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Stewart, John (Ph.D., Physics)

Probing a strongly interacting Fermi gas

Thesis directed by Professor Dr. Deborah S. Jin

This thesis presents experimental work probing a strongly interacting Fermi

gas of atoms. The work presented here contributed to the demonstration that

strongly interacting Fermi gas systems are accessing universal physics. The uni-

versality of these systems means that we can use an atomic Fermi gas to gain

an understanding of strongly interacting Fermions occurring elsewhere in nature,

such as nuclear and neutron matter, high transition temperature superconduc-

tors, and the quark-gluon plasma. Once the universality of these systems was

verified, experiments were performed to extract the microscopic quantities of an

atomic Fermi gas. These experiments employ a technique akin to photoemission

spectroscopy for electrons found in condensed matter physics. The photoemis-

sion spectroscopy experiments presented here directly reveal the spectral function

which contains many valuable microscopic quantities such as the energy dispersion

and quasi-particle lifetime. These experiments provide stringent tests of many-

body theories.
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Chapter 1

Introduction

1.1 Strongly interacting Fermi systems

Strongly interacting Fermi systems (sometimes called strongly correlated

Fermi systems) present some of the most intriguing and unsolved problems in

modern physics [1]. This is quite remarkable considering many of these strongly

interacting systems have been studied for many decades. Perhaps the reason these

systems have stayed at the forefront of physics for so long is that a complete theory

built from the ground up is computationally impractical in reasonable timescales.

In addition, experimental progress can be difficult (experiments may require ex-

tremely low temperatures, high densities, very high magnetic fields, extremely

clean samples, etc.). Ultimately, I suspect it is the varied and counterintuitive

properties of strongly interacting systems that keeps the human mind so baffled

and intrigued. From a practical point of view, strongly correlated systems can

have useful properties for device applications, giving further motivation to under-

stand these systems.

Of course, there are many systems that do not require a many-body under-

standing to explain observed phenomena. For example, the properties of simple

metals can be explained rather accurately by simply assuming the electron is a

non-interacting particle [2]. Non-interacting in this sense means assuming the

electron (fermion) does not interact with the other electrons in the system, it is
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a free particle. The atomic gas analog here would be the ideal Fermi gas. When

allowing for interactions between the fermions, amazingly, many phenomena can

be described by again assuming that the electrons are free particles but that the

effect of interactions is to simply renormalize the system, for example the fermion

mass as in Fermi liquid theory. Despite the success of these simple theories, there

exist interesting phenomena in interacting Fermi systems that cannot be described

within the free-particle framework.

The special types of interacting Fermi systems I refer to exhibit strong pair-

ing interactions between pairs of spin-up and spin-down fermions. These strongly

interacting Fermi systems can be found in superconductors, neutron and nuclear

matter [3, 4, 5, 6], the quark-gluon plasma [7], and now include the atomic Fermi

gases we study in this thesis. An important feature for these systems is that they

exhibit universality [5, 8, 9, 10]. Universality here means that for these strongly

interacting Fermi systems, the details of the microscopic interaction are not im-

portant and at zero temperature the interparticle spacing becomes the only length

scale. This is a most important feature because it means we can study any one of

the systems to learn about the others. This is quite remarkable when you consider

that the atomic Fermi gas system stands apart from its counterpart systems by

many orders of magnitude in density and temperature.

Intrinsic to this special class of strongly interacting Fermi systems is fermionic

superfluidity. The existence a well defined Fermi surface and attractive interac-

tions between spin-up and spin-down fermions can lead to superconductivity in

metals or, more generally, fermionic superfluidity [11, 12, 13]. Superconductors

exhibit zero resistance, or persistent current, while superfluids exhibit persistent

flow and vortices [14, 15]. Throughout this thesis I will mostly refer to superflu-

idity because we will be working with neutral atoms. Regardless, many of the

properties of the atomic Fermi gas we study in this thesis such as high transition
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temperature, small pair size, and pseudogap, are relevant for charged supercon-

ductors [16, 17].

At this point there is a fairly natural question: why study strongly inter-

acting Fermi systems using ultra-cold atoms if they are already so thoroughly

studied? Firstly, some of the other strongly interacting Fermi systems examples

are hard or even impossible to achieve in the laboratory (such as degenerate neu-

tron matter) and therefore are hard to study thoroughly. Even condensed matter

experiments, which can be achieved in the laboratory setting, are subject to impu-

rities, lattices, grain boundaries, etc., which can easily complicate what is already

complicated physics. The atom gas, in contrast, is impeccably pure and simple.

Secondly, atomic systems introduce a degree of control not easily found in the

other strongly interacting Fermi systems. For example, one cannot easily change

the density of a neutron star, or change its temperature. Or, in electron systems,

one cannot typically change the interaction strength between fermions, something

easily tuned in atomic systems. Using our simple, pure, tunable atomic Fermi gas,

we can help to understand unexplained phenomena found in these other systems

at a very basic level. Additionally, we can easily use our tunability to enter into

new and interesting regimes that may have not even been realized previously.

1.2 Ultra-cold atomic Fermi systems

Atomic systems provide an opportunity to study many-body problems in

a system that is relatively free of complexity and very well understood at the

few-body level [18]. In particular, atomic Fermi gases are very valuable in testing

many-body theories because they are simple, pure, tunable samples with smooth

density profiles. Then, as the underlying physics becomes known, one can then

introduce lattices [19], impurities [20], disorder [21, 22], etc., to the atomic system

to simulate real material properties with a ground-up understanding.
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Before addressing the interesting physics we can study with our atomic

Fermi gas, I think it is worth appreciating all the recent and rapid progress in

atomic physics that allowed us to get to this point. Considering Bose-Einstein

condensation (BEC) was achieved experimentally only 14 years ago [23, 24], it

is quite remarkable that we can already use our atomic Fermi gas to gain new

understanding of such a wide variety of strongly interacting Fermi systems. The

major breakthroughs in atomic physics that led to BEC, namely laser cooling and

evaporative cooling, were applied to cool fermions. Because the quantum statistics

of the particles does not manifest until very cold temperatures, a gas of fermions

can be initially cooled using the same techniques as bosons. However, below a

temperature of order 20 µK, the atoms are cold enough that they collide only via

s-wave scattering, where the orbital angular momentum of the colliding particles

is zero [25]. However, since identical fermions cannot collide via s-wave scattering

(the two-particle wave function must be anti-symmetric upon exchange of the

particles), the cooling of fermions requires at least two distinguishable particles.

The first experiments to overcome this obstacle and create a quantum degenerate

gas of fermionic atoms occurred here at JILA, in 1999, on the same machine as

the experiments in this thesis [26].

Although the creation of a quantum degenerate gas of fermions was already

a remarkable achievement, it was not the ultimate goal of the experiment. As it

turns out, when one creates a degenerate non-interacting Fermi gas it does not

undergo a phase transition as in the case of bosons. Instead the fermions simply

fill every available energy level up to the Fermi energy, forming the so-called Fermi

sea [26, 2]. The next natural step was to tune the interactions in the system. In

fact, it had been proposed that if one could increase interactions to be suitably

strong, by using a scattering resonance known as a Fano-Feshbach resonance,

then the transition temperature to the superfluid state could be within reach for
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experimenters [27, 28, 29]. The requirements for achieving superfluidity: a colder

and more strongly interacting gas, were non-trivial and pursued here at JILA

with the culmination of fermionic superfluidity [30, 31]. Obviously, JILA was not

the only place where experimenters were creating these exciting new Fermi gases.

The creation of other degenerate interacting Fermi gases, including 40K [32], 6Li

[33, 34, 35, 36, 37] and now 176Yb [38], as well as some I’ve certainly forgotten,

are being pursued all over the world.

The ability to tune interactions is one of the unique features of the atomic

gas. The Fano-Feshbach resonance allows one to access attractive or repulsive

interactions at arbitrary strength. On one side of the Fano-Feshbach resonance,

there exists attractive interactions and one can in principle study BCS-like super-

fluidity. On the other side of the resonance, there exists a two-body bound state

and pairs of fermions, which are composite bosons, can Bose condense. In be-

tween these two limiting cases is the so-called BCS-BEC crossover. This crossover

from BCS physics to BEC physics was proposed [39, 40, 41] well before atomic

gas experiments had achieved quantum degeneracy. However, the ability to tune

interactions in atomic gases makes them well suited for realizing this crossover.

Indeed, the next step in the evolution of atomic Fermi gases was to control inter-

actions for just this purpose [42, 43, 44, 45, 35].

A particularly exciting regime within the BCS-BEC crossover occurs for

very strong attractive interactions in which a pseudogap exists. The concept of a

pseudogap will be discussed later in more detail in this thesis but for now it serves

as another connection to work done in condensed matter physics. The pseudogap

has been discussed in relation to high-Tc superconductors [46] and is a feature

of virtually every BCS-BEC crossover theory. Finally, for a review of the early

works on the BCS-BEC crossover I recommend the theses of C. A. Regal [47], M.

W. Zwierlein [48], and G. B. Partridge [49].
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1.3 The work presented here

In the previous sections I attempted to set the stage for the work done in

this thesis. I was handed a new shiny toy and told to play with it. The hard

work of many groups throughout the world had effectively opened a new field of

physics: ultracold strongly interacting atomic Fermi gas physics. To help set the

stage for this thesis, I would recommend the thesis of my two predecessors who

were instrumental in opening this new area of physics: Brian DeMarco [50] and

Cindy Regal [47]. I began my thesis work in the Summer of 2004. At my disposal

was an ultracold Fermi gas with tunable interactions. Temperatures on order of

half the superfluid transition temperature were already achievable. The phase

diagram throughout the BCS-BEC crossover had been mapped out [30] (see Fig.

1.1), collective excitations [51, 52] and momentum distributions [53] had been

studied, and vortices had been observed [54].

By the time I began my thesis work, superfluidity in atomic Fermi gas

systems was so thoroughly established that we were really in a position to ask:

what can this experiment teach us about strongly interacting systems? As we

have argued, atomic Fermi gases are simple, pure, tunable systems well poised to

test many-body theories. Therefore, a natural way to proceed in answering the

above question is to design experiments that can provide stringent tests of (and

differentiate between) various many-body theories. In this thesis, I will describe

two experiments that we performed towards answering the question of just how

much atomic Fermi gases have to offer.

The first experiment I will describe brings us back to the topic of universality.

In order to use our Fermi gas experiment to shed light on the general class of

problems dealing with strongly interacting Fermi systems, we first had to prove

that our system was universal. In a very clear way we were able to prove this by
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Figure 1.1: Phase diagram of condensate fraction across the BCS-BEC crossover.
Figure taken from Ref. [30] showing condensate fraction as a function of temper-
ature and magnetic field. Positive magnetic field tends toward the BCS side and
negative magnetic field tends toward the BEC side. Measurements such as this
established superfluidity in the strongly interacting Fermi gases.
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measuring the potential energy of the Fermi gas a function of interaction strength

[55]. Measuring the potential energy allowed us to extract a universal parameter,

β, that was actually first proposed in nuclear theory and later applied to atomic

Fermi gases [5]. The value of β we measured agreed well with previous results

using a different atom, 6Li [43, 56, 45, 35, 57, 58, 59], as well as many different

theoretical approaches [6, 60, 61, 62, 63, 64, 65, 66, 67]. This agreement showed

that although the microscopics of two atomic Fermi gases may be quite different

they are indeed probing the same universal physics. More importantly, it means

that we can invoke universality to apply our results to a wide class of problems.

The measurement of β, as well as every other previous experiment in atomic

Fermi gases, was a probe of the Fermi gas as a whole. Indeed, many of the early

experiments on Fermi gases were probing macroscopic quantities of the system.

On one hand, macroscopic quantities are already very interesting. For example, a

precise measurement of β or collective oscillations allows the delineation between

different many-body theories. On the other hand, if one could measure microscopic

quantities of the system then one could have a much more stringent test of many-

body theories. This goal was the driving motivation for the second experiment I

will describe.

Let us take for example measurements in condensed matter systems. In

condensed matter systems, if one can make a large variety of bulk measurements

on a material (thermal and electrical conductivity, transition temperature, heat

capacity, and many others) then there are enough constraints to say something

meaningful about the system. However, in condensed matter physics, there also

exists a measurement that has greatly improved the understanding of the micro-

scopic quantities. Using angle resolved photoemission spectroscopy (ARPES) [68],

experimenters have been able to map out the spectral function for many interest-

ing strongly interacting systems and determine quantities such as the dispersion,
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quasi-particle lifetime, energy gaps, etc. This technique is particularly powerful

because once the spectral function is known these microscopic quantities can be

directly compared to theory at a very fundamental level. Additionally, one can in

turn determine many useful macroscopic quantities.

Using the condensed matter paradigm, it was natural to consider designing

an ARPES type experiment for our atomic Fermi gas. In the second experiment

I will discuss, we have implemented an ARPES technique for our Fermi gas and

indeed we have uncovered valuable microscopic information about our system

[69]. At the time of the writing of this thesis, the ARPES result we published

is less than one year old. However, the microscopic information we obtained has

already generated substantial theoretical interest and our data is being used to

validate theories and point out possible discrepancies [70]. Also, due to the broad

applicability of our new technique it will be exciting to see it implemented into

other atomic gas experiments, including interacting bosons, optical lattices, spin-

imbalanced systems, rotating systems, lower dimensional systems, etc. If we again

look to the condensed matter experiments, ARPES can be used to study dynamics

as well. Therefore, I suspect the ARPES technique described in this thesis will

be a very valuable tool for many years to come.

1.4 Thesis Outline

The two main topics that I will discuss in this thesis (universality in Fermi

gases and photoemission spectroscopy for Fermi gases) were described in Ref. [55]

and Ref. [69], respectively. I will begin, in Chapter 2, by briefly describing the

experiment techniques and the atomic physics used to create an ultra cold Fermi

gas with strong interactions. In Chapter 3, I will discuss significant changes in

the apparatus that have occurred during my tenure. Chapter 4 will describe uni-

versality in Fermi gases and our measurement of the parameter β. The rest of the
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thesis will cover radio frequency (RF) spectroscopy and ARPES for Fermi gases.

In Chapter 5, I will give a historical review of radio-frequency (RF) spectroscopy

and the lessons learned. Chapter 6 will describe ARPES and our experiments

on atomic Fermi gases. Finally, in Chapter 7, I will conclude and remark about

future prospects.



Chapter 2

Creating an ultra cold Fermi gas with strong interactions

In this chapter I will discuss both the machinery needed to create a cold gas

as well as the atomic physics used to create an interacting sample. For a more com-

plete account of the cooling machinery I recommend the thesis of Brian DeMarco

[50]. For a more complete account of the physics of Fano-Feshbach resonances and

BCS-BEC crossover physics I recommend the thesis of Cindy Regal [47]. My goal

here is simply to cover the basics needed for creating a cold interacting sample and

to cover aspects of the experiment I think are particularly interesting or relevant

for the rest of this thesis. Significant changes to the experimental apparatus are

discussed in Chapter 3.

2.1 Creating a cold sample

Briefly, the procedure for creating a cold interacting Fermi gas in our exper-

iment begins by collecting atoms in magneto optical traps (MOTs). From here,

the atoms are loaded into a magnetic trap for a first stage of evaporative cooling.

Finally, the atoms are transferred into an optical trap for a final stage of evap-

orative cooling. Once we have conducted an experiment, we extract information

from the system by letting the gas expand from the optical trap and destructively

imaging the atoms. I will now go into more detail to give a brief account of the

trip an atom takes during one of our two minute experiment cycles.
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2.1.1 MOTs and magnetic trap evaporation

As I mentioned earlier, many of the cooling techniques used in this ex-

periment are re-creations of the techniques used to make the original BEC here

at JILA. The double-MOT setup for this experiment is no exception [71]. The

double-MOT takes advantage of two different vacuum chambers that are con-

nected by a transfer tube. One vacuum chamber, the collection chamber, has a

higher pressure due to the atomic sources that allow for high atom number cap-

ture. Then, the trapped atoms are transferred into a second chamber through

the transfer tube. In the new chamber, the science chamber, the pressure is much

lower allowing for trapped atom lifetimes on the order of 100 seconds. It is in this

new chamber that the rest of the experiment takes place.

Atoms from the science chamber MOT are then transferred into a magnetic

trap after using optical pumping to ensure that the atoms are in magnetically

trappable spin states. Evaporative cooling is performed on the mixture of two

spin states by removing the most energetic atoms via microwave spin-flip tran-

sitions to magnetically untrapped states. As the cloud rethermalizes to a lower

temperature, the microwave frequency is reduced to continue removing the most

energetic atoms. This process continues until we have a near quantum degenerate

gas. At the end of this stage of the experiment, which takes on order 60 seconds,

we have approximately ten million atoms at 5-7 µK. The degeneracy of the cloud,

expressed as a ratio of the temperature to the Fermi temperature (TF = EF/kb,

where kb is Boltzmann’s constant) is around T/TF = 3.

