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Thesis directed by Prof. Jun Ye

Research in the field of cold polar molecules is progressing rapidly. An array of interesting
topics is being developed including precision measurement and fundamental tests, quantum phase
transitions, and ultracold chemistry. In particular, dipolar molecules in well-defined quantum states
enable exquisite control of their interactions via applied electric fields. The long-range, anisotropic
interaction between dipolar molecules leads to new collision dynamics that could be used for novel
collective effects, quantum state engineering, and information processing. The focus of this Thesis
is the production of cold samples of neutral OH molecules via Stark deceleration and magnetic
trapping for novel collision experiments. This novelty results from our combination of cold external
beams and trapped target molecules which facilitates observation of dipolar effects as well as low-
temperature collision resonances. The large permanent electric dipole moment of OH allows us to
precisely tune the lab-frame velocity of the molecular packets from ~ 500 m/s to rest. We have
magnetically trapped OH packets at the terminus of our Stark decelerator at a temperature of 70
mK and density of 106 cm™3. With improved understanding of Stark deceleration, we optimize the
decelerator efficiency and its coupling to the magnetic trap. Our latest trap design uses permanent
ring magnets to create a three-dimensional magnetic quadrupole field. Use of magnetically trapped
OH molecules for collision experiments with external beams allow us the unique opportunity of
observing both elastic and inelastic collisions. In addition, the trap confinement yields sensitivity
to differential elastic cross sections at low collision energies. This open magnetic trap has allowed
measurement of collision cross sections between trapped OH and external supersonic beams of
He and Do, the latter of which is of astrophysical interest due to the role of Ha-OH collisions in
pumping interstellar OH megamasers. The combination of trapped OH molecules and temperature-

tuned beams of He and D5 has facilitated measurement of the lowest-energy Ds-OH collision cross
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sections yet reported. More recently, we report the first observation of electric-field dependent cross
sections between two different species of cold polar molecules - OH and ND3 - thereby demonstrating
control over molecular scattering in the cold regime. By combining for the first time the production
techniques of Stark deceleration and buffer gas cooling, we increase the molecular interaction time by
~ 10° over traditional crossed-beam experiments to gain enhanced sensitivity at the characteristic

densities of cold molecule production.
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Figures

Schematic view of dipolar scattering as a function of collision energy in units of the
dipole energy, Up. At ultracold temperatures (U < Up), the Born approximation is
valid and cross sections are independent of temperature. At energies above Up, the
cross section decreases as the inverse of the relative collision velocity. This plot is

adapted from a more accurate numerical calculation presented in Ref. [4]. . . . . ..

Illustration of the five Hund’s Cases for angular momentum coupling in diatomic
molecules. (a) Both L and S are strongly coupled to the internuclear axis (L due
to electrostatic forces and S through the spin-orbit coupling), forming the quantum
number = A + ¥ along the axis. (b) Spin S is weakly coupled to the axis due
to small or absent (A = 0) spin-orbit mixing but instead couples to the resultant
K = A+ N. (c) Neither L nor S are strongly coupled to the internuclear axis, but
these vectors add to form J, whose projection on the axis is given by Q. (d) Orbital
angular momentum L couples more strongly to nuclear rotation N than to the axis.
(e) The vector J,=L+S results from strong spin-orbit mixing and couples to N.

[lustration of the rotational structure of the OH electronic and vibrational ground
state. The A-doublet splitting of each rotational level has been exaggerated for
clarity. The (e,f) quantum numbers represent the symmetry of the given A-doublet

component, while the + denotes the overall J-dependent parity of the state. . . . . .
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Ilustration of the dipole-allowed P1, Q21, and Q1 transitions for 211, /2 OH molecules
with corresponding measured LIF spectra of a supersonic beam. Generally, the
Av = 1 transition is used to allow filtering of the 282 nm excitation light from the
313 nm fluorescence photons. . . . . . . .. ..o
Ground state (X L A}) structure of deuterated ammonia showing the inversion doublet
(expanded for clarity) of each rotational level. . . . . . . ... ... o000
Ilustration of three intermediate two-photon transitions used in 24+1 REMPI spec-
troscopy of NDg3. Vibrational selection rules result from the different (alternating)
symmetries of the excited vibrational levels. The structure of NDg transitions from
pyramidal to planar after the two-photon excitation. The rotational structure is
excluded for clarity. . . . . . . . . . ..
Simulated 24+1 REMPI spectrum of 28 rotational transitions in ND3. The simulated
rotational temperature is given for each plot. For consistency of presentation, a
Lorentzian width of 0.3 cm™! has been assumed for all spectral lines. Note that at
high temperatures (2 100 K), Doppler broadening necessitates application of a Voigt
lineshape to correctly fit experimental spectra. . . . . .. .. ... .. ... .....
Stark shifts in both the OH and ammonia (NH3/ND3) molecules. Coincidentally,
OH and ND3 have nearly identical parity doublets and permanent dipole moments
which gives them similarly large static polarizabilities. Partly for this reason, many
cold molecule experiments have made use of these two species. . . . . .. ... ...
Theoretical (black line) and measured (red point) doublet population ratios as a
function of external electric field. For this measurement, we perform 2+1 REMPI
of a state-selected beam of ND3 molecules while applying +950 V to one of the trap
magnets in the ionization region. Following Eq. 2.36, the ratio of lower- to upper-

inversion doublet populations allows accurate characterization of this applied electric
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2.13

Stark shift of the 2Tl /2 ground state of OH in the hyperfine basis. The two A-
doublet states repel as the field is increased, creating strong- and weak-field seeking
molecules. For electric fields above ~1 kV /cm, the structure approaches the strong-
field limit of Fig. 2.7. . . . . . . . ..
Zeeman shift of the %Il /2 ground state of OH. Since the Zeeman Hamiltonian only
couples states of like parity, the two A-doublet levels of OH show exactly the same
field dependence. Also, the lack of coupling between e and f states causes only
diabatic level crossings. . . . . . . . ..
Zeeman shift of Tl /2 OH molecules in the hyperfine basis. Both A-doublet states

show the same effect since the magnetic field does not induce an interaction between

Level shifts for OH (*IL3/2) in combined electric and magnetic fields as a function of
relative field angle 5. The g = 0°,180° shifts are identical and plotted together. To
keep track of the diabatic curves, it is useful to start from the far left of each graph
where only the electric (upper plots) or magnetic (lower plots) field dominates. Of
course, the adiabatic curves maintain energy ordering. . . . . . ... ... ... ...
(a) Diabatic levels for ground state OH molecules. Upper-doublet (black) and lower-
doublet (red) levels are completely uncoupled in this picture. (b) Color-coded adia-
batic levels resulting from coupling between e and f parity states due to an external
electric field. (c) Adiabatic transition probability (P,q) for OH molecules within com-
bined magnetic and electric fields. The probabilities shown are for coupling between
the \%, %, +%, e) and |%, %, +%, f) states as a function of electric field and field angle
B. Note that extremely small electric field magnitudes (< 10 V/cm) are sufficient to

induce adiabatic transitions in this system. . . . . . .. ... ... ... L.
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3.3

3.4

3.5

(Top) Hlustration of a typical supersonic beam assembly featuring a gas reservoir at
pressure and temperature Py and Tj, respectively and supersonic nozzle admitting
the gas into a vacuum chamber at background pressure P,. The skimmer is shown
at right. (Bottom) Plot of predicted beam velocities for different noble carrier gases
initially at room temperature. . . . . . . . . ... L
Drawing of the PZT valve assembly showing the adjustable poppet, disk piezo trans-
lator, and valve housing. The Kr/H2O bubbler system for production of OH via
pulsed electric discharge is also shown. (Inset) Measurement of the high voltage
pulse applied to the PZT. It is critical that the RC time constant of the voltage
pulse be = 40 us to avoid cracking the piezoelectric crystal. . . . . . . .. ... ...
Comparison of a single-pulse electric discharge to a multi-pulse discharge of roughly
the same duration. The three separate OH pulses spatially combine in free-flight to
the detection region and yield > 50% improvement in beam density. The above data
was taken 1 m downstream from the supersonic valve. . . . . . ... ... ... ...
(Top) Illustrations of the pulsed electric discharge and photolysis sources for OH
supersonic beam production. Note the 40° exit nozzle cut into both sources for
enhanced OH beam density. (Bottom) Plot of relative OH yield for the discharge and
photolysis sources measured within the source chamber. The photolysis precursor
for this data was 99% pure HNOs3. . . . . . . . . . . ...
Illustration of our buffer gas beam assembly. The NDg3 gas is fed down a heated
copper tube at 285 K. This hot supply tube is thermally isolated from the cold
buffer gas cell via a polyetherimide (Ultem) insert and thin-walled epoxy-fiberglass
composite (G10) tube. The pre-cooled He gas (not shown) is fed into the side of
the cell. Charcoal sorb glued to copper plates (~ 2000 cm? total) acts as a vacuum

pump for He and ND3 gas. . . . . . . . . . . . . .
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3.6

3.7

3.8

3.9

3.10

4.1

Data comparing electrostatically guided flux of a 15 K Ne/ND3 beam with that of
a 5 K He/ND3 under otherwise identical conditions. Flow rates for both conditions
were varied over the full range of the flow controllers in the time shown, and the
cell-to-guide distance was fixed at Tem. . . .. .. .. ... L L oL
Measured spectra of a guided buffer gas source of ND3 under two different buffer
gas flow conditions. The red curve gives a para rotational temperature of 6.3 K for

buffer as flows of 2.0 sccm He and 2.5 sccm NDj. The black spectrum reflects the

xvil

better rotational thermalization observed with flows of 3.5 sccm He and 1.0 sccm ND3. 66

Comparison of pulsing behavior with (a) < 5 mm spacing between the ammonia
inlet and cell wall and (b) the larger 3.8 cm x 3.8 cm x 4 cm cell with an inlet-to-wall
spacing of 1 cm. The greater distance between the warm NDg3 inlet and the cold
cell wall in (b) leads to significant improvement in beam stability over ~ 1 hr. (c)
Illustration of the buffer gas cell cross section showing regions of NDj3 ice buildup
that eventually lead to pulsing as ice accumulates near the warm NDg inlet tube. . .
Drawing of the buffer gas beam assembly and electrostatic velocity filter for cold NDj3
molecules. The ionization region and time-of-flight mass spectrometer assembly for
ND; detection are displayed at the terminus of the hexapole guide. Cold NDj is
ionized 1 cm from the guide exit with the 317 nm pulsed REMPI laser. . . ... ..
Measured velocity distribution of electrostatically guided ND3 molecules. The pro-

cess of obtaining g(v) from the measured f(vmipn) is described by Eq. 3.17.. . . . . .

Top-view illustration of our ToFMS for detection of guided ND3 molecules within
the OH-ND3 collision region. For initial ND;)F extraction, a pulse of +950 V is
applied to the front magnet after the ionization laser. Ions are then accelerated to

the microchannel plate detector. . . . . . . .. ... ... ... ... ... . .....

68



4.2

4.3

5.1

(a) Measured (black points) and simulated (red line) NDj3 spectra at 295 K. The
experimental 24+1 REMPI spectrum was taken within the OH-NDj3 collision region.
The relative strengths and line positions for two of the |J”, K”) = |1,1) transitions
at the single-photon frequencies of 31505.6 cm™! and 31510.9 cm™! are shown in
blue. (b) Measured (black points) and simulated (red line) spectrum of a guided
ND3 beam with a rotational temperature of 8 K. . . . . . . ... ... ... ... ..
(Left) Side-view illustration of the Stark decelerator, magnetic trap, and OH laser-
induced fluorescence detection assembly. Fluorescence photons are collected at 313
nm with a 2.5 cm-diameter lens placed 2.5 cm from the center of the magnetic trap.
(Right) Level structure showing the excitation and decay pathways used for LIF

detection of OH molecules. . . . . . . . . . .

Illustration of the Stark decelerator and pulsed supersonic molecular beam source.
A packet of OH is created at the valve using a pulsed electric discharge positioned
at the valve nozzle. After passing through the skimmer 10 cm downstream from
the discharge plates, the packet is focused into the decelerator via a 5 cm hexapole
with an inner diameter of 6 mm. The decelerator rod pairs are spaced by 5.5 mm
center-to-center along the beam flight (longitudinal) direction and are mounted 2

mm apart in the transverse dimension. . . . . . . . . . ... ... ... ...
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5.3

(a) Simulation of the longitudinal Stark potentials for OH created by the two distinct
rod pairs within the decelerator. To slow a packet of molecules, we switch between
the red and black potentials to continually remove kinetic energy at a well-defined
position relative to the rod pair (¢p). (b) The difference between the two Stark
potentials shown in panel (a), which represents the amount of kinetic energy removed
from OH molecules in one stage as a function of the fixed slowing phase angle ¢q.
Stable acceleration occurs for —90° < ¢¢ < 0 while phase-stable deceleration is
observed for 0 < ¢g < 90°. We denote operation at ¢9 = 0° as “bunching” since
no net kinetic energy is removed from the molecular packet, but the molecules are
nevertheless confined within a moving longitudinal potential well. The form of the
kinetic energy difference closely follows that of a sine function as demonstrated by
the fit curve (dashed line). (c¢) Longitudinal phase-space acceptance of a deceleration
sequence as a function of ¢y assuming a one-dimensional sine-function form for the
slowing potential of panel (b). Note that the separatrices shown are incremented by

10° starting from 0° at the outer edge. Molecules with longitudinal velocities and

positions within the separatrix for a given ¢y will be phase-stably decelerated. . . . .

Time of flight data (black) and Monte Carlo simulation results (red) for Stark decel-
erated OH molecules showing the excellent agreement between finite-element calcu-
lations of slowing electric fields and real decelerating fields. Note that as the phase
angle is increased, the decelerated packet is continually removed from the central

background of unstable molecules in time of flight. for clarity, the two bottom pan-

els show only the decelerated packet. . . . . . . . . . ... ... ... ... ...,
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5.4

5.5

5.6

5.7

(a) Simulations of the phase-stable molecule number as a function of stage number
in our 142-stage decelerator. Note the dramatic decrease in number in the last
several stages for ¢, = 30.43°. This decrease is due to transverse overfocusing and
longitudinal reflection of these slow (14 m/s) molecules. (b) Simulated transverse
(trace 1) and longitudinal (trace 2) fractional loss rates as a function of time within
the final three stages at ¢, = 30.43°. The vertical dashed lines denote the times of
the given stage switches. . . . . . . . .. Lo oL
Experimental (dots) and Monte Carlo simulation (open circles) results for total
molecule number as a function of final velocity. The dashed curve is the expected

decelerator efficiency calculated from the one-dimensional (1D) theoretical model of

Monte Carlo simulation results for the longitudinal phase space of decelerated molecules.

The left column shows ¢, = 0° and 26.67° for S = 1 slowing, while the right column
shows ¢, = 0° and 80° for S = 3 deceleration. The factor of three between S = 1 and
S = 3 phase angles ensures that molecules have roughly the same final velocities.
The observed velocity difference at the higher phase angle occurs because the 142
stages of our slower is not a multiple of three. Note that, although the S = 3 phase
plot is more densely populated than that of S =1 at ¢, = 0°, its phase-space accep-
tance decreases dramatically relative to S = 1 at the lowest velocities. All plots are
generated using an identical initial number of molecules, and therefore the density
of points is meaningful for comparison. . . . . . .. ... ... ... L.
Experimental results from changing the voltage on decelerator rods (squares) and
decreasing the effective decelerator length (circles). Effective slower length is modi-
fied by initially operating the decelerator at ¢y = 0°, S = 3, then slowing with S = 1
to Vfimar = 50 m/s for the number of stages labeled. Both curves illustrate that
transverse/longitudinal couplings are strongly dependent on phase angle, and have

a marked effect on decelerator efficiency. . . . . . ... ... ... .. .. ... ...



