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Segal, Stephen Richard (Ph.D., Physics)
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Thesis directed by Professor Dana Z. Anderson

Precise, accurate inertial navigation relies upon the rotation rate measurements of a

sensitive gyroscope. State of the art fiber optic gyroscopes measure rotation via the Sagnac

effect, which causes a phase shift proportional to the angular velocity of a rotating interferometer

whose beam path encloses an area. Gyroscopes using interfering atoms have a much greater

Sagnac phase shift for the same enclosed area than optical gyroscopes, and therefore promise

much greater sensitivity. However, an atom Sagnac gyroscope has not yet been demonstrated

in a compact device.

This dissertation describes work towards the demonstration of a compact Sagnac gyro-

scope using interfering ultracold atoms, which can be guided around suitably large areas using

magnetic potentials generated by micro-scale “atom chips”. We first present the results of a

sequence of preliminary Bose-Einstein condensate (BEC) Michelson interferometry experiments.

In these experiments, BECs confined to a waveguide interfere, but the path does not enclose

area. We present the application of statistical image analysis techniques to data from our ex-

periments. We analyze the lessons learned about both apparatus design and the physics of BEC

interferometry. We describe the design of a new atom chip that should allow us to translate the

waveguide during the interferometry experiment, thus turning Michelson into Sagnac interfer-

ometry. Finally, we explain the design of a new compact BEC apparatus that incorporates the

gyroscope chip. The apparatus is built on a rotary table so that we may truly test the gyroscope

when it is complete. We report on experimental progress towards the achievement of BEC in

this apparatus.
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Chapter 1

Introduction

1.1 Motivation

Atomic physicists interested in basic research have devoted considerable effort to probing

the fundamental properties of ultracold dilute gases in the last 15 years. Studies of these gases

(specifically, Bose-Einstein condensates and degenerate Fermi gases) have examined superflu-

idity, coherent control of quantum systems, and various other subjects of interest. In more

recent years, some researchers have become interested in developing practical applications for

the interesting properties of ultracold systems. Ultracold atoms as sensitive probes of magnetic

fields, ultracold atoms trapped in optical lattice potentials as simulators of novel quantum ma-

terials, and ultracold atoms as inertial sensors are all applications being actively pursued. Just

as important as these proof-of-concept experiments are efforts to advance apparatus technology.

Without a replacement for the custom-built, finicky, bulky machines that are used by most

researchers, even a “killer” application for the ultracold will never emerge from the laboratory

into popular use. We focus in this work on both the problems of technology and application

development, with the eventual goal of testing advanced inertial sensors for navigation.

1.1.1 Navigation and gyroscopes

Precise and accurate navigation is essential to the successful operation of aircraft, naval

vessels, spacecraft, and other vehicles. The global positioning system (GPS) allows modern

navigators to “fix” the instantaneous location of a vehicle at a level of performance that would
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have been the envy of the celestial navigators of old. However, reliable navigation with GPS

alone requires constant communication with the system’s satellite network. Such communication

is impractical for submarines, useless for space probes, and impossible for all vehicles when the

GPS signal experiences interference (possibly due to hostile jamming).

A navigator may still calculate a vehicle’s position when GPS is unavailable, using a

time-tested method known as dead reckoning. Dead reckoning is a simple concept: the navi-

gator calculates the vehicle’s current position using its last known position and time-indexed

measurements of its speed and heading [1]. In the modern practice of inertial navigation, these

measurements are made by integrating the outputs of accelerometers and gyroscopes. The cal-

culated displacement from the position of the last GPS update accumulates error due to the

imperfections of the sensors used, so an accurate inertial navigation system must periodically

correct itself with an updated GPS fix. With improved sensors, the time between GPS updates

can be increased without reducing the accuracy of the position calculation. The development of

gyroscopes with reduced errors is thus of significant practical interest.

1.1.2 Optical Sagnac effect gyroscopes

Modern navigational gyroscopes do not necessarily resemble the spinning wheel of the

traditional mechanical device. The type of gyroscope addressed in this work, the Sagnac gyro-

scope, in fact has no moving parts. It is simply an interferometer in which the path taken by the

interfering waves encloses an area. A schematic of an example using optical interference is shown

in Fig. 1.1. Rotation of this device at angular velocity Ω results in a phase shift between the

counter-propagating waves, and therefore a shift in the fringe pattern detected at the output.

This phase shift ∆φ is caused by the slight change of the length of the wave’s path around

the interferometer due to the rotation [3]. To calculate ∆φ, consider a waveguide of arbitrary

shape, rotating around an arbitrary axis (see Fig. 1.2). Light is coupled into the waveguide

at a beamsplitter (not shown); the light runs around the waveguide in both directions before

reuniting at the beamsplitter. The time required for the light to traverse the infinitesimal
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Figure 1.1: A schematic of a simple, optical Sagnac interferometer. Rotation of the device at
angular velocity Ω causes a phase shift between the two arms [2].

distance dl is dl/c. The waveguide is moving due to the rotation; the component of the velocity

due to rotation along the waveguide axis is given by

(Ω× r) · l̂. (1.1)

Here, r is the position of a location on the waveguide and l̂ is a unit vector pointing along the

waveguide axis. If the rotation speed Ω is zero, then the optical path length around the guide

is the same in both directions, and ∆φ = 0. If Ω 6= 0, the path length for the light traveling in

one direction is altered by

∆P =
1

c

∮
ring

(Ω× r) · dl, (1.2)

where l̂ dl = dl. Applying Stokes’s theorem, we have

∆P =
1

c

∫
ring

∇× (Ω× r) · dA. (1.3)

To evaluate Eq. (1.3), we will apply the identity

∇× (Ω× r) = Ω(∇ · r)− r(∇ ·Ω) + (r · ∇)Ω− (Ω · ∇)r. (1.4)

The identity ∇ · r = 3 reduces the first term in Eq. (1.4) to 3Ω. The second and third terms

vanish, since Ω has no spatial dependence. The fourth term evaluates to

(Ω · ∇)r = (Ωx∂x + Ωy∂y + Ωz∂z)(xx̂+ yŷ + zẑ)

= (Ωxx̂+ Ωy ŷ + Ωz ẑ) = Ω. (1.5)
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We can now simplify Eq. (1.3) to

∆P =
2

c

∫
ring

Ω · dA =
2Ω ·A
c

. (1.6)

The light propagating along with the rotation will have its path length increased by ∆P , while

the light propagating against the direction of rotation will have its path length decreased by the

same amount. The overall phase shift is given by

∆φ = 2k∆P =
8πΩ ·A
λc

, (1.7)

where k is the wavevector and λ is the wavelength of the light.

Figure 1.2: Interferometry waveguide of arbitrary shape, rotating at angular velocity Ω [3].

To see if such a device would be practically useful, consider the case of a jet airliner

traveling at a cruising velocity of about 1000 km/h. Its gyroscope must be sensitive to slow

rotations at the scale of 15◦/h (coincidentally, this is the Earth’s rotation rate), or else the

position calculated by the inertial navigation system will be off by kilometers after just a minute

of flying. For a reasonably-sized circular interferometer of radius 5 cm, the path length shift

at Earth rate is only 3.8 × 10−15 m. Using a light source operating at λ = 850 nm, (a typical

telecommunications wavelength) the phase shift is 5.6× 10−8 rad. This phase shift is too small

to be easily measured interferometrically. At first glance, then, the sensitivity of an optical

Sagnac gyroscope seems too small to be of practical use.
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One method that has been successfully used to increase the sensitivity is to increase the

enclosed area by replacing the single-pass waveguide with a long optical fiber wound around a

spool. A 1 km fiber wound around the 5 cm radius we just considered would have a phase shift

of about 180 µrad at Earth’s rotation rate, well within the realm of reasonable interferometric

detection (it becomes difficult to measure interferometric phase shifts when ∆φ is smaller than

1 µrad [4]). Interferometric fiber optic gyroscopes (IFOGs) of this scale are currently used in

the inertial navigation systems of a variety of vehicles, including the latest Airbus and Boeing

airliners [4, 5] and the F-16 fighter (see Fig. 1.3).

Figure 1.3: (Color). Northrup Grumman LN-260 inertial navigation system with GPS. This
unit is used in upgraded F-16 fighter aircraft. The two cylinders visible in the front of the unit
each contain an IFOG [C. Volk, J. Lincoln, and D. Tazartes, Northrop Grumman’s Family of
Fiber-Optic Based Inertial Navigation Systems, (http://www.es.northropgrumman.com/by_
division/navigationsystems/whitepapers/assets/FOGINS_Paper_Final.pdf)].

A reliable gyroscope design combines high sensitivity with low measurement errors. Phase

shifts caused by anything other than rotation lead to a bias in the measured rotation rate, such

that heading calculated by the navigation system eventually drifts from the true heading. For

example, temperature variations cause phase shifts by mechanically straining or directly varying

the refractive index of the fiber. Accelerations can distort the shape of the fiber coil. Stray

magnetic fields can affect the polarization state of the propagating light. The sensitivity of the

IFOG to these and other environmental bias sources is greatly reduced by the reciprocal beam

path of the device. The IFOG’s remaining sensitivity to environmental bias can be measured and
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calibrated out of the measurement, so the true figure of merit for an IFOG’s noise performance

is the stability of the bias (rather than its magnitude). Bias stability of less than 0.0003◦/h has

been measured in high-grade IFOGs [1].

Unfortunately, IFOG technology has not led to inertial navigation systems that are com-

pletely independent of GPS updates. Using the 1 µrad detection limit just introduced, the

minimum measurable rotation rate of the 1 km fiber gyroscope we have considered is about

0.1◦/hr or 0.5 µrad/s. The position error after one hour of flight of an airliner using this device

will already be a few kilometers [6]. Practically, the minimum measurable rotation rate must

drop by 3 orders of magnitude for the position error after one hour to be less than a few meters.

The sensitivity can be increased by using a longer fiber or a larger radius [7], but eventually the

device would become too large to be practical [4].

1.1.3 Matter-wave Sagnac gyroscopes

The IFOG reaches its sensitivity by effectively increasing the numerator of Eq. (1.7);

another way to reach high sensitivity would be to decrease its denominator. One way to do this

is to replace optical with matter-wave interference. In this case, Eq. (1.7) would become

∆φmatter =
8πΩ ·A
λdB v

=
4MΩ ·A

h̄
, (1.8)

where M is the mass of the interfering particles. We have replaced the wavelength and speed

of light with the deBroglie wavelength λdB and propagation speed v of the particles. Note that

∆φ does not actually depend on v. We can compare the sensitivity of a matter-wave gyroscope

to a given rotation to that of an optical gyroscope enclosing the same area by taking the ratio

of Eq. (1.7) to Eq. (1.8):

∆φmatter

∆φphoton
=
λMc

h
. (1.9)
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If the optical gyroscope operates at λ = 850 nm and the matter-wave gyroscope uses 87Rb atoms

(a convenient atom for laser and evaporative cooling, M = 1.44× 10−25 kg), Eq. (1.9) gives

∆φmatter

∆φphoton
= 5× 1010. (1.10)

This enormous increase in phase shift makes a matter-wave gyroscope a candidate for use

in GPS-denied navigation. Consider a gyroscope that records a phase shift ∆φ = π rad when

spinning on-axis at Earth’s rotation rate. Using the practical sensitivity limit of ∆φ = 1 µrad

discussed previously (though this limit is quite ambitious for atomic detection methods), the

minimum measurable rotation rate for such a device would be

Ωmin =
ΩEarth

π
× 10−6

= 23 prad/s = 4.8 µdeg/h. (1.11)

Such a gyroscope would enable an INS to keep position errors due to the coarseness of the

gyroscope small over long periods of time. The enclosed area required for this sensitivity may

be calculated using Eq. (1.8). Again considering 87Rb, we find A = 7.9 mm2. A single-pass,

circular path of this area would have a radius of only 1.6 mm. This device would be both smaller

and more sensitive than the IFOG considered in the previous section.

1.1.4 Shot noise in Sagnac gyroscopes

Shot noise places a fundamental limit on the precision of a Sagnac gyroscope’s rotation

rate measurement. This limit is not important in IFOGs, where the high flux of photons from a

bright light source pushes the shot noise limit below the minimum set by other practical limits

of the system. In the case of the low-flux sources available for matter-wave gyroscope, shot noise

must be considered.

We estimate the shot noise limit on the uncertainty of a Sagnac interferometer by con-

sidering the recombination of the interfering waves at the output beamsplitter [2]. We will here

consider the optical case for simplicity, but the mathematics and the resulting estimate of the

shot noise limit is also correct for matter waves. Assume that the incoming uniform light beams
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have acquired a phase shift of ∆φ during their travel through the interferometer. A pair of

ideal detectors counts the number of photons at the outputs of the beamsplitter (see Fig. 1.4),

recording

N1 = NT sin2(∆φ)

N2 = NT cos2(∆φ). (1.12)

Here, NT = N1 + N2 is the total number of photons detected. We ignore any additional

beamsplitter-related phase shifts. We combine these two equations to obtain

tan2(∆φ) =
N1

N2
. (1.13)

Figure 1.4: The two output beams of an optical interferometer are recombined at a beamsplitter.
Ideal photodetectors count the photons at the beamsplitter’s outputs. Inspired by [2].

The shot noise uncertainty of the photodetector measurements,

δN1 =
√
N1

δN2 =
√
N2, (1.14)

results in an uncertainty in ∆φ. The total differential of Eq. (1.13) shows how the two are

related:

2 tan(∆φ)

cos2(∆φ)
d(∆φ) =

N2 dN1 −N1 dN2

N2
2

. (1.15)
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The two terms on the right side of Eq. (1.15) contribute independently to the uncertainty δ(∆φ).

Therefore, δ(∆φ) results from their sum in quadrature:

2 tan(∆φ)

cos2(∆φ)
δ(∆φ) =

√
(N2 δN1)2 + (N1 δN2)2

N2
2

. (1.16)

Using Eqs. (1.12) and (1.14), Eq. (1.16) simplifies to

δ(∆φ) =
1

2
√
NT

. (1.17)

Assuming that Eq. (1.17)’s estimate of δ(∆φ) is the dominant source of uncertainty in

our Sagnac experiment, we insert it into Eq. (1.7) to find the uncertainty in Ω:

δΩ =
λc

8πA
δ(∆φ)

=
λc

16πA
√
NT

. (1.18)

This equation is correct for an interferometer aligned with its rotation axis. To find δΩ for a

matter wave gyroscope, we simply replace λ and c with their matter equivalents. The result is

δΩmatter =
h̄

8MA
√
NT

. (1.19)

If, as above, we use 87Rb atoms and set A = 7.9 mm2, the uncertainty is

δΩ =
11.6√
NT

µrad/s =
2.4√
NT

deg/h. (1.20)

We see that if our atom gyroscope operates with a packet of 60000 atoms, it beats the minimum

measurable rotation rate of the IFOG described in Sec. 1.1.2 by an order of magnitude. Further

performance gains would be realized with a larger flux of atoms.

1.1.5 Thermal beam atom gyroscope experiments

The predicted excellent performance of matter wave gyroscopes has been realized in the

laboratory, with one experiment achieving a rotational sensitivity of 6 × 10−10 rad/(s/
√

Hz)

[8, 9]. Figure 1.5 shows a schematic of the experiment. The high sensitivity and low noise are

the result of the large enclosed area of the beam path (22 mm2) and the high flux of the thermal

beam atom source (1011 atoms/s).
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Figure 1.5: Thermal beam atom gyroscope from [9]. The transverse momentum of the beam is
controlled by optical Raman transitions. These transitions also transfer the atoms between two
hyperfine ground states (labeled as F = 3 and F = 4).

The source is an oven containing a high-pressure vapor of Cs atoms. The oven is connected

to an otherwise sealed vacuum tube through a small hole. Escaping atoms travel down the

tube in a high-flux beam, moving at the speed determined by the vapor’s thermal energy (290

m/s). Note that the path of the atoms is not reciprocal, making this experiment sensitive to

environmental bias. An upgraded version of this experiment [10] contains two gyroscopes, using

two counter-propagating beams as the atom sources. This version has a measured bias stability

of < 70 µdeg/h.

Laser beams control the beam’s path through the tube. At the entrance to the tube, the

beam is optically pumped into the F = 3 hyperfine ground state. A pair of counterpropagating

laser beams, aligned transverse to the beam, is then applied. These beams are tuned to transfer

the atoms into a coherent superposition of the two ground states, via a π/2 two-photon stimu-

lated Raman transition [11]. The process of absorption from one beam and stimulated emission

into the other gives the atoms transferred into the F = 4 ground state a transverse velocity

kick of 2h̄k/M = 7 mm/s. (This language is approximate. No atoms are actually “transferred”

between states in the creation of the superposition). The π/2 Raman transition thereby splits

the beam into two paths. A π Raman transition, applied at the halfway point of the tube, acts

as a mirror. It “flips” atoms from one transverse momentum and hyperfine state to the other.

By arranging pairs of Raman beams as shown in Fig. 1.5, the single atomic beam is converted

into an area-enclosing Sagnac interferometer.

While impressive, this gyroscope is not portable. The great mismatch between the for-
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ward and transverse velocities of the beam (a ratio of 4 × 104) requires an elongated path to

enclose the desired area. In [9], the path is just under 2 m long. A design of practical size must

be able to achieve a similar enclosed area in a much smaller package.

1.1.6 Advantages of using ultracold, guided atoms in gyroscopes

An alternative approach to the problem is to guide the interfering atoms around a more

circular path, instead of allowing them to freely propagate. One candidate for guiding atoms is

the magnetic microtrap [12], generated by current run through wires patterned onto a microchip

(called an “atom chip”). The wire magnetic field, plus a transverse bias field, produces a mag-

netic waveguide or trap for atoms in weak field seeking states. Almost any shape of waveguide

can be generated by properly designing the wire pattern, including the reciprocal beam paths

that are desired for reducing measurement bias. Microtraps are suitable for use in portable

devices, due to their small size and power needs.

A thermal beam is an inappropriate source of atoms for a microchip waveguide, however.

The depth of the waveguide potential is set by the magnitude of the bias field and the magnetic

moment of the atomic state to be used. For the doubly polarized ground state of the alkali

metals, the depth is µBB0. We see that even a high bias field of B0 = 100 G would create a

trap that could barely hold a gas at 7 mK, let alone the oven-heated atoms in a thermal beam.

On the other hand, microchip waveguides are perfectly appropriate for confining ultracold

gases, such as Bose-Einstein condensates (BECs). Since a BEC is a coherent, macroscopic sample

of atoms, its interference pattern should have high contrast. This fringe visibility enhancement

is analogous to that found when comparing laser to white light interferometers. Moreover,

BECs are well-suited for use with the laser beamsplitters and mirrors used in atom optics,

in which the efficiency is often sensitive to the thermal velocity distribution of the atoms. A

BEC’s delta-function velocity distribution allows for near-perfect efficiencies in momentum state

manipulation.
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1.2 Outline of dissertation

With these motivations in mind, the construction and testing of a compact Sagnac gy-

roscope using guided, Bose-condensed atoms is a worthy goal. The work presented in this

dissertation consists of some of the preliminary work needed to reach that mark. The research

was carried out over the course of two projects. The first project, which was already underway

before the period covered by this dissertation, focused on the demonstration and investigation

of guided BEC Michelson interferometry in a microchip waveguide. This project concluded with

the demonstration of high-contrast interference patterns obtained after BEC propagation of ap-

proximately 250 ms. Its results have been detailed in other dissertations, and will therefore be

presented only in summary here. The lessons learned from this first project have been applied

in the opening stages of the second project, whose goal is the demonstration of a guided BEC

Sagnac gyroscope. The portion of this project covered by this dissertation focused on the design

and construction of a new, compact apparatus.

This dissertation contains my contributions to these two projects. Chapter 2 reviews

the principles of the two primary atom-optical elements used in the experiments: microtrap

waveguides and light gratings for atomic diffraction. Chapter 3 explains the final Michelson

interferometry experiments, and includes a short description of the apparatus used. Chapter

4 presents the application of the statistical methods of principal and independent component

analysis to data from the Michelson experiments. Chapter 5 discusses the results and the lessons

learned from these experiments. Chapter 6 explains the design of an atom chip for Sagnac

measurements. Chapter 7 describes the design, construction, and initial testing of a compact,

rotating BEC apparatus that incorporates the new chip design.



Chapter 2

Atom optics: Waveguides and diffraction grating beamsplitters

The IFOG relies relies on familiar optical elements to control the path of its interfering

light; an atom gyroscope must have equivalent “atom-optical” elements. Our proposed gyroscope

will use magnetic waveguide potentials to control the path of the atoms and diffraction from

standing waves of light to split and recombine the matter wave. This chapter reviews these two

techniques.

2.1 Magnetic microtraps and waveguides for atoms

In our experiments, guiding potentials for neutral atoms are generated with magnetic

fields. Consider an atom with total angular momentum F interacting with a magnetic field B.

The energy of the atom is

U = gFmFµBB. (2.1)

In this equation, gF is the Landé g factor of the total angular momentum state, mF is the

quantum number of the projection of F along B, and µB is the Bohr magneton. We see that a

local magnetic field minimum is a potential well for an atom in any state in which gFmF > 0.

A potential well of this type extending in two dimensions is called a magnetic waveguide, while

a well confining in all three dimensions is called a magnetic trap.

The microtrap is a compact, low-power device that can generate such magnetic traps and

waveguides for cold, neutral atoms. To lowest order, the steepness of a magnetic potential is

characterized by the gradient of the field. The fields are typically generated by electric currents



14

traveling through single wires or coils, or else by permanent magnets. The gradient of a current-

generated field scales as

B′ ∝ I

r2
, (2.2)

where r is the distance between the current-carrying coil or wire and the trap position and I is

the current. It is therefore possible to construct steep traps using either (a) powerful permanent

magnets, (b) coils carrying hundreds of amperes of current placed a few centimeters from the

trap center, or (c) single wires carrying a few amperes placed a few hundred micrometers from

the trap center. It is approach (c) that has inspired the development of the microtrap, which can

practically attain significantly tighter traps than the other alternatives. Since atoms confined

more tightly collide at an increased rate, evaporative cooling can proceed significantly faster

in microtraps without any loss of efficiency. The benefits in speed, size, and power have made

microtraps attractive for the development of portable, high-bandwidth atom interferometers. In

this section, we will describe the theory of the microtrap elements used in our experiments and

give a short description of fabrication techniques. Further details on the development and use

of the microtrap are outlined in [12] and [13].

