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Light microscopy has greatly advanced our understanding of nature. The achiev-

able resolution, however, is limited by optical wavelengths to around 200 nm. Using

novel imaging and labeling technologies, resolutions beyond the diffraction limit can be

achieved for specialized specimens using techniques such as near-field scanning optical

microscopy, stimulated emission depletion microscopy and structured illumination mi-

croscopy [1–3]. This dissertation presents a versatile soft x-ray diffraction microscope

with 50 nm resolution using tabletop coherent soft x-ray sources. This work represents

the first high resolution demonstrations of coherent diffractive or lensless imaging using

tabletop extreme ultraviolet and soft x-ray sources [4, 5].

This dissertation also presents the first use of field curvature correction in x-ray

coherent imaging which allows high numerical aperture imaging and near-diffraction-

limited resolution of 1.5λ. The relevant theory behind high harmonic generation, the

primary tabletop source used in this work, will be discussed as well as the theory be-

hind coherent diffractive imaging. Additionally, the first demonstration of tabletop soft

x-ray Fourier Transform holography is shown with important applications to shorter

wavelength imaging with high harmonic generation with limited flux. A tabletop soft

x-ray diffraction microscope should find broad applications in biology, nanoscience, and

materials science due to its simple optical design, high resolution, large depth of field,

3D imaging capability, scalability to shorter wavelengths, and ultrafast temporal reso-

lution.
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singular optics is used to produce a phase vortex and donut mode that

quenches fluorescence from all GFP except what is in the center of the

beam. Thus fluorescence from only a very small spot is gathered. . . . . 5

1.2 Electromagnetic spectrum with emphasis on the extreme ultraviolet (EUV)

and soft x-ray imaging (SXR) portion. EUV/SXR microscopy has been
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upon the driving laser intensity: a) multiphoton absorption ionization,
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Chapter 1

Introduction to Tabletop Coherent Diffractive X-ray Imaging

This thesis will present the first results of a high resolution (<100 nm) diffractive

x-ray microscope using a tabletop, coherent x-ray source. Originally developed at large,

3rd generation synchrotron sources, this technique for nano-scale imaging is elegant

when applied to more limited flux, tabletop x-ray sources because of its stability, ro-

bustness, and ability to produce high resolution images without the need of difficult to

manufacture and lossy imaging optics. Additionally, as will be shown, this technique is

applicable in high numerical aperture schemes meaning that the resolution is ultimately

limited not by the point spread function of the imaging optic, but by source brightness,

wavelength, and radiation damage of the sample [23]. The source used for the majority

of the work presented in this thesis is phase matched high harmonic generation of an

intense femtosecond laser. This source is very attractive because of its complete spatial

coherence and high temporal coherence, compactness, stability, and ability to produce

sub-femtosecond pulses of x-rays (< 10−15 s). However, first this chapter will review

the basic principles of microscopy as well as compare several microscopy modalities in

order to provide a framework against which to present the results.

1.1 Imaging at the nanoscale

Microscopy is a critical enabling tool for understanding the nano-world. Since

Hooke first applied the microscope to viewing the cellulose structure in cork [28], mi-
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croscopy has had an especially important impact on biology. Standard visible light

microscopes can image living cells with a resolution as low as 200 nm [29], especially

with the use of fluorescent markers. However, this resolution is fundamentally limited

by the wavelength of visible/near-UV light. Increasing the resolution in imaging has

driven technology and science in areas as disparate as biotechnology, semiconductor

fabrication, materials science, and defense.

Traditionally, the resolution of an imaging system is described by the so called

Rayleigh Criterion [6, 29]. This limit is given by

r =
0.61λ
NA

(1.1)

where r is the transverse or spatial resolution, λ is the illuminating wavelength, NA

is the numerical aperture of the imaging system, and the prefactor (0.61) comes from

Rayleigh’s criterion for resolving two points imaged with system with circular apertures.

Abbe put forth a similar resolution criterion in his seminal work on microscope design,

where the prefactor is 0.5 [1,30,31]. To further increase resolution, two major strategies

have been taken: increasing the numerical aperture and decreasing the wavelength.

Increasing the numerical aperture of a microscope is a common practice, and

high quality, high numerical aperture lenses have found numerous applications. The

numerical aperture (NA) of a lens is given by

NA = n sin θ (1.2)

where n is the index of the refraction of the material between the sample and objective

lens and θ is the half angle of the light collected by the objective lens [32]. High quality,

short focal length objective lenses are available for optical microscopes with a practical

collection angle of up to about 72◦ (NA = sin(72◦) ∼= 0.95). With the development

of immersion microscopy–where the air gap between the sample and objective lens

is replaced with a higher index of refraction material–numerical apertures of 1.4 are
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practical with high quality immersion oil (n = 1.51) [29, 33, 34]. Immersion optics

have found numerous applications in biological imaging and semiconductor lithography

where they have allowed sub-wavelength information to be extracted (as in microscopy)

or imprinted (as in lithography) [1, 2, 35]. However, even with these techniques the

resolution of optical microscopes is limited to about 200 nm [36]. In the next section

we will discuss different types of imaging techniques that work to beat this optical

resolution barrier and compare their advantages and disadvantages.

1.2 Comparison of different microscopies

This section will compare and contrast different imaging techniques that strive to

push imaging from the microscopic regime to the nanoscopic regime. The discussion will

focus on far-field techniques that can be used to extract three dimensional information

of thick samples as opposed to near field or scanning probe techniques. These near field

and scanning probe techniques, such as atomic force microscopy or near field optical

microscopy can achieve very high resolution, even atomic resolution in some cases, but

are limited to studies of the surfaces of samples [37]

1.2.1 Optical Microscopy

Optical microscopies have been the work horse of microscopy for centuries. Due

to their compact and relatively inexpensive nature, optical microscopes are ubiquitous

in elementary school class rooms and biotechnology firms alike. However, until the

last decade the resolving power of optical microscopes has been limited by a diffraction

limited spot of the optical wavelength (∼ λ/2) [1, 31].

One of the main advances in optical biological microscopies has been the use

of green fluorescent proteins (GFP) as markers or labels that can be introduced into

biological systems. This fact was recognized by the awarding of the 2008 Nobel prize in

Chemistry to Osamu Shimomura, Martin Chalfie, and Roger Y. Tsien for “the discovery



4

and development of the green fluorescent protein” [38]. These proteins typically absorb

light in the blue region of the spectrum and fluoresce at longer wavelengths in the

green portion. Several techniques utilize these markers to increase or isolate the signal

from these proteins through the means of spectral or spatial filtering. Several of these

techniques are summarized in Figure 1.1 from the excellent review by Stefan Hell entitled

“Far-field optical nanoscopy” [1]. The first pane of Figure 1.1 demonstrates a very

common optical technique known as confocal microscopy. Confocal microscopy places

a pinhole in the focal plane of the objective lens and thus rejects out of focus light from

the sample. Additionally, confocal microscopy can be used in a scanning modality where

a single, diffraction limited spot can be scanned around a sample. Thus, it is possible

to illuminate a single GFP molecule and locate it to ∼ 200 nm. While an increase in

image quality ensues, there is no true enhancement of resolution unless the pinhole size

is reduced which sacrifices image intensity and acquisition speed. The next technique

described is 4Pi, where two counter propagating beams illuminate a sample and set up

a standing wave [1, 39]. A three dimensional interference pattern is produced where

a sub-wavelength spot exists at the focus of the system. Thus in a similar fashion as

confocal microscopy, a single small volume of the sample can be interrogated. However,

4Pi has the drawback of having side lobes of the interference pattern next to the focal

spot that must be accounted for.

A similar technique to 4Pi that holds great promise is structured illumination (SI)

microscopy as demonstrated by Gustafsson [40]. In SI, pupil fill filtering or apodization

is used to produce a sinusoidally varying illumination pattern where the period of the

sinusoidal illumination can be as small as half the wavelength of light. Multiple images

of a sample illuminated with such a pattern are taken while the illumination pattern is

rotated and shifted by λ/2. These images, which are Moiré patterns, are then processed

in a computer and an enhancement of a factor of 2 in resolution to about 100 nm

can be achieved. A nonlinear version of this techniques that involves saturation of



5

Figure 1.1: Description of three popular optical techniques to beat the diffraction limit
using fluorescent proteins as markers from [1]. A) Description of confocal microscopy
where a pinhole in the focal plane of the objective microscope reduces out of focus
light from fluorescence (green wave) of a green fluorescent protein (GFP) illuminated
by the blue wave. B) Description of the 4Pi technique whereby two counter propagating
beams (red waves) interfere and produce a sub-diffraction limited spot. C) Description
of STED, where a probe laser (blue wave) is used to excite a large spot of many GFP
molecules. A second laser (orange wave) and a singular optics is used to produce a
phase vortex and donut mode that quenches fluorescence from all GFP except what is
in the center of the beam. Thus fluorescence from only a very small spot is gathered.



6

the GFP has also been demonstrated with ∼ 50 nm resolution [3]. One advantage of

this technique is that it is a full-field technique as opposed to a scanning technique

such as confocal scanning microscopy. The drawback to this technique is that it uses

a computer reconstruction algorithm, that data collection can take a long time, and

that in the case of the nonlinear technique high intensities are needed that can damage

biological samples.

One final set of optical imaging techniques that perhaps has the most promise is a

set that uses the ability of the GFP to be placed in a so called dark state where the GFP

will not fluoresce [1]. This can be achieved by a variety of means, but most modalities

use saturation of the protein as means to increase resolution by essentially turning off

proteins you do not want to image. One of the most popular techniques in this category

is stimulated emission depletion microscopy (STED). STED is depicted in panel (C)

of Figure 1.1. As shown in the figure, this technique uses two illuminating beams.

The first beam illuminats the GFP and excites it. The second beam passes through a

singular optic which produces a phase vortex donut beam which has a minimum at the

axial center. This beam saturates all the GFP illuminated by the first beam, except

in the central null. In this way, fluorescence from a sub-diffraction limited spot can

be collected. Many variations on technique have been introduced both in scanning

and full field modalities and have produced images with resolution down to some 10’s

of nanometers when combined with time resolved readout and computer algorithms

for fitting of point spread functions [1]. One final imaging technique that is worth

mentioning is multiphoton microscopy where the second or third harmonic of an intense

ultrafast laser pulse is detected. This technique utilizes the fact that the second order or

third order nonlinear cross section of materials is smaller than the first order absorption

cross section. However typically this means using red or near IR pulses which moves a

diffraction limited spot size more towards 400 nm rather than 200 nm.

These modern optical techniques have truly broken the 200 nm barrier, but they
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have some drawbacks. First, the optical systems have become much more complicated

and expensive requiring $100,000 to upwards of $1 million dollars for systems that can

produce three dimensional images with 50 nm resolution or less. Much of this expense

comes from high quality, closed loop piezoelectric stages that can provide nanometer

step resolution and nanometer stability. Additionally, mechanical stability of less than

the optical resolution is required for these techniques. Finally, all of these techniques

except for multi photon microscopy require labeling with GFP. While this technique has

become a gold standard in biological imaging, it has not found as many implementations

in materials science imaging.

1.2.2 Electron Microscopy

After optical microscopy, the next most commonly used microscopic technique is

the electron microscope. Since Ernst Ruska built the first electron microscope in 1931,

it has found countless applications in biology, physical science, and material science and

engineering. Due to the large impact of his invention, Ruska was awarded the 1986

Nobel prize in Physics [38]. The electron microscope uses the fact that high energy

electrons have an extremely short wavelength. The quantum mechanical description of

the electron’s de Broglie wavelength is given by

λ = h/p =
h√

2m0eU
(1.3)

where h is Planck’s constant, m0 is the electron’s mass, e the electrons charge, and U the

accelerating electric potential. Most electron microscopes have accelerating potentials

between 10kV and some few 100kV, making the electrons velocity relativistic. Hence

the relativistic wavelength of the electron wavelength will be

λ = h/p =
h√

2m0eU

1√
1 + eU

2m0c2

(1.4)

where c is the speed of light [41]. Thus, an electron that is accelerated across a 30

kV potential will have a wavelength of 0.012 nm (0.12 Å). Thus we see from equation
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1.1 that even with modest numerical aperture electron microscopes atomic resolution is

feasible and it has been demonstrated [41].

Electron microscopes can be classified into two basic classifications: scanning elec-

tron microscopes (SEM) and transmission electron microscopes (TEM) [41]. Scanning

electron microscopes typically raster scan a focused electron spot over a sample and col-

lect the secondary electrons released or the backscattered electrons. Therefore, SEMs

are very surface sensitive and often require labeling or coating with materials that will

increase the contrast of the electron intensity image. Transmission electron microscopes

also typically scan a focused spot of electrons over the sample, but instead detects the

transmitted electron intensity. Both SEM and TEM can be used for elemental specific

studies by spectrally resolving the energy of the transmitted or secondary electrons and

comparing these spectra to known binding energies. Thus, electron microscopes have

become a very powerful tool for nanoscale imagine with elemental specificity.

While electron microscopes have found broad application, there are several draw-

backs that should be discussed here. First, the free mean path of high energy electrons

in air is very short requiring electron microscopes to work in vacuum [1, 41, 42]. This

added level of complexity may require many steps of sample preparation such as freeze

drying, cryo-fixing, or chemical fixing, especially in biological or wet materials. Second,

electrons are charged particles and interact very strongly with matter, giving them a

very short mean free path of only a few hundreds of nanometers (<500 nm according

to Spence [41]). Thus when trying to image thick samples such as a whole cell (few

µm diameter) or when trying to produce three dimensional images, electron microscopy

often requires sectioning of chemically or cryo-fixed samples possibly introducing struc-

tural damage or artifacts. Additionally, the high energies of the electrons used means

that they are ionizing radiation and cause sample damage [23, 41]. Finally, when high

temporal resolution is required of dynamical processes, electron microscopy is limited in

the shortness of the pulse durations it can produce to about 100 fs because of Coulombic



9

repulsion of the charged particles. In addition to electron microscopes, a gamut of other

particle microscopes have come on line recently such as focused ion beam microscopes

and neutral atom (typically He) microscopes. These microscopes are similar enough to

electron microscopes in the function and application that they will not be discussed,

but references [43,44] provides more information on these devices.

1.2.3 X-ray Microscopy

X-ray microscopy provides an alternative approach to electron microscopy where

high resolution imaging of thick samples is required. By virtue of its short wavelength,

x-ray microscopy has made it possible to obtain nanometer-scale resolution images of

whole unstained cells, magnetic permalloy wires, internal structures in nanocrystals,

and magnetic domains in thin film samples [45–48]. Extreme ultraviolet and soft x-ray

(EUV/SXR) radiation is particularly useful because it can penetrate relatively thick

samples in comparison to electron microscopy, thus opening up the possibility for three-

dimensional tomography of nano-objects. This region covers the electromagnetic spec-

trum from about 1 nm to 50 nm wavelength, or alternatively, from about 30 eV to 8 keV

of photon energy as shown in Figure 1.2 from Attwood [6]. A very useful relationship

between the photon energy, E in electron-volts (eV), and wavelength, λ in nm, is given

by

E[eV ] =
1240[nm ∗ eV ]

λ[nm]
. (1.5)

Furthermore, as is shown in Figure 1.2, numerous core-level absorption edges and widely

varying elemental absorption cross sections provide excellent inherent image contrast in

the soft x-ray region of the spectrum. Two such examples are biological imaging around

400 eV or magnetic contrast imaging through x-ray circular dichroism in magnetic

nanostructures around 800 eV [6, 45, 48]. Since EUV and SXR radiation is so strongly

absorbed these wavelengths do not propagate readily through air, thus requiring a vac-

uum environment. However, at higher photon energies (5-10 keV) the mean free path
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Figure 1.2: Electromagnetic spectrum with emphasis on the extreme ultraviolet (EUV)
and soft x-ray imaging (SXR) portion. EUV/SXR microscopy has been shown to be
useful because of the numerous absorption edges that exist in this region [6].

of x-rays in air is sufficiently long such that samples can be studied at atmosphere [6].

At those photon energies the dominant imaging process is phase contrast rather than

absorption, so high contrast imaging becomes difficult. Additionally, radiation damage

is a factor since EUV, SXR, and x-ray radiation are ionizing sources. These effects will

be discussed later in chapter 3.

Two challenges have limited the broader application of soft x-ray microscopy:

the difficult fabrication of x-ray imaging optics and the limited number of suitable x-

ray sources available worldwide. Since soft x-rays are strongly absorbed by matter,

diffractive or reflective optics (rather than refractive optics) must be used. The highest

spatial resolution x-ray microscope demonstrated to date (∼ 10 nm) used zone-plate

condenser and focusing lenses with feature sizes as small as 15 nm [49]. These optics are

thus challenging to fabricate and limited in availability. Moreover, the bright, tunable

x-ray sources required for soft x-ray microscopy have generally only been available at

a limited number of large-scale synchrotron facilities. Additional comparisons between

zone plate imaging verses coherent imaging are discussed thoroughly in Ariel Paul’s

dissertation, chapter 5 [24].

However, recently, significant progress has been made that promises to open
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up soft x-ray microscopy for more widespread use. First, new diffractive microscopy

techniques using coherent x-ray beams have made possible nanometer-scale resolution

imaging by essentially replacing the imaging optics in a microscope with a computer

reconstruction algorithm [20, 22, 47, 48, 50–53]. Second, advances in coherent soft x-ray

generation using tabletop ultrafast lasers have made it possible to implement practical

tabletop soft x-ray sources with sufficient coherent flux for soft x-ray imaging [17,54–58].

1.3 Overview of work to be discussed

This dissertation will present recent work demonstrating coherent diffractive mi-

croscopy with an oversampling iterative phase retrieval algorithm (also called lensless

imaging) using coherent, tabletop, soft x-ray sources. Chapter 2 will present the the-

ory behind high harmonic generation (HHG) as a tabletop coherent soft x-ray source.

Chapter 3 will present the important theory behind diffraction, sampling, and lensless or

coherent x-ray imaging. Chapter 4 will discuss the first demonstration of high resolution

(<100 nm) tabletop coherent x-ray imaging. The experimental setup and initial lower

resolution results will be discussed as well as improvements necessary for higher resolu-

tion imaging. Image resolutions of 94 nm were obtained using 29 nm light produced by

high-order harmonic upconversion of an ultrafast laser, while resolutions of 71 nm were

obtained using a 46.9 nm soft x-ray laser [4, 5]. Much of this early work was done with

Ariel Paul and additional details, especially on the experimental setup, can be found

in his dissertation [24]. Next, another technique, Fourier Transform holography, will be

demonstrated in chapter 5 with near 50 nm resolution using the same coherent tabletop

x-ray source. This holographic technique has important applications for lower flux imag-

ing with shorter wavelength sources. Finally, chapter 6 will present pathways towards

shorter wavelengths and higher resolution as well as discussing important applications

of a tabletop coherent x-ray microscope.

These techniques show great promise for further rapid progress. High harmonic
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generation, for example, is attractive as a soft x-ray light source because it generates

fully coherent beams with pulse durations of <10 fs using an extreme nonlinear optical

upconversion technique. Moreover, the ultrafast laser systems required to implement

a high harmonic light source are widespread and readily available. Currently, high

harmonic beams with sufficient flux for diffractive or zone plate microscopy can be

generated at wavelengths longer than 13 nm, where the nonlinear upconversion process

can be phase matched [17, 55]. However, this source can also produce reduced flux at

higher photon energies such as in the biologically important water window region [59,60]

and even as high as 1 keV [61]. It has also been shown that high harmonic yields at

these higher photon energies can be enhanced several orders of magnitude through the

application of quasi-phase matching techniques [62–65] or through phase matching with

longer wavelength lasers [66].



Chapter 2

High Harmonic Generation as a Bright, Coherent Source of EUV and

SXR Radiation

2.1 Introduction to high harmonic generation

The development of a new generation of ultrafast lasers during the 1990’s has

had a significant impact on science and technology. These lasers have made accessi-

ble the regimes of extremely short time scales (femtosecond to attosecond dynamics),

high bandwidth (hundreds of gigahertz), and very high field intensities (greater than a

petawatt/cm2) [13, 67]. The high field intensities achievable with ultrafast lasers have

made possible entirely new types of nonlinear optical processes, and this in turn has

spawned new techniques and technologies. One of these techniques, high harmonic gen-

eration (HHG), converts optical radiation at photon energies of ∼ 1.5 eV to extreme

ultraviolet (EUV) or soft x-ray (SXR) radiation with photon energies up to several keV

(∼ 1 nm wavelength) [12,61].

