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Electric-Field Affected Low-Energy Collisions between Co-Trapped Ammonia and Rubidium

Thesis directed by Prof. Heather J. Lewandowski

This thesis describes the effect of an electric field on the interaction between rubidium and

ammonia at 100 mK. The ability to study low energy interactions between molecules and atoms

provides new tools to understand how the processes that govern these interactions work. For

example, the use of external electric and magnetic fields provides tools to spatially orient molecules

to show how this affects the dynamics of the interaction. The use of electric fields have been

proposed to affect dipole-dipole interactions, however we have showed that the space-orienting

effect of the field can have a significant effect even in the absence of dipole-dipole interaction. To

measure this effect, we trap ammonia molecules in a single quantum state using an electrostatic

trap. Rubidium atoms are trapped in a magnetic trap which is overlayed with the ammonia trap.

The two samples then interact with minimal center of mass collision energy and we measure the

elastic and inelastic cross sections by careful analysis of the ammonia trap-loss profile.
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the elastic cross section have in the ND3 trap loss profile. The measured decay profile

is also shown (black circles). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.8 Rb trapping potential with and without electric fields. . . . . . . . . . . . . . . . . 44

4.9 Rb trap dynamics. The Rb trap suffers from the electric field generated by the

electrostatic trap, causing a double exponential Rb-trap lifetime (right) as well as

a time-dependent trap width (left). This trap width is measured in the vertical

direction by ionizing the Rb (black squares). Monte-Carlo simulations (red) are run

to reproduce this time-dependent width profile and to extrapolate the effect in the

other two dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.10 Rb (red) and ND3 (black) trap widths. The trap widths are measured in the vertical

dimension by ionizing the Rb or ND3 . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.11 ND3 distributions in the electrostatic trap. . . . . . . . . . . . . . . . . . . . . . . . 51

4.12 ND3 velocity distribution vs position in the electrostatic trap. . . . . . . . . . . . . 52

4.13 ND3 phase space distributions in the electrostatic trap. . . . . . . . . . . . . . . . . 53

4.14 Grid points of simulations run (a) and false-color image of the resulting χ2
reduced (b).

Each grid point represents an elastic/inelastic cross section combination for which

a simulation was run. Each simulation generates a ND3 trap loss profile, such as

the ones shown in Figure 4.19 and the combination of all simulations generate the

contours shown in Figures 4.15 and 4.17. . . . . . . . . . . . . . . . . . . . . . . . . 56

4.15 Elastic and inelastic cross section for the 87Rb-14ND3 system. The contours indi-

cate the 1σ (68%), 2σ (95%), and 3σ (99.7%) levels. The green dot indicates the

theoretical prediction for the elastic and inelastic cross section in zero electric field. . 58

4.16 1σ confidence bounds for the elastic and inelastic cross sections with different isotopic

combinations of the Rb-ND3 system. . . . . . . . . . . . . . . . . . . . . . . . . . . 58



xiv

4.17 1σ confidence bounds for the elastic and inelastic cross sections with different electric

field strengths applied to the trap electrodes. Varying the electric field over this

range does not significantly affect the number of molecules below the electric field

saturation limit of the inelastic cross section. Therefore we do not expect to be able

to see an effect on the inelastic cross section . . . . . . . . . . . . . . . . . . . . . . 59

4.18 Plot of the the field strength sampled by the ND3 for three different electrostatic

trap voltages. The green line indicates where the electric field effect on the Rb-ND3

3 interaction reaches a saturation level. Above 5 kV/cm, increasing the electric field

no longer changes the inelastic cross section. . . . . . . . . . . . . . . . . . . . . . . 60

4.19 ND3 trap loss profiles. The measured ND3 trap loss profiles are shown along with the

best matched results from Monte-Carlo simulations. The simulation results match

the measured data with a χ2
reduced ≈ 1.2, indicating strong agreement between the

model and the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.20 Effects of varying different parameters in the Rb-ND3 simulations. The Rb density

(a), Rb lifetime (b), and Rb width (c) are varied by ±1σ to determine their effect

on the measured cross section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Separatrix for the ND3 molecule in our Stark decelerator. The separatrix curve

shows the boundary between the stable and the unstable phase space for a variety

of different slowing angles. Molecules within the separatrix curve will be slowed and

transported to the end of the decelerator. The separatrix only takes into account

the longitudinal dimension of the phase space. . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Experimental set-up. It consists of a PZT-driven pulsed valve, molecular beam

skimmer, decelerator stages, linear time-of-flight mass spectrometer (TOFMS), and

a microchannel-plate ion detector. The decelerator consists of 150 electrode pairs

(not all are shown). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



xv

5.3 Bunching data.(a) Phase-space distribution for bunching (ϕ0 = 0◦). (b) A time-of-

flight (ToF) trace (blue) is shown with the results of a 3D Monte-Carlo simulation

(red). The horizontal axis for both (a) and (b) is the ToF to the detection laser,

which is 1.8 cm past the end of the decelerator. . . . . . . . . . . . . . . . . . . . . 68

5.4 Deceleration schemes using both the standard and alternate methods. (a) The timing

sequence to decelerate a packet of ND3 molecules from 415 m/s to various velocities is

shown with the time duration of each stage of deceleration plotted against the stage

number. (b) A schematic representation of the two deceleration schemes decelerating

from 415 m/s to 200 m/s. In the standard method of slowing, all 149 stages of

the decelerator are used to decelerate the molecules at a constant 46◦ phase angle.

In the alternate method of slowing, a high phase angle is chosen to aggressively

slow the molecules using only the first 97 stages. The remaining stages are then

operated at 0◦ phase angle to longitudinally and transversely guide the molecules to

the interaction/detection region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Time-of-flight traces comparing alternate and standard techniques. (a) Time-of-flight

traces showing the arrival time of the decelerated peaks using both the standard and

alternate methods of slowing. The traces shown are for a molecular beam that is

decelerated from an initial speed of 415 m/s to a final speed of 200 m/s. Using the

alternate deceleration method, the decelerated peak arrives 515 µs later than the

analogous peak using the standard method. The data for both the standard and

alternate methods are taken at 10 Hz, using a 15 mJ laser pulse focused with a 50

cm lens. Each point is averaged using 10 shots corresponding to a data acquisition

of approximately one point/second. The results from a 3D Monte-Carlo simulation

are also shown (lower curves). (b) Expanded time axis shown for clarity. . . . . . . 72



xvi

5.6 The (a) phase-space distributions at the end of the decelerator with (b) the corre-

sponding velocity histograms. The distributions for the alternate method (red) are

offset from the distributions for the standard method (blue) for clarity. The plots in

(b) represent a histogram of velocities taken with a 1 × 1 mm horizontal cut through

the molecular packet in the transverse direction. . . . . . . . . . . . . . . . . . . . . 73

5.7 The (a) velocity widths and (b) corresponding energy widths of molecular packets for

the standard and alternate deceleration methods. For standard slowing, there is a

strong correlation between the phase angle (i.e., final velocity) and the energy width

of the decelerated packet. In the alternate slowing method, however, the same phase

angle is used for all final velocities. Therefore there is considerably less correlation,

and the velocity width is effectively constant as a function of final velocity. . . . . . 74

5.8 Phase-space rotations of the molecular packet during a bunching sequence. Each

image is a snapshot of the phase-space distribution after a single bunching stage. The

S = 1 stages are shown in black, and the S = 3 stages are in red. Oscillations in phase

space of the packet during the bunching sequence leads to alternating broadening

and narrowing of the velocity distribution as the packet traverses the remainder of

the decelerator. The frequency of the oscillations can be manipulated (and hence

the total number of oscillations) by an appropriate application of S = 1 and S = 3

bunching. In this example, the molecular packet is decelerated using the first 97

stages of the decelerator to 200 m/s. The desired rotation is achieved by 37 S = 1

bunching stages and 5 S = 3 stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.9 Calculated range over which the total number of rotations can be manipulated as

a function of the final velocity for a decelerator of fixed length. The shaded region

represents the accessible rotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1 NH Stark Shift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 NH Stark Shift at low field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



Chapter 1

Introduction

1.1 Cold Molecules

The study of cold molecules has has lagged behind cold atoms by many years. This is not

because of the lack of interest in cold molecules, but rather it is due to the difficulty in preparing

them. The complex structure of molecules, including their rotational and vibrational levels make

them difficult to cool using the traditional methods that have been so successful and producing

ultracold atoms. Despite the difficulty, however, the field of cold molecules is becoming very

promising as the techniques to prepare cold molecules continue develop and improve.

A lot of the motivation towards cold molecules is driven by the success of ultracold atoms.

Ultracold atomic gases have contributed the discovery of new physics and have had many diverse

applications including inertial sensing, the study of superfluidity, precision measurement of micro–

scale forces, and new platforms for quantum computing. All of this success is only possible because

of the level of control that can be wielded on the atoms only in the ultracold regime where they

can be prepared in specific internal states and their external motions can be minimized. It is

understandable from these achievements why it would be desirable to be able to impart that same

level of control onto molecules with their rich internal structure.

The production of cold molecules will open up new avenues for studying interactions between

molecules, precision measurement, dipole interactions for modeling quantum mechanical interac-

tions in solids, and even quantum computing using dipolar molecules. In the area of low energy

interactions, both scattering processes as well as chemical reactions can studied. Direct observation
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of the complex processes that govern the interactions are difficult to make, however being able to

control the interactions will elucidate some of these processes and help us better understand how

the quantum mechanical nature of the interactions.

1.2 Measuring Cross Sections in Beams and Traps

Thus far, the use of molecular beams for scattering experiments has been widely implemented.

The extremely high densities (O(1013) cm−3) of these beams makes them well suited for measuring

cross sections and product states, which can be done by crossing two beams with each other. The

crossed molecular beam apparatus was originally demonstrated by Taylor and Datz in 1953. And

in 1986 the Nobel Prize in Chemistry was awarded to Dudly Hershbach, Yuan T. Lee, and John

C. Polanyi for their work involving the use of cross molecular beams [21]. Although a highly

successful tool, one handicap of crossed-beam experiments is the lack of control one has over the

beams. In molecular beams, one has limited control over the speed of the beam. And in addition,

the quantum-state distribution of the beam is set by the temperature of the beam, which is roughly

3 K. The advent of Stark deceleration, however, has enabled unprecedented control over both the

internal and external degrees of freedom of polar molecules in a beam. Stark deceleration is a

state-selective method that allows one to precisely tune the velocity of the molecular beam over a

wide range. As is discussed later, Stark deceleration gives the ability to study molecular scattering

processes as a function of collision energy and with very high energy resolution [36, 16]. In addition

to controlled cross-beam experiments, Stark deceleration also opens up the possibility of trapping

neutral polar molecules that have been decelerated to sufficiently low velocities. These molecules

can be trapped by a variety of methods such as electrostatic, magnetic, or AC traps and can be

held for a duration of several seconds1 . With cold trap temperatures around 10 to 100 mK, a

homogeneous quantum state distribution, and the long interaction times, trapped samples are ideal

for scattering and reaction studies.

There are several configurations for using a Stark decelerator for collision studies. The

1 Typically limited by background gas collisions and possibly optical pumping from black-body radiation
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simplest is to use it as part of crossed molecular beam apparatus [16] where the interaction energy

can be tuned over a wide range and with an intrinsically high energy resolution. Alternatively, one

can further reduce the collision energy by trapping one sample of molecules and use a continuous

beam of another as a target [42, 41]. The hybrid-trap system also adds a level of flexibility as it

allows for longer interaction time and therefore does not require a high density of the target beam.