2.1.1 Side guide

The building block of the microtrap is a simple linear, quadrupole waveguide (the “side

guide”). It is generated by a straight current-carrying wire and a uniform bias field, oriented

perpendicular to the wire (see Fig. 2.1). The wire current (flowing along the z-axis) generates

the familiar circular magnetic field, so the total field can be written as

B = (B0,x, 0, 0) +
µ0Iz

2π(x2 + y2)
(−y, x, 0). (2.3)

Here, B0,x is the magnitude of the transverse bias field and Iz is the current in the wire. The

form of Eq. (2.3) assumes the wire is infinitely thin and long, but is approximately correct for

real wires at distances that are further from the wire than its width but much shorter than the
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Figure 2.1: (Color). (a) A schematic of a simple side guide. Here, the straight current-carrying
conductor (current Iz) is a wire on the surface of an insulating substrate. The wire field and
bias Bx cancel along the magenta dotted line, forming a waveguide for atoms in weak magnetic
field seeking states. (b) Plot of side guide’s quadrupole magnetic field. Streamlines indicate
field direction. Color indicates field magnitude, with darker colors corresponding to lower field.
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wire’s length. The two contributions cancel along the line parallel to the wire defined by

x0 =

(
0,

µ0Iz
2πB0,x

, z

)
= (0, y0, z). (2.4)

We may Taylor expand the field magnitude B around x0 to obtain

B ≈ B0,x

y0
ρ, (2.5)

where

ρ =
√
x2 + (y − y0)2. (2.6)

We see that the side guide potential is a linear/quadrupole waveguide for weak-field seeking

atoms.

The side guide is not by itself capable of confining ultracold atoms. Since the field

magnitude goes to zero at the center, Majorana transitions will cause atoms to fall out of the

guide. The simplest way to prevent these losses is to add a second uniform bias field oriented

along the waveguide axis. The total field is now

B = (B0,x, 0, B0,z) +
µ0Iz

2π(x2 + y2)
(−y, x, 0), (2.7)

for axial bias B0,z. The field magnitude near the guide center is approximately

B ≈ B0,z +
B2

0,x

2y2
0B0,z

ρ2. (2.8)

We see that the guide is harmonic in the biased case, with a trapping frequency

ωρ =

√
gFmFµB

M

d2B

dρ2

≈
√
gFmFµB

MB0,z

2πB2
0,x

µ0Iz
. (2.9)

2.1.2 Crossed wire trap

A simple three-dimensional trap can be made by crossing two wires at right angles. Once

again using the limit of infinitely thin and long wires, the field contribution of the additional
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wire at the waveguide is

Bc =
µ0Ix

2π(y2
0 + z2)

(0, z, −y0) (2.10)

for a crossing wire carrying current −Ix along the x axis and intersecting the main wire at (0,0,0)

[see Fig. 2.2(a)]. In general, the second wire could be displaced along the y axis by a distance

d. In either case, the new wire’s field has no x component, and therefore the field minimum will

still be at y = y0. By Taylor expanding around z = 0 [14], we find

Bc,y =
µ0Ixz

2π[(d+ y0)2 + z2]

≈ µ0Ix
2π(d+ y0)2

z

Bc,z = − µ0Ix(d+ y0)

2π[(y0 + d)2 + z2]

≈ − µ0Ix
2π(d+ y0)

+
µ0Ix

2π(d+ y0)3
z2 − µ0Ix

2π(d+ y0)5
z4. (2.11)

For the case in which Ix � Iz, the field at the minimum (0, y0, 0) is to lowest order

B ≈ B0,c +
B2

0,c

2y0B0,z
ρ2 +

µ0Ix
2π(d+ y0)3

z2. (2.12)

The trap frequencies are

ωρ =

√
gFmFµB

MB0,c

2πB2
0,x

µ0Iz

ωz =

√
gFmFµB

M

µ0Ix
2π(d+ y0)3

, (2.13)

where

B0,c = B0,z −
µ0Ix

2π(d+ y0)
. (2.14)

The combined potential consists of the radial waveguide along with a superimposed axial

“dimple” in the space just over the crossing wire, where its field partially cancels B0,z. The

axial potential is only harmonic in a fairly small region around |z| = 0, due to the fourth-order

term in Eq. (2.11). To see the effect of this term [15], consider a potential

U = b2z
2 + b4z

4. (2.15)
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Figure 2.2: (Color). (a) Schematic of crossed wire (“dimple”) trap on a chip. In this example
d = 0; the wires actually cross. (b) Plot of magnetic field magnitude along tilted weak trap axis
for Iz = 1 A, Ix = 125 mA, B0,x = 20 G, B0,z = 3 G, y = y0 = 100 µm. The field magnitude
is only parabolic in shape near the trap center. (c) Contour plot of same configuration. Dark
color indicates lower field.
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The harmonic trap frequency of this potential is

1

2
Mω2

zz
2 =

1

2
z2 ∂

2U

∂z2

=
1

2
z2(2b2 + 12b4z

2)

ω2
z =

2b2
M

(
1 +

6b4z
2

b2

)
. (2.16)

The frequency stays at the value expected for b4 = 0 as long as

∣∣∣∣6b4z2

b2

∣∣∣∣� 1. (2.17)

For the dimple potential, the harmonic region of the axial potential is therefore

z2 � (d+ y0)2

6
. (2.18)

Figure 2.2(b) shows the axial potential for typical parameters at y = y0 = 100 µm and d = 0.

The potential is clearly only a parabola near |z| = 0.

Another consequence of the addition of the crossing wire is that the y component of the

total field no longer vanishes at x = 0. We have instead

By =
µ0

2π

(
Izx

x2 + y2
0

+
Ixz

(d+ y0)2 + z2

)
. (2.19)

This component vanishes along a line given to first order by

x ≈ − Ixy
2
0

Iz(d+ y0)2
z. (2.20)

The weak axis of the trap is therefore tilted away from the x axis by

tan θ ≈ − Ixy
2
0

Iz(d+ y0)2
. (2.21)

This tilt is apparent in Fig. 2.2(c).

A variant of the crossed wire trap is the T trap [16], in which the crossing wire only exists

on one side of the main wire (see Fig. 2.3). The most obvious difference between the T trap and

the cross trap is that the z component of the magnetic field is cut in half: BT,z = Bc,z/2. The

trap frequency ωz is therefore smaller by 1/
√

2 for the same current, and the dimple potential
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is half as deep. The other difference is that the current flowing in the T wire must flow along

with the main wire’s current on one side of the wire pattern. As a result, the waveguide will be

slightly further away from the main wire on that side.

Figure 2.3: (Color). Schematic of a T trap.

2.1.3 H trap

Instead of using a single wire to generate axial confinement in the waveguide, we could

instead use a pair of wires. An H-shaped pattern could be formed by two wires crossing the

main wire, separated by a distance LH (see Fig. 2.4). The “leg” wires can also be displaced by

d from the main wire along the y axis. The field of these wires at the waveguide is

BH,y =− µ0IH
2π

(
z + LH/2

(d+ y0)2 + (z + LH/2)2
+

z − LH/2

(d+ y0)2 + (z − LH/2)2

)
≈ − 4µ0IH[4(d+ y0)2 − L2

H]

π[4(d+ y0)2 + L2
H]2

z

BH,z =
µ0IH
2π

(
d+ y0

(d+ y0)2 + (z + LH/2)2
+

d+ y0

(d+ y0)2 + (z − LH/2)2

)
≈ 4µ0IH(d+ y0)

π[4(d+ y0)2 + L2
H]
− 16µ0IH(d+ y0)[4(d+ y0)2 − 3L2

H]

π[4(d+ y0)2 + L2
H]3

z2

+
64µ0IH(d+ y0){16(d+ y0)4 + 5L2

H[L2
H − 8(d+ y0)2]}

π[4(d+ y0)2 + L2
H]5

z4. (2.22)

The field magnitude at the minimum (0, y0, 0) is approximately

B ≈ B0,H +
B2

0,x

2y2
0B0,H

ρ2 +
16µ0IH(d+ y0)[3L2

H − 4(d+ y0)2]

π[4(d+ y0)2 + L2
H]3

z2. (2.23)
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The trap frequencies are

ωρ =

√
gFmFµB

MB0,H

2πB2
0,x

µ0Iz

ωz =

√
gFmFµB

M

32µ0IH(d+ y0)[3L2
H − 4(d+ y0)2]

π[4(d+ y0)2 + L2
H]3

, (2.24)

where

B0,H = B0,z +
4µ0IH(d+ y0)

π[4(d+ y0)2 + L2
H]
. (2.25)

Figure 2.4: (Color). Schematic of H wire trap, with H wires separated by distance LH.

An advantage of the H-wire configuration over the single crossing wire is that the anhar-

monic, fourth-order term in the axial confinement vanishes if

0 = 16(d+ y0)4 + 5L2
H[L2

H − 8(d+ y0)2]. (2.26)

By carefully choosing d and L for a given y0, the anharmonicity parameter∣∣∣∣6b4z2

b2

∣∣∣∣ =

∣∣∣∣24{16(d+ y0)4 + 5L2
H[L2

H − 8(d+ y0)2]}
[4(d+ y0)2 + L2

H]2

∣∣∣∣ z2 (2.27)

can be kept quite small even at large distances from the trap center. Similarly, the tilt of the

weak trap axis due to the y component of the H wire field can designed to be quite small. The

axis lies along the line

x ≈ 8IH[4(d+ y0)2 − L2
H]y2

0

Iz[4(d+ y0)2 + L2
H]2

z, (2.28)

tilting away from the x axis by the angle

tan θ ≈ 8IH[4(d+ y0)2 − L2
H]y2

0

Iz[4(d+ y0)2 + L2
H]2

. (2.29)

The angle θ vanishes if the numerator is zero.
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A useful variant of the H trap is known as a Z trap. Recall that the T trap is a variant

of the crossed wire trap with the axial trapping wire cut back on one side; the Z trap similarly

removes the +x side of one of the H’s crossing wires and the −x side of the other. The similar

result is a reduction in ωz by a factor of 1/
√

2. A finite-length Z wire can be created by bending

a straight wire at both ends; this configuration is driven by a single current supply.

2.1.4 Fabrication of microtraps

The method of fabrication of wire structures for microtraps varies according to the desired

distance between the wire and the trap center. Wires that are not terribly close to the trap

center (d+y0 > 1 mm) are easily fabricated by attaching thin copper wires to a suitable surface

or support structure. The wires that are closest to the atoms (d = 0), however, are fabricated on

a chip substrate by lithography. A variety of wire metals, substrates, and fabrication techniques

have been used to create these “atom chips”; see [12] for a review.

The substrate used in our work is Si coated with an oxide insulating layer. Silicon

is by far the most commonly used substrate material in microfabrication, where it is used in

semiconductors, integrated circuits, computer chips, and microelectromechanical systems. These

applications have driven decades of effort into developing reliable Si fabrication techniques. By

using Si substrates, we take advantage of this work. Additionally, Si’s good thermal conductivity

(relative to other crystalline substrate materials) allows Si atom chips to dissipate more electrical

power without heating [17]. The chips used in the early stages of this work used a ceramic

substrate material that has a higher thermal conductivity: AlN. However, the relatively poor

surface quality of wires patterned on AlN precluded its use in further work.

The wires on our atom chips are fabricated by photolithographic patterning, followed by

electroplating the patterned wires to a thickness of about 10 µm. Our group has found Cu to

be a good choice for the wire metal. Gold, which is more commonly used in microfabrication,

is generally unsuitable for use in vacuum systems containing Rb (our preferred atomic species).

Gold wires tend to absorb residual Rb vapor from the vacuum chamber, as the two metals
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readily form an alloy. This absorbed Rb is released when the wires are heated by the flow of

current, bombarding the nearby trapped atoms and thereby lowering trap lifetimes [18].

2.2 Diffraction grating beamsplitters for atoms

Our Sagnac gyroscope experiment needs, in addition to the waveguide potentials discussed

in the previous section, a method for splitting and recombining the interfering matter wave. In

our work, the role of the beamsplitter is taken by coherent diffraction from gratings of light

into a pattern of transverse momentum states. This section discusses the particular type of

atomic diffraction used in our work; historical details and a review of other types of atomic

beamsplitters may be found in [11].

A diffraction grating, in the broadest sense, is a periodic obstruction or potential that

causes a wave interacting with it to scatter into a specific pattern of momentum states. In

the familiar case of light passing interacting with a physical grating, the diffracted orders are

separated in transverse momentum by

∆p =
h

Dg
, (2.30)

where Dg is the period of the grating. In our experiments, a cloud of atoms interacts with an

off-resonant standing wave of light, splitting the atoms into states of momentum along the axis

of the standing wave that are separated by

∆p = 2h/λ = 2h̄k. (2.31)

The standing wave acts as a periodic potential for the atoms, playing a role analogous to that

of a physical grating for beams of light.

A trapped condensate can be briefly exposed to a light grating by applying a pulse of the

optical standing wave. A single, brief interaction populates many momentum states, with the

distribution given by the theory of Kapitza-Dirac scattering. This is not quite the beamsplitter

that we want for our interferometry experiments. We want a true 50/50 beamsplitter: the atoms
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exit it in a superposition of only two momentum states. One way to solve this problem is to use

multiple weak gratings to control the diffraction pattern. This technique was first demonstrated

and explained in [19, 20] and is reviewed in this section.

2.2.1 First order beamsplitter

Consider an atom exposed to a standing wave of light, where the wavenumber of the laser

used is k0. The AC Stark shift potential that the atom experiences may be written as

U(z, t) =
h̄Ω2

R(t)

2δ(t)
cos 2k0z

= h̄ΩE(t) cos 2k0z, (2.32)

where ΩR is the Rabi frequency, δ is the detuning from resonance, and ΩE is the effective two-

photon Rabi frequency. The effective Rabi frequency (and therefore the power and/or detuning

of the laser) is time-dependent. This potential is correct in the limit of large detuning with

respect to the Rabi and excited electronic state decay frequencies. The atomic state evolves

according to

iψ̇(z, t) =

(
− h̄

2M

d2

dz2
+ ΩE(t) cos 2k0z

)
ψ(z, t). (2.33)

By expanding the wavefunction in a Fourier series/integral

ψ(z, t) =

∫
dk
∑
n

C2n(k, t)ei(2nk0+k)z, (2.34)

Eq. 2.33 is transformed (via Fourier’s trick) into

iC2n(k, t) =
h̄

2M
(2nk0 + k)2C2n(k, t) +

ΩE(t)

2
[C2n+2(k, t) + C2n−2(k, t)]. (2.35)

Consider a system that is initially stationary, such that k � k0 and only the n = 0 state is

populated. If the grating is very weak, such that

ΩE(t)

2
� (2Np)

2h̄k2
0

2M
= (2Np)

2ωr, (2.36)

then momentum states |2Np| and higher will never be significantly populated (ωr is the recoil

frequency of the light). If we set ΩE(t) � 32ωr, then the infinite set of equations may be
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truncated to only include n = −1, 0, 1. Making the unitary transformation

C2n(k, t)→ exp

[
−i
(
k

k0

)2

ωrt

]
C2n(k, t), (2.37)

we can describe the system evolution by

iĊ0 =
ΩE(t)

2
[C−2(k, t) + C2]

iĊ2 = 4ωr

(
1 +

k

k0

)
C2 +

ΩE(t)

2
C0

iĊ−2 = 4ωr

(
1− k

k0

)
C−2 +

ΩE(t)

2
C0. (2.38)

We define superposition states

C+ =
1√
2

(C2 + C−2)

C− =
1√
2

(C2 − C−2) (2.39)

and apply the approximation k � k0, obtaining

iĊ0(k, t) =
ΩE(t)√

2
C+

iĊ+(k, t) = 4ωrC+ +
ΩE(t)√

2
C0

iĊ−(k, t) = 4ωrC−. (2.40)

The “−” state is dark and will never be populated. Making one more unitary transformation

C → e2iωrtC, (2.41)

we find that we now have a simple two-state system

iĊ0 = −2ωrC0 +
ΩE(t)√

2
C+

iĊ+ = 2ωrC+ +
ΩE(t)√

2
C0. (2.42)

This system is best visualized on a Bloch sphere. If we set C0 = eiφ sin θ/2, C+ = cos θ/2,

rs = (sin θ cosφ, sin θ sinφ, cos θ), and define the Rabi vector ΩR = (
√

2ΩE(t), 0, 4ωr), then Eq.

(2.43) is transformed to

drs
dt

= ΩR × rs. (2.43)
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A sequence of two square pulses of light can be used to place an initially stationary

ensemble of atoms into the C+ state (see Fig. 2.5). In the first pulse, the effective Rabi frequency

is set to ΩE = 2
√

2ωr. The Rabi vector for this pulse is ΩR = 4ωr(1, 0, 1), with magnitude

ΩR = 4
√

2ωr. After half of a precession period, τ1 = π/(4
√

2ωr), the state vector has rotated

up to the xy plane of the Bloch sphere, pointing along the −x axis. At this time, the light is

shut off. The Rabi vector is now ΩR = 4ωr(0, 0, 1), with magnitude ΩR = 4ωr. After half of the

dark precession period, τ2 = π/(4ωr), the state vector has precessed around to the +x direction.

The light is turned on for a second pulse, with effective Rabi frequency and duration equal to

that of the first. After this pulse, the state vector points along the z axis of the Bloch sphere,

meaning the system is now in a superposition of the 2h̄k0 and −2h̄k0 momentum states along

the axis of the grating.

Figure 2.5: (Color). First order double-pulse optical beamsplitter. The upper plot shows the
effective Rabi frequency as a function of time. The pictures at the bottom show the state of the
system on the Bloch sphere at the beginning and end of each of the pulses. The yellow arrows
indicate the progression from one state to the next. Adapted from [20].
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2.2.2 Higher order beamsplitters

It is possible to extend the first order double-pulse concept to higher orders of diffraction,

so that the momentum transferred to the cloud is 2nh̄k0. By numerically integrating Eq. (2.35),

optimized effective Rabi frequencies and pulse durations can be found for up to n = 6 with

transfer efficiency above 85% [20]. Pulses up to n = 3 were experimentally demonstrated in

[21]. Non-square pulses could also be used to increase the efficiency of higher-order diffraction

pulses [22]. Even larger amounts of momentum have been transferred by Bragg diffraction [23],

in which the pulse durations are longer than those used in the double-pulse scheme presented

here.



Chapter 3

Michelson interferometry experiments with BECs

In this chapter, we present a guided Michelson-type interferometer using Bose-Einstein

condensates. The two atom-optical elements presented in the previous chapter, magnetic mi-

crotraps and optical beamsplitters, are the key techniques that enabled these experiments.

This work and the experimental apparatus used have been presented in previous dissertations

[16, 24, 25] and publications [19, 26, 27]. This chapter will discuss only the final iteration of

these experiments.

3.1 On-chip, free-return interferometry with BEC

The BEC interferometry experiment begins at t = 0 with a stationary condensate of 87Rb

atoms in the |F = 1,mF = −1〉 ground state. The microtrap potential holding the condensate

consists of an on-chip side guide at ωρ = 2π×80 Hz, combined with a crossed wire trap adjustable

between ωz = 2π× 4–6 Hz, centered 3.24 mm below the surface of the chip. A pair of mirror-

coated prisms are epoxied onto the chip, perpendicular to both its surface and the guide axis.

These mirrors are used to create the optical standing wave for the double pulse beamsplitter.

The configuration is shown in Fig. 3.1. In the actual apparatus, the chip is mounted with the

prisms pointing down so that clouds of atoms released from the trap will fall away from the chip

instead of crashing into it.

At time t = 0, the first order double pulse beamsplitter is applied to the stationary

BEC (see Fig. 3.2 for a schematic of interferometry sequence). Our implementation of the
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Figure 3.1: (Color). Michelson interferometry microtrap assembly, consisting of a side guide
wire on a chip, a copper heat sink, a crossed wire trap displaced below the chip, and integrated
mirrors for the optical grating. Schematic (a) and photograph of actual device (b) are shown.
Other wires on the microchip visible in (b) are used for initial capture and cooling of atoms.
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double pulse uses light at k0 = 2π/780 nm, detuned 6.8 GHz to the red of atomic resonance.

The condensate splits into two BECs, one traveling down the waveguide axis at initial velocity

v0 = p0/M = 2h̄k0/M = 11.8 mm/s and the other in the opposite direction at −11.8 mm/s.

(Rigorously speaking, the BEC is actually in a quantum superposition of both momentum states.

The classical language is only a convenient shorthand). The moving BECs slow down as they

climb the axial potential, stopping at the classical turning point at t = π/(2ωz). For the lowest

typical trap frequency used in our experiments, ωz = 2π × 4.2 Hz, the BECs are separated by

890 µm at this point. The BECs are allowed to continue oscillating in the axial potential for a

total of t = Nτ/2×π/ωz, where Nτ/2 = 1, 2, or 3. After Nτ/2 half-periods, when the condensates

are overlapped at the center of the potential, the beamsplitter pulse is applied again.

The second beamsplitter pulse’s efficiency in transferring the moving BECs back to the

stationary state depends on any relative phase shift ∆φ that they acquired during propagation

through the trap. The momentum distribution after the second pulse obeys

Rc =
|C0|2

|C0|2 + |C+|2
= cos2 ∆φ

2
, (3.1)

where Rc is the fraction of atoms stopped by the pulse. This quantity is considered to be the

output of the interferometer. To measure the momentum distribution, we shut the trap off just

after the second pulse. The system is allowed to freely evolve for 15 ms, after which atoms in the

+ momentum state will have physically moved away from the center of the trap [see Fig. 3.2(f)].

An absorption image (directed perpendicular to the guide axis) taken after this free evolution

time can clearly distinguish three peaks in the distribution, corresponding to the p = 0, 2h̄k0,

and −2h̄k0 states. See Fig. 3.3 for representative results.

A differential phase shift ∆φ between the propagating condensates can be intentionally

applied by adding a magnetic field gradient B′(t) along the waveguide axis once they are spatially

separated. This shift obeys

∆φ =

∫ Nτ/2π/ωz

0

gFmFµBB
′(t)∆z(t)

h̄
dt, (3.2)

where ∆z is the distance between the BECs. This phase shift can be quite large for even small
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Figure 3.2: (Color). Schematic of Michelson interferometer sequence. (a) Optical grating is
applied to stationary condensate in weak axial trap along z (radial potential not shown). (b)
BEC splits into momentum states of opposite sign along axis. (c) BECs stop at classical turning
points. (d) BECs overlap again at the center after t = π/ωz. (c) and (d) repeat until (e), when
the optical grating is applied again, uniting the condensates. (f) The interference pattern is
observed by shutting off the trap, allowing the momentum states to move away from each other
for time τf , and finally recording an absorption image of the atomic density.
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Figure 3.3: (Color). Representative interference patterns from the Michelson experiment. These
are false-color absorption images of the atomic density, recorded for various ∆φ. The central
cloud is centered at p = 0, the right at p = 2h̄k0, and the left at p = −2h̄k0. (a) ∆φ ≈ 2πm,
(b) ∆φ ≈ (2m+ 1)π/2, (c) ∆φ ≈ 2π(2m+ 1) for some integer m.
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B′ when the BECs are at their classical turning points, so the magnetic field gradient must be

carefully controlled.

Our BEC interferometer is analogous in configuration to an optical Michelson interfer-

ometer, in which a single beamsplitter splits and reunites the optical wave at a static location.

There is no static beamsplitter in our interferometer, but the reuniting pulse is applied when

the BECs have returned to the their initial positions.