This chapter presents an introduction to high harmonic generation (HHG) from

intense ultrafast lasers as a tabletop source of coherent x-rays. A brief history of the

development of HHG is reviewed, and the semiclassical three-step model that describes

this highly nonlinear optical effect is discussed. Various numerical models are consid-

ered that describe the quantum mechanical aspects of HHG. Finally, it will be shown

how efficient HHG can be obtained through phase matching techniques and how phase

matching in hollow waveguides produces highly coherent soft x-ray beams.
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2.2 Ultrafast laser technology

As we will see in the following discussion, a necessary forerunner of tabletop high

harmonic generation is the ability to produce very strong short laser pulses. One way

to achieve this is through very intense optical laser pulses. Soon after the laser was first

demponstrated in 1960 by Maiman, it was realized that this new device was a very useful

tool for creating high peak fields [68]. Within two years the field of nonlinear optics was

born when Franken and colleagues demonstrated optical harmonics by tightly focusing a

laser into a quartz crystal [69]. Laser technology advanced rapidly in the next 40 years,

and with that advancement came ever increasing peak intensity. However, until short-

pulsed, broadband lasers were developed the ionization of atoms with laser fields was

not attainable. Specifically, the development of ultrafast lasers was needed that produce

pulses with durations on the order of picoseconds (ps or 10−12 s) or femtoseconds (fs

or 10−15 s). Here we briefly review the developments that are pertinent to HHG as

outlined in Backus et al [67].

One of the early pioneering methods developed in ultrafast laser science was

modelocking a laser. When a laser is modelocked, it ceases to emit a steady beam of

coherent radiation, but instead emits a train of short pulses. Throughout the 1980’s,

modelocked Neodymium-glass (Nd:glass) lasers or synchronously pumped and mode-

locked dye lasers were common. These lasers were very unstable and would often drop

out of the modelocked state. Also, these laser systems did not have enough bandwidth

to produce very short duration pulses, thus limiting the duration of available pulsed

lasers to the 100 fs to 1 ps range. Even though temperamental at times, these lasers

were capable of high average power (10s of Watts). However, since the pulses were still

relatively long (0.1-100 ps), peak laser intensities necessary for HHG (approximately

1013 W/cm2) were limited to a few groups of scientists with state-of-the-art lasers. In

the late 1980’s and early 1990’s, many developments in ultrafast lasers brought great
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Figure 2.1: Schematic of a typical chirped-pulsed-amplifier (CPA) system with cryo-
cooling. The output of a titanium-sapphire oscilator is stretched in a grating based
stretcher and then amplified in a multipass amplifier. Finally, the amplified pulse is
telescoped to a larger diameter and then compressed with a grating based compressor.
This specific design is a KMLabs DragonTM design [7, 8].

progress in HHG [67]. Older style lasers such as the Nd:glass were improved and new

lasers were introduced such as the titanium-doped sapphire laser (Ti:sapph). The mod-

elocked Ti:sapph laser was introduced by Sibbet and his group in 1990 [70]. Ti:sapph is

a very desirable laser material because it has a very broadband gain from approximately

700 nm to 1100 nm, meaning that ideally all of these wavelengths can be amplified in

the crystal simultaneously [67]. Additionally, new laser amplifier systems were devel-

oped such as chirped-pulse amplification or CPA. CPA uses two components known as

a stretcher and compressor that spread out the pulse in time before amplification and

then recompress it after amplification. This is necessary because the large pulse energies

of approximately 1 mJ can easily damage the optics in the amplifier if the pulses are too

short. After compression, the pulse duration can be as short as 5 fs with 1 mJ of energy

at a repetition rate of several thousand Hz [67] These newer femtosecond lasers enabled

researchers to obtain peak intensities that were previously unattainable with tabletop

sources. In a 100 µm focus of a standard CPA ultrafast laser beam, peak intensities of

1018 W/cm2 are easily achievable [67]. The peak electric field strength of these laser

pulses can be many times higher than 109 V/cm, much higher than the binding field of
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valence electrons of atoms [13].

2.3 Theory of High Harmonic Generation

High-order harmonic generation (HHG) of ultrashort-pulse lasers has emerged

in the past decade as an attractive table-top source of EUV/SXR light with unique

properties: HHG light is both coherent and can be used to generate light pulses even

shorter than 100 as (attosecond is 10−18 s) in duration [12, 71–73]. High harmonic

generation occurs when intense ultrashort laser pulses interact with atoms. Noble gases

are typically used as targets. Noble gases are self restoring after being ionized (unlike

crystals or solids) and have the highest ionization potential of all atoms. Their high

ionization potentials allow the noble gas atoms’ electrons to remain bound at higher

laser intensities. Other compact sources of EUV radiation that are currently being used

and further developed include laser produced plasmas and soft x-ray lasers [74, 75]. A

good review of these sources is given in Attwood chapters 6-7 [6].

When light is incident on a material, the electric field polarizes the atoms or

molecules of the material. This polarization in turn affects the propagation of the

light in a way that is described by Maxwell’s equations [76]. The induced polarization

reradiates, both at the same frequency as the incident light, and in some cases, at high

harmonics. For low intensities (I � 1011W/cm2), the induced polarization is linearly

dependent on the electric field, E, and is given by

P = ε0χE (2.1)

where ε0 is the permittivity of free space and χ is the electric susceptibility of the

material [13]. If the polarization is oscillating, then the oscillating dipoles will reradiate

light at the frequency of their oscillation as described by electromagnetic theory. As the

incident intensity of the light is increased, the induced polarization reaches a nonlinear
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regime where the induced polarization can be described by

P = ε0χE + a1E
2 + a2E

3 + ... (2.2)

where the ith-order term in this expansion is P = aiE
i+1 and the nonlinear coefficient

ai is given by

ai = ε0χ
i
ijk (2.3)

χi
ijk where is the ith-order electric susceptibility of the material. Equations 2.2 and 2.3

describe a perturbative expansion of the polarization that is valid as long as the higher

order terms decrease monotonically. For a sinusoidal driving field E(t) = E0cos(ωt), the

induced polarization includes higher order terms with frequencies of 2ω, 3ω, etc. These

constitute second, third, and higher order harmonic generation. In these processes,

multiple fundamental laser photons are absorbed and reemitted with the combined

energy qh̄ω in a single harmonic photon.

As mentioned earlier, if the intensity of the peak driving laser is increased even

further to approximately 1013 to 1015 W/cm2, the laser electric field will begin to ap-

proach the same strength as the Coulomb field binding the outermost electron of an

atom [9]. In this range, the perturbation approach described above will not accurately

describe the induced polarization because the electron will ionize, and the laser target

is converted into a plasma. At these intensities, equation 2.2 does not converge, so

traditional nonlinear optical theory does not suffice. This nonperturbative regime is

known as the strong-field regime. The physics of multiphoton absorption and emission

processes such as second harmonic generation and two photon absorbtion have corre-

sponding higher-order processes in the strong field regime–HHG and above threshold

ionization (ATI) [13] The later is a multiphoton ionization process in which more funda-

mental field photons are absorbed by an electron than are needed to exceed the binding

Coulomb potential. In both HHG and ATI, the energy spectrum of either the photons or

the photoelectrons produced in the process has a structure consisting of discrete peaks
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that approximately correspond to multiples of the fundamental laser frequency.

2.3.1 Discovery and three step model

The transition from the perturbative regime to the strong field regime can be seen

in the photoelectron and photon energy spectrum in ATI and HHG. In the perturbative

regime, the intensities of successive peaks decrease monotonically so that the expansion

in equation 2.2 converges. However, as the driving laser intensity is increased, more

peaks appear, and all peaks increase in strength until a plateau of peaks with nearly

equal intensity becomes apparent. These plateaus are characteristic of HHG spectra

and were first observed in ultrafast laser studies of noble gases in the late 1980’s [9,77].

Figure 2.2 shows a typical HHG spectrum from Argon [77]. Notice the monotonic

decrease of the first three peaks to the plateau region (harmonic order 7-29) followed

by an abrupt cutoff (about the 33rd harmonic). It is also interesting to note that HHG

only produces odd harmonics. This is due to symmetry considerations in the nonlinear

optical process – the generation of even harmonics requires a medium without inversion

symmetry, and of course an atomic gas cannot have any such asymmetry.

Over the last several years, HHG has progressed from a novel nonlinear process

to a robust table-top source of high energy photons. A key part of this progress was

a development of the theoretical understanding of the process. The next section of

this paper is dedicated to reviewing the pertinent theoretical models that have aided in

understanding HHG.

In the early 1990’s, the efforts of several groups, most notably Krause, Schafer,

and Kulander [10] and Corkum [11], produced a semiclassical description of HHG known

colloquially as the three step model. Several adaptations of this model have been

demonstrated [13], but all have the same underlying features. These features are shown

schematically in Figure 2.3. The three step model describes how the electron is first

ionized by the laser field, then the electron is accelerated by the electric field of the
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Figure 2.2: Typical HHG spectrum of Ar gas as seen in Li et al. [9] Notice the steady
decrease in intensity in the first few harmonics, followed by the plateau region and
eventually the cutoff near the 33rd harmonic. The plateau and cutoff are typical for
HHG spectra. Li et als experiment focused 1064 nm light from a 10 Hz, 36 ps pulsed
Nd:YAG laser into a 15 Torr gas jet. Also shown are various ionization energies for
argon.
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Figure 2.3: Pictoral representation of the three step model [10,11] of how the electron is
ionized and accelerated by the fundamental intense, femtosecond laser beam and then
is recombined with the atom, producing EUV and soft x-ray light as shown in Kapteyn,
Murnane, and Christov [12]. The cycle shown represents one half cycle of the driving
electric field. The fringes in the electron wave packet show its evolution throughout the
trajectory.

laser, and finally it recombines with the ion producing a high energy photon. The high-

est photon energy is accurately described by the cutoff law first suggested by Krause,

Schafer, and Kulander and further explained by Corkum. This energy is given by

Emax = h̄ωmax = Ip + 3.17Up (2.4)

where h̄ is Planck’s constant divided by 2π, Emax is the highest photon frequency

produced by the HHG process, Ip is the ionization potential of the most weakly bound

electron, and Up is the ponderomotive energy of the electron in the oscillating electric

field. The ponderomotive energy, which is the average kinetic energy of an electron in

a sinusoidal electric field, is given by

Up =
e2E2

4meω
2
0

= 9.33 × 1014eV ∗ Iλ2 (2.5)

where e is the electron charge, E is the magnitude of the maximum electric field of the

laser, m is the mass of the electron, ω0 is the laser frequency, I is the maximum laser

intensity, and λ is the laser wavelength. Thus, we see that the maximum photon energy

(or shortest wavelength) is propotional to the peak laser intensity I and to the squared

driving wavelength, λ2. The discussion that follows will briefly review the three step

model and cutoff law as they apply to HHG.
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Figure 2.4: Different photoionization processes of extreme nonlinear optics dependent
upon the driving laser intensity: a) multiphoton absorption ionization, b) tunneling ion-
ization, and c) barrier suppression ionization. The red line corresponds to the Coulomb
potential suppressed by the laser field. Adapted from reference [13].

2.3.1.1 Step 1: Ionization

The first step in the model occurs when the electric field of the driving laser is

sufficient to ionize the target atom. The process behind the ionization differs depending

upon the peak laser intensity, as shown in Figure 2.4. The first type of ionization de-

scribed earlier is multiphoton ionization, including ATI. In this process, several driving

laser photons, typically with wavelengths of 0.8 − 1.06 µm, are absorbed simultane-

ously, thus giving the electrons enough kinetic energy to escape the binding Coulomb

potential. Multiphoton ionization occurs at peak intensities below 1014 W/cm2 for these

wavelengths. As the laser intensity increases, the Coulomb potential becomes more and

more distorted until only a narrow barrier prevents the electron from being released.

At this point, the electrons tunnel through the distorted barrier as shown in Figure 2.4.

Finally, if the laser field strength is large enough, the Coulomb barrier will be sufficiently

suppressed such that the electron can escape over it. This process is known as barrier

suppression ionization (BSI) and occurs at peak intensities above 1015 W/cm2 where

the peak electric field of the laser exceeds the atomic binding electric field of about 1010

V/m. However, BSI usually only occurs for the shortest of laser pulses (∼ 5 fs) because

longer length pulses will cause the electron to tunnel out before the intensity reaches the

level needed for BSI. The Keldysh parameter is the common yardstick used to determine

which of these various ionization processes occurs [78]. The Keldysh parameter, γ, is
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given by

γ =
ω
√

2mIp
eE

(2.6)

where e is the electron charge, E is the magnitude of the peak electric field of the laser,

m is the mass of the electron, ω is the laser frequency, and Ip is the ionization potential

of the valence electron. This parameter can be understood as the laser frequency times

the approximate tunneling time. When γ < 1, the electron most likely undergoes

barrier suppression ionization. If γ > 1, then the electron most likely is ionized through

tunneling. Accordingly, the nonperturbative nonlinear optics regime can be classified as

the regime where γ � 1 [13]. A more accurate way of determining the ponderomotive

energy to be used in the cutoff energy estimates (Equation 2.4) is to use the laser

intensity at which ionization occurs based on the tunneling ionization rates [14]. These

rates are determined from a quantum mechanical calculation by Ammosov, Delone, and

Krainov and are known as the ADK rates [79]. From these rates we can calculate the

number of atoms that have been ionized and thus determine how many electron-ion

pairs can produce EUV light through HHG after being accelerated and recombining.

2.3.1.2 Step 2: Electron Acceleration

After ionization, the next step in the three step model is the propagation of the

free electron in the driving laser field. The assumption that the electron is free after

ionization is justified because outside of the atomic potential, the laser field is much

greater than the Coulomb potential. Corkum [11] explains that classically the electron

moves according to the equations of motion given by

x = x0 cosωt+ v0t+ x0 (2.7)

and

vx = v0 sinωt+ v0 (2.8)



23

Figure 2.5: One dimensional electron trajectories of freed electrons after tunneling for
various initial laser field phases. An initial phase of zero corresponds to the electron
being released at the peak of the driving laser field. Notice that for initial phases greater
than 90 degrees, the electron never returns to the parent ion (x = 0). These trajectories
are given by the classical equations of motion (Equations 2.7 and 2.8) [14].

where ω is the laser frequency, x0 is the initial displacement of the electron from the

ion, and v0 is the initial velocity of the electron after tunneling. Depending upon when

the electron is freed from the atomic potential by tunneling, these equations might be

modified by a phase shift due to the relative phase of the driving laser. The initial

phase of the released electron with respect to the driving laser field will determine the

value of the initial velocity and the phase of the oscillating portions of equations 2.7 and

2.8. These equations, in turn, will determine the velocity of the electron upon returning

to the vicinity of the parent ion. This return velocity will determine the value of the

kinetic energy which the electron will be able to give up in addition to the ionization

potential when the electron recombines with the parent ion. This energy is released as

a high harmonic photon.

2.3.1.3 Step 3: Recombination

The final step of the three step model is recombination of the propagating free

electron with the parent ion. The electron has gained kinetic energy while being acceler-

ated by the driving laser field. As the field direction reverses, the electron is accelerated
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toward the parent ion. For linearly polarized light, the electron will return to the vicin-

ity of the ion and can recombine, giving up its energy as a high energy photon. Thus,

the energy of the photon is given by the ionization potential of the atom plus the kinetic

energy of the electron represented by the ponderomotive energy term in Equation 2.4.

As shown in equations 2.7 and 2.8, the maximum velocity and kinetic energy of the

returning electron will depend upon the phase of the driving laser field at the time the

electron escapes. Figure 2.5 shows the one dimensional trajectories of the free electrons

according to equation 2.7 for several initial laser field phases [14]. An initial phase of

zero corresponds to the electron tunneling at the peak of the driving laser field. Notice

that for initial phases greater than 90 degrees the electron never returns to the ion. The

kinetic energy of the electron is dependant on its velocity when it recombines, which is

given by the slope of the trajectory as it crosses zero. The greatest slope corresponds to

an initial phase of 0.3 radians or 17.2 degrees. These are the trajectories that produce

the highest harmonics near the cutoff region. For electrons that are released before or

after the time corresponding to a phase of 0.3 rad, their return kinetic energy will be

less as shown in Figure 2.6 [14]. As can be seen, there is a degeneracy in the return

kinetic energy for electrons not released at the peak of the pulse where two different

electron trajectories contribute photons of the same energy. Often these trajectories

are refered to as long trajectories (which spend more time in the continuum) and the

short trajectory (less time in the continuum). The harmonics made up of photons from

these trajectories make up the plateau region of the spectrum. Thus, the 3.17 law

of the three step model predicts that the maximum photon energy of the harmonics

produced will be the sum of the ionization potential and the maximum return kinetic

energy. This model uses classical arguments to describe the electron’s propagation

and the maximum recombination energy with quantum mechanical tunneling. This

prediction has been verified by comparison to experimental results [9,12,13,77]. While

the three step model is useful for an intuitive understanding of HHG and for estimating
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Figure 2.6: Return kinetic energy of the electron in units of ponderomotive energy (Up)
as a function of the phase of the driving laser field (initial phase). A phase of zero
degrees corresponds to the electron tunneling at the peak of the laser electric field. The
maximum value of return kinetic energy is given by 17.2 degrees and gives a kinetic
energy of 3.17Up [14].

the highest photon energies possible, the three step model cannot produce the harmonic

peaks of the spectrum. To obtain a more complete understanding of HHG, quantum

mechanics must be invoked.

2.3.2 Path integral interpretation of HHG

After the success of the semiclassical three step model, researchers sought to un-

derstand the quamtum mechanical aspects of HHG. Nearly all early approaches were

based on Krause, Schafer, and Kulander’s initial approach [10]. This involved nu-

merically solving the time dependent Schrödinger equation (TDSE) for the electron

wavefunction in order to calculate the dipole acceleration. The square of the Fourier

transform of the dipole acceleration is proportional to the single atom power radiation.

The dipole acceleration is given by

a (t) =
d2 〈ψ |r|ψ〉

dt2
(2.9)
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Figure 2.7: Comparison of calculated HHG spectrum using a generalized form of the
Lewenstein model and solving the time dependent Schrödinger equation. The Lewen-
stein model slightly overestimates the dipole strength due to the neglect of the lateral
spread of the electron wavefunction as it propagates, thus decreasing the probability of
recombination [13].

where |ψ〉 is the electron eigenfunction of the TDSE. The single atom radiated power is

given by

P (ω) =
e2|a(ω)|2
6πε0c3

(2.10)

where e is the electron charge, a(ω) is the Fourier transform of the dipole acceleration,

ε0 is the permittivity of free space, and c is the vacuum speed of light. Most meth-

ods involve using a single active electron approximation with various approximations

of the Coulomb potential [13]. Since the oscillating electric field is periodic, the HHG

process is also periodic, thus leading to discrete energy peaks in the spectrum. This ap-

proach, while effective in reproducing experimental results, does not give us an intuitive

understanding of the quantum mechanics of the HHG process.

Another quantum mechanical method for calculating a HHG spectrum that is

more intuitive is that presented by Lewenstein et al [80]. The spectra produced by

the TDSE method and a modified Lewenstein method are compared in Figure 2.7. The

important aspects of the Lewenstein model can be summarized in the following equation
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for the induced dipole moment x(t):

x(t) = i

∫ t

0
dt′

∫
d3pd∗(p −A(t′))E(t′)d(p − A(t′))e−iS(p,t,t′) + c.c. (2.11)

where t′ is the time of electron ionization, t is the time at which the electron recombines

with the atom, p is the momentum of the electron, A(t) is the laser vector potential,

E(t) is the driving electric field of the laser, d(p−A(t′)) are the dipole transition matrix

elements, and S(p, t, t′) is the classical action integral given by

S(p, t, t′) =
∫ t

t′
dt′′

(
[p − A(t′)]2

2
+ Ip

)
(2.12)

with Ip as the ionization potential. As stated by Lewenstein et al. [80], this formulation

has a very satisfying interpretation as a product of probabilities. The E(t′)d(p−A(t′))

term gives the probability of an electron transitioning from a bound state to a continuum

state with momentum p at time t′. The phase of the propagating electron from time

t′ to time t is represented with the exponential including the classical action integral.

Notice that the Coulomb potential is ignored in the classical action due to the fact that

the laser field dominates once the electron is ionized. Finally, the d∗(p − A(t′)) is the

dipole transition probability back into the ground state at time t. These probabilities

are summed over all paths and all ionization times by the integrals. Therefore, the

dipole acceleration that will be Fourier transformed and used in equation 2.10 to give

the single atom power spectrum is obtained by taking the second time derivative of

x(t) in equation 2.11. As seen from Figure 2.7, the Lewenstein model gives excellent

agreement with the TDSE method except for the overestimation of the dipole strength.

