical clock transition we find [93]

cSr
α = 0.06, (4.17)

which is comparatively small as shown in Table 4.1.

4.1.3. Sensitivity of 87Sr absolute frequency measurements

In summary, measurements of the absolute frequency of the 87Sr clock transition are sensitive

to variation in two fundamental constants: the fine structure constant α and the electron-

proton mass ratiome/mp. To shorten the notation in the following, we will write µ ≡ me/mp,
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Species Transition Wavelength (nm) cα

87Sr 1S0-
3P0 698 0.062

171Yb 1S0-
3P0 578 0.314

199Hg, 201Hg 1S0-
3P0 266 0.813

27Al+ 1S0-
3P0 267 0.008

171Yb+ 2S1/2-
2D3/2 436 0.881

199Hg+ 2S1/2-
2D5/2 282 -3.191

Table 4.1.: Sensitivity of high-Q optical transitions to variation in α, calculated from

Ref. [93].

not to be confused with magnetic moments. We find

δ(ωSr/ωCs)

ωSr/ωCs

= (cSr
α − cCs

α )
δα

α
+ (cSr

µ − cCs
µ )

δµ

µ

= (0.06− 2− 0.83)
δα

α
+ (0− 1)

δµ

µ

= −2.77
δα

α
− δµ

µ
.

(4.18)

Because cSr
α is small, the absolute frequency measurements of 87Sr are a clean measurement

of the 133Cs sensitivity to both α and µ. The 87Sr standard can thus also act as an anchor

in comparisons against more sensitive species.

4.2. Global absolute frequency record

In the previous Section, we have shown that absolute frequency measurements can be sen-

sitive to possible variations in fundamental constants. In particular, we are interested in

analyzing the absolute frequency record of the 87Sr optical lattice clock for such variations.

Figure 4.1 shows all published absolute frequency data from our lab (red), the Paris group

(green), and the Tokyo group (blue). The data is referenced to ν0 = 429 228 004 229 800 Hz.

Vertical 1-σ error bars indicate the total uncertainty in each optical frequency measurement

and horizontal error bars show the time period over which the measurement took place.
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The last four measurements agree within 1.7 Hz [7, 42, 45, 94], and the agreement between

the JILA and Paris data [7, 45, 94] is on the 1× 10−15 level, which approaches the Cs limit

and makes the 87Sr 1S0-
3P0 optical clock transition the best agreed-upon optical frequency

to date.

Improving the absolute frequency measurement much beyond the uncertainty achieved

in our last measurement [7] will be difficult without significant improvements in the Cs

standard and the dissemination of derived RF frequencies via hydrogen masers. The last

measurement in the graph was performed by remote comparison (see Ch. 1) between the 87Sr

standard in our lab and the primary US frequency standard, NIST F-1, at NIST Time and

Frequency in Boulder. The measurement resulted in over 48 h of consecutive data, taken

over a period of 60 h and was stopped when both Cs and Sr standards were limited by their

respective and simultaneous comparison against the intermediate hydrogen maser [7, 12].

Direct comparisons of optical clocks can be performed to much higher levels of accuracy [31]

and promise to give much more stringent limits on the variation of fundamental constants [95].

The figure also shows a linear and a sinusoidal fit to the frequency data. The fits were

performed by minimizing the weighted sum of errors

χ2 =
∑

k

[νk − f(tk,p)]
2

σ2
νk
+ σ2

tk
[f ′(tk,p)]2

(4.19)

over the corresponding parameter vector p. The points in the data set and their error bars are

denominated by (tk±σtk , νk±σνk) and the sum is over the whole data set. Here f is the fitting

function to model the variation in the frequency record and f ′ indicates its partial derivative

with respect to the independent variable t. We used a Levenberg-Marquardt algorithm [96]

modified by Lybanon’s method [97] to find the minimum of χ2. Quoted parameter errors are

1-σ and were obtained from the Hessian matrix of χ2 evaluated at the minimum [98]. The

parameter uncertainties could be reduced slightly by explicitly including the measurement

interval 2σtk as a time average (2σtk)
−1
∫ tk+σtk

tk−σtk
dτf(τ,p) ≡ F (tk,p) and fitting the frequency

record with F to avoid the significant difficulty of handling errors in the independent variable

explicitly and correctly [99].
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Figure 4.1.: Global absolute frequency measurements of the 87Sr optical lattice clock against

the Cs standard from our group, the group at LNE-Syrte in Paris, and the University of

Tokyo group. The data is shown with respect to ν0 = 429 228 004 229 800 Hz. A linear

fit to the data is shown as a dotted line and a sinusoidal fit is shown as a solid line. Its

peak to peak amplitude is indicated by the shaded gray area.

The last four high-accuracy data points determine the fits due to their small error bars.

These fits will be used in the following Sections to limit the variation of fundamental con-

stants. The linear fit can be used to check for linear drifts in the fine structure constant and

the electron-proton mass ratio (see Sec. 4.3). The sinusoidal fit limits coupling of fundamen-

tal constants to the gravitational potential (see Sec. 4.4).

4.3. Linear Drifts

If we assume that fundamental constants have been different at some time in the early uni-

verse, the simplest model is that they are changing over time. With present day experiments,

we are limited to year-scale time frames. The simplest check we can do is to approximate a
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linear variation in time t around the beginning of the measurement period at t0:

ηk(t) ≃ ηk(t0) + (drift rate)(t− t0)

δηk
ηk

=
(drift rate)

ηk(t0)
(t− t0),

(4.20)

and try to put limits on the fractional drift rate using experimental data. By using absolute

frequency measurements of optical standards, we will be able to extract drift rates for α and

µ, as shown in Eq. 4.18. We will refer to the fractional drift rates as δα/α and δµ/µ for

the rest of this Section, since that is their standard notation. The distinction between the

fractional drift rates and more general variations is important since we will allow nonlinear

variations in the next Section. Under the assumptions above, we can write Eq. 4.8 as

δ(ωj/ωCs)

ωj/ωCs

=

[

(cjα − 2.83)
δα

α
− δµ

µ

]

(t− t0). (4.21)

By fitting a linear function to a frequency record such as in Fig. 4.1, we can extract a

fractional frequency drift rate xj and compare it against the coefficient in Eq. 4.21. However,

it is immediately apparent that we cannot extract information about both δα/α and δµ/µ

from a single absolute frequency record. Data from at least two different clock species needs

to be fit and the resulting set {xj} can then be orthogonalized. By including data from more

than two species, we obtain an overdetermined system of linear equations that is solved in

a least-squares sense. The least-squares solution and the parameter covariance matrix are

obtained by solving the weighted normal equations in matrix form (see e.g. [100]).

To aid in the visualization of the procedure, the experimental fractional drift rates are typ-

ically plotted against the numerical sensitivity constants such as in the top panel of Fig. 4.2.

Here, we have included absolute frequency data from hydrogen 1S-2S spectroscopy [83, 84],

the Yb+ ion clock at PTB [85], the Hg+ ion clock at NIST [30] in addition to our drift rate

extracted from Fig. 4.1. Each species has a different sensitivity as indicated by the x-axis.

The Cs contribution to each species’ sensitivity is shown as a vertical dotted line. We extract

drift rates

δα/α = (−3.3± 3.0)× 10−16/yr

δµ/µ = (1.6± 1.7)× 10−15/yr,
(4.22)
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which agree well with zero at the current level of accuracy.

A detailed visualization of the error in the above result is shown in the bottom panel of

Fig. 4.2. Each species contributes a linear constraint

xj − σxj
≤ (cjα − 2.83)

δα

α
− δµ

µ
≤ xj + σxj

, (4.23)

where σxj
is the 1-σ error bar from the drift rate fit to data as in Fig. 4.1. These linear

constraints define a region in the ( δα
α
, δµ
µ
) plane that contains the valid values of δα/α and

δµ/µ for the measured drift rate xj ± σxj
. Each region of validity is shown as a color-coded

bar in the bottom panel of Fig. 4.2. The intersection of the regions of validity defines an

elliptical contour of the reduced χ2 (shown in white). The quadric shown here is the joint

confidence region for δα/α and δµ/µ. Its projection onto the axes defines the individual 1-σ

confidence intervals for each variable given in Eq. 4.22. Note that the eigenaxes of the error

quadric are not along the axes of the plot, indicating that the covariance between δα/α and

δµ/µ is significant. The addition of the 87Sr data only reduced the previous uncertainties

only by ∼15%. Nevertheless, it is important to check for frequency variations across a wide

variety of species and systems.

The utility of the bottom half of Fig. 4.2 becomes apparent when discussing the effect of

adding results from direct optical clock comparisons to the results shown here. The slope

of each confidence region is given by value of cα − cCs
α compared to unity (the Cs sensitivity

to δµ/µ). Steeper slopes than the constraint due to Hg+ will not be obtained with current

optical clock systems compared to Cs. However, when optical clocks are compared directly,

they will contribute constraints on δα/α only – as seen from Eqs. 4.9 and 4.16 – but with much

higher precision. Adding such a result to the plot amounts to adding a completely vertical

region of validity to the plot. Even if the direct optical-to-optical results were only measured

with the precision of the absolute frequency measurements, they would immediately put

much tighter constraints on both δα/α and δµ/µ.

After the Sr studies were completed, preliminary data from the comparison of NIST’s Hg+

and Al+ standards became available. This addition puts the current limits on the drift of α
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Fit to (c jα − cCs
α ) δαα − δµ

µ = xj

δα
α = (−3.3 ± 3.0)× 10−16/yr
δµ
µ = (1.6 ± 1.7) × 10−15/yr
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Figure 4.2.: Linear weighted least-squares analysis of optical clock fractional frequency

drifts x to extract drift rates δα/α and δµ/µ. The top panel shows fractional frequency

drift rates with respect to each experiments’ sensitivity to variation in α. Other species

included are results from hydrogen 1S-2S spectroscopy at MPQ [83], Yb+ ion clock data

from PTB [85], and Hg+ ion clock data from NIST [30]. The bottom panel shows the

linear constraints contributed by each species as colored regions of validity in the (δα/α,

δµ/µ) plane. Their overlap defines a joint 1-σ region of confidence, shown as a white error

ellipse. Its projections onto the axes are the 1-σ confidence intervals for δα/α and δµ/µ.
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and µ at [95]

δα/α = (−1.6± 2.3)× 10−17/yr

δµ/µ = (−1.9± 4.0)× 10−16/yr.
(4.24)

4.4. Gravity

From a heuristic standpoint, there are two simple ideas for the variation of fundamental

constants.

“Our universe is changing, and physics was different at different times.”

“Our universe is changing, and physics is different in different places.”

We investigated the first idea in detail in the last section. What about the second idea? If

the physics is really different in spatially separated parts of the universe, what could be the

cause? According to general relativity, space is defined by the distribution of masses. Since

we are interested in the variation of fundamental constants, we can immediately ask whether

they could be coupled to the mass distribution in the universe, which was of course also very

different in the early universe than it is now. If that were true, how would such a coupling

between fundamental constants and the gravitational potential show up in clock frequency

measurements?

4.4.1. Gravitational Potential Variation on Earth

For an earth-bound clock, changes in the ambient gravitational potential can come from

different contributors. Here is a list of contributions sorted in terms of magnitude from

largest to smallest:

• Relative position of Earth with respect to the Sun.

• Relative position of Jupiter, Saturn, and Venus with respect to Earth.

• Relative position of the Moon with respect to the clock.
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Body Mass (kg) rmin (m) rmax (m) ∆U/c2

Sun 1.99× 1030 1.47× 1011 1.52× 1011 3.3× 10−10

Jupiter 1.90× 1027 5.89× 1011 9.68× 1011 9.4× 10−13

Saturn 5.69× 1026 1.20× 1012 1.66× 1012 9.9× 10−14

Venus 4.87× 1024 3.82× 1010 2.61× 1011 8.1× 10−14

Moon 7.35× 1022 3.63× 108 4.06× 108 1.5× 10−14

truck 104 10 ∞ 7.43× 10−25

graduate student 102 0.1 ∞ 7.43× 10−25

Table 4.2.: Peak-to-peak variation in ambient gravitational potential on Earth over one

cycle. Astronomical data from Ref. [101].

• Relative position of other planets to Earth

• Gravitational forcing (Earth tides)

• Local moving masses (trucks, trains, etc.)

It might seem surprising at first that the Moon contributes less than Saturn, but a quick order

of magnitude estimate can be found from the following argument. Consider the minimal and

maximal distances rmin and rmax of the corresponding body of mass m with respect to the

clock. We then evaluate the peak-to-peak amplitude of the gravitational potential variation

over one cycle

∆U

c2
=
U(rmax)− U(rmin)

c2
= −Gm

c2

(
1

rmax

− 1

rmin

)

, (4.25)

with gravitational constant G, and we obtain Tab. 4.2.

For comparison, we also estimate the contributions of Earth tides. Earth is not a rigid

body, and “gravitational forcing” (mostly due to the Moon) changes the local elevation with

respect to Earth’s center periodically. The largest contributions change the local gravitational

potential by several ten cm [102]. An upper limit on the gravitational potential variation

due to Earth tides is

∆U/c2 = (1 m)× g/c2 ≃ 1.1× 10−16, (4.26)
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Figure 4.3.: Solar gravitational potential on Earth. Earth (blue) orbits the Sun (red, mass

m⊙) on an elliptical orbit with ellipticity ǫ and semimajor axis a. The ellipticity is given

by the distance ǫa between the center of the ellipse and the two-body center of mass. The

radial distance between Sun and Earth is r and the orbit has a mean angular velocity

Ω given by Kepler’s third law. The eccentric anomaly E is the angle between the major

axis and the orthogonal projection of Earth’s position onto a circle with radius a around

the center of the ellipse. Earth’s orbit is projected onto the solar gravitational potential

U(r) and the peak-to-peak gravitational potential variation ∆U as well as the mean solar

potential U0 are indicated.

with local gravitational acceleration g ≃ 9.81 m/s2. In summary, the contribution of the Sun

to the ambient gravitational potential variation on Earth is three orders of magnitude larger

than all others combined.

Earth travels around the Sun on an elliptical orbit, and high-accuracy models of the

trajectory are available [103]. For our purposes, a simple approximation is sufficient. The

derivation presented here is based on methods summarized in Ref. [104]. Figure 4.3 shows

the geometry of the two-body Sun (red) and Earth (blue) system and indicates the geometric

meaning of all variables used in the following derivations.
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The solar potential at radial distance r(t) is

U(r)/c2 = −Gm⊙
ac2

a

r
= −

(
Ωa

c

)2
a

r
, (4.27)

with Sun mass m⊙, the orbit’s semimajor axis a ≃ 1 au = 1.496× 1011 m, and Earth’s mean

angular velocity with respect to the Sun (from Kepler’s third law)

Ω ≃
√

Gm⊙
a3

≃ 2× 10−7 s−1. (4.28)

The Earth-Sun orbit r with ellipticity ǫ ≃ 0.0167 is found by solving Kepler’s equation

Ωt = E − ǫ sinE, (4.29)

which relates the eccentric anomaly

E ≡ arccos

(
1− r/a

ǫ

)

(4.30)

to the orbit’s elapsed phase since perihelion M ≡ Ωt, also called the mean anomaly. From

Eq. 4.29, we find that the inverse radial distance is proportional to the derivative of the

eccentric anomaly with respect to the elapsed phase

dE

dM
=

(
dM

dE

)−1

= (1− ǫ cosE)−1 =
a

r
, (4.31)

which can be expanded as a power series in the ellipticity [104]

a

r
= 1 + 2

∞∑

n=1

Jn(nǫ) cosnM = 1 + ǫ cosM +O(ǫ2). (4.32)

To leading order in ǫ, the dimensionless solar gravitational potential on Earth is thus

U(t)/c2 = −(Ωa/c)2(1 + ǫ cosΩt), (4.33)

and its variation with respect to the mean potential is

∆U(t)/c2 = −(Ωa/c)2ǫ cosΩt. (4.34)

Note again that t = 0 indicates the perihelion, where Earth is closest to the Sun, and the solar

gravitational potential on Earth is most negative. As shown in Tab. 4.2, the peak-to-peak

dimensionless variation is 2ǫ(Ωa/c)2 ≃ 3.3× 10−10.
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4.4.2. Gravitational Redshift

One of the reasons for precision measurements using atomic clocks is the study of gravity

itself. General relativity predicts that light experiences a frequency shift

ω

ωno gravity

=
1√

1− 2u
(4.35)

directly given by the dimensionless ambient gravitational potential u ≡ U/c2. Clocks tick

faster the deeper they are bound in a gravitational well. As we have seen in the previous

section, even the solar gravitational potential on Earth’s surface is neither temporally nor

spatially stable. As Earth moves around the sun, the potential experiences shifts on the

order of 3×10−10, which means that an optical atomic clock at 429 THz base frequency runs

about 140 kHz differently in January (perihelion) than in July (aphelion).

This number is of course meaningless, because clock measurements always involve com-

parison against a reference, i.e. we need to compare a redshifted frequency ω′ at u + δu to

the base frequency ω at u:

ω′ − ω

ω
=

δu

1− 2u
+O(δu2) ≃ δu. (4.36)

A clock comparison is thus directly sensitive to the differential gravitational potential.

The important point here is that the spatial separation between clocks matters. A dif-

ference in elevation close to Earth’s surface incurs a frequency shift of 1 × 10−16 m−1. Our

absolute frequency measurements against the Cs standard at NIST had to take these effects

into account, as the elevation difference between the labs is (12.5 ± 1.0) m. In light of how

much the elevation in Earth’s potential matters for clock measurements, the agreement be-

tween our measurements and the Paris results at the 1 × 10−15 level becomes even more

impressive: Paris’ mean elevation above sea level is 35 m, Boulder’s is 1655 m, leading to a

redshift of 1.77× 10−13 due to Earth’s gravitational potential.

The agreement between JILA and Paris thus is two orders of magnitude better than

their relative redshifts. This fact points to an important component of international clock

comparisons: they must be referenced to a common gravitational isosurface. For this purpose,
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international clock comparisons (and the Global Positioning System) are referenced to a

model isosurface called the geoid. A good introduction to international timekeeping and

the geoid is Ref. [105]. Each of the 87Sr absolute frequency measurements were performed

against local RF standards that were individually referenced to the geoid. In this way, the

absolute frequencies between Boulder, Paris, and Tokyo become comparable without having

to worry about the local gravitational potential up to the specified accuracy of the local RF

standard.

4.4.3. Gravitational Coupling

As a simple model, we will assume that a fundamental constant η couples to the ambient

gravitational potential U in a dimensionless fashion via a coupling constant kη, i.e.

δη

η
= kη

∆U

c2
. (4.37)

Inserting this assumption into Eq. 4.9, we find that a clock comparison experiment should

be sensitive to such coupling, since

δ(ωj/ωi)

ωj/ωi

=
∑

η

(cjη − ciη)kη
∆U

c2
. (4.38)

Using the orbital expansion from Sec. 4.4.1 and assuming an absolute frequency measurement

of an optical clock (Eq. 4.16), we find a sinusoidal fractional frequency variation

δ(ωj/ωCs)

ωj/ωCs

= −[(cjα − 2.83)kα − kµ]
Ω2a2

c2
ǫ cosΩt. (4.39)

Note that both frequency and phase of the sinusoidal variation are fixed by the orbital

mechanics. As in Sec. 4.3, we have a situation where the only free parameter in the fit is the

amplitude of the effect. The sinusoidal fit in Fig. 4.1 gives an amplitude of

ySr = (−1.9± 3.5)× 10−15, (4.40)

where the frequency of the fit was fixed at Ω = 1.991317 × 10−7 s−1 and the phase was

fixed such that an antinode of the sinusoid coincides with the 2005 perihelion on January
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2, 01:00 (UTC). The fitted amplitude is negative, and the Sr data anticorrelates with the

gravitational potential. The fit is again mostly determined by the last three high-accuracy

data points from the JILA and Paris groups.

As before, data from one species cannot determine limits on the individual coupling con-

stants kη and we again need to orthogonalize similar data from multiple species. There is

even less data available for this kind of analysis than for the linear variation since a good

limit on the sinusoidal variation requires many data points over the course of a single oscil-

lation period. The only other species that have been analyzed for annual variations are the

NIST Hg+ ion clock [30] and a NIST hydrogen maser array [89]. By correcting a sign error

in Ref. [30] when applying Eq. 2 in the subsequent paragraph (corrected in Ref. [106]), we

find the constraint from the Hg+ clock data as

yHg+ = (0.7± 1.2)× 10−15. (4.41)

The sign of the constraint for the hydrogen maser data is derived from the averaged fit in

Fig. 3 of Ref. [89]:

yH-maser = (0.03± 0.47)× 10−15. (4.42)

Note that the hydrogen maser is also sensitive to variation in the light (up or down) quark

mass mq divided by the strong interaction coupling constant ΛQCD [92]. We write the sensi-

tivity constant for the H-maser as cq = 0.109 [92] and the corresponding coupling constant

to the gravitational potential as kq.

We divide the measured amplitudes yj by the peak-to-peak gravitational variation u0 =

2(Ωa/c)2ǫ = 3.3× 10−10. Together with the sensitivity equations, the measured values yj/u0

and their uncertainties form a system of linear constraints

ySr/u0 = 2.77 kα + kµ,

yHg+/u0 = 6.03 kα + kµ,

yH-maser/u0 = 0.83 kα + 0.109 kq.

(4.43)

We can again use weighted linear regression [100] to find the coefficients kη and their uncer-
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tainties as

kα = (2.5± 3.1)× 10−6

kµ = (−1.3± 1.7)× 10−5

kq = (−1.9± 2.7)× 10−5.

