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Meyer, Edmund R. (Ph.D., Physics)

Structure and spectroscopy of candidates for an electron electric dipole moment exper-

iment

Thesis directed by Prof. John L. Bohn

The identification of suitable diatomic molecules as candidates for an electron

electric dipole moment (eEDM) experiment is presented. A model is derived and de-

veloped in order to efficiently and accurately identify possible diatomic molecules. This

model gives the magnitude of the effective electric field experienced by an electron at

the site of one of the nuclei in the molecule. In particular, this thesis identifies several

3∆ molecules as viable candidates for the eEDM search. In addition, the relevant tools

for doing precision spectroscopy on these molecules are developed. For molecular ions

in rotating trapping fields, a description of geometric phases is presented that reduces

to the common result in the adiabatic limit, but allows for a description of the effect of

atomic and molecular structure on these phases.
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Chapter 1

In the Beginning. . .

The universe is asymmetric and I am persuaded that life, as it is known to us, is a

direct result of the asymmetry of the universe or of its indirect consequences.

–Louis Pasteur

The remarks of Pasteur seem rather full of foresight. However, it must be taken

into account that these remarks were made long before the discovery of quantum me-

chanics and the Standard Model (SM) of particle physics. While the asymmetry alluded

to by Pasteur is a requisite step in the formation of life — the clumping of matter into

ever larger aggregations — the asymmetry is a result of the fact that there is even

matter with which to start the aggregating. The inhomogeneous distribution of matter

is a direct result of the asymmetry between matter and anti-matter, and therefore life

an indirect consequence of this asymmetry. What do you know, Pasteur was right, in a

way.

1.1 Origin of an electron electric dipole moment

A long, long time ago, before galaxies were even a twinkle in the universe’s eye, a

raging battle was taking place. Particles and anti-particles were created and destroyed

with reckless abandon in a variety of interactions. Their creation and annihilation was

in balance as neither matter nor anti-matter could win favor. Then, at a certain energy
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scale, a symmetry broke, and the preservation of balance between particle and its anti-

particle nemesis was forever shattered. Inside this broken symmetry lies a peculiar

oddity, matter particles such as the electron are more likely to be produced. Matter

now takes the upper hand in the interactions amongst the various particles in nature,

and this is what matters for us; for we are here and not the anti-us.

It appears that the matter-anti-matter asymmetry is connected to charge-conjugation

(C). From experimental measurements on the decay of the Kaon (see Ref [1]) only the

combination charge-conjugation plus parity (CP) violation has been measured. In ad-

dition, CP-violation has been measured in the B-meson system [2]. A CP operation

reverses all the additive quantum numbers as well as the direction, i.e. an electron mov-

ing to the right (+x-direction) would become a positron moving to the left (but still in

the +x-direction in this parity swapped universe). Now, a violation of CP causes one

to expect a violation of time-reversal (T). This is because of the expectation that the

product of CPT should always be invariant. This is akin to saying there is no preferred

direction in space, that no matter the mass of the particle at hand its anti-partner has

the same mass, and that all internal quantum numbers are opposite for each. Schwinger

showed (implicitly) that this invariance is implied by having invariance under Lorentz

transformations [3], transformations at the heart of relativity.

Using the requisite knowledge of the amount of CP violation in the Kaon and

B-meson sectors, one can ask whether it is enough to explain the matter to anti-matter

asymmetry in the observed universe. If one looked out into the universe and measured

the amount of matter and compared this to the prediction that ensues from the Kaon

and B-meson CP violation, she would find that there is still more matter than can be

explained [1]. Thus, one is prompted to search for different forms of CP or T violation. A

natural place to look begins by asking whether fundamental particles have a permanent

electric dipole moment (EDM), or a linear shift in energy with applied electric fields

of arbitrarily small magnitude. Ramsey began searching for the neutron EDM (see
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Ref. [4] for a review on neutron EDMs) and soon the race was on to measure it in

electrons, atoms, muons, neutrinos, and various other composite particles like the Λ0

and molecules.

Why do EDMs violate T-reversal, and thus CP? The answer lies in the interaction.

Imagine an electron with two spin-axes, one electric and one magnetic. If these axes were

independent, there would be an introduction of a new quantum number, the projection

of electric spin onto the electric spin-axis. However, given the stability of the periodic

table, i.e. there is no element with 4 electrons in the 1s2 state, and the Pauli exclusion

principle, it seems fairly safe to proclaim that there is only one spin-axis: the magnetic

spin axis. Therefore, if there is a EDM, it must lie along (or against) this axis. Thus,

an interaction of the form

HEDM = −deσ · E , (1.1)

would violate T and P symmetries. This is easy to see given that under P, E reverses

sign while under T, σ reverses sign. Thus, P HEDM = T HEDM = −HEDM. Therefore,

a measurement of a permanent EDM is evidence for CP violation above and beyond

what is already measured; because CPT is assumed invariant.

Because the electron is of so much interest in this thesis, it is where the search

will begin. Now, the Standard Model (SM) prediction for electron EDM (eEDM) is

extremely small; expected to be about [5, 6]

|de| . 10−40 e − cm, (1.2)

a number beyond ridiculously small. Ridiculously small is here defined as being 1010

times smaller than an avid experimenter can measure. An example of a diagram which

contributes to this effect is in Fig. 1.1. The entailed calculation is one that is beyond

my paygrade. Note that wherever the W boson couples to the electron (solid, thick

black line) or quark loop (red triangle) there is a phase associated with the coupling.

This is the phase that leads to parity violation. In order to yield an eEDM, the phase
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needs to not vanish at some order in the diagram. It takes four loops in order for the

parity violating phase associated with the weak force to not cancel out. Even though

parity violation exists, near cancellations occur in the calculation which yield a very

small value for the eEDM. In fact, if the ui and dj (up and down quarks) were of the

same mass, then the eEDM would cancel even to this order [6].

To get a feel for the type of energy shifts this eEDM would produce, it is useful

to see that an atomic unit of electric field (∼ 109 V/cm) would produce an energy shift

of 10−31 eV. There is no hope to measure something like this in today’s modern lab.

Fields reachable in the lab (about 4 orders of magnitude less than one atomic unit)

would produce a shift a four orders of magnitude smaller. Thus, why bother to search

for the eEDM?

The fact is that there are many theories which go beyond the SM. Surprisingly

(or not so) many of these theories involve interactions with heretofore unseen, massive

particles which do not necessarily obey the rules of CP conservation. These as yet

unobserved particles can give rise to ever larger values of the eEDM because these

particles may not have the fortuitous cancellation of a parity violating phase that occurs

in the W -boson, quark-loop diagram in Fig. 1.1.

The current experimental limit on the eEDM (de ≤ 1.6× 10−27 e cm) is given by

the experiment on the thallium atom [7]. This is a bit shy of the SM prediction. There

exists a large gap, and it is this gap that theories of physics beyond the SM aim to

fill; let them be called the Theories of the Gap1 . 12 or so orders of magnitude is a lot

with which to work in a new theory. However, there seems to be a whole smorgasbord

of various theories which seem to predict eEDMs in a similar range, a range at or just

below today’s experimental limits. These new theories are constructed such that the

new particles have masses that are larger than any particle mass yet measured, for

otherwise the community would likely have already observed them. Let one of these

1 Term coined by J. Schlaerth during beer and billiards
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Figure 1.1: One of many contributions to the eEDM in the SM. The cross denotes
a mass insertion, a technical way to treat the mass of the particle perturbatively. A
right-handed electron, through the many subsequent interactions becomes left-handed.
d (u) denote an up (down) quark while W denotes a weak boson. γ is a photon. Figure
adapted from Ref. [6].
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new particles be called Y (because, why not) and have a mass mY .

Instead of trying to write out expressions for the various theories beyond the SM,

it is more instructive to just gain a feel for the size of the eEDM that these theories will

predict. Given the plethora of adjustments to the SM, it seems rather surprising that

many of these theories give rise to an eEDM that is in the range of 10−28–10−30 e cm.

To understand why, in a qualitative sense, it will be beneficial to recall the electron g−2

diagram. This is the electron vertex function. Evaluation can be found in Ref. [8]. This

is presented in the bottom panel of Fig. 1.2.

The electron g−2 diagram is well understood, and it can be used to qualitatively

understand the emission and absorption of a large mass, parity violating particle from

the electron. Fig. 1.2 gives an example of a one loop correction (top panel, (a)) that

would lead to an eEDM. The phase φ is a CP violating phase associated with the

coupling of an electron to this new particle, the coupling strength of which is f . In the

SM, where the exchange of a W -boson does contribute to the electron one-loop diagram,

it does not lead to an eEDM at this order due to the cancellation of the phase. Thus, an

interaction of the sort presented in Fig. 1.2 is assumed to couple with a different phase

to left and right-handed electrons denoted eL and eR.

Bickman and DeMille have presented a simple relationship for the size of an eEDM

that particle Y can induce in the electron as compared to the Bohr magneton µB and

g − 2 from such a loop [9, 10]. The heavy particle introduces a propagator ∼ 1/m2
Y .

Because me is the only other mass scale in the problem one argues on dimensional

grounds the diagrams in (a) and (b) of Fig. 1.2 lead to a dimensionless ratio

de

(g − 2)µB
∝
(

me

mY

)2

, (1.3)

where me is the electron mass. In Gaussian based atomic units it is thus that (noting

µB = α/2)

de ≈ sin(φ)

(

f

c

)2(me

mY

)2(α2

2π

)

, (1.4)
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HaL eEDM

Γ
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e e

c c

HbL g-2

Figure 1.2: In theories beyond the SM, an eEDM may be generated by a yet unobserved
particle Y. This unobserved particle couples to the different handedness states of the
electron with a phase that is not quite equal, and thus does not completely cancel. This
phase is labeled φ. The top panel (a) is the eEDM inducing interaction with the yet
unseen particle Y . The bottom panel (b) is the electron g − 2 diagram. This diagram
is well known and understood by the physics community. By drawing analogies, it is
possible to express the top panel in terms of known quantities in the bottom panel.
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where (g − 2) = α/π has been used. The reason that many theories predict an eEDM

that is just around the 10−28–10−30 e cm mark is because from this point forward certain

assumptions will lead to similar estimates. It is often assumed that coupling constants

to the electron will have a similar order of magnitude and thus f/c ∼ 1. The CKM

quark mixing matrix in the SM gives a value of sin(φ) ≈ 1 [11] and one may expect a

similar result to hold in theories beyond the SM. Granted, these are merely assumptions

about the theories, and some do introduce new phases and coupling strengths which can

vary due to suppression of CP-violating phases and coupling strengths; this is just to get

a feel of the order of magnitude that the eEDM can take. Using these assumptions and

that the mass of the new particle Y is expected to be in the range of mY ∼100 GeV/c2–

1 TeV/c2, many theories beyond the SM predict eEDMs around 10−27–10−30 e cm,

where mY , the coupling strength ratio f/c, and sin(φ) may each vary by an order of

magnitude to yield this range. Higher order loops can also contribute, but each loop

is generally reduced in magnitude by a factor α/π and therefore is 10−3 times smaller

than a one-loop correction.

Thus, there is reason for experimentalists to pursue measurements of the eEDM;

if not just to rule out theories beyond the SM. High energy experiments naturally aim to

reach scales comparable to the mass scale of the supposed new particles while table-top

AMO experiments aim to use precision measurements to finagle the eEDM to reveal

itself through tiny shifts in energy. It is the latter which is of concern here.

Sandars showed long ago that an atom can have an electric dipole moment many

times larger than in the electron itself; an enhancement factor makes the applied field

effectively larger [12, 13]. An electron bearing an EDM will give to the atom an EDM

many times larger. Only the unpaired electron will contribute. The reason is that

an electron that is paired up with another, as in the ground state of the He atom,

will have its spin lie against that of its paired partner thereby negating any effect of a

eEDM. This relies on arguments presented earlier above Eq. (1.1). This enhancement
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is the advantage of which the Tl experiment took. In Tl, the enhancement is around

| Eeff

Eapp
| ≈ 585, a rather large number [5].

