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Stutz, R.P. (Ph.D., Physics)

Towards Measuring the Electron Electric Dipole Moment Using Trapped Molecular Ions

Thesis directed by Prof. Eric Cornell

Permanent electric dipole moments have been the subject of experimental investigation for

the past sixty years, as they entail the breaking of fundamental symmetries and provide a sensitive

probe for physics beyond the Standard Model. This thesis describes an experiment aimed at

measuring the electron electric dipole moment (eEDM) using trapped molecular ions. The 3∆1

level of certain diatomic ions are desirable in eEDM searches due to their high polarizability, large

eEDM enhancement factor, and relative insensitivity to magnetic fields. Ions allow for simple

trapping and long interrogation times, but require a time-varying electric bias field in order to

probe the eEDM.

I will discuss the criteria for molecular ions in our experiment and our current candidates. A

laser-ablation supersonic-expansion beam source has been developed to create and cool molecular

ions. These ions have been loaded into a linear rf Paul trap and alternative photoionization methods

for state-selective ion creation have been tested. Various experimental methods for performing the

necessary spin resonance measurement are discussed. Sources of both decoherence and systematic

errors have been identified and estimated. The experiment described in this thesis should be capable

of a factor of 30 improvement on the current limit of the eEDM.
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Chapter 1

Introduction [1]

1.1 Motivation for Electric Dipole Moment Searches

At first glance, the electron appears to be a trivial physical system to study. An elementary

particle in modern physics, it has only a handful of measureable properties, including mass, charge,

and spin. Perhaps the most interesting property, due to its historical impact on modern physics,

is the magnetic g-factor, ge. The prediction of ge = 2 was a major triumph of the Dirac equation,

and thus aided in the development of relativistic quantum mechanics. In order to account for slight

deviations of ge from 2, QED is needed. Fig. 1.1 shows a one-loop correction in QED to ge, where

a virtual photon interacts with the electron, adding a factor of α/π to the electrons g-factor. The

current measurement of the electron’s magnetic moment is accurate to 14 digits [7] and agrees with

theory out to eighth-order corrections [8]. At this level of precision, hadronic and weak corrections

must be included. In fact the value of ge will be influenced by the properties of all particles that

interact with the electron. This is true of not only ge, but also of other properties of the electron,

including its mass and charge. This illustrates how a precision measurement of the electron can in

principle give information about less well understood particles, for instance the Higgs Boson. In

practice, measurements of ge are not very sensitive to exotic massive particles, due to the small

electron mass. For this reason, measurements of the muon g-factor can offer better constraints

on exotic particle physics [9], even though the accuracy of these measurements are far worse than

similar measurements on the electron. Extracting information from these measurements is difficult

since the Standard Model hadronic corrections are uncertain [10].
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Figure 1.1: One-loop diagram that leads to a correction of the electron g-factor. The electron
interacts with a photon (γ) from an external field as well as a “virtual” photon.
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Figure 1.2: If an electron EDM exists, the orientation between the electron’s electric (de) and
magnetic (µ) dipole moments will change under a parity (P) or time-reversal (T) transformation.

Measurements of the electron electric dipole moment (eEDM) are a sensitive probe to new

physics as it violates time-reversal (T) and parity (P) symmetries. This is seen by first assuming

the eEDM lies along the same axis as the electron’s magnetic dipole moment, an assumption that

will be discussed below. The magnetic moment is T-odd and P-even, while an electric moment

would be T-even and P-odd. This means that parity or time-reversal transformation would change

the relative orientation between the electron’s magnetic and electric moments and an inversion of

space or reversal of time would be observable by measuring the orientation of electron moments.

This is illustrated schematically in Fig. 1.2. The P and T violation of an electron EDM implies CP

violation if the widely held CPT conservation theorem is assumed correct.

CP violation has been experimentally observed in both Kaons [11] and B mesons [12, 13]. The

observed CP violation is accounted for in the Standard Model through a CP violating phase in the

Kobayashi-Maskawa (KM) quark-mixing matrix. This leads to an electron EDM through Feynman

diagrams that include electroweak couplings to quarks, but at higher orders of perturbation than

for quark systems. Hoogeveen [14] attempted to estimate de from three-loop diagrams, an example

of which is shown in Fig. 1.3 and obtained a value of ∼ 10−38 e cm. It was later shown that

diagrams even at the three-loop level will cancel [3] and Khriplovich and Lamoreaux estimate the

Standard Model electron EDM as < 10−40 e cm [15].

Another possible source of CP violation is in the strong nuclear interaction where another
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Figure 1.3: Feynman diagram from Ref. [2] for a three-loop contribution to the eEDM. The sum of
three-loop diagrams cancels to zero [3] and four-loop diagrams are needed to produce a non-zero
eEDM in the Standard Model.
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CP violating phase ΘQCD is found. This phase would give rise to a very large neutron EDM given

its “natural” size O(1). The current experimental limit on the neutron EDM requires ΘQCD to be

O(10−10) [16], giving rise to the strong CP problem in particle physics. This source of CP violation

is unimportant when determining the size of the electron EDM.

Observations of neutrino oscillations and their implication of neutrino masses gives rise to

a third possible mechanism for an electron EDM in the Standard Model. Massive neutrinos give

rise to a lepton mixing matrix analogous to the KM matrix, with the possibility of CP violating

phases. Contributions to an electron EDM from this source tend to be smaller than for the KM

mechanism, although an estimates of de
<∼ 10−33 e cm is found with two “extra” massive neutrinos

and fine-tuning of neutrino masses [17].

Many extensions to the Standard Model predict far greater values for the eEDM [2]. This is

perhaps not surprising, since a major failing of the Standard Model, that these extensions wish to

correct, is the fact that it does not contain enough CP violation to explain the matter-antimatter

asymmetry in the Universe. Extensions to the Standard Model predict a value for the eEDM as high

as the current experimental limit of 1.6 × 10−27 e cm, many orders of magnitude above the Standard

Model background. With the range of theoretical predictions starting at the experimental limit,

and Standard Model backgrounds orders of magnitude below this limit, an improved measurement

of the eEDM is a tempting goal. This thesis describes an experiment that hopes to achieve a factor

of thirty improvement on the experimental upper limit for an eEDM.

1.2 Schiff’s Theorem

In general, an electron EDM measurement is made by applying an electric field to an electron

and looking for a response. Applying large electric fields to bare electrons results in a rapid

acceleration of the electrons out of the experimental apparatus. Using an unpaired electron in a

neutral atom or molecule seems problematic. Naively, one would assume that the electrons inside

the atom would just arrange themselves such that the average electric field on any charged particle

in the atom would time average to zero, as the neutral atom is not accelerated by the external
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field. This principle is known as Schiff’s theorem [18, 19] and is largely the reason why the first

experiments specifically designed to measure a T-violating EDM were made on neutrons [20]. A

similar thing occurs when an external electric field is applied to an ion in an rf Paul trap, moving

the ion to a new position where the time-averaged electric field is zero.

Loopholes in Schiff’s theorem include finite-size effects of the nucleus and relativistic correc-

tions. The latter tends to dominate for electron EDM measurements and is discussed in Ref. [21].

The time-averaged electric field 〈E〉 on an atomic electron, even when relativistic effects are taken

into account, is zero. However, due to length contraction, the time-averaged value of de · E will in

general not equal zero. The interaction energy with an electric dipole moving at a velocity cβ, as

observed in the laboratory frame, will be

We = −de ·
(

E − γ

1 + γ
β · Eβ

)

, (1.1)

with γ = (1-β2)1/2. Ref. [21] shows it is essentially the second term in Eq. 1.1 that gives rise to an

interaction energy between an atomic or molecular valence electron EDM and an external electric

field. Despite the average electric field seen by an atomic electron being zero, it is customary to

define an effective electric field, Eeff , such that Eedm = −de · Eeff .

1.3 Direction of de

Earlier, the assumption was made that the eEDM lies along the same axis as the electron’s

magnetic dipole moment. To test this, let us assume that the eEDM is not at a fixed angle relative

to the electron’s spin axis. If that were the case, an extra quantum number would be required to

describe the state of an electron and more than the experimentally observed two electrons would

be allowed in a 1S atomic orbital. Clearly, an eEDM must have a fixed orientation with respect to

the electron’s spin axis.

It is less clear if de⊥, a component of de perpendicular to the spin axis, is allowed. Certainly,

a fundamental spin-1/2 particle has only one vector, the spin axis, available to orient the particle.

The situation is less clear if the electron is allowed internal structure. An experiment sensitive to
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a de⊥ is beyond the imagination of this author, and certainly our experiment will only be sensitive

to a de component parallel or anti-parallel to the spin axis. If our experiment yields a non-zero de

the symmetry breaking arguments made above will therefore be valid.

1.4 Overview of Ongoing Experimental Work

For 20 years the most stringent limits on the eEDM have been the atomic-beam experiments

of Commins’ group [22, 23, 24]. That work set a standard against which one can compare ongoing

and proposed experiments to improve the limit. Here is a brief survey of ongoing experiments of

which we are aware.

For evaluating the sensitivity of an eEDM experiment the key figure-of-merit is Eeffτ
√

N ,

where Eeff is the effective electric field on any unpaired electrons, τ is the coherence time of the

resonance, and N is the number of spin-flips that can be counted in some reasonable experimental

integration time, for instance one week. We will discuss these three terms in order.

In practice all eEDM experiments involve heavy atoms with unpaired electron spins, and

most involve measuring the atomic spin-flip frequency ωd. An applied laboratory electric field

distorts the atomic wavefunction, and the eEDM contribution to the atomic spin-flip frequency ωd

is enhanced by relativistic effects occurring near the high-Z nucleus [25, 26], so that ωd = deEeff [27],

where the effective electric field Eeff can be many times larger than the laboratory electric field Elab.

The enhancement factor is roughly proportional to Z3 although details of the atomic structure

come into play such that the enhancement factors for thallium (Z = 81) and cesium (Z = 55)

are −585 [28] and +114 [29], respectively. Practical DC electric fields in a laboratory vacuum are

limited by electric breakdown to about 105 V/cm. The Commins experiment used a very high-Z

atom, thallium, and achieved an Eeff of about 7 × 107 V/cm [22]. There have been proposed a

number of experiments in cesium [30, 31, 32] that expect to achieve Eeff of about 107 V/cm. A

completed experiment by Hunter [33] achieved Eeff = 4.6×105 V/cm in Cs by using Elab = 4 kV/cm.

It was pointed out by Sandars [34] that much larger Eeff can be achieved in polar diatomic

molecules. In these experiments, the atomic wavefunctions of the high-Z atom are distorted by the
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effects of a molecular bond, typically to a much lighter partner atom, rather than by a laboratory

electric field. One still applies a laboratory electric field, but it need be only large enough to align

the polar molecule in the lab frame. The Hinds group [35] is working with YbF, for which the

asymptotic value of Eeff is 26 GV/cm [35, 36, 37, 38, 39, 40, 41]. DeMille’s group [42, 43, 44]

uses PbO, with an asymptotic value of Eeff ≃ 25 GV/cm [45, 46, 47]. Shafer-Ray’s group [48] has

proposed to work with PbF, which has a limiting value of Eeff ≃ 29 GV/cm [49, 50]. The ACME

collaboration [51] will use ThO, with Eeff ≃ 100 GV/cm [52]. The Leanhardt group is working

with WC, with Eeff ≃ 54 GV/cm [53]. We will discuss candidate molecules for our experiment in

Chapter 2.2; we anticipate having an Eeff of around 25 to 90 GV/cm [52, 54].

After Eeff , the next most important quantity for comparison is the coherence time τ , which

determines the linewidth in the spectroscopic measurement of ωd. In Commins’ beams experiment,

τ was limited by transit time to 2.4 ms. Future beams experiments may do better with a longer

beam line [48], or with a decelerated beam [55]. Groups working in laser-cooled cesium anticipate

coherence times of around 1 s, using either a fountain [30] or an optical trap [31, 32]. The PbO

experiment has τ limited to 80 µs by spontaneous decay of the metastable electronic level in which

they perform their ESR. Coherence in ThO experiment will be limited by the excited-state lifetime

to 2 ms [51]. A now discontinued experiment of Hunter [33] achieved τ = 15 ms in a vapor cell with

coated walls and a buffer gas. The JILA experiment will work with trapped ions. The mechanisms

that will limit the coherence time in our trapped ions are discussed in Chapters 6, 7, and 8. We

anticipate a value in the vicinity of 300 ms.

The quantity Eeff converts a hypothetical value of de into a frequency ωd, and τ sets the

experimental linewidth of ωd. The final component of the overall figure-of-merit is
√

N , which

determines the precision with which the resonance line can be determined. Vapor-cell experiments

such as those of Hunter or DeMille can achieve very high values of effective N , atomic beams

machines are usually somewhat lower, and molecular beams usually lower yet (due to greater

multiplicity of thermally occupied states.) Atomic fountains and atomic traps have still lower

count rates, but the worst performers in this category are ion traps. The JILA experiment may
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trap as few as 100 ions at a time, and observe only 10 transitions in a second.

The discussion above is summarized in Table 1.1. To improve on the experiment of Commins,

it is necessary to do significantly better in at least one of the three main components of the

figure-of-merit. The various ongoing or proposed eEDM experiments can be sorted into categories

according to the component or components in which they represent a potential improvement over

the Commins’ benchmark. The prospects of large improvements in both τ and Eeff put JILA’s

experiment in its own category. This combination means that our resonance linewidth, expressed

in units of a potential eEDM shift, will be 105 times narrower than was Commins’. Splitting our

resonance line by even a factor of 100 could lead to an improved limit on the eEDM. This is an

advantage we absolutely must have, because by choosing to work with trapped, charged molecules,

we have guaranteed that our count rate, Ṅ , will be far smaller than those of any of the competing

experiments.

We note that there are in addition ongoing experiments attempting to measure the eEDM in

solid-state systems [56, 57, 58, 59]. These experiments may also realize very high sensitivity, but

because they are not strictly speaking spectroscopic measurements, it is not easy to compare them

to the other proposals by means of the same figure-of-merit.

1.5 Overview of Thesis

Chapter 2 of this thesis will be a brief walk through of the general spectroscopic idea behind

our experiment. The next four chapters are dedicated to experimental progress and the many

pieces of technology that needs to come together to make an eEDM measurement with trapped

molecular ions possible. Along the way we were faced with many alternative visions of how to

make this experiment work, and I will in general discuss some of the alternatives we investigated.

Chapter 3 focuses on ion trapping basics. Also included in this chapter is discussion of our first

generation ion trap, some experiments done in this first trap, and a brief description of our next

generation trap. One challenge of our experiment is efficient read-out of our spin populations after

the Ramsey experiment is completed. This will be covered in Chapter 4. The process of creating,
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Table 1.1: Figure-of-merit comparison between several recently completed and ongoing eEDM
experiments. For ongoing experiments these numbers are subject to change and are often order-of-
magnitude estimates.

Group Species Elab [V/cm] Eeff [V/cm] τ [s] Ṅ [s−1] Refs.

Commins Tl 1.23× 105 7× 107 2.4× 10−3 109 [22]

Hunter Cs 4× 103 4.6× 105 1.5× 10−2 [33]

Gould Cs 105 107 1 109 [30]

Heinzen Cs 105 107 1 [32]

Weiss Cs 105 107 1 [31]

DeMille PbO 10 2.5× 1010 8× 10−5 [42, 43, 44, 45, 47]

Hinds YbF 8.3× 103 1.3× 1010 10−3 [35, 60]

Shafer-Ray PbF 7× 104 2.9× 1010 [48, 49, 50]

ACME ThO 102 1011 2× 10−3 105 [51, 52]

Leanhardt WC 5.4× 1010 10−3 [53]

JILA HfF+, ThF+, etc. 5 2− 8× 1010 0.3 10
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cooling and loading into a trap our molecular ions is covered in Chapter 5. This will include our

laser-ablation supersonic-expansion source, a brief discussion of alternative cooling methods, and

photoionization techniques for state-selective trap loading. Chapter 6 will discuss some of the issues

of performing precision spectroscopy in time-varying, inhomegenous fields. Ion-ion and ion-neutral

collisions will be discussed in Chapter 7. Things will get wrapped up in Chapter 8 with conclusions

and an estimate of sensitivity to the eEDM.



Chapter 2

Molecular Structure and the Basic Spectroscopic Idea [1]

2.1 Molecular Notation

A final decision as to which molecule we will use has not been made. For reasons discussed

below, the main candidates are diatomic molecular ions Mx+, where M = Hf, Pt, or Th and x = H

or F. In the case of molecules such as HfF+, ab initio methods [4, 54] enable us to determine that

the 3∆ state is well described by a set of Hund’s case (a) quantum numbers: J, S,Σ, Λ, Ω, MJ , e/f .

Here J is the sum of electronic plus rotational angular momentum, S the total electronic spin

angular momentum, Σ the projection of S onto the molecular axis, Λ the projection of L, the

electronic orbital angular momentum, onto the molecular axis, and Ω the projection of J onto the

molecular axis. In a case (a) 3∆ molecule |Ω| can take the values one, two or three. MJ is the

projection of J along the quantization axis and the labels e/f specify the parity of the molecular

state.

In addition to these quantum numbers, the experiment will be concerned with the nuclear

spin quantum number I, the total angular momentum quantum number F , given by the vector

sum of J and I, and mF the projection of F along the quantization axis. Throughout this thesis

a total nuclear spin of I = 1/2 is assumed, the nuclear spin of fluorine or hydrogen.

2.2 Choosing a Molecule

In selecting a molecular ion for this experiment we have several criteria. First, we want a

simple spectrum. Ideally, we would like the supersonic expansion to be able to cool the molecules



13

into a single internal quantum state so that every trapped molecule could contribute to the contrast

of the spectroscopic transition. Failing that, we want to minimize the partition function by using

a molecule with a large rotational constant, most likely a diatomic molecule with one of its atoms

being relatively light. Small or vanishing nuclear spin is to be preferred, as are atoms with only

one abundant isotope. Second, we need to be able to make the molecule. This requirement favors

more deeply bound molecules and is the main reason we anticipate working with fluorides rather

than hydrides. Third, the molecule should be polarizable with a small applied electric field, i.e. it

should have a relatively small Λ-doublet splitting, ωef , a quantity that is described in Chapter 6.1.

Fourth, and most important, the molecule should have unpaired electron spin that experiences a

large value of Eeff .

These latter two requirements would appear to be mutually exclusive: a small Λ-doublet

splitting requires a large electronic orbital angular momentum, which prohibits good overlap with

the nucleus required for a large Eeff . Fortunately, working with two valence electrons in a triplet state

allows us to satisfy our needs. One valence electron can carry a large orbital angular momentum

making the molecule easily polarizable, while the other can carry zero orbital angular momentum

giving it good overlap with the nucleus and generating a large Eeff . This concept was detailed by

Bohn and Meyer in Ref. [4] and for the 3∆1 state of interest here, the two valence electrons occupy

molecular σ and δ orbitals. Calculations [54, 52] indicate that in the 3∆1 state of HfH+ and HfF+

ωef
<∼ 2π × 1 MHz and Eeff ≈ 30 GV/cm should be expected. ThF+ has Eeff ≈ 90 GV/cm [52].

2.3 |Ω| = 1 vs. |Ω| = 3

One final valuable feature to look for in a candidate molecule is a small magnetic g-factor, so

as to reduce the vulnerability to decoherence and systematic errors arising from magnetic fields. To

the extent that spin-orbit mixing does not mix other |Ω| = 1 states into a nominally 3∆1 molecular

level, it will have a very small magnetic moment, a feature shared by PbF in the 2Π1/2 state [48].

This is because Σ = −Λ/2, and because the spin g-factor is ∼ 2 times the orbital g-factor. Under

these conditions, the contributions of the electronic spin and orbital angular momentum to the net
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molecular magnetic dipole moment nominally cancel. In HfF+, the magnetic moment of a stretched

magnetic sublevel level of the 3∆1, J = 1 rotational ground state is about 0.05 µB [61]. This is a

factor of 20 less than the magnetic moment of ground state atomic cesium. In the 3∆3 level, on

the other hand, the magnetic moment in the stretched Zeeman level is 4.0 µB. The |Ω| = 3 state

may nonetheless be of scientific interest. The 3∆1 and 3∆3 levels have Eeff equal in magnitude but

opposite in sign. If one could accurately measure the science signal, ωd, in the 3∆3 level despite its

larger sensitivity to magnetic field background (and despite its shorter spontaneous-decay lifetime),

the comparison with the 3∆1 result would allow one to reject many systematic errors.

2.4 |Ω| = 1, J = 1 Λ-doublet

Since we have not made a final decision as to which molecule we will use, and also because

we have yet to measure the hyperfine constants of our candidate molecules, the discussion of level

schemes in this section will be qualitative in nature, usually emphasizing general properties shared

by all the molecules we are investigating. To simplify the discussion, it will be specialized to

discussing spectroscopy within the J = 1 rotational manifold of a molecular 3∆1 level.

For Hunds’ case (a) molecular levels with |Λ| ≥ 1, each rotational level is a Λ-doublet, that

is, it consists of two closely spaced levels of opposite parity. We can think of the even (odd) parity

level as the symmetric (antisymmetric) superposition of the electronic angular momentum lying

predominantly parallel and antiparallel to the molecular axis [Fig. 2.1(a)]. The parity doublet

is split by the Λ-doubling energy ωef . A polar diatomic molecule will have a permanent electric

dipole moment, ~dmf , aligned along the internuclear axis n̂, but in parity eigenstates, there will be

vanishing expectation value 〈n̂〉 in the lab frame. An applied laboratory electric field, Erot, will

act on dmf to mix the states of good parity. In the limit of dmfErot ≫ ωef , energy eigenstates will

have nonvanishing 〈n̂〉 in the lab frame. More to the point, Ω, a signed quantity given by the

projection of the electron angular momentum on the molecular axis, (~L + ~S) · n̂, can also have

a nonzero expectation value [Fig. 2.1(b)]. Heuristically, it is the large electric fields developed

internal to the molecule, along n̂, that gives rise to the large value of Eeff that the electron spin
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can experience in polar molecules. In the absence of the Λ-doublet mechanism for polarizing the

molecule, a much larger field would be necessary, dmfElab ≫ 2Be, to mix rotational states with

splitting typically twice the rotational constant Be. For HfF+, it is estimated ωef will be something

under 2π × 50 kHz, whereas Be will be about 2π × 10 GHz. For a dipole moment dmf = 4.3 D,

mixing the Λ-doublet levels will take a field well under 1 V/cm, whereas “brute force” mixing of

rotational levels would require around 10 kV/cm. For an experiment on trapped ions, the smaller

electric fields are essential.

In the context of their eEDM experiment on the a3Σ1 level in PbO, DeMille and his colleagues

have explored in some detail [42, 43, 44] the convenient features of an |Ω| = 1, J = 1 state, especially

with respect to the suppression of systematic error. Our experiment liberally borrows from those

ideas. In a molecule with at least one high-Z atom, 3∆1 states will be very similar to the a3Σ1

state of PbO, but with typically smaller values of ωef and much smaller values of magnetic g-factor.

Singly charged molecules with spin triplet states will necessarily have an odd-Z atom, and thus the

unavoidable complication of hyperfine structure, not present in PbO.

In Fig. 2.1 the 3∆1, J = 1 state with hyperfine splitting due to the fluorine I = 1/2 nucleus

is presented. A key feature is the existence of two near-identical pairs of mF -levels with opposite

parity due to Λ-doubling. As seen in Fig. 2.1(b), an external electric field, Erot, mixes these opposite

parity states to yield pairs of mF -levels with opposite sign of Eeff [44] relative to the external field.

Fig. 2.1(c) shows the effect of a rotating magnetic bias field, parallel with the electric field, applied

to break a degeneracy as described in Chapter 6.4. Note that any two levels connected by arrows

in Fig. 2.1(c) transform into each other under time reversal. Time reversal takes mF → −mF ,

Ω→ −Ω, and B → −B, where B is the magnetic field. If we measure the resonant frequency for the

transition indicated by the solid (or dashed) line once before and once after inverting the direction

of the magnetic field, time reversal invariance tells us the difference between the two measurements

should be zero. In the presence of an eEDM, which violates time-reversal invariance, this energy

difference W u(B)−W u(−B) will give 2deEeff . As well, under the same magnetic field the transitions

indicated by the solid and dashed lines should be degenerate, if the magnetic g-factors are identical
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for the states involved [62]. With non-zero eEDM the energy difference W u−W l also gives 2deEeff .

Potential additional shifts, due predominantly to Berry’s phase [63], are discussed in Chap-

ter 6 but for now note only that in the absence of new physics (such as a nonzero eEDM) the energy

levels of a molecule in time-varying electromagnetic fields obey time-reversal symmetry. Reversing

the direction of the electric field rotation while chopping the sign of the magnetic field amounts

to cleanly reversing the direction of time, and will leave certain transition energies rigorously un-

changed if de = 0. These are our “science transitions”, which we will measure with our highest

precision.

2.5 Electronic Level Structure

There are∼ 104 possible diatomic molecules and one might hope that humanity has knowledge

of all their spectra. Alas, that is not the case. It appears that too many people have been at home

watching American Idol instead of being in the laboratory late at night taking molecular spectra. In

general, diatomic molecules containing atoms as heavy as hafnium, thorium, or platinum have very

little known spectra. Diatomic molecular ions are less known still and no previous experimental

studies existed for our most promising eEDM molecular ion candidates.

We identified a handful of candidates that might posses low-lying 3∆1 states, mostly by look-

ing at known or theoretically predicted spectra of isoelectronic neutral molecules. These molecules

typically have low-lying 1Σ and 3∆1 states with the energy splitting between them predicted to

be small enough that either might be the ground state. ab initio calculations have been per-

formed [4, 54, 64, 61] that give us a picture of what to expect for states from 0 ∼ 14,000 cm−1

above the ground state for many of our candidate molecules. Theoretical curves are shown in

Fig. 2.2 for the case of HfF+. There are several states in this energy range of potential interest for

state preparation and read-out purposes in our experiment. Spin-orbit mixing between states of

identical |Ω| are enhanced by relativistic effects in the high-Z Hf atom. The b(1) and c(1) states

are well-mixed combinations of 1Π1,
3 Π1, and 3Σ−

1 states, allowing for electric dipole transitions to

and from these states that do not respect spin selection rules. The 1Σ0 state, on the other hand,



17

-3/2   -1/2    +1/2   +3/2  

-1/2    +1/2   

(a) (b)

|f〉  

|e〉 

|f〉 

|e〉 

E
HF

     -3/2   -1/2    +1/2   +3/2

 -1/2    +1/2

Hf++

F -

^n

|Ω = -1〉|Ω = +1〉

Σ = -1

|Ω = -1〉 |Ω = +1〉

     -3/2   -1/2    +1/2   +3/2

 -1/2    +1/2

(c)

m
F

m
F

^n

Σ = +1

^n

Σ = +1

^n

Σ = -1

E
rot

E
rot

E
rot

B


E
rot

B


m
F

3g
F
µ
B
B

+d

e
E
eff

3g
F
µ
B
B

−d

e
E
eff

m
F

m
F

m
F

3γ
F
E
rot
d
mf

|b〉 |a〉

|c〉|d〉

Wu

Wl

E
e 

E
e 

ω
ef

Hf++

F -
F -

F -

Hf++

Hf++

F = 3/2  

F = 1/2 

Figure 2.1: Energy levels of HfF+ in the 3∆1, J = 1 state including hyperfine structure associated with the fluorine I = 1/2 nucleus.
Λ and Σ are defined as the projection along the molecular axis of the electronic orbital angular momentum, and spin, respectively.
Ω = Λ + Σ. (a) In zero electric field, the eigenstates of the system are states of good parity, |e〉 = (|Ω = +1〉 − |Ω = −1〉)/

√
2 and

|f〉 = (|Ω = +1〉+ |Ω = −1〉)/
√

2, separated by a small Λ-doublet splitting. (b) An electric field, Erot, mixes the parity eigenstates yielding
states with well defined Ω. (c) A small magnetic field lifts the degeneracy between states with the same value of mF Ω. A permanent
electron electric dipole moment further breaks this degeneracy, but with opposite sign for the upper (solid arrow) and lower (dotted arrow)
transition. Energy splittings not to scale.



18

has no nearby |Ω| = 0 state with which to mix, and thus Σ and Λ are good quantum numbers.

Similarly, the 3∆1 state has so little contamination of 1Π1 in it that a rough calculation indicates

that it is metastable against spontaneous decay, with a lifetime of order 300 ms [4, 54]. Levels in

HfF and HfF+ that are relevant to material throughout this thesis are shown in Fig. 2.3.