2.1.2 Optical trap evaporation

Once we have achieved these conditions in the magnetic trap we transfer

the atoms into a far-off-resonance optical dipole trap. The motivation behind
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this is three-fold. Firstly, the Fano-Feshbach resonance requires the atoms to be

in particular Zeeman states. The exact states depend on the particular Fano-

Feshbach resonance and atoms in these states are not necessarily magnetically

trappable. Also, manipulating the atom-atom interactions near the Fano-Feshbach

resonance requires one to tune the magnetic field. This can be complicated if one is

trying to simultaneously trap the atoms using spatially inhomogeneous magnetic

fields. More ideal is to optically trap the atoms and then apply a simple uniform

magnetic field. Lastly, we have found that lower temperatures can be achieved if

we finish the evaporation using optical trap evaporation as compared to magnetic

trap evaporation. The most obvious reason is that the heating rate in the optical

trap is very low, around 5 nK/s [47].

We achieve evaporation in the optical trap by reducing the power in the

optical trap beam. A nice explanation of optical traps can be found in Ref.

[72]. Reducing the power lowers the depth of the trapping potential the atoms

experience. In this way, a similar forced evaporation occurs as in the magnetic

evaporation stage because the most energetic atoms spill over the top of the po-

tential and leave the trap. Evaporation in the optical trap is also much quicker

due to the higher trapping frequencies. We evaporate the atoms transferred into

the optical trap in about ten seconds and can typically produce a cloud of 105

atoms per spin state at a degeneracy of T/TF = 0.10(1).

We conduct evaporation in the optical trap with at mixture of atoms in two

Zeeman states, the |f,mf⟩ = |9/2,−9/2⟩ state and the |9/2,−7/2⟩ state, where

f is the total atomic spin and mf is the magnetic quantum number. These states

are stable against spin-changing collisions and with them we reach our coldest

temperatures. We conduct the majority of the optical trap evaporation at high

magnetic field. Typically, we set the magnetic field at 205.7 G (on the atom side of

the |9/2,−9/2⟩ + |9/2,−7/2⟩ Fano-Feshbach resonance located at 202.1 G) where
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the s-wave scattering length is approximately as = −800a0, where a0 is the Bohr

radius. The large magnitude scattering length provides a large scattering cross

section without a large inelastic loss rate (at our densities, which are typically

between 1012 cm−3 and 1013 cm−3). In addition, at this magnetic field we can

then easily access the Fano-Feshbach resonance.

2.1.3 Absorption imaging and thermometry

Absorption imaging is the method by which we obtain nearly all the in-

formation we gather from the atoms. Once the final stage of evaporation in the

optical trap has occurred and we have performed an experiment, we turn off the

optical trap and let the gas ballistically expand for approximately ten millisec-

onds. We then apply a short resonant laser pulse to the atoms. Atoms in the

cloud scatter photons and we capture the shadow of the atoms on a CCD camera.

This type of imaging is referred to as time-of-flight absorption imaging.

Our imaging is done almost exclusively at magnetic fields near the Fano-

Feshbach resonance, around 200 G, or “high-field imaging” as we call it. At these

field strengths the transitions for imaging different Zeeman states are far enough

separated that we can image spin-selectively. Typically, we are able to nearly

simultaneously image atoms in the two spin states for each experiment. To achieve

the highest signal-to-noise, we try to always image atoms in the |9/2,−9/2⟩ state.

Imaging atoms in the |9/2,−9/2⟩ state gives the best signal-to-noise ratio because

there is a closed cycling transition to the |11/2,−11/2⟩ excited state.

Because we image the gas after ballistic expansion, we can obtain informa-

tion about the atoms’ momenta. In the simplest case of non-interacting atoms,

an atom continues in the trajectory it had at the moment the trap was turned off

(modified by gravity of course). Thus, for sufficiently long expansion times, the ab-

sorption image yields the momentum distribution. We then apply a least-squares
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surface fit to the expected Fermi-Dirac momentum distribution to determine the

number of atoms, their temperature and quantum degeneracy (T/TF ).

Ultracold Fermi gases have some intriguing behavior that make determining

the temperature challenging. For example, for temperatures higher than about

0.5TF the Fermi-Dirac distribution is well approximated by a classical distribu-

tion, and deviations from this classical distribution are small and hard to extract.

Of course, in this limit, the temperature can be extracted from the width of the

cloud. On the other hand, for temperatures lower than about 0.1TF , the momen-

tum distribution has approached the zero temperature limit where the width of

the distribution reflects only the Fermi energy. In this limit, any deviations from

finite temperature occur right around the Fermi energy and are hard to detect in

the 3D trapped distribution.

A substantial portion of my early lab work was set toward understanding

temperature in these ultra-cold Fermi gases and trying to design new thermome-

ters. I composed a simulation to understand the fundamental limits of our imaging

and fitting routines. I also attempted to use condensate fraction as a thermometer

with limited success. Finally, I attempted a clever technique mentioned in Cindy

Regal’s thesis, which was to use a third fermion as a thermometer. Again, this

technique had limited success. Since I find this topic interesting and the results of

my findings were not trivial (although not that applicable to the rest of this thesis)

I include additional information in Appendix A where I discuss thermometry of

ultracold Fermi gases.

2.2 Controlling interactions

In this section I will discuss how we manipulate the interactions between

particles in our experiment. As I mentioned earlier, the use of Fano-Feshbach

resonances was already a fairly standard technique by the time I began my thesis
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work. As such, it will not be my goal here to give a complete overview of Fano-

Feshbach resonances, but simply to outline their basic properties and how we use

them in the experiment. This section will also be useful for understanding some

of the terminology for the rest of the thesis. In particular, the way we characterize

the interactions will be discussed. Finally, I will briefly explain how Fano-Feshbach

resonances are used in the study of the BCS-BEC crossover.

2.2.1 Fano-Feshbach resonances

Fano-Feshbach resonances [73, 74, 75] are used to vary the interactions be-

tween particles in our system. As we learned in the previous section, these gases

are in the ultracold regime and therefore are dominated by s-wave collisions. As

such, the interactions can be understood in terms of the s-wave collision cross sec-

tion, σ = 4πa2, where a is the s-wave scattering length. To change the interactions

we need to change a.

Away from a Fano-Feshbach resonance the background scattering length in

40K is abg = 174a0 [31], where a0 is the Bohr radius. A Fermi gas at this interaction

strength, for our typical temperatures and densities, is a very weakly interacting

gas. Or, to put it another way, the mean-field energy, 2~
m
(na), for a gas at this

interaction strength is on the order of 0.01 of the Fermi energy. Therefore, to

create a strongly interacting Fermi gas we need a way to change the scattering

length by orders of magnitude.

To give a feel for how a Fano-Feshbach resonance allows us to vary the

interaction length in such a great way, we can solve a related problem we saw

back in our quantum mechanics class (assuming you took Tom DeGrand’s class).

First, however, let us recall some important parameters regarding low energy

scattering. A straight forward case is to imagine two atoms are interacting via a

square well potential of height V0, see Fig. 2.1. Recall, the wave function rises
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linearly from zero and should be of the form u(r) = sin(kr + δ), where δ is the

the scattering phase shift. Then, in limit of low energy scattering (k → 0), the

scattering length a is related to the scattering phase shift and the effective range

r0 of the potential, via

k cot δ ≈ −1

a
+

1

2
r0k

2. (2.1)

Consequently, we can now calculate the cross section, using the definition σ =

4π limk→0 |k cot δ − ik|−2. To first order we arrive at the expected cross section

σ = 4πa2. If the potential V0 is positive, then a linear extrapolation of the wave

function at the barrier would reveal a positive scattering length a, Fig. 2.1a. If

the potential is negative, then a can be either positive, negative, or divergent,

depending on the depth of the potential, see Fig. 2.1b-c.

Returning now to our quantum mechanics example, a nice intuition for

Fano-Feshbach resonances can be developed by solving the low energy scattering

problem of a spherical square well with a bound state just below threshold. I will

outline this problem here. Assume the potential has the form V (r) = −V0 for

r < R and V = 0 otherwise. The incoming state is has positive energy, Escatt, so

the wave function is

u(r) =

 sin(Kr) if r < R

sin(kr + δ) if r > R
(2.2)

where ~2K2

2m
= Escatt+V0 and

~2k2
2m

= Escatt. Now, if we go ahead and assume there

is a bound state with energy Eb then its solution would be

u(r) =

 sin(Gr) if r < R

e−λr if r > R
(2.3)

where ~2λ2
2m

= |Eb| and ~2G2

2m
= V0−|Eb|. Using the usual matching of wave functions

and their derivatives at the boundary conditions will allow the determination of

these wave functions. However, the trick here is to recall that we are interested
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Figure 2.1: Schematic for understanding the scattering length, a. Consider the
wave function of two atoms interacting via a simple square well potential (with
range r0) as a function of interparticle separation, r. a)Repulsive hard-core po-
tential. V0 suppresses the wave function under it and a > 0. b) An attractive
potential can also give a > 0. c) A weaker attractive potential can give a < 0
as well. d) An intermediate attractive potential can give a divergent scattering
length.
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in the physics when a bound state is just coming through threshold. Therefore,

we want to consider |Eb| → 0 and since we are considering low energy scattering

we also want Escatt → 0. Solving this boundary condition problem (using all the

appropriate substitutions and Taylor expansions) we find k cot δ = −λ + 1
2
(λ2 +

k2)R. We can now directly relate this result to Eqn. 2.1. In this way, we find the

scattering length to be

1

a
= λ− 1

2
Rλ2, (2.4)

and R is just the effective range r0. Now we see that as the bound state ap-

proaches threshold, Eb → 0, and correspondingly λ → 0, the scattering length

diverges. Additionally, we find the scattering length is positive for a true bound

state. Conversely, a is negative when the bound state is just “above” threshold.

Therefore, assuming we can “tune” the height of the potential we have a technique

for tuning the scattering length.

Although the physics of the Fano-Feshbach resonance is considerably more

complicated, this simple example captures most of the essential features. It is

important to note the main differences. First, a Fano-Feshbach resonance is a

two-channel effect [76]. This means that a bound state is not coming through

threshold as we describe above, but rather that a bound state in an energetically

closed channel happens to coincide with the energy of two colliding atoms in the

open channel. The second major difference is that we do not tune the height of the

potential to move the bound state energy but rather change the energy difference

between the thresholds of the two channels. This is possible because the magnetic

moment of the closed channel bound state is different than the magnetic moment

of the open channel state. Therefore, we can simply tune the relative energy

difference by changing the magnetic field.

Fig. 2.2 b) shows how we can tune the scattering length with the magnetic
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Figure 2.2: Calculated scattering length and cross-section near a Fano-Feshbach
resonance. These are the parameters for the Fano-Feshbach resonance used
throughout this thesis. The width is 7.8 G, the location of the resonance is 202.1
G (dotted vertical line), and the background scattering length is 174 a0. The
zero crossing of the scattering length occurs at 209.9 G (dashed vertical line). a)
The scattering cross section (4πa2) as a function of magnetic field. b) Scattering
length a in units of the Bohr radius, a0, as a function of magnetic field. We can
tune the scattering length to arbitrary values using the magnetic field.



21

field near the Fano-Feshbach resonance [76]. The resonance shown here affects

the scattering between 40K atoms in the |9/2,−9/2⟩ and |9/2,−7/2⟩ states. This

is the resonance used throughout this thesis work. The scattering length as a

function of the magnetic field, B, is given by the following:

a(B) = abg

(
1− w

B −B0

)
(2.5)

where abg = 174a0 is the background scattering length introduced earlier, w = 7.8

G is the width of the resonance, and B0 = 202.1 G is the location of the resonance

[31]. It is important to note here that this is a broad Fano-Feshbach resonance

[77, 47]. Broad in this sense means that the effective energy width (the range of

collision energies for which there is resonant scattering) is much bigger than the

Fermi energy of our sample. This is important because it means that when we

approach the Fano-Feshbach resonance the entire sample is interacting resonantly

and not just a portion of a cloud.

Fig. 2.2 a) shows the scattering cross section (4πa2) over the same span of

magnetic field. As expected, the cross section becomes very large near the Fano-

Feshbach resonance (vertical dotted line). However, one of the unique properties of

40K is that it has an easily accessible zero crossing of the Fano-Feshbach resonance

(vertical dashed line), located at 209.9 G, see Eqn. 2.5. It is extremely useful to

be able to systematically compare properties of a strongly interacting gas to a

non-interacting gas. We will take advantage of this fact throughout this work and

especially when we study universality in Chapter 4. In contrast, in 6Li, there is

no nearby zero crossing of the Fano-Feshbach resonance.

Fano-Feshbach resonances really opened the way to study new physics in

Fermi gas systems. In addition to superfluidity, they allow the study of the BCS-

BEC crossover, which we will discuss in the next section. However, Fano-Feshbach

resonances have simultaneously found their way into the study of bosons, inter-
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species mixtures, Bose-Fermi mixtures, atoms in optical lattices, etc. For now,

they are the way to control interactions in atomic systems. There are also inter-

esting Fano-Feshbach resonance physics on the horizon. To name one example, it

may be possible to use external fields to modify the properties of some resonances,

giving one the ability to tune the properties of the resonance [78, 79, 80].

2.2.2 BCS-BEC crossover

The goal of the work presented in this thesis is to use atomic Fermi gases to

study the general problem of strongly interacting Fermi systems. That being said,

these experiments inherently probe the physics of the BCS-BEC crossover and we

often compare to BCS-BEC crossover theories. Further, many atomic Fermi gas

experiments of the last few years studied BCS-BEC crossover physics, for example

see the theses of C. A. Regal [47], M. W. Zwierlein [48], and G. B. Partridge [49].

As such, most of our terminology and intuition for the happenings of atoms and

pairs near the Fano-Feshbach resonance is built upon the studies of BCS-BEC

crossover physics. Therefore, in this section I will discuss the BCS-BEC crossover

and its connection to Fano-Feshbach resonance physics. Without repeating too

much that is already discussed in the theses listed above I will use this section to

introduce how we have come to understand interactions and pairing in a strongly

interacting Fermi gas.

We learned in the previous section that we have control of interactions

through the use of a Fano-Feshbach resonance. To develop an intuition for BCS-

BEC crossover physics we will follow a thought exercise similar to A. J. Leggett’s

1980 paper [40]. Imagine we begin with a zero temperature Fermi gas at the zero

crossing of the Fano-Feshbach resonance. This is the textbook Fermi gas with

every state filled to form a perfect Fermi surface. Now, as we move to lower mag-

netic field we begin to turn on arbitrarily small attractive interactions (see Fig.
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2.2 b).

Notice that these are the exact requirements for BCS theory. Recall BCS

theory is the theory developed by Bardeen, Cooper and Schrieffer [11, 12, 13]

that successfully explained superconductivity in electron systems. BCS theory

is based on an observation made by Cooper that a spin-up electron and a spin-

down electron in the presence of a well defined Fermi surface, and an attractive

interaction, can pair up and lower their energy. These pairs of fermions (called

Cooper pairs) behave as a composite boson that can Bose condense. One should

note here that the pairing between fermions in BCS theory is in momentum space.

Or, in other words, the pair size is much bigger than the interparticle spacing.

Also, for completeness, the presence of the Fermi surface is required and this is

truly a many-body effect (two fermions in vacuum will not form a bound state on

their own).

Continuing on with our gedanken experiment, if we adiabatically decrease

our magnetic field to well below the location of the Fano-Feshbach resonance

then there exists a closed channel bound state. Here, our spin-up and spin-down

fermions are paired as a bound molecule. Note that this effect is relevant for atoms

and would not be possible for electrons. This composite boson will undergo Bose

condensation. In contrast to BCS physics, this pairing mechanism is no longer a

many-body effect (or rather, it is not density dependent) and this pair would exist

even in vacuum. Also, in contrast to the BCS state, the pairing is in real space

since the pair size is much smaller than interparticle spacing. Another useful way

to understand the pairing is in terms of interaction strength. We know that as

we decrease the magnetic field we increase the attractive interaction between the

fermions. In essence, we have increased the attractive interaction between the two

fermions so much that they have become paired.