Both of these methods offer the ability to tune the interaction energy over a wide range allowing

studies to probe resonances and explore details of the potential energy surface. A third method,

described here, is to trap both samples in separate but overlayed traps. Having cotrapped samples

takes away the ability to tune the interaction energy, however has the advantage that the interaction

energy is dictated by the temperature of the trap and not limited by the center-of-mass velocity of

the beam. In addition, because of the inherently low collision energy, elastic scattering events do

not contribute to trap loss, consequently all trap losses are contributable to inelastic collisions. This

is significant because in a beam-trap arrangement, the beam will typically have enough energy to

kick the molecules out of the trap, therefore making it difficult to differentiate between elastic and

inelastic collisions. Moreover, in a cotrap apparatus and under certain circumstances, the elastic

cross section can also be extracted from the measurement of the trap-loss profile. This possibility

is discussed later in this thesis.

1.3 Overview

In this work, we investigate the low energy (100 mK) interactions between ND3 and Rb with

the application of an electric field. We do this by trapping the ND3 and the Rb in separate traps

(magnetic for Rb and electro-static for ND3) and then overlaying the traps so that the ND3 and

Rb interact. Our desire is to measure the scattering cross section between Rb and ND3. Initially

we attempted this measurement by passing a beam of ND3, prepared in a specific quantum state,

through the magnetically trapped Rb. Then by using a state-selective detection method we could

measure the inelastic (i.e. state changing) collision rate. An important parameter in studying

scattering events is the collision energy of the scatterers. Using a Stark decelerator gives us the
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ability to control the velocity of the ND3 as it passes through the Rb trap and thus control the

collision energy. In this way, we could map out the dependency of the inelastic scattering cross

section on the collision energy, exposing any resonance effects and the threshold behaviors of energy

transfer in the rotational states of ammonia. After a great amount of effort, we determined that we

did not have sufficient signal-to-noise to to measure the small cross-section between Rb and ND3 .

In order to measure a cross section of this size, we needed a longer interaction time between the Rb

and ND3 . While putting the ND3 into a trap would take away our ability to control the collision

energy, it would give us the necessary interaction time to measure the cross section.

Original calculations for the Rb-ND3 system showed a very small cross section and did not

agree with our measured results from our cotrap experiment. These calculations, however, were

made for the case of no electric field. Because Rb has an extremely small dipole moment in our

electric field, the dipole-dipole interaction is not significant and we did not expect the presence of

the electric field, which is used for trapping the ND3 , to have an effect on the collision rate. However

closer look at the potential energy surface of the interaction reveals that Rb has a space-orientating

effect on the ND3 , i.e. the Rb causes the ND3 to quantize along a space-fixed axis. In the absence

of an electric field, ND3 has to preferential spatial orientation and therefore, the Rb can easily

project the ND3 . This orienting effect is the origin of the small scattering cross section. When an

electric field is applied however, then both the Rb and the electric field compete with each for the

quantization of the ND3 along different space-fixed axes. This competition dramatically affects the

potential energy surface for the interaction and increases the inelastic cross section significantly.

Experimentally we measure this increased cross section which results from the electric field. We

measure the cross section using two isotopes of Rb and two isotopes of ND3 for a total of four

isotopic combinations,

14ND3 →←87Rb

15ND3 →←87Rb

14ND3 →←85Rb
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15ND3 →←85Rb.

In addition, we also have the ability to vary the electric field slightly by decreasing or increas-

ing the electrostatic trap strength. The Rb-ND3 already sample various field strengths by nature of

the electric field gradients in the trap, however by varying the trapping potential, we can effect the

average field strength sampled during the interaction. The amount that we can vary the electric

field is limited as going too low in field strength makes it difficult to trap the molecules and going

too high can result in high voltage breakdown. We can however vary the trap strength by roughly

25% and we show that over this range, there is no appreciable effect to the collision cross section.

We use a novel analysis method involving the use of Monte-Carlo simulations to extract the

inelastic cross sections while at the same time being able to place upper limits on the inelastic cross

sections. This method takes advantage of the effect that elastic scattering of the ND3 with the Rb

in the trap causes the ND3 to thermalize with the Rb. This thermalization affects the form of ND3

trap loss profile, which is a measure of the ND3 density at the center of the trap over time, and by

measuring this effect, we can extract elastic cross section2 .

2 The precision that the elastic cross section can be measure with depends on the ratio between the elastic and
inelastic cross sections (σe/σi). A larger ratio σe/σi results in a larger measurable effect and therefore leads to a
more precise measurement. In the Rb-ND3 system, σe/σi is only large enough to place upper limits on the elastic
cross section



Chapter 2

The Apparatus

Figure 2.1:

The apparatus used in this work consists of two separate and independent apparatus that are

combined to create a single experiment. One apparatus is used for cooling and trapping rubidium

atoms. This apparatus produces a high number of cold rubidium atoms using a magneto-optical

trap that are then transferred into a quadrupole magnetic trap. The second apparatus consists of

a Stark decelerator, which is used to decelerate a cold molecular beam created from a supersonic

expansion. After the molecular beam is slowed, it is loaded into an electrostatic trap. The rubidium

trap and ND3 trap are then combined and the interaction is studied by measuring the loss of the
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ND3 trap due to inelastic collisions with the rubidium.

2.1 Stark Deceleration for Controlling Molecular Beams

In the past decade, Stark deceleration has become a well established technique to decelerate

and trap beams of neutral polar molecules. This technique utilizes time-varying, inhomogeneous

electric fields to decelerate polar molecules and allows for precision control of the velocity of the

molecules. The efficiency of the decelerator depends on how well the molecular beam is prepared

before it enters the decelerator. Some important parameters include the density, velocity, velocity

spread, and quantum state distribution, which are all set by the molecular beam source.

2.1.1 Molecular Beam Source

Cold molecular beams are used extensively in physical chemistry experiments and are created

by a technique called supersonic expansion. In the process of supersonic expansion, a thermal

reservoir of gas is separated by a small orifice from a region of significantly lower pressure. As the

gas passes through the orifice from the high pressure (1 atm) to low pressure region, it undergoes

collisions that act to cool the gas. In our case, a small percentage of ammonia is mixed with

krypton as a buffer gas. After many collision with the krypton during the expansion, the ammonia

molecules lose their rotational and vibrational energy and end up in the ground state. In addition,

the expansion causes a redistribution of the velocities of the molecules in the gas corresponding

to a temperature of ∼ 1 K. While the velocity distribution of the gas is much narrower, the

translational energy of the gas is still very high–typically hundreds of meters per second. The speed

of the molecular beam depends on the efficiency of the cooling of the gas during the supersonic

expansion. Assuming that a significant amount of cooling occurs, i.e. most of the kinetic energy in

the gas gets converter to the translational kinetic energy of the beam, then the maximum velocity

of the beam is

v =

√
2R

m

γ

γ − 1
(T − T0), (2.1)
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Warm Gas Reservoir

Skimmer

Supersonically cooled

molecular beam

Figure 2.2: Schematic of a supersonic molecular beam.

where, m is the molecular mass and T0 and T are the initial and final temperatures of the gas and

γ = 2.3 for noble gases. The final velocity and temperature obtained by the molecular beam depend

on “efficiency” of the expansion. From energy conservation requirements, the final temperature of

the gas and the velocity of the beam are related by

NkBT0 = NkBT +
1

2
Mv2, (2.2)

where N is the number of molecules and kb is the Boltzmann constant. Therefore an optimal

expansion (i.e. T ≈ 0) leads to the greatest beam velocity given by Eqn. 2.1.

There are many different valve technologies for making molecular beams including RM Jor-

dan Valves [25], solenoid driven general valves, and piezo-electric transducer (PZT) valves. Two

important considerations in choosing an appropriate valve is the opening time of the valve, which

determines how much gas enters the chamber, and also heating effects from the valve. The open-

ing time is important for Stark deceleration because the limited spatial acceptance of the Stark

decelerator only allows a small portion of the molecular beam to be decelerated. Therefore if the

molecular beam is too long, only a small portion of the beam is decelerated. The rest of the gas only

contributes to higher pressures in the chamber, which can result in a poorer supersonic expansion

or reduce the lifetime of the trapped molecules. In addition, heating of the beam which may be

caused by current-loop actuated valves such as the RM Jordan valve can lead to lower densities of
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molecules being decelerated. Another important aspect is the stability of the valve.

Both shot noise as well as long term stability are dictated by the actual valve used to create

the supersonic expansion. After some consideration, we decided to use a PZT valve modeled after

the Proch-Trickl valve [39] shown in Figure 2.3. The advantage of this valve is its long term stability,

reasonable shot to shot repeatability, and its relative simplicity means it can be constructed in-

house at a low cost. The PZT valve uses a PI-286 high voltage PZT disc translator with a maximum

displacement of 200 µm and can apply a maximum force of 5 lbs. The opening time of the valve is

estimated to be around 100 to 200 µs. This opening time is likely limited by the dynamics of the

rubber o-ring used to seal the orifice of the valve.

2.1.2 Stark Deceleration

Stark deceleration is one method for decelerating a cold but fast moving molecular beam.

The principle operation of a Stark decelerator relies on the fact that a polar molecule placed in

an electric field will experience a Stark shift of its internal states. The motion of the molecule

can then be manipulated by using electric field gradients. In the high-field limit, the molecule will

experience a force proportional to the electric field gradient by,

F⃗ = −µ⃗ · ∇E⃗, (2.3)

and in a direction (parallel or anti-parallel to the gradient) that is determined by whether the

molecule is in a high-field seeking (HFS) or low-field seeking (LFS) state. While both HFS and

LFS molecules have been decelerated [5], for this experiment, we work only with the LFS state of

ammonia.

The Stark decelerator consists of a series of electrode pairs, where each pair of electrodes

generates an electric field with a peak of about 105 V/cm directly between them. The basic

operation of a Stark decelerator for LFS states is shown in Figure 2.4. Figure 2.4 shows two

configurations for the application of the high voltage to the decelerator. As the LFS molecules

approach the first pair of electrodes in configuration I (where the even electrode pairs are charged
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(c)

(a)

(b)

Figure 2.3: PZT valve as the molecular beam source. The valve uses a high-voltage PZT disc
translator (a) to pull back a poppet (b) up to 200 µm creating a pulsed molecular beam of about
100-200 µseconds. The valve body (c) is constructed of stainless steel.
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and the odd electrode pairs are grounded), they will experience a longitudinal force slowing them

down as they approach the charged electrodes. If the decelerator is left in this configuration,

the molecules will regain their lost kinetic energy after they pass the electrodes. So instead, the

decelerator is switched to configuration II where the molecules will once again find themselves near

the bottom of the potential and moving towards the next pair of charged electrodes. As this process

is repeated, the molecules lose more and more of their kinetic energy with each stage of deceleration.

For ammonia, with a typical dipole moment of about 1.5 debeye, and a feasible electric field of

about 105 V/cm, a single electrode pair can remove about 1 cm1 (or about 1%) of kinetic energy of

the molecule. As such, over 100 electrode pairs must be used in series to decelerate the molecular

beam. Our particular decelerator, (Figure 2.5) has 150 stages with an overall length of 0.81 m.