We have spent considerable effort attempting to measure the energy of these excited states

in HfF+. This work was complicated by the one difference between our group and molecular

spectroscopists; we were not molecular spectroscopists. Laura Sinclair [65] has since measured one

electronic transition in HfF+, an (Ω = 1) ← 1Σ transition, likely to either the b(1) or c(1) state,

at 13,000 cm−1. This transition could be used to link the 1Σ ground state with the 3∆1 state we

wish to use for eEDM spectroscopy. Laura and her co-workers are currently working on measuring

more spectra in HfF+ and potentially other candidate molecules. Rumor is they don’t even like

American Idol, so progress should be swift.
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not to scale.



Chapter 3

Ion Trapping

In a charge free region, electric potentials obey Laplace’s equation,

∇2V = 0 (3.1)

Solutions to this equation allow no local extremum, i.e. all maximums and minimums must occur

at the boundaries. Therefore, it is impossible to produce a three-dimensional trapping potential in

free space from static electric fields alone. Two solutions to this problem are found in the Penning

trap and the rf Paul trap. In a Penning trap [66], the combination of static electric and magnetic

fields allows for 3-D confinement. In an rf Paul trap [67, 68], time-varying electric fields are used

to create a time-averaged potential with a minimum at the trap center. In our eEDM experiment,

the energy difference we wish to precisely measure is, to a very good approximation as discussed

in Chapter 6, independent of the electric field, while being quite sensitive to magnetic fields. For

this reason, an rf Paul trap seems the better choice here.

3.1 Ions in Two-Dimensional Time-Varying Quadrupole Fields

A general three dimensional quadrupole field has a potential,

Φ(x, y, z) = Φ0(λx2 + σy2 + γz2) (3.2)

where Φ0 is an externally applied, position independent electric potential and λ, σ, and γ are

constants depending on the nature of the field. With this potential, the three dimensions are not
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coupled, and motion along these three directions can be treated independently. Laplace’s equation

requires

λ + σ + γ = 0 (3.3)

When λ = −σ and γ = 0, we obtain a two-dimensional quadrupole field. This field is

utilized in quadrupole mass spectrometers, and is convenient to discuss first before tackling three-

dimensional ion trapping fields. Using four rods with a hyperbolic structure, as seen in Fig. 3.1,

and applying a potential of (U − Vrf cos ωrft)/2 to one pair of oppositely placed rods and (−U +

Vrf cos ωrft)/2 to the other pair, the following potential is achieved [5, 69],

Φ(x, y, t) = (U − Vrf cos ωrft)
x2 − y2

2r2
0

(3.4)

with 2r0 the smallest distance between opposite hyperbolic rods. Using

M
d2xi

dt2
=
−e∂Φ

∂xi
(3.5)

we obtain the following equations of motion,

d2x

dt2
+

e

Mr2
0

(U − 2Vrf cos ωrft)x = 0 (3.6)

d2y

dt2
− e

Mr2
0

(U − 2Vrf cos ωrft)y = 0 (3.7)

d2z

dt2
= 0 (3.8)

Making substitutions to dimensionless variables, we can rewrite the above equations for x- and

y-motions as

d2x

dζ2
+ (a− 2q cos 2ζ)x = 0 (3.9)

d2y

dζ2
− (a− 2q cos 2ζ)y = 0 (3.10)

with

a =
4eU

Mr2
0ω

2
rf

; q =
2eVrf

Mr2
0ω

2
rf

; ζ =
ωrft

2
(3.11)
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Figure 3.1: Electrodes used to produce a two-dimensional quadrupole field. For a quadrupole mass
spectrometer, Φ0 = (U − Vrf cos ωrft)/2. Adapted from [5].
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Eqn. 3.9 is the canonical form of the Mathieu equation, a well studied equation used in many

areas of physics. Floquet’s Theorem guarantees solutions of the form,

x = α′eiβζ
∞
∑

n=−∞

C2ne2inζ + α′′e−iβζ
∞
∑

n=−∞

C2ne−2inζ (3.12)

Here, α′ and α′′ are constants whose values depend on the initial conditions of the ions. The C2n

constants and the characteristic exponent, β, depend on the parameters a and q. From this we see

that periodic solutions exist if β is purely real, otherwise x increases without bound as ζ →∞. If

β is a real integer, the solution is periodic, but unbounded. The β = n contours in the a-q plane,

with n a real integer, serve as the boundaries between stable and unstable regions. Eqn. 3.10 has

identical solutions with a replaced by −a. The four contours of β = 0 and β = 1 for both the x and

y directions bounds the first stability zone as seen in Fig. 3.2. This is the region in which almost

all ion quadrupole traps and guides are operated.

From Eqn. 3.12, when β is real, the ion motion frequencies are,

ωn =
(2n± β)ωrf

2
(3.13)

This shows the frequency spectrum is the same along contours of constant β in the stability diagram,

with the weighting factors of the various frequencies, the C ′
2ns, being determined only by the

parameters a and q. However, the exact trajectory of the ions depends on their initial position and

velocity, and the initial phase of the rf. Along the β = 0 line, the lowest order frequencies are 0

and ωrf . Along the β = 1 line, the fundamental frequency of ion motion is ωrf/2. As discussed

in Chapter 3.3 the rf voltage Vrf can be viewed as giving a time-averaged psuedo-potential that

is focusing in both the x- and y-directions. The DC potential U breaks the symmetry between

the x- and y-directions, with a positive U creating a focusing potential in the x-direction and a

defocusing potential in the y-direction. The β = 0 contours in the stability diagram (Fig. 3.2)

then correspond to values of U and Vrf such that the focusing potential from the rf fields is exactly

cancelled with the defocusing caused from the DC fields in either the x- or y-directions, leading to

unstable ion motion. The β = 1 contours have trapping frequencies due to the combination of rf
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and dc voltages that are exactly ωrf/2, here the rf drive resonantly excites the trapping motion and

leads to unbounded ion motion.

Since the parameters a and q depend on the mass-to-charge ratio, M/e, of the ions being

trapped, the rf quadrupole can be used to measure M/e of an ion sample. This is most readily

accomplished by utilizing the narrow tip of stability at q ≈ 0.706 and scanning along a line of

constant U/Vrf as seen in Fig. 3.3. Here, we plot the stability diagram as a function of U and Vrf at

a fixed rf drive frequency ωrf for ions with different values of M/e. As seen in the figure, as U/Vrf

is scanned only a small range of mass-to-charge ratios are stable. This method of mass filtering has

the advantage of simple tuning of the resolution, at the expense of sensitivity, by picking a slightly

different constant for the U/Vrf scan. Sensitivity is decreased at higher values of U/Vrf due to the

lower trapping potential as you approach the unstable region and the lower phase space of ions that

will make it through the quadrupole. This utilization of the rf quadrupole as a mass filter inspires

the choice of applying a potential U to one set of opposing rods, thus breaking the x-y symmetry

of the ion guide.
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Figure 3.3: Ions of different masses will have different stability regions when graphed in terms of the
DC (U) and rf (Vrf) trapping voltages. This graph is for a constant rf frequency ωrf . By scanning
along a line of constant U/Vrf and recording ion signal, a mass spectrum is produced. Greater
resolution is achieved, at the expense of sensitivity, by increasing the slope of the scan line.
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3.2 3-D Ion Trapping, the Linear Paul Trap

One way of achieving a three dimensional trapping potential is the linear rf Paul trap. The

previously discussed four-rod geometry is used with the addition of a DC potential that is axially

focusing and radially defocusing,

Φax =
kUz

2r2
0

(z2 − x2

2
− y2

2
) (3.14)

with Uz an applied potential and k a dimensionless geometric factor. This potential is achieved by

applying a DC voltage to end-caps. The geometry of these end-caps depends on trap design, but

can entail needle electrodes or segmenting each quadrupole rod into two end-caps and a central

electrode. The radial focusing from the rf induced pseudo-potential must then overcome the radial

defocusing from the DC potentials. Since the fields in the three dimensions are de-coupled, we

can treat each direction separately. The z-direction is trivial, with a DC harmonic potential well

leading to simple harmonic motion. In the x- and y-directions, the defocusing from this new DC

potential can be quantified by modifying the a parameter,

aeff =
4e

Mr2
0ω

2
rf

(U ∓ kUz

2
) (3.15)

with the -(+) corresponding to the x(y) direction. This leads to a shift in the first stability region

to higher q values as seen in Fig. 3.4.

Another often used geometry is commonly referred to as the 3-D Paul trap. Here, a ring

electrode with hyperbolic cross-section is used in conjunction with two end-cap electrodes which are

hyperboloids of revolution around the z-axis and complementary to the intermediate ring electrode.

The potential is then,

Φ = Φ0(
x2 + y2 − 2z2

4z2
0

) (3.16)

with r2
0 = 2z2

0 . This leads to a similar stability diagram as the two dimensional case, except there

is an asymmetry between the r and z directions.

Historically, this has been the more common geometry. However, the linear Paul trap has

been adopted for many AMO experiments due to several advantages. Its initial interest was due to
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Figure 3.4: The ax and ay trapping parameters are shifted in the case of the linear Paul trap due
to an axial trapping potential, Uz, and also from space charge effects due to a trapped ion density

of ρ. aeff = 4e
2Mr2

0
ω2

rf

(

U ∓ kUz
2 ∓

ρr2

0

ǫ0

)

.
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Figure 3.5: Our ion trap design. Potentials are shown that create the necessary fields for trapping,
mass spectrometry, and applying Erot.

its smaller second order doppler shift in frequency standards applications [70]. The linear geometry

gives a line down the axial center of the trap where the rf voltage is zero as opposed to a single

point in the earlier geometry. This allows for a greater number of ions to be stored at low rf voltage

when space charge effects are taken into account. Heating in the trap occurs due to collisions that

dephase the ion motion from the applied rf fields. Therefore, the lower the rf fields the ions are

stored in, the lower the heating rates. Linear traps also offer greater optical and ion access for

loading the trap and manipulating and detecting the stored ions. The linear trap is especially

suited to our experiment due to the rotating bias field that we require. The four rods in our ion

trap can be driven 90◦ out of phase, as seen in Fig. 3.5 in order to produce the rotating field.

This also means that all of the time-varying fields are in the radial plane, which greatly simplifies

analysis of our experimental systematics.

3.3 Pseudo-Potential Well

Although the stability diagram of Fig. 3.2 is quite useful, it does not tell the whole story.

Whether an ion will remain within the physical confines of the trap depend not only on the a and

q trapping parameters, but also on the ion’s initial position, velocity, and the initial rf phase. In

general, the ion motion will be a complicated sum of several motional frequencies, all with similar
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weighting. A complete description requires numerical methods, and methods based on phase-

space dynamics have been developed [69]. However, if the trap is operated in a region of small q

and smaller still a, analytic methods [5] are useful. We will operate in this regime, with typical

experimental values as seen in Appendix A, giving a = 0.01 and q = 0.2.

In this limit of small q and smaller a, and thus small β, we see from Eqn. 3.13 that the lowest

order frequencies are well separated, with ω0 = βωrf/2 and ω1 ∼ ωrf . We then expect a slowly

varying, large amplitude motion X (the secular motion) and a rapidly varying, small amplitude

motion, δ (the micromotion),

x = δ + X (3.17)

Then, Eqn. 3.9 can be re-written as,

d2δ

dζ2
+ (a− 2q cos 2ζ)X = 0 (3.18)

Since a is assumed to be smaller than q, and X is assumed to be slowly varying compared to the rf

drive frequency, we integrate Eqn. 3.18 to obtain,

δ = −qX

2
cos 2ζ (3.19)

Substituting in Eqn. 3.17 and Eqn. 3.19 to Eqn. 3.9 we obtain,

d2x

dζ2
= −aX +

aqX

2
cos 2ζ + 2qX cos 2ζ − q2X cos2 2ζ (3.20)

Taking the average acceleration of X to be the acceleration of x over one rf cycle we obtain,

〈

d2X

dζ2

〉

=
1

π

∫ π

0

d2x

dζ2
dζ = −

(

a +
q2

2

)

X (3.21)

This shows, averaged over an rf cycle, that we have simple harmonic motion with a frequency of

(a+q2/2)1/2ωrf/2. Knowing that this is equal to βωrf/2, we see that β ≈ (a+q2/2)1/2 in the limit

of small a and q. This approximation is good at the 5% level for q < 0.4. We can associate a trap

depth to this simple harmonic potential, and for a = 0 we obtain,

Dx =
1

2
ω2

xr2
0 =

q2ω2
rfr

2
0

8
=

eV 2
rf

4Mr2
0ω

2
rf

(3.22)
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The separation of the ion motion into a slow secular motion and a fast micromotion is strong

motivation to work in the limit of small a and q during our eEDM measurement.

3.4 Trapping Multiple Ions

To this point, we have discussed the trapping of a single ion with an idealized quadrupole

electric field. The situation becomes considerably more complex when multiple ions are trapped

simultaneously. When considering neutral-neutral collisions, satisfactory results are usually found

by assuming hard sphere collisions described by a single scattering length. For 1/r interactions,

hard collisions that entail momentum transfer on order of the average thermal momentum are but a

small part of the story. The distance over which long range collisions are important is approximately

the Debye length, or Debye shielding distance,

λD =

(

ǫ0kT

ni(Ze)2

)1/2

(3.23)

where ǫ0 is the permittivity of free space, k is the Boltzmann constant, T is the ion temperature,

ni is the ion density, and Ze is the ion charge.

In the case of a 10 K cloud of 1000 trapped ions, and an ion cloud diameter of 1 cm, λD

will be ∼ 7 mm, or about the ion cloud size. The ion-ion interaction energy at a distance of 1 cm

is ∼ 1 mK. This means that a single ion will be in constant collision with ∼ 1000 ions, all with

collision energies of 1 mK or above. An individual ion motion, even in the absence of collisions

with ions or neutrals, can be quite complicated with at least the two frequency components of

rf micromotion and trapping secular motion. It is easy to imagine that the combination of these

complicated motions, with a thousand ion-ion interactions at an appreciable energy compared to

the ion temperature, will lead to chaotic motion in the trap and a very broad frequency spectrum.

This broad frequency spectrum will likely include components that are resonantly excited by the

rf drive, thus extracting energy from the rf field and heating the ions. This is one component of

what is broadly referred to as rf heating. Other components can include the effect of ion-neutral

collisions and hard ion-ion collisions that dephase the ion motion from the rf drive. The latter
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effect is sometimes referred to as instability heating and can be viewed as a momentary increase in

the q parameter such that the ion temporarily falls into an unstable region where the ion motion

increases with time.

If the initial ion velocity distribution is anisotropic or non-Maxwellian, ion-ion collisions will

redistribute the ions. The rate at which this is done can be estimated using the self-collision

time [71],

tc =
11.4M1/2T 3/2

ni(Ze)4lnΛ
(3.24)

where M is the ion mass in amu, T the ion temperature in Kelvin, ni the ion density in cm−3, and

Λ is a shielding parameter related to the Debye length. This has been confirmed for the case of

protons trapped in a 3-D quadrupole ion trap [72]. For our case of a 10 K ion cloud with 1000 ions

in a 1 cm ion cloud, and assuming singly charged ions of mass 200 amu, tc = 640 ms.

Outside of collisions, ion-ion interactions will also add another term to the electric potential.

For simplicity, take the case of a spherical symmetric trapping potential such that ωx = ωy = ωz.

In the limit of space charge energy less than the thermal energy of the ions, the limit we will likely

perform our experiment in, the ion cloud will have a Gaussian shape. The situation is easier to

evaluate in the opposite limit, where the space charge energy is much greater than the thermal

energy of the ions and, assuming a harmonic pseudo-potential well, where the ion cloud will be a

sphere of uniform density. The potential due to space charge will then be,

Φsc =
−ρ

ǫ0

(

x2

2
+

y2

2
+

z2

2

)

(3.25)

where ρ is the charge density of the ions. This will modify the a trapping parameter which will

now read,

aeff =
4e

Mr2
0ω

2
rf

(

U ∓ kUz

2
∓ ρr2

0

ǫ0

)

(3.26)

with the -(+) corresponding to the x(y) direction. The situation is more complex at values of a and

q such that the motion cannot be approximated as a fast micromotion and a slow secular motion.

In this case, the ion cloud can be significantly distorted from a uniform, spherical object during a

trapping period.



33

3.5 Our Ion Trap, v0.0

Often quadrupole construction is done with cylindrical rods in place of hyperbolic rods due to

the relative ease of construction of the former. Denison [73] has investigated the optimum electrode

size and spacing for cylindrical electrodes. The symmetry of the problem requires that the lowest

order terms are a quadrupole and then a 12-pole term. Denison looks for a minimum in the 12-pole

coefficient as r/r0, the ratio of the electrode radius to half the spacing between opposite rods (see

Fig. 3.5), is varied. This was done with the ground potential at infinity and at 3.54 r0 (the smallest

practical radius for a grounded cylinder placed around the quadrupole), yielding optimum ratios

for r/r0 of 1.146 and 1.1468 respectively.

An image of our trap is shown in Fig. 3.6. We utilized a grounded wire mesh at R = 3.54

r0, non-magnetic 316 stainless steel electrodes of 25 mm diameter, with a spacing 2r0 = 21.8 mm,

yielding the above stated optimum ratios. Each rod was segmented into three pieces, with the

axially confining DC voltages applied to the eight end-pieces. The length of the center electrodes,

lc, was 88 mm, and the length of the end electrodes, le, was 25 mm. Vespel spacers were used

to electrically isolate the three segments of the electrodes, chosen for vespel’s ease of machining,

as well as its vacuum, electrical, and mechanical characteristics. Two stainless steel end-plates

were used to define the electrode spacing, with threaded rods running down the center of the

hollow electrodes held by washers at the end-plates providing rigidity to the whole structure. The

threaded rods extended into a 6” CF vacuum flange that contained all of the electrical feedthroughs

for the trapping voltages as well as supporting a channeltron ion detector. The openings at the

axial ends of the the trap were covered by a 75% visibility wire mesh, making the entire trapping

volume well isolated from external electric fields.

The axial trapping potential was simulated using the electrostatic program SIMION. Fig. 3.7

shows the axial potential at the radial trap center for various ratios of the center electrode to

end-cap electrode length. The choice of an 88 mm center rod length gives rise to an approximate

square well potential. If a harmonic axial potential is desired, a fit to the potential over the range
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Figure 3.6: Image of our first ion trap. The electrodes are obscured by the grounded wire mesh at
R = 3.54 r0. Note the channeltron ion detector mounted below the trap.
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Figure 3.7: Axial trapping potentials for different central rod lengths, lc, holding the overall trap
length constant. Our first trap was built with lc = 88 mm.

of its full width half maximum yields an optimized center rod length of ≈ 25mm for our value of

21.8 mm for r0. However, for a 10 K ion cloud, only 2 V must be applied to the end-caps in the

case of lc = 88mm in order to confine the ions to a 1cm length along z. In this case, the trapping

potential seen by the ions is extremely harmonic.

3.6 Trap Drive Electronics

We wish to apply rotating electric fields with the trap electrodes at frequencies ωrot ∼ 2π×100

kHz, and superimpose rf trapping fields that oscillate at frequencies ωrf ∼ 2π×15 kHz. This gives

wavelengths on the order of 1 km, much larger than the distance between the source electronics

and the trap. Therefore, impedance matching was of no concern in designing our drive electronics.

Flexibility was essential, as we desired to operate the trap with different ion species and at very

different trapping frequencies and trapping parameters a and q, depending on the nature of the

experiment being performed. We chose to use a system of op-amps as opposed to more traditional

methods of ion trap drivers such as resonant LRC circuits or quarter-wave resonators [74].

We used buffers/pre-amplifiers with standard ± 15 Volt op amps (OPA627) and their outputs

were used as inputs to simple summing amplifiers. In order to achieve relatively high trapping
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Table 3.1: Electrical inputs to ion trap driver box.

Name of input Purpose of applied voltage Electrode segments

RF Oscillating trapping voltage phase: A and D rods
for radial confinement antiphase: B and C rods

DC A rod Radial defocussing voltage, seperate A rod
DC D rod to move trap center radially D rod

DC bottom axial confinement, ability to load trap A,B,C,D bottom end-caps

DC A,B top axial confinement, ability A, B top
DC C,D top to steer ions into detector C, D top

DC center rods alternative axial confinement A,B,C,D center

potentials, high voltage OPA98 op-amps were used for the summing amplifiers. These have the

ability to drive up to ± 225 Volts, with maximum slew rates of 1000 V/µs. Radial trapping

potentials, for Hf+ ions, as high as 16 eV were achieved with rf trapping voltages of 190 Volts and

a trap frequency of 250 kHz. At these high trapping voltages and frequencies, forced air cooling

was found to be insufficient, and the OPA98 op-amps were mounted on water-cooled copper heat

sinks. The summing amplifiers included a trim input used to reduce DC offsets to ∼ 5 mV, with

drifts over the course of 10 hours of similar magnitude.

Each electrode segment was driven by a separate OPA98, and several inputs were available,

listed in Table 3.1, for applying rf and DC voltages. These inputs allowed us to manipulate the ions

in many ways, including ejecting ions from the trap, moving the axial and radial trapping center,

and performing mass spectrometry. The DC voltages were supplied by an NI6733 DAQ board, with

eight sixteen bit analog outputs and with maximum update rates of 1000 kS/s. We buffered the

output of this board in order to source more current and to separate the computer ground from the

experiment ground. The rf voltages were obtained from an Agilent 33220A waveform generator,

capable of being AM or FM modulated. The rf was AC coupled to inverting (A,D rods) and non-

inverting (B,C rods) pre-amplifiers to produce the π phase delay between adjacent electrodes. Both

the DAQ and the waveform generator were computer controlled via LabView code.
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Figure 3.8: Schematic of an integrator used to sum and amplify our ion signal when dumping our
ion trap into a channeltron detector. Gains of either 1010 or 108 were typically used.

3.7 Ion Detection

Detection of ions can be highly efficient with the use of a channeltron, a form of electron

multiplier. Here an ion is accelerated to 1000’s of eV before striking the detector, with close to unit

probability of dislodging an electron from the surface. This primary electron is then accelerated

down the detector where it again collides with the detector walls and is amplified in an electron

avalanche, in the same way a primary electron is amplified in a photomultiplier tube. This can

result in ion detection efficiencies of ∼ 1, and gains of 106 or more.

Our initial ion trapping experiments utilized a channeltron, placed after the axial opening of

the trap, with the input of the detector biased at -2000 Volts and the output at ground potential.

Ions were ejected from the trap by dropping the end-caps nearest the detector to 0 V or to a slight

negative voltage, while the end-caps farthest from the detector remained at a positive bias. A

simple electronic integrator was used (Fig. 3.8) in order to further amplify the signal, and to reduce

saturation effects due to the channeltrons inability to source much voltage. Two gain settings

were typically used of 1010 and 108 V/A with corresponding time constants of 30 µs and 10 ms

respectively. Dark count rates on the order of 1/s were achieved when operating in pulse counting

mode.

In order to attempt an absolute calibration of ion number, we employed a Faraday cup. This

is simply a metal can that collects the positive ions. A commercial CR-110 charge sensitive pre-
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amplifier was placed directly after the vacuum electrical feedthrough that connected the Faraday

cup. This configuration produced a minimum noise equivalent to 300 ions per trap “dump”.

A device similar to the channeltron is the microchannel plate detector, or MCP. An MCP

can be viewed as a 2-D array of micro-channeltrons. Typical dimensions are a plate thickness of

500 µm, with hole diameters of 10 µm, and an open area of 60%. Each hole acts as a channeltron,

as incoming ions are accelerated and collide into the hole walls they create primary electrons that

are themselves accelerated into the walls creating an electron avalanche. Gains of a single plate

tend to be 104, with higher gains achieved by placing two or more plates in series. Two main types

of MCPs were used during this experiment, an imaging MCP and a “fast” MCP.

In the imaging MCP a phosphor screen is placed behind the output of the MCP, and is biased

at a large positive voltage. The electrons output from the MCP are accelerated onto the phosphor

screen and a CCD camera records the resulting fluorescence. This detector is obviously helpful in

determining the spatial profile of the ion cloud, but is poor at recording arrival times. In order

to get some information on arrival times, we typically pulsed on the negative bias voltage to the

MCP. This was limited to a time resolution of ∼ 1 µs by the 5 mm distance between the MCP and

a grounded wire mesh placed in front of the MCP.

For the “fast” MCP, a single electrode, at ground potential, is placed at the output. This

can lead to much faster detection times than with a channeltron, since the electron transit times

are much smaller in the extremely thin MCP. This device gives no ion position information, other

than the fact the ion fell somewhere on the device, but the time resolution can be as fast as 100

ps, although typically the read-out electronics limits this to slower values. These devices are often

used in time-of-flight mass spectrometers due to their time resolution and we utilized them in this

capacity as discussed in Chapter 5. A fast transimpedance amplifier was used in conjuction with

these MCPs. This reduced the time resolution to ∼ 20 ns, but this was still sufficient for our needs.
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3.8 Early Ion Trapping

We loaded ions into our trap using electron impact ionization in our earliest ion trapping

experiments. A solenoid driven pulsed valve was opened typically with a 200 Volt, 300µs drive

pulse and 1 Torr of Xe backing pressure. The gas pulse was intersected by a 200 ms electron gun

pulse, both being directed through the center of the ion trap. This was done while rf trapping

voltages of ∼ 20 Volts were applied at 100kHz, and the end-caps were biased at 15 Volts DC.

Trapping times on the order of minutes were achieved after an initial ion decay that was due to

increased background pressure from the xenon gas pulse. Xenon was used since it had a similar

mass to our leading eEDM molecules at the time, HI+. Xenon has seven naturally occurring

isotopes, five of them have greater than 5% abundance, and they are spaced by one or two amu.

This isotope structure allowed us to test our ability to perform mass spectrometry in our trap. As

discussed in Chapter 4, mass spectrometry could possibly be used to read-out the electron spin in

our eEDM measurement. Therefore, demonstrating mass spectrometry in our ion trap with 1 amu

mass resolution and high sensitivity was one of our first ion trapping objectives.

Mass spectrometry was done by loading the ion trap with the voltage U = 0, and then

ramping U to obtain a set value of U/Vrf , the voltage U was ramped back to zero and then the ions

were ejected from the trap using the end-cap voltages and sent into a channeltron for detection.

The rf Voltage Vrf was then stepped to a higher value and the experiment was repeated. In this

way we probed the typical U/Vrf operating line of a quadrupole mass spectrometer. One initial

difficulty in achieving sensitive mass spectrometry at good resolution was higher order resonances

in our ion trap. Due to details of the electronics and DAQ boards used, the ramp of U was done in

discrete steps with 1 ms between steps. As we stepped across the β = 2/3 contour, ions would be

lost from the trap. The data showing at what rf voltage ion loss began, for different U ramp values,

is shown in Fig. 3.9. Plotting these points out on the a, q stability graph, we see that the loss was

indeed associated with the β = 2/3 line. This problem was circumvented simply by increasing our

U voltage ramp speed, but it is worth pointing out that the next generation ion trap, discussed
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below, will likely be driven in such a way as to increase these higher order resonances that arise

due to imperfections of the trapping fields. It will likely be important to operate the trap at values

of a and q that are far removed from these resonances. Discussion of these trap resonances can be

found in the literature [75].

Resolution of the mass spectrometer tended to improve at higher trapping frequencies. Data

for Xe+ and Hf+ showing∼ 1 amu mass resolution can be seen in Fig. 3.10. The trapping frequencies

used were 100kHz for the Xe+ data and 250 kHz for the Hf+ data. Typical rf frequencies for

commercial quadrupole mass spectrometers are 1-3 MHz. In order to reach higher resolution, the

scan line should be increased to higher values of U/Vrf . This pushes you closer and closer to the

edge of the stability region, where the trap depth is close to zero for the x direction and close to

the β = 1 contour in the y direction, were the trapping frequency is one-half the rf drive frequency

and resonant excitation occurs. Many factors come into play in this region that are not contained

in the analytical approach of this chapter that lead to the ion stability diagram. These include the

finite size of the trap, patch charge potentials on the electrodes, ion-ion and ion-neutral collisions,

and field imperfections due to the cylindrical rods.

