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The role of few-body physics in ultracold gases has become increasingly important.

For instance, knowledge of two-body scattering has allowed tuning of the two-body

interaction strength through a Fano-Feshbach resonance in both Bose and Fermi gases.

A detailed understanding of three-body scattering provides information on the trap loss

processes which can determine the lifetime of a gas. It can also be used to explore basic

few-body behavior. The description of a gas of bosonic dimers relies on understanding

the four-body dimer-dimer scattering process. This dissertation concerns two related

concepts, the behavior of N -fermion systems with tunable two-body interactions and

controllable few-body systems and their impact on ultracold gases. Both fall under the

overarching area of controlled few-body physics in many-body systems.

The N-fermion system is described in using the basic methods of hyperspherical

coordinates. This approach provides an intuitive picture of the qualitative behavior

of a degenerate Fermi gas by finding an effective one-dimensional potential that pre-

dicts the ground state energy and the RMS size of the gas in fair agreement with other

theoretical techniques. This study also provides an important initial connection be-

tween the techniques of few-body physics and many-body systems. By extending the

method to multi-component gases, I also predict a dynamic instability in three- and

four-component Fermi gases that is now within the range of experimental exploration.

In the second part of this dissertation, I explore three- and four-body problems

with s-wave interactions. By applying a new method based on the Lippmann-Schwinger

equation to the three-body problem, I develop scattering potentials for an arbitrary

three-body system with zero-range pseudo-potential interactions. By extending this
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approach to multi-channel interactions, a new class of three-body quasi-bound states

is predicted, creating true three-body Fano-Feshbach resonances. I also approximately

find the four-fermion hyperradial scattering potential. These potentials are then used to

find the zero-energy s-wave dimer-dimer scattering length to and accuracy larger than

previous calculations. By exploring the dimer-dimer scattering potential, the full uni-

versal, energy-dependent, dimer-dimer scattering length is found, including the inelastic

processes of dimer dissociation and relaxation.
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Chapter 1

Introduction

Since the experimental realization of the first atomic Bose-Einstein condensates

in 1995 [9, 10, 11] and later the first degenerate gas of fermionic atoms [12, 13, 14, 15,

16, 17], the field of ultracold gases has seen an explosion of experimental capabilities and

theoretical interest, becoming a veritable playground of new and interesting quantum

phenomena. Microscopic, few-body interactions in these systems plays a central role [18,

19, 20, 21, 22, 23]. For instance, under the influence of a of a Fano-Feshbach resonance,

the s-wave interaction strength in an ultra-cold atomic gas can be tuned from weak to

strong and attractive to repulsive. Further, few-body correlations can play an important

role in determining experimental observables in such systems [23, 24, 25]. With the

large variety of knobs to turn in these systems, they provide a perfect environment for

exploring fundamental quantum mechanics as well as probing new physical phenomena.

Further understanding of the few-body interactions can lead also to an understanding

of the loss processes, such as the scaling of three-body recombination with the strength

of the interaction [26, 27, 28, 29], that govern the lifetimes of ultracold gases.

As a result of this versatility, the majority of this dissertation is focused on the few-

body control and dynamics present in ultra-cold atomic gases. This is not to say that the

methods introduced here are exclusively applicable to this exciting field. Hyperspherical

coordinates have a long history of use in several areas of theoretical physics ranging

from nuclear physics [30, 31, 32, 5, 33] to atomic structure [34, 35, 36, 37, 38, 39] and
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fundamental few-body scattering [40, 41].

Hyperspherical methods starts with a single concept, that of the hyperradius. As

the name suggests, the hyperradius is the extension of the concept of the radius of a

sphere beyond three dimensions. Generally, is proportional to the square root of the

sum of the squares of all of the coordinates in a d dimensional Cartesian space, i.e.

R ∝

√√√√ d∑
i=1

x2
i . (1.1)

All the remaining d−1 degrees of freedom are then encapsulated in a set of hyperangles,

denoted by Ω. In the cases considered in this thesis, the hyperradius can be considered

as a coordinate describing the RMS radius of N -bodies. In this context, it is clear that

such a coordinate is useful. For instance, if one wanted to describe some inelastic three-

body process, for example A+B+C → AB+C where A, B, and C are three particles

and AB is a bound state between particles A and B, this can be described as a system

coming in from large hyperradius (where A, B and C are all far from each other) on one

potential curve and leaving at large hyperradius (where the distance between AB and

C is large) on another. Further, if one considers an adiabatic approach in which the

hyperradius is fixed and the Hamiltonian is diagonalized in the remaining hyperangular

degrees of freedom, all the continuum behavior of the systems is encapsulated in the

hyperradius [36, 42, 43]. As with most adiabatic treatments, the hyperspherical method

is a “divide and conquer” idea. By finding the eigenfunctions and eigenvalues of a

system at fixed hyperradius, a set of 1D coupled potentials can be developed, and all of

our normal Schrödinger quantum mechanics intuition can be brought to bear upon the

resulting system.

1.1 The many-fermion problem

The many fermion problem with tunable s-wave interactions has generated a great

deal of interest over the years. The two-body physics of the Fano-Feshbach resonance
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is crucial in this system for understanding the control of the s-wave scattering length,

a. By using such a resonance the mean-field interaction strength can be tuned through

a wide range of values ranging from weakly attractive (a < 0) to weakly repulsive

(a > 0). It was suggested by Leggett in 1980 [20] and later others [44, 21, 22] that this

system provides a unique opportunity to study the crossover behavior between BCS type

superfluidity, caused by momentum correlated pairs of fermions, to a Bose-Einstein

condensate (BEC) of diatomic molecules. Interestingly, this connection between two

different types of superfluidity was predicted to happen smoothly, without a phase

change in between. Since these predictions, the experimental realization of this crossover

has been achieved [12, 13, 14, 15, 16, 17], and theoretical descriptions of the strongly

interacting regime abound, from quantum Monte Carlo treatments [45, 24] to extensions

of the BCS wave function into the unitarity regime [46, 47, 48, 49]. Recently, in the

original work of Tan [50, 51, 52] and others [53, 54, 55], a full description of the ultracold

Fermi gas has been found in terms of a single quantity, the so called contact parameter.

Despite the intense effort directed at this system, a complete description has yet to be

achieved.

Understanding the BEC side of the resonance requires knowledge of the dimer-

dimer scattering length. Initially, this was found in the first Born approximation [56, 21]

and through mean field theory [56, 21] to be add ≈ 2a, and later by Pieri and Strinati,

through a diagrammatic approach, to be add ≈ 0.73a [57]. It wasn’t until a complete

solution to the four-fermion problem was extracted in 2004 by Petrov, Salomon and

Shlyapnikov [23, 6] that the actual dimer-dimer scattering length, in large a limit, was

found, add = 0.60(2)a. Through correlated Gaussian methods, von Stecher, Blume

and Greene [58, 8] were able to refine this prediction and extract the effective range

correction. In a basic sense, the four-fermion problem represents the simplest system

that could exhibit the physics of the crossover problem.
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1.2 Three-body physics and the Efimov effect

While basic few body physics is necessary for understanding the behavior of ul-

tracold many body systems, there is still considerable interest in the behavior of pure

few-body dynamics. One area that is of considerable current interest is in the famous

Efimov effect first predicted in 1970 by Vitaly Efimov [59, 32]. Efimov studies a three

boson system with short-range two-body interactions in which each two-body system is

infinitesimally away from forming a bound state; that is, the s-wave scattering length

is infinite. Under these conditions, he found that the three-body system could form

an infinite number of weakly bound trimer states with geometrically spaced binding

energies. The qualitative understanding of this effect is natural, in retrospect. If the

two-body sub-system is barely unable to form a bound state, it is natural to think that

the extra attraction from the third particle is enough to push the system over the top.

Quantitatively, Efimov and later others, found that this effect is described by a simple

wave function in the hyperspherical representation [60, 26, 27].

The result on resonance can easily be extended to all scattering lengths when a

is much greater than the range of the two-body interaction. It was later predicted that

Efimov states should be observable through resonances in the three-body recombina-

tion rate for negative scattering lengths [26, 61]. In 2006 the first strong experimental

evidence of such a resonance was observed in an ultra-cold gas of 133Cs by Kraemer et.

al. [62]. Unfortunately, only a single resonance has been seen to date. To confirm this

as an Efimov resonance, the characteristic geometric scaling of at least two resonances

must be seen. The resonance observed in [62] could be caused by a d-wave resonance in

the scattering cross section [63] or possibly by a three-body Fano-Feshbach resonance

attached to an excited three-body scattering threshold [29]. More recently, a resonance

in the atom-dimer relaxation rate has been seen observed [64], which might be another

indication of the presence of an Efimov state at positive scattering length. Predictions
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focusing on the four-body loss rate [65] have recently given another handle on charac-

terizing an Efimov resonance. The experimental realization of these predictions is still

ongoing.

1.3 Dissertation structure

In Chapter 2 of this dissertation I give a brief introduction to hyperspherical

coordinates with examples of possible parameterizations of the hyperangles. The pa-

rameterization method used is common and described thoroughly in Refs. [5, 66]. I also

introduce the idea of the generalized angular momentum, or hyperangular momentum,

and give it explicitly in terms of the hyperangles. These results are then used to analyze

N non-interacting particles in an isotropic oscillator, the results of which give a useful

example of the utility of hyperspherical coordinates.

Chapter 3 applies the results of Chapter 2 to generate a variational wavefunc-

tion, called the K-harmonic, for the two-component degenerate Fermi gas. This method

is an extension of existing studies in Bose-Einstein condensates [67, 68]. Within this

approximation, it is shown that zero-range Fermi pseudo-potential interactions predict

an unphysical collapse behavior that is not seen in experiment or more complete quan-

tum Monte Carlo studies of the system. I then show that this collapse can be averted

through the use of a density dependent interaction. These results are extended to allow

for multiple spin components.

In Chapter 4 the K-harmonic method is extended to allow for anisotropic trapping

potentials by breaking the hyperspherical coordinates into a hypervectorial parameter-

ization. This method is shown to reproduce the ground state energy and RMS radius

of the gas predicted in Chapter 3. By performing a normal mode analysis the low en-

ergy excitation frequencies are extracted. These frequencies disagree both qualitatively

and quantitatively with those observed experimentally, and disagree with predictions

in the unitarity regime, a → −∞, from other theoretical methods. While this result is
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disheartening, the methods presented are an initial step for further studies proposed in

the chapter.

Chapter 5 departs from the variational treatments in the previous chapters and

introduces the adiabatic hyperspherical representation. The hyperangular Green’s func-

tions is derived here for an arbitrary number of dimensions and applied to the three-body

problem with regularized zero-range interactions. The resulting transcendental equation

can be used to find the adiabatic potentials for an arbitrary three-body system in which

the scattering lengths between particles is greater than the range of the interactions.

Combined with the general form of the non-adiabatic corrections, three-body scattering

at low temperatures becomes an intuitive process. These very general results are ap-

plied to the case of the lowest three hyperfine components of 6Li. The Green’s function

method for three interacting particles is then extended to allow for multi-channel two-

body interactions for identical bosons. By creating a resonance at an excited two-body

scattering threshold, I predict a new series of Efimov states that are attached to an

excited three-body scattering threshold, and embedded in the three-body continuum.

These states can be interpreted as true three-body Fano Feshbach resonances.

Chapter 6 examines the four-fermion problem with positive s-wave scattering

lengths. By utilizing a unique variational, non-orthogonal basis set, the hyperradial

potential curves and their non-adiabatic corrections are found. These potentials are then

used to analyze elastic and inelastic dimer-dimer scattering in the large scattering length

regime. By describing dimer-dimer scattering through a complex, energy dependent

scattering length, both elastic scattering and inelastic dimer breakup are analyzed. The

results of this study are shown to compare favorably with existing theoretical predictions

and extend beyond their range of validity. I then develop a new analysis based on Fermi’s

golden rule for describing the process of dimer-dimer relaxation, the results of which

compare well with experimentally observed relaxation rates.

Chapter 7 provides a brief summary of the results of this dissertation and discusses
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some future avenues of inquiry.



Chapter 2

Hyperspherical Coordinates

Strictly speaking an overview of hyperspherical coordinates is not really needed

for this thesis, as there are many excellent existing works on the subject (see for instance

[30, 31, 66, 5, 38, 67]). This section is included here for completeness, also some of the

ideas and derivations will be useful in later chapters. To begin, consider a d dimensional

Cartesian space whose coordinate axes are given by {xi}di=1. For the majority of this

thesis these coordinates can be considered to be the components of a set of Jacobi

vectors or the components of a set of trap centered vectors, but for now I will proceed

with a more abstract approach. The basic concept of the hyperradius was introduced

in the previous chapter. I define it explicitly here as

R2 =
d∑
i=1

x2
i . (2.1)

While this definition will be used here, often a mass scaling will be inserted. For instance

in a trap centered system of equal mass atoms an extra factor of 1/N , where N is the

number of atoms, will be used to simplify the interpretation of the hyperradius. For the

purposes of this section, though, this definition will be adequate. With Eq. 2.1, the d

dimensional Laplacian can be rewritten in terms of the hyperradius [66, 5]:

∇2 =
d∑
i=1

∂2

∂x2
i

=
1

Rd−1

∂

∂R
Rd−1 ∂

∂R
− Λ2

R2
. (2.2)
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In this equation Λ is called the hyperangular momentum, or grand angular momentum

operator, the square of which is given by

Λ2 =
∑
i>j

− |Λij |2 , (2.3)

Λij = xi
∂

∂xj
− xj

∂

∂xi
.

Already the d dimensional Laplacian has a rather pleasing form reminiscent of its 3D

counterpart. In fact if d is taken to 3, Eq. (8) reduces exactly to the three dimensional

Laplacian in spherical coordinates, and Λ becomes merely the normal spatial angular

momentum operator. To proceed from here a way of defining the remaining d−1 degrees

of freedom in terms of angles is needed.

2.1 Defining the hyperangles: Delve’s coordinates

Unfortunately, or possibly fortuitously depending on your view point, there is no

unique way to define the hyperangles in a given system. Here I will use a simple, stan-

dardized method of defining them used by many others [34, 38, 67, 5, 1, 2] in the form of

the so called Delve’s coordinates [30, 31]. I will begin by examining a well known exam-

ple of hyperspherical coordinates, that of normal spherical polar coordinates. Clearly

these coordinates can be used to describe the relative motion of 2 particles in 3 dimen-

sions or the position of a single particle in a trap-centered coordinate system, but it can

also be used in less obvious ways. For instance, spherical polar angles may be used to

describe the relative motion of 4 particles in 1 dimension.

The components of a three dimensional vector, ~r, can be written in terms of a

radius and two angles as

x = r cosφ sin θ, (2.4)

y = r sinφ sin θ, (2.5)

z = r cos θ. (2.6)
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Figure 2.1: The tree that gives the standard spherical coordinates for a 3 dimensional
system is shown.

This parameterization can be represented in a simple tree structure shown in Fig. 2.1.

The end points of the tree represent each component of the vector ~r, and each node

in the tree is represents an angle. Also associated with each node is a sub radius.

For the lowest node the “subradius” is merely the total length of the vector, r. For

the upper node the subradius is merely the cylindrical radius ρ =
√
x2 + y2. Using

the tree structure from Fig. 2.1, a set of rules can be developed for extracting the

parameterization of Eqs. 2.4, 2.5, and 2.6. Starting at the bottom node with total

radius, r, move up through the tree to the desired coordinate. For each move through

the tree, if you move to the left (right) from a node multiply by the sine (cosine) of the

angle associated with that node. Continue until you reach the Cartesian component.

This procedure can be generalized readily from three to d dimensions. Start by

building a tree with d free ends and d − 1 nodes, associate an angle with each node

and follow the above rules. Using the tree structure, starting at the bottom node with

total hyperradius, R, move up through the tree to the desired coordinate. If you move

to the left (right) from a node, multiply by the sine (cosine) of the angle associated

with that node. Continue until you have reach the desired Cartesian component. A

specific tree for d dimensions is shown in Fig. 2.2. Following the rules this tree gives

the hyperangular representation



11

Figure 2.2: The canonical tree that gives a hyperangular parameterization for a d di-
mensional system is shown.

xn = R cosαn−1

d−1∏
j=n

sinαj , (2.7)

0 ≤ αj ≤ π, j = 2, ..., d− 1

0 ≤ α1 ≤ 2π

where cosα0 ≡ 1 and
d−1∏
j=d

sinαj ≡ 1. This can also be written as

tanαn =

√∑n
j=1 x

2
j

xn+1
, (2.8)

n = 1, 2, 3, ..., d− 1.

This hyperspherical tree has been dubbed the canonical tree [66, 5] as it is simple to

construct and very easy to add more dimensions to.

To avoid double counting, the range that the hyperangles take on is restricted

depending on how many free branches are attached to the node corresponding to a given

angle. If the node has two free branches, then the angle takes on the full range 0 to 2π.

If the node has one free branch attached, the angle goes from 0 to π. If the node has no

free branches attached to it, the associated angle goes from 0 to π/2. Following these
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Figure 2.3: The tree structure used to correlate two subspaces to a single hyperradius.

rules for the canonical tree gives the ranges of the angles αi,

0 ≤ α1 ≤ 2π,

0 ≤ αi ≤ π, i = 2, ..., d− 1.

Another slightly more abstract way of considering this construction is to start by

breaking the d dimensional space into two subspaces of dimension d1 and d2, and as-

suming that these two subspaces are already described by two sets of sub-hyperspherical

coordinates, (R1,Ω1) and (R2,Ω2). With these assumptions all that remains is to cor-

relate the sub-hyperradii. This is done by following the type of procedure described

above using the tree structure shown in Fig. 2.3,

R1 = R sinα, (2.9)

R2 = R cosα,

where α is now the final hyperangle in the system. Using this procedure recursively,

one can define the hyperangles in the subspaces until the only remaining subspaces are

the individual Cartesian components of the total d dimensional space. The concept of

dividing the total space up into subspaces will prove very useful in later chapters.

As a final example of hyperangular parameterizations, I introduce a parameter-

ization for N 3-dimensional vectors {~ρi}Ni=1. One could break each vector up into its

individual components and use the canonical parameterization from Eq. 2.7, but this

removes much of the spatial physical intuition that one could bring to bear, such as the
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Figure 2.4: The tree structure used to parameterize the hyperangles for N three dimen-
sional vectors is shown. Note that the dot at the end of each branch in the tree on the
left stands for a spherical polar tree.

individual spatial angular momentum corresponding to each vector. Instead one can

use a variation on the canonical tree shown in Fig. 2.4. On first glance, this tree might

seem the same as the canonical tree shown in Fig. 2.2. In this case, though, the large

dot at the end of each branch represents the spherical polar sub-tree of the form shown

in Fig. 2.1 for each vector ~ρi. Using this tree structure and following the rules outlined

above, 2N of the 3N − 1 hyperangles are given by the normal spherical polar angles for

each vector, (θ1, φ1, θ2, φ2, ..., θN , φN ). The remaining N − 1 hyperangles are given by

tanαi =

√∑i
j=1 ρ

2
j

ρi+1
, (2.10)

0 ≤ αi ≤
π

2
,

i = 1, 2, 3, ..., N − 1.

where ρi is the length of the ith vector. It will be shown in the next section that this

parameterization is useful when spatial angular momentum plays a role in the problem of

interest. For completeness, following the rules laid out in Appendix A, the hyperangular
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volume element that results from this parameterization is given by

dΩ =

(
N∏
i=1

dωi

)N−1∏
j=1

cos2 αj sin3j−1 αj


where ωi is the normal spherical polar differential volume for ~ρi.

2.2 Hyperangular momentum and hyperspherical harmonics

The hyperangular momentum operator in terms of hyperangular coordinates can

be found by using the fact that each subset of Cartesian components is itself a Cartesian

vector space. With that in mind, consider the hyperspherical tree given by Fig. 2.3. By

writing the Laplacian for each subspace in terms of the sub-hyperradii R1 and R2 and the

sub-hyperangular momentum operators Λ1 and Λ2 the total hyperangular momentum

operator can be extracted [66]. It is

Λ2 =
−1

sin(d1−1)/2 α cos(d2−1)/2 α

∂2

∂α2
sin(d1−1)/2 α cos(d2−1)/2 α (2.11)

+
Λ2

1 + (d1 − 1) (d1 − 3) /4
sin2 α

+
Λ2

2 + (d2 − 1) (d2 − 3) /4
cos2 α

− (d− 1) (d− 3) + 1
4

.

where α is defined as in Eq. 2.9 and Λi is the sub-hyperangular momentum of the

subspace of dimension di. If one of the subspaces corresponds to a single Cartesian

component then the sub-hyperangular momentum for that space is zero, i.e. if di = 1

then Λ2
i = 0. To find Λ2

1 (Λ2
2), ones needs only to apply Eq. 2.11 recursively to each

subspace. In this way, there is a sub-hyperangular momentum operator associated with

each node in any given hyperspherical tree.

It is useful to be able to diagonalize the hyperangular momentum operator. The

eigenfunctions of Λ2 are detailed in several references (See Refs. [34, 38, 5] for example),

and the method of constructing them is given in Appendix A. These functions, Yλµ (Ω),

are called hyperspherical harmonics. Their eigenvalue equation is

Λ2Yλµ (Ω) = λ (λ+ d− 2)Yλµ (Ω) , (2.12)
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where λ = 0, 1, 2, ... is the hyperangular momentum quantum number. The index µ

enumerates the degeneracy for each λ and can be thought of as the collection of sub-

hyperangular momentum quantum numbers that result from a given tree. Hyperspher-

ical harmonics are also constructed as to diagonalize the sub-hyperangular momenta of

each node in a given hyperspherical tree, e.g.

Λ2
1Yλµ (Ω) = λ1 (λ1 + d1 − 2)Yλµ (Ω) , (2.13)

where λ1 = 0, 1, 2, ... is the sub-hyperangular momentum quantum number associated

with Λ2
1. The total hyperangular momentum quantum number λ is limited by the

relation

λ = |λ1|+ |λ2|+ 2n, (2.14)

where n is a non-negative integer. The absolute values in this case are there to allow

for when either d1 or d2 are 2. In this special case the hyperangular momentum quan-

tum number λi associated with the two dimensional subspace can be negative, as with

the magnetic quantum number, m, in spherical polar coordinates. Equation 2.14 only

applies if both d1 and d2 are greater than 1. If, for instance d2 = 1, then the restriction

takes on the form

λ = |λ1|+ n.

The behavior illustrated in Eq. 2.13 clearly demonstrates why the parameteri-

zation shown in Fig. 2.4 is useful. Each three dimensional spherical polar subtree will

have a spatial angular momentum and z-projection associated with it, e.g.

l2i Yλµ (Ω) = li (li + 1)Yλµ (Ω) ,

where l2i is the square of the angular momentum operator for the ith vector. This

property allows for addition of angular momentum in the normal way, through sums

over magnetic quantum numbers and Clebsch-Gordan coefficients. Now that the hy-
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perspherical harmonics are defined, it is useful to examine a simple example applying

them.

2.2.1 N bodies in a trap

Here I examine a simple example that demonstrates the utility of hyperspherical

coordinates, that of N particles of mass m in a spherically symmetric oscillator trap.

This example can be found in Refs. [69, 1], but I show it here as the results will prove

very useful. The Hamiltonian for this system is given by

H =
N∑
i=1

(
− ~2

2m
∇2
i +

1
2
mω2r2

i

)
, (2.15)

where ~ri is the position of the ith particle with respect to the trap center, and ∇2
i is the

normal 3D Laplacian with respect to ~ri. This system is trivially solved by a product

of single particle oscillator states whose radial behaviors are the solutions of the single

particle Schrödinger equation,(
−~2

2m

(
d2

dr2
− l (l + 1)

r2

)
+

1
2
mω2r2 − En`

)
rfn` (r) = 0. (2.16)

The solution to this is well known and is given by

rfnl (r) = Anl exp
(
−r2/2`

) (r
`

)l+1
Ll+1/2
n

(
r2

`2

)
, (2.17)

with energy En` = ~ω (2n+ l + 3/2), where ` =
√

~/mω and n is the number of radial

nodes in the wavefunction.

This problem can also be solved in terms of hyperspherical harmonics and their

resulting hyperangular momentum quantum number λ. The hyperradius for this 3N

dimensional system can be defined along the lines of Eq. 2.1 with an extra factor of

1/N :

R2 =
1
N

N∑
i=1

r2
i (2.18)

giving a clear interpretation of the hyperradius as the coordinate parameterizing the

rms radius of the gas. For this treatment, the explicit form of the hyperangles will
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not be needed; for completeness, though and to tie into the previous section, the full

hyperangular parameterization is given, but it is clear that they may be defined using

the parameterization described in the section 2.1.

Transformation of (2.15) into hyperspherical coordinates using Eqs. 2.18 and 2.2

yields a Schrödinger equation that separates into hyperradial and hyperangular pieces.

The hyperangular solution is a hyperspherical harmonic that diagonalizes Λ2. After

removing first derivative terms in the hyperradius, the resulting hyperradial Schrödinger

equation is given by(
−~2

2M

(
d2

dR2
− K (K + 1)

R2

)
+

1
2
Mω2R2 − E

)
R(3N−1)/2F (R) = 0, (2.19)

where K = λ + 3 (N − 1) /2 and M = Nm. Comparing this with Eq. 2.16 one

can see that if the substitutions l → K, n → χ, m → M , r → R and rfnl (r) →

R(3N−1)/2FχK (R) are made, the single particle radial Schrödinger equation becomes

the N particle hyperradial Schrödinger equation. With these replacements the hyper-

radial solution to Eq. 2.19 is evidently

R(3N−1)/2FχK (R) = AχK exp
(
−R2/2L

)(R
L

)K+1

LK+1/2
χ

(
R2

L2

)
, (2.20)

where L = `/
√
N , and χ is the number of hyperradial nodes in the N body system.

The total energy of the N -body system is then given by

EχK = ~ω
(

2χ+K +
3
2

)
= ~ω

(
2χ+ λ+

3N
2

)
. (2.21)

With this result comes a different understanding of hyperspherical harmonics.

The non-interacting oscillator is separable in both the independent particle coordinates

{~ri}Ni=1 and in hyperspherical coordinates {R,Ω}. This yields a relationship between

the hyperspherical quantum numbers χ and λ and the single particle quantum numbers

ni, the number of radial nodes for the ith particle, and li, the ith particle’s angular

momentum, i.e.

2χ+ λ =
N∑
i=1

(2ni + li) . (2.22)
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It should be noted that this does not mean that the independent particle solution

and the hyperspherical solution are exactly same, only that the hyperspherical solu-

tion R(3N−1)/2GχK (R)Yλµ (Ω) must be a linear combination of independent particle

solutions of the same energy, i.e.

R(3N−1)/2GχK (R)Yλµ (Ω) =
∑
k

ak

[
N∏
i=1

rifnki lki
(ri) ylkimki (ωi)

]
, (2.23)

where ylm (ω) is a normal spherical harmonic of the spatial solid angle ω and
(
nki , l

k
i ,m

k
i

)
are the quantum numbers associated with the ith particle in the kth state subject to

Eq. 2.22.

Equation 2.23 leads to an alternative way of constructing hyperspherical harmon-

ics through oscillator function. Timofeyuk [70, 71] and Fabre de le Ripelle [72, 73] have

done just that by finding the linear combination of independent particle oscillator solu-

tions that produce a hyperradially nodeless solution, χ = 0. It is also worth noting that

the hyperradius R is invariant under any permutation of particle coordinates, meaning

that any permutation symmetry in the system (e.g. bosonic or fermionic symmetry)

must be contained in the hyperspherical harmonic.

By finding a linear combination of independent particle solutions that correspond

to the ground state of the system subject to a specific permutational symmetry it can

easily be shown [1] through Eqs. 2.22 and 2.23 that the N -body wavefunction must

diagonalize the hyperangular momentum operator Λ2 with eigenvalue

λGS =
N∑
i=1

(
2nGSi + lGSi

)
. (2.24)

Here “GS” indicates that the given quantum numbers are associated with the ground

state of the system. This relationship follows from expanding a ground state indepen-

dent particle N -body wavefunction in terms of noninteracting hyperspherical wavefunc-

tions:

ΨGS (~r1, ~r2, ..., ~rN , σ1, σ2, ..., σN ) =
∑
ν

cνR
(3N−1)/2GχνKν (R)Yλνµν (Ω, σ1, σ2, ..., σN ) .
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Here I have incorporated the possibility of additional spin coordinates (σ1, σ2, ..., σN )

to allow for the possibility of multi-component Fermi gasses. I will further assume that

the ground state in question consists only of linear combinations of permutations of the

product of N single particle oscillator states with spin components. For instance in a

Fermi gas this would be a standard Slater determinant state. The energy of this ground

state is then given by

EGS =
N∑
i=1

~ω
(

2ni + li +
3
2

)
.

This combined with Eq. 2.22 gives the relation between the hyperspherical quantum

numbers and the independent particle quantum numbers,

2χν + λν =
N∑
i=1

(2ni + li)

for each ν in the expansion. Now all of the ground state permutational symmetry is

contained in the hyperangular function so if R(3N−1)/2G0Kν (R)Yλνµν (Ω, σ1, σ2, ..., σN )

is considered, it will have the appropriate symmetry with an energy of

E =
N∑
i=1

~ω
(

2ni + li +
3
2

)
− 2χν ,

which is less than than the ground state energy, a contradiction unless χν = 0. Thus

Eq. 2.24 has been shown.

The hyperspherical harmonics,

YλGSµ (Ω, σ1, σ2, ..., σN ) =
ΨGS (~r1, ~r2, ..., ~rN , σ1, σ2, ..., σN )

R(3N−1)/2G0KGS (R)
, (2.25)

corresponding to the ground state eigenvalue, λGS , are called the K harmonics, a con-

cept that will be used heavily in Chapter 3. It is useful to note that YλGSµ (Ω, σ1, σ2, ..., σN )

defined here is independent of the oscillator length `, a fact that will be used in later

sections. A derivation similar to the one shown here with the center of mass motion of

the system removed can be found in Ref. [1].



Chapter 3

N Interacting Fermions in a Trap Under the K-Harmonic

Approximation

The realization of the degenerate Fermi gas (DFG) in a dilute gas of fermionic

atoms has triggered widespread interest in the nature of these systems. This achievement

combined with the use of a Fano-Feshbach resonance allows for a quantum laboratory

in which many quantum phenomena can be explored over a wide range of interaction

strengths. This leads to a large array of complex behaviors including the discovery of

highly correlated BCS-like pairing for effectively attractive interactions [13, 15, 16, 17,

14]. There are many theoretical studies of these systems ranging from quantum Monte

Carlo techniques [45, 24] to extending the BCS pairing wavefunction into the strongly

interacting regime [48, 46, 49, 74]. In this chapter I propose a simpler variational

treatment of this highly complex system. The methods presented here cannot completely

describe the full nature of the system. They do however represent an important bridge

between many-body systems and the world of hyperspherical coordinates which are often

associated with few-body techniques [34, 41, 40]. Many of the results of this chapter

can be found in Refs. [1, 2].

The starting point of the K harmonic method describes the degenerate Fermi

gas with a set of 3N − 1 hyperangular coordinates on the surface of a 3N dimensional

hypersphere of hyperradius R, where N is the number of atoms in the system. This

formulation is a variational treatment of the N -body problem in which the hyperangular
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behavior of the system is approximated by that of the non-interacting degenerate Fermi

gas presented in Section 2.2.1. At first glance this approach might seem non-intuitive,

but it is natural to assume that, in a first approximation, the behavior of the gas will be

determined by its overall spatial extent. This type of approach has been used in studying

Bose-Einstein condensates [67, 68, 75] and it has also been applied to finite nuclei

[5, 71]. The theoretical approach developed here shares some mathematical kinship

with D-dimensional perturbation theory; for instance, the N → ∞ and D → ∞ limits

both result in wavefunctions perfectly localized in the hyperradius. However, the goals

and motivations of the K-harmonic method differ for the most part from those of Ref.

[76, 77, 78].

The main goal of this chapter is to describe the motion of the gas in a single

collective coordinate R, which describes the overall extent of the gas. The benefit of

this strategy is that the behavior of the gas is reduced to a single one-dimensional

linear Schrödinger equation with an effective hyperradial potential. The use of a real

potential then lends itself to the intuitive understanding of normal Schrödinger quantum

mechanics. This method also allows for the calculation of physical quantities such as

the energy and rms radius of the ground state; these observables agree quantitatively

with those computed using Hartree-Fock methods. The method also yields a visceral

understanding of a low energy collective oscillation of the gas, i.e. a breathing mode.

This chapter is arranged as follows. In Section 3.1 the K-harmonic method is

introduced in general. In Section 3.2 the method is applied to a system of fermions

interacting through a bare zero-range potential. In Section 3.3 the results from the bare

zero-range potential are presented and discussed. In Section 3.4, I apply the K-harmonic

method to a density dependent zero-range interaction and present the results.
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3.1 The K-harmonic approximation

In this chapter I consider a collection of N identical fermionic particles of mass

m in a spherically symmetric oscillator trap with oscillator frequency ω, distributed

equally between two internal spin substates. The method presented here is similar to

that of Refs. [67, 68, 75] in which the K-harmonic method is applied to a Bose gas.

This study expands the method to a fermionic system. The Hamiltonian that governs

this system is given by

H =
−~2

2m

N∑
i=1

∇2
i +

1
2
mω2

N∑
i=1

r2
i +

∑
i>j

Uint (~rij) (3.1)

where Uint (~r) is an arbitrary two-body interaction potential and ~rij = ~ri − ~rj . Inter-

action terms involving three or more bodies are ignored. In general, the Schrödinger

equation that comes from this Hamiltonian is very difficult to solve. The goal here is to

simplify the system by describing its behavior in terms of a single collective coordinate,

the hyperradius defined by Eq. 2.18. Using Eqs. 2.2 and 2.18 it is simple to write the

Schrödinger equation in terms of the hyperradius and hyperangles as

0 =
[
−~2

2M

(
∂2

∂R2
− (3N − 3) (3N − 1)

4R2
− Λ2

R2

)
(3.2)

+
1
2
Mω2R2 +

∑
i>j

Uint (~rij)− E

R(3N−1)/2Ψ (R,Ω)

where Ψ (R,Ω) has been multiplied by R(3N−1)/2 to remove first derivative terms in the

hyperradius. Here Λ is the grand angular momentum operator defined in Eq. 2.3. The

heart of the K-harmonic approximation lies in the variational ansatz that the wave-

function Ψ can be separated into a hyperradial function and a hyperangular function.

The hyperangular function is then fixed to the behavior of a non-interacting degenerate

Fermi gas, i.e.

Ψ (R,Ω) = F (R)Yλµ (Ω, σ1, σ2, ..., σN ) , (3.3)
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where Yλµ is the K-harmonic described by Eq. 2.25 as

Yλµ (Ω) =

∑
P

(−1)p P
N∏
i=1

fnili (ri) ylimi (ωi) 〈σi|msi〉

G0K (R)
. (3.4)

In this expression, fnili (ri) is the radial solution to the independent particle harmonic

oscillator for the ith particle given by

rfnl (r) = Nn` exp
(
−r2/2`2

)
(r/`)l+1 Ll+1/2

n

[
(r/`)2

]
,

where Lαn (r) is an associated Laguerre polynomial with ` =
√

~/mω. ylimi (ωi) is an

ordinary 3D spherical harmonic with ωi the spatial solid angle for the ith particle and

|msi〉 is a spin ket that will allow for two spin species of atoms, |↑〉 and |↓〉. The sum

in Eq. 3.4 runs over all possible permutations P of the N spatial and spin coordinates

in the product wavefunction. The spin coordinates in Yλµ (Ω, σ1, σ2, ..., σN ) have been

dropped for notational simplicity. The numerator on the right hand side of Eq. 3.4

corresponds to the ground state of the Fermi gas in which each particle successively fills

a single particle state.