3.2 Apparatus

The microtrap assembly shown in Fig. 3.1 is only 6.5 cm long and 500 mg in mass, but it

was just a fraction of the size and weight of the vacuum and optical system needed to support

its operation. This section briefly reviews the production of BECs in the apparatus. The goal

here is to point out those characteristics that would cause gyroscope experiments to be difficult

in this apparatus. For further details, see [16, 25].

The cold atoms used by the Michelson microtrap were prepared away from the chip in a

“macrotrap” system (i.e., a system using large coils and permanent magnets to generate magnetic

traps). The idea was to use off-the-shelf vacuum hardware and well-understood experimental

techniques (see [28, 29]) to prepare the atoms, leaving the experimental uncertainty to the (at

the time) novel microtrap. The result was a 1.5 m long, stainless steel vacuum system divided

into three chambers (see Fig. 3.4). The chambers could be vented independently, allowing

replacement of the microtrap assembly without disturbing the rest of the apparatus.

Condensate production began with the capture of 87Rb atoms in a large pyramid

magneto-optical trap (MOT). The single beam was 5 cm in diameter. The quadrupole magnetic

field coils were each made from 48 turns of copper tubing, through which water was passed for

cooling. After 4–8 s of MOT loading, the MOT was compressed and pumped to the F = 1

ground state. The atoms were then loaded into a quadrupole magnetic trap generated by the

coils, using a current of 250 A.

Since the MOT chamber’s background pressure of untrapped Rb was high enough to
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Figure 3.4: (Color). Michelson BEC apparatus (a) schematic [16] and (b) photograph.
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inhibit evaporative cooling, the trapped atoms were transported out of the chamber by moving

the coils on a servo-controlled track. The coils moved the atoms down a 60 cm long tube in 2

s to a glass cell containing ultrahigh vacuum. The atoms were transferred at this point into a

hybrid Ioffe-Pritchard trap generated by a pair of permanent magnetics and a set of coils. This

harmonic potential had trap frequencies of 170× 170× 7 Hz. The atoms were further cooled by

radio-frequency (RF) driven evaporation over the course of approximately 80 s to 1 µK.

The atoms were finally transferred via a hybrid magnetic waveguide from the evaporation

cell to the microtrap, which was located in a third vacuum chamber. After further RF evapora-

tion in a tight chip trap, a condensate of 5000-70000 atoms was created. The trap was carefully

loosened into the waveguide described above before beginning the interferometry sequence. The

entire cycle was about 90 s in duration.



Chapter 4

Data analysis of Michelson interferometry experiments

In the previous chapter, the output of the Michelson interferometer was described as Rc,

the fraction of atoms in the momentum state p = 0 after the second beamsplitter pulse. The

momentum distribution was recorded by taking an absorption image of the atomic density a

short time after the pulse. We have not yet detailed how the fraction of atoms was extracted

from these images. Our data analysis methods are the topic of this chapter.

4.1 Model-based vs. model-free inference

Fits of images to theory models have typically played the central role in the extraction of

measurements from ultracold gas experiments. From one image (or sometimes many images),

one typically wishes to extract just a few parameters of interest from the thousands to millions of

pixel values. In most experiments, this parameter extraction task is accomplished by fitting the

imaged atomic distribution to a model. This model usually is derived from a priori knowledge

of the trapping potential and atomic state. The model usually takes into account a period of

free expansion of the cloud from the trap that occurs just before the picture is snapped [30].

The experimenter then uses the fit parameters to calculate the results of interest (temperature

is calculated from the Gaussian width of a gas in free expansion, for example).

This “fitting” approach to data analysis is an example of model-based inference. It is

an appropriate and meaningful approach when the model takes into account the physics at

play. The experimenter’s a priori knowledge must be reasonably complete and accurate, and
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the experimental noise must not overwhelm the signal. The utility of model-based inference

can rapidly disintegrate if these conditions are not met, since it can fail to extract the proper

parameters of interest from data showing an unexpected effect.

The complement of a model-based approach is model-free inference. Model-free analyses

use statistical concepts such as maximum likelihood, entropy extremization, and independence to

extract the significant features buried in a collection of data. Powerful techniques have emerged

over the past three decades and have flourished in fields where analytical models are frequently

hard to develop, such as biology, economics, and the social sciences. These techniques are less

familiar in physics. For experiments in which a complete model is difficult to develop, model-free

inference would allow the data to speak for themselves, free of the interpretive bias of a wrong

model.

This chapter presents the application of a closely related pair of model-free analysis

techniques to our Michelson data. These two statistical techniques, called principal component

analysis (PCA) and independent component analysis (ICA), have been used in image- and signal-

processing applications as diverse as human face recognition, brain signal analysis, economic

prediction, and astronomical data processing [31, 32, 33, 34]. While our specific focus is on

interferometry, a secondary purpose here is to use this experiment to demonstrate the utility and

application of these techniques to information extraction from complex ultracold matter images

in general. For example, these methods could be of use in the study of complex structures seen

in gases containing vortices and gases trapped in optical lattices. We demonstrate here the use

of these methods to calibrate our interferometer, to identify and mitigate unforeseen sources of

noise, and to uncover signal data that are partially buried in noise. Our statistical methods

are able to complete these tasks in a fraction of the time needed for fitting routines to run.

This chapter expands on a previous treatment of our use of PCA and ICA [27]; an alternative

description is given in [25].
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4.2 Model-based image analysis

Before presenting PCA and ICA, we describe the application of traditional fitting methods

to extract Rc. In this method, the three peaks in the momentum distribution are fit to Gaussian

or Thomas-Fermi distributions [35]. The fraction of atoms in the p = 0 peak is calculated from

the fit parameters.

This approach has an inherent weakness: There is no simple a priori model for the shape

of the momentum distribution of the atoms after the interferometry cycle. The atoms begin the

experiment in a pure, stationary BEC with a simple Thomas-Fermi distribution. During the

experiment, the propagating BECs move through each other multiple times. With each pass,

a fraction of the atoms undergo collisions and are scattered out of the ballistically propagating

condensate packets. Some of these ejected atoms remain in the trap for the duration of the

experiment and are recorded in the absorption images. These ejected atoms are no longer

coherent with the condensate packets, but a three-peak fit is unable to distinguish the “noise”

atoms from the coherent atoms. This is just an example of one possible decoherence mechanism

that causes an apparent decrease in the interferometry signal’s visibility. Furthermore, our

routines have trouble fitting three independent shapes to the image when the space between the

peaks contains a significant number of scattered atoms.

Of additional concern, the fitting of three independent two-dimensional shapes to each

image in a data set that contains upward of 100 images is computationally intensive. Our

fitting implementation takes up to an hour to completely fit such a set of images. The slow

speed prevents adjustment of experimental parameters in real time, a shortcoming that would

become a serious problem in an apparatus with the rapid BEC production rate needed to take

high-bandwidth measurements.

Finally, the peaks themselves are often clearly not well described by the simple Thomas-

Fermi distribution (see Fig. 4.1 for an example). As noted in [36], ∆φ is expected to be spatially

inhomogeneous in experiments of this type because of dephasing effects. Such inhomogene-
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ity causes the three peaks in the momentum distribution to acquire spatial structure. If one

attempts to fit a Thomas-Fermi distribution to the results of an experiment in which the inter-

ferometer suffers from dephasing, the fit will integrate over the spatial information and suppress

the interferometer’s contrast. The signal would still be present in the images, but the use of the

incorrect model would bury it. Other unidentified symptoms of noise or unexpected physical

processes could similarly escape detection if the data were fit by an incomplete model.

Figure 4.1: (Color). A false-color interferometer result in which spatial dephasing has occurred.

4.3 Statistical image analysis

In place of fitting the images to a model, a statistical method might be used to extract

and analyze the significant features. In statistical image analysis, it is useful to represent each

pixelated, gray-scale image i as a p̂-dimensional vector Xi, where p̂ is the number of pixels.

The vector’s projection along dimension j is equal to the value of pixel j of the image. For a

very coarse camera that records only two pixels, a set of (totally independent) images could be

plotted as in Fig. 4.2(a). An analysis of a set of images is then carried out by using the statistics

of the corresponding set of vectors to find a more useful set of basis vectors uj in which to

represent the data, such that Xi = M +Y1iu1 +Y2iu2 + · · ·+Yp̂iup̂; here, M is the mean image

of the set.

To illustrate the inconvenience of the original pixel basis, consider the case of a set

of images from our interferometry experiments. Each image contains three spatially localized
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Figure 4.2: Representation of coarse two-pixel images in vector form. (a) A set of independent,
unrelated images. (b) A set of images in which the variation of the two pixels is not independent;
this could be a set of similar images in which some detail is varied from shot to shot.
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features: the peaks in the momentum distribution. Each peak is recorded in the frame by the

values of a localized subset of pixels. We know that the relative prominence of the central peak

changes as ∆φ is varied; this variation is recorded by a change in the value of all of the pixels

in the center of the frame. In the vector representation, the components corresponding to those

central pixels do not vary independently of each other. A plot of the vector representation of

a two-pixel image of just the center of the central peak would look something like Fig. 4.2(b).

It is clear that the pixel basis in which we have represented the image vectors is not linearly

independent.

The image vectors could instead be represented in a different basis. A natural choice

requires each basis vector to consist of a linear combination of pixels that vary independently

from any other grouping of pixels, portraying a single image characteristic that varies indepen-

dently of all other characteristics. The characteristic (which the experimenter can conveniently

examine by representing the basis vector itself as an image) is connected to the variation of a

parameter of the experiment. In a well-controlled experiment, most of the differences between

the images would be quantified by the coefficient of the single basis vector corresponding to

the experimentally controlled parameter. The variation of the other coefficients would represent

unwanted noise processes. The important information in a data set will be represented by the

variation of only the small number of basis vectors corresponding to the experimental signal and

the most significant noise sources.

PCA and ICA are both algorithms that try to find this statistically independent basis.

The difference between the two, to be detailed in the next section, is that ICA uses a higher

order test of independence to find the new basis than PCA uses. An example of a subset of

the basis images found by these algorithms for a given data set is shown in Fig. 4.3. (The

basis images computed from another data set would appear slightly different). The data image

i is equal to the sum of the data set’s mean image (the last image in the sum) and a linear

combination of the basis images. This example illustrates how straightforward it usually is to

assign a physical process to a given basis image by simple visual inspection. We emphasize that
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this process does involve using a sort of “interpretive” model to assign meaning to the images.

To begin, we must find the basis image corresponding to the primary experimental signal, a

change in the fraction of atoms found in the central momentum peak. The third basis image in

Fig. 4.3 represents precisely that change. An image in which all of the atoms were in the center

would have a large, positive value of Y3i, for example. An examination of the other two basis

images shows the experimenter the two dominant noise processes recorded in the data: The

first corresponds to an overall fluctuation in the number of atoms in the experiment, and the

second to a fluctuation in the vertical position of the atoms at the moment of the photograph.

The experimenter may use this information to debug and reduce the experimental noise. The

complete basis contains another NI − 3 basis images (where NI is the number of images in the

set). In this example, their coefficients varied only slightly from image to image. These images

represent detection noise which can be ignored. Details on the selection of which basis images

convey important information may be found in Sec. 4.4.2.

Figure 4.3: (Color). An example showing how an image i from the interferometry experiment
may be represented as a linear combination of independent basis images, each representing a
single physical parameter in the experiment, plus the mean image of the set. False color is used
to represent pixel value in all images. Varying Y1i changes the overall number of atoms; varying
Y2i changes the overall vertical position of the three peaks; varying Y3i changes Rc).
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The process of recovering the signal is now straightforward. The coefficient Y3i is pro-

portional to the fractional population that was previously extracted by fitting the images:

Y3i = A cos ∆φ = A(2Rc − 1) (4.1)

The coefficient Y3i now constitutes the primary measurement of the state of the interferometer

in any given attempt. The phase ∆φ (modulo 2π), amplitude A, and estimates of the visibility

of the fringes may be extracted by fitting a set of Y3i values to Y3i = A cos ∆φ or to the expected

statistical distribution based on that equation. This procedure does require fits to a model, but

the fits are applied to the output of the image analysis process rather than to the raw images

themselves. The distinction is analogous to the difference between using a model to explain the

dependence of experimental parameters on an independent variable and using Gaussian fits in

the first place to extract those parameters from a set of raw images. Parameter extraction of

this type will be detailed in Sec. 4.5.

Figure 4.4 shows the result of carrying out PCA on a typical data set of over 100 images,

while Fig. 4.5 shows the result of ICA carried out on the same images. We observe that the

higher order test used in ICA does a better job of isolating Rc than the lower order test of PCA

does; the second principal component in Fig. 4.5 looks most like it describes the signal, but it is

clear that varying the third principal component will slightly change Rc as well. On the other

hand, the third independent component in Fig. 4.5 is the only one of the three that encodes the

variation of Rc that we seek.

4.4 Details of algorithms

In this section we will detail the PCA and ICA algorithms. We begin by discussing

the distinction between the two. Recall that the goal is to represent an image Xi as a linear

combination of a set of basis images: Xi = M + Y1iu1 + Y2iu2 + · · ·+ Ypiup̂. The basis images

calculated by PCA are an orthonormal set. For a set of NI image vectors represented in this

principal component (PC) basis, the set of coefficients of any one basis image j is required to
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Figure 4.4: (Color). Results of PCA of a typical interferometry data set. The three principal
component basis images (PCs) shown in false color account for most of the total pixel variance
(σ2) in the data set. The experimental signal Rc = cos2(∆φ/2) can be related to PC 2, but it
is clear that some of it is mixed into PC 3.
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Figure 4.5: (Color). False-color results of ICA of the same data set used in Fig. 4.4. Independent
component basis image IC 3 is clearly the experimental signal; it is not mixed into the other
two ICs.
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be statistically uncorrelated with the set of coefficients of any other basis image k:

σ2
jk =

1

NI − 1

NI∑
i=1

Y
(P )
ji Y

(P )
ki = 0. (4.2)

In this equation, Y
(P )
ji is the coefficient of the PC basis image j in the representation of image

i. In contrast, ICA applies a considerably stronger test to the statistics of the coefficients; the

basis it calculates is, however, not necessarily orthogonal. The coefficients of the independent

component (IC) basis are statistically independent, obeying

1

NI

NI∑
i=1

g
(
Y

(I)
ji

)
h
(
Y

(I)
ki

)
− 1

N2
I

(
NI∑
i=1

g
(
Y

(I)
ji

))( NI∑
i=1

h
(
Y

(I)
ki

))
= 0. (4.3)

Here, Y
(I)
ji is the coefficient of the IC basis image j in the representation of image i, and g

and h are any integrable functions. Two coefficients that are independent are necessarily also

uncorrelated, since the definition of decorrelation can be recovered by setting g(x) = h(x) = x

(as long as the mean value of each coefficient is zero). Independence can therefore be thought

of as a higher order decorrelation.

One might conclude from the preceding paragraph that ICA, with its use of higher order

statistics, is always the more useful technique. It is indeed more reliable at the task of extracting

the experimental signal. There exists a class of tasks, however, for which PCA remains the

method of choice. Recall that for any set of vectors represented in two different orthonormal

bases, the sum of the variances of the coefficients in basis 1 must be equal to the sum of the

variances of the coefficients in basis 2. This rule applies to the image analysis problem as well,

such that all of the image-to-image variation is preserved intact in the PC basis. Since the

overall variance is conserved, the variance of a given PC coefficient can be used to rank how

much of the overall variation in the data is accounted for by that PC. This ranking is essential

in the calibration of the experiment, described in the next chapter. In contrast, the IC basis

is not orthogonal. The total variance of the coefficients of the IC basis images is not equal to

the total variance of the original pixels. For this reason, the IC basis images cannot be easily

ranked by their variance.
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4.4.1 Principal component analysis

Having explained the difference between the two algorithms, we describe the details of

the calculations. PCA is a textbook application of linear algebra [37], so the first step in the

process is to represent a set of images in matrix form. Consider a set of NI images of p̂ pixels

each. The pixel values of each image i are written as the components of a vector Xi. If the

mean image, defined as

M =
1

NI
(X1 + . . .+ XNI

), (4.4)

is subtracted from each image, a p̂ × NI matrix of the images in mean-deviation form can be

constructed:

X̂ = (X1 −M X2 −M · · · XNI −M)

= (X̂1 X̂2 · · · X̂NI). (4.5)

The p̂× p̂ sample covariance matrix of the image set is calculated from X̂:

S =
1

NI − 1
X̂X̂T . (4.6)

The diagonal element Sjj is the sample variance of pixel j:

Sjj = σ2
jj =

1

NI − 1

NI∑
i=1

X̂2
ji, (4.7)

and the total variance of all the pixels is tr(S). The off-diagonal element Sjk is the covariance

of pixels j and k:

Sjk = σ2
jk =

1

NI − 1

NI∑
i=1

X̂jiX̂ki. (4.8)

If σ2
jk = 0, then pixels j and k are uncorrelated.

PCA uses the covariance matrix to calculate a new basis for the images. Each column i

of X̂ (representing one image X̂i) is a linear combination of the original pixel basis vectors:

X̂i = X̂1i



1

0

...

0


+ X̂2i



0

1

...

0


+ . . . X̂NI i



0

0

...

1


. (4.9)
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In the PCA basis, the image is represented as a linear combination of a new orthonormal set of

NI vectors/images:

X̂i = Y
(P )
1i u

(P )
1 + Y

(P )
2i u

(P )
2 + . . .+ Y

(P )
NI i

u
(P )
NI
. (4.10)

We assume here that NI < p̂, a reasonable assumption for high-resolution digital images. These

PC basis images can be written as a p̂×NI orthonormal matrix P (P ) = (u
(P )
1 u

(P )
2 · · · u

(P )
p̂ ).

The two representations of the data set are related by

X̂ = P (P )Y (P ). (4.11)

Here and in Eq. (4.10), the matrix Y (P ) is an NI × NI matrix in which column i is the set of

coefficients (or weights) of image i in the PC basis.

The requirement that the set of coefficients of any PC be uncorrelated with the set of

coefficients of any other PC is met if and only if the sample covariance matrix of the PC basis,

D =
1

NI − 1
Y (P )

(
Y (P )

)T
, (4.12)

is diagonal. By using Eqs. (4.6) and (4.11), along with the orthonormality of P , D may be

rewritten as

D =
1

NI − 1

(
P (P )

)T
X̂X̂TP (P )

=
(
P (P )

)T
SP (P ). (4.13)

The sample covariance matrices are related by

S = P (P )D
(
P (P )

)T
. (4.14)

If D is diagonal, then the PCs are the unit eigenvectors of S. The eigenvalue of a PC is the

variance of its coefficient. It is often referred to as the “strength” of the PC.

4.4.2 Reduction of dimensionality with PCA

It only remains to show explicitly how to reconstruct an image using the PC basis.

Assume the PCs have been sorted in order of decreasing strength. Then image i is written in
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the new basis as

Xi = M + Y
(P )
1i u

(P )
1 + Y

(P )
2i u

(P )
2 + . . .+ Y

(P )
NI i

u
(P )
NI
. (4.15)

In the analysis of a set of similar images, most of the variance will be captured by the first q

PCs, where q is the smallest eigenvalue of S above some cutoff value. As a result, the most

important features of image i can still be reconstructed if the image is represented only as

Xi ≈M + Y
(P )
1i u

(P )
1 + Y

(P )
2i u

(P )
2 + . . .+ Y

(P )
qi u(P )

q . (4.16)

The dimensionality of each image is thereby reduced from p̂ pixels to q PC weights. If each of

these q strongest PCs can be positively identified with the variation of a specific experimental

parameter, then its weight in an image is proportional to the value of the associated parameter

in that experimental trial.

The choice of how many PCs to retain is often a difficult one. A detailed analysis of rules

that are often applied to make that choice is found in [38]. The method that we have found to

be most useful is the scree graph, a plot of σ2
j (the variance of PC j, when sorted in decreasing

order) vs. j. We show the scree plot for a particular data set in Fig. 4.6. This data set was the

second of two sets of 100 trials obtained on 14 January 2008, so we will refer to it for the rest of

the chapter as 0114b. The scree graph is used to identify the PC q at which the plot’s “elbow”

occurs. This is defined as the first PC beyond which the plot defines a straight line. If there is

more than one straight line defined by the smaller PCs, then the elbow is taken to be the first

PC on the first of those lines. For the 0114b set, the elbow is located at the fifth PC.

The scree plot method is somewhat subjective, but in our experience it produces reliable

results. Figure 4.7 shows the six strongest PCs for the 0114b data set. We see visually that

the first five images primarily encode changes in the recorded momentum distribution. On the

other hand, a dominant feature of the sixth image is a set of diagonal lines caused by diffraction

in the probe laser beam. The decision to discard this PC made using the scree graph therefore

seems quite sensible.
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Figure 4.6: Scree plot for 0114b data set. Elbow occurs at PC 5.

Figure 4.7: (Color). Strongest PCs of 0114b data set, organized in order of decreasing variance.
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4.4.3 Independent component analysis

In both this data set and the set shown in Fig. 4.4, the signal Rc appears to be encoded by

two PCs. ICA is needed to isolate the signal for sets of this type. The statistically independent

representation of X̂ found by ICA [39, 40] is given by

X̂ = P (I)Y (I), (4.17)

where P (I) = (u
(I)
1 u

(I)
2 . . . u

(I)
NI

) is the matrix of ICs and Y (I) is the new matrix of coeffi-

cients. The challenge is to find P (I) and Y (I) such that Eq. (4.3) is satisfied.

ICA is more effective than PCA only if the underlying experimental parameters are not

normally distributed, because ICA uses tests on the higher order statistical moments of the

coefficients to determine independence. Since these are all zero for a normal distribution, PCA

has already produced a statistically independent set; ICA can do no better.

Fortunately, our experimental signal is not expected to be normally distributed when

∆φ is a random variable with a uniform distribution. The noticeably not normal probability

density of A cos ∆φ [see Eq. (4.1)] for a uniformly distributed ∆φ with zero mean and range

much greater than π is shown in Fig. 4.8(a). ICA should therefore (at least for some data sets)

find a better representation of the signal than PCA. The results of the analysis of the 0114b

data back up this statement, as the shape of the histogram of the set of coefficients for the

interference signal IC [see Fig. 4.8(d)] resembles that of the expected probability density. (This

comparison is purely qualitative). On the other hand, the histograms of PC coefficients [Fig.

4.8(b) and (c)] do not resemble the shape of Fig. 4.8(a) at all. The deviations of Fig. 4.8(d) from

the ideal can be accounted for by the finite size of the data set and the addition of normally

distributed detection noise. See Sec. 4.5 for more details, including a method for extracting the

probability density’s amplitude A from the data. Note that it is not a hard rule that ICA’s basis

image for the signal is always better than PCA’s; we have seen data sets for which the two are

nearly identical.