This overestimation is a result of the neglect of the fact that the electron wavepacket

will spread transversely as it propagates, thus reducing the probability of recombination.

Several adaptations of the Lewenstein model include the wavepacket spreading as well

as other considerations. For details on these adaptations, see Brabec and Krausz [13].
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2.3.3 Phase matching

One of the factors limiting the wider application of HHG as a light source is the

limited amount of flux. The highest conversion efficiencies reported to date are on the

order of 10−5 to 10−6 [6,12,13]. These efficiencies were obtained though matching of the

phase velocity of the fundamental laser fields and the produced harmonic signal. The

phase velocity of the light pulses is affected by the different components of the gas target.

Neutral atoms in the gas target slow down the optical phase velocity; however, the effect

of the plasma is just the opposite. The optical and near-IR phase velocities in the laser

pulses speed up in plasmas. When the phases of the laser light and produced harmonics

accumulate a phase difference of π, the newly produced SXR radiation destructively

interferes with the SXR radiation created from previous cycles. Thus the coherence

length over which the HHG process constructively adds is given by

Lc =
π

∆k
, ∆k = kq − qk0 (2.13)

where kq is the wavevector of the qth order harmonic and ∆k is the phase mismatch

between the fundamental and harmonic fields. However, if phase matching is achieved

(∆k = 0), the produced harmonic signal increases quadratically with interaction length

until the absorption of the harmonics by the neutral gas limits the signal. This is demon-

strated in Figure 2.8. Early attempts at phase matching involved adjusting whether the

laser focused before or after a gas jet of a noble gas [81]. This allowed researchers to

balance the phase mismatch of the neutral gas on the laser field and the Gouy phase

shift due to the Gaussian beam focusing. However, the interaction length was limited,

so efficient EUV production was not achieved. Later, phase matching by pressure tuning

in hollow gas-filled fibers was demonstrated [14, 82, 83]. This technique, by tuning the

pressure of the gas in the waveguide, allows the dispersion of the neutral atoms to be

balanced with the anomolous dispersion of the plasma. Additionally, this allowed phase

matching over longer interaction lengths [12]. Additionally, the SXR radiation from
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Figure 2.8: As the EUV signal from the harmonics and the laser signal propagate,
they will go in and out of phase. The length over which the two remain in phase is
called the coherence length, Lc. If phase matching is achieved, the signal will increase
quadratically until it is limited by reabsorption of the neutral gas [12].
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these fibers exhibits high spatial coherence [17], effectively making HHG a coherent,

tunable, femtosecond SXR source. This technique has been shown to produce HHG

efficiently (in the 10−5 range) for lower photon energies at and below about 50 eV. For

higher photon energies, the laser intensity must be increased, which raises the ioniza-

tion and introduces negative net dispersion of the produced harmonics. This dispersion

increases the phase mismatch and prevents efficient harmonic generation above about

80 eV [12]. Above this energy, quasi-phase matching (QPM) techniques are needed. In

QPM, the HHG process is effectively shut off periodically after each coherence length.

This allows the EUV and fundamental signals to get back into phase and prevents the

destructive interference. Periodic poling in nonlinear crystals achieves the same result

for lower order harmonic generation [12]. Preliminary QPM has been demonstrated in

fibers with periodically modulated inner diameters [84, 85], with counter-propagating

beams [62,86,87], and with periodic gas jets [64]. While promising as a technique to en-

hance shorter wavelength HHG, bright soft x-ray radiation has yet to be demonstrated

with quasi-phase matching.

2.4 Coherence and mode quality

This chapter has thus far reviewed the important background and theory of high

harmonic generation, but has yet to describe its coherence properties that make it useful

as a tabletop source for coherent imaging. This section will describe what coherence

Figure 2.9: Schematic showing high harmonic generation in a hollow fused silica waveg-
uide. When the pressure of the gas inside the waveguide is tuned, the phase velocities
between harmonics and driving laser are matched and the harmonic flux builds up
coherently. The harmonic beam then has very small divergence (<1 mrad).
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means at short wavelengths and why high harmonic light from hollow waveguides ex-

hibits a high level of spatial and temporal coherence.

2.4.1 Definitions of coherence

Coherence is the property of electromagnetic radiation to have a well defined

phase relationship either as a function of time or space. Typically, this property can

be divided in two directions across an electromagnetic wave [6]. Spatial coherence is

the property of an electromagnetic wave to have a well defined phase at two points

separated in a direction perpendicular to the propagation of the wave and is closely

related to mode quality. Temporal coherence is the property of an electromagnetic

wave to have a well defined phase at two points that are separated only in time, or

equivalently, two points separated in a direction parallel to propagation. As the topic of

coherence at short wavelengths is covered extensively in chapter 8 of Attwood [6] and in

section 2.3 of Schlotter [15], the discussion here will be limited to only what is relevant

for coherent imaging with tabletop soft x-ray sources.

These two types of coherence are illustrated in Figure 2.10 [6, 15]. Figure 2.10

illustrates the idea of spatial coherence in part (a) and in part (b) it illustrates the idea

of temporal coherence. A source with full spatial coherence is a perfect plane wave and

therefore all points perpendicular to the direction of propagation will have a well defined

phase relationship, namely they will all have the same phase. Since perfect plane waves

do not exist, no source exhibits perfect spatial coherence, however a spherical wave far

from a point source approaches an ideal plane wave. Therefore, spatial coherence can

often be described in terms of source size as is shown in Figure 2.10 (a) (reproduced

from Attwood chapter 8.1 [6]). A smaller source will produce a more spherical wave

front. As a source increases in size, the phase of the radiated electromagnetic radiation

from the individual radiators in the extended source (atoms, electrons, molecules, etc.)

can become uncorrelated, thus reducing the coherence of the average radiated wave.
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Figure 2.10: Illustration of the two types of coherence: a) spatial coherence is well de-
fined phase travsversely to the wave propagation and can be quantified by the transverse
coherence length, ξt (from Attwood [6]), temporal coherence is well defined phase along
the direction of wave propagation and can be quantified by a longitudinal coherence
length, ξl (from Schlotter [15]).



33

The relavant quantity used in describing spatial coherence is the transverse coherence

length, ξt as given by

ξt = z∆θ =
zλ

2πd
(2.14)

where ∆θ is the divergence angle of the source, z is the distance from the source (assum-

ing the small angle approximation), λ is the wavelength, and d is the source diameter.

This equation as derived by Attwood from the Heisenberg uncertainty principle differs

from Schlotter’s definition by a factor of 1/2π [6, 15].

There are multiple ways by which this coherence length can be measured; however,

the most commonly used technique is with a wave front interferometer or Young’s

double slit experiment. This experiment introduces two small pinholes in an otherwise

opaque mask some distance z away from a source with divergence angle ∆θ and the

interfererence from these two pinholes is measured on a distant screen. Once the pinholes

are separated by a greater distance than ξt, the phase relationship between the two

pinholes ceases to be correlated and the interference fringes on the distant screen will

lose contrast [6].

While spatial coherence is a measure of the beam quality of a source, temporal co-

herence is a measure of the temporal bandwidth of the source [6,15]. Temporal coherence

describes the phase relationship between two points located parallel or longitudinally

along the direction of propagation as is shown in Figure 2.10 (b) from Schlotter [15].

Temporal coherence can be quantified by the longitudinal coherence length, ξl, given by

ξl =
λ2

∆λ
(2.15)

where λ is the central wavelength of the source and ∆λ is the full width half max

(FWHM) bandwidth of the source [15]. Again, there is some ambiguity in this definition

as Attwood has an additional factor of 1/2 in the definition of the longitudinal coherence

length [6]. The longitudinal coherence length can be measured with a spectrometer,

such as a grating, or by a Mach-Zender or Michelson interferometer [18]. In the case of
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an interferometer, the longitudinal coherence length takes on an especially significant

description. As additional path length is added to one arm of the interferometer, fringes

will appear on the output of the interferometer until the the path length difference

exceeds the longitudinal coherence length, ξl, at which point the phases of the different

wavelengths of light in the source cease to be well correlated. Thus, the definition of

longitudinal coherence length given in equation 2.15 is intuitive as the ratio λ/∆λ can

be interpreted as the number of wavelengths of path difference over which a source has

strong phase coherence longitudinally. This distance can also be thought of in terms of

a coherence time, τc, as shown in Figure 2.10 [15].

2.4.2 Coherence properties of HHG through phase matching in a hollow

waveguide

Now that we have defined what coherence in x-ray sources means, we can ex-

plore why phase matched HHG in hollow waveguides exhibits such a high degree of

spatial coherence. As mentioned earlier in section 2.3.1, HHG occurs when an electron

rescatters with its parent ion under the influence of an intense, ultrafast laser driving

field. As described by Bartels and colleagues, since the laser field driving the nonlinear

up-conversion is coherent and the HHG process is deterministic classically, it would

be expected that the harmonic radiation produced would also be coherent [17]. How-

ever, this was not the case until Rundquist and colleaques demonstrated pressure tuned

phase matching in hollow waveguides [17,82]. Before phase matching in hollow waveg-

uides, several groups had studied the coherence properties of high harmonic generation

in gas jets [88, 89]. These groups measured limited spatial and temporal coherence of

the harmonics due to several macroscopic effects. First of all, since HHG occurs when

intense, ultrafast laser pulses ionize a gas target, the index of refraction of the produced

plasma forms a negative lens and rapidly varies in time. This rapidly changing index

of refraction prevents the coherent buildup of flux and destroys the mode quality of the
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harmonic generation process [17]. Furthermore, as was mentioned in section 2.3.1.3,

multiple electron trajectories can contribute to each harmonic and these different tra-

jectories tend to have different divergence angles [88, 90]. The longer trajectories have

a larger divergence angle and the shorter trajectories a smaller divergence angle. Thus,

this effect of multiple trajectories gives the non-phase matched harmonic wavefront a

multimodal behavior [17].

Phase matching of the harmonic up-conversion process in a hollow waveguide

overcomes these challenges and produces high coherence. Previously it had been shown

that when phase matching in a gas jet a single electron quantum trajectory could es-

sentially be selected [81]. This greatly improves the temporal coherence of the source

and also the mode quality. Phase matching in a hollow waveguide also selects a narrow

range of electron trajectories improving the mode quality and temporal coherence of the

source [14,17,82]. Additionally, since the driving laser propagates in a well defined mode

of the waveguide, plasma defocusing and index effects are reduced [17]. Thus, the har-

monic field from a phase matched hollow waveguide source does take on the coherence

effects of the confined laser mode as was shown by Bartels and colleagues [16,17].

Bartels and colleagues measured the coherence properties of the phase matched

high harmonic source from hollow waveguides using a Young’s two pinhole setup as

shown in Figure 2.11 and as described earlier in section 2.4.1. They showed that the

harmonics had a very low divergence angle (<1 mrad) and essentially full spatial co-

herence as demonstrated in figure 2.12 [17]. In their experiment, two pinholes, each

with a diameter of about 40 µm, and with varying distances between them, were placed

about 3 m from the exit of a hollow waveguide where the beam was about 1 mm in

diameter. The interference of the transmitted light was recorded on a charged-coupled

device (CCD) camera about 1 m after the pinholes. The interference in Figure 2.12

shows essentially unity fringe visibility out to about 80% of the diameter of the beam.

This suggests essentially full spatial coherence accross the beam diameter. The fact that
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Figure 2.11: Schematic of a Young’s double pinhole (wavefront interferometer) used to
test spatial coherence from [16].

the finge visibility does wash out at larger separations (400-800 µm) can be attributed

to the fact that the phase matched source in argon still produced a comb of about five

harmonics centered at about the 19th harmonic (about 30 eV). Let us now analyze

the measurement from Bartels et al in light of transverse and longitudinal coherence

length [17]. In terms of longitudinal coherence length, the authors state that the phase

matched beam produces a spectrum with about 4-5 harmonics (17th to 23rd harmon-

ics). This corresponds to a bandwidth, ∆λ, of about 12 nm at a central wavelength,

λ, of about 40 nm. This ratio, λ/∆λ, is about 3.5, suggesting that after 3.5 wave-

lengths difference in path length (∆r from Figure 2.11) between the two pinholes the

interference pattern will wash out. This path difference then exceeds the longitudinal

coherence length of ξl = 3.5λ = 140 nm. This would correspond to about three and a

half fringes from the central maximum, which agrees well with the number of fringes

shown in Figure 2.12. Therefore, any reduction in fringe visibility is most likely due

to limited longitudinal coherence length (temporal coherence) not transverse coherence

length (spatial coherence).
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Figure 2.12: Measurement of the coherence of phase matched high harmonic generation
from a hollow wave guide reproduced from Bartels et al [17]. Measurements were made
where the beam diameter was about 1 mm with two pinholes (about 40 µm diameter
each) at different separations as shown. Notice the very high fringe visibility out to
almost 80% width of the beam.
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Figure 2.13: Illustration of the phase properties and temporal coherence of a diverging
Gaussian beam (from Attwood [6]).

2.4.2.1 Gaussian mode

If we calculate the transverse coherence length according to equation 2.14 with

a 40 µm source size with a central wavelength of 40 nm as given by reference [17] and

a z distance of 2.85 m, then we get a coherence length of ∼ 500 µm (corresponding to

a radius). This amount is equal to the divergence angle by the relationship θ = r0/z,

suggesting that the beam is completely coherent spatially. In fact, Attwood describes

how for a Gaussian beam, the transverse coherence length is the same as the far field

divergence of the beam. This conclusion is logical since a Gaussian beam is the lowest

order and simpliest mode in which electromagnetic radiation will naturally propagate

as a beam [18]. The far field divergence (and hence transverse coherence length) for a

Gaussian beam is shown in Figure 2.13 (reproduced from Attwood [6]). This fact can

be shown mathematically as follows [6]. The radius at which the intensity is 1/
√
e the

value of the peak intensity of a Guassiam beam, r(z), is given as a function of distance,

z, from the smallest radius, r0, (known as the waist) in

r(z) = r0

√
1 + (

λz

4πr20
)2. (2.16)
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If we calculate the far field divergence angle, ∆θ, (defined as θ in Figure 2.13) far from

the waist position (z0) we obtain

∆θ(z � z0) =
r(z)
z

∼= λ

4πr0
. (2.17)

Finally, if we multiply this value by the distance from the waist (which can be considered

a source in this discussion) in order to calculate the far field radius (1/
√
e), we obtain

r(z) = z∆θ =
zλ

2πd
(2.18)

where d is the source diameter (2r0). This result is exactly the same result as the

transverse coherence length in equation 2.14. Thus, a Gaussian beam exhibits total

transverse (or spatial) coherence.

Because of the foregoing discussion, it might not come as a suprise that a phase

matched high harmonic beam from a hollow waveguide will produce a Gaussian beam.

The far field beam of the 27th harmonic (29 nm) is shown in Figure 2.4.2.1. This beam

was measured on a CCD camera after bouncing off of two multilayer mirrors in a setup

that will be described in chapter 4. These mirrors act as a monochromator, effectively

selecting a single harmonic. Figure 2.4.2.1 (top) shows the logarithmic Gaussian high

harmonic beam which covers almost the full dynamic range of the camera (∼ 65000) and

(bottom) a Gaussing fit to the verticle lineout of the Gaussian beam showing very good

agreement. The true measure of how well a beam matches to a TEM00 Gaussian mode

is given by measuring a beam’s M2 (M-squared) value which compares the divergence

of the beam with the ideal divergence of a Gaussian beam. Measuring the M2 of our

phase matched harmonic beam is a future project that needs to be completed.

2.4.2.2 Temporal coherence of phase matched high harmonic generation

As mentioned earlier, phase matching of the high harmonic process can effectively

select effectively a single electron trajectory. The harmonic resulting from this single
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Figure 2.14: (Top) Measured optimized 29 nm mode (log scale) on the CCD after two
multilayer mirror reflections. (Bottom) Gaussian fit to horizontal line out of HHG mode
showing excellent fit with R2 = 0.9986.
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trajectory would be expected to have a very narrow bandwidth and long longitudinal

coherence length. However, as we discussed earlier in this section, Bartel’s measurement

of coherence suggests a λ/∆λ of 3.5. This, however, is due to the fact that their

phase matched source was optimized for brightest flux resulting in 4-5 harmonics being

phase matched. The individual bandwith of each harmonic may be much narrower

than 3.5. Single harmonics can be selected by use of a grating or multilayer mirror

monochromator. Such a measurement of a single harmonic produced from a gas jet

reports a λ/∆λ of 71 [91]. However, this source is not fully phase matched, thus we might

expect a broader bandwidth. Bartels et al, in a separate work involving optimization

of harmonic generation with pulse shaping measure spectrometer resolution limited

bandwidth of the 27th harmonic (29 nm or 42 eV) to be 0.25 eV [92]. This corresponds

to a λ/∆λ bandwith of about 170. Subsequent observations in work contributing to

this dissertation from diffraction patterns and spectrometers have measured λ/∆λ ≥

250 from the 27th harmonic after two bounces from multilayer mirrors which each have

a bandpass of about 3.3 eV (or 2.5 nm). Thus, phase matched high harmonic generation

can produce truly laser like EUV and SXR radiation with high temporal and spatial

coherence. In the next chapter it will be shown why this high coherence is necessary for

high resolution coherent imaging.

2.5 Comparison to other tabletop SXR sources

Before moving onto the next chapter, we should briefly overview other tabletop

sources of EUV/SXR radiation. We will start with the most incoherent sources and

move to progressively more coherent sources. Laser produced plasmas have been shown

to be a very bright source of EUV to hard x-ray radiation [6, 74, 93]. These sources

operate by focusing a high power (∼ 100 mJ/pulse, nanosecond pulse duration) laser

into liquid or solid targets producing hot, dense plasmas [6]. These highly ionized

plasma species can then produce atomic line radiation on top of a broad continuum of
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Bremsstrahlung radiation. Thus these sources can have very high temporal coherence

but low spatial coherence as the radiation is emitted into 4π steradians (sr). One

particularly nice example of zone plate imaging with a laser produced plasma comes

from Hans Hertz group in Sweden where a 3 ns Nd:YAG laser (100 mJ/pulse, 100 Hz)

is focused into a liquid nitrogen jet target. The hydrogen-like liquid nitrogen Kα plasma

line produces bright radiation at 2.478 nm which is in the biologically important water

window [94]. While this source is extremely bright (∼ 1014 photons/s) this is into 4π

steradians [94]. The flux on the sample is ∼ 106 photons/(s × µm2) after a condensor

optic (either a multilayer mirror or zone plate). This group demonstrates approximately

30 nm resolution in a five minute exposure, making practical nanometer scale imaging

in the water window. While useful for many applications, these spatially incoherent

plasma sources are not very tunable as they rely on atomic transitions. Additionally,

they have relatively long pulse durations (nanoseconds) making them unsuitable for

ultrafast imaging. More information on laser produced plasmas is available in Attwood,

chapter 6 [6].

Another attractive source of tabletop EUV/SXR radiation is SXR lasers [6, 95].

These sources are more coherent than laser produced plasmas as they have high gain on

highly ionized single atomic transition with spectral bandwidths of up to λ/∆λ ≥ 104

and lower divergence (≤ 10 mrad divergence) [95]. Although they are lasers, their spatial

coherence is lower than high harmonic generation sources due to the fact that the lasing

action builds up from noise. Thus the extended sources are an ensemble of uncorrelated

radiators. These lasers can broadly be classified into two groups: electrical discharge

pumping of gas filled capillaries and laser pumped solid targets [6]. The electrically

discharged lasers can show essentially full spatial coherence in a gain saturated long

capillary [96], high power (∼ 1 mW at 1-5 Hz repitition rate) in nanosecond pulses [75],

and with both coherent imaging and zone plate imaging have shown wavelength limited

resolution (47 nm) [57,97]. Laser pumped solid target lasers have demonstrated lasing
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down to 10.9 nm with Ni-like plasmas of metals (Te, Sn, Cd, Ti), with modest powers

(∼ 1 µW at 1-5 Hz) in picosecond pulses [98], and have demonstrated 38 nm resolution

at 13.9 nm wavelength using zone plates [54]. These sources are very attractive for

imaging, interferometry, and even nanopatterning due to their high flux and narrow

bandwidth, but they are not tunable, have limited ps temporal resolution, and require

a lot of pump energy (GJ of power for electrically discharged lasers). The practicality

of scaling these sources to shorter wavelengths is difficult as the pump power necessary

goes like 1/λ4, thus scaling to single wavelength lasers is not practical on tabletop

systems [6]. A recent very exciting development with tabletop SXR lasers is seeding of

the SXR laser with a high harmonic source [58], thus giving the source the divergence

and mode properties of HHG with the spectral bandwidth of an SXR laser. While still

limited to wavelengths ∼ 10 nm, this source demonstrates unprecedented temporal and

spatial coherence with ≤ 1 µW of power, making it an excellent source for tabletop

coherent imaging.