Of course, new bounds must always be set and current work on YbF molecules

by the group of Ed Hinds looks to set the new standard [14]. The reason to switch from

atoms to molecules becomes evident when one considers the size of the field required

to go beyond the measurement in Tl. In that experiment the applied field was about

105 V/cm making the effective field roughly 60 MV/cm. In order to go beyond this, one

either needs to increase the applied field, find another atom with a larger enhancement

factor, or move onto molecules. Since the enhancement scales very favorably with the

atomic number Z (see Chap. 2 of this thesis and Ref. [5]), Tl is a front runner for atomic

searches. Not many elements are heavier; at least none that are not on restricted lists

and possibly cause bad things to an experimenter’s graduate student(s). Applying larger

fields introduces difficulties with which, being a theorist, I am less familiar. Though, I

can imagine that getting into the many 10s–100s of kV/cm with precision control is a

daunting task.

Therefore one moves to molecules. Molecules can have quite large internal fields.

In fact, given the charge transfers and typical molecular sizes, electric fields within

molecules can be on the order of an atomic unit, or 5 GV/cm. This is a high electric

field laboratory. It is this lab that the Hinds group is using to find the eEDM. In order

to take advantage of such a system one must understand the system. How can one

calculate the size of the effective electric field? Will it really be on the order of an

atomic unit of field? Does bringing in more than one atom complicate the problem?

These questions and so many more are extremely important to answer.

In this thesis I will address the use of molecules as high electric field laboratories

for searching for the eEDM. The motivation to pursue the study of these candidates

is driven by the experimental work in JILA in the group of Eric Cornell [15]. Certain

experimental constraints limit the type of molecules that would be useful. Some of these
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constraints include the ability to easily polarize the molecule. This immediately rules

out homonuclear diatomics. In addition, one wants either small rotation constants or

small Λ-doublets (see Chap. 3 and Ref. [16]). This further limits the search to molecules

that have large reduced masses or are of a certain class of Hund’s case. Thus, the 104

possible combination of diatomics to search through has been greatly reduced to about

102. Further reduction must come from ingenuity, or an understanding gained from a

few years in graduate school studying molecular systems. It is these years that will be

presented in the next few chapters.

Firstly, one must know whether molecules possess large effective electric fields.

Chapter 2 will address the understanding of the estimation of this quantity. I will use a

standard approach that has been modified to include requisite physics to calculate the

effective fields. Some basics of relativistic quantum mechanics will be reviewed. Then

a recap of Schiff’s theorem [17] will lead into calculating the effective electric field.

Comparisons will be made to more elaborate calculations.

Chapter 3 will deal with the structure and spectroscopy of diatomic eEDM can-

didates. A review of the computational methods used will be presented first. The

remaining part of the chapter is broken up into two camps: 2Σ and 3∆ molecules. Each

section will deal with the structure and then the spectroscopy of each type of molecule.

Because some of the proposed molecules are to be held in ion traps, Chapter 4 will

deal with the additional phase that is introduced by a rotating field. A simple dressed

state formalism will be developed that encapsulates all of the aspects of uniform ro-

tation of a field interacting with a dipole moment, electric with electric and magnetic

with magnetic. The results reduce to that of Berry [18] in the limit of adiabatic rota-

tion. In addition, non-adiabatic corrections as well as the effects of structure will be

addressed in simple examples. The complications that arise for an eEDM experiment

in 3∆1 molecules will be addressed last.

Chapter 5 will sum up what you are about to read. In addition, some minor
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improvements that can be made as well as future work with molecules for addressing

physics beyond the SM will be discussed.



Chapter 2

Let’s Get Relative

Although this may seem a paradox, all exact science is dominated by the idea of

approximation. When a man tells you that he knows the exact truth about anything,

you can be safe in inferring that he is an inexact man.

–Bertrand Russell

Now, let me tell you exactly what I know. As learned in Chap. 1, there is

every reason to expect the electron electric dipole moment (eEDM) to be extremely

small; vanishingly so in the case of the Standard Model (SM). Therefore, it is a great

approximation to use perturbation theory ideas to establish the size of the energy shift

induced by an interaction of an eEDM with the internal electric field in the atom. This

chapter will introduce Schiff’s theorem which states that an electron in an atom will

experience zero total electric field even when a laboratory electric is implied, understand

its evasion, understand the size of the effective electric field that interacts with the

electron, and which molecular candidates are best suited for searching out the eEDM

in today’s experiments. But first, a mini-review of the Dirac equation.

2.1 Dirac equation: A mini-review

The Dirac Hamiltonian for an electron in an electromagnetic field can be simply

written

HDirac = βmc2 − eφ+ c~α · (~p− e ~A), (2.1)
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where m is the electron mass, −e its charge, ~p its momentum vector and φ and ~A the

scalar and vector potential. As usual, ~E = −~∇φ and ~B = ~∇× ~A The remaining terms

are matrices

β =







1 0

0 −1






,

~α =







0 ~σ

~σ 0






, (2.2)

~Σ =







~σ 0

0 −~σ






.

~σ are the Pauli matrices and 1 is the identity matrix. Now, Foldy and Wouthuysen

showed how to transform the odd terms (terms containing ~α), which connect positive

and negative energy states, into even terms through a series of transformations [19].

For a complete description of all the terms arising in an atom and molecule using such

techniques, the interested reader is referred to Chap. 3 of Ref. [16].

Hydrogen-like atoms satisfy the following Dirac equation (think of the outermost

electron only)

H0ψ = (c~α · ~p+ βmc2 − Ze2

r
)ψ = Eψ. (2.3)

Here, there is only a scalar potential that depends on the magnitude of the separation of

the electron from the nucleus. This equation can be solved using methods in Refs. [20,

21]. For purposes here, one is interested in the form of this solution close to the nucleus.

In a many electron atom, “close to the nucleus” means close enough that the electron

sees the unscreened charge 1 of the nucleus, or roughly given by r � a0/Z
1/3, where a0

is the Bohr length. The solution can be written in terms of a radial and angular piece

|njlm〉 =







φnjl(r)Ωjlm

ξnjl(r) (−ı~σ · r̂) Ωjlm






, (2.4)

1 otherwise known as the Full Monty experience
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where φ and ξ are the large and small parts of the radial wave function, respectively.

The Ω terms are the usual angular functions from angular momentum addition of spin

and orbit. They are eigenfunctions of l2, lz, s
2, and sz.

In this regime the radial wave functions can be expanded in terms of Bessel

functions that are both regular as r → 0 via

φnjl(r) =
cnjl

r

[

(γj + κ)J2γj
(x) − x

2
J2γj−1(x)

]

(2.5)

ξnjl(r) =
cnjl

r
ZαJ2γj

(x), (2.6)

where

x =

(

8Zr

a

)2

,

γj =
√

(j + 1/2)2 − Z2α2, (2.7)

κ = (l − j)(2j + 1).

The value of cnjl is determined by requiring that the large component of the radial wave

function should go over to the semi-classical, non-relativistic solution - this is because

the large component is the dominant term when relativity is weak, or when r � a/Z

and the electron is well screened from the bare nucleus.

The ordinary, non-relativistic semi-classical solution to the Schrödinger equation

is

Rnl(r) =
bnl

r
√

k(r)
sin

(∫ r

r1

dr′k(r′) + δ

)

. (2.8)

The value of k(r) is given by the difference of the energy and the modified potential

(the potential including the centrifugal barrier) such that

k2(r) = 2me

(

Enl − U(r) − (l + 1/2)2

2mer2

)

, (2.9)

where U(r) is the electronic potential experienced by the electron. U(r) ≈ − Ze2

r +

∑

i<j
e2

rij
, where rij is the separation between two electrons. r1 is the turning point

while δ is a constant phase. Between the two turning points inside the potential, r1



15

and r2, is the dominant contribution to the integral because of the potentials depth.

Ignoring terms beyond the turning point and setting the square of the integral to unity

(normalization condition) it is then seen that

b2nl

∫ r2

r1

dr

k(r)
sin2

(∫ r

r1

dr′k(r′) + δ

)

≈ b2nl

2

∫ r2

r1

dr

k(r)
= 1, (2.10)

where sin2() has been replaced by 1/2.

Recall the Bohr quantization rule for radial motion which states

∫ r2

r1

drk(r) = π(nr + β), (2.11)

where β is a constant. Differentiating this with respect to nr, using k(r) from Eq. (2.9)

and remembering that k(r1,2) = 0, yields

me
dEnl

dnr

∫ r2

r1

dr

k(r)
= π, (2.12)

and therefore a quick substitution into Eq. (2.10) gives

b2nl =
2me

π

dEnl

dnr
=

2

πa2
0ν

3
, (2.13)

where the outer electron energy has been approximated by

Enl = −Z
2
eff

2ν2
, (2.14)

where ν = nr + l+ 1− σl. σl is a quantum defect which accounts for the effects of U(r)

on the energy Enl; thus it accounts for the outer electron whizzing through a cloud of

other electrons as well as the nucleus. It effectively diminishes the principal quantum

number n = nr + l + 1, because the electron when far away sees a charge of unity, but

up close sees the complete nuclear charge. The energy is shifted by the interaction of

this electron with the remaining cloud around the nucleus.

Zeff takes the value of 1 (2) in neutral (singly ionized) atoms while in a molecule

one can assign a value based on the molecular structure (see Sec. 2.4). The coefficient cnjl

can be found by comparing Eq. (2.5) with Eq. (2.8) at distances a0/Z � r � a0/Z
1/3

cnjl = sign(κ)
(πa0

2Z

)1/2
bnl = sign(κ)

(

1

Za0ν3
l

)1/2

Zeff . (2.15)



16

Quantum Defect Theory is a rich field and the interested reader should look in Ref. [22].

νl is a parameter gained from experimental data on the atom of interest.

The take away message is we can write a form of the radial wave functions at

short distances r � a/Z1/3 in terms of the nuclear charge Z, the effective charge Zeff ,

and a parameter νl.

φnjl(r) = sign(κ)(κ − γj)

(

Z

a3
0ν

3
l

)1/2 2Zeff

Γ(2γj + 1)

(

a0

2Zγjr

)1−γj

(2.16)

ξnjl(r) = sign(κ)Zα

(

Z

a3
0ν

3
l

)1/2 2Zeff

Γ(2γj + 1)

(

a0

2Zγjr

)1−γj

. (2.17)

This concludes the brief review of relevant Dirac equation concepts. It is now time to

explore the properties of an interaction involving an electron electric dipole moment

(eEDM).

2.2 Schiff’s theorem

An elementary particle such as the electron, or structured particles such as pro-

tons, have this annoying property that when placed in a static electric field they tend to

dart quickly away. Therefore, in order to measure their EDMs it is necessary to place

them into familiar neutral systems like atoms and molecules. However, this presents a

problem formulated first by Purcell and Ramsey [23] and further expounded upon by

Garwin and Lederman [24].

Imagine applying an electric field ~Eapp to an atom. In equilibrium the electrons

move about to and fro in such a manner that the atom remains at rest, thereby implying

that the internal electric field ~Eint acting on each electron (and nucleon for that matter)

exactly balances ~Eapp. Therefore there is no electric field whereby the EDM of the

electron (or nucleon) can interact and create an energy shift. This is the basic concept

of Schiff’s Theorem[17]. Ironically, Schiff’s own paper [17] was more concerned with how

to get around this conundrum. In mathematical terms, this is seen via the following

steps. In the atom, there are particles j with intrinsic electric dipole moments ~dj . The
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bare EDM of the atom is thereby the expectation of the sum off all the intrinsic dipoles

in the state of interest

〈n|
∑

j

~dj |n〉. (2.18)

In addition, there is an induced dipole moment due to the interaction with ~Eint. By

writing ~Eint as the gradient of a potential experienced by the particle,

Hd = −
∑

j

~dj · ~Eint(rj) (2.19)

= −
∑

j

1

ej
~dj · ~∇jU(r)int

= ı
∑

j

1

ej
[pj,H0] , (2.20)

where H0 is the Schrödinger Hamiltonian in the absence of EDM terms. In addition, one

assumes the inter particle interactions are solely electrostatic, especially it is assumed

the interactions are independent of ~p. Hd will cause a mixing of states

|ñ〉 = |n〉 +
∑

m

〈m|Hd|n〉
En −Em

|m〉

=

(

1 + ı
∑

k

1

ek
~dk · ~pk

)

|n〉, (2.21)

where here ~dk · ~pk/ek is a sum over states |m〉 connected by the interaction and the sum

on k is a summation over the particles. The expectation value 〈ñ|e~rk|ñ〉, which is the

non-intrinsic dipole moment of the mixed state, is thus

〈ñ|
∑

k

e~rk|ñ〉 = 〈n|ı
[

∑

l

el~rl,
∑

k

1

ek
~dk · ~pk

]

|n〉

= −〈n|
∑

k

~dk|n〉, (2.22)

which cancels to first order in Hd the effect of the bare dipole moments in Eq. (2.18).