Now, for our gedanken experiment, we want to know what happens in be-
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Figure 2.3: Cartoon drawing of pairing throughout the crossover region. In the
BEC limit, fermions are tightly bound in molecules. In the BCS limit, pairing is
a many-body effect occurring in momentum space. At the cusp of the crossover
region, pairs have characteristics of both Cooper pairs and molecules, and pairing
is a many-body effect.

tween these two limits. We know that at T = 0 on one side of the resonance we

have a BCS superfluid, and on the other side of the resonance we have a BEC of

bound pairs. The essence of the BSC-BEC crossover is that these two limits are

very much linked and one does not pass through a phase transition to get from

one to the other [39, 40, 41]. By increasing interactions one can smoothly and

continuously move from a many-body pairing with a large pair size into a bound

pair with a small pair size. The cusp of the BCS-BEC crossover occurs near the

Fano-Feshbach resonance, where the binding energy of the two-body bound state

goes to zero. This is a very interesting region. The pair size is very small as

compared to Cooper pairs but very large as compared to molecules. The pair size

is on the order of the interparticle spacing and the pairing would not be possible

without the presence of the other fermions (it is a many-body effect). Using our

understanding from the previous section, the cusp of the crossover occurs near the

point where the scattering length diverges (i.e., the location of the Fano-Feshbach

resonance). Our standard cartoon drawing of pairing in these three regions, the

BCS, BEC, and cusp of the crossover, are shown in Fig. 2.3.
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The crossover region occurs when interactions between two fermions are too

strong to be described by BCS theory and yet too small to form tightly bound

molecules that can be described by BEC theory. A convenient way to characterize

the interaction strength in a Fermi gas is to compare the scattering length a to

the Fermi wave vector kF =
√
2mEF/~. Recall in a homogeneous Fermi gas that

the Fermi energy is related to the density via EF = ~2
2m

(6π2n)2/3. Therefore, kF is

related to the inverse interparticle distance and (kFa)
−1 is essentially a comparison

of the scattering length to the interparticle distance. In addition, (kFa)
−1 is the

dimensionless quantity that characterizes interaction strength used in most BCS-

BEC crossover theories [40, 41]. The BCS limit, where the interaction is weak and

attractive, occurs for (kFa)
−1 ≪ −1. Conversely, the BEC limit of tightly bound

molecules occurs for (kFa)
−1 ≫ +1. The crossover region occurs for interaction

strengths not covered by either theory, and one finds significant deviations from

either theory in the vicinity of −1 < (kFa)
−1 < +1 [16, 17]. To give a feel for

the span of the BCS-BEC crossover in our experimental parameters, the crossover

is approximately a 1 G region surrounding the Fano-Feshbach resonance position

(see Fig. 2.2 b).

In this thesis I have not tried to give an exhaustive review of superfluidity.

However, there is one important aspect of superfluidity that I will cover briefly,

which is the gap parameter. The gap will become important later in the the-

sis when we discuss angle resolved photoemission spectroscopy (ARPES). BCS

superfluids exhibit their “superness” because they require a minimum amount of

energy to produce an excitation. This minimum energy required to produce an ex-

citation, referred to as the gap energy, 2∆, effectively protects the system against

arbitrarily small excitations. For easy reference I repeat a figure from the thesis

of Cindy Regal that qualitatively shows the gap ∆ (and the chemical potential

µ) as a function of (kFa)
−1 [47], see Fig. 2.4. In the BCS limit, the gap falls
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off exponentially with interaction strength, ∆ = EF e
−π/kF a. In the BEC limit,

the energy needed to break apart a pair is the binding energy and ∆ is half the

binding energy. Again, the interesting regime is near the cusp of the crossover

where many-body effects continue to play a role in the pairing and so we expect

∆ ∝ EF . As can be seen from Fig. 2.4, the gap in this regime is a large fraction of

the Fermi energy. Recent Quantum Monte Carlo results put the zero temperature

gap at (0.45 ± 0.05)EF [81], and recent experiments also show the gap to be a

large portion of the Fermi energy [69, 82]. This is a very large gap as compared

to condensed matter superconductors where the gap is ∼ 10−4EF .

There is one final topic I would like to cover regarding the BCS-BEC

crossover physics, which is temperature. It was instructive in our gedanken exper-

iment to assume a T = 0 gas. In reality, our Fermi gas is not at zero temperature,

which means we cannot access the superfluid state for all interaction strengths.

This can especially be seen in the BCS limit where the transition temperature, Tc,

depends exponentially on the interaction strength, Tc ∝ TF e
−π/2kF a [83]. In fact,

we cannot experimentally achieve temperatures much below 0.1TF and therefore

cannot observe a phase transition for values of (kFa)
−1 less than about −1. In

the BEC limit, we are simply condensing bosons and the transition temperature

is density independent and can be determined from straight forward BEC theory.

Again, throughout the crossover there is a smooth connection of the transition

temperature from the BCS to BEC limits. For reference, in Fig. 2.5, I adapt a

figure from Ref. [84] showing a sketch of the expected transition temperature.

While discussing temperature in the presence of strong interactions, there is

yet another temperature scale which is referred to as the pairing temperature, T ∗.

In conventional superconductivity, pairing and superconductivity occur at the

same temperature. In these strongly interacting systems, however, pairing and

superfluidity can occur at different temperatures. This is because the very strong
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−1. On the BCS side the transition temperature falls of exponentially.
Approaching the BEC limit the transition temperature approaches normal BEC
transition temperature. The two limits are connected smoothly although the tran-
sition temperature is highest at the location of the Fano-Feshbach resonance.



28

interactions allow for incoherent pairing correlations at temperatures above the

superfluid transition temperature [85, 86, 87, 88, 89, 90, 91, 92, 93]. The region

between the pairing temperature and the superfluid transition temperature is

referred to as the pseudogap phase. In the pseudogap phase the Fermi gas retains

some of the characteristic superfluid signatures (such as a gap in the spectral

function) and yet it is not a superfluid. We will study the pseudogap phase in

Chapter 6.

Throughout this chapter we have noted that the region of (kFa)
−1 near the

Fano-Feshbach resonance holds some of the richest physics. A careful observer

might question why the atomic cloud does not collapse or explode near the Fano-

Feshbach resonance. After all, according to Fig. 2.4 b), the two-body scattering

length is diverging near the resonance. Indeed, the Fermi gas does not implode or

explode near this region but rather its density evolves smoothly from one side of

the resonance to the other. In chapter 4 we explore why the Fermi gas is so well

behaved in this regime, which will in turn help us to understand and introduce

universality in strongly interacting Fermi systems.



Chapter 3

Apparatus

The apparatus needed to cool our sample of 40K atoms to ultracold tem-

peratures is a collection of lasers, hundreds of optics, vacuum equipment, atomic

sources, magnetic fields, control computers, and more. Many of the core pieces,

such as the vacuum equipment and magnetic coils, have remained untouched for

over ten years. I bring this up because although servos have been modified and

optical beam paths have changed many times, the core of this experiment was

built extremely well and provides an awesome foundation to build upon. Begin-

ning with a solid foundation (along with 10+ years of tweaking laser locks and

evaporation trajectories) has led to an extremely robust experiment. Assuming

the gremlins did not steal into the lab during the night and move some mirrors,

we can regularly produce a degenerate Fermi gas within thirty minutes of turning

on the experiment. It is not uncommon for the experiment to continue to operate

well into the night, if needed, with minimal adjustment during the day.

The core components of this experiment are covered in detail in the theses

of Brian DeMarco [50] and Cindy Regal [47]. In some ways, almost all of the

changes to the experiment during my tenure were to simplify and modernize the

experiment. These changes include, but are not limited to: upgrading to a new

computer control system giving us better timing and voltage control, new RF

delivery schemes, new and more powerful lasers, fancier and more robust locking
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schemes, higher resolution imaging, etc. Here, I will highlight a few of the most

significant changes including our implementation of a crossed dipole trap and new

computer control. I will also discuss the vacuum pressure of our system, which has

become a bit of an issue. My feeling leaving this experiment is that my changes

have resulted in an experiment that is considerably simpler and less intimidating.

3.1 Crossed optical dipole trap

As discussed in Chapter 2, the final stage of evaporation in our system

occurs in a far off resonant optical dipole trap. All of the work in this thesis was

done in an optical trap potential slightly different from that described in Cindy

Regal’s thesis. In an effort to improve axial thermalization times we introduced

another optical dipole trap beam in an orthogonal direction to the original trap

beam. This is often called a crossed dipole trap. Our trap now consists of two

focused beams with waists of approximately 30µm × 30µm along the horizontal

direction and 200µm × 200µm along the vertical direction. This new vertical

beam works to effectively cap-off the large Raleigh range of the main confining

potential and reduce the aspect ratio. For typical conditions, the trap frequencies

are ωr/2π ≈ 200 Hz along the radial direction and ωz/2π ≈ 20 Hz along the axial

direction. This is approximately an order of magnitude reduction in the trap

aspect ratio as compared to the previous setup.

Imperative to the implementation of our new optical trap setup was the

careful designing of the new geometries and powers. In an atomic Fermi gas,

there are many considerations for cooling such as density, trap frequencies, trap

depth, single-photon scattering, etc. Of particular help has been a Mathematica

notebook that was started by Cindy Regal and brought to its final form by me. In

this notebook, we address many of the concerns for cooling a Fermi gas in order

to design a great optical trap the first time. A 3D plot from our Mathematica
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notebook for our new crossed dipole trap is shown in Fig. 3.1. As I understand

it, this notebook has become a standard for optical trap design in JILA.

The laser light is provided by a 20W IPG fiber laser (which really appears to

just be a fiber-amplified diode laser) which operates single-mode at 1064nm with

an 100 kHz linewidth. (As a side note, while our laser has worked fine for years

now, other IPG single-frequency lasers around JILA and other labs around the

world have been notoriously unreliable and I would probably not recommend this

laser.) The light is split into two beams and each beam is individually intensity

controlled using acoustic optical modulators (AOMs). The AOMs are then used

to ramp down the laser power for evaporation. Only when a significant portion of

the optical trap evaporation has occurred is the vertical optical trap applied. This

is because the vertical trap has a relatively weak intensity and only contributes

significantly to the trap strength near the end of evaporation.

3.2 Computer control

Ultra cold atomic gas experiments are sufficiently complicated that they

require computer control. Additionally, since every experiment effectively destroys

the sample, we require the sort of reproducibility that only a computer can provide.

The experiment, as it was handed to me, ran on an old computer that did not

even boot into Windows. Instead, the control code was written in QBasic and ran

from DOS. The two major faults with this setup were that because the computer

was so old, replacement parts could only be found on eBay. And, because the

equipment was so old, we were at capacity for its capabilities. Newer systems

have better timing, more voltage control, and more channels. The downside of

most newer systems is that they tend to be programmed in LabView, which can

become very tedious and slow with such complicated experiments. The question

was then: can we keep the low-level programming we like (Basic) while upgrading
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Figure 3.1: A 3D plot of our crossed optical dipole trap. The potential is in µK
and the axes are in meters. The second optical trap (vertical) acts to cap off the
large Raleigh range of the main confining trap (horizontal).
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the hardware?

We decided to go with Visual Basic because the old QBasic syntax could be

copy and pasted into the newer version. The main challenge was to modify the

QBasic code to talk to the new digital (NI PXI DIO64) and analog boards (NI

PXI 6733) in Visual Basic. This hard work was initiated by Travis Nicholson and

finished by Tara Drake. We also decided to go with a PXI chassis (NI PXI-10420)

from National Instruments, into which the analog and digital boards are inserted.

In this way, the chassis is connected to the computer via a single board and it will

be easy to replace a computer if it breaks or parts become outdated.

Fig. 3.2 is a picture of the control setup during the switch from old to new.

The process was quite tedious but it paid off. With the new control computer

setup we have approximately 50% more digital and analog lines. We have also

gained about a factor of thirty in timing and voltage resolution. The new control

computer has such better capabilities that we removed about six different com-

mercial pulse generators (and the sub-routines to talk to them) and numerous

JILA-made pulse-summers, inverters, and pulse generators. I was able to remove

hundreds of meters of BNC cables, power cables and GPIB cables and correspond-

ingly able to remove hundreds of lines of control code. All in all, the upgrade to a

newer control system has been a great success and resulted in an experiment that

is a lot less intimidating and much more transparent. Our experimental control

computer and code is so reliable that we typically go months without restarting

the code or the computer. I suspect that this system will also become a new

standard for computer control in JILA.

3.3 Vacuum pressure

Over the last couple years we have been having problems with the vacuum

pressure in the science cell. Because we do not have a vacuum gauge in our system,
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Figure 3.2: A picture of our computer control setup while we were in the middle
of switching to our new setup. Switching to a newer setup was a daunting task
but thorough preparation resulted in less than one week of downtime.
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we use the atoms to determine to the vacuum pressure. This is typically done by

measuring the “lifetime” of atoms held in the magnetic trap, using either MOT

recapture or the magnetic trap after evaporation. In atomic systems, the lifetime

of the atoms is either long enough or not long enough. In other words, only when

the lifetime of trapped atoms becomes comparable to evaporation timescales does

it pose a problem.

In Fig. 3.3, I plot the atom lifetime as measured with MOT recapture (or

magnetic trap) since the first measurement in the early months of 1998. In the

early days, atom lifetimes on the order of a few hundred seconds were regularly

measured. In fact, there are spans of many months in which a lifetime was never

measured because it was always good enough. As time went on, there were down-

turns in the lifetime but these were usually promptly fixed by either switching

to a new getter or firing the ti-sub pump and even turning off one of the ion

pumps. However, there has been a steady decrease in the atom lifetime in the

last few years, especially during my tenure. The horizontal dashed line indicates a

typical evaporation timescale. As all previous measurements of the lifetime were

above this line there was never much concern for the vacuum. However, as the

most recent lifetime measurements are approaching this timescale we have trouble

evaporating to quantum degeneracy and it becomes a problem we have address.

We have three pumps in our vacuum system: two ion pumps (a 40 L/s

and a 20 L/s) and a titanium-sublimation (ti-sub) pump. As of a few years

ago (before I came to the lab), the 20 L/s ion pump was turned off because

it appeared to be hurting the atom lifetime. So, we are left with a single ion

pump (which is continually on) and the ti-sub pump. Whereas in the theses of

Brian DeMarco and Cindy Regal the ti-sub pump was fired less than once a year,

we find ourselves firing every few months now, usually with mixed results. The

options I see for improving the vacuum lifetime are either turning on the ion
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Figure 3.3: The atom lifetime in the science cell. Determined from a combination
of measurements including MOT recapture and holding at the end of the magnetic
trap. The vacuum was first pumped down and baked in the early months of 1998
[50]. Since then, the lifetime in the science cell has slowly drifted down. The
dashed line indicates a typical evaporation timescale. If the lifetime dips below
the dashed line we will have difficulty evaporating to quantum degeneracy.
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pump which has been decommissioned, or doing a bake of the vacuum system. A

bake is particularly challenging in our science chamber where the magnetic trap

is basically a permanent fixture of the vacuum. Thus, a bake would need to be

mild and probably of a long duration to be effective at removing contaminates

from the cell walls. If the contaminates are primarily 40K atoms then this type of

bake could have some nice improvement to the atom lifetime since alkali atoms

have weak bonding with the cell walls.

In conclusion, I cannot say enough good things about the experimental ap-

paratus I have had the pleasure to work with. It is a robust experiment that has

produced some amazing results over the years. I suspect this is due to the strong

foundation and relative simplicity of the experiment (only one atomic species).

Assuming that the getters continue to produce 40K and the vacuum lifetime prob-

lems can be kept at bay, this experiment should continue to produce strongly

interacting degenerate Fermi gases for some time to come.



Chapter 4

Universality in Fermi gases

Universal behavior in physics is often very powerful. In principle, by study-

ing just one system, one can learn about every other system for which the universal

behavior applies. Universal, as defined here, will refer to behavior that does not

depend on the microscopic details of the interactions, and instead only depends on

density and temperature. In this chapter, we will study universality that occurs in

the limit of very strong interactions. In this limit, in which the length which char-

acterizes the interaction between particles is much larger than the interparticle

spacing, fermion systems display universal behavior and universal thermodynam-

ics. This universal regime is related to nuclear and neutron matter and is also

expected to be found in the quark-gluon plasma. Demonstrating universal be-

havior means showing that the physics we observe is not specific to our atomic

species. The experiment shown here serves as a good example of how studying

universal properties an atomic Fermi gas can inform us about an entire class of

problems.

4.1 The only scale: EF

Generically, as a gas of fermions is cooled from the classical regime to quan-

tum degeneracy, the Pauli exclusion principle becomes manifest in the properties

of the ultracold gas [26, 94]. This is evident in a confined zero-temperature ideal
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Fermi gas as a finite energy and a finite size. The Pauli exclusion principle acts as

“pressure,” called the Fermi pressure, and is responsible for the stability of white

dwarf and neutron stars. In this chapter, we investigate what happens if we begin

with a quantum degenerate non-interacting Fermi gas and then adiabatically turn

on attractive interactions.

We can characterize the interactions between two fermions using the two-

body scattering length, a. It is instructive to imagine we can then tune a however

we like, for example by using a Fano-Feshbach resonance. If we tune the scattering

length to be negative, corresponding to attractive interactions, one would expect

that the gas should be compressed due to attractive interactions and eventually

pairing effects [95]. As the magnitude of the negative scattering length is increased,

and the interactions become arbitrarily strong and attractive, one might expect

the trapped gas to collapse to high density, or implode. In fact, the Pauli exclusion

principle prevents the gas from imploding and the Fermi gas exhibits universal

behavior [5, 3, 8].

We can gain some insight into the effect of diverging interactions by con-

sidering a simple mean-field approach. While this approach neglects pairing and

therefore is not sufficient to fully describe the behavior, it provides a flavor of how

the Fermi gas is affected by interactions. Following the argument outlined in Ref.

