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Smith, Ryan P. (Ph.D., Physics)

Quantitative measurements of many-body exciton dynamics in GaAs quantum-well struc-

tures

Thesis directed by Professor Dr. Steven T. Cundiff

Heterostructures in semiconductors, such as quantum wells, give rise to new optoelec-

tronic properties compared to bulk materials by confining the motion of carriers. We study

quasiparticles in gallium arsenide (GaAs) quantum wells known as excitons. The absorp-

tion spectrum of these excitons exhibits changes at elevated carrier-excitation levels because

of many-body interactions between particles. While the spectral absorption changes from

these interactions have been studied, a connection between measurements and a microscopic

theory has been lacking.

The quantitative spectrally resolved transient absorption measurements described in

this thesis are combined with a microscopic theory. This combination relates observed spec-

tral changes in the probe after ultrashort optical excitation to a unique mixture of electron-

hole plasma, exciton, and polarization effects. Through theory-experiment comparison, we

deduce the actual carrier-density levels, exciton populations, and other correlations in the

system. We find that Coulomb scattering of polarization with free-carrier densities dom-

inates the excitation-induced shifting and broadening of the exciton resonance and that

exciton populations do not significantly contribute to the excitation-induced effects. We

observe a strong transient gain and attribute this feature to a coherent transfer of energy

between the pump and probe.

Since the excitation-induced effects are strong, theory predicts that the system should

display light-statistic-dependent excitation-induced effects. To demonstrate that light statis-

tics of optical fields have a meaningful effect on the many-body dynamics, we develop a mea-

surement technique involving optical pulse shaping. Our measurements are consistent with
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theoretical predictions that light with incoherent statistics gives rise to weaker excitation-

induced effects than does a coherent source that creates the same density of electron-hole

pairs. Preliminary results suggest that the observed effects are related to the increased tem-

poral duration of the exciting light source. We explore the effects of different pulse shapes

to elucidate the primary underlying effects that give rise to the observed weaker excitation-

induced effects.
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Chapter 1

Introduction

Semiconductors and their nanostructures respond to light fields in a wide variety of

ways, including changes in conductivity and the formation of short-lived quasiparticles in

the lattice [1]. For intense optical excitation, the interactions between particles inside the

materials can dramatically affect the optical response. Research has explored the optical and

electronic dynamics in semiconductors; however, the complicated many-body interactions

between particles that give rise to optical responses need further investigation.

To elucidate the nature of many-body interactions, ultrashort laser pulses are used to

study the dynamics of quasiparticles, known as excitons, in GaAs quantum wells (QWs).

These excitons are of particular interest because they result in a strong spectral resonance

feature and tend to dominate the nonlinear optical response [10, 11]. Thus, the spectral

features of excitons can be used to monitor effects that occur at high excitation densities.

The effects at high densities are complicated. When carrier-excitation levels are ele-

vated in a QW, the lowest-lying 1s-exciton resonance can undergo spectral changes such as

broadening and shifting due to excitation-induced effects [12, 3, 13, 14, 15]. Physically, these

effects result from Coulomb-induced scattering of polarization from carrier densities, polar-

ization itself, and exciton populations. These nonlinear interactions build up on picosecond

time scales, and it is typical that dephasing, phase-space filling, energy-renormalization, and

screening effects become mixed in a nontrivial manner. These effects are many-body interac-

tions between a large number of particles, as compared with one- or two-body interactions as
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are typically observed in atomic experiments [16]. Since the many-body effects are strongly

coupled, it is very challenging to determine the many-body effects that give rise to nonlinear

observables. Even though much research has been performed on the nonlinear properties

of GaAs QWs in the past few decades [17, 18, 19], to the best of our knowledge no work

until now has quantitatively determined how many-body configurations affect the exciton

line shape.

The experimental work described in this thesis combined with a microscopic theory

clarifies the many-body effects that give rise to nonlinear exciton spectra in GaAs QWs.

The microscopic theory was constructed by our theorist collaborators: Mackillo Kira, Martin

Schäfer, Johannes Steiner, and Stephan Koch at the Department of Physics and Material

Sciences Center, Philipps-University, Marburg, Germany.

In addition to characterizing the many-body configurations, we find the nonlinearities

observed in GaAs QWs to be strong enough that the light statistics of the optical excita-

tion may have an effect on the observed nonlinearities. The study of a system’s response

to the light statistics of an excitation source is termed “quantum-optical spectroscopy.” Al-

though experiments in atomic vapor systems have explored nonlinear interactions between

exciting light statistics and atoms in a cavity [20, 21, 22], no experiments of this type have

been performed in semiconductors. The extremely high photon densities required to ob-

serve nonlinearities in semiconductors are typically outside of the regime of quantum-optical

experiments, which deal with a small number of photons.

To demonstrate quantum-optical spectroscopy in GaAs QWs, we perform several exper-

iments involving optical pulse shaping to realize theory predictions concerning the response

of excitons to an excitation source with incoherent light statistics. Specifically, theory pre-

dicts that an excitation source with incoherent light statistics gives rise to lower scattering

rates than for coherent excitation that creates the same carrier density. The lower scattering

rates are predicted to be observable in the line shape of the exciton.
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1.1 Thesis organization

This thesis reports the results of studies of the many-body exciton dynamics in a GaAs

QW system. Specifically, we perform spectrally resolved transient absorption measurements.

The thesis is divided into two parts: (i) the characterization of many-body configurations

through quantitative measurement techniques, and (ii) a study of the system response to

light statistics using pulse-shaping techniques.

In the first part, we describe pump-induced many-body configurations using a quan-

titative measurement technique combined with a microscopic theory. Chapter 2 introduces

direct-gap semiconductors, then explores the background and theory involved in optical stud-

ies of the nonlinearities in GaAs QWs. Previous optical studies of excitons in GaAs QWs are

also reviewed. Chapter 3 introduces a novel quantitative measurement technique. Spectrally

resolved transient absorption recorded in absolute units characterizes the nonlinear optical

response of excitons in a GaAs multiple QW system. The techniques presented here are

common to both the transform-limited excitation studies and the pulse-shaping studies. In

Chapter 4, the results of the transform-limited excitation are combined with microscopic

theory, and the results are presented.

The second part of the thesis begins in Chapter 5 with some background on light

statistics. We explain the predictions of our theorist collaborators concerning the nonlinear

exciton response to light with thermal statistics. A simple model validates the prediction

that a light source with thermal statistics should induce a pure exciton population without

creating a polarization. Chapter 6 describes the possibilities we explored for creating an

intense thermal light source and discusses the paradigm of density-matrix ensemble averaging

for exploring the exciton response to thermal light. The protocol for an ensemble of phase-

randomized realizations is discussed. To realize these protocol, Chapter 7 explains the details

of pulse shaping. In Chapter 8 we characterize the phase-randomized light source generated

by pulse shaping and discuss the results from the QW response. The nontrivial results inspire
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exploration of the QW response to other pulse shapes. This work is described in Chapter 9.

We summarize our studies of many-body exciton dynamics in Chapter 10. In Appendix

A, a method for accurate detection of the probe absorption is explained. Appendix B contains

the details of the procedure for calibrating the pump and probe pulse energies.



Chapter 2

Background on excitons in semiconductors

2.1 Interest in semiconductors and GaAs

Semiconductors have become an integral part of our modern world. Personal com-

puters, cell phones, satellite communications systems, solar cells, traffic lights, and compact

disc players are all based on semiconductor devices [23]. The proliferation of these devices

in society has inspired much research into the understanding of the electronic and optical

properties of a variety of materials.

Although semiconductors were being studied in laboratories as early as the 1830s,

semiconductor research expanded with the 1947 development of the transistor in Bell Labs.

The transistor revolutionized the fields of electronics and semiconductors. The fundamental

interest and industrial applications have driven research into the properties of semiconductor

structures [24].

Semiconductors are often studied with spectroscopic techniques using lasers [11]. The

advent of ultrashort pulsed mode-locked lasers has allowed investigation into extremely fast

time dynamics (10−15 seconds, or a femtosecond) inside materials [25]. These lasers can

also produce intense pulses of energy that can create novel regimes not previously available

experimentally, such as high electron densities. The latter and other unexplored regimes

may hold keys to developing new technologies and a better understanding of semiconductor

physics.

The semiconductor gallium arsenide (GaAs) has a rich optoelectronic structure that
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has many industrial applications [26]. GaAs offers certain advantages over the indirect-gap

semiconductor, silicon (Si), the primary semiconductor used in industrial applications. The

advantages over Si include a higher saturated electron velocity and electron mobility, insensi-

tivity to heat, and the possibility to emit light. Si has the advantages of higher hole mobility,

allowing fast switching in field-effect transistors, and is less brittle than GaAs, abundant,

and cheap to process. Despite the disadvantages of GaAs compared to Si, its application

to high-speed electronic devices, laser diodes, light-emitting diodes, and photovoltaics has

fueled an enormous amount of research in the last 40 years [17, 18, 19, 27].

2.2 Semiconductors and direct band-gap picture

A semiconductor can be technically defined as a solid with a conductivity somewhere

between a metal and an insulator. A more useful explanation involves a map of the electronic

energy bands, a large number of discrete quantum states resulting from the extended wave

nature of the electrons in a periodic structure. In the unexcited semiconductor, electrons

fill the valence band, corresponding to no net motion of charge, or an insulating state. An

energy exceeding the band gap energy can promote a valence band electron to the conduction

band, which corresponds to electrons being free to move about the material and thus conduct

electricity. A population of electrons in the conduction band and the absence of electrons

in the valence band mark the transition from insulator behavior to conducting behavior.

Although electrons may be excited via thermal energy or optical excitation, this discussion

focuses on the latter.

We can visualize the optical interaction with a semiconductor by representing the

energy bands in momentum (k) space. Figure 2.1 depicts the absorption of a photon in the

first Brillouin zone, the central cell in reciprocal lattice space (around k=0). A photon with

energy ~ω that exceeds the gap energy, Egap = Ec − Ev, can be absorbed by this material.

Here Ec and Ev are the conduction band and valence band energies, respectively. Photon

absorption results in an interband transition that promotes an electron from the valence
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band to the conduction band, leaving the absence of an electron, or a “hole,” in the valence

band. Since the momentum of the photon is negligible compared to the electron momentum,

the electron and hole must have the same wave vector k.

A photon may also stimulate emission, inducing a transition of the electron back to the

valence band, resulting in the emission of a photon. Stimulated emission in semiconductors

has allowed the development of semiconductor lasers [28, 29].

E k

k

( )

Egap

Valence

Band

Conduction

Band

electron

hole

Figure 2.1: Absorption of a photon by a direct-gap semiconductor. When an electron is promoted to the
conduction band, it can move freely about the material and thus conduct electricity.

In a direct-gap semiconductor, an electron can undergo a transition from the highest-

energy state in the valence band to the lowest-energy state in the conduction band without

any change in crystal momentum. The transition shown in Fig. 2.1 is an interband transition

for a direct-gap semiconductor. The low-momentum transition in direct-gap semiconductors

allows use in light-emitting diodes and laser diodes [29]. This low-momentum transition will

be relevant to our discussion of bound exciton states.
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2.3 Excitons in bulk GaAs

We study the optical properties of the direct-gap semiconductor, gallium arsenide

(GaAs), a III-V compound with a zincblende lattice structure. The dominant optical fea-

tures at low temperature below the band-gap energy are resonances due to the exciton, a

bound quasiparticle state between the electron and hole [10, 30]. The wave function and

energy levels of an exciton are analogous to those of a hydrogen atom.

When an electron is excited into the conduction band by the absorption of a photon,

a hole is created in the valence band, which has opposite charge of the electron and can

also conduct electricity in the lattice. In GaAs (and other semiconductors), the electron and

hole can form a bound state through Coulomb attraction. The resulting quasiparticle, an

exciton, has slightly less energy than the unbound electron and hole. The exciton that is

formed in bulk GaAs can move throughout the lattice and can transport energy. However,

it cannot transport charge because it is electrically neutral.

Excitons can form when the electron and hole have the same group velocity. This

condition is necessary for the electron and hole to move together as a bound pair. The group

velocity of an electron or hole is given by:

vg =
1

~

∂E

∂k
, (2.1)

where E is the band dispersion shown in Fig. 2.1. To satisfy this condition, the gradients

of the conduction and valence bands must be the same. The bands in a direct-gap semi-

conductor have zero gradient at k = 0. Hence, excitons can form efficiently during direct

transitions in these materials [1].

The bound state is stable for a short period of time. When the electron ‘falls’ into

the hole, the recombination results in an effective annihilation of the exciton particle and is

accompanied by the emission of a photon. The lifetime of the bulk exciton, influenced by

many factors including temperature and scattering with other excitons, is on the order of

100 picoseconds in GaAs.
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There are two basic types of excitons, as shown in Fig. 2.2: (a) Wannier-Mott, that

have a large radius encompassing many atoms; and (b) Frenkel, or tightly bound excitons

that have a correlation radius to within one lattice spacing. For GaAs, excitons are the

Wannier-Mott type. In both cases the exciton wavefunction is delocalized in the lattice.

Figure 2.2: (a) A Wannier-Mott exciton with a large spatial extent compared with the size of a unit cell,
typically found in semiconductors with large dielectric constant. (b) A tightly bound (Frenkel) exciton with
smaller radius, more common to insulator crystals. Figure from [1].

The wave function ψ(Re,Rh) of an exciton is a solution to a Schrödinger equation that

is similar to hydrogen (or positronium), but with different masses and dielectric constant

[31]:

[(

Ec −
~

2

2m∗
e

∇2
e

)

−
(

Ev +
~

2

2m∗
h

∇2
h

)

− e2

4πǫb|Re − Rh|

]

ψ(Re,Rh) = Eψ(Re,Rh). (2.2)

The background dielectric constant ǫb = ǫ/ǫ0 = 12.8 is a scaling of the vacuum dielectric

constant, ǫ0; typical numbers for the effective electron and hole masses are m∗
e = 0.067m0

and m∗
h = 0.51m0, where m0 is the free electron mass and e is the charge of the electron. The

electron energy (Ec) and hole energy (Ev) in the conduction and valence bands, respectively,

are modified by the kinetic energy operators (∇2
e(h)) and their Coulomb attractive potential

∝ 1/|Re − Rh|. In solving the Schrödinger equation to find the binding energies of the

exciton states, it is helpful to separate the motion into that of the center of mass RCM and

the relative coordinate R = Re − Rh of the electron and hole. The center of mass is
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RCM =
m∗

eRe +m∗
hRh

m∗
e +m∗

h

. (2.3)

The reduced mass is

1

µ
=

1

m∗
e

+
1

m∗
h

. (2.4)

The Schrödinger equation in the transformed coordinate system (RCM ,R) is

[(

− ~
2

2(m∗
e +m∗

h)
∇2

CM

)

+

(

Egap −
~

2

2µ
∇2

)

− e2

4πǫb |R|

]

ψ(RCM ,R) = Eψ(RCM ,R). (2.5)

The transformed coordinate system allows the wave function to be factored into a product

of the functions of RCM and R since the operators with RCM and R appear additively. The

equation for the center of mass part is simply a plane wave with energy ~
2K2

CM/2(m∗
e +m∗

h).

The equation for the relative coordinate is

[

−
(

~
2

2µ
∇2

)

− e2

4πǫbR

]

φ(R) = (E − Egap)φ(R), (2.6)

resulting in a binding energy for the nth level of the exciton in bulk GaAs relative to the

ionization limit of

Ebinding(n) = − µ

m0

1

ǫ2b

RH

n2
= −RX

n2
, (2.7)

where RH is the Rydberg constant for hydrogen, or 13.6 eV. The new quantity RX =

(µ/m0ǫ
2
b)RH introduced here is the Rydberg constant for the exciton [1]. Additionally, the

oscillator strength f of the exciton drops off with decreasing n as f(n) ∝ 1/n3, leading to

a decrease in the height of absorption peaks for higher n exciton states. Experimentally,

however, only a few exciton states can be seen because of line-broadening mechanisms such

as the scattering of electron-hole pairs with phonons.

The optical transition energy for center of mass momentum KCM is the sum of the

band-gap energy, the binding energy (intrinsically negative), and the kinetic energy:

∆E(n,KCM) = Egap + Ebinding + Ekinetic = Egap −
RX

n2
+

~
2K2

CM

2M
. (2.8)
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The modified Bohr radius for the exciton is

aX =
ǫbm0

µ
aH , (2.9)

where aH is the hydrogen Bohr radius of 0.053 nm. Similar to hydrogen, the maximum

probability separation distance between the electron and hole changes with n as rn = n2aX .

Using the above numbers for GaAs, the n = 1 exciton binding energy is RX = 4.2 meV

and the Bohr radius is aX = 13.5 nm. This radius compared with the a = 0.56 nm lattice

constant for GaAs confirms that the excitons are the Wannier-Mott since the electron and

hole are separated by many lattice sites. Furthermore, the binding energy is small compared

to the room temperature energy kBT ≈ 25 meV. Room temperature thermal energy prevents

the formation of excitons in bulk GaAs since it provides the exciton ionization energy. Thus

cryogenic cooling is necessary before observation of the bound exciton state is possible.

Since an exciton is a two-particle state, its energy levels cannot be represented as the

promotion of an electron to the conduction band, as shown in Fig. 2.1. This picture is

unable to capture the energy of both the electron and hole that make up the total energy

of the bound state. Rather, the center of mass picture, as shown in Fig. 2.3a, correctly

describes the excitation of bound exciton states. The absorption of a photon creates a state

that lies along the photon dispersion line E(k) = ~ck/n, where c is the speed of light and

n =
√
ǫb ≈ 3.7 is the nonresonant index of refraction for light at energies near the band gap.

The optical excitation to one of the bound exciton states follows Eqn. 2.8.

Excitons are the dominant spectral feature below the band gap edge. The absorbance

spectrum of GaAs, shown in Fig. 2.3b, illustrates the sharp peaks in absorption that cor-

respond to the bound exciton states below the gap energy, Egap. Photons absorbed by the

semiconductor sample that exceed the gap energy create unbound electron-hole pairs. The

continuum absorption approaches a finite value as the photon energy decreases to Egap, in-

stead of going to zero as predicted by free-carrier theory. This difference is known as the

Coulomb (or Sommerfeld) enhancement of continuum absorption [32].
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For bulk GaAs at low temperature (< 10 K), the direct band-gap energy is 1519.1 meV

[33]. This energy less the binding energy of RX = 4.2 meV of the n = 1 exciton at KCM=0 is

1514.9 meV, which is the photon energy at which a peak occurs in the absorption spectrum.

This photon energy corresponds to E1 in Fig. 2.3b.

Figure 2.3: (a) Schematic diagram of exciton states and the continuum in the center of mass picture.
Excitons can form at discrete energies below Egap. Photons with energy exceeding Egap can create unbound
electron-hole pairs. (b) Cacluated absorbance spectrum of GaAs at 1.2 K including Sommerfeld enhancement,
based on Ref. [2]. As the photon energy increases, discrete peaks in the absorption correspond to the n = 1, 2,
and higher bound states of the exciton.

The above description of exciton formation is modified when carrier motion is confined

to two dimensions in a QW structure.

2.4 Excitons in GaAs quantum wells

It is possible to confine the motion of carriers to two dimensions by growth of het-

erostructures [34]. The basic technique typically involves molecular-beam epitaxial crystal

growth of different layers of semiconductor material. In our studies, a thin (10 nm) layer of
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GaAs is grown between two layers of Al0.3Ga0.7As, as illustrated in Fig. 2.4. The two mate-

rials have similar lattice constants, which allows for convenient growth of layers. However,

Al0.3Ga0.7As has a band-gap energy of 1.95 eV, whereas GaAs has a band-gap energy of 1.52

eV. This means that carriers that are promoted to the conduction band in GaAs are not free

to move through the adjacent layers. The confinement of carriers in one dimension is known

as a quantum well (QW).

QWs are of interest to industry because of their potential for applications. Their

efficiency, speed, and optical response are superior to bulk semiconductors [35, 36]. QWs

are also of interest from a fundamental point of view, since they are simple structures that

clearly show quantum confinement effects [30, 37]. Confinement elevates the energy levels

of the electron in the conduction band and moves the hole energy levels down in energy,

leading to a stronger binding energy and a blue-shift in the exciton resonance as compared

with bulk GaAs. In fact, because of the stronger binding energy between electrons and holes

in QWs, strong optical exciton signatures in QWs may be observed at room temperature

[38]. In addition to modification of the binding energy, confinement modifies the Bohr radius

and oscillator strength of the exciton.

The effect of confinement on the exciton in one dimension becomes meaningful when the

size of confinement is comparable to the spatial extent of the exciton. Since the Bohr radius

is aX = 13.5 nm in three dimensions, a GaAs layer thickness of 10 nm leads to modifications

in the properties of the exciton. The wave function is modified such that the degrees of

freedom parallel to the growth plane (x̂-ŷ) remain the same, but the ẑ-direction component

is the solution to the quantum mechanical problem of a particle in a box. Essentially, the n

in the solutions to 2.2 must be replaced by n − 1/2 when going from 3D to 2D. When we

include this modification, the binding energy becomes [39]

E
(2D)
binding(n) = − RX

(n− 1/2)2
(2.10)

which means that the 2D exciton is more strongly bound than in bulk material. For example,
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Figure 2.4: Lowest-lying energy states, n = 1, for QW excitons. Growing a thin layer of GaAs between
two layers Al0.3Ga0.7As creates a quantum well (QW). The confinement pushes the electron (e) and hole
energies away from each other and lifts the degeneracy between light-hole (LH) and heavy-hole (HH) states.

the n = 1 exciton in the ideal 2D case has a binding energy 4 times that in the bulk, or

E
(2D)
binding(n = 1) = −16.8 meV. In practice, the binding energy is about half this value

because of the finite size of the barriers [40]. The oscillator strength increases with n as

f(n) ∝ 1/(n − 1
2
)3 in two dimensions compared with f(n) ∝ 1/n3 for the bulk. The Bohr

radius decreases compared with the bulk exciton radius to aX = (n− 1
2
)2aB. Continuing the

example for the ideal n = 1 exciton in 2D, the oscillator strength thus increases by a factor

of 8 compared with the exciton in bulk GaAs. The dramatic increase in oscillator strength is

because the confinement increases the overlap between the electron and hole wave functions

as well as decreasing the Bohr radius. The increased overlap leads to stronger interaction

between electrons and holes, increasing the probability of exciton formation. A more detailed

analysis of confinement on excitons can be found in [41].

Excitons in QWs couple with the light field only for the low-momentum states. This

can be visualized in Fig. 2.3 by picturing KCM in two dimensions, with the energy level

parabolas rotated about KCM = 0 into paraboloids. The light line with slope ~c
n

sweeps out
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a cone upon rotation. It is within this ‘light cone’ that QW excitons couple with light.

The wave functions for electron states in the conduction band in GaAs QWs are sim-

ilar to those in the bulk; however, the holes’ wave functions in the valence band are more

complicated since the valence band at the center of the Brillouin zone (k = 0) is degener-

ate. In bulk GaAs, the conduction band at the Brillouin center has s-orbital character with

two-fold degeneracy since the electron spin J = 1
2
. The valence band around k = 0 has

p-orbital character wave functions for the upper sub-bands and the lower sub-band, with

total angular momenta J = 3
2

and J = 1
2
, respectively. The lower sub-band, known as the

split-off band (J = 1
2
), is separated by 0.34 eV from the upper band at k = 0 because of

spin-orbit coupling. The two upper valence bands (J = 3
2
) are called the heavy-hole and

light-hole sub-bands, with projection of their angular momenta along the ẑ-axis Jz equal to

±1
2

and ±3
2
, respectively.

The upper valence bands are named the heavy-hole (HH) and light-hole (LH) sub-

bands because of their different effective masses, which lead to a lifting of band degeneracy

when confined in one dimension. Differentiating the dispersion relation (Eqn. 2.8) with

respect to momentum KCM and solving for the mass, we find that the effective mass m∗ of

a carrier depends on the curvature of its band:

1

m∗ =
1

~2

d2E(k)

dk2
. (2.11)

This equation is used to calculate the effective masses in bulk, m∗
e and m∗

h, based on the

band structure of GaAs. Calculations of the band structure [32] in 2D yield a stronger

curvature for the LH band than for the HH band, thus yielding a lighter effective mass for

the light holes. When holes are confined in one dimension, the effective hole masses in the

direction of quantization yield a lifting in degeneracy, as depicted in Fig. 2.5. The lifting of

degeneracy can be seen by noticing that the different masses have different energies in the

solution to the particle in a box E ∝ 1/mL2, where L is the confinement size of the box,

i.e., the quantum-well thickness.
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In this thesis, we focus on the HH 1s exciton spectral feature, a bound state between

a hole in the HH band and an electron in the conduction band. The exciton binding energy

corresponds to n = 1 in Fig. 2.3, and has s-orbital character like the hydrogen ground state.

When a light field interacts with a QW, optical polarization plays a role in the transition

rates between the various bands. These rates are determined by the spin-selection rules

dictated by the angular momentum states in the valence and conduction bands.

2.5 Polarization selection rules QW electronic transitions

For the bands of interest near k = 0, the conduction band wave function has an “s-like”

character, and the valence band has a “p-like” character. The wave function characteristics

reflect the relative contributions to the density of states in each band from the atomic s- and

p-orbitals of the atoms that form the solid.

The s-like electron in the conduction band is an eigenfunction of the momentum oper-

ator described by the extended-state Bloch function

ψ~km = um(~r)ei~k·~r (2.12)

where m is the spin (m = ±1
2
), ~k is the crystal momentum, and um is the Bloch amplitude,

invariant under periodic translations. The Bloch function is delocalized in the crystal, ex-

tending over many lattice sites. The Bloch amplitudes may be approximately separated into

orbital and spin parts [23]:

u1/2(~r) = R(r) ↑, (2.13)

u−1/2(~r) = R(r) ↓, (2.14)

where R denotes the symmetrical coordinate part, and ↑ (↓) the spin part of the Bloch

amplitude.

The valence band has “p-like” character (L = 1) meaning that there exists large spin-

orbit coupling. The large spin-orbit coupling suggests that the Bloch amplitudes for the
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valence-band electrons can be expressed as eigenstates of the total angular momentum op-

erator, Ĵ = L̂ + Ŝ, and Ĵz, the ẑ-projection of total angular momentum. Written in |J, Jz〉

notation, the eigenstates are
∣

∣

3
2
,±3

2
〉 for the HH valence band,

∣

∣

3
2
,±1

2
〉 for the LH valence

band, and
∣

∣

1
2
,±1

2
〉 for the split-off band. We neglect the split-off band because it is energet-

ically separated by ∆ = 0.34 eV from the HH and LH bands.

Electrons may undergo interband optical transitions following selection rules. The

transition probability per unit time for an electron to be excited from the valence band

to conduction band by interacting with an incident electromagnetic field ~E is given in the

electric dipole approximation by Fermi’s golden rule:

Rvb→cb =
2π

~

∣

∣

∣

〈

cb | ~d · ~E | vb
〉∣

∣

∣

2

δ(Egap − ~ω) =
2π

~

∣

∣

∣

~E ·
〈

cb | ~d | vb
〉∣

∣

∣

2

δ(Egap − ~ω), (2.15)

where
〈

cb | ~d | vb
〉

= qe 〈cb | ~r | vb〉 is the electric dipole matrix element that connects the

valence and conduction bands, with qe = − |e| as the charge of the electron. From equation

2.15, we see that calculation of the dipole matrix elements (also called dipole moments) allow

determination of the probability for an optical transition to occur given an optical excitation

field.

In evaluating the dipole matrix elements, we consider electrons in a QW interacting

with photons that have electric fields in the in-plane (x̂-ŷ) direction. Thus, we consider the

electric field is of the form ~E = Exx̂+Eyŷ, and we only evaluate the components 〈cb | x | vb〉

and 〈cb | y | vb〉 of the dipole moments. The dipole matrix elements can be calculated by

decomposing the J states into the irreducible L and S representations using the Clebsch-

Gordan coefficients CLSJ
LzSzJz

, according to [42]:

|J, Jz〉 =
∑

L+S=J

CLSJ
LzSzJz

|L,Lz;S, Sz〉 . (2.16)

This representation allows direct calculation of the dipole matrix elements with by

using the radial hydrogen wave functions Rnl(r) and the spherical harmonics Y m
l (θ, φ). For

example, the HH state
∣

∣J = 3
2
, Jz = 3

2

〉

=
∣

∣L = 1, Lz = 1;S = 1
2
, Sz =↑

〉

. The dipole ma-
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Figure 2.5: (a) Schematic of the hole sub-bands in GaAs, with the lifting in degeneracy at k = 0 due
to confinement in one dimension between the light-hole (LH) (J = 3

2 ,Jz = ± 1
2 ) and heavy-hole (HH)

(J = 3
2 ,Jz = ± 3

2 ) sub-bands. The split-off band (J = 1
2 ) is shifted in energy because of spin-orbit coupling.

(b) A diagram of selection rules for optical interband excitation with σ+ and σ− polarized light.

trix elements in the uncoupled representation between this valence-band state and the |↑〉

conduction-band state (
∣

∣J = 1
2
, Jz = 1

2

〉

=
∣

∣L = 0, Lz = 0;S = 1
2
, Sz =↑

〉

) are calculated:

〈cb | x | vb〉 = 〈0, 0; 1/2, ↑| x |1, 1; 1/2, ↑〉

=

∫

d3~xR∗
10(r)Y

0∗
0 (θ, φ)xR21(r)Y

1
1 (θ, φ) =

1√
2
µ0 (2.17)

〈cb | y | vb〉 = 〈0, 0; 1/2, ↑| y |1, 1; 1/2, ↑〉

=

∫

d3~xR∗
10(r)Y

0∗
0 (θ, φ)yR21(r)Y

1
1 (θ, φ) =

−i√
2
µ0 (2.18)

∴

〈

cb | ~d | vb
〉

= 〈cb | (xx̂ + yŷ) | vb〉 = µ0
1√
2
(x̂ − iŷ), (2.19)

where µ0 is the transition dipole modulus of the HH exciton, and x̂ and ŷ are unit vectors.

The forms of these transition calculations are identical in both 3D and 2D.

Continuing this calculation for all eight relevant transitions, the four nonvanishing



19

dipole matrix elements between initial and final Jz states in the form µ(Initial Jz→Final Jz) =
〈

cb | ~d | vb
〉

are:

µ(− 3
2
→ 1

2
) = µ0

1√
2
(x̂ + iŷ) = µ0σ

+

µ(− 1
2
→ 1

2
) = µ0

1√
6
(x̂ + iŷ) = 1√

3
µ0σ

+

µ( 3
2
→ 1

2
) = µ0

1√
2
(x̂ − iŷ) = µ0σ

−

µ( 1
2
→− 1

2
) = µ0

1√
6
(x̂ − iŷ) = 1√

3
µ0σ

−,

(2.20)

where σ+ and σ− are the Pauli operators, and µ0 is the transition dipole modulus of the

HH exciton. The transition dipole modulus of LH excitons is 1√
3

times that of HH excitons,

implying that the transition probability |µ|2 is three times smaller. Calculation of the tran-

sition dipole moments for the HH and LH excitons yields a selection rule that ∆Jz = ±1

in an interband optical transition [43]. The selection rule is consistent with the fact that a

photon carries an angular momentum of 1 in the dipole approximation.

The matrix elements are conveniently written to clarify the result of interaction with

different polarization states of light. For right-circularly (left-circularly) polarized light, the

field may be written as E = 1√
2
E0(x̂+ iŷ) = E0σ

+ (as E = 1√
2
E0[x̂− iŷ] = E0σ

−). This field

vector dotted into the first two (last two) dipole moments in Eqn. 2.20 yields unity (zero),

while the dot product with the last two (first two) dipole moments is zero (unity). These

facts, summarized in Fig. 2.5b, dictate the selection rules for the polarization of light in

interband transitions. Circularly polarized light excites a valence-band electron exclusively

into one of the two conduction-band states.

It is also worth noting that linearly polarized light E = Ex
0 x̂ +Ey

0 ŷ may be written in

the basis of circularly polarized light, e.g., E = Aσ+ + Bσ−, where A and B are constants

determined by the linear transformation. In the simple case of horizontal and vertical po-

larizations, Ex = 1√
2
E0(σ

+ + σ−) and Ey = E0
1√
2
(σ+ − σ−), respectively. If the linearly

polarized light source is tuned to the heavy-hole resonance, it would cause interband excita-

tions with equal probability into both conduction-band spin states, in contrast to the case

for circular polarization.
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While we have derived the optical transition rates for the electronic states, we wish

next to understand carrier dynamics in the presence of an exciting electric field. We uncover

the basic dynamics by modeling a two-level system using the optical Bloch equations.

2.6 Optical Bloch Equations

Most of the semiconductor community’s understanding of optical excitation of semi-

conductors comes from the semiconductor Bloch equations [44], discussed in §5.4.2. These

equations describe the coupled dynamics of electrons, holes, and optical polarization. The

model includes Coulomb interactions between particles and the extended-state nature of

particles expressed by Eqn. 2.12 by summing over a wide range of ~k-vectors.

We can gain insight about the response of a semiconductor system through a simpler

set of equations, known as the Optical Bloch Equations (OBEs). The OBEs describe the

dynamics of a two-level system in the presence of an electric field. The two levels in our

system are the valence and conduction bands of the semiconductor. We neglect Coulomb

interactions and ~k-dependence.

We seek the dynamics of a system

|ψ(t)〉 = cg(t) |g〉 + ce(t) |e〉 , (2.21)

where |g〉 and |e〉 represent the electron in the valence band (ground state) and the electron

in the conduction band (excited state), respectively. The coefficients ci(t) determine the time

dynamics. Since we have an ensemble of carriers in our system, we use the density matrix

in the {|g〉 , |e〉} basis to solve for the temporal evolution:

ρ̂ = |ψ〉 〈ψ| =







ρgg ρge

ρeg ρee







=







cgc
∗
g cgc

∗
e

cec
∗
g cec

∗
e






. (2.22)



21

From this definition, we see that ρ∗ge = ρeg. The density matrix also has the property

Tr[ρ̂] = 1, from which it follows that ρgg + ρee = 1. The density matrix ρ̂ can be used to

calculate the expectation value of an observable Â by taking a trace [45]:

〈

Â
〉

= Tr
[

ρ̂Â
]

. (2.23)

The time evolution of the density matrix follows from Schrödinger’s equation [45]:

∂ρ̂

∂t
= ˙̂ρ = − i

~

[

Ĥ, ρ̂
]

− decays, (2.24)

where “decays” must be added phenomenologically to this simplistic theory, although they

can be determined rigorously in by quantizing the electromagnetic field [46]. The Hamilto-

nian H = H0 + V of the two level system can be written in our two-state basis as

H =
∑

j,k=e,g

|j〉 〈j| (H0 + V ) |k〉 〈k|

=







Eg 0

0 Ee






+







0 Veg

Vge 0






, (2.25)

where Eg and Ee are the eigenenergies of H0 for the ground and excited states, respectively.