It is important to note that the application of the the commutation relations used in

Eq. (2.22) requires that the dipole ~dk be independent of the velocity of the electron in

the atom or molecule. In that way, one can invoke the commutation relation between ~r l
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and ~pk to reduce the double sum to one on a single index. This is the heart of Schiff’s

theorem and intrinsically supposes non-relativistic motion of the electron. Thus, it is

left that the total dipole moment of the system is

〈~d〉 = 〈
∑

k

ek~rk +
∑

j

~dj〉 = 0, (2.23)

and there is no dipole moment, to first order.

However, all is not lost. A common, although “false and misleading,” [25] method

of expressing how the electric field acting on the constituents can be non-zero is to invoke

the following: electrons in the atom are motional, and therefore create a magnetic field.

Thus, there are two internal fields with which to balance the applied electric field thereby

allowing a non-zero effective electric field at the electron within the atom. This is the

line of reasoning used by Sandars in the original proposal to search for eEDMs in atoms

in the 1960s [26, 27, 12, 13]. It has been the standard explanation for the evasion of

Schiff’s theorem in many papers since [28, 29, 30, 31]. Basically an assertion is made

that there exists a velocity dependent piece to the force experienced by the electron.

Yet, one can show that the average electric field is still zero, even in the relativistic

sector, i.e. using the Dirac Hamiltonian. The Hamiltonian in Eq. (2.3) combined with

the electron EDM Hamiltonian, which is given by [5]

HEDM = −deγ
0~Σ · ~E , (2.24)

where γ0 is a Dirac matrix and ~Σ is the matrix of Pauli matrices on the diagonal (c.f.

Ref. [20]), has an expectation value of zero for the electric field. The standard Dirac

Hamiltonian is given by (similar to (2.3) except the electrostatic potential is left as a

sum of internal and external terms).

H = c~α · ~p+mc2γ0 − e(Φi + Φe), (2.25)

where ~α is defined in the Sec. 2.1. In addition H has eigenvectors |ψ〉. The total electric

field is ~E = −~∇(Φi +Φe), where Φi(Φe) is the internal (external) electrostatic potential.
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A standard approach (c.f [5, 25]) is to separate (2.24) into two parts

HEDM = −de
~Σ · ~E − de(γ

0 − 1)~Σ · ~E , (2.26)

where the first term commutes with Eq. (2.25) and the second term does not. Because

the total electric field is the gradient of an electrostatic potential, it is straightforward

to show that the first term in (2.26) has an expectation value of

〈ψ| − de~σ · ~E|ψ〉 = − ıde

e
〈ψ|
[

~Σ · ~p,H
]

|ψ〉 = 0, (2.27)

because |ψ〉 is an eigenstate of H. This is merely a restatement of Schiff’s theorem

because the first term in (2.26) is merely the non-relativistic piece of HEDM. The

second term in (2.26) is responsible for the evasion of Schiff’s theorem, but not because

the expectation value of the electric field is non-zero. In fact, it is straightforward to

show (using Φ = Φi + Φe)

~E = −1

e
~∇(eΦ)

= − ı

e
[~p, eΦ]

=
ı

e

[

~p, (H − c~α · ~p−mc2γ0)
]

, (2.28)

and since ~p commutes with both ~α · ~p and γ0, it is evident that

〈ψ|~E|ψ〉 =
ı

e
〈ψ| [~p,H] |ψ〉 = 0 (2.29)

because |ψ〉 is an eigenstate of H. Therefore, the average electric field within the atom

is zero.

The true evasion of Schiff’s theorem relies on an invocation (or incantation) of

relativity: length contraction. As derived in Ref. [25] the dipole moment of the electron

has a different value in the lab frame than in the frame of the atom or molecule. After

much algebra and relativistic quantum mechanics operator identities that are (summar-

ily) executed in [25], one can arrive at an expression for the EDM of the electron in the
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lab frame:

~dlab
e = ~de −

γ

1 + γ
~β ~de · ~β. (2.30)

~β is the velocity vector (and not to be confused with the Dirac β in Eq. (2.3) such that

~p = m~βγ, and γ = (1 − β2)−1/2 is the usual relativistic factor with β = v/c. As is

evident, Eq. (2.30) has a velocity dependent piece. Therefore, the assumption made in

Eq. (2.22), namely [~rl, ~dj ] = 0, is not valid. The commutation of ~rl with the non-trivial

velocity dependence of the the dipole ~dj must be worked out. Therefore, that sum will

not entirely cancel out the bare dipole moments of the constituent particles in the atom.

Therefore, there is a measurable EDM shift in an atom or molecule.

The evasion of Schiff’s theorem is now accomplished. It is the Lorentz contraction

of the dipole as it moves relativistically near the nucleus that allows for the non-zero

expectation value of the interaction ~dj · ~E while the expectation value of ~E is rigorously

zero. It is standard to interpret the energy shift due to the interaction with the electric

field as arising from an effective electric field ~Eeff interacting with the dipole moment

de. For the rest of this chapter, the concern will be with estimating the size of ~Eeff .

Therefore, interactions of the form

HEDM = −de~σ · ~Eeff , (2.31)

are of interest, where σ is the Pauli matrix for spin and not the version Σ in Eq. (2.2).

Even though the relativity is hidden in the length contraction, and the average field

in the atom/molecule is still zero, the energy shift will be interpreted as arising from

an effective electric field ~Eeff interacting with electron frame eEDM pointed along the

direction of the magnetic spin axis defined by ~σ.

2.3 Enhancement factor

Sandars [26] noted that the net EDM of an atom can be many times larger than

the eEDM because of an enhancement of the applied electric field, the enhancement
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associated with relativity. To get a feel for the size of the electric field necessary, very

simple arguments can be made. First, the electric field experienced by an electron near

the nucleus scales as follows

Eeff ∼ Ze

r2
∼ Z3e

a2
0

, (2.32)

where we use r ∼ a0/Z because of a0/Z sets the scale for where all the action happens.

Again, a0 is the Bohr length. Therefore, Eeff scales as Z3. The larger the value of Z,

the larger the effective electric field experienced by the electron.

Now, recall the form of the eEDM Hamiltonian in Eq. (2.26). Even in the presence

of multiple electrons in the system, the first term on the LHS of that equation will

contribute zero for the same reasons that it did in Sec. 2.2. The electric field ~E can

be written as the gradient of a potential, and will commute with the many electron

Hamiltonian, even when including electron-electron interactions. It is the second term

on the RHS of (2.26) that is of interest. First, notice that it will only contain terms

involving the “small” radial wave function ξnjl(r) because

γ0 − 1 = 2







0 0

0 −1






, (2.33)

and (γ0 − 1)~Σ = −2~σ The interaction therefore appears as ∼ de~σ · ~E and involves only

the “small” component of the Dirac wave function. In the non-relativistic limit, this

term will vanish completely because Zα→ 0 when relativity is unimportant.

Now, let there be a wave function |Ψ〉 describing an electron in an atom or

molecule written as a sum of Dirac wave functions |njlm〉,

|Ψ〉 =
∑

njl

εnjl|njlm〉, (2.34)

where the |njlm〉 are defined in Eq. (2.4). The parity of each individual solution |njlm〉

is given by (−1)l. This, combined with the fact that the electric field is an odd parity

operator will greatly simplify the calculation. Only states with opposite parity will
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be connected, and the Hamiltonian in Eq. (2.33) acts only on the small component.

Therefore, terms of the form

〈Ψ|HEDM|Ψ〉 = −de〈Ψ|(γ0 − 1))~Σ · ~E|Ψ〉

= −2de〈Ψsmall|~σ · ~E|Ψsmall〉

= 2de〈Ψsmall|~σ · ~∇U(~r)|Ψsmall〉

= 2de〈Ψsmall|~σ · r̂ Ze
2

r2
|Ψsmall〉

= 2de

∑

njl

∑

n′j′l′

εnjlεn′,j′,l′〈small, n′j′l′m|~σ · r̂ Ze
2

r2
|small, njlm〉(2.35)

are important. In the second line the word “small” is to indicate the small component

of the solution, ξnjl(r). From the third to fourth line the potential is assumed to be

dependent on the magnitude of the charge of the nucleus and inversely proportional to

the separation of the electron from the nucleus. This is valid at distances small enough

that the electron experiences the bare nucleus and it is the dominant contribution to

the potential energy. At larger separations, the potential is screened and relativistic

effects are much smaller due to the smaller velocities involved.

The angular integrand is then going to involve Ω?
jlm(~σ · r̂)3Ωj′l′m′ , where two

powers of ~σ · r̂ come from the “small” angular components and the other from the

interaction of the spin with the electric field. Due to properties of the Pauli matrices,

(~σ · r̂)3 = (~σ · r̂). This is seen using (summation is implied over repeated indexes)

(~σ · r̂)2 = rirjσiσj

= rirj(ıεijkσk + δij) (2.36)

= rirjδij + ırirjεijkσk (2.37)

= 1, (2.38)

where the relations εijkrirj = 0 and rirjδij is the identity matrix are used. The angular

integral is now given by

∫

Ω?
jlm(~σ · r̂)Ωj′l′m′d(cos(θ))dφ. (2.39)
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~σ · r̂ is a pseudo-scalar which changes the value of l by one. Recall that pseudo-scalars

change the parity of a state. Thus, for a given state j, the pseudo-scalar will flip l by

one when it flips the parity. Because the pseudo-scalar acts only to change l, j and j ′

must be the same. So, l′ = l ± 1. When ~σ · r̂ acts on the state Ωj′,l′,m′ , it preserves j

and changes the parity thereby changing l′ → l′ ± 1. To evaluate the angular integral,

the form of the angular functions for j = l± 1/2 will be useful (see Ref. [20] for a more

detailed account).

Ωjlm =











ϕ+
jm; j = l + 1/2

ϕ−
jm; j = l − 1/2

, (2.40)

where

ϕ+
jm =







√

l+1/2+m
2l+1 Yl,m−1/2

√

l+1/2−m
2l+1 Yl,m+1/2






, (2.41)

ϕ−
jm =







√

l+1/2−m
2l+1 Yl,m−1/2

−
√

l+1/2+m
2l+1 Yl,m+1/2






. (2.42)

ϕ−
jm only exists when l > 0. The Y

m±1/2
l are the regular spherical harmonics and m is

the projection of j. An important identity to use

ϕ+
jm = ~σ · r̂ϕ−

jm. (2.43)

Note that unless l = j±1/2 and l′ = j∓1/2, the angular integral will be zero. Therefore

the angular integral reduces to

∫

Ω?
jlm(~σ · r̂)Ωj′l′m′ =

∫

ϕ+
jm(~σ · r̂)ϕ−

j′m′ (2.44)

=
l + 1

2l + 1

due to the orthogonality and normalization of the spherical harmonics. l takes the value

associated with the j = l− 1/2 term. For an s connected to a p state, l takes the value

l = 1 and the angular integral is 2/3. The angular integration knows that the parity of

the two states connected by the HEDM must differ.
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Since one starts out in a given |njlm〉 in an atom one needs to find the |n′jl′m′〉

states that are connected via the interaction. The radial piece of the integral in

Eq. (2.35) reduces to

〈njl = j ± 1/2|Ze
2

r2
|n′jl = j ∓ 1/2〉 = 〈ξnj(l=j±1/2)|

Ze2

r2
|ξn′j(l′=j∓1/2)〉,

=

∫ r=a0/Z

0
ξ?
nj(l=j±1/2)(r

′)
Ze2

r′2
ξn′j(l′=j∓1/2)(r

′)r′2dr′

= − 4Z3α2e2Z2
eff

γj(4γ
2
j − 1)(ν ′l′νl)3/2

. (2.45)

which is termed the relativistic enhancement factor. The integrand is only taken to

distances where the unscreened Coulomb charge of the nucleus is present. Beyond this

distance the integrand is vastly smaller and thus, ignorable. For these small values

of r the expansions in Eq. (2.17) were used. Therefore, the expectation value of the

perturbing Hamiltonian HEDM yields a shift in energy given by

〈Ψ|HEDM|Ψ〉 = ∆E = −4

3
de

∑

n′l′

εnlεn′l′
4Z3α2e2Z2

eff

γj(4γ2
j − 1)(ν ′l′νl)3/2

(2.46)

All that remains is to calculate the ε terms.