The output velocity of a Stark decelerator is tuned by specifying the precise position of the

molecules within each stage for when the decelerator is switched from configuration I to configura-

tion II. This then allows for precise control over how much energy is removed from the molecules

at each stage of the decelerator. To determine the timing for switching the decelerator, a syn-

chronous molecule is defined such that the decelerator is switched when the synchronous molecule

is at a position defined by the phase angle ϕ0 = πz/L, where z is the position of the synchronous

molecule within the stage and L is the length of a single stage. Non-synchronous molecules are also

slowed, however, the amount of slowing that occurs is different from stage to stage, depending on

their relative position to the synchronous molecule. The non-synchronous molecule may experience

additional slowing while it is ahead of the synchronous molecule followed by less slowing when it

falls behind the synchronous molecule. In this way, there is always a restoring force that confines

the non-synchronous molecules around the synchronous molecule in a way that is analogous to

the operation of a linear accelerator. The restoring force gives rise to ponderomotive potential,

which acts to trap the molecules around the synchronous molecule with a phase space acceptance

shown in Figure 2.6. The phase-space acceptance of the Stark decelerator defines the maximum

distance and the maximum deviation in velocity (which of course are coupled to each other) a non-

synchronous molecule can have and still be decelerated. The phase-space acceptance is determined
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Figure 2.4: Operation of a Stark decelerator. As molecules enter, the decelerator is set to con-
figuration I creating a large electric field gradient causing the molecules to lose kinetic energy as
they approach the first pair of electrodes. Before the molecules reach the maximum of the electric
field, the decelerator is switched to configuration II. This prevents the molecules from regaining its
kinetic energy as they pass through the first stage. This process is repeated for 150 stages. The
timing for which the decelerator is switched is determined by the position of a synchronous molecule
such that the synchronous molecule is always at the same relative position within a stage when the
fields are switched. The position of the synchronous molecule when the fields are switched is called
the phase angle, ϕ0 = πz/L, where L is the length of a single stage and z is the position within a
stage.
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Figure 2.5: Photograph of the 150 stage Stark decelerator.
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Figure 2.6: Phase-space trajectories for various slowing angles ϕ0. The lines shown represent the
orbits of the molecules at the boundary between between stable and unstable areas of phase space
in the decelerator. For a given ϕ0 the acceptance of the decelerator is the area within the boundary.
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by the physical parameters of the Stark decelerator as well as the phase angle by,

d2∆ϕ

dt2
+

Wmax

mL2

d∆ϕ

t
[sin(∆ϕ+ ϕ0 − sin(ϕ)] = 0, (2.4)

Where Wmax is the maximum amount of energy removed from the molecules by the slowing stage

(i.e. at ϕ0 = 90◦), m is the mass of the molecule, L is the length of a slowing stage, and ∆ϕ is the

offset in phase of the non-synchronous molecule from the synchronous molecule. As can be seen for

the figure, more aggressive slowing comes with the trade-off that fewer molecules get decelerated

overall. In order to trap the molecules, it is necessary to decelerate them to roughly 30 m/s, which

corresponds to a phase angle ϕ0 ≈ 60◦.

2.2 Electrostatic Trapping

Stark decelerated molecules have been trapped by a variety of methods: electrostatically [15] [51];

magnetically [42], and in an AC trap for high-field seeking states [8]. In this experiment, we use

an electrostatic trap to trap low-field the seeking state of ND3 (|JK⟩ = |11⟩).

2.2.1 Trap Loading

After the slowed ammonia exits the decelerator it is loaded into a quadrupole electrostatic

trap which is shown if Figure 2.8. In its simplest form, a quadrupole electrostatic trap could be

designed with three electrodes [15], where the center two electrodes in our design would be single

electrode. However there are two major advantages in the four-electrode design: (1) it gives access

for the rubidium to be transferred to the center of the trap; and (2) it has greater versatility in

creating various electric field configurations to efficiently load the trap. These potentials for the

trap loading configurations, shown in figure 2.10, create potential hills to remove energy from the

molecules as they enter the trap. The intent of this sequence is to minimize the temperature of the

trap by bringing the molecules to rest as close to the center of the trap as possible.
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Figure 2.8: Diagram of the quadrupole electrostatic trap. Having two split rings in the center, as
opposed to a single ring allows us to bring the Rb trap in from the side. In addition being able
to have different charged electrode configurations allows us to move the longitudinal trap center,
which makes it easier to load the trap.
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2.2.2 Optimization of Trap Load

As mentioned earlier, the number of molecules captured in the trap as well as the temperature

depend critically on the loading parameters of the trap and particularly the speed of the molecules

as they enter the trap. To minimize the temperature of the trap, it is necessary to bring the

molecules to rest at the center of the trap. This would result in a temperature of approximately

35 mK1 . To stop the molecules at the center of the trap, however, would require the molecules to be

decelerated to such a low velocity (roughly 24 m/s) that the packet would spread out significantly

before entering the trap resulting in only a small fraction that could be confined. At the other

extreme, if the molecules enter at too high of a speed, many of the molecules will fly over the trap

walls and the remaining molecules will enter with significant kinetic energy, resulting in a higher

trap temperature. For our particular purpose, collecting a large number of molecules in the trap is

important to be able to accurately measure the 1/e lifetime of the ND3 . The actual temperature

thus is less important. We therefore tune the trap loading parameters to maximize the number of

molecules in the trap.

Optimizing the trap loading parameters can be an arduous task. Specifically the one-

dimensional trajectory calculations that are used to determine the timing for switching the de-

celerator become less suitable at low velocities where the transverse motion of the molecules begins

to to have a significant effect. As the molecules enter the trap there is significant coupling between

the longitudinal slowing of the molecules and the transverse confinement. Add to that, the need to

optimize the speed of the molecules entering the trap and it becomes an issue of optimizing for a

large and complicated parameter space. To ease the task of optimizing the decelerator loading, we

employ an evolutionary-algorithm based optimization tool. This method boasts an 80% increase in

ND3 trap density in a single day over a week’s worth of manual optimization based on trajectory

simulations 2 .

1 This temperature is estimated based on the mean speed of the molecules in the moving beam frame using the
formula T = mv2/(3k). The actual distribution of the molecules, however, is non-thermal and is determined by
the phase-space acceptance of the decelerator and the trap. Therefore this temperature measurement is only an
approximation.

2 Special thanks to Dan Lobser for convincing me it was worthwhile to try.



19

0 5 10 15 20
0.0

0.5

1.0  Peak Fitness
 Average Fitness

Fi
tn

es
s 

Le
ve

l (
N

D
3 S

ig
na

l)

Generation Number

Figure 2.11: Optimization of the trap loading sequence using a genetic algorithm approach.
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There are several implementations of evolutionary algorithms. The implementation we use

is called an evolutionary strategy (ES) [14] where the solution to the problem (i.e. the optimal

trap load) is encoded in a vector of real numbers. This vector of numbers, called the genotype

sets the time, (ti), for the various stages of trap loading and also for the final three decelerator

stages, which sets the final velocity of the molecules. Changing the time, tn, of a particular stage

directly effects the timing of the subsequent stages ti>n. Therefore, faster convergence is obtained

by encoding the time sequence as a series of time-differences ∆ti, where ∆ti = ti − ti−1. The

genotype consists of total of seven ∆ti parameters. The ES consisted of a population of 70 members

where the fitness of each member is determined by the density of trapped ND3 after 50 ms in the

electrostatic trap. The crossover and mutation rates were empirically determined to be optimal at

approximately 0.6 and .05 respectively. The overall efficiency of the algorithm could be increased

by incorporating the crossover and mutation rates into the genotype, as is popularly done. Two

methods were developed for splicing the genes from the parents to create offspring. In the direct

method, the selected genes (∆t′is) from one parent were directly spliced into another parent to

create the offspring. Alternatively, the averaging method, took the weighted average of the selected

gene from each of the two parents, based on the relative fitness of the parents. The resultant gene

was then spliced into a parent to generate the offspring. Though there is no precedence for the

averaging method3 , I thought it might be a clever approach. Unfortunately the averaging method

was much slower to converge and did not produce better results.

Another parameter to consider in ES methods is the mutation width. In the beginning the

mutation width should be large enough to cover a wide range of the parameter space, however as

the solution converges, it is more efficient to have a small mutation width. However, in systems

that have inherent noise associated with the measurement, it is important that the mutation width

is always greater than statistical width of the measurement.

3 At least to my knowledge
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2.3 Rubidium Trapping

The rubidium is prepared basically in three steps: first, the rubidium is laser cooled and

confined in a magneto-optical trap (MOT); following the MOT stage, the rubidium is then loaded

into a magnetic trap; and finally, the magnetically trapped rubidium is physically transferred to

the ND3 trap region where the two samples are allowed to interact.

MOTs have become the workhorse of the atomic physics community. By applying appropri-

ately polarized lasers and inhomogeneous magnetic fields, MOTs create a position-dependent force

on the atoms as they scatter the light from the lasers. Comprehensive overviews of laser cooling

techniques can be found in many sources [54, 55, 33]. Our MOT setup is shown if Figure 2.12. The

MOT is prepared in a glass cell where rubidium vapor is provided via dispensers that release rubid-

ium when heated. The reason for preparing the Rb in a separate chamber from the ND3 is mainly

because of the need for optical access for the MOT lasers, but also to maintain an high-vacuum

region where the rubidium and ND3 interact. The vacuum constraint is important as independent

lifetimes of the rubidium and ND3 are limited by background gas collisions.

The MOT beams come from Vortex diode lasers that are frequency stabilized using the D2

(52S1/2 −→ 52P3/2) transition of the rubidium. Ideally, we would like to collect as many rubidium

atoms as possible. We therefore used relatively large MOT beams. The MOT beams are magnified

by a 7× telescope to around 5 cm with a maximum possible intensity of around 8 mW/cm2 in

each of the six beams. To obtain this intensity, a two-stage amplification system is employed. The

first amplification is through a home-built slave diode laser which is seeded by the Vortex laser.

This provides roughly 13 mW of injection power into a commercial tapered amplifier. The tapered

amplifier can provide up to 500 mW of laser light. For the MOT however, we found that the

optimal laser power is 354 mW and 254 mW for 87Rb and 85Rb) respectively, corresponding to

intensities at the MOT cell of roughly 5.6 mW/cm2 and 4 mW/cm2 in each beam respectively.

Following the MOT stage, the rubidium is spin polarized and transferred into a quadrupole

magnetic trap. The rubidium is trapped in its stretch state (F = 2,mf = 2 for 87Rb and F =
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3,mf = 3 for 85Rb), where it is most tightly confined. The magnetic trap is provided by a pair of

electromagnetic coils, roughly 10 cm in diameter, each with 24 turns and 500 amps of current. The

magnetic coils provide an axial field gradient of 300 Gauss/cm (half that in the radial dimension).

We obtain magnetic trap densities of 1.1 × 1010 atoms/cm3 for 87Rb and 3 × 109 for 85Rb with

temperatures close to 600 µK.

Once the magnetic trap is loaded, the rubidium must be overlayed with the electrostatic ND3

trap. This is accomplished by physically moving the magnetic coils 50 cm along a linear translation

stage. The linear stage is controlled by a servo with a reproducibility of 5 µm. Proper alignment

of the rubidium trap with the ND3 trap is crucial. Figure 2.13 shows a schematic of the alignment

dimensions and their labels. Alignment in the vertical dimension as well as the dimension along

the horizontal linear stage axis are done using ion detection of the rubidium. We non-resonantly

ionize the rubidium using a focused UV laser at around 317 nm. Along the vertical axis the laser

is scan vertically to ensure the center of the rubidium cloud overlays with the center of the ND3

cloud which, is measured in the same manner. Along the linear stage axis, the alignment is slightly

more difficult. We cannot scan the laser in this dimension, so instead the rubidium trap width is

convolved with the 2 mm vertical exit slit of the electrostatic trap4 . The ion detection efficiency

falls off away from the center of the slit and therefore the convolution of the rubidium cloud with

the horizontal detection efficiency will have a maximum when the center of the rubidium cloud is

aligned with the center of the exit slit. Finally, along the horizontal axis of the Stark decelerator,

the alignment of the rubidium becomes especially tricky. Along this dimension, we measure the

lifetime of the rubidium, as it is overlayed with the electrostatic trap, as a function of its horizontal

position. As discussed later, the strong electric fields created by the electrostatic trap, Stark shifts

the rubidium, causing them to fall out of the trap. Therefore, at the center of the electrostatic trap,

where the electric field is a minimum, the rubidium trap has the longest lifetime. This is a fairly

accurate method (to within approximately 50 µm) for aligning the rubidium along the dimension

of the Stark slower, however it is extremely tedious as it requires unbolting the linear stage and

4 the exit hole is where the ions are extracted from within the electrostatic trap to the micro-channel plate detector
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then carefully and precisely moving the track. The alignment of the rubidium trap in the vertical

dimension as well as the linear stage dimension has a typical uncertainty of approximately 80 µm.
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Figure 2.13: Schematic of the dimensions for aligning the rubidium trap with the electrostatic trap.
In the vertical and horizontal linear stage dimensions, the rubidium is aligned with the electrostatic
trap by ion detection. In the horizontal Stark decelerator dimension the rubidium is aligned by
measuring the rubidium lifetime vs the position in the electrostatic trap.
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Chapter 3

Ammonia Molecule

3.1 Introduction

The ammonia molecule has had a rich and diverse history, especially in the 20th century.