The elements Veg and Vge represent the interaction between an electric field E and the two-

level system. The interaction is

V = −µ̂ · ~E = −qe ~r · ~E, (2.26)

where ~E is the envelope of the electric field. While the electric field and ~r generally have

three space components, we reduce the problem to a single dimension for simplification,

using ~r = x̂ and ~ε = ε(t)x̂. The interaction term has the representation:

V =







0 〈g|E(t) qe x |e〉

〈e|E(t) qe x |g〉 0







= E(t)







0 µeg

µge 0






, (2.27)



22

where µge = µeg is the dipole matrix element that couples two levels that have an allowed

dipole transition, e.g., a 1s state with a 2p state. Dipole matrix elements were computed for

our system in §2.5.

The electric field magnitude has the form:

E(t) =
1

2

[

ε(t)eiω t + ε∗(t)e−iω t
]

, (2.28)

where ε(t) is the slowly varying time envelope of the electric field and ω is the driving

frequency of the electric field.

We assume that the driving frequency is very close to the natural frequency of the

system. Knowing that the matrix elements ρeg and ρge couple directly to the applied electric

field through the dipole moment µge, it is convenient to write these in the rotating frame as

:

ρeg → ρege
iω t,

ρge → ρgee
−iω t. (2.29)

By evolving ρ̂ in time through Eqn. 2.24, we find the time evolution of the matrix

elements of ρ̂ in the rotating frame. In the rotating wave approximation, we neglect terms

that oscillate at frequencies 2ω, −2ω, or −ω since they oscillate very fast in the rotating

frame. The OBEs in the rotating wave approximation are [47]:

ρ̇gg = − i

~
µge

(

ε∗

2
ρge −

ε

2
ρeg

)

+ γeeρee

ρ̇ee =
i

~
µge

(

ε∗

2
ρge −

ε

2
ρeg

)

− γeeρee

ρ̇eg = iωegρeg +
i

2~
εµge (ρee − ρgg) − γegρeg

ρ̇ge = −iωegρeg −
i

2~
ε∗µge (ρee − ρgg) − γegρeg, (2.30)

where ωeg = [Ee − Eg]/~, and γee and γeg are phenomenological terms describing the decay

the excited state into the ground state and decay of the off-diagonal density-matrix element,
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respectively. The relations ρ̇∗ge = ρ̇∗eg and ρ̇gg = −ρ̇ee both follow from the definition of the

density matrix in Eqn. 2.22. We have assumed our two-level system to be closed, i.e., the

population is conserved.

The OBEs describe the temporal evolution of the system. The electric field drives the

population ρee via the off-diagonal density-matrix elements ρge and ρeg. The polarization is

in turn driven by the electric field and the difference in population between the ground and

excited states ρee − ρgg and the energy difference between the ground and excited states.

The population in the ground or excited states can be found by calculating the expec-

tation value of the projection operator |g〉 〈g| or |e〉 〈e| using Eqn. 2.23:

〈|g〉 〈g|〉 = Tr[ρ̂ |g〉 〈g|] = ρgg = c∗gcg = |cg|2

〈|e〉 〈e|〉 = Tr[ρ̂ |e〉 〈e|] = ρee = c∗ece = |ce|2 , (2.31)

where |cg|2 and |ce|2 are the probabilities of finding the electron in the ground and excited

state, respectively.

The optical polarization response of the system can be found by calculating the expec-

tation value of the dipole operator µ̂ also using Eqn. 2.23:

〈µ̂〉 = Tr[ρ̂µ̂]

= Tr













µgeρge 0

0 µegρeg













= µgeρge + c.c. (2.32)

The induced macroscopic polarization for a group of N oscillators is

P = N 〈µ̂〉 = n [µgeρge + c.c.]. (2.33)

Since the term ρge is driven by the electric field, the induced polarization is proportional to

the electric field as P = χE, where χ is the complex susceptibility. The polarization radiates

a field in the direction of the exciting electric field according to Maxwell’s equations [48].
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The OBEs predict observed phenomena such as Rabi flopping, self-induced trans-

parency, and photon echoes in atomic and solid systems [49]. We will refer to these equations

in this chapter, and we will use them for simulations of our system in Chapter 8.

2.7 Decoherence and relaxation dynamics of QW excitons

A light field absorbed by a semiconductor generates a carrier population and polar-

ization according to Eqns. 2.30. Following optical excitation, a series of decay processes

occur until thermal equilibrium is reached. The processes can be considered in two regimes:

coherent and incoherent.

The coherent regime begins directly after an excitation and occurs for GaAs QWs

on a time scale of several picoseconds. As shown in the last section, optical excitation of

a transition can create a superposition state between the ground and excited states, Eqn.

2.21, leading to a nonzero off-diagonal density-matrix element, ρeg. After optical excitation,

we can transform the operator ρeg out of the rotating frame and see that it evolves in time

as [44]:

ρeg(t) = ρind
eg e

iωte−γegt, (2.34)

where ρind
eg is the element induced by the optical field. The element ρeg determines the

macroscopic polarization P . We see from Eqn. 2.34 that the polarization oscillates, radiating

light at a frequency ωeg, while decaying in magnitude. For this reason, the response of a two-

level system to an optical field is often referred to as an oscillator, in analogy to a classical

spring excited by an impulse [44]. As the polarization decays, it emits radiation according

to Irad ∝
∣

∣

∣P̈
∣

∣

∣

2

. This radiation is known as the ‘free polarization decay’ in analogy to the

‘free induction decay’ radiation observed in magnetic systems [50].

For the case of excitons in GaAs QWs, the energy separation Ee − Eg = E1 = Egap −

Ebinding, as in Fig. 2.3. Directly after pulsed on-resonance optical excitation, the induced

excitonic polarization oscillates with a period of ≈ 3 fs.
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A polarization decays as a result of the oscillators becoming out of phase with one

another because of fluctuations in their energy spacings. The phenomenological term γeg in

Eqn. 2.34 accounts for the decay of the polarization, or dephasing of oscillators. We explore

the physical origins of dephasing.

A fluctuation in the energy spacing between ground and excited states corresponds to

a fluctuation in the frequency of a oscillation. In an ensemble of oscillators, the fluctuations

in frequencies cause phase distortions of the oscillators with respect to each other, giving

rise to dephasing. Phase-destroying processes can be considered scattering processes. These

scattering processes include scattering with impurities or lattice defects, phonons, and other

electronic excitations (e.g., exciton-exciton or exciton-carrier scattering) [50]. Elastic scat-

tering events leave the energy level unchanged while perturbing the phase of an oscillator,

whereas inelastic scattering causes energy relaxation. Either situation brings the oscillators

out of phase with each other, or causes decoherence [11]. The characteristic time of phase

relaxation, T2, is called the decoherence time (or dephasing time). In the absence of any scat-

tering processes, the phase will ultimately be lost in the incoherent regime via an incoherent

recombination process, discussed below.

The second, incoherent regime of the exciton dynamics is characterized by the polar-

ization having decayed. In this regime, the electron and hole populations undergo intraband

relaxation and interband recombination processes. Both mechanisms are considered inco-

herent relaxation processes [51].

Intraband relaxation occurs when carriers within the conduction band lose their kinetic

energy and move in momentum space toward the band minima [50]. The relaxation occurs

via energy-losing processes such as inelastic scattering and phonon emission. In the process

of intraband relaxation, the temperature of the carriers (bound and unbound electron-hole

pairs) approaches thermal equilibrium with the temperature of the lattice.

Interband recombination is the radiative process of an electron and hole recombining, or

an electron relaxing in energy back into the valence band. This process is the opposite of the
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previously described interband absorption process and is accompanied by the emission of a

photon. Like interband absorption, the electron and hole must have similar momentum wave

vectors because the momentum of a photon is small compared to the carrier momentum.

Recombination of carriers via interband recombination occurs with higher probability at

band minima since the time scale of intraband relaxation is faster than that of interband

recombination in GaAs QWs [52]. The population lifetime, T1, is the time scale for incoherent

relaxation.

For light to couple with excitons through the induced polarization, both the created

electron and hole in a QW must have a low momentum. In other words, QW excitons must

be within the light cone (described in §2.4) in order to couple with the light field and emit

light out of the plane of the QW. Consequently, excitons in QWs radiatively recombine only

at the lowest momentum states. Higher-momentum excitons may relax through scattering

processes into low-momentum states where they may radiatively recombine. In GaAs QWs,

populations of excitons decay at time scales on the order of tens of picoseconds, and free

carriers decay at much longer time scales (nanoseconds).

As mentioned above, the recombination process limits the dephasing time in the ab-

sence of scattering processes. Since for optical excitation the number of excited oscillators N

is proportional to the excitation field amplitude squared, according to Eqn. 2.15, and from

the polarization P = χE,

N = N0e
−t/T1 ∝ P 2 ∝ [P0e

−t/T2 ]2, (2.35)

it follows that 2T2 ≤ T1 [50]. The equality holds in the absence of any phase destroying

processes. In GaAs (and in most semiconductors), T2 ≪ T1 because of the various scattering

processes that cause dephasing [53].
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2.8 Homogeneous vs. inhomogeneous broadening

Effects that lead to dephasing and relaxation can be classified as homogeneous or

inhomogeneous. While both lead to a broader resonance line shape, their origins are funda-

mentally different. We specifically discuss 1s excitons in QWs in this section.

In a homogeneously broadened situation, all oscillators have the same frequency ω0,

and the linewidth is determined exclusively from the dephasing time T2. This type of broad-

ening may be due to either radiative decay or scattering events. Scattering events in general

are considered homogeneous dephasing because all groups of excitons have the same prob-

abilities of undergoing a given scattering event. Excitons may scatter with other excitons,

polarization, free carriers, and phonons.

Inhomogeneous broadening refers a distribution of oscillator frequencies. The primary

example in our system is the effect of disorder. Disorder describes fluctuations in the lattice

spacing due to impurities in the lattice. In QWs, differences in well width size L lead to

different oscillator energies since the particle-in-a-box energy depends on the size of con-

finement as 1/ ∼ L2 [42]. Disorder is an inhomogeneous source of dephasing since different

groups of excitons have different energy levels, or oscillation frequencies, depending on their

position in the QW.

In GaAs QW systems at low temperatures, inhomogeneous broadening dominates the

width of the resonance because of disorder. There exists disorder in thin QW systems

because fluctuations in well-thickness of a single-atom layer (0.56 nm) is sizeable compared

to the well thickness (10 nm). In high-quality bulk samples or in QW systems at elevated

temperatures, homogeneous broadening can dominate as a result of inelastic scattering of

excitonic resonances with optic and acoustic phonons [50].

At high excitation densities, interactions between excited amplitudes (polarization, free

carriers, excitons, phonons) can be so strong that the linewidth is homogeneously broadened.

This effect, known as excitation-induced dephasing (EID), together with inhomogeneous
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broadening and other effects that depend on excitation density, can be explored with the

use of nonlinear optical spectroscopy techniques. We review the common spectroscopy tech-

niques used to characterize exciton resonances, and then consider the potential of nonlinear

techniques for accessing information about the system beyond the capabilities of linear tech-

niques.

2.9 Spectroscopy of semiconductors

The linear and nonlinear properties of semiconductors can be explored by using op-

tical spectroscopy. Spectroscopic techniques have provided information about semiconduc-

tors including electronic band structure, phonons, excitation spectra such as excitons, and

properties of defects for a variety of materials [24]. The utility of optical spectroscopy is

introduced with a simple model which elucidates the relationship between the optical field

and polarization. The remainder of this chapter explores linear and nonlinear spectroscopic

techniques.

2.9.1 Driven oscillator model

To understand the spectroscopy of semiconductors, is helpful to have the analogy of

a driven oscillator in mind [44, 47]. The displacement x for a mass m with charge e on a

spring is governed by:

m
d2x

dt2
+mγ

dx

dt
+mω2

0x = qeE, (2.36)

where γ is the damping rate, ω0 the resonant frequency of oscillation, qe = − |e| is the charge

of the electron, and E the driving electric field. We find that the position of the oscillator

in response to a sinusoidal field E(t) = E0e
−iωt to be:

x(t) =
e/m

ω2
0 − ω2 − iγω

E(t). (2.37)
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The polarization of an oscillating charge is given by p(t) = ex(t). For a group ofN oscillators,

the macroscopic polarization may be computed as

P (t) = Np(t) = Nex(t)

=
Ne2/m

ω2
0 − ω2 − iγω

E(t)

= Ne2/m

(

ω2
0 − ω2

(ω2
0 − ω2)2 − (γω)2

+ i
γω

(ω2
0 − ω2)2 − (γω)2

)

E(t)

= [χ′ + iχ′′]E(t) (2.38)

where χ′ and χ′′ represent the real and imaginary parts of the susceptibility, respectively.

We learn from the plot of the polarization response in Fig. 2.6a that the amplitude

of the induced polarization frequency response is at its maximum when the driving electric

field is on resonance with the oscillator, or ω = ω0. The phase of the polarization is in phase

with the electric field well below resonance, and 180◦ out of phase far above resonance. On-

resonance corresponds to a 90◦ phase shift of the polarization with respect to the electric

field. The real and imaginary parts of the polarization response are shown in Fig. 2.6b.

These are the χ′ and χ′′, respectively, which relate the polarization response of a material to

the incident electric field.

A group of oscillators responds to an electric field by reradiating light. We explore

the material response to optical excitation in the linear and nonlinear regimes in the next

section.

2.9.2 Linear spectroscopy

A simple way to observe the linewidths of an excitonic resonance is to perform an

absorbance experiment, as illustrated in Fig. 2.7. In this experiment, a low-intensity tunable

monochromatic light source is incident on a sample. The light intensities Iin(ω) and IT (ω)

before and after the sample, respectively, are measured for a series of optical frequencies.

This experiment is called ‘linear’ because in the regime of a low-intensity light source,

the induced polarization P is linear to the electric field E, which is just the frequency-domain
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Figure 2.6: Visualization of the Lorentz oscillator model [Eqn. 2.38]. (a) The real and imaginary parts of
the induced polarization. (b) The magnitude of the polarization and the phase.

sample

E

E

E
in

sig

in

Figure 2.7: Linear absorption. An input field Ein induces a polarization in a sample which in turn radiates
Esig in the same direction, producing a cancelation with the input field.

expression of Eqn. 2.38:

P (ω) = χ(ω)E(ω) = [χ′(ω) + iχ′′(ω)]E(ω), (2.39)

where χ′ and χ′′ represent the real and imaginary parts of the susceptibility, respectively.

We note here that the real and imaginary parts of the polarization directly correspond to the

real and imaginary parts of the susceptibility in the linear regime, as shown in the Lorentz

oscillator model in Fig. 2.6. The induced polarization radiates light with two phases, in phase

(real part of Eqn. 2.39) and with a 90◦ phase shift (imaginary part), both in the direction

of the input beam. Maxwell’s equations show that the electric field from a polarization is

another 90◦ our of phase, meaning that the light radiated from the dipole at ω0 is 180◦ out of
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phase with the incident field, causing destructive interference in the direction of the driving

electric field. The intensity measured in the direction of the input beam is the interference

between the input field Ein and the reradiated field from the induced polarization Esig [54]:

Iout = |Ein + Esig|2

= |Ein + iχEin|2

≈ Iin(1 − 2χ′′), (2.40)

where Iin = |Ein|2 is the intensity of the input field. The linear approximation assumes χ≪ 1

so that the χ2 terms vanish. This approximation is acceptable in the situation where the

medium is sufficiently dilute. In the case where the medium becomes very dense, local-field

corrections need to be applied [47]. We can see here a partial cancellation of the incoming

field in the measured intensity. The imaginary part of the susceptibility contains information

regarding the absorption as a function of frequency. Experimentalists typically perceive the

linear absorption as a measurement of the absorption coefficient, which is related to χ′′.

According to the Lambert-Beer law [55], the transmitted light through a material has

a logarithmic dependence on the absorption coefficient: IT (ω) = Iin(ω)e−α(ω)L, where L is

the optical path length through the sample and α is the ‘absorption coefficient.’ Solving for

αL yields the absorbance spectrum:

α(ω)L = −ln

(

IT (ω)

Iin(ω)

)

. (2.41)

The absorption coefficient α is related to the index of refraction, n(ω) = n′(ω) + in′′(ω), as

proportional to the imaginary part [47]:

α(ω) = 2n′′(ω)ω/c. (2.42)

The index of refraction is related to the linear susceptibility χ:

n(ω) =
√

ǫ(ω) =
√

1 + χ(ω) ≈ 1 +
1

2
χ(ω), (2.43)
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where we have again invoked χ ≪ 1. From Eqns. 2.43 and 2.42, we may conclude the

relationship α(ω) ≈ χ′′(ω)ω/c. This relationship shows that the linear susceptibility is

directly related to optical absorption.

Linear absorption experiments have been performed in semiconductors to observe exci-

ton spectral features, determine dielectric structure, and study the temperature dependence

of exciton linewidths [56]. Linear absorption measurements can also be extended to the case

where the effects of an electric field applied across the sample on the absorbance spectrum

can be recorded. This technique is known as electroabsorption [57].

Another technique, known as photoluminescence (PL), is a measurement of the spon-

taneous emission from a material. The experiment involves illuminating a sample with an

energy greater than the band-gap energy. Electrons are promoted into the conduction band,

relax into low-momentum states, and then recombine, radiating light in 4π steradians. A

portion of this light is collected with a lens and focused into a spectrometer, where it can

be spectrally resolved. PL experiments can reveal information about the intraband and in-

terband relaxation processes through observation of the different intensities emitted as each

of the resonances. For example, the intensity of the 1s emission relative to other resonances

can help to quantify the recombination rates [58, 59].

In another linear technique, photoluminescence excitation spectroscopy (PLE), a sam-

ple is excited with a tunable laser, and the peak luminescence intensity is measured as the

laser wavelength is tuned. The shape of the emission is independent of the way that the

carriers are excited, and so the signal strength is proportional to the carrier density, which

is determined by the absorption coefficient [1]. While this technique provides the same in-

formation as the linear absorption experiment, it can be useful in situations where direct

transmission is impossible, e.g., for thick substrates.

While these techniques are very helpful in characterizing the linear properties of a

sample, experiments in the nonlinear regime provide a greater range of information regarding

processes and kinetics in a sample.
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2.9.3 Nonlinear spectroscopy

In nonlinear spectroscopy, the intensity of light is sufficiently intense that the induced

polarization in the sample is no longer proportional to the electric field strength of the

incident light [11]. Rather, higher powers of the electric field must be considered, i.e.,

P = χ(1)E + χ(2)E2 + χ(3)E3 + · · · , (2.44)

where the nonlinear susceptibility χ(n) is an n+ 1 order tensor that may be sensitive to the

directions in which the electric fields are applied with respect to the crystalline axes of solid

materials.

For example, if two optical fields are applied to a sample in different directions, a

second-order nonlinear polarization P (2) = χ(2)E1E2 may be generated in along a third

direction. This may be computed [47] through the second-order susceptibility χ(2):

P
(2)
i =

∑

j,k=x,y,z

χ
(2)
ijkEjEk. (2.45)

For materials lacking inversion symmetry, the induced polarization reradiates a field in a

direction that is a linear combination of the electric field wave vectors. For the example of

two-field mixing, if two beams with wave vectors ~k1 and ~k2 and frequencies ω1 and ω2 were

incident on a sample, the second-harmonic generation signal (with frequency ω1 +ω2) would

be found in the ~k1+~k2 direction, as indicated in Fig. 2.8. Additionally, a difference-frequency

signal (ω1 − ω2) may be found in the ~k1 − ~k2 direction.

Many materials have inversion symmetries that result in vanishing χ(2). For the GaAs

QW sample used in this work, the QWs were grown along the (100) plane. For this orien-

tation, the zinc-blende structure of GaAs is inversion symmetric. In an inversion symmetric

plane, the sign of the induced polarization must change if the sign of the electric field in

Eqn. 2.45 is changed. However, for χ(2) (and χ(2n)∀n ∈ N) processes, the polarization does

not change sign since it depends on E2. Since −P = P , the only possibility is that the gen-

erated polarization is zero. Thus it is impossible to observe any signals related to χ(2) unless



34

symmetry is broken because of, e.g., application of strain or a strong static electric field.

However, two fields may still generate a nonlinear polarization through χ(3) regardless of

crystal symmetry. This is the susceptibility involved in a variety of nonlinear spectroscopies.

Nonlinear spectroscopy techniques typically involve multiple light fields incident on

the sample. Because of the fast (∼ps) dephasing and band-relaxation processes, ultrafast

(femtosecond) laser pulses are often used to study the coherence and quantum kinetics in

semiconductors. A thorough review of ultrafast spectroscopy is given by Shah [24].

2.9.3.1 Transient absorption

A common spectroscopy technique using two pulses is the transient-absorption ex-

periment. The majority of the experiments reported in this thesis involve this technique.

The concept is illustrated in Fig. 2.8. In transient absorption, a high-intensity pump pulse

(Epump) incident on the sample generates a nonequilibrium state in the quantum wells. Some

time τ later, a weak-intensity probe pulse (Eprobe) monitors the sample, and the light in the

direction of the probe is recorded by a photodetector. Information about the state created

by the pump may be then read by scanning the time delay and/or spectrally resolving light

in the direction of the probe beam.

In the experiments in this thesis, we perform spectrally resolved transient absorption.

Measurement of the probe spectrum for a series of τ delay times yields information about the

incoherent population dynamics. The line shape of the probe absorption allows investigation

of the many-body configuration created by the pump pulse.

Although the pump pulse itself could be spectrally resolved to gain information about

the many-body effects, it is more complicated to analyze since the dynamics that determine

its line shape happen during the pump pulse duration. Additionally, a single-pulse nonlinear

absorption measurement does not allow resolution of time dynamics. It is for these reasons

that we perform spectrally resolved transient absorption.

For a transient-absorption experiment, the nonlinear signal is radiated in the direction
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Figure 2.8: Schematic for a two-pulse nonlinear experiment. The sample is tilted for clarity. Two pulses

are separated by a delay τ , and focused with a lens onto a sample with directions ~k1 and ~k2, respectively. For
transient absorption (TA), the pump ~k1 and probe ~k2 generate a signal (green dashed lines) in the reflected
and transmitted probe beam directions. For second-harmonic generation (SHG), the signal (blue dashed

line) is detected in the ~k1 + ~k2 direction. A four-wave mixing (FWM) signal (black dashed line) may be

detected in the 2~k2 − ~k1 direction.

of the transmitted and reflected probe. This follows from calculating the induced χ(3) polar-

ization, similarly to Eqn. 2.45, as proportional to three electric fields, with the pump field

(~k1) acting twice, and the probe field (~k2) acting once [54]:

P (3) ∝ E1E
∗
1E2

∝ (e−iω1t+i~k1·~r)(e+iω1t−i~k1·~r)(e−iω2t+i~k2·~r)

= e−iωsigt+i~ksig ·~r, (2.46)

∴ ωsig = +ω1 − ω1 + ω2 (2.47)

~ksig = +~k1 − ~k1 + ~k2, (2.48)

The emitted signal field Esig ∝ P (3), assuming that only pump-induced absorption changes

matter. The total signal measured in transient absorption (valid for both the probe trans-

mission and reflection directions) is typically the differential intensity with and without the
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pump field present:

∆I(τ) = [|Eprobe + Esig(τ)|2 − |Eprobe|2]. (2.49)

We see that Esig depends on the relative delay τ between pump and probe. Furthermore,

for |Eprobe| ≫ |Esig|, the detected differential intensity is dominated by the cross term:

∆I(τ) ≈ 2EprobeEsig(τ) ∝ P (3). (2.50)

The differential transmission represents then a direct measurement of the induced third-

order polarization. This signal yields information about the incoherent dynamics, since

∆I(τ) ∝ |µeg|8 e−γeeτ , where γee is the decay rate of the excited state and |µeg| is the transition

dipole modulus between the ground and excited state, both in Eqn. 2.30. The differential

intensity can be interpreted as the change in population of the states observed by the probe

field. Measurement of the effects due to population changes and relaxation is the strength

of the transient-absorption technique. Spectrally resolved transient absorption is discussed

in more detail in Chapter 3.

2.9.3.2 Four-wave mixing

Another common technique involving third-order polarization is called four-wave mix-

ing (FWM). A generalization of the transient-absorption technique, FWM allows resolution

of the coherent dynamics, i.e., dephasing. While there are many versions of FWM experi-

ments, the geometry of Fig. 2.8 can be used to detect a FWM signal. The only required

change is setting up a detector in a direction 2~k2 − ~k1. The interpretation of this experi-

ment is that the ~k1 and ~k2 pulses form a population grating inside the sample from which

the ~k2 pulse then diffracts. This experiment can reveal information about the nature of

broadening (homogeneous or inhomogeneous), dephasing times, and non-Markovian relax-

ation dynamics. Many forms of FWM are used to probe QW response, including time-

resolved, time-integrated, and spectrally resolved FWM. Additionally, the new technique
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of two-dimensional Fourier spectroscopy can be used to resolve coupling between excitonic

resonances and distinguish sources of dephasing [60, 61, 43, 62, 63].

Transient-absorption spectroscopy and FWM spectroscopy are both forms of nonlin-

ear spectroscopy commonly used to investigate semiconductor systems. Other nonlinear

experiments include time-resolved and time-integrated photoluminescence [64, 6, 2] as well

as interferometric measurements of pulses transmitted through the sample [65]. Nonlinear

experiments are particularly helpful in revealing the effects of intense fields that produce

effects that can only be attributed to the interactions between particles and polarizations,

i.e., many-body effects. The next section discusses some of the many-body effects discovered

using nonlinear spectroscopy that motivated the experiments performed in my thesis work.

2.10 Many-body effects in GaAs QWs

Much research has been performed in the nonlinear regime for bulk GaAs over the past

40 years [17, 18, 19]; with the development of molecular-beam epitaxy techniques in the 1960s,

the study of QW structures became possible. Many-body interactions in QW structures

have application in optical switching [66, 67], integrated circuits [68], terahertz applications

[69], communications [70], photovoltaics [71], and potentially in quantum computation [72]

devices.

A wide variety of observable many-body effects manifest in a GaAs QW system upon

excitation by intense laser light. The effects are strongly coupled, which makes it challenging

to determine in practice which nonlinear observables can be attributed to which many-body

effects.

When a light source excites a QW system at low densities, interactions between bound

excitons and free carriers can be neglected in the theory and still match the experimental

result with accuracy [73]. This is known as the linear regime. At high densities, how-

ever, many-body effects become important. These effects include scattering events (e.g.,

exciton-exciton, exciton-phonon, exciton-polarization), phase-space filling, screening, energy



38

renormalization, radiative decay, effects of exciton populations, blue shifting of the exci-

ton resonance, transient gain, and the formation of biexcitons. These effects are in general

coupled to each other These effects can be probed with nonlinear spectroscopy, and their

influence may be observed in the spectral line shape or in the time dynamics of emitted light.

Many-body effects may be observed when the intensity of the excitation source is high,

generating a P (3) material response that is measurable. When coherent light with resonant

frequencies is incident upon a QW, a portion of the light is absorbed, generating polar-

ization and free carriers. The interactions between polarization and carriers can influence

the dynamics and can even change the band structure. These changes influence the spec-

tral line shape or the time dynamics of emitted light and can be observed using nonlinear

spectroscopy.

2.10.1 Excitation-induced dephasing and shifting

One manifestation of these excitation-induced interactions can be observed via a broad-

ened excitonic linewidth due to dephasing [74, 3]. For example, in [3] the researchers observe

the broadening of the exciton linewidth as the excitation density is increased in a transient-

absorption experiment in bulk GaAs. The broadening is inferred through the differential

transmission signal, as shown in Fig. 2.9, which represents the difference in the exciton

absorption profile with and without the pump excitation. The effect of excitation-induced

dephasing (EID) may be interpreted as the effect of scattering between excited amplitudes

(polarization, free carriers, excitons, phonons) leading to decoherence in the phase of the

induced polarization, as discussed in §2.7.

The many-body interactions may also lead to a shifting of the exciton resonance energy.

For example, in [4] a blue shift of a QW exciton resonance is observed for positive pump-

probe delay, when the pump pulse precedes the probe, as shown in Fig. 2.10. The −5 ps

delay is considered unexcited since the probe comes before the pump. The researchers in

this paper attribute the blue-shift to repulsive interactions between excitons and screening
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Figure 2.9: Excitation-induced dephasing (EID) observed in the differential transmission of a probe spec-
trum. The inset shows the probe absorbance in the absence of strong optical excitation. Figure from [3].

of the Coulomb potential. We discuss these effects in more detail below.

Figure 2.10: Blue shift in exciton absorption in a multiple QW structure. At positive delays (+2 and +15
ps), a blue-shift of the exciton resonance is observed compared to the unexcited (-5 ps) delay. Figure from
[4].
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2.10.2 Bleaching the exciton resonance

At very high excitation densities, a ‘bleaching’ or saturation of the exciton population

is achieved where a smaller fraction of the light is absorbed by the quantum well as the

intensity of the light source is increased [75, 76, 77, 78]. The observation of bleaching in

transient-absorption measurements happens when increasing the pump intensity causes no

further change in the probe response.

Bleaching can be attributed two effects: (i) phase-space filling, and (ii) Coulomb screen-

ing of the electric potential.

The phase-space filling effect is a consequence of the Pauli exclusion principle. Although

excitons themselves are bosons, their constituent particles (electrons and holes) are fermions.

Fermions have the property that no two identical particles may occupy the same state in

phase space. Electrons in the conduction band and holes in the valence band must both be

available in order to create bound exciton states. As more electrons are excited from the

valence band to create excitons, the excitation probability decreases because of the limited

availability of unique states in the bands. Phase-space filling contributes to a reduction in

the absorption of light via reduction of the exciton oscillator strength [75]. The effect is also

referred to as Pauli blocking since carriers in the conduction band block the promotion of

valence band electrons into the same states.

Electrical screening, the other dominant effect that results in excitonic saturation,

comes about from an alteration in the mean field in the QW structure [77]. In the limit

where many carriers (free and bound) are created in the QW, the presence of charge changes

the mean field. To understand this, we consider the example of a positive charge in a plasma

of free carriers and excitons. The electric potential from the positive charge will fall off with

increasing distance r faster than 1/r because the negative carriers in the plasma will tend

to gather around the positive charge, weakening its Coulomb potential [79]. Although the

bound exciton states have neutral charge, they have the possibility of screening the Coulomb
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potential through the dipole interaction. The many-body effect of exciton populations on

the nonlinear line shape has not been quantified before the research presented in this thesis.

Our findings concerning the effects of the presence of exciton populations on the nonlinear

line shape is discussed in Chapter 4.

The effect of the screening of the electric potential on the excitons is a weakening of

the long-range Coulomb correlation between excitons, causing each exciton to be less tightly

bound. The broadening of the exciton lines has been attributed to screening of the electric

potential [75]. Although screening effects partly explain the line shape of the exciton, other

effects are involved, which we will explore.

When the screening is so large that the Coulomb attraction between the electron and

hole is weakened, a bound exciton state cannot form, and increasing the excitation intensity

does not change the spectral features. A rough estimate of the densities at which excitons

dissociate is given by the Mott density. For a pure exciton system, bleaching of excitons

occurs when the density of carriers approaches the inverse volume of the exciton [80, 81]:

N3D
Mott ≈

1
4
3
πr3

n

(2.51)

N2D
Mott ≈

1

4πr2
n

, (2.52)

where rn is the exciton radius. Although this measure is inaccurate because of myriad

effects, it is a reasonable guideline for understanding the saturation density. For example,

using the value of the n = 1 exciton radius in §2.3, the 3D Mott density is 1×1017cm−3, and

the 2D Mott density is 2×1011cm−2. These estimates agree with the literature for reported

saturation densities of 2×1017cm−3 for the bulk and 1×1011cm−2 for 10 nm QWs [82, 83].

2.10.3 Band-gap renormalization

Another nonlinear effect of a large number of electrons into the conduction band is

the modification of the band structure, known as band-gap renormalization [30]. The band

structure has influence over dipole matrix elements, broadness of energy levels, and the
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exciton binding energy [24, 84, 85]. In GaAs QW structures, the valence- and conduction-

band energies are pushed closer to each other in energy, decreasing the band-gap energy

Egap. The exciton energy levels stay at the same energies relative to the band gap, and so

the excitation energy necessary to create excitons actually decreases. The result is a red-shift

of the exciton energy [30]. This is a competing effect with the blue-shift described earlier. The

combined effects of screening and band-gap renormalization make possible overlap between

the continuum and exciton energies. If the conduction band energy matches the exciton

energy, the excitons are then said to have zero binding energy, thus ionizing the excitons

and promoting electrons into the conduction band. The effect of more free carriers causes

an intensifying of the screening.

While attempts have been made to distinguish such effects as being modifications of

the band structure (e.g., band-gap renormalization) and occupation effects (e.g., phase-space

filling affecting transition rates), we recognize that these effects are coupled and do not at-

tempt to make a distinction. Many-body effects depend on the total density of photoexcited

carriers (and excitons) and on their distribution functions in phase space.

2.10.4 Excitonic gain

Another interesting many-body effect is the transfer of energy between pump and probe

in a transient-absorption experiment. This effect was observed in Ref. [5]. The researchers

observed an anomalous transmittance compared to the unexcited case near the exciton res-

onance in a GaAs QW system, as seen in Fig. 2.11. The maximum gain was observed for

short time delays. The researchers explain their observations by using ‘dressed’ states of

excitons. The anomalous transmittance in the presence of the pump excitation implies that

the QW may be used as a gain medium or as an optical switch for communications devices.

The theory of gain for application of a QW laser was explored in [86]. Although the gain

has been observed before in GaAs QWs, the results presented in this thesis provide the most

detailed understanding of this experimental phenomenon since the results are matched using
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the semiconductor Bloch equations.

Figure 2.11: Optical gain observed in a transient-absorption experiment according to [5]. The unexcited
transmittance spectrum (solid line) is shown in comparison to the excited probe spectra at two time delays.
Cross-hatched regions correspond to optical gain.

2.10.5 Biexcitons

Another effect that can be observed at high exciton densities is the formation of exciton

molecules called biexcitons, which are similar to an H2 molecule [87, 88]. Formation of

biexcitons requires high densities because two excitons need to be near each other to form a

bound molecular state. Biexcitons are difficult to observe in bulk GaAs because the relatively

small binding energy of the exciton (4 meV) leads to a theoretical biexciton binding energy

of only a few tenths of a meV [39]. Thus, the exciton density at which biexcitons could form

is beyond the Mott density, at which excitons dissociate because of scattering. However, in

QWs the enhanced binding energy of excitons compared with the bulk allows the formation

of biexcitons below the Mott density. The binding energy in a GaAs QW is typically around 1

meV [89]. This results in a new optical resonance around 1 meV below the exciton resonance

in energy, in agreement with the photoluminescence spectrum in Fig. 2.12. The spectrum
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shows two nearby spectral features, the exciton and biexciton, which are fit by a double

Gaussian function.

Figure 2.12: Exciton and biexciton features in a time-integrated luminescence spectrum. Figure from [6].

While many-body effects have been roughly explained by previous research, a more

detailed understanding of the physics of the many-body interactions comes through analysis

of quantitative data using the semiconductor Bloch equations (SBEs). The experimental

research in this thesis combined with a robust theory using the SBEs makes possible a

new level of quantitative analysis that allows a deeper understanding of the many-body

interactions in GaAs QWs.