(4.44)

To aid with the visualization of this procedure, we write Eq. 4.43 in the general form

yj/u0 = cjαkα + cjµkµ + cjqkq, (4.45)

and divide by cα to obtain

yj

cjαu0

= kα + djµkµ + djqkq, (4.46)

where we defined new numerical prefactors dµ ≡ cjµ/c
j
α and djq ≡ cjq/c

j
α. We now interpret this

equation as a linear function in the variables dµ and dq, and interpret the experimental data

for the left hand side as measurements of this linear function with the unknown parameters

kα, kµ, and kq.

The resulting graph is shown in Fig. 4.4. The linear function in dq and dµ defines a

plane. Since there are only three data points, the linear regression is not strictly necessary,

but it immediately generalizes to the addition of more species and returns the correct error

estimates for the fit parameters. The value of the plane at dµ = 0, dq = 0 is kα and its

gradient along the dµ (dq) axis is kµ (kq).

The combination of maser data with optical clock data could be questioned, since hydrogen

masers are not frequency-stable and have long-term nonlinear drifts. However, the addition

of the maser data only pivots the fitted plane around the Sr-Hg+ axis and influences neither

the value nor the error bar of kα and kµ.

In conclusion, we find that α, µ = me/mp, and mq/ΛQCD do not couple to the ambient

gravitational potential at the current level of accuracy (∼10−15). These results will continue

to improve with more data becoming available from direct optical clock comparisons. Exper-

iments that test the weak equivalence principle also be analyzed to test for the gravitational

coupling discussed in this Section, but such analyses are much less direct [107, 108]. Recently,

a suggestion has been put forward that views atom interferometry as a clock experiment at
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Figure 4.4.: Graphical representation of linear regression to extract the gravitational cou-

pling constants.
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the atomic Compton frequency [109, 110], with correspondingly low fractional uncertainty.

This interpretation is much-disputed [111, 112] and clock experiments remain the most direct

way of investigating gravity [113].



Chapter 5

Optical Feshbach Resonance in 88Sr

S
cattering resonances in ultracold atomic gases [114, 115] allow control of atomic inter-

actions and have been used very successfully over the last decade to study many novel

phenomena. The underlying phenomenon is the magnetically controlled Feshbach resonance

(MFR) which arises from coupling of the free particle states to a bound molecular state. Such

scattering resonances were studied first by Ugo Fano [116, 117] and Herman Feshbach [118].

MFR is schematically shown in Fig. 5.1(a). Different hyperfine structure states in the

electronic ground state manifold of an alkali metal atom lead to multiple molecular ground

state potentials. Their relative energies can be tuned by an external magnetic field. If

atoms are initially prepared in a given hyperfine structure state (the open channel), and

a bound state in a different molecular ground state potential (the closed channel) becomes

degenerate with the free particle threshold, a scattering resonance arises, and the free particle

scattering phase shift can be modified. Because the bound molecular state is in the ground

electronic manifold, it is long-lived and the molecular coupling does not introduce loss. In

the zero collision energy limit, the scattering process is completely determined by a real

s-wave scattering length.1 In the vicinity of the resonance, the scattering length diverges

1A complete discussion of scattering theory relevant to collisions in ultracold atomic gases is beyond the

scope of this work, but an excellent summary can be found in Ref. [119]. A good overview on quantum

degenerate gases is Ref. [120]. The main review paper for Feshbach resonances in ultracold gases is

Ref. [121].
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and the achievable change in scattering length is only limited by secondary processes such

as three-body collisions [121].

These dispersive changes in scattering length have allowed exquisite control and led to

the realization of few-body quantum states [122, 123], and the study of strongly correlated

systems [124, 125]. These resonances have played a leading role in building atomic systems

that model simple condensed matter systems and have become the dominant experimental

tool to tune many-body interactions in atomic physics experiments [121].

With the success of ultracold gases of alkaline earth atoms in recent years for precision

measurements (see previous Chapters), many interesting proposals for quantum simulation

of many-body systems have been put forward [126–128]. However, magnetically induced

Feshbach resonances do not exist in the spinless electronic ground state of these systems since

there are no molecular potentials available that can be strongly coupled by experimentally

feasible magnetic fields. Instead, the coupling field has to be at optical frequencies and the

coupled molecular potential is an excited molecular state. The coupled molecular bound

state can now decay via spontaneous emission and the resulting decoherence rate is the most

important factor to consider in understanding the resulting Optical Feshbach Resonance

(OFR) [121, 129, 130]. The experimental situation is shown in Fig. 5.1(b), which describes

a photoassociation (PA) experiment [131] where a PA laser couples free particles to a bound

state in a metastable molecular potential. On resonance, molecules are formed which can

decay to free particles with high kinetic energy or deeply bound ground state molecules.

Once a molecule has formed, it is considered lost from the experiment. In a PA experiment,

the laser is tuned across the resonance and atomic loss spectra are measured. If the PA

laser is detuned from molecular resonance, the scattering phase shift can still be modified,

just as for a magnetic Feshbach resonance. However, the molecular loss limits the achievable

scattering length modification. In a dressed state picture [see Fig. 5.1(c)], the OFR looks

very similar to the MFR. The closed channel can be tuned with respect to the open channel

by either a magnetic field or the laser detuning. The tuning changes the interatomic distance

(the Condon point) at which the open and closed channels become resonantly coupled. The
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(a) Magnetic Feshbach resonance (MFR) between

molecular potentials in the electronic ground

state.

(b) Optical Feshbach resonance (OFR) between

electronic ground state potential (open chan-

nel) and metastable molecular potential (closed

channel that decays).

(c) Dressed potential for either magnetic or optical

Feshbach resonance. The Condon point RC in-

dicates the interatomic separation around which

the resonant interaction is localized.

Figure 5.1.: Magnetic and optical Feshbach resonances arising from coupled molecular

potentials. The coupling is adjustable by either the magnitude of an external magnetic

field (MFR) or the detuning of a photoassociation laser (OFR). A resonance appears when

the free particle energy becomes resonant with a state in the closed channel. The only

conceptual difference is that the OFR closed channel introduces decay when a metastable

molecule is formed and subsequently dissociates.
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only conceptual difference between OFR and MFR is that OFRs have intrinsic loss given by

the natural radiative decay of the metastable molecules and that the OFR strength can be

tuned independently by adjusting the PA laser intensity.

The OFR effect was first observed in alkali atoms [132–135] but was not found useful due to

large inelastic losses. Much narrower optical intercombination lines are available in alkaline

earth atoms and are predicted to overcome this loss problem [136]. These predictions in

combination with our group’s study on narrow line photoassociation in 88Sr [137] stimulated

work on the OFR effect in thermal and quantum degenerate gases of Yb [138, 139].

In our experiment, we worked with bosonic 88Sr, which has a small background s-wave

scattering length of abg ≃ −1.4a0 [140, 141], with the Bohr radius a0. The sample is trapped

in an optical dipole trap at temperatures of several µK. In this regime, s-wave scattering

dominates, but the small abg makes the sample effectively non-interacting on experimental

timescales. In combination with the simple electronic structure, this makes 88Sr an ideal

test bench for the OFR effect. For these reasons, we can specialize the general theory to

negligible background scattering which simplifies the treatment considerably.

We will first introduce the general theoretical background for describing the OFR effect in

both degenerate and thermal gases. Based on the general theory, we will develop the formal-

ism used to describe a single, isolated OFR. Care is taken to make the formalism applicable

to the regime where s-wave scattering dominates, but where particles collide at non-zero

collision energies. Extraction of the relevant OFR parameters from experimental data such

as PA loss spectra requires a careful modeling of the sample dynamics in the presence of in-

teractions. While analytic treatments can highlight important limiting cases, a Monte-Carlo

simulation of the sample is required to model the interaction dynamics accurately. Using

these methods we are equipped to model the sample dynamics under the influence of the

OFR effect in a universal way and predict the requirements for applying OFR in a quan-

tum degenerate gas. Our results will be directly applicable to experiments with quantum

degenerate gases of Sr, which have become available in the last two years [142, 143].
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5.1. Complex scattering length, S-matrix, collision

cross sections & rates

We introduce the necessary notation for describing the OFR effect, based on Refs. [119, 121,

130, 144]. We will use the energy-dependent complex scattering length definition adopted in

Ref. [145]

α(k) ≡ a(k)− ib(k) ≡ −tan η00(k)

k
(5.1)

to describe collisions for small but non-zero collision energy in the thermal regime where

s-wave scattering dominates, but the finite collision momentum matters. Here, a (−b) is the
real (imaginary) part of α and η00(k) is the complex s-wave scattering phase shift describing

both elastic and inelastic components of the scattering process. Molecule formation is con-

sidered an inelastic process that removes the collision partners from the sample completely.

The collision energy E ≡ ~
2k2/(2µ) is related to the relative momentum2 (mass) ~k (µ) of

a collision pair and for our purposes, µ = mSr/2 with the atomic mass mSr. The scattering

length can be related to the s-wave scattering matrix S00(k) via

S00(k) = e2iη00(k) ⇔ α(k) =
1

ik

1− S00(k)

1 + S00(k)
. (5.2)

For collisions between identical bosons, the elastic and inelastic collision cross sections are

related to the S matrix via [119, 121]

σel(k) ≡ 2
π

k2
|1− S00(k)|2,

σin(k) ≡ 2
π

k2
(1− |S00(k)|)2.

(5.3)

Note that the cross sections for nonzero k are not simply related to the squares of a and b,

but that

σel(k) = 8π|α(k)|2f(k)2,

σin(k) =
8π

k
b(k)f(k),

(5.4)

2Note that here and in the literature, both k and ~k are referred to as the relative collision momentum.
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with

f(k) ≡ 1

1 + k2|α(k)|2 + 2kb(k)
. (5.5)

The function f encapsulates the unitarity limit for both elastic and inelastic processes with

0 < f(k) < 1 and f(k) → 1 as k → 0.

These collision cross sections are related to the likelihood of a collision event with relative

velocity vrel ≡ ~k/µ occurring, in the sense that

Pc(|vi − vj|) = σ(|vi − vj|)|vi − vj|
∆t

Vc
, (5.6)

is the probability of a collision event happening between particles i and j with velocities v

within an arbitrary collision volume Vc and time interval ∆t, as long as Pc ≪ 1. From the

probabilistic interpretation of the collision cross sections, we can derive differential equations

that describe the collision processes. Let V be the trap volume containing a sample of N

identical bosons. We subdivide V into collision volumes such that V =MVc, and we choose

M such that the average number of atoms within each collision volume

Nocc =
1

M

M∑

i=1

Ni (5.7)

is small (Nocc ≪ 1). The number of particles influenced within a collision volume by collision

events during a sufficiently small ∆t is then given by a sum over distinguishable collision

pairs

∆Ni = −2

Ni∑

k=1

k−1∑

ℓ=1

Pc(|vk − vℓ|) (5.8)

where the factor of 2 arises from the fact that two particles are influenced by each collision

event. For elastic collisions, this means that two particles change their velocity directions. For

the inelastic processes considered here, two particles are lost from the sample per collision

event. If we take the average of Eq. 5.8 over all collision volumes, we find the change in

average occupation number

∆Nocc ≡ 〈∆Ni〉i = −2

〈
Ni∑

k=1

k−1∑

ℓ=1

Pc(|vk − vℓ|)
〉

i

≃ −2
∆t

Vc

〈
Ni(Ni − 1)

2

〉

i

〈σ(vrel)vrel〉T ,
(5.9)
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where 〈·〉T indicates a thermal average at temperature T over the relative velocity distribution

within the sample. The factor Ni(Ni−1)/2 stands for the number of distinguishable collision

pairs considered in the sum. For small Nocc, the collision volume particle number Ni is

distributed as a Poisson distribution and we use

〈N2
i 〉 − 〈Ni〉2 = 〈Ni〉 = Nocc ⇒ 〈Ni(Ni − 1)〉 = N2

occ
(5.10)

to find the average occupation number change due to inelastic collisions as

∆Nocc

∆t
= −N

2
occ

Vc
〈σin(vrel)vrel〉T . (5.11)

We define the mean density n̄ ≡ Nocc/Vc, let ∆t→ 0 and obtain the mean density evolution

due to inelastic collisions

˙̄n = −〈σin(vrel)vrel〉T n̄2 ≡ −〈Kin〉T n̄2. (5.12)

The above derivation lets us define inelastic and elastic collision rate constants

Kin(k) ≡
~k

µ
σin(k),

Kel(k) ≡
~k

µ
σel(k),

(5.13)

where the rate Kin is defined as the factor multiplying the density squared in the density loss

equation and Kel is defined analogously. Note that the ratio of elastic to inelastic collisions

at a given collision energy

Kel(k)

Kin(k)
=
σel(k)

σin(k)
=

|1− S00(k)|2
1− |S00(k)|2

=
k|α(k)|2
b(k)

[1 + k2|α(k)|2 + 2kb(k)] (5.14)

tends to zero as k → 0.

Note that the discussion in this Section has been a completely general discussion of elastic

and inelastic processes due to an energy-dependent complex scattering length and that no

approximations have been made.

5.2. OFR as an isolated decaying Feshbach resonance

In the previous Section, we introduced a treatment of s-wave scattering under a complex

scattering length. Complex scattering lengths have been successfully used to describe scat-
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tering resonances with loss, i.e. problems where free particles are coupled to a decaying

bound state. The Optical Feshbach Resonance is just such a case, where the bound state

is a metastable molecular level that decays spontaneously into free particles in the ground

electronic state.

For an isolated OFR, Bohn and Julienne [130] derive an S-matrix

S00(k) =
E/~+∆+ i[γ − Γs(k)]/2

E/~+∆+ i[γ + Γs(k)]/2
e2iη00(k), (5.15)

where ∆ is the laser detuning from molecular resonance3, γ is the intrinsic molecular decay

rate, and

Γs(k) ≡ 2kℓopt(k)γm, (5.16)

is the laser-induced stimulated molecular linewidth in terms of the natural molecular linewidth

γm = 2γa, where γa is the natural linewidth of the atomic transition. The strength parameter

ℓopt(k) has dimensions of length and thus is called the optical length. It can be expressed in

terms of molecular parameters and the driving laser intensity I as [136, 144]

ℓopt(k) =
λ3
a

16πc

|〈n|E〉|2
k

I, (5.17)

where λa is the atomic transition wavelength, and c is the speed of light. The molecular

Franck-Condon factor |〈n|E〉|2 describes the wave-function overlap between the free particle

state with collision energy E and the bound molecular state wave function |n〉. For small

collision energies, the Wigner-threshold law predicts that |〈n|E〉|2 ∝ k and thus ℓopt should

be a very weak function of k. We have verified numerically that the Wigner-threshold law

holds for Sr collisions beneath E/kB = 10 µK, by comparing the isolated resonance formulas

against a full coupled-channels calculation [146]. Typical temperatures in our experiment

are ∼3 µK, and we will neglect the dependence of ℓopt on k in the following. The optical

length is also independent of the oscillator strength of the underlying atomic transition and

3The molecular detuning definition here includes the I-dependent AC Stark shift of the molecular line to

simplify the present discussion. We will derive a more complete description of the molecular detuning ∆

later.
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thus becomes a general parameter to compare the strength of molecular resonances across

species.

In Eq. 5.15, we have allowed for extra molecular loss beyond the radiative decay, such that

γ > γm. We combine Eqs. 5.13, 5.15, and 5.16, neglecting the small background phase shift

η00, and find expressions for the elastic and inelastic collision rates for an isolated resonance:

Kin(k) =
2h

µ

ℓeff

(∆ + E/~)2/γ2 + (1 + 2kℓeff)2/4

Kel(k) ≃ 2kℓeffKin(k),

(5.18)

where we have defined an effective optical length

ℓeff =
γm
γ
ℓopt, (5.19)

that describes the OFR strength in the presence of extra molecular decay. The factor 2kℓeff

in the denominator accounts for power broadening of the molecular response. The simple

relationship Kel/Kin = 2kℓeff between elastic and inelastic collision rates only holds when we

can neglect the background scattering length abg. This relationship simplifies the discussion

drastically and we can define a small intensity regime, where

ℓeff ≪ 1

2〈k〉T
=

~

2

√
π

8µkBT
, (5.20)

for a three-dimensional Maxwell-Boltzmann distribution at temperature T . In this limit,

elastic collisions and power broadening can be neglected. The system dynamics can then be

described completely by two-body inelastic loss processes with collision rate

Kin → 2h

µ

ℓeff

(∆ + E/~)2/γ2 + 1/4
, (5.21)

which scales linearly with ℓeff. A typical scale for inelastic collision rates in this regime can

be obtained by setting the detuning term to zero:

Kin ∼ 8hℓeff

µ
≃ (3.8× 10−12 cm3/s)×

(
ℓeff

a0

)

, (5.22)

at µ = mSr/2 = 44 amu. The inelastic collision rate is still dependent on the relative

momentum through the relative energy denominator. Measuring the inelastic loss rate in a

PA experiment with small intensities over long timescales thus allows a clean measurement

of the line strength factor ℓeff/I for a given molecular resonance.
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5.3. Photoassociative Spectroscopy

We studied the photoassociative loss experimentally for three PA resonances in the excited

1S0 − 3P1 0u potential of Sr2. The ground state molecular potential (1S0 − 1S0 0g) and the

excited molecular potential are shown in Fig. 5.2 with respect to the internuclear distance.

The PA laser couples two colliding ground state atoms to a high-lying vibrational state in

the metastable excited potential. The vibrational levels are labeled as negative numbers n

counting from the free particle threshold.
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Figure 5.2.: Molecular potentials coupled by a PA laser. The inset shows the difference

potential after subtracting the optical frequency. A free particle wave function is indicated

in solid blue and bound vibrational wave functions for the vibrational levels of interest are

shown in red. Note that the Condon points are at large interatomic distance.

The inset of the figure shows the difference between ground and excited molecular poten-
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tials after subtracting the optical frequency. We investigated the n = −2, −3, and −4 levels,

close to the free particle threshold and thus at relatively small red detuning from the free

particle atomic transition. The metastable molecules in these vibrational states are loosely

bound and the Condon points for photoassociation are situated at large interatomic distances

of (40− 150)× a0. For this reason, the Franck-Condon factor determining the optical length

is not very dependent on the details of the short range molecular potential and a relatively

accurate calculation is based on knowledge of the long-range dispersion coefficients [144]. A

representative free particle wave function at a collision energy of E/kB = 1 µK is shown

in solid blue and bound state wave functions are overlaid in solid red. The Franck-Condon

factor and thus ℓopt is determined by the overlap integral of these wave functions [144].

For small ℓopt, the effect of tuning the PA laser across a vibrational resonance is relative-

momentum-dependent particle loss (see previous Section). Representative PA loss spectra

for small ℓopt are shown in Fig. 5.3. Here, the fractional atom loss is shown as a function of

PA laser detuning from the atomic transition after the PA laser interacted with the trapped

sample for τPA = 200 ms. Note that the PA intensity is adjusted to compensate for the

individual line strength such that the overall loss is comparable. Atomic densities for all

spectra were similar ∼5× 1011 cm−3 and the number of photons scattered per atom off the

atomic transition τPAΓsc ≪ 1. The spectra look very similar, and we will find in the following

Sections that similar values of the optical length ℓopt describe all three spectra shown.

We will develop a model to extract the optical length and the center frequency of the PA

lineshapes for a thermal gas of 88Sr. To obtain this data, we need a model of the density

distribution in the optical trap that does not assume thermal equilibrium. We will discuss

the trapping geometry and then derive a more general description for the density evolution

than Eq. 5.12. Integrating the density over the trap volume then provides us with a model

for the atom number evolution with time which we can use to fit the PA spectra in Fig. 5.3.
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Figure 5.3.: PA loss spectra in the small optical length regime for three vibrational levels.

The PA laser interacted with the atoms for 200 ms at the indicated PA laser intensity,

which has been adjusted to obtain similar optical length ℓopt. The scattering rate from

the atomic transition Γsc is kept small such that atomic scattering does not influence the

atomic density significantly.
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5.4. Experimental Setup

This section gives a brief overview of the third generation Sr apparatus (Sr3) and summarizes

some of our experiences with the various components used.

5.4.1. Vacuum system & magnetic coils

An overview drawing of the apparatus is shown in Fig. 5.4 and in the following, capital

letters in parentheses refer to the labeled parts of the figure. The atomic beam source

is a conventional effusive oven design. The oven is heated from outside the vacuum with

ceramic clamshell heaters and the whole assembly is wrapped in high-temperature ceramic

heat insulation. The oven temperature is controlled by commercial process controllers with

feedback from high-temperature thermocouples. To prevent vacuum part corrosion due to

heat cycling, the front end of the oven is machined from a single piece of 316 stainless steel

with thick walls (A). A microtube oven nozzle [147, 148] drops in from the front and is held

in place by two ventilated screws. We thank F. Schreck of the University of Innsbruck for

sending us the microtube material. The tubes are made of 304 stainless steel tubes with

200 µm inner diameter (ID). The tubes are acid-etched to 8 mm length and stacked in a

pressure-fit U-shaped holder. The oven front end is welded to a 45◦ elbow (B) that lets the

back end of the oven hang down and prevents solid Sr from migrating towards the nozzle.

The elbow and the back end of the oven are connected by a Conflat flange with a Ni gasket

(C). The back end is a simple cup filled with natural abundance Sr metal (D) that is water-

cooled with a cooling block in the very back (E). The water-cooling allows relatively rapid

cooling of the oven from operating temperature to room temperature with 1/e time constant

∼2.5 h. The back (front) end is typically heated to 575 ◦C (625 ◦C). The 50 ◦C temperature

differential combined with the 45◦ bend seems to have been enough to prevent nozzle clogging

for the last 3 yr of operation.