2.6 Chapter Summary

With the development of efficient HHG, table-top, coherent, femtosecond EUV

sources are available. HHG has developed from first being observed in the late 1980’s

into an efficient EUV/SXR source through phase matching techniques. The devel-

opment of the three step model and the use of numerical quantum calculations has

aided in explaining the HHG process and predicting how it can be made more effi-

cient. Now, EUV/SXR radiation from HHG is finding applications in spectroscopy,

imaging, and perhaps in the future lithographic techniques [6, 12, 13]. Additionally,

HHG has made possible the production of isolated sub-femtosecond or attosecond ra-

diation pulses [71–73, 99]. Thus HHG presents a fruitful area for further research and

technological development especially in ultrafast coherent imaging.



Chapter 3

Theory of Coherent Diffractive Imaging

3.1 Overview

As mentioned in chapter 1, an attractive alternative to traditional x-ray mi-

croscopy involving imaging optics is x-ray coherent diffractive imaging. This rapidly

developing technique would greatly benefit from a coherent tabletop source of x-rays,

such as high harmonic generation. This chapter will describe the relevant background

and theory of x-ray coherent diffractive imaging (XCDI). Specifically, this chapter will

describe the oversampling phase retrieval algorithm, including the system requirements

and limits of this technique. Additionally, this chapter will describe some recently

developed techniques of CDI that will make this technique much more applicable.

3.2 Diffraction Theory

This section will review aspects of scalar diffraction theory important to under-

standing CDI. We will seek to describe the Fourier relationship between the transmit-

ted electromagnetic wave immediately following an illuminated sample (known as an

exit surface wave) with the scattered light (diffraction pattern) on a distant screen.

Diffraction is a very common subject of electromagnetic radiation and multiple excel-

lent sources are available on the subject; specifically, Goodman is a seminal work on

Fourier optics, diffraction, and diffractive imaging [100]. However, for nostalgic reasons,

we will follow the discussion from Peatross and Ware [18]. For brevity, we will begin
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Figure 3.1: Schematic showing the relevant parameters and variables for setting up
diffraction theory (from Peatross and Ware [18]).

with the Fresnel-Kirchhoff diffraction formula 3.1. This formula describes the scattered

electromagnetic radiation on a distant screen from a sample that is illuminated with a

coherent bean as shown in Figure 3.1 [18]. We have made only a few assumptions to

this point. Specifically, these are that the aperture or sample size, D, and the distance

from the sample to screen, d, are many times larger than the illumination wavelength:

D, d � λ. Additionally, we have assumed that the measurements made on the distant

screen are in the paraxial approximation, thus the measurement screen is in the forward

direction so that the scattering angles are small (see Peatross and Ware chapter 10 [18]).

The diffracted electric field distribution, E(x, y, z = d), on the distant screen is given

by the Fresnel-Kirchhoff formula

E(x, y, z = d) =
−ieikde

ik
2d

(x2+y2)

λd

∫ ∫
E(x′, y′, 0)e

ik
2d

(x′2+y′2)e−
ik
d

(xx′+yy′)dx′dy′ (3.1)

where k = 2π/λ, E(x′, y′, 0) is the coherent illuminating wave, and the integration is

over the aperture or sample. The coordinate system is given by coordinates x, y, z with

positive z in the direction of beam propagation. The aperture or sample is located at

z = 0 which we will refer to as the sample plane and the distant screen (or later in this

chapter, the CCD) is located at z = d, with d � λ, which we will call the detector

plane. It should be noted that the two phase factors in front of the integrals are global

phase factors that do not affect the intensity. Additionally, we note the quadratic phase
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factor, ik
2d (x′2 + y′2), in the exponential in the integrand that describes how the pattern

evolves as it propagates in z. Equation 3.1 gives the observed diffraction pattern in the

detector plane and is said to be in the near field.

All of the measured diffraction patterns in this dissertation were measured in

the so called far field of the aperture. The far field diffraction intensity is given by

the Fraunhofer diffraction formula. The Fraunhofer diffraction pattern is a simplified

version of the Fresnel diffraction pattern, and is described as follows by Peatross and

Ware [18]. The Fresnel diffraction pattern is valid everywhere after the aperture as

long as the previously described assumptions are satisfied. As the scattered light propa-

gates farther away from the aperture it evolves according to the quadratic phase factor.

However, at some point, the diffraction stops evolving and the transverse electric field

distribution stays the same except for growing larger proportionally to the distance from

the aperture. At the point that the diffraction pattern stops evolving, it is said to be

in the far field. The far field distance is given by

d� k

2
(x′2 + y′2) so that e

ik
2d

(x′2+y′2) ≈ 1 (3.2)

where x′2 + y′2 = D2 is the squared aperture or sample diameter, D. Equation 3.2 can

be simplified to be expressed only in terms of the aperture or sample to measurement

screen distance, d, the wavelength, λ, and the sample diameter, D, as follows:

d� πD2

λ
. (3.3)

When this condition is satisfied, the diffraction pattern electric field is given by the

Fraunhofer diffraction formula

E(x, y, z = d) =
−ieikde

ik
2d

(x2+y2)

λd

∫ ∫
E(x′, y′, 0)e−

ik
d

(xx′+yy′)dx′dy′. (3.4)

Several aspects of equation 3.4 are worth noting. First, we note that the Fraun-

hofer diffraction formula is essentially a two dimensional Fourier transform of the exit
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surface wave at the sample plane except for the global phase factors in front of the in-

tegrals. Thus, the ‘shadow’ of the sample and the far field diffraction pattern represent

a Fourier conjugate relationship. The coordinates in the far field can be thought of as

spatial frequencies with

fx =
x

zλ
and fy =

y

zλ
(3.5)

where x, y are the coordinates or characteristic distances in the sample plane [100]. This

Fourier relationship is one of the founding principles of XCDI and is ubiquitous in the

reconstruction process, usually in the form of the fast Fourier transforms (FFT).

3.3 Sayre and oversampling

Now that we understand the fundamental Fourier relationship between the sample

exit surface wave and the far field diffraction pattern, we can discuss the next funda-

mental building block of XCDI: oversampling of far field diffraction patterns. This idea

was presented as a natural extension of x-ray crystallography by David Sayre in 1952

in his seminal work “Some implications of a theorem due to Shannon” [101]. X-ray

crystallography has been the primary tool for determining the atomic scale structure of

many materials, including many important biomolecules such as DNA [102,103].

However, many important biological molecules and also whole cells cannot be

crystallized easily. Thus, traditional x-ray crystallography techniques cannot easily

determine their structure. In 1952, Sayre recognized that, even though a recorded

diffraction pattern contains no phase information (only the intensity is measured), if

the diffraction pattern is sampled at a sufficient rate the phase information can be

extracted [101,102,104]. This process can be thought of as solving a set of nonlinearly

coupled equations that describe the Fourier relationship between the exit surface wave of

a sample and the far field diffraction pattern. Therefore, if we can determine the phase

of the electromagnetic wave in the far field, the surface exit wave of the sample can be
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determined. If the sample diffraction pattern is sampled at the spatial Nyquist frequency

(fN = D/zλ where D is the sample diameter), then the number of unknowns (phases)

in the set of coupled nonlinear equations exceeds the number of knowns (amplitudes).

However, if the diffraction pattern is sampled at a higher rate than the spatial Nyquist

frequency then the set of equations can be solved. This technique is called oversampling.

The oversampling ratio describes the amount of oversampling. In the sample

plane, the oversampling ratio can be described as

σ =
electron density region + no density region

electron density region
(3.6)

where σ ≥ 2 [101]. The terminology of electron density comes from x-ray crystallography

because the x-rays interact almost exclusively with the atomic electrons (valence to core

depending on the energies) through processes of scattering and absorption [6]. Thus, the

recovered exit surface wave or sample shadow is related to the sample electron density

through Babinet’s principle [18]. In the detector plane, the oversampling ratio can

be thought of as the number of sampling points in the detection plane per diffraction

speckle. In a linear sense for a two dimensional sample, the linear oversampling is given

by O = σ
1
2 where

O =
1
pfD

=
zλ

Dp
(3.7)

where fD is the spatial frequency of the largest sample distance (diameter) D given by

equation 3.5, p is the CCD or detector pixel width, and z is the sample to detector

distance [105]. Practically speaking, the speckle size on the CCD that corresponds to

the spatial frequency fD is the smallest speckle in the diffraction pattern and is given

by the ‘spatial period’ 1/fD [100].

Now we will present a very insightful empirical derivation of the oversampling

theorem from Miao and Sayre [102] which follows closely Ariel Paul’s description in

chapter 5 of his dissertation [24]. Figure 3.2 also presents the Fourier relationship of

oversampling between the sample and detector planes. Typically the diffraction pattern
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Figure 3.2: An illustration of the no-density region generated by oversampling the
diffraction pattern. Here we surround the object with a no-density region where there
are no scatters.

is measured on a CCD or other array detector with N × N sampling points. Because

the number of pixels in the reconstructed sample cannot exceed the number of detected

points, the sample cannot be sampled at any higher rate than N × N . This is the so

called ‘conservation of pixels’ rule.

The following discussion will present how sampling the far field diffraction pattern

is synonymous to surrounding the sample with a no density region. If the electron

density of an object is assumed to be ρ(x), then the Fourier transform of this object is

given by

F (k) = F [ρ(x)] =
∫ ∞

−∞
ρ(x) exp[2πik · x]dx (3.8)

where x is the three-dimensional spatial coordinate in real space and k is the three-

dimensional frequency coordinate in reciprocal space. If F (k) is sampled at the Nyquist

frequency of the object (fN = fD = N/D), then we can replace the continuous Fourier

transform is replaced by the discrete Fourier transform

F (k) =
N−1∑
x=0

ρ(x) exp[2πik · x/N ], k = 0, . . . , N − 1. (3.9)
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where x and k have become discrete and range from 0 to N − 1 in each dimension.

However, if F (k) is sampled at twice the Nyquist frequency, then

F (k) =
N−1∑
x=0

ρ(x) exp[2πik · x/(2N)], k = 0, . . . , 2N − 1. (3.10)

Let us introduce a new function g(x) such that

g(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ρ(x) 0 ≤ x ≤ N − 1

0 N ≤ x ≤ 2N − 1

(3.11)

If g(x) is substituted into Equation 3.10, then

F (k) =
2N−1∑
x=0

g(x) exp[2πik · x/(2N)], k = 0, . . . , 2N − 1. (3.12)

Equation 3.12 represents the relation between the density function g(x) and its fast-

Fourier-transform pattern sampled at the Nyquist frequency of g(x). Thus, oversam-

pling the discrete Fourier transform of the object’s density function by sampling more

finely than the object’s Nyquist frequency generates a no-density region surrounding

the electron density of the object as illustrated in Figure 3.2 [102]. Clearly, by the same

logic, increasing the degree of oversampling increases the size of this no-density region.

Thus, increasing the oversampling rate is increasing the ratio of knowns to unknowns in

the set of nonlinear equations from earlier by surrounding the sample with known zero

values. This no density region is known as the support and plays a crucial role in the

phase retrieval process as we will see next [106].

3.4 Phase Retrieval

Even though Sayre suggested that an image of a sample could be retrieved from

the diffraction pattern alone, it took several years to develop practical analytical tools

for performing the phase retrieval [102,104]. Twenty years later, Gerchberg and Saxton

proposed the first phase retrieval algorithm based on Sayre’s idea [107]. A few years
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later Fienup et al improved upon Gerchberg and Saxton’s work with two phase retrieval

algorithms based on a finite support and a positivity constraint based on the fact that all

actual physical samples will have to have a positive amplitude of the complex electron

density [106].

Fienup’s algorithms, error reduction and input-output, demonstrated that via

phase retrieval a complex object can be reconstructed from the magnitude of the Fourier

transform (diffraction pattern) alone. Various other algorithms have been developed and

demonstrated and two excellent reviews compare and contrast these techniques [19,108].

Most of these algorithms are similar to Fienup’s hybrid input-output (HIO) algorithm

in their use of a finite support although it should be noted that Marchesini et al’s

‘shrinkwrap’ algorithm has proven to be very robust and fast due to the use of a dy-

namic support [52]. This technique allows the support to periodically update based on

an intensity threshold, thus “shrink-wrapping” the sample electron density region. For

all the images presented in this dissertation, a genetic algorithm version of Fienup’s

original hybrid input-output (GHIO) algorithm was used. This technique was devel-

oped by our collaborators at University of California at Los Angeles in Professor John

Miao’s group [20, 47, 109]. The basic HIO algorithm is described in Figure 3.3. The

basic aspects of the HIO iterative phase retrieval algorithm are [19,106]:

1. The square root of the measured diffraction pattern intensity (the amplitude)

is seeded with an initial random phase.

2. Each reconstruction iterates back and forth between real and reciprocal space

with FFT (or inverse FFT) based on the Fourier relationship between the sample plane

and detector plane. In the sample plane (sometimes called real space), two constraints

are applied the support constraint and the positivity constraint. For the support con-

straint, a support is defined as a rectangular area containing the sample, with its size

estimated from the linear oversampling ratio as in equation 3.7. The sample density
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Figure 3.3: Illustration of hybrid input-output (HIO) algorithm from Fienup et al [19].
In this dissertation a genetic algorithm version of HIO was used known as guided HIO
or GHIO [20].
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outside the support and the negative real or imaginary part of the electron density inside

the support are slowly pushed to zero (positivity constraint).

3. Next, after applying constraints in the sample plane, the FFT of the sample

plane is performed in order to return to the detector plane (or reciprocal space). In the

sample plane, the difference between the new magnitude of the FFT and the original

measured diffraction pattern amplitude are compared in order to compute an error.

Then, the amplitude of the FFT is replaced with the original measured diffraction

pattern amplitude (square root of the diffracted intensity) but the phase is allowed to

continue onto the next iteration.

4. This iterative process is continued by applying the support and positivity con-

straint in the sample plane and the amplitude constraint in the detector plane until

the phase converges and a faithful high resolution image of the sample plane is recon-

structed. This can be achieved by setting a threshold on the error at which point the

algorithm is terminated.

Additional techniques can be applied such as running multiple reconstructions

on different random phase starts in a genetic algorithm (known as GHIO) or by using

a certain number of HIO iterations followed by a number of error reduction iterations

[20,108,109]. The GHIO technique will be described in the next chapter in more detail.

These phase retrieval techniques can be thought of as the spatial version of the ultrafast

pulse measurement technique knows as Frequency Resolved Optical Gating (FROG)

[110]. Additionally, it has been shown that these algorithms are very unique in their

solutions. It has been shown that multiple solutions are “pathologically rare” and

that “in general the 2-D phase retrieval problem will have a unique solution if one

exists” [111]. Thus, iterative phase retrieval techniques have proven to be an effective

coherent imaging method for oversampled far field diffraction patterns. Effectively an

imaging optic is replaced by the iterative phase retrieval algorithm.
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3.5 Implementing XCDI

3.5.1 Experimental developments of XCDI

Even though by the mid-1980’s the theoretical and computational framework for

XCDI existed, it took some fifteen years more until the first demonstration. There are

several reasons as to why this delay occurred. First, as personal computers became

cheaper and more powerful, they began to appear in ever more laboratories. The phase

retrieval techniques discussed in the previous section, when applied to high resolution

imaging, are very demanding computationally. Reconstructions can take days on a

single processor because often it requires 100,000’s of iterations, with each iteration

involving two FFT’s on array sizes up to several mega pixels. Second, the introduction

of third generation synchrotrons with insertion devices such as wigglers and undulators

greatly increased the amount of bright, coherent x-ray flux [6].

The first experimental demonstration of x-ray coherent diffractive imaging (or

lensless imaging) was performed at Brookhaven National Lab at the National Syn-

chrotron Light Source in the groups of David Sayre and Janos Kirz by John Miao and

colleagues [50]. Since this time upwards of 40 groups across the world have pushed the

technology and found numerous applications [47]. Perhaps one of the most attractive

potential applications is the use of XCDI to image single biomolecules with a single,

very intense femtosecond burst of x-rays from a x-ray free electron laser (FEL or fourth

generation synchrotron) [51,112].

Before proceeding, we should note several of the advantages and disadvantages

of CDI in light of the phase retrieval algorithms. Several aspects of XCDI make it

an extremely elegant and appealing technique. Because lensless imaging only requires

illumination with a plane wave, ∼ mm accuracy in sample placement is sufficient. No

multi-step focusing process is necessary, as is the case for imaging systems that require

sample placement and stability at the micron level. With imaging optics, the magnifica-
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tion is a purely geometric function of the object to image distance ratio, often requiring

the detector to be a meter or more from the imaging optic. In contrast, for tabletop

XCDI, the entire imaging apparatus fits in 0.5 m x 1.5 m. It should also be noted that

the same experimental setup will work at any wavelength at which narrowband coherent

light can be produced.

Additionally, as noted previously, CDI with phase retrieval does not require any

imaging optics, which at x-ray wavelengths are lossy, difficult to manufacture, and im-

pose a limited numerical aperture and finite point spread function. Thus, XCDI has the

potential to be truly limited only by the wavelength of illuminating light, opening up op-

portunities for further development and potentially sub-wavelength or super-resolution

techniques in analogy to optical wavelengths (see chapter 1). However, some of the

disadvantages are the fact that for traditional XCDI image information is only available

after significant computer processing and the need for fully coherent sources. Further-

more, for traditional XCDI, only isolated objects can be imaged because of the need

for a finite support [19]. We will see in a coming section how this constraint has been

overcome with curved beam techniques.

3.5.2 Other CDI techniques

Recently there has been a rush of activity to develop XCDI techniques that do not

require a compact support. Of particular interest has been the development of curved

beam XCDI techniques that greatly increase the stability and speed of the phase retrieval

algorithms and which will allow imaging of extended samples [21,22]. These techniques

use the illumination profile as a support instead of demanding that the sample be finite.

This adds a level of complexity by requiring a measurement and reconstruction of the

beam using traditional phase retrieval algorithms. This can be achieved by removing

the sample altogether. Additionally, these curved beam techniques are a step towards

“structured illumination” XCDI techniques that will open various enhancements such
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as extended field of view or increased resolution with the same exposure times.

The first technique, Keyhole Diffractive Imaging illuminates the sample with a

curved wavefront by placing the sample in the Fresnel regime after the focus of an x-ray

lens as shown in Figure 3.4 (b) [22]. Illuminating the sample with a curved wavefront

allows for faster and more stable reconstruction of the image via phase retrieval and

the ability to zoom in on regions of interest. This technique can be combined with a

scanning coherent imaging technique, ptychography, in order to image extended samples

efficiently without prior knowledge of the illumination support in Figure 3.4 (a) [21].

For this ptychographic technique, an additional sample plane constraint is added by

requiring that the individual exposure regions overlap.

These techniques have faster converging reconstruction algorithms based on the

additional phase curvature information on the illuminating beam. They also allow

imaging of extended samples; however, they have some disadvantages worth noting.

First, they require an optic that can produce a tight focus meaning that zone plates or

high NA mirrors are again introduced. Additionally, they require mechanical stability

of the beam-sample-detector line below the resolution desired. This is challenging if the

goal is to achieve 10 nm resolution. This is a complication that is avoided in traditional

XCDI when the sample is overfilled with the illuminating beam. In this case, vibrations

are allowed up to the limit of a detector pixel size (∼ 10 µm instead of 10 nm) greatly

relaxing this restriction.

In addition to coherent imaging with iterative phase retrieval algorithms, hologra-

phy has also proven to be capable of high resolution imaging with x-rays. The simplest

technique for x-rays is known as Gabor or in-line holography in which a sample is sim-

ply illuminated with a coherent beam and the interference between the diffracted light

and illuminating beam is recorded in the far field [113, 114]. The phase information

is encoded in the interference between these two beams, thus an image can be recon-

structed with a single Fourier transform instead of an iterative phase retrieval algorithm.
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 a) 

b) 

Figure 3.4: Illustration of novel coherent x-ray imaging techniques: a. Ptychography
[21]; b. Keyhole Diffractive Imaging or curved wave imaging [22].
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The first x-ray coherent imaging demonstrated with tabletop SXR sources was with a

HHG source using Gabor holography by Bartels et al in the same work in which they

demonstrated the spatial coherence of HHG [17]. These intial demonstrations had lim-

ited resolution of a few µms. Gabor holography has two notable disadvantages. First,

high resolution Gabor holography requires a tightly focused beam in order to achieve

good interference at high spatial frequencies. Second, there is a phase ambiguity in the

reconstructed image leading to the ‘twin image’ problem which can cause ringing and

distortions in the image [115].