There is one subtlety to consider. In a molecule, both the p1/2 and p3/2 electrons

have a projection onto the molecular axis defined by λ. Therefore, one must account

for this in the angular integrand of Eq. (2.39) where spherical symmetry was assumed.

The p orbital can be expanded into

|p〉 = − 2σ√
3
|p1/2σ〉 +

√

2

3
|p3/2σ〉. (2.47)

Then one ignores the contribution from the p3/2 state since it does not preserve the

value of j. In the end, this introduces a slightly different energy shift for molecules and

atoms, which in turn gives a slightly different effective electric field formula. In order to

calculate the effective electric field one takes the energy shift and divides by de. Thus,
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the effective electric field for atoms and molecules are given by

Eeff,atom = −16

3

Z3α2e2Z2
eff

γj(4γ
2
j − 1)(νnsνnp)3/2

εsεp, (2.48)

Eeff,mol = −(σ · λ)
16√

3

Z3α2e2Z2
eff

γj(4γ2
j − 1)(νnsνnp)3/2

εsεp (2.49)

In the last line the term σ · λ takes account of the projection of the spin onto the

molecular axis defined by λ. It has magnitude 1/2. Therefore, the two are related in

magnitude by
√

3/2 and this factor accounts for the geometry of the molecular system.

It is a reduction in the size due to projecting onto the lab frame and the molecule frame.

There is an implicit assumption made about the form of the wave function in the

molecular system. When the electron is close to the nucleus, one ignores the molecular

properties in favor of the short range atomic ones. Therefore, even in the molecular case

the concern lies with the quantum defects of the atom of interest as well as the effective

charge.

The next section will address calculating εs and εp for the molecule. However, it

is instructive to do so for the atom first. In the atom the eEDM interaction does not

mix much in the way of p-orbitals into the ground state. Therefore, one could try to

enhance the effect by applying an external electric field and perturbatively couple in

the excited p state (or more generally the excited state of opposite parity). In this limit

εs ≈ 1, (2.50)

εp ≈
∑

m

〈s|er̂ · ~Eapp|p〉
E(mp) −E(ns)

. (2.51)

An s-ground state has been assumed and the sum is over all p states connected by the

applied electric field. Were the ground state p in nature then one has εp ≈ 1 and a

sum over connected s states is required. What is directly evident is that the effective

field in Eq. (2.48) is proportional to the applied electric field ~Eapp, thus defining an

enhancement factor. These estimates have been made for many atoms. Two worth

mentioning are Cs [26, 27, 32] and Tl [33, 34]. These papers show that the energy shift
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in Cs is ≈ 130deEapp, or that an electric field enhancement of 130 × Eapp is achieved.

Detailed, fully relativistic calculations yield a value of 114 for the enhancement [32]. In

Tl, the estimate yields −500 [5] while detailed calculations yield −585 [34].

Recall from the introduction (Sec. 1) that Tl is the system in which the current

best limit on the eEDM was attained de < 4 × 10−27 e-cm [7]. Having quite a large

enhancement of the applied field is the key to this measurement. Yet, it begs the

question of how to improve on this value. Unfortunately, stable atoms do not get much

heavier than Tl, and therefore the enhancement that grows with Z so favorably comes

to an end. And the ability to apply large electric fields is limited in the laboratory to

many kV/cm (perhaps even up to many 10s of kV/cm). One way in which to improve

upon this limit is to find systems where s and p orbitals are naturally mixed, or the

spacings of opposite parity levels are vastly closer so a smaller applied electric field gains

in the enhancement factor. Luckily, nature has provided systems where this occurs.

2.4 Molecular candidates

In a diatomic molecule, the atomic orbitals are naturally mixed. s-states mix

with p-states, d with p and f , etc. In so doing, a natural effective electric field is created

in the sense of Eq. (2.49) and this field can be many orders of magnitude larger than is

achievable in the laboratory. Within a diatomic molecule an s electron is of particular

interest for eEDM searches. This electron has zero projection onto the molecular axis

(defined by σ) and can be expanded in the following basis

|σ〉 =

lmax
∑

l=0

εl|lσ〉, (2.52)

where the sum indicates all angular momentum with a zero projection along the molec-

ular axis. This is due to the breaking of spherical symmetry in the molecule. Therefore,

pz, d0, f0 atomic orbitals all contribute to the σ molecular orbital by the argument of

the previous section. This mixing can be interpreted as an effective electric field. lmax
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is the maximum value l can take and will depend on the type of atom being consid-

ered. For an alkali-metal atom such as Cs, choosing lmax = 2 is sufficient. In order to

calculate the contributions εl one must employ ab initio methods. The details of these

calculations will be developed in the next chapter (3). The important idea here is that

the values of εs and εp can be quite close to an even mixture, ideally given by 1/
√

2 for

each. Moreover, Eeff is independent of the applied field.

Typically, one uses a basis set designed to accurately reproduce atomic data for a

specific atom when performing these calculations. A convenient choice is to use a basis

set that consists of Gaussians. One then centers these Guassian sets on each atom with

angular momenta from 0–lmax, the maximum l in the basis. A basis set |b〉 (the radial

component only) will look like the following

|b〉 =
∑

k

sk|gk〉 =
∑

k

cklr
le−χklr

2

(2.53)

where l is the angular momentum, and the coefficients c and χ will depend on which value

l takes. Thus, an s state is a Guassian, p a first rank polynomial times a Guassian, d a

second rank and so on. When there is a one-electron σ molecular orbital, the molecular

wave function can be expressed as

|Ψmol〉 =
∑

i

chi |sσh
i 〉 + dh

i |pσh
i 〉 + · · ·

+
∑

j

c`j |sσj`〉 + d`
j |pσ`

j〉 + · · · , (2.54)

where h and ` are used to signify the heavy and light atom separately. Distinguishing

between h and ` serves to separate out the contribution to εs (εp) from each atom.

Because Gaussians are not necessarily orthogonal to each other, care must be used to

normalize molecular orbitals in the definition of the ε parameters. The contribution

from the heavy atom due to s-type orbitals is

εs =

∑

k c
h
k〈Ψmol|sσh

k 〉
∑

jk c
h
j

?
chk〈sσh

j |sσh
k 〉
. (2.55)
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A similar expression for the p-orbital contribution to the heavy atom is

εp =

∑

k d
h
k〈Ψmol|pσh

k 〉
∑

jk d
h
j

?
dh

k〈pσh
j |pσh

k 〉
. (2.56)

The expressions in Eqs. (2.55) and (2.56) do not make a distinction for the principal

quantum number n of the atom, and therefore encompass all the excitations that may

come into play in forming the molecular bond.

Because these expressions give in principle the entire contribution of the the many

ns and n′p excitations, it appears that the definition of the quantum defect parameters

νs and νp are harder to define. However, recall that the expression containing νs and

νp in Eq. (2.49) has the origin of these parameters arising from the short range physics

near the nucleus, where the effects of relativity are largest. Therefore, the values of

the quantum defects are still tabulated for the individual atom of interest within the

molecule.

In Eq. (2.49) the value of Zeff is not quite as it would be for an atom. In a polar

molecule there is a transfer of charge from one atom to the other. This transfer does not

come in units of the electron charge. A simple model would be to use the measured dipole

moment of a molecule of interest and then use a classical approximation to determine

the amount of charge on the atom of interest. Then, Zeff would be one more than this

number because the electron of interest, when far away from this nucleus, would “see”

this charge. Therefore using the system of equations

dmol = r1q1 + r2q2 (2.57)

Qmol = q1 + q2,

one can solve for the effective charge on either nucleus. r1,(2) is the distance from the

center of mass of the molecule to atom 1 (2). In a neutral molecule Qmol = 0. It is

worth noting that a molecular ion may be of interest since the value of Zeff = qion + 1

can be larger than 2. This further increases the value of the effective electric field. In
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order to deal with ions, one must overcome the tendency of ions to dart away in an

electric field. Therefore, a rotating electric field is requisite, and the way in which this

affects the molecular ions will be addressed in Chap. 4.

There are two other modifications to consider making to Eq. (2.49). In a heavy

molecule there are many configurations of the electron that may participate. For exam-

ple, in a 3∆ molecule (one where there are two units of orbital angular momentum about

the internuclear axis) there are many ways in which the electrons can add up to make

∆. There can be a |ππ′〉 configuration as well as a |σδ〉 configuration. Only the latter

will contribute appreciably to the large effective electric field. This is because two π

molecular orbitals involve atomic orbitals of a minimum of p angular momentum. While

a mixing of p with d orbitals would produce an effective electric field, they would not

experience much of the relativistic enhancement near the nucleus since these orbitals

have minimal amplitude at the nucleus.

In addition, effects such as spin-orbit can connect states with the same total value

of Ω into the state of interest. Ω is the projection of the total spin plus orbital angular

momentum onto the molecular axis. A 2Σ1/2 molecule will mix with a 2Π1/2 molecule

due to spin-orbit effects. Thus, a calculation on a heavy (large Z) diatomic in a 2Σ1/2

state would have to consider the effects of spin-orbit. The 2Π1/2 would have negligible

contribution to the effective electric field for the same reasons as in the configurations

example. Therefore, there would be a reduction in signal for the 2Σ1/2 state of interest

due to the spin-orbit interaction.

In Refs. [28, 35, 36] this method was applied to many molecules. To test the

effectiveness of using non-relativistic ab initio software (details of which are presented

in Chap. 3) along with the relativistic enhancements as calculated above, I produced

the values of effective electric fields in Table 2.4. As is evident, the method reproduces

the values of the more extensive calculations to within 25%. Considering that some

of the more in depth methods produce values to within a certainty of 10%–25% for
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the effective electric field, the simple method is a nice alternative. The simple method

allows for a quick calculation, taking perhaps a few weeks to complete an in depth study

of the molecular properties and arriving at a value of Eeff . More involved methods can

take several months to a year to estimate. For experimental groups looking to choose a

molecule for an experiment, the simple method is more than sufficient for determining a

good candidate. However, it does not replace the need for a fully relativistic calculation

once a molecule is chosen and/or a measurement is made.

Now that a simple method has been established, it is worth noting the limita-

tions. Firstly, this approach works well for systems where correlation effects between

the electron of interest and the remaining electrons are minimal. Thus, systems with

one to two isolated valence electrons are ideal. While the method can be applied to

systems with many valence electrons, such as WC [42], the number of configurations

begins to take a toll on the time commitment. The accuracy is limited to the diligence

of the graduate student in correctly identifying configurations which would contribute

to an effective electric field, since many configurations are necessary.

Also, one may try to improve the method by using multi-channel quantum defect

theory to find the values of the quantum defect parameters νs and νp of the individual

atoms, i.e. the motion of the electron in the atom of interest [43, 44]. Currently, a

single channel approach is all that is used [44, 27]. However, a multi-channel approach

adds time to the calculation without necessarily improving the accuracy. The quantum

defect contains information about the potential the electron experiences when in the

cloud of the other electrons. Yet, it is the information about the region near the nucleus

that is most important for these calculations and the essence is already captured in the

single channel method.

Lastly, the fully relativistic calculations need to know information about the wave

function at the site of the nucleus of interest. Therefore, they need hyperfine param-

eters measured before the calculation can be put of firm footing. This requires going
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Table 2.1: Effective electric field values produced using the above described method
compared to values produced using more rigorous methods. All values are in GV/cm.

Molecule This method Fully Relativistic

BaF 6.1 7.4 [37]

YbF 32 26 [14]

HgF 95 99 [38]

PbF -31 -29 [38]

a(1) PbO 23 26.2 [39]

HI+ 0.34 0.34 [40]

HfF+ 30 24 [41]

ThO 104 N/A

ThF+ 90 N/A

RbYb -0.7 N/A

CsYb 0.54 N/A

SrYb+ -11.3 N/A

BaYb+ 1.2 N/A

WC 54 N/A
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back to the board to calculate again after the new information is attained. While this

simple method can be implemented to reevaluate the hyperfine constants, it takes one

down a path of basis set construction which is not at the heart of a speedy calculation.