Chapter 3

Experimental techniques

In this chapter we present the techniques used to perform quantitative experimental

characterization of the many-body configurations. We perform spectrally resolved transient

absorption measurements in a pump-probe configuration, as discussed in §2.9.3.1. While

many transient absorption measurements have been performed in the past, we make quan-

titative measurements of the probe absorption spectra in carefully calibrated absolute units.

These measurements, combined with a characterization of the sample structure, allow quan-

titative comparison with a microscopic theory that connects the nonlinear changes in the

probe absorption to many-body effects. The experiment-theory combination reveals new

insight about the physics of many-body interactions, as we will discuss in Chapter 4.

These techniques are applicable to our quantitative studies of Coulomb-induced non-

linearities (Chapter 4) and of the effects of phase-modulated excitation pulses (Chapters 8,9)

in a GaAs quantum-well (QW) sample.

The first step in characterizing the nonlinear effects in the sample is a full charac-

terization of the sample structure. We then proceed to discuss the details of our transient

absorption technique.

3.1 Sample characterization

We chose a well-understood system to demonstrate our new characterization technique:

a molecular beam-epitaxy sample containing ten layers of 10 nm GaAs QWs, each separated
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sapphire disc

laser
direction
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Figure 3.1: Schematic of the multiple quantum-well (QW) sample studied in this thesis. The 300 nm GaAs
layer is referred to as the bulk layer in the discussion. The direction of the incoming laser beam is shown.

by 10 nm-thick Al0.3Ga0.7As barriers [10, 30, 11]. Figure 3.1 shows a schematic of the sample.

Rich Mirin of NIST fabricated the high-quality QWs by growing GaAs in a between barrier

layers of Al0.3Ga0.7As in a superlattice structure. Oxidation is avoided by terminating the

sample with a GaAs cap layer on one side. A bulk layer of GaAs is grown to smooth the

growth front before the QWs are grown on the sample substrate. We affixed the sample to a

sapphire disk using optically clear epoxy, then thinned the sample by mechanical polishing

and chemical etching. David Alchenberger, of the JILA instrument shop, then applied an

antireflection coating for 800 nm light to the surface of the sample. This coating suppresses

multiple reflections within the material that could lead to destructive interference at the

location of the QWs.

We perform all measurements at 4 Kelvin in a helium-flow cryostat. To fix the model

for sample-thickness parameters at low temperatures, we first measure a broad-spectrum

absorption from our sample. To measure the absorption spectrum in absolute units, we

carefully measure the transmission (T ) and reflection (R) probabilities of the unexcited

GaAs sample using a white-light source. In this case our source was broad-spectrum ampli-
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cryo
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cryo
window

sample
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Figure 3.2: Detailed geometry of cryostat optics. The light source enters from the left side. There are
losses due to reflection from the two surfaces of the sapphire disc (surf1 and surf2) in addition to the cryostat
windows.

fied spontaneous emission from a Ti:sapphire laser cavity, with a bandwidth of around 400

meV and an average power of 100 nW. We calibrate the measured T and R spectra into

true probabilities by careful consideration of the geometry of the elements in the cryostat

(Appendix B). A schematic of the geometry of the cryostat optics is shown in Fig. 3.2. The

sapphire disc is wedged to prevent interference between the reflecting surfaces.

Figure 3.3: Measured (red) and theoretical (black) sample reflection probabilities. The reflection and
transmission (not shown) spectra, recorded in absolute units, allow the fixing of a model using transfer-
matrix theory. The bulk and QW exciton resonances are marked. The spacing ∆E between fringes allows
inference of the sample thickness.

We compare the spectra (Fig. 3.3) with a transfer-matrix computation [90] that in-

cludes all dielectric layers and QWs of the sample. We fine tune the refractive indices and
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thicknesses of the dielectric layers to reach a full agreement between linear theory and mea-

surements for the energy range 1.4–1.7 eV. This procedure determines our sample parameters,

which are fixed in our subsequent quantitative theory-experiment comparisons.

The data and theory both show sharp resonances at energies corresponding to the

bulk and QW excitons. The fact that the QW exciton is higher in energy than the bulk

exciton is a consequence of confinement, explained in §2.4. The large oscillations are due

to Fabry-Perot resonances that arise from interference between multiple reflections between

the extremal interfaces of the sample structure. The energetic spacing ∆E (labeled in Fig.

3.3) of the oscillations is related to the thickness of the sample L by:

L =
h c

2n∆E
, (3.1)

where n ≈ 3.7 for GaAs at 4 K [91], h is Planck’s constant, and c is the speed of light.

From this equation along with a measured spacing of 118 meV we infer a sample thickness

of 1.42 µm, which is very close to the grower’s specifications of 1.43 µm after the etching

process. We can see from Fig. 3.3 that the exciton line shape is critically affected by the

sample structure. The exciton resonance can even dip up or down, depending on where a

feature occurs on the Fabry-Perot oscillatory curve, as can be seen by comparing the bulk

and QW exciton features. Thus, a model that includes the sample structure is essential for

understanding the detailed physics.

We also measure the T and R spectra at multiple positions across the sample, and find

very small changes change in the shape of the fringes, indicating that the sample has uniform

thickness within ±50 nm. The uniform thickness means that the position on the sample at

which measurements are made does not critically affect the line shape. With the different

layer thicknesses in the sample structure fixed in the theoretical model, linear and nonlinear

absorption spectra can be analyzed to reveal the physics that generates the observed line

shapes.
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3.2 Linear absorption spectrum

Although there are several spectral features in the broad-spectrum absorption, we study

the optical response of the heavy-hole (HH) 1s excitons from the ten QWs in the sample.

This resonance at E1s = 1.546 eV is well separated from other absorption resonances in the

sample. In addition, it has a strong oscillator strength. These features make the line shape

of the HH 1s exciton resonance a good observable for revealing details of the many-body

dynamics inside the QWs.

In order to study the many-body signatures of the exciton resonance, we characterize

the physics in the linear regime. The linear absorption spectrum αQW(ω) = 1−T (ω)−R(ω)

of the 10 QWs in the spectral region near the 1s HH exciton resonance is shown in Fig. 3.4.

The confinement of the exciton wave functions remove the degeneracy between the HH and

light-hole (LH) sub-bands. The HH exciton resonance is slightly lower in energy than the

light hole exciton resonance, consistent with the theory presented in Chapter 2 (Fig. 2.5).

For low excitation densities, the unexcited exciton absorption line shape has finite

broadness primarily because of radiative dephasing, phonon scattering, and disorder. Ra-

diative dephasing refers to the emitted fields from the QWs decaying because of radiative

coupling with the QW system. Phonon scattering depends on the temperature of the sample.

Both of these processes are homogeneous in nature since all excitons respond in the same

way to the frequency range contained in the line shape. In contrast, the inhomogeneous-

broadening mechanism of disorder results from fluctuations in QW thickness, as described

in §2.8.

3.3 Transient absorption in the nonlinear regime

Elevated densities of carriers and polarizations lead to modifications of the absorption

spectrum of a probe pulse. The changes to the probe include broadening of the absorption

line shape (i.e., excitation-induced dephasing, or EID), shifting the resonance center fre-
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Figure 3.4: Linear absorption (blue line) from the QWs in absolute units in the region of the 1s heavy-hole
(HH) exciton resonance. In arbitrary units, the probe spectrum before the sample is shown (green line)
along with the narrowed pump spectrum used in transient-absorption experiments (shaded area).

quency (i.e., excitation-induced shift, or EIS), and saturation. We described these effects in

chapter 2. We describe in this section the experimental parameters and considerations for

the spectrally resolved transient absorption measurements performed in this work.

3.3.1 Experimental setup

To study the optical properties of the sample at densities where many-body dynamics

dominate the absorption line shape, we perform spectrally resolved transient absorption.

The concept of this measurement experiment was explained in §2.9.3.1. The experimental

setup is illustrated in Fig. 3.5.

In our experiment, we use a pump and probe pulse, both provided by a tunable Kerr-

lens mode-locked Ti:Sapphire laser system (Coherent Mira 900), pumped by a 5 W diode-

pumped laser centered at 532 nm (Coherent Verdi V5). The laser produces optical pulses in

the near-infrared (λ0 = 800 nm), with a repetition rate of 76 MHz and a pulse duration of

∆τ = 287 fs full-width half maximum (FWHM). We estimate this pulse duration from an
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Figure 3.5: Schematic setup for spectrally resolved transient absorption experiments. BS, beam splitter;
ND filter, neutral-density filter; τ delay, controls relative time delay between pump and probe; POL, polarizer;
QWP, quarter-wave plate; BB, computer-controlled beam blockers; PD, photodetector.

intensity autocorrelation width of 406.5 fs FWHM and by assuming a Gaussian line shape.

The details of temporal pulse measurement are discussed in §3.5. The laser spectrum for

both pump and probe are tuned near the interband transition of the GaAs QW HH exciton

at E1s with a bandwidth of ∆E = 6.8 meV (∆λ = 3.5 nm) FWHM. The pump pulse is

spectrally narrowed to ∆E = 5.9 meV FWHM (∆λ = 3.05 nm) by a pulse shaper apparatus

in order to have a spectrum which is resonant with the HH 1s-resonance and avoids exciting

the e-h continuum or LH resonance. The pulse shaper is able to alter the spectral phase

of the pump as well; this will be discussed in Chapter 7. The probe and pump spectra are

shown in Fig. 3.4.

Both the pump and probe beams are focused onto the GaAs QW sample within the

cryostat. The intense pump creates a many-body configuration in the sample, and the
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weak probe pulse with delay τ interrogates the configuration. We guide the transmitted and

reflected probe beams with mirrors into a monochrometer, where they are spectrally resolved

and recorded with a photodetector. We record the probe transmission T and reflection R

spectra as functions of the photon energy ~ω for a matrix of pump powers, time delays, and

polarization configurations.

We adjust the pump power by varying the light transmitted through a neutral-density

filter. The original experiments performed in this work used a neutral-density plate filter

that attenuated the pump power as the position of the plate was translated. To increase

the stability of the experiment, we replace this with a variable phase retarder (Meadowlark

LVR-100) along with a polarizer. Amplitude modulation of a 2 kHz square-wave signal to the

phase retarder allows variation in the pump power over three orders of magnitude, ranging

from the linear regime past the saturation density, without modifying the polarization state.

The saturation density is explained in §2.10.2.

We concentrate on short and long time delays between the pump and probe. For a short

delay (τ = 3 ps), the probe interrogates the QW in the coherent regime, when polarization

is active in the QWs. For longer time delays (τ > 5 ps), the probe arrives in the incoherent

regime, when the polarization has decayed and only carrier populations remain. We choose

τ = 13 ps (or 27 ps for experiments in Chapter 8) for the long time delay.

We place a polarizer and quarter-wave plate in the each path for the pump and probe

beams. This configuration allows us to manipulate the polarization states, which influences

the interaction a subspace of spin states. Circular polarization (σ+ or σ−) excites one optical

transition of the spin-degenerate HH states, as described §2.5. In contrast, linear-polarized

light excites both states with a combination of left and right circular-polarized light with

equal probability. For the experiments, the pump and probe are configured to either be

the same circular polarization (i.e., co-circular, or CC), or the same linear polarization (i.e.,

co-linear, or CL). In either case, the pump and probe interact with the same subspace.

By varying this matrix of experimental parameters, we measure a set of probe absorp-
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tion spectra that reveal details of many-body interactions in our sample. The experimental

procedure involves using computer control (LabView) to loop through a matrix of pump

intensities and pump-probe delays. The polarizers and quarter-wave plates are adjusted

manually to create pure circular and linear polarization states to within 0.1%. The trans-

mission and reflection of the probe beams are incident on a beam splitter, which guides both

beams into a monochrometer. While the measurement would be faster with two monochrom-

eters, we use one monochrometer and switch alternately between recording the transmission

and reflection of the probe beam by using computer-controlled beam blockers in both arms.

We next explain how we choose the pump and probe spot sizes that determine the excitation

densities.

3.3.2 Choosing appropriate pump and probe spot sizes

The spot sizes of the pump and probe were carefully chosen to balance several con-

straints. We desire high enough pump intensities to reach saturation of the QW. However,

we find experimentally that average pump powers beyond ≈100 mW (peak pulse power ≈ 13

kW), heating of the sample can occur which can distort the spectral features and potentially

damage the sample. To avoid heating the sample with the pump, we desire a small focus of

the pump beam so that the power can be relatively low and still create carrier densities that

saturate the QW.

The probe beam must sample a spatially homogeneous part of the pump beam. To

satisfy this constraint, we would like a probe spot size which is much smaller than the pump

spot size at the sample plane. However, a smaller probe spot size means higher excitation

density. The probe must create carrier densities that are in the linear regime so that the

nonlinear effects we measure are completely due to the pump light. Additionally, a minimum

amount of average probe power is necessary to obtain good signal-to-noise ratio in the probe

measurement.

To determine the optimal pump and probe spot sizes that satisfy these constraints,



54

we first experimentally determine the saturation densities with the pump and probe beams.

We then perform a calculation using a model which estimates the error due to the relative

spot sizes of the pump and probe. Since the probe must have a finite spot size, there is

an unavoidable error in the measurement of the pump-generated configuration because of

the sampling of spatial inhomogeneity across the intensity profile of the pump spot. We

calculate this error by assuming that both beams have a Gaussian spatial intensity profile

at the focus:

Ij(ρ) = I0je
−ρ2/2w2

0j , (3.2)

where ρ is the radial coordinate, I0 is the peak intensity at the center of the profile, and

w0 is the beam waist size, and j stands for either pump or probe. We also assume that the

nonlinear broadening γ changes proportionally with the pump intensity, or:

γ(ρ) = γ0 + a Ipump(ρ), (3.3)

where γ0 is the low-intensity FWHM of the 1s-resonance, and a is a constant chosen to match

experimental measurements. We integrate the probe intensity over the spatial distribution

of gamma to find the average contribution to the measured broadening:

γmeas =

∫ ∞

0

∫ 2π

0

γ(ρ) Iprobe(ρ) ρ dρ dθ

∫ ∞

0

∫ 2π

0

Iprobe(ρ) ρ dρ dθ. (3.4)

The result of this calculation for varying probe waist size is shown in Fig. 3.6. We plot

the fractional error in a measurement of the nonlinear broadening γ as the probe beam waist

increases as a fraction of the pump beam waist. From this estimate, we find that the waist

of the probe beam may be up to 20% of the pump waist and still sample the homogeneous

part of the pump pulse to within a error of 2% in the measured nonlinearity.

In addition to these constraints, we also considered geometric constraints of the experi-

ment including the distance a lens could realistically be before the cryostat windows and the

focusing power of lenses. We wrote a ray-tracing program [92] to visualize these constraints
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Figure 3.6: Result of beam-sampling calculation. The error due to the probe sampling an inhomogeneous
portion of the pump spatial intensity is shown.

within the above framework. Considering all constraints, we chose the beam waists to be

100µm and 20µm for the pump and probe waists, respectively.

3.3.3 Estimation of excitation densities

The energy in an optical pulse along with the spatial profile determines the density

of electron-hole pairs generated in the QW. We estimate the excitation densities reported

above by considering the beam and sample parameters. These estimations apply to both

the pump and probe pulses. First, we calculate the photon density for a single pulse at the

beam focus. With a measurement of the beam power, we may use the formula

E = Nphhν = Nph
hc

λ
, (3.5)

where E is the photon energy, Nph is the number of photons, and λ is the center wavelength

of the laser. A quasi-monochromatic approximation of the laser source is appropriate since

∆λ
λ

≈ 3.5 nm
800 nm

< 1%. Considering this formula along with the repetition rate of the laser, frep,
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and an average laser power Pavg, we calculate the number of photons in a pulse to be

Nph = Pavg f
−1
rep

λ

hc
. (3.6)

The beam is focused onto a spot size w0. The beam out of the laser has a Gaussian

spatial intensity profile that may be expressed in radial coordinates:

I(ρ) = I0e
−ρ2/2w2

0 , (3.7)

where ρ is the radial coordinate, I0 is the average peak intensity at the center of the profile.

The average power Pavg is the integration of the intensity profile:

Pavg =

∫ ∞

0

∫ 2π

0

I(ρ) ρ dρ dθ

= 2π I0w
2
0. (3.8)

This result shows that the intensity at the center of the profile is

I =
Pavg

2πw2
0

, (3.9)

which is equivalent to considering the power over in a circle with radius
√

2w0. This is a

valid approximation for the pump density as sampled by the probe since the probe samples

the density near the center of the pump beam and wprobe ≪ wpump. Using Eqns. 3.6 and

3.9, we estimate the photon density nph [W/cm2] in a single pulse as:

nph = Nph/2πw
2
0

= Pavg f
−1
rep

λ

hc

1

2πw2
0

. (3.10)

The photon density is converted into an electron-hole carrier density in the QWs through

absorption. It is important to note that the energy from the pulse is (a) subject to loss at

interfaces and the bulk, and (b) distributed over the 10 QWs. The reflection loss at the

vacuum–sapphire and sapphire–GaAs interface is about 20%, calculated through Fresnel’s

equations [93]. We measure a 28% loss due to absorption in the bulk material. We divide the
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remaining photon density by 10 to account for the 10 QWs. Assuming that all remaining

photons are absorbed by the QWs, the electron-hole carrier density neh in each QW is

estimated as:

neh = nph × (1 − 0.20) × (1 − 0.28) × 1

10

= 0.058nph. (3.11)

This estimate does not take into account the spectral overlap between the pulse spectrum and

the exciton absorption probability spectrum. Taking into account the spectral overlap for the

pump spectrum shown in Fig 3.4 yields an additional factor of 0.21, yielding neh = 0.012nph.

We use the above arguments to estimate the excitation density of electron-hole pairs for

the pump and probe pulses. The pump power is varied over a range of 1.6 to 40.5 mW, with

a spot size of 100 µm. These parameters correspond to intensities of 5.1 kW/cm2 to 128.9

kW/cm2, or estimated excitation densities of 1.6×109−8.3×1010 electron-holes/cm2/layer.

The low-intensity probe beam has a power of 30.8 µW and a spot size of 20 µm, corresponding

to an intensity of 2.5 kW/cm2, or a density of 7.9×108 electron-holes/cm2/layer. The probe

thus samples the spatially homogeneous part of the pump-generated excitation. The probe

is also low enough in intensity to be in the linear regime. In this regime, changes in the

probe power (by up to about 50%) do not affect the absorption line shape.

A more careful estimate of the actual carrier densities would include taking into account

the full dielectric structure of the sample. The theoretical microscopic calculation takes this

into account, as discussed in Chapter 4. We will use the above estimate of the pump electron-

hole densities to compare with the theoretically extracted excitation densities in Chapter

4. With the parameters in the experiment fixed, we now explain how the quantitative

measurements in the experiment are performed.
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3.3.4 Quantitative measurement of the probe and pump absorption

We spectrally resolve the probe beam using a 1/4-meter monochromator with a 0.07 nm

(140µeV) resolution. The monochrometer scans through a range of wavelengths, and we

record the probe intensity at each wavelength. We also spectrally resolve the pump beam

using the same 1/4-meter monochrometer as for the probe.

In order to calibrate the probe powers, we measure the input power (P probe
IN ), trans-

mitted power (P probe
T ), and reflected power (P probe

R ) for the probe beam using a Coherent

Fieldmaster GS power meter. This sensor for this meter has a Silicon photosensitive material

which is responsive wavelengths in the near infrared.

For some of the transient-absorption experiments performed in this work, the pump

input power, and the transmitted and reflected powers from the sample are simultaneously

recorded in calibrated units to estimate the excited carrier densities. The schematic for

measuring these quantities is shown in Fig. 3.7, which is a zoomed-in version of Fig. 3.5,

where the probe is omitted for clarity.

The input pump power P pump
IN is measured by a sampling window that reflects 1%

of the light into a photodetector. The transmitted P pump
T and reflected P pump

R powers are

measured on photodetectors after attenuation by neutral density filters that ensure that the

response of the detectors is in the linear regime. A measurement of the powers in absolute

units with a Coherent Fieldmaster GS power meter allows continuous measurement of the

pump powers.

To accurately estimate the absorbed powers from the measurements, we must consider

reflection losses at interfaces inside the cryostat. We determine correction factors to account

for these losses. The details of calculating these factors are explained in Appendix B.1.

After consideration of reflection losses, we determine the total estimated powers P est,probe
λ ,

where λ =R,T, and IN. From these estimated powers, it is possible to calibrate the probe

absorption spectra.
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Figure 3.7: Setup for simultaneous measurement of the pump powers on photodetectors (PDs); BS, 1%
beam sampler.

We use a novel lock-in detection technique to calibrate the transmitted and reflected

probe spectra in both the presence and absence of the pump light. The pump and probe

beams are both chopped by an optical chopper at frequencies around 2 kHz so that a lock-in

amplifier can be used for phase-sensitive detection. This technique is described in detail in

Appendix A. A calibration procedure described in Appendix B.2 allows the probe spectra

to be converted into absolute units such that

∫

P probe
λ (ω) dω = P est,probe

λ , (3.12)

From our careful measurement of the infer that the bulk material produces a background

absorption of 28 % that is essentially constant since the bulk continuum spectral feature

has little variation over the relevant energy range. The fractional absorption by the bulk

material is independent of excitation density because the densities necessary for achieving

nonlinearities requires even higher photon densities than for the QW. Thus, removing the



60

bulk absorption from the measured absorption for pump or probe beams determines the QW

absorption by αQW(ω) ≡ α(ω) − 0.28 for this sample. This means that the pump or probe

absorbed by the QW can be calculated by:

PQW
α = [α− 0.28]P est

IN

=

[

1 − P est
T

P est
IN

− P est
R

P est
IN

]

P est
IN − 0.28P est

IN . (3.13)

Measurement of the calibrated pump powers along with Eqn. 3.13 allow an estimate

of the power absorbed by the QWs. We can use this estimate to set either the input power

(P est
IN ) or the power absorbed by the QWs (PQW

α ).

Because of the careful calibration, the low-intensity probe always yields the same T

and R spectra as the white-light source measurement, as shown in Fig. 3.4. In this figure

the absorption from the bulk material is subtracted from the total probe absorption.

Combining the measurements of the pump powers with the calibrations discussed in

Appendix B.1 allow accurate estimates of the number of photons absorbed by the QWs. The

arguments in §3.3.3 then help to infer the excited carrier densities in the QWs. Knowledge

of the carrier densities allows comparison of the QW response for different excitation pulse

shapes that inject the same number of carriers into the QWs, as we will explore in Chapter

8.

3.4 Extraction of line shape parameters

After probe absorption data is collected, an extraction of relevant parameters provides

observables for comparing the response due to different excitation conditions.

For the parameter extraction, we use a model-independent fit. Model functions such

as a Lorentzian and Gaussian successfully fit the data for low intensities, but fail close to

saturation, where comparison is often the most important. We extract the peak height of

the absorption, the center resonance position, and the full-width at half maximum (FWHM)

of the line shape.
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Figure 3.8: Model-independent fit procedure. The black triangle is the first guess of the resonance peak.
The parabola fit (cyan line) results in a maximum (black diamond) that yields the peak height and center
resonance position. The two baselines (blue lines) at high and low energy are used to estimate the half-
widths (blue and red diamonds) on either side of the resonance. Note that the low-energy baseline is used
to estimate the bulk absorption (αBulk = 0.28).

The parameters are extracted from the HH 1s-resonance absorption curve by fitting a

parabola near the center of the peak of the line shape. The fit procedure is illustrated in

Fig. 3.8. The peak position of the absorption is first approximated by simply finding the

maximum absorption value measured. Since the resolution of the spectrum recorded limits

the accuracy of this peak point, the four nearest points on either side of this position on the

absorption curve (nine points total) are fit with a parabola function. The center energy of

the parabola approximates of the center of the resonance, and the maximum of the parabola

approximates the peak absorption height.

Additionally, we extract the FWHM of the line shape. The FWHM is found by fitting

a line to a group of four points on each side of the maximum around a guessed location at

the half-way point between the peak height and the baseline on each side. The value at

the center of this line approximates the half-width position on each side of the resonance.

The FWHM is the sum of the half-widths. The FWHM-extraction is challenging in practice
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because the nonlinear line shape has asymmetric baselines on either side, as illustrated in Fig.

3.8. In the extreme case of saturation, the high-energy side baseline is not distinguishable

from the peak of the resonance. The extracted FWHM thus does not consistently provide

a meaningful measure of the nonlinear width. Thus, we primarily use the peak height and

center position from the model-independent fits as indicators of the nonlinear effects.

The model-independent fits are useful for understanding the trends in the data. The

microscopic theory extracts parameters through a model that contains the sample structure

and detailed physics. However, the theoretical fits are computationally intensive; thus,the

model-independent procedure can provide real-time feedback about the nonlinearities.

3.5 Cross-correlation measurement of the pump

We record an intensity cross-correlation between the pump and probe by replacing the

sample with a Beta-Barium Borate (b-BaB2O4, or BBO) crystal and recording the second-

harmonic generation (SHG) signal generated from the interaction between the two beams.

The geometry for a cross-correlation measurement is shown in Fig. 2.8 for the ~kSHG = ~k1+~k2

direction. A spectral filter with a bandwidth around the doubled frequency (λSHG = λ0/2 =

400 nm) is placed between the BBO crystal and a photodetector to filter out any scattered

light at λ0 since the frequency-doubled signal is very weak. The delay τ between the pump

and probe pulses is varied over a range greater than the pulse duration. The frequency-

doubled signal measured in this background-free direction is detected on a photodetector,

and electronically filtered using lock-in detection. The measured cross-correlation trace is

proportional to the convolution of the pump and probe intensities:

S(τ) ∝
∫ ∞

−∞
ε2
probe(t− τ) ε2

pump(t) dt, (3.14)

where εprobe (pump) is the envelope of the electric field for the probe (pump) beam. Assuming

that the two beams have a Gaussian line shape, the width of the cross-correlation function
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S(τ) is the addition of the pulse durations in quadrature, or

∆τS =
[

∆τ 2
probe + ∆τ 2

pump

]1/2
. (3.15)

In the case where the pump and probe have the same electric field, the trace is called an

autocorrelation and ∆τS = 1.414∆τpulse.

The pump pulse temporal duration is longer than the probe duration since the pump

spectrum is narrowed compared to the probe spectrum (Fig. 3.4). A cross-correlation of

pump with the probe yields a measured width ∆τS =520 fs. Using Eqn. 3.15 along with a

measured probe width of τprobe = 287 fs, we find that the pump pulse is 51% longer in time

duration than the probe pulse. In the pulse shaping experiments described in Chapter 8,

where the pump pulses are stretched out in time, the pump pulse temporal intensity profile

is characterized by the cross-correlation trace since ∆τpump ≫ ∆τprobe. In these experiments,

the probe intensity ε2
probe(t) is essentially a δ-function.

3.6 Conclusion

The experimental setup, calibrations, and considerations described in this chapter pave

the way for experiments that mark new levels of quantitative measurement. These measure-

ments, when combined with a microscopic theory, unveil the interactions that give rise to

the nonlinear effects observed. Additionally, this experimental setup, with the pulse shaper

active in the pump arm, opens an area of exploration where we are able to manipulate

the spectral phase of our pulses in order to gain deeper insight concerning the many-body

dynamics.



Chapter 4

Coulomb-induced nonlinearities in semiconductor quantum wells

4.1 Introduction

In this chapter, we report quantitative spectrally resolved transient probe absorption in

a GaAs multiple quantum-well structure for a variety of excitation conditions. Comparison

of the novel measurements with a microscopic theory allows for an unprecedented level of

analysis and insight concerning the many-body interactions of excitons and carriers in the

quantum wells. We draw conclusions about the sources of the nonlinearities, the effects of

spin selection, as well as the observed transfer of energy between the pump and probe in the

coherent regime. Unexpectedly, we find that true exciton populations do not significantly

contribute to spectral broadening because the resonance blue shifts we observe are dominated

by excited carrier densities. Characterization of the origins of the blue shifts and other

observed nonlinear responses pave the way for the pulse shaping experiments, which we

present in later chapters.

4.2 Theory development

To analyze the experimental observations and extract physical meaning from our data,

we collaborate with Mack Kira, Hanno Steiner, Martin Schaefer, and Stephan Koch, at

the Department of Physics and Material Sciences Center, Philipps-University Marburg, in

Marburg, Germany. These researchers use a fully microscopic theory [7] to describe Coulomb-

scattering contributions to excitonic nonlinearities. The theory uses the refractive-index
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profile fixed from the white-light measurements described in §3.1. The theory includes up

to two-particle scattering in a systematic cluster-expansion approach [94]. By fixing all

parameters in the microscopic theory except the overall carrier density (n), the fraction of

the carriers that are bound exciton pairs (x), and the polarization (P ), we are able to map

the density and temperature at the location of excitation with 10% accuracy.

While in principle the quantities n, x, and P could be computed by the theory that

includes all the dynamics, high computational costs made it necessary to leave these three

quantities as free parameters. Exciton formation dynamics are well understood in theory.

Thus it is not necessary to include the full physics in the fitting procedure, and a single

(n, x, P ) combination uniquely fits a given spectrum.

To generate a theoretical optical response from the sample, Kira et al. evaluate the

dynamics of the microscopic probe-generated polarization δpk at the crystal momentum k

using the semiconductor Bloch equation [95]:

i~
∂

∂t
δpk = ǫkδpk − (1 − f e

k
− fh

k
) δΩk(t) + Γk

−Pk

∑

λ,k′

δfλ
k′ + (δf e

k
+ δfh

k
) Ωk, (4.1)

which contains the pump-generated electron (hole) distribution f
e(h)
k

, the polarization Pk, the

Coulomb-renormalized energy ǫk, and the renormalized Rabi energies, Ωk(t) ≡ dEpump(t) +

∑

k′ Vk′−kPk′ and δΩk(t) ≡ dEpro(t) +
∑

k′ Vk′−kδpk′ . The interactions involve the dipole-

matrix element d, the electric field Epump(t) [Epro(t)] for the pump [probe], and the Coulomb-

matrix element Vk.

The probe δpk couples to two-particle Coulomb correlations Γk that produce screen-

ing of the Coulomb interaction, higher-order energy renormalizations, and Boltzmann-type

scattering of δpk from various quasi particles and transition amplitudes [7]. When the pump

Pk is still present, the carrier densities are changed linearly by δfλ
k

whose dynamics

~
∂

∂t
δfλ

k
= 2Im [δΩ⋆

k
Pk + Ω⋆

k
δpk] + rk (4.2)
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also change the probe response. The term rk provides relaxation of the carrier distributions

toward equilibrium.

Use of Eqns. 4.1 and 4.2 allow construction of the linear optical response of the probe.

This response follows directly from the linear QW susceptibility χ(ω) ≡ 1
S
∑

k

δpk(ω)
Epro(ω)

after

we Fourier transform Epro and δp with the normalization area S. The true QW absorption is

then evaluated via a transfer-matrix computation that has both χ(ω) and the full dielectric

structure of the sample as inputs. This procedure includes all the Coulomb-induced nonlin-

earities (discussed in chapter 2) for a given pump-generated many-body configuration. The

mean-field quantities, i.e., f
e(h)
k

and Pk, represent the simplest part of the excitation con-

figuration, while bound excitons and biexciton amplitudes determine pair-wise correlations.

The microscopic influence of these quantities on χ(ω) is systematically evaluated with the

cluster-expansion approach [7]. We find that the QW absorption, αQW, is extremely sensi-

tive to the pump-induced f
e(h)
k

, Pk, and exciton populations that compose the many-body

configuration.

In Eqn. 4.1, the phase-space filling factor (1 − f e
k
− fh

k
) actually has spin dependence

according to the selection rules introduced in Chapter 2. Specifically, the phase-space filling

(1 − f e
k,s − fh

k,s) defines the amount of carriers a resonant optical pulse is able to excite.

Here f
e(h)
k,s is the electron (hole) occupation with momentum k and spin s, where s =↑ or ↓

for electrons, and s = {−3/2,−1/2, 1/2, 3/2} for holes. As a reminder of selection rules for

these states for the heavy hole (HH) 1s-exciton resonance, σ+-polarized light excites along

s = −3/2 → s =↓, and σ−-polarized light excites along s = +3/2 → s =↑. Linearly-

polarized light excites the HH exciton transitions with equal probability.

In the past, the actual pump-generated many-body configuration has only been com-

puted for one-dimensional quantum wires [96, 7] because of the overwhelming numerical

complexity involved. For our present studies, we significantly extend our numerical analysis

and solve Eqns. (4.1)–(4.2) for the two-dimensional QW system for any combination of f
e(h)
k

,

Pk, and exciton populations. We use f
e(h)
k

in the form of a Fermi-Dirac distribution with
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a given temperature at a total density of n = 1
S f

e(h)
k

. We also allow Pk to be a mixture of

1s and 10 higher s-like exciton states. Because of the resonant excitation conditions of the

experiment, a fraction x of excited carriers is allowed to form 1s exciton populations. We

perform the calculations for a large number of physically reasonable parameter combinations.

For any given configuration, we can evaluate a normalized deviation between the com-

puted and measured QW absorptions:

ǫ ≡
∫

dω |αth(ω) − αQW(ω)|
∫

dω |αQW(ω)| . (4.3)

The computed excitation configurations are then searched via a multidimensional optimiza-

tion to minimize ǫ, yielding a unique maximum-likelihood excitation configuration. We also

determine a confidence interval for the found configurations, yielding < 5% variation in ǫ.

4.3 Results and discussion

By combining quantitative experimental measurements with the microscopic theory,

we acquire a deeper understanding of the many-body physics of QWs. The theory finds very

close match to the measured absorption spectra. Figure 4.1 presents αQW, the measured

probe absorption (shaded areas), for three different pump powers using (a) co-circular (CC)

and (b) co-linear (CL) polarization configurations (described in Chapter 3) for the pump

and probe. In both cases, the αQW recorded for the lowest pump excitation power behaves

linearly. We see that the linear absorption contains a clear 1s resonance yielding αQW = 57 %

with a half width at half maximum (HWHM) of γ1s = 0.75 meV. Roughly half of this width

results from radiative decay in the nontrivial dielectric structure, which is corroborated by

the high absorption levels [7]. When the pump excitation power is increased, αQW experi-

ences nonlinear changes. The 1s resonance is broadened and becomes strongly asymmetric,

similarly to prior observations [3, 14, 15]. We also see that the CC and CL configurations

yield very different nonlinearities. Under CC conditions, we obtain an almost 2 meV blue

shift of the 1s resonance while the CL configuration only exhibits a smaller, less than 1 meV,
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blue shift before saturation is reached. The nonlinear CL spectra are about 50% broader

than the CC spectra for the same excitation densities.

Figure 4.1: Probe QW absorption at large τ = 13 ps delay. (a) The measured CC-configuration αQW

(shaded areas) are shown for pump-pulse photon densities np = 3.9, 16, and 27 × 1011 cm−2 and compared
to microscopically computed spectra (solid lines) for e-h densities neh = 0.14, 2.2, and 3.4 × 1010cm−2,
from top to bottom. The spectra are vertically offset by 15 %. The horizontal lines indicate the HWHM of
the respective exciton resonances. (b) The corresponding CL comparison with 3.9, 27, and 48 × 1011 cm−2

pump-photon densities (shaded areas) and calculations for the densities 0.21, 4.4, and 5.0× 1010 cm−2 (solid
lines). (c) and (d): The deduced ML e-h densities (circles, left scale) and exciton fraction (squares, right
scale) as a function of photon density for CC and CL experiments, respectively. The arrows indicate the
spectra presented in the left-side panel; the dashed vertical lines mark saturation.