3.6 System requirements

When implementing XCDI experimentally, it is necessary to keep several require-

ments in mind. This section presents a list of necessary relationships or ‘governing

equations.’ Another treatment of this material can be found in Paul, chapter 5 [24] and

in reference [105]. Figure 3.5 shows the relevant setup and parameters for the following

discussion.

3.6.1 Geometrical considerations

The two most crucial relationships to consider for CDI are satisfying the re-

quirements of Sayre’s oversampling theorem and the phase retrieval algorithms. The

oversampling ratio was given earlier in equation 3.7, but is so fundamental to CDI that

is is repeated here: O = zλ/pD where z, is the sample to detector distance, λ is the

wavelength, p is the detector pixel size, and D is the sample size or diameter. Another

crucial relation to remember is that the detector needs to be in the far field, so we

restate the far field distance from equation 3.3: z � πD2/λ.

The next aspect necessary for CDI is the coherence of the source. As we discussed

in section 2.4.1, in order to encode phase information in diffraction patterns through high

contrast interference fringes a source must exhibit high spatial and temporal coherence.
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Figure 3.5: Setup of relevant parameters in oversampled coherent diffraction imaging.
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As the coherence of the source degrades, these fringes begin to wash out (in the case of

degraded spatial coherence) or spread into each other (in the case of degraded temporal

coherence). Miao et al present empirical relations for how coherent a source needs to

be for high resolution CDI [105]. The temporal coherence requirement for CDI is

λ

∆λ
≥ OD

r
(3.13)

where as defined before (and shown in Figure 3.5) λ is the central wavelength of the

source and ∆λ the bandwidth, O is the oversampling ratio, D is the sample size (diam-

eter), and r is the highest resolution obtainable in the image reconstruction. Thus, we

see that the spectral bandwidth places a limit on the image resolution by

r ≥ OD

λ/∆λ
. (3.14)

This relation shows that more oversampling has the effect of lessening the spectral

bandwidth requirement for lensless imaging.

In terms of longitudinal coherence length, ξl, the temporal coherence limit is

ξl =
λ2

2∆λ
≥ ODλ

2r
. (3.15)

Ariel Paul gives a very intuitive and satisfying interpretation of this requirement in

terms of path length difference (see chapter 5 in [24]) by using the Bragg diffraction

condition, λ = r sin(θ) (θ is the scattering angle), to replace λ/r with sin(θ) as follows

ξl ≥ OD sin(θ)
2

. (3.16)

Paul interprets equation 3.16 in terms of path length difference. Essentially what this

requirement states is that the longitudinal coherence length, ξl, must be longer than

the path difference between any two points that are separated by O/2 times larger than

the sample size D. Thus, for the minimum oversampling necessary for CDI, this path

length difference would arise from points on the opposite sides of the sample.
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For spatial coherence, the requirement on transverse coherence length, ξt is more

easily understood and is simply

ξt ≥ OD (3.17)

so that the transverse coherence length is larger than the total area illuminated OD

[105]. As pointed out by Miao et al, the higher the oversampling, the finer the details

of the diffraction pattern that must be faithfully sampled. Thus, higher oversampling

allows a source to be less coherent temporally but at the expense that the source must

become more coherent spatially.

Several other experimental aspects of XCDI are worth mentioning briefly but are

covered in more detail in Ariel Paul’s thesis [24]. These include light tightness, stability,

and illumination. Since image resolution is achieved by sampling diffraction patterns

at high angles where diffraction efficiency is low, the signal to noise ratio of these

high spatial frequencies is very important. Thus the enclosure of the detector must be

shielded from any stray light and the detector performance must be maximized for low

signal detection and read out. Furthermore, the pointing and intensity stability of the

source is very important so that a faithful diffraction pattern is recorded. Additionally,

the sample should be illuminated with close to a uniform intensity which usually requires

somewhat of a large radius of curvature on the beam and flat phase front. Increasing

the beam size with respect to the sample size also tends to improve stability.

3.6.2 Data processing and resolution requirements

When setting up a CDI experiment, several factors are important to consider. The

geometrical issues discussed previously such as oversampling, far field distance, coher-

ence, etc., will allow an experimental setup that should produce high quality diffraction

patterns. However, this alone will not guarantee a successful experiment. As in any

imaging experiment, two parameters that are very important to consider are resolution

and field of view (here we focus only on two dimensional imaging, but if three dimen-
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sional imaging is considered then also depth of focus is an important parameter). With

CDI, the resolution and field of view are determined by the Fourier relationship of the

scattered light. Typically, this scattering process is quantified by the scattering angle or

photon momentum transfer that is imparted to the photons. Figure 3.5 also describes

the relevant parameters in this discussion. The momentum transfer, Q, is given by

Q =
4π sin(θ)

λ
. (3.18)

where sin(θ) = y/z where y is the transverse distance from the no deflection, zero

momentum transfer (Q = 0) point. Thus the maximum momentum transfer measurable,

Qmax, corresponds to y = L/2 = Np/2 with L being the width of the detector array, N

the number of pixels, and p the detector pixel width. The minimum momentum transfer

measurable, Qmin, is set by the transverse distance y = p.

Due to the Fourier relationship between the sample plane and the detector plane,

the minimum measurable increment in one will set the largest distance in the other

and vice a versa. This can be demonstrated by the fact that the detector pixel size

determines the reconstructed image field of view, LFOV by

LFOV = 2
2π
Qmin

=
λ

sin(θmin)
. (3.19)

If we make the small angle approximation so that sin(θmin) ≈ θmin ≈ p/z, which is

generally true for far field detection and appropriate oversampling, then we obtain

LFOV =
zλ

p
= 1/fmin. (3.20)

which we can also equate to the smallest spatial frequency fmin. Equation 3.20 can also

be used to calculate the reconstructed image pixel size, pim, through the principle of

conservation of number of pixels between the detector and image. In this discussion,

we will focus on linear pixels (as along one edge of the detector), N . The reconstructed

image pixel size is a very important consideration when setting up an experiment, as

it must be smaller than any detail of a sample that must be resolved. Therefore, the
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absolute limit of an image resolution theoretically, r, with CDI is set by this value, pim.

Practically at least two, and preferably many image pixels must be used to resolve this

feature so that r ≥ 2pim. The image pixel size is given by

pim =
LFOV

N
=

zλ

pN
. (3.21)

Alternatively, one can calculate pim = 2π/2Qmax analogously to equation 3.19, where

there will be a small discrepancy due to the small angle approximation. Furthermore,

from the viewpoint of oversampling (LFOV = OD, see 3.5), the image pixel size can be

calculated as follows

pim =
OD

N
=

zλD

pND
=

zλ

pN
(3.22)

which is exactly what we calculated in equation 3.21.

Finally, the practical limit on reconstructed image resolution that can be expected

is set by the maximum detectable momentum transfer, Qmax. The exact value of Qmax

is difficult to determine, and good signal to noise considerations are important. Bill

Schlotter’s thesis has a good review of signal to noise in chapter two [15] and in his

article in reference [116]. An estimate of highest image resolution (half pitch) possible

rdiff that is supported by diffraction will be

rdiff =
2π
Qmax

=
λ

2 sin(θmax)
(3.23)

where Qmax is the maximum detected momentum transfer (with good signal to noise),

corresponding to the scattering angle subtended by the angle θmax. We note that this

is essentially the same as equation 1.1, except with the prefactor of 1/2 as set by the

Abbe resolution criterion. This equation and the ability to calculate the image pixel

size, pim, are very useful to remember when analyzing data and determining resolution.

3.6.3 Scalability and limits to resolution set by radiation damage

Earlier, this thesis discussed the possibility that XCDI was capable of producing

wavelength limited resolution. This achievement would be extraordinary, especially
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since hard x-ray energies like those envisioned at future generation FELs might approach

1 Å or less, making atomic scale resolution possible. While the basic technique of

CDI is capable of such resolutions, unfortunately the samples are not unless they are

specially prepared. One of the main reasons for this is that both electron microscopy

and x-ray microscopy use ionizing radiation, meaning that the energies that atoms or

molecules receive when absorbing these particles are higher than at least the binding

energies of the atom’s valence electrons and often of the core electrons too. Other

challenges are resolution dependence on wavelength/photon energy and flux due to

scattering efficiency.

The first limit on the scalability of XCDI to atomic resolution is radiation dam-

age. This topic has been studied by many groups along with comparisons to electron

microscopy doses [23, 112, 117–119]. Miao points out that it has been widely accepted

that at atomic scale resolution a radiation dose of 2 × 107 Gy will cause destruction of

protein crystals in protein crystallography (1 Gray = 1 J/kg of absorbed energy) [47].

Marchesini et al present a very instructive study of radiation damage and its limits on

resolution as shown in Figure 3.6. For illumination with about 1 keV of photon energy,

the resolution limit before radiation damage destroys the feature to be resolved is about

5-8 nm in a frozen biological sample [23]. Thus, the radiation damage limited resolution

of XCDI with long exposure times is a few nanometers. However, if a sufficient dose

of x-rays can be delivered in a few fs pulse (such as from a FEL) it has been shown

theoretically that sub-nm resolution may be possible [112, 120]. Neutze et al present

a study of such a keV FEL pulse and show that radiation damage will manifest itself

in about 10 fs [112]. This pulse duration is 1-2 orders of magnitude shorter than what

is expected to be available in the first generation of FELs such as the Stanford Linear

Coherent Light Source (LCLS).

Finally, it is important, especially for tabletop sources with limited flux, to point

out how resolution depends on x-ray dose. Both Shen et al and Marchesini et al describe
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Figure 3.6: Study of radiation dose versus image resolution as a study of radiation
damage with electron and x-ray microscopy (from Marchesini et al [23]).
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how in general resolution scales with photon flux [23,119]. This dependence arises from

the dependence of scattering efficiency as a function of spatial frequency or angle, among

other parameters. The maximum resolution, r, as a function of incident flux, I0, is given

by

r ∝

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
I
−1/4
0 For 2D imaging

I
−1/3
0 For 3D imaging.

(3.24)

Here we have assumed that the wavelength is fixed. Additionally, Shen et al and March-

esini et al point out that as photon energies increase from 1-10 keV the absorption and

scattering cross sections have a 1/λ2 dependence. Therefore as wavelengths are de-

creased in this regime, more flux will be needed to achieve the same spatial resolution.

Therefore, most XCDI schemes that are focused on achieving the highest resolution are

focusing on the 1 keV range. For shorter wavelengths around EUV and SXR wavelengths

this dependence on wavelength will not be the same as there are multiple absorption

edges in this region. Therefore, in the EUV/SXR region, resolution will scale more like

r ∝ λ assuming that the scattered flux (not incident flux) is held constant, a difficult

assumption to achieve experimentally due to the numerous absorption edges.

3.7 Chapter Summary

In this chapter we have discussed the important theory involved in x-ray coher-

ent diffraction imaging. We reviewed relevant diffraction theory in order to understand

how diffraction patterns form a two dimensional Fourier transform of the sample sur-

face exit wave. Next, this chapter reviewed the idea of oversampling and how this

idea, in combination with phase retrieval algorithms, provides a powerful technique for

x-ray coherent imaging. We reviewed relevant geometric relations important for suc-

cessfully implementing XCDI. Finally, we discussed the limitations on the resolution

attainable.



Chapter 4

First Tabletop Demonstration of Soft X-ray CDI

As was discussed in chapter 3, given the need for coherent illumination, most

small-scale EUV/SXR sources are not suitable for lensless imaging. Thus, to-date,

lensless imaging has been the sole domain of large x-ray facilities such as synchrotrons

or free-electron lasers, where the bright beams can be made coherent by spatial filtering.

Recently, the first lensless imaging using a soft x-ray, free electron laser facility at 32 nm

was demonstrated. In that work, the high per-pulse energy of the FEL allowed single

shot diffraction data to be collected [51]. However, because the sample was destroyed in

the process, increasing sample statistics or time-delay measurements on a single sample

become difficult. Also, low spatial frequency information about the sample was missing

due to a hole in the detector which allows the very intense FEL pulse to pass through

without damaging the detector. Since this first demonstration, several other lensless

imaging demonstrations have been published, including time resolved images of pump-

probe experiments [121–124].

As was shown in chapter 2, high harmonic generation in a gas-filled waveguide

generates spatially coherent EUV beams and is ideally suited for lensless imaging [17,

59,125]. This light source has already been used for Gabor holography with resolution

<10 µm [17]. Here, we present the first experimental demonstration of high resolution

tabletop CDI using a tabletop source of coherent soft-x-rays. Much of this chapter will

come from results published in two papers by Sandberg et al with invaluable assistance in
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the image reconstruction from members of Prof. Janwei Miao’s Coherent Imaging Group

at UCLA, primarily with the help of Dr. Changyong Song [4,5]. The first of these papers

was coauthored with Dr. Ariel Paul, and many specific details of the development and

implementation of the experimental setup as well as alignment procedures are discussed

in chapter 6 of his dissertation [24].

Section 4.1 discusses the compact XCDI microscope setup. Section 4.2 describes

the first CDI results obtained in reflection mode imaging with a few µm resolution as

well as necessary changes that needed to occur to achieve high resolution. The first high

resolution, ∼ 200 nm, images of a thick sample are presented in section 4.3 [4]. Finally,

we were able to push the resolution down to 1.5 times the illumination wavelength by

going to a high numerical aperture regime and by using a 47 nm tabletop x-ray laser.

These results will be presented in section 4.4 [5]. These results thus demonstrate that

lensless coherent diffractive imaging can be successfully implemented using tabletop

soft x-ray light sources, with broad potential application in nanoimaging and biological

imaging.

4.1 Experimental Setup

The setup used for most of the results discussed in this dissertation are shown

in Figure 4.1. In our experiment, 1.3 mJ, 25 fs pulses from a titanium doped-sapphire

laser amplifier system (KMLabs DragonTM [8]) are focused with a 50 cm focal length

lens into a gas-filled, hollow fused-silica waveguide at intensities of 5 × 1014 W/cm2.

While the waveguide is evacuated, the lens to waveguide distance is varied for maximum

power coupling and mode quality. A typical distance from lens to waveguide entrance

is typically ∼ 60 cm. Phase matching of the conversion process is achieved by pressure

tuning the gas as described in chapter 2. In this regime, bright emission over a comb

of odd-order harmonics from 25 - 31 is obtained at wavelengths near 30 nm [14,82,83].

The hollow waveguide is a 150 µm inner-diameter, 10 cm long fused silica capillary filled
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Figure 4.1: Experimental setup for lensless imaging using coherent high harmonic beams
at a wavelength of 29 nm. A single harmonic order is selected and focused using a pair
of normal-incidence multilayer mirrors. The sample stage is positioned near the focus,
where it scatters the soft-x-ray beam onto a CCD. Inset, measured logarithmically
scaled soft-x-ray beam profile that is a near-perfect gaussian TEM00 over 4 orders of
magnitude (see section 2.4.2) [4].

with argon gas at ∼ 70 Torr pressure.

4.1.1 Phase matching and coherence optimization

When optimally coupled, an SXR beam is generated with a radius of ∼ 25 µm

(FWHM) and a divergence of ∆θ < 1 mrad, giving a transverse coherence length of

ξt equal to the full beam width and a flux of ∼ 1011 photons/second. In the initial

work described in this chapter, a 10 cm long waveguide was used to insure full spatial

coherence of the 29 nm source. However, in later studies it was found that 5 cm long

waveguides could be used which increased the flux by about an order of magnitude

while still maintaining the mode quality and spatial coherence. More details on the

production, characteristics, and geometry of the v-groove waveguide and in addition

other experimental details are available in chapter 6 of Dr. Ariel Paul’s dissertation [24].

Two 200 nm thick aluminum filters (Lebow Company, Inc.) are used to eliminate

the fundamental laser light (one is held in a custom light-tight fixture). A pair of

narrowband, molybdemum/silicon multilayer (40 layer pairs, one flat, one with 50 cm

ROC) mirrors centered at ∼ 29 nm acts as both a monochromator and a condenser,

to gently focus the beam onto the sample with a beam waist to about 1.5-2 times the
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sample diameter, D. The position of these mirrors is adjusted so as to optimally focus

the beam on the sample by using a Gaussian beam propagation model (BeamView).

Typical distances are around 1 m from the fiber output to the first mirror, about 10 cm

between the mirrors, and about 20-30 cm between the second mirror and the sample.

The narrowband mirrors each have a reflectivity of 25% in a 2.5 nm bandpass, to

effectively select a single harmonic order. After reflecting from these mirrors, the soft

x-ray beam has a narrow bandwidth of λ/∆λ > 250, giving a longitudinal coherence

ξl = λ/∆λ > 7.3 µm. The sample is held in an x-y stage controlled by high-precision

closed-loop dc motors (Physik Instrumente L.P.). The diffraction of the SXR light from

the sample is recorded on a large-area x-ray CCD camera (Andor) with a 2048 x 2048

array of 13.5 µm pixels [126].

The bandwidth of the source is substantially smaller than that set by the mirrors,

thus the narrow-band structure of the selected harmonic indicates a very high level of

phase matching and the selection of essentially a very narrow band of electron trajec-

tories. While the extent of how narrow this bandwidth can be made still needs to be

studied, there are several logical reasons why we could expect it to be this narrow. As

was mentioned earlier in section 2.4.2, Bartels et al demonstrated a very narrow band-

with (λ/∆λ = 170) by optimizing the HHG with shaped laser pulses [92]. We suggest

that a similar process is occuring here. When the HHG is optimized prior to inserting

a sample into the beam line, the SXR 29 nm mode is viewed on the CCD camera after

it has bounced off the two multilayer mirrors. Thus we are already viewing essentially

a single harmonic (27th). To optimize the flux, all parameters possible are adjusted

to maximize the flux and mode quality. These inlcude driving laser chirp and pulse

timing, laser focus into the waveguide, an iris that controls the diameter of the beam

before the focusing mirror, the waveguide coupling and pointing, and the gas pressure

inside the waveguide. Thus, it is feasible that by adjusting all of these parameters while

paying particular attention to the mode, we select essentially a single narrow band of
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Figure 4.2: Large (>1 mm) and medium (∼ 0.5 mm) beamblocks used to increase
dynamic range of the diffraction patterns [24].

trajectories that produce a single harmonic, phase matched, Gaussian beam.

4.1.2 Beam blocks and alignement

Beam blocks of varying size are placed in the center of the diffraction pattern

to block the intense diffraction coming from low spatial frequencies. A large-diameter

beam block (>1 mm) allows us to acquire long exposure images to record the highest

spatial frequencies diffracted from the sample, while a small beam block (<200 µm

diameter) is used to record low spatial frequencies. These diffraction patterns are then

stitched together, essentially extending the dynamic range of the camera from 4 to 12

orders of magnitude. These beam blocks are supported by a 12.5 µm wire tethered to a

2-inch diameter mounting ring, held in a kinematic x-y lens translator which allows fine

control of the beam block position. For additional information about the beam blocks,

see Paul chapter 6 [24].

As was mentioned in chapter 3, a high quality, spatially coherent, uniform soft-x-

ray mode is needed for lensless imaging to ensure the sharpest diffraction data. Figure

4.1 (also Figure 2.4.2.1) shows the mode profile of the 29 nm SXR beam, which fits to
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a near-perfect Gaussian to the full dynamic range of the camera (∼ 104). The sample

is carefully placed to optimize the illumination, diffraction quality, and oversampling

ratio. A flat SXR intensity profile, with a variation less than 10 percent, is required.

Overfilling the sample leads to a flatter intensity and also tends to ensure long-term

illumination stability, mode quality, and a large radius of curvature of the soft-x-ray

beam compared to the aperture size.

The focal spot size, numerical aperture, and oversampling can be adjusted by

moving the mirrors and sample stage in z (along the beam axis). The sample also

must be placed far enough from the detector to guarantee a far field diffraction pattern,

given by z ≥ D2/λ, where z is the sample to CCD distance, D is the sample diameter,

λ is the wavelength. Finally, the distance from the sample to the CCD is chosen to

give an appropriate linear oversampling ratio (>5) that allows for easily reconstructable

diffraction patterns with high resolution [105]. As described in section 3.6, the linear

oversampling ratio relates the smallest diffraction pattern speckles to CCD pixels, and

is given by O = zλ/pD, where p is the pixel size of the CCD camera. For the two images

described here (‘J’ slit and 15 µm Quantifoil), the linear oversampling ratios were ∼

10. In these reconstructed images, each image pixel (not to be confused with a CCD

pixel size p), corresponds to a size pim given by pim = OD/N , where N is the number

of pixels.