3.9 Second-Generation Ion Trap and Fields in eEDM Measurement

The first-generation trap was designed to minimize errors in our quadrupole trapping field,

largely driven by our desire for ∼ 1 amu mass resolution. Since building our first trap, the require-

ments for mass spectrometry in our ion trap have been greatly reduced, as we now will likely use

a fluoride instead of a hydride for the eEDM measurement. Mass spectrometry in our next gen-

eration trap will be performed using time-of-flight, and the necessary resolution of 19 amu should

be trivial to achieve. Time-of-flight mass spectrometry has the advantage of measuring multiple

charge-to-mass ratio ions for a single trap loading at efficiencies close to unity. This also means

that the uniformities in the trapping fields can be sacrificed for uniformity in the rotating electric

field. The first trap suffered from non-uniformities in the rotating electric field of ≈ 20% over a

1 cm diameter ion cloud. The next generation trap will have six electrodes instead of four, and
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Figure 3.9: a) Ion number in trap after trap potential U has been ramped to various values as a
function of rf voltage. b)Plotting the onset of loss in the a, q stability diagram shows the ion loss
was associated with a β = 2/3 resonance, implying imperfections in our trapping fields.
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Figure 3.10: Mass spectrometry performed in our ion trap showing a) the five dominant isotopes
of xenon, data taken at an rf frequency of 100 kHz, with U/Vrf = 0.16 and b) the five naturally
occurring isotopes of hafnium, data taken at an rf frequency of 250 kHz, and U/Vrf = 0.1695. Mass
resolutions of better than 1 amu allowed us to distinguish Hf+ from HfH+.
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will be spaced farther apart (r0 = 4.0 cm). Numerical modelling shows the rotating electric field

uniformity should be better than 0.5% over a 1 cm diameter ion cloud.

Another motivation in designing a new trap is the desire to make ion measurements through

laser induced fluorescence. The maximum solid angle for optical detection achievable in our first

ion trap design was limited by the large area occupied by the rod electrodes. The new trap design

replaces the cylindrical rods with electrodes of thin cross-sections when viewed from the trap center.

Two large ellipsoidal mirrors surround the ion trap covering 80% of the solid angle. These mirrors

have a bare gold coating, as conducting surfaces are preferred to minimize patch charge effects on

the trapping fields. The center sections of the mirrors are electrically isolated from the bulk of the

mirrors and act as the end-cap electrodes for z-axis ion confinement.

The perfect ion trap would have idealized electric and magnetic fields as follows

~E = Erotr̂′ + E ′rf(xx̂− yŷ) cos(ωrft) + E ′z(−zẑ + yŷ/2 + xx̂/2) (3.27)

~B = Brotr̂
′ (3.28)

where r̂′ = cos(ωrott)x̂ + sin(ωrott)ŷ and E ′rf ≈ −2Vrf/r2
0.

If we assume ωrot ≫ ωrf , that ωrot/ωrf is not a rational fraction, and that ω2
rf ≫ eE ′rf/M ,

then we can cleanly separate out the ion motion into three components: rf micromotion, circular

micromotion, and secular motion.

As discussed above, rf micromotion involves a rapid oscillation at ωrf whose amplitude grows

as the ion’s secular trajectory takes it away from trap center. The kinetic energy of this motion,

averaged over an rf cycle, is given by

Erf = (x2 + y2)
e2E ′rf

2

4Mω2
rf

(3.29)

where x and y in this case refer to the displacement of the ion’s secular motion.

The displacement of the ion’s circular micromotion is given by

~rrot = − e~Erot
Mω2

rot

. (3.30)
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The kinetic energy of the circular motion, averaged over a rotation cycle, is given by

Erot =
e2E2

rot

2Mω2
rot

. (3.31)

The time-averaged kinetic energies of the two micromotions act as ponderomotive potentials that

contribute to the potential that determines the relatively slowly varying secular motion:

Usec = Erot(x, y, z) + Erf(x, y, z) + eE ′z(2z2 − y2 − x2)/4. (3.32)

In the idealized case, the secular motion corresponds to 3-d harmonic confinement with secular or

“confining” frequencies

ωi =

(

1

M

∂2Usec

∂i2

)1/2

, (3.33)

for i = x, y, z. In the idealized case, confinement is cylindrically symmetric, ωx = ωy, and Erot is

spatially uniform, so the circular micromotion does not contribute to the confining frequencies.

If the density of ions is low enough such that few momentum-changing collisions occur during

a single measurement, any given ion’s trajectory will be well approximated by the simple sum of

three contributions:

(i) a 3-d sinusoidal secular motion, specified by a magnitude and initial phase for each of

the x̂, ŷ, and ẑ directions. In a thermal ensemble of ions, the distribution of initial phases will

be random and the magnitudes, Maxwell-Boltzmannian. For typical experimental parameters (see

Appendix A) the secular frequencies ωi will each be about 2π × 1 kHz and the typical magnitude

of motions, r, will be about 0.5 cm.

(ii) the more rapid, smaller amplitude rf micromotion, of characteristic frequency about

2π× 15 kHz and radius perhaps 0.05 cm. This rf micromotion, purely in the x-y plane, is strongly

modulated by the instantaneous displacement of the secular motion in the x-y plane, and vanishes

at secular displacement x=y=0.

(iii) The still more rapid rotational micromotion, purely circular motion in the x-y plane, at

frequency ωrot about 2π × 100 kHz and of radius comparable to the rf motion, around 0.05 cm. In

the idealized case, the rotational micromotion (in contrast to the rf micromotion) is not modulated

by the secular motion.
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As described in Chapters 6.5 and 7.1, for spectroscopic reasons we must operate with trapping

parameters such that Erot
>∼ 30kBT . Under that condition, relatively small imperfections in Erot,

say a spatial variation of 1.5%, can give rise to contributions to Usec of the same scale as the ions’

thermal energy, and thus significantly distort the shape of the trapped ion cloud or even deconfine

the ions.



Chapter 4

Electron Spin Read-Out

As mentioned previously, spectroscopic eEDM measurements perform an electron spin res-

onance in the presence of electric and magnetic fields. Of course, a crucial component of a spin

resonance experiment is measuring the final spin populations. Typically, this is done by making

a spin dependent electronic transition and then collecting fluorescence from the subsequent decay

(LIF). Our trapped molecular ion experiment is limited to low ion numbers due to strong ion-ion

interactions (see Chapter 7). Also, since molecules are being used, there are no cycling transitions

to increase LIF detection efficiency. With multiple vibrational and rotational levels to decay to,

approximately one photon will be scattered from any given molecular ion. With a limited solid

angle of collection and photon detection efficiencies of ∼ 0.10, LIF could have poor efficiency.

As mentioned in Chapter 3.7, ion detection using channeltron and MCP detectors can ap-

proach unit efficiency. It is tempting to leverage this high efficiency of ion detection to read-out

the electron spin populations in our experiment. One approach would be to make a spin-dependent

electronic transition to an excited state and then photodissociate this excited state. This would

map the electron spin information onto the mass-to-charge ratio of the trapped ions. As discussed

in Chapter 3, the ion trap can act as a mass filter, either by operating in the a, q stability plane at

a point where a narrow range of M/e ions are trapped, or by using the trap as a time-of-flight mass

spectrometer. We have also experimented with using a one-dimensional standing wave of intense

laser light in order to create a spin-dependent heating of the ion cloud. This technique has also

been explored as a method for performing broad survey spectroscopy of our molecular ions.
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4.1 LIF Detection

ab initio calculations [4, 54, 64, 61] suggest there are Ω = 1 states ∼ 10,000-15,000 cm−1

above the 1Σ ground state and ∼ 7,000-14,000 cm−1 above the 3∆1 level where we will perform

our spin resonance measurement. Using σ± polarized light, we can excite only the population in

the mF = ∓3/2 level to the J = 1 level of one of these higher lying Ω = 1 states. A measurement

of the fluorescent decay from this higher lying state will then yield the final spin population of our

Ramsey experiment. The efficiency for LIF can be approximated, in the strongly saturated limit,

ηLIF =
1

2
×A×RNb × ηdet × T (4.1)

with A the solid-angle of fluorescence collected onto the detector, R the mirror reflectivity, Nb the

average number of reflections off the mirrors, ηdet the detector efficiency, and T the transmission

of any filters, windows, or lenses in the imaging system.

Pulsed laser excitation is preferred for several reasons. The quantization axis will be rotating

at ωrot, and we wish to make transitions only of δmF = +1 or -1. Therefore the laser k̂-vector

should point along the quantization axis with left- or right-circularly polarized light being used.

The excitation pulse must then be short compared to 1/ωrot so the quantization axis can be treated

as stationary during the pulse. Also, reaching saturation intensity on the molecular transition could

be difficult with a cw laser. We might wish to drive a weaker transition that then decays to the

lower 1Σ level as this could allow us to frequency filter the signal light from the scattered light

of the excitation laser. Also, the decay will then be at higher frequencies and therefore a higher

detection efficiency for our PMT can be realized. This, combined with the relatively large (r ∼

5 mm) ion clouds, requires more laser power than could be conveniently achieved with cw lasers.

Pulsed excitation also allows time gating of the detector in order to decrease background signal

due to light scatter of the excitation beam into our detector.

If the Ω = 1 excited levels around 13,000 cm−1 are used, we will require a detector efficient

at the corresponding wavelength of 770 nm. Photodiodes have high quantum efficiencies at such

wavelengths, but photodiodes are not well suited to measuring the expected low light intensities
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due to the inherent electronic noise, e.g. it will be difficult to reach shot-noise limited detection.

PMTs have extremely low dark count rates, and can reach shot-noise limited detection at very low

count rates. The detection efficiencies of PMTs tend to fall off dramatically at near-IR wavelengths

since cathodes with low enough work functions are difficult to produce. The highest efficiency PMT

in these wavelength regions that we have been able to find are the Hammamatsu R3896. We can

expect quantum efficiencies, at best, of 10% in our region of interest, and more likely 1%. Perhaps

transitions can be found at higher frequencies, but our current form of survey spectroscopy requires

a Ti:Saph laser with minimum wavelength ≈ 700 nm.

With the new ion trap allowing for 80% of the solid angle to be imaged onto two photon

detectors, the maximum spin detection efficiency we expect is 4% using LIF.

4.2 Photodissociation

4.2.1 Predissociation and CH+

A process known as predissociation can occur in molecules if the molecular potential under-

goes an avoided crossing, giving rise to excited vibrational levels that are allowed to tunnel out

to the dissociation continuum as seen in Fig. 4.1. This situation is known to occur in CH+ and

has been subject to several experimental and theoretical treatments [76, 77, 78, 79, 80, 81]. The

predissociating states in CH+ occur due to coupling between the A1Π state and the c3Σ+ repulsive

curve. The A1Π state dissociates to the slightly higher energy C+ (2P3/2) + H(2S) configuration

compared to the C+(2P1/2) + H(2S) state that the c3Σ+ level dissociates to. A combination of

spin-orbit coupling and nuclei rotation lead to couplings of the two molecular potentials. The po-

tential advantage of using a predissociating state is that the bound-to-bound transition involved

will often have a larger cross-section than a bound-to-continuum transition. After building an ion

trap capable of 1 amu mass resolution, we decided to perform a proof-of-principle photodissociation

experiment using the known CH+ transitions.

CH+ was produced and trapped by pulsing in CH4 gas from a pulsed valve and using electron
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Figure 4.1: Potential energy curves of a molecule containing predissociating states as a function
of the internuclear spacing R. The bound energy curve A dissociates to atoms, with at least one
atom in an excited state. The repulsive curve B dissociates to atoms at a lower energy. Couplings
between states A and B lead to an avoided crossing. An excited vibrational level of state A can
tunnel through the resulting potential into the continuum.
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impact ionization in an identical set-up to that mentioned in Chapter 3.8. The trap was loaded

with trapping parameters only allowing stable trajectories for CH+ ions. The trap parameters

were then ramped to a more stable configuration where both C+ and CH+ were stably trapped as

a 10 ns laser pulse was sent through the ion cloud. This pulse was frequency doubled to the UV

(the relevant transitions were in the range of 33,000 cm−1) and approximately 10 mJ/pulse was

available. The trap was then ramped to parameters compatible with only C+ and then dumped

into a channeltron ion detector. Ions would be detected only if CH+ had been dissociated to C+

by the laser pulse.

Despite the known transitions of CH+, we experienced two problems that frustrated our

attempts to observe autoionization in our set-up. The first was charge-exchange collisions between

CH+ ions and neutral CH4 background gas that severely limited our CH+ trapping lifetime. Fig. 4.2

shows the results of holding CH+ in our trap for 1 ms and 100 ms. The 100 ms data shows almost

no evidence of CH+ and instead it appears reactions produced C+
2 ions. C2H2 and CHF3 were also

used as sources of CH+ ions, all with similar effects limiting the ion storage time. The only way

we were able to mitigate this problem was by decreasing the backing pressure, but this limited the

number of CH+ ions we were able to load into our trap. The optimum backing pressure of CH4

was found to be ∼ 1 Torr.

The other problem was a misunderstanding of our needed laser pulse intensity. We believed

the cross-section for the transition from the ground state to the A1Π predissociating state was a

factor of 104 higher than what was ultimately measured. Looking at results from [80], we expected

cross-sections on the order of 10−16 cm2 for the transitions of interest. This meant for our exper-

iment we should have easily saturated our ∼ 1 cm diameter ion cloud with a 10 mJ laser pulse.

When a signal was found, we observed that the transition was far from saturated. In the end, CH+

was trapped for 5-10 seconds as laser pulses at 10 Hz were fired into the cloud, allowing for satura-

tion of the transition. Fig. 4.3 shows data taken in this way. Our results were consistent with other

estimates for the cross-section [81, 76, 77] of ∼ 10−20 cm−1. It appears there was an error in [80]

and we chose the wrong reference to help us estimate our needed saturation intensity. Ultimately,
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Figure 4.2: CH+ held in our ion trap appeared to react with CH4 gas. After trap loading, the ions
are initially CH+, but after a 100 ms hold time there is no evidence of CH+ in the trap. Instead a
mass peak around 24 amu is found. This required trap loading at lower CH4 pressures and made
detection of CH+ predissociation more difficult.
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we were able to dissociate through multiple rotational lines as many ground state rotational levels

were populated from the electron-impact ionization process.

4.2.2 Photodissociation to a Repulsive Curve

The experience with CH+ was not very encouraging in our efforts to readout electron spin

information using dissociation. However, the first difficulty in observing the CH+ dissociation,

the charge-exchange collisions limiting our CH+ lifetimes, should cause no concern for our eEDM

measurement using ions such as HfF+. We have not observed such fast charge-exchange processes to

occur in HfF+. Background pressures when trapping ions such as HfF+ from our pulsed molecular

source discussed in Chapter 5 are made small by differential pumping. As we will see in Chapter 7.2,

other considerations require strong enough differential pumping such that ion-neutral collisions are

rare during the coherence time of our measurement.

The small photodissociation cross sections are an area of concern. It will not be possible to

wait several seconds while multiple laser pulses saturate the transition, as the lifetime of the 3∆1

state is not expected to be that long. The CH+ cross sections are small due to the very poor overlap

between the vibrational wave function of the ground state and that of the predissociating state.

According to the Franck-Condon principle, the transition moment between two electronic states will

be proportional to the overlap integral between the two vibrational levels,
∫

Ψ′
vΨ

′′
v dr, with Ψ′

v(
′′)

the vibrational wave function of the excited (ground) state involved in the transition [82]. The

transition strength is proportional to the square of this overlap integral or Franck-Condon factor.

The Franck-Condon principle is based on the idea that during an electronic transition, nuclei have

no time to respond and therefore will have the same position and momentum immediately before

and after the transition. A Franck-Condon matrix will have off-diagonal terms in v′− v′′ if the two

electronic levels have different vibrational energy spacings or bond lengths. However, the Franck-

Condon factor between a v′′ = 1 state and a v′ = 12 state, the case for our CH+ predisocciating

transition, is typically quite small and might be small enough to negate the advantage of a bound-

bound transition. An estimate of the cross section to a repulsive potential curve will reveal to what
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Figure 4.3: Data showing photodissociation of CH+ to C+ and H through a predissociation reso-
nance. This data corresponds to a transition to the J = 3, v = 12, A1Π state of CH+. This data
was taken with a 5 second ion hold time, during which time 50 pulses, with 10mJ/pulse, from a
frequency doubled dye laser were incident on the ions.
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extent this is true.

The width of a photodissociation resonance in a diatomic molecule involving a repulsive curve

will be dominated simply by the Frank-Condon overlap between the initial state vibrational wave

function and the repulsive curve. A good approximation is to treat the unbound molecular wave

functions as delta functions at the classical turning points [82]. Then, one needs only to know the

slope of the repulsive curve at the equilibrium internuclear distance of the initial state and the width

of the initial state vibrational wave function. These two numbers will then give the approximate

width of the photodissociation resonance.

In order to approximate the slope of a repulsive curve in HfF+, we look at a repulsive curve

in the isoelectronic PtH+. ab initio calculations [61] of PtH+ electronic levels show a 3Σ repulsive

state. One could imagine a similar state being easily accessed from the 3∆1 level of HfF+ through an

intermediate 3Π state. We then simply scale the energy of dissociation for PtH+ to that calculated

for HfF+ and use that same scaling factor for the energy of the repulsive curve. Doing this gives

a 3Σ repulsive curve in HfF+ that is at 71,000 cm−1 with a slope of about 80,000 cm−1/Å at the

molecular bond length.

A quantum harmonic oscillator wave function is given by:

Ψ = (2nn!)−
1

2 (
mω

πh̄
)

1

4 e−ξ2/2Hn(ξ) (4.2)

where Hn is a Hermite polynomial of order n, ξ =
√

mω
h̄ x, and m is the reduced mass of the

two atom system. The ground state vibrational wave function is then just a Gaussian with width

wgs =
√

h̄
mω . Using h̄ω ≈ 700 cm−1 in HfF+, we get wgs = 5.3 × 10−12 m or about 0.1ao. This

gives a width for our photodissociation resonance of wpd =4,200 cm−1.

The cross-section at a given frequency is given by:

σ(ω) =
1

4

g2

g1
λ2

21g(ω)A21 (4.3)

where g2 and g1 are degeneracies of the upper and lower levels respectively and g(ω) is a lineshape

function normalized such that
∫∞
−∞ g(ω)dω = 1.
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Using

µ2
21 = A21

3ǫ0hc3

2ω3
21

(4.4)

this becomes

σ(ω) =
4π3

3

g2

g1

g(ω)µ2
21

ǫ0hλ21
(4.5)

if guessing a transition dipole moment is preferred to guessing a spontaneous decay lifetime. Now

the assumptions come in. Assume λ21 =600 nm (more on this later). Looking at transition dipole

moments from Petrov et al. [64], µ21 = 0.3 a.u. seems like a conservative estimate. This is about the

smallest µ21 for an allowed transition in HfF+ that Petrov calculated. Note that this corresponds

to a spontaneous lifetime of ≈ 1.2µs. We assume that the full dipole moment is realized since all

rotational and vibrational transitions will fall within the broad photodissociation resonance. We

assume the degeneracy of the intermediate state and the repulsive curve are equal and set g2

g1
= 1.

Using
∫ ∞

−∞
e−

x2

2w2 dx =
√

2πw2 (4.6)

we obtain

g(ω0) =
1

√

2πw2
pd

(4.7)

at the center of the resonance. This gives σ(ω0) = 3.8 × 10−19 cm2. Note that this is an order

of magnitude larger than the cross section for the predissociating CH+ state used in our earlier

experiment (σ = 2.4 × 10−20 cm2 was the calculated cross section for the strongest line [81, 76, 77]).

Define a saturation pulse energy

E =
hcA

λσ
(4.8)

where A is the cross-sectional area of both the laser beam and ion cloud. Assuming a 100 mJ

pulse at 600 nm, this gives 0.12 cm2 as the area that can be saturated. This corresponds to a 1.9

mm beam radius. If the radius of the ion cloud needs to be decreased, it would only have to be

done for a very short time, since the laser pulse is only 10 ns long, and heating of the ion cloud

should not be a concern once the ions are dissociated. The focusing of the ions would have to be
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done while still maintaining a well defined quantization axis. The 0.3 ea0 transition dipole moment

seems very conservative, as long as repulsive states exist. One could imagine that there would be

many repulsive states with allowed transitions to the intermediate state within this broad 4000

cm−1 window, yielding a larger cross section.

If the dissociating pulse is at 600 nm, we would be able to use the higher pulse energy of the

fundamental. However, this would require us to use an intermediate state that is very close to the

dissociating limit, which might not be feasible. If you assume the pulse must be at a shorter λ,

the saturation energy remains unchanged, but the available pulse energy would decrease by about

a factor of four. If 532 nm (doubled Nd:YAG) light could be used for the dissociating photon, an

order of magnitude more pulse energy would be available.

It seems the most likely scheme would involve a narrow cw laser operating on a transition

that selects the spin using polarization. The second laser would probably have a wavelength longer

than the first (decreasing the chance that we photodissociate without the first laser) and might be

resonant with another intermediate state that then dissociates. Since the dissociation step is so

broad the requirement on the second laser wavelength is mainly determined by the bound-bound

resonance.

It seems possible that photodissociation to a repulsive curve could be used to read out the

spin information in an efficient way in our experiment.

4.3 Light-Induced Heating

Another possible way of detecting our spin populations is to create a spin-dependent heating

of our molecular ions. This was inspired by work on slowing molecular neutrals using a deep (≈ 20

K) optical lattice potential. In the work from Ref. [83] molecules from a pulsed supersonic beam

source interact with a travelling lattice potential given by,

U(z, t) = −2αa

ǫ0c

√

I1(t)I2(t) cos2
[

1

2
(kLz − δωrelt)

]

(4.9)
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where αa is the effective polarizability, I1(t) and I2(t) are the intensities of two crossed laser beams,

δωrel is the frequency difference between the two laser beams, and kL is the lattice wavenumber

given by kL = (4π sinφ)/λ with λ the mean laser wavelength on φ the half-angle between the two

fields. Typical laser pulsewidths for high pulse energy Q-switched lasers used in these experiments

are ∼ 10 ns. Molecular neutrals were created in a supersonic expansion beam and their initial

velocity was slowed from 400 m/s to as low as 270 m/s, with the goal of producing slow cold

molecules in the laboratory frame.

Our goals and approach differed from the above work. As will be discussed in Chapter 5, we

built a laser ablation supersonic molecular beam source containing both ion and neutral molecules.

We wished to use a deep one-dimensional optical lattice to read-out spin populations as well as

to perform survey spectroscopy on molecular ions, with HfF+ as our first target. As molecular

ion densities in the beam were quite low compared to neutral densities of the above experiment,

we used a much larger diameter laser beam (3 mm diameter vs 60 µm). The scheme was to

shine the one-dimensional lattice perpendicular to the beam direction, and attempt to heat the

low transverse temperatures of our molecular beam. This heating could be detected simply by

using an imaging MCP detector (described in Chapter 3) and measuring the resulting increase

in the ion beam width. The AC polarizability of the molecules is strongly frequency dependent

near the region of a resonant transition. Scanning the laser wavelength across a transition will

therefore show a frequency dependent ion heating and, if σ±-polarized light is used, a potentially

spin-state-dependent heating.

Eq. 4.9 is most useful far from resonance, were the polarizability αa can be well approximated

as constant. Close to a two-level resonance, the potential due to the dipole interaction of a standing

wave is [84]

Udip =
1

2
δωL ln







1 +
8Ω2

R
cos2(kLz)

γ2
n

+
(

2δωL

γn

)2

1 +
(

2δωL

γn

)2






, (4.10)

with ΩR the on-resonance Rabi frequency of each of the standing wave laser beams, δωL the laser

frequency detuning, and γn the natural linewidth of the excited state. The depth of the lattice
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potential wells is then Uld = |Udip(kLz = 0)|. Fig. 4.4 shows the lattice depth in the limit of

ΩR ≫ γn as a function of the dimensionless ratio δωL/ΩR. The maximum lattice depth of ≈ 0.569

× ΩR is at δωL/ΩR ≈ 0.714. As seen in the figure, the lattice depth peak is quite broad, with the

half-maximum point occurring at a detuning of ≈ 3.2 × ΩR. The ion heating will depend not only

on the lattice depth, but also on the initial ion beam temperature, the velocity of the ions in the

direction of the lattice, and the ion’s motional period in the trapping potential compared to the

laser pulse time. If the trap period is ≈ 4 times the laser pulse length then maximum heating will

occur. However, if the ions have an initial velocity such that they travel an appreciable fraction of

a lattice wavenumber during the time of the ∼ 10 ns pulse, the ion heating will be greatly reduced.

The fundamental advantage for spectroscopy is the large linewidths associated with the tech-

nique. Well depths on the order of a few Kelvin are reasonably achieved, making possible linewidths

of the heating signal greater than 500 GHz. This is a nice feature when attempting to do survey

spectroscopy over several thousand cm−1, which is the position we found ourselves in with ab initio

calculations having uncertainties in this range for molecular ions containing heavy transition metals

such as hafnium. The potential advantage for spin read-out is again the leveraging of high detection

efficiencies for ions.

We chose to test this technique on Yb+ ions as they posses a known transition we could

easily access with the same frequency-doubled pulsed dye laser that was used for CH+ dissociation

studies and also since Yb+ was easily produced in our laser-ablation supersonic-expansion source.

A collimated Yb+ ion beam was produced using two beam skimmers, with transverse temperatures

< 500 mK observed. The ion beam was ≈ 17 cm long, while the laser beam diameter was 3 mm.

In order to maximize the signal-to-noise ratio we gated the MCP voltage on for 1 µs and therefore

needed precise timing in order to image the ions that had been subjected to the optical lattice

potential. An ion lens was placed in the beam, just before the location of the lattice, in order to

minimize the ion beam width on the MCP. This lens could also produce timing information by

pulsing the lens on and noting at what time the minimum ion width was achieved. The timing

resolution of this method was insufficient and instead we used two small “timing rods” with voltages
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pulsed on to deflect the ion beam. Patch charges on these rods caused distortions in the transverse

beam profile and the rods were therefore lowered out of the beam when heating data was taken.

The dye laser beam was split into two beams that entered our vacuum chamber from opposite

directions. This was done because of the short (∼ 10 cm) coherence length of the laser. Placing a

retro-reflecting mirror inside the vacuum chamber proved problematic as the laser pulse lead to a

slight ionization of the mirror that distorted the ion beam. Fig. 4.5 shows results of Yb+ heating

when the optical lattice laser was tuned across the 2S1/2 →2 P1/2 resonance at 369.4 nm.

Moving to molecular ions provided several challenges. The production of molecular ions such

as HfF+ in our beam source was accompanied by the creation of many other molecular and atomic

species. In order to maximize our signal-to-noise ratio, we wished to separate out the HfF+ ions in

a way that left the transverse temperatures < 500 mK. This was accomplished by placing a large

(9 cm diameter) plate electrode at a 45◦ angle to the ion beam and pulsing a positive voltage on

this plate for ≈ 1 µs in order to deflect the ion beam 90◦ in a mass-dependent way into our imaging

MCP. The experimental set up is shown in Fig. 4.6 and mass resolution using the 45◦ plate is shown

in Fig. 4.7. This technique maintained the spatial profile of the ion beam along the direction of the

optical lattice and beam temperatures of < 500 mK were maintained. Fig. 4.8 shows MCP images

of a Yb+ ion beam taken with this configuration.

Transition strengths are expected to be significantly lower in the case of HfF+ compared to

Yb+, leading to smaller lattice well depths. The transition dipole moment for the 2S1/2 →2 P1/2

transition in Yb+ is 1.75 a.u. compared to the estimates for transition strengths in HfF+ of 0.3-0.6

a.u. for transitions of interest from the ground 1Σ state [64]. Transition strength is also spread across

rotational and vibrational levels in molecules and many rotational levels are thermally populated

in our molecular ion beam. Transitions from the thermally populated states that don’t change the

rotational quantum number, “Q-branch” transitions, will all fall comfortably within the power-

broadened linewidth and therefore all ions should be exposed to the lattice potential as the laser

frequency is scanned over Q-branch transitions. However, the transition strength will still be

spread across all allowed rotational transitions, leading to an approximate factor of three decrease
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Figure 4.4: Lattice potential depth as a function of the laser detuning δωL divided by the on-
resonance single beam Rabi frequency ΩR, in the limit ΩR ≫ γn, with γn the natural linewidth of
the transition.

Figure 4.5: Data showing ion heating in a Yb+ beam as the lattice laser was tuned over a Yb+

resonance at 27,061.8 cm−1 (369.4 nm).