The relation of higher order moments to the independence of variables is given by the
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Figure 4.8: (Color). (a) The non-Gaussian ideal probability density of A cos ∆φ for uniform
distribution of ∆φ. (b) and (c) From 0114b data, the Gaussian-like histograms of the coefficients
of the PCs imperfectly representing the interference signal. (d) For the same data set, the clearly
non-Gaussian histogram of the coefficient of the signal IC.
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central limit theorem. This states that the sum of two independent variables has a probability

density that resembles a Gaussian at least as well as either of the densities of the independent

variables themselves. A corollary is that the density of an independent variable is “less Gaussian”

than the density of the sum of the variable and any other variable. Therefore, an ICA algorithm

maximizes the “non-Gaussianity” of the density of the calculated IC’s coefficients. Many possible

measurements of non-Gaussianity exist; one of the simplest is the normalized kurtosis excess,

defined as

γ2 =
µ4

σ4
− 3. (4.18)

In this expression, σ4 is the square of the variance of a variable, and µ4 is its fourth moment.

Kurtosis excess measures the “peakedness” of the variable’s density; a variable for which γ2 > 0

has a density more highly peaked than a Gaussian of the same variance and vice versa. A

number of more elaborate measures of non-Gaussianity exist, but all depend in some way on

calculating the higher order moments of the distributions of the coefficients.

ICA begins with a calculation of the PC basis of a set of images. It is next assumed

that each PC is actually a linear combination of the underlying ICs (which are therefore not

orthogonal). The algorithm then forms an initial guess at the ICs by filling the columns of P (I)

with NI random, linearly independent linear combinations of the PCs. The coefficient matrix of

the guess is calculated by inverting P (I):

Y (I) =
(
P (I)

)−1

X̂. (4.19)

A test of non-Gaussianity (perhaps kurtosis) is then applied to each row of Y (I). An optimization

routine is used to adjust the guess of P (I), and the process is repeated until the coefficients of

the optimized ICs are sufficiently non-Gaussian.

4.5 Parameter extraction from PCA/ICA results

In the previous section, it was mentioned that the constant of proportionality A between

the signal-related PC or IC and the real experimental result Rc could be determined by fitting
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a data set’s signal coefficients to its expected statistical distribution. That fitting procedure is

the subject of this section.

4.5.1 Model for probability density of PC/IC signal

We begin by assuming that the phase shift ∆φ has the probability density [Fig. 4.9(a)]:

f∆φ(∆φ) =


1/(2π) if |∆φ| ≤ π

0 if |∆φ| > π

. (4.20)

This is a reasonable assumption for experiments in which ∆φ is uniformly varied over a range

much broader than [−π, π], as our experimental output measures ∆φ modulo 2π. Recall Eq.

(4.1), relating the PCA/ICA coefficient y to ∆φ:

y = A cos ∆φ. (4.21)

The probability density of y is [41]

fy(y) =
∑
i

f∆φ(∆φi)

y′(∆φi)

=
1√

A2 − y2

∑
i

f∆φ(∆φi), (4.22)

where each ∆φi is a root of Eq. (4.21). For any given value of y, there are two values of ∆φ in

the range [−π, π] that satisfy Eq. (4.21). We retain those two terms, obtaining

fy(y) =


1/(π

√
A2 − y2) if |y| < A

0 if |y| ≥ A

(4.23)

[see Fig. 4.9(b)]. Recall Fig. 4.8, in which we saw that the histogram of a typical data set has

tails outside of the peaks predicted by Eq. (4.23). We may include these tails in the model by

assuming that the PC/IC coefficient measures normally-distributed detection noise along with

the signal. We will call this convoluted measurement

z = y + x, (4.24)
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where x has the probability density [Fig. 4.9(c)]

fx(x) =
1

σ
√

2π
e−x

2/2σ2

. (4.25)

The probability density of a sum of two random variables is [Fig. 4.9(d)]:

fz(z) =

∫ ∞
−∞

fx(z − y)fy(y) dy

=
1

σ
√

2π

∫ A

−A

1

π
√
A2 − y2

exp

(
−(z − y)2

2σ2

)
dy

=
−1

σπ
√

2π

∫ 0

−π

sin ∆φ√
1− cos2 ∆φ

exp

(
−(z −A cos ∆φ)2

2σ2

)
d∆φ

=
1

σπ
√

2π

∫ 0

−π
exp

(
−(z −A cos ∆φ)2

2σ2

)
d∆φ. (4.26)

Figure 4.9: Plots of various probability densities. (a) f∆φ(∆φ), (b) fy(y), (c) fx(x), (d) fz(z).

4.5.2 Maximum likelihood estimation of parameters

Our goal now is to extract the values of the proportionality parameter A and noise

parameter σ from a given data set. A common method for fitting a probability density like Eq.

(4.26) to a set of observations is maximum likelihood estimation (MLE) [42]. Consider the joint

probability density of a set of observations z and our unknown parameters:

f(z; A, σ). (4.27)
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If we insert an observed set of sample values for z, then Eq. (4.27) becomes the likelihood

function of the two unknown parameters. The likelihood can be thought of as the complement

of the joint probability density, in which the observed data and the parameters have exchanged

roles. The maximum likelihood estimators of the parameters, Â and σ̂, are those choices that

maximize the likelihood for a given set of observations z = (z1, z2, . . . , zNI). In our case, the

likelihood is

fL(z; A, σ) =

(
1

σπ
√

2π

)N
I

NI∏
i=1

[∫ 0

−π
exp

(
−(zi −A cos ∆φ)2

2σ2

)
d∆φ

]
. (4.28)

For ease of calculation, MLE typically maximizes the natural logarithm of the likelihood:

ln fL = −NI ln(σπ
√

2π) +

NI∑
i=1

ln

[∫ 0

−π
exp

(
−(zi −A cos ∆φ)2

2σ2

)
d∆φ

]
. (4.29)

The result for the 0114b data set is

A = 1.83

σ = .40. (4.30)

This fit is shown superimposed on a normalized histogram of the data in Fig. 4.10. The fit is not

perfect, as the data set is of finite size. We can obtain confidence regions for the fit by making a

contour plot of the likelihood (normalized to 1) around the fit value (Fig. 4.11). The plot shows

that the likelihood is approximately a two-dimensional Gaussian. We wish to find the contours

that enclose 50%, 68%, and 95% of the area of the Gaussian, which are equivalent to the 50%,

68%, and 95% confidence regions for the parameters. The circular coverage function [43]

pc

(rd
s

)
=

1

2πs2

∫ ∫
x2+y2≤r2d

exp

(
−(x2 + y2)

2s2

)
dx dy (4.31)

can be used to find the radius of the circular Gaussian that encloses the desired area fraction.

This radius is then inserted back into the Gaussian to find the value of the function at that

radius, and therefore the desired contour (this contour is the same for our elliptical case). These

contours we seek are located at 0.52, 0.3, and 0.05 respectively, and are marked on the figure.
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The individual parameter 68% confidence regions [44] are

A = 1.83 (1.68, 1.97)

σ = 0.40 (0.31, 0.54), (4.32)

shown by dashed lines in Fig. 4.11. More accurate confidence region estimates could be made by

numerically integrating the normalized likelihood, but this would be computationally intensive.

The estimate method given here can be carried out rapidly. Note that this method of parameter

extraction is generally applicable to all data sets; we have only used the 0114b set as an example.

Figure 4.10: (Color). Result of MLE of probability density function (PDF) superimposed on
normalized histogram of 0114b data set. We see that the MLE of the scaling parameter A
qualitatively fits the data.
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Figure 4.11: (Color). Plot of normalized likelihood near fit values for 0114b data set. The
0.3 contour is approximately the 68% confidence region for the two parameters. Individual
parameter confidence regions are given by the projection of the ellipse onto the axes, shown here
as blue dashed lines.



Chapter 5

Results and lessons learned from Michelson interferometry

In this chapter, we use the output of PCA and ICA to extract the results of the free-

return Michelson experiment. We determine that the interferometer phase was randomized by a

combination of apparatus vibrations and quantum phase diffusion. Experimental modifications

to minimize these two factors would have been difficult to carry out in the Michelson apparatus,

leading us towards the design and construction of a new apparatus.

5.1 Michelson calibration and results

Before beginning a long run of the experiment, we used PCA to calibrate the apparatus.

The timing of the second optical pulse is a critical experimental parameter. For the BECs to be

maximally overlapped at the moment of the second pulse, the separation in time between the

two pulses must be a multiple (or one-half of a multiple) of the trap period. However, the period

can slowly drift by hundreds of microseconds. The problem is compounded by the 90 s cycle time

of the apparatus; a data set of 100 attempts represents more than 2 h of accumulated drift. To

recalibrate before taking a set, we vary this parameter around the expected value and perform

ten attempts of the interferometry cycle at each value. The attempts carried out at a given

pulse time are done with widely varying values of ∆φ (applied with a magnetic field gradient)

to ensure high interference contrast from shot to shot. We then carry out PCA separately on

each small set of images taken at one particular pulse time. At the pulse time that results in

the highest interference contrast, the variance of the coefficient of the basis image corresponding
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to the phase shift signal will be maximized. Figure 5.1 shows the result of a typical calibration

run; a value of zero variance has been assigned for recombination times at which PCA did not

produce a basis image that could be positively identified with the interference signal. Since PCA

is computationally fast, a plot like Fig. 5.1 can be generated as quickly as the data are taken.

Figure 5.1: Plot of the variance of the coefficient of the basis image representing the interference
signal vs time between optical pulses; a value of zero variance is used to indicate times at which
the interference signal cannot be identified with a single basis image.

A data run containing more than 100 interferometry experiments began immediately after

calibration was complete. Figure 4.5 presents a typical result of our interferometry work, taken

after a full trap period (240 ms, in this experiment) of propagation time. The visibility of the

interference pattern

V =
Rmax
c −Rmin

c

Rmax
c +Rmin

c

(5.1)

as obtained with Gaussian fits was fairly good, at about 50%. Of more concern for the future

development of instruments was that the phase of the interfereometer was not controllable. In

the remainder of this section, we will outline two factors that work together to randomize the

phase, and must be mitigated in future experiments. This outline is based on the full analysis

of the experiment found in a previous dissertation [25].
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5.1.1 Vibrations of the apparatus

The first randomizing effect that we will consider is the coupling of apparatus vibrations

to the differential phase. As we will see, this noise coupling mechanism can be dealt with

by better isolating the experiment from environmental mechanical noise and an adjustment of

experimental parameters.

Recall from Eq. (2.34) that the BECs that are propagating in the trap acquire a phase

shift from their transfer into non-zero momentum states by the initial beamsplitter pulse. That

phase term is exp[±2k0z(0)], where we will take the positive sign to be for the condensate

propagating along the +z direction. Here, z(0) is the distance between the retro-reflecting mirror

and the initial location of the BEC. The second pulse imprints a phase opposite in magnitude

in its attempt to stop the atoms, multiplying the wavefunctions by exp[∓2k0z(T )] [z(T ) is the

distance between the mirror and the two overlapped BECs at the moment of reunion]. The end

result is a differential phase shift between the two BECs equal to

∆φlaser = 4k0(z(0)− z(T )). (5.2)

In the ideal experiment z(0) = z(T ), so this laser-induced differential phase shift vanishes.

In real experiments, z(T ) is not necessarily equal to z(0). A vibration of the apparatus

directed along the guide axis modifies the equation of motion of the moving BECs to include a

driving acceleration a(t):

z̈ + ωzz = a(t). (5.3)

The general solution (obtained by variation of parameters [45]) is

z(t) = A1 cosωzt+A2 sinωzt+
sinωzt

ωz

∫ t

0

a(t′) cos(ωzt
′) dt′− cosωzt

ωz

∫ t

0

a(t′) sin(ωzt
′) dt′. (5.4)

The shift in phase at the end of one axial period (t = T = 2π/ωz) due to the acceleration is

therefore

∆φlaser = −4k0

ωz

∫ T

0

a(t′) sin(ωzt
′) dt′. (5.5)
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Vibration of the apparatus can be generally expressed as

a(t) = a(ωv) sin(ωvt+ φv) (5.6)

for any given frequency ωv, amplitude a(ωv), and initial phase φv. The phase shift for that

vibration is

∆φlaser =
2k0

π(1 + ωv/ωz)
T 2a(ωv)sinc

[
π

(
ωv
ωz
− 1

)]
×
{

sinφv sin

[
π

(
ωv
ωz
− 1

)]
− cosφv cos

[
π

(
ωv
ωz
− 1

)]}
. (5.7)

The sum in quadrature of both in- and out-of-phase vibrations is shown in Fig. 5.2. We see that

low-frequency vibrations near the axial trap frequency can significantly shift the output of the

interferometer, with the greatest shift

∆φlaser(max) = −k0T
2a(ωv)

π
(5.8)

occurring for in-phase vibrations at ωz. For our typical axial trap of ωz = 2π × 4.2 Hz,

∆φlaser(max) = π for a(ωv) = 2.2× 10−5 m/s
2
.

Figure 5.2: Quadrature sum of differential phase shifts caused by in-phase and out-of-phase
vibrations vs vibration frequency.

To determine if the vibrations were having a noticeable effect on the experiment, we

carefully measured the spectrum of the vibrations of our optical table along the guide axis using
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a seismometer. Two results are shown in Fig. 5.3: in (a) the table is resting on its supports,

in (b) it is floating on its pneumatic isolators. The plots indicate that vibration-induced phase

randomization should be significant at ωz = 2π × 4.2 Hz, though it should be less of a problem

when the table is floating.

The experimental results support that hypothesis. Data sets taken with the table resting

on its supports have the characteristic double-peaked probability density of large phase variation

even when the phase is not intentionally varied. In contrast, consider Fig. 5.4, which shows the

histogram of the signal IC from a data set taken while the table was floating. Instead of the

familiar shape of Sec. 4.5, we see a density that appears to be missing one of its wings. This

plot is a qualitative indication that the spread in phase has been reduced.

While the mitigation of vibration effects by floating the table is encouraging, we still

do not have sufficient control over the differential phase for stable interferometry. An effort

was made to precisely measure the vibrations of the apparatus during the experiment using the

already mentioned seismometer, and thereby calculate the expected vibration phase shift. There

was no correlation between this calculated shift and the output of the interferometer. Among

the proposed technical problems with the procedure is that the structure holding the microtrap

module is not perfectly rigid (see Fig. 5.5), so the vibrations measured by the seismometer could

not have been perfectly correlated with the actual mirror vibrations.

5.1.2 Quantum phase diffusion

Technical problems notwithstanding, a more fundamental effect is expected to cause

phase randomization. Quantum phase diffusion offers a compelling explanation for the failure

to correlate the measured vibrations with the interferometer output. The source of this phase

diffusion is the energy of the interactions of the atoms in each BEC. This energy is parameterized

by the chemical potential µ, a function of the number of atoms in the BEC. The wavefunctions

of the two condensates (identified here as “j = +” and “j = −”) of our experiment each

include a phase evolution term exp[iµj(Nj)t/h̄] due to this energy. The fundamental quantum
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Figure 5.3: Spectra of optical table vibrations along guide axis. (a) Table is resting on legs, (b)
table is floating on isolators [25].
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Figure 5.4: (Color). Normalized histogram of signal IC from data set taken with table floating
and without any intentional phase variation, superimposed with a kernel smoothing estimate of
the probability density function (PDF). See Sec. 4.5 for details on extracting the proportionality
constant A that relates the signal IC coefficient to cos ∆φ.

Figure 5.5: (Color). Microtrap module from Michelson apparatus. The atom chip is suspended
from a cantilevered arm projecting from the wall of the vacuum chamber. This cantilever is not
expected to be perfectly rigid.
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uncertainty of the number of atoms in the two condensates causes the relative phase to develop

its own uncertainty. The initially well-known differential phase is said to “diffuse” over time

[30]. We follow the treatment of [46] to estimate the diffusion rate.

We first calculate the uncertainty in the splitting process. Consider a trapped BEC

containing NT atoms that is adiabatically split into two physically separated wells. Our case

of momentum-state splitting is analogous, as long as the duration of the splitting process itself

(during which the two BECs interact with each other) is much shorter than the total duration

of the experiment. Immediately after splitting, the wavefunction of each individual atom i is a

coherent superposition of two opposite momentum states: [ψ+(ri) + ψ−(ri)]/
√

2. We use the

Hartree approach to find the total many-body wavefunction

Ψ(ri, . . . , rNT , t = 0) =
1

2NT /2

NT∏
i=1

[ψ+(ri) + ψ−(ri)]

=
1

2NT /2

NT∑
k=0

√√√√√√√
NT
N−

χN−,NT−N−(ri, . . . , rNT ), (5.9)

where we have used the binomial coefficient in the summation. The unit-normalized wavefunc-

tion for the state in which N− atoms are in the − BEC and NT −N− atoms are in the + BEC

is χN−,NT−N− . The corresponding state vector is

|Ψ(t = 0)〉 =
1

2NT /2

NT∑
N−=0

√√√√√√√
NT
N−

 |N−, NT −N−〉 . (5.10)

We see that for large, even NT that the most likely measured result of N− is N− = NT /2, with

approximate uncertainty
√
NT . For the rest of these calculations, we will continue to assume

NT is even; the end result for odd NT is the same, though the derivation is slightly different.

To calculate the evolution of the state, we will need to estimate the energy of the system.

Near N− = NT /2, the most probable value of N−, the energy of a given number state is

E−(N−) + E+(NT −N−) ≈ 2E

(
N− =

NT
2

)
+
d2E(N− = NT /2)

dN2
−

(
N− −

NT
2

)2

≈ h̄
(
ωNT /2 + ξ(N− −NT /2)2

)
. (5.11)
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The state at time t is therefore

|Ψ(t)〉 =
exp(−iωNT /2t)

2NT /2

NT∑
N−=0

√√√√√√√
NT
N−

 exp
(
−iξt(N− −NT /2)2

)
|N−, NT −N−〉 . (5.12)

We see that the phase for each value of N− evolves at a different rate.

We find the probability of measuring a specific phase difference ∆φ by computing

P (∆φp̌) = | 〈∆φp̌|Ψ(t)〉 |2, (5.13)

where |∆φp̌〉 is an eigenstate of the phase-difference operator. These states are [47]:

|∆φp̌〉 =
1√

NT + 1

NT∑
N−=0

exp (iN−∆φp̌) |N−, NT −N−〉 , (5.14)

for eigenvalues ∆φp̌ = 2πp̌/(NT + 1), p̌ = −NT /2,−NT /2 + 1, . . . , NT /2. The inner product of

the states is

〈∆φp̌|Ψ(t)〉 =
exp(−iωNT /2t)
2NT /2

√
NT + 1

NT∑
N−=0

√√√√√√√
NT
N−

 exp

[
−i

(
ξt

(
N− −

NT
2

)2

+N−∆φp̌

)]
.

(5.15)

In the limit NT � 1, the binomial coefficient can be replaced with a Gaussian:NT
N−

 ≈ 2NT+1

√
2πNT

exp

(
−2(N− −NT /2)2

NT

)
. (5.16)

It is also appropriate to approximate the sum by an integral, obtaining

〈∆φp̌|Ψ(t)〉 =
exp(−iωNT /2t)
2NT /2

√
NT + 1

(
2NT+1

√
2πNT

)1/2

×
∫ NT

0

dN− exp

[
−i

(
ξt

(
N− −

NT
2

)2

+N−∆φp̌

)
− (N− −NT /2)2

NT

]
. (5.17)

As NT →∞,

〈∆φp̌|Ψ(t)〉 =
exp(−iωNT /2t)

√
π

2NT /2
√
NT + 1

(
2NT+1

√
2πNT

)1/2

× 1√
iξt+ 1/NT

exp

[
−iNT∆φp̌

2
−

∆φ2
p̌

4(iξt+ 1/NT )

]
. (5.18)
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Multiplying Eq. (5.18) by its complex conjugate, we obtain

P (∆φp̌) =
1

NT + 1

√
2π

σ∆φ
exp

(
−

∆φ2
p̌

2σ2
∆φ

)
, (5.19)

with standard deviation

σ∆φ =

√
1

NT
+NT ξ2t2. (5.20)

The probability density for ∆φ is obtained by the transformation

f(∆φ) d∆φ = P (∆φp̌), (5.21)

where d∆φ = 2π/(NT + 1). The result is

f(∆φ) =
1√

2πσ∆φ

exp

(
− ∆φ2

2σ2
∆φ

)
, (5.22)

where we now consider ∆φ to be a continuous variable. Note that the equivalent equation in

[46] seems to have been printed with the incorrect normalization. Regardless, the key result

is that the standard deviation of the differential phase increases approximately linearly at rate

R =
√
Nξ.

We can easily calculate R for a BEC in the Thomas-Fermi limit. The total energy of

such a condensate is [35]

E =
5

14

(
15N−as

ā

)2/5

h̄ω̄N−, (5.23)

where N− is the number of atoms, as is the scattering length, ω̄ is the geometric mean trapping

frequency, and ā is the corresponding oscillator length. Using the definition of ξ in Eq. (5.11),

we find

R =

(
72

125

)1/5 (as
ā

)2/5 ω̄

N
1/10
T

∝ ω4/5
ρ . (5.24)

For our typical experimental parameters (NT = 5000 87Rb atoms in |1,−1〉 ground state, ωρ =

2π × 80 Hz, ωz = 2π × 4.2 Hz), the standard deviation of the phase is 1.6 rad. Note that R is

a very weak function of the total number of atoms, but that it scales relatively strongly with

respect to the radial trap frequency.
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This model is fairly simplistic. It assumes that the splitting is adiabatic and that the BEC

is in the Thomas-Fermi limit. It also does not describe the effects (if any) of the recombination

process on the phase diffusion rate. Finally, it contains no calculation of the possible effects of

phase diffusion on the visibility of the interference signal. This model’s results should therefore

not be assumed to apply to our experiment without further support. Numerical modeling

provides a piece of corroborating evidence. A simulation of the Gross-Pitaevskii equation using

our experimental parameters found a number for σ∆φ very similar to the analytic result (see

[25] for details). The single-peak experimental result of Fig. 5.4 provides some further support.

Recall that in this set, no phase shift was intentionally applied and vibrations were significantly

reduced by floating the optical table on air. Our contention is that the remaining randomization

of the phase is explained by quantum diffusion. To check that, we simulate a 100 point data

set in which ∆φ is a normally distributed random variable with zero mean and σ∆φ = 1.6 rad.

Figure 5.6 shows the probability density of cos ∆φ for one simulated set. The shape resembles

that of Fig. 5.4. Note that the assumption that the mean value of ∆φ is 0 is not rigorously

supported; the value is not actually known a priori due to the phase randomization. In the

end, we can make no strong conclusions although we see some indications that phase diffusion

is present in the experiment. Future interferometry work will have to further explore this issue.