To utilize the trial wavefunction, Eq. 3.3, the expectation value 〈Yλµ |H|Yλµ〉 is

taken, where the integration is over all hyperangles and spin coordinates at a fixed hyper-

radius. This approach gives a new effective linear 1D Schrödinger equationHeffR
(3N−1)/2F (R) =

ER(3N−1)/2F (R) in terms of an effective Hamiltonian Heff given by

Heff =
−~2

2M
d2

dR2
+ Veff (R) , (3.5)

Veff (R) =
~2K (K + 1)

2MR2
+

1
2
Mω2R2 +

∑
i>j

〈Yλµ |Uint (~rij)|Yλµ〉 . (3.6)

where Veff (R) is an effective hyperradial potential. As in Eq. 2.19, here K = λ +

3 (N − 1) /2 and λ is given by Eq. 2.24. In the following sections I develop methods

for evaluating the interaction expectation values for various two body interactions, and

analyze the resulting effective potentials in the hyperradius.
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It will later prove convenient to rescale this effective Hamiltonian in terms of

non-interacting quantities to avoid divergences in the large N limit:

E = ENIE
′ (3.7)

R =
√
〈R2〉NIR

′,

which introduces the dimensionless variables of energy (E′) and hyperradius (R′). Here

the non-interacting energy ENI and average hyperradius squared
〈
R2
〉
NI

are given

explicitly by

ENI =
(
λ+

3N
2

)
~ω

〈
R2
〉
NI

=
(
λ

N
+

3
2

)
`2.

Under this rescaling the effective hyperradial Schrödinger equation becomes(
−1
2m∗

∂2

∂R′2
+
Veff (R′)
ENI

− E′
)
R′(3N−1)/2F

(
R′
)

= 0 (3.8)

where m∗ = mENIN
〈
R2
〉
NI
/~2, and Veff (R′) is the effective hyperradial potential in

Eq. 3.6 evaluated at the rescaled hyperradius.

3.2 Bare zero-range s-wave interactions

The first two-body interaction considered here will be that of the well-known

Fermi pseudo-potential [79],

Uint (~r) =
4π~2a

2µ2B
δ(3) (~r) (3.9)

where a is the s-wave scattering length, µ2B = m/2 is the two body reduced mass, and

δ(3) (~r) is the Dirac δ-function. Normally a regularization factor of
∂

∂r
r appears after the

δ-function, but when considering a variational wave function whose derivative is regular

at r → 0 the regularization disappears, i.e. limr→0
∂

∂r
rψ (r) = limr→0

[
r
∂

∂r
ψ (r) + ψ (r)

]
=

ψ (0). The use of zero-range contact interactions to model real interactions in atomic
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systems has a long history [79]. The interest in these interaction models arises from the

simplifications that can be made to the theory of complex systems [80, 81, 82].

Degenerate ground states cause some complications for this formulation. In this

thesis these are avoided by restricting the system to the non-degenerate ground states

that correspond to filled energy shells of the oscillator, i.e. “magic numbers” of particles.

With moderate extensions the degeneracies can be taken into account by creating an

interaction matrix, but the magic number restriction should still give a good description

of the general behavior of systems with large numbers of atoms. The total number

of atoms and the hyperangular momentum quantum number λ are most conveniently

expressed in terms of the number n of single particle orbital energies filled:

N =
n (n+ 1) (n+ 2)

3
(3.10a)

λ =
(n− 1)n (n+ 1) (n+ 2)

4
(3.10b)

k0
f =

√
2mω

~

(
n+

1
2

)
, (3.10c)

where k0
f is the peak non-interacting Fermi wave number. In the limit where N � 1, λ

and k0
f can be expressed in terms of the total number of particles N as

λ→ (3N)4/3

4
, (3.11a)

k0
f →

√
2mω

~
(3N)1/3. (3.11b)

I next calculate the interaction matrix element by combining 3.11a with Yλµ (Ω)

from 3.4

Ueff (R)
4π~2a

2µ2B

∑
i>j

〈
Yλµ

∣∣δ3 (~r)
∣∣Yλµ〉 .

Since Yλµ (Ω) is antisymmetric under particle exchange we may do a coordinate trans-

position in the sum, ~ri → ~r2 and ~rj → ~r1. Each transposition pulls out a negative sign
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from Φλ and we are left with

Ueff (R) =
4π~2a

2µ2B

∑
i>j

〈
Yλµ

∣∣δ3 (~r12)
∣∣Yλµ〉

=
4π~2a

2µ2B

N (N − 1)
2

〈
Yλµ

∣∣δ3 (~r12)
∣∣Yλµ〉 .

To calculate
〈
Yλµ

∣∣δ3 (~r12)
∣∣Yλµ〉 it is useful to start with a more general interaction. We

assume that the interaction term in the total N body Hamiltonian is such that at a

fixed hyperradius, Uint (~rij) is separable into a hyperradial function times a hyperangular

integral, i.e.

Uint (~rij) ≡ VijR (R)VijΩ (Ω) . (3.12)

From properties of the δ-function and Eq. 2.10 it is easy to see that the Uint (~r) =
4π~2a

2µ2B
δ3 (~r) fits this criterion. While VijΩ (Ω) might have some very complex form, it

will be seen shortly that only the form of VijR (R) and Uint (~rij) will matter. This means

that the hyperradial behavior of Ueff (R) will be entirely determined by V12R (R) , i.e.

Ueff (R) =
N (N − 1)

2
〈Yλµ |Uint (~r12)|Yλµ〉 = ζ

N (N − 1)
2

V12R (R) , (3.13)

where ζ = 〈Yλµ |VΩ (Ω)|Yλµ〉. To find ζ, the definition Yλµ (Ω) from Eq. 3.4 is used,

then R3N−1G0K (R)2 is multiplied on both sides. Integrating over R and using Eq. 3.12

to replace V12R (R)V12Ω (Ω) gives a simple equation that may be solved for ζ.

N (N − 1)
2

ζα =β, (3.14a)

α =
∫
R3N−1G0K (R)2 V12R (R) dR, (3.14b)

β =
N ( N − 1)

2

∫  N∏
j=1

d3rj

∑
P1

(−1)p1 P1

N∏
i=1

fnili (ri) ylimi (ωi) 〈σi|msi〉 ,

(3.14c)

× Uint (~r12)
∑
P2

(−1)p2 P2

N∏
i=1

fnili (ri) ylimi (ωi) 〈σi|msi〉 ,

where I have used the fact that R3N−1dRdΩ ∝
N∏
j=1

d3rj [66]. The integral in β is a

diagonal, determinantal matrix element and may be drastically simplified by using the
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orthogonality of the single particle basis functions (for details see [83], §6-1):

β =
1
2

N∑
i,j=1

∫
d3r1d

3r2 (3.15)

×
[
ψ∗i (~r1)ψ∗j (~r2)Uint (~r12)ψi (~r1)ψj (~r2)

− δmsimsjψ
∗
i (~r2)ψ∗j (~r1)Uint (~r12)ψi (~r1)ψj (~r2)

]
,

where the sum runs over every independent particle state in the ground state wavefunc-

tion ψi (~r). At this point it is convenient to specify Uint (~r) as the pseudo-potential, Eq.

3.9. The pseudo-potential gives VR12 (R) = 1/R3, and using the definition of G0K (R)

in Eq. 2.20 this yields

α =
Γ
(
λ+

3 (N − 1)
2

)
L3Γ

(
λ+

3N
2

) .

Substituting the pseudo-potential into Eq. 3.15 simplifies the sum considerably as

β =
4π~2a

2µ2B

∫
d3r

N1∑
ν=1

|ψν (~r)|2
N2∑
µ=1

|ψµ (~r)|2 , (3.16)

where the sum over ν (µ) is over all N1 (N2) of the spatial states occupied by particles

in spin state 1 (2). In the case considered here, N1 = N2 = N/2, but it is clear how this

can be generalized to polarized gases. Putting everything together with Eq. 3.5 yields

an effective Schrödinger equation in the hyperradius:

ER(3N−1)/2F (R) =
[
−~2

2M
d2

dR2
+ Veff (R)

]
R(3N−1)/2F (R) , (3.17)

Veff (R) =
~2K (K + 1)

2MR2
+

1
2
Mω2R2 +

4π~2a

2µ2B

CN
N3/2R3

,

where

CN =
`3Γ

(
λ+

3N
2

)∫
d3r

∑N/2
ν=1 |ψν (~r)|2

∑N/2
µ=1 |ψµ (~r)|2

Γ
(
λ+

3 (N − 1)
2

) . (3.18)

There are some interesting things to note about the effective potential Veff . For

N = 1 , CN = 0, K = l and the effective Schrödinger equation become the Schrödinger



28

equation of a single particle in a trap. Note that the form of Veff is very similar to

the effective potential found for bosons by the authors of Ref. [67]. What may be

surprising is the extra term of 3 (N − 1) /2 contained in K. The kinetic energy term in

Veff is controlled by the hyperangular momentum, which in turn reflects the total nodal

structure of the N -fermion wavefunction. This added piece of effective hyperangular

momentum summarizes the energy cost of confining N fermions in the trap.

The large N behavior of CN can be found by realizing that ψv in Eq. 3.16 is a

non-interacting independent particle oscillator state, and the sum of |ψν |2 over ν is the

density of a single component,

ρ(1) (~r) =
N/2∑
ν=1

|ψν (~r)|2 . (3.19)

In the limit N →∞, the Thomas-Fermi approximation [84], which should become exact

for non-interacting oscillator states in the large N limit, gives

ρ(χ) (~r) =
1

6π2

(
2mµχ

~2

)3/2(
1− mω2r2

2µχ

)3/2

, (3.20)

Nχs =
∫
d3rρ (~r) , (3.21)

where ρ(χ) (~r) is the density for the χth component of the gas, and µχ is the non-

interacting chemical potential set by the condition 3.21.Inserting this into Eq. 3.18

gives

CN →
√

2
3

256
315π3

N3/2

Γ
(
λ+

3N
2

)
Γ
(
λ+

3 (N − 1)
2

) . (3.22)

Inserting Eqs. 3.11a and 3.11b the leading order behavior in N can be extracted:

CN →
√

2
3

32N7/2

35π3

(
1 +

0.049
N2/3

− 0.277
N4/3

+ ...

)
, (3.23)

where the higher order terms in 1/N have been found by fitting the numerically cal-

culated values of CN . Table 3.1 gives CN/N7/2 calculated numerically for the several

filled shells while Fig. 3.1 shows both the calculated values of CN/N7/2 for the first 100

filled shells and the values from the fit in Eq. 3.23 versus 1/N.
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n N λ CN/N

7/2

1 2 0
1

8π2
≈ 0.0127

2 8 6 0.0637
3 20 30 0.0251
4 40 90 0.0244
5 70 210 0.02435
. . . . . . . . . . . .
15 1360 14280 0.0241
30 9920 215760 0.02409
100 343400 25497450 0.02408

Table 3.1: N , λ and CN/N
7/2 for the several filled shells. We can see that CN/N7/2

quickly converges to the Thomas-Fermi limiting value of 32
√

2/3/35π3 ≈ 0.02408 to
several digits.

In both Table 3.1 and Fig. 3.1 the convergence to the large N behavior, CN →
√

232N7/2/
(√

335π3
)

= 0.02408N7/2, can clearly be seen.

In the large N limit the effective potential in Eq. 3.8 can be written using Eqs.

3.11a, 3.11b and 3.17
Veff (R′)
ENI

→ 1
2R′2

+
1
2
R′2 +

σk0
fa

R′3
(3.24)

where σ = 4096/2835π2. In the large N limit the effective mass m∗ in the hyperradial

derivative term in Eq. 3.8 becomes

m∗ → 1
16

(3N)8/3 . (3.25)

For large numbers of particles, the second derivative term becomes negligible, a fact that

will be useful in later sections. It can be noted that the only parameter that remains in

the effective potential is the dimensionless quantity k0
fa.

The behavior of Veff (R′) versus R′ is illustrated in Fig. 3.2 for various values

of k0
fa. For k0

fa = 0 (solid curve), the non-interacting limit, the curve is exact, and

the ground state solution is given by Eq. 2.20. For non-zero values of a, Veff acquires

an attractive (k0
fa < 0) or repulsive (k0

fa > 0) 1/R′3 contribution as indicated by the

dot-dashed and dashed lines respectively. For k0
fa < 0 the DFG is metastable in a region
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Figure 3.1: Values of CN divided by the large N limit, CN → 0.02408N7/2, versus 1/N
are shown. The circles are the calculated value while the curve is the fit stated in Eq.
3.23. Figure from Ref. [1].

which has a repulsive barrier which it may tunnel through and emerges in the region of

small R′ where the interaction term is dominant. It should be noted, though, that small

R′ means the overall size of the gas is small. Thus the region of collapse corresponds

to a very high density in the gas. In this region several of the assumptions made in

this section can fall apart, most notably the assumption dealing with the validity of the

two-body, zero-range potential [85]. For k0
fa > 0 the positive 1/R′3 serves to strengthen

the repulsive barrier and pushes the gas further out.

3.3 Result for bare zero-range interactions

Examination of Eq. 3.24 shows that effectively attractive interactions (a < 0)

and effectively repulsive interactions (a > 0) have qualitatively different behavior. With

this in mind I will examine these two cases separately. With the effective hyperradial

potential in hand, the hyperradial behavior of Eq. 3.3 can be variationally optimized

by solving the effective Schrödinger Eq. 3.17. The results reported here are found by

solving Eq. 3.17 for a fixed number of particles using the exact effective potential, but

much of the intuition may be extracted from the large N limit potential in Eq. 3.24.
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Figure 3.2: The dimensionless rescaled effective potential, Veff/ENI as a function of
the rescaled hyperradius for k0

fa = 0 (solid), k0
fa = 1.19 (dashed) and k0

fa = −0.40.
(dot-dash).

3.3.1 Repulsive interactions (a > 0)

For effective repulsive interaction the predicted energy from the K harmonic

method is expected to deviate from experimental values, since the trial wavefunc-

tion does not allow any fermions to combine into molecular pairs as has been seen

in experiments.[13, 15, 16, 17] This method only can describe the normal degenerate

Fermi gas. The strong repulsive barrier for repulsive interactions shown in Fig. 3.2

arises as the gas pushes against itself which increases the energy and rms radius of the

ground state. Figures 3.3 and 3.4 compare the ground state energy and average radius

squared respectively of 240 trapped atoms, plotted as a function of k0
fa with a Hartree-

Fock (HF) calculation. The inset in Fig. 3.3 shows that the K harmonic energies are

slightly above the HF energies; since both methods are variational upper bounds, we

can conclude that the HF solution is a slightly better representation of the true solution

to the full Schrödinger equation with δ-function interactions.

An added benefit of the K harmonic method is in providing an intuitively simple

way to understand the energy of the lowest radial excitation of the gas, i.e. the breathing

mode frequency. Figure 3.2 shows that as k0
fa increases the repulsion increases the
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Figure 3.3: The ground state energy in units of the non-interacting energy versus k0
fa

for 240 atoms calculated using the K harmonic method (curve) and using Hartree-Fock
(circles). Inset: the difference in the ground state energies predicted be the K harmonic
(EK) and Hartree-Fock (EHF ). Clearly the K harmonic energies are slightly higher
than Hartree-Fock.
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Figure 3.4: The ground state average squared radius of the gas atoms in units of the
non-interacting rms squared radius is plotted versus k0

fa. The calculations considered
240 atoms in both the K harmonic method (curve) and Hartree-Fock (squares).

curvature at the local minimum, whereby stronger repulsion causes the breathing mode

frequency to increase. Figure 3.5 compares the breathing mode frequency calculated

using the K harmonic method to the sum rule prediction [86] based on HF orbitals,
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Figure 3.5: The lowest breathing mode excitation (ω0) in units of the trap frequency
is plotted versus k0

fa for the K harmonic method (solid curve) and for the sum rule
(circles). Also shown as dashed curves are the lowest eight radial excitation frequencies
predicted in the HF approximation.

and also the lowest eight radial excitation frequencies predicted by Hartree-Fock. As

anticipated, the K harmonic method and the sum rule method agree that the breathing

mode frequency will increase with added repulsion. Interestingly both the K harmonic

and sum rule methods disagree qualitatively with all eight of the lowest HF excitations.

This difference is attributed to the fact that Hartree-Fock on its own can only describe

single particle excitations while both the sum rule and the K harmonic methods

describe collective excitations in which the entire gas oscillates coherently.

3.3.2 Attractive interactions (a < 0)

In this section the behavior of the gas under the influence of attractive s-wave in-

teractions (k0
fa < 0) is examined. For attractive interactions the gas lives in a metastable

region and can tunnel through the barrier shown in Fig. 3.2. Figure 3.6 shows the be-

havior of Veff for several values of k0
fa. The location of the local minimum gets pulled

down with stronger attraction as the gas pulls in on itself and deeper into the center of

the trap. Further, as the strength of the interaction increases, the height of the barrier
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decreases. In fact beyond a critical interaction strength ac the interaction becomes so

strong that it always dominates over the repulsive kinetic term. At this critical point

the local extrema disappear entirely and the gas is free to fall into the inner “collapse”

region. The value of ac can be calculated approximately by finding the point where

Veff loses its local minimum and becomes entirely attractive. This critical interaction

strength is given by

k0
fac = −189π2

1024
1

51/4
≈ −1.22.

This is not exact as the gas will have some small zero point energy that will allow it to

tunnel through or spill over the barrier before the minimum entirely disappears.
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Figure 3.6: The dimensionless rescaled potential curve Veff/ENI is shown as a function
of the rescaled hyperradius R′ for several values of kfa; kfa = kfac (dashed), and from
top to bottom kfa = −0.42,−0.66,−0.90,−1.53 (all solid)

Just before the minimum disappears, its location is given by R′min = 5−1/4, with

an energy of Veff (R′min) =
√

5ENI/3 ≈ 0.75ENI . This means that if the gas, in

actuality, is mechanically stable for all values of the two body scattering length, i.e.

a→ −∞, this approximation must be altered to include a renormalization cutoff in the

strength of the δ-function such that k0
fa > −1.22 for all a. With this in mind, we begin

to examine the behavior of the DFG for the allowed values of k0
fa.

Figures 3.7 and 3.8 show a comparison of the ground state energy and rms radius

of the gas versus k0
fa down to k0

fac as calculated in the K harmonic and Hartree-Fock
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methods. Again HF does just slightly better in energy, which we interpret as Hartree-

Fock giving a slightly better representation of the actual ground state wavefunction.

The energy difference becomes largest as the interaction strength approaches the critical

value. This increase is due to the fact that Hartree-Fock predicts that collapse occurs

slightly earlier with k0
fac ≈ −1.12. As the interaction strength increases, the energy

and rms radius of the gas decrease, and as k0
fa approaches k0

fac the overall size of the

gas decreases sharply.
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Figure 3.7: The ground state energy (in units of the non-interacting energy) versus
k0
fa for 240 atoms calculated using the K harmonic (curve) and Hartree-Fock (circles)

methods. Inset: The difference in the ground state energies predicted by the K harmonic
(EK) and Hartree-Fock (EHF ). Clearly the K harmonic prediction is slightly higher.

While the local minimum present in Veff only supports metastable states, and

anything outside of the
∣∣∣k0
fa
∣∣∣ � 1 regime is suspect, it is still informative to examine

the behavior of the energy spectrum versus k0
fa, beginning with the breathing mode

frequency. As the interaction strength becomes more negative Fig. 3.6 shows that

the curvature about the local minimum in Veff decreases. This “softening” of the

hyperradial potential leads to a decrease in the breathing mode frequency in the outer

well. Figure 3.9 shows the breathing mode vs. k0
fa predicted by the K harmonic (curve)

method and also using the sum rule with Hartree-Fock orbitals (circles). Also shown in
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Figure 3.8: The average squared radius of the Fermi gas ground state in units of the
non-interacting value is plotted versus k0

fa. The calculations are for 240 atoms in both
the K harmonic method (curve) and Hartree-Fock (squares).

Fig. 3.9 are the lowest eight Hartree-Fock excitation frequencies for a filled shell of 240

atoms. Again, the K harmonic method agrees quite well with the sum rule, while both

differ qualitatively from the HF prediction. The sharp decrease in the breathing mode

frequency that occurs as k0
fa → k0

fac is a result of the excited mode “falling” over the

barrier into the collapse region as the barrier is pulled down by the interaction.
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Figure 3.9: The frequency of the lowest energy radial transition in units of the trap
frequency versus k0

fa predicted by the K harmonic method (solid line) and by the sum
rule (circles). Also shown are the lowest eight radial transitions predicted by Hartree-
Fock.
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Figure 3.10 displays some energy levels in the metastable region as functions of

k0
fa near k0

fac. Because of the singular nature of the 1/R3 behavior in the inner region,

an inner repulsive 1/R12 barrier has been added to truncate the infinitely many nodes

of the wavefunction in the inner region. The behavior of the wavefunction is not correct

within this region anyway because recombination becomes dominant, and in any case

the zero-range interaction is suspect beyond
∣∣∣k0
fa
∣∣∣ ∼ 1, and it must be renormalized.
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Figure 3.10: A portion of the energy spectrum vs k0
fa close to the critical point k0

fa =
k0
fac. Levels in the metastable region (cyan) decrease slowly while levels in the collapse

region (red) decrease very quickly. Energy levels above the barrier in Veff (green) live
both in the collapse region and the metastable region.

Figure 3.10 shows three distinct types of energy level. Levels that are contained

in the local minimum (shown in cyan) are decreasing, but not as quickly as the others;

levels that are in the collapse region (shown in red) have a very steep slope as they are

drawn further in toward R = 0; and energy levels that are above the barrier in Veff

(shown in green) have wavefunctions in both the collapse region and the local minimum.

As k0
fa decreases, the higher energy levels fall over the barrier into the collapse region

earlier, until finally just before k0
fac is reached the first excited metastable level falls

below the “ground state”. This corresponds to the breathing mode behavior seen in

Fig. 3.9. Of course all of this applies only if there is no further hyperradial dependence

of a. If the interaction becomes density dependent, a concept that will be explored in
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section 3.4 and has been used in several other treatments [87, 3, 88, 2], a change in the

hyperradius will change the density and thus change the effective scattering length, i.e.

a→ a (R).

3.3.3 The large N limit

This section deals with the degenerate Fermi gas in the large N limit. To do this,

the fact that the ∂2/∂R2 term in the effective Hamiltonian, the “hyperradial kinetic

energy”, becomes negligible can be exploited. In this limit the total energy of the

system is merely given by E = Veff (Rmin), as is the case in dimensional perturbation

theory [89]. To find the ground state energy one must merely find the minimum (local

minimum for a < 0) value of Veff . Accordingly, we find the roots of
dVeff
dR′

= 0. Using

Eq. 3.24 we simplify this to

k0
fa =

1
3σ
R′min

(
R′4min − 1

)
, (3.26)

where R′min is the hyperradial value that minimizes Veff and σ is defined in the same

way as in Eq. 3.24. The solutions to Eq. 3.26 are illustrated graphically in Fig. 3.11; for

any given k0
fa only look for the value of R′min that gives that value. The exact solution

of Eq. 3.26 cannot be determined analytically for all values of k0
fa, but Fig. 3.11 shows

that for k0
fa > 0 there is always only one positive, real R′min that satisfies Eq. 3.26. This

corresponds to the global minimum discussed for repulsive interactions. For k0
fa < 0

things are a bit more complicated. Figure 3.11 shows that for k0
fac < k0

fa < 0 there are

two solutions to 3.26. The inner solution is a local maximum and corresponds to the

peak of the barrier seen in Fig. 3.6; the outer solution corresponds to the local minimum

where the DFG lives. The local minimum is the state of concern here as this will give

the energy and hyperradial expectation values of the metastable Fermi gas. The value

of k0
fa where these two branches merge is the place where the local maximum merges

with the local minimum, namely the critical value, k0
fac. There is no solution to 3.26
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for k0
fa < k0

fac, and thus there is no region of stability. For k0
fa = 0, the non-interacting

limit, there are two solutions, R′min = 0 and R′min = 1. The solution R′min = 0 must be

discounted as there is a singularity in Veff at R = 0. Thus in the non-interacting limit

R′min → 1 and Veff (Rmin)→ ENI , as should be expected.

Figure 3.11: A plot of the location if the extrema in Eq./ 3.26 versus k0
fa is shown.

Examination of this plot tells us the behavior of R′min for all allowed values of k0
fa

including the existence of the critical point k0
fac located at the minimum of the plot

where the maximum and minimum coincide.

Substitution of 3.26 into 3.24 gives the energy of the ground state in the large N

limit, as a function of the size of the gas:

Veff (Rmin)
ENI

=
1 + 5R′4min

6R′2min

. (3.27)

The solutions to Eq. 3.26 immediately give the ground state energy of the gas versus

k0
fa. Fig. 3.12 shows the percentage difference of the ground state energy found by this

minimization procedure and that of 240 particles found by solving Eq. 3.17.

Another result from 3.8 is the fact that in the large N limit the commutator

[Heff , R]→ 0. Thus for any operator that is solely a function of the hyperradius Ô (R)
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Figure 3.12: The percentage difference between the energy found by minimizing Veff
and the energy found by explicitly solving the hyperradial Schrödinger equation for 240
atoms is show as a function of k0

fa.

the ground state expectation value in the large N limit is given by the operator evaluated

at R′min, i.e.
〈
Ô (R′)

〉
= Ô (R′min). This tells us that the large N limit wavefunction is

given by
[
R(3N−1)/2G (R)

]2
= δ (R−Rmin). This can be perturbed slightly by assum-

ing a ground state hyperradial wavefunction approximated by a very narrow Gaussian

centered at Rmin. The width of this Gaussian can be found by approximating Veff

about Rmin as a harmonic oscillator with mass m∗ and frequency ω0. By comparing the

oscillator potential with the second order Taylor series about Rmin in Veff , ω0 can be

found:

ω0 =

√√√√ 1
m∗

1
ENI

(
∂2Veff
∂R′2

∣∣∣∣
R′=R′min

)
. (3.28)

The breathing mode frequency is now simply ω0. The frequency in Eq. 3.28 is in

units of the non-interacting energy; to get back to conventional units, ω0 must be

multiplied by ENI/~. From Eq. 3.25, m∗ = mENIN
〈
R2
〉
NI
/~2, and noting that

N
〈
R2
〉
NI

= `2ENI/~ω yields

ωB0 =

√√√√ 1
ENI

(
∂2Veff
∂R′2

∣∣∣∣
R′=R′min

)
, (3.29)

for ωB0 , the breathing mode frequency in units of the trap frequency. Using Eq. 3.24
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and substituting in Eq. 3.26 to evaluate at the minimum gives that

ωB0 =

√
5− 1

R′4min

. (3.30)

Note that this is now dependent only on the value of k0
fa, i.e. for a fixed k0

fa the

predicted breathing mode frequency is independent of the number of atoms in the

system in the large N limit.

Figure 3.13 shows the breathing mode frequency predicted by Eq. 3.30 versus

k0
fa.
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Figure 3.13: The breathing mode (in units of the oscillator frequency ω) in the large
N limit versus k0

fa. Note that as k0
fa → k0

fac the frequency drops to zero as the local
minimum disappears.

The same behavior can be seen in this plot as was seen in Fig. 3.9 where the

breathing mode frequency dives to zero as k0
fa→ k0

fac.

3.4 Density dependent interactions

Unfortunately, in strongly-interacting or high-density systems, the overly singular

nature of the δ-function often poses a problem [85]. Another problem is that dynamic

instability arises when the non-regularized zero-range interaction is used variationally

in a two component degenerate Fermi gas, as seen in the previous section, which is not
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seen in experiment [1, 13, 15, 16, 17, 14]. One method of avoiding these problems is to

use a density-dependent interaction. Refs. [3, 87, 2] do just that, introducing a density-

dependent interaction strength for a zero-range interaction. In this section I apply the

hyperspherical K-harmonic method to this type of interaction potential. The goal will

be to evaluate the interaction potential matrix element in Eq. 3.6 to find the effective

hyperradial potential Veff (R′).

3.4.1 Operator matrix elements in the N →∞ limit

Before specifying the exact interaction used here, a method for evaluating the

more general interaction matrix elements must be found. In this section I develop a

method for calculating hyperangular matrix elements of an operator in the large N

limit, e.g.,

Õ
(
R′
)

=
∫
Y ∗λµ (Ω) Ô

(
R′,Ω

)
Yλµ (Ω) dΩ. (3.31)

Here Ô (R′,Ω) is a general operator that is a function of the rescaled hyperradius R′

from Eq. 3.7 and the hyperangles Ω. Here Yλµ (Ω) = Yλµ (Ω, σ1, σ2, ..., σN ) is the K–

harmonic, defined by Eq. 3.4, for N fermions distributed equally between two internal

spin states. Again the spin coordinates (σ1, σ2, ..., σN ) have been suppressed for nota-

tional simplicity. To allow us to integrate over all of the 3N dimensions of the space,

both sides of Eq. 3.31 are multiplied by a δ-function in the hyperradius and integrated

over R′:

Õ
(
R′0
)

=
∫
δ
(
R′ −R′0

)
Y ∗λµ (Ω) Ô

(
R′,Ω

)
Yλµ (Ω) dΩdR′. (3.32)

A clever choice for the δ-function representation will aid in this calculation. To

create the δ-function, consider the function

R′(3N−1)/2GN
(
R′
)

= AN

(√
N 〈R2〉NIR′

`R′0

)λ+3N/2−1/2

exp

(
−
R′2N

〈
R2
〉
NI

2`2R′20

)
,

(3.33)
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where AN is a normalization constant, and ` =
√

~/mω is the oscillator length defined

in Eq. 2.17. This should look very familiar, as it is the hyperradial solution for N

non-interacting fermions in a symmetric oscillator from Eq. 2.20 with oscillator length

`R′0. It is easy to show that, in the limit where N →∞, Eq. 3.33 becomes

lim
N→∞

[
R′(3N−1)/2GN

(
R′
)]2

= δ
(
R′ −R′0

)
.

Inserting this into Eq. 3.32 and playing slightly fast and loose with exchange of the

order of the limit and the integral yields

Õ
(
R′0
)

= lim
N→∞

∫ [
R′(3N−1)GN

(
R′
)]2

Y ∗λµ (Ω)O
(
R′,Ω

)
Yλµ (Ω) dΩdR′.

Referring to Eq. 3.4 and remembering that the K-harmonic Yλµ (Ω) is independent

of the oscillator length scale, it follows that the wave function GN (R′) Φλ (Ω) is merely

a Slater determinant of non-interacting single particle oscillator states with oscillator

length,

`eff = R′0`0. (3.34)

Further, Ref. [66] gives that R′(3N−1)dR′dΩ is the full volume element for the 3N

dimensional space. All of this implies that in the large N limit, the hyperangular

operator expectation value 〈Yλµ |O (R,Ω)|Yλµ〉 is approximated by the full expectation

value of the operator for a trial wavefunction consisting of a Slater determinant of

non-interacting oscillator states, i.e.

Õ
(
R′0
)

=
〈
D`eff (~r1, ~r2, ..., ~rN )

∣∣O (R′,Ω)∣∣D`eff (~r1, ~r2, ..., ~rN )
〉

3N
(3.35)

where D`eff (~r1, ~r2, ..., ~rN ) is a Slater determinant of oscillator states with oscillator

length `eff and the subscript 3N is to indicate that the matrix element is taken over

all 3N spatial and N spin degrees of freedom.
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3.4.2 Density dependent zero-range interactions

The results of the previous section can now be applied to the density-dependent

renormalized zero-range interactions presented in Ref. [3], in which a zero-range inter-

action is used whose strength is dependent on the density of the gas,

Uint (~rij) =
4π~2

2µ2B

ζ (kf (~ri) a)
kf (~ri)

δ (~rij) , (3.36)

where a is the two-body s-wave scattering length and the Fermi wave number, kf =

kf (~r) =
(
6π2ρ(1) (~r)

)1/3
, is defined 1 in terms of the single spin component density,

ρ(1) (~r). The effect of the density dependent interaction is to impose the appropriate

short-range behavior on clusters of particles in a manner similar to that of Ref. [90].

In other words, if a cluster of particles is very close together with rms radius much less

than the scattering length, the effective interaction energy they experience is the same

as if the scattering length was infinite. This short-range behavior is extracted in Ref.

[3] by considering a two-particle system, but the general method may be extended to a

larger number of particles. The dimensionless renormalized function ζ (kfa) from Ref.

[3] is approximated by

ζ (kfa) = A+B arctan (Ckfa−D) , (3.37)

A = 0.3949,

B = 1.1375,

C =
1 + tan2

(
A

B

)
B

= 0.9942,

D = tan
(
A

B

)
= 0.3618.

1 This interaction is appropriate when the Fermi surfaces of two components coincide. When this is
not the case, for instance when there is a population imbalance, the different components have different
masses or trap frequencies, or in the case of multi-component gases, the interaction must be averaged
over the different components.
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Two of the fitting parameters A and B are found by fitting the asymptotic behavior of

ζ (kfa) as kfa→ ±∞, which are given in ref. [3] by

lim
kfa→∞

ζ (kfa) = 2.1817,

lim
kfa→−∞

ζ (kfa) = −1.3919.

The constants C and D in Eq. 3.37 are determined by matching the Fermi pseudo-

potential in the |kfa| � 1 limit [79, 82], i.e.

4π~2

2µ2B

ζ (kfa)
kf

→ 4π~2a

m
. (3.38)

Fig. 3.14 shows the behavior of this interaction as a function of kfa.
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Figure 3.14: The density-dependent interaction strength function ζ(kfa) is shown versus
kfa. Figure from Ref. [2].

The density of a single spin component in a Slater determinant state is given by

Eq. 3.20, and in the large N limit, the Thomas-Fermi approximation can be used:

ρ
(1)
`eff

(~r) =
1

6π2`3eff
(2µ)3/2

(
1− r2

2`2effµ

)3/2

, (3.39)

where `eff is given by Eq. 3.34, and µ = (3N)1/3 is the chemical potential at zero

temperature of N non-interacting fermions divided equally between two different spin
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substates. Combining this with Eq. 3.35 and some integration substitutions gives an

effective interaction potential,

Ueff
(
R′
)

=

〈
Yλµ

∣∣∣∣∣∣
∑
i>j

Uint (rij)

∣∣∣∣∣∣Yλµ
〉

=
64N4/3

32/3π2R′2
f

(
k0
fa

R′

)
, (3.40)

f

(
k0
fa

R′

)
≡
∫ 1

0
y6
√

1− y2ζ

(
k0
fa

R′
y

)
dy.

Here k0
f is the peak Fermi wave number for N non-interacting atoms given by Eq. 3.11b.

Observe that, again, the only parameter in this expression is k0
fa which is dimensionless.

