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A generalized open quantum theory that models the transport properties of bosonic systems

is derived from first principles. This theory is shown to correctly describe the long-time behavior of

a specific class of non-Markovian system-reservoir interactions. Starting with strongly-interacting

bosons in optical lattices, we use this theory to construct a novel, one-to-one analogy with elec-

tronic systems, components, and devices. Beginning with the concept of a wire, we demonstrate

theoretically the ultracold boson analog of a semiconductor diode, a field-effect transistor, and

a bipolar junction transistor. In a manner directly analogous to electronics, we show that it is

possible to construct combinatorial logic structures from the fundamental electronic-emulating de-

vices just described. In this sense, our proposal for atomtronic devices is a useful starting point

for arrangements with more complex functionality. In addition we show that the behavior of the

proposed diode should also be possible utilizing a weakly-interacting, coherent bosonic drive.

After demonstrating the formal equivalence between systems comprised of bosons in optical

lattices and photons in nonlinear cavity networks, we use the formalism to extend the ideas and

concepts developed earlier in ultracold boson systems to nonlinear optical systems. We adapt the

open quantum system theory to this new physical environment, and demonstrate theoretically how

a few-photon optical diode can be realized in a coupled nonlinear cavity system. An analysis of

different practical cavity quantum electrodynamics systems is presented and experimentally-viable

candidates are evaluated.
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Chapter 1

Introduction

The advent of laser cooling and trapping of neutral atoms and ions [1] has revolutionized

the field of atomic physics in several ways. From the standpoint of spectroscopy, the absorption

lines of trapped, virtually stationary ultracold atoms or ions can be resolved without spectral lines

undergoing shifts or broadening due to time dilation and Doppler effects. Additionally, the ex-

tended observation times allow the unshifted, unbroadened features to be resolved with greater

precision. These ultracold, trapped atomic systems, along with our improved spectroscopic knowl-

edge of them, have led to great advances in the field of metrology as well. For example, this

technology has allowed improvement in the accuracy of atomic clocks by orders of magnitude, and

matter-wave interferometry of ultracold atomic beams has made ultrasensitive accelerometers and

thus gravimeter and gravity gradient detectors. The impact that laser cooling has had on atomic

physics as a field of research goes well-beyond enhancements in high-resolution spectroscopy, time

standards, and metrological technologies.

Today, cold atoms can be prepared (via optical pumping techniques for example) in specific

quantum states, precisely manipulated, and even entangled [2]. Entanglement, manipulation, and

storage of quantum states in atomic systems has played a significant role in the emergence of the

field of quantum information science.

Ultracold atomic systems have also proven to be effective quantum simulators: many-body

quantum phase transitions such as Bose-Einstein condensation (BEC) [3] and the Bose-Einstein

condensation to Bardeen-Cooper-Schrieffer (BEC-BCS) cross-over [4] have been demonstrated and
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studied in these systems. The fact that ultracold atoms can be stored in virtually defect-free crystals

known as optical lattices [5] also makes them great quantum simulators for condensed matter models

such as the Bose-Hubbard model [6]. Perhaps the most striking demonstration of applying Bose-

Hubbard physics to ultracold gases was the recent observation of the Mott insulator-to-superfluid

phase transition [7].

Over the past two decades, our ability to manipulate and control quantum systems has

increased profoundly. This precise level of control has inspired the idea of atomtronics, which is

the topic of this thesis. The goal of atomtronics is to realize the behavior of electronic components

and devices in atom-optical systems. Micheli et al. originally proposed the idea of a single atom

transistor [8], where the transport of bosons in an optical lattice can be allowed, or inhibited,

based on the spin orientation of a single fermion ‘impurity’ atom. This system is illustrated in

Figure 1.1(a). Stickney, Anderson and Zozuya [9] proposed transistor-like behavior in a different

system, consisting of a BEC trapped in the left most well of a three-well system. In their model,

depicted in Figure 1.1(b-c), the transport of atoms from the left well to the right well is controlled

Figure 1.1: (a) The single atom transistor, proposed by Micheli et al. involves a BEC trapped on
the left side of an optical lattice where its transport to the right side of the lattice is controlled by a
single fermionic atom (labeled as q). If q is spin down, then the BEC remains fully on the left-hand
side where quantum interference effects inhibit the wave function from existing on the right-hand
side of the lattice. If q is spin up, there is no interference, and the BEC can traverse the lattice.
Reprinted with permission from reference [8]. (b) A three well BEC transistor device, proposed by
Stickney et al. Here a BEC is stored in the left well of the three well system. If no atoms are in
the middle well, then there is a chemical potential mismatch between the central and the first well
containing the atoms. The mismatch prevents the atoms from tunneling to the third well. (c) On
the other hand, in this configuration, adding atoms to the middle well raises the chemical potential,
bringing it closer to the chemical potential of the left well. When a resonance is achieved between
the left and middle wells, the atoms can cross and populate the right-most well.
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by the chemical potential of the middle well. If atoms are added to the middle well, its chemical

potential is raised. As the chemical potential of the middle well approaches the chemical potential of

the well containing the BEC, a resonance is enabled, allowing atoms in the BEC to tunnel through

to the right well in the system. The general qualitative behavior of both of these proposed devices

is consistent with the device characteristics exhibited by a conventional electronic semiconductor

transistor.

In this thesis, we present a different approach to atomtronics. We consider a much closer

analog to electronic circuitry than the systems mentioned above. Our approach involves atomtronic

devices composed of optical lattices that are driven by reservoirs of ultracold, neutral atomic gases.

These systems are direct analogs of traditional electronic components driven by a voltage source,

where the atoms traversing the lattice resemble electrons moving in a semiconductor crystal.

(a) (b)

µL µR

Figure 1.2: Illustration of the analogy between (a) the electronic circuit of a wire (with some
inherent resistance) connected to a battery and (b) its atomtronic counterpart.

The analogy is illustrated in Figure 1.2, where we have the simple circuit of a resistive wire

connected to a battery. In this example, the electric potential difference between the two battery

terminals that is responsible for generating an electronic flux through the wire is replaced by

a chemical potential difference between two reservoirs, which enable an atomic flux through the

system. The wire itself, which could be for example a copper lattice where electrons hop from atom-

to-atom, is replaced by an optical lattice with finite site-to-site tunneling. The electronic current

measured in amperes is replaced by an atomic flux measured in particles per second through the

optical lattice system. The motivation to construct and study these particular atomtronic analogs

of electronic systems comes from several directions.
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First, the experimental atomtronic realizations promise to be extremely clean. Imperfections

such as lattice defects or phonons can be essentially eliminated if desired. This allows one to study

an idealized system from which all inessential complications have been stripped. Interest in such

complexity-reduced systems lies parallel to the recent research efforts in single electron transistors

in mesoscopic systems [10] and molecules [11], where many themes common with atomtronics

emerge. A consequence of the near ideal experimental conditions for optical lattice systems is that

theoretical descriptions for atomtronic systems can be developed from first principles. This allows

theorists to develop detailed models that can reliably predict the properties of devices.

Second, atomtronics systems are intrinsically richer than their electronic counterparts because

atoms can possess more complex internal structure than electrons. Whereas electrons can only be

spin-up or spin-down, atoms can be either bosons or fermions, possessing many internal states,

and the interactions between atoms can be widely varied from short to long range, from strong to

weak, and from isotropic to anisotropic. This can lead to behavior that is qualitatively different to

that of electronics [12, 13, 14, 15]. Consequently, one can study repulsive, attractive, or even non-

interacting atoms in the same experimental setup. Additionally, current experimental techniques

allow for the detection of atoms with fast, state-resolved meters that operate at near unit quantum

efficiency [16]. Thus it is possible, in principle, to follow the dynamics of an atomtronic system in

real time.

Third, neutral atoms in optical lattices can be well-isolated from the environment, reducing

the negative effects of decoherence. They combine a powerful means of state readout and prepara-

tion with methods for entangling atoms [17]. Such systems have all the necessary ingredients to be

the building blocks of quantum signal processors. The close analogies with electronic devices can

serve as a guide in the search for new quantum information architectures, including novel types of

quantum logic gates that are closely tied with the conventional architecture in electronic computers.

Fourth and finally, recent experiments studying transport properties of ultracold atoms in

optical lattices [18, 19, 20] can be discussed in the context of the atomtronics framework. In

particular, one can model the short-time transport properties of an optical lattice with the open
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quantum system formalism discussed here.

This thesis is structured as follows. In Chapter 2, we review background physical concepts

used throughout this work. We discuss the basic physics involved in trapping atoms in optical

lattices, and consider how the system of ultracold bosonic atoms trapped in an optical lattice is

related to the Bose-Hubbard model. We then derive a simple coupled cavity quantum electrody-

namics (QED) model and discuss the implication of inserting a nonlinear Kerr medium into the

cavity. As we see, this system is an alternative physical realization of the Bose-Hubbard model.

We conclude this chapter with a review of electromagnetically-induced transparency (EIT) and an

extension thereof. Such systems are shown to exhibit large Kerr nonlinear response with minimal

absorption.

In Chapter 3, we review the master equation treatment of open quantum systems. We

derive the standard second-order Born-Markov master equation as well as an all-orders kinetic

theory description of the formalism. After demonstrating that under the same approximations,

the two formalisms are equivalent, we generalize the kinetic theory description to model system

Hamiltonians that are time-dependent.

In Chapter 4, we demonstrate the possible breakdown of the Born-Markov formalism when

the reservoirs in the model have sharp boundaries in their density of states. We then derive a

non-Markovian master equation that is capable of modeling these exotic reservoirs. The validity of

this non-Markovian theory is confirmed by comparing its behavior at a sharp reservoir boundary

to the behavior of a large, closed quantum system model that can be solved exactly.

In Chapter 5, we develop atomtronics components in the context of bosonic atoms trapped in

optical lattices. Assuming a fermionized bosonic reservoir model, we propose a series of atomtronic

devices that emulate the electronic behavior of a semiconductor diode, field-effect transistor, and

bipolar junction transistor. We show that basic discrete logic behavior can be realized in these

systems. Afterwords, an alternative reservoir model, where the lattice system is driven by a coherent

BEC is considered. Assuming this reservoir model, the basic atomtronic diode behavior is recovered.

In Chapter 6 we discuss the progress that we have made to extending the atomtronics theory
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to encompass sequential logic devices. After the set-reset flip-flop is reviewed, the time-dependent

master equation is used to demonstrate the enhancement of transport across off-resonant lattices.

This is done in the context of developing and understanding bistable atomtronic circuitry, which is

at the heart of implementing sequential logic behavior.

In Chapter 7 we discuss a distinct realization of the atomtronic components in a nonlinear

optical cavity context. We present models for various driving mechanisms, and perform simulations

that evaluate the parameter regime where the characteristics of the diode could potentially be

realized. We then explore possible experimental implementations of this device in high-finesse

etalon cavities, toroidal microcavities, and photonic band-gap nanocavities.

Finally, in Chapter 8 we draw conclusions, and consider potential avenues for future research

directions.



Chapter 2

Background and Physical Concepts

Our goal in this thesis is to realize electronic behavior in atom-optical systems, specifically

atoms in optical lattices and photons in optical cavities. Here we provide a brief review of es-

tablished physical concepts that will be utilized throughout this thesis. We first discuss optical

lattices and their connection to the Bose-Hubbard model. Afterwords we derive a simple coupled

cavity theory consisting of cascaded one-dimensional etalons containing a nonlinear χ(3) material.

We find that the Hamiltonian for this nonlinear etalon cavity theory, in second-quantized form,

amounts to another realization of the Bose-Hubbard model with on-site interactions. For this rea-

son, the Bose-Hubbard model plays a central role throughout this thesis. Finally, we review the

basic characteristics of three-level and four-level electromagnetically-induced transparency (EIT)

systems. These systems have the capability of generating large Kerr nonlinearities with minimal

dissipation.

2.1 Atoms in Optical Lattices

Optical lattices, in the simplest sense, are periodic crystals of light created by interfering coun-

terpropagating laser beams. The resulting standing-wave is a spatially-periodic array of strong and

weak electric and magnetic fields. Single atoms predominantly interact with the electric component

of this light field, where they can either be attracted to the field maxima or minima depending on

whether the wavelength of the light field is detuned to a frequency either above or below the atomic

transition. If the potential energy of the atom-lattice coupling is large compared to the thermal
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energy of the atoms themselves, the atoms become localized on the lattice sites, with the ability to

tunnel to neighboring sites. In the limit that the lattice potential goes towards infinity, the atoms

lose the ability to tunnel even to nearest neighboring sites, and thus remain frozen in place.

Optical lattices are near-perfect crystal structures. They are free of lattice vibrations, they

can be perfectly regular, i.e. defect-free structures, and, if desired, they can be constructed with

precisely-located ‘defect’ features. They are also energy-conserving systems, which makes them

suitable for quantum information applications. Furthermore, these lattices can be constructed in

one-dimension, two-dimensions, or three-dimensions by utilizing the appropriate number of counter-

propagating pairs of lasers in orthogonal directions. This is illustrated schematically in Figure 2.1.

Figure 2.1: Illustration of a BEC confined by (a) two orthogonal sets of counterpropagating lasers,
which generate a two-dimensional lattice of tube-like BEC distributions (b). (c) The addition of
a third mutually orthogonal set of counterpropagating lasers generates a three-dimensional light
crystal, confining the atoms to point-like sites (d). Reprinted with permission from reference [21].

Jaksch et al. [22] suggested that the dynamics of an ultracold gas of bosons trapped in an

optical lattice could be well-described by the Bose-Hubbard model [6]. The Bose-Hubbard model

utilizes a Hamiltonian that describes a system of bosons confined to sites of a crystal lattice, where

the bosons can interact with each other, and can tunnel in the lowest band to the nearest neighboring
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sites. This minimalistic model exhibits a quantum phase transition as a function of the lattice depth

known as the Mott insulator-to-superfluid phase transition. In their work, Jaksch et al. proposed

that this quantum phase transition could be realized in this atom-optical system. These ideas

were subsequently experimentally implemented and confirmed by Greiner et al. in 2002 [7]. The

success of this experiment, depicted in Figure 2.2, demonstrated that optical lattice systems can be

ideal realizations for a variety of strongly-correlated condensed matter models. Among many other

implementations, these lattices are currently used in both theoretical and experimental contexts to

study analogs of high-temperature superconductivity via the so-called t-J-U Hamiltonian [23], and

Tonks-Girardeau gases, where a strongly-interacting one-dimensional Bose gas can exhibit some

fermionic properties [24].

Figure 2.2: Experimental realization of the Mott insulator-to-superfluid quantum phase transition.
Reprinted with permission from reference [21].

Experimentalists have made great strides in their ability to create, manipulate, and resolve

the behavior of ultracold gasses trapped in optical lattices. Today, instead of simply using counter-

propagating lasers to obtain a uniform lattice structure, site-by-site custom optical lattices can be

constructed with great precision by illuminating a holographic mask with a light source [25, 26]. As

can be seen in Figure 2.3, cutting-edge experimental technology also makes it possible to resolve sin-

gle atoms in the lattice [25, 27, 28] as well as to address single sites at the sub-micron level [29, 30].

The lack of energetic dissipation, the extreme tunability of the Bose-Hubbard systems, and the

ability to resolve single atoms, make optical lattices excellent candidates for the study and possible
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Figure 2.3: An actual experimental image of site-resolved 640 nm optical lattice. Here, single
atoms, holes, and even adjacent atoms are resolved. Reprinted with permission from reference [16].

realization of the atomtronic components, as we propose in this thesis.

In this section, we introduce the basic physics behind trapping atoms in optical lattices, and

provide a brief derivation of the Bose-Hubbard model for atoms in optical lattices. For simplicity,

these calculations are performed in one-dimension. In principle at least, extending these ideas to

higher dimensions is straightforward.

2.1.1 Interaction of an atom with a standing electromagnetic wave

Consider the one-dimensional problem of a two-level atom interacting with the electromag-

netic field that is generated by two counter-propagating lasers that are both characterized by the

wave vector k. The electric field for this system can be written as

E(t) = E0 (cos(kx− ωt) + cos(kx+ ωt))

= E0 cos(kx)
(

eiωt + e−iωt
)

(2.1)

where E0 is the magnitude of the electric field and ω is the frequency of the laser field. The

atoms interact with the electric field through their electric dipole moment µ. The corresponding
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Hamiltonian for a two-level atom interacting with this electric field is

Ĥ = ~ω0|1〉〈1| + µE0 cos(kx)
(

|0〉〈1| + |1〉〈0|
)

(

eiωt + e−iωt
)

. (2.2)

Transforming into an interaction picture that rotates with the frequency of the laser field, the

corresponding Hamiltonian in the interaction picture H̃ is

H̃ = ~∆|1〉〈1| + µE0 cos(kx)
(

|0〉〈1|e−iωt + |1〉〈0|eiωt
)

(

e−iωt + eiωt
)

≃ ~∆|1〉〈1| + µE0 cos(kx)
(

|0〉〈1| + |1〉〈0|
)

(2.3)

where ∆ = ω0 − ω, and we have made the rotating wave approximation by dropping the rapidly-

oscillating terms of frequency ≃ 2ω. This approximation is justified since, for optical frequencies

∼ 1015 Hz, these terms average to zero rapidly compared to their stationary counterparts.

If |~∆| ∼ |µE0|, the atom may absorb photons from the laser field, and then spontaneously

emit them. Such dissipative dynamics can be suppressed by working in the regime where |~∆| ≫

|µE0|, which causes the atom to essentially remain in its ground state. Additionally, this regime

allows us to treat the dipole term perturbatively since, by construction, it is much smaller in

magnitude than ~∆. Perturbation theory gives the following second order correction to the ground

state energy:

ε
(2)
0 (x) = −µ

2E2
0

~∆
cos2(kx)

≡ V0 cos2(kx) (2.4)

This is known as the alternating current (AC) Stark shift. From this energetic correction, we see

that the atom experiences a spatially periodic potential through its interaction with the oscillating

electric component of the standing wave. It is through this potential that the atom becomes

confined to sites on the optical lattice. For ω > ω0, i.e. ‘blue-detuning’, the atoms experience a

potential minimum whenever cos2(kx) = 0. Alternatively, when ω < ω0, i.e. ‘red-detuning’, the

atoms experience a minimum whenever cos2(kx) = 1. Since the atoms will localize at the potential

minima, blue detuning localizes the atoms at the field minima, while red detuning localizes atoms

at the field maxima.
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2.1.2 The Bose-Hubbard model

In recent experiments, the relative minima of individual lattice sites can be shifted up or

down in energy with respect to one another. We can include this effect in our model by adding a

site-dependent energy term ǫ(x) to the Hamiltonian, which defines the relative local minima of the

lattice. Using the AC-Stark shift result from Section 2.1.1, the corresponding Hamiltonian for a

two-level atom trapped in a three-dimensional optical lattice can be written as

H̃ =
p̂2

2m
+ V0

(

cos2(kx) + cos2(ky) + cos2(kz)
)

+ ǫ(x). (2.5)

where p̂ is the kinematic momentum, m is the mass, and we have assumed the the frequency

and intensity of all of the counterpropagating laser beams are identical for simplicity. If ǫ(x) is

neglected, then the periodicity of V0 cos2(kx) implies that the complete set of wave functions that

are eigenmodes of the Hamiltonian are Bloch functions. These Bloch functions can be expressed

as a site-localized set of orthonormal basis states known as Wanier states. Assuming that all of

the atoms are in the lowest band, and that their kinetic energies are much smaller than the second

band excitation energies, we can expand the wave function solutions in the lowest band Wanier

states alone. In a second quantized description, the field operators are then

ψ̂(x) =
∑

j

âjw0(x − xj) (2.6)

where âj annihilates an atom on site j and w0(x−xj) is the lowest band Wanier state centered on

site j.

Assuming that the ultracold atoms interact with each other through an s-wave scattering

contact potential, the atom-atom interaction can be written as [31]

U(xj ,xk) ≃
4π~2as

m
δ(xj − xk) (2.7)

where as is the scattering length and xj and xk are the positions of atoms indexed by j and k.

The second quantized Hamiltonian for the many atom system [32] is then
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Ĥ =

∫

dx ψ̂†(x)

(

p̂2

2m
+ V0

(

cos2(kx) + cos2(ky) + cos2(kz)
)

+ ǫ(x)

)

ψ̂(x)

+
2π~2as

m

∫

dxψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x)

=
∑

j,k

â†j âk

∫

dx w0(x − xj)

(

p2

2m
+ V0

(

cos2(kx) + cos2(ky) + cos2(kz)
)

+ ǫ(x)

)

w0(x − xk)

+
2π~2as

m

∑

jklm

â†j â
†
kâlâm

∫

dx w0(x − xj)w0(x − xk)w0(x − xl)w0(x − xm).

(2.8)

Restricting ourselves to the tight-binding regime, where the magnitude of the lattice potential

guarantees that a non-negligible overlap of Wanier states occurs for nearest neighbor lattice sites

alone, we get

Ĥ =
∑

j

(

~ωj â
†
j âj +

Uj

2
â†j â

†
j âj âj

)

−
∑

〈j,k〉

Jjkâ
†
j âk (2.9)

where

~ωj =

∫

dx w(x − xj)
2ǫ(x), (2.10)

Uj =
4π~2as

m

∫

dx w0(x − xj)
4, (2.11)

and

Jjk = −
∫

dx w0(x − xj)

(−~2

2m
∇2 + V0

(

cos2(kx) + cos2(ky) + cos2(kz)
)

)

w0(x − xk). (2.12)

The sum 〈j, k〉 is exclusively taken over nearest neighboring sites.

Equation (2.9) is known as the the Bose-Hubbard model. The parameters ~ωj and Uj are

the zero point and on-site interaction energies for lattice site j, and Jjk is the tunneling energy

between sites j and k. In this thesis, we will make great use of this Hamiltonian in a variety of open

quantum system settings. The definition of an ‘open quantum system’, as well as the mathematical

apparatus needed to describe them, is provided in detail in the following chapter.

2.2 Photons in coupled optical cavities

An alternative system to atoms in optical lattices is coupled arrays of high quality optical

cavities. In this section, we provide a classical field analysis of such coupled etalons. Quantization
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of the cavity mode field is straightforward [33, 34, 35] and implemented afterwords. We show that

this simple system is all that’s needed to introduce the cavity parameters that will be discussed

later in this thesis.

We then consider the effect of inserting a material with a Kerr nonlinearity into the cavity.

This material generates an effective nonlinear photon-photon interaction. This interaction term, in

a second-quantized representation, is formally equivalent to the on-site interaction energy of two

atoms trapped on the same lattice site. With the inclusion of the Kerr-type material in the cavity,

the resulting second quantized form of this cavity QED system Hamiltonian is another realization

of the Bose-Hubbard Hamiltonian.

2.2.1 Simple cavity theory

We first consider a single etalon cavity comprised of two parallel mirrors driven by electro-

magnetic plane waves. Figure 2.4(a) depicts this scenario where an incident wave E
(+)
i approaches

the etalon from the left side. For simplicity, we assume that the mirrors have the same transmission

and reflection coefficients (t, r). The field inside the cavity as a function of frequency can be deter-

mined from the continuity of the boundary conditions as the field propagates through the etalon

Ei
H+L

Ec
H+L

Ec
H-L

Eo
H+L

Ha L
t ,r t ,r

Ωax

G

HbL

Ω0 2Ω0 3Ω0

Ω

Ic�Ii

Figure 2.4: (a) An illustration of light incident, inside and leaving an etalon with reflection and
transmission coefficients r and t. (b) The generic response of an etalon driven by a laser with
frequency ω and fundamental cavity mode ω0. The axial mode spacing ωax and linewidth Γ are
labeled.
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system:

E(+)
c = itE

(+)
i + rE(−)

c ei ϕ
2 (2.13)

E(−)
c = rE(+)

c ei ϕ
2 (2.14)

E(+)
o = itE(+)

c ei ϕ
2 (2.15)

where the sign designates the field traveling in the positive or negative direction for the incident

field Ei, the cavity field Ec, and the field transmitted through the cavity Eo. The reflection and

transmission coefficients r and t are constrained by |r|2 + |t|2 = R + T = 1, where R and T

are the reflectance and transmittance of the cavity, and ϕ is the round trip phase shift that the

electromagnetic wave acquires in the cavity. From these expressions, the ratio of the intensity of

the field inside the cavity to the input intensity is

I
(+)
c

I
(+)
i

=
T

1 − 2Rcos(ϕ) +R2

=

T
(1−R)2

1 + 4R
(1−R)2

sin2
(ϕ

2

) . (2.16)

This function is plotted in Figure 2.4(b), where we have labeled the axial mode spacing by ωax and

the cavity bandwidth (or linewidth) by Γ. From equation (2.16), the axial mode spacing (or free

spectral range) can be determined:

ϕ = 2π = k · l = ωax
λ0

c
(2.17)

where l = λ0 is the round trip path length, or fundamental wavelength of the cavity and c is the

speed of light. The cavity linewidth, which is the full-width half maximum (FWHM) of the periodic

peaks of equation (2.16), can be obtained by asserting

4R

(1 −R)2
sin2

(ϕ

2

)

= 1. (2.18)

Here ϕ corresponds to the half width half maximum (HWHM) of the linewidth. Assuming that

R ≃ 1, it follows from equation (2.18) that

ϕ = k · λ0 = ωHWHM
λ0

c
= π

2ωHWHM

ωax
≡ π

Γ

ωax
≃ 1 −R√

R
(2.19)
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or simply

Γ =
ωax

F (2.20)

where

F ≡ π
√
R

1 −R
(2.21)

is the finesse of the cavity. Since T = 1 − R is the fractional power loss in the cavity, the cavity

linewidth is directly related to the cavity decay rate. Since R→ 1, implies F → ∞, more reflective

cavity mirrors lead to a higher value of finesse. For this reason, finesse is a common cavity parameter

used to characterize how ‘good’ a cavity is. In modern cavity QED experiments, finesse values

greater than 4 × 105 have been achieved [36, 37]. An alternative way to quantify the quality of a

cavity is through its quality factor, or Q factor. The Q factor of a cavity is defined as the ratio of

the cavity driving frequency over the cavity linewidth. Thus

F =
ωax

ω0
Q (2.22)

where ω0 is the frequency of the driven cavity mode.