5.8

Deceleration schemes. (a) Potential energy shift of polar molecules in the Stark
decelerator. The dotted (blue) curves show the potential energy shift when the
horizontal (circular cross section) electrodes are energized, while the dashed (red)
curves show the potential energy shift when the vertical (elongated cross section)
electrodes are energized. Deceleration proceeds by switching between the two sets
of energized electrodes. In panels (b)-(d), the thick black line indicates the potential
experienced by the molecules. The empty circles indicate a switching event. (b)
Traditional (S = 1) operation at ¢, = 0°. For phase stability, the switching always
occurs when the molecules are on an upward slope, and as such the molecules are
never between a pair of energized electrodes. Thus, the maximum transverse guiding
is never realized. (c) First overtone operation (S = 3) at ¢, = 0°. By switching at
one-third of the S = 1 rate, the molecules are allowed to fly directly between an
energized electrode pair, and thus, experience enhanced transverse guiding. (d)
Optimized first overtone operation (S = 3+) at ¢, = 0°: Initially, the packet rises
the Stark potential created by one set of electrodes. When the molecules reach the
apex of this potential, the alternate set of electrodes is energized in addition. In this
way, the molecules experience one more stage of maximum transverse guiding for
each slowing stage. Note that, to minimize the un-bunching effect, the grounded-set

of electrodes is switched on when the molecules are directly between the energized

electrodes. . . . . e
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5.9

5.10

5.11

5.12

Comparison of deceleration using S = 3 versus S = 1. (a) Experimental ToF data
of decelerated OH packets with S = 3 (top) and S =1 (bottom). Note the factor of
three between S = 1 and S = 3 phase angles. (b) De-convolved, integrated molecule
number for S = 3 (trace 2) and S =1 (trace 1) for the packets shown in panel (a).
(c) Simulated transverse loss rate per stage for S =1 (trace 1) and S = 3 (trace 2)
deceleration. As expected, S = 1 results in larger transverse loss rates throughout.
(d) Calculated stable longitudinal phase-space area for S = 1 (trace 1) and S = 3
(trace 2), with initial points scaled to the experimental ratio of 2.75. The above
panels highlight that the observed shortcoming of S = 3 deceleration is entirely due
to loss of longitudinal velocity acceptance at high phase angles. . . . . . . ... ...
Monte Carlo results for decelerated molecule number using S = 3 and ¢, = 20° versus
final velocity. The number next to each data point is the number of stages used.
Because of transverse overfocusing and longitudinal velocity filtering, essentially no
molecules survive below 100 m/s. . . . . .. ... Lo
(a) Experimental ToF data of decelerated OH packets produced using the S = 3+
modified overtone. Also shown for comparison is the experimental bunching packet
for operation at S = 1. (b) The de-convolved, integrated molecule number calculated
from S = 3+ (open squares), S = 3 (open circles), and S =1 (dots) data. . . . . ..
Monte Carlo results of decelerated molecule number using S = 3+ and ¢, = 20°
versus final velocity. The number next to each data point is the number of stages

used. Because of transverse overfocusing, essentially no molecules survive below 100
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Quadrupole-guiding decelerator. (a) Schematic of QGD. (b) Electric field of quadrupole

guiding stage energized to £12.5 kV. (c¢) Switching scheme for deceleration with the

QGD. o e



5.14

(a) The Stark shift of an OH molecule in the |2, £2,+) state inside the QGD. The
solid curve is the Stark shift due to the slowing electrodes, while the dashed curve
is the Stark shift due to the electrodes that will be energized at the switching time.
(b) The change in the molecule’s kinetic energy as a function of position is shown
(solid) as well as a fit of Eq. 5.4, including up to n = 3 (dashed). The solid curve is
calculated from the subtraction of the two curves in panel (a). . . . ... ... ...
The left column is stable phase space of molecules decelerated inside the QGD.
The solid line is the separatrix predicted by the theory, while the points represent
positions of molecule in the 3D Monte Carlo simulations. The right column shows
the ToF spectra of OH molecules in the |2+2, 4) state at the exit of this decelerator
which has 142 deceleration stages, along with 142 quadrupole stages. . . . ... ..
(a) The energy removed per stage as a function of phase angle for both traditional
deceleration and deceleration with a QGD. Both curves are calculated for OH in the
|2, 42, +) state and scaled down by 1.76 cm ™! at ¢, = 90°. (b) The calculated longi-
tudinal phase-stable area for deceleration versus energy loss per stage for traditional
deceleration and deceleration with a QGD is plotted on the left axis. The gain of
the QGD over traditional deceleration is plotted on the right axis. Note that for a
given energy loss the gain in phase stable area due to the larger volume of the QGD

is <15 forall 0° < o < 80°. . . . . o o o
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5.17

Simulations of the phase-stable molecule number as a function of stage number in
the QGD and S = 1 decelerator. The voltage on the quadrupole stages of the
QGD is held constant throughout the deceleration sequence. All simulation data
is for v¢ina = 14 m/s. The traces shown are S = 1 deceleration at ¢, = 30.43°,
QGD operated with +1 kV on the quadrupoles, and QGD operated with +3 kV on
the quadrupoles. Note the decrease in stable molecule number in the last several
stages for the QGD results. This decrease is due to transverse overfocusing of the
slow molecules through the final few quadrupole stages, and suggests that scaling of
quadrupole voltage is necessary. . . . . . . . . ... e e
Monte Carlo simulation results for the decelerated molecule number using traditional
S = 1 deceleration (¢9 = 30.43°) and deceleration using a QGD (¢g = 52.75°)

Y0875 For both curves, 142 stages of

with a dynamic voltage scaling of (v/Vinitial
deceleration were used, and vfinq = 14 m/s. The different phase angles chosen for
the two decelerators are a result of their differing potential profiles for deceleration.
The vertical dashed lines represent the deceleration stage at the given velocity. Note
that when the quadrupole voltage within the QGD is scaled in this manner, we
observe a 40% gain in molecule number at 14 m/s, and a factor of 5 gain over S =1
at higher velocities. . . . . . . . . . . . e
S = 1 simulation results for vfina = 80 m/s (¢o = 5.22°) plotted along with sim-
ulation results using the voltage-scaled QGD to the same vfinq (¢o = 23.5°). The
number labeling each vertical dashed line is the number of deceleration stages nec-
essary to reach the given velocity. Note the large number of stages (803) used to

reach 80 m/s, which suggests that a very long QGD may be employed for slowing

molecules with a poor Stark shift to mass ratio. . . . . ... ... ... .......
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6.1

6.2

6.3

6.4

6.5

(a) Hlustration of the magneto-electrostatic trap (MET) assembly. The terminus of
the Stark decelerator (yellow, gray electrodes), shown to the left, couples state-
selected cold OH molecules into the magnetic quadrupole (blue). The double-
electrode structures within the electric quadrupole (red) allow for application of
uniform electric fields within the magnetic trap. The ring (green) supports a 1 inch

lens for collection of laser-induced fluorescence. (b) Plots of the magnetic field distri-

XXV

butions within the MET for both stopping and trapping of decelerated OH molecules.123

Schematic of the high-current switching circuit used to load Stark decelerated OH
into the MET. The actual switching electronics consisted of 24 of these driver circuits
operating 24 individual MOSFETs. Twelve MOSFETSs in parallel carried the 2000
A current during the loading step while the other 12 where switched into the circuit
to carry the 1500 A trapping current. . . . . . . . . ... ...
(a) Zeeman and (b) Stark effects of the ground state structure of OH. (c) Magnetic
and (d) electric quadruple fields viewed from 2. (e) Side view of the MET configu-
ration with quadrupole E and B fields. (f) Adiabatic potential surfaces for various
components of OH ground state at the longitudinal MET center. The top surface
depicts the decelerated/trapped |J = 3,m;=3) state. . . . . .. ... ... .....
Time-of-flight data (points) and Monte Carlo simulation results (solid red line) for
two different electric field configurations. The magnetic field switches from the
stopping configuration to quadrupole trapping at t = 2.65 ms. (a) Magnetic trap
only. (b) Stopping and trapping in the presence of combined electric and magnetic
quadrupole fields. Note the larger steady-state trap population when the electric
quadrupole is applied. . . . . . . . .. e
Measured (7) and de-convolved collisional (7.) lifetimes of magnetically trapped OH

at a background pressure of 1 x 10~% Torr (e, red line) and 4 x 10~% Torr (o, blue



6.6

6.7

6.8

7.1

(a) Hlustration of the permanent magnet trap and Stark decelerator. (b) Results of
finite-element calculations of the magnetic field distribution within the permanent
magnet trap. The small “lobe” observed in the p-dimension appears at the 2 mm
inner radius of the magnet ring. . . . . . .. .. . L oo o
Mlustration of the trap loading sequence. (a) High voltage is applied to the surfaces
of the two permanent ring magnets 1 us after the final deceleration stage (shown
at left) is grounded. The OH packet is stopped directly between the two magnets
by the electric field gradient in 400 us. The stopping potential due to the applied
electric field is depicted. (b) The magnet surfaces are grounded, leaving the packet
trapped within the displayed permanent magnetic quadrupole potential. . . . . . . .
(a) Time-of-flight data (circles with error bars) and three-dimensional Monte Carlo
simulations (solid line) corresponding to OH trap loading. Stopping E-fields are
switched off at 400 s, which leaves 50% of the stopped OH molecules trapped in the
permanent magnetic quadrupole. (b) Measurement of the lifetime of OH trapped
within the magnetic trap at a background pressure of 7.5 x 1072 Torr. A single-

exponential fit (solid line) of the data yields 432 £ 47ms. . . . . . .. .. ... ...

Illustration of the low-temperature He—~OH, Do—OH collision apparatus consisting of
a Stark decelerator and permanent magnetic trap for OH (background) as well as a
temperature-controlled pulsed solenoid valve and skimmer assembly for He and Do
beams (foreground). Collisions between the external He or Dy beams and trapped

OH result in measurable OH trap loss. . . . . . . . . . ... ... .. .. .. ...,

XXV1

137



7.2

7.3

(a) Measurement of He and Dy beam velocities as a function of valve nozzle tem-
perature. The beam speeds were measured with a miniature microphone and fast
ionization gauge placed 13 cm apart within the magnetic trap chamber. The solid
lines are fits to the data indicating that, as expected, the measured beam velocity
is proportional to the square root of nozzle temperature. (b) Calibration of He and
Do beam density as a function of valve nozzle temperature. The relative density
between He and Dy is obtained by taking into account the different sensitivity of the
fast ionization gauge to these two species. . . . . . . . . ... oL
(a) Time dependence of OH trap loss due to collisions with a supersonic He beam.
Trap density drops sharply over 1 ms upon He beam collisions, then remains constant
over the time scale shown. The valve is triggered 20 ms after the magnetic trap
is loaded. (b) Total collision cross sections for He-OH (open circles) and Dy—-OH
(squares) as a function of E.,,. The decrease in the He-OH cross section at low
energy is attributed to reduced inelastic loss as E,, drops below the 84 cm™! splitting

between the J = 3/2 and J = 5/2 states of the OH molecule. . . . . ... ... ..
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7.4

7.5

xxviil

(a) Rotational structure of OH and ND3 molecules. The parity-doublet splitting of
each rotational level has been expanded for clarity, while the black and red parity
levels are the ones included in the OH-NDj scattering calculation. The upper, red,
parity states are those selected by the experimental apparatus for the cold collisions
described herein. The Stark and Zeeman shifts of ground state OH and NDs3 are
presented in Chapter 2. (b) Illustration of the Jacobi coordinates used for OH-ND3
collision calculations. We define R as the distance between the molecular centers of
mass while the Euler angles (64,$4) and (0p,¢p) give the orientation of the OH
and NDj axes, respectively, in the body-fixed frame relative to R. The coordinate
1 p specifies the orientation of the ND3 monomer within the OH-ND3 complex. The
geometry ¢4 = ¢p = 04 = Op = 0 corresponds to the OH axis lying in the o,
symmetry plane of ND3 with the O atom facing the plane of D atoms. (¢) Contour
plot of the lowest adiabatic potential energy surface for the A” state of the OH-ND3
collision complex at R = 3.1 A and ¢4 = ¢p = 0 as a function of 84 and Og. The
color legend is scaled in units of ecm™". . . . . . ...
Ilustration of the combined Stark decelerator, magnetic trap, and buffer gas beam
assembly. The curved hexapole filters cold ND3 from the He buffer gas and guides
the continuous beam to the OH magnetic trap. (Inset) Closeup of the trap as-
sembly showing the dual-species detection components. We detect OH and NDj3 in
the collision region using laser-induced fluorescence (LIF) and resonance-enhanced
multiphoton ionization (REMPI), respectively. Hydroxyl fluorescence at 313 nm is
collected using a lens mounted 2.5 cm below the magnetic trap center. Ionized ND;
molecules are accelerated to a microchannel plate (MCP) detector by placing 950
V on the front magnet, 0 V on the back magnet, and -1100 V on the acceleration

plates that make up a time-of-flight mass spectrometer (ToFMS). . . . . . . . .. ..



7.6

7.7

(a) Translational energy spectrum of the guided continuous ND3 beam as measured
by 2+1 REMPI in the collision region. (b) Rotationally-resolved REMPI spectrum of
guided ND3 molecules showing different J, K states. The upper red curve (offset for
clarity) was taken at buffer gas flows of 2.0 and 2.5 sccm of He and NDj, respectively.
The lower black curve displays the smaller rotational temperature observed at 3.5
and 1.0 sccm. Intermediate rotational levels in the excited B(vs = 5) electronic state
are labeled in parentheses for each transition. . . . . . . ... ... . ... ......
(a) Semi-logarithmic plot of OH trap decay rates with (o) and without (e) the col-
liding ND3 beam. The decay rate due solely to cold OH-ND3 collisions is vcon =
Yon — Yoft- (b) Plot of all experimental runs measuring total cross sections with ([J)
and without (M) a polarizing electric field. Average cross sections are determined
from the weighted mean of all points and errors for the given E-field condition. The
cross-hatched regions represent one statistical standard error. Individual error bars
for each experimental run are obtained by propagating the standard deviation from

exponential fits of Yon and Yo 1O Veoll: « + « - - . v e e e
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7.8

7.9

(a) Plot of theoretical OH-NDg elastic (o)) and inelastic (oj,) cross sections over
the experimental collision energy range. (Inset) Theoretical and experimental trap

loss cross sections, with numbers in parentheses representing combined statistical

loss

exp are shown for both

and systematic errors. FExperimental loss cross sections o

loss

theory value includes the effect

unpolarized and polarized colliding molecules. The o
of reduced elastic loss from glancing collisions due to trap confinement. All cross
sections are given in units of 1072 cm?. The quantities 3¢ and i, are the theoretical
elastic and inelastic cross sections, respectively, in the absence of trapping potentials

and averaged over the experimental collision energy distribution of Fig. 7.6a. (b)

Semi-logarithmic plot of the theoretical differential cross section for 5 K elastic OH-

loss

theory from the free-

NDj3 collisions in units of A’ /sr. This result is used to calculate o
space elastic and inelastic cross sections of panel (a). The forward-peaked nature of
the elastic collision leads to a factor of 25 suppression of OH elastic loss at our finite
radial magnetic trap depth of 240 mK. . . . . . .. .. ... oo oL
Plot of the Eikonal estimates for the elastic collision cross section between OH and

ND3 molecules. At the experimental relative velocity of 100 m/s, the electric field is

expected to increase the elastic cross section by a factor of ~6. . . . . . . .. .. ..
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Chapter 1

Introduction

1.1 Why Polar Molecules?

Tremendous progress in the field of laser cooling and trapping of neutral alkali atoms has al-
lowed observation of exotic ultracold phases of matter [6, 7, 8], realization of fundamental condensed-
matter systems [9], and precision measurements [10]. Interestingly, these novel physical systems
rely on purely isotropic interatomic potentials. Nevertheless, the ability to exert control over
atomic interactions via Feshbach resonances has proven invaluable [11]. Inspired by these suc-
cesses, researchers began to imagine the possibilities for cold or ultracold systems in the presence
of anisotropic inter-particle interactions [12]. Such anisotropy has been realized in atomic species
with large magnetic dipoles [13], but polar molecules can also provide this anisotropy due to their

dipole-dipole interaction potential in the presence of an external electric field that takes the form

2711 -7 2
U(r) = 47360“ L if“ J] (1.1)

where p is the molecular permanent electric dipole moment, r is the intermolecular distance, and # is
a unit vector along this intermolecular spacing. Immediately, we see that an ensemble of molecules
mutually aligned in a homogeneous electric field will experience attractive head-to-tail interactions
but repulsive side-to-side interactions. Furthermore, compared to the contact interactions with
delta-function potentials between colliding ultracold atoms, polar molecules display a long-range
r~3 potential that significantly alters their collision dynamics. In an ultracold dipolar molecular

system, this long-range interaction may even be exploited to perform quantum computation [14, 15]



or, in the not-too-distant future, direct simulation of quantum Hamiltonians [16]. In the following
sections, two applications of cold and ultracold neutral polar molecules are briefly discussed —

namely, dipolar collisions and precision measurements.