Inserting Eq. 3.40 into Eq. 3.6 now gives the final effective hyperradial potential in the

N � 1 limit,
Veff (R′)
ENI

→ 1
2R′2

+
1
2
R′2 +

256
9π2R′2

f

(
k0
fa

R′

)
. (3.41)

For
∣∣∣k0
fa
∣∣∣� R′ the integral may be evaluated exactly giving

Veff (R′)
ENI

→ 1
2R′2

+
1
2
R′2 +

4096k0
fa

2835π2R′3

which is exactly the effective potential found in Eq. 3.24 for the bare zero-range pseudo-

potential. It should also be noted that Eq. 3.40 holds for any density-dependent zero-

range interaction in the form of Eq. 3.36, i.e. for any function ζ.

3.4.3 Finite effective interactions,
∣∣∣k0
fa
∣∣∣ <∞

Here I explore the behavior of the DFG under a repulsive effective potential where

the two-body scattering length, a, is positive. The renormalized description of the

interactions used here and in Ref. [3] is only accurate if the real two-body interactions

are purely repulsive, meaning that the gas is somehow prevented from coalescing into

molecular dimer states. In other words, with the present initial formulation, only a

gas of atoms can be described, not of molecules. Figure 3.15, which shows Veff for

several positive two-body scattering lengths, also depicts an example of the bare non-

renormalized effective potential. As with the bare pseudo-potential in Sec. 3.2, the
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repulsive interactions cause the gas to push out against itself and against the trap walls,

which increases the overall energy and size of the gas.
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Figure 3.15: The dimensionless ratio of the effective hyperradial potential to the non-
interacting total energy is plotted as a function of the dimensionless rescaled hyper-
radius, for several different repulsive interaction strengths. The non-interacting limit
k0
fa = 0 is shown as the sold curve; the dashed curves show the renormalized effective

potential for (bottom to top) k0
fa = 2, k0

fa = 5 and k0
fa = 50. Also shown is the

non-renormalized effective potential with k0
fa = 5 (dotted curve). Figure from Ref. [2].
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Figure 3.16: The ground state energy of the DFG in units of the non-interacting energy
predicted by the K harmonic method (solid line) is plotted versus arctan

(
k0
fa
)
/π and

compared with that predicted by the HF method with 2280 atoms (circles) [3]. The
dashed line is the ground state energy predicted by the K harmonic method using the
bare Fermi pseudo-potential. Figure from Ref. [2].
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Figure 3.17: The average squared hyperradius of the two-component DFG ground state
in the large-N limit, divided by the non-interacting value for this quantity, is plotted
versus arctan

(
k0
fa
)
/π. Also shown are the values predicted by the HF method with

2280 atoms (circles) [3]. The dashed line is the ground state energy predicted by the K
harmonic method using the bare Fermi pseudo-potential. Figure from Ref.. [2].

Using the large N limit, the second derivative term in Eq. 3.8 becomes negligi-

ble, and as before, the ground state energy and hyperradius can be found by simply

minimizing the effective potential, Veff (R′). Figures 3.16 and 3.17 show the energy and

average squared hyperradius of the minimum of Veff as functions of k0
fa, compared to

those same values calculated using the bare non-renormalized effective potential from

Sec. 3.2. Also shown are the ground state energy and average squared hyperradius

that are predicted by the HF method using the same density-dependent interaction. As

the interaction gets stronger the renormalized energies and hyperradii flatten out and

approach a constant in the unitarity limit. For k0
fa � 1 the Fermi pseudo-potential

approximation is in good quantitative agreement with the renormalized interactions,

but diverges dramatically as k0
fa → ∞. This dramatizes the breakdown of the non-

renormalized zero-range approximation, which overestimates the interaction strength

as the unitarity regime is approached.

Figure 3.18 shows the behavior of the effective potential for some attractive val-

ues of the two-body scattering length, along with an example of the non-renormalized
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effective potential. The decisive qualitative importance of the renormalization is now

apparent. The renormalized effective potential is repulsive as R′ → 0, and the ground

state of the gas is in a global minimum. In contrast to the bare pseudo-potential, this

now has no collapse phenomenon.

Figures 3.16 and 3.17 show the ground state energy and average hyperradius

squared of the system compared to the non-renormalized values. The effects of density-

dependence for attractive interaction are even more striking than in the repulsive in-

teraction case. With renormalization, as k0
fa → −∞ the energy and average hyper-

radius squared go towards a fixed value. Figures 3.16 and 3.17 also show the ground

state energy and average squared hyperradius predictions from the HF method with

density-dependent interactions. They show that for
∣∣∣k0
fa
∣∣∣ � 1 the non-renormalized

and renormalized values are in good agreement, but as k0
fa → k0

fac = −1.22 the

bare Fermi-pseudo-potential results diverge away from the renormalized interaction

results. Just before the point of collapse the ground state energy from Eq. 3.27 is

E =
√

5ENI/3 = 0.75ENI . Not only does the renormalized effective potential eliminate

the collapse, it also allows the gas to reach a lower energy than would be possible with-

out the density dependence. In other words, if the interaction coefficient in Uint (~rij)

were not density-dependent, but merely involved a cut off as k0
fa→ −∞, the gas would

not be able to reach the unitarity energy before collapsing.

3.4.4 Unitarity regime

In this section, the behavior of Veff for density-dependent interactions in the

strong interaction regime, i.e. a → ±∞, is explored. In contrast to the bare pseudo-

potential, which had energies that diverged in the k0
fa → ∞ limit and produced a

collapse when k0
fa ≤ −1.22, the effective hyperradial potential produced using density

dependent interactions produces finite energies in the unitarity regimes. Examining Eq.



50

0.5 1 1.5 2 2.5

R/(<R
2
>

NI
)
1/2

0.5

1

1.5

2

2.5

3

V
ef

f/E
N

I

Figure 3.18: The effective potential in units of the non-interacting energy is plotted
versus the hyperradius in units of

√
〈R2〉NI , for several interaction strengths. The non-

interacting limit k0
fa = 0 is shown as the solid curve and the dashed curves show the

renormalized effective potential for (top to bottom) k0
fa = −1 and k0

fa = −5. Also
shown is the non-renormalized effective potential with k0

fa = −1 (dotted curve). Figure
from Ref. [2].

3.40 shows that the unitarity limit appears in Veff when
∣∣∣k0
fa
∣∣∣� R′, i.e.

〈Yλµ |Vint (R′0,Ω)|Yλµ〉
ENI

→ 256ζ±
9π2R′2

∫ 1

0
y6
√

1− y2dy

=
5ζ±

9πR′2

where ζ± is the maximum (+) or minimum (−) value acquired by the interaction func-

tion ζ (kfa). This gives a total effective potential of

Veff (R′)
ENI

→ 1
2
R′2 +

1/2 + 5ζ±/9π
R′2

(3.42)

=



1
2
R′2 +

0.886
R′2

for k0
fa� R′

1
2
R′2 +

0.254
R′2

for −k0
fa� R′

.

The hyperradius is a collective coordinate so that, as R → 0, all of the atoms in the

system are forced to the center of the trap, which increases the density of the system.

Thus, for small hyperradii, Veff is expected to act like Eq. 3.42. In fact, the dashed
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curves in Figs. 3.15 and 3.18 show that as R′ → 0 the renormalized effective potential

curves all start to behave the same, independently of a. Alternatively if the two-body

scattering length approaches −∞, e.g. near a resonance, then Veff can be expected to

approach Eq. 3.42 for all hyperradii.

In the case where k0
fa → ±∞ the effective potential takes on the form of Eq.

3.42. Minimization of Veff as a function of R′ gives a ground state energy:

E

ENI
=
√

1 + 10ζ±/9π (3.43)

=

 1.331 for a→∞

0.712 for a→ −∞
.

The average hyperradius of the gas is described by the value of the hyperradius at this

minimum which is given by

R′min = (1 + 10ζ±/9π)1/4 (3.44)

=

 1.154 for a→∞

0.844 for a→ −∞

At first glance this may seem strange, one might expect the behavior to be smooth

across a resonance, and the energy to connect smoothly from the a→ −∞ limit to the

a → ∞ limit [45]. But the density-dependent renormalization used here only applies

to a gas of atoms and does not allow for the incorporation of higher order correlations,

i.e. the formation of diatomic molecules. Presumably there is another branch in the

renormalization that will match continuously with the a → −∞ limit (for a more

complete discussion see section II of Ref. [3]).

Another quantity of interest is the chemical potential of the interacting gas at

unitarity [3, 25, 91], given by

µu =
~2k2

f (0)
2m

(1 + β) ,

where β is a universal parameter. From the single spin component density given in Eq.
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3.39 the interacting peak Fermi wavenumber is

kf (0) =
k0
f

R′2min

. (3.45)

Further, from Eqs. 3.43 and 3.44, the ratio of the chemical potential of the interacting

unitarity-limit gas to that of the non-interacting gas can be written in terms of the

rescaled hyperradius as:
µu
µ

=
E

ENI
= R′2min. (3.46)

Solution of Eqs. 3.45 and 3.46 in the a→ −∞ limit yields

β = 10ζ−/9π = −0.49. (3.47)

This value of β coincides with the value predicted by the renormalized HF calculation

of Ref. [3]. This agreement can be explained by realizing that the interaction potential

in the HF approximation with the density dependent interaction in the unitarity regime

takes on the form Vint ∝ ρ2/3 [3]. By considering the density from Eq. 3.39 this

gives an interaction potential that can be approximated by an oscillator-like potential,

i.e. Vint ∝
(

1− r2/2µl2eff
)

. Even though neither Ref. [3] nor the present treatment

explicitly incorporates Cooper-type fermion pairing, this unitarity limit β is in fair

agreement with quantum Monte Carlo estimates that have obtained β = −0.58 (Ref.

[45]) and −0.56 (Ref. [24]). Also, observe that this gives a significant improvement

over the value of β = −0.41 expected on the basis of BCS theory [48]. Further the

value of β found here is lower than the β = −0.44 [92] found by quantum Monte-Carlo

on a normal state Fermi gas. Even though the trial wavefunction used here would be

more appropriate for describing a normal state Fermi gas, the lower value of β found

using the density-dependent interaction indicates that a simplistic wavefunction can

give surprisingly good results.
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3.4.5 Breathing mode excitations

By using the effective hyperradial potential from Eq. 3.41, the lowest radial

excitation frequency can be obtained from Eq. 3.29. Figure 3.19 shows the breathing

mode frequency in units of the oscillator frequency compared to that calculated using

non-renormalized interactions from Sec. 3.2. Of course the breathing mode frequency in

the non-interacting limit is ωB0 = 2ω, and for weak interactions,
∣∣∣k0
fa
∣∣∣ < 1, the breathing

mode frequency follows the same behavior for both bare the interaction and density-

dependent interactions. Somewhat surprisingly, though, the frequency predicted from

the density-dependent interactions turns over and returns to the non-interacting value

as k0
fa → ±∞. Inserting the second derivative of Eq. 3.42, the effective potential as

k0
fa→ ±∞, gives

ω0 = ω

√√√√ 1
ENI

(
1 + 3

1 + 10ζ±/9π
R′4

∣∣∣∣
R′=R′min

)
. (3.48)

When the minimum hyperradius from Eq. 3.44 is inserted, the resulting equation implies

that the unitarity limits for the breathing mode frequency are both ω0 = 2ω. This is a

general property of any hyperradial potential of the form V (R′) = A/R′2 +BR′2 in the

large N limit where A,B > 0. This unitarity behavior has also been predicted in Ref.

[90, 93].

3.4.6 Multiple spin components

The realization of degenerate multi-component atomic Fermi gases is now possible

using present-day technology [94, 95]. Neglecting for the moment possible losses, the

occupation of more than two different hyperfine states of the same species requires only

moderate changes to the previous analysis. A degenerate gas consisting of the lowest

three hyperfine states of 6Li has already been created [94, 95], and the coexistence of

three hyperfine states has already been demonstrated for 40K [96]. Alternatively, a num-

ber of groups are presently pursuing the simultaneous trapping of three different atomic
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Figure 3.19: The breathing mode frequency ωB0 is shown in units of the trap frequency
ω versus arctan

(
k0
fa
)
/π . The solid curve shows the breathing mode predicted using

the renormalized interaction while the dashed curve shows the prediction based on the
bare Fermi pseudo-potential. Figure from Ref. [2].

species [97]. In the case of the same atom in different hyperfine states, the atomic

masses of all components are equal, whereas in the case of different atomic species,

the atomic masses of the different components differ. In either of these realizations of

multi-component Fermi gases, all or some of the interspecies scattering lengths may

be tunable thanks to the possible existence of magnetic or optical Fano-Feshbach reso-

nances. With these new developments, it is of considerable interest to investigate these

systems. This section provides an initial look at such a multiple component system

from the K-harmonic approximation with density dependent interactions, specifically

the dynamic stability of such systems.

Next consider what happens when the atoms in the gas are equally distributed

among an arbitrary number χ of spin substates. In order to limit the large parameter

space, that the s-wave scattering length between two atoms in any two different spin

states is assumed to have the same value, a. Also, for calculational simplicity, the

possibility of inelastic collisions, e.g. of the type:∣∣∣∣m1 =
3
2

〉
+
∣∣∣∣m2 = −3

2

〉
→
∣∣∣∣m′1 =

1
2

〉
+
∣∣∣∣m′2 = −1

2

〉



55

is neglected. To proceed, the question of what density should go into the renormalized

interactions must be addressed. A particle in spin state i cannot interact with any

other particle in the same spin state by the zero range approximation, but the density

that determines kf (r) in the renormalization function ζ might be chosen in various

alternative ways, and a unique criterion to specify the appropriate renormalization in

this context has not yet been developed. As an initial exploration, I make the assumption

that the appropriate interaction is merely the average of the two density dependent

scattering lengths,

Uint (rij) =
4π~2

2m

ζ
[
k

(j)
f (~ri) a

]
k

(j)
f (~ri)

+
ζ
[
k

(i)
f (~rj) a

]
k

(i)
f (~rj)

 δ (~ri − ~rj)

where k(j)
f (~r) =

[
6π2ρ(j) (~r)

]1/3
is the Fermi wave number of the spin component that

particle j belongs to.

The derivation following this assumptions is the same as that for the two-component

gas, up to Eq. 3.40. The only additional pieces of information needed are the common

density of each component in the effective trap with oscillator length, `eff , the chemical

potential, the non-interacting ground state energy and the average hyperradius squared

for the system with χ spin substates in the large N limit:

ρ
(i)
`eff

(~r) =
1

6π2`3eff
(2µ)3/2

(
1− r2

2`2effµ

)3/2

, (3.49)

µ =
(

6N
χ

)1/3

, (3.50)

ENI = ~ω
(6N)4/3

χ1/38
, (3.51)

〈
R2
〉
NI

=
~
mω

(6N)4/3

χ1/38N
. (3.52)

Evaluating the matrix element in Eq. 3.15 involves basic well known methods. With

some algebra and a change of integration variables, the effective hyperradial potential
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becomes

Veff (R′)
ENI

=
1

2R′2
+

1
2
R′2 + (χ− 1)

256
9π2R′2

f

(
k0
fa

R′

)
, (3.53)

f

(
k0
fa

R′

)
≡
∫ 1

0
y6
√

1− y2ζ

(
k0
fa

R′
y

)
dy.

Comparison with the effective potential for the two component gas, Eq. 3.41, demon-

strates that the extra spin components increase the strength of the interaction by a

factor of χ − 1. To analyze the stability of the gas, it is sufficient to examine the

k0
fa→ −∞ limit, i.e.

Veff (R′)
ENI

→ 1
2
R′2 +

1 + 10 (χ− 1) ζ−/9π
2R′2

. (3.54)

Taking χ = 3 yields

Veff (R′)
ENI

→ 1
2
R′2 +

1 + 20ζ−/9π
2R′2

, (3.55)

=
1
2
R′2 +

0.00772
R′2

.

In this limit the barrier preventing the gas from falling in to the center of the trap, i.e.

R′ → 0, is very weak. The unitarity energy and average hyperradius are given by

E

ENI
=
√

1 + 20ζ−/9π = 0.124,

Rmin√
〈R2〉NI

= (1 + 20ζ−/9π)1/4 = 0.352.

Since the K harmonic method is intrinsically a variational calculation, it is entirely

possible that a better trial function, for example one based on the HF method, might

show that the 3 component gas becomes mechanically unstable in the unitarity limit

[25]. In other words the three component gas might collapse in a manner similar to

that of the bosenova [67, 98, 99, 10, 100]. Further, if the asymptotic behavior of the

density dependence in the two-body interaction is modified to agree with the β for the

two-component gas predicted by Ref. [45] the barely repulsive unitarity potential in Eq.

3.55 becomes attractive, predicting a collapse of the three-component gas [88]. If the
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asymptotic behavior of the density-dependent interaction of Eq. 3.37 are modified so

that the value for β in Eq. 3.47 matches the quantum Monte-Carlo results of Ref. [45],

β = −0.58, at unitarity the effective hyperradial potential for a three component gas

becomes
Veff (R′)
ENI

→ 1
2
R′2 − 0.08

R′2

which provides no stable region, implying that the three-component Fermi gas is unsta-

ble in this regime. The critical scattering length that determines the collapse point can

be calculated numerically:

k0
fac = −1.413. (3.56)

Recently, degenerate gases of 6Li have been created in the three lowest hyperfine states

with peak densities of approximately 6 × 1011 atoms/cm3 [94, 95]. If it is assumed

that all three components interact with the same scattering length, a = 3000 a.u., a

reasonable assumption for magnetic fields near 1000 G [4], this predicts a bosenova-like

collapse at a central density of approximately

ρ (0) =
1

6π2

(
k0
f

)3 ≈ 1.4× 1013 atoms/cm3.

It is likely that the predicted instability can be achieved at a lower density by using a

different magnetic field where the three scattering lengths are larger, but not approxi-

mately equal.

Setting χ = 4 in Eq. 3.54, the effective potential as k0
fa→ −∞ becomes entirely

attractive, i.e.

Veff (R′)
ENI

→ 1
2
R′2 +

1− 30ζ−/9π
2R′2

(3.57)

=
1
2
R′2 − 0.238

R′2
,

meaning that the gas is predicted to collapse down toward R′ → 0. Presumably some

very rich and complex dynamics (cluster formation, inelastic collisions, etc.) occur

during this process, but the K-harmonic trial wave function is too simple to describe
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these phenomena. When the local minimum in Veff (R′) becomes a saddle point the

gas is no longer mechanically stable and is free to collapse. This occurs at a critical

interaction strength of k0
fac = −0.657.



Chapter 4

The Hypervectorial Method and Anisotropic Traps

Most theoretical studies of these DFGs look either at a homogeneous gas directly,

which can be related to a harmonically trapped gas through the use of the local density

approximation, or at a gas in a spherically symmetric oscillator trap as in Chapter 3.

While these studies can lead to interesting predictions of phenomena in such a system,

experimentally the gas is often held in an anisotropic “cigar-shaped” trap [13, 15, 16,

17, 14].

The starting point for this study is akin to the hyperspherical K-harmonic method

presented in the previous chapter in which the DFG was described by a set of 3N − 1

angular coordinates on the surface of a 3N dimensional hypersphere of radius R where

N is the total number of particles in the system. To incorporate an anisotropic trap

in that formulation would require a very high order in hyperspherical harmonics, and

would result in a complex system of coupled 1D differential equations. To avoid these

complications here I implement a hypervectorial formulation, which is based on the

division of the total 3N dimensional space into physically meaningful subspaces in a

manner similar to the hyperspherical tree depicted in Fig. 2.3. The division can be

thought of as describing the gas by 3N − 2 angular coordinates on the surface of a

3N dimensional “hyper-cylinder” with height Rz and cylindrical radius Rρ. These

coordinates have been used previously to describe a Bose-Einstein condensate in cigar-

shaped and completely anisotropic traps [68]. Their method is extended in this chapter
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to describe the degenerate Fermi gas.

This chapter is arranged as follows; In Sec 4.1 I introduce the hypervectorial

method. In Section 4.2 I apply this method to the case of the two-component degenerate

Fermi gas with density-dependent, zero-range interactions and analyze the resulting

potential surfaces. Finally, Section 4.3 uses the potential surface to extract the frequency

of low-energy excitations.

4.1 The Hypervectorial Method

The use of hyperspherical coordinates is well suited to an isotropic oscillator trap

because the trapping potential is easily written in terms of the hyperradius, for instance

in Eq. 3.2. This is not the case in an anisotropic trap, where different Cartesian co-

ordinates in the trap are associated with different oscillator frequencies. This section

will deal with a cylindrically symmetric “cigar” shaped trap, but with minor modifi-

cations, the methods presented here carry over to a completely anisotropic trap. The

Hamiltonian for this system is given by

H = − ~2

2m

N∑
i=1

∇2
i +

1
2
m

N∑
i=1

(
ω2
⊥
(
x2
i + y2

i

)
+ ω2

zz
2
i

)
+
∑
i>j

Uint (rij) , (4.1)

where ωz and ω⊥ are oscillator frequencies in the longitudinal and transverse directions,

respectively. Here xi, yi, and zi are the Cartesian coordinates of the ith atom and rij

is the inter-particle distance between particles i and j. Now consider two collective

coordinates, Rz and Rρ, given by the rms longitudinal and transverse size of the gas,

respectively, i.e.

R2
z =

1
N

N∑
i=1

z2
i , (4.2)

R2
ρ =

1
N

N∑
i=1

(
x2
i + y2

i

)
. (4.3)

This choice of collective coordinates is equivalent to the hyperspherical tree shown picto-

rially in Fig. 2.3 with R1 = Rρ, and R2 = Rz. Here, though, the final step of correlating
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Figure 4.1: The sub-hyperspherical trees that are used to parameterize the hypervecto-
rial coordinates Rρ and Rz are shown.

these two collective coordinates is omitted. The remaining 3N − 2 spatial degrees of

freedom in the gas are described by angles. For completeness, the Delves parameteri-

zations shown in Fig. 4.1 can be used, i.e. N angles are merely the cylindrical polar

angles for each atom {φi}Ni=1, while the remaining 2N − 2 angle are given by

tanβi =

√∑i
j=1 z

2
j

zi+1
, (4.4)

tanαi =

√∑i
j=1

(
x2
j + y2

j

)
ρi+1

, (4.5)

where 0 ≤ βi, αi ≤ π/2 and 1 ≤ i ≤ N−1. Collectively these 3N−2 hyperangles will be

referred to as Ω = (Ω1,Ω2) where Ω1 corresponds to the sub-hyperangles describing the

transverse coordinates and Ω2 the longitudinal sub-hyperangles. In these coordinates

the sum of the Laplacians in Eq. 4.1 can be found using Eq. 2.2:

N∑
i

∇2
i =

1
N

[
1

R2N−1
ρ

∂

∂Rρ
R2N−1
ρ

∂

∂Rρ
−

Λ2
⊥

R2
ρ

+
1

RN−1
z

∂

∂Rz
RN−1
z

∂

∂Rz
− Λ2

z

R2
z

]
, (4.6)

where Λ2
⊥ and Λ2

z have been defined by the Eq. 2.3 in each of the two subspaces.

Combining Eqs. 4.4, 4.3 and 4.6 the Hamiltonian in Eq. 4.1 can be rewritten in terms
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of the hypervectorial coordinates:

H =− ~2

2M

[
1

R2N−1
ρ

∂

∂Rρ
R2N−1
ρ

∂

∂Rρ
−

Λ2
⊥

R2
ρ

]
+

1
2
Mω2

⊥R
2
ρ+ (4.7)

− ~2

2M

[
1

RN−1
z

∂

∂Rz
RN−1
z

∂

∂Rz
− Λ2

z

R2
z

]
+

1
2
Mω2

zR
2
z +

∑
i>j

Uint (rij) ,

where M = Nm.

The key to the hypervectorial method presented here is similar to the K-harmonic

approximation, that of a variational ansatz wavefunction,

Ψ (Rρ, Rz,Ω1,Ω2, σ1, σ2, ..., σN ) = F (Rρ, Rz)Yλ⊥λzµ (Ω1,Ω2, σ1, σ2, ..., σN ) (4.8)

where Yλ⊥λzµ (Ω1,Ω2, σ1, σ2, ..., σN ) is the lowest allowed harmonic for the N fermion

system. Here (σ1, σ2, ..., σN ) are the spin coordinates. It would be convenient if Yλ⊥λzµ

were merely a product of two K-harmonics, one from each subspace in the system,

but this is not the case. The permutational symmetry of the system mixes sub-

hyperspherical harmonics together. Fortunately, examining Eq. 4.7 with Uint (rij) = 0,

it is clear that the anisotropic oscillator is separable in the hypervectorial coordinates.

A similar derivation to the one in Section 2.2.1 shows that the hyperangular

behavior of the noninteracting system is given by

Yλ⊥λzµ (Ω1,Ω2, σ1, σ2, ..., σN ) =
D (~r1, ~r2, ..., ~rN , σ1, σ2, ..., σN )

R
(2N−1)/2
ρ G⊥0K⊥ (Rρ)R

(N−1)/2
z Gz0Kz (Rz)

, (4.9)

whereD (~r1, ~r2, ..., ~rN , σ1, σ2, ..., σN ) is a ground state Slater-determinant of independent

particle states, i.e.:

D (~r1, ~r2, ..., ~rN , σ1, σ2, ..., σN ) =
∑
P

(−1)p
N∏
i=1

ψi (~ri) 〈σi|msi〉 (4.10)

√
ρiψi (~r) =An⊥inzimi exp

(
−ρ2/2`⊥ − z2/2`2z

)
exp (imφ)

×
( ρ

`⊥

)|m|+1/2
L|m|+1/2
n⊥i

(
ρ2

`2⊥

)
Hnzi

(
z

`z

)
where the sum runs over all permutations, P , of the N spatial and spin coordinates,

Lγn (x) is a Laguerre polynomial, Hn (x) is a Hermite polynomial, `⊥ =
√

~/mω⊥, `z =
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~/mωz, and An⊥inzimi is a normalization constant. In Eq. 4.9, K⊥ = λ⊥ +N − 3/2,

Kz = λz +N/2−3/2, and the sub-hyperradial solutions to the noninteracting oscillator

G⊥χK⊥ (Rρ) and GzχKz (Rz) are given by

R(2N−1)/2
ρ G⊥χK⊥ (Rρ) = A⊥χK⊥ exp

(
−R2

ρ/2L⊥
)(Rρ
L⊥

)K⊥+1

LK⊥+1/2
χ

(
R2
ρ

L2
⊥

)
,

R(N−1)/2
z GzχKz (Rz) = AzχKz exp

(
−R2

z/2Lz
)(Rz
Lz

)Kz+1

LK⊥+1/2
χ

(
R2
ρ

L2
⊥

)
.

Here L⊥ = `⊥/
√
N , Lz = `z/

√
N and A⊥χK⊥ and AzχKz are normalization constants.

Even though Yλ⊥λzµ (Ω1,Ω2, σ1, σ2, ..., σN ) is not a product of two sub-hyperspherical

harmonics, it still satisfies the relevant eigenvalue equation:

Λ2
⊥Yλ⊥λzµ (Ω1,Ω2) = λ⊥ (λ⊥ + 2N − 2)Yλ⊥λzµ (Ω1,Ω2) ,

Λ2
zYλ⊥λzµ (Ω1,Ω2) = λz (λz +N − 2)Yλ⊥λzµ (Ω1,Ω2) ,

where the spin coordinates have been omitted for notational simplicity. The sub-

hyperangular momentum eigenvalues, λ⊥ and λz, are determined by the number of

oscillator quanta in D (~r1, ~r2, ..., ~rN , σ1, σ2, ..., σN ) in the longitudinal and transverse

directions respectively:

λ⊥ =
N∑
i=1

(2n⊥i + |mi|) ,

λz =
N∑
i=1

nzi .

For this treatment I will again only consider nondegenerate, filled energy shells.

The nondegenerate ground state is found by filling every state in the noninteracting

system up to a Fermi energy, εF . In the large N limit, which will be the focus of this

chapter, the Fermi energy is given in terms of the number of atoms by

εf → ~
(
3Nω2

⊥ωz
)1/3

, (4.11)
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where it has been assumed that there are enough atoms to occupy many longitudinal

and transverse modes, i.e. the system is still three dimensional. The energy of the non-

interacting system is given in terms of the hyperangular momentum quantum numbers

as

ENI = ~ω⊥ (λ⊥ + 1) + ~ωz (λz + 1/2) .

In the large N limit, this becomes

ENI →
ε4f

4~3ω2
⊥ωz

=
~
(
3Nω2

⊥ωz
)4/3

4ω2
⊥ωz

. (4.12)

The hyperangular momentum quantum numbers, λ⊥and λz, in the large N limit are

given by

λz →
ε4F

12~4ω2
zω

2
⊥

=

(
3Nω2

⊥ωz
)4/3

12ω2
⊥ω

2
z

, (4.13)

λ⊥ →
ε4F

6~4ωzω3
⊥

=

(
3Nω2

⊥ωz
)4/3

6ω3
⊥ωz

. (4.14)

To employ the variational principle the hyperangular expectation value of the

Hamiltonian given in Eq. 4.7 must be taken, leaving an effective Schrödinger equation

in the collective coordinates, Rρ and Rz:

ER(N−1)/2
z R(2N−1)/2

ρ F (Rρ, Rz) =
[
− ~2

2M

(
∂2

∂R2
ρ

− K⊥ (K⊥ + 1)
2MR2

ρ

)
(4.15)

− ~2

2M

(
∂2

∂R2
z

− Kz (Kz + 1)
2MR2

z

)
+

1
2
Mω2

⊥R
2
ρ +

1
2
Mω2

⊥R
2
z

+
∑
i>j

〈Yλ⊥λzµ |Uint (rij)|Yλ⊥λzµ〉

R(N−1)/2
z R(2N−1)/2

ρ F (Rρ, Rz) .

Here F (Rρ, Rz) has been multiplied by a factor of R(N−1)/2
z R

(2N−1)/2
ρ to remove first

derivative terms. To avoid divergences in the large N limit, it is convenient to rescale
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the effective Schrödinger equation by noninteracting values:

E = ENIE
′,

Rρ =
√〈

R2
ρ

〉
NI
R′ρ,

Rz =
√〈

R2
ρ

〉
NI
R′z,

where ENI is the noninteracting energy, and
〈
R2
ρ

〉
NI

is the expectation value of the

transverse collective coordinate squared given in the large N limit by

〈
R2
ρ

〉
NI

=
~

Mω⊥

(
λ⊥ +N − 1

2

)
(4.16)

→ (3Nγ)4/3

6Nγ
`2⊥,

with γ = ωz/ω⊥. In the large N limit, with this rescaling, Eq. 4.15 becomes

0 =

[
− 1

2m∗

(
∂2

∂R′2ρ
+

∂2

∂R′2z

)
+
Veff

(
R′ρ, R

′
z

)
ENI

− E

ENI

]
R′(N−1)/2
z R′(2N−1)/2

ρ F
(
R′ρ, R

′
z

)
.

(4.17)

Here m∗ = MENI
〈
R2
ρ

〉
NI
/~2, and the effective potential, Veff

(
R′ρ, R

′
z

)
, is given by

Veff
(
R′ρ, R

′
z

)
ENI

=
1

3R′2ρ
+

1
3
R′2ρ +

1
12γ2R′2z

+
1
3
γ2R′2z (4.18)

+

〈
Yλ⊥λzµ

∣∣∣∑i>j Uint (rij)
∣∣∣Yλ⊥λzµ〉

ENI
.

with γ = ωz/ω⊥. All that remains is to calculate the hyperangular expectation value of

the interaction.

4.2 More density-dependent interactions

It was shown in Chapter 3 that the bare Fermi pseudo-potential in Eq. 3.9

predicted an unphysical collapse of the two component degenerate Fermi gas. With this

in mind I will jump directly to using the density-dependent interaction of Eq. 3.36 in the

large N limit. In the K harmonic approximation, the hyperangular expectation value

in the large N limit is equivalent to a simple expectation value of a Slater-determinant,
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ground state, independent particle wavefunction in an effective oscillator trap taken over

all 3N spatial degrees and N spin degrees of freedom. A similar derivation here yields

the same result, i.e.:

Vint
(
R′ρ, R

′
z

)
=

〈
Yλ⊥λzµ

∣∣∣∣∣∣
∑
i>j

Uint (rij)

∣∣∣∣∣∣Yλ⊥λzµ
〉

(4.19)

=

〈
D`eff⊥`effz

∣∣∣∣∣∣
∑
i>j

Uint (rij)

∣∣∣∣∣∣D`eff⊥`effz

〉
3N

,

where D`eff⊥`effz
(~r1, ~r2, ..., ~rN , σ1, σ2, ..., σN ) is a ground state Slater-determinant wave-

function of N independent noninteracting fermions in an anisotropic cigar-shaped trap

with effective oscillator lengths,

`eff⊥ = R′ρ`⊥, (4.20)

`effz = R′z

√〈
R2
ρ

〉
NI√

〈R2
z〉NI

`z.

Here
〈
R2
z

〉
NI

is the expectation value of the square of the longitudinal collective coor-

dinate:

〈
R2
z

〉
NI

=
~

Mωz

(
λz +

N

2
− 1

2

)
(4.21)

→ (3Nγ)4/3

12Nγ2
`2z.

In the large N limit the density, ρ(1)
`eff⊥`effz

(ρ, z), of a single spin component in the

ground state of the effective oscillator is given by [84]

ρ
(1)
`eff⊥`effz

(~r) =
1

6π2`effz`
2
eff⊥

(2µ)3/2

(
1−

(
`effz`

2
eff⊥

)2/3 z2/`4effz + ρ2/`4eff⊥
2µ

)3/2

,

(4.22)

where µ = (3N)1/3 is set by
∫
ρ

(1)
`eff⊥`effz

(~r) d3r = N/2.

Evaluating the expectation value in Eq. 4.19 with Uint given by Eq. 3.36 and
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Figure 4.2: The dimensionless effective hypervectorial potential is shown plotted as a
function of R′ρ and R′z for an interaction strength k0

fa = 0 and a trap ratio of γ = 1/3.

kf (r) =
(

6π2ρ
(1)
`eff⊥`effz

(~r)
)1/3

gives the effective hypervectorial interaction potential

Vint
(
R′ρ, R

′
z

)
ENI

=
256

9π2
(√

2γR′zR2′
ρ

)2/3 f
 k0

fa(√
2γR′zR′2ρ

)1/3
 , (4.23)

f (x) =
∫ 1

0
y6
√

1− y2ζ (xy) dy.

One should note that the function f (x) is the same as in the isotropic trap hyperra-

dial effective potential, Eq. 3.40. Putting everything together yields a total effective

hypervectorial potential,

Veff
(
R′ρ, R

′
z

)
ENI

=
1

3R′2ρ
+

1
3
R′2ρ +

1
12γ2R′2z

+
1
3
γ2R′2z +

Vint
(
R′ρ, R

′
z

)
ENI

. (4.24)

An example of the effective potential is shown in Fig. 4.2 for a trap ratio γ = 1/3 and

an interaction strength of k0
fa = −1.