61

v ~ 1000 - 2000 m/s

Skimmer

He (99%) +
SF  (1%)

Seed Gas
6

Pulse
valve

Ablation Laser pulse

Hf ablation target

Skimmer

Ion lens

MCP detector

Intense 1-D standing wave

45 electrode°

10 nsec dye laser pulse

Figure 4.6: Experimental set-up for light-induced heating measurements. Ions are created using laser ablation of a metal target and are
swept up in a supersonic expansion (more beam details are found in Chapter 5). The ions are collimated using two skimmers to transverse
temperatures < 500 mK. An ion lens is used to minimize the beam width on the imaging MCP detector. An intense 1-D optical standing
wave heats ions if the laser frequency is near an ion resonance. A 45◦ electrode is used to mass-select ions. The heated clouds are detected
by an imaging MCP.
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in transition strength, as well as a non-diagonal Franck-Condon matrix leading to at least a factor

of two decrease in transition strength. It is possible all transitions for the low rotational states will

fall under the FWHM of the lattice potential, retrieving some of this lost transition strength. The

range we wished to scan in search of HfF+ transitions was also at a factor of two longer wavelengths,

making it more difficult to reach the regime were the lattice trap period is ≈ 4 times the laser pulse

duration. The one advantage relative to the Yb+ case is the laser pulse energy available in the

visible wavelengths of interest for HfF+ was ∼ 10 times that available at the UV wavelengths of

Yb+, but this corresponds to only a factor of about 3 in the lattice depth. Certainly the molecular

signal was expected to be weaker.

Obtaining a reliable signal, even in the much favored case of Yb+, proved to be difficult. An

ion beam temperature of 500 mK corresponds to an electric potential of only 40 µV. Small patch

potentials on components inside the vacuum chamber were capable of wreaking havoc on our ion

beams transverse profile. Also, the angle between the lattice laser and the ion beam was critical.

If the angle between the two was greater than 5 mrad, the ions would traverse a full lattice spacing

during the laser pulse, greatly reducing the signal. Aligning the laser beams to this accuracy is not

a problem, but knowing the exact ion beam direction is difficult as small potential gradients will

steer the beam. Given these issues we decided to abandon this approach, at least as a means of

broad survey spectroscopy. However, performing similar experiments inside the ion trap would have

certain advantages. Ion-laser overlap and timing issues would be mitigated. If used as a method

of electron spin read-out the ions should have fewer rotational levels populated and a transition

with a diagonal Franck-Condon matrix might be used. Another possible technique to salvage this

method is to sympathetically cool the molecular ions with laser-cooled atomic ions. This should

lead to large improvements in signal-to-noise.
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Figure 4.7: Mass spectrometry data using the 45◦ deflection plate showing the ability to seperate
HfF+ ions from Hf+ and HfF+

2 . This was achieved while maintaining < 500 mK transverse beam
temperatures.
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(a) (b)

Figure 4.8: Data from the imaging MCP showing a Yb+ cloud deflected by the mass-selecting 45◦ plate, with (a) the one-dimensional
standing wave off, and (b) the one-dimensional standing wave applied on resonance, causing heating of the ion beam.



Chapter 5

Creation, Cooling, and Trap Loading of Ions

5.1 Ion Cooling Introduction

Our eEDM experiment requires cooling of both the internal (rotational, vibrational) and

external degrees of freedom. Internal cooling is needed as we wish to perform the eEDM measure-

ment on only a single ro-vibrational state and we must prepare the ions in only a single mF -level

before performing our measurement. Typical rotational constants of heavy metal fluorides are ≈

0.3 cm−1. This means 0.14% of ions will be in the ground rotational level at 300 K for an Ω =

0 state and 0.43% for an Ω = 1 state. Those percentages increase to 4% and 12% if the ions are

rotationally cooled to 10 K (see Fig. 5.1). Working with the ground rotational level is preferable,

as it provides the lowest number of mF levels. If the molecular ions are created at 300 K, with

internal and external degrees of freedom in equilibrium, we would expect the ions to occupy almost

exclusively the vibrational ground state. Below we will see that is not always the case. Any ion

not in the vibrational ground state will not be useful in our EDM measurement.

Low translational temperatures are important in order to maximize our electron spin co-

herence time. As discussed in Chapters 6 and 7, high ion temperatures can lead to decoherence

through ion-ion collisions above a threshold momentum transfer, as well as from inhomogeneous

Berry’s phase contributions. Below we discuss several cooling schemes we explored; buffer-gas

cooling, laser cooling, and supersonic expansion.



66

10 20 30 40 50 60

0.05

0.10

0.15

J

O
c
c
u
p
a
ti
o
n
 F

ra
c
ti
o
n

Figure 5.1: Occupation fraction for rotational states with quantum number J, for 300 K (red) and
10 K (blue) rotational temperatures given a typical fluoride rotational constant of Be = 0.3 cm−1

in an Ω = 0 state.
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5.2 Buffer-Gas Cooling

Although buffer-gas cooling of neutral species is a relatively new field, with pioneering work

from Doyle et al. [85], it has long been used as a means to cool trapped ions [86]. Trapping depths

of thousands of Kelvin are relatively trivial to achieve in ion traps, therefore even room temperature

buffer gas can provide dramatic cooling effects for trapped ions. Our initial attempts to demonstrate

improved trap lifetimes and mass spectrometry resolution in our ion trap using room temperature

helium buffer gas were unsuccessful due to contaminants in the helium. These contaminants were

likely coming from the stainless steel tubing of our gas handling system. Once a liquid nitrogen cold

trap was used to eliminate these contaminants, we were able to achieve improved trap lifetimes.

As discussed above, ion temperatures of 300 K still leave only a small portion of the molec-

ular ions in the rotational ground state. Therefore, if buffer gas were to be utilized in our EDM

measurement, helium cooled in an ≈ 4 K liquid helium dewar, or a dilution refrigerator, would

be employed. While this scheme would cool both the internal and external degrees of freedom to

sufficiently cold temperatures, there are potential issues. Neutral-ion collisions during the Ramsey

resonance portion of the experiment would destroy our spin coherence, due to inelastic collisions

changing magnetic and rotational levels. Even in the absence of inelastic collision, elastic colli-

sions occurring while Erot is applied would have a characteristic energy of Erot, 1800 K for typical

experimental parameters listed in Appendix A.

For the above reasons, the ions would have to be cooled in a relatively high pressure of helium

and then either moved into a low pressure region, or the helium must be removed, before Erot could

be applied and the spin resonance performed. The ions are easily moved from one trapping region

to another through the use of electric fields. This has been demonstrated [87] on trapped ions for

quantum information applications with heating as low as a few quanta (∼ 1 mK). However, in our

case differential pumping would require the ions to travel through a small aperture. Patch charges

on this aperture, combined with the rf trapping fields, would likely lead to significant heating and ion

loss. Quickly removing buffer gas at cryogenic temperatures has been demonstrated [88]. However,
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the minimum helium pressure, due to desorption of helium from the cell walls, was measured to be

4.5× 108 cm−3, a value that will likely be problematic (see Chapter 7.2).

5.3 Laser Cooling

Direct laser cooling of molecules is complicated by the added degrees of freedom involved,

specifically rotation and vibration. There are several proposals for laser cooling of diatomic

molecules [89, 90, 91, 92, 93] but they typically require very diagonal Franck-Condon matrices

or complicated cooling schemes. As seen in Chapter 2.2, we already have many constraints in

choosing a molecule which discourages us from also adding an extremely diagonal Frank-Condon

matrix to that list. Even if possible, direct laser cooling of our molecules would be a significant

technical challenge.

Sympathetic cooling with laser-cooled atomic ions has been used for cooling both atomic [94]

and molecular [95] ions. The long range nature of ion-ion collisions cool the translational degrees of

freedom very well, but the internal states will not be cooled. This has been experimentally verified

in Ref. [96], with differences between translational and rotational temperatures of > 2 orders of

magnitude, consistent with a zero coupling between the two.

Sympathetic cooling by overlapping laser cooled neutral atoms with trapped molecular ions

should cool both the internal and external degrees of freedom. However, charge exchange collisions

between the atomic neutrals and molecular ions would destroy ion trapping times. Hudson [97]

has proposed to circumvent this problem by selecting molecular ions whose neutral species possess

lower ionization potential than the laser-cooled atomic neutrals. This should mitigate the problem

of charge exchange collisions. We have measured the ionization potential of HfF to be 59,458 cm−1,

higher than most atomic species that are available for laser cooling. Potentially Mg (IP = 75,000

cm−1) or Be (IP = 61,000 cm−1) could be used to cool HfF+ but these are difficult atoms to laser

cool. Also, other reactions beyond simple charge exchange might occur. Again, the large number

of requirements on our molecule selection (Chapter 2.2) precludes us from choosing a molecule that

would be more amenable to this technique.
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5.4 Supersonic Expansion

Molecular-beam experiments are often carried out through the use of supersonic expansions.

A reservoir of gas at high pressure, P0, is separated from a region of lower base pressure Pb, with

a small nozzle connecting the two. If the pressure ratio exceeds a critical value, G ≡ ((γSH +

1)/2)γSH/(γSH−1), the mean velocity of the gas exiting the high pressure region will reach the local

speed of sound. Here γSH is the ratio of the gas’s specific heats of constant pressure and volume.

For the noble gases γSH = 5/3 and G ≈ 2.05. In the case of P0/Pb > G the exit pressure at the

nozzle will be P0/G ≈ 1/2P0 and the gas will continue to expand. As it expands, the beam velocity

will exceed the local speed of sound and downstream of the nozzle shockwaves can occur since the

expanding gas is moving faster than information about it can be propagated to the surrounding

gas. The distance from the nozzle to the first shockwave is approximately 0.67(P0/Pb)
1/2d, with

d the nozzle diameter. In modern beams the base pressure is often quite low and the transition

from continuum to free-molecular flow is often smooth, without shockwaves present. In our case

the distance from the nozzle to the shockwave would be on order 50 meters, much larger than the

dimensions of our experiment.

The final velocity can be approximated, for the case of an ideal gas, from energy conservation

arguments [98]. For a flow driven by a pressure gradient, the first law of thermodynamics takes the

form, h + v2/2 = h0, with h and h0 being the enthalpy per unit mass of the expanded and initial

gas respectively and v the velocity of the expanded gas. Using the relation dh/dt = Cp the velocity

can be related to the temperature of the gas,

v2 = 2(h− h0) = 2

∫ T0

T
CpdT (5.1)

If Cp can be approximated as constant over the integration, and using the relationship for an ideal

gas Cp = (γSH/(γSH − 1)(R/M), with R the universal gas constant, we obtain,

vf(Tf) =

√

2R

M

(

γSH

γSH − 1

)

(T0 − Tf) (5.2)

If there is significant cooling of the gas, the final velocity approaches a limiting value, and higher
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initial pressures have very little effect on the final beam velocity. When dealing with a mixture of

gases the molar average molecular mass and molar average heat capacity can be used.

The final beam velocity scales as
√

T0/M , meaning lower beam velocities can be achieved with

heavier expansion gases and by cooling the gas reservoir. This is often done in stark decelleration

experiments, since much effort is required in order to slow the beam to rest in the lab frame. In

comparison, the slowing of molecular ions is trivial as one needs only to apply a modest uniform

electric field to the ions in order to stop them. Our choice of expansion gas was therefore dominated

by other considerations. In early experiments with trapped atomic ions such as Hf+, the largest

numbers of ions that could be loaded into our trap was achieved using xenon. However, heavier

noble gases have the disadvantage of higher polarizabilities that can lead to clusters. Evidence of

clusters is seen in Fig. 5.2 where mass spectroscopy reveals strong signals at mass-to-charge ratios

corresponding to NiXe+ and Ni2Xe+ when nickel ions were introduced into a Xe expansion via

ablation. Also, we tended to achieve better rotational cooling using neon and argon as they better

matched the reduced mass of our diatomic fluorides.

5.5 Laser Ablation and HV Discharge

An eEDM search generally requires atoms or molecules with unpaired electron spins. The

presence of unpaired electron spins make these free-radicals highly reactive. Due to this high

reactivity, free radicals must typically first be produced in an experiment before studying them.

Two typical approaches are laser ablation and high-voltage discharge. During the course of this

work we briefly explored both techniques. A solenoid pulsed valve (General Valve Series 99) was

used with an 800 µm opening. Connected to the face plate of the valve was a holder for the “target”

metal rod as well as an opening for either a stainless steel electrode for discharge studies or for

an ablation laser beam (Fig. 5.3). An expansion cone followed with a 40◦ full opening angle. As

an alternative to the solenoid valve, a home-built valve utilizing a piezo-electric transducer was

also used. A schematic of the design can be found in Ref. [99]. These valves seem to be preferred

in JILA Stark deceleration experiments [100], with claims of greater pulse-to-pulse and long-term
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Figure 5.2: Mass spectrum of ablation products from a nickel target in a xenon expansion. Clus-
tering occurs when a Xe atom attaches itself to a Ni+ or Ni+2 ion.
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stability. We achieved similar results for both valves and preferred the solenoid valve due to its

robustness, as a careless graduate student can easily break the PZT with excess tension. Unlike

Stark deceleration experiments, our early experiments were not very sensitive to variations in beam

velocities. This might explain the apparent discrepancy in valve preference. In future experiments,

beam velocity fluctuations will likely be more important and another investigation of the PZT valve

might be appropriate.

The pulsed valve was operated with several noble gases, He, Ne, Ar, and Xe, at backing

pressures of 20-100 psig. A 200 µs, +200V pulse was typically sent to the solenoid valve. This

was followed by either a laser ablation pulse focused on the metal target, or an electrical discharge

between the metal target and stainless steel electrode. The discharge voltage was typically run

at DC, with the increase in pressure from the pulsed valve firing acting as the discharge gate,

since the higher pressure corresponded to a lower breakdown voltage. An Nd:YAG laser served as

the ablation laser. This laser was capable of producing 50 mJ at 1064 nm in a 10 ns pulse, and

was focused with a 50 cm focal length lens onto the ablation target to a 230 µm beam diameter

corresponding to a 3.8 cm Rayleigh range.

The discharge or laser ablation pulse created both neutral and ionic atoms from the metal

target. In order to produce diatomic molecular ions, gas containing hydrogen or fluorine was mixed

with the noble gas backing the pulsed valve. We attempted to produce HfH using a mixture of 1%

CH4 with the balance being a noble gas, with the hope of seeing the following reactions,

Hf + CH4 −→ HfH + CH3, (5.3)

Hf+ + CH4 −→ HfH+ + CH3. (5.4)

Unfortunately, the bond energy of a hydrogen atom in CH4 is 36,686 cm−1 compared to ab initio

calculations that predict a bond energy of 22,000 cm−1 for HfH+ [4]. Therefore, in order to efficiently

produce the intended HfH+ molecules, large amounts of hydrogen would have to be dissociated

from CH4 during the ablation or discharge process. The failure to produce these molecular species

suggests large numbers of atomic hydrogen were not produced.
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Figure 5.3: Diagram showing the pulsed valve set-up. An ablation target rod was held just outside
the pulsed valve opening and was followed by an expansion cone with a 40◦ opening angle.
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The bond energies of fluorine-containing diatomic molecules tends to be higher than those

containing hydrogen, while the electronic structure is analogous. HfF has a measured bond energy

of 53,966 cm−1 [101], and ab initio calculations predict a bond energy of 51,107cm−1 for HfF+ [64],

compared to a fluorine bond energy of 35,098 cm−1 in SF6. Seeding our noble gas with 1% SF6,

we observed the following exothermic reactions, among others,

Hf + SF6 −→ HfF + SF5, (5.5)

Hf+ + SF6 −→ HfF+ + SF5. (5.6)

Laser ablation yielded better results for hafnium ion creation than the HV discharge and the

discharge was quickly abandoned. The number of Hf+ and HfF+ ions created increased with

increasing ablation laser energy up to the 50 mJ pulse energy maximum of our ablation laser. We

also frequency doubled the ablation laser to 532 nm and obtained a maximum pulse energy of 25

mJ. The ion number achieved with 25 mJ of green light was equivalent to that obtained with 50

mJ of IR light so we chose to use IR light for the rest of our experiments. A larger ablation laser

was used in order to look for a maximum in ion creation with ablation energy. The data in Fig 5.4

shows a maximum in Hf+ ion creation at 135 mJ, and a maximum in HfF+ ion creation at 200

mJ. In later experiments we were more concerned with maximizing the number of neutral HfF

molecules, and we found a much lower optimum ablation energy (Fig. 5.5).

After many ablation pulses, large pits would form on the metal target and ion production

would decrease. This required a vacuum break and the pitted end of the metal target would be

removed. Highest ion numbers were achieved with a slightly rough metal target surface, and we

preferred to use a hacksaw to produce a fresh, fairly rough surface. Often times researchers will use

metal ablation targets that rotate and translate, leaving a fresh target surface. This was tried, but

it was found that shot-to-shot number variations did not improve, at least in the case of ablating

hafnium. Many different metals were used as ablation targets in our experiment, with hafnium

yielding the best results for shot-to-shot stability and number of ablation pulses incident on the

target before needing to saw the pitted end off. At 50 mJ ablation energies, hafnium targets would
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Figure 5.4: Number of a) Hf+ and b) HfF+ ions created, as a function of 1064nm laser ablation
energy. The channeltron detector was operated at a lower than normal voltage (1,400 V here vs
2,000 V normally) in order to keep the detector response linear.
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Figure 5.5: The density of HfF neutral molecules created in our molecular beam as a function of
1064 nm laser ablation energy. This data was obtained using photoionization techniques discussed
in Chapter 5.7.3 to measure HfF density.
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receive millions of ablation pulses before needing to be re-cut. Since our most recent experiments are

done at lower pulse energies, even more ablation pulses are possible. Perhaps if thorium or another

metal is used in the final experiment a rotating and translating target might become necessary.

5.6 Measuring Beam Temperatures

Collisions with the expansion gas will cool the molecular ions and neutrals created from the

ablation process. As mentioned above, we care about cooling of not only the translational degrees

of freedom, but also the rotational, vibrational, and electronic degrees of freedom. Below we discuss

measurements made of our molecular beam using various methods.

5.6.1 Translational Temperatures

Some of the first measurements of our molecular beam were made using a commercial fast ion

gauge (FIG). The FIG was mounted on a linear motion vacuum feedthrough such that it could be

scanned across the beam, although it could only scan slightly past the centerline of the beam due

to the finite travel of the feedthrough. The FIG is very similar to a traditional vacuum ion gauge,

with the main differences being small filament-grid and grid-collector distances and fast electronics

mounted to the device inside the vacuum chamber. The response time of the device is < 5 µs, with

a sensitivity, 1 × 105 V/(Torr mA), that depends on the adjustable filament emission current.

Early experiments used a 2 mm diameter skimmer to separate the source chamber (a six-

way cross with 6” CF flanges) from lower pressure chambers (also 6” six-way crosses) downstream.

Differential pumping was employed via turbomolecular pumps attached to each chamber and backed

by mechanical scroll pumps. These were used instead of oil diffusion pumps to reduce backstreaming

of oil and other contaminants from the pumps into the vacuum chambers. The pulsed valve to

skimmer distance was varied while using a channeltron to measure the Hf+ ion number seen after

the skimmer. The ion signal when the valve-to-skimmer distance was scanned showed a broad

maximum after the separation was at least 5 cm. We operated most experiments with a pulsed

valve to skimmer distance of ≈ 12 cm. The distance between the skimmer and the FIG was ≈ 18
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cm. Since the beam is much larger than 2 mm in diameter as it reaches the skimmer, the skimmer

position and diameter define an initial beam position and diameter. By measuring the width of

the beam at a known distance from the skimmer, the transverse velocity spread can be calculated.

Normally the FIG is used to measure neutral signals by ionizing gas from the filament and then

collecting and counting those ions. However, if you turn on the detection electronics for the FIG

while leaving the filament off, the instrument will be sensitive to ion signals only. Fig. 5.6 shows

data taken in this way, for a beam of ions created through ablation of hafnium in the presence of a

xenon expansion with 52 psig backing pressure. The data corresponds to a transverse temperature

of the ion beam that is ∼ 1 K. Similar temperatures were found for the neutral signal when the

FIG filament was turned on.

Axial temperatures are more difficult to define and to measure in our beam. The gas pulse

width was ∼ 400 µs when measured at the FIG position 30 cm downstream from the pulsed valve.

The axial velocity of a gas molecule should become strongly correlated to its axial position as the

beam travels through the vacuum chamber. Axial temperature is perhaps less important than an

axial velocity spread within a given axial slice of the beam. This was measured indirectly when

time-of-flight mass spectroscopy was performed as described in Chapter 5.7.3. Simulations of our

TOFMS put an upper limit of 20 m/s velocity spread in our beam over a 3 mm axial slice of the

cloud, “measured” at a distance of 60 cm after the pulsed valve.

5.6.2 Laser-Induced Fluorescence in the Beam

In hopes of measuring HfF+ spectrum, laser-induced fluorescence was performed on the

molecular beam using the set-up shown in Fig. 5.7. The vacuum chamber after the first skimmer

was painted with a vacuum compatible black paint and light baffles with imaging optics integrated

into them were installed between the chamber center and a photomultiplier tube (PMT) detector

that sat underneath the chamber. Lasers could pass through the center via two long arms mounted

to the vacuum chamber with Brewster windows attached and containing baffles to reduce scattered

light. Data could be recorded in pulse-counting mode or, for larger signals, in analog mode. For
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Figure 5.6: FIG data taken with the filament turned off, making the device only sensitive to
ions. This data was taken with Hf+ ions in a xenon expansion and corresponds to an ion beam
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large amplitude signals, a transimpedance amplifier was used to reduce PMT saturation effects.

Two different laser systems were generally used. One was a pulsed dye laser, capable of

operating throughout the visible and near-IR wavelength ranges. Frequency doubled light could be

obtained through simple single-pass frequency doubling with BBO or KTP crystals, depending on

the specific operating wavelength. The laser produced 10 ns pulsewidths with typical linewidths

less than 0.1 cm−1. Maximum pulse energy was dependent on wavelength but was generally 50-300

mJ in the fundamental and 5-50 mJ of frequency-doubled light. A cw Ti:Saphire ring laser, with

a specified linewidth of 100 kHz, was also used. This laser was capable of > 4 W at 800 nm,

the center of the gain curve. The laser’s tunable range, through the use of three different output

couplers, extended from 700 - 1030 nm.

When the pulsed laser was used, we gated the PMT detector on using JILA built electronics

in order to limit scattered light backgrounds and PMT “after-pulsing”. After-pulsing occurs when

positive ions are created due to electron impact ionization of residual gas inside the PMT. These ions

are accelerated upstream in the PMT and eventually collide with an electrode, creating electrons

that imitate photoelectrons. Delay times between firing the laser and gating the detector were

between 150 and 650 ns and the gate was left on for up to 20 µs, though usually useful signal was

only obtained for shorter times due to the molecules travelling outside the imaging region of our

optics or electronic decay of the molecules. After-pulsing was suppressed by a factor of ∼ 40 using

the gating circuit. The ultimate limit to light background was dominated by an unknown source

of scattered light from the molecular beam. This scattered light background was approximately

constant over entire laser dye curves (∼ 30 nm), and only appeared when the LIF laser, ablation

laser, and pulsed valve were all operated. Typical background count rates were 4 photons/shot in

a 5 µs counting window with a 3 mJ laser pulse and a 150 ns delay between firing the laser and

gating on the PMT. Background rates using the cw Ti:Saphire laser were never an issue, which

had the advantage that the fluence needed to saturate the transition is lowered by (3 GHz)/(0.05

GHz), the ratio of the pulsed laser linewidth to the typical Doppler-broadened linewidth in our

beam. However, the cw laser was not very useful in looking for unknown HfF+ transitions as step
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Figure 5.7: Experimental setup. Laser ablation of a metal Hf target creates neutral Hf atoms and Hf+ ions that react with SF6 to produce
neutral HfF molecules and HfF+ molecular ions, respectively (Eqns. 5.5 and 5.6). The molecules (both neutral and ionic) are cooled in a
supersonic expansion with an Ar buffer gas. The molecular beam is illuminated with a pulsed dye laser beam and the resulting fluorescence
is collected with a photomultiplier tube (PMT) yielding laser induced fluorescence (LIF) spectra (Fig. 5.9). At the end of the beamline,
the ions can be loaded into an rf Paul trap where the electron spin resonance experiment will be performed. The Paul trap also acts as a
quadrupole mass filter and ions of a particular mass/charge ratio are detected with a microchannel plate (MCP) (Fig. 3.10). Additionally,
the spatial resolution of the MCP allows for the temperature of the ion cloud to be determined from the detected cloud size.
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sizes of 50 MHz would be necessary and the uncertainty in the position of the transitions was on

order of 1,000 cm−1.

The first transitions seen in the supersonic beam were neutral atomic hafnium transitions.

The ground state of neutral hafnium has 3F2 symmetry with J = 3 and J = 4 excited states at

2,357 and 4,568 cm−1 respectively. Transitions were seen not only from the J = 2 ground state, but

also from excited fine-structure states. Fig. 5.8 shows LIF data taken for the 3F2 → 3D1 transition

using the cw Ti:Saph laser for excitation. Similar data on the 3F4 → 3D3 transition showed a

population ratio of ∼ 500. If the fine-structure distribution was in thermal equilibrium with the

translational degree of freedom we would expect a ratio of 10286, given the <10K translational

temperatures observed in the supersonic beam.

Previously unmeasured transitions in neutral HfF were also detected in the beam, and these

allowed us to measure the rotational and vibrational temperatures, although the rotational and

vibrational temperatures of HfF+ could be significantly different due to the different collisional

cross sections involved. HfF is known to have a 2∆3/2 ground electronic level, and transitions to Ω

= 1/2 and Ω = 3/2 states were found. The transitions were fit using the same effective Hamiltonians

as used in Ref. [6],

H = T + Be[J(J + 1)− Ω2]−D[J(J + 1)− Ω2]2 (5.7)

was used for states of Ω = 3/2 character, with Be the rotational constant, T the band origin, and

D a constant characterizing the effect of centrifugal distortion on rotation. Excited states showing

Σ character were fit using,

Ha = T + BeN(N + 1)−D[N(N + 1)]2 − γs

2
[N + 1] (5.8)

Hb = T + BeN(N + 1)−D[N(N + 1)]2 +
γs

2
N, (5.9)

with N the rotational quantum number, γs a doubling constant, and where a and b denote states

of different parity. States that demonstrated 2Π1/2 character were fit to,

Ha/b = T + Be(J +
1

2
)2 −D

(

J +
1

2

)4

∓ 1

2
(p + 2q)

(

J +
1

2

)

, (5.10)
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Figure 5.8: LIF data taken with a cw Ti:Saph laser showing hyperfine structure in the 3F2 → 3D1

transition of hafnium. Similar data was taken of the 3F4 → 3D3 transition as the fine structure
was not completely cooled in the supersonic expansion.
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with 1/2(p + 2q) a constant describing the Λ-doublet splitting. We typically set D to zero as most

of our data involved only low rotational states where the energy term from non-zero D was much

smaller than our experimental resolution. The resolution was determined by the laser linewidth

and was approximately 0.1 cm−1. Nonlinear least-squares fitting routines were used.

Through the examination of “missing” lines around the band origin, assignments of Ω could

be made. In order to find rotational temperatures, the rotational line intensities were fit to the

partition function and Hönl-London factors. The typical value of the rotational temperature was 10

K. Several states were found that appeared to be different vibrational transitions between the same

electronic states. To test this we carefully fit the rotational lines as follows. First, rotational lines in

the “P-branch” (δJ = -1 transitions) and “R-branch” (δJ = +1 transitions) were fit to Lorentzian

line shapes, with the peak intensities allowed to float. The “Q-branch” (δJ = 0 transitions) lines

were excluded as the resolution was insufficient to resolve them. The line positions were then fit

to the model Hamiltonian to determine a value for the ground and excited state Be. Preliminary

assignments of some of these lines are shown in Fig. 5.10, where two electronic states appear to

be responsible for eight rotational bands. It appears that vibrational levels are not in thermal

equilibrium with the translational and rotational temperatures, as transitions from v′′ = 2 are

observed.

5.7 Loading Ions Into the rf Trap

Our experimental count rate will be limited by space charge effects of the trapped ions.

Therefore, any ions trapped that are not used in measuring the eEDM limit the statistical sensitivity

of our measurement. In order to maximize our count rate, we would ideally create and trap only

HfF+ ions of a single Hf isotope and in a single internal quantum state. Fig. 5.11 shows a mass

spectrum of ions loaded from the laser-ablation supersonic-expansion source into the ion trap. As

seen in the figure, many ion species are created, from SF+ to HfF+
3 and perhaps beyond as the

range of mass-to-charge ratios we were able to trap was limited.