1.1.1 Cold and Ultracold Collisions

The expectation value of the molecular electric dipole moment is entirely dependent on the
magnitude of an applied external field (see Chapter 2). As such, polar molecules not only offer
anisotropic interactions in an electric (E) field; they present an opportunity for direct control of
the intermolecular potential through the application of E-fields as small as 1 kV/cm. However, the
relative influence of the long-range portion of the intermolecular potential depends on the collision
energy of the interacting molecules. In Ref. [4], Bohn et al define convenient energy (Up) and
length (D) scales for two colliding polar molecules with dipole moments, p1/p2, and reduced mass,

M, as (in atomic units)

D = MMIMQ (12)
1
Up = 3322 (1.3)
M= pips

Inserting appropriate values for the OH molecule ({(¢) = 1.0 D, M = 8.5 amu), one obtains
UgH = 3.6 uK and DOH — 2400 ag (ag is the Bohr radius). At energies below Up, the collision
cross section is dominated by a single partial wave that is either an s (I = 0) or p (I = 1) wave
depending on the quantum statistics of the colliding molecules. In this ultracold regime, the elastic
cross section due to the dipolar interaction is energy-independent and scales as p*. As the collision
energy is increased above Up, the molecular collision becomes semiclassical in nature as more
partial waves contribute to the cross section. We denote this as scattering in the cold regime. At

1/2 and elastic collision rates

these higher temperatures, the elastic cross section decreases as U~
defined as ov are energy-independent. Figure 1.1 provides a schematic depiction of the behavior of

cross sections in these two energy regimes.

The cold molecule labs at JILA are leading the field with respect to cold and ultracold dipolar



collisions. Recent experiments with ultracold samples of KRb molecules have demonstrated E-field
dependent chemical reactions in the quantum collision regime [17], and future KRb experiments in
traps of reduced dimensionality promise to directly probe the universal elastic scattering behavior
described in Ref. [4]. Also, as detailed in Chapter 7 of this Thesis and Ref. [18], we have demon-
strated electric-field enhancement of elastic collision cross sections between samples of polar OH
and ND3 molecules at a temperature of 5 K. The history of low-temperature dipolar molecular
collisions is just beginning to be written, and the future promises a host of new discoveries in the

field of cold collisions and chemistry [12].
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Figure 1.1: Schematic view of dipolar scattering as a function of collision energy in units of the
dipole energy, Up. At ultracold temperatures (U < Up), the Born approximation is valid and
cross sections are independent of temperature. At energies above Up, the cross section decreases
as the inverse of the relative collision velocity. This plot is adapted from a more accurate numerical
calculation presented in Ref. [4].



1.1.2 Precision Spectroscopy

Precision measurements represent another enticing application for cold polar molecules. With
the development of molecular Stark deceleration [19] and buffer gas cooling [20] techniques more
than a decade ago, it became possible to significantly increase one’s interaction time with the species
of interest and, at the same time, reduce the sample temperature while simultaneously increasing
its rotational/vibrational state purity. Additionally, the rich internal structure of molecules pro-
vides a host of transitions from microwave to ultraviolet wavelengths with differing sensitivity to
a number of fundamental constants. This range of spectra within a given species can be used to
compare molecular transition frequencies over galactic timescales with the goal of constraining the
time evolution of fundamental constants [21]. By using different molecular transitions as opposed
to different atomic species, one can minimize systematic errors common to space-based measure-
ments [22]. As described in the following sections, different groups have made use of cold polar

species for precision molecular spectroscopy in both beams and trapped samples.

1.1.2.1 Cold Beams

Using Stark decelerated OH molecules coupled to a microwave cavity, our group has im-
proved upon previous measurements of the main (AF = 0)) and satellite (AF = +1) ground-state
A-doublet transitions by an order-of-magnitude [21, 23, 24]. By combining these measurements
with those of large-redshift OH megamasers of similar precision, we will be able to restrict the frac-
tional variation of the fine structure constant, o, to 1075 over ~ 10'° years. Furthermore, we have
quantified the differential magnetic g-factor between the upper and lower A-doublet states [24]. The
100 mK temperature, low velocity, and high state purity of the Stark decelerated OH molecules
all contributed to these improved measurements of the A-doublet transitions. Through comparison
with our laboratory measurements, recent astrophysical OH spectra have hinted at possible tem-
poral variation of the fine structure constant over ~ 2.9 x 10? yrs [25]. Additional astrophysical

atomic spectra have suggested possible spatial variation of « [26].



With their internal electric fields as large as 100 GV /cm, heavy polar molecules can provide
enhanced sensitivity for fundamental symmetry tests like the search for an electron electric dipole
moment(eEDM) [27]. Two eEDM searches using beams of neutral polar molecules produced via
buffer gas cooling are currently underway. These experiments are separately probing metastable
PbO (a(1)3¥") [28] and ThO (H3A;) molecules [29]. Stark decelerators readily produce colder
molecular samples with larger state purity than buffer gas beams — generally at the expense of
molecular density. However, given the large masses and small rotational constants of candidate

eEDM molecules, thus far only one such Stark deceleration experiment has been proposed [30].

1.1.2.2 Trapped Molecules

By confining molecules in magnetic or electrostatic traps, one gains unprecedented interroga-
tion times of ~ 1 s with cold, state-selected molecular samples. The group of G. Meijer has directly
measured the 59 ms lifetime of vibrationally-excited (v = 1) OH molecules trapped within an elec-
trostatic quadrupole, thereby reducing the uncertainty of the Einstein A-coefficient to ~ 3% [31].
In a similar experiment, the same group directly measured the decay fluorescence from trapped
metastable CO molecules [32]. The group of J. Doyle has also performed direct vibrational lifetime
measurements on buffer gas cooled NH (337, v = 1) molecules confined within a magnetic trap [33].
These unique spectroscopy experiments with trapped cold molecules are likely just the beginning

for this relatively new research field.



Chapter 2

Molecular Spectroscopy

Molecules possess rich internal structure that spans the electromagnetic spectrum from mi-
crowave to ultraviolet. In contrast to atoms, the ~ 1A separation of constituent nuclei allows
for rotations and vibrations at energies far below those of electronic excitations. While this com-
plicated structure has precluded development of a general molecular laser cooling technique [34],
it makes molecules ideal candidates for certain precision measurement [29, 35, 36, 37|, quantum
information [38], and controlled collision experiments [17, 39, 40], as well as future experiments in
quantum many-body physics [16]. The goal of this chapter is to acquaint the reader with the basic

molecular theory necessary to perform experiments with polar symmetric top molecules.

2.1 Hund’s Coupling Cases

Before delving into full molecular Hamiltonians, it is useful to review the Hund’s cases (a)-
(e) that describe coupling of electronic and orbital angular momenta within diatomic molecules.
Although the five cases summarized here are idealizations, they provide a convenient starting point
for spectroscopy calculations. Generally, one will begin with a basis of angular momenta that is
nearly diagonal considering appropriate coupling constants for the molecule of interest. Of course,
upon diagonalization of their Hamiltonian, many molecules will be best described by intermediate

coupling cases. For the following overview, I define angular momentum vectors as shown below:



L, Orbital electronic angular momentum

A, Vector component of L along the internuclear axis

S, Total spin electronic angular momentum

3., Vector component of S along the internuclear axis

N, Nuclear rotational angular momentum

Ja, Vector sum of L, S in the absence of coupling to the internuclear axis

Q, Vector component of (L+S) along the internuclear axis

K, Vector sum of A, N

R, Total angular momentum excluding nuclear, electron spin (J - S = L 4+ N)
J, Total angular momentum excluding nuclear spin (L + N + S).

2.1.1 Case (a)

The first Hund’s case deals with molecular states possessing a large spin-orbit coupling as
well as strong electrostatic coupling of L to the internuclear axis as illustrated in Fig. 2.1a. The
large spin-orbit coefficient A ensures that S is also coupled to the internuclear axis. We may then
define the quantum numbers A and 3 as the projections of L and S along this axis, respectively.
These projections sum to form 2, which assumes all values |[A — X|, |[A — £| + 1,...|A + X|. The
total angular momentum J is defined as J = € + N and satisfies the condition J > €, which is
a direct result of 2 | N. The good quantum numbers are A, 3, Q, and J. As will be discussed
later, since 2, A, and ¥ may all take positive or negative values, these molecules possess so-called
A-doublets arising from a breaking of this projection degeneracy. Assuming a rigid rotor with
rotational constant B = h?/2ur?, where u is reduced mass and r is internuclear separation, the

rotational energy of a given quantum state in this basis is

(N?)
A2

E,.o =B = B[J(J+1) - Q7. (2.1)

Some good examples of Hund’s case (a) states are NO, C1O and BrO, all of which are 2II

molecules in their ground states satisfying A > B. Our cold molecule of choice, OH, deviates from



pure case (a) due to its small moment of inertia which yields A/B ~ —7.5. In this intermediate
regime, () strictly ceases to be a good quantum number due to a non-negligible mixing of different
Q) states possessing the same J. Generally speaking, case (a) molecules move closer to case (b) as

J increases.

2.1.2 Case (b)

When S is weakly coupled to the internuclear axis due to either weak or absent (A = 0)
spin-orbit mixing and A # 0 is strongly coupled to the axis, a state is classified as Hund’s case
(b). The simplest example of a case (b) molecule is one in a 2% state. Molecular states with 2IT
symmetry may also be included if J is sufficiently large. Returning to hydroxyl, the electronically
excited A2t state used for laser-induced fluorescence detection is case (b). The good quantum
numbers for this case are A, N, K, and J, where K = A + N as shown in Fig. 2.1b. Case (b)
molecules with A # 0 exhibit what can be considered a ‘true’ A-doubling arising exclusively from

a breaking of degeneracy between +A projections.

2.1.3 Case (c)

If the L - S term in the molecular Hamiltonian is sufficiently strong so as to overcome any
electrostatic coupling of L to the internuclear axis, then a state exhibits case (c¢) coupling. Heavy
diatomics such as AsF and SO (both 3%7) are best described as case (c), where A and ¥ are no
longer good quantum numbers but the projection Q = J, - R = (L+S)- R is still well-defined.
As with cases (a) and (b), these molecules can possess parity-doublets known as 2-doublets since
they originate from the different 2 projections along R. The good quantum numbers are Jg, €2,
and J. In fact, one may consider case (c) a more general form of (a) and (b) where A and ¥ are

not well-defined.
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Figure 2.1: Illustration of the five Hund’s Cases for angular momentum coupling in diatomic
molecules. (a) Both L and S are strongly coupled to the internuclear axis (L due to electrostatic
forces and S through the spin-orbit coupling), forming the quantum number Q = A + 3 along the
axis. (b) Spin S is weakly coupled to the axis due to small or absent (A = 0) spin-orbit mixing
but instead couples to the resultant K = A + N. (c) Neither L nor S are strongly coupled to the
internuclear axis, but these vectors add to form J, whose projection on the axis is given by Q. (d)
Orbital angular momentum L couples more strongly to nuclear rotation N than to the axis. (e)
The vector J,=L+S results from strong spin-orbit mixing and couples to N.
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2.14 Cases (d) and (e)

In this section, I combine the discussion of Hund’s cases (d) and (e) molecules due to both
their similarity and rarity. Both cases are characterized by a loss of A, ¥, and €2 as good quantum
numbers. Shown in Fig. 2.1d, case (d) molecules exhibit a strong L - N coupling term forming the
resultant R. Total angular momentum is then defined as J=R+S, and the good quantum numbers
are L, N, R, S, and J. Rydberg molecules, defined by their large principal quantum number,
possess very small valence-core interactions and may be considered case (d). If the spin-orbit term
in the Hamiltonian is large enough to render L and S undefined, we move to a final case (e) coupling
in which only J,, N, and J are well-defined. Molecules possessing case (e) states are rare, with the

only known example being the exotic vibrationally-excited HeKr™.

2.2 Spectra of Polar Symmetric Tops

Molecular rotations may be described by three moments of inertia (I.,I,,I.) about three
orthogonal principal axes (&, 7, 2). If two or more of these moments are identical (e.g. all diatomics
and molecules of the form XY3), the molecule is a symmetric top. If all three moments are identical
as in Cgg, a molecule is a spherical top. In this section, I will describe the structure of two symmetric
top molecules that we have used in cold collision experiments - namely OH and NDj3. These two
species provide a nice overview of molecular Hamiltonians since both require non-trivial calculations
to get an accurate view of their spectroscopy. For NDg, this is especially true in the case of three-
photon ionization which is commonly used for detection.

When a molecule’s electron distribution is asymmetric along a particular dimension, it pos-
sesses a permanent electric dipole moment and is dubbed ‘polar.” The simplest examples of polar
molecules are the heteronuclear diatomics (e.g. OH, HCI, SrO, etc.), wherein electrons are more
likely to be found near the most electronegative atom. The most common unit for molecular dipoles
is the Debye (D), where 1D = 0.39eag = 3.33 x 1073Cm (e is the electron charge and ap = 0.5A is

the Bohr radius). Perhaps a more familiar unit to physicists is the atomic unit eag, but the Debye
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was originally defined in cgs units as 10~ *®¥statC cm, or the dipole moment of two opposite charges
of 10~ 0statC = 3.3 x 1072°C at a separation of 1A. The actual expectation value of the dipole

moment is state-dependent and will be discussed later in the context of the molecular Stark effect.

2.2.1 Hydroxyl Radical (OH)

The hydroxyl radical is a unique molecule due to its combination of low mass and 2II ground
electronic structure. As described in the previous section, the molecule’s relatively large rotational
constant resulting from the small moment of inertia yields an intermediate coupling in the ground
state. While most closely resembling a Hund’s case (a) molecule, the 21, /2 ground state displays
non-negligible mixing with the spin-orbit split 2II; /2 state which makes the description more com-
plicated than for heavier 2IT molecules like CH. Furthermore, OH possesses a small (~1.7 GHz)
A-doublet splitting resulting from coupling of the angular momentum projection A with nuclear
rotation of excited electronic states.

We begin with the following effective Hamiltonian to describe the rotational, fine structure,

and A-doublet energies [41]:

Heff = ﬁrot""-ﬁfs'i_ﬁA (22)
where
Ho = = BR®> = B@J-S8)? = B(J?+S5-2]-9) (2.3)
Hp, = AL-S+9R-S = AL-S+7[J-S- 57 (2.4)
~ 1 . . 1 . )
Hy = —§q(J_% exp 29 472 exp??) + i(p +2)(J+ Sy exp~ 2 +J_S_exp??).  (2.5)

In the above Hamiltonian, A is the spin-orbit coupling, B is the rotational constant, and = is
the electron spin-rotation parameter. The values p and ¢ are the A-doubling parameters resulting
from interactions between (S, R) and (R, R), respectively. As a result, for singlet states only
the g parameter is non-zero while, for triplet states, there is an additional o parameter describing

the (S, S) interaction. Note that the A-doubling parameters p, g, 0 are set by these interactions
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across electronic states (e.g. I <+ ) and therefore depend on the shapes of the different electronic
potentials.