4.2.1 Results for the hypervectorial method

Here I analyze the behavior of the effective hypervectorial potential for various

values of k0
fa. Figure 4.3 shows contour plots of Veff for evenly spaced values of k0

fa from
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−12 to 12 for a system with trap ratio γ = 1/3. For attractive interactions (a < 0),

the minimum is seen to be pulled into the center as the gas pulls in on itself. For

repulsive interactions (a > 0) the minimum is pushed out away from the center. It is

also interesting to see the low lying contours behavior as it gets twisted towards the

origin for attractive interactions and away for repulsive. This behavior will be studied

in more detail later.
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Figure 4.3: Contour plots of the dimensionless effective hypervectorial potential are
shown plotted as a function of R′ρ and R′z for an interaction strength k0

fa = −12 to 12
and a trap ratio of γ = 1/3.

In this section the ground state energy and average squared collective coordinates

for the DFG in an anisotropic trap are found, i.e. E/ENI ,
〈
R′2z
〉

and
〈
R′2ρ
〉
. In the

same way as the hyperspherical K harmonic method, these quantities can be found by

minimizing Veff , i.e. by solving
∂Veff
∂R′ρ

=
∂Veff
∂R′z

= 0. Finding the minimum of Eq.

4.24 cannot be done analytically, but because the interaction is function of R′zR
′2
ρ only,

the relationship between the minimum longitudinal coordinates, R′zmin, and transverse
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coordinate, R′ρmin, can be found:

R′zmin =
R′ρmin√

2γ
(4.25)

This indicates that the DFG with density dependent interactions will always maintain

the same aspect ratio. This behavior is likely due to the fact that the hyperangular

behavior was frozen to the noninteracting behavior so that oscillator quanta cannot be

exchanged between the longitudinal and transverse directions, i.e. λz and λ⊥ are fixed.

If a more complex formulation were to be used, by allowing λz and λ⊥ to be function

of the hypervectorial coordinates, a task beyond the scope of this study, it is likely that

the aspect ratio of the gas would change with repulsive and attractive interactions. The

minimum in Veff must lie along the line, R′zmin = R′ρmin/
√

2γ, and evauates to

Vint

(
R′ρ, R

′
z =

R′ρ√
2γ

)
ENI

=
1

2R′2ρ
+

1
2
R′2ρ +

1
6R′2z

+
1
6
γ2R′2z +

256
9π2R′2ρ

f

(
k0
fa

R′ρ

)
. (4.26)

This is the exact same functional form as the effective potential found for the hyper-

spherical treatment in an isotropic trap, Eq. 3.41, meaning that large N expectation

for E/ENI and
〈
R2
ρ

〉
/
〈
R2
ρ

〉
NI

in the ground state will be exactly the same as E/ENI

and
〈
R2
〉
/
〈
R2
〉
NI

shown in Figs. 3.16 and 3.17.

4.3 Low energy excitations

One of the benefits from the hyperspherical K-harmonic was the simple extrac-

tion of the low lying radial excitations. Similarly, in the hypervectorial picture, low

lying excitations can be extracted as well. The difference is that now there are two dis-

tinct types of excitation corresponding to transverse and longitudinal breathing modes.

In the noninteracting limit these two modes decouple, but as interactions are turned

on, excitations in the two trap axes become coupled. This behavior can be visually

understood by examining the ellipses made by the low lying contours shown in Fig. 4.3.
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A more quantitative view of the low lying excitations can be extracted by normal-

mode type of analysis which begins by approximating the effective potential about the

minimum as a harmonic oscillator potential,

Veff
(
R′ρ, R

′
z

)
ENI

≈ EGS
ENI

+
1
2
[
R′ρ −R′ρmin, R

′
z −R′zmin

] 
∂2Veff
∂R′2ρ

∂2Veff
∂R′ρ∂R

′
z

∂2Veff
∂R′ρ∂R

′
z

∂2Veff
∂R′2z


 R′ρ −R′ρmin

R′z −R′zmin


(4.27)

where EGS is the ground state energy found by minimizing the effective potential. The

oscillator frequencies about this minimum can be extracted by finding the eigenvalues

of the Hessian matrix in Eq. 4.27:

ω1 =

√
1
m∗

ν1,

ω2 =

√
1
m∗

ν2,

where ν1 and ν2 are the eigenvalues. These breathing modes are in units of the nonin-

teracting energy; to get back to conventional units, the frequencies must be multiplied

by ENI/~. From Eq. 4.17, m∗ = mENIN
〈
R2
ρ

〉
NI
/~2, and noting that N

〈
R2
ρ

〉
NI

=

2`2⊥ENI/3~ω⊥ gives

ωB1 =

√
3
2
ω⊥
√
ν1, (4.28)

ωB2 =

√
3
2
ω⊥
√
ν2,

The eigenvectors corresponding to the eigenvalues in this equation have a direct mean-

ing, as the directions in which the gas oscillates. Roughly, one of these frequencies

corresponds to the transverse breathing mode, while the other to longitudinal. I will

take ω1 (ω2) as the transverse (longitudinal) mode, i.e. in the noninteracting limit

ω1 = 2ω⊥.

Figures 4.4 and 4.5 show the two breathing mode frequencies as a function of k0
fa

for trap ratios γ = 0.1 to γ = 1. For γ = 1, a cusp can be seen at kfa = 0 in both fre-

quencies. This is due to the degeneracy of the two breathing modes in the isotropic trap.
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Again, it should be mentioned that both the variational trial wavefunction and the den-

sity dependent interaction cannot describe a gas of bosonic dimers for positive scattering

lengths. There are several worrying things that can be seen in the predicted behavior

of the breathing modes. First, in the unitarity regime, k0
fa→ −∞, both the transverse

and longitudinal breathing modes are greater than the noninteracting frequencies for

γ < 1, and the frequencies in this regime depend on γ. This is in disagreement with

the unitarity predication from superfluid hydrodynamic models of ωB1 =
√

10/3ω⊥ and

ωB2 =
√

12/5ωz [101]. Second, and most importantly, the frequencies predicted here dif-

fer, both quantitatively and qualitatively, from those found in experiment [102]. These

disagreements are likely due to the overly simplistic variational trial wavefunction, Eq.

4.8, used in the hypervectorial picture. By fixing the hyperangular behavior to that

of the noninteracting Fermi gas, the wavefunction cannot take into account the higher

order correlations, such as BEC-like pairing, that are present in the system.

While this study does not “hit the nail on the head”, this is seen as a stepping

off point for future studies that hopefully will begin to incorporate the more complex

nature of this system. This chapter may also be seen as a simple example of the hy-

pervectorial method. While the idea was applied here to a degenerate Fermi gas in an

anisotropic trap, this is by no means the only possible application of the technique.

For instance, in a Fermi gas of distinguishable particles, e.g. a Fermi gas where the

components have unequal masses, unequal numbers, or different trapping frequencies,

the hypervectorial approach can be applied with each part of the hypervector corre-

sponds to a sub-hyperradius for each component in the gas. This might allow for higher

order fluctuations, phenomena like phase separation, or a “beating” mode where two

components oscillate out of phases.
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Figure 4.4: The transverse breathing mode predicted by the hypervectorial method is
shown plotted versus the interaction strength k0

fa for trap ratios γ = 0.1 to 1 in steps
of 0.1 from top to bottom. The kink in the seen in the γ = 1 frequency is due to a
degeneracy between the longitudinal and transverse frequencies in the non-interacting
limit.
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Figure 4.5: The longitudinal breathing mode predicted by the hypervectorial method is
shown plotted versus the interaction strength k0

fa for trap ratios γ = 0.1 to 1 in steps
of 0.1 from top to bottom. The kink in the seen in the γ = 1 frequency is due to a
degeneracy between the longitudinal and transverse frequencies in the non-interacting
limit.



Chapter 5

Green’s Functions and the Adiabatic Hyperspherical Method

In the previous chapters, hyperspherical coordinates were used to create simple

variational trial wavefunctions that then could be used to create an effective low dimen-

sional Schrödinger equation. In this way, complex, highly correlated systems could be

analyzed using the intuition of normal Schrödinger quantum mechanics. In contrast,

this chapter will deal with exact hyperspherical solutions to small systems. Rather than

using a simple variational approach to approximate the hyperangular behavior of a sys-

tem, I will employ a Lippmann-Schwinger (LS) equation-based method. Some of the

work presented here is developed from the work of Mehta et. al. [29].

The adiabatic hyperspherical method has proven useful for analyzing many few-

body systems [35, 37, 66, 103, 104, 105]. The heart of this method lies in treating

the hyperradius adiabatically, and diagonalizing the remaining hyperangular behavior.

The result takes a d dimensional partial differential equation to a set of coupled one-

dimensional differential equations:

ER(d−1)/2Fn (R) =
[
− ~2

2µ
d2

dR2
+

~2

2µ
(d− 3) (d− 1)

4R2
+ Un (R)

]
R(d−1)/2Fn (R) (5.1)

− ~2

2µ

∑
m

[
2Pnm

d

dR
−Qnm

]
R(d−1)/2Fm (R) ,

where d is the total number of dimensions, and Un (R) is found by solving the fixed R

adiabatic Schrödinger equation,[
~2

2µ
Λ2

R2
+ V (R,Ω)

]
Φn (R; Ω) = Un (R) Φn (R; Ω) . (5.2)
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The non-adiabatic matrices P and Q are found by inserting the expansion,

Ψ (R,Ω) =
∑
n

R(d−1)/2Fn (R) Φn (R; Ω) ,

into the Schrödinger equation and are given by

Pmn =
〈

Φm (R; Ω) | ∂
∂R

Φn (R; Ω)
〉
, (5.3)

Qmn =
〈

Φm (R; Ω) | ∂
2

∂R2
Φn (R; Ω)

〉
. (5.4)

The integrals in Eqs. 5.3 and 5.4 are taken over the hyperangles Ω.

Approximate solutions can be found by solving the uncoupled system of equations

ER(d−1)/2Fn (R) =
[
− ~2

2µ
d2

dR2
+

~2

2µ
(d− 3) (d− 1)

4R2
+

~2

2µ
Qnn + Un (R)

]
R(d−1)/2Fn (R)

(5.5)

Ground state solutions to this give a variational minimum to the full solution to Eq.

5.1. Another method is that of the Born-Oppenheimer approximation in which the

diagonal correction to the potential
~2

2µ
Qnn is ignored. These two approximations will

be the main focus of this chapter, while the non-adiabatic couplings Pnm will be used

to describe transitions between the different hyperradial channels Un (R).

The sticking point of the adiabatic hyperspherical method lies in solving the adi-

abatic Schrödinger equation, Eq. 5.2. Often solving this equation is as hard as solving

the total d dimensional Schrödinger equation in the first place. Having a variety of

methods available is helpful for this reason. The benefit of using the adiabatic hyper-

spherical method comes from the simple final interpretation that can often be applied

to the resulting coupled set of one-dimensional equations [106]. For instance, in the

three-body problem, which I will discuss later in this chapter, if two particles can form

a bound state, then one of the resulting scattering channels consists of an atom and

a dimer colliding. In the adiabatic hyperspherical method this type of fragmentation

channel arises naturally with a simple interpretation.
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In Section 5.1 I derive a general form of the hyperangular Green’s function for

a d-dimensional system. In Section 5.2 I apply the Green’s function to the problem of

three particles with regularized, zero-range, s-wave interactions. Section 5.3 applies this

result to the three lowest hyperfine states of 6Li. Finally, Section 5.4 extends the Green’s

function methods to the three-body problem with multi-channel two-body interactions,

and analyzes the resulting system of hyperradial potentials.

5.1 The Hyperangular Green’s function

In this section I derive the free space hyperangular Green’s function for an ar-

bitrary d dimensional space, for example, d = 3 (N − 1) for an N body system with

the center of mass coordinate removed. This Green’s function can then be used in a

LS equation to solve Eq. 5.2. The d dimensional Laplacian written in hyperspherical

coordinates is given in Eq. 2.2 as

∇2 =
1

R(d−1)/2

∂2

∂R2
R(d−1)/2 − (d− 1) (d− 3)

4R2
− Λ2

R2
(5.6)

where R =
√∑d

i=1 x
2
i . The hyperangular Green’s function is given as the solution to

[
Λ2 − ν (ν + d− 2)

]
G
(
Ω,Ω′

)
= δd

(
Ω− Ω′

)
. (5.7)

Here Ω stands for the d−1 hyperangular coordinates needed to describe the surface of a

d dimensional hypersphere and δd (Ω− Ω′) is the Dirac δ-function in the hyperangular

coordinates, i.e. δ (Ω− Ω′) = 0 if Ω 6= Ω′ and
∫
δd (Ω− Ω′) dΩ = 1. The Green’s func-

tion can be found in several forms, including the full hyperspherical harmonic expansion

[107], and in closed form given by Szmytkowski in Ref. [108].

The simplest derivation of the Green’s function relies on the completeness of

hyperspherical harmonics:

∑
λµ

Y ∗λµ
(
Ω′
)
Y ∗λµ (Ω) = δd

(
Ω− Ω′

)
. (5.8)
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This relationship can be used in conjunction with Eq. 2.12 to find G [107]:

G
(
Ω,Ω′

)
=
∑
λµ

Y ∗λµ (Ω′)Y ∗λµ (Ω)
λ (λ+ d− 2)− ν (ν + d− 2)

. (5.9)

Unfortunately, eigenfunction expansions of Green’s function often have slow convergence

with respect to the number of eigenfunctions, often making them unsuitable for numeric

calculations. The closed form of the Green’s function from Ref. [108] is given as

G
(
Ω,Ω′

)
=

−π
(d− 2)Sd sinπν

C(d−2)/2
ν

(
−R̂ · R̂′

)
, (5.10)

where Cαν is a Gegenbaeur function, Sd is the surface area of the d dimensional unit

hypersphere: Sd =
∫
dΩ = 2πd/2/Γ (d/2), and R̂ · R̂′ is the cosine of the angle between

the two normalized hypervectors R̂ and R̂′. Here ν is defined by equation 5.7. While

this does have a pleasing, compact form it is often divergent at critical points. For

instance if ν is non-integer valued then G (Ω,Ω′) diverges as R̂ · R̂′ → 1.

For these reasons, it is convenient to find a third form of the Green’s function.

The first step in this derivation relies on the division of the total d dimensional space

into two subspaces in the same hyperspherical tree structure as is shown in Fig. 2.3.

For the purposes of this thesis I will assume that the dimension of the two subspaces

are both greater than 2: i.e. d1, d2 ≥ 2. The hyperangular momentum can be written

in terms of the sub-hyperangular momenta using Eq. 2.11 as

Λ2 =
−1

(sinα)(d1−1)/2 (cosα)(d2−1)/2

∂2

∂α2
(sinα)(d1−1)/2 (cosα)(d2−1)/2 (5.11)

+
Λ2

1 + (d1 − 1) (d1 − 3) /4
sin2 α

+
Λ2

2 + (d2 − 1) (d2 − 3) /4
cos2 α

− (d− 1) (d− 3) + 1
4

.

The Green’s function can be expanded using the completeness of the sub-hyperspherical

harmonics, i.e.

G
(
Ω,Ω′

)
=
∑
λ1µ1

∑
λ2µ2

g
(
α, α′

)
Y ∗λ1µ1

(
Ω′1
)
Yλ1µ1 (Ω1)Y ∗λ2µ2

(
Ω′2
)
Yλ2µ2 (Ω2) , (5.12)
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where

Λ2
1Yλ1µ1 (Ω1) = λ1 (λ1 + d1 − 2)Yλ1µ1 (Ω1) , (5.13)

Λ2
2Yλ2µ2 (Ω2) = λ2 (λ2 + d2 − 2)Yλ2µ2 (Ω2) .

Inserting this expansion, Eq. 5.7 is satisfied if and only if

δ (α− α′)
(sinα)d1−1 (cosα)d2−1

=

[
−1

(sinα)(d1−1)/2 (cosα)(d2−1)/2

∂2

∂α2
(sinα)(d1−1)/2 (cosα)(d2−1)/2

+
λ1 (λ1 + d1 − 2) + (d1 − 1) (d1 − 3) /4

sin2 α

+
λ2 (λ2 + d2 − 2) + (d2 − 1) (d2 − 3) /4

cos2 α

− (d− 1) (d− 3) + 1
4

− ν (ν + d− 2)
]
gd1,d2

λ1,λ2

(
ν;α, α′

)
,

where δ (α− α′) is a Dirac δ-function and the denominator on the left hand side arises

from the hyperangular volume element associated with the angle α (See Refs. [66, 108]

for details). The right hand side can be manipulated into the standard Sturm-Liouville

form,

δ (α− α′)
(sinα)d1−1 (cosα)d2−1

=

[
−1

(sinα)d1−1 (cosα)d2−1

∂

∂α
(sinα)d1−1 (cosα)d2−1 ∂

∂α
(5.14)

+
λ1 (λ1 + d1 − 2)

sin2 α
+
λ2 (λ2 + d2 − 2)

cos2 α
− ν (ν + d− 2)

]
gd1,d2

λ1,λ2

(
ν;α, α′

)
.

The general solution for any differential equation of this form is given by

gd1,d2

λ1,λ2

(
ν;α, α′

)
=

f+ (α<) f− (α>)

(sinα)d1−1 (cosα)d2−1W [f+, f−]
, (5.15)

where W [f1, f2] = f1f
′
2−f2f

′
1 is the Wronskian (see chapter 3 of your favorite edition of

Jackson [109] for details) and α<(>) = min (α, α′) (max (α, α′)). The functions f+ (α)

and f− (α) are regular at α = 0 and α = π/2 respectively and satisfy the homogeneous

equation,

0 =

[
−1

(sinα)d1−1 (cosα)d2−1

∂

∂α
(sinα)d1−1 (cosα)d2−1 ∂

∂α
+
λ1 (λ1 + d1 − 2)

sin2 α
(5.16)

+
λ2 (λ2 + d2 − 2)

cos2 α
− ν (ν + d− 2)

]
f (±) (α) .
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The solutions to this are given in Ref. [110] as

f (±) (α) = (sinα)λ1 (cosα)λ2
2F1

(
λ1 + λ2 − ν

2
,
ν + λ1 + λ2 + d− 2

2
;λ± +

d±
2

;
1∓ cos 2α

2

)
,

(5.17)

W
[
f+, f−

]
=

−2Γ
(
λ1 +

d1

2

)
Γ
(
λ2 +

d2

2

)
(sinα)d1−1 (cosα)d2−1 Γ

(
ν + λ1 + λ2 + d− 2

2

)
Γ
(
λ1 + λ2 − ν

2

) ,
(5.18)

where 2F1 (a, b; c, x) is a hypergeometric function, λ+ = λ1, d+ = d1, λ− = λ1, and

d− = d2.

5.2 The Three-Body Problem with Zero-Range Interactions

In this section I show the utility of the Green’s function developed in the previous

section by applying it to the three body problem with regularized, zero-range, s-wave,

pseudo-potential interactions. This problem is well studied by a variety of sources

[111, 26, 112, 113]. The full Hamiltonian for the untrapped system is given by

Htot =
3∑
i=1

− ~2

2mi
∇2
i +

∑
i>j

V (rij) , (5.19)

where ~ri is the position of the ith particle, and ∇2
i is the Laplacian for ~ri . The

interaction is given by

V (rij) =
4π~2aij

2µij
δ(3) (~rij)

∂

∂rij
rij , (5.20)

where aij is the s-wave scattering length between particles i and j and µij is the two

body reduced mass, µij = mimj/ (mi +mj). The pseudo-potential defined in this way

applies the Bethe-Peierls boundary condition to the two-body wave function as r → 0,

i.e. ψ (r)→ (1− aij/r)C [114]. The center of mass can be removed from this system by

converting to a system of Jacobi vectors. Jacobi vectors are created for this system by
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considering the separation vector between two of the three particles and then a second

vector from the center of mass of that two body system to the third. The final vector

is then just the center of mass coordinate. The choice of Jacobi vectors is not unique.

In this study I consider three different Jacobi coordinates each of which is convenient

for describing one of the three possible two-body interactions V (rij) . In the “odd man

out” notation these are given by

~ρ
(k)
1 = (~ri − ~rj) /dk,

~ρ
(k)
2 = dk

(
mi~ri +mj~rj
mi +mj

− ~rk
)
, (5.21)

~rCM =
(m1~r1 +m2~r2 +m3~r3)

m1 +m2 +m3
,

d2
k =

(mk/µ) (mi +mj)
m1 +m2 +m3

.

Here µ is the three-body reduced mass given by

µ =
√

m1m2m3

m1 +m2 +m3
.

In these Jacobi coordinates the total Hamiltonian can be rewritten in terms of the Jacobi

coordinates and the center of mass as

Htot = H +HCM , (5.22)

HCM =
−~2

2M
∇2
CM ,

H = − ~2

2µ

2∑
i=1

∇2
ρi +

∑
i>j

V (rij) .

Transforming the Jacobi coordinate piece of the Hamiltonian in Eq. 5.22 into hyper-

spherical coordinates using Eqs. 2.2 and 2.1 yields

H = − ~2

2µ
1

R5/2

∂2

∂R2
R5/2 +

15~2

8µR2
+

~2Λ2

2µR2
+
∑
i<j

Vij

(
dkρ

(k)
1

)
. (5.23)

To apply the adiabatic hyperspherical formulation, the hyperangular adiabatic Schrödinger

equation must be solved:Λ2 +
2µR2

~2

∑
i<j

Vij

(
dkρ

(k)
1

)
− ν (ν + 4)

Φ (R; Ω) = 0.
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This can now be accomplished with the use of the hyperangular Green’s function in the

Lippmann-Schwinger equation,

Φ (R; Ω) = −2µR2

~2

∫
dΩ′G

(
Ω,Ω′

)∑
i<j

Vij

(
dkρ

(k)′
1

)Φ
(
R; Ω′

)
, (5.24)

where ~ρ(k)′
1 is the kth Jacobi vector parameterized by (R,Ω′). The hyperradial Hamil-

tonian from Eq. 5.1 in the absence of the non-adiabatic couplings P and Q is given in

terms of the hyperangular eigenvalue ν as

HR =
−~2

2µ

(
∂2

∂R2
− (ν + 2)2 − 1/4

R2

)
. (5.25)

To evaluate the integrals in the LS equation, the Green’s function from Eq. 5.12

is rotated into the appropriate Jacobi coordinate set for each interaction term in the

sum with the hyperangles defined as

Ω(k) =
{
ω

(k)
1 , ω

(k)
2 , α(k)

}
, (5.26)

where ω(k)
i is the spherical polar angular coordinates for ~ρ(k)

i . The remaining hyperangle

α(k) is defined as in Eq. 2.9, i.e.

ρ
(k)
1 = R sinα(k), (5.27)

ρ
(k)
2 = R cosα(k).

With this choice of hyperangles, it is clear that d1 = d2 = 3 and the hyperspherical

harmonics Y (i)
λiµi

(Ωi) in Eq. 5.12 reduce to normal spherical harmonics yLiMi (ωi).

The δ-function implies that the two-body boundary condition for each two-body

interaction can be applied and the third particle can be considered to be far away, i.e.

lim
r(k)→0

Φ (R; Ω) =

(
1− a(k)

r(k)

)
yLM

(
ω

(k)
2

)
C

(k)
LM (5.28)

where yLM is a spherical harmonic describing the free space behavior in ω(k)
2 and carries

the total angular momentum of the system, and the superscript k is indicates the odd
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man out notation. Inserting Eq. 5.28 into Eq. 5.24 gives the hyperangular eigenfunction,

Φ (R; Ω) =
2µ
R

∑
k

a(k)

2µijd3
k

yLM

(
ω

(k)
1

)
C

(k)
LM

f−
(
α(k)

)
(sinα)2 (cosα)2W [f+, f−]

.

(5.29)

(sinα)d1−1 (cosα)d2−1W
[
f+, f−

]
=

−
√
πΓ
(
L+

3
2

)
Γ
(
ν + L+ 4

2

)
Γ
(
L− ν

2

)
where the orthonormality of spherical harmonics has been used to evaluate the ω(k)′

1

and ω
(k)′
2 integrals. The δ-function in Eq. 5.20 implies that the integral in α(k)′ can be

accomplished by evaluating at α(k)
< = α(k)′ = 0.

The analytic equation for the hyperangular eigenfunction in Eq. 5.29 is not very

useful without knowing the eigenvalue ν. To obtain an equation for ν the boundary

condition given in Eq. 5.28 must be applied again. Applying it to both sides of Eq.

5.29 yields

lim
α(k′)→0

∂

∂α(k′)
α(k′)Φ

(
R; Ω(k′)

)
= yLM

(
ω

(k′)
2

)
C

(k′)
LM

=
2µ
R

∑
k

a(k)

2µijd3
k

NLνyLM

(
ω

(k)
2

)
C

(k)
LM lim

α(k′)→0

∂

∂α(k′)
α(k′)f−

(
α(k)

)
,

(5.30)

NLν = −
Γ
(
L− ν

2

)
Γ
(
L+ ν + 4

2

)
√
πΓ
(
L+

3
2

) .

To evaluate the limit on the right hand side of this the k Jacobi coordinates when

ρ
(k′)
1 → 0 must be understood. Eqs. 5.21 and 5.27 give, for k 6= k′,

lim
α(k′)→0

α(k) = βkk′ = arctan
[

(m1 +m2 +m3)µ
mkmk′

]
; lim
α(k′)→0

ρ(k) ∝ −ρ(k′). (5.31)

Note that if f+ is regular at βkk′ , then

lim
α(k′)→0

∂

∂α(k′)
α(k′)f2

(
α(k)

)
→ f2 (βkk′) .
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Using this and evaluating limits in Eq. 5.30 yields a matrix equation for C(k)
LM :

C
(k′)
LM =

∑
k

MLν
k′kC

(k)
LM , (5.32)

MLν
k′k =



2µ
R

2Γ
(
L− ν

2

)
Γ
(
ν + L+ 4

2

)
Γ
(
L− ν − 1

2

)
Γ
(
L+ ν + 3

2

) a(k′)

2µijd3
k

for k = k′

+ (−1)L
2µ
R
NLν

a(k)

2µijd3
k

f− (βkk′) for k 6= k′

.

The hyperangular eigenvalue, ν, is found by solving the closed form transcendental

equation, det (M− 1) = 0, for any given total angular momentum L and any set of

s-wave scattering lengths, a(k).

5.2.1 Imposing symmetry

The hyperangular eigenvalues for the general three-body problem with arbitrary

exchange symmetry can be found by solving the transcendental equation implied by Eq.

5.32, but the system can be simplified by considering different permutation symmetries

and imposing those symmetries on the boundary conditions C
(k)
LM . For example, if

the particles in question are identical bosons, permutation cannot have any affect on

the wave function. Thus, if a particle is exchanged in the two-body subsystem, the

boundary condition must remain the same, i.e. C
(1)
LM = C

(2)
LM = C

(3)
LM = CLM and

a(1) = a(2) = a(3) = a. A complete list of the possible exchange symmetries is given in

Table 5.1. To illustrate this post-symmetrization, I apply the identical boson symmetry

X1X2X3 C(1) C(2) C(3)

BBB C C C
BBX C1 C1 C2

FFX C −C 0

Table 5.1: The possible permutation symmetries that may be imposed on the three body
system with s-wave interaction are given with the appropriate boundary conditions. B
stands for a boson, F for a fermion and X for a distinguishable particle with an arbitrary
mass.
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with L = 0 to Eq. 5.32 resulting in the well known transcendental equation for ν

[115, 111, 26, 112, 113],

R

a
=
−31/4

[
8√
3

sin
(
π (ν + 2)

6

)
− (ν + 2) cos

(
π (ν + 2)

2

)]
√

2 sin
(
π (ν + 2)

2

) . (5.33)

In the limit where R � |a| the first solution to this transcendental equation gives a

supercritical attractive 1/R2 effective potential,

U (R) =
~2

2µ
−s2

0 − 1/4
R2

, (5.34)

s0 = 1.00624.

This attractive potential is the source of the famous Efimov effect, where an effective

dipole potential supports an infinite set of three-body bound states that accumulate at

the non-interacting three-body threshold, E = 0.

5.2.2 Non-adiabatic couplings

As in any adiabatic treatment, the effective hyperradial potentials are coupled

by non-adiabatic terms that arise from the hyperradial dependence of the hyperangular

eigenfunctions. The full system described by Eq. 5.1 can be written as a coupled system

of ordinary differential equations of the form,

0 =− ~2

2µ

∑
n

[(
δmn

∂2

∂R2
+ 2Pmn

∂

∂R
+Qmn

)
Fn (R)

]
(5.35)

+

[
~2

2µ
(νm (R) + 2)2 − 1/4

R2
− E

]
Fm (R)

where

Pmn =
〈

Φm (R; Ω)
∣∣∣∣ ∂∂RΦn (R; Ω)

〉
,

Qmn =
〈

Φm (R; Ω)
∣∣∣∣ ∂2

∂R2
Φn (R; Ω)

〉
.
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To find the non-adiabatic coupling matrices, the methods of Ref. [116], in which

derivatives of the adiabatic Schrödingier equation are considered, can be employed by

considering two matrix elements,

〈
Φ′n
∣∣(Λ2 − εm

)∣∣Φm

〉
= 0, (5.36)

−ε′n 〈Φm |Φn 〉+
〈
Φm

∣∣(Λ2 − εn
)∣∣Φ′n〉 = 0

where εn = νn (νn + 4) is the hyperangular eigenvalue of the nth adiabatic eigenfunction,

and the prime indicates a hyperradial derivative has been taken. Taking the difference

of these leads to an equation for the non-adiabatic coupling matrix element Pmn for

m 6= n: 〈
Φ′n
∣∣Λ2
∣∣Φm

〉
−
〈
Φm

∣∣Λ2
∣∣Φ′n〉− (εm − εn)Pmn + δmnε

′
n = 0. (5.37)

The difference
〈
Φ′n
∣∣Λ2
∣∣Φm

〉
−
〈
Φm

∣∣Λ2
∣∣Φ′n〉 is given by the boundary conditions of the

wave functions Φm and Φn at the coalescence points:

〈
Φ′n
∣∣Λ2
∣∣Φm

〉
−
〈
Φm

∣∣Λ2
∣∣Φ′n〉 =

∑
k

a(k)

dkR
Cm

∂

∂R
C(k)
n − C(k)

m

∂

∂R

(
a(k)

dkR
C(k)
n

)
(5.38)

=
∑
k

C(k)
m C(k)

n

a(k)

dkR2
.

Here the LM subscript in the boundary values C(k)
LM have been suppressed. Inserting

this into Eq. 5.37 yields two equations,

Pmn =

∑
k C

(k)
m C

(k)
n

a(k)

dkR2

(εm − εn)
for n 6= m (5.39)

−ε′n =
∑
k

(
C(k)
n

)2 a(k)

dkR2
.

Because the hyperangular eigenfunctions are orthonormal, the diagonal part of the P

matrix is zero, i.e. Pnn =
1
2
∂

∂R
〈Φn|Φn〉 = 0. The second equation gives the normaliza-

tion condition for Φn, with an overall phase that is free. This overall phase is chosen



85

here so that
∑

k C
(k)
n is positive. A similar derivation provides the matrix elements Qmn:

Qmn = δmn

(
ε′n +Rε′′n +An

R2ε′n
+
ε′′′n
6ε′n

)
+ 2 (1− δmn)

ε′nPmn +Bmn
(εm − εn)

, (5.40)

An =
∑
k

a(k)

dk

[(
C(k)
n

)′]2

,

Bmn =
∑
k

[
C(k)
m

(
a(k)

dkR2

)(
C(k)
n

)′
− C(k)

m C(k)
n

a(k)

dkR3

]
.

When the symmetries given in Table I are used, there can be a considerable

simplification of the expressions for Pmn and Qmn. For a system of identical bosons

where a(1) = a(2) = a(3) = a, d1 = d2 = d3 = d and C
(1)
n = C

(2)
n = C

(3)
n = Cn, Pmn and

Qmn are given by

Pmn =

√
ε′mε

′
n

(εm − εn)
(5.41)

Qmn = δmn

[
−1

4

(
ε′′n
ε′n

)2

+
1
6
ε′′′n
ε′n

]
+ (1− δmn)

[
2ε′n
√
ε′nε
′
m

(εm − εn)2 −
ε′′n

(εm − εn)

√
ε′m
ε′n

]
,

which are in agreement with previously calculated nonadiabatic corrections for the three

identical boson system [111].

5.3 Three distinguishable interacting particles.

In this section the results of the previous section are applied to the case of three

distinguishable equal-mass particles. This system could be realized, for instance, in an

ultracold three component Fermi gas of 6Li atoms [94, 95]. The scattering lengths near

the resonance positions used here, as a function of magnetic field, are given in Ref.
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Region

I r0 � a(3) . a(1) � a(2) a(1), a(2), a(3) > 0
II r0 � a(3) ∼ a(1) �

∣∣a(2)
∣∣ a(2) < 0; a(1), a(3) > 0

III r0 �
∣∣a(2)

∣∣� a(1), a(3) a(2) < 0; a(1), a(3) > 0
IV r0 �

∣∣a(2)
∣∣� ∣∣a(1)

∣∣ , a(3) a(2), a(1) < 0; a(3) > 0
V r0 �

∣∣a(2)
∣∣� ∣∣a(1)

∣∣� ∣∣a(3)
∣∣ a(1), a(2), a(3) < 0

Table 5.2: The possible tunable interaction regimes near the resonances of 6Li are given.

[4, 94, 95] by

a(k) = ab

[
1− ∆

B −B0

]
[1 + α (B −B0)] , (5.42)

for k = 1 :

ab = −1450a0, B0 = 834.15 G,

∆ = 300 G and α = 4× 10−4 G−1;

for k = 2 :

ab = −1727a0, B0 = 690.4 G

∆ = 122.2 G and α = 2× 10−4 G−1;

for k = 3 :

ab = −1490a0, B0 = 811.22 G,

∆ = 222.3 G and α = 3.95× 10−4 G−1;

where a0 is the Bohr radius. The Fano-Feshbach resonances in this system allow for a

large variety of tunable interactions.

In this section I consider five different regions of magnetic field, shown in Fig.

5.1, near the three resonance positions which all have distinct behavior. In all five

regions the scattering length is much larger than the effective range, allowing for the

use of the zero-range interaction assumptions. Table 5.2 shows the various length scale

discrepancies in these regions.

Figure 5.2(a) shows an example of the lowest four hyperangular eigenvalues (ν + 2)2
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Figure 5.1: All possible s-wave scattering lengths are shown for the lowest 3 Zeeman
states of Li6 from Ref. [4]. Each marked region gives a different set of length scale
discrepancies. Here a(k) is the scattering length between two atoms in states |i〉 and |j〉
with k as the component not involved in the interaction.

Figure 5.2: (a)The the first four hyperangular eigenvalues are shown for an example
system where a(1) = a(3) and a(2) = 1000a(1) versus the hyperradius. The solid black
horizontal lines show the expected behavior for 3 identical resonantly interaction bosons.
The dashed line gives the behavior of two identical fermions interacting resonantly with
a third distinguishable particle. Dotted lines give the expected universal behavior for
a single resonant scattering length. Finally, the dot dashed line is the lowest expected
free space behavior for three distinguishable free particles.(b)The coupling strengths
between the first and second (purple), the first and fourth (red), and the second and
fourth (black) adiabatic potentials are shown as a function of R.

obtained from solving Eq. 5.32 for a(1) = a(3) and a(2) = 1000a(1). This is provided
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as an example that is qualitatively similar to the behavior of the system in region I.