For high finesse cavities, the axial modes are well-separated, and a single mode description

of the cavity field is possible. The corresponding Hamiltonian for a particular cavity mode with

energy ω1 can be expressed in the following second quantized form:

Ĥcav = ~ω1â
†â. (2.23)

The cavity field amplitude for this mode is

Ê(z) = εω1

(

â+ â†
)

sin (k1z) (2.24)

where z is the direction of propagation of the field, k1 = ω1/c, and

εω1 =

√

~ω1

ǫ0V
(2.25)

is the electric field per photon in the cavity, where ǫ0 is the permittivity of free space and V is the

effective mode volume [34].
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The mirrors that make up the cavity in practice are typically spherical mirrors as illustrated in

Figure 2.5. The cavity mode within the Rayleigh range and under the paraxial approximation [38]

is a Gaussian standing wave of the form

ψ(x, y, z) = sin(k1z)e
−(x2+y2)/w2

0 (2.26)

where the standing wave is in the z-direction, and w0 is the cavity mode waist [38]. The cavity

waist, depicted in Figure 2.5, is an important cavity parameter as it restricts the effective mode

volume of the cavity. As the effective mode volume is reduced, the electric field per photon is

enhanced. Since the atom-cavity field coupling is proportional to the electric field, smaller cavity

mode volumes lead to greater atom-field coupling strengths.

2w0

Figure 2.5: An illustration of a driven etalon cavity with characteristic mode waist w0.

2.2.2 Classical treatment of cavity input-output theory

Here we relate the classical input-output parameters of a cavity to its quantum mechanical

counterpart. This is achieved by comparing the response of a driven classical oscillator to the

response of a driven cavity mode. This comparison allows us to determine which etalon parameters

correspond to the oscillator damping and detuning. As we see, the etalon result in this form agrees

exactly with the quantum input-output theory of Gardiner and Collett [39]. This is not surprising

since the quantized cavity mode is merely an oscillator itself.

To start with, consider a classically driven damped harmonic oscillator whose equation of

motion is

d2X1

dt2
+ β

dX1

dt
+ ω2

1X1 = Ae−iωt (2.27)
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where X1 is the position of the oscillator, β is the damping coefficient, ω1 is the oscillator frequency,

A is the driving strength, and ω is the driving frequency. A particular solution to equation (2.27)

is

X1(t) = αe−iωt (2.28)

with

α =
A

(ω1 − ω)(ω1 + ω) − iβω1
. (2.29)

For near resonant driving, ω1 ≃ ω, this reduces to

α ≃ A

−δ12ω1 − iβω1
(2.30)

where δ1 = ω − ω1. The ratio of the oscillator excitation to the drive is then,

X1(t)

Ae−iωt
=

i 1
2ω1

β
2 − iδ1

. (2.31)

We now use these results for a mechanical oscillator to assist with understanding the analo-

gous optical system. Consider a near-perfect etalon cavity whose mirrors have different reflection

coefficients r1 = 1 − ǫ1 and r2 = 1 − ǫ2 where 0 < ǫ1,2 ≪ 1. Performing the same analysis as in

Section 2.2.1, we find

E
(+)
c

E
(+)
i

= i
t1

1 − r1r2eiϕ
. (2.32)

where ω is the frequency of the driving laser, ωax is the axial mode spacing of of the cavity and

δ = ω − ω1 is the detuning of the driving laser from the cavity mode ω1. If the driving field is

near-resonant to the Nth mode of the cavity, then

eiϕ = ei 2πω
ωax = ei 2π

ωax
(Nωax+δ) = ei 2π

ωax
δ ≃ 1 + i

2π

ωax
δ. (2.33)

Since the transmission coefficient t1 =
√

1 − r21 ≃
√

2ǫ1, taking equation (2.32) to first order in φ,

ǫ1, and ǫ2, implies

E
(+)
c

E
(+)
i

≃ i

√

ǫ1
π ωax

ωax

2π (ǫ1 + ǫ2) − iδ

= i

√
γ1
√
ωax

1
2 (γ1 + γ2) − iδ

. (2.34)
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Since the cavity decay rate is equal to the cavity linewidth, equation (2.20) implies γx = ǫxωax/π.

This is the decay rate out of mirror x. Comparing the denominators of this expression to that

of equation (2.31) we see that the oscillator decay rate β corresponds to the etalon decay rate

γ1 + γ2 [35].

2.2.3 Cascaded optical cavities

When two cavities are coupled together, as depicted in Figure 2.6, a photon in one cavity

can tunnel to the other. Here we characterize that tunneling rate by performing the same classical

analysis above. We call this coupling parameter J because it is analogous to the hopping parameter

in the Bose-Hubbard Hamiltonian.

Figure 2.6: Illustration of a driven, coupled etalon system.

Here we consider two coupled oscillators with different damping rates and frequencies, where

oscillator 1 is driven at frequency ω and coupled to oscillator 2. The equations of motion for the

coupled system are

d2X1

dt2
+ β1

dX1

dt
+ ω2

1X1 = Ae−iωt + ω1JX2 (2.35)

d2X2

dt2
+ β2

dX2

dt
+ ω2

2X2 = ω2JX1. (2.36)

Particular solutions to these equations are X1(t) = α1e
−iωt and X2(t) = α2e

−iωt. Substituting

these solutions into the equations of motion yields for the excitation amplitude of oscillator 2

α2 =
AJω1

[(ω1 − ω)(ω1 + ω) − iβ1ω] [(ω2 − ω)(ω2 + ω) − iβ2ω] − ω1ω2J2

≃
−A J

4ω2

(β1

2 − iδ1)(
β2

2 − iδ2) + J2

4

(2.37)

Here we have assumed that δ1 ≪ ω, and δ2 ≪ ω.
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The ratio of the excitation of oscillator 2 to the drive of oscillator 1 is then

X2(t)

Ae−iωt
=

− J
4ω2

(β1

2 − iδ1)(
β2

2 − iδ2) + J2

4

. (2.38)

We now consider two coupled etalons as shown in Figure 2.7. Matching boundary conditions

for this system yields

E
(+)
1 = it1E

(+)
i + r1E

(−)
1 ei

ϕ1
2 (2.39)

E
(−)
1 = itE

(−)
2 ei

ϕ2
2 + rE

(+)
1 ei

ϕ1
2 (2.40)

E
(+)
2 = itE

(+)
1 ei

ϕ1
2 + rE

(−)
2 ei

ϕ2
2 (2.41)

E
(−)
2 = r2E

(+)
2 ei

ϕ2
2 (2.42)

E(+)
o = it2E

(+)
2 ei

ϕ2
2 (2.43)

where t1 (r1), t (r), and t2 (r2) are the transmission (reflection) coefficients for the left, center, and

right mirrors respectively, Ei, E1, E2, and Eo are the electric fields that are incident on the left

cavity mirror, inside cavity 1, inside cavity 2, and exiting cavity 2 from the right. The corresponding

sign determines the direction of propagation, and φ1 and φ2 are the round trip phases in cavity 1

and 2. Here, we get

E
(+)
2

E
(+)
i

=
t1te

iϕ1

(1 − rr1eiϕ1)(1 − rr2eiϕ2) + t2r1r2ei(ϕ1+ϕ2)
(2.44)

Since equation (2.38) is second order in δ and β, we take equation (2.44) to second order in δ1,2

and ǫ1,2. As we demonstrate here, second order in ǫ1,2 implies first order in ǫ.

Ei
H+L

E1
H+L

E1
H-L

t1,r1 t ,r
E2
H+L

E2
H-L

Eo
H+L

t2,r2

Figure 2.7: Illustration of a driven, coupled etalon system. The electric fields propagating in both
directions that are incident on the system, in cavity 1, in cavity 2 and leaving the system labeled
as well as the transmission and reflection coefficients for all three mirrors.
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Ei
H+L

Ei
H-L

Em
H+L

Em
H-L

Eo
H+L

Eo
H-L

n1 n2 n1

HaL t
�

1,r
�
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�

2,r
�

2
HbL t ,r

Ei
H+L

Ei
H-L
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H+L

Eo
H-L
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Figure 2.8: (a) Illustration of a finite width dielectric boundary with index of refraction n2, and
transmission and reflection coefficients t̃1, r̃1, and t̃2, r̃2 four boundaries 1 and 2 respectively. All
propagating fields are labeled, and it is assumed that n2 > n1. (b) The infinitely-thin counterpart
to the finite width dielectric with effective transmission and reflection coefficients t and r.

The infinitely-thin central barrier in Figure 2.7 with coefficients r and t is a schematic for a

dielectric barrier with a finite width (Figure 2.8(a)). The effective coefficients r and t actually cor-

respond to the net reflection and transmission through this barrier (Figure 2.8(b)). Here we derive

the effective transmission and reflection coefficients by solving the continuity boundary conditions

in the three regions of space depicted in Figure 2.8(a), and map them onto the infinitely thin sys-

tem reflection and transmission coefficients depicted in Figure 2.8(b). The incident electromagnetic

wave passes through a medium with index of refraction n2 > n1 with entry and exit coefficients of

reflection and transmission (r̃1, t̃1) and (r̃2, t̃2).

The boundary conditions for the finite width boundary with n2 > n1 are

E
(−)
i = r̃1E

(+)
i + it̃1e

i ϕ
2E(−)

m (2.45)

E(+)
m = t̃1E

(+)
i − ir̃1e

i ϕ
2E(−)

m (2.46)

E(−)
m = t̃2E

(−)
o − ir̃2e

i ϕ
2E(+)

m (2.47)

E(+)
o = it̃2e

i ϕ
2E(+)

m + r̃2E
(−)
o , (2.48)

where Ei, Em, and Eo are the incident, intra-medium and outgoing fields in regions traveling in the

positive or negative directions, (r̃1, t̃1) and (r̃2, t̃2) are the reflection and transmission coefficients

of the left and right sides of the barrier, and ϕ is the round-trip phase shift that the light wave

acquires from traveling inside the barrier.
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We guarantee that no field is stored in the medium by asserting φ = π. Eliminating the

intra-medium field in terms of the incident and outgoing field yields

E
(−)
i =

r̃1 + r̃2
1 + r̃1r̃2

E
(+)
i ≡ rE

(+)
i (2.49)

E(+)
o = −i t̃1t̃2

1 + r̃1r̃2
E

(+)
i ≡ itE

(+)
i . (2.50)

From equation (2.50), given t ≃ t̃1t̃2 we conclude that second order in t̃1, t̃2 implies first order in t.

Taking equation (2.44) to second order in δ1,2, second order in ǫ1,2, and first order in ǫ,

E
(+)
2

E
(−)
i

≃ t1te
iϕ1

2ǫ+ (ǫ1 − iϕ1)(ǫ2 − iϕ2)

=

√
γ1t
√

ωax1ωax2
(2π)2

√

ωax2
2π

(γ1

2 − iδ1)(
γ2

2 − iδ2) + t2
ωax1ωax2

(2π)2

≡
√
γ1t
√

ωax2
2π

J
2

(γ1

2 − iδ1)(
γ2

2 − iδ2) + J2

4

(2.51)

where comparison with equation (2.38) implies

J =
t
√
ωax1ωax2

π
≃

√
2ǫ
√
ωax1ωax2

π
. (2.52)

This is our classical estimate for the second quantized photon tunneling rate through two coupled

cavities. This rate is Hermitian: the rate of tunneling out of cavity 1 into cavity 2 is equal to the

rate of tunneling out of cavity 2 into cavity 1, and the phase shifts are conjugate. The corresponding

second quantized coupled cavity interaction Hamiltonian term is then simply given by

~J(â†1â2 + â1â
†
2). (2.53)

Utilizing equation (2.20), we see that for two identical coupled cavities

Γ ≃ J (2.54)

where Γ is the individual cavity linewidth.

For the etalon cavity system modeled here J is fixed and unalterable. In alternative cavity

systems discussed in later chapters, such as toroidal microcavities coupled with a tapered fiber

via evanescent waves, and photonic band gap nanocavities, the value of J becomes potentially

modifiable, allowing a range of parameter values to be explored.
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2.2.4 Effect of a nonlinear media in a cavity

If a nonlinear medium is inserted into the cavity, the cavity, in general, experiences a shift of

the mode frequency, and the light inside the cavity picks up a nonlinear phase shift that depends

on the mode intensity. Here we derive the second quantized description of the cavity mode field

when such a medium is present.

Consider a classical nonlinear material with first and third order contributions to the polar-

ization

P = ǫ0

(

χ(1) + |E|2χ(3)
)

E. (2.55)

Here E is the electric field vector with magnitude |E|. The total energy generated from the inter-

action of the medium with the light field inside the cavity would then be

Hint = V P ·E

= ǫ0V
(

χ(1)|E|2 + χ(3)|E|4
)

(2.56)

where we have assumed that the nonlinear material fills the cavity mode volume for simplicity.

Since the electric field amplitude in the cavity is defined by equation (2.24), Ĥint generates terms in

the cavity Hamiltonian proportional to â†â and â†â†ââ [35]. A lossless χ(1) medium, induces a shift

of the cavity resonance, while a lossless χ(3) medium causes an effective photon-photon nonlinear

interaction exactly of the collisional type given in the Bose-Hubbard form. In Section 2.3, we will

derive in detail these terms in a second quantized framework. For now, we acknowledge that the

effect of including a χ(3) medium in the cavity can yield the following Hamiltonian term

U

2
â†â†ââ, (2.57)

where U is determined by properties of the medium and the cavity geometry.
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2.2.5 The effective system Hamiltonian

Putting everything from this section together, we obtain the following Hamiltonian for N

coupled, nonlinear cavities:

ĤS =
N
∑

j

~ωj â
†
j âj +

Uj

2
â†j â

†
j âj âj +

∑

〈j,k〉

~Jjk

(

â†j âk + âj â
†
k

)

, (2.58)

which is, again, the Bose-Hubbard model. The qualitative difference here being the operators âj

annihilate photons in a mode defined by the cavity boundaries. Here Uj and ~Jjk are the interaction

energy per photon pair, and the photon hopping matrix element respectively.

2.2.6 Cavity QED experiments

Recently, the field of cavity QED has been spurred on by a growing interest in experiments

involving toroidal microresonators coupled to atoms [40, 41, 42]. The toroidal microcavity system

has a few advantages over standard etalon cavities. First, the effective mode volume of the mi-

crocavity can be ∼ 50 µm3, which is ∼ 500 times smaller than its etalon counterpart. This leads

to an increase in the atom-field coupling strength by a factor ∼ 20. Second, it is the whispering

gallery mode of the cavity that is excited. This can lead to extraordinarily high Q-factors, which

have exceeded 1010. Finally, improved development techniques have made the fabrication of many

identical toroidal microcavities relatively easy compared to the construction of just one etalon.

Obviously cascaded identical, multi-layer dielectric etalon cavities are even more difficult to make.

Another contemporary avenue of cavity QED research involves photonic crystal nanocavi-

ties [43]. These cavities are constructed in semiconductor slabs where etching or lithography are

used to isolate their relative location and size. The finesse of these cavities is not as impressive as

that of the toroidal cavities. Nanocavities, however, can have mode volumes ∼ 0.03 µm3. These

nanocavities are also easy to consistently fabricate. It is even possible to enhance the χ(3) char-

acteristics of the cavities by doping them with quantum dots [44], or possibly electromagnetically-

induced transparency (EIT) atoms, which have been successfully embedded into semiconductor

crystals while maintaining their EIT characteristics [45, 46].
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2.3 Electromagnetically-induced transparency and the giant Kerr nonlin-

earity

There is a major issue with bulk nonlinear media: the third order χ(3) nonlinear response is

generally dwarfed by the first order χ(1) linear response. If the χ(1) response was purely real, this

would not be such a problem, since the term would merely shift the cavity’s resonant mode. In

practice, the imaginary component of χ(1) dominates the χ(3) nonlinearity [47], which leads to loss

and absorption. As an alternative to obtaining a Kerr nonlinearity from bulk material. We examine

systems that acquire their nonlinear response using electromagnetically-induced transparency (EIT)

atoms and also quantum dots.

In the 1990s, the pioneering work of researchers such as Harris and Imamoğlu led to an

extensive understanding of EIT [48, 49, 50, 51]. One of the remarkable properties of the EIT

system, is that a χ(3) ≫ χ(1) is obtainable. Later, Schmidt and Imamoğlu [47] demonstrated that a

slightly more exotic atomic system can yield a ‘giant’ Kerr nonlinearity, where χ(3) is predicted to be

nine orders of magnitude greater than the original EIT scheme while maintaining a negligible χ(1)

response. This theoretical effort was instrumental to the success of the slow light experiments [52].

This work was later extended to cavity QED systems [53, 54, 55, 56, 57], where a ‘photon blockade’

effect was predicted. Roughly ten years later, in an experiment using a high finesse multi-layer

dielectric cavity, the photon blockade effect was realized [37]. In this section, we review the physics

behind EIT and the giant Kerr nonlinearity.

2.3.1 EIT Kerr nonlinearity

EIT involves an ensemble of three-level atoms prepared in their ground state. A possible EIT

level structure, known as the lambda structure, is illustrated in Figure 2.9 with states |1〉 (ground),

|2〉, and |3〉. The transitions |1〉 → |3〉 and |2〉 → |3〉 are dipole allowed transitions while the

|1〉 → |2〉 transition is forbidden. If a probe laser incident on the otherwise undisturbed ensemble is

resonant with the |1〉 → |3〉 transition, the light is efficiently absorbed and scattered by the atomic



26

ΩpΩc

È1\
È2\

È3\

Figure 2.9: Schematic of a three-level EIT atom with |1〉 → |3〉 and |2〉 → |3〉 dipole-allowed
transitions with corresponding frequencies ωp and ωc.

sample. However, if a coupling laser resonant with the |2〉 → |3〉 transition is also applied, then a

quantum mechanical interference phenomenon can lead to the probe laser passing straight through

with minimal absorption i.e. with virtually Im
[

χ(1)
]

= 0. In other words, the coupling laser makes

the once opaque sample transparent to the probe laser. This general behavior is the fundamental

concept behind EIT.

For the system described above, the Hamiltonian for the doubly-driven three-level system

under the rotating wave approximation is

Ĥ = ~
[

ω21σ̂22 + ω31σ̂33 + g
(

σ̂13e
iωpt + σ̂31e

−iωpt
)

+ Ωc

(

σ̂23e
iωct + σ̂32e

−iωct
)]

(2.59)

where σ̂nm = |n〉〈m|, ωnm = ωn − ωm is the frequency difference between states |n〉 and |m〉, g is

twice the Rabi frequency (taken to be real) of the probe field with frequency ωp, and Ωc (also taken

to be real) is twice the Rabi frequency of the coupling field with frequency ωc.

Transforming to an interaction picture that rotates with the drive frequencies ωp and ωc, a

transformation defined by the unitary operator

Û(t) = e−i(ωpσ̂33+(ωp−ωc)σ̂22)t, (2.60)

yields

H̃ = ~ [(ω21 − ωp + ωc)σ̂22 + (ω31 − ωp)σ̂33 + g (σ̂13 + σ̂31) + Ωc (σ̂23 + σ̂32)] . (2.61)
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Letting δ = ω31 − ωp and taking ωc to be resonant with the |2〉 → |3〉 transition leads to

H̃ = ~ [δσ̂22 + δσ̂33 + g (σ̂13 + σ̂31) + Ωc (σ̂23 + σ̂32)] . (2.62)

In order to correctly include dissipation from level |3〉 to levels |2〉 and |1〉, we need to

construct a quantum master equation for this system. This formalism is described in detail in the

next chapter. Here we ascribe ρ̂S to be the reduced density operator of the three-level system, and

then the inclusion of decay from state |3〉 to states |2〉 and |1〉 gives rise to the following master

equation:

dρ̂S

dt
= − i

~
[H̃, ρ̂S ] − γ1

2
(σ̂31σ̂13ρ̂S + ρ̂S σ̂31σ̂13 − 2σ̂13ρ̂S σ̂31)

−γ2

2
(σ̂32σ̂23ρ̂S + ρ̂S σ̂32σ̂23 − 2σ̂23ρ̂S σ̂32)

= − i

~
[Ĥ, ρ̂S ] − γ (σ̂33ρ̂S + ρ̂S σ̂33) + γ1σ̂13ρ̂S σ̂31 + γ2σ̂23ρ̂S σ̂32, (2.63)

where γ1, γ2 are the decay rates from |3〉 → |1〉, |2〉 respectively, and γ = (γ1 + γ2)/2.

As discussed in references [58, 59, 60, 61], this master equation can be unraveled into wave

functions (or trajectories) which evolve under an effective non-Hermitian Hamiltonian, undergoing

‘quantum jumps’ according to the Monte Carlo wave function method. Such trajectories can be

averaged over to reconstruct the proper evolution of the master equation. The non-Hermitian

Hamiltonian for this particular EIT case would be

Ĥeff = ~ [δσ̂22 + (δ − iγ)σ̂33 + g (σ̂13 + σ̂31) + Ωc (σ̂23 + σ̂32)] (2.64)

In the perturbative limit, where Ωc ≫ g, a system that is initially in its ground state, for the

most part, does not undergo quantum jumps. As a result, in this limit, we can use the effective

non-Hermitian Hamiltonian to extract the relevant information to explain EIT [48]. As discussed in

the next chapter, this is a special case—dissipation cannot universally be introduced into quantum

mechanical situations by compromising the Hermiticity of the Hamiltonian. The validity here relies

on the property that any particular trajectory has a low probability for undergoing quantum jumps.

Assuming that the system is in its ground state, and that Ωc ≫ g, we look for steady-state
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solutions to the Schrödinger equation involving Ĥeff :

i~
∂

∂t
|ψ〉 = Ĥeff |ψ〉. (2.65)

Since |ψ〉 is going to remain in its ground state with near-unit probability, we seek out solutions of

the form

|ψ〉 ≃ |1〉 + c2|2〉 + c3|3〉. (2.66)

In steady-state

0 = δc2 + Ωcc3

0 = (δ − iγ)c3 + g + Ωcc2, (2.67)

which implies

c2 =
gΩc

δ2 − Ω2
c − iγδ

, c3 = − gδ

δ2 − Ω2
c − iγδ

. (2.68)

Note that the normalization condition on |ψ〉 gives 1 + c22 + c23 ≃ 1, asserting that |c2,3| ≪ 1. This

constraint is consistent with the approximation made above, namely |g|/|Ωc| ≪ 1. Once |ψ〉 is

known, the density matrix for a single atom in the Schrödinger picture can be constructed,

ρ̂(t) = Û(t)|ψ〉〈ψ|Û †(t) (2.69)

where Û(t) is defined by equation (2.60). The polarization P(t) can be expressed as

P(t) =
N

V
Tr{ρ̂(t) (µ13σ̂13 + µ23σ̂23 + H.c)} = ǫ0χ

(1)E(t) (2.70)

where N is the number of atoms in the volume V , and ~g = Ep ·µ13 and ~Ωc = Ec ·µ23. Keeping

track of the terms that rotate with e−iωpt implies

χ(1) = −N
V

~g2

ǫ0|E|2
δ

δ2 − Ω2
c − iγδ

. (2.71)

The real (blue, solid) and imaginary (red, dashed) parts of χ(1) are plotted in Figure 2.10, where

it is seen that both go to zero as the detuning δ → 0.
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Figure 2.10: The real (solid blue) and imaginary (dashed red) χ(1) responses of an EIT atom as a
function of probe laser detuning in the presence of a resonant coupling drive.

For EIT systems in the δ → 0 limit, the probe laser experiences a maximum χ(3) phase

shift [48] of the form

χ(3)(δ → 0) ∝ N

V

2g

3ǫ0~3|E|2
1

Ω2
. (2.72)

Thus, one can use EIT atoms to generate χ(3) nonlinear media with a vanishing χ(1) at the resonant

driving frequency.

2.3.2 Giant EIT-like Kerr nonlinearity

In 1996 Schmidt and Imamoğlu [47] suggested that much larger χ(3) nonlinearities can be

achieved by adding an additional atomic level to the EIT scheme. This four-level system, depicted

in Figure 2.11(a), still has a virtually zero χ(1) component, allowing photons to experience a large

effective Kerr interaction with minimal energetic shift and loss.

Since we are ultimately concerned with a nonlinear cavity, we derive this theory for a cavity

containing a single atom. We consider a cavity whose driven mode is detuned from the |1〉 → |3〉

atomic transition by δ. The coupling laser drives the atom in a direction orthogonal to the cav-

ity mode as illustrated in Figure 2.11(b), and is resonant with the |2〉 → |3〉 transition. The
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Figure 2.11: (a) The level structure and allowed dipole transitions of a four-level giant Kerr nonlin-
earity scheme. (b) An experimental schematic of the driven four-level system, where the coupling
laser is driven orthogonal to the cavity mode/probe field.

Hamiltonian for this scenario under the rotating wave approximation is

Ĥ = ~
[

(ω0 − δ)â†â+ ω21σ̂22 + ω0σ̂33 + (ω21 + ω0 + ∆)σ̂44 + g13(â
†σ̂13 + âσ̂31)

+ g24(â
†σ̂24 + âσ̂42) + Ωc

(

σ̂32e
−iωct + σ̂23e

iωct
)

]

(2.73)

where ω0− δ is the cavity mode frequency, ω21, ω31 = ω0, and ω42 = ω21 +ω0 +∆ are the frequency

differences between states |1〉 and |2〉, |1〉 and |3〉, and |2〉 and |4〉, and finally, g13, Ωc, and g24 are

twice the Rabi frequencies for the |1〉 → |3〉, |2〉 → |3〉, and |2〉 → |4〉 transitions. Transforming

into an interaction picture with

Û(t) = e−i((ω0−δ)â†â+(ω21−δ)σ̂22+(ω0−δ)σ̂33+(ω21+ω0−2δ)σ̂44) (2.74)

yields

H̃ = ~

[

δσ̂22 + δσ̂33 + (2δ + ∆)σ̂44 + g13(â
†σ̂13 + âσ̂31) + g24(â

†σ̂24 + âσ̂42) + Ωc(σ̂32 + σ̂23)
]

.