We will now define a parity basis in order to obtain eigenvalues of Eq. 2.2. For a ?II molecule,
this basis consists of the usual case (a) quantum numbers (A, X, Q = |Q|, J, M) with the added
parameter ¢ = +1 which will give the symmetry of each state. The overall parity of a state

|AXQJMje) is given by e(—1)7~1/2 and we define

(2.6)

~ M;Q,AY M;Q,—A—-X%
|JMJQ:|:>:(’J PALD) >+6‘J ALY >)

V2
Using the angular momentum operator identity A - B = A.B. — $(A;B_ + A_B.), where A, =
(Az +iAy) and A_ = (A, —iAy), we obtain the following 4 x 4 matrix using Eqgs. 2.2 and 2.6:

ail ai2 0 0

as1 ao9 0 0

(2.7)
0 0 asz as
0 0 as au
where
ann = ;AJrB[J(JJrl)—ﬂ
TR RReeIat)
2 = _;A+B[J(J+1)+z11]_’7—;(—1)J‘1/2(p+2q) <J+;>
az = ;A+B[J(J+1)—ﬂ
e | TN
Aaq = _%AJFB [J(J+1)+ﬂ —7+%(—1)‘]_1/2(p+2q) <J+;>. (2.8)

The above matrix represents a general result for 2II molecules. We can immediately see that the
off-diagonal elements aja = az; and a3y = a43 couple the Q = 1/2 and Q = 3/2 states, and
that this coupling increases with J in a given molecule. This leads to a transition from case (a)

to case (b) at large J. Also, the dependence of these terms on B tells us that light molecules
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Figure 2.2: Illustration of the rotational structure of the OH electronic and vibrational ground
state. The A-doublet splitting of each rotational level has been exaggerated for clarity. The (e,f)
quantum numbers represent the symmetry of the given A-doublet component, while the + denotes
the overall J-dependent parity of the state.



15
Table 2.1: OH Rotation and Fine-Structure Constants (obtained from Ref. [1])

Frequency [cm™!]

Parameter v=20 v=1 v =2 v=23
X211 B 18.5348734 17.8239122 17.1224586 16.4278912
A -139.050895 -139.320532 -139.5881 -139.8431
y -0.119190 -0.113753 -0.10831 -0.10249
P 0.235266041 0.22467831 0.21392702 0.202883
q -0.03869315652 -0.036939875 -0.035175264 -0.03338660
A2yt B 16.965060 16.129332 15.286447 14.42222
D 0.002063218 0.002045047 0.00204786 0.00206501
~y 0.22555 0.2161 0.2066 0.1975

will deviate from case (a) at lower J than their heavier counterparts. Specializing to OH, we
use the (v = 0) molecular constants of Table 2.1 to compute the ground rotational structure
shown in Fig. 2.2. All of the matrix elements and molecular constants of this section are based
on our initial choice of H,,; = BR? = B(J — S)2. Note that if a different choice is made (i.e.
H,,; = BN? = B(J — L — S)?), then the values of fitted molecular constants will change if A # 0.
Reference [42] gives the appropriate expressions for transforming spectroscopic constants between

these two regimes.

2.2.1.1 OH LIF Spectroscopy

Hydroxyl is readily detected using laser-induced fluorescence (LIF) at ultraviolet wavelengths

along the A221+/2

— X7, /2 electronic transition. To calculate the positions of the dipole-allowed
AR ={-2,-1,0,1,2} = {0, P, Q, R, S} lines satisfying AJ = 0, £1, we must consider the molec-

ular constants for the 2% F excited state, which is best described by Hund’s case (b). The vibration-

+

changing AQEl/Q

(v=1) + X*II3/5(v = 0) transitions are the most useful for fluorescence detection
since the excitation and decay wavelengths are well-separated, allowing for effective filtering of the

pump light. This separation arises from the large Franck-Condon overlap of Av = 0 transitions

relative to Av # 0, which forces spontaneous decay primarily along AQET/Q (v=1) = X%(v=1).
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Table 2.2: OH Vibration Constants (obtained from Ref. [2]). The constant T¢ is defined at the
energy minimum of the given electronic potential.

Frequency [cm™]
Te We WeTe

X211 0 3178.8 9291

A%yt 32684.1 3737.76 84.881

The relevant spectroscopic constants for the 2% state of OH are given in Table 2.1, while the case

(b) Hamiltonian for this excited state is

I:Ieff = I:Irot“‘I:Ifs
= BN? - D(N*? +yN-S (2.9)

whose eigenvalues are simply

[B—DN(N+1]N(N+1)+ 2 [J(J+1) = N(N+1) - S(S +1)]. (2.10)

N2

The diagonal nature of Eq. 2.9 makes inclusion of the additional centrifugal stretching term (D)
trivial. Since we are interested in transitions between different vibrational levels in the 2II and
23] electronic states, we must also consider the vibrational structure of each electronic state whose
energy is given by

1 1
Unip = we(v + 5) = wewe(v + 5)2 (2.11)

where v is the vibrational quantum number (v = 0,1,2,...) and we, wexe are the vibrational spec-
troscopic constants given in Table 2.2.

To fully describe OH dipole transitions, we must also define the spectroscopic number F,
which is (confusingly) distinct from the hyperfine quantum number F'. Levels are designated F = 1
by default, but the value F = 2 is used wherever there exists an angular momentum doublet, and
in such cases the lower-energy partner is given the value F = 1 while the higher-energy component

is labelled F = 2. This label is affixed to the spectroscopic terms {O, P, Q, R, S} as either F'F”
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Figure 2.3: Illustration of the dipole-allowed P1, Q21, and Q1 transitions for 2II3 /2 OH molecules
with corresponding measured LIF spectra of a supersonic beam. Generally, the Av = 1 transition
is used to allow filtering of the 282 nm excitation light from the 313 nm fluorescence photons.
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(F' # F") or just F' (F/ = F”), where prime and double-prime indicate upper and lower states,
respectively.

Combining Egs. 2.10 and 2.11 with the constants of Tables 2.1 and 2.2, one can calculate
line positions for all A2+ « X?2II electric dipole transitions* . Figure 2.3 illustrates the P1, Q21,
and Q1 transitions along A2XH (v = 1) + X2II; /2(v = 0) and shows corresponding experimental
spectra obtained from a supersonic beam of hydroxyl seeded in Kr. Even though the linewidth of
our pulsed LIF laser (~ 2 — 3 GHz) is larger than the 1.7 GHz ground A-doublet splitting, the
dipole parity selection rule causes the P and Q transitions to be split by 2B (~32 cm™!), leaving
the A-doublet completely resolved. This is a nice feature of ¥ < II transitions in molecules with
large rotational constants. As we will see, NDj3 also exhibits this feature of resolved parity-doublets
in its REMPI spectrum, albeit from a completely different coupling mechanism. To calculate the
relative strengths of these transitions, refer to Eq. 2.24 and replace the symmetric top quantum

number K with Q.

2.2.2 Ammonia (ND3)

Ammonia is arguably the prototypical polyatomic molecule. A symmetric top in its normal
(NH3) and fully-deuterated (ND3) forms, ammonia serves as a nice introduction to polyatomics and
concepts such as hindered motions, para/ortho symmetry, I-type doubling, and resonance-enhanced
multiphoton ionization (REMPI). Deuterated ammonia is ubiquitous in cold molecule experiments
due to its large static polarizability (see Section 2.3.1), low mass, and chemical stability in the gas
phase at standard temperature and pressure.

A full description of the group theory of polyatomic molecules is beyond the scope of this
section, but a detailed discussion can be found in Chapter 3 of Ref. [43]. The pyramidal structure
of ground-state (X L A7) ammonia gives it a Cs, point group symmetry, which means that it has

an axis with three-fold rotational symmetry. The v subscript indicates that it also possesses three

* Note that, for large J, one must add the centrifugal distortion term DR? = D(J — S)* to the ground state
rotational Hamiltonian of Eq. 2.3 and recalculate the matrix elements.
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vertical planes of symmetry passing through the vertical symmetry axis. The Mulliken symbol A
communicates that the ground state is singly degenerate and possesses Cs rotation symmetry, its
subscript tells us that the sign of the electronic wavefunction does not change upon reflection of
the molecule about its center, and the prime indicates an additional horizontal symmetry plane oy,.
As with diatomics, the leading superscript gives the overall electron spin multiplicity 2.5 + 1.

For diatomic molecules, the moment of inertia about the symmetry (z) axis is vanishingly
small. As a result, rotational excitations in this dimension are not observed. This leads to only one
rotational constant, B, which corresponds to the total rotational energy about the two remaining,
identical x- and y-axes. However, polyatomic molecules can possess bonds in directions other than
the z-axis, which necessitates consideration of the moment of inertia about this axis. Since we are
only considering symmetric tops here, the moments I, and I, are still identical and are denoted
Ip. The third moment, I, is denoted I in NDj since it is larger than I, = I,, (otherwise it would

be labeled I4). This leads to the following rotational Hamiltonian:

R h2 R h2 R h2 R
Hrot = 7J2+7J2+7J2

= BJ*+(C - B)J? (2.12)

whose eigenvalues are
Urot = BJ(J + 1)+ (C — B)K>. (2.13)
The projection quantum number K can take the usual values K = —J, ..., J and, in the absence of

interactions such as [-type doubling, +K values are degenerate. Adding the requisite centrifugal

stretching terms with associated constants D, D i, and Dk to Eq. 2.12, we obtain the eigenvalues
Urot = BJ(J 4+ 1)+ (C — BYK?> — D;J?(J +1)> = Dy J(J + 1)K? — D K*. (2.14)

The three identical deuterium nuclei in ND3 yield an additional symmetry which divides
rotational states into ortho and para categories according to their K projection. Since the D

nuclei are bosonic, the overall molecular wavefunction (including both spin and rotation) must be
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symmetric under exchange of deuterons. Therefore, we obtain two distinct “ladders” of rotational
states corresponding to ortho (K mod 3 = 0) and para (K mod 3 # 0) symmetry as shown in
Fig. 2.4. Interconversion between ortho/para states is heavily suppressed due to the extremely
weak interaction between nuclear spin and molecular rotation. Experimentally, it can be useful to
think of p-ND3 and 0-NDg3 as distinct molecules each with their own rotational structure. This
viewpoint is especially useful when fitting the rotational temperature of a supersonic beam of
ammonia, which will often possess two distinct ortho and pare rotational temperatures.

The pyramidal structure of the electronic ground state of ammonia allows for tunnelling of
the nitrogen atom through the plane of hydrogen/deuterium nuclei. This inversion occurs because
the Coulomb energy barrier corresponding to N lying in the H/D plane is finite. Despite the
large vibrational constant of the NH3 (NDj3) ground state measuring 950 cm~! (748 ecm™!) [2],
the central potential barrier of 2072 cm™! significantly “hinders” the motion of the vy = 0,1
(v2 = 0,1,2) states and produces closely-spaced levels of opposite parity. The quantum nature of
this tunnelling process is apparent in the isotope shift of the resulting inversion doublets, which
displays an exponential dependence of the inversion splitting on the molecular reduced mass. The

dependence of the inversion splitting on the rotational level is parametrized as [44]
AUjpy = v9 — vg [J(J + 1) — K?] — v, K? (2.15)

where vg = 0.7934 (0.05337) cm™!, v, = 5.05 x 1073 (2.39 x 107%) em~!, and v, = 1.998 x
1073 (9.61 x 107°) em ™! are the NH3 (ND3) inversion constants. Examining vy, we see that merely

increasing the reduced mass by a factor of 1.7 reduces the tunnelling rate by a factor of ~ 15.

2.2.2.1 ND3 241 REMPI Spectroscopy

We have thus far discussed one form of spectroscopic molecular detection in Section 2.2.1.1,
namely laser-induced fluorescence. Fluorescence detection can be quite sensitive (limited to >100
molecules) with the correct choice of excitation and fluorescence wavelengths in addition to good

stray light baffling. However, one can never detect 100% of the photons scattered into 47 sr. On
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the other hand, since ions can be very efficiently guided and detected, state-sensitive molecular
ionization serves as a useful alternative to fluorescence when the molecular structure allows for
accessible ionizing wavelengths, and the former is usually more sensitive.

Resonance-enhanced multiphoton ionization (REMPI) is commonly used for spectroscopy
and detection of neutral atomic and molecular species. By making use of a real (as opposed
to virtual) intermediate state, one can ionize the species of interest in multiple excitation steps.
This technique carries the advantage that by energetically separating ionization steps one can use
longer, more accessible wavelengths to ionize. Furthermore, the use of resonant excitation light
yields large enhancements in atomic/molecular absorption cross sections. When a multiphoton
transition is used for the intermediate step, different dipole selection rules apply and allow one to
probe transitions inaccessible by single photons. Generally, REMPI is characterized as p+ 1, where
p is the number of photons used to reach the intermediate state and a single photon ionizes. In
the case of ammonia, 2+1 REMPI is most commonly used [45, 46], but 341 spectra have been
observed [47]. It is worth noting that OH can be ionized by REMPI [48, 49], but the wavelengths
for even the 241 step lay below 250 nm.

One electronic intermediate employed in 2+1 REMPI of NDj is the B'E” Rydberg state.
In this case, the Mulliken symbol F denotes a doubly-degenerate symmetry class and the double-
prime indicates that the wavefunction is anti-symmetric with respect to a horizontal symmetry
plane. In short, the structure of B is planar, which has the immediate consequence of removing
the inversion doublets common to the pyramidal X state. Transitions between vibrational states
in the ground and intermediate levels are parametrized as 23;,, where the number 2 indicates that
the vibrations are of the vy 'umbrella’ mode. Figure 2.5 illustrates three of the allowed ionization
pathways (23, 25, 28) from an inversion doublet in the ground electronic and vibrational state.
Vibrational selection rules require that the upper and lower states have the same symmetry, which
means that closely-spaced inversion doublets in the ground state connect to alternating vibrational
levels in the intermediate B state. As with the aforementioned X < II transitions in hydroxyl, this

feature allows one to easily distinguish between electrically high- and low-field seeking states.
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Figure 2.5: Illustration of three intermediate two-photon transitions used in 2+1 REMPI spec-
troscopy of NDj3. Vibrational selection rules result from the different (alternating) symmetries of
the excited vibrational levels. The structure of NDg3 transitions from pyramidal to planar after the
two-photon excitation. The rotational structure is excluded for clarity.
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The Hamiltonian for the B'E" state of NDy is more complicated than that of the ground

state due to [-type doubling. The complete Hamiltonian is [46]
I;[ =T, +ﬁrot+ﬁVR (216)

where

A~

H,ot = BJ(J+1)+(C—B)K?>—-DyJ*(J+1)> = DyxJ(J+1)K* — DxK* (2.17)

. 1 a0 4 FUNEN
Hyp = —2CCIK +n;J(J+1DIK +ng K31 + 5q(LiJE + L2 J3). (2.18)

The spectroscopic term T, gives the location of each vy vibrational state, while the vibration-
rotation term Hy p breaks the degeneracy between +K projections with the vibrational angular
momentum projection . In the X state, [ = 0 since there is no vibrational angular momentum
along the molecular axis. However, the doubly-degenerate B state possesses [ = +1. Note that the
first three terms of Eq. 2.18 do not completely lift the degeneracy of K states — only the product
+ K1 are split. However, the last term of Hy p mixes | = +1 states and yields so-called “I-type
doubling” [44]. In spectroscopic fits of 210’/ transitions where v’ > 4, the parameters n; and ng of
Eq. 2.18 are constrained to zero due to their negligibly-small fitted values [50].