The ions created during the ablation process populate many rotational and magnetic sub-



85

4 6 8 10 12 14 16 18
0

1

2

3

4

5

6
x 10

6

Data

Fit to Hamiltonian

F
lu

o
re

s
c
e

n
c
e

 S
ig

n
a

l 
(a

rb
. 

u
n

it
s
)

Laser Energy - 14,209.83 cm
-1
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86

we > 670 cm
-1

we > 595 cm
-1

D2D2
D1D1

(1,2)

(0,1)
(1,1)

(0,0)

(1,1)

(0,0)

(2,1)

(1,0)

Figure 5.10: Schematic of HfF transitions seen from LIF in our molecular beam showing approximate relative intensities. Lines connected
by blue(orange) arrows are believed to be different vibrational transitions between the same Ω = 3/2(1/2) electronic levels, as suggested
by slight differences in B′

e and B′′
e , the rotational constants in the upper and lower states respectively. Preliminary vibrational assignments

are given as (v′,v′′), again with the ′(′′) denoting the upper(lower) state. The ground-state vibrational spacing ωe is measured to be 670
cm−1, consistent with a previous measurement [6], while an excited electronic state has a measured ωe of 595 cm−1.
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levels. Above thermal population of excited electronic levels, such as the 3∆1 state in which our

eEDM experiment will be performed, might also be present as the supersonic expansion cooling of

these levels might be less than complete. However, the likelihood of significant population of the

3∆1 level surviving the expansion seems unlikely. It is therefore necessary to find another method

to populate our 3∆1 “science” level. One potential method is a two-photon stimulated Raman

adiabatic passage or STIRAP, utilizing as the intermediate state a spin-orbit mixed Ω = 1 state

such as the b(1) and c(1) states of Fig. 2.2.

Theoretical predictions [64] indicate the transition dipole moments should be on the order of

0.3 a.u. for transitions to the 1Σ (3∆1) level while the transition dipole moment to the 3∆1 (1Σ)

should be 0.03 a.u., with which transition is stronger depending on which intermediate Ω = 1 state

is chosen. The transition strength will be decreased when vibrational and rotational wavefunction

overlap is taken into account. Since the ion cloud diameter will be ∼ 1 cm, the large laser power

necessary for efficient STIRAP with cw lasers will be impractical for these transition strengths.

When performing STIRAP using pulsed laser sources, laser bandwidths that are transform-limited

yield the minimum required pulse energies. The minimum pulse energy required scales as the square

of the ratio of the laser bandwidth to the transform-limited bandwidth [102]. With our HfF+ states,

in the ideal case of a transform-limited pulse, a 10 ns pulse of at least 100 µJ would be required for

the weaker of the two transitions involved in the SITRAP. If a pulsed dye laser with a 0.1 cm−1

bandwidth is used, the minimum requirement would be ∼ 1 J laser pulses.

5.7.1 Ion Lens

As shown in Chapter 3, it is possible to mass-selectively remove ions from our trap by

operating at certain a and q trapping parameters. The issue with this approach is that heating of

the desired ions tends to occur due to the proximity to the β = 1 contour of the stability diagram.

A potential solution to this is inserting a quadrupole ion lens along the beam path, between the

source chamber and the ion trap. As shown in Eqn. 3.13, the lowest order frequencies of ion motion

in an rf quadrupole at rf drive frequency Ωrf will be ωsec ≡ βΩrf/2, Ωrf − ωsec, and Ωrf + ωsec. If
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Figure 5.11: Mass spectrum of ions created in laser-ablation supersonic-expansion with a hafnium
ablation target and an expansion gas of 1% SF6 in 99% He. The ion number is a non-linear function
of the y-axis value, but a level of 0.4 corresponds to ∼ 100,000 ions.
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these three frequencies are made to be commensurate for ions of a desired mass-to-charge ratio, and

the rf is applied for an integer number of secular periods, the desired ions will be imaged from one

end of the lens to the other, while ions of different mass-to-charge ratios will undergo defocusing.

If a small aperture is placed between the lens and the ion trap, the desired ions might be separated

from the ion ablation soup. Fig. 5.12 shows the frequency spectrum of ion motion at certain values

of a and q where our lens conditions are met, as well as results of a numerical simulation of ion

motion under these conditions for two different ion masses. The radial velocity change the ions will

experience is proportional to qΩrfRi| δM
M | with Ri the initial radial displacement from the center of

the lens and δM is the mass difference from the ions that are imaged by the lens.

The ion lens was constructed with solid stainless-steel electrodes of 25 mm radius and spacing

2r0 = 21.8 mm, i.e. the identical radial dimensions of our first ion trap. Two of the electrodes were

grounded by mounting them directly to a vacuum flange with the first skimmer being mounted on

the opposite face of this flange. The other two electrodes were attached to similar drive electronics

as those described in Chapter 3.6.

We operated the lens over a range of parameters, but satisfactory separation of different

massed ions was not achieved. It was discovered that the ion cloud after the first skimmer was

best described not as free ions, but rather as being one component of an overall neutral plasma.

Experimental evidence of this came from placing electrode plates, parallel to and straddling the

molecular beam, after the first skimmer and measuring the ion deflection caused by a potential

difference between the plates. Greater voltages were necessary for a given ion deflection than

would be required if the ion cloud was strictly composed of positive ions. The voltage required

was also a function of ablation pulse energy, and therefore ion density. The fact that negative ions

and/or electrons formed a neutral plasma with the ablation ions is likely responsible for us being

able to obtain large numbers of translationally cold ions. Had this not been the case, patch charge

effects would have likely lead to heating and deflections of our ion cloud at the skimmer. This

neutral plasma character of our ion beam would likely also cause complications in any scheme to

gently slow ions into our ion trap using the ions from our ablation source.
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Figure 5.12: a) Spectrum of ion motions for values of trapping parameters a = 0 and q = 0.785 that
can be used for operating an rf quadrupole as a mass-to-charge ratio sensitive ion lens. b) Dots
denote values of q, with a = 0, that can be used in operating our ion lens. c)Numerical simulation
of ion motion for different ion starting positions Ri, and two different singly-charged ions. The
simulation was done with a = 0 and q = 0.785 for the mass = 181 ions.
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5.7.2 State-Selective Photoionization

One alternative solution to our selective ion loading problem is to get rid of all of the ions

created from laser ablation and use photoionization techniques to ionize neutral HfF in as state-

selective a way as possible. Since the density of neutral HfF is much greater than the density

of HfF+ in our molecular beam, even inefficient photoionization could lead to higher densities of

trapped HfF+ than what can be achieved by loading the HfF+ ions created from laser ablation.

We have attempted two techniques, with both involving a transition to a Rydberg state of neutral

HfF. Every ro-vibrational state in the molecular ion is the termination of a Rydberg series from the

neutral molecule. These Rydberg states can be populated in our molecular beam experiment by

first driving a transition from the electronic ground state to some intermediate bound state. This

transition can be narrow and allow the excitation of only a single ro-vibrational state, of a single

isotope. Another transition can then be made to a high-lying Rydberg level. If that Rydberg state

is close enough to the ionization threshold, the application of a pulsed electric field can ionize the

molecule while leaving the ro-vibrational level of the ion-core undisturbed. After the excitation

laser pulses, a small electric field can be applied to give any molecules that were directly ionized

by the lasers an acceleration. After waiting some time, a larger pulsed electric field can then be

applied to ionize Rydberg-state molecules. The ions can then be accelerated in a time-of-flight mass

spectrometer (TOFMS) and the field-ionized molecules will arrive at a different time compared to

the direct ions. This process is referred to as mass analyzed threshold ionization spectroscopy, or

MATI. Near the threshold of a molecular ion there will be a near continuum of Rydberg levels

with different principle quantum number n and rotational quantum number. In order to populate

only one rotational level in the ion, two field-ionizing pulses can be used, separated by some time.

The first pulse ionizes all Rydberg states some energy from the continuum given roughly by E =

4(Ep)1/2 with Ep the magnitude of the pulsed electric field and with the energy in units of cm−1 and

the electric field in units of V/cm. Those ions then experience an acceleration from a small applied

“spoiling” electric field. The second field pulse is slightly larger in magnitude, thus ionizing a small
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number of Rydberg states lying in a region δE = (4F−δEp)1/2−4F , with F the value of the spoiling

field [103]. There is a limit to the resolution that can be achieved by this method that depends

on the value of the spoiling electric field and can be estimated as δE = 0.8F 1/2. The resolution

is therefore limited by the need of a sizable spoiling electric field in order to separate ions created

at different times. For this reason, pulsed-field ionization techniques that measure the electrons

as opposed to the ions created tend to have higher resolutions. However, similar resolutions have

been demonstrated when measuring ions compared to electrons, when the proper pulse sequences

are utilized [104]. The Rydberg states involved in this process can be largely immune from decay

processes such as dissociation of the ion core, and electronic decay [103]. They are often referred

to as ZEKE states, an acronym used to describe the technique when the free electron is measured

instead of the molecular ion.

The second method we explored was a process known as autoionization. Here a neutral

molecule is excited to a Rydberg state, in the same two-step process as before, but now the Rydberg

molecule has a molecular-ion core that is in an excited state. This can be an electronic, vibrational,

rotational or spin-orbit excitation. We will focus on vibrational autoionization, where the excited

molecular core can interact with the orbiting Rydberg electron in an inelastic scattering process that

leaves the Rydberg electron in the continuum and the molecular ion core in a relaxed vibrational

state. This process has been known to leave the molecular ion core’s rotational state largely

unperturbed [105]. In this way we hope to excite a Rydberg level that corresponds to an excited

3∆1 ion core with v = 1, J = 1. The Rydberg state might then vibrationally autoionize to the

v = 0, J = 1 3∆1 level that will be used to measure the eEDM. Perhaps the Rydberg states

involved have a faster decay rate via electronic autoionization to the ground 1Σ level than to

the 3∆1 level via vibrational autoionization. In this case autoionization should still allow the

creation of only the molecular ion species we desire in our ion trap, without the worry of imperfect

electrostatics anywhere along our entire beam line distorting and heating the ion beam, and with

the ion population in far fewer states than possible with molecular ions created from our ablation

source.
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5.7.3 Photoionization of HfF

A TOFMS was built and placed after two beam skimmers that were used to collimate the

molecular beam, and after an electrode that could be biased at high positive voltages in order

to reject ions from the ablation process. The TOFMS design involved the competition between

simplicity, uniformity of electric fields, and a long drift chamber to allow the separation of ions

created at slightly different times in delayed pulse measurements. A compromise was found using

90 mm diameter disk electrodes with 10 mm diameter holes for the ions to travel through, spaced

by 52 mm for the MATI drift chamber, with a third electrode placed equidistant from them having

a 38 mm diamter hole to create a more uniform field. These plates were followed by two more

plates with spacings of 21 mm that allowed for focusing at the MCP detector of the initial spatial

and velocity spread in the ion beam (see Fig. 5.13). This TOFMS was designed to be used with

both ionization techniques discussed above, and was initially operated in a way consistent with the

MATI techniques. For some of the later autoionization experiments the TOFMS was operated in

a simpler Wiley-McLaren mode [106]. We were able to achieve better than 1 amu mass resolution

when detecting HfF+ with the isotope structure of Hf well resolved. This allowed us to see isotope

shifts of transitions even though our laser resolution would normally have not allowed this. The

isotope shifts were very useful in determining the change in vibrational state of the transition, δv.

The isotope shift due to a change of vibrational quantum number is very easily estimated, and for

HfF it should be ∼ 0.16 cm−1/(δv amu), assuming a 600 cm−1 vibrational spacing.

Once the ionization threshold was found, we performed single-color experiments in search

of intermediate HfF levels that could be useful in our ionization schemes. Fig. 5.14(a) shows the

results of such a scan over an ≈ 3,000 cm−1 scan range that corresponded to a dye tuning curve.

As seen in the figure, a high density of states were found, and many were scanned with single-color

photoionization with enough resolution to roughly determine Ω and Be. A few states were scanned

at higher resolution in two-color ionization measurements. The first transition was driven by a cw

ring-cavity dye laser that was pulsed amplified using a two-stage home-built dye cell amplifier, and
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Figure 5.13: (a) Schematic of the time-of-flight mass spectrometer built for our experiment. The
first plate is used to further collimate the neutral molecular beam and has a 6 mm diameter opening.
Photoionization occurred at the approximate location marked by *. Region (I) could be used in
delayed-pulse field ionization experiments to separate prompt ions from pulsed-field ions. Regions
(II) and (III) were used to focus initial spatial and velocity spread of the created ions. Dashed lines
correspond to high transmission (90%) wire mesh used to improve electric field uniformity. (b) An
image of the TOFMS, before a grounded cylinder of wire mesh was placed around the device to
shield it from external electric fields.
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was then single-pass frequency doubled using a BBO crystal. This laser had a measured linewidth

of ∼ 100 MHz and frequency-doubled pulse energies of 20-30 µJ in the UV. The second transition

was driven by the large-linewidth (0.1 cm−1) pulsed dye laser, with the laser tuned well above the

threshold for ionization. Typical data is shown in Fig. 5.14(c).

A better measurement of the ionization threshold was made, taking into account the reduction

in threshold energy due to an electric field. The electric field during the ionizing laser pulses was

varied through zero while recording the onset of ionization. A value of 59,458 cm−1 was obtained

for the ionization potential of HfF. Combining this with the published value of the HfF bond

energy [101] of 53,966 cm−1 and the known value of Hf’s ionization potential of 55,048 cm−1 gives

a value of 49,556 cm−1 for the HfF+ bond energy. ab initio calculations have estimated the HfF+

bond energy at 51,107 cm−1 [64]. The measured HfF bond energy and the theoretical HfF+ bond

energy are both likely to have large (∼ 1,000 cm−1) errors, given the nature of their techniques.

Attempts at delayed pulse field ionization were unsuccessful. Although the literature suggests

that ZEKE states can be long-lived, even in the presence of otherwise strong relaxation processes,

a likely reason for our lack of signal was predissociation of our ZEKE states. It appears in some

molecules decay channels simply win out, as many experiments find some molecules posses a delayed

ionization signal and others do not (see Ref. [107] for an example).

We focused our efforts on our second scheme, vibrational autoionization. Fig. 5.15 shows

data taken with two-color excitation, with the first transition again being driven by our narrow

laser, and the second by the broad laser. As seen in Fig. 5.15(a), the spectrum is quite complex.

The density of lines is increased by the fact that many large δv autoionization peaks are found,

as determined by the isotope shifts associated with them (Fig 5.15(b)). This is surprising as

vibrational autoionization is expected to have a strong propensity rule for δv = 1 transitions [108].

As understanding the autoionization is not necessary for our goals, our current work involves

directly measuring the rotational state populations of the molecular ions produced in this process.

This is done by performing LIF using the only known electronic transition in HfF+ at ∼ 13,000

cm−1. This work is ongoing and in the future we hope to detect ions created directly in the 3∆1
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Figure 5.14: (a) Data from a two-photon one-color survey scan, with many UV transitions found in HfF. (b) False-color image showing our
ability to separate different isotopes of HfF using our TOFMS, giving us the ability to measure isotope shifts and helping to identify the
change in vibrational quantum number in these transitions. (c) Two-color photoionization showing a spectral resolution of approximately
100 MHz. The two traces correspond to the two dominant (m = 178 and m = 180) isotopes of HfF.
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level, although that work is awaiting the discovery of a known electronic transition from the 3∆1

level that might be used in LIF.
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Figure 5.15: Autoionization spectra showing (a) the same ionization threshold for HfF using two different intermediate states and (b) large
isotope shifts of the resonant features between Hf178F and Hf180F. A change of one vibrational quanta between the intermediate HfF state
and the HfF Rydberg state that undergoes autoionization corresponds to an isotope shift between Hf178F and Hf180F of 0.32 cm−1. This
data was taken using two-color photoionization, starting in the HfF ground electronic and ro-vibrational state.



Chapter 6

Spectroscopy in Rotating and Trapping Fields [1]

On the face of it, an ion trap, with its inhomogeneous and rapidly time-varying electric

fields, is not necessarily a promising environment in which to perform sub-Hertz spectroscopic

measurements on a polar molecule. In this section the effects of the various components of the

electric and magnetic fields on the transition energies relevant to our science goals will be explored

in more detail. The theoretical determination of the energy levels of heavy diatomic molecules

in the presence of time-varying electric and magnetic fields is a tremendously involved problem in

relativistic few-body quantum mechanics. State-of-the-art ab initio molecular structure calculations

are limited to an energy accuracy of perhaps 1013 Hz, a quantity which could be compared with

the size of a hypothetical “science signal”, which could be on the order of 10−3 Hz or smaller.

Fortunately, we can take advantage of the fact that at the energy scales of molecular physics,

time-reversal invariance is an exact symmetry except to the extent that there is a time-violating

moment associated with the electron (or nuclear) spin. In this section, except in those terms

explicitly involving de, it is assumed that time-reversal invariance is a perfect symmetry in order

to analyze how various laboratory effects can cause decoherence or systematic shifts in the relevant

resonance measurements. The results can be compared to the size of the line shift that would arise

from a given value of the electron EDM, which is treated theoretically as a very small first-order

perturbation on the otherwise T-symmetric system.

In the subsections below, sequentially more realistic features of the trapping fields are brought

in.
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6.1 Basic Molecular Structure

We begin by considering in detail the relevant molecular structure in zero electric and mag-

netic fields, thus quantifying the qualitative discussion of the experiment given in Chapter 2. Al-

though the molecular structure cannot be calculated in detail from ab initio structure calculations,

nevertheless its analytic structure is well known. Because the measurements will take place in nom-

inally a single electronic, vibrational, and rotational state, we will employ an effective Hamiltonian

within this state, as elaborated by Brown and Carrington [109]. This approach will specify a few

undetermined numerical coefficients, whose values can be approximated from perturbation theory,

but which will ultimately be measured.

Brown [110, 111, 112] and co-workers have done thorough work on deriving an effective

Hamiltonian for 3∆ molecules. The complete Hamiltonian in the absence of de is given by

Hstruct = Helec + Hvib + HSO + Htum + HSS + HSR + HHFS + HLD, (6.1)

listed in rough order of decreasing magnitude. Since we are concerned only with terms acting

within the subspace of the 3∆ manifold, other electronic and vibrational states will enter only as

perturbations that help to determine the effective Hamiltonian. Thus we consider eigenstates of

Helec and Hvib.

The remaining terms in Eq. (6.1) are corrections to the Born-Oppenheimer curves. They

describe couplings between various angular momenta (HSR, HHFS), parity splittings (HLD, HHFS),

and spin-dipolar interactions (HSS, HHFS). In typical Hund’s case (a) molecules these interactions

are small compared to the rotational energy governed by Htum. The relevant interactions that act

within the |Ω| = 1 manifold of states take the explicit form

HSO = AΛΣ (6.2)

Htum = Be(J− S)2 −D(J− S)4 (6.3)

HSS =
2

3
λ(3Σ2 − S2) (6.4)

HSR = γSR(J− S) · S (6.5)
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HHFS = aIzLz + bFI · S +
c

3
(3IzSz − I · S) +

1

2
e∆(J+I+S2

+ + J−I−S2
−) (6.6)

HLD =
1

2
(o∆ + 3p∆ + 6q∆)(S2

+J2
+ + S2

−J2
−). (6.7)

The constants in the first four terms are as follows: A is the molecular spin-orbit constant, Be

the rotational constant for the electronic level of interest, D the effect of centrifugal distortion on

rotation (typically D ∼ Be(me/mmol)
2, with me the electron mass and mmol the reduced mass of

the molecule), λ governs the strength of the spin-spin dipolar interaction, and γSR determines the

strength of the interaction of the spin with the end-over-end rotation of the molecule. These four

terms primarily describe an overall shift of the 3∆1 J-level, and can be ignored in evaluating energy

differences in the states we care about. They can, however, contribute small perturbations to these

basic levels, as described below.

Within the 3∆1, J = 1 manifold of interest, the energy levels are distinguished by the

hyperfine and Λ-doubling terms. The hyperfine Hamiltonian HHFS includes the familiar contact

(bF ), nuclear-spin-orbit (a) and spin-nuclear spin terms (c). By estimating the parameters in

perturbation theory, it is expected that the resulting hyperfine splitting is on the order of 50

MHz [54]. The hyperfine interaction also contains a previously unreported term, with constant

denoted e∆, that is connected to the Λ-doubling. This term is expected to be even smaller than

the already small Λ-doublet splitting itself, however, [113] and will be ignored.

The Λ-doubling Hamiltonian arises from Coriolis-type mixing of states with differing signs

of Λ due to end-over-end rotation of the molecule. For a 3∆ state this interaction is characterized

by three constants, of which the parameter o∆ is the dominant one. These terms describe how

the 3∆ state is perturbed by electronic states with 2S+1Π and 2S+1Σ symmetry. Since we are

primarily concerned with terms in the Hamiltonian that affect the ground rotational state of the

3∆1 electronic level, we only need to keep the term which connects Ω = 1 to Ω = −1. This term

has the general form, with numerical prefactors CΠ,Σ,Π′ that depend on Clebsch-Gordon coefficients

and wavefunction overlap, [110]

|o∆ + 3p∆ + 6q∆| = õ∆ ≈
∑

Π,Σ,Π′

CΠ,Σ,Π′

A2 B2
e

(E∆ − EΠ)(E∆ − EΣ)(E∆ − EΠ′)
, (6.8)
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where the sum is over all intermediate Σ and Π states of singlet and triplet spin symmetries. For

HfF+ this perturbation leads to a Λ-doublet splitting on the order of 10 kHz. From here on, we

shall express the energy difference in parity levels for the J = 1 as ωef = 4õ∆, rather than õ∆ itself.

Thus the basic molecular structure of interest to the 3∆1, J = 1 state is governed by two

constants: the hyperfine splitting Ehf (given by 3A||/4 for J = 1, I = 1/2) and the Λ-doublet

splitting ωef . These constants give the structure depicted in Fig. 2.1(a). These basic levels may be

perturbed by couplings to other levels, especially rotational or electronic excited states. However,

for the J = 1 state of interest, some simplifications are possible, namely: (1) Off-diagonal couplings

in Ω are zero since J · S preserves the value of J (there is no level with J = 1 and Ω = 2); (2)

Off-diagonal contributions that mix J = 2 into the J = 1 manifold thus depend solely on the

applied fields and the hyperfine interactions. Since the value of the spin-orbit constant is expected

to be far larger than the rotational constant and we are concerned with a J = 1 state, the operators

that connect Ω to Ω± 1 will be ignored. The contributions to the ground state characteristics by

terms off diagonal in Ω are smaller by a factor of the hyperfine interaction energy to the spin-orbit

separation energy, hence a factor of 10−6. This is the value which appears in front of any term

connecting Ω to Ω± 1 in the ground J = 1 state.

6.2 Effect of Non-rotating Electric and Magnetic Fields

The influence of external fields presents new terms in the Hamiltonian of the form

HStark = −~dmf · ~E (6.9)

HZeeman = −~µ · ~B. (6.10)

Here ~E and ~B are the electric and magnetic fields, assumed for the moment to be collinear so that

they define the axis along which mF is a good quantum number; while ~dmf and ~µ are the electric

and magnetic dipole moments of the molecule.

The electric dipole moment arises from the body-fixed molecular dipole moment, at fields

sufficiently small not to disturb the electronic structure. We assume that the field is sufficiently
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large to completely polarize this dipole moment, i.e., dmfE ≫ ωef , in which case the Stark energies

are given by

EStark = −mF ΩγF dmfE , (6.11)

where γF is a geometric factor, analogous to a Landé g-factor, which accounts for the Stark effect

in the total angular momentum basis F . In the limit where the electric field is weak compared to

rotational splittings, it is given by

γF =
J(J + 1) + F (F + 1)− I(I + 1)

2F (F + 1)J(J + 1)
. (6.12)

Its numerical values in the J = 1 state are therefore γF=3/2 = 1/3 and γF=1/2 = 2/3. The

electric field therefore raises the energy of the states with mF Ω < 0 (denoted “upper” states with

superscript u), and lowers the energy of states with mF Ω > 0 (“lower” states with superscript ℓ).

This shift in energy levels is shown in Fig. 2.1(b), where |a〉 and |b〉 are upper and |c〉 and |d〉 are

lower states.

The form of the Zeeman interaction is somewhat more elaborate, as the magnetic moment of

the molecule can arise from any of the angular momenta L, S, J, and I. Quite generally, however, in

the weak-field limit where µBB ≪ Ehf , the Zeeman energies are given by mF g
u/ℓ
F µBB, where µB is

the Bohr magneton and g
u/ℓ
F are g-factors for the upper and lower states. In general, gu

F 6= gℓ
F , and

this difference can depend on electric field, a possible source of systematic error. We will discuss

this in Chapter 6.8.

The leading order terms in the Zeeman energy are those that preserve the signed value of Ω.

They are given by

HZeeman = (γF [((gL + gr)Λ + (gS + gr)Σ) Ω− grJ(J + 1)]− gIκF )mF µBB, (6.13)

where κF = (F (F + 1) + I(I + 1) − J(J + 1))/2F (F + 1) is another Landé-type g-factor, but for

nuclear spin. The orbital and spin g-factors are gL and gS , while the rotation and nuclear spin

g-factors are gr and gI . Both gr and gI are small, being on the order of the electron-to-molecular

mass ratio ∼ me/mmol ∼ 10−3. Thus for an idealized 3∆1 molecule where gL = 1, Λ = ±2, gS = 2,
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Σ = ∓1, we would expect molecular g-factors on the order of 10−3. In a slightly less ideal situation,

gs differs from 2 by a number on the order of α, the fine structure constant, and a g-factor ∼ 10−2

might be expected. In heavy-atom molecules such as ours for which spin-orbit effects mix Λ, we

may expect instead the difference 2gL − gS to be as large as ∼ 0.1 in magnitude. If we assume the

dominant contribution comes from these spin-orbit type effects, we can define the g-factor for the

J = 1 state as

gF=3/2 = γF=3/2(gLΛ + gSΣ)Ω <≈ 0.03, (6.14)

while

gF=1/2 = 2gF=3/2. (6.15)

Finally, the effect of the EDM itself introduces a small energy shift

HEDM = −~de · ~Eeff = deEeff~σ1 · n̂, (6.16)

where ~σ1 is the spin of the s-electron contributing to the EDM signal; and n̂ denotes the inter-

molecular axis, with n̂ pointing from the more negative atom to the more positive one; in our case

from the fluorine or hydrogen to thorium, platinum, or hafnium. Also in this convention we take

Eeff as positive if it is anti-parallel to n̂. The energy shift arising from this Hamiltonian depends

only on the relative direction of the electron spin and the internuclear axis, and is given by

EEDM = −deEeff
2|Ω| Ω. (6.17)

Polarizing the molecule in the external field selects a definite value of Ω, hence a definite energy

shift, positive or negative, due to the EDM. This additional shift is illustrated in Fig. 2.1(c).

For a range of field strengths and parameters, the energies of the sublevels within the J = 1

manifold are well approximated by a linear expansion in the electric and magnetic fields. We define

~B = B||
~E
|E| +

~B⊥ (6.18)

Taking ωef ≪ dmfE ≪ Ehf and dmfE ≫ gF µBB||, and setting B⊥ = 0, we get for the non-rotating

energies,

Eu/ℓ
nr (F, mF , Ω; E ,B) ≈ 1

3
(F (F +1)− 11

4
)Ehf −mF ΩγF dmfE+mF g

u/ℓ
F µBB− (deEeff/2|Ω|)Ω, (6.19)
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where Ω is either 1 or -1, and the prefactor in front of Ehf is such that for the J = 1 level, E(F = 3/2)

- E(F = 1/2) = 3A||/4 = Ehf . F and Ω are good quantum numbers only to the extent that the

electric field is neither too large nor too small, but we will use F and Ω as labels for levels even as

these approximations begin to break down.

For notational compactness, we introduce special labels for particular states as follows (see

Fig. 2.1(b)):

|a〉 = |F = 3/2, m = 3/2, Ω = −1〉 (6.20)

|b〉 = |F = 3/2, m = −3/2, Ω = 1〉

|c〉 = |F = 3/2, m = 3/2, Ω = 1〉

|d〉 = |F = 3/2, m = −3/2, Ω = −1〉

with corresponding energies, Ea, Eb, Ec, and Ed, and identify the energies of two particularly

interesting transitions, W u = Ea − Eb, and W ℓ = Ec − Ed such that

W u = 3gu
F µBB + deEeff

W ℓ = 3gℓ
F µBB − deEeff . (6.21)

The equations of this section have so far been to one degree or another approximate results.