The theory matching the data elucidates the microscopic interactions. Figure 4.1

shows the αth (solid lines) of the extracted ML configuration that reproduces the respective

experimental result (shaded areas). The insets give information about the actual ML e-h

density neh (circles) and exciton fraction x (squares) as a function of the photon density,

along with error bars (shaded area for x) marking the confidence interval for each different

experiment separately. Since the pump-generated polarization has completely decayed for

long delay times (τ = 13 ps), we only need to find the f e
k
, fh

k
, and x configurations that

match the experimental spectra by minimizing the deviation in Eqn. 4.3. The extremely good
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quantitative agreement shown in Fig. 4.1 is found when the electron-hole density n first grows

linearly as a function of excitation power and then saturates (circles, insets). This saturation

is simply explained by the ionization of the 1s-exciton resonance for elevated densities, which

strongly reduces the ability of the pump to generate more carriers. Saturation occurs close to

that ML configuration where the phase-space filling factor 1− f e
0 − fh

0 becomes zero (dashed

vertical line). The exciton fraction is initially high due to the almost 100% efficiency in

polarization-to-population conversion. Onset of ionization causes the exciton fraction to

rapidly decrease as a function of e-h density. For the cases studied, the best-fit electron and

hole temperatures are 38 K and 11 K, respectively, producing f e
k
≈ fh

k
as expected if the

electrons and holes are bound in an exciton and in agreement with the theoretical prediction

[7]. At low densities, based on a temperature-dependence experimental study, we estimate

the thermal contribution as less than 1% of the line width.

The pronounced differences between the CL and CC experiments are related to the

fact that the CC case excites carriers only into one spin state, while under CL conditions,

one populates both spin states. Since the Coulomb-scattering of δpk with the e-h plasma

is spin sensitive, the CL and CC cases lead to different Coulomb-induced shifts of the 1s

resonance. The fact that the shifts persist to saturation, where no excitons exist, verifies

that the e-h plasma and not the exciton population is mostly responsible for the blue shift of

the 1s resonance. The enhanced broadening of the CL relative to the CC case is explained

by the fact that there are twice as many scattering partners for δpk in the CL case due to

the e-h occupations in both spin states.

The theory can also separate out two categories of decay processes in the QW system.

The internal QW dephasing rate γint consists of a superposition of broadening via Coulomb

and phonon scattering as well as disorder effects. Radiative decay results from a direct

coupling of polarization to light; in other words, a created polarization decays with at a rate

Γrad as it emits an electric field. The rates γint and Γrad can be deduced from the experimental

absorption spectrum measured in absolute units. Figure 4.2 presents the actual γint (circles)
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Figure 4.2: Internal decay rates γint (circles) and radiative-decay rates Γrad (squares) extracted from the
experimental measurements (squares and circles) along with theoretical predictions (lines). The excitation
saturates the probe response at intensity Isat.

and Γrad (squares) retrieved from the experiments compared to the microscopic theory (solid

and dashed lines, respectively) using the formulae:

γint =
γm

2

(

1 −
√

1 − 2αm

β

)

, Γrad =
γm

2

(

1 +
√

1 − 2αm

β

)

, (4.4)

where αm is the measured peak absorption with respect to the bulk-absorption background

and γm is the measured half-width half-maximum of the 1s resonance. The constant β =

1.15 extracted from the data determines how the radiative coupling is modified due to the

radiative environment.

We find that the radiative environment combined with the coupling among 10 QWs

enhances the radiative decay to Γrad = 0.390 meV, eight times larger value than for a

single QW. We also see that Γrad is insensitive to the excitation level, which implies that

the oscillator strength of the 1s resonance remains nearly constant up to its bleaching in

agreement with Ref. [97]. At the same time, the low density γint is 0.4 meV. As a result,

the internal dephasing of the studied system is comparable with radiative coupling at low

excitation levels. Thus, the QW is capable of absorbing and converting a major portion of

light into excited carriers. By increasing the pump intensity by a factor of 7, the carrier
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excitation level increases so much that we find γint = 1.2 meV due to excitation induced

dephasing.

We find that excitation produces excitation-induced dephasing that is 3 times the low-

density γint. Thus, this system exhibits significant nonlinearities and it is a good candidate

to demonstrate how the nonlinear response can be altered through the quantum statistics of

the pump pulse [98].

As a further test of our ML extraction procedure, we consider short pump-probe delay

conditions where coherent transients [99] and excitonic gain [5] have been observed previously.

Fig. 4.3 shows the measured αQW (dark area) and the extracted ML αth (solid line) just after

the excitation (τ = 3 ps) for (a) the CC and (b) the CL excitation. The short delay αQW

and αth not only agree but they are also distinctly different from the long delay αQW (light

shaded area). In particular, the CC case yields a 15% gain feature (negative absorption) just

below the 1s resonance. As a main difference to the long delay investigations, the short-delay

ML configuration contains a significant portion of pump-generated Pk. Since the presence

of the induced QW polarization is needed to produce gain, the gain is transient and can be

attributed to coherent polarization transfer between pump and probe.

The transient gain delicately depends on the excitation conditions. It is not seen for

the CL case due to the above mentioned enhanced dephasing of δpk. For CC excitation,

we obtain the strongest transient gain for elevated e-h densities close to the 1s-saturation.

To obtain analytic insight on how δfλ
k

influences the coherent transients, we also solve

Eqns. (4.1)–(4.2) for the case where scattering is omitted. We find that δfλ
k

is proportional

to
(

1 − f e
k
− fh

k

)−1
showing that the coherent transients become increasingly strong near

the 1s-exciton saturation because the phase-space filling factor approaches zero. To verify

this, we plot in the inset to Fig. 4.3a the measured maximum values of αQW gain (open

circles) as a function of pump density. We clearly see that the transient gain reaches its

maximum value close to the 1s-ionization threshold (saturation), indicated by the vertical

dashed line. The inset to Fig. 4.3b presents the energetic position of the measured CL
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Figure 4.3: Probe QW absorption for the short τ = 3 ps delay. (a) CC conditions with pump photon
density np = 16×1011 cm−2: the measured αQW (dark shaded), the computed αth (solid line), and the long-
time delay αQW (light shaded). Inset: the measured (open circles) and computed (shaded area) absorption
dip (gain maximum) as a function of pump-photon density. The dashed vertical line marks saturation. (b)
Same as (a), but for the CL configuration with the photon density 27 × 1011 cm−2. Inset: the absorption
peak shift for CL (squares) and CC (circles) measurements compared with theory (lines).

(squares) and CC (circles) αQW, while the lines are from the ML calculations. We find that

the pump-generated polarization also produces an additional blue shift for both CL and CC

excitations. In particular, the short delays produce blue shifts up to 2 meV (CL) and 4 meV

(CC), which are roughly a factor of two larger than for those at long delays.

The ML analysis can also be used to quantitatively determine the role of excitons. The

inset to Fig. 4.4 shows the 5% ǫ confidence interval (shaded area) in carrier density and ex-

citon fraction when the intermediate-intensity CL experiment of Fig. 4.1b is analyzed. The

overall difference between theory and experiment is minimized around a single (neh, x) con-
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Figure 4.4: Influence of exciton populations on nonlinear αQW. The long-delay measured αQW (shaded
area) for np = 16 × 1011 cm−2 pump is compared with the ML result (solid line) as well as computations
having 0% (dashed line) and 100% (dotted line) excitons. Inset: The ML configuration (square) and the
5% confidence interval (shaded area) plotted in (neh, x) space. The 0% (open circle) and 100% (filled circle)
represent exciton configurations used for the dashed and dotted lines, respectively.

figuration (square). Fig. 4.4 shows the corresponding experimental αQW spectrum (shaded

area) together with the ML result (solid line) as well as cases where the exciton fraction is

reduced to x = 0% (dashed line) or raised to x = 100% (dotted line). Increasing the exciton

fraction leads to a reduction of the excitation-induced broadening and blue shifting of the

1s-resonance. These effects follow because the scattering of the probe induced δpk becomes

less likely when electrons and holes are bound into charge-neutral excitons (x = 100%) than

when they remain as an ionized plasma (x = 0%). It is also interesting to see that formation

of excitons (x = 100%) yields only a small energy renormalization that does not produce an

additional blue shift, in contrast to polarization studied in Fig. 4.3.

4.4 Conclusion

We have performed unprecedented quantitative measurements of spectrally resolved

probe absorption in a GaAs multiple QW sample under a variety of excitation conditions.

Detailed comparison between quantitative experiments and theory shows that the absorptive

nonlinearities in αQW depend so sensitively on the many-body configuration that we can
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extract the maximum likelihood many-body excitation configuration with great confidence.

The analysis identifies the role of coherent polarization, exciton and electron-hole plasma

contributions. We find that carrier-polarization scattering dominates the nonlinear heavy-

hole 1s exciton line shape. The exciton populations are found to have little effect on the

nonlinear line shape compared with the effects of polarization and free carriers. In addition,

the theory matches spin-selective measurements, demonstrating the effects of phase-space

filling. For the short-time co-circular pump-probe configuration, pronounced transient gain

is observed with a strength controlled by the pump.

4.5 Transition to the study of QW system response to light statistics

The work in this chapter demonstrates that the QW system has a strong nonlinear

response, and that the probe absorption is sensitive to the many-body configurations. Our

theorist collaborators, Mack Kira and Stephan Koch, predict that this system has strong

enough nonlinearities to display quantum statistics-dependent nonlinear effects. Their the-

ory predicts that quantum-optical fluctuations of an excitation source can alter the optical

response. We explore their theory and our experimental work to realize their predictions in

the remaining chapters.



Chapter 5

Background on light statistics and predicted interaction with matter

This chapter introduces the quantum optics involved in the research discussed in the

remainder of this thesis. Our theorist collaborators have predicted that the quantum statis-

tics of a light field should influence the many-body interactions in a GaAs quantum well

structure. In this chapter, we review the quantum mechanical properties of the light field,

and then use this to explain the predictions of our theorist team.

5.1 Coherence of a classical field

In this section we use classical fields to introduce the concept of coherence. A classical

electromagnetic field in vacuum is a solution to the source-free and current-free Maxwell’s

wave equation [93]:

∇2E =
1

c2
∂2E

∂t2
, (5.1)

where 1
c2

= µ0ǫ0. A vector quantity solution for a planar monochromatic wave may be

written as:

E(r,k, t) = Eei(k·r−ωt)n̂ + E∗e−i(k·r−ωt)n̂, (5.2)

where E is the complex field amplitude, k is the direction of propagation of the field and n̂

is the polarization vector, ω = c |k|. This representation of the field allows comparison with

the quantized field, discussed in §5.2.1. A field may be a sum over many wave vectors.
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Coherence is a property of a wave that describes the correlation between its amplitudes.

In general terms, a physical process is typically defined as coherent if there exists a well-

defined, deterministic phase — in other words, if the phase is not subject to random noise.

For a light wave, coherence describes the correlation between the amplitudes of a wave

separated in time or space. There are two types of coherence for a light wave: spatial and

temporal. We are concerned with temporal coherence, where we are interested in the phase

relationship between fields at the same place that are separated in time, as opposed to the

phase relationship between fields at different locations across the beam profile.

5.1.1 First-order coherence

The degree to which a light wave is temporally coherent is quite complicated in general.

A first measure of the temporal coherence of a light source is the first-order coherence function

g(1)(τ) defined by:

g(1)(τ) ≡ 〈E∗(t)E(t− τ)〉
〈E∗(t)E(t)〉 , (5.3)

where E is the complex field amplitude in Eqn. 5.2. The denominator is simply the intensity

of the field I = 〈|E(t)|2〉. The symbol 〈· · · 〉 means averaging over an ensemble. For a light

source whose fluctuations are produced by ergodic random processes, the average over an

ensemble is equivalent to averaging over a long time interval T [100]:

〈E∗(t)E(t− τ)〉 = lim
T→∞

1

T

∫ T/2

−T/2

E∗(t)E(t− τ)dt. (5.4)

The quantity g(1)(τ) is called the first-order coherence function because it is based on the

properties of the first power of the electric field. This quantity might be measured by

interfering two beams using a Michelson interferometer to control the relative time delay τ

between two fields from the same light source, as shown in Fig. 5.1.

For a quasi-monochromatic field with a time-varying phase φ(t), the electric field is

E(t) = E0e
−iω0t+iφ(t). (5.5)
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Figure 5.1: A Michelson interferometer with adjustable relative delay τ between the optical path lengths
of the two beams, split by a beam splitter (BS). As the delay is scanned, the beams constructively and
destructively interfere on a photodetector (PD), producing ‘fringes.’ This measurement yields information
about the coherence properties of the light source.

Substitution of E(t) into Eqn. 5.3 yields the first-order coherence:

g(1)(τ) = e−iω0τ
〈

ei[φ(t−τ)−φ(t)]
〉

. (5.6)

From this we see that |g(1)(τ = 0)| = 1 for all fields. We observe that the real part of

this expression yields an oscillatory function, or ‘fringes,’ with periodicity 2π/ω0 and unity

amplitude if the field has a constant phase φ = φ0 for all times. However, if the phase is a

time-varying function, the phase relationship becomes weaker between the field at one time

and another, meaning that field amplitudes for two different times separated by τ correlate

less. A time-varying phase results in ei[φ(t−τ)−φ(t)] averaging to zero as the delay τ is increased

past the coherence time, leading to a decrease in the amplitude of the oscillatory function.

The coherence time must be finite for all light sources in practice because all fields have a

bandwidth broader than a δ-function.

The signal that is recorded on the photodetector (PD) in Fig. 5.1 for a single frequency

using a Michelson interferometer is:

IPD(τ) = I0(1 − cos(ω0τ)), (5.7)

where I0 is proportional to the intensity of the light source. For a spectral density, I(ω), of
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a given light source, the signal measured by the photodetector is the linear superposition of

the interference patterns in Eqn. 5.7 over all frequencies:

IPD(τ) =

∫ ∞

0

I(ω)(1 − cos(ωτ))dω. (5.8)

While the first term is simply proportional to the total intensity of the light source, the

second term may be identified as the cosine Fourier transform of the spectrum, which may

be reverse-transformed to reveal the power spectrum of the light source I(ω). In other

words, the measurement of the coherence length of the light simply gives information that

is available by recording the power spectrum! In experiments, a measurement of the power

spectrum is routine with a spectrometer device.

Figure 5.2: (a) The signal IPD(τ) read on a photodetector in a Michelson interferometer for varying delay
τ . The coherence time was chosen to be five times longer than the optical period. (b) The power spectrum
of the light source is the Fourier transform of IPD(τ). The inverse relationship between the widths of in the
time and frequency domains are depicted with arrows.

We illustrate the relationship between coherence time and bandwidth with a simple

example. The theoretical intensity measured by an interferometer for a quasi-monochromatic

beam (λ0= 800 nm, or ~ω0= 1.55 eV) while scanning the delay τ is illustrated in Fig. 5.2.

The measured signal is related to g(1)(τ) by

IPD(τ) = 1 −Re[g(1)(τ)]. (5.9)

In this example, the field has a bandwidth of ~∆ω= 0.15 eV. This bandwidth corresponds

to a coherence time τc = 1/∆ω= 28 fs, which is five times the optical period of 800 nm light.
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For time delays beyond τc, the amplitude of the fringes decreases to zero, corresponding to

a loss in first-order coherence between fields that are separated by more than the coherence

time. Thus, the broader the spectrum, the shorter the coherence time τc is measured.

Although the first-order coherence function is illustrative of the concept of coherence

measurement, it provides no more information than a measurement of the frequency spec-

trum of the light field. Since the first-order coherence does not yield new information about

the light source, we need a more sophisticated approach in quantifying the phase coherence.

5.1.2 Second-order coherence

The first-order coherence function says nothing about the statistical properties of the

light. That is, first-order coherence experiments are unable to distinguish between states of

light with identical spectral distributions but with different temporal intensity distributions.

The process for measuring the higher-order coherence of a light source originated with

an astronomy experiment, the Hanbury-Brown and Twiss experiment [101]. Hanbury-Brown

and Twiss were interested in determining the spatial coherence of light emitted from a star.

The researchers realized that a star of finite spatial extent emits an angular pattern of bright

and dark fringes that is related to the spatial coherence of the light emission from the star.

The visibility of these fringes as a function of angular spread between detectors then allowed

inference of the size of the star with high accuracy. They set up two detectors a variable

distance from each other, and measured the correlations in intensity fluctuations between

the detectors.

Extending this concept to the measurement of temporal coherence, a beam of light may

be split into two paths and intensity correlations on two separate photodetectors may be

monitored for varying time delay, as shown in Fig. 5.3. The second-order coherence function

of a light source is defined by:
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Figure 5.3: A temporal coherence measurement based on the Hanbury-Brown and Twiss experiment. The
intensity of the light source is recorded on two separate photodetectors, and a variable delay (typically
digital) allows a computer to correlate the intensities at two times in the same light source, yielding the
second-order coherence function.

g(2)(τ) ≡ 〈E∗(t)E∗(t− τ)E(t− τ)E(t)〉
〈E∗(t)E(t)〉 〈E∗(t− τ)E(t− τ)〉 (5.10)

=
〈I(t)I(t− τ)〉
〈I(t)〉 〈I(t− τ)〉 (5.11)

Because both terms in the denominator are integrated over a large time similar to Eqn. 5.4,

they are equivalent. For a light source with time-varying fluctuations around a constant

intensity I(t) = 〈I(t)〉 + ∆I(t), g(2)(τ) can be written as:

g(2)(τ) = 1 +
〈∆I(t)∆I(t− τ)〉

〈I(t)〉2
, (5.12)

where the second term is a measure of the correlation in intensity fluctuations between the

light source at two different times.

We gain insight about how g(2)(τ) can distinguish between light sources with different

temporal intensity distributions by calculating its value for two extreme cases of intensity

distributions: chaotic and coherent light sources.

An idealized electric field for a chaotic light source can be imagined to be waves emitted

from a group of atoms, each at a frequency ω0 but with a different independent time-varying

phase φk(t). The total electric field is [102]:

E(t) = Ee−iω0t
∑

k

eiφk(t), (5.13)
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where again, E is the complex field envelope. The chaotic light field has fluctuations in

intensity that are correlated for times within a coherence time τc. The correlations in the

intensity fluctuations between two short times τ lead to a positive second term in 5.12,

limiting to g(2)(τ = 0) = 2. As τ is increased beyond τc, the intensity fluctuations become

uncorrelated, and g(2)(τ ≫ τc) = 1. The second-order coherence function for Doppler-

broadened chaotic light is illustrated in Fig. 5.4, according to calculations in Ref. [102].
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Figure 5.4: Second-order coherence for classical chaotic and coherent light sources.

In contrast, a coherent light source can be written as Eqn. 5.5 with a time-varying

deterministic phase. Inserting this definition into Eqn. 5.10, we see that g(2)(τ) = 1.

Comparing this result with Eqn. 5.12, we find that 〈∆I(t)∆I(t− τ)〉 = 0, or that there are

no correlations in the intensity fluctuations for coherent light. We plot g(2)(τ) for coherent

light in Fig. 5.4 for comparison with g(2)(τ) for chaotic light. We notice that the quantities

are indistinguishable for long time delays.

The function g(2) has a different interpretation than g(1). Similar to the first-order

coherence, for coherent light g(2)(τ) = 1 for all τ . However, when there exist correlations be-

tween fluctuations at two nearby times, g(2) can be greater than 1. The intensity fluctuations

separated in time by more than τc no longer have correlations, leading to g(2)(τ) = 1. The

second-order coherence function g(2)(τ) can be seen to be a measure of how well intensity

fluctuations are correlated between different times.
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The correlations in the fluctuations for chaotic light causing g(2)(τ) > 1 are related to

an effect called photon bunching, which will be discussed in the next section. The observation

of bunching in photodetection events was a surprise to the researchers Hanbury-Brown and

Twiss, and their discovery helped in opening the field of quantum optics through their

intensity correlation measurements [103, 104]. Their measurements contradicted classical

theory and led scientists to consider in more detail the process of photon detection. We gain

more insight about the statistics of a light field if we treat the field quantum mechanically.

5.2 Statistics of the quantized electromagnetic field

5.2.1 Quantum-mechanical representation of the field

The quantum theory of light, including optical coherence, was developed originally by

Glauber [105]. In the theory, a photodetection event corresponds to the absorption of a

photon and the corresponding generation of an electron, which is measured via an electric

current. The classical field is transformed into a quantum mechanical representation:

Ê(r, t) = Ê+(r, t) + Ê−(r, t) =
∑

k

[εkUk(r)âk − εkU
∗
k
(r)â†

k
], (5.14)

εk =

√

~ωk

2V ǫ0
,

Uk(r) = eik·r−iωktn̂,

where εk is the vacuum-field amplitude, ωk = c |k|, V is the quantization volume, Uk(r)

is a plane wave with polarization direction n̂, and âk and â†
k

are the Bosonic annihilation

and creation operators, respectively, and the sum is over all wave vectors. This formulation

determines the quantum-electrodynamical properties of the light field. The positive part

and negative part of the field operator are Hermitian conjugates of each other, Ê+ = (Ê−)†.

The field representation is analogous to Eqn. 5.2, where E0 → εkâk and E∗
0 → εkâ

†
k
.

We consider only cases where the spatial variation of the field over the atomic system
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dimensions is negligible, or

λ

2π
=

1

|k| ≫ |ratom| . (5.15)

In this case, e±ik·r ≈ 1 ± ik · r, and we can approximate the exponential function in Eqn.

5.14 as unity to obtain the dipole approximation representation of the field:

Ê(r, t) ≈ Ê(t) = iεkn̂[âe−iωkt − â†eiωkt]. (5.16)

The annihilation and creation operation have the commutation property
[

â, â†
]

= 1. We

can use this representation of the electric field for calculations of the statistical properties of

light fields.

5.2.2 Density matrix

The density matrix is a tool for describing the statistical state of a system. For a

statistical mixture of states |ψj〉 each having probability Pj of occurring,

ρ̂ =
∑

j

Pj |ψj〉 〈ψj| . (5.17)

In a transformed basis, wavefunctions may be written as superposition states, of the form

Ψ = 1√
2
(ψa + ψb). This representation leads to a density matrix with off-diagonal elements

|ψa〉 〈ψb|. The density matrix is written more generally as:

ρ̂ =
∑

jk

Pjk |ψj〉 〈ψk| . (5.18)

Calculation of the expectation value of an operator Â involves taking the trace over

the density matrix:
〈

Â
〉

=
∑

j

Pj 〈ψj| Â |ψj〉 = [ρ̂Â]. (5.19)

5.2.3 Coherence properties of light sources

Knowledge of the density matrix for a particular state of light allows calculation of the

coherence functions and other quantities. Following the example of Eqns. 5.3 and 5.10 to
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compute the coherence functions by replacing the electric fields with the operators of Eqn.

5.16, the first-order coherence function g(1) is given by:

g(1)(τ) =
〈E−(t)E+(t− τ)〉
〈E−(t)E+(t)〉

=

〈

â†(t)â(t− τ)
〉

〈â†(t)â(t)〉

=
Tr[ρ̂â†(t)â(t− τ)]

Tr[ρ̂â†(t)â(t)]
, (5.20)

where the trace is taken in the last line following Eqn. 5.19. The second-order coherence

function g(2) is given by:

g(2)(τ) =
〈E−(t)E−(t− τ)E+(t)E+(t− τ)〉

〈E−(t)E+(t)〉2

=

〈

â†(t)â†(t− τ)â(t− τ)â(t)
〉

〈â†(t)â(t)〉2

=
Tr[ρ̂â†(t)â†(t− τ)â(t− τ)â(t)]

Tr[ρ̂â†(t)â(t)]2
. (5.21)

While we can now calculate the degree of coherence for many different light fields, we are

most concerned with the distinction in properties between coherent and thermal light states.

Other examples of states of the light field include squeezed, Fock, and Schrödinger cat states.

Although the coherence functions may be computed as a function of delay, for simplicity we

calculate the functions for τ = 0 for the purpose of comparing the properties of these two light

states. For these two extreme cases, it turns out that the result is time-delay independent.

The coherent state is the quantum-mechanical description of the classical field in Eqn.

5.2, as we will discuss in §5.2.6. The coherent state is an eigenstate of the annihilation

operator [105]:

â |α〉 = α |α〉 , (5.22)

where the eigenvalue α is a complex number. The coherent state can be written as a super-

position of Fock states:

|α〉 = e−|α|2/2

∞
∑

n=0

αn

√
n!

|n〉 . (5.23)
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The density matrix for a coherent state can then be written in the number state basis:

ρ̂coherent = |α〉 〈α| =
∞
∑

m,l=0

Cml |m〉 〈l|

=
∞
∑

m,l=0

e−|α|2
(

αm

√
m!

)(

αl

√
l!

)

|m〉 〈l| , (5.24)

where |α|2 can be identified with the average photon number n̄. The coherent density matrix

ρ̂coherent satisfies Tr[ρ̂2
coherent] = 1 and ρ̂2

coherent = ρ̂coherent. These are the criteria for a pure

ensemble, meaning that there exists a basis for representation of ρ̂ for which all Pj = 0 in

Eqn. 5.17 except one [45]. That basis of representation for the coherent density matrix is

simply the basis of the coherent state, |α〉.

Thermal light is electromagnetic radiation emitted by a hot body. The density matrix

for thermal light with some average number of photons n̄ is determined via Boltzmann’s law

to be a mixture of Fock states [49]:

ρ̂thermal =
∞
∑

n=0

Pn |n〉 〈n| =
1

1 + n̄

∞
∑

n=0

(

n̄

1 + n̄

)n

|n〉 〈n| . (5.25)

The density matrices for the coherent and thermal state may be inserted into Eqns. 5.20

and 5.21 to learn how the properties of these states differ. Substitution of these expressions

into Eqns. 5.20 and 5.21 yields for a coherent and thermal source:

g(1)(τ) =











1 coherent

1 thermal
(5.26)

g(2)(τ) =











1 coherent

2 thermal

It is interesting to make a comparison with the classical analysis in §5.1. While the first-

order coherence function cannot distinguish different statistical states of light, the second-

order coherence shows a distinction between coherent and thermal light. Furthermore, ther-

mal light can be identified as having similar intensity fluctuations as the phase-randomized

chaotic light in Eqn. 5.13 since they share the same value for g(2)(τ = 0).
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5.2.4 Photon number distributions

As a further exploration of the properties of thermal and coherent light, we calculate the

photon number probability distribution and the variance in photon number for both states.

The distribution expresses the probability of measuring n photons in a time window T much

shorter than the coherence time τc, or T ≪ τc = 1/∆ω, where ∆ω is the bandwidth of the

light source. The photon number probability distribution Pn can be calculated by projecting

a density matrix into the number state (Fock) basis by calculating the expectation value of

the projection operator |n〉 〈n|:

P thermal
n = Tr[ρ̂thermal |n〉 〈n|] (5.28)

= 〈n|Pn |n〉 =
1

1 + n̄

(

n̄

1 + n̄

)n

(5.29)

P coherent
n = Tr[ρ̂coherent |n〉 〈n|] (5.30)

= 〈n|Cnn |n〉 = e−n̄ n̄
n

n!
, (5.31)

where n̄ = 〈n〉. The coherent photon probability distribution is also known as the Poisson

distribution, which limits to a Gaussian function in the limit of large n̄.

The photon probability distributions are compared in Fig. 5.5 for the same average

number of photons n̄ in a given time window T . While the coherent photon distribution

peaks near n̄, the thermal distribution is highest at n = 0. This fact implies that one is

likely to measure the average number of photons n̄ in a time window for coherent light,

but is most likely to measure zero photons in the same time window for light with thermal

statistics. This property of thermal light is called ‘ photon bunching.’ This property refers

to the fact that a photons in a thermal light source tend to travel together, with large gaps

of time in between where no photons are found.

Thermal and coherent light differ also in their fluctuations in photon number,

〈

∆n2
〉

=
〈

(n̂− 〈n〉)2
〉

=
〈

n2
〉

− 〈n〉2 . (5.32)
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Figure 5.5: Comparison of photon number probability distributions for coherent and thermal light sources,
both with n̄ = 10.

For the coherent state, representation in the Fock basis allows simple calculation of this

quantity. We first calculate the expectation value of the number operator:

〈n̂〉 =
〈

â†â
〉

= |α|2, (5.33)

validating the previous assertion from Eqn. 5.24 that n̄ = |α|2. The other term in Eqn. 5.32

can be calculated in a similar fashion:

〈

n̂2
〉

=
〈

â†ââ†â
〉

= |α|2 + |α|4. (5.34)

Combining these results we find that the photon number variance 〈∆n2〉 = n̄. The standard

deviation for the fluctuations of the photon number above and below the mean is given by
√
n̄. Dividing this by n̄ reveals that the fractional fluctuations decrease as we increase the

photon number for coherent light as 1/
√
n̄.

For thermal light, it is not possible to write the state as an eigenstate of any operator

(and therefore as any superposition of pure states). Instead, we rely on the density matrix

(Eqn. 5.25) to compute the variance.

〈n̂〉 = Tr[ρ̂thermalâ
†â] = n̄ (5.35)

〈

n̂2
〉

= Tr[ρ̂thermalâ
†ââ†â] = n̄+ 2n̄2 (5.36)

∴

〈

∆n2
〉

=
〈

n̂2
〉

− 〈n̂〉2 = n̄+ n̄2 (5.37)
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This result shows that the fractional fluctuations of the photon number about the mean

does not decrease since with increasing n̄ because
√

〈∆n2〉/n̄ → 1 in the limit of large n̄.

We should thus expect thermal light to have more fluctuations than coherent light for any

average photon number n̄. Though there exist other incoherent sources of light including

Fock states, the distinct contrast that thermal light has to coherent light leads us to use the

terms ‘thermal statistics’ and ‘incoherent’ interchangeably in this thesis.

5.2.5 Singlet quantities

Another feature that distinguish the thermal to the coherent state is the expectation

values of the singlet quantities 〈a〉 and
〈

a†
〉

. For the thermal state, the singlet quantities

〈a〉 = 0 and
〈

a†
〉

= 0, which can easily be seen by using the thermal density matrix (Eqn.

5.25) with Eqn. 5.19. In contrast the expectation values of the singlet quantities for the

coherent state are 〈a〉 = α and
〈

a†
〉

= α∗. The singlet quantities and the second order

coherence function will be the quantities that distinguish our thermal source from a coherent

source in chapter 6.

5.2.6 Coherent state is the classical field

The coherent state is the quantum-mechanical state that reproduces the measurements

of the classical state described in §5.1. Since the coherent state is an eigenstate of the â, the

raising and lowering operators can be replaced by complex amplitudes according to

a→ α, a† → α∗. (5.38)

The expectation value of the electric field has the form

〈α| Ê(r, t) |α〉 = 2|α| ε√
V
sin(ωt− k · r), (5.39)

which can be identified as the classical field Eqn. 5.2 for E0 = |α| ε√
V

. In addition, the

fluctuations in the field can be shown to be the same as those for a vacuum state [106]. The
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fractional fluctuations in the field decrease as the photon number (∝ field intensity |E|2)

increases. The quantum theory of light is more fundamental than the classical theory, and it

follows that all states of light must have some quantum features (e.g., noise). Since coherent

light has a correspondence to the classical field and has the minimal field fluctuations, the

coherent state is the correct description for a classical field.

5.3 Phase-space representations of light fields

Phase-space offers useful visualization of the photon statistics of light fields. The

derivation of the quantized field (Eqn. 5.14) makes use of the canonical position-like and

momentum-like operators q̂ and p̂, where

q̂ = (â+ â†)/2 (5.40)

p̂ = (â− â†)/2i. (5.41)

These operators can be substituted into Eqn. 5.16 yielding the field operator in a new form:

Ê(t) = εkn̂[q̂ cos(ωt) − p̂ sin(ωt)]. (5.42)

It is evident that q̂ and p̂ are associated with field amplitudes oscillating out of phase with

each other by 90◦. These operators satisfy the commutation relation

[q̂, p̂] =
i

2
, (5.43)

which implies an uncertainty relation between these variables [45]:

〈

∆q̂2
〉 〈

∆p̂2
〉

≥ 1

16
. (5.44)

This relation leads to an uncertainty in the measured electric field amplitude and phase. A

convenient representation of the distribution of photons in a quantum state of light is in

q̂-p̂ space, as shown in Fig. 5.6. This representation is similar to but more thorough than

the photon number probability distribution since the photon number n = (q2 + p2)1/2. The
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phase of the field for single measurement is given by θ = tan−1(p/q). The spread of these

phases and amplitudes takes the form of a ‘fuzz-ball’ in phase space, with the center of the

ball around n̄ for the coherent state, and around zero for the thermal state, consistent with

Fig. 5.5. The q̂-p̂ allows an intuitive visualization of the statistics of amplitude and phase

for a given source of light.

Figure 5.6: Phase-space portraits in q̂-p̂ space. (a) The schematic for how amplitude n and phase θ of
a single measurement are plotted, resulting in a ‘fuzz-ball’ of uncertainty with widths ∆q and ∆p. The
distribution of measurements is shown for (b) a coherent state and (c) a thermal state.

We note that the thermal state distribution is centered in phase space at (q, p) =

(0, 0). The zero expectation values 〈q〉 = 〈p〉 = 0 are a consequence of the vanishing singlet

quantities 〈a〉 =
〈

a†
〉

= 0, as can be seen in Eqn. 5.40. The vanishing singlet operators help

us to visualize that the the photon number most likely to be measured is 0, even though

〈n〉 = n. This picture is consistent with the discussion of photon number distributions in

§5.2.4.

Furthermore, in the figure it can be seen that the thermal state does not have a well-

defined phase. In other words, it is equally likely to measure a field with any θ.

In contrast, the center position for the coherent distribution is 〈n〉 = n̄ = |α|2. We

identified |α|2 earlier as the average photon number for the coherent state. Thus, these phase

space representation provides a helpful means of visualizing the quantum state of light. Also,

the phase is well-defined for a coherent state within some spread. Note also that the states

in Fig. 5.6 are exaggerated for the purposes of illustration. In reality, a coherent state with
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large photon number n̄ has a comparatively small fuzzball with large displacement from the

origin.

The difference in quantum statistics between coherent and thermal light sources can

be described mathematically and measured experimentally. The theory of Kira and Koch

predicts that the quantum statistics of exciting light sources may have an effect on the

many-body interactions in semiconductor quantum wells.

5.4 Theoretical predictions concerning many-body interactions excited by

light having incoherent statistics

The Kira-Koch theory predicts that light statistics can influence the many-body dy-

namics in GaAs quantum wells at high excitation densities [98, 7, 94, 107]. The exploration

of the effects of light statistics on matter is called quantum-optical spectroscopy [94]. We

consider the chosen system, GaAs quantum wells, then we summarize the theoretical pre-

dictions.