This design produces an atomic beam that separates into a collimated part (collimation

given by the opening angle of the individual tubes) and a diffuse part (given by the opening
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Figure 5.4.: Sr3 vacuum system including magnetic coils without optics and electronics.

The parts labeled are described in the main text.

angle of the full nozzle diameter) [147, 149–151]. The major advantage of the microchannel

nozzle is that it saves a lot of source material by not transmitting as many atoms with large

transverse velocities that cannot be collimated easily even with transverse laser cooling.

The beam passes through a vacuum cube (F) containing a UHV compatible magnetically-

coupled rotary feedthrough with a U-shaped attachment, driven by a stepper motor. This

setup acts as an atomic beam shutter by rotating the arms of the U into the atomic beam

path. In our experiments so far, however, we have not found it necessary to shutter the

beam. The rotary shutter was implemented as a replacement for the previously-used in-

vacuum Uniblitz shutter. These shutters have been used in earlier Sr experiments because

they allow full shuttering of both the atomic beam and oven BBR radiation on time scales

< 1 ms. These shutters are notorious for failing catastrophically and are not compatible

with vacuum levels below 10−9 Torr, since they require in-vacuum electrical connections to

a resin-enclosed driving coil. A typical failure mode is that the shutter blades crash into

one another and a part of the blade or driving mechanism breaks off. If that happens, the

vacuum system will be contaminated with carbohydrates (it smells of burned plastic) and has

to be cleaned and rebaked from scratch. Use of these shutter systems is not recommended.
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The beam passes through another six-way cross (G) which is used for transverse cooling.

The beam is collimated (and steered) by two retroreflected horizontal and vertical beams

at 461 nm and about −10 MHz detuning from 1S0-
1P1. The collimated beam then passes

through a 5 inch long differential pumping tube with 1/4 inch ID between the oven and

the Zeeman slower regions (H). Both oven and Zeeman slower regions are pumped with

Varian StarCell 40 l/s ion pumps (I,J) and typical Zeeman slower region pressures can reach

10−10 Torr. The system contains ion gauges in the oven, Zeeman slower, and main chamber

regions. These are typically turned off and the pressure is estimated from the ion pump

currents continuously monitored with a Keithley precision voltmeter. The beam then passes

through a pneumatic all-metal gate valve (K) that separates the Zeeman slower tube and

the main chamber from the oven region.

The Zeeman slower (L) is 25 cm long and separated into two coils with opposite current

directions (not shown in figure). This design reduces the amount of wire that has to be used

and results in a much reduced resistive heat load. The design also allows using laser detunings

much closer to the atomic resonance. The zero-field detuning is ∼−640 MHz, which can be

obtained with high efficiency by using an AOM around 300 MHz before doubling. Choosing

a relatively low AOM frequency and shifting the frequency in the infrared decreases the loss

drastically compared to using a low-efficiency and hard-to-align 1 GHz AOM at 461 nm.

Even though the resistive heat load is small, the Zeeman slower is wound on a water cooled

tube that encloses the actual vacuum tube. The coil design was optimized by an adaptive

algorithm that varied the number of transverse and longitudinal layers of wire for each coil

to obtain the ideal field shape. Another water-cooled magnetic coil (M) is positioned at the

end of the Zeeman slower which allows compensating for the residual longitudinal magnetic

field due to the Zeeman slower at the center of the vacuum chamber. All coils are driven

by constant-current power supplies stable to 10−3 that are always on [typical currents are

(1− 3) A].

The slowed atomic beam (design longitudinal velocity 40 m/s) then enters the main cham-

ber (N) which is pumped with another 40 l/s ion pump (O). Main chamber pressures are in
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the low 10−10 Torr to high 10−11 Torr regime. Unfortunately, the initial design did not include

additional Ti:sublimation pumps and the main chamber pressure would rise over the course

of the day to (5−8)×10−10. The oven load was reduced to negligible levels by encapsulating

the differential pumping tube region in a shaped aluminum block (not shown in figure) that is

cooled by a Fisher Scientific ethylene-glycol circulating chiller to −20 ◦C. Water-ice buildup

is manageable with good thermal insulation and the low humidity in Boulder. Typical life-

times in the magnetically trapped 3P2 state are 3−5 s. This lifetime is limited by outgassing

of the surfaces in the main chamber. An improved main chamber vacuum design using two

125 l/s ion pumps and two Ti:sublimation pumps is being implemented. Accounting for the

increased main chamber surface area, the increase in ion pump speed alone should increase

the pumping speed at the center of the main chamber by a factor of 6.

The main chamber (N) is a Kimball spherical octagon made of 316 stainless steel and

the large 6 1/2 inch viewports are oriented vertically. To prevent losing access to the eight

2 3/4 inch viewports, the Zeeman slower was tilted upwards and is connected to one of

the sixteen 1 1/3 inch viewports. The viewport directly across from the atomic beam (P)

is made of UV grade sapphire and heated to 150 ◦C to prevent formation of a metal film

on the viewport. The heater is switched off during red MOT and dipole trap operation to

prevent stray magnetic fields from influencing the atoms. The Zeeman slower laser beam

(with a typical power of 30 mW) enters through the sapphire viewport and its collimation is

optimized to maximize loading of the atoms into the blue MOT. The blue MOT, red MOT

and crossed dipole traps are slightly offset from the Zeeman slower path and we have not

observed any effect of shuttering the atomic beam on our experiments so far.

The blue MOT is formed by three retroreflected laser beams at 461 nm, with typical beam

diameters of 11 mm, powers of ∼2 mW per beam, and detuning of −40 MHz from the

1S0-
3P1 transition. The magnetic field gradient is 50 Gauss/cm and is produced by a pair

of anti-Helmholtz coils (Q) that are driven by a feedback-stabilized constant voltage power

supply. The current is measured with a Hall probe and feedback is applied to two parallel

water-cooled MOSFETS. The large reverse breakdown voltage (Zener voltage 500 V) allows
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shutting off the ∼10 mH coil pair within 250 µs with a PI based servo. The fast shutoff time

is necessary to switch the magnetic field gradient to 3 Gauss/cm for loading into the second

stage MOT. Residual magnetic fields at the center of the chamber are compensated by three

feedback-stabilized pairs of magnetic coils (X, Y, Z). The horizontal coil pairs (X, Y) are

removed by 65 cm from the chamber center to prevent limiting the optical access and they

allow compensation of magnetic fields up to several Gauss.

5.4.2. Blue laser & repumps

A schematic view of the laser beams and magnetic coils relevant to the blue MOT from the

top of the vacuum chamber is shown in the central part of Fig. 5.5. The blue light for Zeeman

slower and blue MOT is generated by second-harmonic generation (SHG) from infrared light

at 921.723 nm, as depicted in the top left inset of the figure.

Diode laser & Tapered Amplifiers. The infrared laser is an AR-coated diode by

Eagleyard4 in a Littman external cavity geometry. We use a JILA laser controller (Jan

Hall’s highly stable current controller, JILA standard temperature controllers for base and

diode mount) to drive the laser diode. Typically, diodes are mounted in Thorlabs collimation

tubes and are collimated with aspheres. The C230TME-B aspheric lens works well with most

IR laser diodes. Gratings are typically Edmund ruled gold gratings (1200 lines/mm) for IR

wavelengths and Optometrics blazed holographic gratings (1200 or 1800 lines/mm) for red

wavelengths. The feedback mirror is held in a JILA mirror mount and we use a small

Thorlabs AE0203D04F piezoelectric transducer (PZT) to tune the horizontal mirror tilt.

We use a reasonably mechanically stable but very versatile mechanical design that holds

the diode, grating, and feedback mirror, originally designed by T. Ido. The diode head is

temperature-stabilized with a thermoelectric cooler (TEC) and typical diode temperatures

are in the range of 16−30 ◦C. The lower limit is set by the yearly humidity cycle in Boulder,

where the dew point can reach ∼16 ◦C in August. The diode mount baseplate is separately

temperature-stabilized with a resistive heater to ∼5 ◦C higher than both room temperature

4Eagleyard AR-coated ridge waveguide laser model number EYP-RWE-0940-08000-0750-SOT01-0000.
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Figure 5.5.: Schematic overview of the 461 nm blue laser system for cooling and trapping.

See the main text for details. The central part of the figure shows a schematic top view of

the vacuum system, magnetic coils, and laser beams for the blue MOT. The top left part

of the figure shows the blue light generation, distribution, and spectroscopic lock using

saturated absorption. The bottom right inset shows the repump lasers necessary for blue

MOT operation.
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and diode head. The laser assembly sits in a simple enclosure and the beam exits through an

AR-coated microscope slide or commercial laser window. We use cylindrical lenses mounted

in cage systems to optimize the transverse beam shape. We typically use 60 dB of optical

isolation on our diode laser setups to prevent optical feedback issues. The Conoptics isolators

we use do not have µ-metal shielding, which makes them very magnetic, but also lot cheaper.

Zero-order waveplates for any wavelength can be obtained from Tower Optical with short

lead times.

The laser injects a 1.5 W Eagleyard tapered amplifier (TPA) chip in a custom mechanical

flexure mount (the original version was designed by K.-K. Ni). A TPA is a semiconductor

gain medium that widens adiabatically along the horizontal axis from input to output side.

The reason for this design is that it can generate large output power while circumventing

optical damage to the gain medium by keeping the laser intensity constant. The downside

of this approach is that the output beam shape of a typical TPA chip is square and shows

vertical stripes in addition to a diffuse background due to amplified spontaneous emission

(ASE). The ASE background can be attenuated by coupling the light into a single-mode

optical fiber.5 To make the large optical power useful, it needs to be shaped and collimated.

We find that the Thorlabs C230TME-B aspheric lenses also work well for focusing a circular

beam into the TPA and collimating the output along the vertical axis. The horizontal axis

needs to be carefully collimated with an additional cylindrical lens. Although we have not

managed to break a TPA chip with backreflections, we typically tilt the collimating optics

and use 30 − 60 dB of optical isolation as well. To optimize coupling of TPA light into an

optical fiber, it helps to mount the collimating cylindrical lens on a linear translation stage.

The TPA output power can fluctuate quite drastically, but this seems to be mostly deter-

mined by the chip itself, and only to a lesser degree by the current stability of the power

supply. The intensity fluctuations can be servoed out by fast feedback to the TPA current

5For the optical clock experiment, the broad ASE frequency spectrum in the TPA-amplified optical lattice

light can become important, especially in a non-retroreflected lattice. High-efficiency transmissive grat-

ings or a narrow bandwidth optical filter placed before the optical fibers can reduce the ASE problem

drastically.
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using e.g. a shunt transistor. For the blue laser, we generally intensity-servo the SHG light

directly because the SHG process introduces additional kHz-level noise. Although the chip

temperature matters, temperature stability is not nearly as critical as for a typical laser

diode. For these reasons, we use commercial Thorlabs current and temperature controllers

with our TPAs. The temperature controller drives a large-area TEC beneath the TPA mount

to keep it stable slightly below room temperature.

Doubling Cavities. The infrared light is frequency-doubled in two linear build-up cavi-

ties using periodically-poled potassium titanyl phosphate (PPKTP). The Sr2 system uses a

similar cavity design but based on potassium niobate (KNbO3). For a linear cavity design,

one crystal surface is coated with a high-reflective coating and forms one of the mirror sur-

faces of the cavity [152]. The only other optical element necessary is a concave input coupler

that is highly reflective at the fundamental and transmissive at the second harmonic which

makes such a setup much simpler than the typical bow-tie geometry. Because the crystal it-

self functions as a cavity mirror, the SHG process has to be temperature-tuned. For KNbO3,

the phase-matching temperature is around 150 ◦C, close to the depoling temperature. In

addition, there seem to be no TEC elements that can work at these temperatures and we

use a (unipolar) resistive heater instead. One expects better temperature stability and servo

bandwidth with a (bipolar) TEC at lower phase-matching temperatures. PPKTP has a

phase-matching temperature around 30 ◦C and high-efficiency SHG in a bow-tie doubler has

been demonstrated by the Paris group using a PPKTP crystal by Raicol [52, 153]. This suc-

cess inspired us (and other groups) to try PPKTP in their doubling systems. Unfortunately,

many groups have found that KTP-based SHG is not particularly reliable, mostly because

of an effect called gray-tracking [154–158]. This process is widely observed but poorly un-

derstood in cw operation, and similar effects in other types of crystals go by the names of

GRIIRA (green-induced IR absorption), BLIIRA (blue-induced IR absorption), formation

of color centers, etc. The effect is very drastic: initially, the SHG process is very efficient

and the SHG mode is a perfect TEM00 with high power. Depending on the amount of fun-

damental power used, the efficiency drops drastically within a few minutes to hours. The
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SHG mode starts to show dark striations and eventually, one can observe those dark regions

drifting around, which points to fluctuations on thermal timescales. Even with continual

readjustments to the crystal temperature, the efficiency keeps dropping until the output

becomes useless within a few hours.

Our observations are consistent with findings that gray-tracking is much reduced when

operating KTP at higher temperatures [159]. One of the hypotheses for the origin of gray-

tracking is that color centers are formed in high-fundamental-intensity regions of the crystal.

The color center formation is also temperature dependent and the color centers preferentially

absorb the second harmonic. Since the linear buildup cavity contains a standing wave with

alternating high- and low-intensity regions, the color center formation should be much more

severe than in the bow-tie configuration. Even with a fast temperature servo, these local

temperature inhomogeneities cannot be removed which is consistent with the dark striations

in the second harmonic mode.

The doubling efficiency can be restored by realigning the cavity such that a different region

in the crystal is used in the SHG process. In addition, heating the crystal up to ∼100 ◦C over

a full weekend seems to return it to its prior state. Unfortunately, the depoling temperature

for PPKTP is around 150 ◦C, and there seems to be no particular advantage in using a high-

temperature phase-matched PPKTP crystal over KNbO3. To work with the system at hand,

we have added a small translation stage underneath the crystal mount that allows simple

adjustments to the cavity alignment. In combination with the overnight heating procedure,

the current crystals seem to work. Nevertheless, gray-tracking limits the output power of

each doubling cavity to 100− 120 mW.

More recently, commercial SHG doubling systems have become available. Many groups

have bought the (fairly expensive) Toptica SHG system that seems to produce several

hundred mW of 461 nm reliably. Even more recently, NEL has started to sell a fiber-

coupled periodically-poled lithium niobate (PP LiNbO3 or PPLN) waveguide doubler for

about $10k [160]. With input powers of ∼350 mW (IR output power measured by tuning

the temperature off resonance), the doubler reliably produces ∼50 mW of second harmonic
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light. We have been using one of these devices for a few months and it seems to be very

reliable so far. Unfortunately, only long term use will show whether the doubling efficiency

degrades over time. Nevertheless, both the price and the operational simplicity of single-pass

doubling over cavity-enhanced SHG makes this a very attractive alternative.

MOT beams. The SHG cavity length is stabilized to the IR laser by modulating the

laser current at ∼30 MHz. The cavity linewidth is larger than the sideband spacing and

we demodulate the IR transmission at the modulation frequency to obtain a Pound-Drever-

Hall-like error signal. The cavity input coupler is mounted on a tubular PZT of matched

diameter and we apply feedback to the PZT voltage. Once the cavity length is locked, cw

blue light is available and is split off from the IR light with a 45◦ dichroic mirror in front of

the input coupler.

The wavelength of the blue light is stabilized to a saturated absorption spectrometer (see

top right of Fig. 5.5) based on a Hamamatsu Sr hollow cathode lamp driven by a high-

voltage power supply. The probe arm is modulated with an electro-optic modulator (EOM)

at ∼20 MHz. The pump arm contains an acousto-optic modulator (AOM) that shifts the

pump by +80 MHz with respect to the probe. The AOM RF signal is also chopped at ∼1 kHz

for lock-in detection of the spectroscopic signal. The error signal derived from the lock-in

detection allows stabilization of the blue laser wavelength by slow feedback to the IR laser

PZT (or current). Once feedback is applied, the blue light at the entry of the spectrometer

is now at −40 MHz with respect to the 1S0-
1P1 transition in the Sr cell. Tracing back, the

blue light at the exit of the MOT cavity becomes detuned by −120 MHz.

The +80 MHz AOM in front of the optical fiber to the blue fiber splitter makes the blue

MOT beams −40 MHz detuned from 1S0-
1P1 in the Sr cell. All optical beams are transferred

to the vacuum chamber via single-mode polarization-maintaining (SM/PM) angle-polished

(APC/APC) optical fibers. The beams can be switched on fast timescales with AOMs and

are shuttered mechanically in addition. The mechanical shutters are necessary to prevent

leakthrough into the diffracted AOM order. The human eye is very sensitive to 461 nm, and

leakthrough can easily be seen by looking directly into the output of the optical fiber with
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the AOM turned off. Even a few photons of 461 nm will affect optical dipole trap lifetimes

drastically. The optical cavity length locks are fairly sensitive to acoustical vibrations. For

this reason, the blue laser setup was built on a honeycomb breadboard isolated from the

optical table by rubber stoppers. This setup provides enough mechanical isolation to step

on the optical table without unlocking the cavities. However, placing the fast and very loud

Uniblitz mechanical shutters next to the cavities makes the locks oscillate for hundreds of

ms, even when not mounting them directly to the blue laser breadboard. The new SRS

SR474 shutters do not have a coil-driven blade design, but rely on a torque-balanced bar

that swings in front of the shutter opening. The motion of the bar is PID controlled and the

shutter speed can be set. We find that fast speeds still introduce vibrations, but that we can

mount these shutters on the blue laser breadboard next to the doubling cavities when using

one of the slower settings (∼40 ms shutter time).

The beam for the blue MOT is split into three arms using a Schäfter+Kirchhoff cage-

mounted free space splitter based on waveplates and polarizing beam cubes. The fiber

splitter is a custom design that uses set screws in the fiber holders to point the beams. The

splitter is mounted to the optical table in good thermal contact and it is contained in a

plastic enclosure. The main advantage of the design is that it (in principle) does not have to

be touched after initial alignment. Even though there are no thumb screws in the design, we

find that slow mechanical drifts deteriorate the fiber coupling between input and output on

long timescales. The transfer efficiency has degraded over the last three years and we have

not been able to recover it completely even with careful walks of the set screws. We conclude

that a full alignment of these systems is necessary every one or two years. To do that, one

needs CCD cameras that can be mounted to the output ports so that the different arms can

be aligned simultaneously by turning the set screws systematically. It remains to be seen if

this procedure can be done repeatably and without too much time investment. Nevertheless,

with the fiber splitters we use for both the blue and red MOT beams, we typically do not

have to align the MOT beams at all.

Repumps. As mentioned in Sec. 1.1, we use repumping lasers on the 3P2-
3S1 and 3P0-

3S1
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transitions at 707 and 679 nm, respectively. The light is produced by two laser diodes (shown

in the bottom right part of Fig. 5.5), similar to the 922 nm laser described above.

Until recently, the only 707 nm diode available was an AR-coated Toptica model. Unfor-

tunately, 707 nm is a window of low efficiency for InGaAs-based laser diodes and even with

continual improvements over the last few years this model had low power and was much

less frequency-stable than all other diodes we use. Since then, we have switched to the new

Hitachi/Opnext HL7001MG diode with higher power and nominal wavelength of 705 nm.

This diode seems to be very reliable and is also used in the 698 nm spectroscopy lasers for the

optical clock experiments. The 679 nm light is produced by an AR-coated Hitachi/Opnext

HL6750MG.

Each day, the wavelength of the repump lasers is set to a particular value on a wavemeter.

The lasers are then tuned until we observe the largest enhancement in blue MOT fluorescence.

Without further stabilization, the laser wavelength is stable enough for several hours of

operation. Both lasers are combined and launched into the same optical fiber. Since enough

optical power is available, we form a 1 cm diameter beam from a telescope mounted directly

to the vacuum chamber and no alignment is necessary.

Probe beam and absorption imaging. The zeroth order of the MOT AOM is coupled

into another fiber and goes to a probe setup closer to the optical chamber (see mid left of

Fig. 5.5). The probe beam is used for absorption imaging of the atomic clouds in either the

red MOT or the dipole trap. A full overview of this commonly used technique is beyond

the scope of this Section, but good technical references to learn about the relevant details

are [161–163]. Appendix A summarizes some other relevant considerations.

The probe beam setup uses a double-passed AOM and a fast Uniblitz shutter and enters a

final fiber going to the“Probe in”port of the vacuum chamber. The imaging optics are a cus-

tomized version of the Infinity Photo-Optical K2/SC long working distance microscope. The

front lens of the microscope is at ∼16 cm from the atomic cloud. We tested the microscope

with transmissive test targets and blue interference-filtered white light (10 nm bandwidth)

and recovered imaging resolutions of 4 µm even when including a vacuum viewport (AR
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coated as the ones on the vacuum chamber). Due to spatial constraints, the microscope is

separated into the imaging lenses and a custom eyepiece mounted to the CCD camera, with

a mirror in between.

We use an Andor iKon-M CCD camera with 1024 × 1024 pixels of 13 µm width. The

imaging system magnification corresponds to 2 µm/pixel in the image plane. All our images

so far are consistent with the 4 µm test-target resolution. The CCD chip on these cameras

can be TEC-cooled to −70 ◦C without additional water cooling. Electronic noise at these

temperatures is drastically reduced, but the cold temperatures require the chip to be in-

vacuum. One of the main technical issues in absorption imaging with coherent laser light is

fringing induced by interference between optical surfaces in the imaging path. The vacuum

window covering the CCD chip is especially susceptible to fringing. The window in our

camera is custom AR coated for both 461 nm and 689 nm and the front surface is wedged at

1◦. With these precautions, fringing was very significantly reduced versus a camera coated

for Rb absorption imaging that we had been using previously. The fringes change very slowly

with thermal drifts in the optical surfaces responsible. In principle, the fringe patterns can

be recognized and removed using image recognition techniques. We found that we could

reduce the residual fringe contrast by a factor of 3-4, but that the technique requires about

30 images taken under the same conditions to work reliably. With the AR coated wedged

window, fringing has been much less of an issue.