But in the absence of exotic particle physics we can invoke time-reversal symmetry and write exact

relations:

Enr(F, mF , Ω; E ,B)− Enr(F,−mF ,−Ω; E ,B) = Enr(F,−mF ,−Ω; E ,−B)− Enr(F, mF , Ω; E ,−B)

(6.22)

which, for B = 0, becomes

Enr(F, mF , Ω; E) = Enr(F,−mF ,−Ω; E). (6.23)

This exact degeneracy is, in fact, an example of the Kramers degeneracy that follows from time-

reversal invariance [114]. For our purposes, the key result here is that, in the limit of non-rotating

fields, zero applied magnetic field, and an electron EDM, the energy of the science transitions
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|mF , Ω〉 ↔ | −mF ,−Ω〉 (and in particular, W u and W ℓ) are independent of the magnitude of the

electric field. This is an important property because we are using spatially inhomogeneous electric

fields to confine the ions in the trap, and we want to minimize the resulting decoherence.

This degeneracy in turn means that the energy differences W u and W l depend only on the

magnetic field and, of course, the EDM term as shown in Eq. (6.21). The magnetic contribution

reverses sign upon reversing the direction of B with respect to the electric field direction (which

also sets the quantization axis, since dmfE ≫ µBB). Therefore the science measurement is given by

the combinations

W u(E ,B) + W u(E ,−B) = 2deEeff

W l(E ,B) + W l(E ,−B) = −2deEeff , (6.24)

where a + sign on B denotes that it points in the same direction as E .

6.3 Rotating Fields, Small-Angle Limit

Many EDM experiments over the years have been complicated by the problem of “Berry’s

phase”, the term in this context used as a catch-all to describe a variety of effects related to the

motion of the particles in inhomogeneous fields.

The sketch in Fig. 6.1(a) illustrates the classic Berry’s phase result: if the field that defines

the quantization axis, as experienced locally by a particle (or atom, or molecule), precesses about

the laboratory axis at some angle, θ, then, in the limit of slow precession, with each cycle of the

precession the wave-function Ψ picks up a phase given by mFA, where mF is the instantaneous

projection of the particle’s total angular momentum on the quantization axis, and A is the solid

angle subtended by the cone. If the precession is periodic with period τ , one can (with provisos,

as we will discuss) think of this phase-shift as being associated with a frequency, or indeed energy,

mFA/τ . In a spectroscopic measurement of the energy difference between two states whose mF

values differ by δmF , there will be a contribution to the transition angular frequency AδmF /τ .

In neutron EDM experiments, motional magnetic fields, in combination with uncharacterized
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fixed gradients from magnetic impurities, Berry’s phase can be a dangerous systematic whose

dependence on applied fields can mimic an EDM signal [115]. In Chapter 6.14 we will see that the

effects of motional fields in our experiment are negligible.

Neutral atoms or molecules may be confined in traps consisting of static configurations of

electric or magnetic fields. These traps are based on the interaction between the trapped species’

magnetic or electric dipoles and the inhomogeneous magnetic or electric fields, respectively, of the

trap. Especially in cases where the traps are axially symmetric, so that the single-particle trajectory

of an atom can orbit many times one way or the other about the axis of the trap, the coherence time

of an ensemble of atoms with a thermal distribution of trajectories can be severely restricted [116].

Our system is quite different, because in an ion trap the forces arise from the interaction between

the trapping fields and the monopole moment of our trapped ion. Assuming the temperature, size

of bias field, and radius of confinement are the same, the trapping fields for an ion are spatially

much more homogeneous than would be those for a neutral molecule or atom.

That said, the fact that we can speak of a “bias” electric field at all in an ion trap comes at

the cost of having the applied electric field constantly rotating.

6.4 Rotating Fields, Large-Angle Limit (Dressed States)

The basic dressed-state idea is an extension of the more common idea of an energy eigenstate:

a system governed by a time-invariant Hamiltonian H will have solutions Ψ such that Ψ(t + T ) =

e−iωT Ψ(t) for all T and t; such a solution Ψ is called an energy eigenstate, with ω being then the

corresponding energy. Similarly, a system governed by a periodic Hamiltonian with period τ such

that H(t + τ) = H(t) for all values of t, will have so-called “dressed-state” solutions Ψ such that

Ψ(t + nτ) = e−inφΨ(t) for all t and all integer values of n. The quantity φ/τ is sometimes referred

to as the dressed state energy.

Operationally, the dressed state energies are derived from the eigenvalues of a formally time-

independent Hamiltonian. If H0 denotes the Hamiltonian in the absence of the field, then the
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A ~ 2p(1 a)-

(b)

q

A ~ pq
2

(a)

w

F

F

w

Figure 6.1: a) Small-angle limit. When the quantization axis F follows a slow periodic perturbation
characterized by tilt angle θ, angular frequency ω and enclosed solid angle A, two states whose
instantaneous projection of angular momentum along F differs by δm will have their effective
relative energy displaced by a Berry’s energy ωAδm/2π. b) Large-angle limit. When instead the
quantization axis sweeps out a full 2π steradians per cycle (α=0), the differential phase shift between
the two levels is indistinguishable from zero, and in the most natural conceptual framework, the
Berry’s energy vanishes.
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appropriate rotation-dressed Hamiltonian is given by

Hdressed = H0 − ~dmf · ~Erot + Hrot, (6.25)

Hrot is defined as [117]

Hrot = −ωrot (cos(θ)Fz − sin(θ)Fx) (6.26)

where Fzand Fx are the projections of the total angular momentum ~F into a set of axes where z

coincides with the instantaneous direction of the electric field. We now make explicit the rotating

electric field with ~Erot. The cos(θ) term thus provides an energy which, when multiplied by the

rotational period τ = 2π/ωrot, gives the ordinary Berry phase,

−2π cos(θ)mF → 2π(1− cos(θ))mF (6.27)

where we have taken the liberty of adding an arbitrary phase 2πmF to reveal explicitly the solid

angle 2π(1− cos θ).

In the experiment, the applied electric field should lie very nearly in the plane orthogonal to

the rotation axis, i.e., θ ≈ π/2. It is therefore useful to consider the small angular deviation from

this plane, α = π/2−θ (Fig. 6.1). Then the apparent energy shift arising from the geometric phase

is

Egeo = −mF ωrot sin(α) ≈ −mF ωrotα. (6.28)

Now consider two states which are, in the absence of rotation, degenerate, say the states |a〉, with

m = 3/2, Ω = −1, and the state |b〉, with m = −3/2, Ω = 1, indicated in Fig 2.1(b). Rotation

breaks this degeneracy, by adding the energies ∼ ±(3/2)ωrotα, as shown by the dashed lines in

Fig. 6.2. These levels cross at α = 0, leading to their apparent degeneracy when the electric field

lies in the horizontal plane.

In addition, the rotation of the field also incurs coupling between states with different mF

values, arising from the sin(θ) term in Eq. (6.26). This perturbation, treated at third-order in

perturbation theory, connects the two levels and turns the crossing into an avoided one, as shown
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by the solid lines in Fig. 6.2. This has been worked out by Meyer in Ref. [113]. The result, for the

mF = ±3/2 states in Fig. 2.1(b), is

∆u/ℓ ≈ 170ωef

(

ωrot

dmfErot

)3

, (6.29)

where ∆ is the energy splitting at the level crossing between otherwise degenerate states with

mF > 0 and mF < 0. The superscript u refers to mixing between the |a〉 and |b〉 states, and the

superscript ℓ to mixing between |c〉 and |d〉 states. In the absence of the hyperfine interaction, the

average value of the numerical prefactor is 170 and the upper and lower states have the same avoided

crossing. However, small fractional differences between ∆u and ∆ℓ turn out to be significant, and

are discussed further below.

The presence of the electric field causes the states with |F = 1/2, mF = ±1/2〉 and |F =

3/2, mF = ±1/2〉 to mix. Including the hyperfine interaction into the numerical diagonalization

yields

∆ =
1

2
(∆u + ∆ℓ) ≈ 170 ωef

(

ωrot

dmfErot

)3

, (6.30)

δ∆ =
1

2
(∆u −∆ℓ) ≈ 127 ωef

(

ωrot

dmfErot

)3 (dmfErot
Ehf

)2

. (6.31)

It is evident that the average shift is the same, but now the upper and lower levels acquire a different

splitting due to the rotation-induced mixing within the sublevels. The difference is suppressed

relative to the average value of the splitting by a factor of (dmfE/Ehf)
2, reflecting the fact that

higher orders of perturbation theory are needed to include the effects of the hyperfine interaction.

For ωef = 2π×10 kHz, ωrot = 2π×100 kHz, dmfErot = 2π×10 MHz, Ehf = 2π×40 MHz, then ∆ =

2π×1.7 Hz and δ∆ = 2π×0.08 Hz.

The magnitude of the rotation-induced mixing within any of the four pairs of otherwise

degenerate m = ±1/2 states is much larger than the mixing within either pair of m = ±3/2 states,

∆u or ∆ℓ. For this reason, the m = ±1/2 levels are probably not great candidates for precision

metrology in rotating fields.

An ion in a trap will feel an axial force pushing it towards the axial position where the axial

electric field vanishes, that is, the location at which α is identically zero. This poses a problem,
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E
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dmF rotw a D/

Figure 6.2: The apparent energy shifts between mF = +3/2 and mF = −3/2 states in upper (a,b)
and lower (c,d) Λ-doublet levels versus α, the angle of the electric field to the plane orthogonal
the rotation axis of Erot (α is shown in Fig. 6.1(b)). (a) At α = 0, there is an avoided crossing
that mixes mF = ±3/2 states, with an energy splitting at the crossing of ∆u/ℓ. (b) Since α = 0
at the axial trap center, and since we need mF to be a signed quantity in order to measure de,
we will bias away from the avoided crossing using a magnetic field Brot. δmF gF µBBrot > ∆u/ℓ is
required for mF to be a quantity of definite sign. This picture is intuitively correct in the limit that
∆u/ℓ > ωmax. The experiment will be performed in the opposite limit. However, solving the time
dependent Schrödinger equation (Eq. 6.42) gives the same requirement of δmF gF µBBrot > ∆u/ℓ in
both limits.
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because at α = 0, each dressed state is an equal mixture of states with Ω = 1 and with Ω = −1. In

other words, the dressed states right at the avoided crossing will have vanishing eEDM signal. The

solution is to bias the avoided crossing away from α = 0 by adding to the trapping fields a uniform,

rotating magnetic field which is instantaneously always parallel or anti-parallel to vector Erot.

~Brot =
Brot

Erot
~Erot (6.32)

In our convention, ~Erot defines the quantization axis, so that the number Erot will always be taken

to be positive. The sign of Brot then determines whether the co-rotating magnetic field is parallel

(Brot > 0) or anti-parallel (Brot < 0).

The energy levels are now as shown in Fig. 6.2(b). As derived in Chapter 6.5, in the limit

BrotgF µB ≫ ∆u/ℓ, the dressed states near α = 0 are once again states of good mF and Ω. The en-

ergy splitting between the two states, as altered by the rotation of the field, are given approximately

by

W u/ℓ(Erot,Brot) = Ea/c − Eb/d = −3αωrot + 3g
u/ℓ
F µBBrot +

(∆u/ℓ)2

6g
u/ℓ
F µBBrot − 6αωrot

± deEeff , (6.33)

where the + sign corresponds to u states, and the − sign to ℓ states.

Over the course of one axial oscillation of the ion in the trap, α which is approximately

proportional to the axial electric field, will average to zero. Unfortunately, the contributions to

δW from Erot and from Brot are larger than that from the scale of the physics we most care about,

deEeff , and the spatial and temporal variation in Erot and in Brot will reduce the coherence time

of the spectroscopy, as discussed in Chapter 6.9 - 6.11. But to the extent that one is able quite

precisely to chop Brot to −Brot on alternate measurements, the science signal still arises from the

same combination as in Eq. 6.24:

〈W u/ℓ(Erot,Brot)〉+ 〈W u/ℓ(Erot,−Brot)〉 ≈ ±2deEeff , (6.34)

where the +/- corresponds to the u/ℓ superscripts respectively, and the brackets denote averaging

over the excursions of α, which is assumed to vary symmetrically about zero.
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The equation above relies on several approximations. One needs in particular that dmfErot ≫

ωef , 3gF µBBrot ≫ 170ωef (ωrot/dmfErot)3, and dmfErot ≫ ωrot, α ≪ 1, and dmfErot < Ehf . These

are all good approximations, but they are not perfect. For example, using values from Appendix

A, ωrot/(dmfErot) ≈ 0.01, a small number, but not zero. To what extent will imperfections in these

approximations mimic an eEDM signal?

The driving principle of our experimental design is to measure de with as close to a null

background as possible. We are not especially concerned if the right hand side of Eq. (6.34) is

1.9 deEeff rather than 2.0 deEeff . More important to us is that, if de = 0, the right-hand side of

Eq. (6.34) be as close to zero as possible. As we shall see, as long as we preserve certain symmetries

of the system we are guaranteed a very high quality null. A preliminary remark is that the “energy”

of a dressed state, or more precisely the phase shift per period τ , is unaffected by an offset in how

the zero of time is defined. A second observation is that, in the absence of exotic particle physics

(such as nonzero eEDM), the energy levels of a diatomic molecule in external electromagnetic fields

are not affected by a global parity inversion.

Under the action of this inversion, all the fields and interactions in the Hamiltonian transform

according to their classical prescriptions, whereas quantum states are transformed into their parity-

related partners. In a parity-invariant system, parity thus changes quantum numbers, but leaves

energies of the eigenstates unchanged. This is true for the dressed states as well, since their eigen-

energies emerge formally from a time-independent Hamiltonian.

To formulate the effect of inversion symmetry we write the electric and magnetic fields as

~E = Erotr̂′ + Ez ẑ (6.35)

~B = Brotr̂
′ (6.36)

where r̂′ = cos(ωrott)x̂ + sin(ωrott)ŷ and α = tan−1(Ez/Erot). The dressed states defined by the

rotating field are characterized by the projection mF of total angular momentum on the axis defined

by the rotating electric field, ~Erot/Erot. Because the magnetic field is not strictly collinear with the

electric field, and because of the field rotation, mF is only approximately a good quantum number.
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Nevertheless, considering the effect of parity on all the mF ’s simultaneously, we can still map each

dressed eigenstate into its parity-reversed partner.

Assuming the ions are “nailed down” in their axial oscillation, at a particular value of

Ez and thus α, our various spectroscopic measurements would give dressed energy differences

E(Erot,Brot, α, mF , Ω) − E(Erot,Brot, α,−mF ,−Ω). Now we invoke the following symmetry ar-

gument: if we take the entire system, electric fields, magnetic field, and molecule, and apply a

parity inversion, that will leave the energy of the corresponding levels unchanged. If further we

then shift the zero of time by π/ωrot, in effect letting the system advance through half a cycle of the

field rotation, that also will not change the corresponding energy levels of the dressed state, which

are after all defined over an entire period of the rotation. This transformation effectively connects

measurements made for α > 0, above the mid-plane, to those with α < 0, below the mid-plane.

The combined transform acts as follows:

F → F (6.37)

~Brot → − ~Brot

~Erot → ~Erot

Ez → −Ez

α → −α

~ωrot → ~ωrot

mF → −mF

~S · ~B → ~S · ~B

d̂ · ~E → d̂ · ~E

Ω → −Ω

The last of these is equivalent to n̂ · ~σ1, i.e., our symmetry operation would change the sign of the

EDM energy shift. However, in the absence of this shift we can expect the following exact relations
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between the dressed state energies:

E(Erot,Brot, α, mF , Ω)− E(Erot,−Brot,−α,−mF ,−Ω) = 0 (6.38)

E(Erot,−Brot, α, mF , Ω)− E(Erot,Brot,−α,−mF ,−Ω) = 0

E(Erot,Brot,−α, mF , Ω)− E(Erot,−Brot, α,−mF ,−Ω) = 0

E(Erot,−Brot,−α, mF , Ω)− E(Erot,Brot, α,−mF ,−Ω) = 0.

Summing four equations and rearranging terms, we get that

W u/ℓ(Erot,Brot, α)+W u/ℓ(Erot,−Brot, α)+W u/ℓ(Erot,−Brot,−α)+W u/ℓ(Erot,Brot,−α) = 0. (6.39)

If we assume that the axial confinement is symmetric (not necessarily harmonic), and that

our spectroscopy averages over an ensemble of ions oscillating in the axial motion with no preferred

initial phase of the axial motion (we will later explore the consequences of relaxing this assumption)

then the ions will spend the same amount of time on average at any given positive value of α as

they do at the corresponding negative value of α, and thus the averaged results yield:

< W u/ℓ(Erot,Brot) > + < W u/ℓ(Erot,−Brot) >= 0. (6.40)

The combined result, in the absence of exotic particle physics, is zero by symmetry. We did

not need to invoke the various approximations that went into Eq. 6.34. In particular, this null

result is, unlike the traditional Berry’s phase result, not based on the assumption of very small

(ωrot/dmfErot). Also, for conceptual simplicity we have discussed the result as being based on an

average over quasi-static values of α, but the symmetry argument does not hinge on the axial

frequency being infinitely slow compared to ωrot.

6.5 Frequency- or Phase-Modulation of Axial Oscillation

The trapped ions will oscillate in the axial direction at a frequency ωz, confined by an

approximately harmonic axial trapping potential Uz = (1/2)Mω2
zz

2. Upon moving away from the

mid-plane z = 0, the ions will experience an oscillating axial electric field Ez(t) = −Mω2
zz(t)/e. The
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geometric phase correction to the energy is then −mF ωrotαmax cos(ωzt), where αmax = Ez,max/Erot

is the maximum excursion of the tilt angle. Because the product ωrotαmax is again an energy, it is

convenient to redefine the geometric energy contribution in terms of a frequency ωmax,

Egeo = ωmax cos(ωzt), (6.41)

with ωmax = −δmF ωrotαmax.

For ωz = 2π×1 kHz, an ion cloud temperature of 15 K, an ion whose axial energy Ez is twice

the thermal value, for ωrot as shown in Appendix A, and Erot = 5 V/cm, then a transition such as

W u/ℓ with δm = 3 will have a maximum frequency modulation ωmax = 2π×400 Hz.

Thus the electric field undergoes two motions, the comparatively fast radial rotation, and

the comparatively slow axial wobble. We exploit the different time scales to create, for each

instantaneous value of α, the rotation-dressed states worked out in the previous section. The effect

of the axial wobble is then described by the time variation of the amplitudes in these dressed states.

The time-dependent Schrödinger equation of motion for this is

i
∂

∂t
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∆
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, (6.42)

where a and b are the probability amplitudes for being in the |a〉 and |b〉 states, respectively. For

typical experimental values, ωz is about 2π×1 kHz, ωmax will range as high as 2π×1000 Hz, and

∆ (given by Eq. 6.29) is perhaps 2π×2 Hz, and 3µBgFBrot is about 2π×10 Hz.

Eqn. 6.42 describes a system again governed by a periodic Hamiltonian, and we will therefore

follow a similar course to Chapter 6.4 and search for dressed-state solutions Ψ such that Ψ(t+nτ) =

e−inφΨ(t). Of course, this will only be valid in the limit that ωrot ≫ ωz, a necessary condition to

write the time-dependent Hamiltonian in Eqn. 6.42. First, we get rid of fast time-dependence by

guessing solutions:

a(t) = A(t)
∞
∑

n=−∞

Jn

(

ωmax

2ωz

)

e−iωznt (6.43)
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b(t) = B(t)
∞
∑

n=−∞

Jn

(−ωmax

2ωz

)

e−iωznt,

where Jn are Bessel’s functions of the first kind and A(t) and B(t) are slowly varying

functions. We then substitute our trial solutions into Eqn. 6.42 and use the recurrence rela-

tion (2n/x)Jn(x) = Jn−1(x) + Jn+1(x). We multiply through by
∞
∑

n′=−∞

Jn′

(

ωmax

2ωz

)

eiωzn′t and

∞
∑

n′=−∞

Jn′

(−ωmax

2ωz

)

eiωzn′t as appropriate. We then integrate over an axial time period, 2π/ωz,

and make the approximation that A(t) and B(t) are unchanged over this small time interval. This

approximation should be good as long as ωz ≫ ωmax and ωz ≫ gF µBBrot. The integration then

yields,

i
∂

∂t
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2gF µBBrot

∆eff
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∆eff

2 −3
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(6.44)

with

∆eff =
∞
∑

n=−∞

Jn

(

ωmax

2ωz

)

Jn

(−ωmax

2ωz

)

∆ = J0(
ωmax

ωz
)∆. (6.45)

This results in dressed-state energies, now as a function of Brot, and not α, as seen in Fig. 6.3.

This clearly shows the requirement of 3gF µBBrot > ∆eff in order to keep |a〉 and |b〉 as the dressed

states. This is true despite the fact that an ion will sample the avoided crossing in Fig. 6.2 during

its axial oscillation in the trap, as ωmax ≫ 3gF µBBrot in our experiment. ∆eff will have a maximum

value of ∆ at ωmax/ωz = 0 and will oscillate about zero according to J0(ωmax/ωz).

For finite ωmax/ωz, the dressed states from Eqn. 6.44 only appear stationary if measured at

integer multiples of the axial trapping period, 2π/ωz. Consider states |+〉 and |−〉, symmetric and

antisymmetric combinations of states |a〉 and |b〉, respectively. In the limit that δmF gF µBBrot ≫

∆eff , an ion initially in state |+〉 will oscillate between |+〉 and |−〉 at the precession frequency ω0 =

((3g
u/ℓ
F µBBrot+deEeff)2+∆2

eff)
1

2 , when measured at integer multiples of the axial trapping frequency.

However, if our EDM measurement is made after a non-integer number of axial oscillations, or if

the ions have different axial frequencies in the trap, the |+〉 to |−〉 oscillation will be frequency

modulated at ωmax (see Fig. 6.4). For the example parameters, the frequency-modulation index
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Figure 6.3: The apparent energy shifts between mF = +3/2 and mF = −3/2 states in upper (a,b)
and lower (c,d) Λ-doublet levels versus Brot,“dressed” by both the electric field rotation (ωrot) and by
the ion’s axial trap oscillation (ωz). At Brot = 0, there is an avoided crossing that mixes mF = ±3/2

states, with an energy splitting at the crossing of ∆
u/ℓ
eff . In the limit δmF gF µBBrot ≫ ∆eff , the

dressed states are of good mF with an energy splitting slightly modified by ∆eff .
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ωmax/ωz is less than 1, and thus the spectral power of transition is overwhelmingly at ω0, the

quantity which symmetry arguments above show is unaffected by Berry’s phase. In an ensemble

of ions which have a random distribution of initial axial motions, the sidebands on the transition

average to zero, and won’t pull the frequency of the measured central transition. If instead the

process of loading ions into the trap has left the ions with an initial nonzero axial velocity or axial

offset from trap center, the measured frequency can be systematically pulled from ω0.

Note that increasing Erot or decreasing ωrot reduces the value of ωmax and thus the frequency

modulation index. On the other hand, these changes also would have the effect of increasing the

energy Emicro of the micromotion of the ions in the rotating fields. For harmonic axial confinement,

we find the frequency modulation for a δm = 3 transition obeys the following relation ωmax/ωz =

3(Ez/Erot)
1/2. Thus to keep the modulation safely under unity for a comfortable majority of an

ensemble of ions with an average Ez given by Tz, one needs to choose operating parameters such

that Erot > 30kBTz. This inequality in turn places stringent requirements on the spatial uniformity

of Erot. On a time-scale slow compared to 1/ωrot, Erot acts like a sort of ponderomotive potential

analogous to the effective confining potential in a Paul trap. If Erot = 30kBTz, then a spatial

inhomogeneity in Erot of only 1.5% already gives rise to structure in the ponderomotive potential

comparable to Tz.

To summarize the effect of axial motion: in the limit 3gF µBBrot > ∆, ions prepared, for

instance by optical pumping, in state |a〉 (or |b〉) will remain in |a〉 (or |b〉). The energy difference

between dressed states which are predominantly either |a〉 or |b〉 will be slightly modified by the

avoided crossing. But the important combined measurement described by Eq. (6.34) will continue

to yield zero in the absence of EDM signal, and the sensitivity of that combined measurement to

the EDM signal will not be much affected as long as ωmax/ωz <≈ 1.

6.6 Creating Coherent Mixtures of mF = +3/2 and mF = -3/2

The above discussion reveals a possible way to deal with an experimental issue. The Ramsey-

type experiment we wish to perform in order to measure de requires a coherent superposition of
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Figure 6.4: Population of states |+〉 (red) and |−〉 (blue) with parameters ωz = 2π×1000 Hz,

ωmax = 2π×500 Hz, ∆ = 2 π×2 Hz, and δmF g
u/ℓ
F µBBrot = π×10 Hz. The population is initially

prepared in |+〉 and results were found by numerically integrating Eq. 6.42. (a) Measured at integer
periods of ωz the |a〉 and |b〉 states appear stationary, leading to smooth Rabi oscillations if the
state is prepared in state |+〉 or |−〉. (b) If the measurement cannot be made at integer periods
of ωz, frequency modulation at ωmax is observed, leading to reduced accuracy when measuring
the precession frequency. Note here that ωmax/ωz = 1/2. As discussed in Chapter 6.11, similar
modulation can arise from static, uniform magnetic fields that are averaged over during a period
of ωrot.
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electron spin up and spin down states. One possible way of achieving this is to start with ions in

the 1Σ, F = ± 1/2 states and then populate the 3∆1, J = 1, mF = ± 3/2 states using STIRAP,

similar to the discussion in Chapter 5.7. The quantum beat signal from the radiative decay could

be measured, or another STIRAP could be performed and the transfer percentage measured. As

discussed in Chapter 5.7, STIRAP could prove challenging with our weak transitions and large ion

clouds.

Typically, when performing a Ramsey measurement between magnetic sub-levels, a π/2 pulse

is performed with rf photons. If the ions can be created directly in the 3∆1, J = 1 state through

autoionization as described in Chapter 5.7.3, a statistical mixture of mF levels would exist. Optical

depletion of all but the mF = +3/2 level could be done with σ+ polarized light driving a transition

with a small decay branching fraction back to the 3∆1 level. For our case of F = 3/2 states, our

π/2 pulse would have to come from a three-photon transition.

A typical JILAn laughs in the face of a challenge such as three-photon rf transitions. However,

the preceding section points to another possible solution. The coupling need not be performed by an

rf photon field, instead the rotational electric field can create the coupling, as seen by the quantity

∆ above. After the other spin levels have been optically depleted, ∆eff can be ramped up to some

value much larger than 3gF µBBrot, by decreasing the value of Erot. After waiting a time 1/(2∆eff)

and ramping back to ∆eff < 3gF µBBrot, the mF = +3/2 population can be coherently transferred to

an equal superposition of mF = ± 3/2 states. The spin is then allowed to precess at the frequency

ω0 = ((3Brotg
u/ℓ
F µB + deEeff)2 +∆2

eff)
1

2 for some time τ , ∆eff is again ramped to perform the second

π/2 pulse of the Ramsey sequence, and the final spin population can be read out as discussed in

Chapter 4.

6.7 Structure of the Measurements. What Quantities Matter

In the remainder of this section, the possible effects of various experimental imperfections on

our measurement are explored.

The symmetry argument in Chapter 6.2 presupposes the ability to impose a perfect “B-chop”,
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i.e., to collect data with alternating measurements changing quite precisely only the sign of Brot. If

not only the sign but the magnitude of the rotating magnetic field alternates, the situation is more

complicated. There will likely be contributions to the rotating magnetic field that are not perfectly

reversed in our B-chop, including displacement currents associated with sinusoidally charging the

electrodes that create the rotating electric field. These effects can be quantified with a value Bstray
rot ,

and to lowest order they would appear as a frequency offset in the chopped measurement:

W u/ℓ(~E , ~Brot + ~Bstray
rot ) + W u/ℓ(~E ,− ~Brot + ~Bstray

rot ) = 6g
u/ℓ
F µBBstray

rot ± 2deEeff (6.46)

This offset is very nearly the same for the upper and lower states, to the extent that gu
F ≈ gℓ

F ,

i.e., to the extent that δgF ≡ 1/2(gu
F − gℓ

F ) ≪ gF . The effect of the stray field is reduced by

combining measurements from the upper and lower states, in the form of a “four-way chop”:

[

W u(~Erot, ~Brot + ~Bstray
rot ) + W u(~Erot,− ~Brot + ~Bstray

rot )
]

−
[

W ℓ(~Erot, ~Brot + ~Bstray
rot ) + W ℓ(~Erot,− ~Brot + ~Bstray

rot )
]

= 12δgF µBBstray
rot + 4deEeff (6.47)

It may prove to be advantageous to shim the B-chop by deliberately adding a non-chopped

rotating magnetic field, Bshim
rot , and adjusting its value until experimentally we measure

W u(Brot + Bstray
rot + Bshim

rot ) + W u(−Brot + Bstray
rot + Bshim

rot ) = 0. (6.48)

Then, a measurement in the lower Λ-doublet state gives

W ℓ(Brot + Bstray
rot + Bshim

rot ) + W ℓ(−Brot + Bstray
rot + Bshim

rot ) = −2(1 +
gℓ
F

gu
F

)deEeff , (6.49)

yielding a still more accurate value for 4deEeff .