Therefore, using this method is better suited as a preliminary run that aids the experi-

mentalist in choosing a molecule. The experimenter measures the hyperfine parameters

and then feeds this information to a theorist who uses it to constrain the fully relativis-

tic calculation from the get go, thereby producing a more accurate prediction the first

time through an extensive calculation.

In principle, the non-relativistic ab initio software can be constrained using the

hyperfine information as well. But, one must again ask whether this is going to improve

the overall accuracy compared to the time commitment that would be involved. The

simple method is a powerful way to get you into the ball park quickly and start the

game — with decent accuracy. However, it can only start the ballgame. A strong closer

needs to finish it out in the end. This does not rule out throwing a complete game, it

is just rare in this day and age for the starter to close the game2 .

2 The baseball analogy may have been carried too far



Chapter 3

A diatom is one atom two many

Technical skill is mastery of complexity while creativity is mastery of simplicity

– Erik Christopher Zeeman

Let’s get creative. The study of molecular structure and spectroscopy is quite

involved. For many of the molecules presented in Table 2.4 there is no structure or

spectroscopic information in the literature. This can make life quite difficult for the

experimentalist. However, life is not so strenuous considering the help that can be

afforded by a little physical insight mixed with a healthy dose of creativity — simplicity

by any other name.

In this chapter I will cover the basics of ab initio calculations for gaining insight

into the molecular systems of interest. Even with these calculations, there is quite a bit

of uncertainty about the analysis of the spectroscopy. Using perturbative treatments, it

is possible to extract meaningful parameters which govern the dominant spectroscopy

of the atoms. Smaller, more detailed effects can then be understood as deviations from

these dominant terms. A general ab initio procedure will be developed and used to

create surfaces for the molecules of interest in Table 2.4. Then the basic structure and

spectroscopy of these molecules will be discussed in in the following sections.
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3.1 Chemistry acronym school

Understanding the chemical aspects of heavy diatomic molecules can be a quite

daunting task should one try to incorporate every little detail into the calculation and

then check that no coding errors are found. Even then, approximations have to be made

due to the sheer complexity of the problem. Complexity in science is another way of

saying it takes a lot of computer time to solve. The more complex a problem is, the

more one needs to make assumptions that simplify the problem. Well, that and the fact

that most calculations need to be done within the “lifetime” of a graduate student in

the group. Therefore, a natural time limit for the length of the any given calculation is

dependent upon weighing the expectations of the student with the professor and trying

to leave enough time to write the work up. Somewhere between 4-12 years possibly1 .

Luckily, there have been many methods introduced due to the innovations of the-

oretical and computational chemists and physicists over the years. These innovations

cut down the computational time required to compute molecular properties. While the

methods will not give exact properties, they will contain enough information to qual-

itatively, or more appropriately, ballpark quantitatively describe the system. In what

follows I will walk through the basic steps taken to construct a surface for a diatomic

molecule at the various levels needed to understand the eEDM searches presented in

Chapter 2. All calculations in this thesis are performed with the molpro suite of ab

initio codes [45].

As noted in Sec. 2.4 a basis is usually already constructed. In practice, this basis

is described by a set of Gaussian functions |gi〉 and form an atomic basis set |bj〉 as

follows

|bj〉 =
∑

i

si|gi〉. (3.1)

This set is chosen so as to optimize the properties of the individual atom. As an example,

1 I tried to say 4-8 years but an adviser not to be named said 12
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for Rb the basis is optimized so as to reproduce the ionization energy of Rb as well as

the polarizability. A good place for obtaining standard basis sets for heavy atoms is

given in Ref. [46]. Using a a set of atomic bases on each atom, it is now possible to

define a molecular orbital via

|φk〉 =
∑

j

cj |bj〉, (3.2)

where each atomic basis is centered on one of the atoms in the molecule. This is an

orbital because it has contributions from all atoms in the calculation, and therefore is

slightly different from the basis set definition. A configuration is a product of occupa-

tions of orbitals given by

|Φl〉 = A
∏

k

dk|φk〉. (3.3)

In a Hartree-Fock (HF) calculation the values of dk can take 0, 1, or 2 for zero, single,

or double occupations of the orbital. A is a shorthand for anti-symmetrization.

For large atoms there is usually another step is reducing the computational time.

While it is conceivable to construct an all electron basis for large atoms such as Ba

and Yb, it is non-practical. Instead, a core potential can be constructed. This core

consisting of N electrons is represented by a pseudo potential. In addition, basis sets

can be constructed at the fully relativistic level. Short of creating a basis for one’s own

use, the quasi-relativistic effective core potentials, which account for a large portion of

the relativistic effects (excluding mass corrections and Darwin-type terms), are a great

tool to use in these calculations. For the atoms of interest in Table 2.4 there are many

great references, chief of which is Ref. [47].

An HF procedure will minimize the energyE of the ground state of the state/symmetry

selected and given occupation numbers. Therefore, only one configuration is optimized

yielding a HF wave function

|ΦHF〉 =
∏

k

dk

∑

j

cjk|bj〉. (3.4)
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The procedure will find the dk and cjk that minimize the total electronic energy E

for the configuration. This procedure is exceptionally fast, however it fails to account

for the interactions of configurations with each other given that it only optimizes one

configuration.

The next step in the procedure is to build a wave function at the multi-configuration

self-consistent field (MCSCF) level. A thorough discussion can be found in Refs [48,

49, 50, 51, 52]. The MCSCF takes as a starting point the optimized electronic energy

E from the HF step as an initial guess. It then finds appropriate linear combinations

of the configurations given in Eq. (3.4) that minimize E over M total configurations.

The M configurations can contain many states of a given symmetry as well as different

symmetries and spin states. This wave function is

|ΦMCSCF〉 =
∑

l

fl|Φl〉 =
∑

l

fl





∏

k

dlk

∑

j

ckj|bj〉



 , (3.5)

and the procedure finds the fl, dlk, and ckj which minimize the average E; averaged

over all the spin and symmetry states given in the command. Depending on the choice

of active, closed, and frozen spaces this can be a quite time consuming part of the

procedure due to the non-linear optimization routine. An active space is the space in

which one allows the occupations dlk to be optimized to a any number between 0 and

2 for calculating the average energy. Occupations are no longer required to have zero,

one, or two electrons on average; some intermediate number can be used to minimize

the average E.

Deep within the MCSCF is the wave function that contains a configuration (or

many) with the σ-molecular orbital of interest for the eEDM. This orbital mixes s- and

p-atomic orbitals to form a molecular orbital |mol, σ〉. It has an explicit expansion into

Gaussian basis functions according to Eqs. (3.1) and (3.5).

There still remain two steps in developing the total wave function. After comput-

ing the MCSCF wave function we move onto an internally contracted, multi-reference
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configuration interaction (MRCI) procedure [53, 54, 52, 55].

|ΨMRCI〉 =
∑

m

hm|ΦMCSCF
m 〉, (3.6)

where this procedure finds the hm that minimize the value of E for a given spin mul-

tiplicity and space symmetry. The constraint is that the values of fl, dlk, and ckj in

Eq. (3.5) are all fixed to the values determined in the MCSCF procedure. A final step

is the spin-orbit MRCI (SO-MRCI) [56] which is only possible when one uses a basis

|bi〉 that includes the effects of spin-orbit coupling. The SO-MRCI procedure uses single

and multi-electron operators to mix the MRCI wave functions with the constraint that

the value of Ω, the total projection of all spin and orbital angular momentum onto the

molecular axis, is fixed. This procedure does not optimize energies, instead it finds the

extent to which the MRCI wave functions are coupled via spin-orbit type interactions.

|ΨSO−MRCI〉 =
∑

n

ln|ΨMRCI
n 〉. (3.7)

The ln are the optimized quantities. As alluded to in Sec. 2.4 the hm and the ln

are parameters which must be factored into the calculation of Eeff . They are straight

multiplicative factors because the nominal σ-orbital might get some π-orbital mixed

into it, for example. Appendix A shows how to do all this using molpro.

For systems where there is yet to be any experimental measurement of the molec-

ular properties, the above method is employed at many values of the internuclear sepa-

ration R. This can be time consuming and a smart choice of the active, closed, and core

spaces must be employed in order to efficiently and effectively produce a set of potential

energy curves. In turn, these curves can then be used to identify the coupling scheme

appropriate for writing down a spectroscopic Hamiltonian. These will be discussed in

the next two sections.
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3.2 Σ molecules

Many of the proposed searches for the eEDM choose 2Σ molecules. These molecules

are preferred because of their relative simplicity. In this section I will examine the basic

properties of Σ-type molecules.

3.2.1 Structure

There are two classes of 2Σ molecules presented in Table 2.4: systems with ap-

preciable charge transfer (YbF, BaF, HgF, and PbF) which are ionically bonded and

systems with little charge transfer (RbYb, CsYb, SrYb+, and BaYb+) which are van

der Waals bonded. Both types of molecules exhibit the same valence electron charac-

teristics. The single unpaired electron is predominantly comprised of an s-electron from

one of the atoms.

The reason to choose F-containing molecules is fairly clear. Fluorine is quite

adept at taking electrons from atoms. In the case of Yb, Ba, and Hg, the electron taken

comes from the outer ns2 configuration of the heavy atom leaving behind an atomic ns

configuration. n refers to the principal quantum number and in all cases is n = 6 for

the given examples.

In the separated atom limit, the atoms are each neutral while at the minimum

of the molecular well, the configuration is more akin to M+F−, where M is a stand-in

for the heavy atom. Therefore, there is a point in the potential energy surface where

F snatches one electron and leads to a location on the surface of an avoided crossing

between the the neutral atom configurations and the ionic ones. An example of a surface

computed at the HF-MCSCF+MRCI level of computation is given in Fig. 3.1 for the

YbF system.

In Fig. 3.1, the black curves represent 2Σ states while the red curves are 2Π

states. There are noticeable avoided crossings in this system. Were one to plot vastly
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Figure 3.1: YbF potential energy surface calculated at the HF-MCSCF+MRCI level of
theory. The black curves represent 2Σ states while the red curves represent 2Π states.
The blue curve is a 1/R plot that shows the Yb++F− asymptote.



40

more states of 2Σ symmetry a clear emergence of the “ionic” state Yb+ + F−, which lies

around 50,000 cm−1 away in energy, would appear. The blue line in Fig. 3.1 is used to

guide the eye to the 1/R potential that would dissociate to the Yb+ + F− asymptote.

The avoided crossing in the ground state occurs around R = 8 a0. It is evident that the

2Σ state is well isolated from any other electronic state and therefore is best described

by a set of Hund’s case (b) coupling numbers. More on Hund’s case (b) will be discussed

in the next section.

In the calculation of the potential energy surface the ECP68MDF relativistic

effective core potential with core polarization terms (CPP) and basis were used for

Yb [57]. For the F atom, the cc-pVDZ basis of Dunning was used [58]. The large

transfer associated with moving an electron from Yb to F results in a rather large

dipole moment of about 4 Debye (D) in the ground state. In the next section I will

discuss the benefits of a large dipole moment.

The general feature to take away from this molecular example is that there is

one unpaired electron around the Yb+ ion. This electron, in the free atom, would be

of s character alone thus yielding the Σ molecular symmetry in the diatomic orbital.

However, the electron sees a rather large negative charge from the F− ion and tends

to repel from it. This in effect polarizes this electron around the Yb atom mixing the

s- and pz-atomic orbitals. It is this mixing that is needed for calculating the effective

electric field Eeff in Eq. (2.49).

The way in which the sign of the effective electric field is defined is based on

whether or not its direction conforms to the electric field along the internuclear axis.

Electric fields point from positive things to negative things. Therefore, a positive effec-

tive electric field is one that lines up with the electric field pointing from Yb+ to F− in

YbF. Therefore, the unpaired electron around Yb+ tends to be pushed by the negative

charge of F−. This causes the free electron to sit on the side of Yb+ away from F−,

yielding larger electron density there. This appears as a mixing of the s- and pz-atomic
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orbitals that has the same effect as an electric field coming from the side of Yb+ away

from F−. Therefore, the effective electric field is positive. This is borne out by look-

ing at the invention for the dominant configuration in the YbF molecular calculation

performed at the equilibrium position of Re = 3.6 a0. See Fig. 3.2.