When the hyperradius is in a region where all other length scales are much different,

the hyperangular eigenvalue (ν + 2)2 becomes constant, or, in the case of 2-body bound

states, becomes proportional to R2. This behavior can be interpreted as giving a uni-

versal set of potential curves from Eq. 5.25. For example in region I where r0 �

a(3) . a(1) � a(2) there are three hyperradial regions: r0 � R � a(3) . a(1) � a(2);

r0 � a(3) . a(1) � R � a(2); and r0 � a(3) . a(1) � a(2) � R. In each region

the hyperangular eigenvalues take on the universal value that is expected for resonant

interactions [60, 111, 112].

Figure 5.3 schematically shows the behavior of the first few hyperradial potentials

Un (R) =
~2

2µ
(νn + 2)2 − 1/4

R2
. (5.43)

The grey areas are the regions where potentials are transitioning from one universal

behavior to the next. The zero-range pseudo-potential cannot describe the short range

details of the interaction, meaning that the potentials found here are only valid for

R � r0 where r0 is a short range parameter shown schematically in the blue region of

Fig. 5.3.

Figure 5.2(b) shows the coupling strength, P 2
νµ/2µ (Eν − Eµ), between the differ-

ent potentials. The places where this coupling peaks are the points where a transition

between curves is the most probable. Figures 5.4(a-e) are examples of the hyperangular

eigenvalues found in each region. The magnetic field at which each set of eigenvalues

are found is shown as dotted lines in Fig. 5.4(f) from left to right for Fig. 5.4(a-e)

respectively. In each figure the hyperangular eigenvalue can be seen flattening out to

a universal constant in each region of length scale discrepancy. As the magnetic field

is scanned through each resonance, one two body bound state becomes a virtual state.

This behavior can be seen in the hyperangular eigenvalues that diverge toward −∞. As

each resonance is crossed, one of the hyperangular eigenvalue curves goes from diverging
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Figure 5.3: A schematic picture of the first four hyperradial potentials in region I is
shown. The grey areas indicate regions where the potentials are changing from one
universal behavior to another. The blue region indicates the short range region where
the zero-range pseudo-potential not longer can be applied.

to −∞ to converging to (ν + 2)2 → 4.
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Figure 5.4: (a)-(e) Examples of the hyperangular eigenvalues from each region of mag-
netic field are shown as a function of the hyperradius in atomic units. (f) The three
s-wave scattering lengths are shown as a reference plotted versus the magnetic field
strength. The dotted lines, from right, show the magnetic field at which the hyperan-
gular eigenvalues from (a)-(e) were found, B = 675, 695, 805, 820 and 845 gauss respec-
tively.
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As a final examination of this system, I extract the scaling of the low energy three

body recombination rate, i.e. the rate at which three particles collide and form a dimer

and a free particle. The lowest 3-body curve, the lowest potential that goes to the three-

free-particle threshold, is the potential that dominates this process. Contributions from

higher hyperradial potentials will be suppressed due to larger tunnelling barriers. One

limitation of the zero-range pseudo-potential is that it only admits at most one dimer

of each type. The process of three-body recombination releases the binding energy of

the dimer state as kinetic energy between the dimer and remaining particle. For the

purposes of this thesis I will concentrate on the three-body recombination processes that

result in trap loss processes, where the energy released in the recombination is enough

to eject the remaining fragments from a trap.

The rate coefficient for N particles transitioning from a hyperspherical potential

curve with hyperangular eigenvalue λ to a lower lying final state is given by [117, 26]

KN =
~k
2µ
NS

(
2π
k

)d−1 Γ
(
d

2

)
2πd/2

∑
λ

(2L+ 1) |Tfλ|2 , (5.44)

where d is the total dimension of the system (in the case of three-body recombination

d = 6), Tfλ is the transition matrix element between an initial channel labeled by it’s

free space hyperangular eigenvalue, λ, and the final channel, and k =
√

2µE/~ is the

wave number of the asymptotic hyperradial wavefunction. The sum in this equation

runs over all the initial, asymptotic channels with total angular momentum L that

contribute to the scattering process. In Eq. 5.44, NS is the number of permutational

symmetries in the system. For three distinguishable particles, which is the case studied

here, NS = 1, but it can be different, for instance for N bosons, NS = N !. To find the

T matrix element, it is sufficient to examine the Wentzel–Kramers–Brillouin (WKB)

tunnelling probability to this small R region [112]:

P (R0) = exp

(
−2
∫ RT

R0

√
2µ
~2

[
U (R) +

~2

2µ
1/4
R2
− E

]
dR

)
, (5.45)
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where RT is the outer classical turning point. The extra repulsive hyperradial barrier

term, ~2 (1/4) /2µR2, appears due to the Langer correction [118]. The T -matrix element

will be proportional to the WKB tunneling probability that the system will reach the

point at which a transition is made. The total T matrix will depend on the detailed

nature of the real short range interactions, but the scaling behavior with the scattering

lengths will be determined by Eq. 5.45. In each region of magnetic field, there are

different length scale discrepancies and different numbers of bound states. As a result,

I will examine each region separately.

5.3.0.1 Region I (a(1) ∼ a(3) � a(2))

Figure 5.4(a) shows the behavior of the first few hyperangular eigenvalues in

region I. The first three eigenvalues correspond to dimer states, while the fourth corre-

sponds to the lowest three-body potential and is the entrance channel that will control

three-body recombination. The lowest two dimer states are relatively deeply bound

with binding energies, ~2/ma2, on the order of 10−12 Hartree. This is close the same

energy as the trap depth of a normal magneto-optical trap for experiments with 6Li

[94, 95] meaning that recombination into these dimer channels releases enough energy

to cause trap losses. In the limit where R� a(3), the three atoms are far enough apart

to be in the noninteracting regime. This means that the hyperangular eigenfunction

limits to the lowest allowed three-body hyperspherical harmonic with its corresponding

eigenvalue, (ν + 2)2 → 4. In this limit the hyperspherical potential becomes

U
(
R� a(3)

)
=

~2

2µ
4− 1/4
R2

. (5.46)

For very low energy scattering, the classical turning point in Eq. 5.45, is approximately

RT =
1
2k
, (5.47)

using this potential. In fact, this will be the turning point for all of the three-body

recombination processes discussed in this chapter.
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It is possible for recombination to occur directly between the lowest three-body

curve and the deep dimer channels, but this direct process is strongly suppressed due

to the large tunneling barrier in the three body-curve at small R. The favored path is

through a transition to the weakly bound dimer channel, shown schematically in Fig.

5.5. The coupling between the lowest three-body channel and the weakly bound dimer

Figure 5.5: A schematic of the path for three-body recombination in region I is shown.

channel peaks at approximately a(2), while the coupling peak between the weakly bound

dimer channel and the two deep dimer channels occurs at approximately a(3) ∼ a(1). In

the regime where a(1) ∼ a(3) � R � a(2) the three particles are so far apart that they

cannot see the smaller scattering lengths a(1) and a(3), but the third scattering length

is so large compared to the hyperradius that it might as well be infinite. This leads to

a universal potential whose hyperangular eigenvalue can be found by solving Eq. 5.32

with a(1) = a(3) = 0 and a(2) →∞, i.e

U (R) =
~2

2µ
p2

1 − 1/4
R2

, (5.48)

p1 = (ν + 2) = 1.

The behavior of each channel can be approximated by the universal behavior of
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the hyperradial potential in each region. Under this assumption, using Eq. 5.45, the

transition probability is given by

P
(
a(3)
)
∝ exp

[
−2

(∫ a(2)

a(3)

dR

√
p2

1

R2
− E +

∫ RT

a(2)

dR

√
4
R2
− E

)]
. (5.49)

If the scattering energy is very small, E � ~2/m
[
a(2)
]2

, then the energy dependence in

these integrals becomes negligible leaving,

P
(
a(3)
)
∝ k4

(
a(2)a(3)

)2
. (5.50)

Inserting this in for the T -matrix element in Eq. 5.44 gives the scaling behavior of the

recombination rate with the scattering lengths [112]:

K3 ∝
(
a(2)a(3)

)2
. (5.51)

It was assumed here the final transition occurs atR ∼ a(3) leading to the scaling behavior

with a(3), but the transition could just as easily have occurred at R ∼ a(1). a(1) and a(3)

are approximately equal here, and which one dominates the transition depends on the

short range behavior of the real two-body interaction. To extract the scaling behavior

with respect to a(1), one can simply replace a(3) with a(1) in Eq. 5.51 as long as a(1)

and a(3) are close.

5.3.0.2 Region II (a(1) ∼ a(3) �
∣∣a(2)

∣∣)
The recombination in region II is simpler as there is no weakly bound state.

Again, I assume that the trap loss recombination is dominated by transitions to the two

remaining dimer states seen in Fig. 5.4(b). The lowest three-body potential has coupling

to these channels that peaks at R ∼ a(1) and R ∼ a(3). For R�
∣∣a(2)

∣∣ the hyperangular

eigenvalue takes on the non-interacting value (ν + 2) → 2. For a(1), a(3) � R �
∣∣a(2)

∣∣
the universal hyperangular eigenvalue (ν + 2) = p1 = 1 is seen again [111, 112, 113].

Ignoring the transitional region between these two regimes the transition probability is
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given by

P
(
a(3)
)
∝ exp

[
−2

(∫ |a(2)|

a(3)

dR

√
p2

1

R2
+
∫ RT

|a(2)|
dR

√
4
R2

)]
. (5.52)

Inserting this into Eq. 5.44 gives a recombination rate that has the same scaling behavior

as in region I [112]:

K3 ∝
(
a(2)a(3)

)2
. (5.53)

Again it is assumed that the final transition occurs at R ∼ a(3), but it could occur at

a(1) as well. As in Region I, the scaling behavior with respect to a(1) can be found by

simply replacing a(3) with a(1) in Eq. 5.51 as long as a(1) and a(3) are close.

5.3.0.3 Region III (
∣∣a(2)

∣∣� a(1) ∼ a(3)) and Region IV (
∣∣a(2)

∣∣� ∣∣a(1)
∣∣ ∼ a(3))

In Region III, none of the dimers predicted by the zero-range model have enough

binding energy to cause trap loss. While recombination can occur into these channels,

I will focus on the process of recombination to deeply bound states here. In reality, the

deep interaction potential between two Li atom in different spin states admits many

deeply bound dimer states, and a true hyperspherical description of the system would

have channels going to each possible dimer-atom threshold. The energy released in

recombining into these deep states is enough to kick the atoms out of any normal trap.

Because the deeply bound states are of the size of the range of the interaction, coupling

to the deeply bound hyperradial channels will peak at small hyperradius, R ∼ r0, and

the rate can be found by studying the tunneling probability of reaching these states.

As with the recombination process in Region I, the most favorable pathway in-

volves multiple steps. Starting from the lowest three-body channel, a transition is made

to either the first or second weakly bound dimer channel. Because a(1) and a(3) are

similar in magnitude, the coupling to these channels peaks in the same region. If the

transition is made to the highest dimer channel, then another transition is made directly

to the second.
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This pathway is shown schematically in Fig. 5.6. An interesting thing occurs

Figure 5.6: A schematic of the potentials and the path for three-body recombination
in region III is shown. Again the grey regions indicate a transition from one universal
potential behavior to another. The green line represents the hyperradial potential for
a deeply bound dimer state. The blue area is the short range region not described by
zero-range interactions.

in the lowest weakly bound potential when
∣∣a(2)

∣∣ � R � a(1) ∼ a(3): the universal

potential becomes attractive. This region of attractive potential gives rise to a number of

phenomena. For instance, in the limit a(1), a(3) →∞, the universal attractive potential

supports an infinite number of geometrically spaced three-body bound states, giving

rise to the Efimov effect. In the process of three-body recombination to deeply-bound

dimmer states, though, there is no tunnelling suppression in this channel, and the

hyperradial wavefunction merely accumulates phase in this region. As a result the

WKB tunnelling probability is controlled by the transition at R ∼ a(1), a(3):

P
(
a(1)
)
∝ exp

[
−2
∫ RT

a(1)

dR

√
4
R2

]
.

Inserting this into Eq. 5.44 gives the scaling of three-body recombination to deep dimer

states as

K3 ∝
[
a(1)
]4
. (5.54)
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Again, it is assumed here that a(1) and a(3) are similar in magnitude. If this is not the

case, for instance if a(1) � a(3), then a scaling behavior similar to that of Eq. 5.51 is

recovered:

K3 ∝
[
a(1)a(3)

]2
. (5.55)

In Region IV there is only a single weekly bound dimer state available, and trap

loss will occur through recombination to deeply bound dimers. The path here is similar

to that of Region III, where a transition happens from the lowest three-body channel

to the weakly bound dimer channel. From there the hyperradial wavefunction can go

to the small R region without further suppression. This process then yields the same

three-body recombination scaling behavior as Eq. 5.54 when a(1) ∼
∣∣a(3)

∣∣. When

a(3) �
∣∣a(1)

∣∣ , the scaling predicted by Eq. 5.55 is recovered.

5.3.0.4 Region V (
∣∣a(2)

∣∣� ∣∣a(3)
∣∣� ∣∣a(1)

∣∣)
In this regime the recombination process is entirely controlled by the lowest three-

body channel, shown schematically in Fig. 5.7. The hyperradial potential has three

universal regimes. The first, when r0 � R �
∣∣a(2)

∣∣ � ∣∣a(3)
∣∣ � ∣∣a(1)

∣∣, is identical to

that of three strongly interacting bosons. The hyperangular eigenvalue, (ν + 2)2, is the

first solution to Eq. 5.33 in the limit where R/a→ 0, yielding the hyperradial potential,

U (R) =
~2

2µ
− (s0)2 − 1/4

R2
, (5.56)

s0 = 1.0062.

In the next regime, when r0 �
∣∣a(2)

∣∣� R �
∣∣a(3)

∣∣� ∣∣a(1)
∣∣, the three particles are far

enough apart so as not to see the smallest scattering length. As a result the hyperangular

eigenvalue is governed by Eq. 5.32 with the BBX symmetry of Table 5.1 imposed:

U (R) =
~2

2µ
− (s1)2 − 1/4

R2
, (5.57)

s1 = 0.4137.
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Figure 5.7: A schematic of the lowest hyperradial potential is shown with the path
for three-body recombination to deeply bound states. The green line represents the
hyperradial potential for a deeply bound dimer state. Grey areas indicate transition
regions from one universal behavior to another, and the blue region indicates the short
range regime.

In the regime where r0 �
∣∣a(2)

∣∣ � ∣∣a(3)
∣∣ � R �

∣∣a(1)
∣∣, there is only one scattering

length that is seen by the system, and the universal potential becomes that of Eq.

5.48. In the final regime, where the hyperradius is much larger than all of the scattering

lengths, the potential goes to the non-interacting behavior of a hyperspherical harmonic.

The transition to a deeply bound dimer state occurs at R ∼ r0 following the path

shown in Fig. 5.7. To get to this region, the wavefunction must first tunnel through a

barrier, leading to suppression of the recombination rate. Once through the barrier, the

wavefunction accumulates phase in the attractive potential regime. If enough phase can

be accumulated in this regime, then a three-body bound state (a so called Efimov state)

can be present leading to a resonance in the recombination rate. The final recombination

rate for this process is [26, 111, 112, 61]

K3 ∝ A
sinh 2η

sin2 (φWKB) + sinh2 η
, (5.58)

where η is controlled by the short range properties of the system, φWKB is the WKB

phase accumulated in the attractive regime from r0 to
∣∣a(3)

∣∣, and A is proportional to
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the tunneling suppression through the barrier:

A ∝
[
a(3)a(1)

]2
, (5.59)

φWKB = s1 ln

(
a(1)

a(2)

)
+ s0 ln

(∣∣a(2)
∣∣

r0

)
. (5.60)

Figures 5.8 (a-c) show a log-log plots of the recombination rate as a function of∣∣a(1)
∣∣, ∣∣a(2)

∣∣ and
∣∣a(3)

∣∣ respectively for magnetic fields from 834.15 to1000 gauss with

η = 0.01. The short range length scale here is chosen to be approximately the van

der Waals length of 6Li, r0 = rd ≈ 60 atomic units. In Fig. 5.8(a), for smaller
∣∣a(1)

∣∣,

Figure 5.8: (a-c) The log of the three-body recombination rate from Eq. 5.58 for 6Li
is shown for magnetic fields ranging from 834.15 to 1000 gauss is shown plotted versus∣∣a(1)

∣∣, ∣∣a(2)
∣∣ and

∣∣a(3)
∣∣ respectively with η = 0.01 and the short range length scale chosen

to be approximately the van der Waals length, r0 = rd ≈ 30 a.u. The beginning of an
Efimov resonance can be seen in (a) and (b) while the scaling law K3 ∝

[
a(3)
]2

can be
seen in (c).

the scaling predicted in Eq. 5.59 cannot clearly be seen because of deviations due to

an Efimov state beginning to appear. Though the Efimov state has not quite become

bound, its effects on the recombination rate can clearly be seen. In Fig. 5.8(b), there

is no scaling behavior with
∣∣a(2)

∣∣ , though the effects of the Efimov state are present.

Figure 5.8(c) shows only slight deviations from the predicted scaling behavior in Eq.
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5.59 as a function of
∣∣a(3)

∣∣, this is because a(3) takes on a large range of values in this

range of magnetic fields, from −4000 a.u. to −∞, but does not play a role in the size

of the phase accumulation regime.

With three overlapping resonances, 6Li provides a rich hunting ground for the

study of three-body physics. Further, because it is a fermionic atom, three-body in-

teractions involving only two of the three lowest components are strongly suppressed

meaning that the majority of the three-body physics is controlled by a system of three

distinguishable particles. While only the processes of three-body recombination that

lead to trap losses were studied in this section, there is still a rich and complex array of

behaviors not discussed that can be described using the model presented here.

5.4 Multi-channel interactions

In this section I develop a multi-channel generalization of the Green’s function

methods, in which each particle in the three-body system can be in one of two different

internal states. While the exact nature of the internal states is not required, for reference

one can think of them as Zeeman states of atoms in an ultracold gas. Allowing the

atoms to be in different internal states leads to an interaction that is intrinsically multi-

channel in nature, where each channel corresponds to a different two-body combination

of internal states. The benefits of having a true multi-channel interaction are many fold.

For instance, instead of tuning a single channel interaction’s scattering length to model

a broad s-wave Fano-Feshbach resonance, using a multi-channel interaction allows for

the real resonance to be mimicked. In the previous section a deeply bound two body

state had to be put in by hand with assumptions about the coupling behavior to this

state. With a multi-channel interaction a deeply bound state can be included directly in

the two body interaction. Another benefit is that the three-body system can be studied

at excited scattering thresholds with coupling to lower thresholds. This topic will be

the main focus of this section.
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To begin, I will assume that each atom in the three-body system can be in one

of two internal states, |1〉 and |2〉, and that these internal states have energy 0 and

ε respectively. To reduce the large parameter space involved here, I will assume that

the particles are identical bosons. Two atoms can interact in different symmetric in-

ternal state channels labeled by {|σ〉} =
{
|11〉 , (|12〉+ |21〉) /

√
2, |22〉

}
with asymptotic

threshold energies, Eσ = 0, ε, 2ε, respectively. The interaction between the two particles

is assumed to be a zero-range multi-channel extension of the pseudo-potential,

v̄ (r) =
4π~2

2µ2B
Āδ(3) (~r)

∂

∂r
r, (5.61)

where µ2B = m/2 is the two body reduced mass. The symmetric matrix,

Ā =


A11 A12 A12

A12 A22 A23

A13 A23 A33

 , (5.62)

is expressed in the |σ〉 basis and can be considered as a multi-channel generalization of

the scattering length in Eq. 5.20. Figure 5.9 gives a schematic picture of this interaction.

When the channels are weakly coupled, the diagonal elements of Ā can be thought of as

Figure 5.9: A schematic picture of the multi-channel two body interaction is shown.
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the scattering length in each channel while the off diagonal elements are the coupling.

In a more rigorous treatment, Ā is simply minus the scaled reactance matrix K̄0 from

multi-channel quantum defect theory [114, 119, 120]. The regularization factor serves to

impose the generalization of the Bethe-Peierls boundary condition. This multi-channel

interaction has been used in previous three-body studies as well [121].

To extend this interaction to a three-body system, I first use the Jacobi coordi-

nates described in Eq. 5.21 and the hyperspherical coordinates described by Eqs. 5.26

and 5.27. The possible three-body internal states are given by {|Σ〉} = {|111〉, |112〉,

|121〉, |211〉, |122〉, |212〉, |221〉, |222〉} with threshold energies EΣ = 0, ε, ε, ε, 2ε, 2ε,

2ε, and 3ε. The hyperangular piece of the three-body Hamiltonian with the center of

mass motion removed is given by

Had =
~2

2µ
Λ2

R2
Ī + V̄ (R,Ω) + ĒTh, (5.63)

where Ī is the identity matrix, V̄ (R,Ω) is a matrix representing the sum of all possible

two-body interactions, and Ēth is the threshold energies of each internal state. The

resulting Schrödinger equation is then solved by the Lippmann-Schwinger equation,

~Φ (Ω) =
∫ ∑

k

Ḡ
(

Ω(k),Ω(k)′
) 2µR2

~2
v̄(k)

(
dρ

(k)′
1

)
~Φ
(

Ω(k)′
)
dΩ(k)′, (5.64)

where d =
√
µ/µ2B =

√
2/31/2. The two-body interaction, v̄(k), is the zero-range

pseudo-potential from Eq. 5.61 written in the |Σ〉 basis by considering the third particle
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as a spectator. For example when k = 1 the two body interaction is given by,

v̄(1)
(
dρ

(1)
1

)
=

4π~2

2µ2B
Ā(1) ∂

∂ρ
(1)
1

ρ
(1)
1 , (5.65)

Ā(1) =



A11
A12√

2
A12√

2
0 A13 0 0 0

A12√
2

A22 0 0
A23√

2
0 0 0

A12√
2

0 A22 0
A23√

2
0 0 0

0 0 0 A11 0
A12√

2
A12√

2
A13

A13
A23√

2
A23√

2
0 A33 0 0 0

0 0 0
A12√

2
0 A22 0

A23√
2

0 0 0
A12√

2
0 0 A22

A23√
2

0 0 0 A13 0
A23√

2
A23√

2
A33



,

where Aij is defined in terms of the two-body interaction given by Eq. 5.62. The

somewhat odd form of this scattering length matrix has been chosen so that the two

internal states, |12〉 and |21〉, have the same interactions. Extra factors of 1/
√

2 in some

matrix elements are included for symmetrization purposes.

In Eq. 5.64 Ḡ (Ω,Ω′) is the multi-channel generalization of the hyperangular

Greens function whose matrix elements are given by

[
G
(
Ω,Ω′

)]
ΣΣ′

= δΣΣ′GνΣ

(
Ω,Ω′

)
, (5.66)

where GνΣ (Ω,Ω′) is the single channel Green’s function from Eq. 5.12 with the hyper-

angular eigenvalue modified to include the threshold energy offsets, i.e.

vΣ (νΣ + 4) = ν (ν + 2)− 2µR2

~2
[ETh]ΣΣ .

It is clear from this definition that Ḡ (Ω,Ω′) is the solution to the multi-channel Green’s

equation,

Λ2Ī −
[
ν (ν + 2) Ī − 2µR2

~2
ĒThĪ

]
Ḡ
(
Ω,Ω′

)
= δ

(
Ω− Ω′

)
Ī ,
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where νΣ can be interpreted as the hyperangular eigenvalue with respect to the Σth

three-body threshold. Hyperangular solutions to the multi-channel three-body problem

give the hyperradial Schrödinger equation[
− ~2

2µ
d2

dR2
+

~2

2µ
(ν + 2)2 − 1/4

R2

]
R5/2F (R) = ER5/2F (R) ,

where the nonadiabatic matrices P̄ and Q̄ have been omitted.

As in Sec. 5.2, each integral in Eq. 5.64 is performed in the Jacobi coordinates

where ~ρ(k)
1 = d (~ri − ~rj). The regularization factor,

∂

∂ρ
(k)
1

ρ
(k)
1 , acting on the wavefunction

~Φ
(
Ω(k)

)
at α(k) → 0 gives a boundary condition vector,

lim
α(k)→0

∂

∂ρ
(k)
1

ρ
(k)
1
~Φ
(

Ω(k)
)

= ~C(k)yLM

(
ω

(k)
2

)
. (5.67)

where yLM (ω) is a normal spherical harmonic. The three boundary condition vectors

are related by assuming that any two particles in the same internal state are identical:

~C(1) =



C1

C2

C3

C4

C5

C6

C7

C8



,

~C(2) = P̄− ~C1,

~C(3) = P̄+
~C1,

where the matrices P+ and P̄− correspond to cyclic and anti-cyclic permutations of the
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internal states:

P̄+ =



1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1



(5.68)

P̄− = P̄ T+ . (5.69)

Evaluating the integral in the LS equation for each component of ~Φ proceeds in

the same way as in Sec. 5.2:

ΦΣ (Ω) =
1
dR

∑
Σ′

NνΣL
f−Σ
(
α(k)

)
(sinα)2 (cosα)2W [f+, f−]

Ā
(1)
ΣΣ′yLM

(
ω

(1)
2

)
~C

(1)
Σ′

+
1
dR

∑
Σ′Σ′′

NνΣL
f−Σ
(
α(3)

)
(sinα)2 (cosα)2W [f+, f−]

Ā
(2)
ΣΣ′yLM

(
ω

(3)
2

) [
P̄+

]
Σ′Σ′′

~C
(1)
Σ′′

(5.70)

+
1
dR

∑
Σ′Σ′′

NνΣL
f−Σ
(
α(3)

)
(sinα)2 (cosα)2W [f+, f−]

Ā
(3)
ΣΣ′yLM

(
ω

(3)
2

) [
P̄−
]
Σ′Σ′′

~C
(1)
Σ′′ ,

where f−Σ (α) and (sinα)2 (cosα)2W [f+, f−] are given by Eqs. 5.17 and 5.18 respec-

tively with ν taken to νΣ, l1 = 0, l2 = L, and d1 = d2 = 3. The pseudo-potential

treatment is that of enforces s-wave boundary conditions on each interacting pair of

particles, meaning that in Eq. 5.70 the spherical harmonics, yLM
(
ω

(k)
2

)
, in each term

hold the entire three-body spatial angular momentum.

For the purposes of this thesis I consider only zero total angular momentum states,

L = 0, but it is clear how this can be generalized to arbitrary total angular momentum.

To find the hyperangular eigenvalue, ν, the boundary condition in Eq. 5.67 is applied
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to both sides of Eq. 5.70 for k = 1. Using the behavior of the Jacobi vectors described

by Eq. 5.31 and a bit of algebra, the matrix equation becomes[
1
dR

M̄ (1) +
1
dR

M̄ (2)P̄+ +
1
dR

M (3)P̄− − Ī
]
~C(1) = 0 (5.71)

where the 8× 8 matrices M̄ (k) are given by

M
(k)
ΣΣ′ =


A

(k)
ΣΣ′ (νΣ + 2) cot [(νΣ + 2)π/2] , k = 1

− 4√
3
A

(k)
ΣΣ′

sin [(νΣ + 2)π/6]
cos [(νΣ + 2)π/2]

, k = 2, 3
. (5.72)

Solving this matrix equation will give both the hyperangular eigenvalue, ν, and the

boundary condition vector ~C(1) up to an arbitrary constant.

There is one last issue that must be dealt with. In the description of the internal

states it was assumed that two interacting particles could have unsymmetrized internal

states. Correcting this is a simple matter of projecting out the antisymmetric linear

combination of internal states in each two particle interaction. Following this procedure

gives the final matrix equation describing the hyperangular eigenvalue for three bosons

with multi-channel two-body interactions,

S̄

[
1
dR

M̄ (1) +
1
dR

M̄ (2)P̄+ +
1
dR

M (3)P̄− − Ī
]
S̄T ~C

(1)
S = 0, (5.73)

where ~C
(1)
S is a 6 dimensional vector of boundary conditions in the set of symmetrized

states given by
{∣∣ΣS

〉}
=
{
|111〉 , (|112〉+ |121〉) /

√
2, |211〉 , |122〉 , (|212〉+ |221〉) /

√
2, |222〉

}
with each interacting pair in one of the symmetrized internal states shown in Fig. 5.9.

Here S̄ is the matrix that projects the original |Σ〉 basis onto this subset of three-body

internal states
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S̄ =



1 0 0 0 0 0 0 0

0
1√
2

1√
2

0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0
1√
2

1√
2

0

0 0 0 0 0 0 0 1



. (5.74)

Solving the transcendental equation implied by Eq. 5.71 is by no means simple, as

the determinant of the resulting 6 × 6 determinantal equation has many roots with a

very complex structure. Further, the complex system of coupled hyperradial differential

equations can have many very narrow avoided crossings and sharp features. As a result

I will limit the implementation in what follows to the prediction of qualitative features

of the system.

5.4.1 Efimov States embedded in the continuum

The adiabatic hyperspherical method has proven especially useful in the descrip-

tion of Efimov physics. In Sec 5.3, it was seen that when three particles are interacting

resonantly, they can form a series of bound states called Efimov states. In the case of

three bosons, in the limit where a → ±∞, the lowest adiabatic hyperradial potential

takes on a universal 1/R2 attractive potential when the hyperradius is much greater

than a short range length scale, r0,

U (R) =
~2

2µ
−s2

0 − 1/4
R2

,

where s0 =
√
− (ν + 2)2 = 1.00624 is the first solution to Eq. 5.33 in the limit R/a→ 0.

This attractive dipole–like potential supports an infinite number of geometrically spaced

bound states that accumulate at the zero-energy threshold [32, 60]. The position of the

first bound state will depend on the short range length scale r0, and each trimer after
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that has energy

En = En−1e
−2π/s0 ≈ En−1

(22.7)2 . (5.75)

The first strong experimental evidence of Efimov states has recently been seen exper-

imentally in the work of Kramer et. al. [62] in observations of trap losses caused

by three-body recombination. Unfortunately, this experiment has only seen one reso-

nant feature. To really show that the observation corresponds to an Efimov state, two

resonances must be observed with the characteristic geometric scaling factor between

scattering lengths, a2 ≈ e−2π/s0a1 = 22.7a1. Of course, increasing the scattering length

by more than an order of magnitude poses its own problems. For instance the three-

body recombination rate scales with a4 [26, 111, 61], a fact that can easily be confirmed

using the WKB tunneling methods described in Sec. 5.3, severely limiting the lifetime

of the gas in the large scattering length limit. In this section I propose a method of

observing Efimov states utilizing the multi-channel nature of the two-body interactions.

To limit the 6 dimensional parameter space of the interaction scattering length

matrix Ā, in this study I investigate only a parameter regime where A11 = A33, A22 =

2A33 and A12 = A23 = A33/4. The qualitative results found here are not changed by

this particular choice of parameters. The only requirement is that A33 must be positive.

For the initial study I will assume that the first and third two body channel in Fig.

5.9 are not directly coupled, i.e. A13 = 0. Effects of weak coupling between these two

channels will be discussed later. The main idea here is to tune the interactions to a

resonance in an excited two-body threshold. This occurs when a quasistable two-body

bound state attached to the third two-body scattering threshold is degenerate with the

second two-body threshold. This is achieved by tuning the asymptotic two-body energy

to ε = ~2/mA2
33. By choosing these parameters, I have also chosen a rough short range

length scale of r0 ∼ A33.

Inserting these parameters into Eq. 5.73 and solving gives a somewhat intimidat-
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ing set of potentials. Figure 5.10(a) shows the first 300 adiabatic hyperradial potentials

for these parameters in units of ε plotted as a function of R/A33.In this figure the

Figure 5.10: (a) The first 300 adiabatic hyperradial potentials are shown for the mul-
tichannel three-boson problem in units of ε as a function of R/A33. (b) The adiabatic
three-body potentials near the second three-body scattering threshold are shown. The
attractive Efimov diabat can be clearly seen approaching the second scattering thresh-
old.

various possible asymptotic three-body threshold energies and the corresponding inter-

nal states in the
∣∣ΣS

〉
internal state basis where particle 1 is treated as a spectator

particle can clearly be seen. At first glance, it seems likely impossible to extract any

useful information from this figure, but upon close examination several features become

apparent.

First, there is a clear three-body scattering threshold at E = 0 with three body

potential curves converging to this value. In fact there is a series of diabatic curves going

through a series of very sharp avoided crossing limiting to each three-body internal state
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threshold, EΣ = 0, ε, 2ε, and 3ε. Looking below the zero energy threshold, two potentials

corresponding to states consisting of a dimer and a free particle can be seen. This is

a clear difference between the multi-channel model for three identical bosons and the

single channel model. In the single channel model of three identical bosons, there is

only a single length scale, the scattering length, allowing only at most a single two-body

bound state. In the multi-channel model there are multiple length scales, and multiple

bound states are allowed attached to different thresholds. In this case the deepest two-

body state is attached to the |111〉 scattering threshold and corresponds to a |11〉 dimer

with binding energy Eb = (1.11) ε. This binding energy is about what one would expect

from the scattering length in this channel:

a11 =

(
180−

√
2
)

194
A33 = 0.92A33.

With this scattering length, the zero range single channel model predicts a binding

energy of Eb ≈ ~2/ma2
11 = (1.18) ε. The difference in these two energies is due to the

extra short range physics added in the multi-channel interaction. The second, weakly

bound hyperradial potential has an asymptotic energy Eb = 0.11ε. This state comes

from a |11〉 bound state attached to the second three body scattering threshold and is

not present in the zero-range single channel predictions.

Examining Fig. 5.10(a) further reveals a series of avoided crossings at E ≈ 0.6ε,

these correspond to a quasi-bound two-body state with an internal state (|12〉+ |21〉) /
√

2

attached to the second three body channel. Another series of avoided crossings is seen in

Fig. 5.10(a) at E ≈ 1.6ε corresponding to the same type of two-body quasi-bound state

attached to the third three-body threshold. Further discussion characterizing the fea-

tures and potentials seen in this figure would take more time and space than is available,

and as such I will limit myself to one more interesting region.

The original purpose stated in this section was to analyze the three-body hyperra-

dial potentials when a quasi-bound two-body state was made resonant with an excited
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two-body scattering threshold. By tuning the threshold spacing, ε to ε = ~2/mA2
33,

this is exactly the case. With the chosen parameters, A11 = A33, A22 = 2A33 and

A12 = A23 = A33/4, the |σ = 2〉 = (|12〉+ |21〉) /
√

2 threshold scattering length can be

found:

a22 = aRe
22 + aIm

22 , (5.76)

aRe
22 =

1
16
A33

30 +
1

1−A33

√
mε

~2

+
1

1 +A2
33

mε

~2

 ,

aIm
22 = − 1

16

A2
33

√
mε

~2

1 +A2
33

mε

~2

.