Absorption images are taken in the camera’s “Fast Kinetics” mode that allows splitting

the CCD into several regions. Images can be taken in the first region and then shifted

to the adjacent region with high speed. The next image can then be taken and the CCD

chip is shifted again. In this way, we take three images in quick succession. To prevent

contamination of the earlier images in the sequence, two thirds of the CCD chip are masked

off with a razor blade on a linear translation stage in a custom part mounted to the front of

the camera. A 1 inch diameter Uniblitz shutter is mounted to the front of the razor blade

mount and the K2/SC eyepiece mounts to the shutter. The eyepiece also contains a CVI

10 nm bandwidth interference filter centered at 461 nm to reduce stray light contamination.



120

The filter does not seem to influence the shape of the absorption images we measure.

To initiate taking an absorption image, a dark-field image is taken first and the image is

shifted once while the camera shutter is closed. The actual absorption image of the atomic

cloud is taken next. The camera shutter opens first (∼8 ms opening time), and the probe

shutter opens 3 ms before the probe AOM is gated for 50 µs to obtain the shadow image

of the atomic cloud. The probe shutter closes but the camera shutter remains open as the

atomic cloud drops away under the influence of gravity and the image is shifted. The probe

shutter opens again and the AOM is gated to take the light-field image. Finally, the probe

shutter closes, the camera shutter closes, and the full CCD is downloaded from the camera

to the imaging program. We use a custom imaging program written in C++ that processes,

displays and stores the images on a file server. Using multithreading techniques, the program

can handle the full 1024 × 1024 pixel images (∼2.5 Mb 16-bit TIFF) at ∼1 s experimental

cycles.

The double-pass AOM, the fast shutter, and the final fiber in the blue probe setup are used

to minimize the effect of leakthrough of blue photons towards the atoms and the imaging

system. Leakthrough becomes a problem because of the finite probe shutter opening time

and charge builds up for each photon impinging on the CCD. The camera provides a cleaning

mode that continuously shifts the CCD chip to remove these charges. This method is not

particularly useful in Fast Kinetics mode, however, since it cannot handle charge buildup in

between taking partial images. We tested for leakthrough streaking (blue photons hitting

the camera while the image is shifted) in between taking the shadow and light-field images

by running the imaging sequence without triggering the AOM. With the fast shutter and the

double-pass AOM, this effect was reduced to negligible levels.

Another important systematic effect in absorption imaging is forward scattering of blue

photons anywhere in the imaging path after the light has interacted with the atomic cloud [162].

We found that this effect can be drastically reduced by irising down the probe beam until

only a small region around the atomic cloud is illuminated on the CCD chip.
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5.4.3. Red lasers

The laser light for interacting with the 1S0-
3P1 transition is produced by diode lasers at

689 nm. The laser diodes used are Hitachi/Opnext models HL6738MG, AR coated in house.

The frequency stability necessary to interact with the 7.5 kHz wide intercombination line is

derived from the Sr2 master laser described in Refs. [11, 12]. The top left part of Fig. 5.6

shows a schematic overview of this setup. The red master laser (dotted inset) is another

diode in Littman geometry that is stabilized to a high-finesse reference cavity and a saturated

absorption spectrometer (similar to the blue spectrometer above) based on a heated Sr cell

filled with Ar buffer gas [11]. For our purposes, we extract a laser beam from the master laser

that is at −40 MHz detuning with respect to 1S0-
3P1 in the Sr cell. In the Figure, α denotes

the laser used for the 1S0-
3P1 MOT, and β is used for the photoassociation experiment. The

MOT light is delivered to the vacuum chamber by another Schäfter+Kirchhoff fiber splitter

(see middle right of the Figure) that also supports a second arm for a stirring laser in 87Sr.

For both α and β, we form an optical beat note with the master light and phase-lock each

laser by fast feedback to the laser diode current. For long-term stability, slow feedback to

the laser PZT actuator is also applied.

The local oscillator frequency for each phase-lock can then be tuned to set the detunings of

each laser. The red MOT in 88Sr requires only a single laser, but its detuning needs to change

from a broadband modulation to a single frequency [11, 18]. We use the following scheme to

transfer atoms from the blue MOT to the red MOT. As the light from Zeeman slower, blue

MOT beams, and repump lasers is turned off with AOMs and mechanical shutters, the MOT

field gradient is switched from 50 Gauss/cm to 3 Gauss/cm. The gradient is kept constant

for 80 ms and then is ramped linearly to 10 Gauss/cm within 125 ms and kept at this value

for another 56 ms. At the end of this sequence, the magnetic field gradient and the red light

are switched off and atoms are loaded into the optical dipole trap. Residual magnetic fields

are zeroed by three pairs of compensation coils (see Figure).

As the magnetic field gradient switches from 50 Gauss/cm to 3 Gauss/cm, α light is applied

to the atoms and the α local oscillator is modulated to cover the Doppler-broadened velocity
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Figure 5.6.: Schematic overview of the 689 nm red laser system for cooling and trapping.

See the main text for details. The top part of the figure shows a schematic of the phase

locked diode lasers. The bottom part shows the magnetic coils and laser beams in a

schematic top view of the vacuum chamber.
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profile in the ∼1 mK atoms released from the blue MOT. The modulation is produced by

the setup shown in the top right part of Fig. 5.6. An SRS DS-345 oscillator produces a

sinusoidal voltage at 36 kHz and its amplitude is controlled by an analog voltage from the

control computer. The sinusoidal voltage is summed into the control voltage of a VCO at

∼120 MHz. The mean frequency of the VCO is stabilized by slow PI feedback to the control

voltage with a bandwidth that is smaller than the modulation frequency from the DS-345.

The error signal for the feedback loop is generated by a digital phase detector that compares

the output of the VCO to a DDS oscillator. The frequency of the DDS oscillator is controlled

by the control computer and it is referenced to the lab frequency reference (a Wenzel crystal

oscillator). A window comparator checks whether the modulation amplitude is small and

switches between the DDS oscillator and the stabilized VCO automatically. In this way, the

α local oscillator is a frequency-stabilized signal at 120.7 MHz with a kHz-level sinusoidal

frequency modulation. If the modulation is small, the signal becomes a very clean digitally

synthesized sine wave automatically.

As the magnetic field ramps between 3 and 10 Gauss/cm, the modulation peak-to-peak

amplitude is decreased from 2.7 MHz and the center frequency is tuned closer to the atomic

line so that the blue edge of the modulation spectrum is fixed at −700 kHz with respect to

1S0-
3P1. At the end of the magnetic field ramp, the modulation amplitude is zero and α

remains at a single detuning of −700 kHz.

The second laser β is used for the photoassociation experiment described in this Chapter,

but will function as a stirring laser in future experiments with 87Sr [11, 20]. The local oscilla-

tor is derived from a referenced analog signal generator controlled by the control computer.

The phase-lock easily supports local oscillator jumps on the 10 MHz level and we can tune

β by about 1.5 GHz by slight adjustments to the PID gain. We find that tuning the local

oscillator frequency is much more reliable than actuating on the AOM before the optical

fiber.
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5.4.4. Dipole trap & photoassociation lasers

The optical dipole trap is formed by two crossed laser beams at 1064 nm. The light is

produced by a highly frequency-stable (kHz bandwidth) Innolight Mephisto. The setup is

shown schematically in the top left part of Fig. 5.7. The Mephisto produces a linearly polar-

ized beam and we use 30 dB of free-space optical isolation (OFR/Thorlabs) before coupling

the beam into the input fiber of a Nufern fiber amplifier. When seeded with ∼100 mW of

light, the amplifier produces up to 40 W cw light at 1064 nm and maintains a frequency

bandwidth of 10 kHz. The output fiber is a large-mode-area armored optical fiber spliced

to a water-cooled 30 dB fiber isolator. The setup produces a fairly good TEM00 with good

linear polarization. The amplifier itself is contained in a water-cooled rack-mounted box.

Due to space constraints and safety considerations, the laser system was built on an optical

table enclosed in blackened aluminum sheeting removed from the main experiment.

The setup shown in Fig. 5.7 splits the amplifier’s output into two optical beams that are

controlled by two AOMs and coupled into two SM/PM APC/APC optical fibers that deliver

the light to the vacuum chamber. The fiber coupling makes it necessary to add another 30 dB

of free space isolation to prevent the amplifier from shutting down due to backreflections.

The high optical power makes this system qualitatively different from all other laser systems

in this experiment. The mirrors used are high-power Nd:YAG mirrors from Thorlabs that

support both 0◦ and 45◦ incidence angles. All lenses and beam cubes are AR coated for

1064 nm and lenses made of fused silica are used when possible to prevent beam pointing

drifts at high powers in BK7. Thermal power meters need to be used. Unfortunately, the

amplifier mode shape depends on the amplifier current and we run the amplifier close to

saturation at 40 A. After ∼8 months of everyday usage at this current, we found that the

total output power has degraded to ∼32 W. Working with such high powers is impossible

without having some way to adjust the power down to manageable levels. For this purpose,

we added combinations of λ/2 waveplates, polarizing beam cubes and high power beam

dumps to harmlessly divert power without changing the mode profile.

We use high efficiency IntraAction AOM-302AF3 glass AOMs at 30 MHz with opposite
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Figure 5.7.: Schematic overview of the 1064 nm infrared laser system for the optical dipole

trap (ODT). See the main text for details. The left part of the figure describes the

1064 nm system and delivery system. The top right inset describes an optional injection-

locked 689 nm laser to enhance the PA power available. The bottom right part shows a

schematic top view of the vacuum chamber relevant for the OFR experiment.
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orders to separate the optical frequency of both beams by 60 MHz. The AOMs are also

used to switch off the dipole trap beams and stabilize the power transmission through the

optical fibers. We have used these modulators very successfully for dipole traps at 914 nm

and optical lattices at 813 nm and obtained diffraction efficiencies above 90%. However,

we found that for high intensities, the diffraction efficiency tends to degrade on thermal

timescales. We added water-cooled baseplates to the AOMs to counteract this effect. Even

so, the AOM glass gets permanently damaged on timescales of several hours to days by optical

powers above 15 W (even with 2 − 3 mm beam diameters). Specialized YAG modulators

that handle much higher intensities are available, but we found that other processes limit

the usable power and continued to use the IntraAction AOMs.

Since free-space propagation to the experiment was not an option due to spatial con-

straints, we had to bridge the distance with optical fibers. We required single-mode and

polarization-maintaining transmission to guarantee a well-defined and reproducible optical

trap at the center of our chamber. This requirement limits the transmissible power severely.

Power transmission through single-mode optical fibers is limited mostly by stimulated Bril-

louin scattering (SBS), where light is scattered off phonons in the optical fiber [164]. Above

a certain threshold input intensity the transmitted power saturates and the rest is scattered

back. The SBS threshold scales linearly with fiber length length and is inversely propor-

tional to the mode area. Typical Panda SM/PM fiber for 1064 nm (e.g. Nufern PM980-XP)

has an effective mode field diameter (MFD) of about 6 µm. We find that one can transmit

about 5 − 6 W through 5 m of this fiber. This is consistent with our finding that we could

transmit about 1 W through 25 m of fiber when trying to transfer a beam from an adjacent

lab. Forcing more power into the fiber can result in slow degradation of the core, making

the fiber unusable. Specialized large-mode-area (LMA) fibers such as the one spliced to the

output of the fiber amplifier support higher SBS thresholds. The mode area is limited by

the desired spatial mode quality of the transmitted light. With larger mode area and longer

fiber length, more light leaks into higher transverse modes. We have tried working with

several LMA fibers from Nufern, and have transmitted up to 12 W through 5 m of several
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fiber types with reasonable beam quality. At these powers, however, stable beam alignment

into the fiber tip becomes extremely critical. Even with the fiber launch in the enclosure

and careful alignment, thermal fluctuations cause the beam pointing to vary slightly. At

these powers, any deviation from optimal alignment causes runaway heating in the fiber tip.

Typical FC connectors are constructed by epoxying the fiber core into the connector which

is then polished at the desired angle. With large heat load, the epoxy melts up to several

cm along the fiber and flows over the fiber core at the tip. The fiber loses transmission and

the epoxy burns the tip. We recleaved the fiber and machined a custom metal fiber holder

without epoxy. However, thermal contact between fiber tip and holder is still important

and in the subsequent test, the fiber tip itself melted. We decided to stay with the current

setup for the present experiment, but would recommend setting up such high power laser

sources with free-space coupling to the experiment if space allows. The great advantage of

fiber delivery are the well-defined beam profile and the spatially defined delivery point with

respect to the target at the center of the chamber. By rigidly mounting the fiber tip, pointing

fluctuations can be very small.

The fiber delivery system is sketched in the bottom left part of Fig. 5.7. We find that

adding both a λ/4 and λ/2 waveplate is necessary to compensate for slow changes in the

fiber birefringence over time scales of several hours, even when the polarization was carefully

aligned with the fiber axis. The polarization at the output of the fiber is defined by the mount,

but we find it expedient to include another λ/2 waveplate to optimize transmission after the

fiber was unplugged. A polarizing beam cube defines the polarization completely and allows

servoing on the transmitted intensity independent of polarization drifts. An AR-coated

wedge picks off a small fraction of the intensity which is detected on a photodetector (PD).

The whole fiber launcher, waveplates, cube, photodetector, and beam diameter adjusting

lenses (not shown) are built in a cage-mounted system for mechanical stability. On the local

end, the photodetector voltage is compared against a stable reference and a PI servo feeds

back on the amplitude of the RF signal that drives the AOM. We also include a high-isolation

RF TTL switch for switching times limited only by the acoustic wave transfer time through



128

the AOM crystal. Most optical fibers shown in Figs. 5.5 and 5.6 have similar setups to the

one shown here.

Finally, the delivered ODT beam has to be shaped to provide the desired focus at a given

distance from the fiber tip. The beam shape can be measured and optimized easily with a

USB CCD camera on a linear translation stage in combination with a program that displays

and fits the mode in real time. To be useful for optimizing beams in a real experimental

setup, it is important that the CCD chip is very small and lightweight; DataRay sells such

a system. For almost the same price as the Thorlabs singlets, good 1 inch diameter singlets

or achromats are available from Optosigma or Newport. Lens quality matters especially for

good 461 nm beam quality over long distances. Lens quality becomes less crucial with larger

diameter and longer wavelength, and we found that the 2 inch diameter IR achromats by

Thorlabs produce reasonably aberration-free foci down to waists of 15 µm at the distances

required to focus on the atomic cloud from outside the vacuum chamber.

We also built an additional 689 nm diode laser that can be injection-locked by the light

delivered from β for higher PA intensities. The setup is shown schematically in the top

right part of Fig. 5.7. The PA intensity is adjusted by placing neutral density filters before

the final fiber transmission to the chamber. This setup allows changing the PA intensity

by well-defined amounts over many orders of magnitude without changing the delivered PA

beam pointing and transverse mode.

5.4.5. Dipole trap geometry

As discussed in section 5.4.3, we prepare 88Sr atoms in a MOT operating on the 1S0-
3P1

intercombination transition and obtain atomic clouds at typical temperatures of a few µK.

While the MOT is operating, the atomic cloud is overlapped with the dipole trapping beams

at λXODT = 1064 nm. After the MOT is switched off, ∼5× 104 atoms remain in the crossed

dipole trap (XODT). The trapping geometry is shown in Fig. 5.8, where the XODT is formed

by a horizontal (H) and a vertical (V) beam which intercept in the x̂− ẑ plane. The trapping
beams have 1/e2 waists wH = 63 µm and wV = 53 µm, respectively.
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Figure 5.8.: Geometry of the experiment in the absorption image plane. The directions

x̂, ŷ, and ẑ define the lab frame, where both gravity ĝ and bias magnetic field B̂ are

parallel to ẑ. Symbols k̂ are beam directions, and ǫ̂ are beam polarization vectors, where

subscripts H, V , and PA indicate horizontal, vertical, and PA beams. H and V Gaussian

beam profiles are shown in blue outline, PA Gaussian beam profile in red outline.
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The drawing is shown in the focal plane of the absorption imaging system discussed in

Sec. 5.4.2 and the H-V trap is always adjusted to the same spot with respect to the MOT

before optimizing the loading from MOT to dipole trap for the day. Guaranteeing that the

XODT forms at the foci of the H and V beams is not critical because of their large Rayleigh

ranges ziR ≡ πw2
i /λXODT > 8 mm, and the Gaussian beam isosurfaces at the beam waist are

almost cylindrical (blue outlines).

Gravity points along −ẑ and sets the trap depths of ∼7 µK and ∼15 µK along V and

H. The two graphs on the right hand side show cuts through the model potential, which

has been adjusted to match the trap frequencies measured via parametric resonance. An

isosurface (dark blue) of the model potential at 7 µK is shown in the zoomed-out portion.

The model potential is given by

U(x) = UH(x) + UV (x) +mSrgz, (5.23)

where Ui are the Gaussian beam potentials in the lab frame, given by

Ui(x) ≡ −U i
T exp

{

− 2

w2
i

(

[ǫ̂i · x]2 + [(k̂i × ǫ̂i) · x]2
)}

. (5.24)

The trapping beams point in the directions

k̂H = − cos θHx̂− sin θH ẑ,

k̂V = − cos θV ẑ + sin θV x̂,
(5.25)

with θH = 16.0◦ and θV = 14.4◦. Both beams are linearly polarized along ǫ̂H = ǫ̂V = ŷ,

and their optical frequency differs by 60 MHz so that we can neglect any optical interfer-

ence patterns distorting U . A bias magnetic field of Bz ≃ 100 mGauss defines the atomic

quantization axis.

The absorption image plane is spanned by cos π
8
x̂ − sin π

8
ŷ and ẑ. The PA beam (red

outline) propagates in the x̂−ŷ plane the along the horizontal axis of the absorption imaging

system,

k̂PA = − cos θPAx̂+ sin θPAŷ, (5.26)
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with θPA = π/8. The PA beam waist is wPA = 41 µm and it is linearly polarized along the

atomic quantum axis ǫ̂PA = ẑ. Typical kinetic energies are 2-4 µK, and in-trap cloud FWHM

are 45-55 µm. Although the PA beam FWHM 2
√
2 ln 2 × wPA ≃ 97 µm is larger than the

typical cloud FWHM, we use a density-averaged intensity Iav =
∫
d3xρ(x)I(x)/

∫
d3xρ(x)

to characterize the PA intensity interacting with the atoms. Typical values are Iav ≃ (0.6−
0.7) × Ipk, where Ipk = 2P

πw2
PA

is the Gaussian beam peak intensity for total beam power P .

The PA beam also adds to the optical trap slightly because of its relatively small detuning

from the atomic transition. For large intensities and small wPA and especially in a standing

wave configuration, this effect can become important. The additional trap depth introduced

by the PA beam here is typically < 0.1 µK and we neglect it.

5.5. Trap potential calibration

The 88Sr sample is loaded from a thermalized distribution in the MOT into a conservative

XODT potential. Although the sample is thermalized well by the MOT photons initially,

the 88Sr background scattering length is so small that the sample behaves as an ideal gas on

experimental timescales. For this reason, inhomogeneities in kinetic energy persist and the

ergodic gas dynamics are completely determined by the XODT potential. For the temper-

atures and typical trap depths considered here, the sample is trapped in the potential well

defined by U . Nevertheless, the trap is not deep enough such that we can easily approxi-

mate it as harmonic. We calibrate the model potential by comparing its eigenfrequencies for

measured beam powers against parametric resonance measurements for each axis.

The trap eigenaxes are determined by diagonalizing the symmetric curvature matrix (the

Hessian) of the model potential around its minimum:

(Hess U |min)ij =
∂2U

∂xi∂xj
|min. (5.27)

The eigenvalues of (2πmSr)
−1 Hess U |min are the trap eigenfrequencies. The waists wH and wV

used in the model potential are adjusted until the eigenfrequencies match the values obtained

from parametric resonance measured along each beam axis. The waist values obtained



132

thus are consistent with the values measured outside the vacuum chamber when accounting

for slight aberrations introduced by passing through the vacuum viewports. The vacuum

viewports are anti-reflection coated for 461 nm, 690 nm, and 813 nm, since the vacuum

chamber was designed for optical lattice clock experiments. The horizontal beam passes

through a thin vacuum viewport at normal incidence and its intensity transmission coefficient

at 1064 nm was measured as TH = 0.69. The vertical viewport is made of much thicker fused

silica than the horizontal viewport due to its large diameter. In addition, the vertical beam

passes the viewport at θV and we measure TV = 0.58. The beam powers entering the vacuum

chamber are stabilized via feedback from photodetectors to acousto-optical modulators. The

modulators are located before the optical fibers that transfer the 1064 nm light from the

laser source to the vacuum chamber and are also used to switch off the trap to expand the

atomic cloud for time-of-flight measurements. Typical optical powers before the vacuum

chamber are PV = 1.15 W and PH = 1.79 W. The real part of the 1S0 atomic polarizability

when neglecting all but the 1P1 contribution is Re α1S0
(1064 nm) ≃ 239 a.u. [11], where the

atomic unit of polarizability is 1 a.u. = 4πǫ0a
3
0. The individual beam trap depth is then

given by [165]

U i
T =

Pi

πcǫ0w2
i

Re α1S0
(1064 nm) (5.28)

Taking the viewport transmission coefficients into account and using the typical beam powers

and calibrated waists, we obtain

x̂1 ≃ 0.984 x̂+ 0.175 ẑ,

x̂2 = ŷ,

x̂3 ≃ −0.175 x̂+ 0.984 ẑ,

(5.29)

where we ordered the eigenaxes x̂i according to the lab frame axes they are closest to. The

eigenfrequencies are

{ν1, ν2, ν3} ≃ {219, 290, 187} Hz. (5.30)

The potential along the 2-axis is the most harmonic since the transverse potential of both

trapping beams adds to produce a very deep trap. The potential along the horizontal axis is
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the next deepest, but becomes lopsided because of gravity. The potential along the vertical

trap axis is very anharmonic and gravity introduces a single saddle point where atoms can

escape (see Fig. 5.8). This asymmetry in trap depths along the trap axes produces a persistent

inhomogeneity along the horizontal and vertical axes, even when loading the trap from a

thermal sample in the MOT. Unless care is taken to align the XODT with respect to the

MOT every day, the loading process does not prepare a comparable phase space distribution

each day. The difference between potential minima in the MOT and the XODT determines

the persistent kinetic energy inhomogeneities in the cloud. We developed a careful alignment

procedure that set the relative position of MOT and XODT in the absorption image plane and

then optimized the relative magnitudes of horizontal and vertical kinetic energies determined

from time-of-flight measurements.