As is evident from Fig. 3.2, there is a large degree of mixing of the s- and pz-type

atomic orbitals around Yb, as evidenced by the asymmetry of the wave function along

the internuclear axis ẑ. This mixing is highlighted by the reddish shading under the

molecular orbital curve. The orbital is plotted along the ẑ-axis and is a projection in the

xy-plane. Around the F-atom the mixing is much smaller. The atomic configuration is

dominated by the p-atomic orbital characteristics. However, there is evidence of some

s-atomic orbital mixing due to the slightly smaller peak on one side of F. This leads one

to ask whether the second atom in the diatomic, if it were large enough, can contribute

to Eeff .

This leads to a second type of 2Σ that has been proposed [36]. Where the benefits

of the YbF, BaF, and HgF species have been made apparent, this other species differs.

RbYb and CsYb are vastly different from their Fluoride counterparts. These molecular

systems do not transfer charge nearly as effectively as the Fluorides. This is due to

the relatively similar electronegativities between alkali-metals and Yb. However, Yb is

a closed s-shell atom and therefore the only electron in the game is the Rb s-electron.

All other electronic states will be separated in energy by an amount comparable to

the s-p splitting in Rb. In addition, the well separated electronic states can be taken

advantage of when producing the molecular systems. All the atoms considered can be

individually laser cooled to extremely cold temperatures. Applying photoassociation

techniques one can then produce ultracold samples of these molecular systems. This

reduction in temperature would allow for vastly longer coherence times in experimental

efforts.

Where F served to take away an electron, Yb serves to perturb the alkali-metal
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electron. In the case of Rb and Cs, Yb polarizes the unpaired s-electron. This is

simple to see from a van der Waals type argument. Yb and the alkali-metal atom

each induce a dipole moment in the other, altering their wave functions. They become

slightly distorted, shifting charge in such a way as to attract each other. An alkali-metal

electron, being unpaired, reacts to this induced charge separation on Yb and mixes the

s and pz-atomic orbitals along the molecular axis. Yet, the free electron is free to move

toward Yb, and hence while around Yb will react to the charge on the alkali-metal.

In Fig. 3.3 I give a calculation of the RbYb potential energy surface in the ground

2Σ state. This surface is vastly different than the surface for YbF. First, there is only

one electronic state that dissociates to the separated atom limit of Rb(5s1) + Yb(6s2).

The inset in the figure shows a few vibrational levels in the ground electronic state, just

in case one could not tell from the figure that the X 2Σ state is bound. In this calculation

ECP36MDF effective core potential and basis of the Stuttgart group [59, 60] with the

CPP terms were used. A RHF-MCSCF+MRCI calculation was performed at several

points in the internuclear separation between 25 a0 and 4.5 a0. The active space included

both the excited p-atomic orbitals for Rb and Yb.

As before, the molecular wave function for the σ-molecular orbital of interest will

identify the s-pz mixing around the individual atoms. This is presented in Fig. 3.4.

The electron has an asymmetric distribution about both atoms, but more so around

Yb. Because Rb and Yb are of comparable size, relativistic enhancements must be

calculated for both. Notice that the direction of the electric field is opposite at the site

of each atom. The more comparable in size the two atoms are, the more the fields tend

to work against each other, creating a net smaller effective electric field. This is seen in

the progression RbYb → CsYb in Table 2.4, where the effective electric field in CsYb

is smaller than in RbYb because Cs in essence steals some of the glory in Yb’s large Z

size.

Another interesting item of note is that the RbYb MRCI calculation shows that
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there are two contributing σ-molecular orbitals, each one dominated by the basis of one

of the atoms. The same scenario holds true for all the molecules of these types; RbYb,

CsYb, SrYb+, and BaYb+.

3.2.2 Spectroscopy

Spectroscopy for 2Σ-type molecules is a well known, and widely studied field.

There is a separation of energy scales that naturally arises in the systems of interest.

Electronic energy separations, the largest in the problem, are of the order 105 cm−1.

These deal with excitations from one electronic state, the 2Σ, to another like the 2Π. For

some of the molecules considered, this is a useful bit of information because one way to

detect a science signal for the eEDM search is to use transitions from one electronic state

to another. The next scale is molecular vibrations, usually of the order 20–50 cm−1,

and governs transitions within and between electronic levels. Finally, the next “large”

contribution is from end-over-end rotation of the molecule. This scale is 0.01–10 cm−1,

depending on the reduced mass and bond length of the system. Further down in energy

are all the various interactions between the constituent spins in the molecule that must

be understood to gain an appropriate understanding of how to do an eEDM experiment.

Molecule based eEDM searches tend to be on the colder side of physics. The

molecules are often studied at temperatures at or below 4 K. For the Fluoride based

molecules this is cold enough freeze out all but the lowest vibrational state and to

isolate a few rotational levels within the molecule. Therefore, the dominant terms in

the spectroscopic Hamiltonian will come from rotational pieces.

Because Σ molecules have no orbital angular momentum about the internuclear

axis, they are usually fairly well described by a set of Hund’s case (b) quantum numbers.

In this representation, the spin S is decoupled from the molecular axis N. A semi-

classical image of this coupling scheme is presented in Fig. 3.5. In this type of coupling,

the good quantum numbers are N , S, and the vector sum J = N + S in the absence of
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any applied electromagnetic fields. The presence of fields will be addressed shortly.

The basic Hamiltonian for a Hund’s case (b) molecule in 2Σ can be represented

as follows

H(b) = BνN
2 + γνN · S, (3.8)

where the subscript ν indicates a particular vibrational level of interest. The term

Bν is the rotation constant of the molecule. It sets the energy scale of interest in

2Σ eEDM searches because this is the energy which must be overcome to polarize the

molecule, without which the large effective electric fields within the molecule would be

meaningless. Each rotational level has a different parity given by (−1)N .

γν originates from two sources, of which one is far more important for heavy

molecules like YbF. The first order (meaning it arises without the introduction of any

other electronic levels) contribution to the spin-rotation parameter γν is given by the

interaction of the magnetic moment of the open shell electrons with the rotational

magnetic moment of the molecule directed along N. This can be thought of as an

interaction akin to the spin-orbit interaction of the electronic spin with the nuclei. The

second order term is given by electronic spin-orbit (electronic spin with electronic orbital

angular momentum) perturbations which couple in excited states of Π-type symmetry.

In heavy molecules, where Z is large for one or both atoms, this is the dominant term.

It has the form [16]

γ(2)
ν = −2

∑

η′

〈η,Λ,Σ|BνL−|η′,Λ + 1,Σ〉〈η′,Λ + 1,Σ|∑i aili · si|η,Λ,Σ + 1〉 + s.o.

(Vη − Vη′)〈S,Σ|S−|S,Σ + 1〉 ,

(3.9)

where s.o. signifies switching the order of the individual electron spin-orbit operator

∑

i aili · si with the rotation operator Bν L−. η is a stand-in for the other quantum

numbers in the molecules. In Eq. 3.9 I have made explicit the dependence on the

individual electrons. While the expectation value of the total orbital angular momentum

is zero, the individual electrons can have orbital angular momentum and this allows
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J

N

S

Figure 3.5: The Hund’s case (b) coupling scheme vector diagram. The S and N vectors
couple to make the J.
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communication with excited electronic states via the spin-orbit interaction.

It is not easy to evaluate the matrix elements involving the orbital angular mo-

mentum raising and lowering operators L± and li±. If one of the atoms is vastly larger

than the other, then an approximation can be made called the Van Vleck pure preces-

sion hypothesis [61]. The lighter atom is considered a pimple orbiting about the heavier

atom and the electron of interest obeys spherical symmetry about the heavy atom. In

this approximation, the raising and lowering operators act on atomic orbitals of the

heavy atom.

There are significant corrections to the rotation and spin-rotation interactions

that are worth addressing. Due to the precise nature of trying to measure an eEDM in

a molecule, it is important to understand where tiny corrections can arise. A dominant

contribution comes from the centrifugal distortion of the end-over-end rotation of the

molecule. Physically, this is related to the stretching of the bond as the molecule rotates

about its center of mass. In so doing, there will be corrections to the Hamiltonian

presented in Eq. 3.8.

H(b) = (Bν −DνN
2)N2 + (γν − γDνN

2)N · S. (3.10)

In general, any operator acting within the manifold of rotational states will have cen-

trifugal distortions. The general distortion elements are obtained by successive orders

of N2 acting. In the above equation, this is performed once. The value of Dν is reduced

from Bν by a factor of the me/µmol, where µmol is the reduced mass of the molecule.

This is easily seen from a Dunham-type expansion [62]. While this expansion has the

isotopic dependence thoroughly worked out for singlet states [63], the general features

of the reduced mass scaling in general hold for doublet states. The expansion of the

potential for vibration and rotation terms is

E(ν, J) ≈
∑

kl

µ−(k+2l)/2Ukl(ν + 1/2)k
(

J(J + 1) − Λ2
)l
, (3.11)
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where Λ = 0 for Σ molecules. The Ukl are isotopically invariant parameters of the

interaction potential. Terms with k = 0 have no vibrational dependence at this level of

theory. The term Dν is related to the Dunham parameter U02 by a minus sign and scales

as (me/µmol)
2. Thus, for heavier molecules the distortion effects are small. γDν will scale

in the same manner as Dν . Therefore, the higher order distortion terms will be quite

small. As an example, in YbF γν = −13.4 MHz, γDν = 4 kHz, and γHν = 25 Hz [64].

Each successive term in the series expansion reduces the interaction energy 2-3 orders

of magnitude.

The matrix elements of the rotational Hamiltonian in Eq. 3.10 are given as follows:

〈(N S)JMJ |H(b)|(N S)JMJ〉 = (Bν −Dν N(N + 1))N(N + 1) + (γν − γDνN(N + 1)) ×

(−1)N+J+S











S N J

N S 1











Π [S,N ] , (3.12)

where Π [S,N ] =
√

S(S + 1)(2S + 1)N(N + 1)(2N + 1). This Hamiltonian is diagonal

in S, J , and N . MJ is the projection of J onto the laboratory fixed axis. The decon-

struction of the elements into the form above takes advantage of the Wigner-Eckhart

theorem. There are many standard references, of which the best are in Refs. [65, 66, 67].

In addition, many extremely useful examples are worked out in the book by Brown and

Carrington [16].

The next energy scale to deal with in the spectroscopy is the hyperfine interactions

of the F-nucleus with the spin S and rotation N . In the case of the F-bearing molecules

in Table 2.4, all of the heavy atoms contain zero nuclear spin isotopes. Thus, the

only terms in the hyperfine Hamiltonian to consider are ones where the F nuclear spin

interacts with S and N .

HHFS = bF I · S −
√

10gSµBgNµN

(µ0

4π

)

T 1(S,C2) · T 1(I). (3.13)

In the second term, the notation T 1 signifies a first rank tensor. The interaction is the

first rank tensor formed from the coupling of S with the second rank reduced spherical
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harmonic C2 dotted into the first rank tensor of I. To be clear, the term T 1(S,C2) is

given by

T 1
q (S,C2) = −

√
3
∑

q1,q2

(−1)qT 1
q1

(S)T 2
q2

(C)







1 2 1

q1 q2 −q






. (3.14)

In other words, it is the electron-nuclear spin-spin dipolar interaction. The first term

in Eq. (3.13) is the Fermi contact interaction. bF depends on the amplitude of the

wave-function at the F nucleus via

bF =
2

3
gSµBgnµNµ0 |Ψη|2 , (3.15)

where Ψν is the wave function for the ν th vibrational level. The matrix elements of the

contact interaction are

〈((NS)JI)FMF |I · S|((NS)J ′I)FMF 〉 = (−1)2J ′+F+I+N+1+SΘ[J, J ′]Π [I, S] ×










I J ′ F

J I 1





















S J ′ N

J S 1











(3.16)

Θ[J, J ′] =
√

(2J + 1)(2J ′ + 1). The contact term preserves the values of F , N , and I

but couples in differing values of J . Therefore, it modifies the N = 1 level of the 2Σ

state by mixing in the two separate J values. The dipole coupling term can bring in

states of differing Λ due to the C functions. However, concentrating on the Σ state

alone, yields

√
10gSµBgNµN 〈((NS)JI)FMF |T 1(S,C2) · T 1(I)|((NS)J ′I)FMF 〉 =

−
√

30t(−1)J ′+F+I+NΠ [I, S] θ[J, J ′, N,N ′]× (3.17)











I J ′ F

J I 1





































J J ′ 1

N N ′ 2

S S 1

































N 2 N ′

0 0 0






,

where t is defined as

t = gSµBgNµN

(µ0

4π

)

〈

3 cos2(θ) − 1

r3

〉

η

. (3.18)
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The parameters r and θ refer to distance of the electron from the F nucleus and the

angle with respect to the molecular axis. η signifies that the expectation is taken for a

particular vibrational level. This interaction can couple in states of different N and J

while preserving S and I. Therefore, the ground rotational state N = 0 acquires a little

of the same parity state N = 2 with the differing value of J ′ = J + 1. J can only differ

from J ′ by one as can be seen via one the top row in the 9 − J symbol in Eq. 3.17.