5.4.1 Why excitons in GaAs quantum wells?

We are interested in observing quantum optical effects in a semiconductor system.

Quantum optics can be observed in systems that demonstrate a nonlinear response to an

electric field. We study excitons in a GaAs quantum-well (QW) system in an effort to realize

the predictions of the Kira-Koch theory.

The theory focuses on this system for the study of nonlinear effects because of several

properties of the system. First, the system demonstrates clear nonlinear responses to optical

excitation, as discovered in §4.3. This is because the wave functions of electrons in a semicon-

ductor are delocalized throughout the crystal since they are eigenfunctions of momentum,

as compared with the localized wave functions of atoms. The delocalization means that

the wavefunctions for multiple electrons overlap, which leads to strong collective effects and

many-body interactions compared with the few-body interactions in atoms. The observable
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nonlinear responses, including excitation-induced dephasing and excitation-induced shifting,

are discussed in §2.10.1 and in our recent publication [108].

The material GaAs is a direct-gap material, which means that it is possible to induce

optical interband transitions of electrons from the maximum of the valence band to the

minimum of the conduction band without any change in crystal momentum, as discussed

in Chapter 2. A direct-gap material thus allows direct coupling between the light-field and

electronic transitions, including excitons.

Excitons, delocalized bosons in the GaAs lattice, are the spectral feature we use to

monitor the nonlinearities in the QW system. Excitons in QWs have a large oscillator

strength and a lifetime of around 100 ps (which is long compared to optical pulse durations).

The Kira-Koch theory predicts that true incoherent optical excitation can create a quantum

degenerate state of low-momentum exciton states, analogous to Bose-Einstein condensation.

This prediction takes advantage of the fact that excitons have center-of-mass coordinate

momentum eigenfunctions. A QW also suppresses polariton effects, which can complicate

the interpretation of observed dynamics [50].

Quantum-optical effects have been observed in atomic systems. Successful observa-

tion of Rabi oscillations [20], collapse and revival of atomic inversion [21], and single-atom

nonlinearities [22] demonstrate quantum-optics for cavity-atom systems. Although these ex-

periments typically involve few photons, the cavity enhances the interaction with a small

number of atoms so that nonlinear effects are observed. We search for quantum-optical

effects in a more complicated system where there are many (> 1010) states. To observe

nonlinearities, we must excite the system with an intense light source. We explore Kira

and Koch’s predictions concerning the dependence on quantum statistics for intense optical

excitation of GaAs QWs in the next sections.
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5.4.2 Semiconductor Bloch equations

When a QW system is optically excited, the light field creates a macroscopic polariza-

tion in the system. Maxwell’s equation describes the coupling of the classical electromagnetic

field to the material’s response [98]:

[

∇2 − n2

c2
∂2

∂t2

]

E = µ0
∂2

∂t2
P, (5.45)

where E is the electromagnetic field, µ0 is the magnetic susceptibility, n is the nonresonant

index of refraction of the material, and P is the macroscopic resonant polarization response

of the material.

The polarization P is the sum of all transition amplitudes between the eigenstates

of the system. In crystalline materials, this sum may be expressed in the Bloch basis,

P =
∑

k
dcvPk + c.c., where Pk is the polarization amplitude (interband coherence), dcv

is the optical interband dipole matrix element between the conduction and valence bands,

and k is the crystal momentum of the charge carriers. By including all optically induced

interband transitions and the Coulomb interaction between carriers, the semiconductor Bloch

equations (SBEs) can be derived. These equations couple the polarization amplitude Pk to

the occupation probabilities fa
k

for the electron (a = e) and hole (a = h) states. The SBEs

are [44]:

∂

∂t
Pk = −i(ǫe

k
(t) + ǫh

k
(t))Pk − i(f e

k
(t) + fh

k
(t) − 1)ΩR

k
+
∂

∂t
Pk|scatt

∂

∂t
f e
k

= −2Im(ΩR
k
P ∗

k
) +

∂

∂t
f e
k
|scatt

∂

∂t
fh
k

= −2Im(ΩR
k
P ∗

k
) +

∂

∂t
fh
k
|scatt. (5.46)

Here ΩR
k

= dcvE(t) +
∑

k 6=k′ V|k−k′|Pk′(t) is the renormalized Rabi energy, which includes

the fact that the system does not react to the applied field alone but the effective field

which is a combination of the applied field with the dipole field of all generated electron-

hole excitations. The renormalized energies are ǫa
k
(t) = Ea

k −∑
k 6=k′ V|k−k′|fk′(t), where Ea

k
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are the electron and hole energies given by the band structure of the unexcited material.

Renormalization of the band structure and fields is done in the Hartree-Fock approximation,

in which the nonlinear equations treat each particle as if it is subjected to the mean field

created by all other particles.

The equations also consider interactions beyond the Hartree-Fock approximation, in

which multiple particles interact with each other. The final term represents all the corre-

lations due to scattering, which include exciton formation, dephasing of the polarization,

screening of the interaction potential, relaxation of the carrier distributions, and scattering

events between carriers.

These equations provide the basis for most of the community’s understanding of the

optical properties of semiconductors [44]. The next few sections explore the predictions of

the SBEs for coherent and incoherent excitation of semiconductor QWs.

5.4.3 Coherent on-resonance excitation

Figure 5.7: Quantum wire (1D) calculation of on-resonance excitation dynamics. (a) A short pulse gener-

ates a carrier density and polarization |P |2. (b) The polarization decays, generating an exciton population.
Most of the excitons are created in the ground 1s state. Figure from [7].

The absorption, transmission, and reflection of a resonant classical electromagnetic field

by a material are completely determined by the complex-valued optical polarization of the

material. The polarization, a coherent quantity, cannot be described by a thermodynamic
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distribution function, where the temperature and chemical potential determine the occupa-

tion probabilities of the allowed states. An optical pulse generates a macroscopic polarization

in the material as well as promotes electrons from the valence band to the conduction band,

as we saw in §2.6. After the generation of a polarization by an optical pulse, microscopic

scattering interactions between the polarization and the generated carriers lead to the decay

of the polarization resulting the formation of the 1s exciton population, as illustrated in

Fig. 5.7a. Pure exciton populations, created indirectly via the decay of polarization, are

considered incoherent quantities since they are not subject to phase-destroying processes.

5.4.4 Radiative recombination of carriers and excitons

Figure 5.8: (a) Computed 1s exciton and (b) free carrier distributions in center-of-mass k-space for three
times after coherent resonant excitation. The absence of excitons in the low-momentum states is due to
radiative recombination. Figure from [7].

For on-resonance excitation, the polarization scatters via Coulomb interactions and

phonons, which results in exciton populations. The excitons that are within the light cone

(low momentum states – described in §2.4) may recombine, radiating a photon. These

“bright” states depopulate by spontaneous emission of photons, leaving behind higher-

momentum “dark” states that are unable to couple with the light field (and thus cannot

produce light through radiative recombination – hence the terms “bright” and “dark”). The

system dynamics illustrated in Fig. 5.8a show that the bright states deplete rapidly via ra-
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diatively recombination while the higher-momentum dark exciton states exhibit a slow decay.

These excitons eventually decay to bright states via inelastic collisions, where they are then

available to recombine radiatively. At any moment after resonant classical excitation, less

than 5% of the excitons are found in the low-momentum states because of the fast radiative

recombination rates for excitons. Excitons recombine rapidly because the wave functions for

the electron and hole are spatially nearby.

In contrast, free electrons and holes, shown in Fig. 5.8b, are less likely to recombine

because their wave functions are spread throughout the crystal. Additionally, an electron

with arbitrary momentum can recombine with a hole with similar momentum, leading to a

thermal distribution in momentum-space. Radiative recombination leads to slow (nanosec-

ond) changes in their populations. This difference in the radiative recombination between

excitons and free carriers highlights that excitons have non-thermal distributions.

5.4.5 Impact of quantum light statistics on matter

The Kira-Koch theory predicts that quantum-statistically incoherent (thermal photon

statistics) excitation can result in direct conversion of photons into a low-momentum exciton

population without the production of a polarization [94, 107]. To motivate this theory, we

discuss the relation between incoherent excitation and spontaneous emission.

For a classical excitation, the resulting polarization converts into an exciton population

via scattering. The motivation for the research described in this thesis arose from considering

the possibility of bypassing the polarization to directly convert photons into excitons, which

is the inverse process of spontaneous emission. Spontaneous emission from recombination of

excitons results in the emission of light with incoherent light statistics, i.e. g(2) > 1.

While a classical electromagnetic field must generate a polarization that decays into an

incoherent population, Kira and Koch hypothesize that the absorption of light with incoher-

ent quantum statistics directly creates incoherent exciton populations without generating a

polarization. This can be understood intuitively by realizing that the photons emitted from
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spontaneous emission lack temporal phase coherence. It follows that photons lack phase

coherence might generate exciton states that oscillate out of phase with one another, i.e.,

have no macroscopic polarization. The creation of a large number of excitons in the bright

states (within the light cone) would be considered a quantum-degenerate distribution. It

is predicted that such a highly singular state would modify the many-body interactions for

similar densities as a classically-excited system.

5.4.6 Quantum-optical spectroscopy

Quantum-optical spectroscopy is the exploration of the nonlinear response of a system

given different quantum statistics of the excitation source [94, 107]. We have explored the

many-body dynamics of a system under resonant classical excitation: a coherent polarization

is generated which is converted into an exciton population that is broadly-distributed in

momentum space with the low-momentum exciton states rapidly decaying due to radiative

recombination.

Kira and Koch predict that the quantum-statistical properties of exciton states are

governed by that of the exciting light source, leading to nontrivial modifications in the

nonlinearities compared with a classical coherent source of the same photon density. Their

theory predicts that for an incoherent (thermal) light source creating the same excitation

density as a coherent source, the many-body effects are modified.

The essential effects predicted for incoherent excitation are long-range order, anomalous

reduction of Coulomb and phonon scattering, and enhanced and directional photolumines-

cence (PL) emission, all compared with coherent excitation of the same density.

The qualitative differences between the predicted response of the QW excitons gener-

ated by coherent versus thermal statistics are illustrated in Fig. 5.9. This calculation was

performed for a 1D quantum wire (due to computation costs), which scales to two dimensions

without loss in generality. We focus here on the optically active excitons, or bright excitons

(within the light cone). In Fig. 5.9a, for a coherent excitation, the bright exciton population
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Figure 5.9: Comparison of excitation dynamics resulting from a pulse with coherent vs. incoherent statis-
tics. (a) Coherent excitation; the optical excitation pulse (dashed line, scaled) is shown with the generated
polarization (shaded area, scaled) and the bright 1s exciton population (solid line). (b) Incoherent excitation;
the incoherent optical pulse (dashed line, scaled) is shown with the generated density of bright 1s exciton
populations (solid line). Note the dramatically different scale for the density compared with the coherent
excitation, and that no polarization is generated. (c) The generated exciton population in momentum space
for coherent excitation (solid line, multiplied by 5) and incoherent excitation (shaded area) 11 ps after optical
pulse maximum. Figure from [7].

rises with the decay of the generated polarization. In contrast, an excitation with thermal

light statistics gives rise to a large (almost 50 times the density) bright exciton population

without generating any polarization, as seen in Fig. 5.9b. Lastly, the figure compares the 1s

exciton distributions after excitation with a thermal and coherent source. For the thermal

excitation, a degenerate population of bright exciton states is created. This is in contrast

to the absence of bright exciton states with a broad momentum distribution generated by a

coherent excitation.

While the theoretical details may be found in [7], the QW response to thermal excita-

tion is calculated through the SBEs (Eqns. 5.46) and by taking into account the incoherent
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nature of thermal statistics.

The SBEs predict that for an incoherent light source, the polarization is suppressed.

We learned in chapter 4 that polarization-carrier scattering is the main cause of shifting

and broadening of the nonlinear 1s exciton lineshape. It follows from the SBEs that a

suppressed polarization results in a decrease in the nonlinear broadening, as illustrated in

Fig. 5.10. The half-width at half maximum (HWHM) broadening n this figure is read as

a modification to the linear linewidth. The coherent excitation predicted is in agreement

with the data presented in chapter 4. The thermal excitation in the nonlinear regime is an

experimental goal that we discuss in next chapters.

Figure 5.10: Theoretical prediction of the excitation-induced dephasing (EID) half-width at half maximum
(HWHM) in addition to the linear 1s resonance width (≈ 0.75 meV) for coherent vs. thermal excitation.
Thermal excitation is predicted to suppress scattering compared with coherent excitation for similar carrier
excitation levels. Suppressed scattering leads to lower dephasing rates.

5.4.7 Jaynes-Cummings model

The theory of quantum-optical spectroscopy describes the coupling of a light field

with the material response in a QW. The SBEs involve summing over many wave vectors

k and including correlations between single- and double-particle quantities [7]. To gain

insight about the physics of excitation with thermal light statistics, we perform a simplified
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calculation using a Jaynes–Cummings model which does not include k-dependence or many-

body correlations. However, the key result of the Kira-Koch theory is qualitatively predicted,

namely that a thermal excitation source produces a population without polarization. The

predicted effects including the suppression of scattering and long-range ordering in the full

microscopic calculation can be attributed to the anomalous reduction in the polarization.

In this model, we consider two-level system interacting with a single quantized mode

of the radiation field. Analogous to an atom, the ground and excited states of the two-level

system describe the exciton quasiparticle and its absence. Ground state means no exciton;

excited state means we have an exciton in the 1s state.

We begin by defining the Hamiltonian describing a two-level system interacting with

a light field:

Ĥ = ĤA + ĤF + ĤI

=
1

2
~ω0σ̂3 + ~ωâ†â− g(âσ̂+ + â†σ̂−). (5.47)

The first term ĤA is the energy of the atomic state, the second term ĤF is the energy in

the field, and the third term ĤI represents the interaction between atom and photon for

this 2-level system. The operator σ̂3 is the energy operator on the atomic state, σ̂+ and σ̂−

are the transition operators acting on the atomic state, and â and â† as annihilation and

creation operators of the photon. The transition operators σ̂+ and σ̂− have a representation

in the basis of the atomic states {|g〉 , |e〉}:

σ̂+ = |e〉 〈g| =







0 1

0 0






, (5.48)

σ̂− = |g〉 〈e| =







0 0

1 0






, (5.49)

and have the action σ̂+ |g〉 = |e〉 and σ̂− |e〉 = |g〉. The inversion operator σ̂3 can be similarly
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written in the atomic state basis as:

σ̂3 = |e〉 〈e| − |g〉 〈g| =







−1 0

0 1






. (5.50)

This operator assigns an energy to a given atomic state. In this calculation, zero energy is

chosen to be halfway between the ground and excited states, such that HA |g〉 = −1
2
~ω0 and

HA |e〉 = +1
2
~ω0.

The atomic state operators can be identified as Pauli matrices obeying the commutation

properties:

[σ̂+, σ̂−] = σ̂3

[σ̂3, σ̂+] = 2σ̂+

[σ̂3, σ̂−] = −2σ̂−. (5.51)

The field operators operate on the Fock state |n〉:

â |n〉 =
√
n |n− 1〉 ,

â† |n〉 =
√
n+ 1 |n+ 1〉 , (5.52)

and have the commutation properties:

[

â, â†
]

= 1,

[â, â] =
[

â†, â†
]

= 0. (5.53)

The interaction term ĤI acts in the atom–field basis {|e, n〉 , |g, n+ 1〉}. Here the first

basis state is an atom in the excited state, with n photons in the field; the second state is an

atom in the ground state, with n + 1 photons in the field. We choose this basis is because

HI couples the two states together.

We time evolve the Hamiltonian in the Heisenberg picture to find the time evolution

of the atomic operators:

i~
d

dt
Â =

[

Â, Ĥ
]

. (5.54)
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Using the evolution equation with Eqn. 5.47 yields

i~
d

dt
σ̂− = −~ω0σ̂− + gσ̂3â

i~
d

dt
σ̂+ = ~ω0σ̂+ − gσ̂3â. (5.55)

The time dynamics of the exciton states can be calculated through the density matrix

for the atomic states, which is the same as Eqn. 2.22:

ρ̂Atom =
∑

j,k=e,g

|j〉 〈k| =







ρgg ρge

ρeg ρee






. (5.56)

In the semiconductor language, ρee corresponds to a pure population of excitons, whereas

ρgg is the nonexistence of excitons. The off-diagonal elements ρge and ρeg correspond to the

excitonic polarization (through Eqn. 2.33).

We wish to find the time dependence of ρee and ρeg in response to different quantized

radiation fields. In other words, we would like to know the time evolution of the density

matrix of the atomic states.

The density matrix at time zero (t = 0) can be written as a product of the field density

matrix ρ̂F and atomic density matrix ρ̂A because they are uncoupled:

ρ̂(0) = ρ̂F (0) ⊗ ρ̂A(0) (5.57)

The dynamics of this density matrix for t > 0 is governed by the interaction part of the

Hamiltonian ĤI in Eqn. (5.47). The terms ĤA and ĤF only contribute to an overall global

phase, which does not affect the physics.

The evolution of the system is given by [45]:

∂ρ̂

∂t
= − i

~

[

ĤI , ρ̂
]

, (5.58)

which has the solution

ρ̂(t) = ÛI(t)ρ̂(0)Û †
I (t), (5.59)
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where the time evolution operator (with the interaction Hamiltonian) is

ÛI(t) = e−iĤI t/~. (5.60)

The matrix representation of the time evolution operator in the {|e, n〉 , |g, n+ 1〉} basis is

ÛI(t) =







C(t) S
′

(t)

S(t) C
′

(t)






(5.61)

where

Ĉ(t) = cos(g
′
√
ââ†t)

Ŝ(t) = −iâ† sin(g
′√

ââ†t)√
ââ†

Ĉ
′

(t) = cos(g
′
√
â†ât)

Ŝ
′

(t) = −iâ sin(g
′√

â†ât)√
â†â

g
′

= g/~

(5.62)

The C and S functions are operators with t as a parameter.

Assuming that we begin in the atomic ground state (i.e. no excitons), ρ̂A(0) = |g〉 〈g|,

the time evolution of the total density matrix (using Eqns. (5.61), (5.62), and (5.59)) is:

ρ̂(t) =







−Ŝ ′

(t)ρ̂F (0)Ŝ(t) Ŝ
′

(t)ρ̂F (0)Ĉ
′

(t)

−Ĉ ′

(t)ρ̂F (0)Ŝ(t) Ĉ
′

(t)ρ̂F (0)Ĉ
′

(t)






. (5.63)

We perform a partial trace over the field states to obtain the reduced density operator of

the atom:

ρ̂A
jk(t) =

∞
∑

n=0

〈j, n| ρ̂(t) |k, n〉 , (5.64)

where the summation is over the field states and j, k = e, g. Now we are in a good position

to see how different photon statistics affects the off-diagonal element ρeg and the diagonal

element ρee of the density matrix.

We evaluate the result for thermal photon statistics first, because it is mathematically sim-

pler. The density matrix for thermal light is diagonal in the Fock basis and can be expressed

as:
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ρ̂thermal =
∞
∑

n=0

Pn |n〉 〈n| =
1

1 + n̄

∞
∑

n=0

(

n̄

1 + n̄

)n

|n〉 〈n| . (5.65)

We may find the time evolution of the atomic density matrix components by using

Eqns. (5.64) and (5.62)-(5.63). The matrix elements evaluate to

ρee =
∞
∑

n,m=0

sin(g
′

mt)

m

sin(g
′

(n+ 1)t)

n+ 1
〈e, n| âPm |m〉 〈m| â† |e, n〉

=
∞
∑

n=0

sin2(g
′

nt)

n2
(n+ 1)Pn (5.66)

ρgg =
∞
∑

n,m=0

cos(g
′

mt) 〈e, n| âPm |m〉 〈m| cos(g′

mt) |g, n〉

=
∞
∑

n=0

Pncos
2(g

′

nt) (5.67)

ρge =
∞
∑

n,m=0

〈g, n| cos(g′

mt)Pm |m〉 〈m| (−i)sin(g
′

(n+ 1)t)

n+ 1
â† |e, n〉

=
∞
∑

n,m=0

cos(g
′

mt)Pmδm,n(−i)sin(g
′

(n+ 1)t)

n+ 1
δm,n+1

= 0 (5.68)

ρeg =
∞
∑

n,m=0

〈e, n| (−i)sin(g
′

mt)

m
âPm |m〉 〈m| cos(g′

nt) |g, n〉

=
∞
∑

n,m=0

(−i)sin(g
′

mt)

m
Pmδn+1,mcos(g

′

nt)δn,m

= 0 (5.69)

This analysis reveals that excitation of a two-level system using quantum statistics

generates population the polarization elements ρeg = ρge = 0, consistent with the predictions

from the SBEs. The population exhibits nontrivial flopping behavior where the population

is periodically inverted. For certain thermal photon distributions, the system population

may undergo collapse and revivals [109].
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In contrast, the density matrix for a coherent state is

ρ̂coherent =
∞
∑

m,l=0

Cml |m〉 〈l| =
∞
∑

m,l=0

e|α|
2

(

αm

√
m

)(

αl

√
l

)

|m〉 〈l| . (5.70)

Evaluation of the time-evolution of the density matrix in a similar fashion yields that the po-

larization matrix elements ρeg and ρge as well as the population matrix elements ρee and ρgg

are non-zero in general (not particularly illuminating, but nonzero). This means that coher-

ent light generates population and polarization for a two-level system. This result matches

qualitatively the theoretical predictions of §5.4.6 because the polarization is suppressed for

thermal excitation.

5.5 Summary: thermal vs. coherent light statistics

We saw in chapter 4 that polarization-carrier scattering dominates the homogeneous

linewidth in excitation-induced dephasing. A true thermal source would generate a popula-

tion of excitons with a vanishing polarization. This excitation would result in the suppression

of the scattering, leading to a narrower excitonic linewidth compared with a coherent exci-

tation of the same density.

Summarizing the requirements for a thermal source, we require that the thermal

source have vanishing singlet quantities 〈â〉 =
〈

â†
〉

= 0 and g(2) = 〈n̂2〉 / 〈n̂〉2 = 2. In

comparison, a coherent source has nonvanishing singlet quantities 〈â〉 =
〈

â†
〉

= α, and

g(2) = 〈n̂2〉 / 〈n̂〉2 = 1. For both coherent and thermal statistics, we have a nonvanishing

photon number expectation value 〈n〉 =
〈

â†â
〉

. These are the criteria we use to distinguish

thermal from coherent photon statistics.

As we will see in the next chapter, the source we choose to study the QW response to a

thermal excitation is not actually a thermal source but an ensemble of coherent pulses. The

ensemble of these pulses, however, mimics thermal statistics when an averaging technique is

implemented. Thus, we expect that the analysis of this chapter has qualitative predictive

power for the ensemble-averaging techniques described in the next chapter.



Chapter 6

Toward a thermal source

The previous chapter explained the theoretical prediction that, given a sufficiently

intense quantum-statistically incoherent light source, the many-body effects in a quantum-

well (QW) system should be modified compared with a coherent source of the same photon

density. The demonstration of incoherent light statistics affecting the system response is a

first step in the experimental realization of quantum-optical spectroscopy [94]. We identified

in §2.10.2 that the density necessary for saturating the QW system (Mott density) is around

1011 photons/cm2. To generate these densities in our GaAs 10-QW sample, the photon

energy of the source should have a photon density of at least 1012 photons/cm2 within the

exciton absorption linewidth of approximately 1 meV at a photon energy of 1.55 eV (800

nm), corresponding to the 1s exciton energy, E1s. In addition, this photon density must

exist within the time window of the exciton lifetime, T1 = 100 ps. In practice, the photon

density must be about two orders of magnitude higher – approximately 1014 photons/cm2

because of reflection losses at dielectric interfaces.

In an effort to achieve a source that satisfies these parameters, we explored different

possibilities and ultimately arrived at a pulse-shaping technique as a way to mimic incoherent

photon statistics. We discuss some early efforts to achieve a light source with incoherent

quantum statistics. Once we rule these options out because of their low optical intensities,

we explain the spectral-phase randomization of femtosecond pulses as a means for exploring

the quantum-optical response of our system.
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6.1 Early efforts for a thermal light source

Since the goal for performing quantum-optical spectroscopy entails generating a source

with thermal statistics, we first considered sources of light that are commercially available.

Namely, we considered constant-intensity sources: incandescent bulbs, light-emitting diodes

(LEDs), and a below-threshold diode laser. We also designed a cavity-dumping experiment

to produce pulses of incoherent light. However, all of the attempts described in this section

do not produce enough intensity to induce a strong nonlinear response in the QW system.

6.1.1 Incandescent bulbs

An incandescent light bulb is a simple device with thermal quantum statistics. The

bulb, like the sun, emits blackbody radiation depending on temperature. Planck’s law for

the frequency dependence of the radiation intensity of a black body object at temperature

T is: [110]

I(ν, T ) =
2hν3

c2
1

ehν/kBT − 1
, (6.1)

where kB is Boltzmann’s constant, c is the speed of light, and h is Planck’s constant. The

intensity is in units of power per unit area of emitting surface, per unit solid angle, per

unit frequency. We convert the units from Eqn. 6.1 to find the relationship between photon

density per second within a 1 meV bandwidth and photon energy. This relationship is plotted

in Fig. 6.1 for three radiating temperatures, assuming that the entire emitting surface can

be imaged onto a two-dimensional spot. The intensity at a given wavelength increases with

the temperature. Thus it is desirable to have a very hot source to maximize the intensity

output at E1s = 1.55 eV. The light source could be spectrally narrowed by use of interference

filters to achieve the desirable spectrum.

The brightness (or radiance) theorem in geometrical optics states that the intensity of

an image formed by any passive optical system cannot exceed that of the light-emitting object

[110]. Thus, the photon densities plotted from the Planck equation 6.1 are upper bounds
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Figure 6.1: Photon densities per second within a 1 meV bandwidth for blackbody radiation at a few
temperatures. The intensity at 1.55 eV increases with blackbody temperature.

for the photon density that may be achieved by focusing a thermal blackbody source. Even

though there are ≈ 1011 photons arriving in a second from a blackbody source, the photon

density within a time window of the lifetime of excitons (T1 = 100 ps) is much smaller than

the density required for creating nonlinearities in the QW system. The maximum photon

density in a 1 meV bandwidth emitted from a hot blackbody such as a halogen bulb (100

W, 5000 K) within 100 ps is <10 photons/cm2, more than 10 orders of magnitude below

the required photon density for generating many-body configurations in GaAs QWs. To

achieve photon densities of 1012 photons/cm2 in a 1 meV bandwidth about E1s =1.55 eV

and within a 100 ps time window would require temperatures of over 1015 K! Even imaging

our sun (T = 5800 K) would not produce photon densities higher than an incandescent bulb

because of the limits on focusing indicated by the brightness theorem. As a reality check, we

calculate the photon density from the sun. With a luminosity of 4×1026 W and a diameter

of 1×109 m, the sun’s intensity of 5×1012W/cm2 corresponds to less than 1000 photons/cm2

within a 100 ps time window.

Light from a thermal source is unfeasible for quantum-optical spectroscopy. Thermal

events generated from electron-positron or hadron colliders (100 GeV of thermal energy
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corresponds to 1015 K) may produce the intense thermal light necessary for generating many-

body configurations in GaAs QWs. However, since imaging and filtering light from a collider

is experimentally unfeasible, we consider other potential sources of bright incoherent light.

6.1.2 Light-emitting diodes

Since no realistically attainable true thermal blackbody radiation source exists for

generating many-body configurations, we considered light-emitting diodes (LEDs). LEDs

are p–n diodes that when forward biased cause electron hole recombination that emits light

(spontaneous emission) corresponding to the band gap energy of the semiconductor [23].

The radiated light lacks temporal coherence since the recombination events are independent

processes. An LED can emit at a narrower bandwidth than a blackbody source, leading to

brighter emission within a small frequency window. These advantages make the LED a good

candidate for generating many-body configurations in GaAs quantum wells.

We perform a calculation to determine the feasibility of LEDs for quantum-optical

spectroscopy. The highest intensity LEDs available on the market are superluminescent

LEDs. These devices can emit up to 500 mW from an area of 0.001 cm2 (typically 1000

µm× 100 µm). This corresponds to a near-field intensity of 500 W/cm2. Appealing to the

brightness theorem again, we find that it is not possible to generate a photon density of

more than 2 × 1011 photons/cm2 within the time window of the exciton lifetime, T1 = 100

ps. However, this calculation does not consider that the bandwidth of LEDs is typically

20-100 meV. Since the light needs to be within a 1 meV bandwidth, the relevant photon

density is at least an order of magnitude lower. Additionally, superluminescent LEDs may

also be partially coherent, which could complicate the experiment. While LEDs remain a

potential option for the future, the best-available LEDs now on the market are not powerful

enough to generate the required densities to observe nonlinear effects. We also consider a

similar device for our studies, a laser diode.



110

6.1.3 Below-threshold diode laser

A laser diode, like the LED, uses a forward biased p − n junction to inject electrons

and holes to generate light [23]. However, the laser structure has a reflective optical cavity

that guides emitted photons back into the junction to induce stimulated emission. In the

case that there are enough electrons and holes injected at the junction, the optical feedback

will induce enough stimulated emission to cause lasing, i.e., condensation of photons into a

coherent state [92]. However, for lower electrical currents into the diode, the optical feedback

has the effect of amplifying the spontaneous emission without lasing. The light emitted from

a laser cavity before the onset of lasing is incoherent, which we desire for our experiments.
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Figure 6.2: Diode laser output spectra for a range of carrier-injection currents. The peaks in the spectra
are evidence of lasing above a current threshold of 55 mA.

We use a wavelength-tunable Toptica DL100 Diode Laser System. While designed to

lase with a power of up to 220 mW with a bandwidth of ∆E = 2 meV around 1.5 eV, we coat

the output coupler with an anti-reflection layer that suppresses lasing. We vary the carrier-

injection current up to the threshold of lasing and measure the light emitted from the cavity.

The amplified spontaneous emission has a characteristic of a broader bandwidth, and the
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onset of lasing is marked by a pronounced peak in the optical spectrum. The results of the

measurements are shown in Fig. 6.2 at around 1.515 eV for a proof-of-principle experiment.

The feedback grating in the laser makes the center wavelength in principle tunable to the

HH 1s-resonance at E1s = 1.55 eV. The laser diode outputs 3.3 mW power within a 6.6 meV

bandwidth for a current of 55 mA that amplifies the spontaneous emission light without

lasing. The area of emission from the diode is 75 µm × 100 µm. Using the brightness

theorem, these facts means that the maximal intensity of 440 kW/cm2 corresponds to a

photon density of 1.8 ×1010 photons/cm2 within the time window of the exciton lifetime

T1 = 100 ps. Filtering the bandwidth to 1 meV to match E1s also makes the photon density

smaller by about a factor of 2. This density, while quite high, proves to be inadequate for

generating many-body configurations in GaAs QWs. Again, this technique also may have

partial coherence, similar to LEDs. We next consider the related system of another laser

cavity below lasing threshold.

6.1.4 Cavity dumping

Realizing that no incoherent light sources are available with sufficient intensity to

produce many-body effects in our GaAs QW sample, we attempt to dynamically amplify

spontaneous emission in a Ti:sapphire laser cavity.

We follow a technique for generating pulses from a laser cavity called cavity dumping

[111, 112]. While cavity dumping was originally designed to output high intensity pulses of

laser light, the same geometry can be used to output amplified spontaneous emission (ASE).

A laser operates by amplifying spontaneous emission on successive round trips of light

in a cavity until a critical density of photons is achieved that marks the onset of lasing, when

the gain in the cavity exceeds or equals the losses [92]. Before lasing, the ASE is incoherent

[113, 114], and matches the photon statistics of the thermal source discussed in 5. With

the onset of lasing, the source transitions into coherent photon statistics. We attempted to

extract the photons from a pumped cavity just before the onset of lasing to achieve a high
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intensity source with incoherent photon statistics.

Our experiment involves inserting an acousto-optic modulator (AOM) into a cavity

that was aligned for lasing and another AOM in the path of the beam that optically pumps

the gain medium, as shown in Fig. 6.3. The AOMs were both Isomet 1205C, each with

a switching time of 12 ns. The gain medium is ti:sapphire, which lases near the relevant

photon energy for the 1s heavy-hole exciton resonance of 1.55 eV. The cavity focuses the

spontaneously emitted light from the gain crystal back into the gain crystal from both sides.

The cavity length of 1.97 m corresponds to a repetition rate of frep = 76 MHz, or a roundtrip

time of 13 ns. Thus, the switching time of the AOMs is as fast as the roundtrip time in the

cavity, meaning that it is possible to manipulate the light on the time scale of an arbitrary

number of round trips.

Figure 6.3: Schematic of setup used for cavity-dump experiment. OC, output coupler; AOM, acousto-optic
modulators; Xtal, the Ti:sapphire gain crystal. A 5 watt Verdi laser pumps the gain crystal. The dumped
light is collected with a fiber.

The AOMs are synchronized by means of a Stanford Research Systems digital delay

generator (DG645) [?]. The “pump and dump” schematic is illustrated in Fig. 6.4. In this

procedure, the pump AOM is turned on at a time t1, allowing the 2.33 eV (532 nm) pump

laser to excite the gain medium. The excited gain medium initiates the process building

up photons in the cavity as spontaneously emitted photons make round trips in the optical

cavity. Before the onset of lasing, the intracavity AOM is turned on. This “dumps” the
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incoherent photons out of the cavity. The resulting light is collected with a fiber to be

spectrally resolved on an optical spectrum analyzer. The optical power is measured with a

power meter.

We find that for a build up time t2 − t1 = 590 ns, we were able to recover a spectrum

with no evidence of lasing. This corresponds to 45 round trips in the cavity, and a total

average power per pulse of 120 mW. The broad ASE spectrum in Fig. 6.5 at t2 indicates

that the lasing has not yet started. The spectrum just after t3 shows the dramatic change

in the output spectrum after the onset of lasing.

Figure 6.4: “Pump and dump” technique. The pump AOM switches on at t1 to allow cavity build up.
The intracavity AOM switches on at t2 before the onset of lasing (at t3) to dump the incoherent photons
out of the laser cavity.

The cavity-dumping strategy does not generate a high enough intensity of incoherent

photons. We found that the 120 mW of average power in the ASE pulse contained 2.1% of

its power in the 1 meV bandwidth of the 1s exciton that we wish to pump, meaning that the

exciton is pumped with 2.5 mW average power. Since the pulse width is determined by the

round-trip time in the cavity, the incoherent pulse duration is approximately 12 ns. Thus,

approximately 1% of the photons arrive within the exciton lifetime T1 = 100 ps. Appealing to
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Figure 6.5: The dumped spectra at t = t2 (blue), and for t > t3 (red), corresponding to ASE and lasing,
respectively.

the imaging theorem described earlier [110], and assuming a spot size on the gain crystal of 20

µm, we expect a maximum photon density of 5×1010 photons/cm2 in a single pulse, which is

several orders of magnitude below the density required (≈ 1014 photons/cm2) for generating

many-body configurations in our GaAs QW system. The cavity-dumping technique could

be slightly improved (an order of magnitude) by shortening the cavity length to generate

shorter incoherent pulses, but still would not be capable of saturating the QW system.