(2.75)

Similar to the EIT system described above, this system will be operating in the perturbative regime

g13, g24 ≪ Ωc, and the effects of atomic relaxation can be included in this model by means of the
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effective non Hermitian Hamiltonian

H̃eff = ~

[

δσ̂22 + (δ − iγ3)σ̂33 + (2δ + ∆ − i
γ42

2
)σ̂44 + g13(â

†σ̂13 + âσ̂31)

+ g24(â
†σ̂24 + âσ̂42) + Ωc(σ̂32 + σ̂23)

]

(2.76)

where γ3 = (γ31 + γ32)/2 is the average decay rate out of state |3〉, and γ42 is the decay rate from

state |4〉 to |2〉. Here we look for steady-state solutions of the atom in the n-photon manifold of

the cavity:

|ψ〉n = |n〉|1〉 + c2|n− 1〉|2〉 + c3|n− 1〉|3〉 + c4|n− 2〉|4〉 (2.77)

where, once again, we have asserted that the system approximately remains in the ground state

|n〉|1〉. In steady-state, we get the following system of equations from the Heff Schrödinger equation:

0 = δc2 + Ωcc3 +
√
n− 1 g24c4 (2.78)

0 = (δ − iγ3)c3 +
√
n g13 + Ωcc2 (2.79)

0 = (2δ + ∆ − i
γ24

2
)c4 +

√
n− 1 g24c2, (2.80)

which yields

c2 = −
√
ng13Ωc(i

γ42

2 − 2δ − ∆)

g2
24(n− 1)(iγ3 − δ) + (iγ42

2 − 2δ − ∆) ((iγ3 − δ)δ + Ω2
c)

(2.81)

c3 =

√
ng13Ωc(i

γ42

2 − 2δ − ∆)
(

δ
Ωc

+
g2
24(n−1)

Ωc(i
γ42
2

−2δ−∆)

)

g2
24(n− 1)(iγ3 − δ) + (iγ42

2 − 2δ − ∆) ((iγ3 − δ)δ + Ω2
c)

(2.82)

c4 =

√
n
√
n− 1g13g24Ωc

g2
24(n− 1)(iγ3 − δ) + (iγ42

2 − 2δ − ∆) ((iγ3 − δ)δ + Ω2
c)

(2.83)

Since the time-independent Schrödinger equation determines the eigenenergy E by E|ψ〉 = Ĥ|ψ〉,

the energy for this system in the n-photon manifold is

En ≃ ~
√
ng13c3. (2.84)

In the limit where the detuning δ → 0,

En = ~
g2
13g

2
24

iγ3g2
24(n− 1) + Ω2

c(i
γ42

2 − ∆)
n(n− 1). (2.85)
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Thus,

En|ψ〉n = ~
g2
13g

2
24

iγ3g2
24(n− 1) + Ω2

c(i
γ42

2 − ∆)
n(n− 1)|ψ〉n

= ~
g2
13g

2
24

iγ3g2
24(n− 1) + Ω2

c(i
γ42

2 − ∆)
â†â†ââ|ψ〉n

≡ Ĥχ(3) |ψ〉n (2.86)

where Ĥχ(3) is our effective photon-photon interaction Hamiltonian under the constraint that

|c2|2, |c3|2, |c4|2 ≪ 1. Our assertion that the atom remains effectively in its ground state elimi-

nates the atomic degrees of freedom from the problem. In the limit that the atomic decays are

negligible compared to Ωc and ∆, the validity conditions for this system are

(

g13
Ωc

)2

≪ 1 ,
g24
∆

≤ 1 ,
g2
24

∆Ωc
≤ 1 (2.87)

where we are assuming that the cavity is operating in the few photon regime. Assuming g24 ≪ Ωc,

equation (2.86) implies that the effective Kerr nonlinearity is then

Ĥχ(3) ≃ −~
g2
13g

2
24

Ω2
c∆

â†â†ââ

≡ Uâ†â†ââ. (2.88)

Therefore, for δ = 0 and g2
24 ≪ Ω2

c , this four-level system exhibits a high nonlinear response

with χ(1) = 0. Furthermore,
∣

∣

∣

∣

∣

Re
[

χ(3)
]

Im
[

χ(3)
]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∆

γ42

∣

∣

∣

∣

. (2.89)

For typical alkali atoms, ∆ ∼ 109 rad/sec and γ42 ∼ 107 rad/sec [55]. That is, the nonlinearity is

∼ 100 times the absorption for the system.
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Open Quantum Systems and the Master Equation Formalism

In quantum mechanics, the state of the system |ψ〉 evolves under the Schrödinger equation

i~
∂|ψ〉
∂t

= Ĥ|ψ〉, (3.1)

where the Hermitian Hamiltonian Ĥ describes an isolated (closed) quantum system. The Hermitic-

ity of Ĥ is crucial to the theory of quantum mechanics: It guarantees that the prediction of the

quantum state energies are real, and that |ψ〉 evolves under a unitary transformation with a norm

|ψ〉 that is preserved. Consequently, the dynamical evolution of |ψ〉 under the Schrödinger equation

is completely reversible. That is, Schrödinger’s equation describes the dynamics of dissipation-free,

energy-conserving systems. Trying to incorporate a loss mechanism into quantum mechanics by

compromising the Hermiticity of Ĥ can ultimately lead to a state |ψ〉 whose norm is not preserved.

This could imply that after some time T , the system has zero probability to be in any state. This

outcome indicates that attempting to include damping in a quantum mechanical framework by

constructing a non-Hermitian Hamiltonian is, in general, incomplete. One consistent method of

including dissipative effects into quantum mechanics is to couple the isolated Hermitian quantum

system to a comparably vast reservoir. This approach is known as the quantum master equation

formalism [34, 35, 62], which we derive here. Under the assumptions that the reservoir is in thermal

equilibrium and is very large compared to the system, it is diagonal in its energy basis, and resides in

a steady-state. If this reservoir is weakly-coupled to the small system, the small perturbations that

it experiences via the coupling negligibly affect its thermal equilibrium [63, 64]. As we demonstrate
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below, these simple and reasonable assumptions alone allow us to develop a theory that introduces

dissipative, irreversible behavior into a quantum mechanical framework that is consistent with all

of the fundamental postulates of quantum mechanics.

Since Schrödinger-type evolution is in general incapable of correctly describing dissipative

processes, we derive the master equation from the density matrix representation. This construction

leads to a theory where the trace of the reduced density matrix, and therefore the total probability

of the mixed quantum state, is preserved.

In Section 3.1, we derive the master equation in a quantum optics theoretical framework.

This derivation provides a general discussion of the key approximations that are necessary. The

logical structure of this derivation follows that of reference [62]. In the following section, we discuss

a kinetic theory approach to the master equation. This alternative method yields an all-orders form

of the master equation that illuminates a way to relax major approximations that are commonly

made. In doing so, we enable the formalism to accommodate the parameter regime of ultracold

atom systems. After demonstrating that the two theoretical descriptions are equivalent when the

same approximations are applied, we conclude this chapter by extending our open quantum system

theory to model time-dependent system Hamiltonians.

3.1 The master equation formalism under the Born and Markov approxi-

mations

We start with the full detailed quantum mechanical description of a small system coupled to a

reservoir. We assume that the reservoir is much larger than the system and in thermal equilibrium,

so that it is diagonal in its energy basis and in steady-state. Finally, we assume that the interaction

between the system and reservoir is weak.

The Hamiltonian for the full quantum mechanical system is

Ĥ = ĤS + ĤR + ĤV , (3.2)

where ĤS is the Hamiltonian for the isolated system, ĤR is the Hamiltonian for the isolated reservoir
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and ĤV is the system-reservoir interaction Hamiltonian. The generic interaction ĤV in a second

quantized framework involves the product of a creation operator of the system with an annihilation

operator of one of the many modes of the reservoir plus the Hermitian conjugate term. Here, we

denote the annihilation operator corresponding to the kth reservoir mode as R̂k. The two-time

average correlation functions for each mode k of the reservoir 〈R̂†
k(τ)R̂k(0)〉, and 〈R̂k(τ)R̂

†
k(0)〉

decay on a timescale τc that is determined by the inverse bandwidth of the reservoir spectrum. In

the limit that the reservoir modes form a near-continuum, τc becomes considerably smaller than

the timescale of appreciable evolution of the system, defined here as Tsys.

The corresponding von Neumann equation of motion for the density operator ρ̂ is

dρ̂

dt
= − i

~
[Ĥ, ρ̂]. (3.3)

We transform the equations of motion of ρ̂(t) into the interaction picture, effectively rotating out

the free rapid rotation arising from the free energies of the system and reservoir. Defining the free

Hamiltonian as Ĥ0 = ĤS + ĤR yields the following equation of motion in the interaction picture:

dρ̃

dt
= − i

~
[H̃V (t), ρ̃] (3.4)

where

ρ̃ = e
i
~
Ĥ0tρ̂e−

i
~
Ĥ0t, (3.5)

and

H̃V (t) = e
i
~
Ĥ0tĤV e−

i
~
Ĥ0t. (3.6)

If the interaction HV is sufficiently weak, then the evolution of ρ̃S(t) is slow compared to its

Schrödinger picture counterpart. Under this condition, we can approximate the time derivative of

ρ̃S as

dρ̃

dt
≃ ρ̃(t+ ∆t) − ρ̃(t)

∆t
≡ ∆ρ̃

∆t
. (3.7)

where τc ≪ ∆t ≪ Tsys. This is known as coarse-graining, where the microscopic evolution on

the timescale τc is averaged over. Coarse-graining the equations of motion simplifies the system
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dynamics, yielding an analytic open quantum system model. For this reason, we construct the

equations of motion for the coarse-grained density matrix.

We begin the derivation of the coarse-grained equations of motion by integrating equa-

tion (3.3), and iterating to yield the first two terms of the Dyson expansion. Since ĤV is weak, it

is generally sufficient to truncate the expansion at second order,

∆ρ̃(t) ≃ − i

~

∫ t+∆t

t
dt1[H̃V (t1), ρ̃(t)] −

1

~2

∫ t+∆t

t
dt1

∫ t1

t
dt2

[

H̃V (t1),
[

H̃V (t2), ρ̃(t)
]

]

(3.8)

where ∆ρ̃(t) ≡ ρ̃(t+ ∆t)− ρ̃(t). This weak-coupling approximation is known as the Born approxi-

mation.

It should be noted that we are typically interested in the dynamics of the small system only.

Consequently, we are concerned with observables that are solely functions of system variables.

This simplifies the calculation immensely. Consider the expectation value of any particular system

observable Θ̂S. Assuming that we have the solution for the full density matrix ρ̂,

〈Θ̂S〉 = TrSR

{

Θ̂S ρ̂
}

(3.9)

= TrS

{

TrR

{

Θ̂S ρ̂
}

}

(3.10)

where the trace is taken over the variables of the system and reservoir. Since Θ̂S is not a function

of the reservoir degrees of freedom,

〈Θ̂S〉 = TrS

{

Θ̂STrR {ρ̂}
}

(3.11)

= TrS

{

Θ̂S ρ̂S

}

(3.12)

where ρ̂S ≡ TrR{ρ̂} is known as the reduced density matrix of the system. Tracing over the

reservoir degrees of freedom of equation (3.3), yields the equation of motion for ρ̂S . This equation

of motion is a function of the system degrees of freedom alone, greatly reducing the complexity of

the problem.

We assume the reservoir and system are initially uncorrelated. The reservoir’s interaction

with the system induces correlations as time evolves. However, these correlations decay on a
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timescale of τc ≪ ∆t. Consequently, for resolving times ∼ ∆t, the reservoir’s reduced density

operator effectively remains independent of the system evolution albeit coupled to it. Thus, for

the coarse-grained equations of motion, the density operator can be approximately factorized at all

times as

ρ̃(t) ≃ ρ̃S(t) ⊗ ρ̃R(t). (3.13)

where ρ̃R = TrS{ρ̃} is the reduced density operator for the reservoir. This is known as the decorel-

lation assumption and is equivalent to assuming that the system and reservoir degrees of freedom

do not become entangled. The assumptions that the reservoir is vast, in thermal equilibrium, and

weakly-coupled to the system, also imply that it approximately remains in its initial state, despite

the system-reservoir interaction; i.e.

ρ̃(t) ≃ ρ̃S(t) ⊗ ρ̃R(0). (3.14)

Tracing over the reservoir degrees of freedom of equation (3.8) and changing the variable of

integration from t2 → t1 − τ yields

∆ρ̃S(t) ≃ − 1

~2

∫ t+∆t

t
dt1

∫ t1−t

0
dτTrR

{[

H̃V (t1),
[

H̃V (t1 − τ), ρ̃S(t)ρ̃R(0)
]

]}

. (3.15)

The trace of the single commutator term in equation (3.8) is equal to zero due to the fact that ρ̂R

is diagonal and that H̃V is proportional to R̂k and R̂†
k.

Noting the geometry of the integration domain shown in Figure 3.1, the order of integration

can be switched, implying

∆ρ̃S(t) ≃ − 1

~2

∫ ∆t

0
dτ

∫ t+∆t

τ+t
dt1TrR

{[

H̃V (t1),
[

H̃V (t1 − τ), ρ̃S(t)ρ̃R(0)
]

]}

. (3.16)

Anticipating that the correlation functions that arise from the trace over the double commutator

of the form 〈R̂(t1)R̂
†(t1 − τ)〉 = 〈R̂(τ)R̂†(0)〉, and 〈R̂(t1)R̂(t1 − τ)〉 = 〈R̂†(τ)R̂†(0)〉 will decay on

a timescale τc ≪ Tsys, without consequence we can remove the negligibly-small τ dependence of

the t1 integral limit. The rapid decay of the reservoir correlation functions compared to Tsys will

additionally allow us to take the upper limit of the τ integral to infinity without compromising our
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Figure 3.1: Graphical representation of the integration domain of the t1 and τ integrals

result:

∆ρ̃S(t) ≃ − 1

~2

∫ ∞

0
dτ

∫ t+∆t

t
dt1TrR

{[

H̃V (t1),
[

H̃V (t1 − τ), ρ̃S(t)ρ̃R(0)
]

]}

. (3.17)

This approximation is known as the Markov approximation. Physically, the rapid decay of the

reservoir correlation functions imply that the system-reservoir interaction is effectively memoryless.

Coarse-graining is consistent with the Markov approximation since time-averaging in steps ∆T ≫ τc

leads to system evolution which lacks information of its past.

The rapid decay of the reservoir correlation functions imply that the remaining system op-

erators in equation (3.17) can be removed from the τ integral retaining their initial value of τ = 0.

Additionally, since ∆t ≪ Tsys, we can approximate the remaining system variables, now solely a

function of t1, as a constant over the interval [t, t+ ∆t]. Thus,

∆ρ̃S(t) ≃ − 1

~2
∆t

∫ ∞

0
dτTrR

{[

H̃V (t),
[

H̃V (t− τ), ρ̃S(t)ρ̃R(0)
]

]}

. (3.18)

Equation (3.7) implies that the coarse-grained equation of motion for the reduced density operator

in the interaction picture is

dρ̃S

dt
≃ − 1

~2

∫ ∞

0
dτTrR

{[

H̃V (t),
[

H̃V (t− τ), ρ̃S(t)ρR(0)
]

]}

, (3.19)

or equivalently in the Schrödinger picture

dρ̂S

dt
= − i

~

[

ĤS, ρ̂S

]

− 1

~2

∫ ∞

0
dτTrR

{[

ĤV ,
[

e−iĤ0τ ĤV eiĤ0τ , ρ̂S(t)ρ̂R(0)
]

]}

. (3.20)
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This result is known as the master equation under the Born and Markov approximations. This

equation is suitable for modeling a wide variety of quantum optics phenomena, such as the sponta-

neous emission of photons from atoms and molecules, and the emission of photons from an optical

cavity.

3.2 A memory kernel approach to the master equation formalism

In this section we discuss the master equation from a kinetic theory standpoint where the

equation of motion for ρ̂S is derived in a Liouville representation. The formal solution that we

obtain from this approach proves to be of critical importance in the next chapter when we examine

reservoirs with a non-Markovian character.

For each part of Ĥ = ĤS + ĤR + ĤV we introduce the Liouville operation L̂x, defined by its

action on an arbitrary operator Θ̂ as

iL̂xΘ̂ =
1

i~
[Θ̂, Ĥx], where x ∈ {S, R, V}. (3.21)

Additionally, we define the projection operator P̂ by

P̂Θ̂ ≡ ρ̂R ⊗ TrR{Θ̂} (3.22)

and its compliment by Q̂ = 1̂ − P̂. Under these definitions, P̂ and Q̂ satisfy the usual projection

operator relationships P̂2Θ̂ = P̂Θ̂, Q̂2Θ̂ = Q̂Θ̂, and P̂Q̂Θ̂ = Q̂P̂Θ̂ = 0. Using the projection

operators, the reduced density matrix for the system can be written as

ρ̂S = TrR{P̂ρ̂}. (3.23)

To find the equation of motion for ρ̂S , we start from the evolution of the full density matrix:

dρ̂

dt
= −iL̂ ρ̂, (3.24)

where L̂ = L̂S + L̂R + L̂V . Noting that P̂ + Q̂ = 1̂, this equation can be written as

d
(

P̂ + Q̂

)

ρ̂

dt
= −i

(

P̂ + Q̂

)

L̂

(

P̂ + Q̂

)

ρ̂. (3.25)
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Acting on this equation with P̂ and Q̂ yields the the following coupled equations

dP̂ρ̂

dt
= −i

[

P̂L̂ P̂ρ̂+ P̂L̂ Q̂(Q̂ρ̂)
]

, (3.26)

dQ̂ρ̂

dt
= −i

[

Q̂L̂ P̂ρ̂+ Q̂L̂ Q̂(Q̂ρ̂)
]

, (3.27)

where we have used the fact that Q̂2Θ̂ = Q̂Θ̂. Equation (3.27) can be simplified since

Q̂L̂SQ̂ρ̂ = (1̂− P̂)L̂S(1̂− P̂)ρ̂

= L̂S ρ̂− L̂sP̂ρ̂−�
�

��H
H

HH
P̂L̂S ρ̂+����XXXXP̂L̂SP̂ρ̂

= L̂SQ̂ρ̂ (3.28)

where the last two terms cancel since L̂S is not a function of reservoir observables, and

Q̂L̂RQ̂ρ̂ = L̂RQ̂ −
�

�
��*

0
P̂L̂Rρ̂+�����:0

P̂L̂RP̂ρ̂ (3.29)

due to the diagonal and stationary assumptions respectfully. Therefore,

Q̂L̂ Q̂ρ̂ = L̂S + L̂R + Q̂L̂V Q̂. (3.30)

The formal solution of equation (3.27) is then

Q̂ρ̂ = −i
∫ t

0
e−i(L̂S+L̂R+Q̂L̂V Q̂)τ Q̂L̂ P̂ρ̂(t− τ)dτ. (3.31)

where we have assumed that the system and reservoir are initially uncorrelated, i.e. Q̂ρ̂(0) = 0.

Using this result to eliminate Q̂ρ̂ in equation (3.26), we get

dP̂ρ̂

dt
= −iP̂L̂ P̂ρ̂− P̂L̂ Q̂

∫ t

0
e−i(L̂S+L̂R+Q̂L̂V Q̂)τ Q̂L̂ P̂ρ̂(t− τ)dτ. (3.32)

This equation can be simplified by considering the action of the projection operators. The operators

P̂ and Q̂ operate on everything to their right. Therefore, we apply the right-most P̂ and Q̂ first,

and work our way through them from right to left. Here we do so term-by-term. Consider the

P̂L̂ P̂ρ̂ term in equation (3.32), the definition of P̂ implies

P̂L̂ P̂ρ̂ = P̂(L̂S + L̂R + L̂V )ρ̂S ρ̂R. (3.33)
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The fact that ρ̂R is stationary also implies

dρ̂R

dt
= −iL̂Rρ̂R = 0, (3.34)

while the diagonal assumption of ρ̂R gives

P̂L̂V ρ̂R = ρ̂R〈L̂V ρ̂R〉 = 0. (3.35)

Therefore,

P̂L̂ P̂ρ̂ = ρ̂RL̂S ρ̂S . (3.36)

Consider now

P̂L̂ Q̂e−iQ̂L̂ Q̂τ Q̂L̂ P̂ρ̂. (3.37)

This term is a bit more complicated. Here we break it down by first noting the fact that

Q̂L̂ P̂ρ̂ = (1̂− P̂)(L̂S + L̂R + L̂V )ρ̂S ρ̂R

= �����XXXXXL̂S ρ̂S ρ̂R +�����:0
L̂Rρ̂S ρ̂R + L̂V ρ̂S ρ̂R −�����XXXXXP̂L̂S ρ̂S ρ̂R −������:0

P̂L̂Rρ̂S ρ̂R −������:0
P̂L̂V ρ̂S ρ̂R

= L̂V ρ̂S ρ̂R (3.38)

where we have used equation (3.34) and equation (3.35). Now consider an arbitrary function F̂ of

system and reservoir variables.

P̂L̂ Q̂F̂ ρ̂R = P̂(L̂S + L̂R + L̂V )(1̂− P̂)F̂ ρ̂R

= P̂L̂SF̂ ρ̂R + P̂L̂RF̂ ρ̂R + P̂L̂V F̂ ρ̂R − P̂L̂SP̂F̂ ρ̂R − P̂L̂S P̂F̂ ρ̂R − P̂L̂SP̂F̂ ρ̂R

= �����XXXXXL̂S ρ̂R〈F̂〉 +������:0
P̂L̂RF̂ ρ̂R + P̂L̂V F̂ ρ̂R −

������XXXXXX
P̂L̂S ρ̂R〈F̂〉 −

������:0
P̂L̂Rρ̂R〈F̂〉 −

������:0
P̂L̂V ρ̂R〈F̂〉 (3.39)

= P̂L̂V F̂ . (3.40)

The second term in equation (3.39) goes to zero since

P̂L̂RF̂ ρ̂R = ρ̂R

(

Tr[ĤRF̂ ρ̂R] − Tr[F̂ ρ̂RĤR]
)

= ρ̂R

(

Tr[ĤRF̂ ρ̂R] − Tr[ĤRF̂ ρ̂R]
)

= 0. (3.41)
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Putting everything together we get,

dP̂ρ̂

dt
= −iP̂L̂ P̂ρ̂− P̂L̂ Q̂

∫ t

0
e−iQ̂L̂ Q̂τ Q̂L̂ P̂ρ̂(t− τ)dτ

= ρ̂RL̂SρS −
∫ t

0
P̂L̂V e−iQ̂L̂ Q̂τ

L̂V ρ̂S(t− τ)ρ̂Rdτ. (3.42)

Finally, tracing over the reservoir degrees of freedom yields

dρ̂S(t)

dt
= −iL̂S ρ̂S(t) +

∫ t

0
R(τ)ρ̂S(t− τ)dτ, (3.43)

where we have defined the memory kernel

R(τ) = −TrR

{

L̂V e−i(L̂S+L̂R+Q̂L̂V Q̂)τ
L̂V ρ̂R

}

. (3.44)

The first term on the right hand side of equation (3.43) is the free system evolution while the second

term describes the irreversible contribution due to the system-reservoir interaction.

Equation (3.43) is the exact master equation under the sole condition that the system and

reservoirs are initially uncorrelated. All the dynamics due to the coupling to the reservoirs is

encapsulated in R(τ). Once the memory kernel is known, we can calculate the evolution of the

reduced density matrix of the system. However, it turns out in general to be impossible to solve for

the memory kernel exactly except for the most trivial situations, so approximations must be made

to continue from this point.

3.3 Equivalence of the two formalisms

In this framework, we can recover the master equation under the Born and Markov approxi-

mations in two simple steps. First, the Born approximation can be made by taking equation (3.43)

to second order in ĤV . This amounts to eliminating the Q̂L̂V Q̂ term from the exponential in equa-

tion (3.44). Second, the memoryless (Markovian) nature can be asserted by taking the τ integral

to infinity as well as assuming that, on the time scale of the rapid decay of the memory kernel, the

backwards evolution of ρ̂S is determined solely by the system evolution, i.e.

ρ̂S(t− τ) ≃ eiL̂Sτ ρ̂S(t). (3.45)
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Then,

dρ̂S(t)

dt
= −iL̂S ρ̂S(t) −

∫ ∞

0
TrR

{

L̂V e−i(L̂S+L̂R+Q̂L̂V Q̂)τ
L̂V ρ̂R

}

ρ̂S(t− τ)dτ

≃ −iL̂S ρ̂S(t) −
∫ ∞

0
TrR

{

L̂V e−i(L̂S+L̂R)τ
L̂V ρ̂R

}

e−iL̂Sτdτ ρ̂S(t)

= −iL̂S ρ̂S(t) −
∫ ∞

0
TrR

{

L̂V e−i(L̂S+L̂R)τ
L̂V ρ̂R

}

e−iL̂Sτdτ ρ̂S(t)

= −i
[

ĤS, ρ̂S(t)
]

−
∫ ∞

0
TrR

{[

ĤV ,
[

e−iĤ0τ ĤV eiĤ0τ , ρ̂S(t)ρ̂R(0)
]]}

dτ ρ̂S(t) (3.46)

which is in agreement with equation (3.20).

3.4 Time-dependent master equation

We conclude our formal discussion of the master equation by considering the possibility of a

time-dependent system Hamiltonian in an open quantum system setting. Later in this work, we use

the results derived here to explore the properties of specific time-dependent Bose-Hubbard systems

coupled to the environment. We perform this derivation using the projection operator method as

well, and it follows closely the master equation derivation in Section 3.2. Due to this similarity,

we go through this derivation rather quickly, taking for granted mathematical details established

in Section 3.2.

Given a time dependent system, the full equation of motion for the density matrix for the

system and reservoir is

dρ̂

dt
= −i(L̂S(t) + L̂R + L̂V )ρ̂, (3.47)

which yields

dP̂ρ̂

dt
= −i

[

P̂L̂ (t)P̂ρ̂+ P̂L̂ (t)Q̂(Q̂ρ̂)
]

(3.48)

dQ̂ρ̂

dt
= −i

[

Q̂L̂ P̂ρ̂+ Q̂L̂ Q̂(Q̂ρ̂)
]

. (3.49)

The formal solution of equation (3.49) is

Q̂ρ̂ = −i
∫ t

0
e
i
“

T
R t2

t L̂S(t1)dt1+L̂R(t2−t)+Q̂L̂V Q̂(t2−t)
”

L̂V ρ̂S(t2)ρ̂Rdt2 (3.50)
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where the T signifies time-ordering for the integral in the exponential, and we have once again

made the assumption that the system and reservoir are initially uncorrelated. Substituting this

result into equation (3.48) yields

dP̂ρ̂

dt
= −iP̂L̂ (t)P̂ρ̂−

∫ t

0
L̂V e

i
“

T
R t2
t L̂S(t1)dt1+L̂R(t2−t)+Q̂L̂V Q̂(t2−t)

”

L̂V ρ̂S(t2)ρ̂Rdt2. (3.51)

We make the Born approximation by taking the L̂V term in the exponent to be zero. Since

[L̂S(t1), L̂R] = 0,

e
i
“

T
R t2
t L̂S(t1)dt1+L̂R(t2−t)

”

= eiT
R t2

t L̂S(t1)dt1eiL̂R(t2−t). (3.52)

Changing the variable of integration to τ = t− t2 implies

dP̂ρ̂

dt
= −iP̂L̂ (t)P̂ρ̂−

∫ t

0
L̂V eiT

R t−τ
t

L̂S(t1)dt1e−iL̂Rτ
L̂V ρ̂S(t− τ)ρ̂Rdτ (3.53)

Finally, making the Markov approximation, and tracing over the reservoir degrees of freedom, we

arrive at the master equation

dρ̂S

dt
= −iL̂S(t)ρ̂S

−TrR

{
∫ ∞

0

[

ĤV ,
[

eiT
R t−τ

t
ĤS(t1)dt1e−iĤRτ ĤV e−iT

R t−τ

t
ĤS(t1)dt1e−iL̂Rτ , ρ̂Rρ̂S(t)

]]

}

dτ

(3.54)

This equation is identical to equation (3.46), but with a time-ordered propagator for the system

Hamiltonian. As we see later in this work when specific models are adopted for the system and

reservoir, under the Markov approximation the rapid decay of the correlation functions in the

memory kernel lead to a time-independent expression for the kernel. Under this condition, the only

difference between equation (3.46), and equation (3.54) is L̂S ρ̂S → L̂S(t)ρ̂S .