Ammonia was a principle agent in the production of munitions during both world wars. It is also

a key ingredient in fertilizers. In fact ammonia is so important to the world’s agricultural industry

that the 1918 Nobel prize in chemistry was awarded to Fritz Haber, who in collaboration with Carl

Bosch developed a technique to produce ammonia on an industrial scale [53]. Ammonia is now also

used as a refrigerant, in the manufacturing of materials such as nylon and plastics, and also in the

production of pharmaceutical products.

Apart from its industrial applications, ammonia has also become an important molecule for

science and in particular for astrophysical measurements. The inversion splitting of rotational level

of ammonia are similar in energies. Therefore each rotational level can be observed using the same

radiotelescope array, making it a good candidate for probing temperatures in interstellar space [32].

Also ammonia is abundant in interstellar clouds and many of the spectral lines observed in these

clouds have been attributed to collisions of ammonia within these clouds. [37].

3.2 Ammonia as a Symmetric Top Molecule

Ammonia is an example of a symmetric top molecule. Generally, polyatomic molecules are

described by their symmetry properties and are labeled according to their point group. A good

introduction to symmetry properties and point groups is given by Herzberg [20]. Symmetric top
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Inversion

Slplitting

Antisymmetric

Symmetric

Umbrella Angle

Figure 3.1: The potential energy of ammonia as a function of the umbrella angle. The umbrella
angle is defined as the angle between the N-H (or N-D) bond and the symmetry axis of the ammonia.
The two minimums of the double-well potential, corresponding to the umbrella modes, are at 68◦

and 112◦. The potential barrier separating the two umbrella modes is approximately 2023 cm−1

and corresponds to the barrier preventing the nitrogen from tunneling through the plane of the
hydrogen atoms. The inversion splitting shown is a splitting of all the rotational levels as a result
of this barrier.
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molecules can be labeled as having either Cpx or Dpx symmetry1 . Where Cp symmetry indicates

that it has a single axis with p-fold symmetry and no other symmetries. A molecule with Dp

symmetry has, in addition to Cp symmetry, p two-fold symmetry axis which are perpendicular to

the Cp axis and are separated by equal angles to each other. The x label indicates if it has p planes

of symmetry only through the symmetry axis (x = v) or if it additionally has a perpendicular

symmetry plane (x = h). The C3v and D3h point groups are illustrated in Figure 3.2 for an XY3

molecule such as ammonia.

In its ground state, ammonia has a trigonal pyramidal structure with one nitrogen atom

and three hydrogen atoms. Because of its pyramidal structure, ammonia only supports Cpv type

symmetry and because it has 3 hydrogen atoms, p = 3 and is therefore labeled C3v. In higher

rovibrational states however, ammonia becomes planar and can be labeled D3h.

The rotational energy levels of a symmetric top molecule is given by

F[v](J,K) = B[v]J(J + 1) + (A[v] −B[v])K
2 ± 2A[v]ξK, (3.1)

where J and K are the rotational quantum numbers for the total angular momentum and its

projection onto the C3 axis respectively. The last term on the right hand side is the coriolis term.

The sign of the coriolis term is set by whether the vibrational angular moment is in the same

direction (-) or opposite (+) of the rotational angular momentum. The constants A[v] and B[v]

are the average values of rotational constants, Ae = h/8π2cIAe and Be = h/8π2cIBe . For a given

vibrational level A[v] and B[v] are given by

B[v] = Be −
∑

αB
i (vi + di/2)

A[v] = Ae −
∑

αA
i (vi + di/2) , (3.2)

where di is the degeneracy of the vibration vi. The constants α
A
i and αB

i are related to the coupling

between the rotational and vibrational states of the the molecule. And in the case of molecules with

pyramidal structure (such as ammonia), where there is a possibility to invert the molecule (i.e. the

1 Actually for symmetric top molecules, if it has Dp symmetry, then the molecule must be planar. Therefor, for
symmetric top molecules Dpx = Dph.
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Figure 3.2: C3v (left) and C3v symmetries. Molecules with C3v symmetry (such as the grounds
state of ammonia) exhibit a splitting of their rotational levels into opposite parity states. This
splitting, which is a result of the potential barrier which prevents the molecule from inverting itself,
gives rise to the Stark shift.
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nitrogen passing through the plane of the hydrogen atoms in the case of ammonia) the αi constants

cause a splitting of each of the rotational energy levels. The rotational levels are split into states

of opposite parity, which gives rise to the Stark shift as the electric field causes the opposite parity

state to repel.

3.3 Stark Shift in Ammonia

The ammonia molecule has a trigonal pyramidal structure with one nitrogen atom and three

hydrogen atoms (or deuterium atoms for deuterated ammonia). The angle between the symmetry

axis and the nitrogen-hydrogen bond is called the umbrella angle, ρ. There are two potential

energy minimums for ρ, at 68◦ and 112◦. Each of these points corresponds to a mode in which the

nitrogen is either above or below the plane of the hydrogen atoms. These two modes are separated

by a finite potential barrier (shown in Figure 3.1) through which, the nitrogen can tunnel. This

tunneling potential gives rise to a doubling of each of the rotational levels into symmetric and

antisymmetric states2 known as the inversion splitting.

In addition to the J and K quantum numbers, when an electric field is applied, there is an

additional quantum number, labeled M , which defines the projection of J onto the field axis. The

Stark shift of the ammonia due to the electric field can be expressed as

WStark =
Winv

2
±

√(
Winv

2

)2

+

(
µ|E| MK

J(J+1)

)2

, (3.3)

where µ is the electric dipole moment, |E| is the magnitude of the electric field and Winv is the

inversion splitting, given as,

WNH3
inv = 0.79 cm−1 (3.4)

WND3
inv = 0.053 cm−1. (3.5)

2 Only rotational levels that are below the tunneling barrier experience this doubling effect.
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JK

Figure 3.3: The ammonia molecule.

JK Levels of Ammonia

Figure 3.4: The JK rotational states of ND3 .
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The ± in Eqn. 3.3 indicates the difference between the symmetric and antisymmetric states.

For MK ̸= 0, the electric field causes the two opposite parity states to repel each other, as shown

in Figure 3.5 for the J=1 state. The low-field seeking states are the antisymmetric states and have

Stark energies that increase with electric field strength. These are the molecules that are decelerated

in the Stark decelerator. High-field seeking molecules cannot be decelerated by the conventional

Stark decelerator as the maximum electric field strengths are at the electrodes and therefore the

transverse stability of the molecules becomes an issue. Deceleration of high-field seeking molecules,

however, has been demonstrated using and alternate gradient technique [5, 4]. The alternate

gradient technique employs a series of electric quadrupole lenses that focus the molecules in one

direction while defocusing them in the other direction. By alternating the orientation of these

lenses, it is possible to obtain net focusing in both direction.

Figure 3.5, the Stark shifts for both ND3 and NH3 are shown in a characteristic electric field

strength of a Stark decelerator. For the case of NH3 the Stark shift remains quadratic throughout

much of the decelerator. ND3 however, because of its heavier deuterium atoms, has a significantly

smaller inversion splitting and thus the Stark shift becomes linear at much smaller electric fields.

This makes ND3 a better candidate for Stark deceleration over NH3, as the force exerted on the

molecule, given by F = −dW/dz, is maximum in the linear regime of the Stark shift.

3.4 Detection of Ammonia

Detection of the ammonia is made by ionizing the ammonia and then, using an electric field,

accelerate the ion onto a micro-channel plate (MCP) detector. The MCP consists of a low work-

function metal which upon being struck by an ion emits a cascade of electrons that can then be

read out on a scope via a transimpendence amplifier.

The ionization energy of ammonia is around 10 eV [30], so direct ionization using a single

photon is difficult. Instead, to ionize the ammonia, we use a method called resonance enhanced

multi-photon ionization (REMPI). REMPI is a state-selective non-linear optical process that is

often used as a spectroscopic tool for studying molecular structure and decay dynamics of highly
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MK = 1

MK = 0

MK = -1

}
J=K=1

Figure 3.5: The Stark shift of ND3 and NH3. The force experienced by a polar molecule in the
Stark decelerator depends on the spatial derivative of its Stark shift. The Stark shift for ND3

becomes linear at very low electric field values as opposed to the Stark shift of NH3 which does not
become linear until nearly 3 kV/mm. For this reason, it is much easier to decelerate ND3 .
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excited electronic states [1, 2]. For detection however, REMPI is a convenient method of ionizing the

ammonia using multiple photons that are within an energy range obtainable using dye lasers. Our

particular ionization process is a 2+1 REMPI in which two resonant photons excite the ammonia

to the Rydberg levels via the B̃(v2 = 5)− X̃(v2 = 0). A third non-resonant photon then ionizes the

ammonia. The ionization spectra of the upper inversion component of ND3 is shown in Figure 3.6.

The actual transition used in the experiment to detect the |JK⟩ =|11⟩ state is marked with a green

arrow.
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Chapter 4

Measuring the Rb-ND3 Interaction

Figure 4.1: Artists rendition of Rb-ND3 interaction. At large separation, the electric field (hori-

zontal grey arrows) project the ND3 along the field axis. At short range, the Rb projects the ND3

along the interaction axis. At intermediate distances, the Rb and electric field compete with each

other, causing the ND3 state to become ill-defined, thus increases the probability for the ND3 to

change state.

4.1 The Rb-ND3 Interaction

The large anisotropy of molecule-molecule interactions generally leads to large inelastic scat-

tering cross sections, as it is not constrained by angular momentum conservation (such as the case

for atom-atom interactions) [26]. The Rb-ND3 system in particular has a highly anisotropic po-

tential energy surface 4.3 As a general rule, inelastic scattering cross sections for highly anisotropic

systems can be approximated by the Langevin capture formula [29] which states that if the in-

teraction energy exceeds the centrifugal barrier, whose height is set by C6/R
6, then there is unit
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probability of an inelastic scattering event occurring. The cross section for this model is given by,

σLangevin ≈ 3π

(
C6

4Ecol

)1/3

(4.1)

where Ecol is the collision energy. Using the Langevin approximation and a C6 of 4700 [23] we would

expect a rather large inelastic cross section for the Rb-ND3 interaction of σLangevin ≈ 4000 Å2. Cal-

culations by Żuchowski, et. al. however, show that the cross section for this system is surprisingly

small [24], nearly a full order of magnitude smaller than predicted by the Langevin capture model.

Figure 4.2 shows the results of the calculations as well as the semiclassical approximation for

the elastic cross section and the Langevin capture model. The results for the elastic cross section

follow the semiclassical model quite closely. However the actual inelastic cross section deviates quite

significantly from the Langevin model. This suppression in the cross section is surprising, however

it can be explained as a result of the deep potential energy minimum shown in the calculated

potential energy surface of the system in Figure 4.3. Far away from the Rb, the ND3 is in one of

its symmetric or antisymmetric eigenstates, labeled |11u⟩ and |11l⟩, which are linear superpositions

of the ND3 umbrella modes. However as the ND3 approaches the Rb, the deep minimum in the

potential energy surface causes the ND3 to project along its C3 axis (i.e. into one of its umbrella

modes). The only energetically allowed inelastic channel is through the inversion splitting (i.e.

u → l or l → u), however these parity states remain well separated in energy throughout the

interaction and therefore the likelihood of a transition between them is quite low.