[96], the equation of state for a confined zero-temperature Fermi gas is

µ = ϵF (x) + UMF (x) + Utrap(x), (4.1)

where µ is the chemical potential, ϵF (x) is the local Fermi energy, UMF (x) is

the mean-field contribution, and Utrap(x) is the trapping potential. We can relate

ϵF (x) =
~2
2m
k2F (x) to the density n(x) =

1
6π2k

3
F (x) via ϵF (x) =

~2
2m

[6π2n(x)]2/3. The

interactions appear in the density dependent mean-field contribution, UMF (x) =

4π~2a
m

n(x).
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For the case in which a diverges, the equation given above for UMF (x)

becomes unphysical. As a → ±∞, the only finite energy scale in the problem is

the Fermi energy. To incorporate this we can approximate the scattering length by

an effective scattering length set by the Fermi energy, aeff = −1/kF . Using this

substitution into UMF (x) we see that the local mean-field energy is proportional

to the Fermi energy, and one can define a constant of proportionality β given by

UMF (x) = βϵF (x) [97, 43]. Now, we arrive at the new equation of state for a

strongly interacting Fermi gas:

µ = (1 + β)ϵF (x) + Utrap(x). (4.2)

From this new equation of state it is particularly clear that the interactions have

dropped out of the problem and we are left with a universal result that depends

solely on the Fermi energy [5, 3, 8]. Notice that the new equation of state is

simply a re-scaled version of the non-interacting equation of state (β → 0 in the

non-interacting case). Also note that only a zero temperature gas will depend

solely on the Fermi energy. More generally, a strongly interacting Fermi gas will

also depend on the relative temperature T/TF .

In our simple mean-field estimate, we can make the substitutions to find

UMF (x) = − 4
3π
ϵF (x), or βMF = −0.42. The negative sign is not obvious from

this approach, but a more sophisticated many-body approach shows the mean-

field interaction should be attractive [5]. Theories and Quantum Monte Carlo

(QMC) simulations that include the effects of pairing find β to be more negative,

or rather, the ground-state energy is even lower than one would predict from the

simple mean-field approach. Theoretical and QMC values for β all come in around

β = −0.6 [6, 60, 61, 62, 63, 64, 65, 66, 67].

If one can measure a property of the gas that is related to the equation

of state and compare measurements for a strongly interacting gas and a non-
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interacting gas, then the universal parameter β can be determined. As we learned

in Chapter 2, we have the ability to control the scattering length with a Fano-

Feshbach resonance and we can study both the strongly interacting and non-

interacting Fermi gases. In the next section, I discuss how we measure β, and for

the first time its temperature dependence, using our atomic gas.

4.2 Measuring β in an atomic Fermi gas

We learned in the previous section that by studying the equation of state for

a Fermi gas with and without strong interactions we can determine the universal

parameter β. To see this more explicitly for the trapped atomic Fermi gas, we

will first consider the ideal gas case. We can use the equation of state to express

the number of atoms N =
∫ x0F
0

n0(x)d3x in terms of the chemical potential µ0.

Here, x0F is the Fermi radius and the superscript (0) refers to a quantity of a

non-interacting Fermi gas. Using (4.1) with UMF (x) = 0 and expressing ϵF (x) in

terms of n(x), we can solve for the number

N0 =
1

6π2
4π

∫ x0F

0

x2
[
(µ0 − 1

2
mω2x2)

2m

~2

]3/2
dx (4.3)

where Utrap(x) =
1
2
mω2x2 is the trapping potential and m is the mass of 40K and

ω is the angular trap frequency for a spherically symmetric trap. At the edge of

the trap the density goes to zero (n(x0F ) = 0 and µ0 = 1
2
mω2(x0F )

2) so evaluating

(4.3) we find

N0 =
1

6

(
µ0

~ω

)3

. (4.4)

This analysis (determining the number of atoms in terms of the chemical

potential) works similarly in the limit of strong interactions. Using the modified

equation of state (4.2), we see that the only difference from the non-interacting

case is that the Fermi energy is multiplied by (1 + β). Thus, we find the atom
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number at unitarity to be

N =

(
1

1 + β

)3/2
1

6

(
µ

~ω

)3

. (4.5)

Equating the number in both cases,(4.4) and (4.5), we find

µ

µ0
=

√
1 + β. (4.6)

Now we have arrived at the relation between the chemical potential for the strongly

interacting trapped Fermi gas and the universal parameter β.

The question is then, how can we relate the quantity µ/µ0 to a measurable

quantity in Fermi gases. In the non-interacting limit, we can relate the chemical

potential µ0 to the potential energy through the virial theorem. Recall that the

virial theorem states that in a confining potential of the form V (r) = αr2, then the

average total potential energy Epot is related to the average total kinetic energy

via Ekin = Epot. Further, we know the average total energy is 3
4
EF for a trapped

Fermi gas in a harmonic trap [50]. Thus, in the non-interacting limit, we can relate

the potential energy to the chemical potential via E0
pot =

3
8
µ0. As it turns out, the

virial theorem also holds on resonance as first proposed by J. E. Thomas in Ref.

[98]. More recently, a generalized virial theorem for all interaction strengths has

been proposed [99], and on resonance the ideal gas virial theorem is recovered.

Thus, by using the virial theorem for both a weakly and strongly interacting Fermi

gas, we can directly relate the chemical potential to a measurable quantity: the

potential energy.

By the time we began our experiments to determine β, there were several

experiments reporting or inferring β in 6Li [43, 97, 45, 35, 57, 58, 59]. For the

6Li experiments, the values for β were all coming in around β = −0.6. While

the 6Li values were in good agreement with theory, we felt that a measurement

using a different atomic species was essential to demonstrate the universality of
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strongly interacting atomic Fermi gases. Since 40K and 6Li are different atomic

species with different atomic interatomic potentials and different Fano-Feshbach

resonance properties, agreement on β using these two difference species would be

a clear demonstration of universality.

As a bit of a side note, a Fano-Feshbach resonance is not a sufficient re-

quirement for realizing the universal regime. In fact, the resonance must be a

broad Fano-Feshbach resonance in order for the gas properties to not depend on

the details of the interatomic potential [100, 101, 77, 102]. In other words, good

agreement between the two species would also put to rest some theoretical claims

that the Fano-Feshbach resonance in 40K is not a wide resonance [103, 104].

4.2.1 β from the potential energy

At the time we set out to measure β in 40K, measuring the potential energy

seemed the most obvious route since we could make a direct comparison with β

obtained in similar measurements done in 6Li. In addition, the potential energy

can be obtained from a measurement of the Fermi gas in the trap and can be

related directly to the chemical potential via the virial theorem. As it turns out,

Cindy Regal had measured the momentum distribution throughout the BCS-BEC

crossover and we were able to use her measurement to determine β as well. I will

discuss how to extract β from the momentum distribution in 4.2.2. Regardless,

our initial experiment was to measure β using the potential energy and I will cover

that approach first.

Recall that we can extract β from the ratio of interacting to non-interacting

potential energies. Therefore, to extract β, we must measure the potential energy

after an adiabatic field sweep to the Fano-Feshbach resonance and the potential

energy after an adiabatic field sweep to the zero crossing of the Fano-Feshbach res-

onance. Adiabaticity here requires that the time over which we make a significant
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change to the scattering length is long compared to the axial trapping period. This

means that ideally we want ȧ/a≪ 2π/ωz, where ωz is the angular trap frequency

in the axial direction. However, the magnetic field sweeps cannot be too slow, be-

cause we observe significant heating rates near the Fano-Feshbach resonance due

to inelastic collisions. For this reason we had to add additional axial confinement

to our optical trap setup, as discussed in Chapter 3. By increasing ωz/2π from

approximately 2 Hz to 20 Hz, the ramp duration required for adiabaticity was

reduced to tens of milliseconds from hundreds of milliseconds. After each ramp

the Fermi cloud was allowed to expand for a short time, 1.876 ms. During this

short expansion time there is significant expansion in the radial direction, which

helps to reduce the optical depth of the gas, but negligible expansion in the axial

direction. Therefore, by imaging along one of the radial directions we can probe

the density distribution of trapped gas in the axial direction.

For each absorption image we perform a 2D surface fit to a finite temperature

Fermi-Dirac function

OD(y, z) = pk g2

(
− ζ e

− y2

2σ2
y
− z2

2σ2
z

)
/g2(−ζ) (4.7)

where ζ, σy, σz, and pk are independent fitting parameters and gn(x) =
∞∑
k=1

xk

kn

[50]. This is the expected optical depth (OD) distribution for a non-interacting

cloud both in trap and after expansion. Empirically we find that this function also

fits well in the strongly interacting regime. The potential energy of the trapped

gas is obtained from the cloud profile in the axial direction. The potential energy

per particle in the axial direction is given by

Epot =
1

2
mω2

z σ
2
z

g4(−ζ)
g3(−ζ)

(4.8)

where m is the mass of 40K and ωz is the axial trapping frequency.

In previous experiments using 6Li atoms, the measured cloud sizes and en-

ergies were normalized to a calculated value for the non-interacting gas. This can
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introduce systematic errors because the calculation relies on the atom number and

trap frequencies, which can have systematic errors. The reason that measuring

the non-interacting size or energy is impractical in 6Li is that the Fano-Feshbach

resonance is extremely wide and one would have to move the magnetic field hun-

dreds of Gauss to access the zero crossing. In 40K, the zero crossing is roughly 10

G away and we can measure both Epot and E
0
pot directly. Therefore, systematics in

determining β are substantially reduced. Experiments accessing the zero crossing

of the 6Li have now been accomplished [105].

In Fig. 4.1, I show the measured potential energy ratio as a function of

1/k0Fa, where again a superscript naught indicates a measurement made in the

non-interacting regime. As expected, the data show that as attractive interactions

are increased there is a strong reduction in the potential energy due to a com-

pression of the trapped gas. Strictly speaking, β is only defined at the location of

the resonance, but the potential energy should behave universally as a function

of 1/k0Fa as well. The solid line is a mean-field calculation valid for the BCS-side

of the resonance [53] and has good agreement for 1/k0Fa < −1 . Notice, however,

that it breaks down as interactions approach the BCS-BEC crossover regime. On

the BEC side of the resonance one would expect that Epot will depend on conden-

sate fraction. For temperatures similar to these experiments we find a maximum

condensate fraction of approximately 15% on resonance; this fraction decreases as

detuning from the resonance is increased [30].

The error bars in Fig. 4.1 include statistical uncertainty in repeated mea-

surements as well as an uncertainty due to heating during the magnetic-field

ramps. The magnetic-field ramps must be sufficiently slow to be adiabatic; how-

ever, heating during the ramp can be a problem for slower ramps. For final

magnetic fields around the resonance and especially on the BEC side of the reso-

nance we would observe some heating which can alter the determination of Epot.
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Figure 4.1: Measured potential energy, Epot, normalized to the value measured
in the non-interacting regime, E0

pot, versus 1/k0Fa. Here (0) denotes a quantity
measured in the non-interacting regime, i.e., at the zero crossing of the Fano-
Feshbach resonance. The resonance is located at 202.10± 0.07 G [30]; the dashed
lines show the uncertainty in the resonance location. Data points toward the BCS
limit show good agreement with a zero temperature mean-field calculation (solid
line). The larger error bars on the BEC side of the resonance reflect uncertainties
due to heating of the gas due to inelastic loss. In the strongly interacting region
there exists ±0.1 uncertainty in 1/k0Fa due to uncertainty in the resonance posi-
tion. (inset) Subset of the data focusing on the strongly interacting region near
resonance.
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We investigate the dependence of the measured potential energy by varying the

duration of a linear ramp. An example of this is shown in Fig. 4.2 where the

gas was ramped from the magnetic field used for evaporation to the resonance

position.

To determine the optimum ramp rate, as well as the effect of heating on the

potential energy measurement, we fit data such as that shown in Fig. 4.2 to an

exponential decay (due to adiabaticity) plus linear (due to heating). From the fit

we determine the final potential energy of the cloud if heating were not present.

This introduces a correction that is applied to the data and error bars shown in

Fig. 4.1. On the BCS side of the resonance we see little or no heating due to

magnetic-field ramps, and the error bars are dominated by shot-to-shot statistical

uncertainty.

From the data in Fig. 4.1, we find Epot/E
0
pot = 0.70 ± 0.02 on resonance,

from which we can use Eq. (4.6) giving β∗ = −0.51 ± 0.03. Whereas β is nor-

mally only defined for T = 0, I introduce (∗) to denote that the system is at a

finite temperature (T/TF )
0 = 0.08± 0.01. Including uncertainty in the resonance

position we find β∗ = −0.51+0.04
−0.12. Error bars include statistical error as well as

the heating effects mentioned above.

At the time we made this measurement it was not clear to us that β∗ at a

temperature of (T/TF )
0 = 0.08 ± 0.01 should be the same as zero temperature

β. In fact, this was a point seemingly ignored by all previous measurements. To

determine the temperature dependence of β∗ we measured the potential energy

ratio at resonance for different starting temperatures. In Fig. 4.3, I show the

ratio Epot/E
0
pot as a function of initial temperature (T/TF )

0. Clearly the universal

many-body parameter β depends strongly on temperature.

To determine the initial temperature we prepare a gas as described previ-

ously and then ramp to the zero crossing of the Fano-Feshbach resonance and fit
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Figure 4.2: Measured potential energy at the Fano-Feshbach resonance versus
magnetic-field ramp duration. For very fast ramps, we measure a higher energy
because of nonadiabaticity. For very slow ramps, heating due to inelastic colli-
sions increases the measured energy. We use a simple empirical fit to determine
optimum ramp rate and Epot.
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the expanded cloud to Eq. (4.7). We extract (T/TF )
0 from the fugacity ζ using

g2(−ζ) = −(T/TF )
−3/6. We only measure the temperature for a non-interacting

gas because interactions distort the expansion of a strongly interacting gas. How-

ever, because we know the temperature for our non-interacting gas and our field

ramps are adiabatic, theory can be used to extract the new temperature [63, 106].

To vary the temperature we parametrically modulate the optical trap strength.

To ensure harmonic confinement the trap strength is chosen to be substantially

higher than the Fermi energy.

For the purpose of extracting a value for the zero temperature β we fit a

quadratic function to the data points below (T/TF )
0 = 0.25, from which we find

β = −0.54+0.05
−0.12. The error bars reflect the uncertainty in the extrapolation to

T = 0 and the uncertainty in the resonance position. This value of the universal

many-body parameter β, as well as the value at (T/TF )
0 = 0.08, is in good

agreement with the rough value of β = −0.6 found in theory and Monte Carlo

calculations. These values are also in good agreement with multiple experimental

reports in 6Li: β = −0.73+0.12
−0.09, −0.61 ± 0.15, −0.49, and −0.54 ± 0.05 in Refs.

[107], [57], [59], and [58] respectively. In particular, I would like to note the most

accurate measurement to date from the group of J. E. Thomas at Duke University,

where they find β = −0.60(2) and −0.62(2) using two different techniques [105].

Our measurement of the universal many-body parameter β was the first of

its kind in 40K, and when added to the 6Li measurements our result clearly demon-

strated universality in atomic Fermi gases. We also made the first temperature

dependent measurement of β and found that it can depend strongly on tempera-

ture, even at low temperatures. Also, the technique used here was expanded upon

to determine the entropy and critical temperature in Ref. [108].
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4.2.2 β from the kinetic energy

It was not until after we had made our measurement of β using the potential

energy that we realized β could also be determined from a previous result by

Cindy Regal et al [53]. In the previous measurement, the momentum distribution

was mapped out throughout the BCS-BEC crossover and the kinetic energy on

resonance was determined to be Ekin/E
0
kin = 2.3(0.3) [53]. To see how β can be

derived from the kinetic energy I will briefly sketch out the relation here.

The energy per particle of an ultracold Fermi gas in the universal regime

scales as [109]

E(x) = Ekin(x) + Eint(x) =
3

5
(1 + β)EF (x) (4.9)

where Eint(x) refers to the interaction energy. Recall from the discussion in Section

4.1 that Eint(x) = UMF (x) = βϵF (x). Thus we have

Ekin(x) =
(3
5
− 2

5
β
)
EF (x). (4.10)

If we use the same procedure to determine the atom number as we did for Eqs.

(4.4) and (4.5) and integrate Eq. (4.10) over the trapped gas, we find

Ekin =
1

8

3− 2β

1 + β
µ. (4.11)

Recall that in a non-interacting Fermi gas the kinetic energy is E0
kin = 3

8
µ0. As-

suming we keep the atom number fixed for each case we have from Eq. (4.6) that

µ/µ0 =
√
1 + β and after simplification we can relate the kinetic energies

Ekin
E0
kin

=
1− 2

3
β

√
1 + β

. (4.12)

Now we can clearly see that β can be determined by measuring the ratio of

kinetic energies. If we use the mean-field estimate for β = −0.42 one finds that

Ekin/E
0
kin = 1.69, which is substantially smaller than the experimental result.

Again, this shows that more sophisticated theories that include the effects of
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pairing are needed. The measured value of Ekin/E
0
kin = 2.3(0.3) gives a value for

β of−0.62(7), which is in good agreement with theory and previous measurements.