3.5 Conclusion

In this chapter, we reviewed the master equation formalism under the Born and Markov ap-

proximations. Afterwords, an all-orders kinetic theory approach was presented. In the next chapter

we will use this theory to make approximations that go beyond the standard approximation. After
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demonstrating that the two formalisms are equivalent when the Born and Markov approximations

are made to the memory kernel, we derived a generalized master equation that is capable of treating

time-dependent system Hamiltonians. This equation will find use in Chapter 6, when we discuss

the progress that we have made in understanding sequential logic in atomtronic systems.



Chapter 4

Non-Markovian Open Quantum Systems

Most of the atomtronic systems that we apply the master equation approach to in this

thesis involve reservoirs where zero-temperature Fermi-Dirac equilibrium statistics are assumed.

At the start of this research effort, however, we found that such reservoir assumptions lead to

various mathematical divergences when the standard Born-Markov master equation framework is

employed. Here, in the context of a two-level atom coupled to a distribution of vacuum modes,

we discuss the origin of these divergences, as well as derive a non-Markovian master equation

theory to rectify the theoretical inconsistencies. As we demonstrate, the divergence only arises

when system energy differences directly overlap with a sharp boundary in the reservoir structure.

In order to properly quench this divergence, we go beyond the standard approximations. Using

the memory kernel formulation derived in Section 3.2, we derive a modified master equation by

introducing an ansatz for the full memory kernel. The resulting model is free of all divergences that

are induced by the reservoir structure discontinuity. Our analysis reveals that the divergence is a

consequence of the breakdown of the Markov assumption. We conclude this chapter by comparing

the behavior of our modified master equation to exact results from a closed, isolated quantum

system. These simulations confirm that our model correctly captures the steady-state dynamics

around the quenched divergence.
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4.1 Coupling an atom to the vacuum

Consider a two level atom coupled to the zero-temperature vacuum environment schematically

depicted in Figure 4.1. The Hamiltonians for the system, reservoir and interaction are

ĤS =
1

2
~ω0σ̂

(z) (4.1)

ĤR =
∑

j

~ω̄jR̂
†
jR̂j (4.2)

ĤV =
∑

k

~

(

gkR̂
†
kσ̂

(−) + g∗kR̂kσ̂
(+)
)

(4.3)

where σ̂(z), σ̂(−), and σ̂(+) are the Pauli spin matrices, ~ω0 is the energy of the two level atom, R̂†
k

and R̂k create and annihilate an excitation in the reservoir with energy ~ω̄k , and gk is the complex

coupling between cavity mode k and the two level atom.

The standard Born Markov master equation is given by

dρ̂S

dt
= − i

~

[

ĤS, ρ̂S

]

− 1

~2

∫ ∞

0
dτTrR

{[

ĤV ,
[

e−iĤ0τ ĤV eiĤ0τ , ρ̂S(t)ρ̂R(0)
]

]}

. (4.4)

Here we examine in detail the integral

−
∫ ∞

0
dτTrR

{

ĤV e−iĤ0τ ĤV eiĤ0τ ρ̂S(t)ρ̂R

}

. (4.5)

The divergence that we discuss directly below is common to all four integrals in the second-order

kernel that arise when the commutators are expanded. The remaining three integrals are treated in

Èg\

Èe\

Ω0
Èe\

Èg\0

Ωc

HbLHa L

Figure 4.1: (a) Illustration of a two-level atom radiating a photon into the vacuum. (b) Schematic
of a two-level atom coupled to a near-continuum of modes, which gives the atom the ability to
decay into the vacuum.



48

exactly the same manner. The simple form of Ĥ0 = ĤS + ĤR has the following two consequences:

e−
i
2
ω0σ̂(z)τ σ̂(−)e

i
2
ω0σ̂(z)τ = σ̂(−)eiω0τ , (4.6)

e−iĤRτ R̂je
iĤRτ = R̂je

iω̄jτ . (4.7)

Thus,

e−
i
~
Ĥ0τ ĤV e

i
~
Ĥ0τ = e−

i
~
Ĥ0τ

(

~
∑

k

gkR̂
†
kσ̂

(−) + g∗kR̂kσ̂
(+)

)

e
i
~

Ĥ0τ (4.8)

= ~
∑

k

gkR̂
†
kσ̂

(−)ei(ω0−ω̄k)τ + g∗kR̂kσ̂
(+)e−i(ω0−ω̄k)τ . (4.9)

When the assumption is made that the reservoir is in thermal equilibrium, the trace over the

diagonal reservoir reduces the two sums over the reservoir degrees of freedom to one, and eliminates

terms that are not of the form 〈R̂†
kR̂k〉 or 〈R̂kR̂

†
k〉. Thus

TrR

{

ĤV e−iĤ0τ ĤV eiĤ0τ ρ̂S(t)ρ̂R

}

= ~2
∑

k

|gk|2
(

〈R̂†
kR̂k〉σ̂(−)σ̂(+)ρ̂Se−i(ω0−ω̄k)τ + 〈R̂kR̂

†
k〉σ̂(+)σ̂(−)ρ̂Sei(ω0−ω̄k)τ

)

. (4.10)

Since we are assuming a zero temperature vacuum reservoir, 〈R̂†
kR̂k〉 = 0, and 〈R̂kR̂

†
k〉 = 1 for all

modes k. Therefore,

−
∫ ∞

0
dτTrR

{

ĤV e−iĤ0τ ĤV eiĤ0τ ρ̂S(t)ρ̂R

}

= −~2
∑

k

|gk|2σ̂(+)σ̂(−)ρ̂S

∫ ∞

0
dτei(ω0−ω̄k)τ (4.11)

Assuming that the system is coupled to a dense collection of reservoir modes, we may replace the

summation over the reservoir modes by an integral. Therefore

−~2
∑

k

|gk|2σ̂(+)σ̂(−)ρ̂S

∫ ∞

0
dτei(ω0−ω̄k)τ

= −~2σ̂(+)σ̂(−)ρ̂S lim
ε→0+

∫ ∞

0
dτ

∫ ∞

0
dω̄D(ω̄)|g(ω̄)|2ei(ω0−ω̄)τ−ετ (4.12)

where D(ω̄) is the density of states for the reservoir modes, g(ω̄) is the continuum counterpart of

gk, and the convergence factor ε → 0+ selects the appropriate handedness for the contour around

the pole in the ω̄ complex plane [32].
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Assuming that D(ω̄) is slowly-varying about ω0, and that the coupling can be expressed as

g(ω̄) = g(ω0)θ(ωc − ω̄) where θ is the Heaviside function, an assumption that asserts the Markov

approximation, the integration of equation (4.12) yields

−~2σ̂(+)σ̂(−)ρ̂S lim
ε→0+

∫ ∞

0
dτ

∫ ∞

0
dω̄D(ω̄)|g(ω0)|2θ(ωc − ω̄)ei(ω0−ω̄)τ−ετ

= −~2
D(ω0)|g(ω0)|2 lim

ε→0+

{

[

arctan

(

ωc − ω0

ε

)

+ arctan
(ω0

ε

)

]

+
i

2
ln

(

ω2
0 + ε2

(ω0 − ωc)2 + ε2

)

}

,

(4.13)

where we have additionally assumed that the density of states is slowly-varying to derive the

imaginary part. The limit of ε→ 0+ implies

−~2σ̂(+)σ̂(−)ρ̂S lim
ε→0+

∫ ∞

0
dτ

∫ ∞

0
dω̄D(ω̄)|g(ω0)|2θ(ωc − ω̄)ei(ω0−ω̄)τ−ετ

= −π~2
D(ω0)|g(ω0)|2

(

1 +
i

π
ln

∣

∣

∣

∣

ω0

ω0 − ωc

∣

∣

∣

∣

)

. (4.14)

From this expression it is clear that taking the limit of ωc to infinity would cause the imaginary

component of the integral to diverge. This behavior is known as the ultraviolet divergence. There

are rigorous treatments of this divergence, such as electron mass renormalization in the context

of quantum electrodynamics [33]. If ωc were to be taken to infinity, the divergence would arise

directly from the erroneous assumption that the density of states and atom-reservoir coupling

could be treated as constants for all frequencies from zero to infinity. Assuming that the system

couples to a resonant vacuum mode in the exact same manner that it does to a vacuum mode that

is infinitely higher in energy is clearly incorrect. In quantum optics, the cut-off is typically taken

to be the frequency ωc for which a photon would have a wavelength equal to the size of the atom.

Under this assumption, the imaginary term leads to a small energetic shift, analogous to the Lamb

shift [33, 34], and is generally neglected since it is orders of magnitude less than optical system

frequencies. Alternatively, it can also be incorporated in the definition of the resonant frequency.

Neglecting this small energetic shift, we get
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−~2
∑

k

|gk|2σ̂(+)σ̂(−)ρ̂S

∫ ∞

0
dτei(ω0−ω̄k)τ = π~2|g(ω0)|2D(ω0)σ̂

(+)σ̂(−)ρ̂S. (4.15)

Similar mathematical manipulations on equation (4.4) yield the following result for the master

equation of a two level atom coupled to a zero temperature vacuum:

dρ̂S

dt
= − i

~

[

ĤS, ρ̂S(t)
]

− Γ

2

(

σ̂(+)σ̂(−)ρ̂S + ρ̂S σ̂
(+)σ̂(−) − 2σ̂(−)ρ̂S σ̂

(+)
)

, (4.16)

where Γ = 2π|g(ω0)|2D(ω0) is the decay rate for the excited two level atom. This decay rate agrees

with the expression calculated with Fermi’s golden rule [65].

4.2 Sharp reservoirs: a non-Markovian situation

Suppose instead of an atom being coupled to a continuum of modes up to ωc such that

ωc ≫ ω0, as illustrated in Figure 4.2(a), the atom is coupled to modes up to ωc = ω0 as in

Figure 4.2(b). This reservoir model was analyzed in detail in Pepino et al. [66]. Mathematically,

this can be done by including the Heaviside function in our definition of the coupling constant,

density of states, or vacuum mode occupancy. Regardless of the choice taken, the modification

would take the integral in equation (4.12) and augment its form to the following:

E
Ωc

0
Ω0

Èe\

Èg\

Ha L

Ω0

Èe\

Èg\0

Ωc

HbL

Figure 4.2: (a) A two-level atom coupled to a near-continuum of modes whose upper energy level
ωc ≫ ω0. (b) A two-level atom couple to an exotic reservoir whose maximum energy ωc = ω0. The
latter reservoir model leads to divergences in the standard Born-Markov open quantum system
treatment.
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−~2
D(ω0)|g(ω0)|2 lim

ε→0+
lim

ωc→ω0

∫ ∞

0
dτ

∫ ∞

0
dω̄θ(ωc − ω̄)D(ω̄)|g(ω̄)|2ei(ω0−ω̄)τ−ετ

= −~2
D(ω0)|g(ω0)|2 lim

ωc→ω0

{

π

2
+
i

2
ln

(

ω2
0

(ω0 − ωc)2

)

}

. (4.17)

Recall, in the previous model, the energy shift was a negligibly-small quantity. However, as ωc ap-

proaches ω0, the energy shift not only becomes non-negligible, it diverges! This infrared divergence

occurs for all surviving integral terms in equation (4.4).

This result shows that we cannot simply employ the second-order Born-Markov approxima-

tions when the hard edge overlaps with system eigenenergies, as the resulting theory is mathemat-

ically undefined. The divergence is caused by a violation of our time scale assumption, where we

have assumed τc ≪ Tsys. As we see in Section 4.3, the sharp cut-off must impart a correlation time

on the system-reservoir interaction on the order of, or greater than, the system response time.

4.3 Fourth-order estimate of the full memory kernel

In this section we derive a higher-order treatment of the master equation formalism. A

property of memory kernels that model relaxation processes is that they exhibit exponential de-

cay [63]. Here, we estimate the all orders exponential decay by expanding the memory kernel of

equation (3.44) to fourth-order in L̂V . This order of expansion involves 256 possible terms. Here

we focus on the fourth-order correction to the σ̃(−)(t)ρ̃S(τ)σ̃(+)(τ) term for two-level atom coupled

to the zero-temperature vacuum, and expand the kernel about the divergence.

Transforming equation (3.44) into the interaction picture yields [67]

d

dt
ρ̃S = −

∫ t

0
dτ〈L̂V (t)e−i

R t
τ

dτ ′Q̂L̂V (τ ′)
L̂V (τ)〉ρ̃S(τ) (4.18)

≃ −
∫ t

0
dτ

(

〈L̂V (t)L̂V (τ)〉

−
∫ t

τ
dτ1

∫ τ1

τ
dτ2〈L̂V (t)L̂V (τ1)Q̂L̂V (τ2)L̂V (τ)〉

−
∫ t

τ
dτ1

∫ τ1

τ
dτ2〈L̂V (t)L̂V (τ1)〉〈Q̂L̂V (τ2)L̂V (τ)〉

)

ρ̃S(τ). (4.19)
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Expanding the second-order expectation value, and acting with the Liouvillian operators on ρ̃S(τ),

the zero-temperature reservoir assumption implies
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〈L̂V (t)L̂V (τ)〉ρ̃S(τ) =
∑

k

|gk|2
(

〈R̃k(t)R̂
†
k(τ)〉σ̃(+)(t)σ̃(−)(τ)ρ̃S(τ)

−〈R̃k(τ)R̂
†
k(t)〉σ̃(−)(t)ρ̃S(τ)σ̃(+)(τ)

−〈R̃k(t)R̂
†
k(τ)〉σ̃(−)(τ)ρ̃S(τ)σ̃(+)(t)

+〈R̃k(τ)R̂
†
k(t)〉ρ̃S(τ)σ̃(+)(τ)σ̃(−)(t)

)

(4.20)

= −
∑

k

|gk|2〈R̃k(τ)R̂
†
k(t)〉σ̃(−)(t)ρ̃S(τ)σ̃(+)(τ) ± · · · , (4.21)

where we will compare the matching fourth-order term to the second-order term of equation (4.21).

The fourth-order term in equation (4.19) can be expanded most simply by an application of

Wick’s theorem [67] along with the knowledge that the reservoir is in the zero-temperature vacuum

state. Then, utilizing the fact that σ̂(−) · σ̂(−) = σ̂(+) · σ̂(+) = 0 leaves only four surviving terms.

Of those four, only the following two are relevant for comparison with equation (4.21):

−
∫ t

τ
dτ1

∫ τ1

τ
dτ2〈L̂V (t)L̂V (τ1)〉〈Q̂L̂V (τ2)L̂V (τ)〉

)

ρ̃S(τ)

=
∑

l

∑

k

|gl|2|gk|2
∫ t

τ
dτ1

∫ τ1

τ
dτ2

(

〈R̂l(τ1)R̂
†
l (τ2)〉〈R̃k(τ)R̂†

k(t) + 〈R̂l(τ2)R̂
†
l (t)〉〈R̃k(τ1)R̂

†
k(τ)〉

)

×σ̃(−)(t)σ̃(+)(τ1)σ̃
(−)(τ2)ρ̃S(τ)σ̃(+)(τ) ± · · · (4.22)

Since

∑

l

∑

k

|gl|2|gk|2
∫ t

τ
dτ1

∫ τ1

τ
dτ2 〈R̂l(τ2)R̂

†
l (t)〉〈R̃k(τ1)R̂

†
k(τ)〉

=
∑

l

∑

k

|gl|2|gk|2
∫ t

τ
dτ1

∫ τ1

τ
dτ2 〈R̂lR̂

†
l 〉〈R̃kR̂

†
k〉eiωl(t−τ2)eiωk(τ−τ1)

≃ |g(ω0)|4π2
D(ω0)

2

∫ ω0

−∞
dωl

∫ ω0

−∞
dωk

∫ t

τ
dτ1

∫ τ1

τ
dτ2 eiωl(t−τ2)eiωk(τ−τ1)

= |g(ω0)|4π2
D(ω0)

2

∫ t

τ
dτ1

∫ τ1

τ
dτ2 δ(t − τ2)δ(τ − τ1)

= 0,

equation (4.22) becomes
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πD(ω0)|g(ω0)|2
∑

k

|gk|2
∫ t

τ
dτ1

∫ τ1

τ
dτ2

[

δ(τ2 − τ1)〈R̃k(τ)R̂
†
k(t)〉σ̃(−)(t)σ̃(+)(τ1)σ̃

(−)(τ2)ρ̃S(τ)σ̃(+)(τ)

]

± · · ·

=
π

2
D(ω0)|g(ω0)|2

∑

k

|gk|2(t− τ)〈R̃k(τ)R̂†
k(t)〉σ̃(−)(t)σ̂(+)σ̂(−)ρ̃S(τ)σ̃(+)(τ) ± · · · (4.23)

=
π

2
D(ω0)|g(ω0)|2

∑

k

|gk|2(t− τ)〈R̃k(τ)R̂†
k(t)〉σ̃(−)(t)ρ̃S(τ)σ̃(+)(τ) ± · · ·

≡ η
∑

k

|gk|2(t− τ)〈R̃k(τ)R̂
†
k(t)〉σ̃(−)(t)ρ̃S(τ)σ̃(+)(τ) ± · · · . (4.24)

where we define

η =
π

2
D(ω0)|g(ω0)|2 =

Γ

4
. (4.25)

Here Γ, defined by equation (4.16), has already been introduced as the decay rate of the two level

atom. The fact that 〈R̃k(τ)R̃
†
k(t)〉 = 〈R̃k(0)R̃

†
k(t− τ)〉 means equation (4.19) can be simplified to

d

dt
ρ̃S =

∫ t

0
dτ

(

∑

k

|gk|2〈R̃k(0)R̃
†
k(t− τ)〉σ̃(−)(t− τ)ρ̃S(τ)σ̃(+)(0) ± · · ·

)

(

1 − η(t− τ)
)

≃
∫ t

0
dτ

(

∑

k

|gk|2〈R̃k(0)R̃
†
k(t− τ)〉σ̃(−)(t− τ)ρ̃S(τ)σ̃(+)(0) ± · · ·

)

e−η(t−τ) (4.26)

for ηt≪ 1. Thus, the master equation in the interaction picture is

d

dt
ρ̃S = −

∫ t

0
dτ〈L̂V (t)e−i

R t
τ

dτ ′Q̂L̂V (τ ′)
L̂V (τ)〉ρ̃S(τ) (4.27)

≃ −
∫ t

0
dτ〈L̂V (0)e−η(t−τ)

L̂V (t− τ)〉ρ̃S(τ). (4.28)

Since the transformation from the Schrödinger picture to the interaction picture is

∫ t

0
R(τ)ρ̂(t− τ)dτ →

∫ t

0
R̃(t− τ)ρ̃(τ)dτ, (4.29)

the master equation in the Schrödinger picture is given by

d

dt
ρ̂S ≃ −iL̂sρ̂s −

∫ t

0
dτ〈L̂V e−iL̂0τe−ητ

L̂V 〉ρ̂S(t− τ). (4.30)

Physically, the new parameter η that we have introduced in this theory is the inverse of the finite

correlation time that the system-reservoir interaction acquires when a sharp reservoir boundary

overlaps with system eigenenergy differences. This accounts for the violation of the separation of
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time scales assumption, since η ∼ Γ implies τc ∼ Tsys. Thus, the Markov approximation cannot

be made in this case since the correlation function does not decay rapidly compared to the system

time scale. If we are solely concerned with steady-state solutions of the master equation, long times

t imply ρ̂S(t− τ) ≃ ρ̂S(t). Therefore, in this case ρ̂s can be removed from the integral, whose upper

limit goes to infinity:

d

dt
ρ̂S ≃ −iL̂sρ̂s −

∫ ∞

0
dτe−ητ 〈L̂V e−iĤ0τ

L̂V eiĤ0τ 〉ρ̂S(t). (4.31)

In taking t → ∞ we lose the ability to resolve the short-time characteristics of the evolution

of the density operator. Since we will generally be concerned with the steady-state behavior of

atomtronic systems in this thesis, this is a justified approximation. Equation (4.31) is the modified

master equation we implement whenever there exists sharp reservoir boundaries that could overlap

with system energy levels.

4.3.1 The physical interpretation of η

Here we compare the standard Born-Markov master equation to our non-Markovian model in

order to illuminate the modification that η induces on a simple system. Consider a two-level atom

with frequency ω0 coupled to an exotic reservoir that is comprised solely of ground state two-level

atoms with transition energies ranging from 0 to ωµ, and excited two-level atoms with transition

energies greater than ωµ.

We can calculate the steady-state population as a function of the system frequency ω0 by

taking the trace of the product of the Born-Markov master equation with σ̂(+)σ̂(−). Since ∂tρ̂S = 0,

and TrS{[ĤS , ρ̂S ]σ̂(+)σ̂(−)} = 0, we get

0 = TrS

{

lim
ǫ→0

∫ ∞

0
dτe−ǫτ

[

ĤV ,
[

ĤV (−τ), ρ̂S

]]

σ̂(+)σ̂(−)

}

, (4.32)

which yields a steady-state value for the average system excitation of

〈σ̂(+)σ̂(−)〉 = θ(ω0 − ωµ). (4.33)
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This step function about the reservoir boundary is what one might expect from such a model since,

ω0 < ωµ couples the system solely to vacuum modes while ω0 > ωµ drives the system with the

excited reservoir.

The limit ǫ→ 0 is convergent in this case due to a cancellation of the imaginary terms that

occur by taking the trace of ρ̂S with the observable σ̂(+)σ̂(−).

Employing our non-Markovian model to the same system,

0 = TrS

{
∫ ∞

0
dτe−ητ

[

ĤV ,
[

ĤV (−τ), ρ̂S

]]

σ̂(+)σ̂(−)

}

, (4.34)

which yields a steady-state value for the average system excitation of

〈σ̂(+)σ̂(−)〉 =
1

2
− 1

π
arctan

(

ωµ − ω0

η

)

. (4.35)

This expression is very similar to the one obtained from the Born-Markov model. The only difference

here is a population transition region broadened by η, as shown in Figure 4.3. Interestingly, in the

case of a Fermi-Dirac reservoir, the finite correlation time acquired by the system-reservoir coupling

is directly analogous to including a finite temperature in the reservoir structure.

This result also makes sense from a perturbative standpoint, where one would expect that

a higher-order treatment of the memory kernel would mix the otherwise sharp distribution of the

reservoir modes. Since η = Γ/4 = |g(ω0)|2D(ω0)π/2 = π|g(ω0)|2/(2∆ω), the broadening is directly
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Figure 4.3: The analytic comparison of the Born-Markov master equation to our non-Markovian
master equation applied to a two-level atom coupled to a reservoir with a sharp boundary.
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proportional to the reservoir square of the coupling, and inversely proportional to the energetic

spacing. This might have been anticipated since our perturbative expansion of the memory kernel

was taken to second order.

4.4 Closed system model estimate for η

In this section we present a simple model calculation that clearly confirms our prediction of

the higher-order behavior of the memory kernel for a structured reservoir with a hard edge. Here

we test our estimation of η by performing full calculations on reasonably large, closed quantum

systems. The closed system we consider is again a single excited two-level atom ‘system’, but this

time coupled toN energetically equally-spaced ground state ‘reservoir’ two-level atoms as illustrated

in Figure 4.4. We take the energy spacing of the reservoir modes to be ∆ω. The Hamiltonian that

models this system is

Ĥ = ~





1

2
ω0σ̂

(z)
0 +

1

2

N
∑

j=1

ωj σ̂
(z)
j + g

(

σ̂
(+)
j σ̂

(−)
0 + σ̂

(−)
j σ̂

(+)
0

)



 , (4.36)

where ω0 and σ̂
(z)
0 are the frequency and Pauli spin matrix of the system two level atom, ωj = j∆ω

is the energy level of the jth ‘vacuum mode’ and g is the coupling of the jth mode to the system,

taken to be uniform. Here ωc = N∆ω, and the uniform spacing of the j modes implies that the

Ωc Ωc

0 0

Ω0

Ω0

Ha L

8DΩ 8DΩ

HbL

Figure 4.4: The illustration of a numerical experiment consisting of a large closed system consisting
of a single two level atom coupled to a finite collection of equally-spaced reservoir modes. The
population of the single two-level atom is recorded as its frequency ω0 scans through the reservoir
frequencies starting from (a) the middle where ω0 < ωc to (b) ω0 > ωc.
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density of states for the reservoir is D(ω0) = 1/∆ω.

Ideally, we would like to configure the reservoir with a sharp boundary ωµ between excited and

ground state two-level atoms to match the model described above. Unfortunately, the N+1 coupled

atomic system has a Hilbert space with dimension 2N+1, which grows exponentially, becoming

numerically-unmanageable as a function of N very quickly. Instead, we consider conditions where

the system is initially excited, and the reservoir solely consists of ground state two-level atoms

with energies ranging from 0 to ωc. This allows us two work in the single excitation manifold

whose dimension is merely N + 1. In doing so, we are able to model much larger systems that,

in turn, approximate system-reservoir dynamics more accurately. This model is sufficient for our

comparison with the non-Markovian model but, the lack of an excited two-level atom drive with

energies above ωc, restricts the validity of the model to the regime where ω0 ≤ ωc. The reservoir

boundary ωc in this case models the reservoir edge ωµ, since σ̂
(+)
0 |e〉 = 0, where |e〉 is the excited

state of the atom.