What we care about most then are: (1) Things that perturb W u and W ℓ differently, in par-

ticular the quantity δgF , but also the analogous electrical quantity, δη, to be defined and estimated

in Chapter 6.9, and (2) to a lesser extent, we care about effects which affect W u(Brot)+W u(−Brot)

the same way as they affect W ℓ(Brot) + W ℓ(−Brot), because, to the extent that they lead to a

measurement

W u(Brot) + W u(−Brot) = +2deEeff + δsyst, (6.50)
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we can mistake a nonzero value for δsyst as an indicator for a nonzero value of Bstray
rot . In that case,

the shimming procedure discussed above to remove Bstray
rot would lead to a combined result from the

four-way chop of 4deEeff + (4δgF /gF )δsyst. This is down by a relative factor of (δgF /gF ) compared

to the effects that differentially perturb W u versus W ℓ, but they could still be troublesome. And

(3) to a still lesser extent, we care about imperfections that perturb individual measurements such

as W u(Brot), even if they do not perturb the B-chop measurement, W u(Brot)−W u(−Brot), because,

to the extent that they vary over time, or depend on the trajectory of an individual ion in the trap,

they can reduce coherence times. This leads not to systematic errors, but to a reduction in the

overall precision.

In addition to the B chop, state chop, and four-way chop discussed above, we can perform a

rotation chop, by changing the sign of ωrot. Our hope is to keep experimental imperfections to a

level where the four-way chop is by itself already good enough to suppress systematic error below

the desired level. Then repeating the entire series of measurements with the opposite sign of ωrot

(rotating the field CW instead of CCW) will to the extent it yields the same final value of 4Eeffde

provide a useful redundant check.

6.8 An Estimate of δgF=3/2

There are three leading contributions to δgF=3/2 in our molecule: a zero field difference, a

difference due to static electric fields, and a difference due to rotating electric fields. The zero field

difference is due to terms omitted in the Zeeman Hamiltonian in Eq. 6.13. For our molecule, these

terms give rise to a difference in gF=3/2 in terms of the Λ-doubling J = 1 energy splitting ωef [113],

δgF=3/2

gF=3/2
≈
∣

∣

∣

∣

∣

ωef

BegF=3/2

∣

∣

∣

∣

∣

. (6.51)

This is on the order of 10−5 for HfF+.

The electric field dependent g-factor arises due to the mixing of rotational levels J in the

molecule. The levels with J = 2, while far away in energy compared to the Stark energy dmfErot,

are perturbers. In the signed Ω basis, the mF sub-levels in the J = 2 level have a smaller γF value
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than do the mF sub-levels in the J = 1 level. Therefore, the states which go up (down) in energy

in the J = 1 level “gain” (“run”) on (from) the J = 2 level. When one includes the effects of

Hyperfine interactions, there are multiple connections to each sub-level. In the J = 1, mF = ±3/2

levels that we are interested in this contribution is [113],

δgF=3/2

gF=3/2
(Erot) =

9 dmfErot
40 Be

, (6.52)

which gives a fractional shift δgF=3/2/gF=3/2 of a few 10−4. The same approach gives that the

electric field “g” factor, γF , will shift in the same manner such that δγF /γF ≈ 10−4.

For rotating fields, another contribution to δgF arises from non-vanishing value of ωrot/(dmfErot).

The states with Ω = 1 and Ω = −1 are equally affected by the rotating field since they have

an equal Stark shift in the absence of hyperfine interactions. However, because the levels with

|F = 3/2, mF = ±1/2〉 are repelled by the lower |F = 1/2, mF = ±1/2〉 states, the effective Stark

difference between mF levels with Ω = −1 (upper levels) is smaller than the same mF levels with

Ω = +1 (lower levels). The scale at which this difference will appear is then determined by how

much the lower hyperfine state pushes on the upper due to the coupling induced by the electric

field.

δgF=3/2

gF=3/2
=

√
6

γ2
F=3/2

ω2
rot

dmfErotEhf
. (6.53)

This fractional shift is of the order a few 10−4 and is therefore about the same magnitude as the

electric field induced mixing of higher rotational levels.

6.9 Dependencies on Erot

Proximity to the avoided crossing shown in Fig. 6.2(b) means that the transitions W u and

W ℓ will have residual dependencies on Erot, which in turn may lead to decoherence or systematic

errors. We characterize the sensitivity of W u/ℓ to small changes in Erot with the following expansion

W u/ℓ(E0
rot + δErot,Brot) = W u/ℓ(E0

rot,Brot) + ηu/ℓδErot (6.54)
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with

ηu/ℓ ≡ ∂W u/ℓ

∂Erot
|E0

rot
,Brot

=
−(∆u/ℓ)2

g
u/ℓ
F µBBrotErot

, (6.55)

using the expressions in Eqs. (6.29) and (6.33). Any spatial inhomogeneity in Erot that does not

average away with ion motion will lead to a decoherence rate given approximately by ηδErot.

In terms of systematic errors, if chopping the sign of Brot gives rise to an unintended system-

atic change in the magnitude of Erot (call it δEchop), for instance due to motional fields discussed

later, or due to ohmic voltages generated by the eddy currents, then there will be a frequency shift

in a B-chop combination, 2ηu/ℓδEchop. To the extent that δη = 1
2(ηu − ηℓ) is nonzero, some of this

shift will survive a four-way chop as well. The dominant contribution to δη is likely from δ∆, rather

than from δgF . Assuming this limit, the systematic error surviving is

8
δ∆

∆
ηδEchop ≈ 6

(

dmfErot
Ehf

)2

ηδEchop. (6.56)

For a large but not inconceivable value for δEchop of 100 µV/cm, and for other values as in

Appendix A, this works out to comfortably less than 100 µHz, and is therefore not a problem. But

this error would scale as E−5
rot , and thus could cause trouble if for other reasons we chose to decrease

Erot. The science signal is roughly independent of Erot, which should allow for the source of error

to be readily identified.

6.10 Perpendicular B-Fields

The quantization axis is essentially defined by Erot. The shift of the various levels |a〉, |b〉,

|c〉, |d〉 due to a component of the magnetic field perpendicular to Erot is on the order of

±3

4

(gF µBB⊥)2

(γF dmfErot)
(6.57)

for the upper/lower states. In the absence of rotation, the lowest-order correction to W u/ℓ(Brot)

goes as

−3

2

g3
F µ3

BB2
⊥Brot

(γF dmfErot)2
. (6.58)
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For reasonable experimental parameters, this will be a negligible number. The lowest-order correc-

tion to the state-chop combination, W u(Brot)−W ℓ(Brot) is smaller still and goes as

3

2

g3
F µ3

BB2
⊥Brot

γF dmfErot Ehf
. (6.59)

It is similar in form to the difference in g-factors caused by the rotation of the field.

When we turn on rotation, there is an additional larger contribution to W u/ℓ(Brot). If we

assume (as a worst case) that B⊥ is purely axial, not azimuthal, then the lowest-order effect of B⊥

is to tilt the quantization axis by angle given by

±gF µBB⊥
(γF dmfErot ± µBgFBrot)

, (6.60)

with the +(-) in the numerator corresponding to the upper(lower) states and the +(-) in the

denominator corresponding to the Ω = -1(+1) states. This has the leading order effect on W u/ℓ of

3ωrotg
2
F µ2

BB⊥Brot

(γF dmfErot)2
(6.61)

even a rudimentary nulling of the Earth’s magnetic field, say to below 25 mG, will leave this term

negligible, for parameters in Appendix A. Its contribution to the state chop, W u(Brot)−W ℓ(Brot),

is still smaller by dmfErot/Ehf

ωrotg
2
F µ2

BB⊥Brot

γF dmfErotEhf
(6.62)

6.11 Stray Contributions to B||: Uniform or Time-Varying B-Fields

In the previous section we’ve seen that the effects of B⊥ are small. Spatial or shot-to-shot

variation in B||, on the other hand, can limit coherence time through its contribution to W u/ℓ. The

biggest contribution to B|| is of course the intentionally applied rotating field Brot. Let us examine

the various other contributions to B||.

Static, uniform fields: B fields of this nature are relatively harmless. B|| is defined relative

to the quantization axis Êrot. The time-average of B|| is 〈B||〉 = 〈 ~B · Êrot〉. Since Êrot sweeps out a

circle with angular velocity ωrot, the contribution to the time-averaged B|| from a uniform, static
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magnetic field averages nearly to zero in a single rotation of the bias electric field, and still more

accurately after a few cycles of axial and radial motion in the trap. The average electric field in

the ion trap must be very close to zero, or the ions would not remain trapped. In the case of

certain anharmonicities in the trapping potential, however, one can find that the average value of

Êrot is nonzero, even if the average value of ~Erot is zero. For instance, an electrostatic potential

term proportional to z3, along with a uniform axial magnetic field Bz, will for an ion with nonzero

axial secular motion, yield a nonzero 〈B||〉. In addition, nonzero Bz will interact with the tilt of

~Erot oscillating with an ion’s axial motion at ωz to cause a frequency modulation similar to the

one discussed in Chapter 6.5. A uniform magnetic field in the x-y plane will cause a frequency

modulation at ωrot. If the modulation index for either of these modulations approaches one, the

modulation will begin to suppress the contrast of spectroscopy performed at the carrier frequency.

For uniform magnetic fields with amplitude less than 10 mG (achievable for instance by roughly

nulling the earth’s field with Helmholtz coils), frequency modulation indices will be small, and,

barring pathologically large z3 electrostatic terms, the mean shifts from uniform, static B-fields

will be less than 1 Hz and can be can be dealt with by means of an applied Bshim
rot as discussed in

Chapter 6.7.

Time-varying magnetic fields with frequency near ωrot can cause more trouble. If the time

between the two Ramsey pulses used to interrogate the frequency is tRamsey, then the dangerous

bandwidth is 1/tRamsey, centered on ωrot. We discuss in order (i) thermally generated fields from

the electrodes, (ii) ambient magnetic field noise in laboratory, (iii) magnetic fields associated with

the application of Erot, oscillating coherently with Erot, (iv) shot to-shot variation in magnitude of

applied Brot, and (v) spatial inhomogeneities in Brot.

(i) Proposed EDM experiments on trapped atomic species such as Cesium are vulnerable

to magnetic field noise generated by thermally excited currents in conductors located close to the

trapped species [118]. In our case, the effect is less worrisome because, vis-a-vis the trapped atom

experiments, our bandwidth of vulnerability is centered at much higher frequency fields, because our

molecules are trapped considerably further from the nearest conductors, and because the sensitivity
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of our measurement of de to magnetic field noise, which goes as gF µB/Eeff is down by a factor of

104. The spectral density of thermal magnetic field noise (which is calculated in reference [119] in

the simplified geometry of a semi-infinite planar conductor) will surely be less than 1 pG/Hz1/2 in

our bandwidth of vulnerability. This effect is negligible.

(ii) Like thermal magnetic noise, technical magnetic noise in our lab arising for instance

from various nearby equipment will not so much decohere an individual measurement as generate

shot-to-shot irreproducibility between measurements. What level of noise are we sensitive to? As

we discuss in Sec 8, the precision of a single trap load is unlikely to be better than 300 mHz,

meaning magnetic field noise less than 0.2 µG/Hz1/2 won’t hurt us, for a 1 s interrogation time.

Measurements made in our lab show that there are a number of magnetic field “tones” of very

narrow bandwidth, associated with harmonics of 60 Hz power and various power supplies. As long

as we choose ωrot to not coincide with one of these frequencies, in the range of 50 kHz to 300 kHz

ambient magnetic frequency noise in our lab has spectral density typically less than 0.02 µG/Hz1/2.

For this reason, at least for the first generation experiment, there will be no explicit effort to shield

ambient magnetic field other than to use Helmholtz coils to roughly null the earth’s dc field. The

steel vacuum chamber will in addition provide some shielding at 100 kHz.

(iii) In traditional eEDM experiments, one of the most difficult unwanted effects to charac-

terize and bring under control is magnetic fields generated by leakage currents associated with the

high voltages on the electrodes that generate the principal electric field. In our case the bulk of

the electric field Eeff is generated inside the molecule. The laboratory electric fields are measured

in V/cm, not kV/cm, and leakage currents as traditionally conceived will not be a problem for

us. On the other hand, the electric field does rotate at hundreds of kHz, and thus the electrode

potentials must constantly oscillate. Displacement currents in the trapping volume between the

electrodes, and real currents in the electrodes themselves and in the wire leads leading to them,

will generate magnetic fields with spatial gradients and strengths that oscillate coherently with Erot

at the frequency ωrot.

The spatial structure of the oscillating magnetic fields will depend on the geometry of the



129

electrodes and in particular on the layout of the wire leads that provide the current to charge them.

In principle, shim coils can be constructed just outside the trap electrodes and driven with various

phases and amplitude of current oscillating at ωrot, all in order to further control the shape of the

magnetic field. The one immutable fact is the Maxwell equation, ∇× ~B = c−2∂~E/∂t.

The dominant time dependence of the electric field is from the spatially uniform rotating field,

and thus for a circular field trajectory, the dominant contribution to the magnetic field structure

goes as

∇× ~B = kŷ′ (6.63)

with

k = c−2Erotωrot, (6.64)

= 350 nG/cm×
(

ωrot

2π × 100 kHz

)( Erot
5 V/cm

)

, (6.65)

where ŷ′ is the direction in the x-y plane orthogonal to the instantaneous electric field.

The curl determines only the spatial derivatives of B; B itself only depends on the boundary

conditions. An idealized arrangement of current carrying leads and shim coils could in principle

force the B field to be

~Bideal = kx′ẑ. (6.66)

where k is given by Eq. 6.64 and x′ is displacement in the x-y plane along the direction of the

instantaneous rotating electric field. These fields would be perpendicular to the quantization axis

provided by the electric field, and would have negligible effect on the transitions of interest.

While realizing such an idealized displacement field would be very difficult, there are relatively

simple steps to take to minimize the displacement fields. For instance, each rod-like electrode can

be charged up by two leads, one connected to each end of the rod, with the leads running along

respective paths symmetric in reflection in the z=0 plane to a common oscillating voltage source

outside of the vacuum can, at z=0. It is worth considering a maximally bad electrode layout, to put

a limit on worst-case performance. Our electrodes will be spaced by about 10 cm and mounted in
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such a way that their capacitance to each other or to ground will be at worst 5 pF. If the charging

current is provided entirely by a single lead connected to one end of the rod, the peak current

running down the rod near its center will be 80 µA, leading to a worst-case field magnitude at the

trap center of about 20 µG, and a contribution to W u/ℓ of perhaps 2.5 Hz. Spatial gradients of this

effect, and shot-to-shot irreproducibility of this effect will not contribute to decoherence at the 0.1

Hz level. As for its contribution to systematic error, this shift will survive the B-chop, but will be

suppressed in the four-way chop by the factor (δgF /gF ), perhaps a factor of a thousand. For still

better accuracy the shift should be nulled out of the B-field chop by adjusting Bshim
rot , as discussed

in Chapter 6.7.

(iv)Given that the main effect of Brot is to apply an offset frequency, 3gF µBBrot of perhaps

8 Hz, and given that (see Sec 8) the single-shot precision is unlikely to be any better than 300

mHz, the shot-to-shot reproducibility of Brot need be no better than a part in 30, a very modest

requirement on stability. Decoherence then is not a problem, but a potential source of systematic

error arises if the the B-chop is not “clean” that is if Brot before the chop is not exactly equal to

−Brot after the chop. This sort of error could arise for instance from certain offset errors in op-amps

generating the oscillating current. Experimentally, one adjusts Bshim
rot to cancel these offsets, but

even in the absence of that procedure, the four-way chop cleans up these sorts of errors. For a rather

egregious fractional deviation from B-chop cleanliness of, for instance, 1%, and for (δgF /gF ) < .001,

the systematic error remaining after the four-way chop is 10−5 of the offset frequency of perhaps 8

Hz. In HfF+ this is a systematic error on de of 10−29 e cm. For ThF+ the error as referred to de

is smaller still, and of course if we avail ourselves of Bshim
rot so as to null the post B-chop signal to

<100 mHz, the systematic error on de will be considerably less than 10−29 e cm for either species.

(v) The largest single contribution to decoherence (with the exception of spontaneous decay

of the 3∆1 line to a lower electronic state) will likely be due to spatial inhomogeneity in the applied

rotating bias field Brot. That is to say, spatial inhomogeneities in ~B that rotate in the x-y plane at

frequency ωrot. First-order spatial gradients in Brot are not important, because ion secular motion

in the trap will average away the effects of these gradients leaving only the value of Brot at the
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center of the trap. Second-order spatial gradients on the other hand will lead to nonzero average

frequency shifts whose value will vary from ion to ion in a thermal sample of ions, depending

on conserved quantities of individual ion motion like the axial secular energy Ez or radial secular

energy Er, quantities with thermally averaged values of kTz and kTr, respectively, and with ion-to-

ion variation comparable to their mean values. The Brot might be generated by current-carrying

rods which are of necessity within the vacuum chamber because of the screening effects of a metal

vacuum chamber. Unless particular care is taken in the design of these rods, the second-order

spatial gradients in Brot will scale as 1/X2, where X is the characteristic size (and spacing) of

the current carrying rods. The contribution to the inhomogeneity of the time-averaged value of

Brot experienced by a thermal sample of ions orbiting in a cloud with r.m.s size r is then of order

(r2/X2)Brot, leading to an ion-to-ion frequency variability of order (r2/X2)3gF µBBrot For planned

parameters of the experiment, (r2/X2) is of order 0.01. We’ve seen from Chapter 6.5 above that

the quantity 3gF µBBrot must be at least about five times larger than ∆ in order to make the

eigenstates in the rotating fields be states of good mF . Thus in the absence of explicit apparatus

design to null the second-order spatial gradient in Brot (The rod-like electrodes that bear the charge

that generates Erot are in the second-generation trap the same objects that carry the current that

generates Brot and thus their shape is already subject to multiple design constraints) we may have

to live with a decoherence rate from this effect on the order of 0.05∆, perhaps 0.5 s−1, for the

experimental values given in Appendix A.

The inhomogeneity in Brot should reverse quite cleanly with the B-chop, and residual imper-

fections there will be cleaned up with the four-way-chop, and thus the effects of the second-order

gradients in Brot are expected to be predominantly a source of decoherence, rather than systematic

error on measured de.

6.12 Stray Contributions to B||: Static B-Field Gradients

We now return to discussing static magnetic fields, now including the effects of spatial gradi-

ents. With the characteristic size of the ion cloud r being smaller than the characteristic distance X
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from cloud center to source of magnetic field by a ratio of 0.1 or smaller, it makes sense to expand

the field about the uniform value at the trap center. The most general first-order correction to a

static magnetic field in the absence of local sources can be characterized by five linearly independent

components as follows:

~B = B′axgrad(zẑ − x

2
x̂− y

2
ŷ)

+B′trans(xx̂− yŷ)

+B′1(yx̂ + xŷ)

+B′2(zx̂ + xẑ)

+B′3(yẑ + zŷ) (6.67)

By far the most important effect of these terms is the “micromotion-axial gradient interaction.”

As discussed in Chapter 3.9, the displacement of an ion’s circular micromotion ~rrot is exactly out

of phase with the rotation of its quantization axis Ê , see Eq. 3.30 . Averaged over a cycle of ωrot,

this will give rise to a nonzero average contribution to B|| and cause a shift in W u/ℓ given by

3gF µBB′axgradrrot = 3gF µBB′axgradeErot/(Mω2
rot). A guess for a possible value of stray B′axgrad is

2 mG/cm, which for anticipated experimental parameters would lead to a shift in W u/ℓ of order

4 Hz, and this shift would survive the B-chop. As with the effect of displacement currents, one

expects the systematic effect of the shift to be reduced after the four-way chop by (δgF /gF ), but

for maximum accuracy the effect should be shimmed out of the B-field chop, either by adjusting

the value of Bshim
rot , or by applying (say with anti-Helmholtz coils external to the vacuum chamber)

a compensating value of B′axgrad.

A smaller effect arises from the interaction of the magnetic field gradient with the component

of the electric fields responsible for providing ion confinement, which after averaging over cycles of

ωrot and ωrf , always point inward, giving rise to a net inward-pointing time average of Ê . If we look

at only the component of the first-order magnetic field gradient that points towards or away from

the trap center
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~Bcentral = (B′trans − B′axgrad/2)xx̂ + (−B′trans − B′axgrad/2)yŷ + B′axgradzẑ (6.68)

The net contribution to B|| comes from integrating, along the rf and rotation micromotion

trajectories, over first a rotational cycle, and then an rf cycle, and then a secular cycle in a given

direction. We assume that the trap is sufficiently harmonic that there is no cross-dimensional

mixing of secular energy, and that hard-momentum-changing collisions are rare enough so that,

during the duration of a spectroscopic measurement, there is no change in Ei, the sum of the

kinetic and potential energy associated with an individual ion’s secular motion in the ith direction.

The contribution to B|| is then,

δB|| = ((B′trans/2− B′axgrad/4)Ex + (−B′trans/2−B′
axgrad/4)Ey + B′axgradEz)/(e Erot). (6.69)

The contribution to B|| averaged over a thermal sample of ions is given by the above expression with

Ei replaced by Ti. Note that for Tx = Ty = Tz, several terms cancel and the thermally averaged

contribution to B|| is just B′axgradEz/(2eErot). The decohering effect is comparable because within a

thermal sample, Ex, Ey, and Ez will in general differ from one another for a given ion, and between

different ions. For B′axgrad and B′trans each about 2 mG/cm, ion temperatures about 15 K, the mean

shift in Wu/ℓ for typical experimental parameters given in Appendix A might be 30 mHz, with a

comparable contribution to dephasing.

The three remaining terms in the first-order gradient, B′1, B′2 and B′3, will contribute to a shift

in B|| only when combined with other (usually small) trap imperfections, for instance the plane of

rotation of Erot being tilted with respect to principal axes of the confining potential. The net effects

will be correspondingly smaller than those from B′trans.

Just as with the second spatial derivative of Brot, the spatial derivative of B′axgrad, coupled

to a thermal spread in the size of ion orbits, can give rise to decoherence. Of course, Baxgrad is

defined already as a first spatial derivative of a magnetic field, thus the dephasing arises from a

third derivative of the field, and its rate should be down from the mean size of the shift (roughly

estimated above at 4 Hz) by a factor of order (r/X)2, or a factor of one hundred. Even spatially
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uniform B′axgrad could give rise to decoherence if there is a spatial dependence in rrot. The fractional

change in rrot is the same as the fractional change in Erot. As discussed in Chapter 3.9, this should

be smaller than 0.5% over the typical size of the ion sample.

To sum up Chapter 6.11 and 6.12, we have looked at a range of ways in which various

contributions to B|| can shift Wu and Wℓ. Decoherence due to shot-to-shot fluctuations or spatial

inhomogeneity should not be a problem out to beyond 1 s coherence times. Various effects can

shift Wu and Wℓ by as much as a few Hz, and this shift can survive a B-chop. With δgF /gF

on order of 10−4, and Eeff estimated at 90 GV/cm in ThF+, after a four-way chop the remaining

systematic error will be a few 10−29 e cm, but this can be dramatically reduced by tuning away

the post-B-chop signal with Bshim. The most dangerous systematic error would be if Brot were

systematically different between measurements on the upper and on the lower states. Chopping

between upper and lower states will be determined by variations in optical pumping, which should

be well decoupled from the mechanisms that generate Brot.

6.13 Alternative Application of Brot

It is worth considering that applying a very spatially uniform Brot may be very challenging

because of difficult-to-model eddy currents induced in electrodes and light-gathering mirrors. On

the other hand a purposely applied static B′axgrad would be perturbed only by the magnetic perme-

ability of trap construction materials, which can be minimized and modeled. One way or another

we will need to bias away from the avoided crossing discussed in Chapter 6.4, but it may turn out

that this can be accomplished with a lower total decoherence rate by omitting the applied Brot

altogether, and providing the bias with a deliberately applied B′axgrad field. The B-field chop could

be accomplished by chopping the sign of B′axgrad. The parity invariance argument of Chapter 6.4

can readily be modified to describe a chop of B′axgrad rather than a chop in Brot.
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Figure 6.5: Over one rotation of Erot, both Erf and Ez are quasistatic. The total electric field is the
sum of all three and its trajectory over one cycle of Erot is plotted as the dotted line projected onto
(a) the x-y and (b) the x-z planes. The electric field trajectory is a circle of radius Erot, parallel
to and displaced from x-y plane, a circle whose center is offset from the z-axis by Erf . In the limit
| Erf | ≪ | Erot |, the solid angle subtended from the origin by this circle differs only slighlty from
that subtended by a circle with vanishing Erf . The magnitudes of both Erf and Ez relative to Erot
are very much exaggerated for clarity.

6.14 Relativistic (Ion-Motion-Induced) Fields

The largest component of the velocity on the ions is that of the micromotion induced by Erot;

for reasonable experimental parameters it will be less than 1000 m/s. In typical lab-frame magnetic

fields of a few mG, the motion will give rise, through relativistic transformation, to electric fields of

order of a few µV/cm, which are irrelevant to our measurement. Conversely, motion at 1000 m/s

in typical lab-frame electric fields of 10 V/cm generates a magnetic field of 0.1 µG. This field will

be rigorously perpendicular to the electric field, the quantization axis, and thus represents only a

negligible modification to the generally unimportant B⊥.

6.15 Effect of RF Fields

The effects of the rf electric fields providing Paul trap confinement are best understood by

putting them in the context of a three-tier hierarchy of electric field magnitudes and frequencies.

(i) Erot, the nominally uniform, rotating electric field, with field magnitude of perhaps 10

V/cm and frequency ωrot = 2π×100 kHz.

(ii) Erf , the Paul-trap fields, are highly inhomogeneous, but at a typical displacement in the

x-y plane of perhaps 0.5 cm, the field strength might be 75 mV/cm, or two orders of magnitude less

than that of Erot, oscillating at a frequency, ωrf = 2π×15 kHz which is one order of magnitude less
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than ωrot. At a fixed point in space, the rf fields average rigorously to zero over time, but averaged

instead along an ion’s rf micromotion trajectory, the rf fields contribute to

(iii) the inward-pointing trapping electric field, again very inhomogeneous but with typical

strength down from peak rf-field values by factor of (ωrf/ωi), another order of magnitude, to perhaps

5 mV/cm. From the ion’s perspective, the direction of the trapping fields oscillate with the ion’s

secular motions in the trap, at frequencies ωi of perhaps 2π×1 kHz, the slowest time scale by an

order of magnitude.

The effects of the strong, fast Erot have been discussed extensively throughout Chapter 6, and

those of the weak, slow trapping fields were covered in Chapter 6.12. In this subsection we argue

that the rf electric fields, intermediate in both frequency and strength, are the least significant of

the three categories.

The effects of the rf fields averaged over the rf micromotion trajectory are discussed in

Chapter 6.12. The remaining part averages to zero in one rf cycle, but is roughly frozen at a single

value over the duration of one cycle of ωrot. The dominant source of the rf fields’ time-averaged

contribution to transitions Wu/l is in very small corrections to Berry’s phase energy associated

with the rotation of Erot. See Fig. 6.5. The correction to the solid angle arising from Erf goes as

(Ez/Erot)(Erf/Erot)
2. If we include a factor of ωrot to get a Berry’s energy shift and evaluate for

typical experimental parameters, the magnitude of the resulting frequency shift will be about 20

mHz, and will oscillate in sign with the axial secular motion. The magnitude of radial rf fields scales

linearly with the radial secular displacement. If secular freqencies were commensurate, in particular

if ωz = 2ωr, then this 20 mHz shift could contribute to a decoherence rate at the negligible level

of a few tens of mHz. For incommensurate ratios of ωz/ωx or ωz/ωy, the rf fields will be still less

important.