With a resonance at the second two-body scattering threshold, it might be a good idea

to consider the behavior of the three-body potentials at the second three-body thresh-

old. Figure 5.10(b) shows an enlarged view of the adiabatic hyperradial potential in

the region near this threshold. It becomes obvious that the adiabatic potentials here

go through a series of very narrow avoided crossings here forming a set of diabatic hy-

perradial potentials asymptotically approaching the |Σsymm = 2〉 = (|112〉+ |121〉) /
√

2

threshold including an attractive potential. The attractive diabatic potential of interest

is given by

Udiab (R) =
~2

2µ
(νΣ=2 + 2)2 − 1/4

R2
+ ε (5.77)

→ ~2

2µ
−s2

1 − 1/4
R2

+ ε (5.78)

where νΣ=2 is the hyperangular eigenvalue with respect to the second threshold. Figure

5.11 shows (νΣ=2 + 2)2 as a function of the hyperradius. In the limit R � A33 this

hyperangular eigenvalue approaches a constant, (νΣ=2 + 2)2 → −s2
1 = − (0.4137)2 where

s1 is the universal constant given in Eq.5.57 that describes three equal mass particles

with two resonant interactions [32, 122], the exact behavior one might would predict for

a resonance in the |σ = 2〉 two body channel. With this universal attractive potential,
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the Efimov diabat can support an infinite number of geometrically spaced states that

are bound with respect to the second three-body threshold:

En = ε− E0e
−2π/s1 ≈ ε− 2.5× 10−7E0. (5.79)

Because the diabat goes through some avoided crossings with finite width, it is coupled

to the three-body |111〉 continuum, making the Efimov states quasi-stable. Because

of the multi-channel nature of the three-body interaction, these states are interpreted

as fully three-body Fano-Feshbach resonances in a three-body continuum [18, 123, 19].

Similar resonances have been predicted due to Efimov states in the context of particle

dimer scattering in nuclear halo systems [124].
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Figure 5.11: The hyperangular eigenvalue corresponding to the Efimov diabat is shown
as a function of R/A33. (inset) The hyperangular eigenvalue is shown for A13 = 0,
0.005A33 and 0.01A33 (black, red and green respectively). As A13 increases the width
of the avoided crossings that create the Efimov diabat can be seen to increase.

5.4.2 Non-adiabatic matrices for the multi-channel problem

The states predicted in this section can only exist if the nonadiabatic diagonal

correction falls off fast enough. Specifically, if Qdiabnn (R) for the diabatic Efimov potential

dies off more slowly than s2
1/R

2, the long range 1/R2 behavior that allows for the infinite
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number of states will be cut off. If the diagonal correction dies of as 1/R2 then it can

change the spacing of the states.

The derivation of the non-adiabatic matrix elements Pmn is shown in Appendix

B the result of which is:

Pmn =− 12µR (4π)2

dR (εn − εm)2

[
~C(1)
m ·

[
ĒthĀ

(1) ~C(1)
n

]
− ~C(1)

n ·
[
ĒThĀ

(1) ~C(1)
m

]]
(5.80)

+
3 (4π)2

(εn − εm)

[
− 1
dR

~C(1)′
n ·

(
Ā(1) ~C(1)

)
− 1
dR2

~C(1)
m ·

(
Ā(1) ~C

(1)
n′

)
+

1
dR

~C(1)
m ·

(
~A(1) ~C

(1)′
n′

)]
where εn = (νn + 2)2−4 and the prime indicates a derivative with respect to the hyper-

radius. This equation holds if the hyperangular channel function, ~Φn (Ω), is normalized

correctly. The normalization condition can be found through the boundary value vec-

tor, ~C(1)
n , by first “pre-normalizing” with ~C

(1)
n = N ~C

(1)
0n where

[
~C

(1)
0n · C̄

(1)
0n

]
= 1, and

the constant N is defined by

1 = N2 3 (4π)2

dR

[
~C

(1)
0n ·

(
ε′n − 4µRĒTh

)−1
Ā ~C1′

n (5.81)

−~C(1)′
0n ·

(
ε′n − 4µRĒTh

)−1
Ā ~C

(1)
0n −

1
R
~C

(1)
0n ·

(
ε′n − 4µRĒTh

)−1
Ā ~C

(1)
0n

]
.

The second derivative non-adiabatic diagonal matrix elements, Qnn, are somewhat

more complex, and are given in Appendix B. The resulting diagonal correction matrix

element for the diabatic Efimov potential is shown in Fig. 5.12. It is clear that for large

R, the diagonal correction, Qnn, falls as 1/R3, and that including this non-adiabatic

correction does not destroy the Efimov states.

The lifetime of the quasi-stable Efimov states will be partly controlled by the

short range coupling to the continuum and to deeply bound states. A WKB velocity

can be used to find the time it takes for the Efimov state to travel out to the far classical

turning point and back to the short range region,

T =
∫ Rt

r0

µ√
2µ [−En − U (R)] + 1/4R2

dR, (5.82)

where RT is the classical turning point at large R, r0 is the inner turning point controlled

by the short-range details of the interaction, En is the binding energy of the nth Efimov
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Figure 5.12: The diagonal correction, −Qnn/2µ is shown in dimensions of the two-body
threshold separation ε plotted as a function of R. The red dashed line shows 1/R3

scaling while the blue dot-dashed line shows 1/R2 scaling.

state with respect to the second three-body threshold, and U (R) is the diabatic Efimov

potential from Eq. 5.78. If it is assumed that every time the Efimov state oscillates

through the short range region there is a fixed probability of transitioning to a deep

state, the lifetime of the state is found to be

Γn =
PSR
2T
≈ Γn−1e

−2π/s1 , (5.83)

where PSR is the short-range transition probability, T is given by Eq.5.82, and Γn is the

width of the nth Efimov state. This means that if the width of the first Efimov state is

narrow enough, then each of these resonances will be isolated from the others.

The final mechanism that can limit the lifetime of the quasistable Efimov states

is the width of the avoided crossings at large R. Direct calculation of the P matrix

elements is numerically difficult as it requires a large number of adiabatic potentials,

calculated to high accuracy, to construct the diabatic Efimov potential and find the P̄

matrix coupling at large R. A good estimate of the widths of these couplings is the

lifetime of the two-body resonant state. This means that the Efimov state can remain

as long as two-body interactions keep the system in the resonant two-body channel.
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The parameter that controls the width of the large R avoided crossings is the coupling

A13. The inset of Fig. 5.11 shows (νΣ=2 + 2)2 for large R for of A13 = 0 (black line),

0.005A33 (red circles), and 0.01A33 (green crosses).As A13 grows, the width of each

crossing increases. The |σ = 2〉 = (|12〉+ |21〉) /
√

2 two-body scattering length can be

determined as a function of A13:

a22 = aRe + iaIm, (5.84)

aRe =
A3

33

16A2
13

,

aIm =
A33

(
32A2

13 + 2A13A33 +A2
33

)
16A2

13

.

The lifetime of the quasi-bound resonant state can be approximated by one over the

imaginary part of the energy Eres ≈ ~2/ma2
22. For A13 � A33 this yields

T ≈ ~
Im (Eres)

≈ mA6
33

~128A4
13

. (5.85)

This clearly demonstrates that for A13 → 0 the the large R avoided crossings in the

diabatic Efimov potential become level crossings, and for A13 � A33 the crossings will

be very narrow, and the lifetime of the Efimov states will be mostly controlled by the

short range couplings.

The prediction of the Efimov state induced Fano-Feshbach resonances leads me

to suggest a new method of experimentally probing these states with the use of radio

frequency (RF) spectroscopy. In a cold atomic gas, the different internal states are

Zeeman states which are weakly coupled by an RF field. By probing an ultracold gas

of bosons in the lowest internal state using an RF field, resonances in the loss rate from

the gas should appear when the frequency of the field is at the energy of one of the

quasistable Efimov states. Further, the atoms in the gas will spend the majority of

their time near the E = 0 threshold and in the |1〉 state. Because the scattering length

between atoms in the |1〉 state is not necessarily large, the gas will be stable with respect

to the a4 scaling of three-body recombination, allowing for long probing times. If it is
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assumed that the first Efimov state appears at E1 ≈ ~× 2π (40 MHz) below the second

threshold, an energy that is not unreasonable for a three-body state of 85RB atoms

that is approximately the van der Waals length rd ≈ 200 a.u. in size, Eq. 5.79 shows

that the second state will appear at approximately E2 = ~ × 2π (40 MHz) e−2π/s1 ≈

~×2π (10 Hz). This binding energy is very small compared to the 2 GHz spacing of the

hyperfine levels of 85Rb, but still possibly within experimental resolution. The geometric

scaling factor in the spacing of the Efimov states, e−2π/s1 , can be made considerably

better by creating a resonance at the |22〉 two-body scattering threshold and considering

Efimov states attached to the |222〉 identical boson threshold. Another tactic to improve

the geometric spacing is that of using more favorable mass ratios [111, 112, 113]. The

multi-channel treatment of these scenarios is a task beyond the scope of this thesis, but

should be accessible using the methods shown here.



Chapter 6

Four Fermions and Dimer-Dimer Scattering

The physics of strongly interacting fermions is of fundamental importance to many

areas of physics, including condensed matter physics, nuclear and particle physics, and

astrophysics. Specifically the last few years have seen explosive growth, both experimen-

tally [12, 13, 14, 15, 16, 17] and theoretically [46, 47, 48, 49], in the area of degenerate

Fermi gases of atoms. Combined with a Fano-Feshbach resonance that allows for tuning

of the s-wave interactions, these systems exhibit a variety of interesting phenomena in-

cluding the Bose-Einstein condensate (BEC) and the Bardeen-Cooper-Schreiffer (BCS)

crossover that smoothly links two fundamentally different types of superfluidity, BEC

(a > 0) to BCS (a < 0), through a resonance. In these systems, few-body correlations

play a fundamental role in understanding the many-body behavior [23]. For instance,

a full solution of the four-fermion problem is required to understand the energy and

dynamics of a BEC of bosonic molecules composed of two fermions each.

The Hamiltonian for the four-fermion problem is given by

H =
4∑
i=1

− ~2

2m
∇2
i +

∑
i>j

V (rij) . (6.1)

Generally speaking the resulting 12 dimensional Schrödinger equation is unmanageable.

In this chapter I incorporate a variety of existing theoretical methods together to first

reduce the dimensionality of this partial differential equation, and then to develop a basis

set that allows for manageable variational calculations of the scattering potentials. This
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chapter is organized as follows: in Section 6.1, the various coordinate systems used in

solving the four-fermion problem are discussed as well as various properties of each

system; in Section 6.2 the variational basis set used to describe the system is developed;

in Section 6.3 the resulting dimer-dimer wave function is analyzed; in Section 6.4 the

energy dimer-dimer scattering length is examined; and finally in Section 6.5 the process

of dimer-dimer relaxation is discussed.

6.1 Coordinate systems

The use of different coordinate systems plays a significant role in the treatment of

few-body scattering problems. Depending on the symmetries, interactions, and fragmen-

tation channels inherent in the problem, different coordinates may significantly affect

the ease with which the problem can be described. For example, in the four fermion

problem, the fermionic symmetry of the system can be used to significantly reduce the

size of the basis needed to describe the possible scattering processes. Describing this

symmetry in the wrong coordinate system, as I will show in this section, can create a

considerable amount of difficulty. Here I detail the variety of coordinate systems that

are used to describe the four-fermion problem in the adiabatic hyperspherical framework

and the necessary transformations to describe one set in terms of another. The coordi-

nate systems used here are not only needed to describe correlations between particles,

they also allow the system to be reduced in dimensionality by removing the center of

mass motion and moving into a body fixed frame.

6.1.1 Jacobi coordinates

The first and most obvious symmetry in the Hamiltonian described by Eq. 6.1 is

that of translational symmetry. By describing the system in the center of mass frame,

the dimensionality of the system can be reduced from d = 12 to d = 9. This is done

with the use of Jacobi coordinates. In the interest of brevity, I constrain myself here



118

to only those coordinates directly concerned with the problem at hand. The Jacobi

coordinates relevant to the four-body problem may be broken into two sets, H-type and

K-type, shown schematically in Fig. 6.1.

Figure 6.1: The two Jacobi coordinates configurations possible in the four body problem
are shown schematically.

H-type Jacobi coordinates are constructed by considering the separation vector

for two two-body subsystems, and the separation vector between the centers of mass of

those two subsystems, i.e.

~ρHσ1 =
√
µij
µ

(~ri − ~rj) ,

~ρHσ2 =
√
µkl
µ

(~rk − ~rl) , (6.2)

~ρHσ3 =
√
µij,kl
µ

(
mi~ri +mj~rj
mi +mj

− mk~rk +ml~rl
mk +ml

)
,

~ρcm =
(m1~r1 +m2~r2 +m3~r3 +m4~r4)

m1 +m2 +m3 +m4
,

µij =
mimj

mi +mj
, µij,kl =

(mi +mj) (ml +mk)
m1 +m2 +m3 +m4

.

Here the superscript σ enumerates the 24 different H-type coordinates that may be

obtained through particle permutation, ~ρcm is the position of center of mass of the

four-body system, and µ is an arbitrary reduced mass for the four-body system. The

prefactors in each Jacobi vector, which are given in terms of the various reduced masses
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in the problem, are chosen to give the so-called mass scaled Jacobi vectors. The kinetic

energy in these coordinates can be written as

−
4∑
i=1

~2

2mi
∇2
ri = − ~2

2M
∇2
ρcm −

~2

2µ

3∑
j=1

∇2
ρj ,

where M is the total mass of the four particles. The reduced mass, µ, can be cho-

sen to preserve the differential volume element for the full 3D problem, ensuring that

d3ρσ1d
3ρσ2d

3ρσ3d
3ρcm = d3r1d

3r2d
3r3d

3r4:

µ =
(

m1m2m3m4

m1 +m2 +m3 +m4

)1/3

.

Physically, the H-type coordinates are useful for describing correlations between two

particles, for example a two body bound state or a symmetry between two particles,

or two separate two-body correlations. It is interesting to note that when two particles

are on top of each other, for instance in a bound dimer, the H-type coordinate system

reduces to a three body system, i.e. when ~ri = ~rj in Eq. 6.2:

~ρHσ1 = 0,

~ρHσ2 =
√
µkl
µ

(~rk − ~rl) ,

~ρHσ3 =
√
µij,kl
µ

(
~ri −

mk~rk +ml~rl
mk +ml

)
.

This observation will be useful later when constructing a basis to examine the four

fermion problem. This point is called a coalescence point and finding a way of accurately

describing these point is crucial for describing interactions between particles.

K-type Jacobi coordinates are constructed in an iterative way by first constructing

a three body coordinate set as in Eq. 5.21, and then taking the separation vector between
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the fourth particle and the center of mass of the three particle sub-system, yielding

~ρKσ1 =
√
µij
µ

(~ri − ~rj) ,

~ρKσ2 =
√
µij,k
µ

(
mi~ri +mj~rj
mi +mj

−mk~rk

)
, (6.3)

~ρKσ3 =
√
µijk,l
µ

(
mi~ri +mj~rj +mk~rk
mi +mj +mk

−ml~rl

)
,

~ρcm =
(m1~r1 +m2~r2 +m3~r3 +m4~r4)

m1 +m2 +m3 +m4
,

µij =
mimj

mi +mj
, µij,k =

(mi +mj)mk

mi +mj +mk
,

µijk,l =
(mi +mj +mk)ml

m1 +m2 +m3 +m4
.

Again σ enumerates the 24 different K-type coordinates that result from particle per-

mutations. Examining Fig. 6.1 shows that K-type Jacobi coordinate systems are useful

for describing correlations between three particles within the four particle system. In

the four fermion system, there are no weakly bound trimer states meaning that K-type

Jacobi coordinates will not be used here, but the methods described in this report can

be easily generalized to include these type of states. Unless explicitly stated all Jacobi

coordinates from here on will be of the H-type, and for notational simplicity, I will drop

the H superscripts.

6.1.2 Coalescence points and symmetry

The proper description of coalescence points is crucial for describing two-body

interactions, but they are also important for describing points of symmetry. For instance

if two identical fermions are on top of one another it is known that the wave function

must vanish at this point owing to the anti-symmetry of fermionic wave functions. In

this thesis I will be concerned with four fermions in two different “spin” states. Away

from a p-wave resonance, the interactions between identical fermions can be neglected

for low energy collisions. This means that there are two types of coalescence points that

must be described; two “symmetry” points, when two fermions of the same type are
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on top of each other, and four “interaction” points, places where two distinguishable

fermions interact via an s-wave potential.

It might be tempting at this point to choose a single Jacobi coordinate system

and then try to describe the interactions and symmetries in the same coordinates, but

this leads to problems. For instance if it is assumed that particles 1 and 3 are spin up

and particles 2 and 4 are spin down one might start with coordinates that are simple

to anti-symmetrize the system in:

~ρs1 =

√
41/3

2
(~r1 − ~r3) ,

~ρs2 =

√
41/3

2
(~r2 − ~r4) , (6.4)

~ρs3 =
√

41/3

(
~r1 + ~r3

2
− ~r2 + ~r4

2

)
,

where it has been assumed that all of the particle masses are equal, m1 = m2 = m3 =

m4 = m leaving µ = m/41/3. The generalization to distinguishable fermions of different

masses is clear. I will refer to this Jacobi coordinate system as the symmetry coordinates

for fairly obvious reasons. If a permutation of two identical fermions is considered, for

instance 1 and 3, the transformation is simple:

P13~ρ
s
1 = −~ρs1, (6.5)

P13~ρ
s
2 = ~ρs2, (6.6)

P13~ρ
s
3 = ~ρs3. (6.7)

Similarly for the exchange of particle 2 and 4,

P24~ρ
s
1 = ~ρs1, (6.8)

P24~ρ
s
2 = −~ρs2, (6.9)

P24~ρ
s
3 = ~ρs3. (6.10)

The points where two identical fermions are on top of each other are also simply

described by taking either ~ρs1 → 0 or ~ρs2 → 0. Everything seems to be progressing
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nicely until an interaction between two distinguishable fermions, for instance 1 and 2,

is considered. This interaction occurs around the point ~r1 = ~r2. In the symmetry

coordinates this means that

~ρs1 = ~ρs2 −
√

2~ρs3.

This equation describes a 6 dimensional sheet in the 9 dimensional space, something that

is not easy to describe directly in any basis set. To get around this problem I introduce

two more Jacobi coordinate systems that are useful for describing interactions,

~ρi11 =

√
41/3

2
(~r1 − ~r2) ,

~ρi12 =

√
41/3

2
(~r3 − ~r4) , (6.11)

~ρi13 =
√

41/3

(
~r1 + ~r2

2
− ~r3 + ~r4

2

)
,

and

~ρi21 =

√
41/3

2
(~r1 − ~r4) ,

~ρi22 =

√
41/3

2
(~r3 − ~r2) , (6.12)

~ρi23 =
√

41/3

(
~r1 + ~r4

2
− ~r2 + ~r3

2

)
.

The superscript i1 and i2 in Eqs. 6.11 and 6.12 indicate that these Jacobi coordinates

are appropriate for interactions between distinguishable fermions. For instance, a co-

alescence point between particles 1 and 2 is described by ~ρi11 → 0. Another benefit of

these coordinates is that they are well suited to describing a dimer wavefunction. If par-

ticles 2 and 3 are in a weakly bound molecule then the wavefunction for that molecule

is only a function of ~ρi22 .

Using combinations of these three coordinate systems, ~ρsj , ~ρ
i1
j and ~ρi2j , can describe

all of the possible two-body correlations of the fermionic system. This assumes that the

system in question is that of four equal mass fermions in two internal states with s-

wave interactions only. However, the method used is quite general. Coordinates can be
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chosen to describe the possible three-body correlations that can arise due to things like

the Efimov effect [59, 60, 113]. The only requirement in constructing the appropriate

Jacobi coordinates for a given problem is a bit of physical intuition.

6.1.3 Kinematic rotations

Since I am going to be using different Jacobi systems to describe different types of

correlations, a method of transforming between different sets of coordinates is needed.

In the above section, equal mass particles are considered. This is because extension to

arbitrary masses was fairly obvious. To describe the kinematic rotations I will keep the

masses arbitrary and specify for equal masses later. It is convenient here to deal with

transforming all of the Jacobi coordinates at once. Thus the matrices whose columns

are made of the Jacobi vectors are used:

%̄s = {~ρs1, ~ρs2, ~ρs3}

%̄i1 =
{
~ρi11 , ~ρ

i1
2 , ~ρ

i1
3

}
(6.13)

%̄i2 =
{
~ρi21 , ~ρ

i2
2 , ~ρ

i2
3

}
.

The transformation that takes one coordinate system to another cannot stretch or shrink

the differential volume element, and thus it must be a unitary transformation. Further,

the transformation cannot mix the Cartesian components of the Jacobi vector, i.e. ρi1x

has no part of ρsy in it. This means that the transformation will be a unitary matrix

that acts from the right, e.g.

%̄i1 = %̄sŪs→i1. (6.14)

The matrices that perform these operations are called kinematic rotations [125,

126, 127], and they will be put to extensive use in the calculations that follow. In truth,

transformations between coordinates systems that do not require an inversion should

be considered, but the general principle still holds if improper rotations are included.
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Note that all of the matrix elements must be real, so that the inverse transformation is

given merely by the transpose.

I employ a direct “brute force” method of finding these matrices where the system

of equations given in Eq. 6.2 are solved for ~r1, ~r2, ~r3 and ~r4 in a given Jacobi system.

These normal lab-fixed coordinates can then be inserted into the definition of the Jacobi

coordinates that I wish to describe. The kinematic rotation can then be extracted from

the resulting relations. Following this procedure gives

Ūs→i1 =


m3

m1+m3

√
µ12

µ13
− m1
m1+m3

√
µ34

µ13

√
µ13

µ12,34

− m4
m2+m4

√
µ12

µ24

m2
m2+m4

√
µ34

µ24

√
µ24

µ12,34√
µ12

µ13,24

√
µ34

µ13,24

m1m4−m2m3√
(m1+m2)(m3+m4)

√
µ12,34

µ13,24

 , (6.15a)

Ūs→i2 =


m3

m1+m3

√
µ14

µ13
− m1
m1+m3

√
µ23

µ13

√
µ13

µ12,34

m4
m2+m4

√
µ14

µ24
− m2
m2+m4

√
µ23

µ24
−
√

µ24

µ14,23√
µ14

µ13,24

√
µ23

µ13,24

m1m2−m3m4√
(m2+m3)(m1+m4)

√
µ14,24

µ13,24

 , (6.15b)

Ūi1→s =
[
Ūs→i1

]T ; Ūi2→s =
[
Ūs→i2

]T
, (6.15c)

Ūi1→i2 = Ūi1→sŪs→i2 =
[
Ūs→i1

]T
Ūs→i2; Ūi2→i1 =

[
Ūi1→i2

]T
. (6.15d)

The same method can be used to find the kinematic rotations to other Jacobi systems,

for instance to K-type coordinates.

6.1.4 Hyperangular coordinates

As with Jacobi coordinates, there is no unique way to construct the hyperangles

of a system. In this section I construct the hyperangular coordinates used in the four-

fermion problem. The choice of hyperangular parameterization has physical meaning.

Different parameterizations can be used to describe different correlations within the

system. Also, in the case of body-fixed coordinates, hyperspherical coordinates can be
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used to remove the Euler angles of solid rotation, reducing the dimensionality of the

system.

The first hyperangular parameterization used here is in the form of Eq. 2.10 for

three 3D vectors. The hyperradius is defined in the same way as in Eq. 2.1,

R2 =
d∑
i=1

x2
i , (6.16)

where each xi is a Cartesian component of one of the Jacobi vectors. The hyperspherical

trees that will be used for the four fermion problem will of the type in Fig. 2.4 in

which N vectors are described by the spherical polar angles of each vector and a set

of hyperangles correlating the lengths of each vector. Specifically, the hyperangles are

defined by the tree shown in Fig. 6.2 combined with the spherical polar angles of each

Jacobi vector. Following the rules described in Chapter 2 gives the hyperangles,

Figure 6.2: The hyperspherical tree used to parameterize the hyperangular coordinates
in the four-fermion problem is shown. See Chapter 2 or Ref. [5] for details.

ασl,m = tan−1 |~ρσl |
|~ρσm|

, (6.17)

ασlm,n = tan−1

√∣∣~ρσl ∣∣2 + |~ρσm|
2

|~ρσn|
.
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Here the superscript σ = s, i1, i2 indicates which Jacobi system is being used, while

l,m, n indicate the three Jacobi vectors from that system. In principle there are six of

these hyperangular coordinate systems that can be constructed from each set of Jacobi

vectors giving a total of 18 different hyperangular systems. Fortunately I will not need

all of these to tackle the four fermion problem. If one considers two particles, say 1

and 2, the tree defined by Fig. 6.2 with σ = i1, l = 2,m = 3 and n = 1 can be

decomposed into two subtrees. The right branch describes the hyperangular behavior

of the dimer alone, while the left branch describes the behavior of the remaining three

body system composed of a dimer and two free particles. This type of decomposition will

be important for evaluating kinetic energy matrix elements and defining basis functions.

6.1.4.1 Hyperspherical harmonics

Using the recursive definition of the hyperangular momentum operator in Eq. 2.11

the total hyperangular momentum operator can be written in terms of the hyperangular

coordinates as

Λ2 =∆1

(
ασlm,n

)
− 1

sin2 ασlm,n sinασl,m cosασl,m

[
∂

∂ασl,m

]2

sinασl,m cosασl,m (6.18)

+
l̂2l

sin2 ασlm,n sin2 ασm,n
+

l̂2m
sin2 ασlm,n cos2 ασm,n

+
l̂2n

cos2 ασlm,n
,

∆1

(
ασlm,n

)
=

−1
sin2 ασlm,n cosασlm,n

1
sinασlm,n

∂

∂ασlm,n
sinασlm,n

∂

∂ασlm,n
sin2 ασlm,n cosασlm,n,

where l̂l, l̂m and l̂n are the normal spatial angular momentum operators for each Jacobi

vector. This can also be written directly from Eq. 2.11 as

Λ2 = ∆1

(
ασlm,n

)
+

Λ2
l,m

sin2 αlm,n
+

l̂2n
cos2 ασlm,n

, (6.19)

Λ2
l,m = − 1

sinασl,m cosασl,m

[
∂

∂ασl,m

]2

sinασl,m cosασl,m +
l̂2l

sin2 ασm,n
+

l̂2m
cos2 ασm,n

,

where all of the hyperangular behavior above the second node in Fig.6.2 is described by

a sub-hyperangular momentum, Λ2
lm,n.
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Constructing the hyperspherical harmonics for the four-body system is accom-

plished following the procedure in Appendix A giving

Y
(4b)

[λλl,mll,lm,ln] (Ω) =N33
lllmλl,m

N63
λl,mln,λ

sinλl,m (αlm,n) cosln (αlm,n)P λl,m+5/2,ln+1

(λ−λl,m−ln)/2 (cos 2αlm,n)

(6.20)

×Nλl,m
ll,lm

sinll (αl,m) coslm (αl,m)P ll+1,lm+1

(λl,m−ll−lm)/2 (cos 2αl,m)

× yllml (ωl) ylmmm (ωm) ylnmn (ωn) ,

where Pα,βγ (x) is a Jacobi polynomial of order γ, ylm (ω) is a normal spherical harmonic

with spherical polar solid angle ω, and Nde
abc is a normalization constant [5, 66]:

Nde
abc =

[
(2c+ d+ e− 2) Γ

(
a+b+c+d+e−2

2

) (
c−a−b

2

)
!

Γ
(
c+a−b+d

2

)
Γ
(
c+b−a+e

2

) ]1/2

.

In Eq. 6.20 the degeneracy quantum number µ has been replaced with an explicit tabu-

lation of the hyperangular momentum quantum numbers, i.e. λµ→ [λλl,mll, lm, ln]. The

total four-body hyperspherical harmonics satisfy the eigenvalue equation Λ2Y
(4b)

[λλl,mll,lm,ln] (Ω) =

λ (λ+ 7)Y (4b)

[λλl,mll,lm,ln] (Ω). The sub-harmonics that are eigenfunctions of Λ2
l,m can be

found as well:

Y
(3b)

[λl,mll,lm] (Ωl,m) =N33
ll,lmλl,m

sinll (αl,m) coslm (αl,m)P ll+1,lm+1

(λl,m−ll−lm)/2 (cos 2αl,m) (6.21)

× yllml (ωl) ylmmm (ωm) .

Here the superscript, (3b), indicates that this eigenfunction behaves as a 3-body hy-

perspherical harmonic. For instance if a hyperspherical tree is used with Jacobi vectors

defined in the i1 interaction coordinate system and l = 1, m = 3, and n = 2, this

three-body harmonic describes the free-space behavior of a dimer with two free parti-

cles. The three body harmonics obey the eigenvalue equation, Λ2
l,mY

(3b)

[λl,mll,lm] (Ωl,m) =
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λl,m (λl,m + 4)Y (3b)

[λl,mll,lm] (Ωl,m). The restrictions on the values of λ and λl,m are

λl,m = ll + lm + 2j, (6.22)

λ = λl,m + ln + 2k

= ll + lm + ln + 2j + 2k,

where j, k = 0, 1, 2, .... The quantum numbers ll, lm and ln are the spatial angular

momentum quantum numbers associated with each Jacobi vector, and each has a z-

projection quantum number associated with it which I have suppressed in Eqs. 6.20

and 6.21.

6.1.4.2 Democratic coordinates

Using Delve’s coordinates greatly simplifies evaluating hyperangular momentum

matrix elements, but it still leaves the 8 dimensional space of hyperangles. I will only

be considering systems with total angular momentum L = 0. Therefore it is convenient

to move into a body-fixed coordinate system, as the final wavefunction for the four-

body problem will not depend on the Euler angles that produce a solid rotation of the

system. Removing the Euler angle dependence is accomplished by transforming into

the so-called democratic, or body-fixed coordinates. Four-body democratic coordinates

are developed in several references (see Refs. [125, 126, 127]). In this work I use the

parameterization of Aquilanti and Cavalli. For a detailed derivation of the coordinate

system see their work in Ref. [125].

At the heart of democratic coordinates is a rotation from a space fixed frame to

a body fixed frame:

%̄ = D̃ (α, β, γ) %̄bf (6.23)

where %̄ is the matrix of Jacobi vectors defined in Eq. 6.13, %̄bf is the set of body fixed

Jacobi coordinates, and D (α, β, γ) is an Euler rotation matrix defined in the standard
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way as

D̄ =


cosα − sinα 0

sinα cosα 0

0 0 1




cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ




cos γ − sin γ 0

sin γ cos γ 0

0 0 1

 . (6.24)

The “˜” in Eq. 6.23 indicates a transpose has been taken.

The body-fixed coordinates are defined in a system whose axes are defined by the

principle moments of inertia, I1, I2 and I3. In this coordinate system the body-fixed

Jacobi coordinates are given by

%̄bf = ΠD̄ (φ1, φ2, φ3) , (6.25)

where D̄ is defined in the same way as in Eq. 6.24 with φ1, φ2 and φ3 replacing α, β,

and γ. Π is a 3 × 3 diagonal matrix whose diagonals are given by ξ1, ξ2 and ξ3 which

are parameterized by the hyperradius and two hyperangles Θ1 and Θ2:

ξ1 =
R√
3

cos Θ1,

ξ2 =
R√
3

√
3 sin2 Θ1 sin2 Θ2 + cos2 Θ1, (6.26)

ξ3 =
R√
3

√
3 sin2 Θ1 cos2 Θ2 + cos2 Θ1.

To avoid double counting and to allow for different chiralities, Θ1 and Θ2 are restricted

to 0 ≤ Θ1 ≤ π and 0 ≤ Θ2 ≤ π/4. With this parameterization the moments of inertia

are given by

I1

µ
= ξ2

2 + ξ2
3 =

R2

3
(
2 + sin2 Θ1

)
,

I2

µ
= ξ2

1 + ξ2
3 =

R2

3
(
3 sin2 Θ1 cos2 Θ2 + 2 cos2 Θ1

)
, (6.27)

I3

µ
= ξ2

1 + ξ2
2 =

R2

3
(
3 sin2 Θ1 sin2 Θ2 + 2 cos2 Θ1

)
.

The hyperradius in terms of the principle moments of inertia can be then written as

R2 = ξ2
1 + ξ2

2 + ξ2
3 = (I1 + I2 + I3) /2µ.
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With this parameterization, all 8 hyperangles have been defined. The first three

are the Euler angles {α, β, γ}, which are external degrees of freedom describing solid

rotations of the four body system. The two angles, Θ1 and Θ2, defined in Eq. 6.26,

describe the overall x, y and z extent of the four-body system in the body fixed frame.

From Eq. 6.27, if Θ1 = 0, π, then the principle moments of inertia are all equal, i.e.

I1 = I2 = I3, meaning that the four particles are arranged at the vertices of a regular

tetrahedron. When Θ1 = π/2, Eq. 6.26 shows that the particles are in a planar

configuration. The remaining angles, {φ1, φ2, φ3}, are kinematic rotations within the

system, and coalescence points and operations like particle exchange are described in

these angles. Broadly speaking, the democratic angles Θ1 and Θ2 can be thought of

as correlating the overall x, y, and z spatial extent of the four-body system in the

body-fixed frame, while the kinematic angles φ1, φ2, and φ3 parameterize the internal

configuration of the particles.

Since transformations from one Jacobi set to another are merely rotation matrices

(sometimes combined with an inversion), the democratic parameterization can always

be written in the same form for any given Jacobi coordinate system. For example, the

symmetry coordinates (Eq. 6.4) can be transformed into the second set interaction

coordinates (Eq. 6.12) using the kinematic rotation defined by Eq. 6.15b. If the

democratic parameterization defined in Eqs. 6.23 and 6.25 is used, this transformation

reads

%̄i2 = D̄ (α, β, γ) Π̄D̃ (φ1, φ2, φ3) Ūs→i2,

= D̄ (α, β, γ) Π̄D̃
(
φ′1, φ

′
2, φ
′
3

)
where I have used the fact that the product of two rotations in 3D is itself a rotation.

From this it is clear that within a given type of Jacobi coordinate (H-type or K-type),

all coalescence points are equally well described. This is an important feature as it does

not appear in Delve’s type coordinates, which are strongly dependent on which Jacobi
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tree is used to define them. For the purposes of this paper, to make symmetrization of

the wave function easier, we will always define the body fixed coordinates in terms of

the symmetry Jacobi system %̄s.

Putting this all together, the body-fixed Jacobi vectors in terms of the internal

hyperangles can be defined:

ρs1x =
R√
3

cos Θ1 (cosφ1 cosφ2 cosφ3 − sinφ1 sinφ3) ,

ρs1y =
R√
3

√
sin2 Θ1 sin2 Θ2 + cos2 Θ1 (sinφ1 cosφ2 cosφ3 + cosφ1 sinφ3) ,

ρs1z =
−R√

3

√
sin2 Θ1 cos2 Θ2 + cos2 Θ1 sinφ2 cosφ3, (6.28)

ρs2x =
−R√

3
cos Θ1 (cosφ1 cosφ2 sinφ3 + sinφ1 cosφ3) ,

ρs2y =
−R√

3

√
sin2 Θ1 sin2 Θ2 + cos2 Θ1 (sinφ1 cosφ2 sinφ3 − cosφ1 cosφ3) ,

ρs2z =
R√
3

√
sin2 Θ1 cos2 Θ2 + cos2 Θ1 sinφ2 sinφ3,

ρs3x =
R√
3

cos Θ1 cosφ1 sinφ2,

ρs3y =
R√
3

√
sin2 Θ1 sin2 Θ2 + cos2 Θ1 sinφ1 sinφ2,

ρs3z =
R√
3

√
sin2 Θ1 cos2 Θ2 + cos2 Θ1 cosφ2,

0 ≤ Θ1 ≤ π; 0 ≤ Θ2 ≤
π

4
,

0 ≤ φ1, φ2, φ3 ≤ π.