We explored several approaches theoretically and experimentally for generating a source

of intense incoherent radiation at the E1s energy. We stress that the numbers calculated in

this section are all for the ideal conditions, i.e., optimal efficiencies and focusing of the source.

The photon densities calculated are at least four orders of magnitude lower than would be

necessary to saturate the QW system. Since the options for true incoherent light sources

are not intense enough for performing quantum-optical spectroscopy, we explore a novel

technique using coherent femtosecond pulses to explore the response of the QW system to
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incoherent excitation.

6.2 Phase modulation of ultrashort pulses for incoherent light generation

After exploring a variety of strategies for producing high-intensity incoherent light in a

narrow bandwidth, we developed with our theorist team a strategy that uses pulse-shaping

techniques with coherent optical pulses in order to explore the effects of quantum statistics

on the many-body state in GaAs QWs. The technique involves randomizing the spectral

phase of a mode-locked Ti:sapphire laser spectrum in order to mimic the incoherent statistics

of thermal light. Although the theory by which we motivate the use of phase-randomized

pulses has philosophical issues concerning the interpretation of quantum mechanics, we have

chosen to follow through with the experiments in order to test the theory.

6.2.1 Density-matrix ensemble averaging

In quantum mechanics, a single detection event produces only one outcome following a

probability distribution related to a specific quantity [115]. While quantum theory provides

a description of the probability distribution of repeated measurements, it cannot predict

the outcome of a single measurement with certainty. Nonetheless, one can experimentally

construct the probability distribution by repeating a measurement multiple times if the initial

conditions are identical between measurements. The possibility to construct this distribution

is a consequence of Born’s rule [116].

Born’s rule allows measurement of the expectation value of an observable q is possible

through repeated measurements via

〈q〉 =

∫

qP (q)dq = lim
N→∞

1

N

N
∑

j=1

qmeas
j , (6.2)

where N is the total number of measurements, qmeas
j is the outcome of a single measurement,

and P (q) is the probability distribution function. By categorizing many measurements in a
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histogram, it is possible to reconstruct the probability distribution function P (q) by

P (q) = lim
∆q→0

(

lim
N→∞

1

N

Nq

∆q

)

, (6.3)

where ∆q is the histogram bin interval, and Nq is the number of counts for corresponding

to an observable q.

The theorists Kira and Koch found that Born’s rule can be applied to the interaction

of matter using a scheme known as density-matrix ensemble (DME) averaging. The concept

of DME averaging explores the possibility of experimentally measuring a probability distri-

bution function by changing the initial conditions in a controlled manner. The intention

is to introduce a well-defined ensemble of classical excitation pulses that allow exploration

of a system’s response to quantum statistics of light other than classical. The initial con-

ditions are varied by changing the spectral phase of each pulse from a mode-locked laser

and measuring the many-body state in the QW system. We define the ensemble-averaged

quantity

〈〈q〉〉 = lim
Nens→∞

1

Nens

Nens
∑

r=1

〈q〉ens
r , (6.4)

where Nens is the size of the ensemble and 〈q〉ens
r refers to the quantity detected by many

measurements of the single rth realization. The ensemble-averaged expectation value is

distinguished from the standard definition via 〈〈· · · 〉〉. An ensemble-averaged probability

distribution may be determined:

〈〈P (q)〉〉 = lim
Nens→∞

1

Nens

Nens
∑

r=1

P ens
r (q), (6.5)

where the single-realization distributions P ens
r (q) are defined in Eqn. 6.3. In analogy to

the ensemble-averaged probability distribution, an ensemble-averaged density matrix can be

constructed that determines the outcomes measurements from a system generated by an

excitation with quantum statistics other than coherent light:

ρeff = 〈〈ρ〉〉 = lim
Nens→∞

1

Nens

Nens
∑

r=1

ρens
r , (6.6)
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where ρens
r is the density matrix of the rth realization. Thus, if a suitable combination of

realizations is chosen such that their density matrices average to an effective density matrix

ρeff that describes different quantum statistics, then the measurements acquired from the

ensemble of realizations allows reconstruction of the system response to the statistics of ρeff .

According to the theory, probes of the system dynamics may be averaged as in Eqn.

6.4 to reveal the system response under excitation conditions different from coherent light. If

absorption spectra are measured from a sample for each realization, the average absorption

spectrum 〈〈Savg(ω)〉〉 can be found by:

〈〈Savg(ω)〉〉 = lim
Nens→∞

1

Nens

Nens
∑

j=1

Sj(ω), (6.7)

where Sj(ω) is the absorption spectrum measured from the jth realization.

To realize the Kira-Koch theory, we are specifically interested in choosing a combination

of pulses with coherent photon statistics that average to an effective density matrix that

corresponds to thermal photon statistics. We consider phase-randomized pulses to achieve

this averaging.

6.2.2 Ensemble averaging for phase-randomized fields

The proposed scheme that we have followed involves randomizing the spectral phase

of successive mode-locked pulses from a Ti:sapphire laser. The details of the experimental

implementation of this is explained in the next chapter. This section justifies how this

strategy produces an ensemble of pulses that average to thermal statistics in the limit of a

large number of realizations.

The concept of phase randomization is illustrated in Fig. 6.6. The light from the

pulse of a mode-locked laser travels through a device called a pulse shaper that is able

to manipulate the spectral phase of the pulse. The phase function ∆φ(ω) is divided into

discrete spectral bins of size ∆ωbin. The value at each bin varies randomly in the interval

0 < ∆φ(ω) < 2π.
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Figure 6.6: A spectrum from a mode-locked ti:sapphire laser with a random spectral phase function with
spectral bin sizes of ∆ωbin = 200µeV. There are Nbins = 30 spectral bins across this spectrum.

The electric field of a single pulse realization in the frequency domain can then be

written in the form [115]:

E(ω) =

Nbins
∑

j=1

E0
j e

i∆φj , (6.8)

where E0
j is the amplitude of the electric field in the absence of any phase modulation at the

jth bin, eiφj is the random phase at the jth bin, and Nbins is the total number of bins across

the full-width at half maximum of the spectrum.

We can calculate the quantum statistics of the phase-randomized light fields using

DME averaging by transforming the field operators in Eqn. 5.16 according to Eqn. 6.8:

â =

Nbins
∑

j=1

ei∆φj [r]α̂j

â† =

Nbins
∑

j=1

e−i∆φj [r]α̂†
j, (6.9)

where α̂j and α̂†
j are the field operators associated with the jth spectral bin, r refers to

a particular realization, and Nbins is the number of bins across the spectrum. The field
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operator α̂j (α̂†
j) can be replaced by the complex-valued αj (α∗

j ) whenever it appears within

an expectation value since the light in each spectral bin corresponds to a coherent state. In

other words, the operator α̂j behaves like Eqn. 5.22 for each spectral bin:

α̂j |αj〉 = αj |αj〉 . (6.10)

From the definition of these operators, we obtain the following ensemble-averaging

rules:

〈〈

ei∆φj
〉〉

= lim
Nens→∞

1

Nens

Nens
∑

r=1

ei∆φj [r] = 0, (6.11)

〈〈

ei[∆φj [1]+∆φj [2]+···+∆φj [J ]]
〉〉

= 0. (6.12)

These both hold because each realization is completely random with respect to all of the

others. Both quantities approach zero in the limit of large Nens.

As a test of the quantum statistics of the ensemble average, we first compute the singlet

quantity using the ensemble-averaging procedure defined in Eqn. 6.4:

〈〈â〉〉 = lim
Nens→∞

1

Nens

Nens
∑

r=1

〈â〉 =
∑

j

〈〈

ei∆φj
〉〉

αj = 0. (6.13)

Similarly
〈〈

â†
〉〉

= 0 for this ensemble average.

A calculation of the photon number (the numerator of the first-order coherence func-

tion, Eqn. 5.3) for the randomized ensemble yields

〈〈

â†â
〉〉

=
∑

j,k

〈〈

ei[∆φk−∆φj ]
〉〉

α∗
jαk. (6.14)

Since ∆φk and ∆φj are random with respect to each other for j 6= k, only the j = k term

contributes to Eqn. 6.14. Consequently,

〈〈

â†â
〉〉

=

Nbins
∑

j=1

α∗
jαj =

∑

j

|αj|2 , (6.15)

which is both nonvanishing and a real quantity. Assuming that each spectral bin has the

same amplitude αj = α (but each spectral bin has a different phase), we find that

〈〈

â†â
〉〉

= Nbins |α|2 , (6.16)



120

To determine the statistics of ρeff , we calculate the second-order coherence function

g(2) according to Eqn. 5.21 but in frequency space (essentially, the t’s and τ ’s are dropped).

We have already evaluated the denominator of g(2) in Eqn. 6.16. The numerator of g(2) can

be evaluated using the ensemble-averaging procedure as:

〈〈

[â†]2â2
〉〉

= |α|4
Nbins
∑

j(1)=1

Nbins
∑

k(1)=1

Nbins
∑

j(2)=1

Nbins
∑

k(2)=1

〈〈

exp

(

i
2
∑

s=1

[∆φ
(s)
j − ∆φ

(s)
k ]

)〉〉

, (6.17)

where the index s = 1, 2 refers to the j(s) and k(s) indices of the outer sum. The sums

in Eqn. 6.17 produce nonvanishing values only for each j(s) value matching the k(s) value.

All nonvanishing terms produce the same result 2 Nbins!
(Nbins−2)!

times. Using this result, we can

evaluate Eqn. 6.17:

〈〈

[â†]2â2
〉〉

= 2(Nbins |α|2)2

[

Nbins!

N2
bins(Nbins − 2)!

]

= 2
(

Nbins |α|2
)2
[

1 − 1

Nbins

]

= 2
〈〈

â†â
〉〉2 [

1 + O(N−1
bins)

]

, (6.18)

where the last line uses the result from Eqn. 6.16. The term of order N−1
bins is dropped in

the limit Nbins ≫ 2. We find by insertion of this result into Eqn. 5.21 that g(2) = 2 for our

ensemble-averaged source. This result is worked out in general for g(m) in [115]; however,

the second-order coherence g(2) is calculated here since this quantity is of primary interest

for distinguishing the statistics of thermal source from a coherent source.

We find that the statistics in Eqn. 6.18 corresponds to thermal light statistics. Since

the singlet quantity 〈〈â〉〉 is vanishing, the expectation value of the photon number 〈〈n〉〉 =
〈〈

â†â
〉〉

is finite, and g(2) = 2, we conclude that the phase-randomized ensemble of pulses

satisfy the criteria for thermal statistics. Consequently, we expect that a series of separate

measurements performed for an ensemble of phase-randomized pulses, each with the same

number of large number of spectral bins Nbins ≫ 2, will allow construction of the density-

matrix for a true thermal source. Construction of the density matrix for a thermal source
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has the power to reveal the nonlinear system response to light with true thermal photon

statistics.

To test the opposite limit where the number of spectral bins Nbins = 1, we expect that

we recover the statistics for the coherent state since there would be no phase modulation

across the spectrum. For this situation, the sums in the product of sums in Eqn. 6.17 each

have just one term. The phase ∆φ is identical for the j(1) = k(1) = j(2) = k(2) = 1 terms for

every realization. Therefore,

1
∑

j(1)=1

1
∑

k(1)=1

1
∑

j(2)=1

1
∑

k(2)=1

〈〈

exp

(

i
2
∑

s=1

[∆φ
(s)
j − ∆φ

(s)
k ]

)〉〉

= 〈〈exp (i2[∆φj=1 − ∆φk=1])〉〉 = 1 (6.19)

The calculation of this product of sums combined with Eqn. 6.17 shows that

〈〈

[â†]2â2
〉〉

= |α|4 . (6.20)

Combining this result with Eqns. 6.18 and 5.21 results in g(2) = 1, consistent with our

expectations for coherent light.

6.3 Philosophical issues

Although the theory described in 6.2.2 is mathematically self-consistent, it is important

to inquire about how this theory describes the experiment to be performed. The protocol

from the theory suggests that measurements from a large number of phase-randomized exci-

tation pulses be separately recorded. While each measurement records the system response

to a coherent pulse of light, the ensemble of measurements make up the information necessary

for construction of the system response to thermal photon statistics.

The concept of DME averaging suggests that a source with quantum statistics can be

constructed from a coherent pulsed laser. This result is challenging to understand since the

realizations need not interfere with each other in the QW system. The data for each realiza-

tion could be recorded on separate days, and the DME technique would allow construction
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of the QW response to a different thermal statistics.

Results from quantum mechanics state that a system with density matrix composed of

field and matter parts ρ̂ = ρ̂F ⊗ ρ̂M evolves in time as:

i~
∂ρ̂

∂t
= −[ρ̂, H], (6.21)

where H is the Hamiltonian of the system [45]. This evolution was worked out for a simple

case using true thermal and coherent photon statistics in §5.4.7. It may seem counter-

intuitive that the dynamics for a system could be constructed from the traces of many

time-evolved density matrices from different realizations, since information is lost when one

traces over a density matrix. Additionally, there is no possibility of interference between

subsequent realizations in the experimental setup, as we will discuss in chapter 8. The

theory claims that construction of a new density matrix based on the trace of an ensemble

of density matrices is possible. While this claim is puzzling, we have chosen to proceed with

experiments that seek to verify this assertion.

To generate pulses of light that satisfy the criteria for thermal light in DME averaging,

we use the experimental technique of pulse shaping, which is introduced in the next chapter.



Chapter 7

Pulse-shaping techniques

7.1 Concept of a pulse shaper

A pulse shaper is an apparatus that allows manipulation of the spectral amplitude

and phase of an ultrashort optical pulse. The apparatus has application in stretching and

compressing pulses, coherent control, optical imaging, and optical communications [9]. A

pulse shaper operates by converting an ultrashort pulse into the frequency domain, where

linear filtering can be applied, before converting the pulse back into the time domain.

We are interested in applying pulse-shaping techniques to our mode-locked laser pulses

in order to explore quantum-optical spectroscopy with density-matrix ensemble averaging,

as discussed in chapter 6. We specifically wish to manipulate the phase of the spectrum of

a pulse as shown in Fig. 6.6. In this chapter we discuss the operation of a pulse shaper,

consider experimental parameters and limitations to obtaining an arbitrary pulse waveform.

7.2 Experimental setup

The basic experimental design for a 4f pulse shaper is illustrated in Fig. 7.1. The

design is called 4f because the total distance between the center of the first grating to the

center of the second grating is four times the focal length f of the lenses used. A pulse from

a mode-locked laser enters from one side. The pulse diffracts from a grating, which converts

the wavelengths of the pulse into angle in the first-order diffraction direction according to
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the grating equation [9]:

θdiffracted(λ) = sin−1

(

λ

d

)

, (7.1)

where d is the spacing of the grating lines, and λ is the wavelength of light. The spread

in wavelengths is then collimated with a cylindrical lens of focal length f . The spread

in wavelengths is now mapped to a positional spread. Besides collimating the diffracted

beam, the lens focuses each frequency component onto the plane of the mask. The different

frequencies may then be manipulated individually at the plane of the mask by linear filtering

of the amplitude or phase. This filtering can be accomplished with a variety of devices, such

as a spatial light modulator or acousto-optic modulator [9], or any material with varying

optical thickness or varying transparency. Undesired frequency components can thus easily

be blocked at the plane of the mask.

To reconstruct the pulse after linear filtering, the process that took place before the

mask is time-reversed by the remaining optics into a single collimated beam with an output

pulse shape given by the Fourier transform of the pattern transferred by the mask onto the

spectrum. For an absent phase mask, the output pulse should be identical to the input pulse.

Figure 7.1: Layout for a 4f pulse-shaper apparatus. The spatial spread D corresponds to a spread in
optical wavelengths ∆λ.

Various factors determine the appropriate design parameters for the pulse-shaper ap-

paratus. We discuss the design considerations in the frequency domain in the next section.
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7.3 Shaper design considerations in the frequency domain

7.3.1 Spectral resolution constraints

To choose appropriate design parameters for the pulse shaper, we consider the fixed

conditions of the experiment and requirements for the experiment in the frequency domain.

The Ti:sapphire laser center wavelength is λ0 = 800 nm (~ω0 = 1.55 eV) with a bandwidth

of around ∆λ = 3.5 nm (~∆ω = 7 meV). The theory estimates a constraint of needing to

have at least 6 bins across the 1s exciton spectrum in order to perform quantum-optical

spectroscopy using density matrix ensemble averaging, discussed in Chapter 6. The full-

width half maximum (FWHM) of the linear exciton absorption line shape is γFWHM
1s = 1.5

meV, determined in Chapter 4. Thus we require the resolution on the pulse-shaper system

to have an upper bound of δEres = 250µeV. A smaller energy resolution provides flexibility

in the possible manipulations of the pulse.

We estimate the resolution of the pulse shaper by determining the wavelength-to-

displacement conversion at the plane of the mask, allowing the spatial spot size of a single

color mode to be converted into an estimate of the spectral resolution. We use Eqn. 7.1 to

determine the spatial spread D across the phase mask for a small bandwidth ∆λ in order

to calibrate wavelength to displacement along the plane of the mask in the paraxial ray

approximation [92]:

D = [θ1(λ+ ∆λ/2) − θ1(λ− ∆λ/2)] f

=

[

sin−1

(

λ+ ∆λ/2

d

)

− sin−1

(

λ− ∆λ/2

d

)]

f, (7.2)

where f is the focal length of each lens in the setup. The ratio ∆λ/D can be used to convert

a spatial spread into a spread in wavelength. We then calculate the spot size of a single color

focused onto the shaper for a beam of initial waist wi according to [9]:

w0 =
cosθi

cosθd

λf

πwi

, (7.3)
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where θi = 40◦ and θd = 74◦ are the incident and diffracted angles with respect to the plane

of the first grating, respectively. The diffracted angle θd is determined by Eqn. 7.1.

The resolution of the shaper is then estimated by using ∆λ/D to convert the units of

w0 from spatial spread into spectral spread:

δλres[nm] =
∆λ = 1[nm]

D[mm]
× w0[mm]. (7.4)

While it is strange to see a conversion between two length units, [nm] indicates a wavelength

and [mm] indicates a spatial spread.

The spectral resolution expression δλres allows us to see which parameters affect the

resolution. Since both D and w0 are proportional to the focal length f , the resolution of

the shaper apparatus is completely independent of choice of focal length. The focal length

choice is determined by the pixel size of the mask device, which we will discuss next. The

parameters that we can choose to optimize the resolution of the pulse shaper are the initial

beam waist wi and the grating spacing d.

It is desirable to have a large initial beam waist and small grating spacing according

to Eqn. 7.4. The beam waist was expanded to a large but manageable size of wi = 10 mm

going into the pulse-shaper apparatus. This parameter creates a spot size of w0 = 34µm at

the plane of the phase mask. The grating was chosen to have a spacing of d = 833 nm (1200

lines/mm), nearly the smallest spacing before matching the laser wavelength of 800 nm, at

which the efficiency of the grating vanishes [110]. We calculate the resolution using these

parameters to be δλres = 0.006 nm. This resolution corresponds to δEres = 12µeV, which is

an order of magnitude better than the estimated theoretical constraint of δEres = 250µeV,

allowing flexibility in the choice of spectral bin size for the experiment.

7.3.2 Phase mask device

Of the many devices available for a mask in the pulse-shaper apparatus, we chose

Boulder Nonlinear Linear Series Spatial Light Modulator (SLM) with a 1×12,288 pixel array.
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The device offers programmability, full-range (0 − 2π) phase modulation, a small pixel size

(pixel pitch = 1.6µm), and a large screen area (19 mm). This device can independently

modulate the phase of light rays reflected from each of its 12,288 pixels.

The SLM is reflective, which means that the 4f shaper design is folded on itself as

shown in Fig. 7.2. To collect the output beam with minimal compromise in alignment, we

adjust the vertical pointing of the reflected beam so that it is one beam diameter lower than

the input beam, allowing pick-off with a compact mirror.

Figure 7.2: Layout for a 4f pulse-shaper apparatus in reflective geometry. Reflected beam is vertically
offset from the input beam, but shown at a slightly different horizontal angle here only for illustration
purposes.

To utilize the many pixels of the shaper, we choose a long focal length of f = 50 cm.

This focal length produces a spread of 7.5 mm at the plane of the mask, given the other

parameters, named earlier. This large spatial spread does not overfill the 19 cm wide liquid

crystal screen of the SLM. The choice of focal length allows up to 4700 pixels across a 7 nm

(13 meV) bandwidth spectrum. Thus, we have flexibility in choosing arbitrary spectral bin

size with experimentally manageable parameters.
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A schematic of the device is shown in Fig. 7.3. The 1.6 µm pixel pitch provides the

flexibility to fit a large number of pixels across the spectrum if necessary. The space in

the interpixel gap (0.6 µm) does not reflect any light, meaning that 0.6µm/1.6µm = 37.5%

of the incident light is lost due to diffraction at the interface. Aside from a change in the

total efficiency, the interpixel gap does not modify the resolution or other properties of the

shaper apparatus because the spot size at the single-color spot size according to Eqn. 7.3 is

w0 = 34µm, which is much larger than the pixel pitch.

Figure 7.3: Schematic of the Spatial Light Modulator (SLM) [8]. (a) A front-view drawing of the device.
(b) Detail of the pixel geometry. (c) Principle of operation using liquid crystals.

The principle of operation of the SLM is illustrated in Fig. 7.3c. The screen of the

SLM consists of a one-dimensional array of liquid crystals. The light at the plane of the

mask travels through the liquid crystals and is reflected by a mirror. Each pixel of the

liquid-crystal array has an electrode with adjustable voltage 0-5 V. For 0 V applied to a

pixel, the liquid crystals in that pixel are aligned parallel to the electrode. However, as the

voltage increases, the liquid crystals begin to align with the electric field produced between

the pixel electrode and the cover-glass electrode. The liquid crystals have the electro-optic

property of birefringence, which means that their alignment alters the index of refraction for

one polarization component (horizontal in this device) of an incident light field. We polarize

our beam horizontally to maximize the modulation of phase. Thus, the application of a
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different voltage on each of the liquid crystals can change the effective optical path length by

up to one full wavelength (800 nm), providing a phase shift ∆φ in the interval 0 < ∆φ < 2π.

Figure 7.3c demonstrates the phase retardance for 0 V, 2.5 V, and 5 V applied voltage.

Since the phase retardance has nonlinear dependence on the applied voltage, the device is

calibrated by an interferometer to create a look-up table that relates the two quantities.

We have discussed the design considerations and principles of operation of a pulse-

shaper apparatus. We next explore the limitations of a pulse shaper in producing a pulse

with arbitrary spectral phase and amplitude.

7.4 Physical limitations in pulse shaping

An ideal pulse shaper takes in a pulse of light and applies a spectral phase and ampli-

tude in the Fourier domain, outputting an electric field with Fourier transform [9]:

Eout(ω) = Ein(ω)H(ω), (7.5)

where H(ω) is an arbitrary complex filter function in frequency space. However, because of

the finite spot size of each single color and the fact that the spectrum is continuous1 means

that there exists spatial overlap between single-color modes in the beam at the plane of the

phase mask.

Due to the finite spatial extent of each single-color mode, the filter function H(ω) is a

convolution of the spatial mask function M(x) with the intensity profile of the beam [9]:

H(ω) =

(

2

πw2
0

)1/2 ∫

dxM(x)e−2(x−αω)2/w2
0 , (7.6)

where

α =
λ2f

2π c d cos(θd)
, (7.7)

1 For long integration times compared to the repetition rate of the laser (T ≫ f−1
rep), a temporal train of

pulses Fourier transforms into a comb of frequencies spaced by frep = 76 MHz, or 0.3 µeV. However, since
the dynamics of the GaAs QW system completely decay in the time between pulses (f−1

rep = 12 ns), this is
not relevant. The system ‘sees’ the continuous spectrum of a single pulse.
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and w0 is given by Eqn. 7.3. Here α is the spatial dispersion with units cm (rad/s)−1. The

effect of this convolution is to limit the spectral FWHM resolution to

δω = (ln2)1/2w0/α

= 2(ln2)1/2 cos θi
c d

λwi

, (7.8)

which predicts a spectral resolution (using the above-mentioned numbers) that is in agree-

ment with the analysis from Eqn. 7.4. It is clear to see here that the resolution is independent

of the focal length f . Since the wavelength λ is a fixed parameter and the grating spacing

d can only be as short as the wavelength, the resolution can be made smaller by choosing a

large input beam waist wi.

The use of the convolution in Eqn. 7.6 allows accurate simulations of the effects of

various phase masks on the frequency- and time-domain electric fields by substituting H(ω)

into Eqn. 7.5.

While simulations accurately predict the effects of spectral phase masks on the ampli-

tude of the power spectrum, we develop an intuitive picture of why amplitude modulation

is unavoidable for a pulse shaper designed to modulate the phase. The consequence of the

overlap of single-color modes is illustrated in Fig. 7.4. Here five nearby single-color modes

with spatial widths determined by Eqn. 7.3 overlap spatially at the plane of the phase mask.

The location 50 µm marks a phase jump between two pixels. For the sake of this illustration,

the phase of the left-side pixel is φL = 0 radians and the right-right φR = π radians such

that the difference in phase between the two pixels is ∆φ = π. This phase difference means

that most of mode A undergoes a phase shift of φL = 0 and most of mode E undergoes a

phase shift of φR = π. However, since the overlap between single-color modes is unavoidable,

each mode that lies between A and E will have a fraction of their light that undergoes both

phase shifts.

In the case of the single-color mode that lies at the phase discontinuity (mode C), half

of the mode will undergo a phase shift of φL = 0 and the other half will undergo a phase



131

shift of φR = π, resulting in complete cancellation of the field for that spectral mode. For

a phase discontinuity of ∆φ = π between two pixels, the intensity will drop to zero with a

width proportional to the resolution of the shaper, Eqn. 7.8.

Figure 7.4: (a) Illustration of the intensity distribution of overlapping single-color modes (A−E, blue lines)
at the plane of the phase mask in a pulse shaper. The spectral phase function across the mask (thick black
line) is shown with arbitrary units. (b) The consequence of finite spot size in a pulse shaper is amplitude
modulation at phase discontinuities with width corresponding to Eqn.7.8.

This picture reveals that regardless of the spectral resolution of the pulse shaper, there

is necessarily some amplitude modulation of modes that lie near phase discontinuities along

the phase mask. The effect of amplitude modulation can be minimized by designing a high-

resolution apparatus as we have done.

To understand the effects of shaping pulses, it is helpful to have an intuitive picture

of the relationship between the time- and frequency-domain representations of the electric

field.
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7.5 Relationship between time- and frequency-domains

7.5.1 Time duration and bandwidth

The time- and frequency-domain representations of an optical field are related to each

other through the Fourier transform [117]:

ε(t) = F {ε̃(ω)} =

∫ +∞

−∞
dω ε̃(ω) eiωt

ε̃(ω) = F−1 {ε(t)} =
1

2π

∫ +∞

−∞
dt ε(t) e−iωt, (7.9)

where ε(t) and ε̃(ω) are the envelopes of the electric field in the time- and frequency-domains,

respectively. The first line is the forward Fourier transform, and the second line is the inverse

Fourier transform. Manipulation of the phase and amplitude of the frequency-domain electric

field ε̃(ω) affects the time-domain electric field through these two equations.

We can use Eqn. 7.9 to explore the relationship between the time duration and band-

width of an ultrashort pulse. For a pulse with Gaussian temporal pulse width τp, we may

represent the field envelope ε(t) in the time domain as:

ε(t) = ε0 e
−t2/(2 τp)2 , (7.10)

where the FWHM duration of the temporal intensity of the pulse I(t) = |ε(t)|2 is ∆τ =

2
√

2 ln2τp ≈ 2.355τp. The field in the frequency domain is calculated through Eqn. 7.9 as:

ε̃(ω) = F−1 {ε(t)} = ε0

√

4πτ 2
p e

−τ2
p ω2

. (7.11)

A Gaussian temporal profile thus transforms into a Gaussian spectral profile. While center

frequency ω0 = 0 here for clarity purposes, this analysis is easily transferrable to any center

frequency with the replacement ω → (ω − ω0).

The time duration and bandwidth have an inverse relationship with each other. The

bandwidth in Eqn. 7.11 is the FWHM of the power spectrum |ε̃(ω)|2 is ∆ω = 2
√

2 ln2/(2τp) ≈

1.177/τp. Thus, from Eqns. 7.10 and 7.11 we can see that a short temporal width corre-

sponds to a wide bandwidth. For any shape pulse, the FWHM of the power spectrum and
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FWHM of the temporal intensity have a time-bandwidth product:

∆ω∆τ ≥ 2πcB, (7.12)

where the equal sign holds for transform-limited pulses, i.e., with no spectral phase modula-

tion. For the Gaussian pulses introduced, ∆τ∆ω/2π = cB = 0.441, indicating that the pulse

is transform-limited. From the time-bandwidth product relationship we see that a larger

bandwidth makes shorter temporal features possible.

A helpful visualization of the Fourier relationships is shown in Fig.7.5. For a Gaussian

pulse shape, the total bandwidth B in the frequency domain has the relationship B δt ≈ 0.44

with the shortest temporal feature in the time-domain [117]. The largest spread in the time-

domain T is related to the smallest spectral feature δf by T δf ≈ 0.44.

Figure 7.5: Pictorial relationship between the power spectrum (frequency domain) and temporal intensity
(time domain) features. Figure from [9].

This picture has consequences for the time-domain output of a pulse shaper. First,

the maximal temporal spread is limited by the resolution of the pulse shaper. For the

parameters chosen in our apparatus, the estimated limit on the temporal spread is roughly

T ≈ 0.44/δf = 0.44/12µeV = 8.8 ps. Second, the shortest temporal feature is determined

by the bandwidth B in our experiment according to δt ≈ 0.44/B = 0.44/7 meV = 260 fs,
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which is very close to the estimated pulse duration out of the laser, ∆τ =287 fs FWHM.

Narrowing the bandwidth in the pulse shaper limits the sharpness of temporal features in

addition to spreading the pulse out in time.

The Fourier relationship described between the time- and frequency-domains applies

to the modulation of spectral phase as well as amplitude. We discuss how spectral-phase

modulation affects the temporal fields of an ultrashort pulse.

7.5.2 Effects of the spectral phase in the time domain

Since it is possible to choose any arbitrary phase mask function M(x) (given the limi-

tations presented in §7.4) to modulate the spectral phase of the electric field, we explore the

effects of spectral-phase modulation in the time domain.

To understand the effects of spectral phase in the time domain, it is helpful to separate

the spectral phase of a pulse into components via a Taylor expansion of the phase [117]:

φ(ω) = φ(ω0) + φ′(ω0)(ω − ω0) +
1

2!
φ′′(ω0)(ω − ω0)

2 +
1

3!
φ′′′(ω0)(ω − ω0)

3 + · · · , (7.13)

where ω0 is the center frequency of the pulse. In this section, we consider the effects of the first

three terms of Eqn. 7.13 on a pulse in the time domain. A spectral phase function φ(ω) can

be applied to a field in the frequency domain by the multiplication ε̃(ω)modified = eiφ(ω) ε̃(ω).

7.5.2.1 Zero-order phase

The simplest phase application is a flat phase, or the first term in Eqn. 7.13. To see

the effects of a flat phase in the time domain, we multiply the field ε̃(ω) in Eqn. 7.11 by

the zero-order phase function eiφ(ω0) = eiφ0 . Taking the Fourier transform of the modified
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frequency-domain field,

εflat(t) = F
{

ε̃(ω)eiφ0
}

= eiφ0F {ε̃(ω)}

= eiφ0ε(t). (7.14)

Thus, the electric field acquires a global phase φ0, corresponding to the carrier-envelope

phase, which relates the phase of the electric field to its temporal envelope [117]. While the

global phase is important in some experiments [118], the experiments performed in this work

are not affected because interfering beams have an angle with respect to each other at the

sample, averaging out the global phase [11]. A flat phase mask does not affect the temporal

intensity of the pulse I(t) = |ε(t)|2. Since the global phase does not affect the physics for

this work, we omit it in the following analysis for clarity.

7.5.2.2 Linear phase

Next, we consider application of a linear spectral phase, or eiφ′(ω0)ω = eiaω. In this case,

we find that the time domain is affected as

εlinear(t) = F
{

ε̃(ω)eiaω
}

= ε0e
−(t+a)2/(2τp)2

= ε(t+ a). (7.15)

We find that a linear spectral phase function shifts the pulse in time, but otherwise does not

affect the temporal properties.
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7.5.2.3 Quadratic phase

Lastly, we consider a quadratic spectral phase. The multiplication of ε̃(ω) by eiφ′′(ω0)ω2/2 =

eibω2
yields the time-domain field:

εquadratic(t) = F
{

ε̃(ω)eibω2
}

= ε0
τp

√

τ 2
p − i b

exp

{

−ib̃t2 − t2

(2τ̃p)2

}

, (7.16)

where

b̃ =
b

4(b2 + τ 4
p )
,

τ̃p =
b2 + τ 4

p

τ 2
p

. (7.17)

The last line of Eqn. 7.16 shows that the temporal phase Φ(t) increases quadratically with

time. The instantaneous frequency of the pulse in time can be found by differentiating the

phase with respect to time:

ω(t) =
d

dt
Φ(t) =

d

dt
(ω0t+ b̃t2) = ω0 + 2b̃t. (7.18)

The instantaneous frequency increases linearly with time for b > 0. In analogy with acoustic

frequencies, this is the sound that a bird makes when she chirps, increasing the pitch (fre-

quency) with time. For this reason, φ′′(ω0) is often called the ‘chirp’ parameter because of

its influence in the time domain. For b > 0, the lower frequencies (‘red’) are shifted to earlier

times, and the higher frequencies (‘blue’) are found at later times.

It is helpful to visualize the chirp with a spectrogram that captures the time and

frequency information about a pulse. Spectrograms from a transform-limited pulse and a

chirped pulse are compared in Fig. 7.6. A projection of the spectrogram onto the frequency

axis is the power spectrum; a projection onto the τ axis is the temporal intensity profile.

While the spectrum is (ideally) not modified for a positively chirped pulse, the red frequency

components tend to show up at earlier times than the blue components.
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Figure 7.6: Spectrograms for ultrashort pulses with varying chirp: (a) no chirp (b = 0, or transform-
limited), (b) moderate chirp (b = 0.5 ps−2), and (c) strong chirp (b = 5 ps−2). Chirp ‘rotates’ the spectrogram
in this phase space.

The slope of the frequency b̃ in Eqn. 7.18 exhibits nontrivial dependence on the chirp

parameter b. The dependence is shown in Fig. ??. As seen in the figure, for |b| ≪ τ 2
p ,

b̃ ∝ b. However, for large spectral chirp parameter b, the instantaneous frequency exhibits

very weak dependence on time. The spectrogram for a large amount of chirp is seen in Fig.

7.6c, where the projection in time is broad. For the pump bandwidth used in this thesis

(∆E = 5.9 meV), the spectral chirp parameter that maximizes b̃ is |b| = 2.7 meV−2. A rough

way to picture the effect of chirp on the time distribution of frequencies is as a rotation of

the spectrogram in frequency-time space. The actual picture is more complicated since the

temporal duration also increases for increasing |b|.