4.2 First XCDI Results

While the previous section described the experimental setup used for the majority

of the work, this section will briefly discuss an experimental setup and results where

the sample was held in reflection mode. This work was never published but has some

importance, as two of the applications that will be pursued with tabletop XCDI will

be defect inspection of EUV lithography substrates and metrology of EUV lithography

optics, both of which will need to be done in reflection mode.
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Figure 4.3: Reflection geometry used with previous vacuum chamber for imaging of
Quantifoil R© on the first Mo/Si mirror.

Figure 4.4: SEM image of Quantifoil R© “Multi-A” carbon foil [25]. The holey carbon
film is about 20 nm thick and rests on a 50 µm picth copper grid with about 10 µm
wide gride lines.
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Prior to the current “EUV Lensless Imaging Testbed” (ELITE) that was desinged

and manufactured by Ariel Paul and Hans Greene (see Paul, chapter 6 [24], we used

a smaller vacuum chamber that was large enough for only two Mo/Si mirrors. This

setup is shown in Figure 4.3. The reflection geometry setup used the same laser, high

harmonic cell, metal filters, and Mo/Si optics as described in the previous section. Thus,

we expect the flux and coherence properties of the light to be the same.

4.2.1 Reflection mode results with 150 µm apertured Quantifoil

The sample we used here was a Quantifoil R© “Multi-A” carbon foil [25]. The

sample consists of a commercially available transmission electron microscopy (TEM)

grid that was affixed to a 150 µm pinhole on a thin metal shim. The TEM grid consists

of thin 10 µm wide copper grids spaced by about 50 µm (approximately 40 µm x 40

µm open area) with a holey carbon film on top that is approximately 20 nm thick as

is shown in Figure 4.4. The pinhole and TEM grid were then affixed to the first (flat)

Mo/Si multilayer mirror with the TEM holey film immediately affixed to the mirror. In

order to increase the opacity of the TEM film, ∼ 100 nm of gold were sputter coated

onto the film before it was affixed to the mirror.

The results of the reflection mode imaging are shown in Figure 4.5 with about

1 hour of exposure time. The top pane of Figure 4.5 shows the high spatial frequency

data with about 1 hour of exposure with an oversampling ratio of O = 7.7. A large

beam block (>1 mm diamter) blocks the more intense spatial frequencies and a vacuum

tube connecting the chamber and CCD apertures some high spatial frequency data.

Additional exposures without the beam block (not shown here) were also taken in order

to fill in the missing low spatial frequency data. Figure 4.5 (bottom pane) shows the

reconstruction using the GHIO algorithm (to be described later). The basic structure

of the Quantifoil can be seen (refer to Figure 4.4), however the grid spacing to pitch

ratio of the copper grid seems to be smaller here (perhaps 1/4 or 1/3) compared to
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Figure 4.5: A portion of the high spatial frequency data for the reflection geometry
on a linear scale (top), the reconstructed image showing some basic features but poor
resolution of about 2 µm (bottom) [24].
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the sample (1/5). This is probably due to a limiting of the open aperture caused by

the sample being held on a mirror at slightly less than normal incidence (∼ 8 degrees).

The resolution here is on par with one of the larger holes in the film, so about 2 µm as

determined from the highest momentum transfer, Qmax.

4.2.2 Improvements

While performing this first demonstration in reflection mode, Ariel Paul and I

realized that in order to achieve ∼ 100 nm resolution, we needed to get the sample much

closer to the camera. This initiated a new design that led to the current ELITE chamber.

Additionally, a number of stability improvements were initiated such as floating the

optical table in order to reduce vibrations and enclosing the laser beam path in boxes

to reduce air currents. These improvements as well as the effect they had on the data

are described in Paul chapter 6 [24].

4.3 First High Resolution Tabletop XCDI

After the new ELITE chamber was finished, the experiment was reconfigured into

the setup described earlier in section 4.1. With the new setup, we were ready to try

a simple transmission sample for demonstration purposes. These results are described

in the paper that Ariel Paul and I coauthored with others in Physical Review Letters,

and much of the text in this section comes from that paper [4] (see also Paul chapter

6 [24]). We used two objects for these experiments: a rectangular “J” aperture with a

length of 80 µm, and the same 20 nm thick carbon Quantifoil with holes of various sizes

described in section 4.2, placed over a 15 µm diameter aperture in a thin metal film.

4.3.1 Results with “J” slit sample

For the “J” object, the linear oversampling ratio was 9, with a sample to CCD

distance z = 33 cm and a sample size D = 80 µm, resulting in an image resolution of
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Figure 4.6: (a) Optical image of J-slit. (b) Oversampled diffraction pattern from this
sample where the diffraction at the edge of the image corresponds to a momentum
transfer of 0.018 nm−1. (c) Magnitude of the reconstructed lensless image. [4]

∼ 1 µm. For the carbon TEM film, the linear oversampling ratio was 13, with z = 9

cm and D = 15 µm. Figure 4.6 (b) shows the coherent diffraction pattern from the “J”

slit. Three different diffraction patterns, shown in Figure 4.7, were stitched together

to increase the dynamic range, using a 1 minute exposure with no beam block, a 10

minute exposure with a ∼ 200 µm beam block, and a 120 minute exposure with a ∼

3 mm beam block. Figure 4.6(c) shows the final image of the ‘J’ pattern, with each

pixel corresponding to 347 nm. The reconstructed image is consistent with the optical

microscope image shown in Figure 4.6 (a). However, electron density noise can be seen

in this image, arising from long-term instability of the SXR source and the finite spectral

bandwidth of λ/∆λ ∼ 250 at 29 nm combined with the large path differences in the

diffraction pattern that arise with this large sample.

To reduce noise in the intensity of the final diffraction patterns, we applied an in-

verse Fourier transform to the measured intensity to obtain the autocorrelation function

of the sample. Since the linear oversampling ratio is � 2, the autocorrelation function

is surrounded by a large region that should have no signal. However, because of camera

noise that signal is not exactly zero. We therefore applied a low-pass filter to force this

region to be zero. We then numerically integrated the diffraction intensity by binning
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Figure 4.7: Logarithmic raw diffraction patterns from the “J” slit sample: (top) 1
minute exposure with no beam block, (left) 10 minute exposure with a 200 µm beam
block, (right) 120 minute exposure with a 3 mm beam block. The figures represent the
full area of the camera and have not been cropped.
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3 × 3 pixels into 1 pixel and applying a deconvolution to remove the artifacts in the

diffraction pattern due to intensity integration [20]. This step significantly enhanced

the signal-to-noise ratio of the coherent diffraction pattern. The analyzed diffraction

pattern has a linear oversampling ratio ∼ 1/3 smaller, and an array size of 680 × 680

pixels. This also eases the requirement on the temporal coherence by a factor of 3.

4.3.2 Phase retrieval reconstruction using GHIO

Phase retrieval of the coherent diffraction pattern is carried out using the guided

hybrid-input-output (GHIO) algorithm (see section 3.4 or references for more details [20,

47, 109]). This algorithm starts with 16 independent reconstructions of the diffraction

pattern, where random initial phases are used as the input. Each reconstruction iterates

back and forth between real and reciprocal space. In real space, a support is defined

as a rectangular area containing the sample, with its size estimated from the linear

oversampling ratio. The sample density outside the support and the negative real or

imaginary part of the electron density inside the support are slowly pushed to zero.

In reciprocal space, the magnitude of the Fourier transform (i.e. square root of the

diffraction intensity) remains unchanged, and the phase is updated with each iteration.

After 2000 iterations, 16 images are reconstructed, which is defined as the 0th gen-

eration. An error value (magnitude of retrieved amplitude minus measured amplitude

divided by measured amplitude) is calculated for each image based on the difference be-

tween the measured and calculated magnitude of Fourier transform. The image with the

smallest R value is selected as the seed. The inputs for the 1st generation are obtained

by multiplying the seed with each of the 16 images and taking the square root of the

product. We repeat the procedure for the next generation, and after the 8th generation,

the 16 reconstructed images became consistent. From the reconstructed images, we de-

fine a tight support that represents the true envelope of the object. Using this tight

support, we use another GHIO run to obtain the final reconstructed image. Because
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the diffraction pattern is non-centro-symmetric, the electron density of the sample is

complex, which in principle makes the phase retrieval more difficult than for real ob-

jects. By using a tight support with GHIO, and imposing a positivity constraint on

both the real and imaginary parts, we have shown that complex objects can be reliably

reconstructed from oversampled diffraction patterns.

4.3.3 Results with 15 µm apertured Quantifoil

A lensless image of the carbon film, apertured to 15 µm, is shown in Figure

4.8. The same beam blocks were used as with the ‘J’ sample, and exposure times were

comparable except for the large beam block data which was about 2 hours. Here we

will only present the patched together final diffraction pattern.Figure 4.8(a) is an SEM

picture of the sample, while Figure 4.8(b) shows the diffraction pattern. The non-

central-symmetry of the diffraction pattern indicates that the sample has absorption

and that the sample density is complex. Figure 4.8(c) shows the magnitude of the

density for the lensless image, which agrees well with the SEM image. The slight

disagreement between the alignment of the holes in the SEM and lensless images is due

to parallax. The carbon film and mounting aperture are separated by approximately 56

µm - thus even a few degrees of tilt in the SEM stage slightly alters the parallax and

the exact alignment of the smaller holes in the SEM image with respect to the large

aperture. A line scan of the reconstructed image indicates that the current tabletop

lensless microscope has a resolution of 214 nm.

The parallax of the sample was discovered when one of the reviewers pointed out

that the hole patterns in the carbon film between Figure 4.8 (a) and c did not agree.

We checked experimentally that the differences between the SEM and x-ray images can

be wholly explained by parallax resulting from the different viewing angles of the SEM

images. As stated above, the plane of the Quantifoil film and the aperture are separated

by some distance (56 m), as is made clear in the different SEM images shown in Figure
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Figure 4.8: (a) SEM image of a masked carbon TEM film; (b) oversampled soft-x-
ray diffraction pattern where the diffraction at the edge of the image corresponds to
a momentum transfer of 0.059 nm−1; and (c) magnitude of the reconstructed lensless
image. The correspondence in size, number and position of holes, and aspect ratios
between the EUV image and the SEM image can be seen. One pixel in the reconstructed
image corresponds to 107 nm. The inset in (c) show a line-scan taken along the direction
noted with the green solid line, demonstrating a spatial resolution of 214 nm [4].
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4.9. By tilting the SEM stage by only a few degrees, we see that the number of holes

that appear above the large 15 m aperture change. This finding adds strength to the

argument that XCDI has a long depth of focus. Note that by measuring the shift in the

holes, we can estimate the separation of the two films. With a tilt of 8 degrees, the holes

in the film shift by 8 µm with respect to the aperture, giving us a separation of the two

planes (aperture and quantifol) of about 56 µm. Since this distance is more than three

times the size of the 15 µm laser-ablated aperture, there would be a significant amount

of parallax. Thus we see that Figure 4.8 (c) and Figure 4.9 (b) agree well.

While these initial results were impressive, the resolutions are still low; compara-

ble to a conventional optical microscope (see chapter 1). Three approaches are possible

for improving the resolution of the microscope. First, higher spatial frequencies could

be captured by going to a higher numerical aperture. This could be accomplished either

by using a larger detector or moving the sample closer to the CCD. Second, the effec-

tive spectral bandwidth of the source could be improved by narrowing the individual

harmonic peak or by using a tabletop SXR laser. Third, shorter wavelength HHG light

could be used. The first two of these suggestions will be presented in the next section.

Figure 4.9: Scanning Electron Microscope images of 40 nm thick holey carbon film
placed approximately 56 µm above a 15 µm aperture: (a) SEM stage at 0 degrees tilt,
(b) SEM stage at -1.8 degrees tilt, (c) SEM stage at +1.8 degrees tilt, (d) SEM image
at +8 degrees tilt.
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4.4 Pushing the resolution: High Numerical Aperture XCDI

This section will describe work conducted to push XCDI to the sub-100 nm regime.

The work continues with 29 nm HHG generation, but in a higher numerical aperture

regime. Additionally, it will describe the work conducted on a tabletop SXR capillary

discharge laser operating at 46.9 nm [75]. Both of these demonstrations will use high

numerical aperture (NA) and achieve sub-100 nm resolution. Due to the high NA, a

curvature correction scheme was developed to account for the high angle diffraction

and allows near-diffraction-limited resolution of 1.5 λ. The SXR laser work was done

with Przemek Wachulak and collaborators at Colorado State University in Fort Collins,

Colorado in the groups of Mario Marconi, Jorge Rocca, and Carmen Menoni in the

Electrical and Computer Engineering Department. The results of this section were

published in the Proceedings of the National Academy of Sciences of the USA and much

of the text in this section comes from that publication [5].

4.4.1 Experimental setup for high NA XCDI

The high NA experimental setup is shown in Figure 4.10. The same chamber

as described earlier in section 4.1 was used. Coherent beams from either a soft x-

ray laser or a high harmonic source are focused onto a sample using the same simple

two-mirror relay arrangement. Light scattered from the object is then detected using a

CCD camera positioned a few centimeters from the sample (typically 1.7 cm). Thin film

filters are used to block unwanted longer wavelength radiation such as plasma emission

from the laser. In the case of the soft x-ray laser, a single 100 nm thick aluminum

filter was used to block plasma emission at longer wavelengths. For the high harmonic

beams, two 200 nm thick aluminum filters blocked the driving laser light at 780 nm.

Two multilayer mirrors, one flat and one with a 50 cm radius of curvature, were used

to gently focus the soft x-ray beams onto the sample. Different bilayer thickness and
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Figure 4.10: Setup of the tabletop soft x-ray diffraction microscope. A coherent soft x-
ray beam is produced by high harmonic generation or by spatially filtering the emission
from a capillary discharge laser in an Ar-filled hollow waveguide. The beam is gently
focused by a multilayer mirror pair onto the sample, and the diffraction pattern is
collected on an x-ray CCD. A moveable beam block allows for brighter portions of
the diffraction pattern to be blocked to avoid saturating the CCD when acquiring the
highest angle diffracted light [5].



85

materials (Sc/Si for 46.9nm or Mo/Si for 29 nm) were used to optimize reflection for

the different wavelengths. The soft x-ray laser mirrors are 40% reflective at 46.9 nm,

while the mirrors used to focus the high harmonic beam are 28% reflective at 29 nm.

The soft x-ray laser source is based on fast electric-discharge excitation in a thin

capillary that creates a highly-ionized neon-like argon plasma lasing at λ = 46.9 nm.

It produces pulses of energy ∼ 0.2 mJ with ∼ 4.5 mrad divergence at a repetition rate

of 1 Hz [75]. Lasing takes place on the 3s1P1 to 3p1S0 transition of neon-like argon

by exciting argon gas in an alumina capillary (3.2 mm diameter, 27 cm long) with a

current pulse of amplitude ≈ 24 kA with a 10% to 90% rise time of ≈ 40 ns [75,127,128].

This laser occupies a footprint of 0.4 x 1 m2. The fast current pulse is produced by

discharging a cylindrical capacitor through a spark-gap switch connected in series with

the capillary load. The current pulse rapidly compresses the plasma column to achieve

a dense and hot plasma filament where a population inversion is created by electron

impact excitation of the laser upper level and rapid radiative relaxation of the laser

lower level [6]. The capacitor employs a water dielectric which provides high energy

density and also cools the capillary. A continuous flow of Ar maintains a pressure of

490 mTorr in the capillary channel.

This laser is based on high-gain amplification of spontaneous emission from the

laser transition and although it does not use a resonator, it nevertheless generates a

beam with high spatial and temporal coherence. The longitudinal coherence length is

determined by the Doppler-broadened linewidth of the laser transition at λ/∆λ ∼ 104,

corresponding to a longitudinal coherence length of ξl ∼ 500 µm. The degree of spatial

coherence increases with the length of the plasma column, and approaches full coherence

for 36 cm long capillaries [96]. In this experiment, the laser output was spatially filtered

to ensure good spatial coherence using a 1.5 mm diameter pinhole placed approximately

1.5 m from the output of the laser, where the beam is ≈ 1.5 cm in diameter. We estimate

(using the van Cittert-Zernike theorem) that the beam has at least 85% fringe visibility
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at the edges of the pinhole [6].

For both soft x-ray sources, the sample size was 7 µm. For the soft x-ray laser at

46.9 nm, the sample to CCD distance was 17 mm, giving an oversampling ratio of 8.5.

For the high harmonic source at 29 nm, the sample to CCD distance was 42 mm, giving

an oversampling ratio of 13. The samples used for both sources were 7 µm tall “waving

stick girl” figures etched into a 100 nm thick silicon nitride window with electron-beam

lithography by Anne Sakdinawat of the Center for X-ray Optics and Lawrence Berkeley

National Laboratory. Since the silicon nitride is ∼ 4% transmissive to 29 nm photons,

200 nm of gold was electroplated on the sample used with the high harmonic beam.

4.4.1.1 Phase retrieval of high NA data

Three separate exposures were used with similar beam blocks as described in

section 4.1.2 and section 4.3.1 for both data sets, however for the high NA HHG data

multiple shorter exposures were used. Similar data patching and processing steps were

taken as was the case with the intial HHG XCDI data.All data sets were cropped

down to an array of good signal to noise ratio data. For the SXR laser this was 1980

pixels square. For the HHG data included in the publication it was 2028 pixels. After

background subtraction and filtering, the diffraction intensity was binned by numerically

integrating 3x3 pixels into 1 pixel and then deconvolved with a sinc function [20].

Due to the strong absorption of soft x-rays by the specimen, the diffraction pat-

terns in this section are non-centro-symmetric, resulting in the complex electron den-

sity. Phase retrieval of the complex electron density was carried out by using the guided

hybrid-input-output (GHIO) algorithm (see sections 3.4 and 4.3.2) [20,105]. This work

used 20 initial reconstructions. After 3000 iterations, 20 images were reconstructed,

which was defined as the 0th generation. An R-value was calculated for each image

based on the difference between the measured and calculated magnitude of the Fourier

transform. A seed image with the smallest R-value was selected for the reconstruction.
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By multiplying the seed with each of the 20 images and taking the square root of the

product, a new set of 20 images was obtained, which was used as the initial inputs for

the next generation. We repeated the procedure for the next generation, and after the

7th generation, the 20 reconstructed images became consistent. The final reconstruction

was chosen from the average of the best 3 images with the smallest R-values.

4.4.2 High NA results with 46.9 nm SXR laser

The coherent diffraction pattern from the first stick girl sample when illuminated

by the soft x-ray laser for an exposure time of 300 shots (5 minutes at 1 Hz) is shown in

Figure 4.11 (a). The final summed and processed diffraction pattern was then curvature

corrected (explained in the next section) and is shown in Figure 4.11 (b). This diffraction

has good signal to noise out to a 38 degree angle, or a NA = 0.62. This numerical

aperture represented at the time the highest numerical aperture x-ray imaging at any

wavelength.

Figure 4.11 (c) shows the final reconstruction of the stick figure. A lineout of the

reconstructed image is shown in Figure 4.11 (c), indicating a resolution of 71 nm. This

resolution, at 1.5 λ, compares very well with other lensless imaging experiments done

at large scale facilities. Furthermore, our calculations have indicated that the resolution

could reach the diffraction limit. The current resolution of 71 nm is limited by the

size of the CCD detector, because the diffraction pattern in Figure 4.11 (b) was clearly

cut off by the CCD edges. Using a larger CCD detector and the curvature-correction

procedure, it should be possible to achieve diffraction-limited resolution using a tabletop

soft x-ray diffraction microscope.

4.4.3 Curvature correction for high NA diffraction

The experimental setup was configured to enhance the spatial resolution by plac-

ing the detector as close to the sample as possible, which increases the numerical aper-
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Figure 4.11: Lensless imaging using coherent soft x-ray laser beams at 47 nm. (a) Re-
flection image of the waving stick figure sample (scale bar = 1 micron) using an SEM.
(b) Coherent soft x-ray diffraction pattern (in transmission) after curvature correction
(maximum momentum transfer of 0.166 nm−1 at the edge of the CCD). (c) Recon-
structed image with curvature correction. (d) Line-out of the image along the legs
(shown in the inset), verifying a resolution of 71 nm [5].
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ture of the microscope (up to NA = 0.62 here). In this mode of operation, the approx-

imation of sin(θ) ≈ θ is no longer valid, and therefore the diffraction intensity on the

planar CCD is significantly distorted at higher angles, as can be seen in Figures 4.12

(a) and (b). To remove the distortion, we interpolated the diffraction pattern from a

plane onto a spherical surface. Figures 4.12 (d) and (e) show the curvature-corrected

diffraction pattern, where the radial stretching and skew of the speckles near the edge

of the diffraction pattern (corresponding to high diffracted angles) are clearly removed.