Not included in this calculation is the effect of an electric field. As described in § 2.2, the

ND3 is trapped in an electrostatic trap. So as we are measuring the cross-section for the Rb-ND3

system, we were initially surprised to discover that our empirically determined cross section do

not agree with the calculations presented by Żuchowski, et. al. Indeed, our measured results,

detailed later, are significantly greater than expected, yet still not as large as the prediction based

on the Langevin capture model. The explanation for this is in effect of the electric field on the ND3

molecule. As explained earlier, the Rb atom acts to project the ND3 molecule along a space-fixed

axis as they approach each other. However, the electric field also projects the ND3 along a different
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Figure 4.2: Elastic and inelastic cross sections for Rb-ND3 scattering from Żuchowski et. al. [24].
The dash lines show the results of the semiclassical approximation for the elastic cross section and
of the Langevin capture model for the inelastic cross section.

Figure 4.3: Potential energy surface for the Rb-ND3 interaction from Żuchowski et. al. [24]. The
deep well at the interaction angle of 0◦ is due to the electrostatic interaction of lone-pair site with
the Rb.
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Figure 4.6: ND3 trap-loss profiles.

axis, determined by the field. At large separations, the electric field is the dominant effect and at

short separations, the Rb is the dominant effect. However in the range where the Stark energy and

the interaction energy are comparable, around 20 to 30 Bohr, the Rb and ND3 compete strongly

with each other to quantize the ND3 along different space-fixed axes. This cause the states to

mix and creates numerous avoided crossings as is shown in the adiabats in Figure 4.4. Therefore

the likelihood of the ND3 to change state is increased significantly. We therefore expect to see a

significant increase in the inelastic cross section with the presence of an electric field

4.2 Measuring Elastic and Inelastic Cross Sections

To extract the elastic and inelastic cross sections, we rely on modeling the collisions of the

Rb-ND3 in the trap using Monte-Carlos simulations. Figure 4.6 shows the ND3 trap loss profile for

two different Rb densities. Also shown are the results from simulation (solid curves) showing good

agreement with the data.

There are two reasons for using Monte-Carlos methods to extract the cross sections. First,

if the elastic collision rate is large enough, it will have a significant effect on the ND3 trap decay

profile. Because of the significantly colder temperature of the Rb relative to the ND3, elastic
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collisions can result in a significant thermalization of the ND3 in the trap. This thermalization

causes a cooling of the ND3 and thus an increase in the density of ND3 at the center of the trap.

Measurements of the density of the ND3 at the center of the trap are used to produce ND3 decay

profiles shown in Figure 4.6. Therefore the actual form that the profiles take on not only depends

on the inelastic cross section, but also on the elastic cross section. The elastic and inelastic cross

sections can then be extracted by reproducing the measured ND3 decay profile using models with

the elastic and inelastic cross sections as the free varying parameters. Figure 4.7 shows the effect of

different elastic cross sections on the trap loss profile, for a given inelastic cross section of 2000Å2

The second important reason for using Monte-Carlo methods to measure the elastic and

inelastic cross sections is specific to this experiment and has to do with the Rb trap itself. In

the case where the elastic cross section is small compared the inelastic cross cross section and

also having a Rb density that is both uniform in space and constant in time, the inelastic cross

section could be analytically determined by fitting the trap-loss profile to a simple exponential.

It is, however, not the case the Rb density is uniform and constant. Instead, there are Rb-trap

dynamics, which are a result of the electric field 1 , causes the Rb density and size to change while

the ND3 trap lifetime is being measured. Because of these Rb trap dynamics, ND3 decay is not a

simple exponential function and, in fact, is nearly impossible to fit analytically. For this reason, we

use Monte-Carlo simulations that include the Rb trap dynamics to reproduce the measured ND3

trap loss profiles.

4.2.1 Rb Trap Dynamics

Before modeling the ND3 trap-loss, we must understand what is simultaneously happening

to the Rb trap. The Rb trap dynamics are dominated by the dc Stark effect. The Hamiltonian

describing this effect is [27]

Hs = −
1

2
α0E

2
z −

1

2
α2E

2
z

3J2
z − J(J + 1)

2(2J − 1)
(4.2)

1 The electric field comes from the electrostatic trap
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Figure 4.7: Demonstration of the effect of the elastic cross section on the decay profile of the ND3

trap. These decay profiles (solid lines), which are the results of Monte-Carlos simulations with an
inelastic cross section of 2000 Å, show the significant role that the elastic cross section have in the
ND3 trap loss profile. The measured decay profile is also shown (black circles).
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where α0 and α2 are the scalar and tensor polarizabilities of Rb respectively. The second term

vanishes for the case of J = 1/2, so the Stark shift is quite simple. The scalar polarizability for the

5S1/2 state is α0 = h · 0.0794 Hz/(V/cm)2 [47].

Two-dimensional slices of the trapping Rb trapping potential2 are shown in Figure 4.8. The

slices are in the horizontal plane which is perpendicular to they symmetry axis of the magnetic trap.

The two traps are are oriented such that their symmetry axis are perpendicular two each other

which also corresponds to the strong axis of the quadrupole electrostatic trap being aligned to the

weak axis of the quadrupole magnetic trap. This can be seen in the illustration in Figure 2.13. This

particular orientation is unfortunate as it causes the strongest electric field gradients to coincide

with the weakest magnetic field gradients, thus significantly lowering the Rb trap walls. It would be

better suited if the strong axis of both the magnetic and electrostatic trap could be aligned. Unfor-

tunately due to design constraints, this orientation cannot be achieved. The resultant asymmetry

of the net trapping potential is evident in the right hand column of Figure 4.8. The column on the

left show the trapping potential at 0, 1, and 2 mm (in the vertical dimension) without the electric

field. The right hand column shows the significant amount of distortion cause by the presence of

the electric field.

The distortion of the Rb trap due to the electric fields causes the dynamics shown in Fig-

ure 4.9. The number of Rb atoms in the trap can be accurately measured using absorption imaging

and Figure 4.9(b) shows the observed double-exponential lifetime of the Rb trap with the electric

fields present.

Measuring the size of the Rb trap with the electric fields present, however, is not such a

trivial task. Typically, the trap size is measured using a ballistic expansion method, where the

magnetic fields are abruptly turned off and the Rb cloud is allowed to expand before the image

is taken. The initial Rb distribution in the magnetic trap can then be extrapolated by repeating

this measurement for a variety of expansion times (typically between 2 and 15 ms). This imaging

method however cannot be conducted in the vicinity of the electrostatic trap. The abrupt turning

2 Potentials modeled in Comsol (www.comsol.com)
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Figure 4.8: Rb trapping potential with and without electric fields.
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Figure 4.9: Rb trap dynamics. The Rb trap suffers from the electric field generated by the elec-
trostatic trap, causing a double exponential Rb-trap lifetime (right) as well as a time-dependent
trap width (left). This trap width is measured in the vertical direction by ionizing the Rb (black
squares). Monte-Carlo simulations (red) are run to reproduce this time-dependent width profile
and to extrapolate the effect in the other two dimensions.
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off of the magnetic fields induces eddy currents in the electrodes of the electrostatic trap that

non-uniformly Zeeman shifts the Rb and thus distort the resonant imaging process. Therefore the

atoms must be transported away from the electrostatic trap before they can be imaged (this is how

the Rb number is measured). Unfortunately, transporting the Rb takes approximately one second

during which all information about the Rb distribution in the presence of the electric field is lost.

While we are not able to directly measure the Rb trap distribution in the presence of the

electric fields using absorption imaging, we are able to measure the width of the Rb trap in the

vertical dimension using a non-resonant detection method. This non-resonant detection method

consists of using a focused ultra violet laser to ionize the Rb. The Rb ions are then detected with a

micro channel plate detector. The laser is scanned vertically to map out the trap profile as shown

in Figure 4.10. Because this method is non-resonant, the inhomogeneous magnetic and electric

fields do not affect the detection efficiency. This method however only gives us information about

the Rb along a single dimension. In order to have a complete picture of the Rb distribution, we

must rely on modeling how the Rb behaves when the electric fields are turned on. Figure 4.9(a)

shows the evolution of the vertical width of the Rb trap at the center. The red circles are the result

of Monte-Carlo simulations and the black squares are measured widths determined by ionizing the

Rb..

The Rb trap dynamics are modeled using a Monte-Carlo method with potentials calculated

from a commercially available finite element modeling software package [11]. The Rb-Rb inter-

actions are treated as elastic s-wave scattering events with a scattering length of 95 Bohr and

1900 Bohr for 87Rb and 85Rb respectively [38]. The initial Rb trap distribution is prepared by

taking a random sample of velocities and positions (corresponding to kinetic and potential energies

respectively) from a Boltzmann’s distribution at a temperature of 600 µK. According to the Virial

theorem, the mean potential energy in a harmonic potential is equal to the mean kinetic energy.
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4.1

Table 4.1: Rb trap widths (time dependent)

Electrostatic
Trap Voltage

A1 τ1 A2 τ2 y0

σx 8.33e-4 0.066 1.38e-4 0.688 5.04e-4
9 kV σy 7.23e-5 0.791 1.88e-4 0.070 3.22e-4

σz 9.24e-5 0.710 5.50e-4 0.050 3.06e-4
σx 0.139e-3 1.18 0.742e-3 0.077 0.554e-3

87Rb 8 kV σy 0.084e-3 0.75 0.175e-3 0.071 0.352e-3
σz 0.589e-3 0.05 0.092e-3 1.020 0.344e-3
σx 6.57e-4 0.0762 1.64e-4 0.868 6.32e-4

7 kV σy 5.02e-4 4.3500 1.23e-4 0.309 3.72e-4
σz 9.90e-5 0.8250 4.97e-4 0.050 3.96e-4

σx 1.76e-4 0.6520 9.27e-4 0.052 6.13e-4
85Rb 8 kV σy 1.70e-4 0.0525 9.85e-5 0.574 4.03e-4

σz 4.21e-4 0.0472 8.84e-5 0.830 3.32e-4

We therefore use the relation in defining the initial distribution,

1

2
kBT = ⟨Ekin⟩ =

1

2
m⟨v⟩2, (4.3)

= ⟨Epot⟩ =
2

5
µ0g∇B⟨x⟩. (4.4)

The evolution of the Rb distribution in the trap is represented as a time-dependent three-

dimensional gaussian distribution,

n(x, y, z, t) =
N0

(2π)3/2σx(t)σy(t)σz(t)
exp

[
−1

2

(
x2

σx(t)2
+

y2

σy(t)2
+

z2

σz(t)2

)]
, (4.5)

where n is the Rb density, N0 is the initial Rb number, and σx(t)
2, σx(t)

2, and σx(t)
2 are the time-

dependent Gaussian widths in the x−, y− and z−dimensions respectively. The time dependence

of the widths has a double exponential behavior given by,

σ(t) = A1e
t/τ1 +A2e

t/τ2 + y0, (4.6)

where the constants, A1, τ1, A2, τ2, and Y0, determined from Monte-Carlo simulations,
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Table 4.2: Rb lifetimes

Electrostatic
Trap Voltage

A1 τ1 A2 τ2 y0

9 kV 2.01e8 .79 2.59e8 .05 2.8e6
87Rb 8 kV 3.35e8 .84 1.24e8 .04 5e6

7 kV 4.6e8 .91 0 0 9.57e6
85Rb 8 kV 6.64e7 .85 1.66e7 .03 5e6

are listed in Table 4.1. In addition to the widths, the Rb lifetime is also fit to the same double

exponential formula in Equation 4.6 with the constants listed in Table 4.2

4.3 Modeling the Rb-ND3 Co-Trap

In modeling the ND3 -Rb trap, the initial ND3 distribution is derived from Monte-Carlo

simulations of the trap loading. This is important because the the actual ND3 distribution is

far from thermal and cannot be simply approximated by a Boltzmann distribution for a given

temperature. Instead the distribution is set by the coupling between the phase-space acceptance

of the electrostatic trap-loading process and the phase-space distribution of the ND3 as it exits the

decelerator. Because the ND3 density is very low, the ND3 -ND3 collision rate is also very low and

thus the trap does not obtain thermal equilibrium during the time scale of the Rb-ND3 interaction.