The restriction on the range of the internal hyperangles is to avoid double counting

configurations and allows for configurations of different chirality .

By moving into democratic coordinates, the dimensionality of the four-body prob-

lem can be decreased from 9 to 6, but, as with many simplifications, there is a cost.
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This cost comes in the form of the differential volume element dΩ [125]:

dΩ = (dα sinβdβdγ)
√

3 cos3 Θ2 sin3 Θ2 cos 2Θ2 sin9 Θ1[(
cos2 Θ2 + 3 sin2 Θ1 cos2 Θ2

) (
cos2 Θ2 + 3 sin2 Θ1 sin2 Θ2

)]1/2
(6.29)

× dΘ1dΘ2dφ1 sinφ2dφ2dφ3.

The first factor is purely from the Euler angle rotation and will always yield a factor of

8π2 for functions that are independent of α, β and γ.

Another price that is paid using democratic coordinates comes in the form of the

hyperangular momentum operator, Λ2. In terms of the democratic hyperangles, Λ2 is

quite complex and can be found in Ref. [125]:

Λ2 =−∆ (Θ1,Θ2) + 2µR2

{
I1

2 (I2 − I3)2

(
L2

1 + J2
1

)
+

I2

2 (I1 − I3)2

(
L2

2 + J2
2

)
+

I3

2 (I1 − I2)2

(
L2

3 + J2
3

)

+
2
[
I2

1 − (I2 − I3)2
]1/2

(I2 − I3)2 L1J1

+
2
[
I2

2 − (I1 − I3)2
]1/2

(I1 − I3)2 L2J2

+
2
[
I2

3 − (I1 − I2)2
]1/2

(I1 − I2)2 L3J3

 ,

where ~J is the total angular momentum operator, and

∆ (Θ1,Θ2) =
1

sin7 Θ1

∂

∂Θ1
sin7 Θ1

∂

∂Θ1
+

2
sin2 Θ1

[
∂2

∂Θ2
2

+ cot Θ1

(
4

sin2 2Θ2
− 1
)

∂

∂Θ1

]
+

4
sin2 Θ1

{
1

4 sin 4Θ2

∂

∂Θ2
sin 4Θ2

∂

∂Θ2
+

2
3

cot2 Θ1

[
1 + 3 cos2 2Θ2

sin2 2Θ2

×
(

1
4
∂2

∂Θ2
2

+
cot 2Θ2

2
∂

∂Θ2

)
− 1

sin 4θ2

∂

∂Θ2

]
+ cot Θ1 cot 2Θ2

∂

∂Θ2

∂

∂Θ2

}
.

Terms in J2
i are centrifugal contributions, terms in LiJi are Coriolis contributions and
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terms in L2
i are contributions from internal kinematic angular momentum with

~L = i~


sinφ1 cotφ2 cosφ1 − sinφ1

cosφ2

cosφ1 cotφ2 − sinφ1 −sinφ1

sinφ2

1 0 0




∂

∂φ1
∂

∂φ2
∂

∂φ3

 .

Fortunately, the methods for evaluating matrix elements in what follows will not di-

rectly require this form of the hyperangular momentum, but it is included here for

completeness.

The final element needed from the democratic coordinates is the inter-particle

spacing. The ability to define these will be necessary to describe pairwise interactions

and correlations. Using Eqs. 6.2, 6.14 and 6.25,

|~r12|2 =
√

µ

µ12

[(
%̄sbf Ūs→i1

)† (
%̄sbf Ūs→i1

)]
11
, (6.30)

|~r13|2 =
√

µ

µ13

[
%̄s†bf %̄

s
bf

]
11
, (6.31)

|~r14|2 =
√

µ

µ14

[(
%̄sbf Ūs→i2

)† (
%̄sbf Ūs→i2

)]
11
, (6.32)

|~r23|2 =
√

µ

µ23

[(
%̄sbf Ūs→i2

)† (
%̄sbf Ūs→i2

)]
22
, (6.33)

|~r24|2 =
√

µ

µ24

[
%̄s†bf %̄

s
bf

]
22
, (6.34)

|~r34|2 =
√

µ

µ23

[(
%̄sbf Ūs→i1

)† (
%̄sbf Ūs→i1

)]
22
, (6.35)

where [ ]ij indicates the ijth element of a matrix. In this equation, only the body fixed

Jacobi coordinates from Eq. 6.25 are used. This is because the unitary Euler rotation

used to rotate into the body fixed frame is the same for all Jacobi coordinates canceling

out the {α, β, γ} dependence in the inter-particle spacings.

Figure 6.3 shows the surfaces in {φ1, φ2, φ3} for constant rij in a planar config-

uration for Θ2 = π/4, π/6, and π/12 for equal mass particles. The φ1 coordinate axis

has been transformed to φ1 − πΘ (φ1 − π/2), where Θ (x) is the unit step function, to

emphasize the symmetry of the surfaces. The red surfaces correspond to the interact-
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ing particles in the four-fermion system (r12, r14, r23 and r34) while the blue surfaces

correspond to the identical fermions (r13 and r24). The identical particle surfaces sur-

round a coalescence point that must be a Pauli exclusion node in the final four-body

wave function. The simple nature of these coalescence points makes clear the reason for

choosing to base the democratic coordinates on the symmetry Jacobi vectors. The red

surfaces will play an important role in the pairwise interaction as these surfaces outline

the valleys of the potential. As the system becomes more linear (Θ2 becomes smaller) it

can be seen that the surfaces become broader in the φ1 direction. In fact, when Θ2 = 0

(in perfectly linear configurations) these surfaces become independent of φ1.

Figure 6.3: Surfaces surrounding the coalescence points in the body-fixed democratic
coordinates are shown for θ1 = π/2 and θ2 =

π

4
(a),

π

6
(b), and

π

12
(c) respectively.

Blue surfaces surround interaction coalescence points while red surfaces surround Pauli
exclusion nodes.

6.2 Variational Basis Elements

In the previous section, the 12 dimensional four-body problem was reduced to a 6

dimensional problem for total spatial angular momentum J = 0, by removing the center

of mass coordinate and rotating into a body-fixed frame. By treating the hyperradius
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adiabatically, the remaining 5 dimensional hyperangular partial differential equation, Λ2

2µR2
+
∑
i,j

V (rij)

Ψ (R; Ω) = U (R) Ψ (R; Ω) , (6.36)

must be solved to obtain the adiabatic channel functions and potentials used in the

adiabatic hyperspherical formulation, Eq. 5.1. Here V (r) is a short-range s-wave pair-

wise interaction between distinguishable fermions, and the sum runs over all possible

pairs of distinguishable fermions. This thesis will only consider a potential whose zero

energy s-wave scattering length a is positive and large compared with the range r0 of the

interaction. Further, unless otherwise stated, I assume that the potential can support

only a single weakly bound dimer.

The 5 dimensional PDE given by Eq. 6.36 is still too much for most numerical

methods, such as B-splines and finite elements. In fact if 40− 100 B-splines were used

(a common number in three body calculations [26, 128, 112]) in each dimension, there

would be 108 − 109 basis functions resulting in 1011 − 1013 non-zero matrix elements in

a banded matrix. The computational power required for such a calculation is currently

beyond reach. Therefore, to proceed a different strategy must be developed.

The strategy used here is not unknown [129]. It involves using a variational basis

that diagonalizes the adiabatic Hamiltonian (Eq. 6.36) asymptotically (R� a) and at

small distances (R� r0). It is thought that linear combinations of these basis elements

will provide a variationally accurate description of the wavefunction in the intermediate

regime. In the asymptotic regime, there are three scattering thresholds to consider; a

threshold corresponding to weakly bound dimers at twice the dimer binding energy, a

threshold consisting of a single weakly bound dimer and two free particles, and finally a

threshold consisting of four free particles. In general, it would be necessary to consider

another set of thresholds with trimer states (for instance a set of Efimov states for

bosons). In the case of fermions though, such considerations are not needed as there

are no weakly bound dimers in the a � r0 regime. I will proceed by developing the
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variational basis based on these threshold behaviors.

6.2.0.3 Dimer-dimer threshold

The asymptotic behavior of the four-body system must include a description of

two s-wave dimers separated by a large distance. To incorporate this behavior the

variational basis must include a basis function of the form,

Ψ2+2 (R,Ω) = φd (r12)φd (r34) , (6.37)

where the subscript 2+2 indicates the dimer-dimer nature of this function, and the

dimer wavefunction, φd, is given by the two-body Schrödinger equation[
− ~2

2µ2b

∂2

∂r2
+ V (r)

]
rφd (r) = −Ebrφd (r) . (6.38)

Here µ2b is the reduced mass of the two distinguishable fermions, and Eb ≈ ~2/2µ2ba
2

is the binding energy of the weakly bound dimer. At first glance the right hand side

of Eq. 6.37 depends only implicitly on the hyperradius and hyperangles. To make

this dependence explicit, Eqs. 6.30 and 6.35 are employed to extract r12 (R,Ω) and

r34 (R,Ω). It can also be noted that the basis function, Eq. 6.37, does not respect the

symmetry of the identical fermions, i.e. P13Φ2+2 6= −Φ2+2. The anti-symmetrization of

the variational basis will be discussed later in this thesis.

6.2.0.4 Dimer-atom-atom threshold

Another fragmentation possibility that must be incorporated into the asymptotic

behavior of the four fermion system is that of an s-wave dimer with two free particles.

The description of this configuration at fixed hyperradius is somewhat more difficult

than the dimer-dimer configuration. Fortunately, the hyperspherical tree described by

Eq. 6.17 can be used with interaction Jacobi coordinates, e.g. σ = i1, with l = 2,m = 3

and n = 1. If we assume that particles 1 and 2 are bound in a dimer, then the system
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may be thought of as three distinguishable particles consisting of two distinguishable

fermions and a dimer. The hyperangles, Ω3B, of this three-body sub-system are then

described by the three-body sub-tree seen in Fig. 6.2. Furthermore, the three free

particle behavior is merely given by a three-body hyperspherical harmonic, Eq. 6.21.

Assembling all of this together, a set of basis functions can be constructed of the form,

Ψλ3Bµ3B (R,Ω) = φd (r12) Φλ3Bµ3B

(
Ω12

3B

)
, (6.39)

where λ3B is the three body hyperangular momentum of the system and φd is, again,

defined by Eq. 6.38. Here the superscript 12 in Ω12
3B indicates that the third particle in

the three body subsystem is a dimer made from particles 1 and 2. Further, for notational

simplicity, µ3B has been used to denote the set of quantum numbers, {l2, l3,m2,m3},

which enumerate the degenerate states for each λ3B.

So far the basis function defined by Eq. 6.39 can easily be written in Delve’s

coordinates. Unfortunately, this function is not written in a way that uses the total

angular momentum L of the system as a good quantum number. To get around this we

must couple the angular momenta corresponding to the interaction Jacobi coordinates i1

to total angular momentum L = 0. The angular momentum of the dimer is by definition

zero and all that remains is to restrict the angular momentum of the three-body sub-

system to zero. This can be achieved by recognizing that the angular momentum of the

individual Jacobi vectors are good quantum numbers in the hyperspherical harmonics

defined by Eq. 6.21, meaning that we may proceed by normal Clebsch-Gordan angular

momentum coupling, i.e.

Ψλ3B l1l2
2+1+1 (R,Ω) = φd (r12)

l2∑
m2=−l2

l3∑
m3=−l3

〈l2m2l3m3|00〉Φλ3Bµ3B

(
Ω12

3B

)
, (6.40)

where 〈l2m2l3m3|LM〉 is a Clebsch-Gordan coefficient, and l2 (l3) is the angular momen-

tum quantum number associated with ~ρi12 (~ρi13 ) from the interaction Jacobi coordinates

defined in Eqs. 6.11. Now with the total angular momentum set to L = 0, there can be
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no Euler angle dependence in the total wavefunction. The Delve’s coordinates may then

be defined for this system using Eq. 6.17. The Delve’s hyperangles can then be written

in terms of the democratic coordinates without including the Euler angle dependence.

6.2.0.5 Four free particles

The final asymptotic threshold that must be considered is that of four free par-

ticles. Using Delve’s coordinates, this behavior is already described by the four-body

hyperspherical harmonics given by Eq. 6.20, i.e.

Φ(4b)
λµ (Ω) =N33

lllmλl,m
N63
λl,mln

sinλl,m (αlm,n) cosln (αlm,n)P λl,m+5/2,ln+1

(λ−λl,m−ln)/2 (cos 2αlm,n)

×Nλl,m
ll,lm

sinll (αl,m) coslm (αl,m)P ll+1,lm+1

(λl,m−ll−lm)/2 (cos 2αl,m)

× Yllml (ωl)Ylmmm (ωm)Ylnmn (ωn) ,

where µ has again been used to denote the set of quantum numbers {λ12, l1, l2, l3,m1,m2,m3}

that enumerate the degenerate states for each λ. Here li is the spatial angular mo-

mentum quantum number associated with the Jacobi vector ~ρσi with z-projection mi,

and λ12 is the sub-hyperangular momentum quantum number associated with the sub-

hyperangular tree in Fig. 6.2.

The choice of quantum numbers here does not give the total angular momentum

of the four particle system as a good quantum number. To accomplish this, the three

angular momenta of the Jacobi vectors must be coupled to a total momentum L = 0.

This gives a variational basis element of the form

Ψλλ12l1l2l3
1+1+1+1 (Ω) =

L12∑
M12=−L12

l3∑
m3=−l3

l2∑
m2=−l2

l1∑
m1=−l1

〈L12M12l3m3|00〉 (6.41)

× 〈l1m1l2m2|L12M12〉Φ(4b)
λµ (Ω) .

Now that the total angular momentum is set to L = 0 the same procedure used for

the Ψλ3B l1l2
2+1+1 basis functions may be employed. However, this time the hyperangular
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parameterization is defined using the symmetry Jacobi coordinates in Eqs. 6.4. As

there is no dependence on the Euler angles, the Jacobi coordinates may then be defined

in the body fixed frame given by Eqs. 6.28.

6.2.1 Symmetrization

The definition of the basis functions developed in the previous subsection do not

include the fermionic symmetry of the four particle system in question. Until this point,

only the symmetry and the first interaction coordinate systems have been employed.

Imposing the S2 × S2 symmetry of two sets of two identical fermions will now require

us to incorporate the extra interaction coordinate Jacobi set given in Eq. 6.12. First

we define the projection operator,

P̄ =
1
4
(
Ī − P̄13

) (
Ī − P̄24

)
, (6.42)

where Ī is the identity operator, and P̄ij is the operator that permutes the coordinates

of particles i and j. This operator will project any wavefunctions onto the space of

wavefunction that are antisymmetric under exchange of identical fermions. Since I am

treating the fermion species as distinguishable, permutations of members of different

species is ignored. Using this projection operator on the dimer-dimer basis wave function

yields

Ψ(symm)
2+2 (R,Ω) = P̄Ψ2+2 (R,Ω) =

1
2

(φd (r12)φd (r34)− φd (r14)φd (r23)) , (6.43)

where the inter-particle spacings r14 and r23 given by Eqs. 6.32 and 6.33.

Imposing the antisymmetric constraints on the dimer plus two free particle basis
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functions in Eq. 6.40 yields

Ψ(symm)λ3bl2l3
2+1+1 (R,Ω) = P̄Ψλ3bl2l3

2+1+1 (R,Ω)

=
1
4
φd (r12)

l2∑
m2=−l2

l3∑
m3=−l3

〈l2m2l3m3|00〉Yλ3Bµ3B

(
Ω12

3B

)
(6.44)

− 1
4
φd (r23)

l2∑
m2=−l2

l3∑
m3=−l3

〈l2m2l3m3|00〉Yλ3Bµ3B

(
Ω23

3B

)
− 1

4
φd (r14)

l2∑
m2=−l2

l3∑
m3=−l3

〈l2m2l3m3|00〉Yλ3Bµ3B

(
Ω14

3B

)
+

1
4
φd (r34)

l2∑
m2=−l2

l3∑
m3=−l3

〈l2m2l3m3|00〉Yλ3Bµ3B

(
Ω34

3B

)
,

where Ωij
3B is the set of three-body hyperangles associated with particles i and j in

a dimer and the remaining two particles free. The democratic parameterizations for

the inter-particle distances from Eqs. 6.30-6.35 can be used in the dimer wavefunction

directly. By using the symmetry coordinates, the hyperangles of the four-body system

can be divided into a dimer subsystem and a three body subsystem where the third

particle is the dimer itself. Using the three-body hyperangles in the three-body harmonic

in each term in Eq. 6.44 combined with the kinematic rotations from Eqs. 6.15a

and 6.15b, the three body harmonics are then fully described in the hyperangles from

symmetry Jacobi coordinates. Since Ψ(symm)λ3bl2l3
2+1+1 has been constrained to zero total

spatial angular momentum, L = 0, the body-fixed parameterization of the Jacobi vectors

can be inserted directly without worrying about the Euler angles α, β and γ.

The final set of basis functions that must be symmetrized with respect to identi-

cal fermion exchange are the four-body hyperspherical harmonics. Permutation of the

identical fermions is accomplished in the symmetry coordinates using Eqs. 6.5-6.10.

Using these permutations gives

P13Ψλλ12l1l2l3
1+1+1+1 (Ω) = (−1)l1 Ψλλ12l1l2l3

1+1+1+1 (Ω) ,

P12Ψλλ12l1l2l3
1+1+1+1 (Ω) = (−1)l2 ,
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which clearly indicates that the four free particle basis functions are anti-symmetrized

by choosing l1 and l2 to be odd.

Another symmetry in this system is that of inversion where all Jacobi coordinates

are sent to their negatives,

~ρσj → −~ρσj ,

where σ = s, i1, i2 and j = 1, 2, 3. Following the definitions of the Jacobi coordinates

positive inversion symmetry in the 1+1+1+1 basis functions, Ψλλ12l1l2l3
1+1+1+1 (Ω), is imposed

by choosing λ to be even. The 2 + 1 + 1 basis functions,Ψ(symm)λ3bl2l3
2+1+1 (R,Ω), must

already have positive inversion symmetry since φd (r) is an s-wave dimer wavefunction

and l2 = l3 for zero total spatial angular momentum, L = 0. The dimer-dimer basis

function, Ψ(symm)
2+2 (R,Ω), is already symmetric under inversion and does not need further

restrictions placed on it.

The final symmetry to be imposed is not quite as obvious as the symmetries

discussed so far. By performing a “spin-flip” operation in which the distinguishable

species of fermions are exchanged, i.e. P̄12P̄34, the Hamiltonian in Eq. 6.1 remains the

same. This operation is identical to inverting the two dimers in the dimer-dimer basis

function. One can see that Ψ(symm)
2+2 is unchanged under this operation. Because I will

limit myself to dimer-dimer collisions in this chapter, I will only be concerned with basis

functions that have this symmetry. This symmetry is imposed on both the 2 + 1 + 1

(Ψ(symm)λ3bl2l3
2+1+1 ) and the 1 + 1 + 1 + 1 (Ψλλ12l1l2l3

1+1+1+1 ) basis functions by the condition

l3 = even

for the Ψλλ12l1l2l3
1+1+1+1 basis functions.

6.3 Four-fermion potentials and the dimer-dimer wavefunction

Calculating the hyperradial potentials and channel functions using the variational

basis is conceptually simple. All that is required are matrix elements of the hyperangular
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part of the full Hamiltonian,

Had =
~2

2µ
Λ2

R2
+
∑
i,j

V (rij) ,

where the sum runs over all interacting pairs of distinguishable fermions. In the previous

sections, the specific two-body interaction was kept general. All that was required was

a weakly bound dimer state and a positive scattering length much larger than the range

of the interaction. At this point I choose the so called Posch-Teller potential,

V (r) = − U0

cosh2 (r/r0)
, (6.45)

where r0 is the range of the interaction. Unless otherwise stated U0 is tuned so that

V (r) gives the appropriate scattering length with only a single bound state. This

potential is chosen because the bound state wavefunctions and binding energies are

known analytically [130], but any two-body interaction can be used with interpolated

bound state wavefunctions and numerically obtained energies.

Using the variational basis results in a generalized eigenvalue problem,

H̄ (R) ~xν (R) = Uν (R) S̄ (R) ~xν (R) (6.46)

where Uν (R) is the νth adiabatic hyperradial potential, and ~xν is the channel function

expansion in the variational basis. The matrix elements of H̄ are given by matrix

elements of the adiabatic Hamiltonian at fixed hyperradius,

H̄nm = 〈Ψn |Had|Ψm〉 .

Because the variational basis is not orthogonal, an overlap matrix, S̄, appears in this

matrix equation. While the method employed here is conceptually simple, the actual

calculation of the matrix elements is numerically difficult. For instance the valleys in the

hyperangular potential surface,
∑

i,j V (rij), become localized in the hyperangular space

for large hyperradius. Further, examination of Fig. 6.3 shows that these coalescence

points have a complex structure in the five dimensional body-fixed hyperangular space.
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To accurately calculate the matrix elements in Eq. 6.46 numerically, a large number

of integration points must be placed within these valleys. Calculation of these matrix

elements is in fact the time limiting step in this treatment with each interaction matrix

element taking approximately 0.5 cpu hours on a modern computer.

Calculation of the non-adiabatic matrices, P̄ and Q̄, is done directly through

numerical differentiation of the channel functions,

Pνν′ =
〈

Φν (R; Ω) | ∂
∂R

Φν′ (R; Ω)
〉

Qνν′ =
〈

Φν (R; Ω) | ∂
2

∂R2
Φν′ (R; Ω)

〉
where Φν (R; Ω) is the νth hyperangular channel function that results from solving Eq.

6.46.

With all of these complications in mind the adiabatic potential can be found

approximately. Figure 6.4 shows the full set of hyperradial potentials including the

diagonal non-adiabatic correction (solid curves) calculated using 8 variational basis el-

ements, one 2 + 2 element, four 2 + 1 + 1 elements, and three 1 + 1 + 1 + 1 elements.

Also shown are the expectation values of the basis elements themselves (dashed curves).

All calculations here are for a = 100. It is clear that the lowest potential converges

very quickly with respect to the number of variational basis elements used. The lowest

potentials converge well when only a few variational basis elements are included, while

the higher potentials are somewhat suspect. The adiabatic potentials become universal

for large scattering lengths. In other words, the potentials look the same when scaled

by the scattering length and the binding energy. Comparison with a correlated Gaus-

sian method of calculating these potentials shows excellent agreement in the lowest

dimer-dimer potential with reasonable agreement in the lowest few dimer-atom-atom

potentials [8].

In Fig. 6.4 the lowest hyperradial adiabatic potential approaches twice the binding

energy of a single dimer indicating that this channel corresponds to the dimer-dimer



144

Figure 6.4: The hyperradial potentials are shown (solid lines) calculated for a = 100
as a function of R/a. Also shown are the expectation values of the variational basis
elements used (dashed curves).

potential. Examining this potential further, one can see that at hyperradii less than the

scattering length, R < a, the dimer-dimer potential becomes strongly repulsive. This

can almost be thought of as hard wall scattering giving a dimer-dimer scattering length,

add, similar in magnitude to the two-body scattering length,

add ∼ 3.5a. (6.47)

Higher potential curves are seen to approach the dimer binding energy, indicating that

these potentials correspond to a dimer with two free particles in the large R limit. As

the scattering length becomes much larger than the range of potentials, the potential

becomes universal in the range of r0 � R� a:

U (R)→ ~2

2µ
p2

0 − 1/4
R2

, (6.48)

where p0 = 2.55. This universal potential was extracted by von Stecher, Greene, and

Blume [131, 58] by examining the behavior of the ground state energy of four fermions

in a trap in the unitarity limit.

Figure 6.5 shows the coupling strengths, ~2P 2
nm/ {2µ [(Um (R)− Un (R))]}, be-

tween the dimer-dimer potential and the lowest three dimer-atom-atom adiabatic po-

tentials for a two-body scattering length of a = 100r0. In each case the coupling
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strength peaks strongly near the short range region, R ∼ r0, and near the scattering

length, R ∼ a, and then falls off quickly in the large R limit. This behavior indicates

that recombination from a state consisting of a deeply bound dimer and two free parti-

cles to the dimer-dimer state occurs mainly at hyperradii near a. Looking at Fig. 6.5

one might think that a recombination path that occurs at small R, R ∼ r0, will also

contribute, but the strong repulsion between R ∼ r0 and R ∼ a in the dimer-atom-atom

potentials, shown in Fig. 6.4, suppresses this pathway.
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Figure 6.5: The coupling strength between the dimer-dimer potential and the lowest
dimer-atom-atom potential is shown as a function of R/a. The blue dashed line shows
the position of the coupling peak at R/a ≈ 3.5.

Figure 6.6 shows an isosurface of the hyperangular probability density in the

configurational angles {φ1, φ2, φ3} after integrating out Θ1 and Θ2 at a fixed hyperradius

of R = 0.41a. The φ1 axis has been modified here by shifting the region π/2 ≤ φ1 ≤ π

to emphasize the symmetry of the system. Each cobra-like surface corresponds to a

peak in the four-body probability density. By examining Fig. 6.3, it is clear that the

spine of each cobra corresponds to an interaction coalescence point. For each choice of

{φ1, φ2, φ3}, the maximum of the probability density in Θ1 and Θ2 is given in a planar
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geometry, Θ1 = π/2. The coloring of each cobra indicates the value of Θ2 at which the

maximum occurs. Darker colors indicate a more linear geometry, i.e. Θ2 is closer to 0.

Figure 6.7 shows the same plot for the 2 + 2 basis function only. Comparing Figs. 6.6

and 6.7 it is clear that the added variational basis elements are critical for describing the

full dimer-dimer channel function for hyperradii less than the scattering length. Figure

6.8 shows the cobra isosurface of Fig 6.6 in a slightly more picturesque setting. No extra

physical insight is gained from showing this, but it does look very nice, though some

have suggested a palm tree would be a good addition [132].

Figure 6.6: An isosurface of the dimer-dimer probability density is shown. The surfaces
are found by integrating the total probability over θ1 and θ2 and plotting with respect
to the remaining democratic angles (φ1, φ2, φ3). The peak probability always occurs in
planar symmetry, θ1 = π/2. The coloring (light to dark) indicate the value of θ2 at the
peak.
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Figure 6.7: The same as Fig. 6.6, but only using the 2 + 2 basis function. The dashed
gray lines are purely for perspective.

6.4 Dimer-Dimer Scattering

With the hyperradial potentials and non-adiabatic couplings in hand, low energy

dimer-dimer scattering properties can be examined. The zero-energy dimer-dimer scat-

tering length in the large two-body scattering length limit was first calculated by Petrov

et. al [23] and found to be

add (0) = 0.60 (2) a, (6.49)

where the number in the parentheses indicates ±0.02, the 4% error stated in this work.

This prediction has been confirmed using several different theoretical approaches [133,

131, 58].

Using the adiabatic potentials shown in Fig. 6.4 and the resulting non-adiabatic
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Figure 6.8: The isosurfaces shown here are the same as in Fig. 6.6, but in a pleasing
environment.

couplings, the energy dependent dimer-dimer scattering length defined by

add (Ecol) =
− tan δdd
kdd

(6.50)

can be calculated. Here Ecol is the collision energy of the two dimers with respect to the

dimer-dimer threshold, and δdd is the s-wave dimer-dimer phase shift. An interesting

thing occurs when the collision energy becomes greater than the dimer binding energy.

At this point the two dimers collide with enough energy to dissociate one of them. When

this happens, the four fermion system leaves in an excited channel causing a loss of flux

from the dimer-dimer channel. This process is parameterized by the imaginary part of

the dimer-dimer scattering length which will become non-zero when Ecol > Eb.

Figures 6.9 and 6.10 respectively show the real and imaginary parts of the dimer-

dimer scattering length calculated with different numbers of adiabatic channels plotted
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as a function of Ecol in units of the dimer binding energy. Also shown in Fig. 6.9 is the

dimer-dimer scattering length calculated from the variational potential that results from

using a single variational basis element. It is important to note that the single adiabatic

channel calculation and the single basis element calculation are not the same. In the

former, the single potential used is the lowest potential resulting from a calculation using

multiple basis elements while the latter is the result of using only the 2 + 2 variational

basis element. Not surprisingly, the scattering length at collision energies found near

the binding energy depends strongly on the number of channels used. With just a single

channel in use, there is no decay pathway available for the system. As more channels

are included the system has more pathways available to fragment into, modifying the

high energy behavior.

0.1 1 10 100 1000
E

col
/E

b

-0.5

0

0.5

1

1.5

2

R
e(

a dd
)/

a

Figure 6.9: The real part of the energy dependent dimer-dimer scattering length is shown
in dimensions of a plotted versus the collision energy in units of the binding energy. The
calculation if done with one, two, three, four, and five adiabatic channels (blue, black,
red, green, and purple curves respectively) from the 8 basis element calculation. The
red dashed line shows add = 0.6a, the prediction of Ref. [6].

What is more surprising is the low energy behavior seen in Fig. 6.9. For a single

variational basis element, the dimer-dimer zero energy scattering length is found to be

add = 0.72a, which is already fairly close to the result of Ref. [23], add (0) = 0.6a. A
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Figure 6.10: The imaginary part of the energy dependent dimer-dimer scattering length
is shown in dimensions of a plotted versus the collision energy in units of the binding
energy. The calculation if done with one, two, three, four, and five adiabatic chan-
nels (blue, black, red, green, and purple curves respectively) from the 8 basis element
calculation.

single channel calculation using the dimer-dimer potential and channel function that

results from using 5 basis elements improves considerably on this yielding add (0) =

0.64a, indicating that including correlations describing two free particles at hyperradii

less than a gives a significant contribution to the physics of dimer-dimer scattering.

It is somewhat unexpected that the single channel calculation is only 8% off of the

predicted value. As the scattering energy approaches zero, the higher fragmentation

channels become strongly closed but still apparently play a small role in the dimer-

dimer scattering process. By including progressively more channels in the scattering

calculation the zero-energy dimer-dimer scattering can be extracted for large two body

scattering length:

add (0) = 0.605 (5) a. (6.51)

This result is in agreement with the results of Ref. [131, 58] which found the zero-energy

dimer-dimer scattering length to similar accuracy using different methods.
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6.4.1 Energy dependence

By examining the low energy behavior of the energy dependent dimer-dimer scat-

tering length, the effective range can be extracted. The two dimers “see” each other

when their wavefunctions are overlapping, i.e. when the hyperradius is approximately

equal to the scattering length, R ∼ a. If one thinks of the effective range of an inter-

action as proportional to the size of the interaction region, then one would expect the

effective range for dimer-dimer scattering to be proportional to the scattering length.

By fitting the low energy scattering phase shift to the effective range expansion,

k cot δdd = − 1
add (0)

+
1
2
rddk

2, (6.52)

this intuitive behavior is born out giving an effective range,

rdd = 0.13a, (6.53)

where a is the two-body scattering length. Figure 6.11 shows both the real and imag-

inary parts of the energy dependent dimer-dimer scattering length as a function of

collision energy in units of the binding energy compared to the effective range expan-

sion, Eq. 6.52. This clearly shows that, while the low energy behavior of dimer-dimer

scattering is well described by the effective range expansion, it is only accurate over a

small range of collision energies. In fact, for collision energies larger than the binding

energy, add (Ecol) actually turns over and decreases as dimer breakup channels become

open. Further, when the collision energy is equal to the dimer binding energy, Ecol = Eb,

the dimer-dimer scattering length becomes complex, with an imaginary part that pa-

rameterizes inelastic processes. These results indicate that both the real and imaginary

dimer-dimer scattering lengths are universal functions of the collision energy, i.e. insen-

sitive to the short range nature of the two-body interaction, for scattering lengths much

larger than the two-body interaction length scale, r0. Because very few basis functions

were used in these calculations, the results at higher energies, Eb � Ecol � ~2/mr2
0, are
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not well converged, though their qualitative nature is expected to persist. Well above

the dissociation threshold, oscillations in the real part of the dimer-dimer scattering

length can be seen. These oscillations are caused by interference between different scat-

tering paths. As more basis functions are included and the high energy results converge,

the large number of available pathways will generally cancel the oscillatory behavior,

but the decrease in the real part of the dimer-dimer scattering length should persist.

Figure 6.11: The real (red) and imaginary (green) parts of the energy dependent dimer-
dimer scattering length is shown in dimensions of a plotted versus the collision energy
in units of the binding energy. Also shown is the energy dependent scattering length
using the effective range expansion. Figure from Ref. [7].

An interesting aspect of these results is in the two-body scattering length de-

pendence of the dimer-dimer scattering length at finite collision energy. In the large

scattering length limit, the dimer binding energy becomes Eb ≈ ~2/ma2, so that as
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the scattering length increases the binding energy decreases. At the critical scattering

length,

ac =
~√
mEcol

,

the collision energy is the same as the binding energy. As a result, Fig. 6.11 shows that

one expects the real part of the dimer-dimer scattering length to turn over and remain

finite for all two-body scattering lengths. This behavior is demonstrated in Fig. 6.12

which shows the real part of the dimer-dimer scattering length at several fixed collision

energies compared to the zero-energy result, add (0) = 0.6a. The scattering length were

fixed by setting the range of the interaction to be approximately the Van der Waals

length of 40K, r0 ≈ 100 a.u. Another aspect of the finite collision energy behavior is

that at large scattering length, the dimer-atom-atom channels become open, and dimer

dissociation is allowed. This leads to the idea that near unitarity the Fermi gas might

be thought of as a coherent mixture of atoms and weakly bound dimers.
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Figure 6.12: The real part of the energy dependent dimer-dimer scattering length is
shown plotted as a function of the two-body scattering length in atomic units is shown
calculated for several collision energies; Ecol/kb =250nK,100nK, 25nK, 10nK, 2.5nK,
1nK, 10−1nK, and 10−2nK. Also shown is the zero energy prediction (black dashed
curve). Figure from Ref. [7].
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6.5 Dimer-dimer relaxation

A significant loss process in an ultracold gas of bosonic dimers is that of dimer-

dimer relaxation in which two dimers collide, and in the process one of the dimers

relaxes to a deeply bound two-body state. The excess energy is released as kinetic

energy and is then enough to eject the remaining fragments from the trap. This process

was studied by Petrov, Salomon and Shlyapnikov [23, 6] by assuming that this process

is controlled by the probability of three particles being in proximity to one another.

With this assumption and the further assumption that the fourth particle is far away

and plays no role in the scattering process, they predict that the relaxation rate is

suppressed at large two-body scattering lengths with a scaling law, V dd
rel ∝ a−2.55.

In this section I introduce a new method for finding the dimer-dimer relaxation

rate based directly on Fermi’s golden rule. The key observation in this section is that

the final allowed states in the hyperspherical appear as an infinite set of hyperspherical

potentials corresponding to a deeply bound dimer with two free atoms. The transition

rate to a single one of these states can be described by Fermi’s golden rule, i.e.