As we have seen with the measurement of β, atomic Fermi gases can already

provide constraints on theoretical models. In particular, we have seen a large

discrepancy between a simple mean-field estimate for β = −0.42 and the more

complicated theoretical and experimental works that put the value closer to β =

−0.6. This example serves as a reminder that pairing in these systems cannot

be ignored but in fact makes up a substantial portion of the physics. The rest of

this thesis will study pairing using radio frequency spectroscopy, providing much

more detailed microscopic information as well as stringent tests for many-body

theories.



Chapter 5

RF spectroscopy: A historical perspective

Probing an atomic gas can require a fair amount of ingenuity. This is because

classical probes such as thermometers or electrical leads are not applicable. All

measurements are effectively “hands off.” Basically, the only tools one has are E &

M fields: light, electric fields and magnetic fields. One of the experimental tools

that has had continued success probing atomic Fermi gases is radio-frequency

(RF) spectroscopy, for example see Refs. [42, 110, 111, 44, 112, 113, 114, 115, 69,

82]. In Chapter 6, we discuss a new probing technique where an RF photon is

used to “photo-emit” atoms into another Zeeman state in an experiment similar

to photoemission spectroscopy (PES) experiments in condensed matter physics.

Therefore, it is my goal in this chapter to introduce the role of RF in atomic

systems and its role as a spectroscopic probe, which was already a powerful tool

before we applied it to PES for atoms. I will present RF spectroscopy from a

chronological point of view to better illustrate its evolution into a spectroscopic

probe.

As we will review, RF spectroscopy has proven to be a very powerful probe

of interactions in atomic gases. It was instrumental in determining the physics

around Fano-Feshbach resonances. It can also be used to associate and disasso-

ciate molecules and is a microscopic probe of strongly interacting atomic gases.

I will begin by outlining the simple theory regarding the coupling of states using
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RF and then move on to its use as a spectroscopic probe.

Our chronological tour of RF spectroscopy as powerful probe will eventually

come to a “bump in the road.” This is because RF spectroscopy is only valid when

a particular set of conditions are met. If these conditions are not met, such as can

easily be the case in 6Li, then they can lead to results that are misleading and

can be misinterpreted. I will try to highlight the pitfalls of RF as a spectroscopic

probe, the lessons learned, and how the field eventually got back on the right

track.

5.1 RF basics

Typically, we use RF in the lab for internal spin-state manipulation. Ex-

amples include removing high energy atoms during magnetic trap evaporation,

achieving correct spin states for optical trap evaporation, or for spectroscopy. For

RF spectroscopy, atoms are transferred between different Zeeman states, see Fig.

5.1 a). The RF frequency is typically in the 10-100 MHz range. Hence, the wave-

length of the RF radiation is very long, on order of 3-30 m, and the momentum

transferred to the atom is completely negligible. Therefore, we can think of RF

spectroscopy as only changing the internal state of the atom and leaving its kinetic

energy and momentum unchanged.

It is useful to remind ourselves how one can drive a transition between two

internal states of an atom. Due to the long lifetime of the internal states we

are dealing with we can assume a two-level system: the state we are starting

out in |g⟩ and the state we wish to couple to |e⟩, where the energy difference is

Eg − Ee = ~ω0. For the coupling field we will assume the RF is monochromatic

and “strong” so we can treat it classically. Then, the coupling field can be written

as E = E0 cos(ωLt), where E0 is the electric field strength and ωL is the frequency

of the RF. Then, we can write down our Hamiltonian as H = Hatom + Vatom−light,



55

0.0 0.5 1.0

0.0

0.5

1.0

P
e

t ( 2p/W
eff

)

RF

|e

|g

a) b)

Figure 5.1: RF basics. a) We apply radio frequency to transfer atoms between two
internal Zeeman states. b) Population in state |e⟩ as a function of RF duration
assuming resonant RF.
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where in matrix form:

Hatom =

 0 0

0 ~ω0

 , Vatom−light =

 0 dE

dE 0

 , (5.1)

where d is the dipole matrix element d = ⟨e|e π̂ · r⃗|g⟩. We want to know what

happens to the states of the atom as a function of the strength, duration and

frequency of applied RF. To do so we need to solve the time dependent Schrodinger

equation i~∂ψ
∂t

= Hψ with our wave function ψ = c1(t)|g⟩ + c2(t)|e⟩eiω0t, where

c1 and c2 are the probability amplitudes. Using the rotating wave approximation

(i.e., assume the RF frequency is near resonance) we end up with the set of

equations

i
d

dt

 c1

c2

 =

 0 Ωe−iδt

Ωe−iδt 0


 c1

c2

 , (5.2)

where Ω = dE0/~ is the Rabi frequency and δ = ωL − ω0 is the detuning of the

applied RF. Solving these coupled equations with the boundary condition that all

atoms begin in state |g⟩ at t = 0 we find the probability to find an atom in state

|e⟩ is

Pe(t) =
Ω

δ2 + Ω2
sin2

(√δ2 + Ω2

2
t
)
. (5.3)

Pe(t) is plotted in Fig. 5.1 b). To fully transfer all of the atoms into the |e⟩

state one should apply resonant RF (δ = 0) for t = π/Ω; this is referred to as a

π−pulse.

The energies for our atomic Zeeman states in a magnetic field can be cal-

culated exactly using the Breit-Rabi formula. Therefore, we can choose ωL to

be exactly resonant and transfer atoms between Zeeman states by applying RF

through an RF antenna [47]. An example of such a spin-state transfer is shown in

Fig. 5.2. We deliver the RF in a gaussian envelope pulse to minimize unwanted

frequencies. The RF lineshape, for a non-interacting gas, has a linewidth limited
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Figure 5.2: RF can be used to spectroscopically determine the magnetic field. On
the vertical axis is the fraction of atoms transferred to a new internal Zeeman
state. The horizontal axis shows the RF frequency. The red and black lineshapes
are taken at two different magnetic fields approximately 100 mG apart.
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by the inverse pulse duration. Our linewidths are ultimately limited by noise in the

magnetic field. Typically, we can measure linewidths to 1 kHz or less, consistent

with magnetic field stability on the order of a few mG. Good frequency sensitivity

and magnetic field stability are imperative for using RF as a spectroscopic probe.

Using RF to determine the magnetic field and its stability is already a great

example of RF as a spectroscopic probe. By varying ωL one can take a lineshape

to determine ω0, see Fig. 5.2. Then, the Breit-Rabi formula can be used to

determine the magnetic field. We use this technique quite often in the laboratory

to calibrate the magnetic field as a function of current through the magnetic-field

coils.

5.2 RF spectroscopy and interactions

One of the most illustrative examples of how RF can be used as a spec-

troscopic probe is also one of the earliest experiments that used RF to study

interactions [111, 44]. In particular, RF spectroscopy can be used to determine

the mean-field energy, UMF ∝ na, where n is the density and a is the s-wave

scattering length. Near a Fano-Feshbach resonance a can be either positive or

negative and therefore so can the mean-field energy. By taking RF lineshapes as

the scattering length a is varied, one can determine how the resonant frequency

is shifted by the mean-field energy.

When discussing RF spectroscopy in context of measuring interactions I will

generally be discussing an experiment that involves three spin states. I will try

to be consistent and refer to the two interacting states as | ↑⟩ and | ↓⟩, and a

third state |3⟩, which I will call the probe state. Typically, RF spectroscopy will

refer to the transfer of atoms in the | ↓⟩ state into the |3⟩ state. For example, the

Fano-Feshbach resonance in 40K at 202.1 G affects the interactions between atoms

in the |9/2,−9/2⟩ and |9/2,−7/2⟩ states (| ↑⟩ and | ↓⟩) and the probe state would
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Figure 5.4: Measuring the mean-field energy using RF spectroscopy. a) Atoms
from state |3⟩ are transferred into state | ↓⟩. The mean-field energy shifts the
required RF frequency with respect to the single-atom resonance. b) Number
of atoms remaining in state |3⟩ as a function of the applied RF frequency. The
interacting lineshape (red solid line) is shifted and broadened as compared to
the non-interacting lineshape (black dashed line). UMF ∝ na and therefore the
interacting lineshape can be at higher or lower frequency than the non-interacting
lineshape, depending on the sign of a.
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then be the |9/2,−5/2⟩ state (|3⟩). One can determine the mean-field energy via

RF spectroscopy by preparing a sample of | ↑⟩ and |3⟩ states and then applying

an RF pulse to send some of the atoms from |3⟩ state into state | ↓⟩, see Fig. 5.3

a). Conversely, one can prepare a mixture of | ↑⟩ and | ↓⟩ states and then apply

an RF pulse to send | ↓⟩ to |3⟩, see 5.3 b).

To measure the mean-field energy, experimenters measured the frequency

shift needed to transfer atoms from the |3⟩ state to the | ↓⟩ state [111], see Fig.

5.4 a). The frequency is shifted because of the mean-field energy, given by

∆ν =
2~
m
n↑(a↑,↓ − a↓,3), (5.4)

where n↑ is the density of atoms in state | ↑⟩, a↑,↓ is the scattering length between

states | ↑⟩ and | ↓⟩, and a3,↑ is the scattering length between states | ↑⟩ and |3⟩.

In fact, this technique was not only used to measure the mean-field shift ∆ν but

it was also used to determine a↓,↑ [111]. Notice the frequency shift, Eq. (5.4),

can be both positive or negative. In the experiment, this is determined from a

raising or lowering of the resonant frequency required for transfer, see Fig. 5.4 b).

This mean-field shift in energy is referred to as the “clock shift” in atomic clock

experiments, as it is one of the dominant sources of systematic error [116].

I will now review for which cases we would expect to see a mean-field energy

shift. This material is covered thoroughly in Ref. [36] and only outlined here; it

will illuminate why fermions require the use of three spin states to measure energy

shifts. As we established earlier, the mean-field energy between two states | ↑⟩

and | ↓⟩ is ∝ na↑,↓. Suppose we begin with a spin-polarized sample in state | ↑⟩

and apply RF to transfer to state | ↓⟩. One might suspect that the RF transition

should already begin to be shifted by UMF as atoms are transferred into the new

state; however, this is not the case because we are dealing with fermions and the

transfer is coherent. The RF is coherent in that it creates a superposition of | ↑⟩
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and | ↓⟩ simultaneously for all the atoms. Or rather, they are still polarized in

their new superposition state and since they are fermions, s-wave collisions are

forbidden and there is no mean-field shift. Note, if there was a frequency shift we

would not be able to use one-state RF spectroscopy to determine the magnetic

field strength as described above.

Imagine now that we have a mixture of two spin states, | ↑⟩ and | ↓⟩.

While the atoms’ energies are shifted by the mean-field energy, an RF pulse to

flip atoms between | ↑⟩ and | ↓⟩ is not shifted. The argument follows similarly to

the spin polarized case. Atoms originally in | ↑⟩ are transferred coherently into

a superposition of | ↑⟩ and | ↓⟩, while atoms originally in | ↓⟩ are transferred

coherently into the orthogonal superposition. The RF transition is not modified

by the mean-field energy and RF transfer between two interacting spin states

cannot be used to probe their interactions.

To probe interactions, one needs to use three spin states. If we now create

a mixture of | ↑⟩ and | ↓⟩ states and apply RF to couple the transition from | ↓⟩

to |3⟩ we are sensitive to the interactions between | ↑⟩ and | ↓⟩. This is because

while the transition between | ↓⟩ to |3⟩ does not see a mean-field shift, due to the

arguments above, the energy of state | ↓⟩ is indeed modified by state | ↑⟩. Ideally,

for RF spectroscopy to be an effective probe, state |3⟩ should be unoccupied and

weakly-interacting with either | ↑⟩ or | ↓⟩. Of course, mean-field energy is not the

only way the atoms’ energy can be shifted. For example, far on the BEC side of

the Fano-Feshbach resonance, atoms can pair and acquire a binding energy which

is not density dependent. At JILA, RF spectroscopy was again employed to study

this new state [110].
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5.3 Using RF to measure energy gaps

RF spectroscopy similar to that used to measure mean-field energies can also

be used to probe molecular binding energy. This was demonstrated in an atomic

Fermi gas when RF spectroscopy was used to measure the binding energy of Fano-

Feshbach molecules [110]. In this experiment, atoms were prepared in a mixture of

| ↑⟩ and | ↓⟩ states and adiabatically ramped through the Fano-Feshbach resonance

to create two-body bound pairs. Then, RF was applied to transfer atoms from

the | ↓⟩ state into the |3⟩ state. In order to dissociate the molecule, the RF

frequency must be large enough to incorporate both the Zeeman energy as well as

the binding energy of the molecule. An example of such a spectra is shown in Fig.

5.5 a). The RF spectra has the characteristic “double-peak” structure expected

when probing an energy gap. There exists a narrow peak at the location of the

free atom transition due to unpaired atoms in the sample and a separated second

asymmetric broad peak that arises from dissociating bound molecules. The free

atom feature is narrow because it is a two level transition between different long-

lived internal states of the atom. The molecule feature is wide and asymmetric

because the RF photon can drive a transition from the molecule to a continuum of

scattering states of two atoms. These scattering states can have different relative

momentum, depending on the RF photon energy, see Fig 5.5 b). The lineshape

then depends on the overlap of the molecule wave function and free atom wave

function [110, 117].

The separation between the peaks results from the energy gap in the system,

which in this case comes from the binding energy of the molecules [110, 117]. RF

spectroscopy is useful for probing energy gaps because the probe (a spin-flip of one

of the | ↓⟩ atoms) is inherently a single-particle measurement [70]. For example, in

the dissociation of a molecule, the RF photon results in a single-particle excitation,
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Figure 5.5: RF spectra of weakly bound Fano-Feshbach molecules. a) Fraction of
atoms transferred into the probe state as a function of RF frequency. The narrow
feature comes from unpaired atoms. The broad asymmetric feature results from
the dissociation of molecules. b) Atoms from the dissociated molecules can carry
away excess RF energy in the form of kinetic energy. Energy and momentum
are conserved because the constituent atoms fly apart with equal and opposite
momentum. Figure taken from Ref. [47].
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namely removing an atom in the | ↓⟩ state. An RF pulse with a frequency less

than the binding energy will not be absorbed by the molecule. Only when the RF

photon has sufficient energy to dissociate the molecule can it be absorbed. Or, in

other words, RF spectroscopy as we have described it is not a probe of two-particle

excitations. We will review this concept in our discussion of momentum-resolved

RF spectroscopy next chapter.

Following the success of RF spectroscopy in probing energy gaps for weakly

bound molecules, it was extended to probe the rest of the BCS-BEC crossover

region by the group of R. Grimm in Innsbruck in 2004 [118]. The RF spectra

observed by the Innsbruck group using 6Li atoms exhibited “double-peak” struc-

ture throughout the crossover region and was attributed to a paring gap. Recall

from our discussion of the BCS-BEC crossover that in the regime of (kFa)
−1 ≤ 0,

superfluidity is a many-body effect and the gap (or superfluid order parameter)

is an important parameter for describing the superfluid. Therefore, the work of

the Grimm group as the first measurement of the superfluid gap throughout the

crossover region was initially very well received. Giving the experimental work ad-

ditional scientific weight was a “back-to-back” theoretical article published by the

group of P. Torma, which confirmed the gapped spectra observed by the Innsbruck

group as evidence for a superfluid gap [119].

In the months and years that followed, however, a number of theoretical

works were published calling into question the simple interpretation of double-

peak spectra as evidence for an energy gap. While the interpretation worked fine

for density-independent energy gaps, such as the weakly bound molecules studied

at JILA, several theoretical papers questioned the effect of interactions on atoms

transferred into state |3⟩. These effects are often referred to as “final-state effects.”

In addition, it is important to appreciate the role that the density inhomogeneity

for atoms in a trap plays in RF spectra. In the 6Li data, these effects are not at
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all negligible. We will discuss the importance of these effects in the next section.

5.4 Final-state effects and trap inhomogeneity

As I began my thesis work it was understood that the superfluid gap had

already been measured throughout the BCS-BEC crossover. The determination

of the superfluid gap came from the interpretation of double-peak structure as

an energy gap [118], seen in an RF experiment by Grimm and co-workers. I

schematically recreate their findings in Fig. 5.6 as inferred from Figs. 1 and 3 in

Ref. [118]. Here, I have re-scaled the RF frequency in terms of the Fermi energy.

They observed a single peak at the free atom Zeeman resonance for temperatures

well above the pairing temperature, Fig. 5.6 a). As the temperature was reduced,

a second peak was observed to appear at higher frequencies. This was attributed

to paired atoms Fig. 5.6 b). As the temperature was reduced further, the free

atom peak finally disappeared completely and only the peak attributed to paired

atoms remained Fig. 5.6 c).