Figures 4.12 through 4.13 show the position and velocity distributions in the the electrostatic trap

after the loading sequence described in § 2.2.1. Although the trap is cylindrically symmetric, the x-

and y-distributions (for both position and velocity) do not exhibit this symmetry. This is because

Stark decelerator does not share this cylindrical symmetry and the x-vx and y-vy phase space is set

by the orientation of the final electrodes in the decelerator. Figure 4.13 shows the “holes” in the

z-vz phase space distribution of the trap. These holes are a result of the particularly poor phase-

space matching between the Stark decelerator and the trap. Techniques have been demonstrated,

using a buncher [51], to rotate the phase space of the molecules after they exit the decelerator in

order that it better matches the phase space acceptance of the trap. However, because the physical

geometries of the decelerator and the trap are significantly different, getting perfect phase-space
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matching is nearly impossible.

The ND3 distributions extracted from the trap loading simulations and the Rb distributions,

parameterized in Table 4.1 and 4.2, are combined to model the ND3 trap loss profile to determine

the Rb-ND3 cross sections. The trap loading simulations are part of a separate Monte-Carlo that

simulates the deceleration of a packet of molecules in the Stark decelerator. The fields in the Stark

decelerator are modeled using the commercial finite-element modeling software, Comsol. The timing

of the simulated decelerator is set to match the timing of the experiment. The initial distribution of

the molecules as they enter the decelerator is empirically determined. The parameter space for the

initial molecule distribution includes longitudinal velocity (vz), longitudinal velocity spread (δvz),

radial velocity spread (δvr), longitudinal position spread (δz), radial position spread (δr), and the

distance from the valve to the entrance of the decelerator (d). The values of these parameters are

set by the supersonic expansion and are determined by experimentally decelerating the molecules to

different final speeds and matching the resulting time-of-flight traces with simulated time-of-flight

traces. The best values for the above parameters are

vz = 415 m/s

δvz = 60 m/s

δvr = 5 m/s

δz = 0.03 m

δr = 0.3 m

d = 0.4 m.

The radial position spread is chosen to be quite large because the radial distribution of the molecules

entering the decelerator is basically uniform. Using the above parameters, the molecular distribu-

tion is modeled throughout the decelerator and trap loading sequence. The resulting trap distri-

bution is then used as inputs into the Rb-ND3 trap to model the ND3 trap loss profile.

To model the ND3 trap loss profile, close to 1000 simulations are run with varying elastic and

inelastic cross sections. Integrating the equations of motion for the ND3 trajectories is done using
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Figure 4.11: ND3 distributions in the electrostatic trap.
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Figure 4.12: ND3 velocity distribution vs position in the electrostatic trap.
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Figure 4.13: ND3 phase space distributions in the electrostatic trap.
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a position extended Forest-Ruth like (PEFRL) algorithm [35]. The PEFRL algorithm is a fourth

order verlet integration method that offers greater stability than the simpler Euler or Runge-Kutta

integration methods.

r1 = r(t) + ξhv(t)

v1 = v(t) + (1− 2λ)hF(r1)/2m

r2 = r1 + χhv1

v2 = v1 + λhF(r2)/m

r3 = r2 + (1− 2(χ+ ξ))hv2 (4.7)

v3 = v2 + λhF(r3)/m

r4 = r3 + χhv3

v(t+ h) = v3 + (1− 2λ)hF(r4)/2m

r(t+ h) = r4 + ξhv(t+ h),

where h is the time step, F(r) is the force on the molecule at position r, and the constants ξ, λ,

and ξ are,

ξ = 0.1786178958448091

λ = −.2123418310626054

χ = −0.06626458266981849.

The greater stability of the PEFRL method is important to maintain the phase space dis-

tribution over the long trap time. Also its increased efficiency allows for much greater step size

making the task of running all the sims necessary to determine the Rb-ND3 cross sections for each

isotopic combination and at three different field strengths much more feasible. Fifty thousand ND3

molecules are simulated with step size of 10 µs for four seconds. Each simulation takes between five

and twenty minutes to complete, depending on the size of the cross sections, using eight 2.8 GHz

Intel Xeon processors.
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The ND3 trap-loss profile from each simulation is compared against the trap loss profile from

the experiment and a fitness level is computed which states how well the result of each simulation

matches the experimental result. This fitness level is simply the reduced χ-square,

χ2
reduced =

1

ν

∑
i

[hs(i)− he(i)/δhe(i)]
2

δhe(i)2
, (4.8)

where ν is the number of degrees of freedom given by N − n− 1, where N is the number of points

measured (i.e. number of observations) and n is the number of fitted parameters (two in this case

for elastic and inelastic cross sections), he(i) is the experimentally determined ND3 density at time

t = ti, δhe(i) is the corresponding error of the measurement, and hs(i) is the simulated ND3 density

at t = ti. As a general rule a value of χ2
reduced = 1 is an ideal result [12]. If χ2

reduced ≫ 1 means a

poor fit and indicates that the model does not properly reproduce the system. On the other hand,

if χ2
reduced ≪ 1, then the fit is “too good” and either the model is incorrect or the errorbars have

been overestimated.

To compare the simulated and measured trap-loss profiles, a scaling factor must first be

introduced. This scaling factor then relates the ND3 density measured in the simulation to that

measured in the experiment. Unfortunately our REMPI detection method does not tell us the

number of molecules in the trap3 . Thus the scaling factor is not a number which can be directly

measured. Instead a scaling factor is introduced for each individual simulation in such a way that it

minimizes the reduced chi-square for that simulation using a nonlinear least-squares minimization

function.

4.4 Results

The measured elastic and inelastic cross sections are presented as contour plots in Figures 4.15

and 4.17. Figure 4.15 show three contour lines that show the confidence bounds at the 1σ (68%), 2σ

(95%), and 3σ (99.7%) levels. These contour levels represent lines of constant reduced–χ2, where the

3 The cross section of the REMPI transition is not known. Also the gain of the MCP detector is not known
to better than an order of magnitude (and decreases with the age of the detector). Therefore we are really only
measuring relative densities.
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Figure 4.14: Grid points of simulations run (a) and false-color image of the resulting χ2
reduced (b).

Each grid point represents an elastic/inelastic cross section combination for which a simulation was
run. Each simulation generates a ND3 trap loss profile, such as the ones shown in Figure 4.19 and
the combination of all simulations generate the contours shown in Figures 4.15 and 4.17.
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reduced–χ2 represent how well the the simulation matches the data. The value of the 1σ, 2σ, and

3σ contour levels are 2.3χ2
min, 5.99χ

2
min, and 11.6χ2

min respectively, where χ2
min is the the minimum

reduced–χ2 for the entire system (i.e. the reduced–χ2 for the best matched simulation), which for

this case is 1.2. The green dot in Figure 4.15 indicates the theoretically predicted value of the

elastic and inelastic cross sections in zero electric field (σelastic ≈ 2700Å2 and σinelastic ≈ 790Å2),

which corresponds to a statistical p-value of < 10−5.

The precision with which the inelastic cross section is measured is quite good with a 1σ width

of roughly 900 Å2. The elastic cross section however, is predicted with less precision. As discussed

earlier, the precision with which the elastic cross section can be measured depends on the ratio of

the elastic to inelastic cross sections. At best an upper limit can be placed on the elastic cross

section of approximately a factor of 2.5 greater than the inelastic cross section, determined by the

slope of the contours in Figures 4.15 and 4.17.

We also measure the cross sections at different average electric field strengths by changing

the trapping voltage applied to the electrostatic trap. Figure 4.5 shows the effect on the cross

section as with different electric field strengths. The elastic cross section is shown to decrease as

the electric field is increased, while the inelastic cross section increases with electric field strength.

It is not shown in this plot, however the the electric field dependence on the cross section plateaus

above 5 kV/cm. In other words, above 5 kV/cm, the the elastic and inelastic cross sections do not

change. Unfortunately, we do not have very much flexibility to adjust the electric field strength

as it is coupled to our trapping potential. If we reduce the field strength too far, we cannot trap

the molecules and if we go too high in the field, we develop high-voltage breakdown issues across

the electrodes. Over the range which we are able to adjust the electric field strengths, we see no

significant difference as shown in Figure 4.7. Figure 4.18 shows the density of ND3 that samples

various electric field strengths with a green line indicated the saturation threshold. From this

figure, it is evident that we cannot significantly effect the distribution of ND3 below the 5 kV/cm

threshold and therefore should not expect to see a variation in the cross section at this level.

The confidence bounds shown by the contour intervals in these figures are solely statistical



58

0 1000 2000 3000 4000 5000
0

5000

10000

15000
3

2

1

El
as

tic
 C

ro
ss

 S
ec

tio
n 

(Å
2 )

Inelastic Cross Section (Å2)

Figure 4.15: Elastic and inelastic cross section for the 87Rb-14ND3 system. The contours indicate
the 1σ (68%), 2σ (95%), and 3σ (99.7%) levels. The green dot indicates the theoretical prediction
for the elastic and inelastic cross section in zero electric field.
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Figure 4.16: 1σ confidence bounds for the elastic and inelastic cross sections with different isotopic
combinations of the Rb-ND3 system.
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Figure 4.17: 1σ confidence bounds for the elastic and inelastic cross sections with different electric
field strengths applied to the trap electrodes. Varying the electric field over this range does not
significantly affect the number of molecules below the electric field saturation limit of the inelastic
cross section. Therefore we do not expect to be able to see an effect on the inelastic cross section
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Figure 4.19: ND3 trap loss profiles. The measured ND3 trap loss profiles are shown along with the
best matched results from Monte-Carlo simulations. The simulation results match the measured
data with a χ2

reduced ≈ 1.2, indicating strong agreement between the model and the data.
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and do not include the uncertainties in various parameters including the rubidium lifetime, width,

or density. To understand the significance of these uncertainties, the same Monte-Carlo simulations

used to determine the cross-sections are rerun with different values input for the various parameters.

The parameter values are varied by ±10% which, for all parameters, corresponds to approximately

a 1σ deviation from the expected value. Figure 4.20 show the effect on the confidence bounds as

a result of changing these parameters in the simulations. One interesting note on the results of

these simulations is that the contour lines indicate a greater level of uncertainty when value of

the input parameters are chosen to be ±1σ from the expected value. This is because when the

parameters such as the Rb width or lifetime are incorrect, the model no longer accurately represents

the experiment and the value of χ2
min increases. And a greater value of χ2

min results in a greater

level of uncertainty in the measurement.
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Figure 4.20: Effects of varying different parameters in the Rb-ND3 simulations. The Rb density
(a), Rb lifetime (b), and Rb width (c) are varied by ±1σ to determine their effect on the measured
cross section.



Chapter 5

Using Stark Decelerator for High-Resolution Molecular Beam Studies

The following text is from an article we published in New Journal of Physics in May 2009. In

this article we describe an alternate method of operating a Stark decelerator that further reduces

the energy spread over the standard method of operation. In this alternate mode of operation, we

aggressively decelerate the molecular packet using a high phase angle. This technique brings the

molecular packet to the desired velocity before it reaches the end of the decelerator; the remaining

stages are then used to longitudinally and transversely guide the packet to the detection/interaction

region. The result of the initial aggressive slowing is a reduction in the phase-space acceptance of

the decelerator and thus a narrowing of the velocity spread of the molecular packet. In addition to

the narrower energy spread, this method also results in a velocity spread that is nearly independent

of the final velocity. Using the alternate deceleration technique, the energy resolution of molecular

collision measurements can be improved considerably.