5.2 Lessons for future experiments

For any future experiments to be successful, we will have to find some way to address the

effect of random vibrations. It should be possible to subtract the phase shift due to vibration

from our signal by independently measuring the vibration of the apparatus. Since our previous

efforts towards this goal were not successful (see Sec. 5.1.1 and [25]), it is perhaps safer to focus

our next efforts on better isolating the experiment from mechanical noise. Operating the axial

trap at a higher frequency might help to reduce the amplitude of vibrations transmitted to

the mirror, as well as reducing the expected phase shift from the vibrations. The higher trap

frequency would give less time for quantum phase diffusion to develop as well. However, as
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Figure 5.6: (Color). Probability density of simulated data set subject to quantum phase diffu-
sion. We show both a histogram and a kernel smoothing approximation of the PDF (to guide
the eye only).
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described in Sec. 2.1.2, an increase in the axial confinement leads to an increased tilt of the

waveguide with respect to the permanently positioned standing wave mirror. Further increasing

that relative tilt would have caused the propagating BECs to oscillate along the radial axis of

the guide, reducing the overlap of the two at the application of the second set of beamsplitter

pulses. Correcting this problem would have required a redesign of the microtrap assembly or of

its surrounding vacuum chamber.

Further investigation of the possible effects of phase diffusion must also be on the agenda.

One simple experiment would be to attempt to adjust the phase diffusion rate R. We saw in Eq.

(5.24) that R ∝ ω4/5
ρ , so a small decrease in the radial confinement would reduce phase diffusion

effects. However, as we will see in Sec. 6.5.5, the area enclosed by our proposed gyroscope

scales quite strongly with ωρ. Future experiments will therefore require a careful selection of an

optimal value for ωρ.

Another possible way to mitigate the effects of phase diffusion would be obtain more data

from the experiment. Assume we have increased the axial frequency to ωz = 2π × 10 Hz but

maintained the same radial frequency. The estimated standard deviation of the phase (using the

simple model of the previous section) for this axial frequency is 1 rad; better than before, but

still quite large. In Fig. 5.7, we show the results of a simulation of this experiment, in which ∆φ

is intentionally varied uniformly in the range [−π, π]. The measured output of the experiment is

cos(∆φ+φD), where φD is a normally distributed phase diffusion contribution with zero mean.

On the left side of the figure, we show results for σ∆φ = 1.6 rad and data sets containing 100,

1000, and 10000 experiments. On the right side, we show results for σ∆φ = 1.6 rad. Figure

5.7(a), which shows a simulation of the Michelson experimental conditions, shows quite clearly

that our data sets that contain 100 points and σ∆φ = 1.6 rad will never be useful for extracting

the phase of the experiment. With more data, the sine wave becomes visible against the noise.

A fit to the function a1 cos(ω1∆φ) becomes plausible. The fit parameter ω1 should be 1, and the

amplitude a1 is a fair measure of the visibility of the signal over the noise. The results of these

fits are shown in Table 5.1. We see that with σ∆φ = 1 rad, the fit becomes reliable at 1000 data
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points. The fit is also twice as visible on the background as it is for the σ∆φ = 1.6 rad case.

σ∆φ (rad) Number of trials a1 ω1

1.6 100 N/A N/A
1.6 1000 0.3 [0.1,0.6] 0.8 [0.3,1.3]
1.6 10000 0.30 [0.27,0.34] 0.9 [0.8,1.0]
1.0 100 0.7 [0.4,0.9] 1.0 [0.6,1.4]
1.0 1000 0.60 [0.54,0.65] 1.04 [0.95,1.13]
1.0 10000 0.61 [0.59,0.63] 0.99 [0.96,1.03]

Table 5.1: Fit parameters for simulated data in Fig. 5.7. 95% confidence regions for fit param-
eters are shown in brackets.

We conclude that we need three apparatus improvements in order to be ready for gyro-

scope experiments: (1) We need a way to adjust the angle of the standing wave with respect to

the chip wires so that higher axial trap frequencies can be used. (2) We need to decrease the

time required to make a BEC. A 1000-run data set would take more than a day to obtain with

the existing 90 s cycle time. (3) We need to develop a way to rotate the experiment in order to

carry out gyroscope tests. Improvement (1) could probably have been made by a modification

of the existing apparatus. Improvements (2) and (3) would require fundamentally changing the

the apparatus, which was designed to use familiar, but large and slow, “macrotrap” methods in

order to reduce the unknowns in operating the machine. It is for this reason that the Michelson

apparatus was retired after long years of service. Our recent efforts have focused on the design

and construction of a new all-microtrap system that promises the small size and rapid BEC

production required to test a Sagnac gyroscope based on Michelson interferometry.
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Figure 5.7: (Color). Results of simulated data sets for various numbers of trials and amount of
phase diffusion. The experimenter intentionally varies ∆φ uniformly in the range [−π, π]. The
plots show the measured quantity cos(∆φ+ φD), where φD is the phase noise due to diffusion.
(a), (b), and (c) have σ∆φ = 1.6 rad with 100, 1000, and 10000 trials respectively. (d) through
(f) show the results for σ∆φ = 1 rad. Fits to the simulated data are shown as well. A similar
figure is shown in [25].



Chapter 6

Theory and design of the atom chip gyroscope

6.1 Parallel wire concept

The Michelson interferometry experiments discussed in the previous two chapters showed

that guided BEC interferometry is possible. Our next step towards the goal of building an

ultracold waveguide Sagnac gyroscope was to develop an area-enclosing guided interferometer

that would incorporate the lessons learned from the linear Michelson interferometer.

It has been demonstrated [48] that it is possible to use a linear waveguide to guide atoms

around an enclosed area. The key idea is to translate the guide transverse to its axis during the

interferometry sequence. See Fig. 6.1 for a schematic of the idea. The method pursued in [48]

uses a magnetic waveguide generated by an arrangement of permalloy foils poled by current-

carrying coils (see Fig. 6.2). The guide’s position is translated by adjusting the current in the

central coils. This method has been used to translate a waveguide by about 1 mm, which is only

a factor of 3 less than the diameter of a circular path that has a Sagnac phase shift of π rad at

ΩEarth for 87Rb (see Section 1.1.3).

This coil-based approach to a moving waveguide is quite large, occupying a footprint of

200×100×25.4 mm. The waveguide potential is 7 mm above the top of the foils. The large size

allows the experimenters to translate the guide by simply adjusting the current running through

the two central coils, but at the cost of portability.

As suggested in the conclusion of [48], an alternative approach would be to use “a mul-
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Figure 6.1: (Color). Schematic of translating waveguide interferometer. A gas of atoms (shown
in yellow) is initially stationary in a magnetic waveguide (cyan) aligned along the z axis. The
atomic potential includes a weak axial trap (period T ) along z. At t = 0, a standing wave
light pulse (E, shown in magenta) splits the cloud into two wave packets moving in opposite
directions along the waveguide axis. Simultaneously, the waveguide begins to move along the x
axis. The wave packets reach their classical turning points at t = T/4 and reverse their axial
motion. At t = T/2, as the packets overlap at the center of the guide, the transverse motion
has been stopped. It is reversed for the second half of the packets’ axial oscillation, eventually
bringing the packets together again in their initial position at t = T . A second pulse of E
recombines the packets. Based on a figure in [48].
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Figure 6.2: (Color) Schematic of moving guide apparatus from [48]. Coils wrapped around
permalloy foils (shown in dark red) pole the foils in the indicated directions. The false color
plot above the wires shows the location of the waveguide, which is aligned perpendicular to the
plane of the image. By adjusting the ratio between the currents running in the inner two coils,
the guide’s position may be moved horizontally by about 1 mm.

tiwire 1D conveyor belt on an atom chip” to translate the waveguide. To visualize this idea,

consider an atom chip patterned with an array of parallel wires [see Fig. 6.3(a)]. The wires are

then driven in such a way that a waveguide that is initially positioned over wire A moves across

the array. A very simple way to do this is to sequentially turn on and then off the current in

the wires [see Fig. 6.3(b)]. The total current density of this system resembles a soliton moving

down the wire array. Assuming a constant transverse bias field, the guide is effectively “handed

off” by this action from wire to wire, translating it across the chip.

It is also possible to drive the wires such that the total current density of the system

resembles a traveling wave moving across the array [see Fig. 6.3(c)]. When properly biased, the

resulting potential would have multiple waveguides that would travel with the current wave.

The traveling wave idea should be simple to apply in a practical system. While the “hand-off”

concept requires an independently driven current supply for each wire, a traveling wave would

be created by driving the wires periodically in space and time. For spatial period L and wire

density N/L, this approach requires only N supplies. For experimental simplicity, we plan to

use the traveling wave approach.

6.2 Magnetic field of parallel wires carrying sinusoidal current

density

In this section, we develop the mathematics to describe the magnetic field generated by

an array of parallel wires driven by a traveling wave of current. These calculations are the result
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Figure 6.3: Multiple parallel wire waveguide operation. (a) Schematic of wire layout. Here, 4
parallel wires, labeled A through D, have been patterned onto a chip. A bias field transverse
to the wire direction is present, but not shown. (b) “Hand-off” operation. Initially, only wire A
has current running through it, so the guide is located directly above it. The wires are smoothly
turned on and off in sequence, causing the waveguide to be handed off from one wire to the next.
(c) Running wave operation. The wires are driven sinusoidally in time, each with a slight phase
shift from the previous wire. Atoms initially loaded into the magnetic field minimum above wire
A move down the array as the minimum moves.
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of a collaboration with Prof. Alex Zozulya of Worcester (MA) Polytechnic Institute.

6.2.1 Field of sinusoidal current density

We begin with a stationary wave of current. Consider an infinite sheet of current in the

xz plane, described by current density

J = K(x)δD(y)ẑ. (6.1)

Here K(x) is the magnitude of the surface current density and δD(y) is the Dirac delta function.

The field of this sheet is given by the Biot-Savart law:

B(r) =
µ0

4π

∫
J(r′)× r− r′

|r− r′|3
d3x′

=
µ0

2π

∫
K(x′)

−yx̂ + (x− x′)ŷ
(x− x′)2 + y2

dx′. (6.2)

If the current density is sinusoidal with spatial period L and amplitude K
(c)
1 , then

K(x) = K
(c)
1 cos

(
2πx

L

)
. (6.3)

The field for this current density is

B(r) =
µ0K

(c)
1

2π

∫
cos

(
2πx′

L

)
−yx̂ + (x− x′)ŷ
(x− x′)2 + y2

dx′. (6.4)

Fourier integrals of this type may be evaluated by the residue method [45], using the formula∫ ∞
−∞

g(x) coswx dx = −2π
∑

Im Res[g(z)eiwz]. (6.5)

Here the sum is over the residues of g(z)eiwz in the upper half of the complex number plane.

The resulting field is

B(r) =
µ0K

(c)
1

2
e−2πy/L

(
− cos

2πx

L
x̂ + sin

2πx

L
ŷ

)
, (6.6)

where y ≥ 0.

6.2.2 Field of periodic current density

Building on the previous section, we next consider the field of a sheet carrying a more

general periodic current density. For spatial period L, the surface current density may be written
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as a Fourier series:

K(x) = K0 +
∞∑
n=1

(
K(c)
n cos

2πnx

L
+K(s)

n sin
2πnx

L

)
. (6.7)

The Fourier coefficients are given by

K0 =
1

L

∫ L

0

K(x) dx

K(c)
n =

2

L

∫ L

0

K(x) cos
2πnx

L
dx

K(s)
n =

2

L

∫ L

0

K(x) sin
2πnx

L
dx. (6.8)

The field of the general periodic surface current density is found by inserting Eq. (6.7) into Eq.

(6.2) to obtain

B0(r) = −µ0K0

2
x̂

B(c)
n (r) =

µ0K
(c)
n

2
e−2πny/L

(
− cos

2πnx

L
x̂ + sin

2πnx

L
ŷ

)
B(s)
n (r) =

µ0K
(s)
n

2
e−2πny/L

(
− sin

2πnx

L
x̂− cos

2πnx

L
ŷ

)
. (6.9)

Here, we have again used the Fourier cosine integral formula in Eq. (6.5), along with the similar

sine formula ∫ ∞
−∞

g(x) sinwx dx = 2π
∑

Re Res[g(z)eiwz]. (6.10)

6.2.3 Field of sinusoidal current density generated by wires

In the previous two sections, we calculated the magnetic field generated by an infinite

sheet of periodic current density. We will now consider a more realistic situation, in which the

periodic current density flows through an array of parallel wires instead of a continuous sheet.

See Fig. 6.4 for an illustration of the variables that will be used in this calculation.

Consider an infinite array of parallel, infinitely long wires of width ∆x. The current in

each wire is a periodic function of its position, with period L. There are N wires in each spatial

period, where N > 1. The wires are evenly spaced, such that wire m begins at position

x̂m =
L

N
m (6.11)
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Figure 6.4: Illustration of variables associated with periodic current density calculation. Con-
sider an array of wires carrying a sinusoidal current density of spatial period L. There are N
wires in each period, spaced at a distance L/N . ∆x is the wire width. x̂m is the position of the
left edge of wire m.

and carries current

Im = I cos
2πm

N
. (6.12)

The index m runs from 0 to N − 1. The total current density in each period is given by Eq.

(6.1) where

K(x) =
I

∆x

N−1∑
m=0

cos
2πm

N
[Θ(x− x̂m)−Θ(x− x̂m −∆x)]. (6.13)

Θ(x) is the unit step function.

To use the mathematics developed in section 6.2.2, we must write Eq. (6.13) as a Fourier
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series. Using Eq. (6.8) to calculate the coefficients, we find

K0 =
I

L∆x

N−1∑
m=0

cos
2πm

N

∫ L

0

[Θ(x− x̂m)−Θ(x− x̂m −∆x)] dx

=
I

L

N−1∑
m=0

cos
2πm

N
(6.14)

K(c)
n =

2I

L∆x

N−1∑
m=0

cos
2πm

N

∫ L

0

cos
2πnx

L
[Θ(x− x̂m)−Θ(x− x̂m −∆x)] dx

=
2I

L∆x

N−1∑
m=0

cos
2πm

N

∫ x̂m+∆x

x̂m

cos
2πnx

L
dx

=
I

nπ∆x

N−1∑
m=0

cos
2πm

N

(
sin

2πn(x̂m + ∆x)

L
− sin

2πnx̂m
L

)

=
I

nπ∆x

N−1∑
m=0

cos
2πm

N

[
sin

2πnm

N

(
cos

2πn∆x

L
− 1

)
+ cos

2πnm

N
sin

2πn∆x

L

]
(6.15)

K(s)
n =

2I

L∆x

N−1∑
m=0

cos
2πm

N

∫ x̂m+∆x

x̂m

sin
2πnx

L
dx

=
I

nπ∆x

N−1∑
m=0

cos
2πm

N

(
cos

2πnx̂m
L

− cos
2πn(x̂m + ∆x)

L

)

=
I

nπ∆x

N−1∑
m=0

cos
2πm

N

[
cos

2πnm

N

(
1− cos

2πn∆x

L

)
+ sin

2πnm

N
sin

2πn∆x

L

]
. (6.16)

To sum the series, we use the orthogonality relations of the discrete trigonometric functions [49]

to state

N−1∑
m=0

cos
2πm

N
sin

2πnm

N
= 0

N−1∑
m=0

cos
2πm

N
cos

2πnm

N
=
N

2
(δn−1,âN + δn+1,âN )

N−1∑
m=0

sin
2πm

N
sin

2πnm

N
=
N

2
(δn−1,âN − δn+1,âN )

N−1∑
m=0

sin
2πm

N
=
N−1∑
m=0

cos
2πm

N
= 0, (6.17)

where â is any non-negative integer. Applying these relations, we obtain

K0 = 0

K(c)
n =

NI

L

sin 2αn
2αn

(δn+1,âN + δn−1,âN )

K(s)
n =

NI

L

sin2 αn
αn

(δn+1,âN + δn−1,âN ) (6.18)



82

where

αn =
nπ∆x

L
. (6.19)

Plugging these Fourier coefficients into Eq. (6.9), we find the magnetic field of harmonic n is

Bn,x = −Bw
sinαn
αn

e−2πny/L cos

(
2πnx

L
− αn

)
Bn,y = Bw

sinαn
αn

e−2πny/L sin

(
2πnx

L
− αn

)
(6.20)

where

Bw =
µ0IN

2L
. (6.21)

We see from Eq. (6.20) that the lowest nonzero harmonic has the largest amplitude, so

we may approximate the field as consisting of only harmonic n = 1. We now add a uniform bias

B0,xx̂ to form waveguides in the +y half space. To find the location of the waveguides, we use

Eq. (6.20) to calculate the set of locations x0 where the y component of the wire field vanishes:

0 = sin

(
2πx0

L
− α1

)
x0 =

∆x

2
+
bL

2
, (6.22)

where b is an integer. When x = x0, the x component of the field vanishes at y = y0, given by

0 = B0,x −Bw
sinα1

α1
e−2πy0/L cos bπ. (6.23)

If both B0,x > 0 and Bw > 0, then we must constrain b to be an even integer. With that

constraint in place, we find

y0 =
L

2π
ln

(
Bw
B0,x

sinα1

α1

)
. (6.24)

We see that the periodically driven array of wires forms an infinite array of waveguides at height

y0, spaced by the current’s spatial period L.

The final step in this calculation is to add an axial bias field B0,z and then cal-

culate the waveguide’s trap frequency. We Taylor expand the field magnitude B1 =√
(B1,x +B0,x)2 +B2

1,y +B2
0,z around a field minimum line (x0, y0), finding

B1 ≈ |B0,z|+
2π2B2

0,x

|B0,z|L2
ρ2. (6.25)
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The coordinate ρ is defined as ρ =
√

(x− x0)2 + (y − y0)2. The harmonic frequency of the

waveguide for trapped atoms is

ωρ = 2π

√
gFmFµB

MB0,z

B0,x

L
. (6.26)

We see in Eq. (6.18) that the next nonzero harmonic is n = N − 1. This harmonic

contribution to the magnetic field at the center of a waveguide is insignificant when

sinα1

α1
e−2πy0/L � sinαN−1

αN−1
e−2π(N−1)y0/L

1� α1 sinαN−1

αN−1 sinα1
e−2π(N−2)y0/L

�
(
B0,x

Bw

)N−2(
α1

sinα1

)N−1
sinαN−1

αN−1
. (6.27)

If this parameter is kept small, then the contributions of all higher harmonics will also be

insignificant.

6.2.4 Field of traveling sinusoidal current density generated by wires

In this section we will calculate the field generated by an array of wires carrying a traveling

wave of current density, in place of the stationary wave of the previous sections. The current in

wire m is in this case given by

Im = I cos

(
2π

L
(x̂m − vct)

)
, (6.28)

where vc is the speed at which the waveguides will move across the array of wires. The wire

position x̂m is defined in Eq. (6.11). Using the methods of Sec. 6.2.3, we calculate the Fourier

coefficients of the current density to be

K0 = 0

K(c)
n =

IN

L

sinαn
αn

[
δn+1,âN cos

(
2πvct

L
− αn

)
+ δn−1,âN cos

(
2πvct

L
+ αn

)]
K(s)
n =

IN

L

sinαn
αn

[
−δn+1,âN sin

(
2πvct

L
− αn

)
+ δn−1,âN sin

(
2πvct

L
+ αn

)]
. (6.29)
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We consider now the field of the n = 1 harmonic only, given by

B1,x = −Bw
sinα1

α1
e−2πy/L cos

(
2π

L
(x− vct)− α1

)
B1,y = Bw

sinα1

α1
e−2πy/L sin

(
2π

L
(x− vct)− α1

)
(6.30)

Adding bias field B0 = (B0,x, 0, B0,z) to the wire fields results in an array of waveguide poten-

tials, similar to the results of the previous section. In this case, however, the waveguides move

in time along x. We calculate the waveguide positions (x0, y0) to be

x0 =
∆x

2
+ vct+ bL

y0 =
L

2π
ln

(
Bw
B0,x

sinα1

α1

)
(6.31)

for any integer b. The trap frequency ωρ is given by Eq. (6.26).

In the traveling case, unlike the stationary case, the perturbations due to the higher

harmonics cause shifts in the trap potential that oscillate in time. Such oscillations could

excite collective modes in a BEC trapped in the moving waveguide, so we must calculate their

amplitude and frequency. We consider the total field from n = 1 and the next non-zero harmonic,

n = N − 1:

Bx ≈ B0,x

[
1− e−2πȳ/L cos

2πx̄

L

−βεN−2e−2π(N−1)ȳ/L cos

(
2πx̄

L
(N − 1) +Nω̃t

)]
By ≈ B0,x

[
e−2πȳ/L sin

2πx̄

L

+βεN−2e−2π(N−1)ȳ/L sin

(
2πx̄

L
(N − 1) +Nω̃t

)]
. (6.32)

These equations use a number of new symbols. The coordinates x and y have been re-centered

according to

x̄ = x− x0

ȳ = y − y0. (6.33)
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The new parameters ε, β, and ω̃ are defined as

ε = e−2πy0/L =
B0,x

Bw

α1

sinα1

ω̃ =
2πvc
L

β =
sinαN−1

αN−1

α1

sinα1
. (6.34)

In the following equations, we will assume that y0 and L have been chosen so that ε is small.

The parameter β will also be small for larger values of N . We next Taylor expand the field

around x̄ = ȳ = ε = 0, obtaining

B ≈ B0,z +
2π2

L2

B2
0,x

B0,z
(x̄2 + ȳ2)

+
2π

L

B2
0,x

B0,z
βεN−2(x̄ sinNω̃t− ȳ cosNω̃t)

+
2π2

L2

B2
0,x

B0,z
βεN−2[(2N − 3)x̄2 cosNω̃t− 2x̄ȳ sinNω̃t+ (2N − 1)ȳ2 cosNω̃t]. (6.35)

The potential for an atom in this field is

U =
h̄ωρ
2ρ2

0

(
x̄2 + ȳ2

+
L

π
βεN−2(x̄ sinNω̃t− ȳ cosNω̃t)

+ βεN−2[(2N − 3)x̄2 cosNω̃t+ (2N − 1)ȳ2 cosNω̃t]

− 2βεN−2x̄ȳ sinNω̃t
)
, (6.36)

where the trap frequency ωρ is given in Eq. (6.26) and ρ0 =
√
h̄/Mωρ is the harmonic oscillator

length scale. This is a two-dimensional harmonic oscillator potential with a small periodic driving

force (third term), and periodic perturbations to the trap shape (fourth and fifth terms).

6.3 Collective mode excitation due to parallel wires

In this section, we calculate the amplitudes of the collective modes that the perturbation

terms in Eq. (6.36) could excite in a trapped BEC. A BEC whose shape is oscillating during

the experiment will also have an oscillating mean-field interaction energy. The interaction phase
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evolution term in the BEC wavefunction, exp[iµj(Nj , t)t/h̄] (see Sec. 5.1.2), will therefore have a

complicated time dependence. Consequently, the calculation of quantum phase diffusion effects

in the case of excited BECs is more complex. Modeling the outcome of our interferometry

experiments will be much simpler if we can keep the excitation amplitudes very small, so that

the BECs are still well-described by a static wavefunction.