To see the effect of chirp on the temporal duration, we calculate the temporal intensity:

I(t) = ε∗(t)ε(t) = ε2
0

[

τ 2
p

√

b2 + τ 4
p

]2

exp

{

− t2

2(τ 4
p + b2)/τ 2

p

}

. (7.19)

The pulse width spreads in time with increasing chirp parameter b, and we recover the

original transform-limited field intensity for b → 0. The modified FWHM time duration of

the intensity envelope is ∆τ = 2
√

2 ln2

[

τ 2
p +

(

b
τp

)2
]1/2

, where τp is the transform-limited

pulse duration.
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Figure 7.7: Relationship between the temporal chirp parameter b̃ and the spectral chirp parameter b.
Increasing the spectral chirp beyond |b| > 0.18 τ2

p weakens the instantaneous frequency dependence on time
as the pulse spreads in time.

7.5.2.4 Summary of phase effects

Summarizing the effects of the first three terms of Eqn. 7.13 on a pulse in the time

domain, the zero-order phase φ = φ0 provides an overall phase shift, resulting in a change of

the carrier-envelope phase. Linear phase φ = aω causes a pure temporal shift of the pulse.

Quadratic phase, or chirp parameter φ = b ω2, is the lowest-order spectral phase that affects

the temporal intensity shape of a pulse.

In general, higher order spectral phase contributions have more complicated effects

on the temporal pulse intensity, but generally lead to a broadening of the pulse in time.

The random-phase masks, which we will introduce at the end of this chapter, contain many

higher-order phase contributions in the spectral phase, leading to a nontrivial temporal pulse

shape.

7.6 Alignment of the pulse shaper apparatus

Using the described SLM in the reflective 4f geometry with the chosen grating spacing

(d = 833 nm), focal length (f = 50 cm), and input beam waist (wi = 10 mm), we proceed
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to align the shaper apparatus according to a procedure outlined in [9]. The pulse shaper

apparatus is aligned to optimize the spectral resolution, to minimize spectral dependence

on the spatial beam profile (known as ‘spatial chirp’), and to minimize the spectral chirp

(φ = bω2).

The reflective geometry of the pulse shaper (Fig. 7.2) presents a potential tradeoff

between optimal alignment and efficiency. The optimal alignment would involve placing a

beam splitter in the path of the input beam so that the reflected beam traces exactly the

input path. This setup would result in a 75 % loss in power using a 50:50 beam-splitter.

The loss in power would make the experiment difficult since we need a high optical power

to achieve saturation of the QW system.

We find that the vertical-pointing pick-off geometry as described in §7.3.2 does not

hinder the alignment significantly. We calculate from the cross-correlation FWHM of 388 fs

that the pulse width out of the pulse shaper is ∆τ = 274 fs. Combining this measurement

with a measured 4 nm bandwidth FWHM (= 1.18×1013 rad/s), we use Eqn. 7.12 to calculate

the time-bandwidth product as cB = 0.51. This value is close to the transform limit cB =

0.441 for a Gaussian pulse . The temporal pulse duration for a transform limited Gaussian

pulse would be ∆τ = 241 fs. The pulse coming out of the laser has only approximately a

Gaussian temporal envelope, so it is not surprising that the time-bandwidth product does

not exactly correspond to a Gaussian function.

7.6.1 Spatial mode filtering

The analysis in §7.4 assumes that the output Gaussian spatial mode is selected to

match the input mode. Filtering the spatial mode helps to ensure that this is experimentally

the case.

The spatial mode out of the mode-locked laser in our experimental setup is a transverse

electromagnetic TEM0,0 mode with a Gaussian spatial intensity profile. This mode is sent

into the pulse shaper apparatus. In the process of applying a spectral phase mask to the
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Figure 7.8: Spatial mode filtering using two lenses with a pinhole. The input distorted spatial mode is
‘cleaned up’ into a TEM0,0 spatial mode by focusing the light through the pinhole.

pulse, higher order spatial modes are introduced, necessitating the filtering of modes higher

than the TEM0,0 mode.

Mode filtering is accomplished by constructing a spatial mode filter from two lenses

and a small pinhole aperture, as shown in Fig. 7.8. The principle of spatial mode filtering

is that the TEM0,0 Hermite-Gaussian spatial mode focuses to a smaller spot size than the

higher order modes [92]. Consequently, the higher order modes are mostly blocked by the

aperture.

To determine the initial beam waist size wi, focal lengths f , and pinhole diameter D

appropriate for filtering out the TEM0,0 mode and maintaining high efficiency, we consider

the focusing properties of the Hermite-Gaussian modes. The spatial profile of the electric

field of a Gaussian mode is the solution to the wave equation in the paraxial approximation

[92]:

E(x, y, z) = E0Hm

[

21/2x

w(z)

]

Hp

[

21/2y

w(z)

]

w0

w(z)
exp

[

−x
2 + y2

w2(z)

]

, (7.20)

where the beam waist

w(z) =

√

√

√

√w2
0

[

1 +

(

z

z0

)2
]

, (7.21)

w0 is the minimal spot size for the TEM0,0 mode, E0 is the electric field amplitude, and Hm

is the Hermite polynomial of order m.

We evaluate the electric fields for a variety of TEMm,0 modes and integrate the in-
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tensities at their foci over the pinhole diameter D in order to determine the efficiency with

which each Hermite-Gaussian mode passes through the pinhole. Results for a sample of

pinhole diameters and TEM0,0 spot sizes are plotted in Fig. 7.9. From the pinhole diameters

commercially available, we chose the D = 20 µm with a TEM0,0 spot size w0 = 10 µm

because this combination offers high efficiency of the TEM0,0 with reasonable suppression of

the higher-order modes. The chosen spot size corresponds to a focal length choice of f = 5

cm for the spatial mode filter apparatus.
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Figure 7.9: Transmission of the Hermite-Gaussian modes TEMm,0 through a spatial mode filter. A series
of diameters D and TEM0,0 spot sizes w0 (both in µm) allow choice of appropriate mode-filtering geometry.

7.7 Calibration and testing of phase masks

7.7.1 Calibration procedure

After alignment of the shaper, we calibrate the phase masks to have the accurate

control of the spectral phase. To calibrate the SLM, we take advantage of the fact that

phase discontinuities produce a dip in the spectrum, as discussed in §7.4. The procedure for
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calibration of the SLM is illustrated in Fig. 7.10. For a variety of phase masks with a single

phase discontinuity, we record the spectra on a monochrometer and note the pixel number

at which the discontinuity happens. The spectral positions are then plotted with the pixel

number, and a linear fit determines the relationship between photon energy and pixel number

on the SLM. From the linear fit we find the relationship Y [meV] = 0.00463X[pixel #] +

1499.74.

Figure 7.10: (a) A variety of power spectra, each with a single phase discontinuity that results in a dip in
the spectrum. (b) The center positions of the dips along with the recorded pixel number on the SLM allow
calibration of the SLM via a linear fitting procedure.

7.7.2 Comparison of simulation with experiment

To test the accuracy of the effects of the spectral phase masks in our experimental

setup, we perform simulations using Eqns. 7.6 and 7.5 to compare with the measured effects

of some simple phase masks. We explore the modulation of the linear and quadratic spectral

phase.

To test that the SLM is calibrated, we compare simulations to experimental measure-

ments for a variety of simple phase masks. For the simulations, we choose a transform-limited

pulse with the same power spectrum as measured in the experiment. Experimentally, we

measure the output pulses after the pulse shaper apparatus by measuring a cross-correlation

trace, S(τ). The measurement technique is explained in chapter 3. We extract parameters
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such as temporal center positions and widths from S(τ) using a nonlinear fitting procedure

that fits a Gaussian function to each trace.

As demonstration of our control over the spectral phase, we create phase masks with

only linear phase, and only quadratic phase, in order to observe the effects of each phase

component in Eqn. 7.13 individually.

A linear phase φ = φ′(ω0)(ω − ω0) is applied to the SLM for a range of slopes from

φ′(ω0) = 0 meV−1 up to φ′(ω0) = 18.2 meV−1. We expect the temporal pulse to be shifted

in time according to Eqn. 7.15. A simulation of the output pulse yields a pure shifting of

the pulse. The predicted shifts in time compare well with the experimentally measured time

shifts, as shown in Fig. 7.11.

Similar matching between simulation and experiment is achieved for negative linear

slopes in spectral phase, which results in negative temporal shifts of the pulse, or effectively

lengthening the optical path length which the pulse travels.

We attribute slight discrepancies between the measured and simulated shifts to the

imperfect factory calibration of the SLM for the voltage to phase retardance at a wavelength

of 800 nm.

In addition, simulation predicts the broadening of a pulse with the application of

quadratic spectral phase. The chirp parameter φ′′(ω0)/2 in Eqn. 7.13 is varied from 0

meV−2 up to 5.8 meV−2. We expect that the quadratic phase leads to a broadening in

the temporal pulse duration without shifting the pulse in time, according to Eqn. 7.19.

We extract the time duration of the experimentally measured cross-correlation. We find

good comparison between the experiment and simulation, as shown in Fig. 7.12. The pulse

duration levels off for higher chirp parameters because the maximal time duration is limited

by the spectral resolution of the pulse shaper, as discussed in §7.5.1. The observed cross-

correlation duration limit of ∆τS = 10.8 ps (corresponding to a pulse duration of 10.8 ps

since ∆τprobe ≪ ∆τS in Eqn. 3.15) is roughly consistent with the estimated maximum

temporal width of 8.8 ps, calculated in §7.5.1. We attribute the slight discrepancies between
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Figure 7.11: Simulated and measured time shifts generated by a linear phase mask.

simulation and experiment to imperfect factory calibration of the SLM. The discrepancies

compared with the simulation are not critical because we record the experimental parameters

in the analysis of the experiments.

Similar agreement between simulation and experiment is found for negative chirp pa-

rameters. The sign of the quadratic phase has no effect on the temporal intensity profile (in

both simulation and experiment), as predicted from Eqn. 7.19.

7.8 Comparison of chirp parameter range with material dispersion

One relevant inquiry is how the chirp that we impose on an ultrashort pulse compares

to the amount of quadratic phase that is incurred when a pulse travels through dispersive

media. The sign of chirp for most dispersive media is positive, which means that the red

part of the pulse experiences negative delay relative to the blue part, as can be seen in Eqn.

7.18. Thus, the red part of the spectrum arrives before the blue part of the spectrum for

most dispersive materials.
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Figure 7.12: Simulated and experimentally measured cross-correlation widths ∆τS for a range of chirp
parameters. Cross-correlation width of ∆τS = 520 fs for a transform-limited pulse is shown as a baseline.

We compare the range of applied chirp using the pulse shaper to the material dispersion

for a common optical material, fused silica. We calculate the second-order dispersion of fused

silica at 800 nm using the Sellmeier equation to be ψ′′(ω0)/2 = 0.262 meV−2/meter. The

chirp from dispersion is then given by φ′′(ω0)/2 = ψ′′(ω0)/2 × L, where L is the length

traveled through the material [117]. Using this value, we find that a distance of L = 29 cm

would be necessary to achieve 0.15 meV−2 of chirp, and a distance of L = 11 m would be

necessary to achieve 5.8 meV−2 of chirp. The amount of material that the laser light travels

through for the work in this thesis is on the order of a couple cm. Consequently, the amount

of material used produces chirp much lower than an amount that would broaden the pulses

significantly for pulses of spectral width around ∆ω = 8 meV FWHM.
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7.9 Arbitrary pulse shape generation

We have demonstrated the ability to control the linear and quadratic phase of an

ultrashort pulse. However, we desire to use the pulse shaper to study the effects of other

pulse shapes, and especially to realize the criteria for density-matrix ensemble averaging, as

discussed in §6.2.

As a proof of principle, we apply a randomized phase mask to a pulse spectrum (which

in this case is not spectrally narrowed) with large energy bin spacing ∆ΩEBS = 4.4 meV.

The original spectrum is modified at the locations of phase discontinuity, as shown in Fig.

7.13. While the agreement is not perfect (perhaps because of factory calibration error of

the SLM), the features of the width, location, and depth of the spectral dips are roughly

matched. The largest dip occurs at E − E1s = 0 meV, where there is a phase discontinuity

of 0.82π, consistent with the arguments presented in §7.4. The phase discontinuity at E −

E1s = 8.8 meV, while large in appearance, is actually a small phase jump because the phase

‘wraps around’ between 2π and 0. Thus, the phase jump at this location is only 0.23π and

corresponds to a smaller fractional dip in the spectrum.

7.10 Prepared for density-matrix ensemble averaging

We conclude that we are able to create a large variety of pulses with almost arbitrary

phase modulation. We note the physical limitation of the dips in the spectrum at places of

phase discontinuity on the SLM. However, this does not present a problem for the experi-

ments since we monitor the created carrier density in the QW system (discussed in §3.3.4),

and can correct for the amplitude modulation. We proceed in the next chapter to explain

the experiments that realize the density-matrix ensemble averaging scheme using the pulse

shaper apparatus.
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Figure 7.13: Comparison of simulation and experiment for a randomized phase mask function applied to
a pulse spectrum.



Chapter 8

Phase-randomized pulse experiments

The last few chapters explained the motivations and techniques for using phase-randomized

pulses of light to learn about the response of the GaAs quantum-well (QW) system under

incoherent excitation conditions. We refer to the phase-randomized pulses as ‘scrambled’

pulses. The scrambled pulses excite the sample, which is then inquired by a transform-

limited weak probe pulse.

We present the procedure for characterizing the statistics of scrambled pulses using

density-matrix ensemble averaging. We then describe simulations performed using the optical

Bloch equations (OBEs) to qualitatively predict the effects of single realizations. We describe

the experimental methods used to measure the nonlinear response of the QW system under

scrambled-pulse excitation, and then present the results of the measurements.

8.1 Characterization of average statistics

We seek to produce an ensemble of pulses that have the statistical properties of thermal

light, in contrast to the properties of coherent light. We demonstrate in this section the

techniques for characterizing the ensemble averages for the scrambled pulses, and discuss

the limitations in the measurements.

To perform experiments with the scrambled realizations, we prepare a group of ran-

domized phase masks. A set of Nreal phase masks is created with random phases for each

frequency bin ∆ωbin using a pseudo-random number generator. Before using these pulses
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to perform transient absorption measurements, we analyze time-domain statistics to ensure

that the statistics of the ensemble corresponds to a thermal source.

We characterize the statistics of the set of pulse realizations through time domain

measurements. Typical cross-correlation traces for the scrambled realizations compared with

the transform-limited (flat mask) case are shown in Fig. 8.1. We observe that the pulses

are stretched out in time, and that the intensity at any given delay τ fluctuates between

realizations. We specifically seek the second-order coherence function g(2), which is obtained

through measurement of the photon probability distribution. This function can be calculated

by constructing the probability distribution function from a collection of cross-correlation

traces.
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Figure 8.1: Cross-correlation traces for six different scrambled realizations. All traces are normalized so
that the area is unity. For comparison, the normalized transform-limited pulse (flat spectral phase mask) is
shown as a dashed red line.

The photon number distribution Pm, discussed in §5.2.4, defines the probability of

measuring m photons in a time window T shorter than the coherence time of the light

source. The probability distribution has a one-to-one correspondence with the kth-order
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coherence function value [119, 102]:

g(k) =
〈

n̂k
〉

/ 〈n̂〉k =
1

〈n̂〉k
Nph
∑

m=k

m!

(m− k)!
Pm, (8.1)

where Nph is the maximum number of photons that is measured in a particular time window

T and 〈n̂〉 = n̄ is the average number of photons per pulse. We are most interested in the

second-order coherence function because this distinguishes coherent statistics from thermal

statistics. The second-order coherence function value is found by setting k = 2 in Eqn. 8.1:

g(2) =
〈

n̂2
〉

/ 〈n̂〉2 =
1

〈n̂〉2
Nph
∑

m=k

m(m− 1)Pm. (8.2)

To calculate statistics for our ensemble, we obtain the probability distribution Pm

by measuring the intensity profile for a large number of pulse realizations. The temporal

intensity profile of a single pulse realization can be approximated by a cross-correlation

measurement with the short-duration probe pulse, as explained in §3.5. We measure the

cross-correlations for 500 different pulse realizations. We histogram the intensity distribution

at a fixed delay for the many realizations. This histogram represents the intensity probability

distribution and is proportional to Pm. From the intensity probability distribution, we

calculate the coherence functions according to Eqn. 8.1 for the ensemble of Nreal = 500

realizations of scrambled pulses.

We measure the cross-correlations for Nreal = 500 different pulse realizations. The

cross-correlation traces are averaged according to:

Savg(τ) =
1

Nreal

Nreal
∑

r=1

Sr(τ), (8.3)

where Sr(τ) is the normalized cross-correlation trace for the rth realization. Each trace is

normalized to have the same number of photons per realization. This simulation does not

take into account the more complicated nature of the differences in the fractional absorption

by the QWs between realizations. However, the difference in fractional absorption between

pulse realizations with the same number of photons is typically on the order of 5%. Thus,
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normalization of the cross-correlation traces is a reasonable approximation for our purpose

of determining the statistics of the ensemble of pulse realizations.

We select a particular delay τ ′ and record the value Sr(τ
′) for each realization r. The

results are then histogrammed, creating a photon number probability distribution function

Pm. The distribution function can then be translated into a second-order coherence value

g(2) by Eqn. 8.2. We compare the g(2) for different bin spacings to quantify the statistics

compared with thermal statistics where g(2) = 2.
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Figure 8.2: (a) Cross-correlation values at time delay τ ′ = 0. (b) Probability distribution function for the
normalized cross-correlation values. (c) Cross-correlation values for serval τ values. (d) mth-order coherence
values calculated by Eqn. 8.2.

We plot some typical results for varied frequency bin spacing ∆ωbin in Fig. 8.2. We

compare frequency bin spacings of ∆ωbin = 0.3 meV, ∆ωbin = 3.0 meV, and a flat phase

mask case. The flat mask case is equivalent to a bin spacing of ∆ωbin → ∞. The three cases

correspond to 20 bins, 2 bins, and 0 bins across the ∆ω = 6 meV spectrum. We choose the
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delay τ ′ = 0 for comparing these three cases. In Fig. 8.2a we notice that the 20-bins case

has the largest intensity fluctuations at τ ′ = 0 compared to the other two cases, whereas the

0-bin case has uniform intensity at τ ′ = 0.

To collect statistics on each sequence of realizations, we perform a normalization pro-

cedure. The total intensity measured from each cross-correlation is normalized, as it is also

in the transient absorption experiment, where we adjust the energy of each realization to be

the same. The total set of cross-correlations is divided by a constant so that the average

number of photons at τ ′ = 0 is normalized to n̄(τ ′ = 0) = 10. This second normalization is

performed for simplicity in the analysis and does not change the comparative result between

data sets.

The limitation in the accuracy of these measurements is from the number of realizations

for which we record traces. Ideally, the number of measurements should approach ‘infinity’

to have the most accurate measurements. However, we record only 500 traces because this

measurement already requires many hours. Having a finite number of realizations means

that the histogram bins must be chosen to be large enough to count multiple values in each

bin, but small enough so that the photon number distribution can be observed with some

resolution. A bin size spacing of 10% of the total intensity combined with the normalization

procedure described earlier satisfies these two criteria. To determine the trend in accuracy

as we increase the number of measurements, we calculate g(2) for a variable number of traces

and use a nonlinear fitting procedure to fit the exponentially asymptotic function

g̃(Nreal) = a1 + a2

(

1 − e−a3Nreal
)

, (8.4)

where ai are constants determined by the fitting procedure. The measured g(2) values are

shown in Fig. 8.3 along with the fit and the asymptote of the fit. The fitting procedure

neglects measurements for Nreal < 50 because it is clear from Fig. 8.3 that these points are

noisy because of the small sample size. We consider the asymptote value limN→∞ g̃(N) to be

the measured value of g(2) for an infinite number of measured realizations. This procedure
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shows that for Nreal > 300 we match limN→∞ g̃(N) to within 7.3%.
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Figure 8.3: Convergence of the measured second-order coherence function values g(2) as the number of
realizations is increased. The measured g(2) function (blue squares) is fit with an asymptotic function g̃
(green line) to determine the error in g(2) measuring a finite number of realizations. Asymptote of g̃ is shown
for limN→∞ g̃. This example uses the data from ∆ωbin = 0.3 meV, or the 20-bins case.

To interpret the results of the statistical study, it is necessary to consider the finite

number of traces measured. A consequence of the finite number of measured traces is seen in

the histogram in Fig. 8.2b. The probability distribution function for the 0-bin case (coherent

light) peaks to a probability of 1 at n = 10 photons. However, a glance back at Fig. 5.5

reminds us that coherent photon number statistics should follow a Poisson distribution with

some finite width. Because of the limited number of measurements, it is necessary to choose

the histogram width to be large enough that multiple values in each bin can be counted.

The 2-bin case exhibits coherent behavior, with a peak around n = 14 (the peak at n = 2 is

a consequence of chosen bin size). However, for the 20-bin case, the probability distribution

function roughly decays exponentially, very similar to the thermal probability distribution

curve in Fig. 5.5.
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The cross-correlations that we measure are averaged in Fig. 8.2c. We notice that

the width of the intensity profile increases as the number of bins increases. This fact is

consistent with the analysis accompanying Fig. 7.5. The smaller the frequency feature δf

in the frequency domain, the longer the pulse shape is in the time domain. Because the

cross-correlation is shown here for only a few delays, it is difficult to see that the 2-bins case

is longer in time duration than the 0-bin case. The cross-correlation width for the 0-bin case

is ∆τS = 520 fs, as reported in §3.5. The cross-correlation width for the 2-bin case is closer

to ∆τS = 3 ps. In fact, since the spectral feature δf ∝ 1/Nbins, the time duration of the

pulses is estimated to scale roughly as [115]:

∆τ(Nbins) ≈ Nbins ∆τ0, (8.5)

where the width of the cross-correlation ∆τ0 = 520 fs for Nbins = 0. As a reality check of this

estimate, the averaged temporal width ∆τSavg(20) = 4.5 ps = 8.7 ∆τ0 for the average cross-

correlation for the 20-bin case. The estimate in Eqn. 8.5 is reasonable considering that the

width of Savg(τ) is an approximation of the temporal extent of the average sequence of pulses.

The extended time duration of the pulses is relevant to interpretation of measurements in

the QWs. However, the feature that we are as interested in for this statistical analysis is the

ensemble-averaged coherence value.

It is possible to see a clear difference in the measured kth-order coherence value g(k)

for the different bin spacings. We show in Fig. 8.2d that the first-order correlation function

is independent of bin spacing. The higher-order correlation functions diverge as k increases.

We primarily care about second-order coherence function values. The g(2) values in Fig.

8.2d are plotted in Fig. 8.4 with measured values from several other bin sizes. In all cases

Nreal = 500 realizations were measured to calculate g(2). We find that the second-order

coherence function value increases as we increase the number of bins across the spectrum,

consistent with Eqn. 6.17. Note that inconsistencies with the theory here are both because

of the finite number of measurements and the fact that the theory is valid only for Nbins ≫ 2.
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Figure 8.4: Measured second-order coherence function values for several different bin spacings. Measured
values correspond to the trend predicted in Eqn. 6.17.

We have characterized the statistical properties for an ensemble of pulses for different

bin spacings and have found that indeed the photon statistics are closer to thermal light

than coherent in the limit of a large number of bins across the laser spectrum, as predicted

by the Kira-Koch theory [115].

Another prediction from the DME averaging scheme is that the average of the scram-

bled pump spectra Sscram
avg (ω) = 1

Nens

∑Nens

r Sscram
r (ω) should limit to the transform-limited

spectrum Sflat(ω) (with a flat spectral phase mask). As a test of this, we successively av-

erage the spectra of an increasing number of realizations to confirm that the spectra of

the scrambled realizations converge to the transform-limited spectrum. We illustrate the

convergence of the pump spectra in Fig 8.5. The standard error of the normalized spectra

σ2 =
∑

i

[

Sscram
avg (ωi) − Sflat(ωi)

]2
< 10−6 for Nens > 50 realizations.

Considering that a single realization is a collection of multiple temporal modes, as

illustrated in Fig. 8.1, we investigate the possibility that a single scrambled realization may
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Figure 8.5: The average scrambled pump spectrum (shown for Nens = 1, 14, 50) converges to the flat mask
spectrum as the number of realizations Nens is increased.

produce some of the predicted effects. We simulate single scrambled realizations in a simple

model to gain insight about the effects of phase randomization.

8.2 Qualitative predictions using the optical Bloch equations

Each scrambled realization contains a small ensemble of pulses with varied peak inten-

sity, temporal phase, and relative time delay to the other pulses in the realization. These

three variables are selected from a distribution determined by the spectral phase bin size. It

is thus reasonable to inquire whether a single scrambled realization might have an effect on

the many-body interactions in the QW system when compared with a coherent light pulse

that creates the same electron-hole carrier density.

To estimate qualitative effects of using scrambled realizations, we perform a simulation

using the optical Bloch equations (OBEs), discussed in §2.6. We also compare the results

with other pulse shapes to predict how temporal pulse duration affects system dynamics. The

pulse-shaper simulation discussed in Chapter 7 allows generation of the electric field in the
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time domain. The temporal intensity waveforms from these electric fields agree with cross-

correlation measurements. Based on the matching between measurement and simulation, we

use the generated electric fields as an input to the optical Bloch equations simulation. Even

though this simulation does not include many-body interactions, we expect that conditions

giving rise to a lower polarization for the same generated carrier population should give rise

to anomalous reduction in scattering and other effects, as discussed in §5.4.

We assume in our simulation that the electric field gives rise to excited carrier popu-

lations and off-diagonal density matrix elements according to the OBEs (Eqn. 2.30). We

attempt to see the qualitative effects of different temporal waveforms on the dynamics. This

simulation has nothing to do with the photon statistics. It is a semi-classical approach to

understanding two-level system dynamics.

For the model, a population decay time of T1 = 1/γee = 10 ps and a dephasing time of

T2 = 1/γeg = 1 ps are chosen. The dynamics of ρee−ρgg and ρeg are simulated, corresponding

to the population and polarization, respectively. As an indicator of how much polarization

is generated for a given population, we record the maximal ratio of the population to the

polarization. We take the ratios of each absolute-value quantity squared so that we have a

magnitude (instead of a complex value) for comparison between different pulse realizations.

An example of the dynamics for a transform-limited pulse excitation as simulated by the

OBEs is shown in 8.6. The excitation pulse drives the population inversion and polarization

terms in Eqn. 2.30. The population inversion ρee − ρgg = 2 ρee − 1 ranges between -1 and 1,

corresponding to full population in the ground state and the excited state, respectively. The

term ρeg is proportional to the macroscopic polarization, as discussed in §2.6. Both terms

are presented in absolute value squared to simplify the complex quantities. This simulation

can also reveal qualitative understanding of the dynamics for more complicated waveforms.

To apply the OBEs to different temporal intensity waveforms, we start with the spec-

trum in Fig 3.4, and use our pulse-shaping simulation (described in §7.7.2) to generate three

sets of complex electric field envelopes ε(t). The generated fields drive the OBEs, and the
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Figure 8.6: Simulation using the optical Bloch equations (Eqn. 2.30) of the optical excitation of a two-level
system including phenomenological decay terms. The population term is offset such that 0 means population
is completely in the ground state.

results from the realizations are compared.

In one case, the spectrum of the pulse is narrowed, yielding a longer pulse duration

in the time domain. In another case, two pulses are chosen to be a variable time delay

apart from each other. We compare both of these cases to the scrambled pulses, where we

apply a random phase mask with varying energy bin spacing ∆ωbin. The smaller the bin

spacing, the longer the duration of the pulse sequence (illustrated in Fig. 7.5). In all three

cases, the temporal duration is varied over a range from 0.5 ps up to 100 ps. The maxi-

mal population-to-polarization ratio |ρee − ρgg|2 / |ρgg|2 is recorded for each realization. We

choose this observable because we are interested finding trends concerning which waveforms

give rise to a low polarization for a fixed population.

To compare the results for the three separate cases, we quantify the temporal extent
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of each realization by the second moment:

〈

t2
〉

=

∫∞
−∞ t2 ε∗(t) ε(t) dt
∫∞
−∞ ε∗(t) ε(t) dt

. (8.6)

The second moment quantifies the temporal duration, allowing a rough comparison between

the results for the different realizations.

The maximal population-to-polarization ratio is plotted in Fig. 8.7 as a function of

the temporal duration of each realization. At short durations the three cases exhibit similar

behavior. However, for longer temporal durations, we see that the ratio is maximized for the

spectrum-narrowing case. This result is closely matched by the two-pulse configuration. The

randomized-phase realizations follow a trend similar to the other two cases, but the ratio

appears to flatten out for long temporal durations. The error bars at each point show the

standard deviation from five simulations of different scrambled realizations with the same

energy bin spacing ∆ωbin.

Figure 8.7: Population-to-polarization ratios for three cases where the temporal duration is systematically
varied.
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The simulations show that the population-to-polarization ratio increases with the tem-

poral duration of a waveform, regardless of the type of realization. Since polarization scatter-

ing dominates the excitation-induced effects, as shown in Chapter 4, this simulation predicts

that the excitation-induced effects should be weaker for longer duration pulses compared

to the effects for a transform-limited pulse that create the same population. The weaker

excitation-induced effects manifest in a less saturated HH 1s resonance absorption spec-

trum: a higher peak height, less blue shift, and a narrower linewidth. We now proceed to

test the effects of the scrambled realizations in the QW system, and in the next chapter we

explore the measured affects of different pulse shapes.

8.3 Experimental methods

We have verified that the ensemble of scrambled realizations corresponds to a thermal

source, and simulation indicates that single scrambled realizations may show a difference to

transform-limited excitation. A group of measurements is performed to quantify the QW

response to scrambled realizations.

We perform spectrally resolved transient absorption measurements of the QW system

after excitation by each scrambled realization. The procedure for transient absorption mea-

surements is very similar to the methods described in Chapter 3. The modifications are as

follows. Between each measurement, we change the phase mask on the spatial light mod-

ulator in the pulse shaper to modulate the spectral phase of the pump light source. The

technique for spectral phase modulation is discussed in Chapter 7. Since the masks have

discontinuities in the phase leading to unavoidable amplitude modulation of the pulse, the

average power is slightly different for each scrambled realization.

We monitor the pump input power P pump
IN continuously as discussed in §3.3.4. We

adjust the power of each phase mask realization so that P pump
IN is the same for all realizations.

Additionally, the reflected and transmitted pump powers are measured continuously. These

three calibrated measurements allow calculation of the pump power absorbed by the QW
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system P pump
QW by Eqn. 3.13. We spectrally resolve the absorption α(ω) of a probe pulse that

arrives at the sample a delay τ after the pump pulse creates a many-body configuration.

This delay must be chosen carefully since spectral phase modulation broadens out the pump

pulse in time, as discussed in §7.5 and shown in Fig. 8.1. To simplify the interpretation of

the results, we want to compare the effects of the scrambled realizations to that of transform-

limited pulses in the incoherent regime, where the polarization has decayed. Consequently,

the choice of a long probe delay τ = 27 ps ensures that the polarization has decayed by the

time the probe arrives at the sample.

We repeat the measurement for a matrix of phase masks and P pump
IN powers, including

multiple measurements using the flat phase mask to ensure repeatability. From the spectrally

resolved probe absorption response, parameters are extracted via our model-independent

fitting procedure (§3.4) to allow comparison between different realizations.

8.4 Results of phase-randomized experiments

We present results from the measurements of the QW system response when excited

with scrambled light. From each probe spectrum measured at one of the matrix of powers

and phase mask realizations, we extract the peak height and the center resonance position.

These observables relate information about how strongly the many-body configuration is

saturating the exciton resonance. The peak heights and the center resonance positions are

shown in Fig. 8.8. As a reminder of the results from Chapter 4, stronger nonlinearity means

a lower peak height and a stronger blue shift of the center resonance position.

The peak height and center position both indicate that the scrambled realizations give

rise to less saturation than the transform-limited pulse for similar powers absorbed by the

QW (P pump
QW ). Fitting a line through the data for both the transform-limited pulse data and

the scrambled data, we see that the differences in nonlinear effect become more noticeable as

P pump
QW increases. The probe spectra converge at the lowest excitation densities, as expected

for the probe spectra in the absence of any pump excitation. The same trends are observed
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Figure 8.8: Nonlinear observables as a function of power. Peak heights of αQW are shown for varying (a)
P pump

QW and (b) P pump
QW . Center resonance positions are shown for varying (c) P pump

QW and (d) P pump
QW . Fits

(solid lines) through each set of points clarify the trends for the observables.

as a function of the input excitation power P pump
IN .

The results are consistent with the theoretical prediction (§5.4) that the scrambled

realizations should produce weaker nonlinear effects compared with the transform-limited

pulses for the same excitation densities in the QW. The probe absorption spectra are less

saturated for the scrambled realizations compared with the transform-limited (coherent)

case. The average absorption spectra, computed according to Eqn. 6.7, are shown in Fig.

8.9, along with the linear absorption spectrum. It is clear in this plot that not only do single

scrambled realizations saturate the HH 1s-resonance less than transform-limited excitation

for the same P pump
IN , the average absorption spectrum is less saturated for scrambled light

excitation than for transform-limited pulse excitation.

These data need confirmation from the theory to determine whether or not they are a

true demonstration of quantum-optical spectroscopy. The confirmation will be accomplished

through a theory technique known as cluster-expansion transformation, discussed in the
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Figure 8.9: The average spectrum from the scrambled realizations saturates the HH 1s-resonance less than
from coherent excitation with the same P pump

IN . The spectra are shown with the linear absorption (pump
off) for comparison.

literature [120].

While we do not yet have confirmation that we have demonstrated quantum-optical

spectroscopy, our observations of weaker saturation for the scrambled realizations compared

with transform-limited excitation are consistent with the Kira-Koch prediction. However,

the OBE simulations performed in this chapter suggest that the suppression of polarization

(and thus also suppression of the nonlinear scattering) can be explained by a simpler reason

than suggested by the theory. It is possible that the longer temporal pulse duration (or

lower peak intensity) is mainly responsible for the observed decrease in excitation-induced

effects. To explore this hypothesis, we compare the effects of scrambled realizations to those

of different pulse shapes.



Chapter 9

Quantum-well response to other pulse shapes

We found in the previous chapter that each scrambled realization produces decreased

nonlinear effects on average in comparison to a transform-limited pulse excitation. The data

may possibly validate the theoretical prediction that the coherence properties of the scram-

bled pulses influence the many-body configurations. However, since the phase-randomization

technique also increases the time duration of the pulses (and consequently lowers the peak

intensity), we consider the possibility that the longer duration may explain the observed de-

creased nonlinearities independent of the consequences of the statistics of the exciting light

source.