To find the eigenvalues of the above Hamiltonian, one can either build and numerically
diagonalize the full 2(2J + 1) x 2(2J 4 1) matrix for each J’ level in the excited state or only
diagonalize the necessary 2 x 2 matrices that include the two-state coupling terms IAEEJ?F The
latter method allows for more simplified, scalable code and will be described here as in Ref. [46].
Keeping in mind that the quantum number [ represents vibrational angular momentum about the

symmetry axis, we obtain

)l =—1) |JK+2)|l=-+1)

(J,K|(l = —1] Uy Lqf (2.19)

(J, K +2|(l = +1| 1qf U}
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where

Uy = T, +BJ(J+1)+(C—-BK?—-DsJ*(J+1)? = DyrJ(J +1)K?
—DgK*+20CK (2.20)
Uy = Ty+BJ(J+1)+(C—B)(K+2)*—DyJ*(J+1)?

—DyrJ(J +1)(K +2)? — Dg(K +2)* — 2C¢(K + 2) (2.21)

f = VIJJ+1)-KKE+D[JJ+1)— (K +1)(K +2)]. (2.22)

For completeness, the eigenvalues and normalized eigenvectors of the above 2 x 2 Hamiltonian are

(Uo + Ug) £ v/ (Us — Uo)? + ¢ f2
2
Sqf| . K)|l = —1) + (U* — Up)|J, K +2)|l = +1)

Joe v+ e

Ut =

) : (2.23)

In order to properly simulate a REMPI spectrum, one also needs the relevant transition
strengths for a given set of rotational 23:, transitions. In the special case of single-photon transitions,
these are known as the Honl-London factors S [51]. However, Dixon et al derive a compact form for
all k-photon transition strengths based on generalized spherical tensor transition matrix elements
(J,K'(Q), M'|TF|J", K"(Q"), M") that is better suited for numerical evaluation [52]. Quoting only
the result of their derivation, the transition strength (5) for a k-photon ro-vibrational transition is

given by

A/ ! " k 2 / " J! k J"
ST K K" kq) o Y (o] Ty Im) P (2" + 1)(2J" + 1) . (229)
q K’ —q —K"

The first term involving 77 and 7y reflects the vibrational transition strength and includes the

,U/

v manifold.

necessary Franck-Condon factor. This term can be ignored for transitions in a given 2
The J, K-dependent terms give the generalized Honl-London factors for a k-photon transition with
spherical tensor components ¢, where ¢ = —k,..,k. The M’, M" components of J’, J” have been

summed in the above expression since we are assuming there are no external fields. The symmetry

of the Wigner 3j-symbol of Eq. 2.24 immediately gives the k-photon selection rules. Specializing to
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2+1 REMPI of NDg, previous experiments have found that the transition is completely carried by

the Til tensor. This yields the following two-photon selection rules:
AJ=0,4+1,£2 AK =Al=q=+1. (2.25)

Equation 2.24 is sufficient to determine transition strengths at low J, but as l-uncoupling increases
it becomes necessary to transform to the basis given by Eq. 2.23. This new basis allows for
“Intensity mixing” between coupled |J', K')|l = —1) and |J/, K’ + 2)|l = +1) states. Using the
phase convention for reduced matrix elements of Ref. [52] wherein (B||T?||X) = —(B||T?,||X), we

obtain the transition matrix

(B,l=-1]| s(J,J" K K"k q) (2.26)

(B,l =+1| | =s(J", J",K', K"  k,—q)

where

! 14
' T K K" k Tk 27 + 1)(2J" + 1 ok 2.27
s(J',J' K K", ,q)mzwzl Flm) V(2 +1)(2J" +1) : (2.27)
q Kl _q _Kl/

Combining the phase convention of Eq. 2.26 with the eigenstates and eigenvalues of Eq. 2.23, we
can now accurately assign transition strengths to all 25:, lines in NH3 and ND3. Effective rotational

temperatures can be calculated by multiplying transition strengths by the Boltzmann factor
S]K(QJ// + 1) exp [—UJNK///I{:BTmt] (2.28)

where U g are the energies of the |J”, K) ground states, (2J” 4+ 1) is the degeneracy weight-
ing factor for each J” level, kg is Boltzmann’s constant, T}, is the effective temperature of the
rotational distribution, and Syx accounts for the degeneracy due to the three identical H (I = %)

or D (I = 1) nuclei in ammonia. The factor S;x for three identical bosonic nuclei is defined in
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Eq. 2.29 [44]. Note that, in the case of fermionic nuclei, one must flip the two K = 0 cases.

412 4+414+3 Kmod3=0, K#0

(214 3)(I+1) K =0, J even, lower inversion or J odd, upper inversion
SBose _ (229)
IK

212 — 1 K =0, J even, upper inversion or J odd, lower inversion

| 417 +41 K mod 3 # 0.

The effect of different rotational temperatures on the measured 28 NDj3 spectrum is illustrated in
Fig. 2.6, where each rotational transition has been given a Lorentzian FWHM linewidth of 0.3

cm~!. See Appendix A for a list of line positions and strengths of the 25 2+1 REMPI lines of NDj.
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Figure 2.6: Simulated 24+1 REMPI spectrum of 2§ rotational transitions in ND3. The simulated
rotational temperature is given for each plot. For consistency of presentation, a Lorentzian width of
0.3 cm ™! has been assumed for all spectral lines. Note that at high temperatures (= 100 K), Doppler
broadening necessitates application of a Voigt lineshape to correctly fit experimental spectra.
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2.3 External Fields

2.3.1 Stark Effect
2.3.1.1 Strong Electric Fields - Fine Structure

When considering external electric fields of 21 kV /cm, one can ignore the hyperfine structure
of polar molecules such as OH and NDj since J is decoupled from the nuclear spin I at these field

magnitudes. To calculate the molecular Stark effect in this regime, we first consider the Hamiltonian
Hsiori = —p- E (2.30)

where p is the permanent dipole moment vector and E is the external electric field. Using the
parity basis for a Hund’s case (a) or (c) molecule defined in the previous section and assuming that

E lies along the z-axis, we compute

_ - 1
(IMjQ¢| — p - E[JM;Q¢) = —§(<JMJQ| +e(JMy — Q|)uE cos (| M Q) + €'|JMy — Q)

1
= -3 [(JMQIuE cos 0|JM Q) + ee'(JM; — Q|uE cos 6| JMy — Q)]

_ pEMQ (1 —e€
J(J+1) 2

1— e
= —pesrE < 5 ) : (2.31)

To arrive at the final result of Eq. 2.31, one needs the so-called ‘direction-cosine matrix elements’
given in Ref. [44]. It is immediately clear that the external electric field couples states of opposite
parity (e # €') to generate a non-zero Stark shift. Furthermore, in the absence of an electric field
to couple these states, the expectation value of the dipole operator vanishes.

The above equation for a first-order Stark effect works well for symmetric top molecules
with extremely small parity-doublet splittings (A) such that A < pcrrE. However, we can better
approximate the Stark shift at intermediate field strengths if we fully diagonalize the above Hamil-

tonian in the parity basis. Including diagonal terms that represent the parity-doublet splitting, we
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Figure 2.7: Stark shifts in both the OH and ammonia (NH3/ND3) molecules. Coincidentally, OH
and NDj3 have nearly identical parity doublets and permanent dipole moments which gives them
similarly large static polarizabilities. Partly for this reason, many cold molecule experiments have

made use of these two species.
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have
A
N -5 HesrE
HStark = (232)
—Hefrl 2

whose eigenvalues are

A 2
Ultark = i\/<2) + (ke E). (2.33)

The normalized eigenstates of the above Hamiltonian are therefore

A + O 0
5+U ar | JMjQ+) — pere E|JM;Q—
[ty = (2 St k) . + effE| ) (2.34)
\/UStark(QUStark + A)

(% B USTtark) |‘]MJQ_> + ,U,effE|JM]Q+>
\/USTtark(2USTtark + A)

Note that as the electric field strength is increased, |[¢)*) transitions from a state of well-defined

™)

(2.35)

7=3 to a mixed parity state. When the Stark effect overcomes the parity-doublet

parity e(—1)
splitting (£ > A/2pcrs), the molecule enters the linear Stark shift regime and is often said to be
‘polarized.” When considering nonlinear symmetric top molecules such as NDj3, the above Stark
shift still applies, but you must replace the quantum number 2 with K, which represents the
projection of J along the molecular symmetry axis. The Stark shifts for ground state hydroxyl and
ammonia (NHg, NDj3) are shown in Fig. 2.7.

Equation 2.34 presents an opportunity to not only quantify state mixing due to an external
electric field, but to measure the value of such a field. In cases where the molecular sample resides in
a single parity state (e.g. Stark decelerated beams), one can directly measure the state-mixing ratio
between the upper (|[1)) and lower (|})) doublets as a function of electric field. Stark decelerated
and electrostatically-filtered beams are selected for weak-field seeking states. Therefore, we can

monitor the ratio of lower- to upper-doublet “population” as a measure of the local electric field.

From Eq. 2.34, we predict

P beg B
184 (8) + (s

(2.36)
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The graph of Fig. 2.8 compares the prediction of Eq. 2.36 (black line) with a measured population
ratio of guided, state-selected ND3 molecules (red point). We ionize NDj3 in the presence of a
calculable electric field and measure both lower- and upper-doublet populations of ground state
ND3. The excellent agreement between measurement and theory suggests that this technique can

be employed to measure large electric fields (2 1 kV/cm) in the molecule detection region.
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Figure 2.8: Theoretical (black line) and measured (red point) doublet population ratios as a function
of external electric field. For this measurement, we perform 2+1 REMPI of a state-selected beam of
NDj3 molecules while applying +950 V to one of the trap magnets in the ionization region. Following
Eq. 2.36, the ratio of lower- to upper-inversion doublet populations allows accurate characterization
of this applied electric field.
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2.3.1.2 Weak Electric Fields - Hyperfine Structure

For very weak electric fields (0.5 kV/cm for OH) acting on molecules with a net non-zero
nuclear spin, we must include the hyperfine structure to accurately calculate Stark shifts. When
forming the resultant F=J+I, we use Clebsch-Gordon coefficients to transform from the basis of
|J M ;Q€) states to states with quantum numbers F and Mp, where My is the projection of F on
the electric field axis. The transformation takes the form

|F Mpe) = Z | JM Qe | IMp){(JM ;I M;|FMg) (2.37)
My,M;

and, for a 2II molecule such as OH, yields the off-diagonal matrix elements [53]

N 1 1(_1)J+J+20+1 , ) _
(FMpe|Hspark|F'Mpe') = —pE ( el ; (=1)/ A =M=
x/(2F + 1)(2F" +1)(2J + 1)(2J' + 1)
J 1 J/ F/ ]_ F F F/ 1
X (2.38)
-Q 0 o ~Mp 0 Mp JJ 1

The expressions in parentheses and brackets are the Wigner 3j and 6j symbols, respectively. Given
the symmetry properties of the 3j symbols and the first term in Eq. 2.44, we see that states must
have the same Mp and Q projections and different parity to be coupled by the electric field. We
then combine the above expression with diagonal matrix elements that include the OH A-doublet
(Ap = 0.056 cm™!) and hyperfine (A = 0.0026 cm™ 1) splittings. Numerically diagonalizing the
resulting 16 x 16 matrix over a range of electric field magnitudes, we obtain the Stark shift curves
for the X2H3/2 ground state of OH shown in Fig. 2.9. As in the strong-field limit, only the parity
of the given state determines whether it is strong-field seeking or weak-field seeking, and +Mp
projections within a given F' state are degenerate. For reference, the 8 x 8 upper-right and lower-

left off-diagonal blocks in the basis {|FMpe) = |1 — 1+4), [10+), |[114), |2 — 24), |2 — 1+), |20+),



35

|21+>a |22+>7 |1 - 1_>7 ‘10_>7 ‘11_>a |2 - 2_>7 |2 - 1_>a |20_>7 |21_>a |22_>} are both

(2.39)

o -+ 0 0 0 0 0 0
3 3
o o0 =¥ o o o0 < o0
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)
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[a)
[a)
()
ot

2.3.2 Zeeman Effect
2.3.2.1 Strong Magnetic Fields - Fine Structure

As with the discussion of external electric fields, we may treat the molecular Zeeman shift in
two distinct cases — strong and weak fields. The primary difference between electric and magnetic
field effects is that the Zeeman shift respects parity. Otherwise, both fields couple states with the
same My, Mp projection quantum numbers. Defining the magnetic field (B) to be along the z-axis,

the molecular Zeeman Hamiltonian is

ﬁZeeman = _”"B

= uB(L—i—geS)'B

A A~

— upB (Lz n geSZ) (2.40)

where pp is the Bohr magneton, g, is the electron gyromagnetic ratio (ge = 2 + o/ + ... ~2.002),
and L., S, are the usual electronic angular momentum operators. Using the same parity basis as

before, we arrive at the following for the case Q = [A| + |2

_ uBB(A+ g.X)QM;
- J(J +1)

(JMJQG’ﬁZeeman’JMJQ€,> (566/ (241)
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Figure 2.9: Stark shift of the Il /2 ground state of OH in the hyperfine basis. The two A-doublet
states repel as the field is increased, creating strong- and weak-field seeking molecules. For electric
fields above ~1 kV /cm, the structure approaches the strong-field limit of Fig. 2.7.
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and for Q = |A| — |X], we get

_ peB(A — g X)QMy

TIM Q| H 7eeman| T M Qe
(T M2l Hzeemanl M2} J(J+1)

Oee! » (2.42)

The Kronecker deltas of Eqgs. 2.41 and 2.42 result from the fact that eigenstates of H Zeeman MUt
have well-defined parity. Excluding excited rotational levels, Hyeeman is clearly diagonal in the
|JM Qe) basis. The strong-field Zeeman shift for the ground (*II3/5) state of OH is shown in
Fig. 2.10. Note that for states where A = 2% and Q = |A — X| (e.g. 2H1/2, 3A1), the magnetic
dipole does not completely cancel but reduces to ~ aup/m ~ 0.002up5.

A special discussion is in order for the magnetic field shifts of vibrational (v2) states within
the excited BE” state of NDj3. Rotational levels within this manifold exhibit a linear Zeeman effect
even in the absence of a net electron spin. This Zeeman shift results from the vibrational angular
momentum [ = 1 which effectively takes the place of A in Eq. 2.42. The resulting expression for

large magnetic-field shifts in these levels is [54]

N IKMjy
JM KU Hzeoeman| I MKl = B——— 2.43
(JM;KIl|Hy |JMyKl) = gruB T+ 1) (2.43)

where the g-factor for vibrational angular momentum, g;,, is vibrational-state dependent and gen-

erally deviates from unity. For our intermediate REMPI state of interest (vy = 5), g1, = 0.738.