In addition to these hyperfine effects, there is one other effect of interest. The

nuclear spin can interact with the end-over-end rotation of the molecule N. It takes the

form of

HnRot = cF I ·N (3.19)

cF is the strength of the interaction for the F nucleus. The elements of this interaction

are simple enough to work out. However, a quick glance at the form of cF will reveal

that it is that the interaction is vastly smaller than the contact term. cF ∼ grµBgNµN ,

where gr is the rotational g factor and is reduced from gS by the ratio me/µmol; therefore

it is 3 orders of magnitude smaller than the interactions in Eqs (3.16) and (3.17).

Lastly, these experiments will be performed in electric and magnetic fields. It is

therefore useful to know how these molecules will react to an applied field. The Zeeman

interaction is dominated by the magnetic field manipulating the free electron. Another,

smaller effect, comes from the magnetic moment of the molecular axis due to rotation.

The electron spin-Zeeman interaction is of the form

HZ = gSµBT
1(B) · T 1(S). (3.20)

The matrix elements in the coupled representation |((NS)JI)FMF 〉 (N couples to S to
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make J which in turn couples to I to make F )

〈((NS)JI)FMF |gSµBT
1(B) · T 1(S)|((NS)J ′I)F ′MF 〉 (3.21)

= gSµBBZ(−1)F−MF +F ′+2J+I+N+SΠ [S]
√

(2J ′ + 1)(2J + 1)(2F ′ + 1)(2F + 1)

×







F 1 F ′

−MF 0 MF

















F J I

J ′ F ′ 1





















J S N

S J ′ 1











.

The interaction does not preserve the value of F or J . Since B does not act on the

molecular axis, N is unaffected. A simpler way to break this down would be to work in

the basis |NMNSMSIMI〉 since each individual spin interacts with the magnetic field.

This would require a different decomposition of the matrix elements in the hyperfine

interactions in Eqs.(3.16) and (3.17). However, in eEDM experiments it is usually

requisite to have a small magnetic field. This ensures that systematics in the experiment

do not contribute much error. Therefore, F is nearly a good quantum number and the

completely coupled representation has its merits. A bonus that arises is that one can

write down the effective magnetic g-factor in for a given F state.

gF =
√

6(−1)F+2J+N+1Θ2[F, J ]Π [F ] (3.22)

×











F J I

J F 1





















J S N

S J 1











, (3.23)

where Θ2[F, J ] = (2F + 1)(2J + 1). This is how each level responds to a small applied

magnetic field, small when compared to the hyperfine energy splitting.

There are two other magnetic interactions: nuclear moment and molecular rota-

tion can each interact with the applied magnetic field. These interactions will be smaller

by the ratio of the nuclear to Bohr magneton, but important in precision measurements.

The rotational magnetic moment interacts with an applied field in the following manner

HZ,rot = −grµBT
1(N) · T 1(B), (3.24)
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with matrix elements

〈((NS)JI)FMF | − grµBT
1(N) · T 1(B)|((NS)J ′I)F ′MF 〉 (3.25)

= −grµBBZ(−1)F−MF +F ′+2J+I+N+SΠ [N ] Θ[J ′, J, F ′, F ]

×







F 1 F ′

−MF 0 MF

















F J I

J ′ F ′ 1





















J N S

N ′ J ′ 1











.

The nuclear spin magnetic moment interacts with the magnetic field via

HZ,I = −gIµNT
1(I) · T 1(B), (3.26)

yielding elements of the form

〈((NS)JI)FMF | − gIµNT
1(I) · T 1(B)|((NS)J ′I)F ′MF 〉 (3.27)

= −grµBBZ(−1)2F−MF +J+I+1Π [I] Θ[F, F ′]

×







F 1 F ′

−MF 0 MF

















F I J

I F ′ 1











.

The Stark effect is another matter. An electric field couples to the dipole moment

of the molecule which is oriented along the molecular axis. Therefore, an electric field

will act on N . However, the electric field will need to be rotated into the frame of the

molecule (or vice versa) and this will bring in a new degree of complexity. However, a

little patience and thought tells one that an interaction of the form

HS = −d · E , (3.28)

where d is the molecular electric dipole moment, will produce matrix elements of the

form

〈((NS)JI)FMF | − d · E|((N ′S)J ′I)F ′MF 〉 (3.29)

= −dE(−1)F−MF +F ′+J+J ′+I+N+SΘ[J ′, J, F ′, F,N ′, N ]

×







F 1 F ′

−MF 0 MF

















F J I

J ′ F ′ 1





















J N S

N ′ J ′ 1

















N 1 N ′

0 0 0






.
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It is the last 3−J symbol that is of importance; unless N+1+N ′ is even, this vanishes.

Therefore, N ′ = N ± 1. The Stark effect only couples in states of differing N , or

opposite parity since the parity of a state is given by (−1)N . Thus, in order to polarize

the molecule, one must over come the splitting between adjacent N levels, or an energy

of 2B(N + 1). An energy of this size requires a polarizing electric field of at least

|Epolarize| & |2B
d

|(N + 1). (3.30)

For the 2Σ molecules in Table 2.4 this polarizing field ranges from a few to a few 10s

of kV/cm. In exchange, one gets an Eeff of many GV/cm, thereby an enhancement of

nearly 105, far better than in the atomic case.

When one accounts for all the above, measurements on the transitions between

the various sub-levels can be accounted for in an accurate manner. For a 2Σ molecule,

one wants to measure the transition between a spin-up and a spin-down electron in

parallel and anti-parallel electric and magnetic fields. Therefore, in a molecule like

YbF, one needs to measure the transition |F = 1,MF = 1〉 → |F = 1,MF = −1〉. This

is because the spin of the electron and the spin of the nucleus are coupled, even in the

presence of the strong electric field. A diagram is presented in Fig.3.6.

The magnetic fields serve to raise levels with MF > 0 while electric fields push

all MN levels down, thus all MF levels. In Fig. 3.6, the Stark shift is labeled by the

blue lines. The red lines indicate the Zeeman shift, which only affects the |MF | = 1

lines at first order. An eEDM acts on the spin degree of freedom and therefore in

parallel fields it enhances (the purple lines) the Zeeman shift while in anti-parallel (E

reversed from B) fields it diminishes (the green lines) the Zeeman effect. One looks

to measure the subtle frequency splitting between these two cases, as indicated by the

transition W . The difference between parallel fields and anti-parallel fields leads to

an expression W ‖ −W anti−‖ = 2deEeff . However, small uncertainties in the ability to

perfectly switch the alignment of the electric to magnetic fields will cause systematics.
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F=1

N=0, J=1�2
F=0

Parallel
Anti-Parallel

Ehyper

EZeem

EZeem

EStark

W

M=-1 M=0 M=+1
Figure 3.6: The basic hyperfine spectrum for theN = 0 rotational state of a 2Σ molecule.
The Stark shift is denoted by the blue lines while the red lines mark the Zeeman shift.
In parallel (anti-parallel) fields the eEDM causes an energy shift labeled by the purple
(green) lines. The transition labeled W and marked by an orange curve is of interest
in an eEDM experiment. The frequency difference in parallel and anti-parallel fields is
due to the eEDM.
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Therefore, accurate magnetometers are requisite.

2Σ molecules are a very basic system to consider for an eEDM study. However,

the fields required to polarize the molecules are still large. It takes several 10s of kV/cm

to align many of these molecules in an external field. While these fields are attainable in

a lab, the systematic effects can scale unfavorably. Often, smaller fields are applied and

a hit is taken in the effective electric field since the molecule is only partially aligned,

one gets some of the effective electric field due to averaging effects. Therefore, a look at

systems that are easier to polarize is a natural extension. However, these systems are

often composed of more than one valence electron. This causes a collection of electronic

surfaces with which the able practitioner of ab initio methods much contend.

3.3 ∆-type molecules

Many of the molecules presented in Table 2.4 are not of 2Σ symmetry. One of the

first molecules to stray from the 2Σ doctrine was PbO in the metastable a(1) state [68].

This notation is already a bit different from the standard system. It refers to the first

excited state of Ω = 1. Here, Ω is the projection of the sum of orbital and spin angular

momentum projections onto the molecular axis. In the case of PbO, only this sum is

conserved. PbO in the a(1) excited state is an example of a Hund’s case (c) coupling

scheme. Fig. 3.7 gives a semi-classical illustration of this scheme.

The reason for the preservation of Ω has to do with the large value of the spin-

orbit interaction, which is large enough to overcome the electronic energy separation.

In the case of PbO, the 3Σ1 and 3Π1 states are coupled by the spin-orbit interaction

to form two Ω = 1 states. These states are in turn comprised of orbital configurations.

The 3Σ1 state is primarily of a πα
1 π

α
2 configuration (where α corresponds to a spin-up

electron along the internuclear axis), which would nominally be of zero help to an eEDM

search. However, there are admixtures of the σα
1 σ

α
2 configuration when one allows for

configuration interaction effects as described in the MCSCF and MRCI calculations in
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J

L

S

Ja

Figure 3.7: The Hund’s case (c) coupling scheme vector diagram. The J and Ja vectors
each have projection Ω onto the molecular axis. In this case L and S interact so strongly
with each other that they overcome the electronic energy separation.
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Sec. 3.1. The latter configuration can be very useful in an eEDM search since there

are two electrons in distinct σ molecular orbitals. Because the electrons are in distinct

orbitals, each can contribute to the calculation of Eeff .

The 3Π1 state is composed of a πα
1 σ

α
2 -type configuration. This configuration

interacts via spin-orbital effects with both of the 3Σ1 configurations. The end result is

that individual electron spins and orbital angular momenta are inadequate to describe

the system. Only the total projection will suffice. The methods outlined in Chapter 2

are applicable so long as one accounts for the contributions from the 3Σ1 and 3Π1 states

individually and appropriately adds them together.

A chief advantage of the metastable PbO system is that it is far easier to polarize

than the 2Σ system. A phenomenon known as Λ- or Ω-doubling allows the coupling

of states of +|Ω| and −|Ω|, and in the absence of electric fields this coupling forces

two states to emerge: the symmetric and anti-symmetric combinations of | + |Ω|〉 and

| − |Ω|〉. Therefore, there is no net orientation of the molecule in the absence of an

applied field and therefore no permanent dipole moment. However, this interaction

produces an energy difference between states of opposite parity that is considerably less

than the rotational splittings of 2Σ molecules.

It is the metastable nature of PbO that makes it a tough candidate to work

with. It favors rapid decay to the ground state, a state with little to no favorable eEDM

characteristics. However, the push to move away from molecules of 2Σ flavor had begun.

Quickly 2Π molecules like HI+ [28, 40] and PbF [38] were proposed and re-studied for

their applicability in eEDM searches. The former were found to be inefficient due to

their dominant π-molecular orbital characteristics. However, PbF exhibited strong case

(c) type couplings and the mixing of the 2Σ1/2 with the 2Π1/2 leads to applicability in

an eEDM search. Then a couple of rogue theorists proposed 3∆1 molecules for eEDM

searches [28]. It was found that the 3∆ molecules have very favorable Λ-doubling (as

will be discussed in Sec. 3.3.2 and arise chiefly from a σα δα configuration. In fact, the
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σ-orbital gives the science signal while the δ-orbital makes it easily polarizable. Now it

is time to learn more about these fascinating 3∆ creatures.