5.6. Modeling the phase-space distribution

To understand and model the initial atomic phase-space distribution, we performed Monte-

Carlo simulations of loading the conservative model potential U with N classical particles

from a thermal sample at a given temperature. Letting each atom in the sample evolve in

the conservative trap for several trap oscillation cycles consistently produced inhomogeneous

density distributions. For the relevant temperature range the resulting inhomogeneous den-

sity and momentum distributions consistently separated into symmetric distributions along

each trap eigenaxis, since no thermalizing collisions were allowed to couple the different

axes. We also find that each axial potential energy follows the corresponding axial kinetic

energy faithfully and conclude that the trap is ergodic on timescales longer than a few trap

oscillation cycles. The resulting phase space distributions fit well to independent Gaussian

distributions along each trap eigenaxis. Nevertheless, it is not adequate to approximate

harmonic confinement where the RMS axial cloud extent is proportional to the axial RMS

velocity via the axial eigenfrequency. Even for typical temperatures of 3 µK, the cloud is

large enough to explore the anharmonic parts of the trapping potential.
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We model the density distribution as

n(x) ≡ Nf(x), (5.31)

with atom number N =
∫
d3x n(x), position distribution

f(x) =
∏

i

1
√

2πσ2
xi

exp

[

− x2
i

2σ2
xi

]

, (5.32)

and position variances σ2
xi

≡ 〈x2
i 〉 − 〈xi〉2, where the angled brackets indicate an ensemble

average. The in-trap momentum distribution is also modeled as Gaussian

g(p) =
∏

i

1
√

2πσ2
pi

exp

[

− p2
i

2σ2
pi

]

, (5.33)

with velocity variances σ2
pi
≡ 〈p2

i 〉 − 〈pi〉2. Although we do not assume that there is a global

temperature, the relationship between σ2
xi

and σ2
pi
is given by the (ergodic) trap and can be

determined from the Monte Carlo simulation when assuming the correctness of our model

potential. In this model, the expression for the phase space density becomes

ρ(x,p) = Nh3f(x)g(p), (5.34)

with Planck’s constant h = 2π~ and peak phase space density

ρ0 ≡ ρ(0,0) = N
∏

i

~

σxi
σpi

. (5.35)

Typically, we refer to the position and momentum variances as the widths wxi
and per-axis

temperatures Ti, defined as

wxi
≡ σxi

,

kBTi/2 ≡ σ2
pi
/(2m),

(5.36)

with Boltzmann’s constant kB and atomic mass m. In these terms, the peak density n0 and

peak phase space density ρ0 become

n0 ≡ n(0) =
N

(2π)3/2
∏

iwxi

,

ρ0 = N
∏

i

(
~

2m

w2
xi
kBTi

)1/2

.

(5.37)
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For comparison: in a harmonic trap with trap frequencies ωi and interaxis thermal equi-

librium at temperature Ti ≡ T , these expressions assume the forms

kBT/2 = mωiσ
2
xi
/2 = σ2

pi
/(2m),

n0 = N
∏

i

(
mω2

i

2πkBT

)1/2

= N
∏

i

mωiλT/h,

ρ0 = N
∏

i

~ωi

kBT
,

(5.38)

with thermal wavelength λT = h/
√
2πmkBT .

In summary, we find that both density and velocity distributions can be modeled as inde-

pendent Gaussians along each trap eigenaxis. Because the trap is anharmonic, the connection

between cloud extent and RMS velocity is not simply given by the axial eigenfrequencies. We

need to measure both the spatial and the momentum distributions to obtain a full description

of the atomic sample.

5.7. Measuring the phase-space distribution

We use an interleaved experimental sequence, where two runs of the same experiment are

performed consecutively. At the end of the first experiment, the atomic cloud is imaged

via absorption while the cloud is confined in the XODT potential. This image provides us

with information about the density distribution at the end of the experiment. Appendix A

summarizes some important effects that need to be taken into account to make in-situ imag-

ing and its analysis reliable. At the end of the second experiment, the XODT potential is

switched off and the atomic cloud is allowed to expand for typically 1.5 ms before we take

the absorption image. The second image provides information about the kinetic energy dis-

tribution. The images determine the projection of the density distribution and the kinetic

energy distribution into the absorption image plane. The atomic cloud is typically exposed

for 50 µs of light on the 1S0-
1P1 transition with intensities of 10% of the saturation intensity

Isat ≃ 40 mW/cm2.
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5.8. Inelastic loss as relative momentum knife

In the regime of small optical length, we can neglect elastic scattering and view the inelastic

loss as a“relative momentum knife”. At a particular detuning, the inelastic loss only removes

particle pairs with certain relative momenta. To investigate the effect on the single-particle

momentum distribution, we need to find out which parts of the single-particle distribution

contribute to a certain relative momentum class.

5.8.1. Single-particle and relative momentum distributions

The relative momentum pr of particles 1 and 2 having individual momenta p1 and p2,

respectively, is given by

pr ≡ p1 − p2. (5.39)

We assume that both particles are distributed according to the same Gaussian probability

distribution

pi ∼ N (µ,C). (5.40)

We will also assume zero mean µ = 0 and that the distribution is anisotropic but that the

axes are decoupled, such that the covariance matrix C is diagonal and given by

C =








〈p2
1〉 0 0

0 〈p2
2〉 0

0 0 〈p2
3〉







. (5.41)

Then the differential probability for finding a single particle of momentum pi can be written

as

dP (pi) = f(pi)d3pi =
1

(2π)3/2
√
detC

exp

[

−1

2
(pi − µ)⊤C−1(pi − µ)

]

d3pi

=

(
3∏

j=1

2π〈p2
j〉
)−1/2

exp

[

−1

2

3∑

j=1

(pij)
2

〈p2
j〉

]

d3pi.

(5.42)

Since the relative momentum is a sum of Gaussian-distributed momenta, the differential

conditional probability dP (pr|p1) of finding a relative momentum pr when the momentum
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of particle 1 is known is also Gaussian. Its mean as a function of p1 is

〈pr〉 = 〈p1 − p2〉 = p1 − 〈p2〉 = p1, (5.43)

and its covariances are twice the single-particle covariances:

〈priprj〉 − 〈pri 〉〈prj〉 = 2δij〈p2
i 〉. (5.44)

Thus the conditional probability is

dP (pr|p1) = f(pr|p1)d3pr ∝ exp

[

−1

2

∑

j

4

〈p2
j〉
(prj − p1

j/2)
2

]

d3pr. (5.45)

By integrating over the marginal variable p1 we verify that the probability distribution

function for the relative momentum pr is

f(pr) =

∫

d3p1f(pr|p1) ∝ exp

[

−
∑

j

(prj)
2

〈p2
j〉

]

. (5.46)

To simplify the problem, we would like to find an expression for the conditional proba-

bility that only involves the magnitude of the relative and single-particle momenta. In the

following, we will assume isotropy, such that

〈p2
j〉 ≡ σ2. (5.47)

We note that conditional and joint probabilities of variables A and B are generally related

by [166]

P (A,B) = P (A|B)P (B). (5.48)

Thus the joint probability for pr and p1 is

dP (pr,p1) = dP (pr|p1)× dP (p1) (5.49)

and we integrate over momentum shells S and S ′ of radii pr and p1, respectively, to find the

joint probability for the magnitudes:

dP (pr, p1) =

∫

S

d3p1

∫

S′

d3prf(pr|p1)f(p1)

∝
∫

dΩr

∫

dΩ1(prp1)2e−(pr)2/σ2

exp

[

−(p1 − pr)2

σ2

]

dp1dpr

∝ (p1pr)2e−2(pr)2/σ2

e−(p1)2/σ2 sinh
2p1pr

σ2

2p1pr

σ2

dp1dpr,

(5.50)
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where dΩr and dΩ1 indicate the angular differentials corresponding to integration over S and

S ′. Since the single-particle probability is given by

dP (p1)dp1 =

∫

S

d3p1f(p1) ∝ (p1)2e−
(p1)2

2σ2 dp1, (5.51)

we obtain the conditional probability of finding a particle pair with relative momentum of

magnitude pr for a given single collision partner momentum of magnitude p1:

dP (pr|p1) ∝ (pr)2 exp

[

−2(pr)2

σ2
− (p1)2

2σ2

]
sinh 2p1pr

σ2

2p1pr

σ2

dpr. (5.52)

Figure 5.9 shows the relative momentum magnitude pr distribution conditional to a known

value of the single particle momentum magnitude p1 in a thermal sample. For p1 → 0,

the relative momentum distribution is Maxwell-Boltzmann with single particle temperature

reduced by
√
2. For increasing p1, the distribution approaches a Gaussian distribution around

p1. From this picture, we conclude that relative momenta for small single-particle momentum

are determined by the second particle. For large single-particle momentum, the relative

momentum increases. We can now use the conditional relative momentum distribution to

predict the effect of relative-momentum dependent loss on the single-particle momentum

distribution.

5.8.2. Effect of relative-momentum dependent loss

We are interested in a scenario where collision pairs with a given relative momentum pr are

removed from the sample and would like to predict the effect of such a removal on the single

particle momentum distribution. In particular, we are interested in determining which single-

particle momenta out of the initial distribution can contribute to a given relative momentum.

We use Bayes’ theorem [166] to invert the conditional probability:

dP (p1|pr)dP (pr) = dP (pr|p1)dP (p1) = dP (pr, p1). (5.53)

This form can then be used to determine the conditional probability dP (p1|loss) of finding a

particle of momentum p1 after removal of particles with momentum pr. If we define the loss
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Figure 5.9.: Distribution of relative momentum magnitude pr, conditional on value of single-

particle momentum magnitude p1 for an isotropic Maxwell-Boltzmann single-particle mo-

mentum distribution with σ =
√
mkBT . The single particle momentum p1/σ = 0 for the

leftmost trace and increases in steps of 1 towards 5 (rightmost trace).

probability floss(p
r), the survival probability of a particle with p1 after relative momentum

loss according to floss(p
r) is

dP (p1|loss) ∝
∫

dP (pr|p1)dP (p1)[1− floss(p
r)] =

∫

dP (pr, p1)[1− floss(p
r)], (5.54)

where we integrate over the relative momentum pr. If we normalize the left hand side of

Eq. 5.54 with respect to p1, we find

dP (x|loss) = xe−x
2
dx
∫∞

0
dy [1− floss(y)]e

−2y2y sinh 2xy
∫∞

0
dx xe−x2

∫∞
0
dy [1− floss(y)]e−2y2y sinh 2xy

, (5.55)

with dimensionless momenta x ≡ p1/σ and y ≡ pr/σ.

Figure 5.10(a) shows the effect of relative-momentum dependent loss on the single-particle

momentum distribution. Here, we have assumed a Gaussian floss centered at different values

of pr/σ with a FWHM corresponding to 15 kHz in frequency units at a temperature of 3 µK.

The single-particle distributions are renormalized after the loss process according to Eq. 5.55.

The green trace shows the effect of loss when setting the center of the Gaussian loss at pr/σ =
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0. The initial single-particle distribution is almost unchanged, since particles are removed

uniformly. The purple trace shows the effect of loss when pr/σ = 3. The initial distribution

is almost unchanged, but in this case, this is because there are not many single-particle

momenta contributing to relative momenta of this magnitude. The red trace corresponds to

pr/σ = 1. Here, many particles are removed close to the most likely momentum, and the

final distribution is shifted to higher momenta, corresponding to a higher average kinetic

energy. The blue trace corresponds to pr/σ = 2. Here, single-particle momenta larger than

the most likely momentum are removed and the sample becomes colder.

The fractional change in the norm of the distribution in Eq. 5.55 with respect to having

no loss process is equal to the fractional atom number change

N

N0

= 1− 8

π

∫ ∞

0

dx xe−x
2

∫ ∞

0

dy floss(y)e
−2y2y sinh 2xy, (5.56)

and moments of the distribution can be calculated as

〈xn〉 ≡
∫ ∞

0

xndP (x|loss). (5.57)

However, it is more convenient to also define fractional changes of such moments with respect

to having no loss process present:

〈xn〉
〈xn〉0

=

[

1−
√
π

21+n/2Γ(3 + n/2)

∫ ∞

0

dx xn+1e−x
2

∫ ∞

0

dy floss(y)e
−2y2y sinh 2xy

]

×
(
N

N0

)−1

(5.58)

For instance, the fractional change in temperature due to the relative momentum dependent

loss process is

T

T0

=
〈x2〉
〈x2〉0

. (5.59)

Figure 5.10(b) shows the fractional atom number and temperature change under the same

conditions as for panel (a), when scanning the mean target relative momentum pr/σ. Most

atoms are removed when pr/σ targets the most likely single-particle momentum and the

sample gets heated. For larger relative momentum, the sample becomes colder.

In conclusion: The relative momentum knife picture derived here describes removal of

atoms with a given relative momentum magnitude. Depending on which class of atoms are
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(a) Renormalized single-particle distribution after loss according to a Gaus-

sian loss probability floss with FWHM corresponding to a frequency width

of 15 kHz at 3 µK. The loss is centered at pr/σ = 0, 1, 2, and 3 for the

green, red, blue, and purple traces, respectively.

(b) Fractional atom number (temperature) change N/N0 (T/T0) shown as

the red (blue) trace while scanning the loss center for the same conditions

as in panel (a).

Figure 5.10.: Effect of relative-momentum dependent loss on the single-particle momentum

distribution in an isotropic thermal sample.
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removed, the sample gets heated or cooled. This simple static probabilistic model gives

insight into the effect of instantaneous particle removal. However, it cannot describe the

sample dynamics for time scales that are longer than the typical trap oscillation periods

since the trap acts as a phase-space randomizer. To model the sample dynamics under

relative-momentum dependent particle removal, we need a model that can account for the

trapping potential.

5.9. Inelastic loss from a Gaussian distribution

The treatment here is an abbreviated version of unpublished notes by T. Nicholson; see also

the online material of Ref. [10]. As argued in Sec. 5.1, we can describe the density evolution

by a nonlinear differential equation involving the momentum-averaged inelastic collision rate

constant

ṅ = −K̄inn
2 − n/τbg, (5.60)

where we have included a single-atom loss via the 1/e trap lifetime τbg. This equation can

be integrated to obtain the density evolution with time t:

n(x, t) =
n0(x)

1 + K̄inτeffn0(x)
, (5.61)

with effective time scale τeff = τbg(e
−t/τbg − 1) and initial density distribution

n0(x) = N0

3∏

i=1

1
√

2π〈x2
i 〉
e−x

2
i /2〈x2

i 〉 ≡ npk

3∏

i=1

e−x
2
i /2〈x2

i 〉, (5.62)

with peak density npk. The fractional atom number at time t is then

N(t)

N0

=

∫

d3x n(x, t) = N−1
0

3∏

i=1

√

〈x2
i 〉
∫

dΩr

∫ ∞

0

dr r2n(r, t)

≡
√

2

π
n−1

pk

∫ ∞

0

dr r2n(r, t),

(5.63)

where we have defined rescaled coordinates ξi ≡ xi/
√

〈x2
i 〉 and the rescaled radius r ≡

√∑

i ξ
2
i . In terms of these coordinates, the fractional atom loss becomes

N(t)

N0

=

√

2

π

∫ ∞

0

dr
r2e−r

2/2

1 + K̄inτeffnpke−r
2/2

=
2√
π

∫ ∞

0

du

√
ue−u

1 + K̄inτeffnpke−u
, (5.64)
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with u ≡ r2/2, which makes the integral more convenient for numerical calculations.

If we allow inhomogeneous kinetic energy distributions, the momentum-averaged inelastic

rate can be quite complicated to calculate. To simplify the integrals to a point where fitting

PA spectra becomes feasible, we have to assume a mean kinetic energy for the sample and

perform the momentum average as if there were a single temperature describing the sample.

Under this assumption, the thermally-averaged inelastic collision rate can be written as

K̄in(∆, u, ℓoptγm, T ) =
4hℓoptγm√

πµ

∫ ∞

0

dη
γ
√
η e−η

D2 + Γ2/4
,

D ≡ ∆+
kBT

h
η − νrec − νse

−u/u0 ,

Γ ≡ γ + 2kthℓoptγm
√
η,

(5.65)

with dimensionless relative momentum magnitude η ≡ k2/k2
th, thermal momentum ~kth =

√
2µkBT , center-of-mass PA photon recoil energy hνrec, and trapping laser ac Stark shift at

the center of the trap νs. The PA laser with optical frequency νl is detuned from the PA

resonance by

∆ ≡ νl − [ν(1S0 − 3P1) + νn +∆ν(I)], (5.66)

where ν(1S0 − 3P1) is the atomic transition frequency, and hνn is the energy of state n with

respect to the free threshold. The detuning term ∆ν(I) accounts for the ac Stark shift of

the molecular resonance with respect to I.

For the fitting routine, we approximated the integral in Eq. 5.64 (Eq. 5.65) as a 10-term

(53-term) sum using Gauss-Laguerre quadrature [167, 168]. The quantities (ℓoptγm), T , u0,

and a term added to the detuning to represent the line center were allowed to vary. The

parameter T is used as a check against the experimentally measured temperatures and agrees

well with the average of the axial temperatures. The Stark shift term νse
−u/u0 was included

to account for the broadening of the atomic loss profile to the blue side of a molecular

resonance due to the ac Stark shift induced by the trap.
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5.10. Results for small optical length

A typical PA loss feature for small ℓopt is shown in Fig. 5.11(a), where the final atom number

after application of PA light is shown with respect to PA detuning from 1S0-
3P1. The per-

axis kinetic energies for this scan correspond to a horizontal (vertical) temperature TH(TV ) =

2 µK (3 µK) resulting in the typical thermal tail towards the red side of the resonance [169].

The solid line is a fit with the inelastic collision model derived in the last Section, for a

vacuum-limited trap lifetime τbg ≃ 1.3 s. We extract ℓopt and the position of the line center.

Panel (b) shows the time dependence of the same loss process. In the presence of resonant

PA light, we clearly observe two-body loss. To fit the decay curve, however, it is necessary

to perform the same thermal averaging process as for the lineshape to obtain a good match

with the experimental data.

The measurements were performed for a range of optical lengths by adjusting the density

profile averaged PA intensity Iav. Multiple molecular resonances were measured and results

for n = −2 are shown in panel (c). The optical length data is fit with a linear function to

extract ℓopt/Iav, and the results are summarized in the table at the bottom. The fit coefficient

ℓopt/Iav is given by the free-bound Franck-Condon factor and decreases drastically with

decreasing n. Panel (d) exemplifies similar measurements done to determine the line shift

∆ν of the same PA resonances with Iav. To obtain good signal-to-noise on these frequency

shifts, we decreased the PA exposure time and increased Iav to maintain a constant pulse

energy. Linear shift coefficients ∆ν/Iav and zero intensity line positions νn with respect to

the atomic transition are also shown in the table. The sign and magnitude of ∆ν/Iav are

consistent with the predictions in Ref. [144].

5.11. Elastic contributions to the cross section

For larger optical lengths, the elastic contribution to the scattering cross section becomes

important. In this regime, the simple inelastic loss picture becomes insufficient to describe

OFR spectra. Elastic collisions introduce cross-dimensional thermalization and (on longer
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Figure 5.11.: Photoassociative spectroscopy for n = −2. a, Typical PA loss feature in the

low intensity regime at Iav = 7 mW/cm2, with density-profile averaged PA intensity Iav.

b, Time evolution of the trapped sample without PA light (blue squares) determines τbg.

The dynamics with resonant PA light (red circles) show distinct two-body loss curves that

can be fit with a thermally averaged model (solid red curve). c, Linear increase of the

optical length ℓopt with increasing Iav for sufficiently small ℓopt. d, Molecular line center

shift ∆ν for large intensities. Both graphs are obtained by fitting loss spectra such as

in panel a. For each n, OFR parameters from the coupled-channels calculation and the

experiment are summarized in the table at the bottom. Here, ℓcc
opt indicates the theoretical

result, νn is the zero-intensity molecular line center with respect to 1S0-
3P1, and ∆ν/Iav

characterizes the molecular ac Stark shift with respect to I [144].
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timescales) evaporation into the sample dynamics.

We show the atom loss with respect to PA laser detuning for n = −2 in Fig. 5.12(a). Both

in-trap size and kinetic energy are measured by absorption imaging. Far detuned from the

resonance, the gas is almost ideal, as shown by the persistent kinetic energy inhomogeneity

along H and V in Fig. 5.12(b). In the center of the resonance (vertical dashed line), inelastic

collisions dominate and cause heating. For red detuning from the molecular resonance, the

temperatures approach each other.