At the time, the interpretation of double-peak structure as evidence of a

pairing gap seemed like a logical conclusion because of the success of the previ-

ous experiment here at JILA on weakly-bound two-body molecules [110]. The

JILA experiment, as described in the previous section, correctly determined the

binding energy of density − independent weakly-bound molecules from the ob-

servation of two well-separated peaks in the RF spectra. Extending this sim-

ple experiment into the strongly interacting region near a Fano-Feshbach res-

onance, however, must be done carefully, especially when pairing is a many-

body effect. Since the Innsbruck experiment and initial theoretical description

[118, 119], numerous theoretical works have made it clear that the interpretation

of RF spectroscopy near a Fano-Feshbach resonance must be handled with care

[117, 121, 122, 123, 124, 125, 126, 89, 127, 128, 129, 15, 130, 131, 132, 133]. In par-
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Figure 5.6: A schematic diagram showing RF spectra with double-peak structure
such as observed for 6Li by the Innsbruck group and later by the MIT group (see
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67

ticular, it became evident that double-peak structure could arise very generically

and was not necessarily an indication of an energetically gapped state. Theories

for double-peak structures tend to fall into one of two categories. The first consid-

ers the effect that interactions with the third spin state, or the probe spin state,

can have on the RF spectra (as it turns out this is quite negligible for 40K but

is a huge effect for 6Li). The second considers the density dependent mean-field

energy shift and how one can observe double-peak structure in a harmonic trap.

Although a complete theory should contain both effects, either one can give a

double-peak structure even when the system does not have an energy gap.

5.4.1 Final-state effects

Recall from section 5.2 that one can probe interactions between the | ↑⟩

and | ↓⟩ states by using an RF pulse to transfer atoms to or from the |3⟩ state.

There, we assumed that state |3⟩ was an ideal probe state, meaning that it had

a small interaction strength with atoms in the | ↑⟩ or | ↓⟩ states. In 40K, this is

almost always the case, and the scattering length between the probe state and

the strongly interacting states is less than a couple hundred Bohr radii. In 6Li,

however, there exist extremely wide Fano-Feshbach resonances (on the order of

hundreds of Gauss wide) between all three spin states in close proximity to each

other [82]. Thus, in 6Li, when studying the Fano-Feshbach resonance between | ↑⟩

and | ↓⟩, the close proximity of wide resonances between | ↑⟩ - |3⟩ and | ↓⟩ - |3⟩

means state |3⟩ is almost never an ideal probe [132].

A complete review of how interactions between the final state and the initial

state affect the RF spectra is beyond the scope of this thesis. Indeed, there are

now many theoretical papers discussing final-state effects on RF spectra for a

variety of situations including weakly bound molecules, BCS-type pairing, BCS-

BEC crossover, spin polarized, finite temperature, etc. As an illustrative example
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of how final-state effects can distort the RF spectra, I will follow the argument

of C. Chin and P. S. Julienne for weakly bound molecules found in Ref. [117].

In this paper, the authors calculate bound-to-free transitions as well as bound-to-

bound transitions from weakly bound molecules. Normally, one would not need

to consider bound-to-bound transitions if the final state was an ideal probe state.

However, as we established, in the case of 6Li the final state may also be near

a Fano-Feshbach resonance so that the scattering length can be of arbitrary size

and sign. To calculate the bound-free RF spectra one needs to use Fermi’s golden

rule:

Γbf (E) =
2π

~
|⟨E|V |i⟩|2, (5.5)

where i is the initial state, E is the final state, V is the RF coupling that we

can write as ~Ω/2 where Ω is the Rabi frequency. Note that energy conservation

requires E = ~2k2/2µ = ERF −E0−Eb where ERF is the photon energy, E0 is the

continuum threshold, and Eb is the binding energy. Because we are considering

weakly bound molecules we can write down the initial wave function:

|i⟩ = ϕm(r) =

√
2

a
e−r/a (5.6)

where a is the s-wave scattering length. We can write the outgoing final state

wave function as

|E⟩ = ψE(r) =

√
2µ

π~2k
sin(kr + δ′) (5.7)

where (′) indicates a parameter in the outgoing channel. Calculating the expec-

tation value, squaring, and using the low energy expansion of the phase shift one

eventually finds

Γbf (E) =
~2Ω2

π2

(
1− a′

a

)2 1

E
3/2
b

√
E

(1 + E/Eb)2(1 + E/E ′
b)

(5.8)

where k2a2 = E/Eb and k2a′2 = E/E ′
b [117]. It can be useful here to make a

translation E → E ′ − Eb, so that the binding energy can be read directly from
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the spectra as the difference from zero, such as is the case for the experiments. In

the limit of no final-state interactions, this formula simplifies to the well known

pair-dissociation formula which falls off as E−3/2 for large E, see solid line in

Fig. 5.7. However, as interactions in the final state are increased, the lineshape

becomes substantially modified, see dashed line in Fig. 5.7. In this example, I have

set Eb = EF and a′ = a/
√
10, for which one finds the bound-to-free integrated

spectra for the interacting case only contains 25% of the spectral weight of the

non-interacting case. Where has the rest of the spectral weight gone? In this

example, the remaining 75% of the spectral weight has gone into the bound-to-

bound transition. This concept is covered explicitly for the case of 6Li in Ref.

[132]. Essentially, a bound pair made up of | ↑⟩ and | ↓⟩ states makes a two-body

transition to a different bound pair made up of | ↑⟩ and |3⟩ states. Additionally, the

high energy tail falls off with the wrong power, E−5/2. Even from our relatively

straightforward example it is already clear that final-state effects can severely

affect RF spectroscopy.

The technique outlined here to determine RF spectra can be applied through-

out the BCS-BEC crossover and into the BCS limit as long as one knows the ap-

propriate wave function. In the absence of final-state interactions, the onset of the

RF spectra is determined by the binding energy Eb in the BEC limit [117] and the

superfluid gap ∆2/2EF in the BCS limit [122]. In the BCS-BEC crossover, with

the presence final-state interactions, calculating the RF spectra is theoretically

challenging and work is still ongoing [124]. However, more recent data for 6Li

from an experiment that included an effort to reduce final-state effects shows that

the RF spectra evolve smoothly from the BEC-side to the BCS-side of the Fano-

Feshbach resonance [115], and in all cases the spectra retain the pair-dissociation

lineshape shown in Fig. 5.7. Unfortunately, even in this best case scenario for 6Li,

it is calculated that the bound-to-bound transition may still contain up to 59%
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of the total spectral weight [132], suggesting the lineshape may still suffer from

final-state effects.

Perhaps one of the most striking features of the RF spectra of Grimm and

co-workers is that the feature does not have the pair-dissociation look to it, see

Fig. 5.6. Rather, as the authors mention, they fit the their data to a Lorentzian

plus a gaussian, which does not have the characteristic E−3/2 tail. Also striking

is that the entire lineshape occurs within a frequency span of about EF/2. We

can understand this in the case of 6Li due to the close proximity of nearby Fano-

Feshbach resonances. As a′ approaches a, the bound-to-free transition vanishes

(see Eq. 5.8) and only a bound-to-bound transition is left. Also, as one approaches

a′ → ∞ the RF spectra again approaches a bound-to-bound delta function even

though a bound state does not exist in the outgoing channel [117]. Presumably, the

close proximity of the Fano-Feshbach resonance in the outgoing channel resulted

in the entire RF spectra looking much more bound-to-bound than than one might

have naively expected.

Here, I have only covered one theoretical explanation for double peak spectra

due to the presence of final-state effects. However, there are numerous alternative

and complementary explanations, see for example Refs. [122, 123, 124, 125, 126,

89, 127, 128, 129, 15, 131, 132, 133]. The universal conclusion is that double-peak

structure in the RF spectra of a strongly interacting Fermi gas subject to final-

state effects is complicated and is not convincing evidence for observing a pairing

gap. In the next section, we see how density inhomogeneity due to the trapping

potential can also produce double-peak structure.

5.4.2 Trap inhomogeneity

Typically, most atomic Fermi gases are confined using a far off resonant

optical dipole trap. One or more focused laser beams intersect at the location
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of the atoms to provide a trapping potential. The potential, while gaussian,

can be well approximated as harmonic near the bottom of the trap. Because

the trapping potential is spatially inhomogeneous, the cloud density varies as a

function of distance from the trap center. The gas density is highest at the trap

center and falls off as one approaches the trap edge. Consequently, shifts in the

RF spectra due to density (mean-field shift, for example) will effectively depend

on which part of the cloud is being probed. Naively, one might expect that since

the density varies monotonically that any RF spectra would simply be broadened.

As it turns out, this is not always the case. In fact, the density inhomogeneity can

produce double-peak spectra even in the absence of final-state effects [121, 89, 130].

Indeed, as we will see, one does not even require pairing, much less superfluidity,

to observe double-peak structure.

The most general theories explaining double-peak structure arising from

density inhomogeneity were actually in response to a paper by the MIT group

[120]. In short, the MIT group observed double-peaked spectra almost identical

to the Innsbruck spectra (Fig. 5.6) in a system known to not be superfluid. Re-

gardless, the theoretical results are general because they show that even when a

system has no pairing, double-peak RF structure can arise from density inhomo-

geneity. If one were to take an RF lineshape at the center of the trap, we would

expect it to be shifted with respect to the free atom transition due to density-

dependent effects such as pairing and mean-field energy. Then, as one moves

towards the edge of the trap, where the density goes to zero, we expect to recover

the free atom RF spectra. At issue, however, is that the total RF spectra is the

sum of these individual spectra, where signal coming from atoms at a distance r

from the center of the trap is weighted by r2n(r), where n(r) is the density at

r. The resulting total RF can show two peaks. One peak, due to a significant

portion of the atoms near the center of the trap, is shifted with respect to the
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Figure 5.8: Figure from Stoof et al. in Ref. [89]. The figure is an intensity
plot showing transition intensity as a function of radius in the cloud and RF
frequency. This figure shows how double-peak structure can arise from density
inhomogeneity. Note, at any given radius the RF spectrum only shows one peak.
However, integrating over all radii give a total RF spectrum that has two separated
peaks.
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free atom transition. The other peak, due to a significant number of atoms at low

density (because of the r2 weighting) is centered at the free atom transition. I

include a figure from Ref. [89] which shows this effect quite nicely, see Fig. 5.8.

Notice, at any given radius there is only one peak in the RF spectra; however,

integrating over all radii it is clear that double-peak spectra would be present.

In 2007, in-situ tomographic techniques were used by the MIT group to observe

single-peaked RF spectra as a function of position in the cloud [114].

5.4.3 Conclusion

In this chapter, we have seen how RF spectroscopy can be a very power-

ful probe, with applications ranging from measuring magnetic fields to probing

interactions and pairing. However, we have also learned some important lessons

regarding the interpretation and application of RF spectroscopy. Namely, we

have to carefully consider final-state effects and density inhomogeneity in RF

spectroscopy, especially when the signatures we are looking for are density de-

pendent. Previous experiments claiming to measure a superfluid gap using RF

spectroscopy [118, 120] were grossly affected by these effects. In the next chapter,

we will once again turn to RF spectroscopy for studying energy gaps, but this

time in an entirely new way.



Chapter 6

Photoemission spectroscopy

Throughout this thesis I have argued that the simplicity, purity, tunability,

and universality of atomic Fermi gases make these gases model systems in which

to test condensed matter theories. A challenge for experimenters is to find ways

to probe these atom gases that relate directly to condensed matter ideas and en-

able sensitive searches for new phenomena that can advance our understanding

of strongly correlated systems. For the most part, up until now, studies have

measured macroscopic properties of the Fermi gas, such as: condensate fraction

and its phase diagram, collective mode oscillations, vortices, RF spectra, potential

energy, kinetic energy, etc. However, one would ideally like to probe the micro-

scopic behavior directly and determine important microscopic quantities such as

the dispersion, energy gaps and quasi-particle lifetimes.

In condensed matter physics, photoemission spectroscopy (PES) has proven

to be a very powerful probe of the single-particle spectral function [134, 68]. I

will begin this chapter by reviewing PES for electronic systems and its connection

to the spectral function and many-body theory. Then, I will move on to our

new technique, photoemission spectroscopy for atoms using momentum-resolved

RF spectroscopy (in contrast to the momentum-integrated RF spectroscopy of

the last chapter). With PES, we study new microscopic quantities such as the

energy dispersion, energy gaps, and quasi-particle lifetimes as well as macroscopic
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quantities such as the momentum distribution and density of states. Many of

these quantities were probed for the first time in atomic Fermi gases with our

new technique. This new ability to probe the microscopic quantities of a strongly

interacting Fermi gas will allow detailed comparison to many-body theories. Also,

we can study the pseudogap, which can have implications in both AMO and

condensed matter communities.

6.1 Photoemission spectroscopy and many-body theory

At a very basic level, the effect of interactions is a modification of the single-

particle states. As the strength of interaction is increased, the single-particle

eigenstates of the non-interacting case become quasi-particles and phase transi-

tions manifest themselves as qualitative changes in the excitation spectrum, such

as the appearance of energy gaps. The single-particle excitation spectrum can be

predicted by many-body theory and is a fundamental property of any interacting

system.

For electronic systems, photoemission spectroscopy provides a powerful tech-

nique to probe the occupied single-particle states. In a typical photoemission spec-

troscopy experiment, see Fig. 6.1, electrons are ejected from a material through

the photoelectric effect. The photoelectrons are collected, energy- and momentum-

resolved, and counted to give a spectrum of intensity as a function of the measured

kinetic energy, ϵk = ~k2/2m, where ~ = h/2π, where h is Plancks constant, and

m is the particle mass. By conservation of energy, the energy of the original

single-particle state, Es, is

Es(k) = ϵk + ϕ+ hν. (6.1)

where hν is the photon energy, ϕ is the work function of the surface and the

quantity (EF −ES) is often referred to as the binding energy [68]. As we will see,
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Figure 6.1: Photoemission spectroscopy for ultracold atom gases. a) In electron
photoemission spectroscopy, the energy of electrons emitted from solids, liquids
or gases is measured using the photoelectric effect. Using energy conservation,
the original energy of the electrons in the substance can be determined. Sim-
ilarly, in photoemission spectroscopy for atoms, a radio frequency photon with
energy hν transfers atoms into a weakly interacting spin state. b) The radio-
frequency photon drives a vertical transition where the momentum k is essentially
unchanged. By measuring the energy and momentum of the outcoupled atoms
(upper curve) we can determine the quasi-particle excitations and their dispersion
relation (lower curve). Here ϕ is the Zeeman energy difference between the two
different spin states of the atom.
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Es(k) directly gives the dispersion of the system, and its width in energy gives

the quasi-particle lifetime.

Photoemission spectroscopy probes the single-particle spectral function which

is directly related to the single-particle Greens function predicted by many-body

theories. I will also frequently refer to ARPES, which is angle resolved photoe-

mission spectroscopy. ARPES allows one to measure the spectral function with

respect to energy and momentum. The intensity of photoelectrons emitted is

given (assuming the sudden approximation) by

IARPES(k, ω) =M0(k, ω)f(ω)A(k, ω) (6.2)

whereM0(k, ω) is a matrix element which contains relevant selection rules [68, 70].

For our atom gas application, this matrix element will be unity. Now, we see

that the ARPES intensity is determined solely by the Fermi function f(ω) =

(e~w/kBT + 1)−1 and the single-particle spectral function A(k, ω). In this way,

ARPES directly measures the occupied part of the spectral function.

I will now very briefly highlight how the spectral function is connected to the

“interesting” physics that we care to probe. For a more complete consideration

there exists much literature [1, 134, 68, 70]. The occupied single-particle spectral

function is related to the Green’s function via

A(k, ω) = − 1

π
Im[G(k, ω)]. (6.3)

For the case of interacting fermions, the Green’s function is given by

G(k, ω) =
1

ω − ϵk − Σ(k, ω)
, (6.4)

where Σ(k, ω) is called the self energy. The self energy contains all the interesting

particle-particle correlations for the many-body system. The self energy can be

written in terms of its real and imaginary parts as Σ(k, ω) = Σ′(k, ω)+ iΣ′′(k, ω),
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where the real term contains all the information on the energy renormalization

(in Fermi liquid theory this would be the effective mass [135]) and the imaginary

term contains all the information on the quasi-particle lifetime [136, 137]. Finally,

we can write the spectral function in terms of the self energy to more clearly see

how ARPES, by being directly proportional the spectral function, directly probes

the “interesting” physics

A(k, ω) =
1

π

Σ′′(k, ω)

[ω − ϵk − Σ′(k, ω)]2 + [Σ′′(k, ω)]2
. (6.5)

Useful insight can be gained by working this out for the Fermi liquid case in which

Σ(k, ω) = αω + iβω2, where α gives the effective mass and β the quasi-particle

lifetime.