5.1 Introduction

Cold molecular beams created from supersonic jets have been used extensively to study gas-

phase reaction dynamics and molecular interactions [44, 31, 45]. Crossed molecular beams are

responsible for a large part of our understanding of bimolecular gas-phase reactions. In these

systems, molecular beams are created with temperatures as low as 1K with only a few quantum

states occupied. This control over internal and external degrees of freedom is necessary to explore

the detailed nature of molecular collisions. One parameter that has not been under precise control
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until recently is the mean velocity of the beam and thus the collision energy. Typical molecular

beams can be produced with mean speeds ranging from 300–2000 m/s in large incremental steps

depending on the carrier gas used in the expansion. This coarse speed control does not allow

experimental studies of narrow collision resonances and thresholds [22, 28]. More recently, crossed-

molecular-beam experiments were built in which the relative angle between the beams could be

adjusted to allow the collision energy to be changed [19, 46]. These experiments, however, have an

energy resolution that is limited by the velocity spread in the initial beam, which is particularly

poor at small collision energies.

With the advent of the Stark decelerator, we can now continuously tune the speed of a pulsed

molecular beam using time-varying inhomogeneous electric fields [6]. In addition, the nature of the

Stark decelerator allows the energy resolution of the beam to be increased greatly. This control

enables a new range of molecular collision experiments [17, 42]. Many groups around the world have

built experiments based around a Stark decelerator, all of which have the same basic configuration

[6, 9, 10]. In addition to the standard configuration, which we use for this paper, there are also

optical and magnetic analogs [3, 34] as well as alternating gradient decelerators for decelerating

high-field-seeking states [4, 48] as well as low-field seeking states [57]. We describe an alternate

mode of operation of a typical decelerator that optimizes the energy resolution for molecular collision

experiments.

5.2 Standard Stark deceleration

The Stark deceleration process uses the interaction of an electric field with a molecule’s dipole

moment to decelerate a portion of a molecular beam. The pulsed beam of molecules is prepared via

supersonic expansion in the ground ro-vibrational state in either a ground or metastable electronic

state. After the beam is expanded fully, the molecules propagate into a region of the vacuum

system containing a series of high-voltage electrode pairs. The geometry of the electrodes creates a

maximum of the electric field in the longitudinal direction directly between an electrode pair. The

molecules slated for deceleration are in a quantum state that increases in energy with increasing
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electric field. As these molecules propagate into the increasing electric field, longitudinal kinetic

energy is converted to potential energy. If the molecules were allowed to continue down the potential

hill, they would regain the lost kinetic energy as they exited the high electric field; however, before

they begin to accelerate, the electric field is turned off nearly instantaneously (< 100 ns), thus

removing energy from the molecules. We repeat this process with successive stages of electrodes

until the molecules have been slowed to the desired speed. Transverse guidance of the molecules is

achieved because the molecules are attracted to the minimum of the electric field along the center

of the decelerator. Successive electrode pairs are orientated orthogonally to one another to guide

the molecules equally in both transverse dimensions.

The final velocity of the molecular packet is determined by the amount of energy removed per

slowing stage and the number of stages. The farther up the potential hill the molecules travel before

the field is switched, the more energy is removed from the packet. It is typical to parameterize

the position of the synchronous molecule when the field is switched in terms of a phase angle, ϕ0

[7]. A phase angle of ϕ0 = 0◦ corresponds to no energy being removed from the packet, whereas

a phase angle of ϕ0 = 90◦ corresponds to the maximum possible energy being removed. For a

particular phase angle, there exists a phase-space acceptance of the decelerator in both position

and velocity. The acceptance of the decelerator is the phase-space volume that will be stably slowed

and transported to the end of the decelerator. This phase-stable volume can be illustrated through

the use of a separatrix (figure 5.1). Figure 5.1 shows the phase-stable portion of the molecular beam

decreases rapidly with increasing phase angle. Although large phase-angle slowing reduces the total

number of molecules in the packet, it also reduces the velocity spread. We take advantage of this

reduced velocity spread in our alternate slowing protocol to produce tunable molecular beams with

narrow energy spreads for collision studies.

We demonstrate the new slowing method with our experimental apparatus shown in figure

5.2. It includes a pulsed valve that produces a beam of ND3 molecules seeded in krypton. The mean

speed of the beam is 415 m/s with a longitudinal velocity width of 28%. After the expansion, the

beam enters a differentially pumped chamber containing a 149-stage Stark decelerator operated at
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Figure 5.1: Separatrix for the ND3 molecule in our Stark decelerator. The separatrix curve shows
the boundary between the stable and the unstable phase space for a variety of different slowing
angles. Molecules within the separatrix curve will be slowed and transported to the end of the
decelerator. The separatrix only takes into account the longitudinal dimension of the phase space.

Figure 5.2: Experimental set-up. It consists of a PZT-driven pulsed valve, molecular beam skimmer,
decelerator stages, linear time-of-flight mass spectrometer (TOFMS), and a microchannel-plate ion
detector. The decelerator consists of 150 electrode pairs (not all are shown).



67

± 12 kV. At the exit of the decelerator, the molecules are ionized using a focused beam from a pulsed

dye laser operating around 317 nm via a 2+1 resonance enhanced multi-photon ionization (REMPI)

process. The ions are then accelerated towards a microchannel plate detector by a Wiley-McLaren

style time-of-flight mass spectrometer [56].

5.3 Alternate deceleration method

To develop efficient slowing protocols, we begin with three-dimensional (3D) Monte-Carlo

simulations to understand fully the phase-space dynamics of the deceleration process. Full 3D

simulations are required as the separatrix is only a one dimensional representation of the stable

phase-space. As pointed out in Refs. [43, 40], the transverse velocity and position dimensions

modify the phase-space acceptance of the decelerator.

This effect can be seen very clearly in our experiment for the case of bunching (ϕ0 = 0◦).

Figure 5.3 shows a time-of-flight profile of the bunched molecular beam including the corresponding

simulations. From the plot of the occupied phase space, shown in figure 5.3(a), one can see the

separatrix is not filled uniformly. There are features in the distribution that are considerably more

narrow than the characteristic length scale of the decelerator. Although our ionization-detection

scheme essentially integrates this distribution through the velocity dimension, we can still probe

this detailed structure experimentally in the position dimension. The structure within experimental

signal is elucidated by the simulated phase-space distribution and shows excellent agreement with

the 3D simulations. With this agreement, we are confident that our simulations accurately pre-

dict the phase-space distribution and thus the energy spread within our slowed molecular packet.

This understanding is critical because we can not measure directly the velocity distribution of our

molecular beam.

The standard method to run a Stark decelerator is to choose a phase angle such that the

molecular packet is at the desired velocity when it exits the last stage of the decelerator. With

this method, the energy width of the slowed packet can be relatively large for high mean velocities

as it is determined by the phase angle and thus depends on the final velocity. For the method we
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Figure 5.3: Bunching data.(a) Phase-space distribution for bunching (ϕ0 = 0◦). (b) A time-of-flight
(ToF) trace (blue) is shown with the results of a 3D Monte-Carlo simulation (red). The horizontal
axis for both (a) and (b) is the ToF to the detection laser, which is 1.8 cm past the end of the
decelerator.
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propose, a large phase angle is chosen (ϕ0 = 80◦ in our case), and the number of slowing stages is

chosen to decelerate to the final velocity. Once the molecular packet has reached desired velocity,

the decelerator is operated in bunching (ϕ0 = 0◦) mode to guide the packet to the end of the

decelerator while maintaining the desired velocity. Figure 5.4 illustrates the difference between

the standard and alternate methods. In figure 5.4(a), the time the molecules spend in a stage of

the decelerator as they propagate is plotted for several different final velocities. In the standard

method, the molecules are slowed progressively for the entire 149 stages at a different phase angle

depending on the desired final velocity. The time spent in a stage increases as the molecules are

decelerated. With the alternate slowing technique, the molecules always follow the same trajectory

until they reach the desired velocity at which point the switching time of the decelerator remains

constant indicating a constant velocity.

One advantage of the alternate slowing protocol is the increased time between the arrival of

the slowed packet and the unslowed beam. This is important for two reasons. First, for relatively

large velocities, the slowed packet will ride on a background of the unslowed molecules, thus in-

creasing the energy spread. This effect can be seen in figure 5.5(b) where a packet slowed to 200

m/s with the standard protocol has not separated completely from the unslowed beam. For this

case, the unslowed molecules can not be distinguished from the slowed packet. This overlap is un-

desirable for collision experiments in which collision energy plays a role. Second, it is advantageous

to have sufficient time between the unslowed beam and the decelerated molecules to insert another

collision reactant into the path. In the case of collisions between trapped atoms or molecules and

a slowed beam of molecules, the trapped reactant can be moved into position after the unslowed

beam has gone by, thus reducing unwanted collisions with the unslowed beam. An example of this

increased separation is shown in figure 5.5, where we slow a portion of the molecular beam to 200

m/s using both the standard slowing technique and the alternate method. Here we see the arrival

time between the unslowed beam and the slowed packet has increased by 0.5 ms. This increase in
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Figure 5.4: Deceleration schemes using both the standard and alternate methods. (a) The timing
sequence to decelerate a packet of ND3 molecules from 415 m/s to various velocities is shown
with the time duration of each stage of deceleration plotted against the stage number. (b) A
schematic representation of the two deceleration schemes decelerating from 415 m/s to 200 m/s.
In the standard method of slowing, all 149 stages of the decelerator are used to decelerate the
molecules at a constant 46◦ phase angle. In the alternate method of slowing, a high phase angle
is chosen to aggressively slow the molecules using only the first 97 stages. The remaining stages
are then operated at 0◦ phase angle to longitudinally and transversely guide the molecules to the
interaction/detection region.
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time is given by

∆t =
(Vf − Vi)

2

2Vfaa
+

L

Vf
−

Vf − Vi

as
, (5.1)

where Vi and Vf are the initial and final velocities of the packet, respectively, aa and as are the

accelerations of the synchronous molecule in the alternate and standard mode, and L is the length of

the decelerator. This equation assumes a constant average acceleration during the slowing process

that can be determined from the potential created by the electrodes [18].

Another advantage to operating in the alternate mode is the increase in energy resolution

for collision experiments. For standard slowing, the velocity spread of the slowed packet increases

for increasing velocity, as can be seen in figure 5.6. In addition to the large velocity spread, the

distribution is far from Gaussian, as expected, leading to difficulty in characterizing the width for

extracting parameters of collision measurements. The corresponding histograms for the alternate

method are shown in red in figure 5.6(b). Here the velocity widths are considerably less, and the

distributions are nearer to Gaussians. Because the initial phase-space acceptance is independent of

final velocity, the velocity width for the alternate method remains almost constant as the velocity

is changed (figure 5.7(a)). For our experimental parameters, we see a reduction in the velocity

spread of up to a factor of ∼ 5. It is useful to look at the improvement to the spread in terms of

energy. The energy width of the packet as a function of final velocity for both methods is shown in

figure 5.7(b). The decrease in energy spread of the molecular packet decelerated using the alternate

method allows more precise determination of energy-dependent collisional cross-sections. However,

this gain comes at a cost to molecular number and thus is not optimal for all types of experiments.

5.4 Phase-space rotation

Realizing a large decrease in energy spread of a molecular packet using our alternate method

comes with one caveat. After the molecules are decelerated to the desired velocity, they are trans-

ported to the end of the decelerator under bunching conditions. While in the bunching stages,
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Figure 5.5: Time-of-flight traces comparing alternate and standard techniques. (a) Time-of-flight
traces showing the arrival time of the decelerated peaks using both the standard and alternate
methods of slowing. The traces shown are for a molecular beam that is decelerated from an
initial speed of 415 m/s to a final speed of 200 m/s. Using the alternate deceleration method, the
decelerated peak arrives 515 µs later than the analogous peak using the standard method. The data
for both the standard and alternate methods are taken at 10 Hz, using a 15 mJ laser pulse focused
with a 50 cm lens. Each point is averaged using 10 shots corresponding to a data acquisition of
approximately one point/second. The results from a 3D Monte-Carlo simulation are also shown
(lower curves). (b) Expanded time axis shown for clarity.
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Figure 5.6: The (a) phase-space distributions at the end of the decelerator with (b) the corre-
sponding velocity histograms. The distributions for the alternate method (red) are offset from the
distributions for the standard method (blue) for clarity. The plots in (b) represent a histogram of
velocities taken with a 1 × 1 mm horizontal cut through the molecular packet in the transverse
direction.
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(a) (b)

Figure 5.7: The (a) velocity widths and (b) corresponding energy widths of molecular packets for
the standard and alternate deceleration methods. For standard slowing, there is a strong correlation
between the phase angle (i.e., final velocity) and the energy width of the decelerated packet. In the
alternate slowing method, however, the same phase angle is used for all final velocities. Therefore
there is considerably less correlation, and the velocity width is effectively constant as a function of
final velocity.