The measured cloud widths wH and wV confirm that the potential energy follows the

kinetic energy [see Fig. 5.12(c)] since particles oscillate in the trap many times between

inelastic collisions. Similar measurements were performed for n = −3 and n = −4, and

we find that the same dispersive behavior in temperatures and widths appears around

2〈k〉ℓoptγm/γ ∼ 30% at 200 ms PA exposure times.

The data can be understood by a simple picture of competing elastic and inelastic collision

rates. As discussed in Sec. 5.2, the elastic and inelastic rates average differently with k in a

thermal sample, causing them to peak at different detunings from the molecular resonance.

Elastic collisions cause cross-dimensional thermalization [170] and tend to equalize TH and

TV . Since inelastic collisions predominantly remove cold atoms from the most dense part

of the cloud, the resulting loss increases the system energy – a process referred to as anti-

evaporation.

This behavior is confirmed by a Monte-Carlo simulation, where 5.5×104 classical particles

are simulated and each particle undergoes elastic and inelastic collisions according to the cross

sections in Sec. 5.2. The simulation is described in detail in Appendix B. The solid lines

overlaid on the experimental data in Fig. 5.12 are the results of such a simulation. An average

ratio of elastic to inelastic collisions per particle from the simulation is shown in Fig. 5.12(d).

The dispersive shapes are sensitive to γ. Combined with the low ℓopt data in Fig. 5.11, the

entire simulation reproduces the experimental data only when γ = 2π × 40(5) kHz > 2γa =

15 kHz without other free parameters. We have ruled out magnetic field or PA laser noise

as a source of broadening. Instead, we conclude that this extra broadening is related to a
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Figure 5.12.: Elastic contribution to the scattering cross section. Experimental data for

n = −2 at Iav = 22 mW/cm2 (open circles) and results of a Monte-Carlo simulation (solid

lines) using the single-channel elastic and inelastic cross sections in a crossed Gaussian

beam potential including gravity for ℓoptγm/γ = 140a0. (a) Atom loss as a function

of PA laser detuning from the atomic 1S0-
3P1 resonance. In panels (b) and (c), blue

(red) data points and solid lines indicate the corresponding quantities for the vertical

(horizontal) trap axis. (b) Change in kinetic energy derived from time-of-flight images,

and (c), potential energy change corresponding to varying in-trap density full widths at

half maximum (FWHM). (d) Simulated ratio of elastic and inelastic collisions per particle,

averaged over the PA exposure time.
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faster molecular decay rate, which is consistent with our earlier measurements [137] and Rb

results [133].

We conclude that the isolated resonance approximation universally describes OFR in the

vicinity of each resonance. We have validated the linear line strength scaling and linear

resonance shift with I and have observed a clear modification of both the inelastic and

elastic parts of the scattering cross section.

5.12. Coupled-channels calculations

Our experimental work on optical Feshbach resonances was paralleled by detailed coupled-

channels calculations by P. S. Julienne [10, 171]. The calculations predict the changes in real

and imaginary parts of the scattering length using a model potential that only includes the

natural radiative decay. Single-channel optical length expressions can be fit to the numerical

results in the vicinity of each resonance. The optical length values extracted from these

fits are shown as ℓcc
opt in the Table in Fig. 5.11. The agreement between our data and

the theoretical predictions is fair; the theoretical value lies in between the experimentally

determined values for ℓopt and ℓeff = ℓoptγm/γ.

As shown in the previous Sections, the single-channel theory has been very successfully

used to describe both inelastic and elastic cross sections in the vicinity of three different

molecular lines. The initial motivation for a more accurate description of the OFR process

was to extend the theoretical description beyond the single-channel model into the far-

detuned regime.

In addition to the vibrational levels investigated here, the n = −1 vibrational state exists

at -0.4 MHz detuning from the free threshold, which leads to a PA resonance with a very

large line strength ℓopt/I [137]. The isolated resonance theory indicates that operating with

large I at O(105γa) detuning from the n = −1 state should allow modifications to the

scattering length of O(100a0) [136] with very low inelastic losses. However, with intensities

up to 1 kW/cm2 we did not observe changes to the thermodynamic properties of the gas,



149

in contrast to theory predictions. The theory proposal relied on extrapolating the large line

strength of the n = −1 state to large detunings across multiple intermediate PA resonances.

This assumption seemed valid since the n = −1 resonance is several orders of magnitude

stronger than the intermediate resonances [137].

The discrepancy between theory and experiment stimulated a coupled-channels treatment

of an atomic collision in a radiation field that properly switches between the short range

molecular states and two field-dressed separated atoms [172, 173]. The two coupled excited

potentials (0u, 1u) have the form of Ref. [137] and the decay of the excited state is treated

by introducing an imaginary term −i~γm/2 in the molecular potential. The ground state

potential uses the dispersion coefficients of Ref. [174], has a scattering length of −1.4 a0, and

reproduces the bound state data of Ref. [140] to better than 0.4%. The coupled-channels

calculation does not assume isolated resonances, and all 0u and 1u molecular eigenstates

emerge from the calculation as interfering, decaying scattering resonances [121]. The results

of the coupled-channels calculation are shown in Fig. 5.13.

Figure 5.13(c) and (d) show that the coupled-channels model reproduces the isolated

resonance expressions [121, 130] for the complex scattering length and the rate constants, as

long as the detuning is small compared to the spacing between molecular levels. However,

the elastic collision rate constant returns to its background value in between resonances

regardless of their relative strengths, as indicated by the dotted line showing the background

Kbg
el at E/kB = 4 µK in Fig. 5.13(a). The same is true of the real part of the scattering

length, as indicated by the dotted line for zero-energy abg in Fig. 5.13(d). These calculations

show that the OFR effect does not extrapolate across an intermediate resonance, even a

much weaker one, but that each molecular line behaves as an isolated resonance near its line

center.

It is instructive to write the complex scattering length in the limit of large detuning,

|∆| ≫ γ + Γs, in the standard form for magnetic Feshbach resonances

lim
k→0

α(k) = abg

(

1− w

∆
+
i

2

wγ

∆2

)

, (5.67)

where the resonance width w ≡ −ℓoptγm/abg. To obtain a meaningful change in scattering
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Figure 5.13.: Coupled channels calculations, Figure courtesy of P. S. Julienne. (a) Elastic

and inelastic rate constants at E/kB = 4 µK and I = 10 W/cm2, versus PA laser detuning

from atomic resonance. Each resonance peak is labeled by its electronic symmetry 0u

or 1u and its vibrational quantum number. Between resonances, the coupled-channels

Kin is only approximate. (b) Ratio of the thermally averaged rate constants at 2 µK

for detuning ∆/γm near the 0u(−2) feature. The intensity I = 44 mW/cm2 to give the

same ℓopt = 360a0 as for the conditions in Fig. 5.12(b). (c) Zero energy limit of real

and imaginary parts of the scattering length for detuning near the 0u(−4) feature. The

intensity I = 53.5 W/cm2 results in one PA photon scattering event during the typical

exposure time of 200 ms. (d) Same calculation as in panel (c), except on a linear scale

and large detuning. The circles show the coupled channels calculation, and the solid lines

show the analytic isolated resonance formula. The analytic isolated resonance expressions

are indistinguishable from the coupled channels results here.
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length, ℓoptγm/∆ needs to be sufficiently large, and the imaginary part b = 1
2
loptγmγ/∆

2 needs

to be sufficiently small. Since Kin ≃ (2× 10−12 cm3/s) (b/a0), for a density of ρ = 1012 cm−3

and b = 0.1a0, Kinρ gives the same loss rate (200 ms)−1 as the atomic light scattering rate for

the power I = 53 W/cm2 assumed for Figs. 5.13(c) and (d). Thus, the calculations predict

that changes in the scattering length on the order of 10 a0 ≫ |abg| should be possible for

detunings ∼ 100 γm for time periods ∼ 200 ms.





Chapter 6

Summary & Outlook

I
n this thesis, we have discussed several precision measurements related to an optical

frequency standard based on neutral atomic Sr. We have presented detailed models that

led to a deeper understanding of the underlying physical phenomena. A lot of the work

on optical standards tries to realize a quantum system that is as clean and as simple as

possible. All that should be required to understand the spectroscopic process is a driven

two-level atomic system without spontaneous decay. Effects that mar this simple picture are

considered systematic effects that need to be understood, measured, and controlled.

Because the aim of an optical frequency standard is to prepare the cleanest driven two-level

system possible, the typical method of doing so is to consider the currently largest systematic

effect and try to understand it. Once a particular effect is successfully understood, it can be

modeled in a simple manner, and can be controlled and removed by careful system design.

This process might take a while, especially as the effects become smaller and smaller, but

it has been very successful so far in decreasing the frequency uncertainty towards the next

order of magnitude.

The current main systematic under investigation is the density shift. As we have seen in

Chapter 3, fairly good models have been put forward to understand its origins. These models

have also led to new proposals on how to improve the system to suppress the density shift.

By now, this suppression has also been shown experimentally [51, 67]. Although a full clock
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evaluation exploiting the density shift suppression will need to be done, these results promise

to get rid of one of the two limiting effects in the Sr uncertainty budget (see Sec. 1.2).

The second large uncertainty – the BBR shift – is currently under investigation in all major

labs that work on Sr optical frequency standards. A better understanding of the theoretical

model for the atomic polarizabilities will reduce the BBR uncertainty, but requires careful

measurements of the key contributing electronic states [34]. Even with an improved polar-

izability model and a careful measurement of the environmental temperature, one cannot

confidently quote a small BBR uncertainty because of the non-blackbody character of the

vacuum chamber environment. For this reason, the most likely approach to measure the

BBR shift is to build a specialized environment for the spectroscopic process. The most

straightforward approach would be to simply heat and cool the environment and measure

the clock frequency shift with respect to this parameter. The temperature range explored

by this approach is too small, however, to obtain good uncertainties since typical vacuum

chambers and experimental apparatuses cannot support temperature changes of more than a

few 10 ◦C. For these reasons, the main approach for constructing a specialized environment

has been to build a small in-vacuum enclosure that can be cooled using liquid nitrogen or

helium [12, 36]. Atoms would then be transferred into such an enclosure using a moving op-

tical lattice and spectroscopy could take place in a carefully constructed BBR environment

at a controlled (and small) temperature. The main difficulties for building such a system are

technical in nature. One has to carefully consider how the enclosure is built to avoid leakage

of room temperature BBR into the enclosure. In addition, pumping speed limitations in

small enclosures might be a considerable concern, even at cold temperatures. Characteriza-

tion of the BBR shift will be a major step forward for optical lattice clocks, but it might

take some time to settle on a reliable system design that does not impede clock operation in

some other way.

Meanwhile, the high precision obtained in optical lattice clock experiments has led to

interesting proposals for investigations of condensed-matter systems that could be realized

with alkaline earth atoms [126–128]. In the last few years, all isotopes of Sr have been
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used to produce quantum degenerate gases [142, 143, 175–178]. A long-standing goal for

optical lattice clock experiments has been to operate with a sample in a Mott insulator

state, trapped in a three-dimensional optical lattice. This idea is conceptually intriguing,

because many-body effects would automatically be suppressed as long as the lattice is deep

enough to prevent tunneling and all atoms would be prepared in the lowest motional state of

each site. Such a sample would be a real equivalent of an array of identical ion traps, where

a single particle is interrogated in a deep potential well. Even the very first experimental

strontium lattice clock paper [1] contained a drawing that shows single atoms trapped in an

eggcrate-shaped potential that can only be realized in a three-dimensional optical lattice.

Because of their conceptual attractiveness, these pictures can be very misleading. The

main detractor for building a serious 3D optical lattice clock is the fact that optical lattice

polarizations cannot be kept parallel to the bias magnetic field in three dimensions. Of

necessity, one beam will have a polarization that is not colinear with the bias magnetic

field. This configuration breaks the symmetry that allows clock frequency shifts related to

the tensor polarizability in fermionic isotopes to be suppressed [22]. Although a bosonic

optical lattice clock in three dimensions has been built [179, 180], its accuracy is not nearly

as good as the systems realized with one-dimensional lattices. Bosonic isotopes require a

large magnetic field to induce the clock transition which introduces a large uncertainty due

to long-term magnetic field stability.

In addition, the Wannier-Stark ladder gravitational symmetry breaking between lattice

sites (see Cha. 2) cannot be obtained in an optical lattice of dimension two or greater. The

transverse harmonic confinement in an optical lattice beam will absorb the linear potential

shift due to gravity, and the energy splitting between lattice sites becomes parabolic as a

result. Because of the transverse harmonic confinement, sites at the center of the trap become

much closer to being degenerate than would be the case in a vertical one-dimensional optical

lattice [56]. Tunneling can become a concern even in two-dimensional optical lattices – see

the online material for Ref. [51]. Care will have to be taken in finding a compromise between

tunneling (for shallow lattices) and lattice-intensity related detrimental effects such as photon



156

scattering at the lattice wavelength (for deep lattices).

In addition, the individual sites in a 2D or 3D optical lattice are actually much more

inhomogeneous than in a 1D optical lattice. Because of the transverse confinement, sites

away from the center of the trap will have different trap depths and frequencies than the sites

close to the center. These effects exacerbate the Rabi frequency inhomogeneities discussed

in Cha. 2, and averages over the particle distribution across different lattice sites become

much more important [51].

All of these effects will become even more important as laser coherence times become longer

and narrower linewidths are obtained using the next generation of highly stable spectroscopy

lasers. Preliminary investigations show that for long coherence times, new effects such as

different collision channels and higher-order light scattering processes will also start to be

significant [68, 181]. Finally, spectroscopy-induced dipole-dipole coupling between atoms in

neighboring lattice sites [182] will become a concern when spectroscopic precisions approach

the 10 mHz level with novel spectroscopy laser designs [183–185].

For these reasons, it currently seems unlikely that the accuracy achieved in 1D optical

lattice clocks will be surpassed by 3D optical lattice clocks in the near future. In addition,

operation of a 3D Mott insulator clock requires the preparation of a Mott insulating state

on competitive time scales. Current 1D experimental cycles are on the order of 1 s, which

already limits the optical clock precision via the optical Dick effect [186, 187] by aliasing

spectroscopy laser noise at the duty cycle into the measurement bandwidth. This limita-

tion has led to a lot of work on duty-cycle optimization and sample reuse by the Paris

group [54, 187–189]. Evaporative cooling to quantum degeneracy currently takes at least

several seconds [142, 143, 175–178], which would reduce the measurement precision even

further and make laser stabilization very difficult. The cooling time scale is unlikely to im-

prove much since evaporation is necessarily tied to the trap frequency of the optical potential

in which the particles are cooled. Other cooling methods such as narrow-line laser cooling

based on spontaneous Raman scattering might prove more useful, but significant experimen-

tal work will be necessary to decide whether they are feasible [190, 191]. The preparation
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time required makes an optical lattice clock based on a quantum degenerate gas unfeasible

unless some interleaved preparation scheme is employed where a second sample is prepared

while the current sample is interrogated.

Nevertheless, most groups are working on building multiple Sr clock systems in the same

lab to simplify the evaluation of systematic effects. Probing a condensed matter analog based

on quantum degenerate Sr with another experiment set up as an optical lattice clock has

many promising advantages. Such a setup could be used to realize novel and interesting

alkaline earth quantum simulation schemes [126–128]. Probing such a system with the high

precision afforded by the optical lattice clock will then enable investigations of the system

dynamics at the Hz scale. Conversely, the understanding gained from careful investigation

of the quantum degenerate gas system will help in furthering the optical lattice clock design

and may enable construction of a degenerate gas optical lattice clock in the future.

One tool for studying and manipulating such quantum degenerate gases of alkaline earth

atoms is the OFR effect. We investigated this effect in detail in a thermal gas of 88Sr,

but as we have seen in Chapter 5, the real application of the OFR would be as a tool

to manipulate phase shifts or mean field energies in the degenerate gas regime. Because

there are no magnetic Feshbach resonances in the (interesting) states of alkaline earths, the

OFR is the sole candidate for manipulation of the interaction strength so far. The main

result of our studies is that the elastic scattering length modification under the OFR effect

is inseparable from inelastic losses and that the effect is reliable only in the vicinity of a

vibrational resonance. But, we have also shown that it can still be usefully applied under

a careful combination of parameters, even in a thermal gas. Whether the OFR could also

be used to further the study and operation of optical lattice clocks remains to be seen. The

relevant collision channel for the density shift is 1S0-
3P0. One could, for instance, imagine

that the interaction energy might be modified by coupling this channel to a vibrational state

in 3P1-
3P0.

Even though the optical lattice clock is the simplest spectroscopic system we can prepare,

each gain in systematic uncertainty brings new effects to light. Studying and learning to con-
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trol these effects is what keeps work on a seemingly simple spectroscopy system interesting.

The benefit of pushing the accuracy to higher and higher levels is that novel effects unrelated

to the atomic physics can be studied. The main candidate for these studies are the rela-

tivistic effects of gravity and their manifestation in the red shift. We have shown in Cha. 4

that optical clock experiments can easily be tied to investigations of large-scale fundamental

physics. The red shift manifests as a frequency shift of 1 × 10−16 m−1, and optical clocks

are fast approaching the accuracy regime where gravity can be investigated on small length

scales [192]. Projects for large scale investigations of gravity by placing optical standards

on a space vehicle are also under development [113]. Any advancement in miniaturization

and automation of the currently large, power-intensive, and manpower-hungry optical clock

systems will help these projects. Replacing the microwave-standards used in satellite systems

such as GPS with optical standards will enable precision mapping of gravity and improve

position triangulation on Earth’s surface from meters to millimeters or below. Astronomic

applications include ranging at interplanetary distances [193] and building phase-coherent

links between remote antenna arrays for very-long-baseline interferometry.

The atomic frequency standard of the future will not matter much for civil time keeping,

but I believe that Sr based precision spectroscopy will remain interesting for years to come.



AppendixA

Absorption imaging of trapped

particles

T
his appendix summarizes the relevant physics of a probe beam scattering off a sample of

trapped atoms. Absorption imaging of trapped particles is subject to many systematic

effects. Nevertheless, in-situ absorption imaging can be made to work reliably provided that

these effects are understood, measured, and accounted for.

A.1. Beer’s law and classical scattering cross section

Assume that a probe beam of intensity Iin enters an absorbing medium and that the intensity

after transmission has been reduced to Iout. Then the medium’s optical depth (OD) is defined

as

OD = − ln
Iout

Iin

(A.1)

If the medium absorbs with a constant probability per unit length, the medium has a linear

absorption coefficient α and the intensity along the beam coordinate z attenuates exponen-

tially according to Beer’s law

Iout(z) = Iine
−αz. (A.2)
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Assuming that the medium consists of a dilute collection of identical scatterers, the absorp-

tion coefficient should be proportional to their density n and one can define a scattering

cross section

σ = α/n (A.3)

that summarizes the scattering properties of an individual scatterer. For a dilute monatomic

gas interacting with a resonant monochromatic field, the resonant scattering cross section can

be calculated from the linear response of a two-level system consisting of ground state |g〉 and
excited state |e〉. If the field’s polarization is perfectly aligned with the two-level system’s

quantum axis, and the field is perfectly monochromatic, one finds from the equivalence

principle that [194]

σeg =
3λ2

eg

2π
, (A.4)

where λeg is the wavelength of the atomic transition.

A.2. Polarization, selection rules, and atomic response

function

We will argue that the quantum mechanical equivalent of Eq. A.4 essentially gives the same

answer. The derivation follows the solid treatment in Ref. [195] and will be carried out in

some detail to expose each assumption going into our final result. We would like to determine

the numerical value of the factor 3∗ ∈ [0, 3] as defined by Siegman [196] and check whether

λeg in Eq. A.4 should be λeg or λeg/(2π).

We start with a differential formulation of Fermi’s Golden Rule for the transition rate per

photon energy E from a combined light and atomic state |i〉 to another combined light and

atomic state |f〉 under the perturbation H ′:

dWfi =
2π

~
|〈f |H ′|i〉|2S(E)P (E)dE, (A.5)

where P (E) describes the atomic response to the application of a photon of energy E, i.e.

it is the probability of a successful absorption process at photon frequency ω ≡ E/~. The
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energy distribution S(E) is the area-normalized power spectrum applied to the atom.

A.2.1. Atomic matrix element

In the dipole approximation, the Hamiltonian H ′ coupling a two-level atom of mass m to a

single-mode light field with vector potential A, polarization ǫ̂, wave vector k, and frequency

ω can be written as [195]

H ′ =
e

mc
p ·A =

e

m

√

2π~

V ω

[
a(p · ǫ̂)eik·r + a†(p · ǫ̂∗)e−ik·r

]
, (A.6)

where e is the electron charge, p (x) is the atomic momentum (position) operator, and a (a†)

is the photon mode annihilation (creation) operator in the quantization volume V . The first

term describes the absorption of a photon and the second term describes the emission of a

photon. Here, we will only consider first order perturbation theory for H ′, where a photon

is absorbed and the two-level atom undergoes the corresponding transition of interest. We

consider an initial state |i〉 ≡ |g〉 ⊗ |n〉 ≡ |g, n〉 of the combined system, where the atom is

in ground state |g〉 and the photon field is in the n-photon Fock state |n〉. One photon is

absorbed and the atom undergoes a transition to excited state |e〉 such that the final state

is |f〉 ≡ |e〉 ⊗ |n− 1〉 ≡ |e, n− 1〉. The transition matrix element becomes

〈f |H ′|i〉 = e

m

√

2π~

V ω
〈e, n− 1|a(p · ǫ̂)eik·r|g, n〉 = e

m

√

2π~n

V ω
〈e|(p · ǫ̂)eik·r|g〉. (A.7)

As long as the particle motion can be treated classically (beyond the Lamb-Dicke regime),

we can ignore the operator character of the phase factor and separate it from the electronic

degree of freedom. We find

〈f |H ′|i〉 ≃ e

m

√

2π~n

V ω
eik·r〈e|p · ǫ̂|g〉, (A.8)

and we can write down the Heisenberg equation for the position operator r and atomic

Hamiltonian Ha:

[r, Ha] = i~
dr

dt
=
i~p

m
. (A.9)

We use that |e〉 and |g〉 are eigenstates of Ha and find

〈e|p · ǫ̂|g〉 = imωeg〈e|r · ǫ̂|g〉 ≡ − im
e
ωeg〈e|D · ǫ̂|g〉, (A.10)
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for the bare transition frequency ωeg defined as the eigenenergy difference between the atomic

states |e〉 and |g〉, and the dipole operator D ≡ −er. Thus Eq. (A.7) becomes

〈f |H ′|i〉 = −i
√

2π~n

V ω
ωeg〈e|D · ǫ̂|g〉. (A.11)

Note that we have not assumed that the driving photon at frequency ω is exactly at the bare

transition frequency ωeg.