6.2 Photoemission spectroscopy for atoms

As we learned in the previous chapter, radio-frequency spectroscopy has

been used to probe a strongly interacting atomic Fermi gas. In a typical experi-

ment, a radio-frequency pulse drives atoms into an unoccupied Zeeman spin state,

where they are counted to yield a spectrum of counts versus frequency. Previ-

ously, the radio-frequency outcoupled atoms had not been energy- or momentum-

resolved. However, in analogy to electron photoemission spectroscopy, the mo-

mentum of the radio-frequency photon is negligible in comparison with the typ-

ical momentum of the atoms, and the momenta of the outcoupled atoms are

therefore characteristic of the original atom states. Eq. 6.1 applies to photoemis-

sion spectroscopy of atom gases, by means of momentum-resolved radio-frequency

spectroscopy, if we simply replace the work function ϕ with the Zeeman energy

splitting, see Fig. 6.1. The extension of photoemission spectroscopy from con-

densed matter to cold Fermi gases was discussed in [138].

There are two essential requirements for using momentum-resolved RF spec-
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troscopy to determine the excitation spectrum. The first is that the interaction

energy be small enough that ϵk = ~2k2/2m holds and the data are not subject

to the complicated final-state effects we discussed in the last chapter. The sec-

ond requirement is that collisions do not scramble the energy and momentum

information carried by the outcoupled atoms. In previous momentum-integrated

RF spectroscopy measurements in 6Li, these requirements were not both satisfied

[44, 118, 120, 115, 82]. In our 40K gas, however, both of these requirements can

be satisfied. The interaction energy of the outcoupled atoms is approximately

h · 640 Hz, which is much smaller than EF . Furthermore, the mean free path

of the outcoupled atoms is much greater than the size of the gas: 1/σn ≈ 6RF ,

where σ is the collision cross-section, n is the average density and RF is the Fermi

radius of the non-interacting gas.

Resolving the kinetic energy ϵk of the radio-frequency outcoupled atoms also

requires that we apply a radio-frequency pulse that is short in comparison with

the trap period. This ensures that the momentum of the outcoupled atoms is

not significantly changed. We then immediately turn off the trap, let the gas

ballistically expand and measure the velocity distribution using state-selective

time-of-flight absorption imaging, Fig. 6.2 a). We take the data by varying

the RF frequency and observing the velocity distribution of the atoms that are

outcoupled. For reference, in Fig. 6.3, I show an example of how the momentum

varies as a function of the applied RF. In Fig. 6.3 a), we see the fraction of

atoms transferred to the third spin state as a function of RF frequency. Shown

in Fig. 6.3 b) is the gaussian size returned from a fit of the absorption image

for the outcoupled atoms. From data such as this it is clear that RF at different

frequencies couples to atoms at different momenta.

To extract the kinetic energy ϵk of the outcoupled atoms it is not sufficient

to use the gaussian size as shown in Fig. 6.3 b). This is because we need the 3D
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Figure 6.2: Extracting the three-dimensional momentum distribution. a) A time-
of-flight absorption image (145 µ × 145 µm) of atoms that have been transferred
into a third spin state is taken after applying a radio-frequency pulse to a Fermi
gas on the BEC side of the Feshbach resonance. b) After performing quadrant
averaging we use an inverse Abel transform to reconstruct the three-dimensional
momentum distribution. In this example, a two-dimensional slice at the center
reveals a shell-like structure for the momentum distribution of the outcoupled
atoms.
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Figure 6.3: RF spectra for a strongly interacting degenerate Fermi gas. The
Fermi energy is h · 8.2 kHz, (kFa)

−1 = 0.15, and T/TF = 0.16(2). a) Integrated
signal of outcoupled atoms as a function of RF frequency. The high-asymmetry
and non-zero tail results from the strong interactions. (Note the similarity to a
pair-dissociation lineshape as found in Fig. 5.7). b) Gaussian size (both radial
directions) from a 2D fit to the outcoupled atoms’ absorption image. At higher
RF frequencies, we observe atoms with higher velocities. These high velocities
occur when the two atoms are at high densities or close distances as within a pair.
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momentum distribution to determine ϵk whereas the image we retrieve from the

CCD camera is a 2D projection of the 3D momentum distribution. For example, a

shell in 3D will look fairly gaussian when projected on to a 2D surface. Projecting

a 3D object onto 2D space is referred to as an Abel transform. We extract the 3D

distribution by performing an inverse Abel transform on the image which takes

advantage of our cylindrical symmetry. An example of this is shown in Fig. 6.2b)

where we have taken a slice through the center of the image after the inverse Abel

transform revealing a shell-like structure. Clearly, even though the 2D projection

can look fairly standard (Fig. 6.1a) the 3D momentum distribution may not be

trivial.

Once we have determined the kinematics of the outcoupled atoms we can

apply Eq. 6.1 to determine the single-particle energy Es as a function of the

momentum. To check that the photoemission spectroscopy is working as intended,

we first apply it to a weakly interacting cold Fermi gas. To create a very weakly

interacting gas, we adiabatically ramp the magnetic field to the zero crossing of

the Feshbach resonance. In Fig. 6.4a, we plot the intensity, which is proportional

to the number of atoms transferred into the third spin state, as a function of the

original single-particle energy Es and wavenumber k. Again, the data are obtained

by varying the radio frequency and counting the outcoupled atoms as a function

of their momenta. For the data here we define zero energy to be the energy of a

noninteracting atom at rest in the initial spin state. This is in contrast to ARPES

in electronic systems where zero is typically defined to be the Fermi energy. For

a non-interacting Fermi gas we would expect the photoemission spectra to reveal

delta function peaks at Es = ϵk, since ϵk is the expected quadratic dispersion

for a non-interacting Fermi gas. To extract the dispersion we fit each energy

distribution curve (EDC) to a single gaussian and mark the center as a white dot.

EDCs are slices through the spectra at a given k. The dispersion (white dots)
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Figure 6.4: Single-particle excitation spectra obtained using photoemission spec-
troscopy of ultracold atoms. Plotted are intensity maps (independently scaled
for each plot) of the number of atoms outcoupled to a weakly interacting spin
state as a function of the single-particle energy Es (expressed as frequency) and
wavenumber k. Black lines show the expected dispersion curves for an ideal Fermi
gas. White symbols mark the center of each fixed-k energy distribution curve. a)
Data for a very weakly interacting Fermi gas. The Fermi wavevector k0F is 8.6±0.3
µm−1. b) Data for a strongly interacting Fermi gas where 1/k0Fa = 0 and T ≈ Tc.
The white line is a fit of the centers to a BCS-like dispersion. c) Data for a gas
on the BEC side of the resonance where 1/k0Fa = 1 and the measured two-body
binding energy is h · (25 ± 2 kHz). We attribute the upper feature to unpaired
atoms and the lower feature to molecules. The white line is a fit to the centers
using a quadratic dispersion.



85

show good agreement with the expected free-particle dispersion (black curve).

The root-mean-square width in Es of the EDCs is h · 2.1 kHz and is due to an

energy resolution that derives from the radio-frequency pulse duration. In other

words, at this level, our spectra is limited by measurement energy resolution and

we observe no other deviation from the expected delta function peaks.

Now, we apply our photoemission spectroscopy technique to a strongly in-

teracting Fermi gas. To create a strongly interacting Fermi gas, we adiabatically

ramp the magnetic field to the location of the Feshbach resonance, where the

s-wave scattering length a diverges and the dimensionless interaction parame-

ter 1/k0Fa equals zero and k0F corresponds to the peak density of the original,

weakly interacting gas. Previous measurements have shown that after the ramp

to 1/k0Fa = 0, our Fermi gas initially with T/TF = 0.16 will be very near but

slightly below the superfluid transition temperature with T = (0.9 ± 0.1) × Tc

[30]. We extract the intensity map shown in Fig. 6.4b. The interactions lower the

overall energy and flatten the dispersion curve. In addition, the energy width is

broadened well beyond our energy resolution.

As we established in the previous chapter, the interpretation of previous

radio-frequency spectroscopy measurements [118, 120] in terms of a pairing gap

is a difficult problem that is still unsolved theoretically [15]. In contrast, the pho-

toemission spectroscopy technique presented here directly measures the occupied

single-particle states, and is therefore well suited to measuring pairing gaps [68].

The energy gap in BCS theory results directly from a gap in the spectral function

as k approaches kµ. Mapping out the location of the peak of the spectral function

results in a BCS-like “back-bending” of the dispersion

Es = µ−
√

(ϵ− µ)2 +∆2 (6.6)

where µ is the chemical potential and ∆ is the superfluid gap. I show a repre-
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Figure 6.5: A sketch of BCS-like particle and hole dispersions. The occupied
lower branch (green curve) increases similar to a free-particle dispersion (black
dashed curve). However, near kµ, the dispersion turns around and an energy gap
forms in the excitation spectrum. The width of the lines loosely represents the
quasi-particle lifetime.
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sentative BCS-like dispersion curve in Fig. 6.5. Note that the dispersion loosely

follows the free-particle dispersion until it eventually turns around near kµ and

then begins to decrease. The minimum energy required for an excitation is twice

the superfluid gap, 2∆, and occurs at k = kµ. The energy gap and back-bending

dispersion are characteristic signatures of superconductivity in BCS-theory.

Recall that our data is taken at temperatures very near Tc. In BCS theory,

the gap vanishes at Tc and so one might naively expect our spectrum to reveal

a near-zero pairing gap. However, in the BCS−BEC crossover, a pseudogap due

to preformed pairs is predicted to exist above Tc [85, 16, 86, 87, 88, 139, 90]. In

the case of a pseudogap, the spectral function for a strongly interacting Fermi gas

near Tc is predicted to retain its gap-like double-peak structure. In this sense,

even though the system will not be superconducting (or superfluid), the spectral

function peaks continue to follow a BCS-like back-bending dispersion curve where

the BCS gap is replaced by the pseudogap [85, 16, 86, 87, 88, 139, 90]. As a first

step in analyzing our data, we fit the centers of the intensity at each value of k

(white dots) to Eqn. 6.6, where we replace the superfluid gap with the pseudogap.

The best fit, shown as the white curve in Fig. 6.4b, gives µ = h · (12.3± 0.7 kHz)

and ∆ = h · (9.5 ± 0.6) kHz. Note that we have also performed photoemission

spectroscopy on a gas well below the superfluid transition temperature and find

the data to be qualitatively similar.

A fairly natural question is to what extent does density inhomogeneity play

a role in this spectra? Recall from the last chapter that in all trapped gas exper-

iments the density is inhomogeneous and that the pairing gap will depend on the

density, or equivalently on the local Fermi energy. We can come to a qualitative

understanding of how our spectra may look for a homogeneous gas by comparing

our strongly-interacting spectra to our weakly-interacting spectra. Namely, we

expect that atoms at the edge of the cloud are at low density and will therefore
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follow the free-particle dispersion similar to Fig. 6.4a. While this may change

slightly the best fit parameters, µ and ∆, it cannot cause the back-bending seen

in the dispersion. In this way, our photoemission spectroscopy for ultracold atoms

provides a robust signature for pairing.

Because the photoemission spectroscopy intensity plots contain vast amounts

of information, one is left with the question of how to compare these new micro-

scopic quantities to theory. In condensed matter ARPES experiments, the PES

data is often presented in the form of energy distribution curves (EDCs). An EDC

is a vertical slice through the photoemission spectra at a fixed k. Conversely, a

momentum distribution curve (MDC) is a slice at fixed Es. EDCs are especially

useful because they can be directly related to the spectral function at a given

k, such as we found in Eq. 6.5. Then, the peak position of the EDC indicates

the dispersion at that k and the width of the feature indicates the lifetime of a

single-particle excitation at that k. As expected, the very strong interactions in

Fig. 6.4b result in a short lifetime for a particle in any given k and thus a very

large width. In Fig. 6.6 we show energy distribution curves for Fig. 6.4b for

select values of k. As k increases, the peak position of the EDCs approach the

Fermi energy. However, as k approaches kF , the peak positions turn around and

then decrease for larger k. In this way, we clearly see the back-bending of the

dispersion and we can directly compare to theoretical EDCs.

Continuing with our photoemission spectroscopy data, we now move to the

BEC side of resonance. Far on the BEC side of the resonance, for 1/k0Fa ≫ 1,

the pairing gap eventually becomes a two-body binding rather than a many-body

effect that depends on the local Fermi energy. We measure the excitation spectrum

of the Fermi gas at 1/k0Fa ≈ 1, where the molecule binding energy measured for

a low density gas is h · (25 ± 2 kHz). We observe two prominent features (Fig.

6.4c). The first feature is narrow in energy, starts at zero energy and follows
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Figure 6.6: Energy distribution curves (EDCs) for a strongly interacting Fermi
gas. We plot the intensity for selected values of k. Each curve is the average
for seven neighboring values of k in Fig. 6.4b. The data have been smoothed
with a 1.5-kHz-wide filter, and the energy is expressed in terms of frequency. The
peak position of the EDCs approaches the Fermi energy for increasing k; however,
the peak positions are eventually turned around by the pairing gap and tend to
decrease for larger k.
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the quadratic dispersion expected for free atoms (black line). We attribute this

feature to unpaired atoms, which may be out of chemical equilibrium with the

pairs. The second feature is very broad in energy, is shifted to lower energy and

trends towards lower energy for increasing k. This feature we attribute to atoms

in the paired state. An excitation gap separating the two features is evident in the

data. We fit the centers of the molecule feature to a quadratic dispersion (white

line) with the free parameters being the energy offset and an effective mass m∗,

Es = ~2k2/2m∗ + EB. In the BEC limit, where the molecules are tightly bound,

we would expect the energy offset to be the molecule binding energy, which equals

2∆, and the effective mass to be −m. This negative effective mass reflects the

fact that outcoupling an atom at high k leaves behind an excitation in the form

of an unpaired atom. Or, in other words, as we discussed in the previous chapter,

RF spectroscopy is a single-particle probe and therefore we observe the dispersion

for only one of the constituent atoms. The best fit to the data gives an energy

offset of h · (28 kHz) and an effective mass of m∗ = −1.25m.

The large energy width of the molecule feature seen in Fig. 6.4c is proba-

bly due to center-of-mass motion of the pairs. For comparison with the data, we

performed a simple Monte Carlo simulation, assuming a thermal distribution for

the center-of-mass motion and using the predicted distribution of relative kinetic

energy for RF dissociation of weakly bound molecules [117]. We assume that the

pairs are in thermal equilibrium with the unpaired atoms and use the measured

temperature of the unpaired atoms in our simulation. Assuming a molecule bind-

ing energy of h · (25 kHz), we calculate the intensity map shown in Fig. 6.7a. To

easily compare the experimental data, we reproduce the white curve from Fig.

6.4c. The agreement is quite satisfactory.

We argued earlier that part of the appeal of studying the microscopics of

a Fermi gas was that one can in turn determine its macroscopic quantities. For
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Figure 6.7: The occupied density of single-particle states. a) A calculated intensity
map for a T = 0.17 µK thermal distribution of weakly bound molecules. The white
line is the fit to the data shown in Fig. 6.4c. The agreement between theory and
data is quite satisfactory. b) The density of states for a weakly interacting Fermi
gas (black line) agrees well with a fit (red curve) for a Fermi gas in a harmonic trap.
The fit, whose only free parameter is the amplitude, includes our measurement
resolution. The dashed black vertical line shows EF . c) The density of states
taken at the peak of the Feshbach resonance is shifted to much lower energy and
contains a high (negative) energy tail. d) The density of states on the BEC side
of the resonance has two features: a peak due to unpaired atoms and a broader
feature due to molecules. This time, the red curve is the expected density of states
from the simulation shown in a). Energy is expressed in terms of frequency.
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example, if we sum the photoemission spectra over all k, then we recover the

number of atoms at each Es, also referred to as the occupied density of states

(DOS). We plot the DOS for our three spectra in Fig. 6.7b-d. For the nearly ideal

Fermi gas 6.7b, we find good agreement with the expected DOS for a trapped

Fermi gas at T = 0.18TF (red curve). The theory curve includes our measurement

resolution and the only free parameter in the fit is the amplitude. For the strongly

interacting gas (Fig. 6.7c), the occupied density of states becomes wider in energy

and the position shifts towards lower energies. The shift we attribute to the strong

attractive interactions in the system. We also observe a high (negative) energy tail,

which indicates that strong interactions promote atoms into high energy states (as

when two atoms are close together in pairing). On the BEC side of resonance (Fig.

6.7d), a pairing gap is readily apparent. This is because broken pairs are already

available in the form of free atoms. The red curve is the expected density of

states determined from the simulation of a thermal distribution of weakly bound

molecules (Fig. 6.7a). The only free parameter in the simulation is an overall

scaling factor for the amplitude.

Another macroscopic quantity easily obtained is the momentum distribu-

tion. This is obtained by summing the photoemission spectra over all Es, giving

the number of atoms as a function of k. The momentum distribution for an in-

teracting Fermi gas was previously measured in Ref. [53] where an interacting

Fermi gas was quickly jumped to the weakly interacting regime. In contrast, the

momentum distribution as obtained from photoemission spectroscopy does not re-

quire this magnetic-field jump because the outcoupled atoms are already weakly

interacting.