In the limit where D(ω0) ≪ 1/g, the system effectively couples to a single mode, and Rabi

flops between the system and reservoir modes. Therefore, in order to approximate system-reservoir

behavior, we require D(ω0) > 1/g, which guarantees that the system interacts with several modes

of the reservoir. Since the major feature that the non-Markovian model added was a broadening

of the system population transition as a function of the system frequency ω0, here we record the

average population P̄0 of this closed system as a function of ω0 − ωc. We then measure the width

of the population transition as ω0 approaches ωc from below.

For fixed D(ω0) and g, we simulate the model described above by time evolving the excitation

of the two-level atom system as a function of ωc − ω0. Since this is a closed quantum system, the

excitation of the atom system undergoes collapses and revivals due to the fact that there is no

true steady-state for the Hamiltonian system. We calculate the average excitation of the system

in the region precisely between consecutive revivals. Obtaining a series of these average system

excitations as a function of ωc − ω0, we can numerically construct the average population function

P̄0(ωc − ω0). The half width at half maximum of P̄0(ωc − ω0) is determined from the fall-off of
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the excitation as a function of ωc −ω0 about the 50% occupancy level. This broadened population

transition as a function of frequency is then directly comparable to η.

Figure 4.5 demonstrates this process for the case where ∆ω/ωc = 0.005 and g/ωc = 0.015

are fixed. Figure 4.5(a) is a plot of the population of the system as a function of time where
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Figure 4.5: A demonstration of the calculation of a η/ωc for a large closed quantum system. For
fixed ∆ω/ωc and g/ωc, time evolution of this as a function of ω0−ωc exhibits collapses and revivals
due to the fact that it is a closed quantum system. (a) The time evolution for ω0 − ωc = −ωc. (b)
The time evolution for ω0 ≃ ωc. We record the collapsed population value as a function of ω0 −ωc,
and then plot them (c). The half width at half maximum is the value η.

ω0 ≪ ωc. For a given ∆ω, the revival time is approximately equal to 2πD(ω0) as can be observed

on the plot. The quasi-steady-state can thus be calculated by time-averaging about πD(ω0). The

quasi-steady-state for this case is approximately zero, since the system frequency is covered above

and below by vacuum modes. Figure 4.5(b) is a plot of the population of the system as a function

of time where ω0 < ωc, but ≃ 8% of its value. Here the revival time is the same, since the density of

states is unchanged, and the quasi-steady-state is now a nonzero value. Figure 4.5(c) is the function

P̄0(ωc − ω0) obtained from data obtained in the manner just described. This particular numerical

experiment yields ≃ 0.09, where the theoretically-predicted broadening is η ≃ 0.07. The procedure

is repeated for a variety of values of g and D(ω0). The resulting data is given in Table (4.4).

Since we are checking the claim that η = g2D(ω0)π/2, in Figure 4.6 we plot η×2/(gD(ω0)π)

as a function of g. In doing so, if η accurately models the system broadening, the slope of this line

should be ≃ 1. The top (blue), middle (red), and bottom (yellow) points and lines correspond to

the data and linear fit for D(ω0)ωc = 100, D(ω0)ωc = 200, and D(ω0)ωc = 500 respectively. The
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D(ω0)ωc = 100 D(ω0)ωc = 200 D(ω0)ωc = 500

g/ωc η/ωc g/ωc η/ωc g/ωc η/ωc

0.020 0.081 0.010 0.044 0.006 0.040

0.022 0.096 0.012 0.060 0.008 0.067

0.025 0.121 0.015 0.090 0.010 0.099

0.027 0.138 0.017 0.113 0.012 0.136

0.020 0.148 0.014 0.176

Table 4.1: A table of half width at half maxima as a function of D(ω0) and g for a large-closed
quantum system. The standard Born-Markov theory predicts that these values should be zero. We
can check the validity of our non-Markovian theory against these values to see if it characterizes
the broadening correctly.

linear fits for D(ω0)ωc = 100, D(ω0)ωc = 200, and D(ω0)ωc = 500 are

η × 2

πgD(ω0)
≃ 0.972 g +

0.6

D(ω0)
, (4.37)

η × 2

πgD(ω0)
≃ 0.972 g +

0.8

D(ω0)
, (4.38)

η × 2

πgD(ω0)
≃ 0.940 g +

1.5

D(ω0)
. (4.39)

In order to make the closed system model comparable to the theory presented in Section 4.2,

we require that g ≫ 1/D(ω0), or equivalently g2D(ω0) ≫ g. Under this condition, the nonzero
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Figure 4.6: A plot of the data in Table 4.4 where the top (blue), middle (red), and bottom (yellow)
lines correspond to D(ω0) = 100ωc, D(ω0)ωc = 200, and D(ω0)ωc = 500 respectively. From these
lines, the extrapolated equations, and given the fact that we require g ≫ D(ω0), we confirm our
previous definition of η.
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intercept is negligible. From this large closed system model, we conclude that

η ≃ π

2
g2

D(ω0), (4.40)

which is in direct agreement with the non-Markovian correction calculated in Section 4.2.

4.5 Conclusion

In this chapter, we derived the decay of a two level atom that agreed with the decay obtained

from Fermi’s golden rule. After coupling the system to an exotic reservoir whose cut-off energetically

matched the frequency of the atom, the standard Born-Markov master equation formalism acquired

a diverging energy shift. This divergence was an artifact of the approximations that are typically

made. By choosing the sharp reservoir boundary close to relevant system energies, we inadvertently

contradicted the separation of time scales that we required in the original derivation of our coarse-

grained master equation. This led to a violation of the Markov approximation.

To treat this problem correctly, we referred to the all-orders memory kernel form of the

master equation. Observing the form of this expression and being aware of the long-time behavior

of relaxation processes, we estimated the all-orders behavior by expanding the kernel to fourth-

order, deriving an estimate for the decay of the kernel, which we referred to as 1/η. Here we

found that η was equal to one fourth of the decay rate of the two-level system coupled to the

reservoir. The proximity of the Tsys and τc implied by η ∼ Γ indicates that this specific type of

system-reservoir interaction is non-Markovian. The implication of the higher order correction in

the formalism is that the sharp bare reservoir levels are broadened and mixed by their interaction

with the system. In other words, the resolution of the levels of the reservoir get smeared by an

amount ≃ η due to their interaction with a common system. This is what one might expect from a

perturbation theory standpoint. The resulting expression that we obtained was a solvable master

equation with higher-order behavior accounted for. In its form, this master equation is incapable

of resolving short times. Since we will be solely concerned with steady-state system behavior, the

loss of the ability to model short times is not necessarily of major consequence.
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We tested our all-orders approximate memory kernel model against a large, closed quantum

system. Varying parameters such as the density of states and the couping strength of this closed

system, we were able to verify that our model encapsulates the all-orders behavior of the large

closed system quite well.



Chapter 5

Atomtronics with Atoms in Optical Lattices

The atomtronic systems we consider in this chapter involve bosonic atoms traversing optical

lattice potentials. Here we employ a novel application of the master equation approach to open

quantum systems where the reservoirs act as ‘sources’ and ‘sinks’. We monitor the current response

across the lattice as atoms move across from a high chemical potential reservoir to a low chemical

potential reservoir. This concept is illustrated in Figure 5.1.

After quantifying our measure of atomic current, we examine the behavior of specific systems

coupled to two different types of reservoirs: strongly-interacting and weakly-interacting bosonic

reservoirs. In the limit of very strong atom-atom interactions, the zero-temperature bosons in the

reservoir fermionize and map onto a zero-temperature, non-interacting fermion system with an equi-

librium characterized by a Fermi-Dirac distribution with chemical potential µR that separates vac-

Figure 5.1: Illustration of an optical lattice coupled to two different reservoirs of ultracold atoms
with chemical potentials µL and µR. As depicted in the figure, when µL > µR, a current of atoms
in induced across the system from left to right.
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uum states from occupied states. In the limit of weak atom-atom interactions, the zero-temperature

atoms can Bose-condense, and the ‘reservoir’ becomes a superfluid that is the matter analog of a

single coherent driving field. As we shall see, the strongly-interacting and weakly-interacting reser-

voirs lead to very different system responses. The systems and computational methods we develop

in this section are also suitable for the generic study of transport properties of atoms through

customized optical lattices.

In this chapter, we demonstrate theoretically a variety of highly customized optical lattices

that mimic the behavior of a semiconductor diode, field-effect transistor (FET), and bipolar junction

transistor (BJT) when driven by atomic reservoirs with chemical potential differences. We show

that these fundamental electronic-like elements can be cascaded, leading to the the development

of more complex logic components. The resulting atomtronics technology proposed in this work is

intended to be a one-to-one analogy of traditional electronic systems.

5.1 Calculating atomic current through a custom optical lattice

Given a specific system and reservoir, we derive and solve the appropriate master equation

for the evolution of the reduced system density operator ρ̂S . One ρ̂S is known, the expectation

value of any system observable can be obtained by taking the trace of the product of ρ̂S with the

observable in question. The observable that we are concerned with here is the atomic current that

corresponds to atoms moving into or out of the system via the reservoir channels. In this section,

we derive the operator whose expectation value is this current.

Consider a system coupled to many reservoirs. The modified master equation (4.31) for such

a system-reservoir interaction is given by

d

dt
ρ̂S = − i

~
[HS, ρ̂S ] − 1

~2
TrR

{

∑

κ

∫ ∞

0
dτe−ητ

[

V̂κ,
[

V̂κ(−τ), ρ̂Rρ̂S

]]

}

(5.1)

where,

V̂κ =
∑

j

~gκ,j(â
†
κR̂κ,j + âκR̂

†
κ,j) (5.2)

≡ ~(â†κĜκ + âκĜ†
κ) (5.3)
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and gκ,j is the coupling constant for the reservoir mode j coupled to the lattice site κ, â†κ creates

a particle on system site κ, and R̂κ,j annihilates a particle from the mode j of the reservoir that is

connected to lattice site κ.

Here we examine how a particular reservoir coupled to lattice site q affects the population

of system eigenstates |βn〉; each |βn〉 being an eigenstate in the n-particle manifold of the system.

The evolution of the population of this state is given by

d

dt
〈βn|ρ̂S |βn〉 = − i

~
〈βn| [HS, ρ̂S ] |βn〉 −

1

~2
TrR

{

∑

κ

∫ ∞

0
dτe−ητ 〈βn|

[

V̂κ,
[

V̂κ(−τ), ρ̂Rρ̂S

]]

|βn〉
}

= − 1

~2

∫ ∞

0
dτe−ητ TrR

{

〈βn|
[

V̂q,
[

V̂q(−τ), ρ̂Rρ̂S

]]

|βn〉
}

−TrR

{

∑

κ 6=q

∫ ∞

0
dτe−ητ 〈βn|

[

V̂κ,
[

V̂κ(−τ), ρ̂Rρ̂S

]]

|βn〉
}

(5.4)

where [HS, ρ̂S ] = 0 since |βn〉 is an eigenstate of HS. Since we are interested in the influence on

the population of state |βn〉 solely due to the action of reservoir q, we focus our attention on the

terms in equation (5.4) involving V̂q alone. Expanding these terms, we get

− 1

~2

∫ ∞

0
dτe−ητTrR

{

〈βn|
[

V̂q,
[

V̂q(−τ), ρ̂Rρ̂S

]]

|βn〉
}

=

∫ ∞

0
dτe−ητ 〈βn|

[

(

â†q(−τ)ρ̂S âq〈Ĝ†
q Ĝq(−τ)〉 + â†qρ̂S âq(−τ)〈Ĝ†

q(−τ)Ĝq〉
)

−
(

âqâ
†
q(−τ)ρ̂S〈Ĝ†

q Ĝq(−τ) + ρ̂Sâq(−τ)a†q〈Ĝ†
q(−τ)Ĝq〉

)

]

|βn〉

+

∫ ∞

0
dτe−ητ 〈βn|

[

(

âq(−τ)ρ̂S â
†
q〈ĜqĜ†

q(−τ)〉 + âqρ̂Sâ
†
q(−τ)〈Ĝq(−τ)Ĝ†

q〉
)

−
(

â†qâq(−τ)ρ̂S〈ĜqĜ†
q(−τ) + ρ̂Sâ

†
q(−τ)aq〈Ĝq(−τ)Ĝ†

q〉
)

]

|βn〉 (5.5)

where the first terms in the brackets (i.e. those proportional to 〈Ĝ†
q Ĝq〉) add atoms into the system,

and the second terms in the brackets (i.e. those proportional to 〈ĜqĜ†
q〉) remove atoms out of the

system.

The positive terms on proportional to 〈Ĝ†
q Ĝq〉 in equation (5.5), responsible for supplying

population to the |βn〉 state, are proportional to 〈βn|â†qρ̂S âq|βn〉 = 〈bn−1|ρ̂S |bn−1〉, where |bn−1〉 is a

quantum state that belongs to the (n−1)-atom manifold. Therefore, as illustrated in Figure 5.2(a),
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Figure 5.2: An analysis of how the terms in the master equation contribute to population in the
n-particle manifold. (a) The action of a reservoir adding particles to the system. The operator
â†ρ̂Sâ, linking manifolds n and (n − 1), increases the n-particle manifold, promoting atoms from
the (n − 1) manifold. The number-conserving operators ââ†ρ̂S and ρ̂S ââ

† decrease population in
the n-particle manifold as the system is promoted to the (n + 1) manifold. (b) The action of a
reservoir removing particles from the system. The operator âρ̂S â

†, linking manifolds n and (n+ 1)
increases population in the n-particle manifold as particles are removed from (n+1). The number-
conserving operators â†âρ̂S and ρ̂S â

†â decrease population from the n-particle manifold as the
reservoir removes a particle.

the |βn〉 state receives population from the manifold below it as a particle enters the system. The

negative terms proportional to 〈Ĝ†
q Ĝq〉 in this equation, responsible for depleting population from

the |βn〉, are proportional to either 〈βn|âqâ
†
qρ̂S |βn〉 or 〈βn|ρ̂S âqâ

†
q|βn〉. Since âqâ

†
q preserves particle

number, these terms generate population loss out of the n-atom manifold: the |βn〉 state loses

population as the system is promoted to a state in the (n + 1)-particle manifold as a particle is

added to the system. This behavior is also illustrated in Figure 5.2(a).

In contrast, the other terms in equation (5.5) behave as follows. The positive terms propor-

tional to 〈ĜqĜ†
q〉, responsible for removing atoms from the system, are proportional to

〈βn|âqρ̂S â
†
q|βn〉 = 〈bn+1|ρ̂S |bn+1〉 where |bn+1〉 belongs to the (n + 1)-atom manifold. Thus,

the state |βn〉 receives population from above as particles leave the system. The negative terms

proportional to 〈ĜqĜ†
q〉, responsible for depleting population from |βn〉, are proportional to either

〈βn|â†qâqρ̂S |βn〉 or 〈βn|ρ̂S â
†
qâq|βn〉. Since â†qâq preserves particle number, population is lost out of

the |βn〉 state, where it goes to a state in the (n − 1)-manifold as a particle is removed from the

system. These actions are illustrated in Figure 5.2(b).

To find the net current observable for the state |βn〉, we take the sum of positive contributions
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from the influx terms and the negative contributions from the outflux terms, i.e.

〈Ĵq(βn)〉 =

∫ ∞

0
dτe−ητ

[

〈βn|
(

â†q(−τ)ρ̂S âq〈Ĝ†
q Ĝq(−τ)〉 + â†qρ̂S âq(−τ)〈Ĝ†

q(−τ)Ĝq〉
)

|βn〉

−〈βn|
(

â†qâq(−τ)ρ̂S〈ĜqĜ†
q(−τ) + ρ̂Sâq(−τ)a†q〈Ĝ†

q(−τ)Ĝq〉
)

|βn〉
]

. (5.6)

Under this convention, a positive value for 〈Ĵq〉 corresponds to current entering the system. Alterna-

tively, we could have taken the sum of the negative contributions from the influx terms and positive

contributions from the outflux terms. In which case, a positive value for 〈Ĵq〉 would correspond to

current exiting the system.

The total current into, or out of, the system lattice site q can be obtained by summing the net

current of all of the eigenstates |βn〉. This sum is equivalent to a trace over the system eigenstates.

Using the cyclic property of the trace, we obtain

〈Ĵq〉 = TrS

{

[
∫ ∞

0
dτe−ητ

(

âqâ
†
q(−τ)〈Ĝ†

q Ĝq(−τ)〉 + âq(−τ)â†q〈Ĝ†
q(−τ)Ĝq〉|〉

−â†qâq(−τ)〈ĜqĜ†
q(−τ) + âq(−τ)a†q〈Ĝ†

q(−τ)Ĝq〉
)]

ρ̂S

}

(5.7)

≡ TrS

{

Ĵq ρ̂S

}

(5.8)

where we identify Ĵq as the system current operator at the system-reservoir junction q. We use this

current operator throughout the remainder of the thesis to analyze effective transport through our

proposed devices.

5.2 A strongly-interacting boson reservoir model (fermionized bosons)

A zero temperature strongly-interacting boson reservoir is comprised of a near-continuum

of occupied levels up to some energy ωµ, above which the modes are assumed to be in vacuum.

When ωµ lies above a system energy difference, sufficient energy is available for the system to be

excited. The sharpness in the number distribution of the zero temperature Fermi-Dirac distribution

implies that we need to use the non-Markovian master equation (4.31), to model this particular

system-reservoir interaction. In a manner analogous to Pauli blocking, the atom-atom repulsion of
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the strongly-interacting reservoir model has the desirable feature that atoms that enter the system

cannot go back. They are forced to exit the system through the reservoir channel corresponding

to the lower chemical potential. This characteristic makes this reservoir model an ideal model to

study transport properties of custom optical lattices. We use this model to construct the majority

of our proposed atomtronic components. Here we derive the master equation for an optical lattice

system whose site q is coupled to a single reservoir in detail. Additional reservoirs can be added

by following the same steps outlined here.

The starting point for this derivation is equation (4.31). Expanding the Liouvillians, we get

dρ̂S

dt
= − i

~
[ĤS , ρ̂S ] − 1

~2

∫ ∞

0
dτe−ητTrR

{[

ĤV ,
[

ĤV (−τ), ρ̂Rρ̂S

]]}

(5.9)

where η = Γ/4, the system decay rate Γ is derived below, L̂V (−τ) = e−iĤ0τ/~L̂V eiĤ0τ/~,

Ĥ0 = ĤS + ĤR, and the averaging is performed over the reservoir degrees of freedom. For

an N -site Bose-Hubbard system, the Hamiltonian is

ĤS =
N
∑

j=1

(

~ωj â
†
j âj +

Uj

2
â†j â

†
j âj âj

)

+
N−1
∑

j=1

Jj

(

â†j âj+1 + âj â
†
j+1

)

(5.10)

where ωj and Uj are the oscillator frequency and on-site interaction energy for site j, and Jj is the

tunneling energy between sites j and j + 1. The reservoir consists of a near-continuum ensemble

of non-interacting oscillators whose Hamiltonian is

ĤR =
∑

k

~ω̄kR̂
†
kR̂k. (5.11)

where ω̄k is the frequency of reservoir mode k. The zero temperature Fermi-Dirac distribution is

characterized by a reservoir frequency ω̄µ such that for ω̄k ≤ ω̄µ,

〈R̂†
kR̂k〉 = 1 〈R̂kR̂

†
k〉 = 0 (5.12)

and for ω̄k > ω̄µ,

〈R̂†
kR̂k〉 = 0 〈R̂kR̂

†
k〉 = 1. (5.13)

The Hamiltonian that describes the system-reservoir interaction is

ĤV = ~

(

∑

k

gq,kR̂
†
kâq + g∗q,kR̂kâ

†
q

)

(5.14)
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where gq,k is the complex coupling constant that couples the oscillator to the mode k of the reservoir

that is coupled to the system site q. Expanding the commutators of equation (5.9), we get

dρ̂S

dt
= − i

~
[ĤS , ρ̂S ] − 1

~2

∫ ∞

0
dτe−ητTr

{

ĤV ĤV (−τ)ρ̂Rρ̂S − ĤV (−τ)ρ̂Rρ̂SĤV

−ĤV ρ̂Rρ̂SĤV (−τ) + ρ̂Rρ̂SĤV (−τ)ĤV

}

. (5.15)

Inserting equation (5.14) yields

dρ̂S

dt
= − i

~
[ĤS, ρ̂S ] −

∫ ∞

0
dτe−ητ Tr

{

∑

k

|gq,k|2
(

R̂†
kR̂k(−τ)âq â

†
q(−τ)ρ̂S ρ̂R

+ R̂kR̂
†
q,k(−τ)â†qâq(−τ)ρ̂S ρ̂R + ρ̂S ρ̂RR̂

†
k(−τ)R̂kâq(−τ)â†q + ρ̂S ρ̂RR̂k(−τ)R̂†

kâ
†
q(−τ)âq

− R̂†
kâq ρ̂S ρ̂RR̂k(−τ)â†q(−τ) −Rkâ

†
qρ̂S ρ̂RR̂

†
k(−τ)âq(−τ) − R̂†

k(−τ)âq(−τ)ρ̂S ρ̂RR̂kâ
†
q

− R̂k(−τ)â†q(−τ)ρ̂S ρ̂RR̂
†
kâq

)}

= −i[ĤS, ρ̂S ] −
∫ ∞

0
dτe−ητ

∑

k

|gq,k|2
(

〈R̂†
kR̂k(−τ)〉

[

âqâ
†
q(−τ)ρ̂S − â†q(−τ)ρ̂S âq

]

+ 〈R̂kR̂
†
k(−τ)〉

[

â†qâq(−τ)ρ̂S − âq(−τ)ρ̂S â
†
q

]

+ 〈R̂†
k(−τ)R̂k〉

[

ρ̂Sâq(−τ)â†q − â†qρ̂S âq(−τ)
]

+ 〈R̂k(−τ)R̂†
k〉
[

ρ̂S â
†
q(−τ)âq − âqρ̂S â

†
q(−τ)

]

)

(5.16)

where we have simplified the expression by taking advantage of the fact that the reservoir is diagonal

in its energy eigenbasis, and then we have used the cyclic property of the trace operation.

Next we project this equation onto the system energy eigenbasis:

d

dt
σ̂ab = −iωabσ̂ab −

∫ ∞

0
dτe−ητ

∑

k

|gq,k|2
(

〈R̂†
kR̂k〉eiω̄kt

[

ÂanÂ
†
nme−iωnmτ σ̂mb

− Â†
ane−iωanτ σ̂nmÂmb

]

+ 〈R̂kR̂
†
k〉e−iω̄kt

[

Â†
anÂnme−iωnmτ σ̂mb − Âane−iωanτ σ̂nmÂ

†
mb

]

+ 〈R̂†
kR̂k〉e−iω̄kt

[

σ̂anÂnme−iωnmτ Â†
mb − Â†

anσ̂nmÂmbe
−iωmbτ

]

+ 〈R̂kR̂
†
k〉eiω̄kt

[

σ̂anÂ
†
nme−iωnmτ Âmb − Âanσ̂nmÂ

†
mbe

−iωmbτ
]

)

= −iωabσ̂ab −
∫ ∞

0
dτe−ητ

∑

k

|gq,k|2
(

〈R̂†
kR̂k〉

[

ÂanÂ
†
nme−i(ωnm−ω̄k)τ σ̂mb

− Â†
ane−i(ωan−ω̂k)τ σ̂nmÂmb + σ̂anÂnme−i(ωnm+ω̄k)τ Â†

mb − Â†
anσ̂nmÂmbe

−i(ωmb+ω̄k)τ
]

+ 〈R̂kR̂
†
k〉
[

Â†
anÂnme−i(ωnm+ω̄k)τ σ̂mb − Âane−i(ωan+ω̄k)τ σ̂nmÂ

†
mb

+ σ̂anÂ
†
nme−i(ωnm−ω̄k)τ Âmb − Âanσ̂nmÂ

†
mbe

−i(ωmb−ω̄k)τ
]

)

(5.17)
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where we have defined σ̂ab = 〈a|ρ̂S |b〉, Âab = 〈a|âq|b〉, and Â†
ab = 〈a|a†q|b〉 to simplify the notation,

and ωab = ωa−ωb is the frequency difference of states |a〉 and |b〉. Converting the sum over reservoir

modes to an integral, and asserting the reservoir statistics defined in equation (5.13), we get

d

dt
σ̂ab = −iωabσ̂ab −

∫ ∞

0
dτe−ητ

∫ ω̄µ

0
dω̄D(ω̄)|gq(ω̄)|2

[

ÂanÂ
†
nme−i(ωnm−ω̄)τ σ̂mb

− Â†
ane−i(ωan−ω̂)τ σ̂nmÂmb + σ̂anÂnme−i(ωnm+ω̄)τ Â†

mb − Â†
anσ̂nmÂmbe

−i(ωmb+ω̄)τ
]

−
∫ ∞

0
dτe−ητ

∫ ω̄c

ω̄µ

dω̄D(ω̄)|gq(ω̄)|2
[

Â†
anÂnme−i(ωnm+ω̄)τ σ̂mb

− Âane−i(ωan+ω̄)τ σ̂nmÂ
†
mb + σ̂anÂ

†
nme−i(ωnm−ω̄)τ Âmb − Âanσ̂nmÂ

†
mbe

−i(ωmb−ω̄)τ
]

(5.18)

where D(ω̄) is the density of reservoir modes and gq(ω̄) is the continuous analog of gq,k. The upper

limit on the second ω̄ integral goes to ω̄c instead of to infinity to avoid the ultraviolet divergence as

previously discussed in Section 4.1. If we assume that the density of states and coupling function

are slowly-varying about ωnm, we can define the n,m matrix elements of

(

G
(±)
in

)

nm
=

∫ ∞

0
dτ

∫ ω̄µ

0
dω̄|gq(ω̄)|2D(ω̄)e−i(ωnm±ω̄)τ−ητ

= ±|gq(ω̄0)|2D(ω̄0)

[

arctan

(

ωnm ± ω̄µ

η

)

− arctan

(

ωnm

η

)

− i

2
ln

(

(ωnm ± ω̄µ)2 + η2

ω2
nm + η2

)

]

(5.19)

and

(

G
(±)
out

)

nm
=

∫ ∞

0
dτ

∫ ω̄c

ω̄µ

dω̄D(ω̄)e−i(ωnm±ω̄)τ−ητ

= ±|gq(ω̄0)|2D(ω̄0)

[

arctan

(

ω̄c ± ω̄µ

η

)

− arctan

(

ωnm ± ω̄µ

η

)

− i

2
ln

(

(ω̄c ± ω̄µ)2 + η2

(ωnm ± ω̄µ)2 + η2

)

]

. (5.20)

This implies
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d

dt
σ̂ab = −iωabσ̂ab −

Γ

2π

[

ÂanÂ
†
nm

(

G
(−)
in

)

nm
σ̂mb − Â†

an

(

G
(−)
in

)

an
σ̂nmÂmb

+ σ̂anÂnm

(

G
(+)
in
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where the decay rate, or linewidth, Γ = 2π|gq(ω̄0)|2D(ω̄0) is equal to what one acquires from Fermi’s

golden rule.