75

the molecular packet undergoes rotations in phase space. Through this rotation, the phase-space

distribution will oscillate between having a wide velocity spread with a narrow position spread and

having a narrow velocity spread with a wide position spread. Therefore it is critical to control

this rotation such that the phase space has a narrow velocity spread at the detection/interaction

region. We accomplish this phase rotation by varying the timing of the bunching in such a way as

to change the rate of rotation without affecting the velocity of the packet. Phase-space rotation

has also been demonstrated using additional electrodes with a different geometry [13] as well as

using decelerator stages [52]. However, unlike in reference [52], we do not free-flight the molecules,

but rather use a combination of bunching harmonics to efficiently transport the molecules to the

end of the decelerator with the proper rotation.

Bunching can occur at harmonics of the fundamental bunching frequency while still main-

taining phase stability [50]. First harmonic bunching occurs when the potential on the electrodes is

switched every time the synchronous molecule crosses ϕ0 = 0◦ (i.e., directly between two electrode

pairs). For third harmonic bunching, the potential is switched at every third stage. Bunching

harmonics can be parameterized by a single parameter, S, which labels the harmonic order. The

phase-space rotation frequency depends on the order of the bunching harmonic. The frequency of

the rotation to first order is given by

νs =
ωz

2π
=

√
∆E

4πSml2
, (5.2)

where ∆E is the maximum possible amount of Stark energy lost in a stage, m is the mass of

the molecule, and l is the separation between the electrodes in the decelerator [50]. Under our

experimental conditions, the frequency of rotation for S = 1 bunching is ∼1.4 kHz. Using both

S = 1 and S = 3 bunching harmonics, we can manipulate the amount of rotation. The number of

rotations the packet will undergo is given by

Nrot = ν1t1

[
n1

(
1− 1√

3

)
+

nT√
3

]
, (5.3)

where t1 is the time for an S = 1 bunching stage, n1 is the number of S = 1 stages, and nT is the

total number of physical stages used for bunching. Figure 5.8 shows the rotation in phase space of a
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packet decelerated to 200 m/s as it is bunched through the remainder of the slower. In this case, we

use 37 S = 1 stages and 5 S = 3 stages, which results in a narrow velocity spread. The phase-space

distribution undergoes just over 1.5 rotations and thus maintains the narrow velocity width created

by our alternate slowing method. Figure 5.6 shows a tail of phase-stable molecules rotating around

the packet in phase space. Although these molecules have a different velocity from the main packet,

they contribute only a very small fraction to the total number of detected molecules, typically on

the order of one percent.

There is a finite range of rotations accessible with a particular decelerator design and final

velocity. The maximum number of rotations is achieved by using only S = 1 stages, and the

minimum is achieved by using only S = 3 stages. This range is shown in figure 5.9. For most

velocities, we can access any rotation angle.

In conclusion, we have developed a new protocol to run a Stark decelerator to achieve narrow

energy spreads over a large range in velocities. We reduce the energy spreads by up to a factor of

approximately five over traditional methods. These high-energy-resolution beams will enhance a

variety of cold-molecule collision experiments using Stark decelerators.
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Figure 5.8: Phase-space rotations of the molecular packet during a bunching sequence. Each image
is a snapshot of the phase-space distribution after a single bunching stage. The S = 1 stages are
shown in black, and the S = 3 stages are in red. Oscillations in phase space of the packet during
the bunching sequence leads to alternating broadening and narrowing of the velocity distribution
as the packet traverses the remainder of the decelerator. The frequency of the oscillations can be
manipulated (and hence the total number of oscillations) by an appropriate application of S = 1
and S = 3 bunching. In this example, the molecular packet is decelerated using the first 97 stages
of the decelerator to 200 m/s. The desired rotation is achieved by 37 S = 1 bunching stages and 5
S = 3 stages.
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Figure 5.9: Calculated range over which the total number of rotations can be manipulated as a
function of the final velocity for a decelerator of fixed length. The shaded region represents the
accessible rotations.



Chapter 6

NH

While this thesis is about the interaction if Rb with ND3 , when I started this work, I

was actually attempting to decelerate the NH radical. I was unsuccessful in this attempt due to

difficulties in the production of the free radical itself. However, with improved synthesis techniques

and deceleration methods, future experiments with NH are likely to proceed. So presented here is

a description of the Stark effect in NH.

6.1 Stark Effect in NH

NH is a free radical with a X3Π ground state and an a1∆ metastable state. The a1∆

experiences a Λ-doubling effect which is a result of the coupling between the nuclear rotation and

the electronic angular momentum. This effect results in the splitting, EΛ, of each state into opposite

parity states, denoted f and e. The application of an electric field causes the two states to repel

each other, giving rise the the Stark effect.

Because EΛ for NH(a1∆) is only 115 kHz, it is reasonable to simplify the expression for the

Stark effect to the purely linear case

WStark = ±µ|E| MJΩ

J(J + 1)
. (6.1)

Where Ω = |Λ+Σ|. Λ is the projection of L (the orbital angular momentum) onto the internuclear

axis, and Σ is the projection of S (the spin angular momentum) onto the internuclear axis. This

approximation works well for molecules with very small EΛ, however, a more detailed analysis can
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be made using the NH(a1∆) the Hamiltonian in the hyperfine basis. The Hamiltonian for the Stark

effect is defined as

HS = −
∑
q

Eq
(
D1

q0µ(ω̂)
)
, (6.2)

where, Eq is the electric field with projection q in the lab frame and D is the Wigner D-function.

To construct the matrix, we work in the hyperfine basis [49]

|ΛJI1F1I2FMF±⟩ =
1√
2
{|ΛJI1F1I2FMF ⟩ ± | − ΛJI1F1I2FMF ⟩}, (6.3)

where Λ is the projection of L (the orbital angular momentum) onto the internuclear axis. I1 is

the nuclear spin of the nitrogen atom, I2 is the nuclear spin of the hydrogen atom, F = I2 + F1,

and F1 = I1 + J . The ± separating the first and second terms on the right-hand side specifies the

parity (f/e) of the state. For this case we have,

Λ = Ω = 2

J = 2

I1 = 1

I2 = 1/2
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The hyperfine structure levels can then be calculated from the hyperfine Hamiltonian1

⟨αF ± |HHF |α′F ′±⟩

= Λa1(−1)I1+F1+Λ(2J + 1)
√

I1(I1 + 1)I1

 J 1 j

−Λ 0 Λ


 F1 I1 J

1 J I1

 δF1,F ′
1

+Λa2(−1)I2−I1+F+Λ−1(2J + 1)
√

I2(I2 + 1)(2I2 + 1)(2F1 + 1)(2F ′
1 + 1)

×

 J 1 j

−Λ 0 Λ


 F1 F ′

1 1

J J I1


 F1 F ′

1 1

I2 I2 F

 δF,F ′ (6.4)

+(−1)I1−F1+Λ(2J + 1)

(
(2I1 + 1)(2I1 + 2)(2I1 + 3)

2I1(2I1 − 1)

)1/2

 I1 I1 2

J J F1


×

eQq1
4

 J 2 J

−Λ 0 Λ

± eQq2
4

 J 2 J

−Λ 2 Λ

 δΛ,1

 δF1,F ′
1
,

where α is shorthand for all the quantum numbers in Eqn. 6.3 not listed in the bra-ket. α will be

used in this manner throughout the rest of this analysis. The constants in the above equation are

a1 = 110 MHz

a2 = 69.6 MHz

eQq1 = −8 MHz

eqQ2 = 0 MHz,

where eQq1 and eQq2 are the electric quadrupole constants for the nitrogen and a1 and a2 are the

magnetic dipole interaction constants for the nitrogen and hydrogen respectively. The electric field

mixes states of different F and F1. The off-diagonal matrix elements are given by

⟨αFΩϵ|D1
q 0|α′F ′ϵ′⟩ = 1

2
(⟨αFΩ| ± ⟨αF − Ω|)D1

q 0

(
α′F ′Ω′⟩ ± |α′F ′ − Ω′⟩

)
. (6.5)

We assume E⃗ = E êz, which sets q = 0 in Eqn. 6.2. Then, through properties of the Wigner 3j

1 This hyperfine Hamiltonian for NH comes from Ubach, et. al. [49]. However the original paper does not have
the δF,F ′ factor in the second term on the right hand side is missing. I assume this is an error as without the δF,F ′ ,
the Hamiltonian is not Hermitian
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symbol we have to two relations,

⟨αFΩ|D1
0|αF − Ω⟩ = 0

⟨αFΩ|D1
0|αFΩ⟩ = −⟨αF − Ω|D1

0|αF − Ω⟩,

which leads to the constraint,

⟨αe|D1
0|αe⟩ = ⟨αf |D1

0|αf⟩ = 0. (6.6)

And thus, as we expect, only matrix elements mixing states of opposite parity survive. The surviving

terms to be evaluated are

1

2
⟨αΩe|D1

0|α′Ω′f⟩ =
1

2
⟨αΩf |D1

0|α′Ω′e⟩ (6.7)

= ⟨αΩ|D1
0|αΩ⟩, (6.8)

which, in terms of the reduced matrix elements of F becomes,

⟨αFMf |D1
0|α′F ′M ′

f ⟩ = (−1)F−Mf

 F ′ 1 F

m′
f 0 −mf

 ⟨α∥D1
0∥α′F ′⟩. (6.9)

Recalling that F = I2+F1 and F1 = I1+J and further reducing the matrix elements using Wigner

3j and 6j symbols gives

⟨αF (I2, F1)∥D1
0∥α′F ′(I ′2F

′
1)⟩ = (−1)1+I2+F1+F [F, F ′]

 F1 F I2

F ′ F ′
1 1

 (6.10)

×⟨αF1(I1, J)∥D1
0∥α′F ′

1(I
′
1J

′)⟩

⟨αF1(I1, J)∥D1
0∥α′F ′

1(I
′
1J

′)⟩ = (−1)1+F1+I1+J [F1, F
′
1]

 J F1 I1

F ′
1 J ′ 1

 (6.11)

×⟨αJ∥D1
0∥α′J ′⟩

⟨αJ∥D1
0∥α′J ′⟩ = (−1)J−Ω

 J 1 J ′

−Ω 0 Ω

 (2J + 1), (6.12)

where the notation [X1, X2, · · ·] is shorthand for
√

(2X1 + 1)(2X2 + 1) · ··. Putting all the above



83

terms together gives the final result,

⟨α|HS |α′⟩ = −µE [J, F, F ′, Fi, F
′
1](−1)(F

′−M)+(1+I2+F1+F )+(1+I1+J+F1)+(J−Ω)

×

 J 1 J ′

−Ω 0 Ω


 F ′ 1 F

m′
f 0 −mf

 (6.13)

×

 F1 F I2

F ′ F ′
1 1


 J F1 I1

F ′
1 J ′ 1


Figure 6.1 and 6.2 show the Stark effect for NH(a1∆) in the high- as well and low-field limit,

respectively. From Figure 6.2 it is clear that the Stark shift becomes linear almost immediately

and therefore the linear approximation given in Eqn. 6.1 is adequate.
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Figure 6.1: NH Stark Shift.

Figure 6.2: NH Stark Shift at low field.
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