Figures 4.12 (c) and (f) show the magnitude of the reconstructed image before and

after curvature-correction, indicating that curvature-correction indeed significantly im-

proves the quality of the reconstruction. The lower width and increased sharpness of

the curvature-corrected stick-girl image can be seen in the lineouts shown in the inset

of Figure 4.12 (c) and (f). This correction of mapping the diffraction pattern onto a

curved surface is really only a first approximation correction. A forthcoming publication

that is an extension of this work with a more detailed curvature correction will soon be

submitted with Kevin Raines and colleagues from John Miao’s group at the University

of California at Los Angeles.
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Figure 4.12: Curvature correction in high numerical aperture lensless imaging. (a), (d)
Coherent soft x-ray diffraction pattern at 47 nm wavelength (in transmission) before
and after curvature correction (maximum momentum transfer of 0.166 nm−1 at the edge
of the CCD). (b), (e) Magnified diffraction pattern at high diffraction angles showing
the radial blurring near the upper right edge in (b), which is absent in (e). (c), (f)
Reconstructed image of waving stick figure without and with curvature correction. The
lower width and increased sharpness of the curvature-corrected stick-girl image can be
seen in the lineouts shown in the insets [5].
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4.4.4 High NA results with 29 nm HHG

After the success of the high NA XCDI on the tabletop SXR laser, we repeated the

experiment with a similar sample on the 29 nm HHG source. As mentioned before, this

sample was coated with 200 nm of gold to prevent transmission of the 29 nm photons

through the 100 nm Si3N4 substrate. Also, as was mentioned in section 4.1, for this

work a shorter 5 cm waveguide was used which increased the 29 nm flux by almost

an order of magnitude (to around 108 photons/s or 0.7 nW on the sample) while still

maintaining a fully Gaussian mode and full spatial coherence. Two data sets are shown

here that both have maximum scattering angles of about 18 degrees corresponding to

a NA = 0.31. The first data set shown here actually came after the second, because

only the first data set was published due to its higher image quality [5]. However both

data sets demonstrate sub-100 nm resolution, a factor of two improvement over the

Quantifoil data [4] and previously reported HHG zone plate microscopes [55].

Figure 4.13 summarizes the first data set of high resolution imaging results using

a high harmonic source. A reflection image of a gold coated stick girl sample using an

SEM is shown in Figure 4.13 (a), while Figure 4.13 (b) shows the curvature corrected

high dynamic range soft x-ray diffraction pattern in transmission (NA = 0.31). Figure

4.13 (c) shows the reconstruction of the 7 µm stick figure, with a resolution of 94 nm

verified in the lineout of Figure 4.13 (d). The reconstructed image has excellent fidelity

with the SEM image, with the exception of missing the right hand. This is due to the

finite resolution of the reconstruction, which is greater than the hand feature size, and

possible incomplete etching of the substrate in this region.

Compared with Figure 4.11 (c), Figure 4.13 (c) shows slightly more internal den-

sity fluctuations, which is likely due to the lower temporal coherence (higher spectral

bandwidth) of the high harmonic source compared with the soft x-ray laser. On the

other hand, the region outside the sample boundary in Figure 4.13 (c) is much cleaner,
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Figure 4.13: Lensless imaging using coherent high harmonic beams at 29 nm. (a)
Reflection image of the sample (scale bar = 1 micron) using an SEM. (b) Coherent
soft x-ray diffraction pattern (in transmission) after curvature correction (maximum
momentum transfer of 0.134 nm−1 at the edge of the CCD). (c) Reconstructed image
(d) lineout of the image along the legs (shown in the inset), demonstrating a resolution
of 94 nm [5].
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which is attributed to the higher spatial coherence of the high harmonic source. In

addition, the higher spatial coherence of the high harmonic source allows all the out-

put flux to be used, while the higher spectral bandwidth can support sub-10 fs pulse

duration for dynamic imaging experiments. Furthermore, the bandwidth of the high

harmonic source can be engineered through a variety of coherent control techniques,

which will make it possible to precisely determine the time-space resolution tradeoff for

such a source. In the case of the soft x-ray laser, an increase of the capillary length

can simultaneously make the output essentially fully spatially coherent and significantly

increase the pulse energy, making single shot exposure possible. These two sources are

complementary and have actually been combined in a recent demonstration of HHG

amplification in a tabletop SXR laser [58]. This source will prove very useful for single

shot XCDI as it exhibits full spatial and temporal coherence.

Figure 4.14 shows the older high NA results from 29 nm HHG. This very inter-

esting sample was sputter coated with a small DC sputtering chamber at JILA after

already having been etched through using standard electron beam lithography. The

sample in Figure 4.13 was coated with gold before etching, thus it has much cleaner

edges. This result had significantly more noise in the diffraction pattern and reconstruc-

tion probably due to instability in the diffraction after an hour of exposure time for the

large beam block data. All previous results in this chapter, besides Figure 4.13, were

taken in the same way. A single hour long exposure on a CCD allows for significant

accumulations of thermal and cosmic ray noise. However, the data in Figure 4.13 was

recorded through 6 separate 20 minute exposures for 2 hours of exposure. This method

allowed the individual exposures to be compared in order to make removal of cosmic

rays easier. Additionally, this allowed for monitoring of the diffraction signal between

the individual exposures. If the signal started to drift, the coupling into the front of

the waveguide could be adjusted without affecting the harmonic beam pointing, thus

allowing us to bring back the HHG signal. This greatly increased the stability of the
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Figure 4.14: A previous demonstration of lensless imaging using coherent high harmonic
beams at 29 nm. (a) Reflection image of the sample (scale bar = 1 micron) using
an SEM. (b) Coherent soft x-ray diffraction pattern (in transmission) after curvature
correction (maximum momentum transfer of up to 0.134 nm−1 at the edge of the CCD).
(c) Reconstructed image (d) lineout of the image along the legs (shown in the inset),
demonstrating a resolution of 92.5 nm.
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signal and quality of the diffraction data.

4.5 Chapter Summary

This chapter presents the first high resolution XCDI results with tabletop coher-

ent x-ray sources. Both reflection and transmission imaging schemes were presented.

Approximately 200 nm resolution was achieved in a thick (∼ 56 µm) sample using a 29

nm HHG source [4]. Higher resolutions (sub-100 nm) were shown using high numerical

aperture geometries with two sources: a 46.9 nm capillary electrical discharge laser and

the same 29 nm HHG source [5]. This high NA scheme, with NA up to 0.62, was a

first for x-ray imaging and made possible near wavelength limited resolution (1.5 λ).

As we scale these techniques to shorter wavelengths it may be possible to obtain sub-10

nm resolution with 3 nm water window light. However, at these shorter wavelengths

tabletop sources will have lower flux levels. The next chapter will discuss a method of

increasing image signal to noise with very low exposure levels.



Chapter 5

Pushing the Limits: Tabletop Fourier Transform Holography

The previous chapter demonstrated that tabletop coherent SXR sources can en-

able near wavelength limited XCDI [4,5]. However, the wavelengths used (29 and 47 nm)

are not useful for probing thicker samples because they are very strongly absorbed [6].

Therefore, shorter wavelengths are desired to truly enable the usefulness of tabletop

XCDI. As these shorter wavelength sources become available, they will initially have

limited flux. Multi-reference holographies have demonstrated that good signal to noise

images can be produced with relatively low flux [15, 116]. This chapter demonstrates

one such holography, multi-reference Fourier transform holography on a tabletop co-

herent SXR source. These results came as part of an ongoing collaboration with Bill

Schlotter and have been accepted for publication in Optics Letters [26]. Much of the

text in this chapter has come out of drafts for that paper. Bill Schlotter’s dissertation

is an excellent source for the theory, application, and experimental considerations of FT

holography [15].

5.1 Toward shorter wavelength tabletop XCDI

As was mentioned in section 3.5.2, another diffractive imaging technique that is

complementary to CDI with iterative phase retrieval is Fourier transform holography

(FT holography). Recent work using light from synchrotron sources and the FLASH free

electron laser demonstrated that the image quality of FT holography can be improved
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with short exposure times by employing multiple or parallel references beams [116,

123, 129, 130]. Thus FT holography is an attractive technique for tabletop soft x-ray

microscopy where sources have limited flux.

In this work, we present the first implementation of multiple reference Fourier

transform holography on a tabletop coherent x-ray source. We achieve 89 nm image

resolution using 29 nm light, showing for the first time that multiple reference Fourier

transform holography is viable for imaging with high numerical apertures (as high as

NA >0.5). Then, using oversampling and an iterative algorithm to refine the Fourier

transform holography images, we improve our image resolutions to <53 nm, demon-

strating the highest numerical aperture x-ray holography to date. Finally, we show that

Fourier transform holography can be used effectively with exposure times as short as

30 s for an image resolution of 125 nm. This represents a significant improvement over

prior demonstrations of lensless imaging using high harmonic sources - where exposure

times of more than an hour are required for comparable image quality [4, 5]. Because

the ultrafast laser system used is available in many laboratories worldwide, this work

can find application in many areas of science and technology.

5.2 Theory of Fourier Transform Holography

In FT holography, an unknown sample object and a known reference structure are

illuminated with a single coherent beam. Interference between the scattered light from

reference and object are detected in the far field as a Fourier transform hologram [113,

114,131–134]. This is demonstrated schematically in 1D in Figure 5.1. The hologram is

recorded as a diffraction pattern on an area detector-typically a charged-coupled device

(CCD) camera. An image of the sample is then easily reconstructed by computing the

magnitude of the two dimensional Fourier transformation of the detected hologram.

To obtain the highest possible image resolution, the reference beam should diverge

very strongly (corresponding to a small point spread function), thus requiring a small
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Figure 5.1: Schematic of Fourier relationship and Fourier Transform holography in 1
dimension (from Schlotter [15]). Column one shows different transmission functions
(g(x)). Column two shows |G|2, the magnitude squared of the Fourier transform (far
field diffracted intensity) of g(x) in column one. Column three shows the autocorre-
lation F

{|G|2} of the diffracted wave. Row (a) shows the transmission, diffraction,
and autocorrelation of a single slit. Row (b) shows the same information, except for
a double slit. Notice now that in the autocorrelation there is a self-correlation peak
(center) and cross-correlations peaks between the two slits (side peaks). Row (c) shows
a sample (trapezoid) and delta-function-like reference point in transmission, diffraction,
and autocorrelation. Now the autocorrelation cross-correlation peaks produce an image
of the trapezoid sampel and its complex conjugate. This can be seen expecially in Row
(d) where the trapezoid sample is complex.
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reference source size located in the same plane as the sample. The size of the reference

hole ultimately puts the limit on the image resolution obtainable in FT holography.

Schlotter sets this limit at about 70% of the reference hole diameter in section 2.2

[15]. Several methods have been used to produce a small reference beam at soft x-

ray wavelengths, such as tightly focusing a beam with a Fresnel zone plate lens [135],

introducing a small scattering particle [136, 137], or drilling a small reference hole on

the same slide that holds the sample [15,48,116,138].

5.2.1 Mathematical representation of FT holography

To further understand the relevant theory of FT holography, we present a sim-

plified mathematical treatment of it as presented in Bill Schlotter’s dissertation [15]. If

an opaque mask consisting of an object with transmission to(x, y) and a reference hole

with transmission tr(x, y) are simultaneously illuminated with a coherent light source

with amplitude Eo, then the transmitted wave immediately behind the mask will be a

sum

E(x, y) = Eoto(x, y) + Eotr(x, y) = r(x, y) + o(x, y) (5.1)

where we have made the substitution o(x, y) = Eoto(x, y) and r(x, y) = Eotr(x, y).

In the far field, the diffracted wave or hologram will take on the form of the Fourier

transformation of Eh(X,Y ) as follows

Eh(X,Y ) = F [ε(x, y)] = F [r(x, y)] + F [o(x, y)] (5.2)

Eh = R+O. (5.3)

Here the capital letters R and O represent the Fourier transform of r and o respectively

and X,Y are the far field coordinates. Now, when we measure the hologram Eh in the

far field, we only detect the intensity, Ih as

Ih = |R+O|2 = RR∗ +OO∗︸ ︷︷ ︸
AC

+OR∗ +RO∗︸ ︷︷ ︸
XC

= |R|2 + |O|2︸ ︷︷ ︸
AC

+OR∗ +RO∗︸ ︷︷ ︸
XC

(5.4)
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where ∗ represent complex conjugation, AC are the diffraction from each aperture alone

and XC represents the interference between the two apertures.

Now, in order to retrieve the image imformation, we perform the spatial autocor-

relation of the hologram by Fourier transformation

F [Ih] = F [|R|2] + F [|O|2] + F [OR∗] + F [RO∗] (5.5)

Erec = r 
 r + o 
 o︸ ︷︷ ︸
AC

+ o 
 r + r 
 o︸ ︷︷ ︸
XC

(5.6)

where 
 represnts the complex correlation, r and o are the original transmitted fields of

the reference and object respectively and Erec is the recovered field of the spatial auto-

correlation. We see that the recovered field contains the AC self correlation terms which

appear at the center (DC) of the autocorrelations and that these will be surrounded by

the XC cross correlation terms. These XC terms will represent a cross-correlation of

the reference hole with the object and its complex conjugate. If the reference is very

small compared to the object, then the cross correlation is a high resolution image.

5.2.2 Multiple reference FT holography

To increase the signal-to-noise of images produced using FT holography, multi-

ple reference beams can be used [15, 116]. In multiple reference FT holography, each

reference beam produces a separate image in the autocorrelation reconstruction. These

images can then be averaged to improve the signal to noise and image quality [15,116].

Schlotter et al demonstrated that a high resolution image could be obtained with only

2500 detected photons with this technique [15]. Some care needs to be taken when

surounding a sample with multiple references in order to assure that the individual re-

constructed sub-images do not overlap. The treatment of this issues is dealt with in

Schlotter section 4.2 [15]. This technique could be useful for obtaining images with low

flux HHG sources at shorter wavelengths.
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5.3 First Demonstration of Tabletop X-ray FT Holography

This section summarizes the experimental setup and results of tabletop FT holog-

raphy from a coherent 29 nm HHG source. To our knowledge, this is the first demon-

stration of x-ray FT holography on a tabletop source with sub-100 nm resolution.

5.3.1 Experimental setup for tabletop SXR FT holography

The schematic of the experimental setup is shown in Figure 5.2. The driving

laser, harmonic setup, and illumination optics are all the same as described earlier in

section 4.1 and in [4,5]. However, here, as in the high numerical aperture work, a 5 cm

fiber was used in stead of a 10 cm fiber for increased 29 nm flux (∼ 108 photons/second

or about 0.7 nW onto the sample). The mode quality and coherence properties are still

preserved with this waveguide. Figure 5.3 shows the mode of the 29 nm beam from a

5 cm waveguide on a logarithmic scale with a power of about 0.7 nW in a bandwidth

of about λ/∆λ = 250 at 29 nm. The beam saturated the CCD camera in less than 100

ms.

The test object used for this work is a nanostructured pattern inspired by the

1951 USAF test target, surrounded by five fully transmissive reference holes of ∼ 125±6

nm diameter, as seen in Figure 5.2. The substrate for the sample is a 100 nm thick

low stress, non-stoichiometric silicon nitride membrane. An x-ray opaque 400 nm Au

film was deposited on the membrane by DC magnetron sputtering. The test object

was milled into the 400 nm of gold using a focused ion beam, leaving only the silicon

nitride membrane. The silicon-nitride membrane transmits ∼ 20% of the incident 29

nm light, yielding a total photon flux through the test object roughly matched to the

transmission through each one of the reference holes. This ensures good contrast in the

interference fringes of the hologram, and thus of the reconstructed image. Schlotter 3.4

discusses the specifics of the sample preparation technique with FIB milling [15].
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Figure 5.2: Schematic of multiple reference Fourier transform holography with a tabletop
soft x-ray source. A coherent soft x-ray beam with λ = 29 nm from a tabletop high
harmonic source illuminates a test pattern surrounded by five reference holes. The
scattered soft x-ray light interferes and is recorded on a CCD camera in the far field
as a hologram (log scale). Due to the high scattering angles recorded in the hologram,
curvature correction is necessary. The spatial autocorrelation of the object can be
retrieved by taking the squared magnitude of the Fourier transform of the hologram. A
single sub-image from the hologram is shown demonstrating 89 nm resolution (Photo
credit Greg Kuebler) [26].
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Figure 5.3: Logarithmic mode of a 29 nm Gaussian HHG beam from a 5 cm waveguide
with about 0.7 nW of power in a bandwidth of about 250.
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5.3.2 Results of 29 nm tabletop FT holography

Figure 5.4 summarizes our experimental results using FT holography alone. Fig-

ure 5.4 (a) shows a logarithmic, curvature corrected hologram of the sample shown in

Figure 5.2. There is only 17 mm between the sample and the center of the detector

(momentum transfer of Q = 0). Nevertheless signal can be detected above the noise

more than 700 pixels away from the center (Qmax= ±0.211 nm−1). Such a large nu-

merical aperture (NA=0.5) does not comply with the paraxial approximation because

the wavefront originating at the sample will be significantly distorted when recorded

on a flat detector. Correction of the curvature is accomplished by mapping the flat

hologram onto a spherical surface as described in section 4.4.3. This technique corrects

for distortions such as pixel skew and stretching at higher angles [5].

The hologram in Figure 5.4 (a) is a summation of 8 separate 600 second expo-

sures that were each individually background subtracted. Additionally, fixed pattern

noise and cosmic rays were removed for each exposure. After the individual exposures

are summed, the hologram is curvature corrected. Because the curvature correction

introduces a region of zeros at high Q, a Gaussian filter is applied to smooth the edge

of the data. This last step prevents ringing after Fourier transformation of the holo-

gram that would otherwise arise due to the presence of a hard edge in the data. The

magnitude squared of the correlation reconstruction is shown in Figure 5.4 (b) and re-

sults from the magnitude of the spatial Fourier transformation of the hologram. At the

center of the autocorrelation is the self-correlation of the sample. Surrounding these

self-correlation terms are five object-to-reference cross correlations and their complex

conjugates. Surrounding these cross-correlation sub-images are the reference-reference

cross correlations. The difference in the intensities of the sub-images is caused by fluc-

tuations in the flux transmitted through the reference holes due to variations in the size

of the holes and non-uniform illumination of the sample.
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Figure 5.4: (a) Curvature corrected logarithmic hologram from composite 4800 s of
exposure (8 separate 600 s exposures with maximum momentum transfer of Qmax =
±0.211 nm−1). The inset shows the detail of the center of the diffraction pattern. (b)
Magnitude squared of the autocorrelation reconstruction of the sample - the variations
in sub-image intensity are most likely due to variations in reference hole transmitted
intensity. (c) A single sub-image reconstruction with a sample line cut (blue dotted
line). (d) Plot of the line-out demonstrating 89 nm resolution with a signal to noise of
73 [26].
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One of the five sub-images from the autocorrelation shown in Figure 5.4 (b) is

enlarged in Figure 5.4 (c). The signal-to-noise ratio in this image is measured by taking

the mean of the autocorrelation signal magnitude in the red solid box and dividing it by

the standard deviation of the pixels in the dashed red box which represents a zero signal

background region. The signal-to-noise of this image is 73. Figure 5.4 (d) shows a lineout

along the dashed blue line shown in Figure 5.4 (c), demonstrating a resolution of 89 nm.

This resolution is more than four times higher than the highest resolution holographic

image previously recorded using a tabletop source [56], and is only three times the

illuminating wavelength of 29 nm. This result once again demonstrates that diffractive

imaging can be used at very high numerical aperture with tabletop sources to achieve

very high spatial resolution [5]. Given the very high signal-to-noise demonstrated in

Figure 5.4, the exposure time can be reduced substantially. The fundamental resolution

limit for this geometry where the object is convolved with a circular reference is ∼ 70%

of the diameter of the 125 nm reference holes, or ∼ 88 nm. In our current experiment,

a resolution limited by the size of the reference holes, rather than the hologram signal-

to-noise ratio, is obtained after only about 120 seconds of exposure.