T λp ∝ |〈Ψdd (R; Ω) |V (R,Ω)|Ψλ (R,Ω)〉|2 . (6.54)

Here Ψλ is the final outgoing state, Ψdd is the dimer-dimer wavefunction, and V (R,Ω)

is the sum of the two-body interactions. The evaluation of this matrix element and the

sum over the final states is shown in Appendix D. The final result of this analysis is

given as an integral over the hyperradius,

V dd
rel ∝

∫
PWKB (R)F (R)

Rκ (R)
ρ (R) dR (6.55)

where PWKB (R) is the WKB probability of the dimer-dimer wavefunction at hyperra-

dius R, κ (R) is the WKB wavenumber given by

κ (R) =

√
2µ
~2

(
Vdd (R) +

~2

2µ
1/4
R2
− Ecol

)
. (6.56)



155

In Eq. 6.55 ρ (R) is the nearly constant density of final states, and F (R) is the prob-

ability of finding three particles in near proximity to one another in the dimer-dimer

wavefunction at hyperradius R, given by,

F (R) = 〈Φdd (R; Ω) |f (R,Ω)|Φdd (R; Ω)〉 . (6.57)

Here Φdd is the hyperangular dimer-dimer channel function, and f (R,Ω) is a proximity

function that only peaks when three particles are within approximately the range of the

two-body interaction of one another.

Equation 6.55 makes physical sense upon closer examination. It says that the rate

at which a dimer relaxes to a deeper state is determined, with some extra factors, by the

probability that three particles are close enough together that two of them can fall into

a deeply bound state and release the extra binding energy to the third particle. Figure

6.13 shows the integrand from Eq. 6.55 for several scattering lengths as a function of the

hyperradius in units of the scattering length. This quantity can be interpreted as being

proportional to the transition rate per unit hyperradius, i.e. the probability that the

transition will occur between R and R + dR. The overall transition rate is determined

by the nature of the interaction at short range and is not predictable using this method.

By examining the relaxation rate as a function of scattering length, a scaling law can

be extracted at each fixed hyperradius.

Figure 6.14 shows the relaxation rate per unit hyperradius for several fixed values

of R/a as a function of the scattering length, a. The large a behavior in each case

appears to follow a scaling law, but the scaling law changes with R/a. This behavior

indicates that, contrary to the prediction of Ref. [6], when the integral in Eq. 6.55

is evaluated, the relaxation rate will not be determined by a mere scaling law. By

integrating over different hyperradial regions, contribution to the transition rate from

different processes can be extracted. For instance, if integral in Eq. 6.55 is performed

only over small hyperradii, R . 5r0, the result is the transition rate due to processes
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Figure 6.13: The integrand from Eq. 6.55 is shown for a = 50r0, 64r0, 80r0, and 100r0

as a function of R in units of a.

in which all four particles are in close proximity. If the integral is evaluated over larger

hyperradii, R > 10r0, the result is the rate due to three-body processes only.

Figure 6.14: The integrand from Eq. 6.55 is shown for various values of R/a as a
function of a in units of r0.

Figure 6.15 shows the the relaxation rate as a function of the scattering length

in atomic units as a red solid line. In this result the range of the interaction is set

to the van der Walls length of 40K, r0 ≈ 100 a.u. Also shown in Fig 6.15 are the
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Figure 6.15: The relaxation rate is shown as a function of scattering length (see text).
The red curve represents all possible relaxation pathways. The blue dot-dashed curve
represents only the contribution to relaxation for processes occurring at R > 10r0. The
green dashed line shows the contributions for prosses occurring at R < 5r0. Figure from
Ref. [7]

contribution to this relaxation rate due to four-body processes (dashed blue curve), and

the contribution to this rate due to three-body processes (dotted green curve). Also

shown is the expected scaling law, V dd
rel ∝ a−4.02, for transitions that occur at small

hyperradius, R = 5r0. Figure 6.15 also shows the predicted scaling law, V dd
rel ∝ a−2.55,

from Ref. [6], and an intermediate scaling law that can be extracted. In this regime,

because the hyperradius is small, the probability of three particles being in proximity is

near unity, meaning that the transition probability per unit hyperradius is determined

by the probability that the system can tunnel through the repulsive potential seen in

Fig. 6.4 at R . a. The universal repulsive potential in this regime [8, 7],

U (R) =
~2

2µ
p2

0 − 1/4
R2

, (6.58)

p0 = 2.55, (6.59)

leads to a scaling law for transitions in the small R regime that behaves as

V dd
rel ∝ a1−2p0 = a−4.20. (6.60)
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Figure 6.15 also shows the experimentally determined relaxation rates from Ref. [134].

Both the scaling law predicted in Ref. [6] of a−2.55 and the prediction using Eq. 6.55

fit the experimental data in the regime for 1000 a.u.. a . 4000 a.u.. The experimental

data for a > 3000 a.u. are in the regime where the average dimer separation distance

is less than the dimer size where the dimer-dimer scattering picture discussed here no

longer applies.



Chapter 7

Summary

In this dissertation I have analyzed the effects of few-body physics on many-body

systems, and the dynamics that result from fundamental few-body systems. Within

the framework of hyperspherical coordinates, complex many dimensional systems can

be described by a set of effective coupled 1D Schrödinger equations, allowing all of

the intuition and understanding of standard 1D Schrödinger quantum mechanics to be

brought to bear on the problem. While obtaining the effective hyperradial potentials

is often a significant challenge, once these potentials have been obtained, a variety of

complex dynamics can be analyzed such as low energy excitation frequencies in trapped

many-body systems and inelastic scattering in few-body systems.

In the first chapters of this thesis I generalized known few-body methods to a

many-body system through the use of a variational ansatz wavefunction. While the

variational wavefunction used does not allow for complex correlations, it does provide

an intuitive picture for the many-fermion system in the form of an effective poten-

tial. This approach also provides an initial link between standard methods in few-body

systems and the complex world of many-body physics. By tuning the few-body param-

eters through a Fano-Feshbach resonance the behavior of the degenerate Fermi gas was

explored throughout the resonance.

By applying the K-harmonic approximation in Chapter 3, a simple effective po-

tential was extracted which gave the ground state energy and rms size of the gas in good
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agreement with those predicted from the Hartree-Fock method. In the case of the bare

zero-range Fermi pseudo-potential, the effective potential predicted an unphysical col-

lapse on the negative side of a resonance in the strongly interacting regime. This collapse

can be avoided by incorporating a density dependent interaction. Using this interaction

the ground state energy is predicted with excellent agreement with the Hartree-Fock

prediction, both of which yield the universal constant β = −0.49. This value of β is

larger than the variational prediction from quantum Mote Carlo studies, β = −0.58, but

lower than the β value predicted from a normal degenerate Fermi gas, β = −0.44. This

method does not describe the behavior of the gas on the positive side of the resonance,

as neither the interaction or the variational wave function are capable of describing a

BEC of dimers. By further extending the K-harmonic method to incorporate multiple

internal states, a dynamic instability is predicted in a degenerate Fermi gas with four

components. The three-component gas was predicted to be barely stable at unitarity

using a density dependent interaction, and by modifying the interaction to fit the two-

component gas, the three-component system is predicted to be unstable. These results

do not include the possibility of a ground state consisting of trimer states. Further

examination, both theoretically and experimentally, is needed to clarify whether the

three-component gas will collapse in a manner similar to the Bosenova first, or boil off

through inelastic three-body recombination. This question is increasingly pertinent as

recent experiments with the three lowest hyperfine states of 6Li are near the predicted

density required for collapse.

In the case of an anisotropic trap, the K-harmonic method is difficult to apply.

By generalizing the hyperspherical picture to that of the hyper-vectorial method in

Chapter 4, the anisotropic nature of the trap is easily incorporated. The ground state

energy and rms longitudinal and transverse size of the gas are in perfect agreement with

the K-harmonic prediction in an anisotropic trap. However, the low energy excitation

frequencies disagree strongly with both previous theoretical predications and with ex-
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perimental observations. This is possibly due to the somewhat unphysical assumption

of the distribution of oscillator quanta in the variational wavefunction used. It is hoped

that this work can provide a starting point for later studies in this system.

In the second half of this dissertation, several fundamental few-body systems were

explored in the context of the adiabatic hyperspherical method. This method lends itself

well to scattering dynamics by incorporating the various fragmentation channels that

can result in few-body systems. By including the non-adiabatic coupling, the qualitative

behavior of inelastic scattering was easily found. In Chapter 5 I introduced a novel form

of the free-space hyperangular Green’s function. When used in a Lippmann-Schwinger

equation based approach, this Green’s function was shown to yield the same results for

the three-body hyperradial potential curves that are found using conceptually different

theoretical approaches, such as Faddeev decompositions. The results of this study were

then used to predict the scaling behavior of trap-loss recombination events across the

three resonances in the three lowest hyperfine states of 6Li. The resulting scaling at

higher magnetic fields (834 to1000 gauss) are in agreement with other theoretical pre-

dictions, but further experimental investigation is required to explore this system.

The Green’s function method was then applied to the complex systems of three

bosons with multi-channel two-body interactions leading to the prediction of a new class

of Efimov states. While other theoretical treatments have examined this multi-channel

system, this is the first prediction of three-body Fano-Feshbach resonances embedded in

the three-body continuum due to the presence of a quasistable Efimov state. There are

no current experiments looking for these states, but current radio frequency spectroscopy

techniques could possibly be used to probe them. Using this method, multiple Efimov

states might be seen experimentally for the first time.

Finally, in Chapter 6 I explored the four-fermion problem with large positive

scattering lengths. While no specific new method was developed to describe this complex
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system, a variety of existing ideas were incorporated in new ways to extract a set of

variationally accurate hyperradial potentials. This method gives the zero-energy dimer-

dimer scattering length to high precision in good agreement with previous predictions.

At higher energies, the energy dependent dimer-dimer scattering length is in agreement

with previous effective range expansions but deviates from this prediction at collision

energies well below the dimer binding energy. Further, it was shown that at any finite

collision energy, the dimer-dimer scattering length will never diverge.

By incorporating the full multi-threshold behavior of the system, inelastic dimer

breakup scattering was also incorporated in the form of a complex energy dependent

dimer-dimer scattering length. By developing a new Fermi’s golden rule based method,

the dimer-dimer relaxation rate was also predicted, disagreeing the previous predictions,

V dd
rel ∝ a−2.55, that ignored the effects of the presence of a fourth particle in the relaxation

process. The predictions given here agree with the experimentally measured behavior

in the relevant regime, and explain the agreement of experiment with the previously

predicted scaling law through the effects of short-range corrections.
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Appendix A

Consructing Hyperspherical Harmonics

In this appendix I describe the construction of hyperspherical harmonics. The

construction method is taken from the work of Smirnov and Shitikova [5], but it is

detailed here for completeness. In Sec. 2.2 the it was shown that each nod in a hy-

perspherical tree has an associated hyperangular momentum quantum number. In the

hyperspherical trees there are four types of node; a node with two free branches, two

types of nod with one free branch, and a nod with no free branches. Theses nodes are

illustrated in Fig. A.1. The construction of hyperspherical harmonics follows from each

of these types.

Figure A.1: The four possible hyperangular node types are shown.

A.0.0.1 Two free branches

A node with two free branches is fairly straight forward as there are no sub-

hyperangular momenta that need to be worried about. In fat a nod with two free

branches represents a normal polar coordinate parametrization. The hyperangular vol-
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ume element for a tree with this node pick up a factor of dφ. A hyperspherical harmonic

for a tree with this node pick up a factor of

Ym (φ) =
1√
2π
eimφ, (A.1)

with hyperangular momentum quantum number m = 0,±1,±2, ...

A.0.0.2 One free branch

To simplify the description I will begin by discussing a node of the type shown

in Fig. A.1(b) where the right hand branch is free. A node of this type has a sub-

hyperangular momentum quantum number, λ1, associated with it. The hyperangular

volume element picks up a factor of sind1−1 βdβ. A hyperspherical harmonic for a tree

with this node pick up a factor of

Yλλ1 (β) = Nd1

λ|λ1| sin
|λ1| βP

|λ1|+(d1−3)/2,|λ1|+(d1−3)/2
λ−|λ1| (cosβ) , (A.2)

Nd1

λ|λ1| =

 Γ (λ+ |λ1|+ d1 − 2) (2λ+ d1 − 2) (λ− |λ1|)!

22|λ1|+d1−2πΓ
(
λ+

(d1 − 1)
2

)
Γ
(
λ+

(d1 − 1)
2

)


1/2

,

where λ1 = λ, λ− 1, λ− 2, ...1, 0, and P γ,δn is a Jacobi polynomial.

To find the hyperspherical harmonic for a node of type Fig A.1(c) all that must

be done is to make the transformation β → π/2− β.

A.0.0.3 No free branches

A node of the type shown in Fig. A.1(d) has two sub-hyperangular momentum

quantum numbers associated with it, λ1 and λ2 associated with sub-spaces of dimension

d1 and d2 respectively. The hyperangular momentum volume element picks up a factor

of sind1−1 α cosd2−1 αdα. A hyperspherical harmonic for a tree with this node pick up a



172

factor of

Yλλ1λ2 = Nd1d2
λλ1λ2

sinλ1 α cosλ2 αP
λ1+d1/2−1,λ2+d2/2−1
(λ−λ1−λ2)/2 (cos 2α) , (A.3)

Nd1d2
λλ1λ2

=

(2λ+ d1 + d2 − 1) Γ
(
λ1 + λ2 + λ+ d1 + d2 − 2

2

)(
λ− λ1 − λ2

2

)
!

Γ
(
λ+ λ1 − λ2 + d1

2

)
Γ
(
λ+ λ2 − λ1 + d2

2

)


1/2

,

with the restriction

λ− λ1 − λ2 = even number.



Appendix B

Non-Adiabatic Corrections for the Three-Body Problem

In this Appendix, I give the P̄ matrix and the diagonal correction Qnn matrices

discussed in Chapter 5 for the multi-channel three-boson problem. The derivation is

similar to that of Kartatsev and Malykh [135, 116].I begin by considering the free space

Schrödinger equation the hyperangular channel function,

(
Λ2 − λ2

n + 2µR2ε̄
)
~Φn = 0, (B.1)

where ~Φn is the nth channel function whose components are the hyperangular behavior

in each internal three-body state, ε̄ is the internal state energy offset matrix, and for

notational simplicity I have written the hyperangular eigenvalue as (νn + 2)2 = λ2
n.

Next consider the matrix element between the same components of the mth and nth

channel functions.

〈φmΣ|
(
Λ2 − λ2

n + 2µR2εΣ

)
|φnΣ〉 = 0.

To find the P matrix I begin by taking a hyperradial derivative of the hyperangular

Schrödinger equation away from the interaction points. Reversing the indices yields two

equations that can be combined giving

〈φmΣ|φnΣ〉 =

〈
φmΣ

∣∣Λ2
∣∣φnΣ

〉
−
〈
φnΣ

∣∣Λ2
∣∣φmΣ

〉
(λ2
n − λ2

m)

Using the definition of Λ2 and applying the generalized Bethe-Peirles boundary condi-

tion,

lim
r(k)→0

~Φn (Ω) =

(
1− Ā(k)

r(k)

)
~Ckn, (B.2)



174

gives a normalization equation

〈φmΣ|φnΣ〉 = −
(4π)2 1

dR

∑
k

∑
Σ′

[
CkmΣA

(k)
Σ′ΣC

k
nΣ′ − Cσkn A

(k)
Σ′ΣC

k
mΣ

]
(λ2
n − λ2

m)
. (B.3)

To find the P̄ matrix, I consider the derivative of Eq. B.1,

∂

∂R

[(
Λ2 − λ2

n + 2µR2εΣ

)
|φnΣ〉

]
= 0, (B.4)

Considering the matrix elements yields two equations,

(
−λ2′

n + 4µRεΣ

)
〈φmΣ|φnΣ〉+

〈
φ′mΣ

∣∣ (Λ2 − λ2
n + 2µR2εΣ

) ∣∣φ′nΣ

〉
= 0,〈

φ′nΣ

∣∣ (Λ2 − λ2
m + 2µR2εΣ

)
|φmΣ〉 = 0.

Here the primes indicate an R derivative. Combining these two equations and solving

for 〈φmΣ|φ′nΣ〉 yields

〈
φmΣ|φ′nΣ

〉
=

(
−λ2′

n + 4µRεΣ

)
〈φmΣ|φnΣ〉+ 〈φmΣ|Λ2 |φ′nΣ〉 − 〈φ′nΣ|Λ2 |φmΣ〉

(λ2
n − λ2

m)
.

The 〈φmσ|Λ2 |φ′nσ〉−〈φ′nσ|Λ2 |φmσ〉 term can be solved for by considering the boundary

condition again. Summing over the internal states yields the equation for the P̄ matrix

elements

〈
~Φm|~Φ′n

〉
= − 12µR (4π)2

dR (λ2
n − λ2

m)2

[
~Ckm ·

[
ε̄Ā(k) ~Ckn

]
− ~Ckn ·

[
ε̄Ā(k) ~Ckm

]]
(B.5)

− (4π)
dR (λ2

n − λ2
m)

∑
Σ,Σ′,k

Ck′nΣA
(k)
Σ′Σ′C

k
mΣ′

− (4π)2

dR2 (λ2
n − λ2

m)

∑
Σ,Σ′,k

CkmσA
(k)
Σ′Σ′C

k
nσ′

+
(4π)2

dR (λ2
n − λ2

m)

∑
Σ,Σ′,k

CkmσA
(k)
Σ′Σ′C

k′
nσ′

The diagonal part of the Q̄ matrix can be found through a similar, but much uglier
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derivation which yields

〈
~Φn|~Φ′′n

〉
= 3 (4π)2

{
2

3dR2
~C ′n ·

[
1

(−λ2′
n + 4µRε̄)

Ā ~C ′n

]
+

1
3dR

~C1′′
n ·

[
1

(−λ2′
n + 4µRε̄)

Ā ~C ′n

]
(B.6)

− 1
3dR

~C1′
n ·
[

1
(−λ2′

n + 4µRε̄)
Ā ~C ′′n

]
+

7
6dR

~Cn ·

[ (
−λ2′′

n + 4µε̄
)

(−λ2′
n + 4µRε̄)2 Ā

~C ′′n

]

− 1
3dR2

~C ′′n ·
[

1
(−λ2′

n + 4µRε̄)
Ā ~Cn

]
− 7

6dR
~C ′′n ·

[ (
−λ2′′

n + 4µε̄
)

(−λ2′
n + 4µRε̄)2 Ā

~Cn

]

+
7

3dR3
~Cn ·

[ (
−λ2′′

n + 4µε̄
)

(−λ2′
n + 4µRε̄)2 Ā

~Cn

]
+

2
3dR2

~Cn ·
[

λ2′′′
n

(−λ2′
n + 4µRε̄)2 Ā

~Cn

]

+
7

6dR2
~Cn ·

[ (
−λ2′′

n + 4µε̄
)2

(−λ2′
n + 4µRε̄)3 Ā

~Cn

]
− 2

3dR
~Cn ·

[
λ2′′′
n

(−λ2′
n + 4µRε̄)2 Ā

~C ′n

]

− 7
3dR2

~Cn ·

[ (
−λ2′′

n + 4µε̄
)

(−λ2′
n + 4µRε̄)2 Ā

~C ′n

]
− 7

6dR
~Cn ·

[ (
−λ2′′

n + 4µε̄
)2

(−λ2′
n + 4µRε̄)3 Ā

~C ′n

]

− 2
3dR3

~C ′n ·
[

1
(−λ2′

n + 4µRε̄)
Ā ~Cn

]
+

2
3dR

~C ′n ·
[

λ2′′′
n

(−λ2′
n + 4µRε̄)2 Ā

~Cn

]
+

7
6dR

~C ′n ·

[ (
−λ2′′

n + 4µε̄
)2

(−λ2′
n + 4µRε̄)3 Ā

~Cn

]}



Appendix C

N-Body Recombination Rate

In this appendix, I derive the N -body recombination rate given in Eq. 5.44 [117].

In Chapter 5 this formula was applied to three-body recombination, but it is applicable

to any loss process involving N free initial particles in a gas phase. The starting point

of the derivation is to assume a hyperspherically symmetric potential in d dimensions.

This can be thought of in terms of uncoupled λ-wave channels in direct analogy to

spherically symmetric potentials in three dimensions. At very large hyperradius the

solutions to the Schrödinger equation can be written as

ΨI = ei
~k·~R + f

(
k̂, k̂′

) eikR

R(d−1)/2
, (C.1)

where ~R is a position vector in d dimensions. Alternatively the large R solution can be

written in terms of a hyperspherical harmonic expansion with a phase shift,

ΨII =
∑
λµ

AλµYλµ

(
R̂
) [
jdλ (kR) cos δλ − ndλ (kR) sin δλ

]
, (C.2)

where jdλ and ndλ are hyperspherical Bessel functions of the first and second kind [66],

jdλ (kR) =
Γ (α)

(d− 4)!!
Jα+λ (kR)

(kR)α
,

α =
d

2
− 1,
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where Jγ is a normal Bessel function. Here R̂ is used to denote the hyperangles of the

vector ~R. It will be useful to have this written in the large kR limit,

jdλ (kR) kR→∞−→ Γ (α) 2α−1

(d− 4)!!

√
2
π

cos
(
kR− 2α+ 2λ− 1

2
π

)
(kR)α+1/2

. (C.3)

The d-dimensional plane wave can also be expanded in terms of hyperspherical

Bessel functions and harmonics [66] as

ei
~k·~R = (d− 2)!!

2πd/2

Γ (d/2)

∑
λ

iλjdλ (kR)Y ∗λµ
(
k̂
)
Yλµ

(
R̂
)
. (C.4)

Comparing Eqs. C.3 and C.4, the incoming planewave part of ΨII can be extracted and

the expansion coefficients Aλµ can be found. This can then be inserted into Eq. C.2 to

find the scattering amplitude:

f
(
k̂, k̂′

)
=
(

2π
k

)(d−1)/2∑
λµ

iλe−i(2α+2λ+1)/4Y ∗λµ

(
k̂
)
Yλµ

(
k̂′
)(

e2iδλ − 1
)
. (C.5)

At this point, the scattering amplitude f
(
k̂, k̂′

)
can be immediately generalized to

include coupling between hyperradial channels, i.e.

f
(
k̂, k̂′

)
=
(

2π
k

)(d−1)/2 ∑
λµ,λ′µ′

iλe−i(2α+2λ+1)/4Y ∗λµ

(
k̂
)
Yλ′µ′

(
k̂′
) (
Sλµ,λ′µ′ − δλλ′δµµ′

)
.

(C.6)

From this the total elastic cross section can be extracted, given by

σ =
∫ ∣∣∣f (k̂, k̂′)∣∣∣2 dk̂. (C.7)

This cross section is the for the incoming states with hyperspherical momentum direction

k̂′ summed over all outgoing hyperspherical momentum directions k̂. For the cross

section in a gas phase, all of the initial momenta must be averaged over. Using the

orthonormality of hyperspherical harmonics, this procedure yields

σdist =
1

Ωd

(
2π
k

)d−1 ∑
λµ,λ′µ/

∣∣Sλµ,λ′µ′ − δλλ′δµµ′∣∣2 , (C.8)

Ωd =
∫
dΩ =

2πd/2

Γ (d/2)
.
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This can immediately be interpreted as the generalized average cross section that takes

an initial state i ≡ λµ to a final state f ≡ λ′µ′, i.e.

σdisti→f =
(

2π
k

)d−1 Γ (d/2)
2πd/2

|Sfi − δfi|2 . (C.9)

This expression must only be summed over the initial and final states of interest. For ex-

ample, when the scattering potential is purely hyperradial all µ substates are degenerate

and the sum over initial states yields a factor of

M (d, λ) =
(2λ+ d− 2) Γ (λ+ d− 2)

Γ (λ+ 1) Γ (d− 1)
,

which is exactly the degeneracy of hyperspherical harmonics for fixed λ [66]. The hyper-

spherically symmetric version of Eq. C.9 has been found using the Born approximation

by Fabre de la Ripelle [107]. Equation C.9 describes the behavior of distinguishable

particles in the initial state.

To specify indistinguishable particles, all possible identical configurations must

be summed over in the scattering amplitude and only unique states included in the sum

over final states,

σindist =
∫

dk̂

Np

∫
dk̂′

Ωd

∣∣∣Npf
(
k̂, k̂′

)∣∣∣2 = Npσ
dist, (C.10)

where Np is the number of permutation symmetries in the system. For instance, for

N identical particles, Np = N !, or for two species of identicle particles, Np = N↑!N↓!.

Using this gives the final scattering cross section for total angular momentum J and

parity Π ,

σJ
Π

fi = Np

(
2π
k

)(d−1) Γ (d/2)
2πd/2

∑
i

(2J + 1)
∣∣∣SJΠ

fi − δfi
∣∣∣2 , (C.11)

where I have explicitly included the angular momentum degeneracy. To turn this into

a rate coefficient, the cross section must be multiplied by the “velocity”, v = ~k/µd,

resulting in

Kd =
~k
µd
σJ

Π

fi (C.12)



179

where µd is the d dimensional reduced mass of the system, and k =
√

2µdE/~. For N

particles in three dimensions with the center of mass motion removed, d = 3 (N − 1)

and µd =
(∏N

i=1mi/
∑N

i=1mi

)1/(N−1)
yielding Eq.5.44.

C.1 Scaling laws for N identical bosons

In this section, I apply the result of Eq. C.12 to a system of N identical bosons at

ultracold temperatures. Ultracold here means that only the lowest channel in the sum

in Eq. C.11 contributes to the inelastic rate coefficient. In general the lowest asymptotic

channel for N bosons has λ = 0 and JΠ = 0+. I assume that the process in question is

an inelastic rate to a deeply bound channel yielding

KN =
~k

2µN
N !
(

2π
k

)(3N−4) Γ (3 (N − 1) /2)
2π3(N−1)/2

∣∣∣S0+

0f

∣∣∣2 . (C.13)

For a thermal gas of identical bosons, the density, n, of the gas follows the equation,

∂n

∂t
= −

Nmax∑
N=2

LNn
N , (C.14)

where Nmax is the highest order recombination process that is allowed, and LN is the

N -body recombination rate scaled by the number of particles lost in the process and

including symmetry factors.

From Eq. 2.19, the large R behavior of the lowest hyperradial potential has the

form of an effective centrifugal barrier,

U (R) =
~2

2µ
leff (leff + 1)

R2
,

leff = λ+
d

2
− 3

2
.

The energy normalized hyperradial wavefunction for this entrance channel at large R

for low energy behaves as F (R) ∝ kleff+1/2. If it is assumed that this entrance channel

dominates the behavior of the S matrix and that the only relevant length scale in the

problem is the s-wave scattering length, a, i.e. S0+

0f ∝ (ka)leff+1/2, the recombination
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rate from Eq. C.13 is

KN ∝
~k

2µN
N !
(

2π
k

)(3N−4)

(ka)3N−5 Γ (3 (N − 1) /2)
2π3(N−3)/2

,

=
~

2µN
N ! (2π)(3N−4) a3N−5 Γ (3 (N − 3) /2)

2π3(N−1)/2
. (C.15)

It is interesting to note that this indicates that the inelasticN -body recombination

rate for bosons is always a constant at threshold. For N = 3, this gives

K3 ∝
192π2~

2µ3
a4, (C.16)

which is the well know a4 scaling law for three boson recombination [111]. For N = 4

this gives

K4 ∝
20160π4

2µ4
a7. (C.17)

C.2 Four-bosons: beyond scaling laws

In this section I examine the four boson problem using the work of von Stecher

[8, 65]. Specifically I will be concerned with the process of four-body recombination to

an Efimov state at negative scattering lengths, i.e. KB+B+B+B→B3+B
4 . This process

can be important in identifying Efimov states [65], creating Efimov states, or in the high

density regime of an ultracold gas of bosons.

Several examples of the four-boson potentials at negative scattering length are

shown schematically in Figs. C.1(a-d) [8, 65]. These potentials are from the region

where at least one Efimov states is bound. For a full analysis of the properties of these

potentials the reader is pointed towards Ref. [8]. The important aspect here is that

each potential corresponding to an Efimov state and a free particle supports two four-

body bound states. Further, as the scattering length becomes more negative, eventually

another Efimov state is formed. The potential corresponding to the new Efimov state is

the same as the previous potential scaled by the characteristic Efimov scaling, i.e. the
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length scale is multiplied by a factor of 22.7 and the energy scale is divided by a factor

of (22.7)2 ≈ 515.

Figure C.1: (a)-(d) Schematic of the four-boson potentials from Ref. [8] are shown, As
the scattering length becomes more negative (a-d inorder) an inner well appears and is
pulled further down until a second Efimov state is bound.

I will model this process as a single channel scattering problem with a complex

scattering phase shift to simulate loss from the lowest four-free-boson potential. With

this assumption the S matrix element corresponding to the transition to the Efimov

state is given in the low energy limit by

|SB+B+B+B→B3+B|2 = 1− |SB+B+B+B→B+B+B+B|2 ,

= 4 Im δ, (C.18)

where δ is the single channel complex phase shift. Figure C.2 shows a schematic path

of this process where the transition is assumed to occur at the peak in the coupling

strength between the two potentials. It is important to note that when a new Efimov

state is formed, I assume that all recombination proceeds out the new channel, and the

recombination out of the old channel is turned off. Assuming a WKB wavefunction and
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using the WKB connection formulas [136] the imaginary part of the phase shift is

4 Im δ =
sinh 2η

sin2 (φ− π/2) + sinh2 η
e−2γ ,

where φ is the WKB phase accumulated in an inner well such as the one seen in Fig

C.2, γ is the WKB tunnelling for the entire process, and η parameterizes the transition

probability to the Efimov channel. In this treatment η is kept as a free parameter, but

in truth it is fixed by the exact nature of the four-boson system. This connection will

not be discussed further here.

Figure C.2: A schematic of the four-body recombination process into an Efimov state
plus a free particle.

Inserting this into Eq. C.13 gives

K4 = A
20160π4

2µ4

sinh 2η
sin2 (φ− π/2) + sinh2 η

e−2γ

k4
, (C.19)

where A is an overall scaling that is not determined by this model. This rate coefficient

assumes that the recombination process is entirely controlled by the incoming channel.

Including the behavior due to the outgoing channel is a subject for later work. The

apparent k4 behavior of this rate coefficient will be cancelled by the strong tunnelling

suppression in the asymptotic regime from the effective centrifugal barrier. Figure C.3
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shows the resulting four-body recombination rate coefficient. Here it is assumed that

the transition occurs at the point where the coupling strength peaks. Several things

are readily apparent in this result. First the rate has an overall scaling of a7 predicted

by the simple dimensional argument in Eq. C.17. Second, there is a cusp in the rate

at exactly the point where a new Efimov state becomes bound, a = aEfi ≈ −104r0.

It is unclear if this cusp behavior is physical, due to the approximations used in this

treatment. Finally, two strong resonances can be seen. These correspond to four-body

states appearing at the scattering threshold at a = 0.43aEfi and a = 0.9aEfi exactly as

predicted in Ref. [8]. This gives another handle on identifying Efimov states, a task that

can be quite difficult. If such four-body resonances can be associated with a three-body

resonance it gives strong evidence that the three-body resonance is in fact due to an

Efimov state [65].
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Figure C.3: The four-body recombination rate is shown plotted as a function of |a| in
units of the range of the two-body interaction.



Appendix D

Dimer-Dimer Relaxation Rates

In this appendix I present the derivation of the dimer-dimer relaxation rate used

in Section 6.5. This process occurs when the two dimers collide causing at least one

of the dimers to relax to a deeply bound state. The difference of the binding energies

is then releases as kinetic energy. This process can be pictured in the hyperspherical

picture as an infinite series of very closely spaced crossings between the dimer-dimer

channel and channels consisting of a deeply bound dimer and two free particles. This

near continuum of crossings is shown schematically in Fig. D.1(a).

Using Fermi’s golden rule between the initial dimer-dimer state and the final

states gives

V dd
rel ∝

∑
λ

|〈Ψdd (R; Ω) |V (R,Ω)|Ψλ (R,Ω)〉|2 , (D.1)

where Ψdd (R; Ω) is the dimer-dimer wavefunction, V (R,Ω) is the interaction potential

and Ψk is the λth deeply bound dimer state. I now will assume that the dimer-dimer

wavefunction is approximated by

Ψdd (R; Ω) ≈ Fdd (R) Φdd (R; Ω) , (D.2)

where Φdd (R; Ω) is the dimer-dimer hyperangular channel function and Fdd (R) is the

hyperradial wavefunction resulting from the single channel approximation. I further

assume that the outgoing deeply bound dimer wavefunction can be written as

Ψk (R,Ω) ≈ ψ (r12) θλ (~r34, ~r12,34) (D.3)
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Figure D.1: (a) A schematic of the channels involved involved inthe dimer-dimer relaza-
xtion process is shown. The dimer-dimer potential (red curve) goes through an inifinite
number of crossing with deeply bound states (green dashed curves). (b) The hyperradial
behavior of the outgoing wavefunction is shown.

where ψ (r12) is the wavefunction for an s-wave deeply bound dimer and θλ (~r34, ~r12,34)

is the free space behavior of the resulting three particle system.

Examining one of the terms from the sum in Eq. D.1 with a single two-body

interaction gives

V
dd(λ)
rel ∝

∣∣∣∣∫ Fdd (R) Φdd (R; Ω)V23 (r23)ψ (r12) θλ (~r34, ~r12,34) dRdΩ
∣∣∣∣2 , (D.4)

where V dd(k)
rel is the contribution to the relaxation rate by the λth term in Eq. D.1. The

first thing to notice is in this is that the factor V23 (r23)ψ (r12) is non-zero only when

particles 1, 2, and 3 are in close proximity, and when particles 1, 2, and 3 are in close
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proximity the remaining degrees of freedom are simplified as well,

~r34 ≈ C~r12,34. (D.5)

This means that the wavefunction θ (~r34, ~r12,34) can be rewritten as

θλ (~r34, ~r12,34) ≈ Gλ (R) fλ (Ω) , (D.6)

where Gλ and fλ are the hyperradial and hyperangular behavior associated with the

λth outgoing channel. A further simplification can be made by realizing that fλ (Ω)

must be independent of Ω when particles 1, 2, and 3 are in close proximity because

the total wavefunction must have zero spatial angular momentum. Rewriting D.4 with

these simplifications yields

V
dd(λ)
rel ∝

∣∣∣∣∫ Fdd (R)Gk (R)
∫

Φdd (R; Ω)V23 (r23)ψ (r12) dΩdR
∣∣∣∣2 . (D.7)

The hyperangular integral is approximated by the probability that three-particles are

close to each other in the dimer-dimer channel function.

And example of Gλ is shown in Fig. D.1(b). Away from the classical turning

point Gλ oscillates very rapidly. This fast oscillation will generally cancel out meaning

the main contribution to the hyperradial integral is from the region near the classical

turning point Rλ. Putting this all together yields

V dd
rel ∝

∑
λ

|Fdd (Rλ)|2

Rλ
F (Rλ) , (D.8)

where F (Rλ) is the probability that three particles are in close proximity in the dimer-

dimer channel function. The final step in this derivation is to turn the sum over λ into

an integral over Rλ,

V dd
rel ∝

∫
ρ (Rλ)

|Fdd (Rλ)|2

Rλ
F (Rλ) dRλ (D.9)

where ρ (Rλ) is the, nearly constant, density of states. This is possible due to the

near-continuum nature of the outgoing states. By inserting the WKB approximation
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wavefunction for Fdd (R), the result of Eq. 6.55 is obtained, i.e.

V dd
rel ∝

∫
ρ (R)

PWKB (Rλ)
κ (R)R

F (R) dR. (D.10)
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