2.3.2.2 Weak Magnetic Fields - Hyperfine Structure

For magnetic fields inducing a Zeeman shift smaller than a molecule’s hyperfine splitting
(B S A/~ 50 G for OH), it is important to include the hyperfine structure to get accurate
line shifts. Using the Clebsch-Gordon transformation of Eq. 2.37, we obtain the following matrix

elements including the coupling between different F-sublevels:

FMwel H FIMLeY — B(A 5 1+€€/(_1)J+J,+QQ _ 1)/ A FHF - Mp—Q+1
< FE‘ Zeeman‘ F€> = UB ( + ge ) 2 ( )

x/(2F +1)(2F" +1)(2J + 1)(2J' + 1)

J 1J F' 1 F F F' 1
X . (2.44)
-Q 0 o -Mp 0 Mp J o J 1
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Figure 2.10: Zeeman shift of the 2Tl /2 ground state of OH. Since the Zeeman Hamiltonian only
couples states of like parity, the two A-doublet levels of OH show exactly the same field dependence.
Also, the lack of coupling between e and f states causes only diabatic level crossings.
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Note that the Wigner 3j- and 6j-symbols show exactly the same couplings as in the Stark shift
expression, with the only substantive difference between the two cases being the parity-coupling
term of the first line. Specializing once again to the case of OH (%Il /2), we need only diagonalize
two distinct 8 x 8 Hamiltonians given by Eq. 2.44 multiplied by an extra prefactor of —pugB(A+g.%)

and added to the diagonal zero-field A-doublet and hyperfine energies given by:

+4 0 0 0 0 0 0 0
0 +5 0 0 0 0 0 0
0 0 +4 0 0 0 0 0
0 0 0 5+ Ay 0 0 0 0
0 0 0 0 £ + Apy 0 0 0
0o 0 0 0 0 £8A + Apy 0 0
0o 0 0 0 0 0 £ + Apy 0
0 0 0 0 0 0 0 £8A + Apy

(2.45)
The result of this calculation is shown in Fig. 2.11. In the absence of differential g-factors between

the two A-doublet levels, the e and f state Zeeman shifts are identical.

2.3.3 Combined Electric, Magnetic Fields

All of our magnetic trapping experiments have allowed for manipulation of OH within com-
bined electric and magnetic fields. As such, we have observed interesting trap dynamics arising
from these crossed E- and B-fields [55]. Experimental trapping results will be discussed in a later
section, but we summarize here the mathematical formalism for treating a Hund’s case (a) molecule
in combined fields [56]. This example is interesting because of the strong coupling of L and S to
the internuclear axis, which causes the axis to follow magnetic as well as electric field lines. In the
same sense, the electron spin projection is influenced by external electric fields. It should be noted
that one still needs an electric field to polarize a case (a) molecule since a lone magnetic field will

not couple opposite-parity states, and will therefore still leave a vanishing expectation value for the
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Figure 2.11: Zeeman shift of 211, /2 OH molecules in the hyperfine basis. Both A-doublet states
show the same effect since the magnetic field does not induce an interaction between e and f.
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dipole moment.

Beginning with the combined-field Hamiltonian, we get the expected
Hpp=—p, B—py B (2.46)

where p, and p;, are the electric and magnetic dipoles, respectively. Without loss of generality, we
let B lie along the z-axis and define 8 as the angle between E and B. Ignoring hyperfine structure

for simplicity, we obtain the following matrix elements for the I, /2 ground state of OH:

_% — gMBB 0 0 0 %uECOSﬁ —?uEsin,@ 0 0
0 ~2 2,8 0 0 ~BuEsinf  luEcosf  —2uEsing 0

0 0 _%4_ %HBB 0 0 —%,LLESiIlB —%,u,Ecosﬂ —?;J,Esinﬂ

0 0 0 —%+ g/iBB 0 0 —?uEsinB —%chosﬁ
%,chosB fé,uEsinﬁ 0 0 % — g,uBB 0 0 0
7§uEsin,B 1pEcos B —2pEsin B 0 0 % — 2upB 0 0
0 —%uEsin,B —%MECOS,B —@uEsinb’ 0 0 % +%MBB 0

0 0 —?uEsinB —gchosB 0 0 0 %4— gMBB

(2.47)

The above matrix elements were calculated using the general spherical tensor expressions for Stark
and Zeeman shifts in the fine-structure parity basis of Eq. 2.6. The relevant expressions can be

found in Appendix A of Ref. [56]. The spherical tensor components of a vector V = (V,,V,,,V,) are

1 1 .
Vip = ———(V,+iV,) = —|V]sin et 2.48
+1 ﬂ( ) F \/QI | (2.48)

VWw = V. = |V]cosé. (2.49)

Figure 2.12 displays the OH level shifts in the presence of both E- and B-fields. The “fully-
stretched” states corresponding to |JQM je) = |%, %, +%,f>, |%, %, —%,e} remain the highest- and
lowest-energy states, respectively, in combined fields. However, all other projections exhibit level

crossings at intermediate field values.
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2.3.4 Diabatic vs. Adiabatic Level Crossings in Combined Fields

Interestingly, the curves of Fig. 2.12 show avoided crossings whose energy gaps depend on
relative field angle, 8, and electric field magnitude. In principle, if OH molecules are trapped
within a magnetic quadrupole in the presence of an electric field, My projections different from the
stretched |2, 5 —|—2 , f) and 2, 55 —%, e) states will traverse these avoided crossings many times over
a typical trap lifetime (~1 s). In the case of the experimentally-interesting \2, 5 —1—2, e) state, one
would prefer purely diabatic level crossings as shown in Fig. 2.13a to ensure an identical magnetic
trapping potential to the stretched |%, %, —|—%, f) state. If the crossings are traversed adiabatically
(Fig. 2.13b), the overall trap depth is reduced and, at low magnetic fields, removed altogether.

To estimate the adiabatic (P,q) and diabatic (Pg,) transition probabilities for a given molecule

velocity (v) and magnetic field gradient (dB/dx), we use the Landau-Zener probability [57]:

Pad = 1_f)dia

= 1l—exp 27T V12 >

dU/dt

:q

= 1—exp
5,uB (dB/dx)v

212 (52
T p E*sin® B
= 1- ——— . .

exp( 5huB(dB/d1:)v) (2:50)

— 1—ex (2 — 1Esin ) >
- P dU/dB)(dB/dx)(dx/dt)
( 27r ,uEsmﬂ) )

For a magnetic trap gradient of ~ 1 T/cm and OH velocity of 5 m/s, we obtain the adiabatic
transition probability curves of Fig. 2.13c. As either the angle between E and B or the electric
field magnitude is increased, P,4 increases dramatically. This result suggests that trap loss due to
adiabatic level crossings will be a serious problem for OH in magnetic quadrupole traps within a
homogeneous E-field. The rather stringent requirement that |E| < 10 V/cm places severe restric-
tions on tolerable stray FE-fields in the trap region. Working in our group, Benjamin Stuhl and

Mark Yeo have recently observed preliminary evidence of this trap loss mechanism.



44

0.30.,.,.,.,.,.,.,.bo.so_.......,.,.,.,
d 025 Diabatic Curves ] 025 - Adiabatic Curves
020 [ ] 020 [
0.5 | 0.5 |
010 010 [
”‘g 005 | “‘g 00s [
= 0.00 = 0.00
::B -0.05 :’;B -0.05
5 010 I 5 o0
0.15 -0.15
020 [ 020 [
025 | 025 [
20.30 I T T T T S T 2030 N T T T -
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Magnetic Field [Gauss] Magnetic Field [Gauss]

Adiabatic Transition Probability

Electric Field [V/cm]

Figure 2.13: (a) Diabatic levels for ground state OH molecules. Upper-doublet (black) and lower-
doublet (red) levels are completely uncoupled in this picture. (b) Color-coded adiabatic levels
resulting from coupling between e and f parity states due to an external electric field. (c¢) Adiabatic
transition probability (P,q) for OH molecules within combined magnetic and electric fields. The
probabilities shown are for coupling between the ]%, %, —1—%, e) and \%, %, —1—%, f) states as a function
of electric field and field angle 8. Note that extremely small electric field magnitudes (< 10 V/cm)
are sufficient to induce adiabatic transitions in this system.



Chapter 3

Production of Cold Molecular Samples

Accurate assignment of quantum numbers and fitting of spectroscopic constants to a room-
temperature molecular gas are very difficult tasks. Most molecules possess rotational constants
that are below 100 K, which leads to a wide distribution of population across different angular
momentum and vibrational states at room temperature. Furthermore, Doppler broadening at 300
K gives inhomogeneous linewidths of ~ 10 GHz that can blend nearby rotational transitions in
heavy molecules. In the context of molecular collision physics, cold samples of molecules promise
a host of exciting novel collision dynamics including but not limited to external-field control of
elastic/inelastic collisions and chemistry. Cooling molecular samples from 300 K to ~10 K will
alleviate the above spectroscopy issues and allow for further cooling to these collisionally-interesting
temperature regimes, but begs the question “How can one produce gaseous molecular samples at
temperatures far below their freezing point?”

Two primary molecular cooling methods — supersonic expansion and buffer gas cooling —
have been developed to answer the fundamental question posed above. Both methods are rather
simple in principle compared with atomic cooling techniques such as Doppler laser cooling, but the
practical implementation of these cold molecule sources is anything but trivial. In this chapter, the
theory behind these two production techniques will be presented along with experimental results

and common pitfalls.
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3.1 Supersonic Molecular Beams

3.1.1 Theory of Supersonic Expansions

A supersonic beam apparatus generally consists of a gas reservoir at temperature 7y and
pressure Py as well as an exit nozzle admitting this gas into a vacuum chamber at background
pressure P,. For molecular beams, the reservoir contains some dilute mixture of the molecule of
interest within a noble gas carrier (commonly He, Ne, Ar, Kr, Xe, or some mixture of these). The
use of a noble carrier gas insures minimum cluster formation and chemistry during the supersonic
expansion, although the increased polarizability of the heavier species can lead to clustering (see
Section 3.1.2). Pulsed beams include some valve actuation mechanism for both control of the
temporal beam extent and limitation of overall gas load in the vacuum chamber. Furthermore, a
molecular skimmer placed downstream from the valve orifice is commonly employed to separate the
cold core of the molecular beam from the warmer gas envelope. The small diameter of the skim-
mer (usually ~1 mm) also allows for large differential pressures between the supersonic expansion
chamber and subsequent vacuum sections, which is critical for crossed-beam collisions and trapping
experiments. A representative sketch of a supersonic beam assembly is shown in Fig. 3.1.

The thermodynamics of a supersonic expansion can be quite complicated. Especially in the
case of a pulsed molecular beam, large swings in vacuum pressure throughout the valve pulse and
subsequent gas expansion render simple analytical estimates of beam parameters such as terminal
velocity (Voo), ratio of beam speed to longitudinal velocity width (.5), and rotational temperature
(Tyot) imprecise. However, the expressions for an ideal, continuous isentropic expansion give a nice
starting point for predicting the behavior of pulsed beams and will be discussed here.

As a gas mixture expands into vacuum, the pressure difference Py — P, across the exit nozzle
accelerates the particles and converts the enthalpy of the reservoir gas into forward velocity. En-
thalpy per unit mass (h) is the most valid quantity for an isentropic expansion since the pressure
differential does work on the molecules, thereby modifying the internal energy of the expanding

particles. If the ratio of stagnation pressure to background pressure (Py/P,) exceeds the value
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(v + 1)/2]7/0=1Y, the velocity of the exiting beam will exceed the speed of sound and undergo
further expansion within the vacuum region. The constant v is the ratio of specific heats for the
gas in question (v = 5/3 for an ideal monatomic gas) [58]. Denoting the initial and final enthalpy

of the gas as hg and hy, respectively, and defining the final beam velocity as v, we obtain

1
ho = hy + §v2. (3.1)

Assuming that the specific heat at constant pressure, C),, does not change throughout the expansion

(this assumption is species-dependent), we may express the final velocity as

To 2
v2=2(hy—ho) =2 | Cpdl = % <7> (Ty - T). (3.2)

T v—1

In most instances, we make the approximation that (7p/7") = oo and arrive at

One can see immediately from Eq. 3.3 that the experimentalist has two major adjustable

parameters with which to tune the final velocity of a supersonic molecular beam — the mass (m)
and temperature (7p) of the noble carrier gas. The predicted velocities for different carrier gas
species are given in the plot of Fig. 3.1. It is often desirable to produce beams at velocities between
those shown in Fig. 3.1. In these instances, one can either change the temperature of the gas
reservoir or mix different carrier gas species to obtain an effective mass (m) given by m =), w;m;
where w; is the fraction of carrier-gas atoms of mass m;.

Another important parameter of the supersonic beam is the speed ratio 5. This gives the
longitudinal velocity width relative to the mean speed of the beam (S| = voo/Av)). When coupling
a supersonic beam to a Stark decelerator with finite longitudinal velocity acceptance, one would
like S| to be as large as possible. Perhaps the most useful prediction for the parallel speed ratio is
the empirical expression [59]

S| ~ 5.4(Pod|[torr - cm])%-32, (3.4)

where d is the diameter of the valve exit nozzle. At typical values of Py ~ 1000 torr and d ~ 0.1

cm, this expression predicts a 4% beam spread, which corresponds to a velocity width as small as
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Figure 3.1: (Top) Illustration of a typical supersonic beam assembly featuring a gas reservoir at
pressure and temperature Py and Tp, respectively and supersonic nozzle admitting the gas into a
vacuum chamber at background pressure P,. The skimmer is shown at right. (Bottom) Plot of
predicted beam velocities for different noble carrier gases initially at room temperature.
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13 m/s for an ideal Xe beam at Ty = 300 K. Accurate prediction of the perpendicular temperature
of a supersonic beam is much more difficult than for S [58]. However, we have found that for a
beam of OH molecules seeded in either Kr or Xe, T ~ T /2 where T} o Avﬁ.
Proper placement of the skimmer is critical to maximizing beam flux to subsequent experi-

mental apparatus. Since a supersonic beam by definition possesses a mach number M larger than 1,

shock waves form in the envelope of the expansion and re-collide with the beam itself at a distance

2 [P
L=Z2dy/= .
3V p (3:5)

The distance L defines the downstream location of the so-called “Mach disk,” and the ideal valve-

L of

to-skimmer distance (VSD) is generally well below this upper limit. However, for pulsed sources,
the pressure ratio of Eq. 3.5 can easily exceed 107, yielding a mach disk location > 4 m downstream
of a 1 mm nozzle! As one can imagine, other effects can become important at distances far below
a meter. One such consideration is the transverse diameter of the expansion vacuum chamber. In
small chambers, the carrier gas can reflect from the outer wall and collide with the supersonic beam
before it has been extracted by the skimmer. In a small 11 cm-diameter source chamber, we have
observed that skimmer throughput drops significantly for VSD > 6 cm. By moving the source to
a much larger chamber with a diameter of 61 cm, we find optimal VSDs of 10 — 12 cm. In both
cases, skimmer throughput decreases monotonically as the VSD is decreased below 5 cm. This is
likely due to gas scattering from the skimmer assembly itself, as we have seen improvements of
~ 30% in throughput by cooling the skimmer below the freezing point of the carrier gas (Xe in this
case). Nevertheless, the absolute beam density remains largest at the aforementioned higher values
of VSD.

Finally, it is important to characterize the rotational temperature (7,.,;) of a supersonic
molecular beam. It generally takes only 10-100 collisions to fully thermalize T;,¢ to T, but the
degree of rotational thermalization can vary depending on factors such as the carrier gas used

(clustering), the rotational structure of the molecule, or whether additional heating mechanisms
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(e.g. OH discharge sources) are necessary for beam production. For molecules with small rotational
constants (hB/kp < T)), the spectroscopically-detected rotational populations may be fit to a

Boltzmann distribution given by

Aj o Si(2J; + 1) exp <k_TU > (3.6)
BLrot

where A; is the measured signal from state i, S; is the strength of the transition probed to detect
the given state, J; is the total angular momentum of state ¢, kp is Boltzmann’s constant, and the
last term is the usual Boltzmann factor for level ¢ of energy U;. When the rotational constant is
large compared to T, little or no population can be detected in higher-lying rotational states and a
two-state temperature considering just the ground and first excited level is often quoted. This same
technique is generally used for vibrational temperatures, T,;,. Denoting the ground and excited

levels as + = 0 and ¢ = 1, respectively, we obtain

Tr‘ot =

AU (Ao Sy (241 + 1)>‘1 (3.7)

kg Ay Sp (20 +1)
where AU = (U; — Uyp).