5.3.3 High resolution FT holography with short exposures

In microscopy, a sample is often searched at lower resolution to identify a par-

ticular region of interest. Fourier transform holography is inherently a fast and simple

imaging technique and the use of multiple references has myriad attributes including

improved image redundancy [15,116]. This is particularly advantageous for rapidly sur-

veying a sample. We demonstrate this by showing that useful image resolution can be

achieved after only 30 s of exposure. Figure 5.5 (a) shows the hologram recorded with

a 30 s exposure, containing approximately 15,000 detected (29 nm) photons. Figure

5.5 (b) shows one sub-image, where the signal-to-noise was calculated in the same way

as for Figure 5.5 (c), and where a lineout was taken along the blue dashed line. The
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Figure 5.5: (a) Hologram recorded from a 30 s exposure (maximum momentum transfer
of Qmax = ±0.045 nm−1). (b) Sub-image from the magnitude squared of the auto-
correlation for a 30 s exposure showing a lineout (blue dashed line). (c) Lineout of
sub-image showing 125 nm resolution and a signal to noise ratio of 12.7. (d) Average
of 20 lineout resolution measurements (4 per sub-image) per time step as a function of
exposure time with error bars, showing the standard deviation of the resolution. Each
diffraction pattern array was 2048 x 2048 pixels. The array was set to zero outside of
the region where the signal from the diffraction pattern dropped below the noise. This
reduced the noise in the reconstructed autocorrelation [26].
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signal-to-noise ratio is 7, and the lineout resolution is 125 nm, as shown in Figure 5.5 (c).

We note also that the current setup has a low ratio of detection photons to generated

EUV light (� 1%), due to the mirrors and filters in the beam path. Substantial reduc-

tions in exposure time are possible using a higher throughput setup, perhaps enabling

near real-time diffractive imaging. Figure 5.5 (d) shows how the resolution scales as a

function of exposure time for FT holography by taking the average of 20 lineouts (4 per

sub-image) for exposure times of 30 s, 120 s, 600 s, 1800 s, 4800 s. Figure 5.5 (d) shows

that the maximum image resolution achievable with the 125 ± 6 nm reference holes of

89 nm was attained after approximately 120 s of exposure.

5.3.4 Effects of high NA on FT holography

The importance of curvature correction for high numerical aperture Fourier trans-

form holography is illustrated in Figure 5.6. Figure 5.6 (a) shows the non-curvature cor-

rected composite 4800 s exposure hologram. A single autocorrelation sub-image from

the non-curvature corrected data is shown in Figure 5.6 (b). These are compared to the

curvature corrected hologram and corresponding autocorrelation sub-image in Figure

5.6 (c) and Figure 5.6 (d). The curvature correction eliminates the apparent aberration

and thus substantially increases the image sharpness and clarity.

5.3.5 Hybrid holography phase retrieval approach

In microscopy, often a particular region of interest is isolated for a detailed higher

resolution image. It is possible to significantly enhance the resolution of Fourier trans-

form holographic images by applying an iterative algorithm to the oversampled holo-

gram [22, 123, 129, 130, 138, 139]. The only input necessary for this hybrid approach

is the previously recorded hologram. In real space the resolution of the holographic

image reconstruction is limited by the extent of the reference. But for the hologram,

in reciprocal space this restriction on resolution equates to the angular extent of the
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Figure 5.6: (a) Log of the non-curvature corrected hologram; (b) sub-image from auto-
correlation without curvature correction showing image distortion; (c) log of the curva-
ture corrected hologram; (d) sub-image from autocorrelation with curvature correction
showing improved image quality.
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reference wave, which is simply the Airy disk resulting from diffraction by the reference

holes (see Figure 5.2). If light scattered from the unknown object extends beyond the

reference Airy disk of the hologram, then higher spatial frequency information about

the unknown object is recorded in the hologram - although it cannot be accessed us-

ing Fourier transform reconstruction alone. However, this information can be recovered

using iterative phase retrieval algorithms on the oversampled diffraction pattern or holo-

gram [22,48,123,129,130,138,139]. This allows further improvement of the reconstructed

image resolution. As stated earlier, over a cumulative 4800 s exposure, measurable sig-

nal in the diffracted light was observed out to a 29◦ diffracted angle (momentum transfer

of 0.211 nm−1), corresponding to a potential image resolution of 30 nm. The measured

diffraction pattern was preprocessed first by removing cosmic X-rays and subtracting

the background. Following summation of the separate 600 s exposures the cumulative

diffraction pattern was curvature-corrected. To maximize the signal-to-noise ratio of

the diffraction pattern while maintaining the oversampling, the data were binned into

3 X 3 pixel blocks. Next, the entire pattern was deconvolved with a sinc kernel in real

space to compensate for the finite pixel size of the CCD detector [20,47,109].

Following this preprocessing, the iterative algorithm is applied to enhance the

resolution. First an initial rectangular loose support is estimated from the oversampling

ratio. With this loose support, 16 independent reconstructions are computed with the

guided hybrid input and output algorithm (GHIO) [20,47,104,109]. Each reconstruction

starts with a random phase set as the initial input and is iterated back and forth between

real and reciprocal space. In real space the electron density outside the support and

negative density inside the support are slowly pushed to zero. In reciprocal space, the

measured Fourier modulus (i.e. the square root of the diffraction intensity) is updated

in each iteration. After 2000 iterations, 16 images are reconstructed, defined as the

0th generation. An R-factor is calculated for each image, i.e. the difference between

the calculated Fourier transform modulus from the image and the measured diffraction



110

pattern modulus. A seed for the next generation is chosen by selecting the image with

the lowest R-factor. By multiplying the seed with each of the 16 images and taking

the square root of the product, we obtain a new set of 16 images, which is used as the

initial input for the next generation. This process is repeated through 9 generations.

After the final generation, the best seeds are averaged and a new tighter support was

determined. With this new tight support, the diffraction pattern is again submitted to

the GHIO reconstruction process, this time yielding the final image with a substantially

improved resolution of 53 nm, as illustrated in Figure 5.7.

Figure 5.7 (a) shows a scanning electron microscope image of the FT holography

sample. Figure 5.7 (b) shows the preprocessed, curvature corrected hologram from a

composite 4800 s exposure that was used in the iterative phase retrieval. Figure 5.7 (c)

shows the final reconstruction of the sample, demonstrating 53 nm resolution as shown

by the lineout along the dashed blue line (shown in Figure 5.7 (d)).

This holography/oversampling phase retrieval hybrid technique has several no-

table advantages. First, while image recovery using phase retrieval takes tens of hours

of processor time, reconstruction using the FTH method takes only seconds. Thus the

holographic/oversampling phase retrieval hybrid technique allows quick feedback on low

resolution information, with the possibility of further improving the resolution to the

limit set by wavelength, numerical aperture, and signal-to-noise via phase retrieval.

Also, as pointed out previously, the reference holes in Fourier transform holography

break the symmetry of the phase retrieval problem, allowing for higher image quality

and quicker convergence [123,130]. This technique also eases the requirement for small

reference features that are difficult to manufacture.

5.4 Conclusion

In conclusion, we have introduced a practical diffractive soft x-ray microscopy

system capable of fast feedback, high resolution imaging (near 50 nm) using Fourier
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Figure 5.7: (a) Scanning electron microscope image of the five-reference-hole sample.
(b) Log of the curvature corrected hologram used in the iterative phase retrieval (max-
imum momentum transfer of Qmax = ±0.211 nm−1). (c) Reconstructed image of the
sample using the GHIO phase retrieval algorithm to refine the resolution to 53 nm, as
demonstrated in the lineout (blue dotted line) shown in (d) [26].
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transform holography. All of the data presented are from a tabletop soft x-ray source

and demonstrate that high numerical aperture (NA >0.5) coherent diffractive imaging

is practical. By combining oversampling iterative phase retrieval with Fourier transform

holography, we achieve near wavelength-limited 53 nm resolution using 29 nm light, thus

demonstrating the highest numerical aperture x-ray holography to date. Moreover, good

resolution images are possible with exposure times of only 30 s. This work represents

a significant step forward over past work, and uses ultrafast laser systems that are

available in many laboratories worldwide.

In the future, new phase matching schemes promise to increase the high harmonic

flux at short wavelengths down to ∼ 1 nm, for applications in ultrafast biological and

materials imaging on the nanometer scale as well as a wide range of applications in

chemical and materials spectroscopies. Because FT holography is photon efficient, it

is an ideal imaging scheme to use with high harmonic sources, particularly when com-

bined with phase retrieval to achieve the highest spatial resolution. Finally, since these

diffractive imaging schemes can exploit the ultrafast pulse duration capability of high

harmonic generation, time resolved coherent imaging will be possible in the future with

simultaneously high spatial and temporal resolution.



Chapter 6

Outlook: Future developments and applications

This dissertation has demonstrated that tabletop x-ray coherent diffractive imag-

ing is possible at high resolution (∼ 50 nm). It has demonstrated that high harmonic

generation (HHG) is a compact, bright, and extremely coherent source of EUV/SXR ra-

diation. Additionally, tabletop soft x-ray lasers, although not as coherent as HHG, can

be spatially filtered to provide very bright coherent sources. Both of these sources were

used in the first demonstrations of tabletop x-ray coherent diffractive imaging (XCDI)

or lensless imaging. This section will review the future developments that will need to

take place to truly make this microscope useful and some of the suggested applications

for such a technique.

6.1 Future directions: a practical tabletop water window micro-

scope

While these demonstrations are compelling, a practical tabletop coherent x-ray

microscope will need to access shorter wavelengths (higher photon energies) in the 1-6

nm range (200-1000 eV). These wavelengths are not absorbed as strongly as the 30-50

nm range thus making imaging of thicker samples or even three dimensional tomography

possible. We have already discussed in section 2.5 that SXR lasers have a punishing

pump power scaling of 1/λ4, thus accessing these short wavelengths on tabletop SXR

laser sources will be difficult [6]. Therefore, it is hoped that HHG will scale to usable
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Figure 6.1: Current and future region where HHG may be a useful tabletop source of
x-rays (adapted from Attwood [6] courtesy of M. Murnane).

wavelengths in the single nm wavelength range. Figure 6.1 shows the region in which

HHG produces flux levels that make scientific or technological applications possible

currently (∼ 1 µW), and where HHG has potential for useful flux levels through the

development of higher repetition rate lasers and better nonlinear optics. This section

will discuss some preliminary work conducted at repeating these results at the 13.5 nm

wavelength under the direction of fellow graduate student Daisy Raymondson. Then it

will also discuss pathways towards useful water window imaging with HHG.

6.1.1 Recent developments at 13 nm

Section 2.3 described how HHG is a very tunable source of coherent SXR radia-

tion. Our group previously demonstrated that helium can be phase matched to produce

narrow divergence 13.5 nm x-rays [125], however imaging at this wavelength has not

been demonstrated by our group. HHG from a helium gas jet has been used in a zone

plate imaging configuration to achieve 200 nm resolution elsewhere, but imaging with

13.5 nm at sub-100 nm resolutions with HHG has yet to be achieved [55]. One poten-

tial reason is that available photon flux at 13.5 nm from helium is about 20 times less

than 29 nm flux from argon due to the re-absorption of harmonic radiation in helium.

This added absorption comes from, among other factors, the fact that helium is phase
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matched at about 400 torr of pressure compared to phase matched argon at about 50

torr of pressure. The 13.5 nm wavelength has extremely important technological im-

plications because of the development of extreme ultraviolet lithography (EUVL) for

the semiconductor industry at that wavelength [6,35]. Thus, if high resolution imaging

(<50 nm) at 13.5 nm can be demonstrated on a high repetition rate tabletop source, it

could have important applications in EUVL mask and mirror blank defect inspection.

Daisy Raymondson has demonstrated preliminary image resolutions down to 70

nm resolutions (see Daisy A. Raymondson Dissertation and forthcoming articles). She

uses the same laser setup described in chapter 4, but focuses the fs laser pulses into a 100

µm diameter waveguide and phase matches in helium at a pressure of about 400 torr.

Some preliminary data using FT holography with ∼ 200 nm reference holes is shown

in figure 6.2. This result demonstrates approximately 184 nm resolution in 40 minutes

of exposure. Additionally, Raymondson is working on higher repetition rate lasers (15

kHz instead of 3 kHz) that could increase the available 13.5 nm flux by a factor of 5 or

more. With improved nonlinear optics, higher repetition rate lasers, and higher through

put optical/harmonic discrimination schemes, 13.5 nm imaging with HHG may be able

to achieve the same resolution-to-wavelength ratio as described in chapters 4 and 5,

making sub-30 nm resolutions practical.

Figure 6.2: Preliminary results of 13 nm Fourier transform holography: (a) SEM image
of FT holography sample with seven reference holes (b) 13.5 nm hologram from 40
minute exposure (log scale) (c) autocorrelation reconstruction of the sample (d) line cut
through one sub-image showing 184 nm resolution [27].
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6.1.2 Pathways to usable water window

Another potentially very large application of tabletop XCDI is biological imaging

in the water window (between 284 eV and 543 eV) [6]. It has been said that one of

the reasons x-ray water window imaging has not found broader applications in biology

is that biologists do not want to have to take their laboratories to synchrotrons for

imaging. Therefore, a tabletop source of coherent water window radiation source could

achieve much broader application in the biological community. However, as discussed in

section 2.3, HHG cannot be phase matched through traditional methods at these photon

energies with driving laser wavelengths of 800 nm due to the high levels of ionization [87,

90]. Quasi-phase matching has been demonstrated with HHG up to photon energies of

about 200 eV (∼ 6 nm) but not yet into the water window [62,85,87,140]. However, Tenio

Popmintchev and colleagues in our group have recently demonstrated phase matched

water window generation with mid-IR driving wavelengths (1.4 µm) [66]. This is possible

due to the lower ionization levels that occur when using mid-IR wavelengths. Currently

efforts are underway to measure the coherence and demonstrate coherent imaging with

this source. Therefore, biological tabletop water window XCDI looks very possible in

the next two to three years.

6.2 Summary and outlook

This section has shown that the tabletop XCDI demonstrations from this disser-

tation have many potential applications to biology and materials science and technology.

Water window biological imaging and EUVL metrology are only two of these that should

be realized in coming years. With the development of new phase matching and quasi-

phase matching techniques, better lasers, and better management of the harmonic light

there is real possibility to have bright, coherent SXR radiation up to 1 keV (∼ 1 nm).

Additionally, XCDI with HHG may open a whole new field of tabletop ultrafast x-ray
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imaging with femtosecond to attosecond resolution. Already efforts are underway in our

group to repeat Ra’anan Tobey and Mark Siemens’ work of studying the photoacoustic

properties of thin films in imaging mode [141]. Additional time resolved studies will

begin soon on magnetic materials. This may open the door to femtosecond dynamic

studies of magnetic thin films with photon energies ∼ 800 eV and at resolutions ap-

proaching <10 nm [48, 142]. Thus, many interesting applications are already waiting

for tabletop XCDI with HHG as soon as the SXR flux becomes available.



Bibliography

[1] S. W. Hell, “Far-field optical nanoscopy,” Science, vol. 316, no. 5828, pp. 1153–
1158, 2007.

[2] S. M. Hurtley and L. Helmuth, “The future looks bright,” Science, vol. 300, no.
5616, p. 75, 2003.

[3] M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field
fluorescence imaging with theoretically unlimited resolution,” Proceedings of the
National Academy of Sciences of the United States of America, vol. 102, no. 37,
pp. 13 081–13 086, 2005.

[4] R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hadrich, D. M. Gaudiosi, J. Holt-
snider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao,
Y. Liu, and F. Salmassi, “Lensless diffractive imaging using tabletop coherent
high-harmonic soft-x-ray beams,” Phys Rev Lett, vol. 99, no. 9, p. 098103.

[5] R. L. Sandberg, C. Song, P. W. Wachulak, D. A. Raymondson, A. Paul, B. Amir-
bekian, E. Lee, A. E. Sakdinawat, O. V. C. La, M. C. Marconi, C. S. Menoni,
M. M. Murnane, J. J. Rocca, H. C. Kapteyn, and J. Miao, “High numerical aper-
ture tabletop soft x-ray diffraction microscopy with 70-nm resolution,” Proc Natl
Acad Sci U S A, vol. 105, no. 1, pp. 24–7.

[6] D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation: Principles and
Applications. Cambridge University Press, 2007.

[7] D. Müller, S. Backus, K. Read, M. Murnane, and H. Kapteyn, “Very high-peak-
power lasers cryogenic cooling multiplies ti: sapphire output,” Laser Focus World,
vol. 41, no. 10, p. 65, 2005.

[8] “Kmlabs R©.” [Online]. Available: http://www.kmlabs.com

[9] X. F. Li, A. LHuillier, M. Ferray, L. A. Lompr, and G. Mainfray, “Multiple-
harmonic generation in rare gases at high laser intensity,” Physical Review A,
vol. 39, no. 11, p. 5751.

[10] J. L. Krause, K. J. Schafer, and K. C. Kulander, “High-order harmonic genera-
tion from atoms and ions in the high intensity regime,” Physical Review Letters,
vol. 68, no. 24, p. 3535.



119

[11] P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,”
Physical Review Letters, vol. 71, no. 13, p. 1994.

[12] H. C. Kapteyn, M. M. Murnane, and I. P. Christov, “Extreme nonlinear optics:
coherent x rays from lasers,” Phys. Today, vol. 58, no. 3, pp. 39–46, 2005.

[13] T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear
optics,” Reviews of Modern Physics, vol. 72, no. 2, pp. 545–591, 2000.

[14] A. R. Rundquist, “Phase-matched generation of coherent, ultrafast x-rays using
high harmonics,” Ph.D. dissertation, Washington State University, 1998.

[15] W. F. Schlotter, “Lensless fourier transform holography with soft x-rays,” PhD
Dissertation, Stanford University, 2007.

[16] R. A. Bartels, A. Paul, M. M. Murnane, H. C. Kapteyn, S. Backus, Y. Liu,
and D. T. Attwood, “Absolute determination of the wavelength and spectrum of
an extreme-ultraviolet beam by a young’s double-slit measurement,” Opt. Lett.,
vol. 27, no. 9, pp. 707–709, 2002.

[17] R. A. Bartels, A. Paul, H. Green, H. C. Kapteyn, M. M. Murnane, S. Backus, I. P.
Christov, Y. Liu, D. Attwood, and C. Jacobsen, “Generation of spatially coherent
light at extreme ultraviolet wavelengths,” Science, vol. 297, no. 5580, pp. 376–8.

[18] J. Peatross and M. Ware, “Physics of light and optics,” 2008,
http://optics.byu.edu/textbook.aspx.

[19] J. R. Fienup, “Reconstruction of an object from the modulus of its fourier trans-
form,” Opt. Lett, vol. 3, no. 1, pp. 27–29, 1978.

[20] C. Song, D. Ramunno-Johnson, Y. Nishino, Y. Kohmura, T. Ishikawa, C. C. Chen,
T. K. Lee, and J. Miao, “Phase retrieval from exactly oversampled diffraction
intensity through deconvolution,” Physical Review B, vol. 75, no. 1, p. 12102,
2007.

[21] P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-
resolution scanning x-ray diffraction microscopy,” Science, vol. 321, no. 5887, pp.
379–382, 2008.

[22] B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer,
M. de Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat Phys,
vol. 4, no. 5, pp. 394–398.

[23] S. Marchesini, H. Chapman, S. Hau-Riege, R. London, A. Szoke, H. He, M. How-
ells, H. Padmore, R. Rosen, and J. Spence, “Coherent x-ray diffractive imaging:
applications and limitations,” Optics Express, vol. 11, no. 19, pp. 2344–2353, 2003.

[24] A. J. Paul, “Coherent euv light from high-order harmonic generation:
Enhancement and applications to lensless diffractive imaging,” PhD Dis-
sertation, University of Colorado at Boulder, 2007. [Online]. Available:
http://jilawww.colorado.edu/pubs/thesis/paul ariel/paul thesis.pdf



120

[25] “Quantifoil R©holey carbon films.” [Online]. Available: http://www.quanitfoil.com

[26] R. L. Sandberg, D. A. Raymondson, C. La-o vorakiat, A. Paul, K. J. Raines,
J. Miao, M. M. Murnane, H. C. Kapteyn, and W. F. Schlotter, “Tabletop soft
x-ray fourier transform holography with 50 nm resolution,” Optics Letters, 2009
(in press).

[27] R. L. Sandberg, D. A. Raymondson, W. F. Schlotter, K. J. Raines, C. La-o vo-
rakiat, A. Paul, M. M. Murnane, H. C. Kapteyn, and J. Miao, “Near diffraction
limited coherent diffractive imaging with tabletop soft x-ray sources,” Journal of
Physics: Conference Series (Proceedings of the Conference on X-ray Microscopy),
2008 (in review).

[28] R. Hooke, Micrographia. Courier Dover Publications, 2003 (Original year 1665).

[29] R. J. Oldfield, Light Microscopy: An Illustrated Guide. CV Mosby, 1994.
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