We proceed by assuming that the atomic states are well described by a total angular

momentum J and magnetic quantum number m, so that

|g〉 ≡ |Jgmg〉

|e〉 ≡ |Jeme〉.
(A.12)

In this case, the dipole matrix element Eq. (A.11) can be separated into spherical tensor

components. The scalar product between dipole operator and polarization vector separates

into [195]

D · ǫ̂ =
+1∑

q=−1

(−)q(ǫ̂ · ê−q)D1
q , (A.13)

with polarization quantum number q corresponding to a spherical tensor basis

ê0 ≡ ẑ

ê±1 ≡ ∓(x̂± iŷ)/
√
2

(A.14)

with quantum axis along ẑ. In the spherical tensor basis, the dipole matrix elements can be

further simplified via the Wigner-Eckart theorem1

〈Jeme|D1
q |Jgmg〉 = (2Je + 1)−1/2〈Jg1mgq|Jeme〉〈Je‖D1‖Jg〉. (A.15)

1The numerical and phase factors in front of the reduced matrix element in the Wigner-Eckart theorem have

various definitions in the literature. It is important to use the definition of the Wigner-Eckart theorem,

the Clebsch-Gordan coefficient in terms of 3j-symbols and the reduced matrix element from the same

reference to get consistent results. We follow Ref. [195] here which is consistent with Refs. [194, 197–200]

in both Wigner-Eckart theorem and definition of Clebsch-Gordan coefficients in terms of 3j-symbols.

Sakurai [71] uses a different phase prefactor but that might be a misprint. Other books use a different

factorization of the Wigner-Eckart theorem and are not consistent with the presentation here [57, 201–

204].



163

with radial integral 〈Je‖D1‖Jg〉 (called the reduced matrix element) and Clebsch-Gordan

coefficient

〈Jg1mgq|Jeme〉 = (−)me
√

2Je + 1




Jg 1 Je

mg q −me



 . (A.16)

For a given combination of quantum numbers, the Clebsch-Gordan coefficient enforces the

dipole selection rules |Je − Jg| ≤ 1, mg + q = me, and Je = Jg ⇒ q 6= 0. In particular,

this means that for a given combination of quantum numbers, there is only one polarization

component q = me −mg with |q| ≤ 1 that can drive the dipole transition.

Combining Eqs. A.15-A.16, we find

〈Jeme|D1
q |Jgmg〉 = δq,me−mg(ê−q · ǫ̂)(−)me+q




Jg 1 Je

mg q −me



 〈Je‖D1‖Jg〉. (A.17)

The reduced matrix element can be related to the Einstein A coefficient of the particular

transition [195]

Aeg =
4ω3

eg

3~c3

|〈Je‖D1‖Jg〉|2
2Je + 1

. (A.18)

For the transition rate Eq. (A.5), we only require the magnitude-squared of the atomic

dipole matrix element. We find

2π

~
|〈f |H ′|i〉|2 =4π2n

V ω
ω2
eg × |〈e|D · ǫ̂|g〉|2

=
4π2n

V ω
ω2
eg × δq,me−mg |ê−q · ǫ̂|2




Jg 1 Je

mg q −me





2

×

× 3~c3

4ω3
eg

(2Je + 1)Aeg.

(A.19)

The Fermi’s Golden Rule differential transition rate for absorption of photons with energy

E = ~ω while the atom undergoes the transition |g〉 → |e〉 becomes

dWeg = Φ× 3(π~c)2Aeg

ωeg

×

× δq,me−mg |ê−q · ǫ̂|2(2Je + 1)




Jg 1 Je

mg q −me





2

×

× 1

E
S(E)P (E)dE,

(A.20)
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where we have defined the photon flux Φ ≡ cn/V as the density of photons in the quantization

volume traveling at the speed of light. To obtain a useful expression for the scattering rate,

we have to assume a particular form of the atomic response P (E).

A.2.2. Atomic response and laser spectrum

In the case of a (homogeneously broadened) Lorentzian line centered at ωeg with linewidth

γe, we have an area-normalized response

P (E = ~ω) =
~γe/(2π)

(~ω − ~ωeg)2 + (~γe/2)2
=

2

π~γe

1

1 + 4(ω − ωeg)2/γ2
e

(A.21)

Note that the homogeneous linewidth γe includes decay to other levels. If the lineshape is

dominated by the transition’s natural linewidth, γe = Ae =
∑

j Aej, with Einstein coefficient

Ae and branching ratios Aej/Ae to all other levels |j〉.

In the limit of a monochromatic spectrum at the transition frequency the spectrum be-

comes S(E) → S0(E) ≡ δ(E − ~ωeg) and we retrieve a total transition rate

Weg = Φ
3λ2

eg

2π

Aeg

γe
δq,me−mg |ê−q · ǫ̂|2(2Je + 1)




Jg 1 Je

mg q −me





2

. (A.22)

If the probe laser spectrum is broadened with respect to S0(E), the transition rate Weg will

be diluted by a factor

ξ ≡
∫∞

0
dES(E)P (E)/E

∫∞
0
dES0(E)P (E)/E

=

∫ ∞

0

dωS(ω)
ωeg/ω

1 + 4(ω − ωeg)2/γ2
e

, (A.23)

where the laser spectrum is area-normalized to
∫∞

0
dωS(ω) = 1. Figure A.1 shows the

dilution factor ξ for several power spectral density shapes assuming that the laser spectrum

is centered around ωeg but broadened. Detuning from resonance is easily included in ξ by

shifting S(ω).
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Figure A.1.: Transition rate dilution factor ξ from laser spectrum for square spectrum

(red), Lorentzian spectrum (blue), and Gaussian spectrum (green).

A.2.3. Scattering cross section

The scattering cross section for the atomic transition |g〉 → |e〉 is defined as the ratio of

scattering rate Weg to photon flux Φ. From Eq. (A.22), we find

σeg ≡ Weg/Φ =
3λ2

eg

2π

Aeg

γe
ξδq,me−mg |ê−q · ǫ̂|2(2Je + 1)




Jg 1 Je

mg q −me





2

. (A.24)

In our case, the atomic states under investigation are |g〉 = 5s2 1S0 and |e〉 = 5s5p 1P1 in

88Sr. The quantum axis is provided by a magnetic field of several hundred mGauss along the

vertical axis in the lab frame. The ground state is spinless (J = 0) and the excited state has

three magnetic substates (J = 1), so that there are three different transitions to consider.

The transitions are not quite closed, since 5s5p 1P1 decays to 5s4d 1D2 which decays to the

metastable 5s5p 3P2. However, the branching ratio from 3P1 to 1D2 is on the order of 10−5

so that we will ignore losses to 1D2 for the photon numbers per atom considered here. The

natural linewidth is Ae = 2π×30 MHz which dominates the line profile at µK temperatures.

For these reasons, we only consider radiative decay and set γe = Ae = Aeg.
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In addition, we have Jg = 0, mg = 0, and Je = 1, such that

(2Je + 1)




Jg 1 Je

mg q −me





2

7→ 1 ∀ q. (A.25)

If we apply an arbitrary (but pure) polarization ǫ̂ with ǫ̂∗ · ǫ̂ = 1, then

+1∑

q=−1

|ê−q · ǫ̂|2 = 1, (A.26)

and the scattering cross section becomes

σeg =
3λ2

eg

2π
ξ, (A.27)

in agreement with the classical expression Eq. (A.4).

A.3. Atomic saturation

When the light intensity approaches the saturation intensity

Isat =
πhc

3λ3
eg

γ, (A.28)

the atomic system does not absorb linearly anymore. Instead, a full treatment based on

the Maxwell-Bloch equations becomes necessary to describe pulse propagation in a saturable

medium. In the present case, we operate at a few ten percent of Isat and would like to

calculate first order corrections to the linear response. The treatment in this section follows

Ref. [205, 206].

As in section A.1, we assume pulse propagation along z and find an equation for the

saturation parameter

s0(z) ≡ I(z)/Isat = 2Ω2/γ2, (A.29)

on resonance as [205]

ds0

dz
= −αBeer

s0

1 + s0

. (A.30)
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This equation can be integrated by separation of variables [206]

∫ sout

sin

ds0
1 + s0

s0

= −αBeer

∫ z

0

dz

ln
sout

sin

+ (sout − sin) = −αBeerz ≡ −ODBeer.

(A.31)

The left hand side can be related to the measured optical depth ODexp ≡ − ln(sout/sin),

which allows us to correct for the effect of atomic saturation:

ODBeer = ODexp + (1− e−ODexp)sin, (A.32)

if we know the probe intensity interacting with the atoms. Detuning and laser spectrum is

accounted for by the factor ξ we derived in the previous Section.

A.4. Time evolution of sample with probe pulse

To obtain large signal-to-noise from the trapped sample, it is necessary to scatter many

photons from each individual atom. For each absorbed photon, an atom gets a momentum

kick in the direction of the probe beam with the photon recoil momentum prec = h/λeg,

corresponding to a recoil velocity vrec = h/(mλeg). In addition the atom will receive a random

momentum kick when the photon gets reemitted. In this Section, we derive a compromise

for the number of photons scattered per atom that still gives good signal-to-noise, but does

not influence the sample too much.

A.4.1. Photon rescattering

The response of the atomic cloud to the rescattering process amounts to a random walk in

momentum space, overlaid with linear acceleration along the probe beam direction. The

random walk can be modeled using a multivariate Ornstein-Uhlenbeck process [207], where

the position and momentum of each particle is a random variable influenced by the trapping

potential and the white momentum noise. For a particle in a one-dimensional harmonic trap

with trap frequency ω, the Itô stochastic differential equation for position x and velocity v



168

is 


dx

dv



 =




0 1

−ω2 0








x

v



 dt+




0 0

0
√
D








dwx

dwv



 (A.33)

with velocity diffusion constant D, which is the mean-square velocity change per unit time,

and zero-mean white noise increments dwx and dwv. The equation is of the form

dx = Ax dt+B dw, (A.34)

with constant system matrix A and constant noise covariance matrix B. The equation can

be solved for the mean 〈xt〉 and the covariance matrix Cov(xt) [207]. We obtain

〈xt〉 = e−At〈x(0)〉

Cov(xt) = e−AtCov(x0)e
−A⊤t +

∫ t

0

dt′ e−A(t−t′)BB⊤e−A
⊤(t−t′).

(A.35)

This form allows us to find equations for the position and velocity variances under the

influence of the probe pulse in a harmonic trap (assuming that σ2
xv(0) = σ2

vx(0) = 0),

σ2
x(t) = σ2

x(0) cos
2 ωt+

σ2
v(0)

ω2
sin2 ωt+D

2ωt− sin 2ωt

4ω3

σ2
v(t) = σ2

x(0)ω
2 sin2 ωt+ σ2

v(0) cosωt+D
2ωt+ sin 2ωt

4ω
.

(A.36)

For long times ωt≫ 1, this result amounts to a linear increase in both position and velocity

uncertainty with superposed oscillations at the trap frequency.

For a three-dimensional anisotropic harmonic trap (without anharmonic corrections or

interaxis coupling) and trap frequencies ωi, the above results hold true for each pair of

position and velocity coordinates (xi, vi) and per-axis diffusion constant Di.

The overall system energy E can then be calculated as

E(t) =
∑

i

m

2
σ2
vi
(t) +

mω2
i

2
σ2
xi
(t)

= E(0) +
m

2
t
∑

i

Di.

(A.37)

The rate of energy gain is

ΓE ≡ dE

dt
=
m

2

∑

i

Di, (A.38)
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reemphasizing the role of the diffusion constants Di as the per-axis mean square velocity

gain per unit time. If we define the total diffusion constant D, we can write it as the product

of a scattering rate times the square of the recoil velocity

D ≡
∑

i

Di ≡ Γscv
2
rec = Γsc

h2

m2λ2
eg

. (A.39)

In this context, we are interested in the short term behavior of the atomic cloud under

the influence of photon scattering with rate Γsc. In the limit ωt ≪ 1, the above equations

become independent of the trapping frequency and we obtain the free space random walk

results

σ2
xi
(t) ≃ σ2

xi
(0) +

Dit
3

3

σ2
vi
(t) ≃ σ2

vi
(0) +Dit

(A.40)

We are interested in having a constant number of photons Np ≡ Γsctp interact with the

atoms during the probe time tp to obtain a certain signal size on the camera. However, we

would also like to minimize size changes of the cloud. Under these conditions, comparing

the per-axis cloud size change

δσ2
xi
(t′p)

δσ2
xi
(tp)

=
Np(t

′
p)

2

Npt2p
=

(
t′p
tp

)2

, (A.41)

tells us that we should work with low exposure times and high probe intensities, as long as

atomic transition saturation does not cause too many problems.

If we assume that photons are rescattered isotropically, we have Di = D/3 = Γscv
2
rec/3 and

σ2
xi
(t) = σ2

xi
(0) +Np

(
vrectp
3

)2

= σ2
xi
(0) +Np

(

3.28 nm× tp
µs

)2

. (A.42)

A.4.2. Doppler shift

So far, we have only treated the probe photon reemission, but have ignored the linear ac-

celeration of the atomic cloud along the probe direction due to the absorption of the probe

photon. The continual absorption of probe photons along the probe direction results in a

linear increase in each atom’s mean velocity along the probe direction

〈v(t)〉 = vrecΓsctp = vrecNp. (A.43)
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In the low saturation limit, the photon scattering rate is dependent on the probe detuning

δp via

Γsc = Γ0
sc/[1 + (2δp/γ)

2], (A.44)

for on-resonance scattering rate Γ0
sc and atomic linewidth γ. The Doppler effect changes the

detuning during the course of the probe pulse via

2δp/γ =
4π

λegγ
〈v(t)〉 = 2πh

mλ2
egγ

Np ≡ βNp, (A.45)

with β ≡ 1.422 × 10−3. Assuming that the atoms are at rest initially (δ = 0), the corre-

sponding fractional change in per-axis diffusion constant Di is

δDi

Di

=
Γsc(0)− Γsc(tp)

Γsc(0)
=

(βNp)
2

1 + (βNp)2
≃ β2N2

p ≃
(
Np

700

)2

. (A.46)

In summary: relying on the free-space diffusion formalism above necessitates scattering much

less than 700 photons from each atom.

A.4.3. Cloud displacement

Each atom’s mean position along the probe direction z is given by

〈z(t)〉 = Γscvrec

t2p
2
= Npvrec

tp
2
. (A.47)

This means that we can neglect the cloud displacement as long as 〈z〉 ≪
√

σ2
z(0), or

Np ≪
2σz(0)

vrectp
≃ (203 µs/µm)

σz(0)

tp
. (A.48)

A.4.4. Radiation trapping

If a photon gets scattered in a region of high atomic density, the surrounding atoms are likely

to rescatter the scattered photon. In this way, radiation can be trapped within a sample of

high density and photon energy can be stored.

The reabsorption probability of the spherical wave emanating from an atomic scatterer

can be estimated by imagining a sphere of radius r around the scattering atom. This sphere
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contains Na =
4π
3
r3n̄ atoms, where n̄ is the average atomic density within the sphere. Each

atom within the sphere contributes a resonant rescattering cross section σ = 3λ2
eg/(2π) to the

total rescattering cross section Naσ. As soon as the total rescattering cross section becomes

comparable to the surface of the sphere, the rescattering probability approaches unity. Using

this argument, we can define a mean-free radius

4πr2
free ≡ σNa = σ

4π

3
r3

freen̄

⇒ rfree =
2π

n̄λ2
eg

≃ (29.6 µm)×
( n̄

1012 cm−3

)−1

.
(A.49)

If the mean free radius is much smaller than the cloud size, probe photons will be scattered

multiple times within the cloud and enhance the photon scattering rate Γsc and thus the

detrimental effects of size changes.





AppendixB

Monte-Carlo Collision Simulation

W
ith current processor speeds, it has become feasible to simulate the thermodynamics

of a dilute thermal gas of ultracold atoms directly. The main problem remains the

simultaneous evolution of N = 104 − 105 particles, since even the simulation of two-particle

interactions requires O(N2) checks at each time step. A popular method for simulations

in the collisionless flow regime due to Bird [208] reduces this complexity by discretizing

space into small volumes and only handling local interactions. Among other applications,

it has been successfully used to model evaporative cooling [209, 210], particle evolution in

non-harmonic traps [211], and cross-dimensional thermalization [170, 212].

In the following, we will briefly describe the algorithm, analyze a few simple test cases, and

show results for the full OFR interaction model including both elastic and inelastic collision

processes.

B.1. Bird’s method

The application of Bird’s method to ultracold atom systems has been described in many

theses; good discussions can be found in [170, 211]. The program used here is implemented

in C++ and makes extensive use of the GNU Scientific Library (GSL).

The algorithm proceeds in time steps of length τ . Between each time step, the particles

of mass m are evolved in the trapping potential U(x) according to the classical equations of
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motion:

ẋ = v

v̇ = −∇U(x)/m.
(B.1)

Convenient units for the simulation are ms, µm, and recoil energy, for time, position,

and potential, respectively. The particles are propagated using an embedded Runge-Kutta

method [98, 213], using analytical derivatives of U . Implemented potentials include anisotropic

harmonic traps and arbitrary superpositions of Gaussian beams (excluding interference ef-

fects). Including gravity in the potential is optional.

After each time step, space is discretized into a grid of spacing d. The coordinate system’s

origin lies close to the center of the trap, and each site is indexed by a tuple (i, j, k) ∈ Z
3.

Each particle at position x is associated with the closest grid site

(i, j, k) = [x/d], (B.2)

where the brackets indicate rounding to the closest integer. We define a spherical volume

V =
4π

3

(
d

2

)3

(B.3)

around each grid point and the grid spacing d is automatically adjusted such that the sample-

average of the occupation number (mean particle number per cell in the trap volume) is

〈Nocc〉 = 0.01, (B.4)

which is well below 10% [170].

To simplify the collision checks, a list of particle identifiers is sorted according to the

particles’ associated grid indices. After the sorting operation, the particles at the same grid

point are consecutive in the index list to enable quick access. Using quicksort [98], reusing

the sorted list from time-step to time-step to reduce the number of sort operations, and

sorting only once per time step allows the algorithm to be fairly fast.

Within each sphere, a list of Nocc(Nocc − 1)/2 potential collision pairs is made. For each

distinguishable pair of atoms with velocities v1 and v2, the collision probability is calculated
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as

Pcoll = |v1 − v2|στ/V, (B.5)

where σ is the total collision cross section for the process under consideration. A random

number q is then drawn uniformly from [0, 1], and if Pcoll > q, the collision happens. For

successful elastic collisions, the particle velocities are rotated with a random Euler rotation

matrix. For successful inelastic collisions, both particles are removed from the simulation.

The corresponding collisional cross sections σel and σin can be velocity dependent or can be

made to depend on other external parameters. The OFR effect is simulated by inserting the

cross sections from the Bohn and Julienne theory [121, 130].

Finally, the time step τ is servoed using a simple integrating feedback loop such that the

sample averaged collision probability during τ remains small, typically 〈Pcoll〉 ≃ 〈Nocc〉 ×
0.05 ≃ 5× 10−4. These numerical parameters have been found to make the method reliable

and stable [170]. When simulating velocity-dependent cross sections in a thermal distribution

of atoms, it is hard to predict what the actual collision rate per time step is. With feedback,

the simulation becomes a factor of 5-10 faster by checking for collisions only as often as

required.

The remaining important point is that the simulation obviously works with distinguishable

particles. To mimic results for indistinguishable thermal bosons in the same spin state

(J = 0), we have to modify the corresponding cross sections. The simulation is based

on distinguishable particles identified by an id tag. To translate the simulation results to

thermalization of identical bosons in the same spin state, we need to include a bosonic

enhancement factor in the elastic scattering cross section. Simulating thermalization of

indistinguishable bosons requires using a scattering cross section σel = gα4πa
2 with gα = 2

for s-wave scattering length a. The same bosonic enhancement factor gα appears in the

inelastic cross section. A thorough and careful discussion of the origin of these factors can

be found in Ref. [119].

However, many authors make no clean distinction between the inelastic scattering event

cross section and the inelastic collision rate. Even such basic terminology as event rate and
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collision rate is not uniquely defined. This confusion arises from different factors of two

canceling in the final equations for the density evolution under inelastic loss. The density

evolution equation generally used is of the form of Eq. 5.12:

ṅ = −Kinn
2 = −σinvreln

2. (B.6)

Unless this full definition is given, the meaning of Kin can be ambiguous. Cross sections

σ are always related to the probability of a collision event in the sense of Eqs. 5.6 or B.5.