6.3.1 Slosh modes

The lowest energy collective modes for a BEC in a harmonic trap are the dipole or “slosh”

modes. In these modes, the condensate’s center of mass oscillates in the trap at the harmonic

frequency; the BEC itself does not change its shape. By keeping these modes small, we ensure

that the transverse motion of our trapped condensates is well-described by x0(t). This mode is

equivalent to the oscillation of a classical system in a harmonic potential. Just as with a classical

oscillator, the BEC can be forced into sloshing by the application of a driving force such as the

one in the third term of Eq. (6.36). The equation of motion of the center of mass along the ȳ

axis is [50]

ȳ =
h̄ωρ
2ρ2

0

LβεN−2

πM(ω2
ρ −N2ω̃2)

(− cosωρt+ cosNω̃t), (6.37)

for a condensate that is initially at rest when the non-resonant driving force is turned on. The

oscillations along the x̄ axis have the same amplitude. We want these amplitudes to be small

with respect to the size of the condensate, which for a typical condensate of atoms with repelling

interactions is slightly larger than the harmonic oscillator length ρ0 [35]. Thus, oscillations

obeying

1� L

2πρ0

∣∣∣∣∣ ω2
ρ

ω2
ρ −N2ω̃2

∣∣∣∣∣βεN−2 (6.38)

will be acceptably small.

For the case of resonant drive, the equation of motion is

ȳ =
h̄ωρ
4ρ2

0

LβεN−2

πMωρ
t sinωρt. (6.39)
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The condition for small oscillations is

1� L

2πρ0
ωρŤ βε

N−2, (6.40)

where Ť is the duration of the resonant drive.

6.3.2 Breathing and quadrupole modes

The fourth term in Eq. (6.36) causes periodic perturbations to the trap frequency of the

guide potential, in the form

ω2
j = ω2

ρ(1 + ηj cos Ω̃τ). (6.41)

In this equation, the amplitude of the modulation is given by

ηx = βεN−2(2N − 3)

ηy = βεN−2(2N − 1), (6.42)

the dimensionless perturbation frequency is

Ω̃ =
Nω̃

ωρ
, (6.43)

and the dimensionless time coordinate is

τ = ωρt. (6.44)

These perturbations cause collective oscillations of the shape of a trapped condensate (referred

to here as “shape oscillations”). We will use a semi-classical treatment [51] to find the lowest-

energy shape oscillations, as well as design constraints that make excitation of those modes

unlikely.

Consider a BEC in the waveguide potential of Eq. (6.36), to which has been added a

much weaker axial confinement of trap frequency ωz. In the Thomas-Fermi limit, the density of

a BEC in this time-dependent trap is

N |Ψ(r, t)|2TF =
µ−

∑3
j=1Mω2

j (0)r2
j/[2λ

2
j (t)]

gλx(t)λy(t)λz(t)
, (6.45)
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where µ is the chemical potential and g is the contact interaction strength. The dimensionless

scaling parameters λj obey a system of differential equations

λ̈j =
ω2
j (0)

λjλxλyλz
− ω2

j (t)λj , (6.46)

where j = x, y, or z. In the limit of small modulation amplitudes, where ηj � 1, this system

may be simplified by defining λj = 1 + δλj and dropping terms that are second order or higher

in δλj and ηj . We obtain a linear approximation to Eq. (6.46):

d2

dτ2
δλx(τ) = −3δλx − δλy − δλz + ηx(1− cos Ω̃τ)

d2

dτ2
δλy(τ) = −3δλy − δλx − δλz + ηy(1− cos Ω̃τ)

d2

dτ2
δλz(τ) = γ2(−3δλz − δλx − δλy), (6.47)

where γ = ωz/ωρ � 1. To leading order in γ, the eigenmodes of this system are a slowly

oscillating quadrupole mode at Ω̃slow =
√

5/2γ along (1, 1,−4) [Fig. 6.5(a)], a breathing mode at

Ω̃breathe = 2 along (1, 1, 0) [Fig. 6.5(b)], and a quickly oscillating quadrupole mode at Ω̃fast =
√

2

along (1,−1, 0) [Fig. 6.5(c)].

Figure 6.5: Lowest energy shape oscillations of a BEC in a cylindrically symmetric trap. (a)
Slow quadrupole mode: radial size oscillates out of phase with axial size. (b) Breathing mode:
radial and axial sizes oscillate in phase. (c) Fast quadrupole mode: radial size oscillates with
m = 2 symmetry [30].

The general solution of this system can be found by first using the method of unde-

termined coefficients to find the particular solution. The general solution is the sum of the

particular solution and oscillations at the eigenfreqencies, where the amplitudes are set so that
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the system is initially in equilibrium. For non-resonant drive, the general solution is

δλx =− 1

4
(1 + 2R1 − 2R2)(ηx − ηy) cos

√
2τ

− 1

8
(1 + 4R1 + 4R2 + 2Rz)(ηx + ηy) cos 2τ

+
1

40
(10Rz − 1)(ηx + ηy) cos

√
5

2
γτ +

4ηx − ηy
10

+ (R1ηx +R2ηy) cos Ω̃τ

δλy =
1

4
(1 + 2R1 − 2R2)(ηx − ηy) cos

√
2τ

− 1

8
(1 + 4R1 + 4R2 + 2Rz)(ηx + ηy) cos 2τ

1

40
(10Rz − 1)(ηx + ηy) cos

√
5

2
γτ +

4ηy − ηx
10

+ (R2ηx +R1ηy) cos Ω̃τ

δλz =
1

10
(1− 10Rz)(ηx + ηy) cos

√
5

2
γτ − ηx + ηy

10
+Rz(ηx + ηy) cos Ω̃τ. (6.48)

The frequency-dependent parts of the amplitudes have been abbreviated as

R1 =
Ω̃4 + 8γ2 − 3Ω̃2(1 + γ2)

(Ω̃2 − 2)[Ω̃4 + 10γ2 − Ω̃2(4 + 3γ2)]

R2 =
Ω̃2 − 2γ2

(Ω̃2 − 2)[Ω̃4 + 10γ2 − Ω̃2(4 + 3γ2)]

Rz =
γ2

Ω̃4 + 10γ2 − Ω̃2(4 + 3γ2)
. (6.49)

To prevent excitation of shape oscillations with a non-resonant drive frequency Ω̃, we must

design our array of wires such that all of the amplitudes are much less than 1.

The worst-case scenario for exciting these modes is resonant drive. If the drive frequency

is equal to any of the mode frequencies, then the oscillation amplitudes will increase linearly

with time (we are ignoring dissipative effects). The method of undetermined coefficients may

be used once again to calculate these amplitudes:

afast,resonant =

√
2

4
βεN−2ωρŤ

abreathe,resonant =
1

2
(N − 1)βεN−2ωρŤ

aslow,resonant = γ

√
10

10
(N − 1)βεN−2ωρŤ . (6.50)

Here, Ť denotes the amount of time spent driving on resonance. Note that the amplitude given

for the slow mode in Eq. (6.50) is actually the amplitude of the size oscillation along the weak

trap axis, which is 4 times larger than the amplitude in the radial direction.
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The fifth term in Eq. (6.36) likewise will cause periodic perturbations to the harmonic

confinement, but along a set of axes rotated by π/4 rad in the x̄ȳ plane. To see this, define the

new coordinate system

x′ =
x̄+ ȳ√

2

y′ =
−x̄+ ȳ√

2

z′ = z. (6.51)

The fifth term in Eq. (6.36) is now given by

∆U =
h̄ωρ
2ρ2

0

βεN−2(y′2 − x′2) sinNω̃t. (6.52)

The resulting perturbations to the rotated system’s trap frequencies are

ω2
x′ = ω2

ρ(1− ηxy sin Ω̃τ)

ω2
y′ = ω2

ρ(1 + ηxy sin Ω̃τ), (6.53)

where the amplitude of the modulation is

ηxy = βεN−2. (6.54)

The dynamics of the resulting shape oscillations are described by a system of differential

equations similar to Eq. (6.47):

d2

dτ2
δλx′(τ) = −3δλx − δλy − δλz + ηxy sin Ω̃τ

d2

dτ2
δλy′(τ) = −3δλy − δλx − δλz − ηxy sin Ω̃τ

d2

dτ2
δλz′(τ) = γ2(−3δλz − δλx − δλy). (6.55)

The eigenmodes of the new system are the same, but the general solution will be different.

Once more using the method of undetermined coefficients, we calculate the general solution for

non-resonant drive. Assuming a condensate initially in equilibrium, the general solution for the
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scale factor changes is

δλx′ =
ηxy

2− Ω̃2
(− Ω̃√

2
sin
√

2τ + sin Ω̃τ)

δλy′ =
ηxy

2− Ω̃2
(

Ω̃√
2

sin
√

2τ − sin Ω̃τ)

δλz′ = 0. (6.56)

For resonant driving frequency Ω̃ =
√

2, the amplitude of scale factor oscillations along both x′

and y′ is

a′ =

√
2

4
βεN−2ωρŤ . (6.57)

6.3.3 Collective mode minimizing parameters

Table 6.1 summarizes the resonant frequencies and the normalized amplitudes that must

be kept much smaller than 1 for each oscillation to be small. Amplitudes are given for both

resonant drive (“res”) and non-resonant drive (“nr”). For the shape oscillations along the

unprimed axes, we give the amplitude of each oscillating term in Eq. (6.48). For the terms

oscillating at the resonance frequencies, the largest amplitude oscillation out of all three axes is

given. The “particular” term is the term in Eq. (6.48) that oscillates at the drive frequency Ω̃.

A similar naming convention is used for the primed axes. These amplitudes must all be kept

much smaller than 1 to avoid exciting collective modes. The resonance frequencies are given in

dimensionless units.

6.4 Parallel wire design parameters

In this section, we use the mode amplitudes calculated in the previous section to estimate

values for period L, wire density N , and wire width ∆x such that the amplitudes of collective

modes will be kept acceptably small. We begin by initially ignoring the effects of wire width.
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For ∆x = 0,

β =
sinαN−1

αN−1

α1

sinα1

= 1. (6.58)

We next assume that we will use 87Rb, confined at ωρ = 2π×80 Hz and y0 = 300 µm (the values

used in the Michelson interferometry experiments). To avoid being sensitive to the low-frequency

vibrations of the apparatus (discussed in the previous chapter), we will set ωz = 2π × 10 Hz.

As the experimental duration in this case is only 100 ms, the effects of quantum phase diffusion

should be smaller than they were in previous work.

We see in lines 6 and 7 of Table 6.1 that, apart from the effects of resonances and wire

width, the shape oscillation amplitudes will be small if the parameter

c1 = (2N − 1)εN−2 (6.59)

is small. Similarly, the sloshing mode amplitudes will be small if the parameter

c2 =
L

2πρ0
εN−2 (6.60)

is small. Note that for 87Rb and our desired confinement, ρ0 = 1.21 µm. Figure 6.6 shows

the values of c1 and c2 as a function of L for various values of N . We see in these plots that

reasonable choices for the wire layout are L = 1.2 mm and N = 8, such that c1 = 1.2 × 10−3

and c2 = 0.013. The wire pitch for these values is 150 µm.

Using these parameter choices, we now calculate the effects of resonances and wire width.

Our design goal is to construct a Sagnac gyroscope using 87Rb that records a phase shift of π rad

when rotating at Earth’s rotation rate. As discussed in section 1.1.3, a circular path of radius

1.6 mm achieves this sensitivity. To move 4 × 1.6 mm = 6.4 mm in 100 ms, we would have to

translate the guide at an average speed of vc = 6.4 cm/s. The average drive frequency for trap

perturbations is therefore Nω̃ = 2π × 427 Hz, or Ω̃ = 5.33 in dimensionless units. Numerical

results for the amplitudes of the collective modes are shown in Table 6.2. We see that our choice
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Figure 6.6: (Color). Plot of parameters (a) c1 and (b) c2 for vs. L for various values of N .
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of N and L should not cause large excitations of collective modes while the guide is moving at

this average speed.

Term/mode name Amplitude
(∆x = 0)

Amplitude
(∆x = 80 µm)

Slosh, nr 4.7× 10−4 3.2× 10−4

Slosh, res 6.4Ť 4.4Ť

Breathing, nr 3.3× 10−4 2.2× 10−4

Fast quadrupole, nr 4.3× 10−5 3.0× 10−4

Slow quadrupole, nr 3.2× 10−5 2.2× 10−4

δλx, particular nr 4.3× 10−5 2.9× 10−5

δλy, particular nr 4.9× 10−5 3.4× 10−5

δλz, particular nr 5.1× 10−8 3.5× 10−8

Breathing, res 0.14Ť 0.097Ť

Fast quadrupole, res 0.014Ť 0.0098Ť

Slow quadrupole, res 0.09Ť 0.061Ť

Fast quadrupole, nr, primed axes 1.2× 10−5 7.9× 10−6

Particular, nr, primed axes 3.1× 10−6 2.1× 10−6

Fast quadrupole, res, primed
axes

0.014Ť 0.0098Ť

Table 6.2: Values of amplitude parameters from Table 6.1 for L = 1.2 mm, N = 8.

The last analytic calculation to be carried out is the effect of finite wire width ∆x. We

want to use wide wires to reduce resistance, and therefore heat dissipation. For the pitch of

150 µm that we chose in this section, a wire width of 80 µm occupies just over 50% of the

available chip surface area. The wire width parameter for this design choice is β = 0.68. The

collective mode amplitudes for this wire width are shown in Table 6.2.

6.5 Transverse acceleration profile

We conclude this chapter by considering the acceleration of the guide. Jumping im-

mediately from a stationary waveguide to a moving guide at velocity vc would surely excite

large-amplitude dipole slosh modes along the x axis. We will instead design a smooth accelera-

tion profile. The analytical approach we follow here calculates formulas for the area enclosed by
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this profile for BECs that are split using the familiar techniques of the Michelson experiment.

We also find the expected slosh amplitude, which is minimized by setting 1/γ equal to an even

integer. For our selected trap frequencies, we calculate a transport distance of 1.1 mm with

minimal sloshing, providing an enclosed area greater than 1 mm2.

6.5.1 Motion of the trap center

We consider a motion sequence composed of two consecutive periods of sinusoidal accel-

eration of opposite sign (see Fig. 6.7). The first half of the drive sequence moves the BECs away

from their initial position at x = 0, leaving them nearly at rest at a turning point x(T/2). The

second half of the drive sequence brings them back to their initial position.

Motion of the BECs in the accelerating trap is determined by the differential equation

ẍ(t) = −ω2
ρ [x(t)− x0(t)] , (6.61)

where x(t) is the position of the BECs along the x axis and x0(t) is the position of the trap

center. The acceleration ac(t) of the trap center is given by the piecewise sinusoidal waveform

ac(t) = Ka ×


sin Ω̂t 0 ≤ t < T̂

− sin Ω̂(t− T̂ ) T̂ ≤ t < 2T̂

, (6.62)

where Ka is a constant, the drive frequency is Ω̂ = 2ωz, and T̂ = 2π/Ω̂ is the drive period. The

acceleration is integrated over time to give the velocity vc(t) of the trap center:

vc(t) =
Ka

Ω̂
×


1− cos Ω̂t 0 ≤ t < T̂

−1 + cos Ω̂(t− T̂ ) T̂ ≤ t < 2T̂

. (6.63)

The velocity is integrated a second time to yield the position xc(t) of the trap center:

x0(t) =
Ka

Ω̂2
×


Ω̂t− sin Ω̂t 0 ≤ t < T̂

Ω̂(2T̂ − t) + sin Ω̂(t− T̂ ) T̂ ≤ t < 2T̂

. (6.64)
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Figure 6.7: Acceleration, velocity, and position of the trap center for ωz = 2π × 10 Hz.
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6.5.2 Equation of motion of the BECs

To find the equation of motion for the BECs, we solve Eq. (6.61) using Eq. (6.64) for the

trap position xc(t). For the first half of the sequence, where 0 ≤ t < T̂ , the general solution is

x(1)(t) = A1 sinωρt+A2 cosωρt+A3t+A4 sin Ω̂t+A5, (6.65)

where the Ai are constants. The BECs move in phase with the sinusoidal acceleration ramp,

and therefore there is no quadrature term in the solution (i.e. a term proportional to cos Ω̂t).

The particular solution coefficients are

A3 =
Ka

Ω̂

A4 =
Kaω

2
ρ

Ω̂2(Ω̂2 − ω2
ρ)

A5 = 0. (6.66)

Here, we assume that the BECs are initially at x = 0 and are not sloshing. The solution is

therefore

x(1)(t) =
KaΩ̂

ωρ(ω2
ρ − Ω̂2)

sinωρt+
Ka

Ω̂
t+

Kaω
2
ρ

Ω̂2(Ω̂2 − ω2
ρ)

sin Ω̂t. (6.67)

To solve Eq. (6.61) for the second half of the drive sequence, where T̂ < t ≤ 2T̂ , we use for

initial conditions the final values of position and velocity obtained from Eq. (6.67):

x(1)(T̂ ) =
KaΩ̂

ωρ(ω2
ρ − Ω̂2)

sinωρT̂ +
Ka

Ω̂
T̂

ẋ(1)(T̂ ) =
KaΩ̂

ω2
ρ − Ω̂2

cosωρT̂ +
Ka

Ω̂
+

Kaω
2
ρ

Ω̂(Ω̂2 − ω2
ρ)
. (6.68)

The general solution is

x(2)(t) =A′1 sinωρ(t− T̂ ) +A′2 cosωρ(t− T̂ )

+A′3(t− T̂ ) +A′4 sin Ω̂(t− T̂ ) +A′5, (6.69)
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where the particular solution coefficients are

A′3 = −Ka

Ω̂

A′4 =
Kaω

2
ρ

Ω̂2(ω2
ρ − Ω̂2)

A′5 =
KaT̂

Ω̂
. (6.70)

The initial condition ẋ(2)(T̂ ) = ẋ(1)(T̂ ) is satisfied when

A′1 =
ẋ(1)(T̂ )

ωρ
+

KaΩ̂

ωρ(Ω̂2 − ω2
ρ)
. (6.71)

In addition, the initial condition x(2)(T̂ ) = x(1)(T̂ ) is satisfied when

A′2 = x(1)(T̂ )− KaT̂

Ω̂
. (6.72)

The complete solution for x(2)(t) is

x(2)(t) =
KaΩ̂

ωρ(ω2
ρ − Ω̂2)

(cosωρT̂ − 2) sinωρ(t− T̂ )

+
KaΩ̂

ωρ(ω2
ρ − Ω̂2)

sinωρT̂ cosωρ(t− T̂ )

− Ka

Ω̂
(t− 2T̂ )−

Kaω
2
ρ

Ω̂2(Ω̂2 − ω2
ρ)

sin Ω̂(t− T̂ ). (6.73)

6.5.3 Even-ratio trap frequencies

If either the final position x(2)(2T̂ ) or final velocity ẋ(2)(2T̂ ) are not zero, then the BECs

will slosh in the final stationary trap. Fortunately, we can eliminate this final slosh if 1/γ is an

even integer m. In this case

sinωρT̂ = 0

cosωρT̂ = 1. (6.74)

The transverse position and velocity in the second half of the trajectory simplify to

x(2)(t) =
KaΩ̂

ωρ(Ω̂2 − ω2
ρ)

sinωρt+
Ka

Ω̂
(2T̂ − t)−

Kaω
2
ρ

Ω̂2(Ω̂2 − ω2
ρ)

sin Ω̂t

ẋ(2)(t) =
KaΩ̂

Ω̂2 − ω2
ρ

cosωρt−
Ka

Ω̂
−

Kaω
2
ρ

Ω̂(Ω̂2 − ω2
ρ)

cos Ω̂t, (6.75)
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both of which vanish at t = 2T̂ .

Note that even though the BECs do not slosh after the drive sequence has ended, they

do deviate from the trap center during the course of their trajectories. Figure 6.8 shows the

deviation for ωρ = 2π × 80 Hz and ωz = 2π × 10 Hz during the second half of the trajectory.

The deviation is

x(2)(t)− x0(t) =
KaΩ̂

ωρ(Ω̂2 − ω2
ρ)

sinωρt+
Ka

ω2
ρ − Ω̂2

sin Ω̂t. (6.76)

Since ωρ > Ω̂, the second term dominates. The amplitude of the residual slosh is therefore

approximately

κ =
Ka

ω2
ρ − Ω̂2

. (6.77)

As long as κ is not much more than the size of the BECs, then they will remain in the harmonic

regime of the waveguide. Both will also deviate identically when moving, ensuring good overlap

when they come to rest at the end of the drive sequence. We can use κ as a convenient parameter

in the expression for the turning point:

x(t = T̂ ) =
2πKa

Ω̂2

= 2πκ
ω2
ρ − Ω̂2

Ω̂2
. (6.78)

Figure 6.8: Deviation of BEC center from trap center during return trip, for ωρ = 2π × 80 Hz
and ωz = 2π × 10 Hz.
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6.5.4 Enclosed area

Recall that in the axial direction, the clouds undergo simple harmonic motion:

z(t) = ±z0 sinωzt = ±2nh̄k0

Mωz
sinωzt, (6.79)

where n is the diffraction order of the beamsplitter. We may combine this equation with Eq.

(6.67) to find

x(z) =
KaΩ̂

ωρ(ω2
ρ − Ω̂2)

sin

(
2ωρ

Ω̂
sin−1 z

z0

)
+

2Ka

Ω̂2
sin−1 z

z0
+

Kaω
2
ρ

Ω̂2(Ω̂2 − ω2
ρ)

sin

(
2 sin−1 z

z0

)
,

(6.80)

valid for 0 ≤ t ≤ T̂ /2. The full path traveled by both BECs is shown in Fig. 6.9. The total

enclosed area is

A = 4

∫ z0

0

[
x

(
T̂

2

)
− x(z)

]
ŷdz

=

[
4Kz0

Ω̂2
− 4Kz0

3Ω̂2

(
3π +

32ω2
ρ

Ω̂2 − 4ω2
ρ

)]
ŷ

=
8Kz0ω

2
ρ

3ω2
z(ω2

ρ − ω2
z)

ŷ

=
8κz0ω

2
ρ

3ω2
z

ŷ. (6.81)

6.5.5 Parameter estimates for enclosed area

We conclude this chapter by estimating the enclosed area that will be attainable for our

expected (80, 80, 10) Hz trap. We want to limit κ such that it is not too much larger than

the oscillator length ρ0. A BEC with repulsive atomic interactions will always have a larger

transverse size than the oscillator length, so the condition κ/ρ0 ' 10 keeps the deviations to a

range not too much larger than the size of the BEC. For 87Rb ρ0 = 1.2 µm, so we require

Ka ' 10× ρ0(ω2
ρ − ω2

z) = 3 m/s
2
. (6.82)

The extent of the transverse motion is therefore 1.2 mm. The enclosed area is A = 0.4nŷ mm2,

where n is the order of the optical beamsplitter. It should therefore be possible to demon-
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Figure 6.9: Trajectory of BECs in translating guide. Trap parameters are ωρ = 2π× 80 Hz and
ωz = 2π × 10 Hz.
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strate a BEC Sagnac gyroscope with a sensitivity within an order of magnitude of the eventual

performance goal of π rad of phase shift at ΩEarth.