6.16 Systematic Errors Associated with Trap Asymmetries

The symmetry argument of Chapter 6.4 was based on parity invariance. This argument is

only as good as reflection symmetry of the electric and magnetic fields in the region of the trapped
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ions. In this section we look, as an example, at the consequences of a symmetry imperfection.

The electrodes used to generate Erot have been numerically designed to make Erot as spatially

uniform as possible, but imperfections in design and construction of the trap and imperfect drive

electronics will lead to some residual field nonuniformity. Suppose that the magnitude of the Erot

was consistently larger in the region of the trap for which z>0, so that the value of Erot over the

z>0 half of an axial secular oscillation is about 0.3% larger than that experienced over the z<0

half. Thus the frequency modulation of perhaps ± 500 Hz, discussed in Chapter 6.5 will no longer

average to precisely zero over an axial cycle but instead a net contribution of about 1.5 Hz to Wu.

Such a frequency shift would survive a B-field chop, and, following the protocol discussed in section

IV.F, we could very likely incorrectly identify this shift as arising from the presence of a Bstray
rot , and

apply a value of Bshim to largely null the 1.5 Hz shift. After a complete four-way chop, we would

be left with a systematic error on the order of (δgF /gF )×1.5 Hz, or about 0.4 mHz.

For the value of Eeff estimated for HfF+, a 0.4 mHz error corresponds to a systematic error

on de of the order of a few 10−29 e cm. For ThF+, the error on de would be about three times

smaller. We continue a more general discussion on systematic errors in Chapter 8.2.



Chapter 7

Other Sources of Decoherence, Collisions and Black-Body Radiation [1]

7.1 Ion-Ion Collisions

The overarching strategy of the trapped-ion approach to precision spectroscopy is to accept

low count rates in exchange for very long coherence times. In some previous precision measurement

experiments with trapped ions, the very best results have come from taking this to the extreme

limit of working with only one ion [120, 121, 122, 123, 124, 125, 126, 127], or in some cases a pair

of ions [128], in the trap at any given time. More often however, optimal precision is achieved

working with a small cloud of trapped ions. In this section various detrimental effects of ion-ion

interactions are evaluated.

7.1.1 Mean-Field

With no electrons present to neutralize overall charge, even a relatively low density cloud

of ions can have a significant mean-field potential. A spherically symmetric sample of Nion ions

confined within a sphere of radius r will give rise to a mean-field potential

Umean−field

kB
≈ 3 K×

(

Nion

1000

)(

r

0.5 cm

)−1

. (7.1)

At values of the mean-field interaction energy comparable to or larger than kBT , there is a risk

of instabilities, viscous heating, and other undesirable effects; even in their absence, systematic

errors are more difficult to analyze in the strong mean-field limit. Ion-trap experiments have been

performed at much higher mean-field strengths, and indeed there have been precision spectroscopy
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Figure 7.1: Geometric phases accumulated during an ion-ion collision. (a) A typical ion-ion collision
trajectory (red), resultant Rutherford scattering angle, θ, and ion-ion interaction electric field, Eion,
are shown in the collision plane (blue). For clarity, the collision plane has been taken perpendicular
to the instantaneous direction of Erot. (b) During an ion-ion collision the molecular axis adiabatically
follows the net electric field vector, ~Erot + ~Eion, and traces out the contour (black) on the unit
sphere (yellow). The solid angle, ∆A(θ), subtended by this contour gives rise to a geometric phase
accumulated by the eigenstates during the collision. This leads to decoherence of the spectroscopic
transition, see text.

experiments done in systems for which the interaction potential even between an individual pair

of nearest-neighbor ions is much larger than kBT . However, these systems exhibit a high degree of

spontaneous symmetry breaking including crystallization [129].

Throughout this thesis it is assumed the experiments will be done in the low mean-field limit,

say

Umean−field
<∼

1

3
kBT. (7.2)

In this limit, mean-field effects are relatively benign, and can be modeled as a modest decrease in

the trap confining frequencies, ωi, plus the addition of some anharmonic terms to the potential.

Crucially for the arguments presented in Chapter 6.4, these additional modifications do not break

any of the reflection- or rotation-based symmetries of the trapping fields. Eqns. 7.1 and 7.2 combine

to set limits on various combinations of the ion number, Nion, ion temperature, T , cloud radii,

ri ∝
√

kBT
Mω2

i

, and mean ion density, n ∝ Nion

rxryrz
. This necessitates making various compromises in

selecting operating parameters.

In Chapter 6.5, the axial component of the electric field at the ion’s location, Ez, was shown

to tilt the rotating electric field and give rise to an apparent shift of the energy of our spectroscopic

transition, linear in Ez. This energy shift integrated over time in turn gives rise to an oscillatory
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phase shift, ∆φ = ωrot

Erot

∫

Ezdt. In a one-component ion cloud, the effects of long-range, grazing-angle

ion-ion collisions may be thought of as simply a fluctuating component to the local electric field,

and the integrated effect of those fluctuations will make a random contribution to the phase shift.

We present a simple argument to show that the resulting rms spread in phase does not continue

to increase with time but reaches a steady-state asymptote. This is because Ez not only shifts the

transition energy, it also causes an axial force and corresponding acceleration, which, like the shift

in transition energy, is linear in Ez. Integrated over time, ∆pz = e
∫

Ezdt, this fluctuating force

results in a fluctuating momentum. But we know that the combined effect of a trapping field and

a large number of random collisions will not cause the rms momentum to randomly walk without

bound but rather to be loosely bounded by a characteristic thermal value,
√

〈p2
z〉 ≈

√
MkBTz.

This is the nature of the thermal equilibration process – once an ion has developed a super-thermal

momentum, further collisions are biased to reduce the momentum. Since both the phase excursion

and the momentum excursion are linear in the time-integrated axial electric field, we can estimate

√

〈∆φ2〉 ≈ ωrot

Erot

√

〈p2
z〉 ≈

√

kBTz

2Erot
. Again, as discussed in Chapter 6.5, if Erot >∼ 30kBTz, the phase

fluctuations for each ion’s spectroscopic transition will be bounded by a value less than one radian,

so that there will be no loss in spectroscopic contrast in a Ramsey-type experiment.

The argument in the paragraph above hinges on the assumption that the electric field arising

from the ion cloud’s mean-field distribution and from grazing-angle collisions is small in magnitude

compared to Erot, so that the shift in Berry energy is linear in the axial component of the electric

field. For higher values of the ion temperature or lower values of Erot, a pair of colliding ions can

get so close to each other that the electric field is, transiently, comparable to or larger than Erot.

The consequences are discussed in the next subsection.

7.1.2 Geometric Phases Accumulated During an Ion-Ion Collision

As discussed in Chapter 6.4, when a spin adiabatically follows a time-varying quantization

axis it acquires a geometric (Berry’s) phase. For the eigenstates in Fig. 2.1(b), the geometric phase

factor can be written as exp (±imFA), where A is the solid angle subtended by the contour on the
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unit sphere traced out by the time-varying quantization axis. Thus, the relative phase generated

between the |F = 3/2, mF = ±3/2〉 states used for spectroscopy is φ = 3A. The concern of this

subsection is how ion-ion collisions cause uncontrolled excursions of the quantization axis leading

to random geometric phase shifts and decoherence between spin states. These uncontrolled phase

shifts will be written as ∆φ = 3∆A to distinguish them from the calibrated geometric phases in

the experiment.

The instantaneous quantization axis for the molecular ion eigensates is defined by the net

electric field vector at the location of the ion. During a collision, this axis is defined by the vector

sum of the rotating electric field, ~Erot, and the ion-ion interaction electric field, ~Eion. Both of these

are time-varying vectors, however typical ion-ion collisions have a duration short compared to the

rotation period of Erot so for the purpose of this discussion Erot will be taken as stationary. Thus, the

problem is reduced to calculating the excursion of the quantization axis under the time variation

of Eion. A typical ion-ion collision is shown in Fig. 7.1(a) and the effect of this collision on the

quantization axis is shown in Fig. 7.1(b).

At the temperatures of our trapped ion samples, no two ions are ever close enough for the

details of the intermolecular potential to matter. Only monopole-monopole and monopole-dipole

interactions matter. Further, the translational degree of freedom may be treated as purely classical

motion in a 1/r ion-ion potential, with the initial condition of a given collisional event characterized

by an impact parameter and relative velocity. The outcome of the collision depends not only on the

magnitudes of the impact parameter and of the velocity, but also on their angles with respect to

the ambient electric bias field, Erot. Each initial condition contributes a particular amount to the

variance in the phase between the relevant internal states. These contributions can be converted

to partial contributions to a decoherence rate, and a numerical integral over a thermal distribution

of collisional initial conditions can yield the total decoherence rate. We’ve pursued this program

to a greater or lesser extent with the decoherence mechanisms discussed in this subsection and

the one immediately following, but the results are not especially illuminating and we’ve used them

primarily to confirm that the power-law expressions discussed below represent only overestimates
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of the decoherence rate, and that for experimental parameters of interest, the decoherence rate will

be conservatively less than 1 s−1.

The main question is whether T is high enough to include significant phase space for collision

trajectories for which the peak value of Eion > Erot (which is to say, large enough to transiently

tip the direction of the total field by more than a radian). If so, then a single collision can cause

decoherence and one can get a simple estimate of the cross-section for decoherence simply from

the size of the impact parameter that leads to those events. There is a significant probability for

collisions with Eion >∼ Erot when

T ≫ 18 K

( Erot
5 V/cm

)1/2

, (7.3)

which leads to a decoherence rate

τ−1 ≈ 0.47×
(

n

1000 cm−3

)(

T

15 K

)1/2 ( Erot
5 V/cm

)−1

s−1. (7.4)

If T is instead so low that the Coulomb barrier suppresses collisions that could lead to a

sufficiently large value of A and cause decoherenc with a single collision, then decoherence will arise

only from the combined effects of many collisions each causing small phase shifts that eventually

random walk the science transition into decoherence. In this regime, the decoherence rate falls off

very fast at low temperatures. For

T ≪ 18 K

( Erot
5 V/cm

)1/2

, (7.5)

typical collisions have Eion <∼ Erot and the decoherence rate is

τ−1 ≈ 0.13×
(

n

1000 cm−3

)(

T

15 K

)13/2 ( Erot
5 V/cm

)−4

s−1. (7.6)

Both Eqns. 7.4 and 7.6 represent conservative estimates of the decoherence rate, and for an

intermediate range of temperature, the decoherence rate will be less than whichever estimate gives

the smaller value (Fig. 7.2).
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Figure 7.2: Inverse coherence times, τ−1, due to geometric phases accumulated during ion-ion
collisions as a function of (a) collision energy in temperature units and (b) Erot. Dotted lines
are approximations given in Eqns. 7.4 and 7.6. Solid lines are more involved estimates based on
integrals over collision parameters, but are still based on approximations so as to be conservative.
The ion density was taken to be n = 1000 cm−3.
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7.1.3 m-Level Changing Collisions

A second source of decoherence can arise from ion-ion collisions that induce transitions be-

tween internal levels of a molecule. The dominant inelastic channel will be transitions between mF

levels induced by a sufficiently sudden tilt in the quantization axis defined by the instantaneous

local electric field. There are two conditions for such a transition to occur: (i) the direction of the

total field must change by nearly a radian or more, so that there is significant amplitude for, e.g.,

an mF = +3/2 level in the unperturbed electric field to suddenly have non-negligible projection on

an mF = +1/2 level in the collision-perturbed field, and (ii) the time rate of change of the electric

field direction must be comparable to or larger than the energy splitting between an mF = 3/2

level and its nearest mF = 1/2 level in the field Erot.

Note that the first requirement is the same as the requirement for picking up an appreciable

single collision Berry’s phase. However, not all collisions that satisfy the first requirement will

satisfy the second requirement. In particular, if the relative velocity in a collision is too low,

then the time rate of change of the electric field direction will be too slow to satisfy the second

requirement. Thus, given that the first requirement is satisfied, then the second requirement will

not be satisfied when

T < 5 K× Erot
5 V/cm

, (7.7)

In this limit, the second requirement is more stringent than the first requirement, which means that

the rate of m-level changing collisions will be smaller than the rate of single-collision Berry’s phase-

induced decoherence. In the opposite limit, we expect the second requirement will be met whenever

the first requirement is met, and thus we would expect that the two channels of decoherence, m-level

changing and single-collision Berry’s phase, will be comparable in magnitude.

Looking at particular collision trajectories in more detail, we see that there are trajectories

that can cause an m-level change but for which there is no contribution to Berry’s phase because

the electric field traces out a trajectory with no solid angle (for instance, if the classical impact

parameter ~b is parallel to ~Erot). We also note that our formulation of the requirement of sweep
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rate for m-level changing collisions neglects the fact that Eion will not only change the direction of

the total electric field (~Eion + ~Erot) but also in general will change its magnitude. For most impact

parameters, the magnitude of the total electric field will increase, thus suppressing nonadiabatic

effects. However, a narrow range of impact parameters exists where the magnitude of the total elec-

tric field decreases, thus enhancing nonadiabatic effects. However, the above scaling laws account

for the vast majority of collisions.

In the end, we are less interested in the actual rates than we are in putting conservative limits

on decoherence rates. For instance, in calculating the curves in Fig. 7.2, we pessimistically took

a worst-case geometry, Erot ⊥ Eion, which gives an upper limit on the size of the effect. Thus we

estimate that:

• For T < 5 K × Erot

5 V/cm the total collisional decoherence, including both m-level-changing

and Berry’s-inducing effects, will be less than or equal to the value given by solid curves in

Fig. 7.2, while

• For T > 5 K × Erot

5 V/cm , the total collisional decoherence will be no greater than twice as

large as the rate indicated by those curves.

7.2 Ion-Neutral Collisions

Ion-neutral collisions are troubling in our experiment due to their potential to change the

internal states of our ions as well as their potential to increase our ion temperatures. The electric

field of the ion will polarize a neutral atom or molecule giving rise to the attractive helium-ion

interaction potential,

Vint(r) = −1

2
αE2

ion(r) = −1

2
α

(

e

4πǫ0

)2 1

r4
, (7.8)

where α is the DC electric polarizability of the neutral particle and Eion is the electric field of

the ion. An effective scattering potential can be defined as the sum of the attractive helium-ion

interaction potential and the repulsive “angular momentum barrier” associated with the collision
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Figure 7.3: The effective helium-ion scattering potential for b = 0 and b ¿ 0.

(Fig. 7.3),

Veff(r) = Vint(r) +
L2

2mr2
= −1

2
α

(

e

4πǫ0

)2 1

r4
+ Ukin

b2

r2
. (7.9)

with m the reduced mass of the coliding particles, Ukin the kinetic energy of the collision, and L

the angular momentum about the center of mass of the colliding particles. The effective neutral-

ion scattering potential has a maximum value Vmax(b) = 1
2

U2

kin
b4

α(e/4πǫ0)2
. If the kinetic energy of the

collision exceeds Vmax the particles will approach r = 0 until a sharp repulsive potential, due to

Fermi repulsion of the electron clouds, is reached. The cross section for these close-range collisions

is referred to as the Langevin capture cross section,

σLC = πb2
0 = π

e

4πǫ0

√

2α

Ukin
. (7.10)

The collision rate, ΓLC = nσLCvrel, will be independent of temperature since σLC ∝ 1/
√

Ukin while

vrel ∝
√

Ukin.

For argon-ion collisions (using αargon = 1.64
◦

A
3
) we obtain,

σLCvrel ≈ 4.6× 10−10cm3/s. (7.11)

Noble gases have increasing values of α as you move to heavier atoms, with the effects of higher

mass and higher α mostly cancelling in the collision rate, therefore our choice of carrier gas is not

strongly influenced by this issue. The 1% of SF6 mixed into our expansion gas will have a similar

value of σLCvrel, making it unimportant in this analysis. The cross section for rotation changing
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collisions will likely be approximately equal to σLC [130], giving a limit on our background gas

pressure of ∼ 5×10−8 Torr for a 1 s−1 decoherence rate.

Our ultimate limit on background pressure will likely come from another ion-neutral collision

issue. The polarized helium atom produces a dipole electric field at the molecular ion given by

~EHe(r) = EHer̂ =
1

4πǫ0

2α

r3
Eionr̂ =

2αe

(4πǫ0)2
1

r5
r̂. (7.12)

Large values of ~EHe will lead to Landau-Zener non-adiabatic transitions of our magnetic sub-levels,

as the quantization axes is defined by the electric field. A naive estimate involves finding the

ion-neutral separation such that ~EHe = Erot and assuming this is the critical impact parameter for

non-adiabatic transitions. This gives,

σLZ ≈ π

(

2αe

(4πǫ0)2
1

Erot

)2/5

. (7.13)

Increasing Erot would seem to mitigate this issue. However, the rotational micro-motion of our

ions will begin to dominate vrel as Erot is increased. For typical values found in the appendix,

the rotational micromotion will have a velocity of ≈ 350 m/s, while the thermal velocity of argon

atoms is ≈ 250 m/s at 300 K. The non-adiabatic collision cross section using an argon buffer gas

and Erot = 5 V/cm is ≈ 120 nm2, limiting our pressure to <∼ 1 × 10−9 Torr. This is approaching

the limit of our turbomolecular pumps and requires significant differential pumping between the

source chamber (which will have pressure spikes in the 10−4 Torr range when the pulse valve fires)

and the ion trapping chamber. The 1/e pumping rate of our vacuum system is on order 10 ms,

and some time could be allowed between ion creation and state preparation in order to reduce the

differential pumping requirements. If the ions are created in the 1Σ state and transferred to the

3∆1 state, more wait time could be afforded than if the ions are created directly in the 3∆1 level.

7.3 Rotational and Vibrational Excitations from Black-Body Radiation

Our spin coherence time can also be limited by excitations to higher rotational and vibrational

states from black-body radiation. The number of photons per mode, n̄, in a black-body radiation
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field is:

n̄ =
1

e
hν
kT − 1

(7.14)

which, in the limit of hν >> kT reduces to kT
hν . The ratio of stimulated to spontaneous emission

for a transition is simply n̄. The rotational constant for a typical fluoride containing candidate

molecule in this experiment is ∼ 0.3 cm−1, which gives an ∼ 1.2 cm−1 splitting between the J =

1 and J = 2 rotational levels. This means that 300 K black-body radiation will excite the J =

1 state to the J = 2 state at a rate ≈ 174 times faster than the spontaneous decay rate from J

= 2 to J = 1. Fortunately, radiative decay rates for rotational transitions tend to be quite slow.

To estimate this, we take the transition dipole moment,µ21, to equal the molecular frame dipole

moment of ≈ 1.2 atomic units [64]. The spontaneous decay time is then given by

τspon =
3ǫohc3

2ω3
21µ

2
21

, (7.15)

with ω23 being the transition frequency. This gives a spontaneous lifetime of ≈ 1.2×105 s, and

black-body radiation at 300 K should take ≈ 670 s to excite a 3∆1 molecule from the J = 1 state

to J = 2.

Given a transition dipole moment, it is interesting to ask at what resonance frequency will

black-body radiation have the highest excitation rate. Fig. 7.4 shows a plot of black-body excitation

rate versus the dimensionless quantity hν/kT . We see that the peak rate lies at ≈ 2.82. At 300 K

this corresponds to 590 cm−1, which happens to lie near the vibrational transitions of our molecules.

For HfF+ the vibrational constant is ≈ 750 cm−1, with an n̄ ≈ 0.028 for a 300 K black-body. The

vibrational decay rate for v = 2 to v = 1 in the 3∆1 state is estimated [64] to be 184 ms. Black-body

radiation will therefore limit our coherence time to <∼ 6 s.
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Figure 7.4: Relative black-body excitation rates assuming a constant transition dipole moment
versus the dimensionless parameter hν

kBT . The peak lies near our vibrational energy spacing for a
300 K black body.



Chapter 8

Conclusions and Sensitivity Estimate [1]

8.1 Precision

Recall from Chapter 1.4 the three components to the sensitivity figure-of-merit: coherence

time, Eeff , and count rate. We estimate these three quantities below.

8.1.1 Coherence Time

Conclusions of Chapters 6 and 7: Taking into account only collisional decoherence, and all

the questions associated with being in rotating fields and in trapping fields, we would anticipate

a coherence time longer than one second. Black-body thermal excitation of the J = 1 rotational

level will also be well over one second. Vibrational black-body excitation for the v = 0 state is

estimated at 6 s for HfF+ in a 300 K environment. Thus the dominant limitation to coherence will

likely be the radiative lifetime of the 3∆1 state, estimated [64] at 390 ms for HfF+, and still longer

for ThF+, for which the 3∆1 state is predicted to be still lower in energy. Lifetime estimates of the

3∆1 level are made difficult by the small transition energy, calculated to be 1600 cm−1 in HfF+

with large relative error, and the uncertain transition dipole moment, due to a large uncertainty in

determining the mixture of 1Π character into the nominally 3∆1 state.

8.1.2 Eeff

Eeff in HfF+ is calculated by Meyer and coworkers to be 30 GV/cm [52], and by Titov et

al. to be 24 GV/cm [54]. For ThF+, Meyer calculates 90 GV/cm [52]. The uncertainties in these
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numbers are hard to assess, but they are very likely accurate to better than a factor of two and,

if ongoing spectroscopic studies provide experimental values of hyperfine and fine structure that

confirm the ab initio values predicted by the St. Petersburg group, our confidence in the precision

of calculated Eeff may be much higher.

8.1.3 Count Rate and Summary of Expected Precision

We are producing HfF+ ions by photoionization in a relatively narrow range of quantum

states, and can estimate yield per quantum level within the desired trapping volume at perhaps

100 ions per shot, but we have just begun to characterize the efficiency of the process and very little

optimization has been done. Our efficiency for reading out spin states of trapped ions via laser-

induced fluorescence (LIF) is at best 4%, and has not yet been tested. With a large uncertainty,

then, we may detect about one ion per shot with four shots per second. Even if we detect as many

as four ions in a shot, single shot precision will be no better than 300 mHz, but overall, precision

in one hour could be about 10 mHz. For ten hours of data, we anticipate (very roughly) a raw

precision at 5× 10−28 e cm in HfF+, and 1.5× 10−28 e cm in ThF+. We are investigating several

alternatives to LIF for spin readout as discussed in Chapter 4.

8.2 Accuracy, Systematic Error

We have not completed a systematic study of the consequences of all possible violations of

reflection symmetry in the trapping fields, but work in this direction is ongoing.

For now, we make the following three observations:

i) For the field asymmetries we have analyzed to date, realistic estimates for the magnitude

in as-constructed field imperfections lead to systematic errors on the order of a few 10−29 e cm

or less. While this is not yet as accurate as our ultimate ambitions, it would represent roughly a

factor of thirty improvement on the existing best experimental limit.

ii) Asymmetries analyzed to date lead to systematic errors whose signs reverse when the

direction of rotation ωrot reverses. If we combine measurements made with clockwise and coun-
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terclockwise field rotation, the errors vanish. Ideally, we’d like to design sufficient accuracy into

the experiment so that the chop in field rotation is not needed to achieve desired accuracy, but

as a practical matter we will of course run the experiment both ways, averaging the results to get

ultimate accuracy, and differencing them to diagnose experimental flaws.

iii) Auxiliary measurements are envisioned to characterize and shim out flaws in the as-

constructed trap. For instance, we plan to be able to shim the equilibrium position of the ion

cloud up and down along the trap axis, and at each location measure the energy difference Eb-Ed.

Unlike Ea-Eb, Eb-Ed is highly electric-field sensitive. The result will be a precise measurement of

any spatial gradient in Erot.

iv) All systematic errors we have analyzed to date have strong dependencies on quantities

such as ωrot, Brot, Erot, and on the ion-cloud temperature and trap confining frequencies. A true

signal from a nonzero value of de will be largely independent of all those quantities. We anticipate

making a number of auxiliary measurements with the experimental parameters tuned far away from

their optimal values to deliberately exaggerate the size of systematic errors and allow us thus to

characterize their dependencies in less integration time than that required for ultimate sensitivity.

Even so, and as is often the case in precision measurement experiments, sensitivity and accuracy are

coupled. To the extent we can measure de to high precision at many combinations of experimental

parameters, we will better be able to detect and reject false signals.

As an overarching conclusion, the experiment as described here should have the capability to

improve the limit on the electron’s electric dipole moment to 10−29 e cm.

8.3 The Future

Experimentally there are two major ongoing efforts. Sinclair et al. are working on measuring

excited electronic states of HfF+ and ThF+ using novel femto-second comb, cavity enhanced spec-

troscopy. On the ion trapping side of things, Huanquian is leading the efforts to state-selectively

load HfF+ ions by photoionization and recent progress has been made in measuring the rotational

populations of ions produced via photoionization. The construction of the next generation ion trap
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is also ongoing. Obviously, I have graciously left much work for my labmates and future generations

of students to perform before a measurement of the electron EDM can be made. As Eric might

say, it could take weeks of effort after I’m gone to publish a new limit (or value!) on the eEDM.

To the younger generations, I say good luck!

Our scientific goal has always been clear, measure the eEDM, while the means to that goal

has been the focus of my graduate school efforts. We have been building a highly specialized ham-

mer for a very particular nail. Of course, it has been said that once you have a hammer, every

problem looks like a nail. It is therefore tempting to think of possible nails lying around that

might suit our particular hammer once we have completed the eEDM work. There has been a

proposal [131] that molecules such as HfF+ could be useful in measuring time variations of funda-

mental constants. Here near degenerate levels whose energies have very different dependencies on α

and me/mp might be found using excited vibrational levels of the 1Σ and 3∆1 levels. The potential

for long interrogation times of our trapped ions could yield sensitive measurements. Molecular

ions sympathetically cooled by laser cooled atomic ions have many potential uses as discussed

in [132], including studies of cold ion-neutral chemistry. There have also been proposals [133, 134]

to use molecules for quantum information processing with the quantum information encoded in

the rovibrational eigenstates of the molecule. Such a scheme with trapped molecular ions could

have practical advantages over alternative molecular quantum information proposals that involve

trapping ultracold neutral molecules and using dipole-dipole interactions for entanglement [135].

Trapped molecular ions, in combination with a superconducting microwave resonator, could also

be used in quantum information systems [136].
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Appendix A

Typical Experimental Parameter Values

deEeff = 2π × 0.36 mHz, transition energy between mF = +3/2 and mF = −3/2 states in ThF+ if

de = 1.7 x 10−29 e cm.

dmf = +1.50 a.u. ≈ 2π × 2 MHz/(V/cm), electric dipole moment of HfF+ in the molecular rest

frame.

Erot = 5 V/cm, rotating electric field.

ωrot = 2π × 100 kHz, frequency of rotating electric field.

Erot = 1800 K, typical kinetic energy in rotational micromotion.

rrot = 0.6 mm, radius of circular micromotion.

dmfErot = 2π × 10 MHz.

(3/2)γF=3/2dmfErot = 2π×5 MHz, Stark shift of mF = ±3/2 states of 3∆1 levels in rotating electric

field.

ωef = 2π × 10 kHz, Λ-doublet splitting between opposite parity 3∆1 J=1 states.

gF=3/2 = 0.03, magnetic g-factor in 3∆1 mF = ±3/2 states.

Brot = 70 µG, rotating magnetic field.

3gF µBBrot = 2π× 8 Hz, Zeeman splitting between mF = +3/2 and mF = −3/2 states due to Brot.

δgF=3/2/gF=3/2 ≈ 3 × 10−4, fractional difference of magnetic g-factor for upper and lower levels,.

∆ ≈ 2π × 2 Hz, splitting at the avoided crossing between mF = +3/2 and mF = -3/2 levels.

B⊥ = 25 mG, anticipated scale of transverse magnetic field.

r = 0.5 cm, characteristic rms radius of trapped ion cloud.
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T = 15 K, characteristic temperature of trapped cloud.

ωi = 2π × 1 kHz, typical trap confining frequency.

Ez = 5 mV/cm, typical axial electric field applied for confinement.

Erf = 75 mV/cm, typical Paul trap electric field strength, at typical cloud radius.

< Erf > = 5 mV/cm, typical radial confining electric field, averaged over one Paul cycle.

ωrf = 2π × 15 kHz, typical “rf freq” for Paul trap.

Erf = 15 K, typical kinetic energy in Paul micromotion.

Ehf = 2π × 45 MHz, hyperfine splitting between F = 1/2 and F = 3/2 states of 3∆1 J=1 level.