This is the complete master equation for a Bose-Hubbard system that has site q coupled

to a reservoir characterized by ω̄µ. In atomtronics applications, we require at least two reservoirs

to drive current through the system in steady-state. Other reservoirs can be added in a similar

manner to equation (5.21) where they may be characterized by their own system-reservoir decay

rate and chemical potential.

5.2.1 The atomtronic wire

Here we begin the analysis of atomtronics components by considering the atomtronics coun-

terpart to a simple circuit of a battery connected to a resistive wire. As seen in Figure 5.3, the

analogy of a wire is an energetically-flat optical lattice, with uniform tunneling and interaction en-

ergies ( ǫj ≡ ǫ, Uj ≡ U , and Jjk ≡ J for all neighboring sites). For this system, and all atomtronics

systems discussed in this thesis, we assume U ≫ J . The corresponding Bose-Hubbard model for

(a) (b)

µL µR

Figure 5.3: Illustration of the analogy between (a) the electronic circuit of a wire (with some
inherent resistance) connected to a battery and (b) its atomtronic counterpart.
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this N -site system is

ĤS =

N
∑

j=1

(

~ωâ†j âj +
U

2
â†j â

†
j âj âj

)

+ J

N−1
∑

j=1

(

â†j âj+1 + âj â
†
j+1

)

. (5.22)

where ~ω = ǫ. For this system, we assume weak reservoir coupling and calculate the atomic current

as a function of chemical potential difference. This numerical experiment is carried out by initially

setting both left and right chemical potentials (µL and µR) to zero, and then raising µL so that

an atomic current response is induced across the system from left to right. Using the analysis

outlined in Appendix A, solve for ρ̂S in steady-state. We then compute the current 〈JR〉 out of

the right side of the system. This data is presented in Figure 5.4. Here we see that the current

increases with the chemical potential difference, but in quantized steps that correspond directly

to the left chemical potential overcoming multiples of the on-site interaction energy. This is the

energy needed to increase the number of atoms on the left site by one. A closer examination of the

numerical simulation implemented in Figure 5.4 reveals two subtle features. Moving from left to

right across graph in Figure 5.4, the first current jump occurs at (µL − ǫ)/U = 0, and the current

increases in two steps. One might have expected to observe a single jump, since the condition to

put a particle in the lattice is µL ≥ ǫ. This is a result of the fact that the degeneracy of the Fock

states in the one-particle manifold is split by 2J in the system state eigenbasis due to tunneling.

Figure 5.4: Current of the atomtronic wire (in units of Γ0), in the case of weak coupling to the
reservoirs, as a function of the left chemical potential. The current monotonically increases in
quantized jumps as the on-site interaction energy to put on an additional particle is overcome. The
parameters used to model the atomtronic wire in this simulation are ǫ/U = 3, J/U = 3 × 10−2,
and ~Γ0/U = 10−6.
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In addition, the jump in current is broadened slightly by both the nonzero η and by the system-

reservoir coupling. This broadening, which makes the jump in current a smooth transition rather

than a discontinuous step is even more apparent in the atomtronic devices presented below, where

the system reservoir-coupling is taken to be orders of magnitude larger. Although the exact details

for the second and third jumps are more complicated, the reasoning is the same: the eigenenergies

are split by approximately 2J , and the overall jump is smoothed out by η. These general properties

hold for many of the numerical experiments that follow.

5.2.2 The atomtronic diode

A diode is a device with an approximately unidirectional current characteristic. The basic

behavior is that a voltage bias across the diode yields a current in one direction, but if the voltage

bias is reversed the current response is negligible. Such behavior can be realized in an optical

lattice by creating an energy shift in half of the lattice with respect to the other as we now show.

We find that the diode characteristic persists as the number of lattice sites is increased so we may

anticipate the result to hold in the mesoscopic limit. For simplicity, here we illustrate the idea

of the atomtronic diode in a double well lattice system. For the simulations for the rest of this

chapter, we assume J/U = 3 × 10−2, ~Γ0/U = 10−2.

In the Fock basis for a two site system, there exist three states in the two-particle manifold:

|20〉, |11〉, and |02〉, where |nm〉 refers to n particles on the left site and m particles on the right.

The external energies of the two sites (ǫ1 and ǫ2) can be chosen so that the eigenstates |20〉 and

|11〉 are approximately degenerate, leaving both states far detuned from |02〉. This configuration of

the site energies is given by ǫ1 = ǫ and ǫ2 = ǫ1 + U . We refer to this as the “resonance condition”.

The corresponding Hamiltonian for this two-site system is

ĤS = ~ω1â
†
1â1 + (~ω1 + U) â†2â2 +

U

2

(

â†1â
†
1â1â1 + â†2â

†
2â2â2

)

+ J
(

â†1â2 + â1â
†
2

)

(5.23)

Figure 5.5 illustrates how the resonance condition generates reverse-bias and forward-bias

behavior in a two-site optical lattice. As seen in Figure 5.5(a), if one holds the left reservoir
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(a) (b)

Figure 5.5: (a) Energy schematic of the reverse bias dynamics of the two site atomtronic diode.
The red arrows represent the system transitions from an initially empty system. The gray (dotted)
arrows represent all other possible transitions. Regardless of which state the system starts in, it
evolves almost entirely to the |02〉 state. (b) Energy schematic of the forward-bias dynamics of the
two-site atomtronic diode. Blue arrows illustrate transitions into current-bearing cycles, while gray
(dotted) arrows represent all other possible transitions.

chemical potential at µL = 0 and raises the right reservoir chemical potential µR, the system will

undergo a transition from |00〉 to |01〉. The states |01〉 and |10〉 are separated in energy by U . As

a result, most of the population remains in the |01〉 state. Increasing µR above the point where

the transition from |01〉 to |02〉 is allowed, the system remains almost completely settled in the |02〉

state.

As seen in the Figure 5.5(b), if one holds µR = 0 and raises µL, the system first undergoes

a transition from |00〉 to |10〉. However, increasing µL so the system evolves to |20〉 leads to a

very different situation than in the above case: since |20〉 is resonant with |11〉, both states are

simultaneously populated. Since µR = 0 takes all particles out of the site on the right, the system

can make a transition from |11〉 back to |10〉. The combined effect of setting µL and µR to these

values is to force the system to undergo a closed cycle of transitions between |10〉, |20〉 and |11〉.

The result is a net atomic transport (or current flow) across the system. A second contributor to

the net current through the system is the fact that µL allows transitions from |11〉 to |21〉. Thus,

an additional current-generating cycle exists: |11〉 to |21〉 to |20〉 and back to |11〉. Both cycles

contribute positively to a net current flow across the system.

For systems consisting of N lattice sites, the diode configuration is composed of two con-
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nected, energetically-flat lattices whose energy separation is ∆ǫ = U . The basic dynamical re-

sponse seen for two sites holds also for larger systems due to the fact that the flat lattice allows

for effective transport. This is because adding a particle to the left site of the left half of the

lattice is energetically degenerate with adding a particle to any sites up to, and including, the left

site of the junction. Therefore, there exist current cycles initially generated from the degenerate

|222...2〉⊗|0...000〉 to |222...1〉⊗|1...000〉 transition. Going the other direction, one can, in principle,

go to |0...000〉 ⊗ |222...2〉 but, as is seen for the double well model, conditions are not energetically

favorable, and atomic transport across the junction is greatly suppressed. Figure 5.6 is a schematic

of a four-site atomtronic diode in the forward-biased direction.

µL µR

Figure 5.6: Schematic of the four-site optical lattice atomtronic diode.

In support of the fact that the dynamics of the diode are qualitatively-independent of the

overall size of the lattice, we model a four-site diode here. The Hamiltonian for this system is

ĤS = ~ω1

(

â†1â1 + â†2â2

)

+ (~ω1 + U)
(

â†3â3 + â†4â4

)

+
U

2

4
∑

j=1

â†j â
†
j âj âj + J

3
∑

j=1

(

â†j âj+1 + âj â
†
j+1

)

. (5.24)

Figures 5.7(a-b) and Figures 5.7(c-d) are numerical simulations of the current responses of the two

site diode Hamiltonian, and four site diode Hamiltonian, respectively. The general features of both

diodes are qualitatively identical.
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Figure 5.7: Current responses (in units of Γ0) of (a) forward-bias two site diode, (c) the four site
diode as a function of µL (with µR = 0); current response of (b) the reverse-bias two site diode
and (d) four site diode as a function of µR (with µL = 0). The chemical potentials of all figures
are normalized to the resonance condition, and the currents normalized to Γ0.

5.2.2.1 Noise analysis of the atomtronic diode

Given the current characteristics of the diode, one might ask how much does the signal

fluctuate about its steady-state value. Quantifying the signal-to-noise ratio (SNR) is an important

measure of the functionality of any device. A time-averaged SNR can be obtained by constructing

the power noise density function, convolving it with a filter, and then integrating over all frequencies.

For the current operator Ĵq, the corresponding S0(ω) is

S0(ω) = lim
T→∞

1

T

∣

∣

∣

∣

∫ T

0
〈Ĵq(t)〉e−iωtdt

∣

∣

∣

∣

2

, (5.25)
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Given a system steady-state time t0, the Wiener-Khintchine theorem can be stated as

S0(ω) = Re

{

2

π

∫ ∞

0
dτe−iωτ 〈Ĵq(t0 + τ)Ĵq(t0)〉

}

. (5.26)

since the function is 〈Ĵq(t0 + τ)Ĵq(t0)〉 is a real-valued function [68].

Propagation of 〈Ĵq(t0 + τ)Ĵq(t0)〉 becomes tractable under the quantum regression theorem,

which asserts that this correlation function evolves under the same equation of motion as ρ̂S(t). We

can confirm this by considering the correlation function for the full system and reservoir problem.

In this case,

〈Ĵq(t0 + τ)Ĵq(t0)〉 = TrSR

{(

eiĤ(t0+τ)/~Ĵqe
−iĤ(t0+τ)/~

)(

eiĤt0/~Ĵqe
−iĤt0/~

)(

e−iĤt0/~ρ̂eiĤt0/~
)}

(5.27)

where Ĥ = ĤS + ĤR + ĤV , ρ̂(t0) is in steady-state and the trace is over the system and reservoir

degrees of freedom. The cyclic property of the trace implies

〈Ĵq(t0 + τ)Ĵq(t0)〉 = TrSR

{

Ĵqe
−iĤτ/~Ĵq

(

e−iĤ2t0/~ρ̂eiĤ2t0/~
)

eiĤτ/~
}

= TrSR

{

Ĵqe
−iĤτ/~

[

Ĵq ρ̂(t0)
]

eiĤτ/~
}

= TrS

{

Ĵq TrR

{

e−iĤτ/~
[

Ĵqρ̂(t0)
]

eiĤτ/~
}

}

(5.28)

where we have used ρ̂(2t0) = ρ̂(t0) since ρ̂ is in steady-state, and the fact that Ĵq is a system

observable. The evolution of the full density operator is

ρ̂(τ) = e−iĤτ/~ρ̂eiĤτ/~, (5.29)

implying that the evolution of the reduced density operator is

ρ̂S(τ) = TrR

{

e−iĤτ/~ρ̂eiĤτ/~
}

. (5.30)

Comparing equation (5.28) with equation (5.30), we see that ρ̂S and
[

Ĵq ρ̂(t0)
]

evolve in the exact

same manner. Since ρ̂S evolves under the master equation, it follows that
[

Ĵq ρ̂(t0)
]

evolves under

the master equation as well.
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In the Liouville representation, we can express the equation of motion for
[

Ĵq ρ̂S(t0)
]

as

d

dt

[

Ĵqρ̂(t0)
]

= L̂MEq

[

Ĵqρ̂S(t0)
]

(t) (5.31)

where L̂MEq is the super operator that defines the master equation for ρ̂S . This equation can be

Laplace transformed into

[

Ĵqρ̂S(t0)
]

(s) = (s1̂− L̂MEq)
−1
[

Ĵqρ̂S(t0)
]

(t0) (5.32)

From Equation (5.26), taking s→ iω in Equation (5.32) implies

S0(ω) = Re

{

2

π

∫ ∞

0
dτe−iωτ 〈Ĵq(t0 + τ)Ĵq(t0)〉

}

= Re

{
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π

∫ ∞
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dτe−iωτTrS

{

Ĵq[Ĵq ρ̂S(t0)](τ)
}

}
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2

π
TrS

{

Ĵq

(

iω1̂− L̂MEq

)−1
[Ĵq ρ̂S(t0)](t0)

}}

. (5.33)

We simulate time-averaging by convolving this expression with an exponential filter

F (t) =
1

T
e−t/T (5.34)

where T is the time the current measurement is averaged over. The convolution theorem then

implies

S(T, ω) = Re

{

S0(ω)
1

1 + iωT

}

. (5.35)

Since S0(ω) is a real-valued function due to the fact that the correlation function is both real and

symmetric,

S(T, ω) = S0(ω)
1

1 + (ωT )2
. (5.36)

In this convention,

〈Ĵ2
q 〉 =

∫ ∞

0
S0(ω)dω. (5.37)

Therefore the time-averaged SNR is

RSN (T ) =
〈Ĵq〉

√

∫∞
0 S(T, ω)dω − 〈Ĵ〉2

. (5.38)
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where 〈Ĵq〉 is the expectation value of current. For values of 1/T that are small compared to

appreciable changes of S0(ω),

RSN (T ) =
〈Ĵq〉

√

∫∞
0 S(T, ω)dω

≃
√

1

S0(0)

〈Ĵq〉
∫∞
0

1
1+(ωT )2

=
〈Ĵ〉

√

Re
{

limω→0 TrS{Ĵ(iω1̂− L̂MEq)(Ĵ ρ̂S)}
}

√
T (5.39)

Typical optical lattice experiments can achieve an on-site interaction energy U/~ ∼ 1 kHz. For the

parameters used for the diode, we find

RSN ≃ 8.9
√

Hz
√
T . (5.40)

Therefore, a signal-to-noise ratio of ∼ 10 can be achieved by averaging the atomic current for

1 second. Gillen has reported having atoms trapped in Markus Greiner’s customized optical lattice

experiments for up to 17 seconds [25], which would seem to make the proposed diode system

experimentally accessible. We note this ratio is certainly parameter-sensitive, and could perhaps

be improved upon in a different regime.

5.2.3 The atomtronic field-effect transistor

A field-effect transistor (FET) is a device that allows an externally-applied field to control the

amount of current that flows through the device. This characteristic allows the FET to be utilized

as a voltage-to-current amplifier. Since the diode is optimized when the resonance condition is

imposed on the optical lattice, small deviations from the resonance condition lead to large changes

in the maximum current propagating across the lattice. These changes in the relative zero-point

energies can be brought on by changes in an external field that is applied to the lattice. This is

precisely the behavior of a FET where a current is controlled by an applied voltage. In Figure 5.8,

we plot several current results for the forward-bias configuration as the separation in the external

energy of the second site is raised past the resonance condition by fractions of J , the smallest
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Figure 5.8: Current response of the atomtronic FET as a function of the chemical potential: small
changes in ǫ2 lead to appreciable changes in the current response. That is, as the system is detuned
from its resonance condition, there is a fall off of the net current value across the device. The
legend in this figure indicates the colored curves that correspond to particular values of ǫ2.

system parameter in the model. In doing so, we successfully recover the FET-like behavior where

small changes in an external field lead to appreciable changes in the current response of the device.

Along this line of reasoning, external fields can also be used to switch the atomic current

completely off by either shifting the sites well out of resonance or by exchanging their value, changing

the lattice from the forward-bias configuration to the reverse-bias. Such a switch might be useful

if one desired a control of the atomic transport that was function of time.

5.2.4 The atomtronic bipolar junction transistor

A bipolar junction transistor (BJT) is a three terminal device in which the overall current

across the emitter and collector is controlled by a much weaker current via the base. Two practical

applications of the BJT are signal amplification and switching (on and off) of the emitter current.

Realization of BJT-like behavior in atomtronic systems requires at least three sites connected
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to three different reservoirs. If the atomtronic diode is considered to be an atomtronic p-n junction,

one might guess that the atomtronic n-p-n transistor would entail raising the external energy of

the left and right (collector and emitter) sites higher than the middle (base) site by the on-site

interaction energy. This configuration is illustrated in Figure 5.9(a). The reason this configuration

yields BJT-like behavior is due to the approximate degeneracy between the Fock states |110〉, |020〉,

and |011〉.

We implement numerical simulations of this lattice configuration by fixing a chemical poten-

tial difference across the lattice. The left reservoir chemical potential µL is set to maintain one

particle on the left site and the chemical potential of the right reservoir µR is set to zero. The

atomic current is measured as a function of µM .

When there are no atoms on the middle site, the configuration of the reservoirs pump the

system into the |100〉 Fock state (as seen in Figure 5.9(b)). The |100〉 and the |001〉 states are

degenerate with each other, but the system must undergo a second-order, off-resonant transition

via the |010〉 state in order to transition from |100〉 to |001〉. Such transitions are suppressed by

(a)

µL

µM

µR

(b)

|110〉
2ǫ+ U

|020〉
2ǫ+ U

|011〉
2ǫ+ U

|100〉
ǫ+ U

|001〉
ǫ+ U

|010〉
ǫ

|000〉
0

Figure 5.9: (a) An illustration of the BJT lattice-reservoir system. (b) The energy schematic of the
three-site optical lattice under the extended resonance condition. Here the left reservoir is set to
maintain an occupancy of one atom on the left site and the right is set to remove all atoms. If the
middle reservoir is set to remove all particles, then the system evolves to the |100〉 state (red dotted
arrow). If the middle reservoir is set to maintain an occupancy of one atom on the middle site,
then the degeneracy between states |110〉, |020〉, and |011〉 allows current to traverse the system.
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a factor of (J/U)2 and thus become less likely as the energy difference between |100〉 and |010〉

increases. Thus, when the middle reservoir is set to maintain zero atoms on the middle site, the net

current out of what would correspond to the emitter lead of a conventional transistor is minimal.

When the middle reservoir’s chemical potential is increased to allow a single atom into the

middle site of the system, the degeneracy between the |110〉, |020〉, and |011〉 states is accessed,

which allows atoms to travel across the system. One issue with this configuration is the following:

in order to get to |011〉, the system has to make a transition through the |020〉 state. Since the

middle reservoir is set to maintain an occupancy of one, but not two, atoms on the middle site,

one of the atoms can be lost to the middle reservoir, leading to a loss of emitter current out of

the base. If the couplings of all three reservoirs to the system are equal, then the result is the

current measured passing through the base turns out to be greater than the current measured out

of the emitter. Thus, the system represents an inefficient transistor realization. On the other hand,

if the middle reservoir were to be coupled weakly compared to the other reservoirs, then current

predominantly leaves the system via the emitter, which is the desired behavior.

Figure 5.10(a) is a numerical simulation of the current out of the emitter and the base as a

function of the base chemical potential. The coupling strength of the base connected to the reservoir

is one fifth the collector and emitter reservoir coupling. It should be noted that the region where

the proposed atomtronic transistor mimics the electronic BJT is limited to the transition region, or

current jump. One can increase the length of this region by increasing the overall system-reservoir

coupling strength. Figure 5.10(b) shows that the gain of this device is fairly linear.

5.2.5 Discrete atomtronics logic

Integrated circuits are designed with a very large number of transistor elements to perform

a desired function. The demonstrated ability to realize atomtronic diodes and transistors thus

motivates the question as to whether higher functionality can be realized with these ultracold

atomic systems. Here we look at the most fundamental of these, the atomtronic AND logic gate.

A traditional logic element is a device with a given number of inputs and outputs, composed
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Figure 5.10: Characteristics of the atomtronic BJT. (a) For a fixed collector-emitter voltage bias,
the current response measured through the base leg (green, dashed curve) and the emitter leg (blue
curve) are plotted as a function of the base chemical potential. (b) The current out of the emitter
is plotted vs. the current out of the base. Here a large linear gain is observed.

of switches, that generates a series of logical responses. Such logical behavior can be expressed in a

truth table composed of 1’s and 0’s (‘ons’ and ‘offs’). Logic elements are the fundamental building

blocks of computing and discrete electronics. In Table 5.1(a) the truth table for the AND logic gate

is given as an example. The next level of complexity in emulating electronic systems is to create

logic elements from the atomtronic components.

An AND gate is a device with two inputs (A and B), and one output (O). As illustrated in

Table 5.1(a), the device characteristic of the AND gate is that O remains off unless both A and B

are on. In electronics, such a device can be constructed by connecting two transistors in series (as

illustrated in Figure 5.11(a)). By direct analogy, the atomtronic AND gate can be constructed by

connecting two atomtronic BJTs in series as illustrated in Figure 5.11(b).

When constructing practical logic circuits, the logical values of the 1s and 0s are mapped to

a given energetic range. The data in Table 5.1(b) has been generated in a numerical experiment

of the optical lattice configuration depicted in Figure 5.11(b). For this particular experiment,

the maximal current out of the device is at least a factor of 6 greater than any other measured

current. Thus a discernible difference between ‘on’ and ‘off’ is observed and the output currents

reproduce the AND gate truth table to reasonable fidelity. Such a difference can also be enhanced

by increasing the on-site interaction energy U of the lattice.
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(a)

AND Gate

A B O

0 0 0

1 0 0

0 1 0

1 1 1

(b)

Atomtronic AND Gate Simulation

A B O

0 0 0.00

3.2 0 0.01

0 3.2 0.16

3.2 3.2 1.00

Table 5.1: AND gate truth table where the two inputs are labeled by A and B, the output labeled
by O, and the 1 or 0 entries represent ‘on’ and ‘off’. (a) Truth table describing the device charac-
teristics. (b) Numerical simulation of the atomtronic AND gate normalized to the maximal output
current ‘O’. Here, the inputs A and B are the respective chemical potentials measured with respect
to the on-site interaction energy (µA/U µB/U) and the output is the atomic current normalized
by the maximum output current (I/Imax). In practice, the logical ‘ins’ and ‘outs’ are mapped to
physical currents by setting threshold ranges. Since the maximal output current is larger than all
other output values by at least a factor of 6, we can conclude that there exists logic gate behavior
in this optical lattice setup.
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(a)

A B

Out

(b)

µL µR

µA µB

Figure 5.11: (a) Electronic schematic for the AND logic gate, a device constructed by cascading
two transistors in series. (b) Atomtronics AND schematic. The atomtronic AND logic gate is
constructed exactly like its electronic counterpart, i.e. by cascading two transistors in series. A
chemical potential bias µL − µR across the device attempts to drive a current across the device.
No substantial current is observed, however, unless both µA and µB supply atoms onto the base
terminals of their respective transistors.

5.3 Weakly-interacting boson reservoir model (BEC reservoir)

Up to this point, our reservoir models have all been of the strongly-interacting type. However,

in this section we consider the driving mechanism for the system to be a near-zero temperature

weakly-interacting trapped Bose gas. In other words, we take the reservoir drive to be a Bose-

Einstein Condensate (BEC) in a superfluid state. Here, we develop the theory, and examine the

current characteristics, for a one-dimensional lattice driven by a BEC on one end, while coupled to

the zero-temperature vacuum on the other as depicted in Figure 5.12.

In contrast to the Fermi-Dirac type drive that we’ve used previously, the BEC drives the

system with a monochromatic coherent frequency. This causes the system to exhibit resonant

current responses as the BEC energy scans past the system energies. Additionally, once the BEC

drive deposits an atom into the system, it cannot block the atom from going back in the same

way as was observed for the Fermi-Dirac reservoir. For these reasons, one may anticipate that the

overall measured current that flows through the system will be less.
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Figure 5.12: An illustration of an atomtronic wire coupled to a BEC drive as well as the vacuum.

5.3.1 The BEC reservoir model

We model the non-interacting BEC as a classical drive, since its interaction with the system

is coherent, and we treat it as part of the closed system. The system Hamiltonian is comprised of

a Bose-Hubbard lattice model whose site q is coherently driven by the BEC. Under the rotating

wave approximation, this is given by

ĤS = ~ΩB

(

â†qe
−iωBt + âqe

iωBt
)

+
∑

j

~ωj â
†
j â+

U

2
â†j â

†
j âj âj − J

(

â†j âj+1 + âj â
†
j+1

)

(5.41)

where ΩB and ~ωB are the coupling strength and ground state energy of the BEC coupled to the

system, ωj is the trap frequency of lattice site j, and U and J are the the on-site interaction and

tunneling energies, and are assumed here to be uniform and real.

The time-dependence of ĤS can be eliminated by transforming to an interaction picture that

rotates with the BEC frequency ωB yielding

H̃s = ~ΩB

(

â†q + âq

)

+
∑

j

(~ωj − ωB) â†j â+
U

2
â†j â

†
j âj âj − J

(

â†j âj+1 + âj â
†
j+1

)

. (5.42)

When the lattice site l is coupled to the zero temperature vacuum, the master equation for

this open quantum system becomes

dρ̂S

dt
= − i

~
[H̃S , ρ̂S ] − Γ0

2

(

â†l âlρ̂S + ρ̂S â
†
l âl − 2âlρ̂S â

†
l

)

(5.43)

where Γ0 is the standard system-reservoir decay rate.
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5.3.2 The BEC-driven atomtronic diode

Here we use Equation (5.43) to examine the current characteristics of an optical lattice in the

diode configuration. Assuming ~ω2 = ~ω1 +U , coupling the BEC to site 1 and the vacuum to site 2

would drive the system in the forward-bias direction. Conversely, coupling the BEC and vacuum

modes to 2 and 1 respectively drives the system in the reverse-bias direction. Taking ~ΩB/U = 0.4,

J/U = 3× 10−2, and ~Γ0/U = 10−2, we plot the expectation value of the forward-bias current, the

reverse-bias current, and the current asymmetry as a function of the BEC frequency in Figure 5.13.
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Figure 5.13: The current response of the BEC-driven diode in the (a) forward-bias configuration
and (b) reverse-bias configuration (in arbitrary units). (c) The asymmetric current response of the
system.