When molecules possess identical nuclei that divide rotational states into ortho and para
levels due to a restriction on the overall exchange symmetry, as is the case with homonuclear
diatomics and ammonia, it is often necessary to fit different temperatures to the distinct rotational
ladders. This phenomenon results from the small coupling between nuclear spin and molecular

rotation that impedes collisional transfer between ortho/para levels [60].

3.1.2 Clustering of Carrier Gases

In the quest for slow supersonic beams with ever-narrower velocity distributions, it is tempting
to take Eq. 3.4 at face value and use the highest stagnation pressure and largest nozzle diameter
possible with a high-mass (e.g. Kr or Xe) carrier. Unfortunately, the heavier noble gases also
possess larger polarizabilities. The result is a species-dependent rate of cluster formation that

scales roughly as (Pyd)/T¢. Gas clustering has two primary negative effects: higher molecular
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Table 3.1: Values of the clustering constant k for a range of atoms and molecules (obtained from
Ref. [3]).

Gas k Gas k

He 3.85 | Hs 184
Ne 185 Dy 181
Ar 1650 | Nsy 528
Kr 2890 | Oy 1400
Xe 5500 | COo 3660
CH; 2360

rotational temperatures due to inefficient cooling in cluster-molecule collisions and larger beam
velocities/widths from gas heating. Smith et al. fit an empirical functional form to quantify the

onset of clustering, which is determined by the Hagena parameter (I'*) given by [3]

(d[um]/ tan a)*®
TO [K]2'29

=k Py[mbar] (3.8)

where k is a species-dependent constant and « is the opening half-angle of the valve nozzle. To
insure that clustering does not occur, it is best to operate the expansion with I'* < 100. The
average cluster size for larger values of I'* is then oc (I'*)?972:5, Values of k for both atomic and
molecular species are given in Table 3.1. To give a sense of scale, our pulsed valve assembly for
OH molecules features a 1000 pm-diameter nozzle with a 20° half-angle and a carrier gas of Kr
at 295 K and 2100 mbar. Applying Eq. 3.8 gives I'* ~ 2000, which suggests that some amount of
clustering is unavoidable for noble gases heavier than Ne at standard stagnation temperatures and
pressures.

Interestingly, Christen et al. have recently demonstrated that pure beams of CO and COq
formed from stagnation temperatures and pressures above their respective critical points show less
cluster formation than seeded beams [61]. In fact, they find that the pure supercritical molecular
beams have speed ratios exceeding 100. They attribute this affect to an enhanced value of v near
the critical point. Given the thermodynamic nature of clustering, it is not altogether surprising
that moving beyond the critical point in the phase diagram (and hence avoiding phase transitions)

would make cluster formation less energetically favorable. However, given the extremely large
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critical points of many chemically-interesting molecules, this trick is not universally applicable.
Nonetheless, certain crossed beam experiments might benefit greatly from the enhanced density

that a pure supercritical molecular beam can provide.

3.1.3 Pulsed Supersonic Valves

Throughout the experimental history of pulsed supersonic beams, many different valve actua-
tors have been developed and tested [58]. Given the countless number of articles on new valves and
modifications to existing valves (see Review of Scientific Instruments), we restrict the discussion of
this section to three specific valve designs that have been used in our OH supersonic beam experi-
ments. Some pros and cons of each design are presented along with experimental data specific to

OH production.

3.1.3.1 Current Loop Valve

The current loop valve (CLV) described here is a commercial unit (Jordan TOF Products,
Inc. Model C-211) that uses very large currents (~ 4000 A — 5000 A) passed between two parallel
conducting strips to open the valve nozzle. The CLV is capable of rather short gas pulses (<
100us) at repetition rates of up to 10 Hz. We have found the current loop valve to be extremely
stable over long durations, and this stability is reflected both in the shot-to-shot and week-to-week
measured molecular pulse densities. As such, we often use this system to debug new molecular
beam experiments (e.g. new Stark decelerators or magnetic traps). However, there are two major
drawbacks to this design as a pulsed beam source for cold, high-density molecular beam experiments:
low overall output flux compared with other valve designs and time-dependent beam heating.
Despite the manufacturer’s claims that choke flow is obtained within the 60 us gas pulse, we see as
much as a 50% reduction in OH production with this valve compared with the solenoid and piezo
valves. Furthermore, as described in Ref. [62], we see that the high currents within the actuator
mechanism heat the leading edge of the gas pulse and produce faster/hotter molecular beams.

We employed this valve for both precision measurements of the OH A-doublet splitting [21, 24]
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as well as the first Stark deceleration of formaldehyde (CH20) [63]. However, the lower densi-
ties produced by the CLV were not suitable for subsequent magnetic trapping or collision experi-

ments [64, 40, 18].

3.1.3.2 Solenoid Valve

The solenoid valve (General Valve Series 9 or 99) is arguably the workhorse of pulsed beam
experiments. Consisting of a stainless steel body surrounded by a solenoid wire wrap, this valve may
be used with a large variety of corrosive substances with little or no adverse affects. The actuator
mechanism consists of a PTFE-coated ferromagnetic armature within the stainless housing onto
which is attached a (usually plastic) poppet that seals against the valve orifice. Since the drive
current is well-isolated from the inner valve chamber, we observe no time-dependent heating effects
with the solenoid valve (SV). Another feature unique to the SV Series 99 is its ability to operate
at both cryogenic [65] and elevated [66] temperatures. In stock form, this valve produces gas
pulses no shorter than ~ 200 us due largely to its reliance on spring tension to close the armature.
Furthermore, we often observe an initial “bounce” in the gas pulse within 100 us of the initial
voltage trigger wherein the gas density is momentarily reduced. At the end of the pulse, a closing
“bounce” signified by a two-pulse structure can also be observed. Benjamin Stuhl, a graduate
student in our group, has found that this trailing “bounce” can be removed by applying a second
260 V (200 ps) pulse to the solenoid 120 us after the initial 400 us opening pulse.

One fundamental problem with the long-term stability of the general valve is the plastic
poppet tip that seals the nozzle. Since this tip seals against a stainless steel orifice, it necessarily
deforms with each closing strike. Over time, the behavior of the valve (pulse width, output gas
flux) will change unpredictably and necessitate removal and replacement of the poppet. For Stark
deceleration and trapping experiments, these vacuum breaks can cost the experiment days or weeks.
As a result of this long-term instability, we do not use the SV for our primary OH source. It is
worth noting that other Stark deceleration groups, specifically the group of G. Meijer at the Max

Planck Institute, use a modified general valve for many of their beam experiments [67].
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Figure 3.2: Drawing of the PZT valve assembly showing the adjustable poppet, disk piezo translator,
and valve housing. The Kr/H20 bubbler system for production of OH via pulsed electric discharge
is also shown. (Inset) Measurement of the high voltage pulse applied to the PZT. It is critical that
the RC time constant of the voltage pulse be = 40 us to avoid cracking the piezoelectric crystal.
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3.1.3.3 Piezoelectric Transducer (PZT) Valve

As a compromise between the long-term operational stability of the CLV and the high output
flux of the SV, we make use of a modified version of a piezoelectric transducer (PZT) valve originally
developed by Proch and Trickl [68]. A drawing of our valve design is given in Fig. 3.2 showing
our piezo disk actuator (Polytec PI 286.23) and stainless steel poppet sealing against an o-ring at
the nozzle orifice. Proch and Trickl’s primary improvement over the existing PZT valves was to
implement a disk piezo actuator with a tenfold increase in excursion of ~ 100 pym. This allows
for choke flow conditions and pulse widths as short as 150 us. The use of a viton o-ring to seal
the exit nozzle removes the issue of poppet wear associated with the solenoid valves, while the
capacitive load of the PZT minimizes heating of the supersonic beam. To allow fine-tuning of the
valve opening dynamics in situ, we have added a rod that inserts into the back of the steel poppet
and adjusts its tension against the exit orifice (see Fig. 3.2).

When operating the PZT valve, it is critical that the piezo crystal is not exposed to corrosive
substances or temperatures outside of the range 230 K - 350 K, otherwise it will crack and fail to
open consistently. Furthermore, the output impedance of the voltage drive circuit must be large
enough that the 65 nF piezo does not crack due to stress. We find that an RC time constant of
~ 40 ps and drive voltages below -600 V are sufficient to keep the valve running stably for months
at a time. The actual shape of the applied drive pulse is plotted in the inset of Fig. 3.2 along with

the corresponding 60 us square-wave trigger.

3.1.4 Production of OH Supersonic Beams

It can be said that supersonic beam sources have a “personality” due to their sensitive de-
pendence on many different experimental conditions. Optimizing a pulsed valve assembly involves
tuning a large number of parameters that often interact with one another (e.g. valve pulse volt-
age/width and poppet backing tension). In the case of radical sources, the addition of a production

method just before the supersonic expansion further complicates beam optimization and can dras-
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tically modify beam parameters from the predicted values of Section 3.1.1. In this section, two OH

beam production methods will be discussed and beam data from both will be compared.

3.1.4.1 Pulsed Electric Discharge of HoO

The pulsed electric discharge of HoO is currently our OH production method of choice due
to its stability, longevity, and ease of operation. An illustration of the discharge “stack” mounted
to our PZT valve nozzle is provided in the upper left of Fig. 3.4. The stack consists of alternating
plates of ceramic insulator (Macor) and highly-polished stainless steel. After the valve is opened,
we apply a voltage of ~ —1 kV to the outer steel plate to strike a ~ 10 us discharge within the
exiting mixture of Kr and HoO vapor. Triggering the discharge voltage ensures that we create
OH at the densest point within the gas pulse and avoid unnecessary heating from continuous
operation. Furthermore, we are able to run at rather low discharge voltages by seeding the process
with positive ions from a nearby ionizing pressure gauge [62]. This results in a colder, slower OH
beam. We deduce that positive ions are responsible for this enhanced discharge efficiency since
changing the polarity of the outer discharge plate and/or turning off the ionization gauge leave a
very unstable discharge. Overall, we are able to reduce the necessary discharge voltage by a factor
of 4-5 by seeding in this manner, thereby obtaining a colder, brighter OH pulse than is attained
with unseeded continuous discharges. We measure beam densities of ~ 107 — 10! em™3 in the
source chamber with this production technique. The 40° opening angle of the nozzle beyond the
discharge region has been shown to give an order-of-magnitude increase in beam flux due to beam
collimation [69]. It is possible that our required VSD of 10 cm results from this enhanced density
of the carrier gas, which can lead to “skimmer clogging” and reduced throughput.

Since our OH beam must travel a total of 15 cm to the Stark decelerator, we are also able to
implement a multi-pulse discharge to increase beam flux within the longitudinal velocity acceptance
of our deceleration sequence. To accomplish this, we break up the discharge over three short 6 us
pulses each separated by 3 ps. The three distinct OH pulses spatially combine over the long flight

path to the Stark decelerator and yield a > 50% enhancement in beam density with a mere 8%
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Figure 3.3: Comparison of a single-pulse electric discharge to a multi-pulse discharge of roughly
the same duration. The three separate OH pulses spatially combine in free-flight to the detection
region and yield > 50% improvement in beam density. The above data was taken 1 m downstream
from the supersonic valve.
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increase in Tj. This result is displayed in the plot of Fig. 3.3.

3.1.4.2 Photolysis of HNOj;

One alternative to the comparatively violent electric discharge is a photolysis source that uses
a pulse of UV photons to fragment a precursor molecule following the pathway X +hr — OH+ Y.
For OH production, the most commonly used photolysis precursors are nitric acid (HNO3) and
peroxide (H202). Since photolysis produces the molecule of interest over the spatial and temporal
extent of the excitation laser, the product molecular packet possesses a well-defined origin. The
resulting beams are also translationally /rotationally colder than their counterparts produced from
discharges. In fact, propensities for specific A-doublet and J states within the OH vibrational and
electronic ground state have been identified for both nitric acid [70] and peroxide [71] precursors.

We have produced OH beams from HNOj3 photolysis at 193 nm using a pulsed ArF excimer
laser (Lambda Physik OptexPro). An illustration of the photolysis setup is given in Fig. 3.4. We
modified our existing PZT valve for use with the extremely corrosive nitric acid vapor by adding
an additional chemically-resistive polyimide chamber to isolate the gas from the piezo crystal. The
poppet was also machined from polyimide and passed through a double-sided o-ring through the
Kr/HNOg3 chamber to seal against the valve orifice. In place of the electric discharge stack, we
installed a UV-transmissive capillary with an inner diameter of 1 mm. The excimer laser was
focused onto the capillary with a combination of two orthogonal 50 cm cylindrical lenses to allow
for adjustment of the OH production volume as well as pulse intensity. As with the discharge
source, we cut a 40° full-angle cone into the end of the capillary cell for improved molecular beam
collimation [69]. The plot of Fig. 3.4 directly compares the density of this optimized OH source
with that of the optimized discharge source. The data for both curves were taken on the same day
with identical OH excitation laser beams and fluorescence collection optics. The discharge source
produces a beam with a 6% larger velocity width than the photolysis source, but wins in density
by a factor of ~ 2. Given the dangers of working with HNOgs and the smaller yield produced

by photolysis from our PZT valve, we now use the pulsed electric discharge exclusively for OH
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Figure 3.4: (Top) Illustrations of the pulsed electric discharge and photolysis sources for OH su-
personic beam production. Note the 40° exit nozzle cut into both sources for enhanced OH beam
density. (Bottom) Plot of relative OH yield for the discharge and photolysis sources measured
within the source chamber. The photolysis precursor for this data was 99% pure HNOs.



60

production.

3.2 Buffer Gas Beams

Buffer gas cooling is based on the rather simple concept of thermalizing a hot atomic or
molecular sample with a cold inert gas (usually He). This thermalization occurs within a buffer
gas cell anchored to a low-temperature cryostat assembly and, when combined with magnetic traps
or coupled out as a beam, allows for a wide variety of atom-molecule [72, 73, 74] and molecule-
molecule [18] cold collision experiments. In contrast with other cold molecule production techniques
that rely on electric/magnetic dipole moments [19, 75, 76, 77] or ultracold alkali-atom precursors [78,
79], buffer gas techniques are in principle applicable to any atomic or molecular species. However,
as we will see in the case of cold ND3g beams, these sources have their own technical limitations.
Our specific goals in developing a continuous buffer gas source for molecular collision experiments
were (1) to obtain stable cold ND3g beam flux for ~ 1 hr, (2) to produce a rotationally-cold ND3
sample, and (3) to obtain guided, state-selected ND3 densities of > 10% cm™3. As will be discussed,
the first goal was the most difficult to achieve, and the path to realizing goal 2 was not completely

clear.

3.2.1 The JILA Buffer Gas Beam Machine

There are many useful texts covering construction of cryogenic systems. Two of our most
commonly-used references are works by Pobell [80] and Ekin [81]. Far from being exhaustive, this
section will only highlight certain techniques necessary for operation of our buffer gas beam. We
will discuss some useful materials (both thermally conductive and insulating) as well as basic buffer
gas cell design. We are grateful to D. Patterson, J. Rasmussen, and J. Doyle for their contribution
to our development of an NDj3 buffer gas beam source at JILA.