Using these values of Ka and ωz, we can calculate the amplitude of the velocity of the

trap center:

Ka/Ω̂ = 24 mm/s. (6.83)

Examining the shape of the plot of vc(t) [Fig. 6.7(b)], we see that vc spends a significant amount

of the duration of the experiment moving at vc ≈ Ka/Ω̂. For our proposed wire pattern, at

this velocity the perturbation drive frequency is Ω̃ = 2; we will be driving the breathing mode

precisely on resonance. Fortunately, the amplitude of this mode will not become large for our

proposed wire pattern. We see in Table 6.2 that the normalized amplitude of the breathing

mode when driven on resonance is 0.097Ť for drive duration Ť . Again examining Fig. 6.7(b),

we see that the drive frequency should only be near resonance for approximately 20 ms around

the periods of peak velocity. The amplitude of the breathing mode should therefore not increase

much past δλi = 0.002. This amplitude is small enough that it should have no noticeable effect

on the experiment.



Chapter 7

Gyroscope apparatus: Design and construction progress

This chapter describes the design and construction of a new, compact apparatus for

Sagnac gyroscope experiments. The heart of the apparatus is a new atom chip patterned with

an array of parallel wires, capable of carrying out the translating waveguide idea proposed in

the previous chapter. The new apparatus built around that chip has been designed to meet the

requirements given at the end of Chap. 5 for a successful gyroscope. It has the optical access

needed to control the angle of the optical standing wave with respect to the waveguide axis,

allowing for axial traps of sufficiently high frequency for our purposes. It will be able to produce

BECs with a cycle time of only a few seconds, allowing in only a few hours the collection of

1000 point data sets. Finally, it is small and light enough to be placed on a rotary table. Once

operating, the apparatus will be capable of taking real rotation rate measurements.

The design and operation of similar compact BEC machines has been pursued by our

group over the past decade [18, 52, 53]. The goal of this chapter is therefore not to provide a full

manual for the production of BECs in compact systems. Our purpose is instead to detail the

unique aspects of this new apparatus, as well as the new techniques and lessons learned during

its construction. Significant elements of this updated system (magnetic field coils and vacuum

system mount) were designed by Evan Salim.

There are major differences in design between the large Michelson apparatus and our

compact systems. All successful BEC vacuum systems must execute a balancing act: The same

system must be used to both capture a large number of atoms, and then hold those atoms in a
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trap long enough to evaporatively cool to degeneracy. Quick trap loading can be achieved in a

vacuum chamber containing a relatively high vapor pressure of the atom of interest. However,

the already trapped atoms will collide with any remaining warm vapor, heating the trapped

atoms enough to cause them to escape. In the Michelson apparatus, this problem was solved by

using a multi-chamber vacuum system. Rubidium atoms were initially collected from vapor into

a MOT in one chamber, and then magnetically transported through a tube to an evaporation

chamber. This chamber had only a small background pressure of Rb vapor, since untrapped

atoms were unlikely to diffuse through the long tube. The compact apparatus also uses a multi-

chamber system, but transport through a long tube is an impractically large and slow connection

solution. Instead, the two chambers share a common wall, pierced by only a small pinhole. In

the first chamber, a two-dimensional MOT (2D-MOT) collects 87Rb atoms from a vapor. This

2D-MOT creates a beam of cold atoms that is aligned to pass directly through the aperture into

the second chamber. Warm atoms not in the beam are unlikely to diffuse through the pinhole, so

the pressure in the second chamber is significantly lower than in the first. In this chamber, the

atoms in the beam are captured in a traditional three-dimensional MOT (3D-MOT). The atoms

are subsequently loaded into a microtrap generated by an atom chip for evaporation to BEC. The

chip forms one of the walls of the chamber, allowing the system to be smaller than competing

designs. The use of ballistic transport between the chambers allows us to dispense with the

water-cooled magnetic field coils and the servo-controlled track used for magnetic transport in

the old system.

A further reduction in size and cycle time is achieved by dispensing with the Michelson

experiment’s use of a “macro” trap to evaporatively cool the atoms before delivery to the

microtrap. As was explained in Sec. 2.1, the higher trap frequencies that can be practically

obtained with microtraps allow efficient evaporative cooling in a significantly shorter time. The

roadblock in the way of directly loading a microtrap from a MOT is the low trap depth of

microtraps (typically a few hundred microkelvin), combined with the small size of the trap

(typically less than 100 µm in radius). Atoms compressed directly from a MOT into the small
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volume of a microtrap would be far too hot to be confined. The solution in the Michelson

apparatus was to slowly (about 1 min) evaporatively cool the atoms in a large volume trap

generated by permanent magnets. The approach followed in our compact apparatus is to add

a stage of polarization gradient optical cooling after the MOT, cooling the atoms sufficiently so

that they can be directly loaded into a chip trap without any previous evaporation. The time

allocated for evaporative cooling is thereby cut from over a minute to a few seconds.

In the remainder of the chapter, we detail the new apparatus component-by-component.

7.1 Lasers

The BEC production recipe developed in [52] requires four wavelengths of laser light:

cooling and hyperfine repump light for optical cooling and trapping, light for optical pumping,

and light for absorption imaging. Our system uses three temperature-stabilized external cavity

diode lasers (ECDLs) to generate these wavelengths. The cooling light is produced by an ECDL

(JILA design [54], Hitachi HL7851G diode) and amplified by a tapered amplifier (JILA design,

SDL diode) to 500 mW. The repump light is produced by a commercial ECDL (New Focus

Vortex) and amplified by a slave diode laser (JILA design, Sharp GH0781JA2C diode) to 100

mW. Some of this laser’s light will be used to generate the standing wave beamsplitter. The

pump and imaging (or “probe”) light is generated by the third ECDL, producing 30 mW of

power. The ECDLs were all recycled from the Michelson system. Figure 7.1 is a schematic of

the system.

7.1.1 Frequency control

Frequency stabilization of the three lasers is obtained by peak-locking the ECDLs to

crossover peaks in the saturated absorption spectrum of the 5S1/2 → 5P3/2 transition of 87Rb,

located near 780 nm. The lock servos control both the current and grating orientation. The

cooling and pump/probe lasers are locked to the F = 2 → F ′ = 2, 3 crossover, while the

repump laser is locked to the F = 1 → F ′ = 1, 2 crossover (primes indicate excited electronic
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Figure 7.1: Schematic of laser system. (a) Cooling laser, (b) repump/beamsplitting laser, (c)
pump/probe laser. Optical isolators are shown as diodes. Mechanical shutters are shown as
boxes with an “x” through the center. Boxes marked “lock-in” are lock-in amplifiers, and those
marked “SAS” denote saturated absorption spectroscopy. Optical paths are marked as solid
lines, electrical signals as dashed lines. All beams are coupled into single-mode, polarization-
maintaining optical fibers.
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states). Modulation for the peak-lock is applied to the laser diode current. The lock-in amplifiers,

frequency servo circuits, and temperature controllers are the same as those used in the Michelson

apparatus, with minor modifications to remove ground loops from the power system.

We use acousto-optic modulators (AOMs) to shift the light to the precise frequencies

required. The modulation frequencies used are shown in Fig. 7.1. The AOM shifts place the

repump and splitting beams at the F = 1→ F ′ = 2 resonance, the probe beam at the F = 2→

F ′ = 3 resonance, and the pump beam 12.5 MHz to the blue of the F = 2→ F ′ = 2 resonance.

The cooling laser is stabilized 9 MHz to the red of the F = 2 → F ′ = 3 resonance, but this

detuning must be increased during MOT compression and polarization gradient cooling. We can

adjust it by unlocking the cooling laser and applying a calibrated voltage to the piezoelectric

actuator controlling the angle of the external cavity’s grating. The servo is relocked after the

laser cooling stages are finished.

7.1.2 Shutters and optical power control

All of the laser beam lines are controlled with commercial mechanical shutters, with the

AOMs providing adjustable control over beam power. However, the mechanical shutters are

not fast enough to generate sufficiently short pulses for the probe and beamsplitting beams.

In these beams, the AOM is used as a high-speed, low-extinction shutter in series with the

mechanical shutter. Pulses are generated by opening the mechanical shutter a few milliseconds

before quickly pulsing the AOM’s acoustic wave; the mechanical shutter is closed after the pulse

so that none of the light leaking through the AOM in its off state reaches the atoms.

7.1.3 Optical fibers

Since our goal is to construct a rotating system, the laser beams cannot be delivered

to the vacuum system through free space. We instead couple all seven beams into single-mode

optical fibers. The fibers used are Corning PANDA PM 850 fibers that have been angle-polished

on at least one side. These fibers provide a polarization- and intensity-stable, flexible path from
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the lasers to the rotating system.

7.2 Vacuum system

The vacuum system used in the new apparatus (see Fig. 7.2) is a standard design that

is used in all of our group’s BEC experiments; the only difference between the systems is the

specific wire layout on the atom chip. These systems are designed to be quickly and easily

swapped out from the surrounding optomechanics if a chip with a different wire layout is needed

for future experiments. As the vacuum systems have previously been described in detail in [18],

we will only describe here recent changes in design and construction.

The major design change for the gyro vacuum system is that the glass cell that comprises

most of the BEC chamber has been anti-reflection (AR) coated. Recall that the Michelson

experiment utilized a fixed, in-vacuum retro-reflector to establish the optical standing wave

for beamsplitting. The fixed angle of the optic with respect to the guide wire placed a limit

on the acceptable angle between the waveguide and the optic, thus limiting the practical axial

confinement. In order to allow for greater flexibility in this parameter, in the gyroscope apparatus

we will replace the fixed optic with a mirror on an adjustable mount, placed outside of the vacuum

chamber. In order to form an acceptable standing wave, the reflected component of the beam

must contain almost the same power as the incident component. Therefore the wall of the cell

that sits between the retro-reflector and the trapped atoms must be AR coated.

The process for assembling the vacuum systems remains mostly unchanged, though we

have modified the recipe for bonding the atom chip to reduce damage to its delicate wires. The

anodic bonds [55] that we use are typically done at high temperature (400◦C) to increase the

bond strength. We have since discovered that bonding the chip at that temperature can cause

the Au wires patterned on the side of the chip facing ambient pressure to deform (see Fig. 7.3).

The formation of an anodic bond requires the application of steady pressure between the two

pieces to be bonded, but Au is susceptible to deformation under negligible applied pressure

at high temperatures [56]. We have therefore reduced the temperature for bonding the chip
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Figure 7.2: (Color). Annotated photograph of an assembled vacuum system. Ion pump magnets
are not shown. Also not shown is the mounting plate that bolts to the spherical cube.
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to 325◦C. At this temperature no wire deformation is evident, and the resulting lower bond

strength has not caused any problems.

Figure 7.3: (Color). Deformation of Au wires on back of chip bonded at 400◦C.

The recipe we use to pump and bake the assembled system is substantially similar to

previous methods, though our procedures for detecting and sealing vacuum leaks have advanced.

We use a He detector to check for leaks before beginning the bake. There exists a simpler method

of leak detection, in which one sprays clean solvent on suspected locations of leaks. If there is

a leak, the solvent will shortly afterwards register on the pressure gauge. However, this elegant

method has not proved sensitive enough to find tiny leaks in the chip before the system has been

subjected to a time-consuming bake. These leaks are extraordinarily difficult to permanently

seal, so leaky chips must often be discarded. We find that it is better to learn whether a chip is

fatally leaking before spending the time to bake the system to which it has been bonded.

The only leak sealant with which we have had any lasting success when applied before

a system bake is Vacseal, a silicone resin suspended in a volatile solvent. Vacseal’s product

literature claims that it can be baked to 400◦C before failing [57], although we have found

that sealed leaks will often re-open during the cool-down of the system. There is evidence in

published work that Vacseal should never be baked above 250◦C [58]. We have therefore limited

the bake of any system treated with Vacseal to this temperature; such systems likely do not

achieve the lowest possible pressures.

The chip can also develop leaks while the BEC system is cooling down after the bake.

The leaks can usually be located by the solvent method described previously. We have found

that sealing these post-bake leaks with the application of Vacseal is possible, but difficult. An
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alternative sealant is Glyptal 1201B, an alkyd resin paint with a very low vapor pressure [58].

Chips sealed with Glyptal should not be exposed to temperatures in excess of 135◦C for extended

periods of time, so Glyptal may not be used before a system is baked.

It should be noted that we have not yet achieved BEC in the new system, so these

leak sealing techniques should not be regarded as having been fully evaluated. Leaks have

fortunately become less of a problem with the delivery of a new production run of atom chips,

as the fabrication process now uses a technique less prone to failures. This is the best possible

solution to the problem, as no leak sealant is perfect.

A final change to the vacuum system preparation process has been made to the terminal

step, in which the BEC system is removed from the pumping station by pinching off the Cu tube

with a pair of rounded steel jaws. Before pinch off, the tube must be cleaned of all oxides that

accumulate during the bake. We have added a step to the preparation, in which we lightly coat

the tube with clean machine oil just before the pinch. The oil allows the jaws to slide smoothly

over the tube’s surface.

7.3 Optomechanics structure

The gyro optomechanics structure supports all of the components needed to make a

BEC other than the lasers, electrical power supplies, and control system. The structure weighs

approximately 65 kg, and occupies a 60 cm by 60 cm footprint. This section details its design

and construction.

The base of the structure is an air bearing rotary table, Precitech model RT200 (Fig. 7.4).

Air bearings provide smooth, low-friction motion and are therefore quite suitable for precision

rotation measurements. The RT200 has a 200 mm diameter table and an axial load capacity

of 226 kg; care must be taken to ensure that the apparatus to be built on top of the table is

well balanced to keep the load as axial as possible. The unit requires a regulated supply of

clean, dry compressed air at 50 psi (0.34 MPa) to operate. The compressed air supplied to our

lab has sufficient pressure, but it must be filtered (Norgren Excelon F72G-2AN-AL1) and then
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processed through an oil and water vapor separator trap (Norgren F64B-2AN-AT0). A second

filter and a pressure regulator are in the supply line between the trap and the rotary table.

Figure 7.4: (Color). Rotary table, 200 mm diameter.

The 200 mm diameter rotary table is large enough to directly support a custom-made

optomechanical structure for BEC production (for an example, see [53]), but we decided to save

on materials and production costs in this apparatus by using mostly off-the-shelf hardware. This

approach requires a larger surface area for the optical layout, which we support with a 60 cm

by 60 cm industrial grade breadboard (Newport). The board combines a steel working surface

with a trussed honeycomb core, providing a stiffer foundation with more vibration damping at

a lower weight than would a solid metal plate.

The breadboard must sit precisely at the center of the rotary table to prevent off-axis

loads from damaging the air bearing. Our breadboard has a tapped tube welded vertically into

its structure at its precise center (Newport’s “Microlock” system). A machined Al cylinder that

is just under 38 mm in diameter is bolted into the Microlock tube on the underside of the board.

This cylinder fits snugly inside the 38 mm diameter shaft that runs down the center of the rotary

table (visible in Fig. 7.4). To mate the two pieces together, we first raise the breadboard on
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jacks. We then carefully position the rotary table, using the cylinder and the shaft to properly

locate the relative position. We finally lower the breadboard to rest on top of the rotary table.

The weight of the apparatus is enough to hold the pieces snugly together. The breadboard is

typically not mated to the rotary table while we are optimizing the experiment.

The vacuum system and optics for the 2D-MOT are mounted directly on the breadboard.

A solid Al baseplate for the BEC chamber’s optical system is mounted 18 mm above the bread-

board on a set of 4 pedestals (see Fig. 7.5). In order to maximize the 45.72 cm by 45.72 cm

baseplate’s mechanical resonance frequency, the pedestals are placed along the breadboard’s

diagonals, halfway between the center and the corners. A hole cut in the plate allows a com-

pact camera mounted on the lower breadboard to record images of atoms trapped in the BEC

chamber.

7.4 Double MOT

The job of the 2D-MOT is to produce the greatest possible flux of cold atoms into

the ultrahigh vacuum BEC region of the system. To obtain a high flux, we use a pair of

perpendicular, retroreflected, elliptically shaped cooling beams to take maximal advantage of

the 25 mm by 10 mm size of the 2D-MOT cell. The total cooling power in each beam is

approximately 50 mW, with major diameter 24 mm and minor diameter 7.1 mm (1/e2).

A top view of the 2D-MOT optics is shown in Fig. 7.6. Light from both the 2D-MOT

cooling and repump fibers is collimated with air-spaced doublet collimators (Thorlabs) and

combined at a polarizing beamsplitter (PBS) cube. A confocal cylindrical telescope (f = −38.1

mm and f = 130 mm) expands the beam along the vertical direction. The retroreflectors for

both beams each consist of a quarter-wave plate cemented to a dielectric mirror. Approximately

10% of the cooling light is picked off just after the collimator for use as a vertically aligned

“push” beam. When correctly aligned with the 2D-MOT, the push beam forces most of the

MOT’s flux to travel upwards into the BEC chamber. Control over the push beam’s power is

provided by a variable attenuator consisting of a half-wave plate and a PBS; the excess light is



115

Figure 7.5: (Color). Schematic view of optomechanics structure, shown without optics.
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dumped into a black piece of paper attached to the PBS’s unused output face.

The two-dimensional quadrupole magnetic field for the 2D-MOT is generated by four

NdFeB permanent magnets (Magnetic Component Engineering alloy N3578). These magnets

have a square cross section with 1 mm sides, and are 40 mm long. The magnets are poled

perpendicular to their length. They are mounted vertically with respect to the 2D-MOT cell,

and placed at the corners of a square measuring 18 mm on a side. The sides of the square are

normal to the propagation direction of the MOT beams. The resulting field gradient is between

30 and 35 G/cm.

A top view of the optics for the 3D-MOT is shown in Fig. 7.7. The total cooling power for

this MOT is approximately 60 mW, split among three retroreflected beams. Both the repump

and cooling beams are collimated with f = 75 mm doublet lenses, resulting in a 15 mm beam

diameter (1/e2). Power balancing between the beams is provided by a set of half-wave plate and

PBS pairs. As explained in [18], our 3D-MOT does not use the traditional 90◦ angle between

the cooling beams. One beam (the “horizontal” beam) is aligned parallel to the baseplate as it

passes through the glass cell. The other two beams (the “angled” beams), which pass through

the cell in the plane normal to the horizontal beam, are aligned at an elevation angle of 22◦ with

respect to the plate. This configuration allows us to make a MOT significantly closer to the atom

chip than would be possible with beams aligned at 90◦ (see Fig. 7.8). The retroreflectors for the

angled beams are essentially identical to those used in the 2D-MOT, but the horizontal beam’s

retroreflector has a PBS in the beam path between the quarter-wave plate and the mirror. The

quarter-wave plate is aligned so that all of the MOT light passes directly through the PBS. This

more complicated reflector allows us to overlap the horizontal beam with the optical pumping

beam; see the next section for more details.

The three-dimensional quadrupole field for the 3D-MOT is generated by a pair of rect-

angular anti-Helmholtz coils, oriented perpendicular to the horizontal MOT beam. These coils

provide a gradient of 12 G/(cm A). The MOT coil pair is held in a machined Al mount, which

slides over the BEC glass cell on a set of four steel rails. The rails are bolted to a collar, which
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Figure 7.6: (Color). Optical layout of 2D-MOT. Magenta lines show beam paths.
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Figure 7.7: (Color). Optical layout of upper baseplate. 3D-MOT beam paths are shown in
magenta. The horizontal beam passes from right to left across the center of this diagram.
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Figure 7.8: View of angled 3D-MOT along axis of horizontal beam. Reducing the angle θ allows
the separation between the MOT and the atom chip h to be reduced without clipping the beams
on the edge of the atom chip [18].
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is itself bolted to the upper corners of the vacuum system’s spherical cube. See Fig. 7.9. The

coil mount also carries 3 pairs of rectangular Helmholtz coils to generate bias fields along the

three Cartesian axes of the apparatus.

Figure 7.9: (Color). Mounted vacuum system with MOT and bias coils installed on rail system.

The current for the MOT coils is generated by a commercial linear, unipolar power supply

(Kepco ATE). For the bias coils, we need the flexibility of bipolar supplies in order to generate

the full range of microtraps. A trio of Kepco bipolar operational amplifier power supplies (BOPs)

provides the needed bipolar behavior. However, they are unable to operate in a stable manner

while driving current through inductive loads. The complex impedance of an inductive coil pair

is

Zcoil = Rcoil + iωL, (7.1)

where ω is the angular frequency of a signal sent through the coils. At sufficiently high in-

ductances, the imaginary part of the impedance becomes significant at frequencies within the

bandwidth of the BOP power supply’s servo. Instead of supplying DC current, the BOPs os-

cillate when driving our 0.5–1 mH coil pairs. A solution to this problem is to add a Zobel

network [59] in parallel to the coil, which consists of a resistor and a capacitor in series. The
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total impedance is

Z =
RcoilRZobel + L/C + i[ωRZobelL−Rcoil/(ωC)]

Rcoil +RZobel + i[ωL− 1/(ωC)]
. (7.2)

If RZobel = Rcoil and C = L/R2
coil, then the impedance of the combination of the coil and the

Zobel network is real and equal to Rcoil. For our bias coil pairs, Rcoil ≈ 2 Ω, which sets C =

125–250 µF. As this capacitance is larger than that of easily obtainable small capacitors, we

typically set C = 10 µF and set RZobel to minimize the imaginary part of Eq. (7.2) for that

choice of C. We then optimize the choice of RZobel, monitoring the actual stability of the power

supply with a Hall probe. We find RZobel = 17 Ω works quite well.

We optimize the double MOT to obtain a large 3D-MOT cloud that loads quickly. We

can measure both the number of atoms and loading time by monitoring the fluorescence of

the 3D-MOT with a photodiode. The loading time is quite sensitive to the alignment of the

2D-MOT with the aperture, and to the alignment of the push beam. We use an inexpensive

infrared-sensitive security camera to monitor the shape of the 3D-MOT while we are optimizing

the beam alignment; typically, an irregularly-shaped MOT is not desirable. For a non-leaking

vacuum system, we are usually able to load a few hundred million to a few billion atoms into

the 3D-MOT in fewer than 3 s.

7.5 Transfer to chip trap

The procedure that we follow to transfer cold atoms from the 3D-MOT into a chip trap is

identical to that explained in detail in [18]. We will therefore only briefly review the steps in the

process. We concentrate on a description of the new gyroscope atom chip, which incorporates

the array of parallel wires described in the previous chapter.

7.5.1 Loading the “big Z” trap

The next major step in the experiment is to load the atoms trapped in the 3D-MOT

into a magnetic trap. In order to reduce the cooling that will have to be later carried out by
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evaporation, we strive to maximize the phase-space density of the magnetically trapped atoms.