We first note the resonant nature of the current response in the forward-bias direction, where

the maximal current peaks at the resonance condition ω̄B = ~ω1 + U . The reverse-bias current

has a resonant peak at ωB = ω1. This is a second-order, off-resonant process since the BEC

in this case is resonant with the first site frequency. For the chosen parameter set, we achieve

a maximum asymmetric current response of 〈Ĵ〉FWD/〈Ĵ〉REV ≃ 420. An analysis of the Fock

state populations for the forward-bias and reverse-bias system driven by a BEC characterized by a

frequency ~ωB = ~ω1 +U also confirms that the dynamics are in general agreement with the given

physical interpretation.

Performing the same signal-to-noise ratio implemented in Section 5.2.2.1, and assuming

U/~ ∼ 103 Hz, we obtain

RSN(t) ≃ 18
√

Hz
√
t (5.44)
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for the long-time-averaged behavior. This implies that a signal-to-noise ratio of 10 can be achieved

by time-averaging for ≃ 300 ms, and a ratio of 18 by time-averaging for one second. Since the

upper limit on the lifetime of a BEC experiment is on the order of a second, we anticipate that the

diode behavior should be observable and resolvable in an experiment.

5.4 Conclusion

In this chapter, we applied the mathematical tools that we developed in the previous chapters

to fabricate theoretically optical lattice atomtronics systems in an open quantum system setting.

In this novel approach to atomtronics, the coupling of multiple reservoirs with different chemical

potentials induced an atomic current across the optical lattice in question. After deriving the

system current operator, we introduced a strongly-interacting boson reservoir model. With this

model, we studied a variety of highly-customized optical lattices. In doing so, we were able to

recover the electronic-like behavior of a semiconductor diode, FET, and BJT in these systems. A

SNR analysis was performed for the atomtronic diode using the quantum regression theorem where

we concluded that an SNR of ∼ 10 should be achievable by time-averaging the current for about

one second. This implied that the functionality of the diode should be observable given the current

state of experiments in this field. Afterwords, we demonstrated that these components could be

used to build basic logic structures such as the AND gate.

We then implemented a weakly-interacting boson reservoir model, where the optical lattice

is driven by a coherent BEC. The resonant nature of the BEC interacting with the system led

to resonant responses in the current dynamics. Applying this reservoir model to the atomtronic

diode, we were able to recover an asymmetric response. However, the resonant response was a sharp

feature peaked about the resonance condition. The SNR of the BEC-driven diode at its maximal

current response was larger by a factor of two when compared to the strongly-interacting reservoir

model.



Chapter 6

Time-Dependent Open Quantum Systems

In the previous chapter, we demonstrated how the steady-state behavior of diodes and tran-

sistors can be realized utilizing atoms in optical lattices. Following the development of traditional

electronics, we were able to recover elementary logic gates from the atomtronic transistors. We

illustrated the AND gate in the last chapter. By similar simulations, we have also verified the be-

havior of the NOT, OR and NAND gates in optical lattice systems. From an electronics standpoint,

the verification of these devices ends the discussion of steady-state, or combinatorial, logic behavior

since, in principle, any universal computation can be constructed out of NAND and NOR gates

alone. The next level of complexity in electronic circuitry involves the sequential logic components.

These are pulse-driven devices that add the potential for memory and storage of information.

Similar to the NAND and NOR gates in combinatorial logic, an SR flip-flop is a fundamental

building block for all sequential logic circuits. This device can be utilized as a memory element,

where a bit of information can be stored or cleared. It is a four port device with inputs S, R and

outputs Q, Q̄. This device is a pulse-driven, as opposed to a steady-state, device. Its basic function

is to set a signal Q by sending an electronic pulse through the S channel. This stored signal can

then be reset by sending an electronic pulse through R, which changes the signal from Q to Q̄. The

truth table for a set-reset device is provided in Table 6.1. The functionality of this device crucially

relies on the hysteresis behavior that when both S and R are on at the same time, the final state

remains as it was before and is thus nondeterministic. That is, S = 1, R = 1 has two valid solutions

where the state can either be Q or Q̄. The specific solution depends on the condition of the system
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SR Flip Flop Truth Table

State S R Q Q̄ Action

Set
1 0 1 0 Set
1 1 1 0 No change

Reset
0 1 0 1 Reset
1 1 0 1 No change

Invalid 0 0 × × ×

Table 6.1: The truth table for the SR flip-flop. This device, which exhibits a bistability for s = 1
and R = 1, is capable of storing state information.

before S and R were simultaneously on. The overview of the SR flip-flop makes clear important

role that bistabilities play in the functionality of this class of devices. Investigating the bistable

behavior of a cross-coupled transistor circuit reveals that the atomtronic analogs of this class of

devices require effective atomic transport across off-resonant system junctions.

In this chapter, after discussing basic atomtronic bistable circuitry, we conclude our open

quantum system treatment of atomtronics in optical lattices by demonstrating how effective atomic

transport can be achieved across energy-shifted lattices by modulating the barrier in between sites.

This topic makes extensive use of the time-dependent master equation formalism described in

Section 3.4.

6.1 Bistable circuitry

In order to understand and develop a synchronous device that functions like a flip-flop, we

first need to consider the role that bistabilities play in atomtronic circuits. In this section, we

initiate the study of bistable atomtronic circuitry. The goal of this work is to ultimately construct

and simulate the SR flip-flop.

The bistable circuit we study here is a cross-coupled transistor circuit illustrated in Fig-

ure 6.1(a). This circuit is a two input, two output device. When current simultaneously drives

both inputs, the system responds with one of two steady-state solutions: the current is measured ei-

ther through output A, or output B. The atomtronics analog to this bistable circuit is illustrated in
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Figure 6.1(b) where two driven atomtronic transistors are cross-coupled. A topologically-equivalent,

simpler version of this bistable circuit is illustrated in Figure 6.1(c).

There is an overarching theme that goes along with all of the atomtronics components that

we have developed thus far, but also encompasses the devices under consideration: atomic trans-

port can either be facilitated, or halted, by the strategic placement of energetic resonances and

mismatches. Immediately from this diagram we see a significant problem in the direct realization

of this device using the same general approach as before, since it requires atomic transport by

hopping between sites that are not degenerate in energy. It appears that our immediate problem in

developing the flip-flop, and thus the problem of understanding the functionality of bistable circuits

Figure 6.1: (a) Electronic schematic of a simple bistable circuit composed of two cross-coupled
transistors. If the cross couplings are highly resistive (not shown here), then when current is
introduced into the circuit, it either flows through transistor A or transistor B. (b) The equivalent
atomtronics circuit bistable. Here, the dotted lines represent couplings between the two transistors.
These couplings join together sites that are off-resonant. (c) A simpler, topologically-equivalent
bistable circuit to that of (b).
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is to resolve the question as to how one may obtain effective transport across non-resonant lattice

sites. In the following section, we show that effective atomic transport across an energetically-offset

lattice can be enhanced by modulating the tunneling barrier at the offset frequency difference.

6.2 Transport enhancement via tunneling barrier modulation

We can understand how atomic current can be enhanced across an off-resonant lattice by

studying a simple double well system with infinite on-site repulsion. Infinite repulsion allows us to

make the two-state approximation for the lattice site occupancy.

For a fixed complex tunneling rate J , a double well system exhibits a maximal current

response when the site energies are the same, i.e. ǫ1 = ǫ2 = ǫ. The Hamiltonian for this isolated

quantum system is

Ĥ0 = ǫâ†1â1 + ǫâ†2â2 + Jâ†1â2 + J∗â1â
†
2. (6.1)

For a system with a frequency difference ∆ between the two sites, the Hamiltonian is

Ĥ1 = ǫâ†1â1 + (ǫ+ ~∆)â†2â2 + Jâ†1â2 + J∗â1â
†
2. (6.2)

If we transform this Hamiltonian into an interaction picture that rotates with ~∆â†2â2, then the

interaction picture Hamiltonian is

H̃1 = ǫâ†1â1 + ǫâ†2â2 + Je−i∆tâ†1â2 + J∗ei∆tâ1â
†
2. (6.3)

Now, if J → Jei∆t, then

H̃1 = ǫâ†1â1 + ǫâ†2â2 + Jâ†1â2 + J∗â1â
†
2. (6.4)

That is, modulating the tunneling rate J at the gap frequency ∆, makes H̃1 = Ĥ0. Thus the

effective transport of the gapped system will exhibit the same current response of the energetically-

flat system if the barrier modulates at the gap frequency.

To verify this claim that modulating the barrier does, in fact, create the desired effect in

an open quantum system setting, we derive the corresponding time-dependent master equation.

We consider a reservoir which does not have any discontinuities that directly overlap with system
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energy differences. In doing so, the standard Born-Markov rules apply. Recalling from Section 3.4

that the time-dependent master equation is

dρ̂S

dt
= −iL̂S(t)ρ̂S − 1

~2
TrR

{

∫ ∞

0
dτ

×
[

ĤV ,
[

eiT
R t−τ

t
ĤS(t1)dt1/~e−iĤRτ/~ĤV e−iT

R t−τ
t

ĤS(t1)dt1/~e−iĤRτ/~, ρ̂Rρ̂S(t)
]]

}

.

(6.5)

Due to the fact that the mathematical operations on all of the terms in the memory kernel are the

same, and the similarity of these operations to those performed in Section 5.2, we go through a

single term here at an accelerated pace.

Assuming the interaction Hamiltonian that couples a reservoir to system lattice site q is

ĤV = ~
∑

k

(gk â
†
qR̂k + g∗kâqR̂

†
k), (6.6)

we examine the term,

∫ ∞

0
dτTrR

{

∑

k

|gk|2R̂†
ke

−iĤRτ/~R̂ke
iĤRτ/~ρ̂R

}

âqe
iT

R t−τ
t

ĤS(t1)dt1/~â†qe
−iT

R t−τ
t

ĤS(t1)dt1/~ρ̂s. (6.7)

Momentarily shifting our focus to the trace,
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TrR

{

∑

k

|gk|2R̂†
ke

−iĤRτ/~R̂ke
iĤRτ/~ρ̂R

}

=
∑

k

|gk|2〈R̂†
kR̂ke

−iĤRτ/~R̂ke
iĤRτ/~〉

=
∑

k

|gk|2〈R̂†
kR̂k〉eiω̄kτ

≃ lim
ǫ→0

|g(ω̄0)|2D(ω̄0)

∫ ∞

0
eiω̄τ−ǫτdω̄

= 2π|g(ω̄0)|2D(ω̄0)δ(τ)

= Γδ(τ) (6.8)

where D(ω̄0) is the density of states and |g(ω̄0)| is the system-reservoir coupling. Both are taken

to be constant about the system transition frequencies. Here we have taken ωµ to be much larger

than the system transition frequencies. Putting this back in equation (6.7), we get

Γ

∫ ∞

0
dτδ(τ)âqe

iT
R t−τ

t
ĤS(t1)dt1 â†qe

−iT
R t−τ

t
ĤS(t1)dt1 ρ̂s =

Γ

2
âqe

iT
R t

t
ĤS(t1)dt1 â†qe

−iT
R t

t
ĤS(t1)dt1 ρ̂s

=
Γ

2
âqâ

†
qρ̂s. (6.9)

That is, under the Markov approximation, the time-ordered unitary operators become unity. This

is due to the fact that in the Markovian limit, the memory kernel is effectively delta-correlated.

Thus, it is guaranteed to decay on a much more rapid timescale than the system. As a result,

despite the fact that there is a time-dependence in the system Hamiltonian, the memory kernel

remains time-independent. Thus, the master equation for a time-dependent two-site lattice, where

site 1 is being driven by an atomic reservoir and site 2 is coupled to the zero temperature vacuum

is

dρ̂S

dt
= − i

~
[ĤS(t), ρ̂S ]− Γ1

2
(â1â

†
1ρ̂S + ρ̂Sâ1â

†
1 − 2â†1ρ̂S â1)−

Γ2

2
(â†2â2ρ̂S + ρ̂S â

†
2â2 − 2â2ρ̂Sâ

†
2) (6.10)

where

ĤS(t)

~
= ω1â

†
1â1 + ω2â

†
2â2 + Jeiδtâ†1â2 + Jeiδtâ1â

†
2. (6.11)

We solve equation (6.10) numerically, propagating ρ̂S(t) as a function of time. To show that

the full solutions are, in fact, identical, we plot the populations of the four states of the system

(|00〉, |01〉, |10〉, and |11〉) as a function of time. Figures 6.2(a-c) are plots of the populations
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Figure 6.2: Numerical verification that oscillating an off resonant junction at the gap frequency
enhances the effective transport. (a) Population as a function of time for a flat, two-site lattice. (b)
Population as a function of time for a two-site lattice with zero-point frequencies ω1 and ω2 + ∆.
(c) Population as a function of time for the two-site lattice defined in (b), but with a tunneling
rate that oscillates at frequency ∆. The evolution of the gapped, oscillatory system (c) is identical
to the evolution of the flat, stationary lattice (a). As a result, current flows through the systems
modeled in (a) and (c) in the exact same manner.
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of the system’s four Fock states as a function of time (in arbitrary units). Figure 6.2(a) tracks

the populations for the case where ω1 = ω2 with δ = 0, i.e. the resonant lattice with constant

J . The system starts in the initial Fock state |00〉 and decays to a specific mixture of all four

states. The current is proportional to the average number of atoms on the right lattice site. Here

〈N2〉 ≃ 0.48. Figure 6.2(b) are plots of the system populations given ω2 = ω2 + ∆ with δ = 0

(the off-resonant lattice with constant J) starting with the same initial condition. Here the system

relaxes predominantly to the |10〉 state. The average number occupancy 〈N2〉 ≃ 0.0002 confirms

that atomic transport across is significantly reduced in the off-resonant lattice system. Figure 6.2(c)

are plots of the system Fock states given ω2 = ω1 + ∆ with δ = ∆ (the off-resonant lattice, gap-

modulated J). Here the evolutions of the populations are identical to the evolutions in Figure 6.2(a).

As a result, 〈N2〉 calculated here is identical to 〈N2〉 when ∆ = δ = 0.

Therefore, we conclude that effective transport can be achieved through intra-system off-

resonant junctions by modulating the corresponding barrier at the gap frequency.

6.3 Conclusion

In this chapter we reviewed classical sequential logic behavior and discussed the importance

of bistabilities in these systems. Realizing such behavior in an optical lattice requires effective

transport across off-resonant junctions. Using the time-dependent master equation formalism, we

demonstrated how modulating the tunneling barrier at a frequency corresponding to the energy

difference allows for effective transport in a well system with an energy gap.



Chapter 7

Atomtronics with Photons in Optical Cavities

Now we discuss the possible realization of atomtronics components in an entirely different

physical system—photons in nonlinear cavities. This nonlinear optical system, illustrated in Fig-

ure 7.1, has a few significant advantages over the neutral atom counterpart. First, a ‘current’

signal comprised of photons tunneling through nonlinear cavity networks can be many orders of

magnitude faster than an atomic current tunneling through optical lattice barriers [69]. The faster

dynamics allow for a respectable signal-to-noise ratio to be achieved in a much shorter time interval.

Second, the site-by-site optical lattice systems proposed in the previous two chapters are difficult

to realize experimentally; at the moment, there are only a handful of labs in the world that are

able to precisely construct and manipulate the lattices needed to realize the proposed devices. In

contrast, coupled cavity arrays could potentially be easier to independently fabricate. Finally, from

a practical device standpoint, photons can travel through optical networks with less dissipation,

scattering, and thermal loss than is possible with their electronic counterparts. Consequently, these

Figure 7.1: Illustration of a driven nonlinear coupled cavity array coupled to the environment at
both ends.
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devices could potentially find application in optical computing and signal processing.

As demonstrated in Section 2.2.4, recovering the dynamics of the atomtronic systems in an

optical framework is possible when a χ(3) nonlinear material is introduced to the cavities. In a

second quantized form, the nonlinear cavity network represents an alternative realization of the

Bose-Hubbard model. With that in mind, and derived from our results for the atomtronic systems,

these systems will only recover the desired current dynamics if they are capable of physically

supporting the parameter regime where U ≫ J,~Γ.

We begin this chapter by presenting our model system driven by a continuous wave (CW)

laser, as well as a stochastic pulse laser. The system responses to these two driving mechanisms

are then explored through numerical experiments. From these experiments, we locate parameter

regimes where the system exhibits large asymmetric current responses. Afterwords, we review

possible experimental implementations of the atomtronics diode in coupled high Q etalon cavities,

toroidal microcavities, and photonic bandgap nanocavities.

7.1 Driving the few-photon optical diode

If the coupled cavity system is driven by a continuous wave (CW) laser, the driving field can

be treated classically. For driving frequency ωL, and under the rotating wave approximation, the

Hamiltonian for a system whose cavity q is coherently driven is

ĤS =

N
∑

j

~ωj â
†
j âj +

Uj

2
â†j â

†
j âj âj +

∑

〈j,k〉

Jjkâ
†
j âk + J∗

jkâj â
†
k + ~ΩL

(

â†qe
−iωLt + âqe

iωLt
)

, (7.1)

Transforming into an interaction picture that rotates with the driving field, a transformation defined

by the unitary operator

Û(t) = e−i
P

j ωLâ†
j âjt (7.2)

yields

H̃S =
N
∑

j

~(ωj − ωL)â†j âj +
Uj

2
â†j â

†
j âj âj +

∑

〈j,k〉

Jjkâ
†
j âk + J∗

jkâj â
†
k + ~ΩL

(

â†q + âq

)

, (7.3)

which is a simpler equation to solve numerically.
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In addition to the continuous wave laser drive, a system under the influence of a series of

random laser pulses can be modeled by substituting

ΩL → ΩL(t) = Ω0

∑

j

θ(t− tj)e
−ξ(t−tj ) (7.4)

where ξ is the uniform pulse width, Ω0 is the pulse strength, θ(t − tj) is the Heaviside function

centered at tj, and the pulses are assumed have a Poissonian spectrum with pulse number den-

sity N/T = λ, where T defines the time-averaging of the classical correlation function. For this

stochastic drive, the classical field-field correlation function is

〈E∗(τ)E(0)〉 =
1

T

∫ T

0
dtE∗(τ + t)E(t)

∝ Ω2
0

1

T

N
∑

j,k

∫ T

0
dtθ(t+ τ − tj)θ(t− tk). (7.5)

Assuming that ξ ≫ λ,

〈E∗(τ)E(0)〉 ∝ θ(t− tk)e
−ξ(τ+2t−tj−tk)

= Ω2
0

1

T

N
∑

k=1

e−ξτ

∫ T−tk

0
dte−2ξt

= Ω2
0

1

T

1

2ξ

N
∑

k=1

e−ξτ
[

1 − e−2ξ(T−tk)
]

(7.6)

In the limit that T → ∞,

〈E∗(τ)E(0)〉 ∝ Ω2
0λ

2ξ
e−ξτ . (7.7)

This also happens to be the classical correlation function for coherent drives undergoing phase diffu-

sion [51] as well as other stationary Markov processes such as Gaussian amplitude fluctuations [70].

Thus, the stochastic pulse drive model encompasses the physics of a larger class of driving fields.

7.2 Theoretical prediction of the photon diode

From equation (7.3), the forward-biased coherently driven system Hamiltonian for the optical

diode is

H̃S = ~(ω1 − ωL)â†1â1 + (~ω1 + U − ~ωL)â†2â2 +
U

2

(

â†1â
†
1â1â1 + â†2â

†
2â2â2

)

+J
(

â†1â2 + â1â
†
2

)

+ ~ΩL

(

â†1 + â1

)

, (7.8)
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where ω1 is the frequency of cavity 1, ω2 = ω1 +U/~ is the frequency of cavity 2, U is the effective

photon-photon interaction energy, taken to be the same for the two cavities, J is the tunneling

rate between cavities and ΩL is the Rabi frequency of the laser driving cavity 1. The reverse bias

Hamiltonian is the same, except with the laser coupled to cavity 2, i.e.

H̃S = ~(ω1 − ωL)â†1â1 + (~ω1 + U − ~ωL)â†2â2 +
U

2

(

â†1â
†
1â1â1 + â†2â

†
2â2â2

)

+J
(

â†1â2 + â1â
†
2

)

+ ~ΩL

(

â†2 + â2

)

. (7.9)

We use the Fock state notation |n,m〉 to denote n photons in the left cavity and m photons in the

right, so that the analysis runs parallel to our previous discussions of the atomtronic diode.

In our model, we couple both ends of the cavity array to a broad continuum of zero-

temperature vacuum modes. Since there are no discontinuities in the reservoir structure, we can

employ the standard Born-Markov result. The equation of motion for the reduced density operator

of the system is then

dρ̂S

dt
= − i

~

[

H̃S, ρ̂S

]

−Γ1

2

(

â†1â1ρ̂S + ρ̂sâ
†
1â1 − 2â†1ρ̂S â1

)

−Γ2

2

(

â†2â2ρ̂S + ρ̂sâ
†
2â2 − 2â†2ρ̂Sâ2

)

(7.10)

where Γ1,2 are the decay rates out of cavities 1 and 2.

Below we present simulations of this Hamiltonian. We calculate the occupancy of site 2 for

the forward-bias and reverse-bias driven Hamiltonians as a function of the drive frequency and

amplitude. It is sufficient to calculate the occupancy of site 2 in order to characterize the system’s

current response since the current out of the system is directly proportional to this value. The ratio

of forward-bias to reverse-bias site occupancies is then equal to the system’s asymmetric current

response. For the constant drive we perform the steady-state analysis laid out in appendix A. The

asymmetry turns out to be fairly sensitive to both the drive frequency and strength. Therefore, in

order to find the maximum asymmetric device response, we generate a surface plot of the system’s

response as a function of the driving laser’s frequency and strength.

The data for the first numerical experiment in this series is displayed in Figure 7.2 and uses

parameters ~Γ1 = ~Γ2 = J = 10−2U , which satisfy U ≫ J,~Γ. Figure 7.2(a) shows the system’s
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Figure 7.2: Here we find the maximum asymmetric current response for the few-photon optical
diode under a CW laser drive assuming ~Γ1 = ~Γ2 = J = 10−2U . (a) A surface plot of the current
asymmetry as a function of ωL and Ω. The current response is nonlinear with respect to both
parameters, but the surface plot allows us to find a parameter set that generates an asymmetric
current response of over 7000 for these parameters. Using the optimal choice of ωc, we plot (b)
the asymmetric response as a function of ωL, the average number occupancy of site 2 in the (c)
forward-bias direction and (d) reverse-bias direction.

asymmetric response as a function of the drive strength and frequency. This graph shows a nonlinear

response of the 〈N2〉 as a function of both ωL, and ΩL. Figures 7.2(b-d) show the asymmetric,

forward-bias, and reverse-bias responses as a function of drive frequency for ΩL ≃ 0.07U/~, the value

of the drive strength that yields the maximal asymmetry. An interesting feature in Figures 7.2(b-c)

is the location of the resonance response.

There is a dwarfed peak at ω = ω1 + U/~. This peak is small due to the fact that the drive

is solely resonant with the |1, 0〉 → |2, 0〉 transition. If the system is initially empty however, the

|0, 0〉 → |1, 0〉 transition is necessarily off-resonant to the drive field. An analysis of the Fock state

population reveals that for ΩL = ω1 +U/~, there is virtually no population in the |2, 0〉, and |1, 1〉
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sites; the population is mainly found in the |0, 0〉 and |0, 1〉 states. This implies that the asymmetric

response for this driving frequency is actually due to a second-order, off-resonant transition where

the drive field finds itself resonant with the |0, 1〉 state.

There is a comparably much larger response that occurs at ωL = ω1 + U/(2~). This is

exactly half the energy needed for two photons to excite the system. When the system is driven

at this two-photon transition, the Fock state analysis confirms that the system is being excited

into the two-photon manifold with nonnegligible occupancies of states |2, 0〉 and |1, 1〉. Thus the

asymmetric current characteristic in this case is due to a similar mechanism to that responsible for

the atomtronic diode to operate. The maximal asymmetric response observed in this system is

〈ÎFWD〉
〈ÎREV 〉

≃ 7.2 × 103. (7.11)

This value improves as U is increased and J is decreased, since both actions suppress second order

tunneling events.

For the next numerical experiment presented in Figure 7.3, we use the parameters

~Γ1 = ~Γ2 = 5 × 10−2U , and J = 10−2U . As seen in these plots, the greater cavity decay

rate (or smaller cavity finesse) yields similar features, with an asymmetric value of

〈ÎFWD〉
〈ÎREV 〉

≃ 4.5 × 102, (7.12)

i.e. more than an order of magnitude less. The reduction in overall cavity finesse can be interpreted

to cause more photons to leak out of cavity 1 before they have the opportunity to tunnel into cavity

2, from where they can be lost and contribute to the photon current. Thus the current value that

we measure here is less in magnitude than the earlier case.

Finally, we investigate the system’s response to a pulse drive. The results are illustrated in

Figure 7.4 where we drive the system with a single pulse. As discussed in Section 7.1, this result

models a low density chain of pulses, but could equally well represent a drive of constant intensity

with phase diffusion, as well as a drive with amplitude fluctuations. Here the parameters we use

are ~Γ1 = ~Γ2 = J = 10−2U , with the pulse width ~η = 2 × 10−2U . Since the parameters are the



103

Figure 7.3: Here we find the maximum asymmetric current response for the few-photon optical
diode under a CW laser drive assuming ~Γ1 = ~Γ2 = 5U10−2, and J = U10−2. (a) A surface
plot of the current asymmetry as a function of ωL and Ω. The current response is nonlinear with
respect to both parameters, but the surface plot allows us to find a parameter set that generates
an asymmetric current response is reduced from 7000 to ∼ 450 due to the larger cavity decay rate.
Using the optimal choice of ωc, we plot (b) the asymmetric response as a function of ωL, the average
number occupancy of site 2 in the (c) forward-bias direction and (d) reverse-bias direction.

same as in the first numerical experiment, these results can be compared to those in the first set.

As can be seen in Figure 7.4, the main effect of the pulse drive is a broadening of the response ∼ ξ

at the expense of the overall magnitude of the asymmetry. Here the maximal current asymmetry

is

〈ÎFWD〉
〈ÎREV 〉

≃ 3 × 103, (7.13)

which is approximately half the value seen for the continuous laser drive earlier.
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Figure 7.4: Here we find the maximum asymmetric current response for the few-photon optical
diode under a pulsed laser drive assuming ~Γ1 = ~Γ2 = J = U10−2. (a) A surface plot of the
current asymmetry as a function of ωL and Ω. The current response is nonlinear with respect to
both parameters, but the surface plot allows us to find a parameter set that generates an asymmetric
current response of ≃ 3000. Using the optimal choice of ωc, we plot (b) the asymmetric response
as a function of ωL, the average number occupancy of site 2 in the (c) forward-bias direction and
(d) reverse-bias direction.