To test this possibility, we create realizations with similar time duration as the scram-

bled realizations but with no statistical properties beyond that of a coherent state. In the

simulations discussed in Chapter 8, pulse shapes other than scrambled light were shown to

have effects similar to the phase-randomized realizations in a two-level system. While the

case of narrowing the excitation spectrum produces a high population-to-polarization ratio in

the simulations, it is difficult to compare this case to the scrambled realizations because the

resonance condition is modified for a changed bandwidth [117]. Consequently, we examine

the effects of a pulse sequence in comparison to the effects for the scrambled realizations.
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9.1 Three-pulse (zero-Φ) excitation

To achieve a set of realizations to compare with the scrambled cases, we create a

series of “zero-Φ” masks with the same energy bin spacing as for the scrambled masks,

∆ωbin = 0.21 meV. The mask type is illustrated in the frequency and time domains in Fig.

9.1. Our name for this set of masks describes the spectral phase square wave pattern with

modulation amplitude Φ across the spectrum. In contrast to the random temporal nature of

the scrambled realizations, the zero-Φ masks produce a simple series of three pulses in the

time domain with even spacing. For this reason, we refer to the zero-Φ realizations in the

time domain as “three-pulse” realizations. While the two-pulse sequence described above is a

slightly simpler candidate for comparison, we experimentally determine that this realization

results in a low efficiency, making tests in the nonlinear regime difficult. The three-pulse

sequence has a higher efficiency, and powers comparable to the randomized-phase masks are

achievable. We test the quantum-well (QW) response for a range of amplitude modulations

Φ and shifts in the spectral location θ for the square-wave pattern, shown in Fig. 9.1.

Figure 9.1: (a) Frequency and (b) time domain representations of a zero-Φ (or three-pulse) realization.
The simulation is shown to roughly match the experimental cross-correlation data. In (a), the parameters θ
and Φ are labeled as described in the text.

We measure cross-correlations of the three-pulse realizations to determine the time-

domain intensity profiles, similar to Fig. 9.1. The realizations are ordered in three groups
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of three realizations. All of the realizations exhibit a three-pulse sequence with the same

relative delay between pulses. In the first group, with modulation between ∆Φ = π/1.1, the

outer two pulses are stronger than the central pulse. In the central group, the amplitude

of the spectral phase modulation was chosen (∆Φ = π/1.14) such that the three pulses are

approximately equal in intensity. This is the realization shown in Fig. 9.1. In the last group,

with lower amplitude of modulation (∆Φ = π/1.3) , the central pulse is stronger than the

outer two pulses. For each group, we shift the pattern by θ = 0, π
2
, and π. We find that

the shifting θ has no effect on the cross-correlation. However, simulations (discussed around

Fig. 7) show that the shift θ in the frequency domain leads to different relative temporal

phases between the pulses in each sequence. For this reason, we try several θ shifts to see if

this has any affect on the quantum-well (QW) system response.

We collect spectrally resolved transient-absorption data using these three-pulse realiza-

tions along with 13 scrambled phase masks for comparison. The procedure for data collection

is the same as for the scrambled masks, discussed in Chapter 8. We apply each phase mask

to the spectrally narrowed pump pulse, setting the pump power P pump
IN to a fixed input

value selected from a matrix of five values. The input, reflected and transmitted powers are

recorded to construct the power absorbed by the QW according to Eqn. 3.13. The power

absorbed by the QW is proportional to the electron-hole density created by the pump re-

alization. The nonlinear response of the probe transmitted through the sample is recorded

at a delay of τ = 26.7 ps. Zero delay (τ = 0) corresponds to when the transform-limited

pulse arrives. Since the probe reflection is quite small compared with the transmission, and

the nonlinear effects we are searching for can be extracted from the transmitted pulse, we

approximate the probe absorption to be α(ω) ≈ 1 − T (ω); this allows measurements to be

made in half the time.

We find that the each of the three-pulse realizations produce similar QW probe re-

sponses that do not show a dependence on the amplitude Φ or shifting θ in the square-wave

spectral phase pattern. The lack of dependence on the shifting θ means that the excitation
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effects for this bin spacing are insensitive to the exact spectral position of the dips in ampli-

tude as long as the total power is set to a constant. However, it is possible that for wider bin

spacings (narrower time between the pulses), differences in relative temporal phases between

pulses may give rise to measurable effects.

Figure 9.2: Nonlinear observables as a function of power. Peak heights are shown for varying (a) P pump
QW

and (b) P pump
QW . Center resonance positions are shown for varying (c) P pump

QW and (d) P pump
QW .

The zero-Φ realizations produce very similar nonlinear probe responses compared to

the scrambled phase masks for similar powers absorbed by the QW system. For the matrix

of input powers used, we extract two observables of the nonlinear effects from the recorded

probe absorption response: center position and peak height of the heavy-hole (HH) 1s exciton

feature, as discussed in §3.4. We plot the observables extracted from the probe absorption as

a function of the power absorbed by the QW system. Figure 9.2 shows the center positions

and the peak heights of the HH 1s exciton as a function of power. The two sets of ‘flat mask’

shown in the figure (black and blue) are multiple measurements from transform-limited

excitation to ensure repeatability. We find that there is less spread for the set of zero-Φ
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realizations compared with the scrambled realization measurements. We perform a linear

fit to each type of realization to see the trends more clearly. The fits show a statistically

significant difference for both of these cases from the transform-limited case. Furthermore,

the zero-Φ and scrambled realization measurements yield observables that are extremely

close to each other. The absorption observables extracted from the probe absorption from

the many-body state created by the zero-Φ realizations lie on the same line as the scrambled

pulses for both observables, whether we view the observables as a function of the input pump

power or of the pump power absorbed by the QW.

Although the zero-Φ and scrambled realizations produce similar results in terms of the

nonlinearity, we noticed a difference between the results for the two sets. The fraction of

the pump power which is absorbed by the QW for the scrambled pulses is lower on average

than for the zero-Φ pulses. This difference in fractional absorption is shown in Fig. 9.3 by

comparing the fraction of power absorbed by the QW (P pump
QW /P pump

IN ) as a function of input

power. The data reveals that a single scrambled phase mask realization from our set actually

yields a higher absorbed fraction by the QW. However, the scrambled realizations have a

lower fractional power absorbed by the QW on average compared with the both the zero-Φ

and transform-limited (flat mask) realizations.

Figure 9.3: Fractional absorption by the QW system as a function of input power, shown for (a) scrambled
realizations and (b) zero-Φ realizations.
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We attempt to explain in the time domain the results for the zero-Φ realizations con-

cerning the reduced nonlinearity compared with the transform-limited pulses and the close

matching with the scrambled excitation. Since we now discuss the dynamics in the time

domain, we refer to a zero-Φ realization as a three-pulse sequence.

Since the three-pulse sequence has similar time duration as the scrambled realizations

and produces the same nonlinear effects, we hypothesize that the decreased nonlinear effect

can be explained by the longer temporal duration of the realization. If the dynamics can

be understood from a simple model, then it may be possible to predict the nonlinear effects

for different pulse shapes (including the scrambled realizations) given a temporal intensity

profile. To test this possible explanation for the measured decrease in nonlinearity, we

compare the QW system time dynamics for a three-pulse sequence to the dynamics generated

by a single transform-limited pulse.

Figure 9.4: Temporal dynamics for observables of the probe absorption line shape: (a) center resonance
position and (b) peak height of the HH 1s-resonance. The observables in the absence of any pump excitation
are also shown (cyan lines).

We measure the probe absorption for the single-pulse transform-limited pump excita-

tion using the previously described procedure but for a series of nine time delays τ as well

as five pump powers. The results from this measurement are shown in Fig. 9.4. While the

center positions exhibits similar decay patterns for each excitation density, the peak heights

exhibit nontrivial behavior. We find that the peak heights decrease as a function of time for
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the highest excitation densities before beginning to rise at longer delays. The lower excita-

tion densities produce monotonically increasing peak heights as a function of time, as would

be expected for a decay. The relaxation times are much slower for the peak height than for

the center position.

To compare the single-pulse data to the three-pulse data, we extract parameters from

the single-pulse dynamics and attempt to match the dynamics for a three-pulse sequence by

a simulation based on the extracted decay parameters from the single-pulse case. Noticing a

linear relationship between P pump
QW and the center position at time-zero for each pump power,

we apply a linear transformation on the data in Fig. 9.4a to yield a measure of the nonlin-

earity in arbitrary units that sets the unexcited value near zero. The linear transformation

is ωcenter = A × n + B, where ωcenter is the center resonance position, n is the measure of

nonlinearity, A = 1.9 and B = 1546.8.

Figure 9.5: Dynamics of the nonlinearity for single-pulse excitation, shown with fits (black dashed lines)
for the same powers as shown in Fig. 9.4. The nonlinearity in the absence of pump excitation is also shown
(cyan line) near zero.

The fitting procedure for the single-pulse data involves finding decaying exponential
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functions that best match each of the dynamics. We find that a single decaying exponential

function is unable to fit the data accurately. As discussed in §2.7, we are aware that two

time scales of decay processes are responsible for the relaxation: dephasing and interband

recombination. Consequently, we fit the single-pulse nonlinearity dynamics with the sum of

two decaying exponentials:

n(τ) = n0

(

e−γpopτ + e−γpolτ
)

, (9.1)

with the parameters: n0, the initial nonlinearity generated at the moment the pump pulse

arrives; γpol, the polarization decay (dephasing) time; and γpop, the recombination time (in-

coherent decay). The linear transformation of the center position dynamics to the nonlinear

dynamics along with the fits are shown in Fig. 9.5. From the fits we extract the parameters

in Eqn. 9.1.

We find from the single-pulse data that both the recombination time and coherent

decay time exhibit a weak dependence on the pump intensity. The results of the fits from

the single-pulse data are shown in Fig. 9.6. The average values of the decay parameters

are γpol = 0.211 ± 0.076 ps−1, and γcoh = 0.015 ± 0.0067 ps−1, corresponding to decay times

of Tpol =4.7 ps and Tpop =68.4 ps, respectively. We use these decay parameters from the

single-pulse data to simulate the three-pulse data. The simulation includes the extracted

decay parameters and models each of the three pulses as an impulse function that generates

a nonlinearity proportional to its intensity.

To test how well the model predicts a sequence of pulses, we measure the parameter

dynamics from a sequence of three pulses that are equal in intensity. For this realization, we

set the power to P pump
IN = 6.73 mW, allowing comparison with the transformed limited pulse

at P pump
IN = 2.25 mW. The comparison is reasonable since each of the three pulses each have

approximately the same photon density as the transform-limited pulse (6.73 mW/3 pulses =

2.24 mW/pulse). As a reminder, the photon density in a pulse is simply proportional to the

average power (Eqn. 3.6). We record the probe absorption αQW(ω) for a matrix of delays
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Figure 9.6: Decay parameters extracted from the single-pulse temporal data using Eqn. 9.1.

to capture the dynamics after each of the three pulses.

We observe similar decay behavior for the three-pulse data compared with the single-

pulse data, shown in Fig. 9.7. The vertical green lines of the simulation indicate the arrival

times of each pulse. After each pulse, the nonlinearity relaxes toward its “pump off” value.

We encounter challenges in matching the simulation with the three-pulse data. First,

we notice that there is not the same fractional absorption for the second and third pulses.

This fact implies that the fractional absorption depends on the excitation history. We account

for the saturated behavior by fitting the function in Eqn. 9.1 to each of the three pulses

and extrapolating on each curve to the moment each pulse arrives. With this procedure, we

estimate the total absorption from all three pulses to be 1.36 mW. This estimate is close to

the direct measurement of 1.55 mW (= 0.23 × 6.73 mW), as shown in Fig. 9.3. However,

even after correcting for saturation effects, we see that the rates of decay after the second

and third pulse do not match those of the simulation. Namely, the decay times are also

affected by the excitation history.
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Figure 9.7: Nonlinearity dynamics for the three-pulse realization with a simulation that uses parameters
from the single-pulse data and accounts for saturation behavior based on the three-pulse data. The poor fit
suggests that the temporal dynamics are nontrivial.

These data with the simulations suggest that the temporal dynamics are both impor-

tant and non-trivial. Since the theoretical computation that might explain the temporal

dynamics for individual scrambled realizations or the three pulse sequence is too expen-

sive, we are motivated to perform another experiment to reveal the nature of the temporal

dynamics by using chirped pulses.

9.2 Chirped pulses

Seeing that the QW system response to excitation sources with wide temporal duration

exhibits nontrivial behavior, we further characterize the system response by studying the

effects of chirped pulses on the QW system dynamics. We have demonstrated in §7.7.2 that

chirp (quadratic spectral phase) broadens pulses in time. We apply a range of positive and

negative chirp parameters ranging from φ′′(ω0)/2 = 0 meV−2 up to φ′′(ω0)/2 = ±5.8 meV−2,

corresponding to pulse durations ranging from ∆τpump = 430 fs to ∆τpump = 10.8 ps. These
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pulse durations are shown as a function of chirp parameter in Fig. 7.12. For each of these

chirp parameters, we apply a quadratic phase mask to the pump spectrum, and then repeat

the transient absorption measurement as described in §8.3 for a probe delay of τ = 13 ps.

For each realization, the input pump power P pump
IN is set to 7 mW. From the probe absorption

spectra α(ω), we extract the peak height and center position of the HH 1s-resonance using

the procedure described in §3.4.

Figure 9.8: Measurements of the QW system response to chirped pulses. From the probe absorption, we
extract (a) the peak resonance position and (b) the peak height. The observables in the absence of the
pump light are shown for comparison (cyan lines). (c) The power absorbed by the QW exhibits nontrivial
dependence on chirp parameter. (d) The nonlinear observables do not follow a simple trend with the
absorbed powers. The extreme chirp parameter values at ±5.8 meV−2 are marked. All four frames show
the measurement from the transform-limited case for comparison and the black lines guide the eye through
the chirp values near φ′′(ω0)/2 = 0 meV−2.

The nonlinear probe measurements from the different chirped-pulse realizations, sum-

marized in Fig. 9.8, demonstrate nontrivial dynamics. The nonlinear observables (higher

nonlinearity = blue shifting and lower peak height) and the pump power absorption exhibit

asymmetries with respect to the sign of chirp. The peak height and the center resonance

position of the probe absorption for all measured values are strongly correlated, with a linear
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relationship having coefficient of determination R2 = 0.974. For negative chirp parameters

(blue arrives first at the QW), the nonlinearities mostly decrease as with increasing chirp

magnitude |φ′′(ω0)/2| (with the exception of the most extreme value at φ′′(ω0)/2 = −5.8

meV−2). The positive chirp case (red arrives first) shows stronger nonlinear behavior with

increasing chirp up until φ′′(ω0)/2 = 0.3 meV−2, followed by decreasing nonlinearity that

levels off to roughly the transform-limited values. The pump power absorbed by the QW

system (Fig. 9.8c) for negative chirp is lower than the transform-limited case (excepting the

two extreme values). For positive chirp, the pump absorption is consistently higher than the

transform-limited case and grows roughly linearly with chirp parameter. A plot of the peak

height as a function of the power absorbed by the QW in Fig. 9.8d shows that the change

in nonlinearity cannot be simply attributed to a change in the power absorbed by the QW

since the different nonlinear effects happens for the same powers absorbed.

Figure 9.9: Spectra for a variety of spectral chirp parameters φ′′(ω0)/2 with units meV−2 in the legend.
Negative chirp parameters produce similar spectra. A quadratic spectral phase φ′′(ω0)/2 = 1.9 meV−2 is
also shown (dashed line).

To interpret these data, we also consider that for large chirp parameters the pump

spectra are strongly modified. The modification for large chirp parameters results from rapid
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changes in phase at the edges of the spectrum. The phase “wraps around” between 0 and

2π, resulting in sharp discontinuities in phase between adjacent pixels. These discontinuities

diffract out the light at the spectrum edges according to the theory presented in §7.4. The

spectral amplitude modulation becomes noticeable for chirp parameters beyond |φ′′(ω0)/2| >

1 meV−2.

Considering the probe data along with the pump spectra, we attribute the observed

behavior to the pump-induced shifting of the center position of the resonance. For small chirp

parameters (|φ′′(ω0)/2| < 1 meV−2), the pump spectra are not modified. Since the tendency

of the resonance is to blue shift, the positive chirp enhances the nonlinearity for low chirp

parameters. This is because the red part of the pump spectrum, arriving first, contributes

to some blue shifting of the resonance, then the subsequent blue part of the spectrum is on

resonance. Conversely, the negative chirp accomplishes the opposite. The blue part of the

spectrum blue-shifts the resonance, causing the subsequent red part of the spectrum to be

off resonance. This explains the observed nonlinearities for small chirp parameters.

For larger chirp parameters, the pump spectra become narrower, which changes the

resonance condition. For positive chirp, the pump becomes less resonant with the HH 1s-

resonance, thus weakening the nonlinearities. However, large values of negative chirp actually

begin to enhance the nonlinearities even though the pump spectra are narrowed. Because of

this, our interpretation is not complete.

The most surprising feature from this study of chirped pulses is that the positively

chirped pulses, which are longer in time duration than the transform-limited pulse, can

actually produce stronger nonlinearities than the transform-limited case. This fact indicates

that the dynamics are complicated and that there is not a straight-forward relationship

between the time duration of an excitation pulse and observed nonlinearities.

It is challenging to make a connection between the chirped pulses and the scrambled

realizations because the bandwidth of the spectra are strongly modified for large chirp pa-

rameters, whereas the bandwidth for the scrambled realizations is not changed. However,
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The results suggest that the system response is nontrivial and that analysis using micro-

scopic theory may provide insight concerning the system dynamics in response to different

pulse shapes.



Chapter 10

Conclusion

We have explored the nonlinear dynamics of excitons in a GaAs quantum-well (QW)

system. The research is broken into two parts: (i) quantitative measurements of the Coulomb-

induced nonlinearities, and (ii) a study of the system response to light statistics using pulse-

shaping techniques.

Our quantitative measurements combined with a microscopic theory elucidate the

many-body interactions that give rise to observed changes in the probe response. The many-

body configurations matched by the theory for a variety of excitation conditions quantita-

tively demonstrate the effects of polarization selection and reveal system dynamics. Specif-

ically, we find that Coulomb scattering of polarization with free-carrier densities dominates

the excitation-induced shifting (EIS) and excitation-induced dephasing (EID) of the exciton

resonance in our sample. Surprisingly, exciton populations do not significantly contribute

to the nonlinear line shape. Strong transient gain is observed only under co-circular pump-

probe conditions and is attributed to a transfer coherent transfer of energy between the

pump and probe. The combination of experiment with theory provide the most complete

description to date of the many-body effects that contribute to observed nonlinear responses.

The work described in Chapters 3–4 established that the nonlinearities are large enough

to display light-statistic dependent excitation-induced (nonlinear) effects. To realize the first

experimental demonstration of quantum-optical spectroscopy, where the nonlinear material

response depends on the light statistics of the excitation source, we introduced a novel
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experimental technique combined with a theoretical paradigm known as density-matrix en-

semble averaging. We used pulse-shaping techniques to generate spectral-phase-randomized

pulse realizations to create a many-body configuration in the QW system and measured

the response with spectrally resolved transient absorption techniques described in Chapter

3. We found that single phase-randomized realizations saturated the exciton resonance less

than for a transform-limited pulse, on average. An ensemble of probe measurements after

phase-randomized realization excitation was averaged to construct the system response to

an incoherent excitation source.

Experimental measurements are consistent with the prediction that incoherent exci-

tation at the same excitation densities as transform-limited excitation leads to suppression

of polarization (and thus a suppression of saturation effects). However, comparison of the

system response to other pulse shapes suggests a simpler explanation for decreased non-

linearities than quantum-statistical fluctuations. We find that a sequence of pulses with

similar time duration and excitation density, but with no statistical properties beyond that

of a coherent state, yields a similar nonlinear response to phase-randomized realizations.

This observation suggests that the observed decrease in saturation is primarily due to the

increased time duration of the phase-randomized realizations. While a simpler explanation

for the decreased nonlinearities observed in the system has been offered, the averaged exper-

imental phase-randomized data may in fact represent a construction the system response to

light excitation with incoherent statistics. This claim will be verified by further theoretical

investigation.

10.1 Outlook

We are continuing work with our theorist collaborators to determine the meaning of

the constructed system response involving density-matrix ensemble averaging techniques.

However, it is also possible that the many-body interactions in our system are influenced by

the light statistics of the optical excitation source in ways that we have not been measuring.
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We propose a future experiment to further explore quantum-optical spectroscopy of GaAs

QWs.

The experimental measurements reported in this thesis consist only of the transient

probe response. However, the theory predicts more observable effects than just the suppres-

sion of scattering for incoherent excitation. Specifically, incoherent excitation is predicted to

generate a macroscopic population of low-momentum states, shown in Fig. 5.9c. The pho-

toluminescence from such a population is predicted to be directional and with incoherent

quantum statistics.

Measurement of the photoluminescence properties could directly verify the Kira-Koch

predictions for quantum-optical spectroscopy. This could be accomplished via time-resolved

measurements of the quantum statistics and directionality of the photoluminescence. The

pholuminescence must be time-resolved to separate it from the excitation light. Measure-

ments of the photoluminescence with a balanced homodyne detection setup [121] allows

for characterization of the quantum statistics. These additional measurements may give fur-

ther evidence that phase-randomized pulses corroborate theoretical predictions for quantum-

optical spectroscopy.
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Appendix A

Double chop method for probe measurements

To optimally record the probe spectrum in the presence and absence of the pump, we

develop a novel technique involving an optical chopper. We send the pump and probe beams

through the chopper wheel, as shown in Fig. A.1, so that they are modulated at slightly

different frequencies that have a fixed phase relationship. There are 30 slots for the outer

radius, and 25 slots for the inner radius. The pump beam, traveling through the outer path,

is modulated at fpump = 2.12 kHz, whereas the probe beam, traveling the inner path, is

modulated at fprobe = 1.76 kHz.

The pump and probe beams travel along different paths before converging onto the

sample. We then spectrally resolve the probe reflection and transmission and collect the

signal using a photodetector. The signal present on the photodetector is a combination of

the probe response, scattered pump light, and a signal resulting from the interaction between

the two beams. We want to extract the probe spectra in both the presence of and absence

of the pump, which involves considering the Fourier components involved. We filter out

these components by means of a lock-in detector (Stanford Research Systems, commercial

product SR-830). The lock-in detection technique involves narrow-band active filtering to

extract the Fourier component of interest from a signal that may contain a large amount

of noise or other undesirable signals. The collected signal modulated at frequency fprobe

contains a mix of the probe response in the presence of, or absence of, the pump since the

pump and probe are chopped at slightly different frequencies.
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Probe beam

Pump beam

Aperture 4.3 mm

Aperture 3.1 mm

Figure A.1: Schematic shown for pump and probe beams traveling perpendicular to the plane of the
optical chopper wheel. As the wheel spins, the pump and probe beams are modulated at slightly different
frequencies, a critical aspect to resolving the probe spectra in the presence and absence of the pump.

A nontrivial amount of pump light, Ipump
scattered, scatters in the direction of the probe

reflection and transmission. Since we modulate the pump light at a different frequency

than the probe, we use the chopping frequency modulation in addition to lock-in detection

to ignore the scattered-pump-light contribution to the probe signal. Since the time scale of

interaction inside the sample is on the order of picoseconds, the interaction signal, ∆Iprobe
interaction,

depends only on moments when the pump and probe are both present on the sample.

As we will demonstrate, analyzing the frequency contents of these contributions allows

the extraction of the probe signal in the presence of the pump, Iprobe
pumpON, and the probe

signal in the absence of the pump, Iprobe
pumpOFF. The chopping creates square waves that can

be represented as Fourier expansions. The signal measured on a photodetector will produce

a current with many frequency components ωi:

Ii(t) = 1
2

+ 2
π

[

sin(ωit) + 1
3
sin(3ωit) + 1

5
sin(5ωit) + 1

5
sin(7ωit) + · · ·

]

, (A.1)

where ωi/2π is the chopper modulation frequency fpump or fprobe. Since we detect the signal

using lock-in detection, we can filter specific frequency components to construct our final
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result.

We find the total signal that appears on an oscilloscope (keeping only the first two

terms of the Fourier expansion since we filter out the higher harmonics contributing to the

square wave) to be

Iprobe
total = Iprobe

pumpOFF

[

1
2

+ 2
π
sin(ωprobet)

]

+ Ipump
scattered

[

1
2

+ 2
π
sin(ωpumpt)

]

+∆Iprobe
interaction

[

1
2

+ 2
π
sin(ωprobet)

] [

1
2

+ 2
π
sin(ωpumpt)

]

. (A.2)

Expanding the coefficient of ∆Iprobe
interaction through multiplication, we find two terms at addi-

tional frequencies: the sum, ωprobe + ωpump, and the difference, ωprobe − ωpump. Because of

the symmetry of the multiplication (in the pump and probe), these two frequencies contain

identical information. We choose to use the sum frequency (3.88 kHz) because there is less

noise at higher frequencies. We isolate the sum frequency as a reference signal by sending the

ωprobe and ωpump transistortransistor logic (TTL) reference signals from the optical chopper

through an XNOR logical gate in combination with active and passive filtering. We enumer-

ate the contributions to the intensity measured in the probe direction at each frequency of

interest:

IDC =
1

2
Iprobe
pumpOFF +

1

2
Ipump
scattered +

1

4
∆Iprobe

interaction, (A.3)

Iωprobe
=

2

π
Iprobe
pumpOFF +

1

π
∆Iprobe

interaction, (A.4)

Iωpump =
2

π
Ipump
scattered +

1

π
∆Iprobe

interaction, (A.5)

Iωsum = − 2

π2
∆Iprobe

interaction, (A.6)

Iωdiff
=

2

π2
∆Iprobe

interaction (A.7)

(A.8)

where DC means is the time-independent piece at ω = 0, ωsum = ωprobe + ωpump, and

ωdiff = ωprobe − ωpump. We neglect signals at the DC component and at ωdiff . From the
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remaining quantities, we combine the intensities to construct Iprobe
pumpON and Iprobe

pumpOFF:

Iprobe
pumpOFF =

π

2

(

Iωprobe
+
π

2
Iωsum

)

, (A.9)

Iprobe
pumpON = Iprobe

pumpOFF + ∆Iprobe
interaction, (A.10)

where

∆Iprobe
interaction =

−π2

2
Iωsum . (A.11)

The ability to simultaneously measure the probe signal in the presence and absence

of the pump is important for a high-accuracy calibration of the probe transmission and

reflection probabilities, as explained in Appendix B.



Appendix B

Calibration of the pump and probe powers

To construct the true absorption α(ω) = 1 − T (ω) − R(ω) for the pump and probe

beams, it is necessary to record the transmission T (ω) and reflection R(ω) probabilities

as accurately as possible. For both the pump and probe powers, we correct for interface

reflection losses. Additionally, the simultaneous measurement of the probe signal in the

presence and absence of the pump allows calibration of the probe signal in the presence of

the pump.

B.1 Correction for reflection losses

In order to correct for the reflection losses at interfaces in our experiment, we consider

the geometry of the experimental setup. We record the optical probe power going in (Pmeas
IN )

to the cryostat and the reflected (Pmeas
R ) and transmitted (Pmeas

T ) powers from the sample

with a Coherent GS Fieldmaster power meter. However, because of reflection losses inside

the cryostat, it is necessary to introduce correction factors to accurately construct the true

reflection and transmission probabilities from the sample. We do not introduce a correction

factor for the measured input power, but the PR and PT powers are corrected by considering

all losses starting from before the cryostat until after the cryostat. This procedure allows

accurate construction of the reflection and transmission probabilities, T = Pmeas
R /Pmeas

IN and

T = Pmeas
T /Pmeas

IN .

The schematic for the light path is shown in Fig. B.1. The figure shows the multiple
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interfaces at which the beam experiences losses due to reflection at an interface between

two materials with different indices of refraction. The sample is mounted onto a wedged

sapphire disc, which has an antireflection (AR) coating on surface 1 (surf1). An AR coating

is applied to the sample after being mounted to surface 2 (surf2) of the sapphire disc to

suppress multiple reflections within the material, as discussed in §3.1. Since surfaace 2 of

the sapphire disc is unavoidably also coated with an AR coat designed for the interface

between GaAs and vacuum, we expect surface 2 to have a higher reflection probability at

our optical wavelength of 800 nm.

Figure B.1: Schematic for light path going into and out of the cryostat. We account for reflection losses
at interfaces (dotted lines) to construct the true transmission and reflection probabilities.

We perform a procedure to determine the reflection probabilities from the sapphire

windows and the cryostat windows. We first remove the sample and mount to measure the

powers Pmeas
IN,cryo and Pmeas

T,cryo for the cryostat windows only. Since the beam passes through

two cryostat windows, this measurement allows for the induction of the reflection probability

(the fractional loss) of a single cryostat window as RCryoWindow = 0.0049.

We then replace the sample mount to measure the powers Pmeas
R and Pmeas

T from surface

2 of the sapphire window. The measured reflection and probabilities are given by
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Rmeas
sapph = PR/PIN = 0.1033 (B.1)

Tmeas
sapph = PT/PIN = 0.8455. (B.2)

Combining the measured values with a consideration of the reflection losses from each inter-

face, we relate the measured powers through two coupled equations containing the reflection

probabilities of both surfaces of the sapphire disc:

Rmeas
sapph = (1 −Rmeas

CryoWindow)(1 −Rmeas
surf1)

2(Rmeas
surf2) = 0.1033, (B.3)

Tmeas
sapph = (1 −Rmeas

CryoWindow)(1 −Rmeas
surf1)(1 −Rmeas

surf2) = 0.8455. (B.4)

Since RCryoWindow is determined from an independent measurement, these two equations can

be then solved for Rsurf1 and Rsurf2 Solving these equations we find two pairs of solutions,

one of which is unphysical. We thus find the values Rsurf1 = 0.0378 and Rsurf2 = 0.1127,

consistent with our earlier assertion that surface 2 should have a higher reflectance.

So far, we have only considered measurements through the sapphire (no measure-

ments through the sample up to this point). We use the extracted reflection probabilities

RCryoWindow and Rsurf1 to account for the reflection losses for measurements involving the

sample. The AR-coated sapphire surface Rsurf2 is irrelevant here because the sapphire in-

terface under the sample is not coated. Accounting for the reflection losses incurred in

the transmission and reflection paths for measurements involving the sample, we derive the

conversion equations that estimate the reflected and transmitted powers:

P est
IN = Pmeas

IN , (B.5)

P est
R = facR× Pmeas

R

=
Pmeas

R

(1 −Rsurf1)2 (1 −RCryoWindow)2
= 1.091Pmeas

R , (B.6)

P est
T = facT × Pmeas

T

=
Pmeas

T

(1 −RCryoWindow)2 (1 −Rsurf1)
= 1.050Pmeas

T . (B.7)
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The correction factors facR and facT correct for the losses that happen throughout the

cryostat, including the path of the input beam. If the laser is spectrally resolved, P est
R,T (E)

may be divided by P est
IN (E) to obtain the estimated transmission and reflection probabilities:

Rest
sample =

P est
R (sample)(E)

P est
IN (E)

, (B.8)

T est
sample =

P est
T (sample)(E)

P est
IN (E)

. (B.9)

(B.10)

While the correction factors facR and facT are determined by using measurements

involving the sapphire interfaces only, they are valid for determining transmission and re-

flection probabilities for the sample as well.

We test for energy conservation using the measured and corrected values for the sap-

phire disc. The measured fraction of energy lost (written as absorption α) due to reflections

from the sapphire interface is

αmeas
sapphire =

Pmeas
IN −Pmeas

R
−Pmeas

T

Pmeas
IN

= 0.0513. (B.11)

We find that the application of the correction factors yields a fractional energy loss of

∣

∣αest
sapphire

∣

∣ =
P est

IN −P est
R

−P est
T

P est
IN

< 10−6, (B.12)

consistent with our expectations for a material with vanishing imaginary part of the index of

refraction. The balance of energy for the estimated absorption for the sapphire disc implies

that the conversion strategy accounts for the powers properly.

The correction factors facR and facT are valid for application to both the pump and

probe beams. Applying the correction factors to the measurements of the reflected and

transmitted low-intensity probe powers from the sample at 4 K in the absence of the pump,
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we find:

P est
IN = 25µW, (B.13)

P est
R (sapph) = facR× Pmeas

R (sapph) = 1.091(0.1025P est
IN ) = 0.1118Pmeas

IN , (B.14)

P est
T (sapph) = facT × Pmeas

T (sapph) = 1.050(0.845482P est
IN ) = 0.8878Pmeas

IN . (B.15)

P est
R (sample) = facR× Pmeas

R (sample) = 1.091(0.035P est
IN ) = 0.0382Pmeas

IN , (B.16)

P est
T (sample) = facT × Pmeas

T (sample) = 1.050(0.53P est
IN ) = 0.5567Pmeas

IN . (B.17)

(B.18)

The pump powers may be corrected for reflection losses in an identical fashion, allowing

estimations of the densities created in the sample by pump excitation.

The above probe values are helpful in calibration of the probe powers in the presence

of the pump, as we show in the next section.

B.2 Calibration of probe powers in the presence of the pump

The probe power is spectrally resolved using a scanning monochrometer, as described

in Chapter 3. We wish to record the effects of different pump excitation configurations

(such as intensity and time delay) in the probe absorption. The probe absorption can be

constructed as α(ω) = 1 − T (ω) − R(ω), provided that we find T (ω) and R(ω) accurately.

We describe in this section a procedure for ensuring the accuracy of these measurements.

In the last section, we arrived at estimates for the reflected and transmitted probe

powers from the sample at 4 K in the absence of the pump. These powers are constant

throughout a measurement containing many pump excitation configurations because the

probe is at low-intensity. Since the double-chopping technique described in Appendix A

allows simultaneous measurement of the probe power in the presence and absence of the

pump light, we can exploit Eqns. B.16 and B.17 to calibrate the probe power in the presence

of the pump light.
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The probe light is measured by a photodetector placed after the scanning monochrome-

ter. A spectrally resolved signal I(ω) is measured on a photodetector (a current proportional

to optical power) with high resolution for the full frequency range of the probe spectrum.

The signal can be split according Appendix A into two parts, Iprobe
pumpOFF(ω) and Iprobe

pumpON(ω),

representing the probe signal in the absence and presence of the pump light, respectively.

Since we have estimated the transmitted and reflected powers from the sample for the probe,

we can construct conversion factors by normalizing the measured transmitted and reflected

probe signals:

Cλ =
Iprobe,λ
pumpOFF(ω)

∫

Iprobe,λ
pumpOFF(ω)dω

P est
λ (sample), (B.19)

where λ = R, T corresponds to the reflected and transmitted probe. The factors Cλ converts

the measured signal into units of power:

P probe,λ
pump OFF(ω) = CλIprobe,λ

pumpOFF(ω). (B.20)

The same factor can also be used to convert the measured probe signal in the presence

of the pump light into units of power because both signals are captured simultaneously.

Consequently, the part of the spectrally resolved signal from the photodetector after the

monochrometer that corresponds to the probe power in the presence of the pump can be

calibrated by

P probe,λ
pump ON(ω) = CλIprobe,λ

pumpON(ω). (B.21)

In addition to providing a convenient calibration of the probe powers, this technique makes

the experimental measurements insensitive to small pointing fluctuations in the probe beam

at the monochrometer. Small pointing fluctuations were found to affect the measurements on

a long-term (hours) scale for the measurements. The use of this calibration technique corrects

for any long-term drifts in power, thus removing the effects from pointing instabilities in the

probe beam.