Multiplication by the relative velocity thus gives a collision event rate for a collision pair at a

given relative velocity. Particle pairs are thus lost at rate Kin, but particles are lost at a rate

2Kin, since two particles are lost per collision event. But, since there are only N(N − 1)/2

possible distinguishable collision pairs (see Eq. 5.9), the final rate coefficient appearing in

the evolution equation for the single-particle density (Eq. B.6) is equal to the pair-loss rate.

For the same reason, we need to be careful in comparing simulation results for elastic

collisions to common statements like: “It takes about three elastic collisions to thermalize

a particle.” [162, 170, 211, 212] The meaning of this statement is that each of N particles

participates in roughly κ = 3 collisions during the 1/e time Γ−1
therm it takes for kinetic energy

inhomogeneities to equilibrate. If we fit an exponential decay to the disappearance of a

thermal inhomogeneity, we can count the number of elastic collision events N el
event during an

exposure time of τPA and obtain a rough estimate for κ from

κ ≃ 2N el
event

N
× 1

τPAΓtherm

. (B.7)

B.2. Inelastic collisions

The inelastic collisions were calibrated against the analytical model of Sec. 5.9 in a simplified

test. The optical trap was replaced by an isotropic harmonic oscillator with trap frequencies

(νx, νy, νz) = (200, 200, 200) Hz, to make the problem as simple as possible. Gravity was

removed and the trap was cut off at a radial distance of 200 µm corresponding to a trap

depth >1 mK along each axis. An initial distribution containing 50,000 atoms was syn-

thesized, assuming Maxwell-Boltzmann statistics with both velocity and position variances
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corresponding to a temperature of 3 µK along each of the three trap axes. Both the velocity

and position variances are stationary if the simulation is run without allowing any collision

processes.

We then allow inelastic collisions with a constant (relative velocity independent) cross

section and turn off any elastic collisions in the simulation. To make comparisons between

elastic and inelastic collisions more obvious, we parametrize the inelastic cross section by

an artificial “inelastic length” b and set σin = 8πb2. The simulation is run for 500 ms with

b = 100 a0, and the position and velocity variances along each trap axis are calculated at

each time step. Figure B.1(a) shows the increasing position variances along x, y, and z as

red, blue, and green traces, respectively. Similarly, panel (b) shows the increase in velocity

variances with time. Panel (c) shows the fractional atom loss as the solid black trace. A fit

with the thermally averaged model in Sec. 5.9 (dashed red trace) shows fair agreement and

returns a collision rate that is about 10% larger than what is used in the simulation. This

overestimation is consistent with the slight overestimation (underestimation) of the black

curve at times shorter (longer) than 70 ms (150 ms).

The analytical model does not describe the effect of inelastic loss on the momentum dis-

tribution, but only includes density-dependent loss from a Gaussian distribution. Similar

levels of agreement are obtained when fitting the simulated mean density as a function of

time with the solution of ˙̄n = −Kinn̄
2. In contrast, the Monte-Carlo simulation calculates

the effect of inelastic losses on the full phase-space distribution in the presence of a particular

trapping potential. We conclude that the agreement between model and simulation is good

enough to extract optical lengths from inelastic loss data at the 10-20% level. Typical ex-

perimental error bars are much larger (see Fig. 5.11) and we use many PA spectra to reduce

the statistical error on ℓopt/Iav. The same level of agreement between the analytical model

and the Monte-Carlo simulation is achieved when modeling the full model potential in the

simulation and fitting the resulting atom loss traces.

Panel (d) emphasizes the fact that potential and kinetic energies follow each other. The

slope of lines fitted to the velocity variances as a function of the position variances is pro-
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(b) Sample kinetic energy increases with inelastic

loss.

(c) Inelastic particle loss (black) and fit with ther-

mally averaged model from Sec. 5.9.

(d) Potential and Kinetic energy are tied together

on average over time scales longer than a few

trap oscillation cycles.

Figure B.1.: Simulation of inelastic loss in a harmonic trap using an initial Maxwell-

Boltzmann distribution at 3 µK.
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portional to the square of the axial trap frequencies, as expected in a harmonic trap. Com-

parisons against more realistic anisotropic harmonic traps and the full model potential were

also performed. Agreements between the analytical model and the simulation are similar.

B.3. Elastic collisions

To calibrate the Monte-Carlo simulation against known behavior under elastic collisions, the

trap was changed to an anisotropic harmonic oscillator with trap frequencies close to the

model potential eigenfrequencies at the bottom of the trap (νx, νy, νz) = (240, 310, 180) Hz.

We introduce an anisotropy in both position and momentum space and let the X and Y axes

have a Boltzmann distribution with T 0
x = T 0

y = 3 µK. The Z axis is initially set to T 0
z = 5 µK.

By the initial axial temperatures T 0
i we mean that both the potential energy m(2πνi)

2〈x2
i 〉/2

and kinetic energy m〈v2
i 〉/2 is set to kBT

0
i /2 along each axis initially. Elastic collisions tend

to equilibrate the temperature and from a treatment based on Enskog’s equation, we expect

that the axial temperatures Ti approach each other exponentially [162]. This thermalization

process can be modeled as

Ṫi = −
∑

j 6=i

Γtherm

3
(Ti − Tj), (B.8)

with solution

Ti(t) = T̄ (0) + e−Γthermt[Ti(0)− T̄ (0)], (B.9)

and mean temperature T̄ ≡∑j Tj. The thermalization constant Γtherm is then related to the

number of collision events required for thermalization κ via [162]

Γtherm =
2n̄σel〈vrel〉T̄

κ
, (B.10)

with mean density n̄ and thermally averaged relative velocity

〈vrel〉T̄ =

√

8kBT̄

πµ
. (B.11)

Since these quantities are thermally averaged and the initial distribution is not thermalized,

we expect Γtherm to be time-dependent and also depend on the initial inhomogeneity. Follow-

ing Ref. [212], we can define an initial inhomogeneity parameter as the ratio of axial energies
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Ei (valid for an anisotropic harmonic trap):

Ω =
Ex,y

Ez

∣
∣
∣
∣
t=0

=
〈v2

x〉+ (2πνx)
2〈x2

x〉
〈v2

z〉+ (2πνz)2〈x2
z〉

=
〈v2

x〉
〈v2

z〉
=
T 0
x

T 0
z

= 0.6. (B.12)

For this value of Ω, we find a prediction of κ ≃ 2.5 from the analytical model in Ref. [212].

The simulation results for σel = 8π(100a0)
2 are shown in Fig. B.2. As seen in panel (a), no

atoms are lost due to evaporation or inelastic losses. However, the mean density decreases

by about 5% because the density along X and Y dilutes slightly as the Z distribution

concentrates. The axial kinetic energies equilibrate towards T̄ = 3+3+5
3

µK = 3.67 µK and

we extract Γ−1
therm ≃ 65 ms from fitting Eq. B.10 to the data in panel (c).

The axial potential energies in panel (d) follow the kinetic energies and equilibrate at the

levels given by the individual trap frequencies, as shown by panel (e). As argued above,

the collision event rate changes slightly as the sample equilibrates [see panel (f)]. Initially,

the rate of collision events is about Γel(0) ≃ 860 ms−1 and then settles towards Γel(∞) ≃
840 ms−1 as the sample thermalizes. From Eq. B.10, we find κ∞ ≃ 2.23. Rescaling towards

the value at short times [212] we find

κ0 = κ∞
Γel(0)

Γel(∞)
≃ 2.3, (B.13)

which is in fair agreement with the prediction κ ≃ 2.5 [212].

We conclude that the Monte-Carlo simulation agrees reasonably well with what we expect

from the known results for both elastic and inelastic collision processes in harmonic traps for

constant cross sections. We then use it in the main text to model the collisional dynamics of

the OFR effect in the full model potential and with the full detuning- and velocity-dependent

cross section expressions.
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(a) The atom number stays constant throughout

the simulation.

(b) The mean density decreases because theX and

Y distributions are heated.

(c) The kinetic energy equilibrates to the mean

over all axes.

(d) The cloud widths settle according to the axial

trap frequency and the kinetic energy.

(e) The potential energy follows the kinetic energy

on timescales longer than a few trap oscillations.

(f) The collision event rate decreases since the

mean density goes down.

Figure B.2.: Simulation of cross-dimensional thermalization in an anisotropic harmonic

trap. The initial potential and kinetic energy along the X and Y axes are kB
2
× (3 µK),

the Z axis distributions are heated to 5 µK.





AppendixC
Related Publications

B
y now, the first generation of graduate students in optical lattice clock experiments

has graduated and the interested reader is referred to the many excellent and pub-

licly available theses on high-resolution laser spectroscopy, absolute frequency measurements,

remote optical comparison of frequency standards, and the relevant atomic physics and tech-

nology.

Publicly available theses on optical lattice clocks:

• JILA Sr clock: [11–14]

• LNE SYRTE Sr clock: [52, 53, 147] (French), [54] (English)

• LENS Sr clock: [214] (English)

• NIST Yb clock: [215]

• LNE SYRTE Hg lattice spectroscopy: [216] (English)

List of publications related to this work:

• S. Blatt, T. L. Nicholson, B. J. Bloom, J. R. Williams, J. W. Thomsen, P. S. Julienne,
and J. Ye, Thermodynamics of the Optical Feshbach Resonance Effect, arXiv:1104.0210v1,
submitted to Physical Review Letters [10].

• M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, Suppression
of Collisional Shifts in a Strongly Interacting Lattice Clock, Science 331, 1043 (2011) [51].

• M. D. Swallows, G. K. Campbell, A. D. Ludlow, M. M. Boyd, J. W. Thomsen, M. J. Martin,
S. Blatt, T. L. Nicholson, and J. Ye, Precision measurement of fermionic collisions using
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an 87Sr optical lattice clock with 1 × 10−16 inaccuracy, IEEE Transactions on Ultrasonics,
Ferroelectrics and Frequency Control 57, 574 (2010) [186].

• S. Blatt, J. W. Thomsen, G. K. Campbell, A. D. Ludlow, M. D. Swallows, M. J. Martin, M.
M. Boyd, and J. Ye, Rabi spectroscopy and excitation inhomogeneity in a one-dimensional

optical lattice clock, Physical Review A 80, 052703 (2009) [9].

• G. K. Campbell, M. M. Boyd, J. W. Thomsen, M. J. Martin, S. Blatt, M. D. Swallows, T.
L. Nicholson, T. Fortier, C. W. Oates, S. A. Diddams, N. D. Lemke, P. Naidon, P. Julienne,
Jun Ye, and A. D. Ludlow, Probing Interactions Between Ultracold Fermions, Science 324,
360 (2009) [46].

• G. K. Campbell, A. D. Ludlow, S. Blatt, J. W. Thomsen, M. J. Martin, M. H. G. de Miranda,
T. Zelevinsky, M. M. Boyd, J. Ye, S. A. Diddams, T. P. Heavner, T. E. Parker, and S.
R. Jefferts, The absolute frequency of the 87Sr optical clock transition, Metrologia 45, 539
(2008) [7].

• A. D. Ludlow, S. Blatt, T. Zelevinsky, G. K. Campbell, M. J. Martin, J. W. Thomsen, M. M.
Boyd, and J. Ye, Ultracold strontium clock: Applications to the measurement of fundamental

constant variations, The European Physical Journal Special Topics 163, 9 (2008) [31].

• S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye,
X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H.
Katori, and V. V. Flambaum, New Limits on Coupling of Fundamental Constants to Gravity

Using 87Sr Optical Lattice Clocks, Physical Review Letters 100, 140801 (2008) [8].
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A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H. Katori, and V. Flambaum.

New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks.
Physical Review Letters 100, 140801, 2008.
doi:10.1103/PhysRevLett.100.140801.

[9] S. Blatt, J. W. Thomsen, G. K. Campbell, A. D. Ludlow, M. D. Swallows, M. J. Martin, M. M. Boyd, and J. Ye.
Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock.
Physical Review A 80, 052703, 2009.
doi:10.1103/PhysRevA.80.052703.



188

[10] S. Blatt, T. L. Nicholson, B. J. Bloom, J. R. Williams, J. W. Thomsen, P. S. Julienne, and J. Ye.
Thermodynamics of the optical Feshbach resonance effect.
arXiv:1104.0210v1 2011.

[11] Martin M. Boyd.
High Precision Spectroscopy of Strontium in an Optical Lattice: Towards a New Standard for Frequency and Time.
PhD thesis, University of Colorado, 2007.
URL http://jilawww.colorado.edu/yelabs/pubs/theses.html.

[12] Andrew D. Ludlow.
The Strontium Optical Lattice Clock: Optical Spectroscopy with Sub-Hertz Accuracy.
PhD thesis, University of Colorado, 2008.
URL http://jilawww.colorado.edu/yelabs/pubs/theses.html.

[13] Seth M. Foreman.
Femtosecond Frequency Combs for Optical Clocks and Timing Transfer.
PhD thesis, University of Colorado, 2007.
URL http://jila.colorado.edu/thesis.

[14] Sebastian Blatt.
Precision Spectroscopy in 1D Optical Lattices.
Masters thesis, Leopold-Franzens-Universität Innsbruck, 2005.

[15] Xinye Xu, Thomas Loftus, Matthew Smith, John Hall, Alan Gallagher, and Jun Ye.
Dynamics in a two-level atom magneto-optical trap.
Physical Review A 66, 011401, 2002.
doi:10.1103/PhysRevA.66.011401.

[16] Xinye Xu, Thomas H. Loftus, John L. Hall, Alan Gallagher, and Jun Ye.
Cooling and trapping of atomic strontium.
Journal of the Optical Society of America B 20, 968, 2003.
doi:10.1364/JOSAB.20.000968.

[17] Xinye Xu, Thomas Loftus, Josh Dunn, Chris Greene, John Hall, Alan Gallagher, and Jun Ye.
Single-stage sub-Doppler cooling of alkaline earth atoms.
Physical Review Letters 90, 193002, 2003.
doi:10.1103/PhysRevLett.90.193002.

[18] Thomas H. Loftus, Tetsuya Ido, Martin M. Boyd, Andrew D. Ludlow, and Jun Ye.
Narrow line cooling and momentum-space crystals.
Physical Review A 70, 063413, 2004.
doi:10.1103/PhysRevA.70.063413.

[19] Thomas Loftus, Tetsuya Ido, Andrew Ludlow, Martin Boyd, and Jun Ye.
Narrow line cooling: Finite photon recoil dynamics.
Physical Review Letters 93, 073003, 2004.
doi:10.1103/PhysRevLett.93.073003.

[20] Takashi Mukaiyama, Hidetoshi Katori, Tetsuya Ido, Ying Li, and Makoto Kuwata-Gonokami.
Recoil-limited laser cooling of 87Sr atoms near the Fermi temperature.
Physical Review Letters 90, 113002, 2003.
doi:10.1103/PhysRevLett.90.113002.

[21] J. Ye, H. J. Kimble, and H. Katori.
Quantum state engineering and precision metrology using state-insensitive light traps.
Science 320, 1734, 2008.
doi:10.1126/science.1148259.

[22] Martin Boyd, Tanya Zelevinsky, Andrew Ludlow, Sebastian Blatt, Thomas Zanon-Willette, Seth Foreman, and Jun Ye.
Nuclear spin effects in optical lattice clocks.
Physical Review A 76, 022510, 2007.
doi:10.1103/PhysRevA.76.022510.

[23] A. V. Taichenachev, V. I. Yudin, C. W. Oates, C. W. Hoyt, Z. W. Barber, and L. Hollberg.
Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks.
Physical Review Letters 96, 083001, 2006.
doi:10.1103/PhysRevLett.96.083001.



189

[24] N. Poli, Z. W. Barber, N. D. Lemke, C. W. Oates, L. S. Ma, J. E. Stalnaker, T. M. Fortier, S. A. Diddams, L. Hollberg,
J. C. Bergquist, A. Brusch, S. Jefferts, T. Heavner, and T. Parker.

Frequency evaluation of the doubly forbidden 1S0 →3 P0 transition in bosonic 174Yb.
Physical Review A 77, 050501, 2008.
doi:10.1103/PhysRevA.77.050501.

[25] D. Wineland and Wayne Itano.
Laser cooling of atoms.
Physical Review A 20, 1521, 1979.
doi:10.1103/PhysRevA.20.1521.

[26] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland.
Quantum dynamics of single trapped ions.
Reviews of Modern Physics 75, 281, 2003.
doi:10.1103/RevModPhys.75.281.

[27] A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye.
Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1× 10−15.
Optics Letters 32, 641, 2007.
doi:10.1364/OL.32.000641.

[28] Seth M. Foreman, Kevin W. Holman, Darren D. Hudson, David J. Jones, and Jun Ye.
Remote transfer of ultrastable frequency references via fiber networks.
Review of Scientific Instruments 78, 021101, 2007.
doi:10.1063/1.2437069.

[29] Seth M. Foreman, Andrew D. Ludlow, Marcio H. G. de Miranda, Jason E. Stalnaker, Scott A. Diddams, and Jun Ye.
Coherent optical phase transfer over a 32-km fiber with 1 s instability at 10−17.
Physical Review Letters 99, 153601, 2007.
doi:10.1103/PhysRevLett.99.153601.

[30] T. Fortier, N. Ashby, J. Bergquist, M. Delaney, S. Diddams, T. Heavner, L. Hollberg, W. Itano, S. Jefferts, K. Kim,
F. Levi, L. Lorini, W. Oskay, T. Parker, J. Shirley, and J. Stalnaker.

Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance.
Physical Review Letters 98, 070801, 2007.
doi:10.1103/PhysRevLett.98.070801.

[31] A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen,
S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke,
K. M. Beck, and C. W. Oates.

Sr lattice clock at 1× 10−16 fractional uncertainty by remote optical evaluation with a Ca clock.
Science 319, 1805, 2008.
doi:10.1126/science.1153341.

[32] Wayne M. Itano, L. L. Lewis, and D. J. Wineland.
Shift of 2S1/2 hyperfine splittings due to blackbody radiation.
Physical Review A 25, 1233, 1982.
doi:10.1103/PhysRevA.25.1233.

[33] Sergey Porsev and Andrei Derevianko.
Multipolar theory of blackbody radiation shift of atomic energy levels and its implications for optical lattice clocks.
Physical Review A 74, 020502, 2006.
doi:10.1103/PhysRevA.74.020502.

[34] S. Porsev, Andrew Ludlow, Martin Boyd, and Jun Ye.
Determination of Sr properties for a high-accuracy optical clock.
Physical Review A 78, 032508, 2008.
doi:10.1103/PhysRevA.78.032508.

[35] M. S. Safronova, Dansha Jiang, M. G. Kozlov, and U. I. Safronova.
Blackbody radiation shifts and magic wavelengths for atomic clock research.
In 2010 IEEE International Frequency Control Symposium (FCS), p. 59. 2010.
doi:10.1109/FREQ.2010.5556374.

[36] Thomas Middelmann, Christian Lisdat, Stephan Falke, Joseph S. R. Vellore Winfred, Fritz Riehle, and Uwe Sterr.
Tackling the blackbody shift in a strontium optical lattice clock.
arXiv:1009.2017v1 2010.



190

[37] H. Katori.
In P. Gill, editor, Proceedings of the 6th Symposium on Frequency Standards and Metrology, pp. 323–330 (World Scientific,

Singapore), 2002.

[38] Hidetoshi Katori, Masao Takamoto, V. Pal’chikov, and V. Ovsiannikov.
Ultrastable optical clock with neutral atoms in an engineered light shift trap.
Physical Review Letters 91, 173005, 2003.
doi:10.1103/PhysRevLett.91.173005.

[39] H. J. Kimble, C. J. Hood, T. W. Lynn, H. Mabuchi, D. W. Vernooy, and J. Ye.
The quantum internet.
In R. Blatt, J. Eschner, D. Leibfried, and F. Schmidt-Kaler, editors, Proceedings of the Fourteenth International Confer-

ence on Laser Spectroscopy (ICOLS99), Innsbruck, pp. 80–99 (World Scientific, Singapore), 1999.

[40] Irène Courtillot, Audrey Quessada, Richard Kovacich, Anders Brusch, Dmitri Kolker, Jean-Jacques Zondy, Giovanni
Rovera, and Pierre Lemonde.

Clock transition for a future optical frequency standard with trapped atoms.
Physical Review A 68, 030501, 2003.
doi:10.1103/PhysRevA.68.030501.

[41] Masao Takamoto and Hidetoshi Katori.
Spectroscopy of the 1S0-3P0 clock transition of 87Sr in an optical lattice.
Physical Review Letters 91, 223001, 2003.
doi:10.1103/PhysRevLett.91.223001.

[42] Masao Takamoto, Feng-Lei Hong, Ryoichi Higashi, Yasuhisa Fujii, Michito Imae, and Hidetoshi Katori.
Improved frequency measurement of a one-dimensional optical lattice clock with a spin-polarized fermionic 87Sr isotope.
Journal of the Physics Society Japan 75, 104302, 2006.
doi:10.1143/JPSJ.75.104302.

[43] M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye.
Optical atomic coherence at the 1-second time scale.
Science 314, 1430, 2006.
doi:10.1126/science.1133732.

[44] Anders Brusch, Rodolphe Le Targat, Xavier Baillard, Mathilde Fouché, and Pierre Lemonde.
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[113] P. Wolf, Ch. J. Bordé, A. Clairon, L. Duchayne, A. Landragin, P. Lemonde, G. Santarelli, W. Ertmer, E. Rasel, F. S.
Cataliotti, M. Inguscio, G. M. Tino, P. Gill, H. Klein, S. Reynaud, C. Salomon, E. Peik, O. Bertolami, P. Gil,
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