In pursuit of that goal we must reduce the spatial size and temperature of the cloud, while

maximizing the number of trappable atoms in it.

A compressed MOT (CMOT) stage serves to shrink the spatial extent of the atomic

cloud. As soon as the 3D-MOT has filled, we unlock and detune the cooling laser further to the

red by an additional two linewidths. We simultaneously reduce the repump power by greater

than 90%, using that laser’s AOM. The reduced re-radiation pressure allows the cloud’s size to

drop from about 1 cm to about 1 mm. The CMOT duration is approximately 50 ms.

To reduce the temperature of the cloud, we follow the CMOT with a stage of polarization

gradient optical molasses cooling (PGC). In this stage, the cooling laser is further detuned, now

to a total of more than 11 linewidths from resonance. The MOT quadrupole field is turned off,

and the bias coils are used to cancel out ambient magnetic fields. Temperatures in the range of

40 µK are easily obtained after only a few milliseconds of PGC. The cooling efficiency of PGC

is in this case limited by the density of the compressed cloud of atoms. Lower temperatures

(below 10 µK) can be obtained when the MOT load is kept small. The ideal balance between

temperature and number of atoms after PGC is experimentally determined.

After PGC, the cloud of atoms is optically pumped into the |2, 2〉 ground state by the

pump laser beam, which is set to σ+ polarization with respect to an applied uniform magnetic

field. The beam must not be retroreflected by our standard quarter-wave plate/mirror reflectors

and sent back through the atoms. The polarization of the reflected beam would be σ− with

respect to the bias, and would tend to pump the atoms into the wrong state. Our solution to

this problem is shown in Fig. 7.7. The pump beam is collimated and then combined with the

horizontal MOT beam at a PBS (shown at right center of figure). The following quarter-wave

plate converts the two beams of perpendicular linear polarization into two circularly polarized

beams of opposite helicity (with respect to the direction of propagation). On the far side of the

vacuum system, a second quarter-wave plate is aligned to convert the cooling beam into light

polarized parallel to the baseplate. This beam passes directly through a second PBS and is
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retroreflected back towards the atoms. On the other hand, the pump beam is converted to light

polarized perpendicular to the baseplate. This light is reflected by the PBS and blocked by a

piece of black paper attached to its side output port.

The compressed, cooled, and pumped cloud of atoms is at this point ready to be magnet-

ically trapped. Our initial “microtrap” is actually generated by a large Z-shaped wire (see Sec.

2.1.3) that is mounted directly above the chip, just outside of the vacuum system. The distance

LH between the “legs” of the Z is 27 mm. A significant amount of current is required to make a

trap capable of supporting against gravity more than 18 mm away from the trapping wire (h in

Fig. 7.8 is approximately 17 mm). This problem was solved in [18] by running > 100 A through

5 Z-shaped wires held together in an Al block and connected in series. In the new apparatus,

we have replaced this high-current “big Z coil” with a version using approximately 30 wires (see

Fig. 7.10). This coil allows us to use only 20 A to produce a similar trap.

7.5.2 Transport to chip height

Once the atoms have been caught in the big Z trap, they are transported up to the chip

by simply ramping down the big Z current [recall that the distance between the wire and the

field minimum is proportional to the current, Eq. (2.4)]. If the transverse bias is not adjusted,

the trap becomes tighter in the transverse direction as the trap is pulled towards the chip [Eq.

(2.9)]. However, as the distance from the wire to the trapped atoms d+ y0 becomes very small

with respect to LH, the trap loosens in the axial direction [Eq. (2.24)]. We therefore wrap an

additional set of wires over the legs of the Z coil (labeled as “compression wires” in Fig. 7.10)

and use them to effectively increase the axial trapping current as the atoms approach the chip.

The transport ramp is usually completed in about 400 ms.

7.5.3 Gyroscope atom chip

The gyroscope chip is shown in Fig. 7.11. The central feature is an array of 40 parallel

wires, placed at a spacing of 150 µm. Each wire is 80 µm wide. This chip is a realization of the
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Figure 7.10: (Color). Views of the big Z assembly. (a) View from below, (b) angled view. This
assembly is lowered down to just above the atom chip on the rails that also carry the MOT/bias
coil assembly.
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design proposed in Sec. 6.4. We plan to initially capture and evaporate the atoms to BEC in a

trap generated by a wider 100 µm wire, crossed by a T wire (this wire appears above the array

of parallel wires in the figure). These wires are connected to external power supplies through

hermetic electrical “vias” that pass through the chip substrate. Longer-range axial confinement

than can be generated by the T wire is provided by a selection of H-type wires patterned on the

back of the chip [the vertical traces in Fig. 7.11(b)].

We make electrical connection to the chip’s more than 100 contact pads by attaching

commercial connectors to the pads with conductive epoxy (EPO-TEK E2101). This Ag-bearing

adhesive is used in place of standard electrical solder, as Sn to Au solder joints are brittle and

age poorly [60]. The connectors used for the parallel wire array have a pitch of 500 µm (Hirose

FH19SC) and connect to flat flexible cable. The connectors for the BEC production wires have

a pitch of 1.27 mm (Mill-Max 399-XX-XXX-00-310000 series). These are standard single in-line

package connectors. We have built our own cables for these connectors, using ultra-flexible

stranded Cu wire (available from Cooner Wire).

We do not have a commercial pick and place machine, so the process of attaching the

connectors uses improvised equipment. We attach the connectors after the vacuum system has

been pinched off from the pumping station. We use a 30 AWG wire clamped in a translation

stage to apply a small bead of conductive epoxy to each individual pad on the chip. We then

use a pair of tweezer clamped to the same stage to lower the connectors into place. We visually

monitor both of these processes through a stereo microscope. After the connectors are placed,

we cure the epoxy using a heat lamp. We have achieved excellent results with this process; see

Fig. 7.12. After the conductive epoxy is cured, we typically add a few drops of mechanical epoxy

to increase durability. We use a very compliant epoxy (EPO-TEK OD1001) to avoid placing

excess strain on the chip.
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Figure 7.11: (Color). Photographs of both sides of the gyro chip: (a) vacuum side, (b) ambient
side.
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Figure 7.12: (Color). Views of gyro chip with electrical connectors. (a) View of all four connec-
tors on chip. The red substance visible on the vias is Glyptal 1201B (Sec. 7.2). (b) Close-up of
epoxy joints on high-pitch connector.



128

7.5.4 Loading the chip trap

The central section of the big Z coil is directly above the 100 µm wide chip wire, which

generates the transverse confinement for the initial chip trap. As the big Z current is reduced

during transport, the trapped atoms are brought to a position 1 mm directly under this wire.

Following the procedure established in [18], we transfer the atoms from the big Z to the chip trap

by simultaneously ramping the big Z current to zero and ramping the chip wire to 3 A over 100

ms. Axial confinement in the initial chip trap is provided by running current through the pair of

H-wires on the back of the chip with the widest separation. The bias fields are adjusted during

the transfer so that a trap with transverse frequency on the order of 1 kHz in the transverse

axes is obtained approximately 100 µm below the chip. The T-wire is ramped on after loading

to provide sufficient axial confinement for evaporative cooling.

Current for the chip wires is provided by JILA-designed current servos. These servos are

powered by batteries to reduce current noise.

7.6 Imaging

All data collected about the state of system from the CMOT stage onwards is obtained

by laser absorption imaging, using the F = 2 → F ′ = 3 cycling transition. Two images are

captured at the end of each experiment. The first is a data image, in which the atoms cast a

shadow by scattering light out of the probe beam. The second is a normalization image, acquired

as soon as the atoms have fallen out of the camera’s field of view, in which the full power of the

probe beam is captured. These two images are used to calculate the optical density (OD) of the

cloud of atoms.

We use a compact digital camera (Basler scA1400-17fm), measuring 97 × 44 × 29 mm.

It utilizes an interline charge-coupled device (CCD), in which every column of active pixels

sits next to a column of inactive pixels. After an image is acquired, the accumulated charge

is rapidly transferred from the active to the corresponding inactive pixels for read-out. A
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second image can begin acquisition nearly instantaneously while the first is being read [61].

The advantage of acquiring the data and normalization images in rapid succession is that the

mechanical components of the apparatus have no time to shift in position between shots. There

are therefore fewer of the artifacts in the OD image that are otherwise caused by vibration-

induced shifts of diffraction and interference fringes in the probe laser beam [62]. Another

feature of the CCD chip used by our camera is the inclusion of an electronic shutter, removing

the need for a bulky, noisy mechanical shutter.

The lens system that we use for high-magnification imaging of microtrapped atoms is a

machine vision microscope (custom, based on the Infinity InfiniTube Standard), AR coated for

780 nm. The lens has a magnification of 2.8 and working distance 145 mm. The camera’s pixels

are 6.45×6.45 µm squares, so each pixel will record a 2.3×2.3 µm area of the object plane. This

is just larger than the lens’s diffraction-limited 2 µm resolution. Decreasing that limit would

require us to build an imaging system with a larger numerical aperture (NA), but the available

NA for imaging is limited by the need to keep a clear path for the angled MOT beams (see Fig.

7.13). As can be seen in the figure, the lens tube is aligned vertically, poking through a hole in

the upper baseplate. A mirror is used to steer the probe beam into the lens.

For imaging of atoms during earlier stages of the experiment, we remove the steering

mirror and image horizontally with a lower-magnification lens system. The camera is mounted

off of the breadboard in this type of imaging, so we are not able to image this way while the

apparatus is rotating.

7.7 Control system

A computer system provides precisely timed control of the various elements of the appara-

tus. See Fig. 7.14 for a diagram of data flow in the control system. The system’s core component

is a field programmable gate array (FPGA). The FPGA (National Instruments PXI-7813R) is

programmed to execute timed updates of its 160 digital outputs, using its own dedicated clock.

The array of instructions for the FPGA resides in the memory of an embedded control computer
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Figure 7.13: (Color). Side view of apparatus showing imaging system. Steering and retromirrors
for angled 3D-MOT beams are also shown. This figure illustrates the difficulty of increasing the
NA of the imaging system without clipping the angled beams. MOT light is shown in magenta,
probe light in cyan, and the imaging lens in yellow.
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running a real-time operating system. Both the FPGA and embedded computer are installed in

(and communicate through the bus of) a PXI chassis.

The user sets the timing table before a run by interacting with a control interface, which

is hosted on a computer running Microsoft Windows XP. The user’s instructions are downloaded

to the embedded computer via Ethernet, and then are executed independently of further inter-

action with the nondeterministic timing environment of Windows. The user interface, embedded

controller, and FPGA all run software written in LabVIEW.

Many of the experiment’s systems are controlled by analog voltages. These voltages are

produced by a set of digital-to-analog converters (DACs, National Instruments 9263) that are

controlled by the FPGA’s digital outputs. The DAC modules each contain four output channels.

Pre-packaged LabVIEW code modules provided by National Instruments handle the details of

using a block of 40 of the FPGA digital outputs to control up to four DAC modules (16 analog

outputs per block). The modules controlled by a block of FPGA outputs are housed outside of

the PXI system in an expansion chassis. We have six DAC modules in the current configuration

of the control system, occupying only two of the FPGA’s 40 channel digital output blocks. The

system is therefore easily expandable to include more analog outputs (and also analog inputs)

should the need arise in the future.

Each DAC module has a floating, common signal ground that is isolated from that of the

other modules. The isolated DAC grounds greatly ease the difficulty of eliminating ground loops

from our electronics. We group together related analog-controlled devices on each module, and

then ensure that the group’s signal ground is tied to earth ground at exactly one location. As

an example, consider the power supplies for the MOT and bias coils, which are controlled by a

single module (DAC 1 in Fig. 7.14). The chassis of just one of these supplies is tied directly to

earth ground, and the only connection between the common signal ground of all four supplies

and earth is made there. We ensure that the chassis of the other three supplies are tied to earth

only through the chassis of the primary supply. This is done by wiring the chassis together

with heavy gauge Cu wire, and then installing electrical plug adapters to cut their independent
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Figure 7.14: Diagram of control system. “Chip BEC wires” refers to the current supplies driving
those chip wires needed for initial trapping and BEC production: the main, T, and H wires.
“Chip parallel wires” refers to the supplies driving the array of parallel wires for translating
waveguide interferometry.
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connections to earth ground. Figure 7.15(a) shows a schematic of the wiring scheme. Careful

control of grounding leads to significant decreases in electrical noise in our system. Figure

7.15(b) shows the results of a noise measurement comparing the case of proper grounding (black

trace) to the case in which both chassis connect to earth independently (red trace). We show

the voltage noise measured by an AC coupled dynamic signal analyzer across a 1 Ω test resistor

driven with 1 A of current by the grounded supply. Similar single-reference grounding schemes

are used for the instruments controlled by the other DAC modules.

The other task required of our control system is image acquisition. A digital control

output is used to trigger image acquisition through the camera’s external control input. The

images are downloaded to a second Windows computer through a FireWire 800 interface. Soft-

ware written in LabVIEW displays the images, carries out preliminary analysis, and optionally

saves the images for further study. The use of a separate imaging computer is not necessary

in our system, as the critical timing tasks are carried out by the FPGA. The control system

interface and imaging acquisition tasks will likely be combined in a single computer in a future

upgrade.

7.8 Current progress and future work

We have successfully loaded a 3D-MOT while slowly rotating the apparatus on the air

bearing. We have also, in the stationary mode, carried BEC production as far as the transfer

of atoms into the initial chip trap. Progress was delayed for a time by unexpected challenges

in the fabrication of the high-density via pattern of the atom chip. A new fabrication process

developed by our collaborators at Teledyne Scientific seems to have overcome these issues.

A vacuum system using the new chips has now been installed in the gyro apparatus. We

should soon be loading the initial chip trap with atoms. Evaporative cooling to BEC should

soon follow. BEC has been achieved in similar systems after a radio frequency (RF) evaporation

cycle lasting only a few seconds. The RF radiation will be coupled to the atoms by a single loop

coil fixed to the big Z assembly (see Fig. 7.10). Typical BECs are expected to contain on the
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Figure 7.15: (Color). Grounding scheme for MOT and bias coil power supplies. (a) Schematic
of ground connections. The chassis of only one power supply is tied directly to earth ground;
the connection between signal and earth ground is made at that chassis. Other supplies are
connected to earth ground via the grounded supply’s chassis. (b) Measurement of noise spectrum
of grounded supply when wired as shown in (a) (black trace), and when second power supply
chassis is allowed to connect to earth ground independently (red trace).
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order of 2× 104 atoms [53]; total BEC production time will be on the order of 5–10 s.

After BEC is achieved, interferometry experiments will begin. We have already completed

preliminary design work on the optical system that will be used to create the standing wave for

beamsplitting. An array of parallel traces aligned perpendicular to the primary wires on the

vacuum side of the chip provides a reflection grating that we will use to align the beam to the

axis of the waveguide, regardless of the tilt angle induced by the axial confinement (see Fig.

7.11).

We have also built an 8-channel battery-driven current supply to provide the current

we will run through the parallel “moving waveguide” wires. A custom-designed printed circuit

board will be used to connect every eighth wire in series. Calculations show that a traveling

wave of current amplitude < 0.5 A can create waveguides with the ωρ = 2π × 80 Hz transverse

confinement that we modeled in Chap. 6. Axial confinement will be provided by a pair of H-

wires attached to the big Z mount (approximate location indicated in Fig. 7.10). The spacing

of these wires is set keep the anharmonicity parameter given in Eq. (2.27) small.

This dissertation has presented the initial steps leading from past work with BEC Michel-

son interferometry in a stationary waveguide towards the demonstration of a BEC Sagnac gy-

roscope based on a traveling waveguide. Much work remains to be done to complete the testing

of the new apparatus and the proposed method for moving the guide. We should note that the

small size of the BECs that will likely be available in our first experiments may cause shot noise

to be a limiting performance factor (see Sec. 1.1.3). Fortunately, the flexibility of the apparatus

will allow the easy replacement of the currently installed vacuum system with an updated design

capable of improved performance. It is exciting to consider that if the proof-of-concept experi-

ment proposed here is a success, then recent rapid progress towards the miniaturization of lasers,

power supplies, and control systems [53] could soon lead to the construction of a field-deployable

BEC gyroscope.
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Appendix

Table of mathematical symbols used in text

Vectors are denoted by boldface type, while unit vectors have a hat placed atop the bold

symbol. Magnitudes of vectors are denoted by the italic form of the symbol, except where noted.

Dots indicate derivatives with respect to time. In some cases, a prime denotes a derivative with

respect to a spatial coordinate.

αn Dimensionless wire width parameter

β Second dimensionless wire width parameter [see Eq. (6.34)]

γ Trap aspect ratio

γ2 Normalized kurtosis excess

δ Detuning from resonance

δλi Small shift in dimensionless BEC size scaling parameter along axis i

∆φ Differential phase shift

∆φlaser Phase shift induced by vibration

|∆φp̌〉 Eigenstate of phase-difference operator

δD(x) Dirac delta function

∆P Path length shift
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∆p Separation in momentum

∆U Perturbation to potential

∆x Wire width

∆z Separation between BECs along waveguide axis

δ(variable) Uncertainty in (variable)

ε e−2πy0/L, smallness parameter for perturbations

η Amplitude of trap frequency modulation

Θ(x) Unit step function

θ Tilt angle of waveguide with respect to main wire

κ Amplitude of deviations from trap center during guide translation

λ Wavelength

λdB deBroglie wavelength

λi Dimensionless BEC scaling parameter along axis i

µi Chemical potential of BEC i

µB Bohr magneton

µ0 Magnetic constant

µ4 Fourth statistical moment

ξ Deviation in energy of two-BEC system from equilibrium

(ρ, φ, z) Cylindrical coordinates

ρ0 Harmonic oscillator length of radial waveguide
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σ Standard deviation

σ̂ MLE of standard deviation of normally distributed noise

σ∆φ Standard deviation of phase distribution

τ ωρt, dimensionless time coordinate

τi Duration of event i

φD Normally distributed phase noise due to phase diffusion

φv Initial phase of vibration

χi,j Unit-normalized wavefunction for i atoms in state 1 and j atoms in state 2

Ψ Many-body wavefunction

ψ Single-atom wavefunction

Ω Angular velocity

ω Angular frequency

ω̄ Geometric mean trapping frequency

ΩE Effective two-photon Rabi frequency

ωi Angular trap frequency along axis i

h̄ωNT /2 Energy of two BECs containing equal number of atoms

ΩR Rabi vector (Bloch sphere representation)

ΩR Rabi frequency

ωr Recoil frequency

ωv Frequency of vibration
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ω1 Frequency fit parameter for simulated phase diffusion data

Ω̂ 2ωz, frequency of transverse acceleration profile

Ω̃ Nω̃/ωρ, Dimensionless perturbation frequency

ω̃ 2πvc/L, perturbation driving frequency

A Area

A Amplitude of interference signal in PC or IC representation

Â MLE of amplitude of interference signal

a Acceleration

ac Acceleration of waveguide center

Ai Constants

amode name Amplitude of named collective mode

as Scattering length

a1 Amplitude fit parameter for simulated phase diffusion data

ā Geometric mean oscillator length

â Non-negative integer

B Magnetic induction (referred to as magnetic field)

b Integer

Bc Magnetic field of crossing wire at waveguide height

bi Polynomial coefficient i

Bn Magnetic field of harmonic n
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BT Field of T wire at waveguide height

Bw Magnetic field amplitude of parallel wire array

B0 Bias magnetic field

C Capacitance

c Speed of light

Ci State amplitude of momentum state i

ci Trap perturbation minimizing parameters

D Sample covariance matrix of PC basis

d Displacement of trapping wires away from chip surface

Dg Diffraction grating period

E Electric field

E Energy

F Total atomic angular momentum

f Focal length

fL(z,θp) Likelihood of parameters θp for observation set z

fx(x) Probability density of random variable x

g Strength of interatomic contact interaction

g(x) An integrable function of x

gF Landé g factor of total angular momentum

h Planck constant
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h(x) An integrable function of x

I Electrical current

i
√
−1 or an integer

IH Magnitude of current flowing through H wires

Im Magnitude of current flowing through wire m

J Current density

j Integer

K Surface current density

k Wavevector of interfering wave

k Wavenumber of interfering wave or an integer (distinguished by context)

Ka Transverse acceleration amplitude

K
(c)
n Fourier cosine coefficient n of K

K
(s)
n Fourier sine coefficient n of K

k0 Wavevector of laser used in diffraction beamsplitter

L Spatial period of traveling wave of current. In Ch. 7, inductance

l Displacement along curve of integration

LH Distance separating H wires

M Mean image of a data set

M Mass

m Integer
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mF Quantum number of projection of total angular momentum along an axis

N Number of wires per spatial period of traveling wave of current

n Integer

Nτ/2 Number of axial half-periods in interferometry experiment

NI Number of images in a data set

Ni Number of particles observed by detector i or in interferometer arm i

Np Highest momentum order significantly populated by beamsplitter

NT Total number of interfering particles

p Translational momentum

P (x) Probability of x

pc(rd/s) Circular coverage function

P (I) Matrix of ICs

P (P ) Matrix of PCs

p0 Initial momentum of separating BEC wavefunctions in experiment

p̂ Number of pixels

q Number of PCs retained

R Rate of quantum phase diffusion

r Position with respect to origin

Rc Fraction of atoms in zero momentum state after interferometry

Rcomponent Resistance of component
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rd Radius of integration of circular coverage function

Ri Frequency-dependent parts of collective mode amplitude along axis i [see Eq.

(6.49)]

rs State vector (Bloch sphere representation)

S Sample covariance matrix of pixel basis

s Standard deviation of Gaussian in circular coverage function

T Duration of interferometry experiment

t Time

Ť Time spent driving on resonance

T̂ Period of transverse acceleration profile

U Potential energy

u A basis vector of either the PC or IC basis

u(I) A basis vector in the IC basis

u(P ) A basis vector in the PC basis

V Visibility of interference pattern

v Velocity

vc Speed of transverse waveguide motion

v0 Initial velocity of separating BEC wavefunctions in interferometry experiment

w Real number

X Vector representation of an image in pixel basis

X̂ Vector representation of an image in pixel basis, in mean-deviation form
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X̂ Matrix of images in pixel basis, in mean-deviation form

(x, y, z) Cartesian coordinates (exceptions noted in following items)

(x′, y′, z′) Secondary Cartesian coordinate system

x Normally distributed detection noise (in Sec. 4.5)

x(m) Position of BEC during mth half of transverse motion

x̂m Position of left edge of wire m

x0 Position of waveguide minimum

x̄ Deviation from minimum of traveling waveguide

Y Coefficient matrix of either the PC or IC basis

Y (I) Coefficient matrix of IC basis

Y (P ) Coefficient matrix of PC basis

y PC/IC coefficient related to interference signal (in Sec. 4.5)

y0 Distance between microtrap minimum and generating wire

Z Complex impedance

z Vector of observed interference signals, sum of signal and noise (in Sec. 4.5)

z0 Classical turning point along waveguide axis