Construction of a buffer gas system begins with a cryostat. The cryostat is an evacuated
tube into which (in our case) two cold stages are mounted. These stages may be cooled by either

cryogenic liquids (No,He,Ne) or with a cryogen-free refrigerator (e.g. pulse tube). The first stage
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Figure 3.5: Illustration of our buffer gas beam assembly. The NDj3 gas is fed down a heated
copper tube at 285 K. This hot supply tube is thermally isolated from the cold buffer gas cell
via a polyetherimide (Ultem) insert and thin-walled epoxy-fiberglass composite (G10) tube. The
pre-cooled He gas (not shown) is fed into the side of the cell. Charcoal sorb glued to copper plates
(~ 2000 cm? total) acts as a vacuum pump for He and NDj gas.
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of the cryostat is used to cool a few-mm-thick copper or aluminum radiation shield whose purpose
is to absorb 300 K blackbody radiation from the outer vacuum can (OVC). In “wet” systems, this
first stage is usually cooled with liquid nitrogen at 77 K. In cryogen-free systems, the first stage can
be as cold as 30-40 K. From the Stefann-Boltzmann law, the intensity, I, radiated by a blackbody
at temperature T is

Ip=oT! (3.9)

where o = 5.677!2 W/(cm?K*). From this, we expect a heat load of ~ 45 mW/cm? from the
300 K OVC* . For a cylindrical OVC with a radius of 10 cm and height of 50 cm, the radiation
shield must absorb ~ 140 W of blackbody power. With its large heat of vaporization of 199 J/g,
liquid nitrogen under a 140 W heat load will only boil at a rate of ~ 3 L/hr. Moving past the
radiation shield to the second stage of the cryostat, the blackbody heat load drops by a factor of 230
due to the T? scaling of Eq 3.9. However, the second stage is generally cooled with liquid helium
whose heat of vaporization is a much smaller 20.7 J/g. This means that a 1 W heat load burns
1.2 L/hr of liquid helium and that the experimenter must be diligent in minimizing second-stage
heat sources. One relatively easy method for reducing blackbody effects is to lower the emissivity
(absorbtivity) of cold surfaces. This basically means make them “shinier” to the infrared radiation
at 300 K and below, and can be accomplished by either polishing cold metal surfaces or wrapping
the system in highly-reflective aluminized mylar sheeting (also known as “space-blanket”). The
emissivity of highly-polished stainless steel can reach as low as 0.1, which would correspond to an
order-of-magnitude reduction in blackbody heat load.

Our buffer gas source is illustrated in Fig. 3.5. Originally, we developed this source within
a liquid helium cryostat that holds 1.5 L of liquid helium and ~ 3 L of liquid nitrogen for the
radiation shield. More recently, for the OH-NDj collision experiment [18], we have mounted our
buffer gas cell to the second stage of a cryogen-free pulse tube refrigerator (Cryomech PT-410) to

simplify daily operation. In both cryostats the second stage and buffer gas cell temperatures are

* The cryostat is generally constructed with sufficient thermal breaks between the OVC and cooled stages such
that heat transfer is radiation-dominated.
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4.5 — 5 K under typical operating conditions.

To produce the buffer gas cooled beam of ND3 in He, we flow warm ND3 down a heated 3/32”
copper tube into the back of the buffer gas cell. The warm ammonia tube must be well-isolated
from the cold cell to avoid unnecessary heating and, in the case of the “wet” cryostat, maximize
runtime before refilling liquid helium. With a combination of polyetherimide (Ultem) and thin-
walled (0.010”) epoxy-fiberglass-composite (G10) thermal breaks, we have reduced our cell heat
load to < 1 W when we are not flowing He. These thermal breaks are shown in Fig. 3.5. When
we flow the pre-cooled He gas into the side of the cell, gas conduction from the warm ammonia
inlet to the inner cell walls raises the heat load to 1 W. We control both the He and NDj3 gas flow
rates with thermal flow controllers (MKS M100B). The primary vacuum pump in the cryostat is
a cryopump consisting of 4.5 K copper sheets onto which are glued pieces of activated charcoal.
When cooled to near the boiling point of He, the charcoal sorbs trap the gas and hold it until the
temperature is increased. We find that ~ 2000 cm? of sorb is sufficient to keep the He pressure
stable in the cryostat over our beam runtime of ~ 1 hr.

Our 4 cm-long buffer gas cell is machined from a solid 3.8 cm x 3.8 cm bar of oxygen-free high
conductivity (OFHC) copper. A 2 cm-diameter bore is drilled down the center of the block from
back to front. Tapped, helicoiled screw holes are also added to these ends for mounting of the NDj3
inlet and 6 mm exit aperture. A small hole is drilled into the side of the cell for mounting of the
pre-cooled He gas inlet. We see no clear difference between mounting the ND3 inlet from the side
or the back, but other groups have reported more efficient molecular cooling with a side-mounted
molecule inlet [82]. Furthermore, we have measured ND3 beams produced in both 12-15 K Ne and
4.5 K He, with He being the clear winner by an order of magnitude with respect to ultimate guided

molecular density in the |J, K) = |1,1) para ground state.

3.2.2 Translational and Rotational Cooling

Much of the language of buffer gas beam dynamics is similar to that of supersonic expansions

with the exception that, in the case of buffer gas beams, one generally prefers as few collisions as
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possible to cool the molecule of interest. The last thing we want is to work hard to cool ND3 to 5 K
only to significantly boost the beam to supersonic velocities as it exits the cell aperture. Patterson
and co-workers identify three flow regimes each possessing different characteristic beam velocities

(characterized here with the molecular mean free path ¢ and cell aperture diameter d) [83]:

Effusive (¢ > d) Relatively few cold molecules are extracted from the cell before they stick to the

cold walls, and the mean speed of the molecular beam is just the most probable speed of

the molecule of interest given by \/ 2ksT | Mumoiccule-

Hydrodynamic (¢ ~ d) Asthe mean free path approaches the aperture diameter, collisions within
the expanding beam can cool the rotational degree of freedom below the thermal tempera-
ture. Also, the forward beam velocity is “boosted” to the most probable speed of the buffer
gas given by ~ \/m . Additionally, considerable increases in cell extraction are

reported in this regime [84].

Supersonic (¢ < d) This is the usual case covered in previous sections where significant rotational
and translational cooling occurs and the beam is considerably boosted to the supersonic
velocity of ~ /5kBT /mpyffer- This expression for the supersonic velocity assumes an ideal

monatomic buffer gas (y = 5/3).

Also in Ref. [83], it is argued that a hydrodynamic Ne buffer gas source operating at 15 K
should perform better than a 4.5 K He source with respect to both beam temperature and flux at
low velocities. Interestingly, we have directly compared a 15 K Ne/ND3 beam with a 5 K He/NDj3
in our system and determined that the guided flux of the 5 K He/ND3 beam was larger by a factor
of > 10. This signal corresponded to a guided density of ~ 108 cm™3, fulfilling the first goal of the
introduction. The corresponding data is shown in Fig. 3.6 for a fixed cell-to-guide distance of 1 cm.
One possible reason for the different results could be scattering of the hydrodynamically-boosted Ne
beam from the nearby hexapole electrodes. This is plausible since our optimal He:NDg3 flow rates
were 1:6 sccm while no combination of Ne:NDs flows in the range (1-20):(1-15) sccm produced

comparable guided beam densities. If the particle density is such that hydrodynamic boosting
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Figure 3.6: Data comparing electrostatically guided flux of a 15 K Ne/ND3 beam with that of a 5
K He/ND3 under otherwise identical conditions. Flow rates for both conditions were varied over
the full range of the flow controllers in the time shown, and the cell-to-guide distance was fixed at
1 cm.

occurs, one would expect an enhanced sensitivity of beam parameters to nearby boundaries. For
reference, 1 scem = 4.4 x 1017 71,

The data of Fig. 3.6 convinced us to focus primarily on He/ND3 beams for production of a
cold, dense beam suitable for molecular collision experiments. Moving the buffer gas cell closer to
our hexapole guide (now 2.5 mm cell-to-guide), we gained an additional factor of 2 in guided beam
density.

The science and technology of buffer gas beams is sufficiently new that only a handful of
experimental groups are actively running such sources. As such, the subject of rotational cooling
in buffer gas molecular beams has not been studied extensively. Prior to our work, no direct
spectroscopic determinations of rotational temperatures had been published, although Sommer
and co-workers had investigated NDj rotational temperatures using a state-dependent electrostatic
guiding model [85]. In our system, we have demonstrated control over the rotational temperature of
a He/ND3 beam — varying the effective para temperature from 5 K to > 6 K. This is accomplished
by adjusting the thermalization rate of ND3 within the buffer gas cell with the relative flow rates

of He and ND3. At He:NDj3 flows of 2.0:2.5 sccm, we measure a rotationally hotter beam that is
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Figure 3.7: Measured spectra of a guided buffer gas source of ND3 under two different buffer gas
flow conditions. The red curve gives a para rotational temperature of 6.3 K for buffer as flows of
2.0 sccm He and 2.5 sccm NDj3. The black spectrum reflects the better rotational thermalization
observed with flows of 3.5 sccm He and 1.0 sccm NDsg.

consistent with 7,.,; = 6.3 K. However, by increasing the flow ratio to 3.5:1.0, we observe T, = 5.4
K, which is only slightly above the temperature of the buffer gas cell itself. This supporting data
is shown in Fig. 3.7. While the difference in 7., seems rather small, the similarly small rotational
constant of ND3 results in a relative factor of 1.7 in the |1,1) : |2,2) population ratio over this

temperature range.

3.2.3 The “Pulsing” Phenomenon and Beam Runtime

Ammonia freezes at a temperature of 195 K. Therefore, if you expect ice formation within
the 4.5 K buffer gas cell to play a major role in beam dynamics over long time periods, you would
be correct. In fact, our first buffer gas cells were quite a bit smaller than our final design of 3.8
cm x 3.8 cm x 4 cm and possessed exit apertures of ~ 1 mm not unlike those used by the Rempe
group. However, with cells smaller than 2 cm we see frequent disruptions in the cold beam flux
accompanied by large pressure bursts and cell temperature increases. These flux dropouts can be
seen in Fig. 3.8a. Having tried a host of different ND3 tube mounting schemes, we always see this
“pulsing” effect with small cells. Furthermore, we observe that small apertures clog with ammonia

ice over time scales similar to those reported in Ref. [85]. While those authors use a heater to de-ice
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their aperture, they still observe constant reduction in output flux over the intervening 1-2 hrs. To
avoid this effect, we use the aforementioned 6 mm-diameter exit aperture. While this likely leads
to more effusive beam behavior due to an inability to build up He pressure in the cell, we see no
evidence of long-term icing with such a large exit nozzle.

We have found that the only solution to the “pulsing” effect is to scale up the dimensions of
the cell so as to maximize the distance between the warm ND3 inlet and any cold surface. This
result suggests that ammonia ice accumulates on the cell wall over time and eventually bridges the
gap to the warm inlet (see Fig. 3.8¢). The “pulse” most likely results from rapid vaporization of ice
at the warm ammonia tube and subsequent heating of the He gas within the cell. With a distance
of ~ 1 cm between the ND3 tube and cell wall, we obtain 1 hr of continuous, stable runtime of the

cold beam as shown in Fig. 3.8b.

3.24 Electrostatic Velocity Filtering

The beam emitted from a buffer gas cell consists mostly of coolant atoms. The cooled
molecular sample can also exhibit population in excited rotational levels. In order to gain control
over both the translational and rotational temperature of the cooled molecular beam and filter the
species of interest from the buffer gas, it is necessary to introduce a state- and velocity-selective
guide. Both magnetic octopole [86] and electrostatic quadrupole [87] guides have been employed in
previous buffer gas beam experiments. For our system, we chose to implement a curved electrostatic
hexapole to ensure maximum transverse guide depth and field homogeneity. An illustration of our
buffer gas cell and electrostatic guide are given in Fig. 3.9. Note that we use separate straight and
curved guide sections to allow isolation of the buffer gas source from the ultra-high vacuum of the
OH trap chamber via a thin (3 mm) gate valve. This feature is absolutely necessary since NDj3 ice
must be removed from the buffer gas cell after ~ 1 hr of continuous beam operation. To accomplish
this, we warm the cryostat to room temperature over ~ 4 — 6 hrs and pump out the He and NDj
released from the charcoal sorbs and buffer gas cell.

The transverse dynamics of confined ND3 molecules is rather straightforward and, neglecting
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Figure 3.8: Comparison of pulsing behavior with (a) < 5 mm spacing between the ammonia inlet
and cell wall and (b) the larger 3.8 cm x 3.8 cm x 4 cm cell with an inlet-to-wall spacing of 1 cm.
The greater distance between the warm NDj3 inlet and the cold cell wall in (b) leads to significant
improvement in beam stability over ~ 1 hr. (c) Illustration of the buffer gas cell cross section
showing regions of NDg3 ice buildup that eventually lead to pulsing as ice accumulates near the
warm NDg inlet tube.
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Figure 3.9: Drawing of the buffer gas beam assembly and electrostatic velocity filter for cold NDj3
molecules. The ionization region and time-of-flight mass spectrometer assembly for ND;)F detection
are displayed at the terminus of the hexapole guide. Cold NDj3 is ionized 1 cm from the guide exit
with the 317 nm pulsed REMPI laser.
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the ammonia inversion splitting, conforms to a harmonic oscillator model. Ignoring the finite extent
of the hexapole rods (generally a safe approximation), one can write the following expression for

the electric field within a hexapole of inner radius g as a function of radial position r as

- 3Vr2
|E(r)] = —5—.
70

(3.10)

The absolute value of the two symmetric voltages applied to the hexapole rods is denoted by V
(V =5 kV for applied rod voltages of £5 kV). Of course, the potential energy of a molecule with

an effective electric dipole moment p. ¢ within the hexapole is (ignoring inversion splitting)

L BperfVr?
U@ = |- B = 21— (3.11)
o
Now, we obtain the force on the molecule ﬁ(r) = —ﬁU(r) which comes out to
~ 6 Vv
(r) = =2 05— (3.12)
7o
6 Vv
for k= —Felf (3.13)
0

Using Hooke’s Law, we can now define a transverse oscillation frequency, v, for the guided molecules

yo Lok L [(BuersV (3.14)
2rV m 2 mr%

Specializing to ND3, we set V =5 kV and rp = 3 mm to obtain v = 1.47 kHz.

of mass m as

By bending the guide, we can filter fast species — both buffer gas atoms and molecules —
from the cold ND3 beam. Using Newton’s Second Law, we can estimate the maximum guidable

velocity (Vimae) for a hexapole bend of radius R as

[6ert VR
Vinaxr = a ff2 (315)
mro

where, assuming the experimental condition of R = 13.5 cm, we get vy,q, = 186 m/s. More accurate
Monte Carlo simulations yield a maximum velocity of 150 m/s, but Eq. 5.2 gives the correct scaling

behavior in bend radius R. Given the following expression for the ¢ of a symmetric top molecule:

KMjy

_ 1
Heff MJ(J+1) (3 6)
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we see that all K = 0 (ortho) states of ND3 are unguided. Furthermore, the guide depth and
transverse oscillation frequencies increase as J = K increases, leading to more efficient guiding
of excited, fully-aligned rotational states. These factors result in a non-thermal distribution of

rotational state populations at the exit of the bent guide.

3.2.4.1 Measurement of Beam Velocity

Measuring the velocity of a continuous beam is tricky. Since there is no well-defined temporal
pulse origin, one cannot simply take time-of-flight measurements at different distances from the
source, as is commonly done with supersonic beams. The flow controllers used for introduction
of He and NDj3 into our buffer gas source cannot be gated on time scales fast enough for creating
pulses. However, our electrostatic velocity filter gives us a method for measuring the translational
energy distribution. Not unlike recent work done in the group of G. Rempe [88], where pulses were
created by switching an electrostatic guide, we switch our guide on for different durations (At) and
record the guided flux of ND3 as a function of this switch time. Since our guide is 50 cm in path
length and includes a 90° bend, we can only detect molecules that have been guided throughout
the full flight time. The guide length (L) and duration (At) allow us to set a minimum guidable
velocity defined as viin (At) = L/At. One can then deduce that the measured density as a function
of Vpin, here defined as f(vyin), can be written as

oo
flomin) = [ o)a¥ (317)
where g(v) is the actual velocity distribution of the continuous guided beam. Since determination of
g(v) requires differentiation of f(vyn), we first fit f with a high-order polynomial. This smoothes
and interpolates the curve so that small variations do not cause un-physical features in g. One can
imagine fitting f with an error function (Gaussian integral), but we find that the guided veloci