7.3 Exploring experimental realizations of the photon diode

In this section we investigate specific possible realizations of our photon diode. We first

consider experiments that involve single to many EIT atoms coupled to high finesse etalon cavities.

Afterwords, we examine systems comprised of single EIT atoms coupled to toroidal microcavities.

Finally, we conclude this section with a discussion of single quantum dot-doped photonic band-gap

nanocavities. The advantages and shortcomings of each of these systems is discussed.
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7.3.1 Single atom EIT cavity QED as a few photon diode

We can determine whether or not it is possible to realize the few-photon optical diode in an

etalon cavity QED experiment involving a single EIT atom by checking if such systems support the

parameter regime J,~Γ ≪ U . Here we take optimistic cavity QED parameters from Kampschulte

et al. [71], where the cavity has a mode waist of w0 = 23 µm, a length of l = 150 µm, a finesse of

F = 1.2× 106, we also take (g,Γ, γ)=2π(120, 40, 2.6) MHz, where g is the atom-field coupling, Γ is

the decay rate of the cavity and γ is the decay rate of the atom.

From equation (2.88), the EIT generated Kerr nonlinearity is

U = −~
g2
24

∆

(

g13
Ωc

)2

. (7.14)

Taking (g13/Ωc)
2 = 0.1, which satisfies the validity conditions in equation (2.87) and assuming

∆ ∼ 109 Hz, which is an approximate value for experiments using alkali atoms [55] , we see that

U

~
≃ −g

2
24

∆
10−1 ∼ 1MHz. (7.15)

Since this implies ~Γ/U ∼ 40, which is far from ~Γ ≪ U , it seems like the diode cannot be realized

in such a cavity QED system. Reducing the length of the cavity may help, since it leads to a greater

atom-cavity coupling term. Here we look at the ratio Γ/U in greater detail to see if that is the

case. We first note that

Γ =
ωax

F =
2πc

λaxF
∼ 2πc

lF (7.16)

where c is the speed of light, λax is the wavelength of the axial mode and l is the length of the

cavity. Noting that

|U |
~

≃ 10−1 g
2
24

∆
=

µ2
24ω0

2πǫ0~V∆
10−1 ≃ µ2

24ω0

2πǫ0~lw2
0∆

10−1, (7.17)

where µ24 is the dipole moment of the |2〉 → |4〉 transition,V = lw2
0 is the effective mode volume of

the cavity ǫ0 is the permittivity of free space, and ω0 is the frequency resonant with the |1〉 → |3〉

atomic transition (in rad/sec). Therefore

~Γ

U
∼ (40π2~cǫ0)

(

∆

µ2
24ω0

)(

w2
0

F

)

. (7.18)
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From this expression, we conclude that the ratio is independent in the length of the cavity. Setting

the atomic parameters aside, this ratio can be reduced by decreasing the mode waist of the cavity,

and increasing the cavity finesse. However, for ∆ ∼ 109 Hz, µ24 ∼ 10−29 Cm, and ω0 ∼ 2π×1014 Hz,

and w0 ∼ 10−5 m, we would need F ∼ 1010 in order to achieve a ratio of ~Γ/U ∼ 10−2. Such a

finesse lies well beyond what is experimentally obtainable in modern state-of-the-art experiments.

7.3.1.1 Many atom EIT cavity QED as a few photon diode

It was originally proposed by Imamoğlu et al. that adding more identically prepared EIT

atoms to the cavity would linearly increase the magnitude of U . If this was true, than an arbitrarily

large Kerr nonlinearity could be achieved in the cavity [55]. This is, however, not the case if

one is concerned with working in the few-photon regime. As pointed out by others [53, 54, 56],

and explained later by Fleischhaur, Imamoğlu, and Marangos [48], in the few-photon regime, the

system undergoes a collective enhancement. This enhancement modifies the validity condition from

|g13|/|Ωc| ≪ 1 to
√
N |g13|/|Ωc| ≪ 1 where N is the number of atoms. This new validity condition

places an upper bound on the overall magnitude of the nonlinearity. The argument provided in

reference [48] basically goes as follows. The non-interacting effective Hamiltonian for the N -atom

system is

H̃
(N)
eff = ~

[

N
∑

j=1

δσ̂
(j)
22 + (δ − iγ3)σ̂

(j)
33 + (2δ + ∆ − i

γ42

2
)σ̂

(j)
44 + g13(â

†σ̂
(j)
13 + âσ̂

(j)
31 )

+g24(â
†σ̂

(j)
24 + âσ̂

(j)
42 ) + Ωc(σ̂

(j)
32 + σ̂

(j)
23 )

]

(7.19)

where σ̂
(j)
nm is the atomic operator for atom j, and we have assumed all of the atoms to be coupled

to the cavity in exactly the same way. This is the Tavis-Cummings Hamiltonian. Assuming that

there is only one photon in the cavity, the N -atom ground state

|1N 〉 ≡ |1, 1, ..., 1〉 (7.20)

couples only to the following symmetric states via the N -atom Hamiltonian:
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|1N−12〉 ≡ 1√
N

N
∑

j=1

|1, ..., 2j , ..., 1〉 (7.21)

|1N−13〉 ≡ 1√
N

N
∑

j=1

|1, ..., 3j , ..., 1〉. (7.22)

Taking matrix elements of the N -atom Hamiltonian we get

〈1N |H̃(N)
eff |1N−13〉 = ~

√
Ng13 (7.23)

〈1N−12|H̃(N)
eff |1N−13〉 = ~Ωc. (7.24)

Thus, following the procedure outlined in Section 2.3.1 were we look for steady-state solutions of

the N -atom system in the 1-photon manifold of the cavity:

|Ψ(N)〉1 = |n = 1〉|1N 〉 + c2|n = 0〉|1N−12〉 + c3|n = 0〉|1N−13〉, (7.25)

we conclude that

Ĥχ(3) ≃ −~N
g2
13g

2
24

Ω2
c∆

â†â†ââ

≡ Uâ†â†ââ, (7.26)

but under the restriction that
(√

Ng13
Ωc

)2

≪ 1. (7.27)

Therefore, the overall magnitude of χ(3) cannot be enhanced if we work in this approximation,

while simultaneously restricting ourselves to few photon cavity QED. The few photon regime is of

particular interest for realizing our atomtronic components in this new system.

There is an additional, possibly helpful, effect that occurs for many-atom cavity QED systems.

As originally pointed out independently by Müller et al. [72] and Lukin et al. [73], the many atom

EIT media leads to a reduction in the cavity linewidth. Since we require U ≫ ~Γ, J and, recalling

from Section 2.2.3 that J ∼ ~Γ, the reduction in the linewidth Γ might help us achieve this

parameter hierarchy in this EIT cavity QED system.

Recall from equation (2.16) and equation (2.21) that

Ic
Ii

=

T
(1−R)2

1 + 4F2

π2 sin2
(ϕ

2

) (7.28)
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implies that the linewidth can be determined from

π

F ≃ ϕ. (7.29)

For an index of refraction n = 1, we found

Γ0 =
ωax

F . (7.30)

From equation (2.71) |δ| ≪ |Ωc|, |γ| implies

χ(1)(δω) = N
1

ω0

(

g13
Ωc

)2

δω (7.31)

where ω0 is the cavity resonance. Thus, the index of refraction

n = (1 + χ(1))1/2 ≃ 1 +
1

2
χ(1) = 1 +

N

2

1

ω0

(

g13
Ωc

)2

δω ≡ 1 +
D

ω0
δω (7.32)

where, from our EIT validity condition,

D =
N

2

(

g13
Ωc

)2

≪ 1. (7.33)

For this index of refraction,

π

F ≃ φ = 2π
ω

ωax
n ≃ 2π

ω0 + δω1/2

ωax

(

1 +
1

ω0
Dδω1/2

)

=
2π

ωax

(

ω0 +Dδω1/2 + δω1/2 +
D

ω0
(δω1/2)

2

)

(7.34)

≃ 2π

ωax
δω1/2ωax (1 +D) (7.35)

where we have taken ω0 to be a harmonic of ωax. The first and fourth terms of equation (7.34) are

neglected because the first was equal to a phase shift of 2π and the fourth term is much smaller than

the rest due to the optical frequency in the denominator. Expressing this new linewidth Γ = 2δω1/2

in terms of the empty cavity line with Γ0 we get

Γ =
Γ0

1 +D
. (7.36)

We conclude that there is a narrowing of the cavity linewidth. However, since we must be

in the few-photon regime for the atomtronic components to function, the linewidth narrowing is
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negligible since the magnitude of D is restricted by equation (7.33). Note that, since the Finesse

is solely related to the reflectivity of the cavity, the axial mode spacing gets reduced by a factor of

1/(1 +D) as well.

From the fact that the Kerr nonlinearity obtains only a limited enhancement from the in-

clusion of several atoms in the cavity, and the fact that the linewidth does not get significantly

reduced in the few photon regime, we conclude that etalon cavity QED systems are probably not

suitable for the experimental realization of the few photon optical diode.

7.3.2 Toroidal microcavities as a few photon diode

In the context of realizing the few photon diode, coupled toroidal microcavities have a major

advantage over their etalon counterpart: the cavities are coupled together via evanescent coupling

with a tapered fiber. As a result, the effective cavity-cavity coupling rate can be easily tuned by

changing the relative distance between the cavity and the fiber.

Recently Aoki et al. have observed strong coupling between single atoms and these microcav-

ities [40], thus EIT atoms could provide these cavities with a Kerr nonlinearity. Here we examine

the suitability of toroidal cavities for the realization of the few photon diode by using the theoretical

estimates provided by Spillane et al. [42]. The analysis they provide is for toroidal cavities that are

driven by a laser with wavelength λ = 852 nm, which is the relevant transition for strong-coupling

cesium, and is a relevant transition for EIT. We assume a toroidal cavity with principal diameter of

20 µm, and minor diameter of 1 µm. According to Spillane, this cavity can have an effective mode

volume of V = 50 µm3, a quality factor Q = 1010, and it is possible to acquire an atom-cavity

coupling rate of g ≃ 420 MHz. Since the corresponding driving frequency is ν0 ≃ 3.5 × 1014 Hz,

this cavity has a linewidth of Γ ≃ 3.5 × 104 Hz, which is quite narrow compared to the best high

finesse etalon cavity linewidth achievable. For a single atom interacting with the cavity, recall that

U = −~
g2
24

∆

(

g13
Ωc

)2

. (7.37)

Assuming ∆ = −1.5 × 109 s−1 [75], and taking (g13/Ωc)
2 = 0.1, and assuming g24 = g13, we get a
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Figure 7.5: (a) An illustration of an experiment involving the coupling of a microtoroid to a single
atom. Reprinted with permission from reference [40]. (b) An illustration of a silica toroid coupled
to a tapered fiber waveguide as well as an image of an actual toroidal cavity. Reprinted with
permission from reference [74].

nonlinear interaction of U ≃ 1.8 × 107. Therefore,

Γ

U
< 0.002. (7.38)

Using this ratio in our simulation of the asymmetric current response for the few photon diode, we

obtain current asymmetries greater than 3 × 105.

The fact that the tapered fiber coupled cavities make J a tunable parameter, it is possible

for the system to be in the regime where J ≪ U as well. This puts toroidal cavities coupled to

cesium atoms well within the required parameter regime to realize the few photon diode.

It should be noted that state-of-the-art experiments have fallen appreciably short of the

projected values used above. For pure silica toroids, Q ∼ 108 is closer to the current experimental

upper bound than 1010. Since the ratio Γ/U is proportional to 1/Q, this seems to pose a problem
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for immediate realization of the diode. However, Hartmann and coworkers [76] have suggested an

alternative three-level, standard lambda scheme where the atoms are prepared in an antisymmetric

metastable state. These single atoms have roughly the same nonlinear response as Imamoğlu’s four-

level scheme, but the multiple-atom situation is predicted to be quite different. Brandão, Hartmann

and Plenio [77] claim that, unlike the four-level scheme where collective enhancement prevented

the number of atoms from increasing the magnitude of the nonlinearity for the four-level atom,

their scheme experiences appreciable enhancement with the number of atoms. Their prediction is

that many-atom cavities can experience at least a two order of magnitude improvement over the

equivalent four-level scheme. Therefore, a loss in currently achievable Q could be compensated by

a gain in χ(3) from an alternative three-level scheme.

7.3.3 Photonic band-gap cavities as a few photon diode

Photonic crystals are constructed out of dielectric semiconductor slabs, where a periodic array

of holes are ‘drilled’ into the dielectric material allowing only a specific mode of light to propagate

through it. Cavities, even arrays of cavities, on the order of one micron or smaller can be formed

in these materials by surrounding unperforated slabs of dielectric in the crystal with lattice ‘defect’

holes. Due to their size, these cavities are called nanocavities.

This system is another potential candidate for realization of the few photon diode for the

following reasons: First, cavity arrays can be constructed and individually-tailored without much

difficulty. Post-fabrication cavity mode tuning is even possible [44] for these systems. Second, for

a fixed cavity mode and Q, the photon tunneling rate J is tunable as it is related to the spatial

separation of adjacent cavities [80]. Third, EIT atoms have been successfully embedded in rare-

earth crystals, where they have maintained their EIT characteristics [45]. As an alternative to an

EIT-generated Kerr nonlinearity, quantum dots can be embedded in the nanocavity. They can

significantly increase the Kerr nonlinear response [81] of the cavity. Fourth, the effective mode

volumes of these cavities can be ∼ 0.03 µm. This leads to a dramatic enhancement of the coupling

of the EIT atom or quantum dot to the cavity. Finally, quality factors have been observed to be



112

Figure 7.6: (a) (Top) Actual image of a ∼ 1 µm nanocavity housing a single quantum dot.
(a)(Bottom) Calculation of the electromagnetic mode inside the cavity and its overlap with the
quantum dot. Reprinted with permission from [78]. (b)(Top) The composition of a the quantum
dot. (b)(Bottom left) Actual image of a ∼ 0.5 µm nanocavity. (b)(Bottom right) Calculation of
the electromagnetic mode inside the cavity and its overlap with the quantum dot. Reprinted with
permission from reference [79]

∼ 1.4 × 105 for GaAs-based microcavities [82], and even larger for Si cavities, whose theoretical

upper limit was reported to be∼ 7× 107 [83]. These observed and projected Q values do not reach

the level achieved by toroidal cavities, but the enhanced atom/dot-cavity coupling can make up for

the loss in Q.

7.3.3.1 The giant Kerr EIT nanocavity

Here we compare Imamoğlu’s giant Kerr nonlinearity scheme for the etalon cavity to the same

system in a nanocavity. Assuming a reasonable, but optimistic value of Q ∼ 106, the wavelength

of light of the cavity resonance λ = 850 nm, and a mode volume of the nanocavity that is V = λ3,
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we obtain a cavity linewidth Γ ∼ 3.5 × 108 Hz and a nonlinear interaction U ∼ 9 × 108 Hz leading

to a ratio of Γ/U ∼ 0.4. This ratio is much better than it was for the etalon cavity, but still at

least an order of magnitude away from putting the system in a parameter regime where it can act

as a few photon diode.

7.3.3.2 The quantum dot Kerr nanocavity

For the quantum dot-doped nanocavity, we carry out a semiclassical analysis using the pa-

rameters from Fushman et al. [81]. In their article, a quantum dot was strongly-coupled to a

silicon-based two-dimensional nanocavity. This system, with a resonant wavelength of λ ∼ 10−6 m

and Q = 104 achieved a χ(3) = 2.4 × 10−10 (m2/Volt2).

The quantum dot decay rate was reported to be on the order 102 less in magnitude, which

makes it irrelevant for this analysis. The interaction energy (in units of Hz) generated by this Kerr

nonlinearity is

UKerr =
1

2π~

∫

ǫ0χ
(3)E4dVQD =

VQD

2π~
ǫ0χ

(3)E4 (7.39)

where VQD = 10−3V is the assumed volume of the quantum dot, and V is the volume of the cavity.

If we assume that V = λ3, using equation (2.25), we get

U =
χ(3)2πc2

ǫ0λ5
10−3. (7.40)

where c is the speed of light.

The decay rate of this system (in Hz) is

Γ =
c

λQ
. (7.41)

Therefore,

Γ

U
=

ǫ0
2π~c

λ4

Q

1

χ(3)
10−3 ∼ 0.02. (7.42)

These results indicate that it appears that quantum dot nanocrystal cavities should also be able to

function as a few photon diode device.



114

7.4 Conclusion

In this chapter, with the observation that coupled nonlinear cavity arrays can also be mod-

eled by the Bose-Hubbard model, we demonstrated how a few photon diode can be realized. We

performed theoretical analyses showing that, under a variety of qualitatively-different driving fields,

there exist parameter regimes where a two coupled cavity system exhibits a large asymmetry in

its photon current response. Following this, we examined three different systems in which the few

photon diode might be realized: high-finesse coupled etalon cavities, toroidal microcavities and

photon bandgap nanocavity systems. After determining that realization of the few photon diode in

an etalon cavity experiment was unlikely, we demonstrated that there is a strong possibility that it

can be realized in both toroidal cavities with EIT-generated Kerr interactions, as well as a quantum

dot-doped nanocavity.
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Conclusion

In this thesis, an open quantum system theory to study transport properties of atoms in

optical lattices, and photons in nonlinear cavities has been constructed.

In the field of open quantum systems, it is typically uncommon to come across system-

reservoir interactions where the spectral properties of the reservoir vary so strongly that they play

an important role in the problem. Since we chose to model fermionized boson reservoirs, which early

on yielded unphysical-diverging energy shifts, it was necessary for us to derive a non-Markovian

master equation treatment from first principles in order to formulate a satisfactory theory.

After confirming that our theory correctly modeled the behavior of these exotic system-

reservoir interactions for certain situations in which comparison with exact results was possible,

we applied the approach to generate a complete analogy of boson reservoir-driven optical lattices

with semiconductor electronic systems. The theories describing weakly-interacting and strongly-

interacting boson reservoir sources were described, and the device behavior of a diode, FET, BJT,

and AND gate were demonstrated theoretically.

In the context of understanding and developing an atom-optical analog of a fundamental

sequential logic gate known as a SR flip-flop, a time-dependent system analysis was performed to

confirm that effective transport across off-resonant lattice junctions could be achieved by modulat-

ing the tunneling barrier at the corresponding junction gap frequency.

Finally, the principles developed with ultracold atoms in optical lattices were applied to

nonlinear cavity QED environments. In these systems we discovered a parameter regime that is
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capable of realizing a few photon optical diode. An analysis of contemporary cavity QED systems

revealed that such a parameter regime lay within a region that is accessible experimentally.

8.1 Future work and outlook

Our work towards developing sequential atomtronic behavior has established the foundation,

concepts, and ideas of sequential logic. This is thus just the starting point from which a next

generation research program could be launched. The next step would likely involve the theoretical

modeling of the bistable BJT circuit in Section 6.1. The difficulty that must be overcome is the

existance of two off-resonant couplings, whose energetic gaps are not equal to each other. As

we have seen several times in this thesis, a single frequency can always be rotated out of the

system Hamiltonian making it effectively a time-independent problem. In general, for two unequal

frequencies, new theoretical techniques, such as an extension of Floquet theory, must be utilized in

the analysis.

The work presented here could be extended to study fundamental transport properties across

custom lattice structures, as well as to control the dynamics of such transport. Experimental tech-

niques are advancing rapidly in this field and it is important that the fundamental theoretical

framework advances at an equal pace in order that the dynamics and observables can be mod-

eled and understood. The rich potential for novel quantum signal processing with atoms, with

their comparatively complex internal level structure (when compared to electronics), and strongly

interacting photons, which can rapidly transition through components generating comparatively

minimal heat, motivates future work in these areas.
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Appendix A

Master Equation Solution Methods

In this appendix we present our method for solving for the matrix elements of the steady-state

system reduced density operator. For simplicity, we develop the technique from a master equation

in the standard Lindblad form. Consider the following master equation:

dρ̂S

dt
= − i

~
[ĤS, ρ̂S ] − Γ

2

(

â†âρ̂S + ρ̂S â
†â− 2âρ̂S â

†
)

. (A.1)

Projecting this equation the system eigenbasis, the 〈a|ρ̂S |b〉 matrix element becomes

d

dt
〈a|ρ̂S |b〉 = −iωab〈a|ρ̂S |b〉 −

Γ

2

(

Â†
anÂnm〈m|ρ̂S |b〉 + 〈a|ρ̂S |n〉Â†

nmÂmb − 2Âan〈n|ρ̂S|m〉Â†
mb

)

(A.2)

where |a〉, |b〉, |n〉, and |m〉 are all eigenstates of ĤS , Ânm = 〈n|â|m〉, and ωab = ωa − ωb are

eigenenergies of ĤS.

In matrix form, we get the following system of equations:

d

dt
P̂ = −iΩ ∗ P̂ − Γ

2

(

Â†ÂP̂ + P̂Â†Â− 2ÂP̂Â†
)

(A.3)

where 〈a|P̂|b〉 = 〈a|ρ̂S |b〉, 〈a|Ω|b〉 = ωab, 〈a|Â|b〉 = 〈a|â|b〉 and Ω ∗ P̂ is understood to be element-

by-element multiplication of Ω and P̂, i.e. 〈a|Ω ∗ P̂|b〉 = ωab〈a|ρ̂S |b〉.

We are concerned with steady-state behavior of equation (A.3). Thus we need to solve

0 = −iΩ ∗ P̂ − Γ

2

(

Â†ÂP̂ + P̂Â†Â− 2ÂP̂Â†
)

. (A.4)

Let’s assume that the dimensionality of the Hilbert space is n. Then, all of these matrices are

n × n. Instead of ‘brute force’ solving this system of equations for P̂, we move into a Liouville
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representation where the n × n matrix P̂ is stretched to an n2 × 1 vector denoted as ˆ̂P. In this

framework, we derive a super operator ˆ̂M whose dimension is n2 ×n2 such that equation (A.4) can

be written as

0 = ˆ̂M ˆ̂P (A.5)

Then, we can employ standard linear algebra tricks to solve this equation. Namely, the eigenvector

that corresponds to the zero eigenvalue is the steady-state solution. Once this is found, we can

repack ˆ̂P → P̂, the n× n density matrix, and normalize it, yielding

1

Tr
{

P̂
}P̂, (A.6)

which is the density matrix solution.

This method is much more numerically efficient than solving for the coupled system directly

due to the fact that the matrices that we’re dealing with are typically sparse. The trick is to

generate ˆ̂M properly, which we derive below.

We first define our unpacking algorithm. Given the density operator with elements P̂bc, we

map it onto the super operator space by

ˆ̂Pβ = ˆ̂P[n(b−1)+c] = P̂bc (A.7)

That is, the column vector ˆ̂P consists of taking the rows of matrix P̂, transposing them, and then

stacking them on top of each other in order. In this appendix, we use Roman letters for Hilbert

space elements and Greek letters for Liouville space elements throughout this derivation.

With the definition of ˆ̂P in place, we can construct ˆ̂M, which we do term-by-term. Consider

the first term of equation (A.4).

−iΩab ∗ P̂ab = −i ˆ̂Ωβ
ˆ̂Pβ

= −i ˆ̂Ωαδαβ
ˆ̂Pβ

≡ ˆ̂M1
ˆ̂P (A.8)

where δαβ is the Kronecker delta, or identity matrix for the n2 × n2 Liouville space. Therefore,

ˆ̂M1 = −i ˆ̂Ωαδαβ (A.9)
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Since the Kronecker tensor product is needed for the remaining terms, we define it here as

ˆ̂W = Û ⊗ V̂ (A.10)

such that

ˆ̂Wαβ = ˆ̂W[n(a−1)+c][n(b−1)+d] = ÛabV̂cd (A.11)

In this convention, the tensor product multiplies every element of Û by the matrix V̂.

Now consider second term of equation (A.4), which is of the form X̂P̂ where X̂ is the combined

matrix of all the operators on the left. Then,

X̂abP̂bc = ˆ̂Xαβ
ˆ̂Pβ (A.12)

where β = n(b− 1) + c implies that α = n(a− 1) + c. Therefore

ˆ̂Xαβ = ˆ̂X[n(a−1)+c][n(b−1)+c] = X̂abδcd = X̂ ⊗ 1̂. (A.13)

Thus

ˆ̂M2 = −
(

Γ

2
Â†Â

)

⊗ 1̂. (A.14)

Next, consider the form

P̂X̂ = P̂abX̂bc = ˆ̂Xαβ
ˆ̂Pβ. (A.15)

This time β = n(a− 1) + b and α = n(a− 1) + c. Consequently,

ˆ̂Xαβ = ˆ̂X[n(a−1)+c][n(a−1)+b] = δadX̂cb = δadX̂bc = 1̂⊗ (X̂T ), (A.16)

where (X̂T ) is the transpose of X̂. Therefore

ˆ̂M3 = −1̂⊗
(

(

Γ

2
Â†Â

)T
)

. (A.17)

Finally, we consider the expression of the form

X̂P̂Ŷ = X̂abP̂bcŶcd = ˆ̂Zαβ
ˆ̂Pβ. (A.18)

The implication of β = n(b− 1) + c and α = n(a− 1) + d is

ˆ̂Zαβ = ˆ̂Z[n(a−1)+d][n(b−1)+c] = X̂abŶdc = X̂abŶ
T
cd = X̂⊗

(

ŶT
)

(A.19)
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Thus,

ˆ̂M4 = ΓÂ⊗
(

(

Â†
)T
)

. (A.20)

Putting everything together, we get the following superoperator matrix equation:

0 = ˆ̂M ˆ̂P (A.21)

where ˆ̂M = ˆ̂M1 + ˆ̂M2 + ˆ̂M3 + ˆ̂M4.

Once the super operator ˆ̂M is constructed, its zero eigenvalue corresponds to the eigenvector

that is the steady-state of ˆ̂P. ˆ̂P can then be repacked ˆ̂P → P̂, and then normalized as described

above to yield the steady-state solution to ρ̂S projected onto the system eigenbasis. Once this is

done relevant observables can be calculated by tracing over the system degrees of freedom. For

example, the expectation value of system observable Θ̂S is then

〈Θ̂〉 = Trs[Θ̂ρ̂S ] (A.22)