The momentum-integrated RF spectra we discussed last chapter, can also

be recovered, generating a spectrum similar to that in Fig. 6.3a. At this point I

would like to highlight, as we discovered last chapter, that while RF spectroscopy
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is inherently a microscopic probe, in its momentum-integrated form it is inade-

quate for revealing the single-particle dispersion [89]. It is only when we resolve

the momentum that we can observe the back-bending dispersion of the paired

state. The MIT group has shown that if one is willing to make an assumption

of the quasi-particle dispersion, then momentum-integrated RF spectroscopy can

be used in a spin-imbalanced Fermi gas to determine the superfluid gap [82]. Un-

fortunately, this approach is not straightforward because it takes place at the

interface between the superfluid and normal phase. Additionally, the work in Ref.

[132] demonstrates that even in the best-case scenario for 6Li, final-state effects

may still be non-negligible.

From an ultracold atoms point of view, we are very excited about our new

photoemission spectroscopy technique and its ability to directly probe the spectral

function and determine many microscopic quantities such as the energy dispersion,

energy gaps, and quasi-particle lifetimes. Much of this information was a first for

the atomic physics community. In light of the importance of these importance of

these concepts I would like to again acknowledge the work of Dao et al. [138] which

we found to be the first proposal of ARPES for atomic systems. Additionally, I

want to acknowledge previous experiments which probed microscopic qualities of

a Fermi gas such as the Bragg spectroscopy experiments of Vale et al. [37] and

the photoassociation experiments of Hulet et al. [140].

Thus far, photoemission spectroscopy has already proved to be very valuable

for studying strongly interacting atomic Fermi gases. Currently we are already

extending this technique to include spatially resolved momentum-resolved RF

spectroscopy to study the effects of density inhomogeneity. We are also begin-

ning to study these strongly interacting gases as a function of temperature and

in particular probe the controversial pseudogap regime for temperatures above

the superfluid transition temperature. In the future, it will be exciting to see
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photoemission spectroscopy applied to other atomic systems as it is a general and

conceptually simple probe of strongly correlated atom gases. As such, it could

be applied to lattice systems to study band dispersions and the effect of inter-

actions therein, as well as low dimensional systems. For example, photoemission

spectroscopy has now been proposed as a possible tool for observing the Fulde-

FerrelLarkinOvchinnikov (FFLO) state in 1D Fermi gases [141]. Additionally,

much like ARPES of electronic systems, our photoemission spectroscopy tech-

nique could be used for an atom system where the pairing is not isotropic as in

higher partial-wave pairing [142, 143, 144].



Chapter 7

Conclusions and future directions

The work in this thesis aimed to answer the question of what can these new

Fermi gas systems teach us about the general class of strongly interacting Fermi

gases? We began by contributing to the broad demonstration that atomic Fermi

gases are addressing universal physics. This demonstration of universality was

imperative to be able to say that we are studying the relevant underlying physics

found in nuclear and neutron matter, the quark-gluon plasma, and possibly even

high temperature superconductors. Secure in the fact that we were addressing

universal physics, we decided to answer the question head on by directly probing

the microscopic physics.

Intimately connected with answering the above question is finding ways to

make measurements that connect directly to many-body theories and ideas. In

this way, with detailed enough measurements, we can use our relatively pure and

simple system to constrain many-body theories and thereby modify our under-

standing of all strongly interacting Fermi gas systems. To do this, we created a

new measurement technique (for the atomic physics community) using photoemis-

sion spectroscopy. Photoemission spectroscopy allowed us to directly probe the

single-particle spectral function, which is in turn directly predicted by many-body

theories. For the first time, we were able to probe the energy dispersion, the pair-

ing gap, and the quasi-particle lifetimes of a strongly interacting atomic Fermi
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gas. These measurements are now allowing for the most detailed microscopic

comparisons between experiment and theory to date.

7.1 Future directions

In general, the future for atomic Fermi gases seems boundless. As these

systems continue to address condensed matter and many-body ideas with greater

accuracy, I think they will continue to make contributions relevant to the greater

physics community. I think the photoemission spectroscopy technique developed

here will continue to have an important role to play as well. In particular, as

these gases are being introduced to lattices, higher partial-wave pairing, lower

dimensions, impurities, etc., this measurement technique will become even more

relevant for relating to condensed matter systems. Particular to these types of

experiments, I would still like to see PES or IPES (inverse photoemission spec-

troscopy) used to observe the upper branch of the BCS-like dispersion (we tried

for many months with little success).

7.2 The work not presented here

In addition to the work I have presented here, I also worked on a few other

results. Before the work in this thesis, I took part in a study using atom shot noise

to probe fermionic pairing [112]. All of the work I have discussed in this thesis was

done in equal collaboration with John Gaebler and as such we divided up topics

for our theses. Another topic we addressed, which John will likely cover in his

thesis, was the first clear creation and observation of p-wave Feshbach molecules,

found in Ref. [142]. In the near future, we hope to publish our recent work in

which we have used photoemission spectroscopy to address the center of the cloud

(a more homogeneous sample) by using holographic techniques to remove atoms

at the edge of the sample. Also in the near future, we hope to publish our work in
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which we have studied the dispersion of a strongly interacting Fermi gas above the

superfluid temperature, relevant for pseudogap physics. Lastly, we have recently

returned to this idea of universality in Fermi gases and hope to address this topic

more broadly by studying the Tan relations [99, 145, 146]
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Appendix A

Fermi gas thermometry

In this Appendix I will describe an experiment we pursued regarding Fermi

gas thermometry. The goal of these experiments was to use a novel technique to

determine the temperature of a strongly interacting Fermi gas. As we will shortly

see, the temperature of a very cold trapped Fermi gas is a tricky thing to measure,

and strong interactions make the problem worse. In this appendix, I will motivate

why measuring temperature is important in these systems, why it is hard, and

why, unfortunately, our new technique was of limited value. I am including this

material because I find it interesting and with the hope that it may be of value

to anyone else who decides to develop a new thermometer for these gases.

Temperature is an important parameter when describing a Fermi gas. The

temperature relative to the Fermi temperature (T/TF ) separates a classical gas

from a quantum gas. When interactions are present, the temperature relative to

the transition temperature separates a superfluid from the normal state. Through-

out the BCS-BEC crossover, the temperature and the transition temperature are

again important parameters, and of current theoretical interest. Unfortunately,

this regime of cold temperatures and strong interactions is particularly difficult

for two reasons. First, we determine temperature from time-of-flight expansion.

For a trapped ideal Fermi gas, as we will see, it is already difficult to measure

the temperature of a gas much below 0.1TF [47]. Second, as interactions are
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turned on, the interaction energy becomes convoluted with the release energy in

time-of-flight expansion. To extract the temperature in this way would require a

model of the release energy. Thus, it would be nice to have a model independent

thermometer that would work for low temperatures and strong interactions.

A.1 Ideal Fermi gas thermometry

To measure the temperature of a weakly interacting Fermi gas, we release

the gas from its confining potential and use time-of-flight imaging. For sufficiently

long expansion times, the momentum distribution is captured on the CCD. Recall

from Chapter 4, we fit the 2D image using an appropriate Fermi-Dirac function

OD(y, z) = pk g2

(
− ξ e

− y2

2σ2
y
− z2

2σ2
z

)
/g2(−ξ) (A.1)

where ξ, σy, σz, and pk are independent fitting parameters and gn(x) =
∞∑
k=1

xk

kn
.

Recall the fugacity, ξ, appears in the Fermi-Dirac distribution function

FFD(ϵ) = (ξ−1eϵ/kBT + 1)−1 (A.2)

as ξ = eµ/kbT , where µ is the chemical potential. In this way, the fugacity only

depends on the relative temperature

T

TF
= −

(
6

g3(−ξ)

)1/3

, (A.3)

and therefore we can extract T/TF directly from our fit.

This procedure for determining the temperature works very well for a range

of temperatures, namely from 0.1TF < T < 0.5TF [47]. For temperatures above

0.5TF , subtle differences between the Fermi-Dirac distribution and a classical

distribution cannot be picked out by the fit (but of course in this limit we can rely

on the classical distribution to determine temperature). For temperatures much

below 0.1TF , the finite temperature distribution approaches the zero temperature
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distribution and it is dominated by the Fermi energy. In this limit, our fitting

routine cannot differentiate between the two, at least within our signal-to-noise,

and we are in need of a new thermometer.

To better understand the challenge in fitting a low temperature gas, let us

first consider the simplest case (Eqn. A.2), the distribution function for an ideal

Fermi gas. In Fig. A.1 a), I show the distribution function as a function of k for

a zero temperature gas (black line) and a finite but small temperature (red line).

The temperature of the red line distribution can be determined by counting the

excitations above kF (and correspondingly the holes below kF ). Generally, one

would say the width of the broadening of the distribution is proportional to kBT .

In Fig. A.1 b), I show a similar calculation assuming this time a spherical square-

well potential, and integrate through one direction similar to imaging an atom gas

in time-of-flight imaging. The red curve represents the same finite temperature

as in Fig. A.1 a), but now the differences in the two distributions are much more

subtle. As this example shows, integrating through one of the directions of an

atom cloud (projecting a 3D object onto 2D) already masks much of the signal.

As it turns out, real potentials are not even spherical square wells and this

further complicates matters. Because, in a real trap, the density decreases as

a function of the gas radius and the local Fermi temperature TF decreases, the

relative temperature T/TF increases. In Fig. A.2, I reproduce the expected mo-

mentum distributions after integrating through one dimension of a gas expanded

from a harmonic trap as found in Ref. [47]. The distributions are shown for

various temperatures. The distribution at T/TF = 0.1 is very similar to the zero

temperature distribution. With our current signal-to-noise, the coldest relative

temperature we can accurately measure is T/TF = 0.1 . However, the distri-

bution at T/TF = 0.2 is still clearly differentiated from the zero temperature

distribution and we can fit it quite accurately. Mapping a temperature at or be-
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Figure A.1: Momentum distributions at zero temperature (black line) and a finite
but small temperature (red line). a) Fermi distribution function for a homogeneous
system. The temperature can be determined from the difference in the finite and
zero temperature distributions. b) Here, I have integrated through one dimension
(similar to imaging an atom cloud) of a 3D spherical square well potential. For the
same finite temperature, the distributions are much more similar. Determining
the temperature from such a distribution is much more difficult.
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Figure A.2: Momentum distributions after integrating through one dimension of
a gas expanded from a harmonic trap as found in Ref. [47]. There is very little
difference between the distributions at T/TF = 0 and 0.1.
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low T/TF = 0.1 on to a T/TF = 0.2 distribution was at the heart of our attempt

at a new thermometer.

A.2 Third spin-state thermometry

The ability to measure temperatures accurately below 0.1TF would be use-

ful for a couple reasons. Firstly, to create a gas below 0.1TF it helps to be able

to measure those low temperatures. For example, how does one modify an evap-

oration trajectory to make a colder gas if the thermometer is stuck at 0.1TF ?

Secondly, a colder gas would allow us to access a larger portion of the superfluid

phase diagram, particularly on the BCS side. A thermometer that could deter-

mine low temperatures and also worked for a strongly interacting gas would be

doubly beneficial for BCS-BEC crossover studies.

The idea behind using a third spin state as a thermometer is as follows:

place a small population of atoms in a third spin state in thermal contact with

the Fermi gas. Because the atoms in the third spin state are in thermal contact

with the other atoms, they have the same temperature T . However, the number of

atoms in the third spin state is chosen to be substantially smaller than the states

we wish to study, so that the third spin state has a smaller Fermi temperature TF .

In this way, we can map the absolute temperature of the states we are interested

in (but have difficulty measuring) onto a state with a higher relative temperature

T/TF , that we can accurately measure.

For example, let us assume we begin with our typical conditions of 105

atoms per spin state (|9/2,−9/2⟩ and |9/2,−7/2⟩ states) with a degeneracy of

T/TF = 0.1. Notice this temperature is at the limit we can accurately measure.

Imagine now that we place this cloud into thermal contact with 2 ∗ 104 atoms

in a third spin state (|9/2,−5/2⟩). Recall that the Fermi temperature goes as

TF = ~ω(6N)1/3/kB, so that our 5% population in the third spin state now has
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a relative temperature of T/TF ≈ 0.27, a value we can again accurately measure.

This technique was introduced as an impurity thermometer in Cindy Regal’s thesis

and was shown, at low magnetic field where the spin states are stable, to be able

to duplicate temperature as well as the 2D surface fit explained above.

Practically, impurity thermometry has a couple of challenges. First, be-

cause we tend to study the Fano-Feshbach resonance between the |9/2,−9/2⟩ and

|9/2,−7/2⟩ states, our impurity spin state is the |9/2,−5/2⟩ state. Because this

state has does not have a closed cycling transition for imaging and the number

of atoms is chosen to be small, signal-to-noise tends to be quite low. Addition-

ally, for this probe to be useful it should be applicable for magnetic fields near

the Fano-Feshbach resonance (around 200 G). However, we find that these spin-

state combinations are not stable at high fields. In particular, we find rather

counter-intuitively that while the |9/2,−5/2⟩ and |9/2,−7/2⟩ states are stable,

the |9/2,−5/2⟩ and |9/2,−9/2⟩ states are not (they are stable on the order of one

second). Presumably, spin-exchanging collisions are due to the instability, but

rather puzzling is that likely exchange culprit for the |9/2,−5/2⟩ + |9/2,−9/2⟩

collision would be that both states leave as |9/2,−7/2⟩, which would mean en-

tering in a s-wave channel and leaving on a p-wave channel, which should be

suppressed for our ultra cold temperatures. Regardless, the spin mixture is suffi-

ciently stable for the third spin state to come into thermal equilibrium the sample

and we measure good agreement between impurity thermometry and the 2D sur-

face fits, even at high magnetic fields.

A.3 Three spin states near a Fano-Feshbach resonance

Although we would like to have a good thermometer for a weakly-interacting

gas, the real potential with impurity thermometry is the possibility to probe the

temperature of a strongly interacting Fermi gas. As we mentioned earlier, it is
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difficult to extract the temperature of a strongly interacting Fermi gas from typical

time-of-flight expansion experiments. This is because the interaction energy can

become convolved with the expansion energy, and extracting the temperature

becomes model dependent. Our current method is to measure the temperature

of a weakly interacting Fermi gas and then adiabatically turn on the interactions.

In this way, various theoretical models can predict the temperature of the gas in

the strongly interacting regime.

Impurity thermometry, however, has the possibility to bypass the problem

of the release energy effecting the time-of-flight expansion. This is because while

there may exist strong interactions between the |9/2,−9/2⟩ and |9/2,−7/2⟩ states

near their Fano-Feshbach resonance, they each still interact fairly weakly with the

impurity state |9/2,−5/2⟩. Thus, if we use the |9/2,−5/2⟩ state as our impurity

state, we can measure its temperature in the traditional way. This could be very

helpful for, say, measuring the temperature (and transition temperature) of the

strongly interacting gas throughout the BCS-BEC crossover.

This idea of impurity thermometry on a strongly interacting gas seemed

very promising. In particular, the time required for thermalization between the

impurity spin state was almost an order of magnitude smaller then the lifetime

of the |9/2,−9/2⟩ and |9/2,−7/2⟩ states near their Fano-Feshbach resonance (a

stringent requirement if the impurity state was to be used as a thermometer).

Unfortunately, as we tried these experiments for the very first time on an ultracold

sample, we found out that the entire sample became extremely unstable as the

spin mixture approached the Fano-Feshbach resonance. We understand this now

as the third (distinguishable) spin state de-stabilizing the fragile fermion pairs.

To understand why impurity spin state thermometry fails to work near the

Fano-Feshbach resonance we return to the case of the strongly interacting gas

without a third spin state. A key property of these strongly interacting Fermi
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gases is that they have a relatively long lifetime (with respect to collision time

scales, trap periods, etc.) [147]. In 40K, the lifetime of fermionic pairs at the Fano-

Feshbach resonance is 100s of milliseconds, and can be even larger in 6Li. What

is surprising, however, is that the sample is so stable (consider our discussion in

Chapter 2 in which we found these are very large, fragile pairs). Similar conditions

for a Bose gas will result in orders of magnitude smaller lifetimes [148]. So, where

does the increased lifetime of fermionic pairs originate? The answer lies in the

fermionic nature of the constituent atoms. Namely, because the entire gas is made

up of spin-up and spin-down fermions, and a fermionic pair is made up of the same,

a collision to de-stabilize the pair is suppressed because no two identical fermions

approach each other (due to the Pauli exclusion principle). This is explained in

detail in Ref. [47].

We can now see why adding a third (distinguishable) spin state causes a

problem. While the fragile fermionic pairs are still Pauli protected from atoms in

the identical spin states, they are not Pauli protected from the newly introduced

third spin state. Atoms in this third distinguishable spin state are able to collide

with the fermionic pairs and carry away their excess energy as the pairs decay into

deeper bound states. This process is sufficiently detrimental to the Fermi gas that

we could not even observe a fermionic condensate in the presence of the impurity

spin state. One might argue that impurity thermometry may still be applicable

for temperatures above the pairing temperature, but our typical thermometry

techniques are already sufficiently accurate in that regime. Alternatively, it may

also be useful for spin-imbalanced studies as found in Ref. [149].