3.3.1 Structure

Unlike molecules of the fluoride and alkali-metal variety of the previous sections,

3∆ molecules are a whole other beast. 3∆ molecules formed by one atomic d and one

atomic s orbital are of interest since they most easily lead to σαδα configurations. Since

d-electrons are of interest one is immediately led to consider transition row elements.

Because of large Z favoring, the 3rd row transition metals are ideal. It is here that

atoms with the proper characteristics are found. For the purposes of this section the

discussion will follow ThF+ because there is no published work on the molecule2 as

well as HfF+, because this is being pursued in house at JILA.

Th is a very heavy (Z = 90) element in the lanthanide row. Hf is also heavy

(Z = 72). The thing these two atoms have in common is their atomic ground state,

which is comprised of 5d2 6s2 for Hf and a 6d2 7s2 for Th. By once ionizing and pairing

with an F atom, the possibility of an atomic configuration ds on Hf and Th arises, the

other electron being whisked away by the ever electronegative F atom. However, there

are two other possibilities for the remaining electrons: they can occupy an s2 or a d2

configuration. Neither of these is really amenable to an eEDM search without mixing of

configurations. Thus, it remains a job for ab initio methods to understand the electronic

properties.

When there are multiple electrons to consider, then one must use the information

given in the prior paragraph to approach the ab initio problem efficiently. Namely, the

expected atomic configurations are only valid in the region where F is close enough to

capture an electron from the heavy atom. Second, the remaining atomic orbitals can

be used to predict the dominant molecular orbital configurations. For instance, the

2 Therefore, this is new material with which to whet your knowledge appetite
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s2 configuration will lead to a σ2 molecular orbital and hence a 1Σ electronic state.

However, the sd atomic configuration will lead to σδ, σπ, and σσ ′ configurations, which

in turn lead to electronic symmetries 1,3Σ, 1,3Π, and 1,3∆. σ′ is the σ-molecular orbital

formed by the d electron. The d2 configuration will lead to a slew of possible states

ranging from symmetries similar to those given as well as 1Γ and 1,3Φ. As is evident,

this is many more states than was dealt with in the 2Σ molecules. What remains to

be see is whether the 3∆, the one portended to be very useful for eEDM searches, is a

viable electronic state for the eEDM search.

In order to calculate the potential energy surfaces of the ThF+ and HfF+ molecules

I employed the use the molpro suite of codes [45]. The RHF-MCSCF+SO-MRCI

method was used at various points in the internuclear separation to determine the

ground state [48, 49, 53, 54]. The RHF was performed starting at the atomic densities

and finding the wave function for the 1Σ arising from the (sσ)2 configuration, where the

s refers to the Th or Hf s atomic orbital as the dominant contribution to the molecular

orbital σ.

After performing the RHF, the MCSCF was gradually built up to include the 1Σ,

3∆, 1∆, 3Π, 1Π, 3Σ+, and the 3Σ−. The last state arises from the (δ)2 configuration. It

was determined that including the 1Γ, 1Φ, 3Φ was necessary to converge the lower states.

The MRCI calculation was performed separately within each spin and space symmetry

group, with the reference spaces of the other spatial symmetries present. This allowed

for convergence of ∆, Π, and Γ states which have degeneracies within two spatial groups.

This approach is to be contrasted with the previous work on HfF+ [41]. In that paper

only the states arising from the σ2 and σδ configurations were studied. The inclusion

of the 3Σ− state affects the other Ω = 1 levels arising from the 1,3Π1 states because the

3Σ− exists in the same energy range as the 1,3Π1.

In order to account for spin-orbit effects, I employed the fully relativistic effective

core potentials (ECP) and triple zeta basis sets of the Stuttgart group for Hf [69] and the
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quasi-relativistic (scalar terms only) ECP and segmented basis set for Th [70, 71, 72].

These account for the relativistic effects associated with spin-orbit coupling. It separates

out the various Ω sub-levels of a symmetry, e.g. 3∆ → 3∆1,
3∆2, and 3∆3. From this

point in the calculation the best determination of the appropriate Hund’s case can be

made.

To account for the polarizability of the atoms I included in the active space the

next-lying atomic p-orbital, i.e. 6p for Hf. After each MRCI calculation a spin-orbit

(SO) calculation was performed that included all the calculated states and provided

mixing amongst the levels with the same value of Ω. The results of the potential energy

surface (PES) calculation are presented in Fig. 3.8. As is clearly seen in the figure, the

ground state is difficult to declare because it lies within the uncertainty (a few hundred

cm−1 is a conservative estimate) of the ab initio methods. However, given comparison

to the known ThO (isoelectronic to ThF+) electronic levels and a similar calculation’s

ability3 to reproduce the lifetime of the metastable 3∆1 state, there is confidence in

calling the 1Σ0 state the ground electronic state.

The admixture of various other Ω = 1 values into the 3∆1 state is rather minimal.

It is found that most (≥ 95%) is due to the 3∆1 and therefore Hund’s case (a) quantum

numbers are appropriate for describing these 3∆ systems.

Since it is expected that the ground state may turn out to be the 1Σ0 in both

HfF+ and ThF+, it is instructive to estimate the lifetime of the excited 3∆1 state.

Nominally, this state would never decay because it needs to change Λ by two units and

S by one unit. However, Λ and S are not preserved under the influence of spin-orbit

effects. Thus, the admixture of 1Π1 into the 3∆1 allows for spontaneous emission from

3∆1 → 1Σ0. I find about a 2% admixture of the 1Π1 in both HfF+ and ThF+. Using

the energy difference between the minima of the respective curves, I obtain a lifetime

3 I performed the same calculation at the known bond length of ThO in the 1Σ state and used the
transition moments calculated from the 3∆1 state to find the lifetime. I obtained a few ms, and recently
the ACME collaboration has measured the lifetime to be ∼ 1.8 ms [73]
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Figure 3.8: Results of the many state calculation on HfF+ (a) and ThF+ (b) at the
RHF-MCSCF+MRCI+SO level of theory.



63

on the order of seconds for these two molecules, more than enough time to make a

measurement in an ion trap.

3.3.2 Spectroscopy

Given the analysis of the 3∆ states in Sec. 3.3.1, it is apparent that the electronic

state is separated well enough in energy from electronic states with the same value of Ω

to be described by a set of Hund’s case (a) quantum numbers. These numbers are the

total angular momentum sans hyperfine J , the total electronic spin S, the projections

of orbital and spin angular momentum onto the molecular axis Λ and Σ, the sum of

Λ + Σ = Ω, and in the presence of fields the projection of J onto the axis defined by

the field MJ . We will return to the case of hyperfine interactions later in this section.

Fig. 3.9 gives a visual of the vector diagram describing Hund’s case (a).

While L is drawn in the figure, the value of L is ill-defined due to the lack of

spherical symmetry. In some cases, having a defined L is a good approximation, but

it must be noted that it is merely that, an approximation. Much of the spectroscopy I

will discuss is built from the idea of approximation as a way to guide intuition. Along

these lines, various contributions to the spectroscopic Hamiltonian used in analyzing ∆

molecules will be discussed.

The first, and most important, is the new energy scale introduced by the non-zero

value of L and S. The interaction of L with S induces a splitting between states of

different Ω. In the HfF+ molecule, the splitting between Ω = 1 and Ω = 2 is 1200 cm−1.

The splitting between Ω = 2 and Ω = 3 is 1900 cm−1. The reason behind the asymmetry

will be dealt with shortly. The main idea to take away is the energy scale. States within

the same electronic symmetry are separated by about thousand or so cm−1. Contrast

and compare this with the rotational energy splittings of 2Σ molecules of 0.1–10 cm−1.

This new energy scale will be important in understanding the nature of parity splittings.

The simplest way to construct the interaction is to only consider the diagonal
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Figure 3.9: The Hund’s case (a) coupling scheme vector diagram. The J and L + S

vectors each have projection Ω onto the molecular axis. In this case L and S interact
with the molecular axis as well as with each other.
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contribution to the interaction due to the non-sphericity of a diatomic molecule. On

the diagonal the contribution from spin-orbit is

HSO = AΛΣ +
2λ

3
(3Σ2 − S2), (3.31)

where A is the spin-orbit constant and λ is the electronic spin-dipolar interaction. From

the ab initio calculation A is about 790 cm−1. Since Hf is much heavier than F, the

spin-orbit contribution to the molecular case is dominated by the contribution from the

Hf atom. Assuming that the orbital angular momentum l of the d electron from Hf is a

good quantum number, then the Van Vleck approximation [61] can be used to calculate

the molecular spin-orbit constant.

Using wave functions in terms of Hund’s case (a) quantum numbers (labeled by

|Λ;S,Σ; J,Ω〉 with J ≥ Ω), the energy separation in the molecule can be compared to

the atomic system. In terms of Slater determinants, the molecular wave functions are:

|3∆3〉 = |2; 1, 1; J, 3〉 (3.32)

= |dδαsσα|

|3∆2〉 = |2; 1, 0; J, 2〉 (3.33)

=
1√
2
(|dδαsσβ| + |dδβsσα|)

|3∆1〉 = |2; 1,−1; J, 1〉 (3.34)

= |dδβsσβ|.

The spin-orbit energy shift for the 3∆3 is then

〈3∆3|ALzSz|3∆3〉 = 2A (3.35)

〈|dδαsσα||a(lz1sz
1 + lz2s

z
2)||dδαsσα〉 = a(2(1/2) + 0(1/2))

= a. (3.36)

Now apply the total spin lowering operator (given by S− =
∑

i s
−
i ) to Eq. (3.32) to

obtain the 3∆2 state. Since the projection of Σ is zero, there is no shift. Therefore,
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the molecular spin-orbital constant A is half the atomic spin-orbit constant a, seen by

comparing Eq. (3.35) with Eq. (3.36). In Hf, this method would predict a molecular

spin-orbit constant of Aexpec = 610 cm−1 (obtained via the spectroscopic information

in the Moore tables on Hf+ for the d-electron [74]), which is not too far from the ab

initio value.

The discrepancy in the energy difference between the three Ω levels has to deal

with the fact that the individual electron spin-orbit interaction will couple Slater de-

terminants with 1∆2 and 3∆2, thereby creating an interaction between the spins; the

effect of λ. The singlet state is given by

|1∆2〉 = |2; 1, 0; J, 2〉 (3.37)

=
1√
2
(|dδαsσβ| − |dδβsσα|).

The interaction of the atomic spin-orbit constant between the singlet and triplet config-

urations leads to the estimation of λ. Were the electronic energy separation comparable

to the atomic spin-orbit constant, then Hund’s case (c) would apply. Since the 1∆2

state is over 8000 cm−1 away an estimate of the magnitude by which the singlet state

pushes down the triplet state via second order perturbation theory can be made. Thus

the 3∆2 is expected to be pushed down by the 1∆2 an amount 260 cm−1 whereas the ab

initio calculation shows it deviates from the expected value by about 360 cm−1. Thus,

|λ| ≈ 250 cm−1.

For a 3∆ molecule, there are quite a few terms in the spectroscopic Hamiltonian.

A simple basis is preferred even though the interactions are not necessarily simple. The

idea of an effective Hamiltonian, which was used for 2Σ molecules earlier, is extremely

useful in this case. Firstly, one only wished to include terms which act in the manifold

of 2S+1∆Ω states, i.e. interactions that account for the vast array of possible effects but

only serve to act within the 2S+1∆Ω parameter space. Therefore, these interactions may

change the value of Ω, connect −|Λ| to +|Λ|, and change the value of J , but they will
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only do so in such a way as can be described in the basis set |Λ; JΩ, SΣ〉.

The end-over-end rotation of the molecule is described by

HRot = B(J− S)2 + γ(J − S) · S, (3.38)

In Eq. (3.38) the terms (J − S) are the equivalent of N in the 2Σ case. In case (a), N

is not a good quantum number. In fact, states with N differing by unity (but with the

same value of J−S) can be very close in energy. These are related to the phenomenon

of Λ-doubling.

Λ-doubling arises from the Coriolis coupling due to the end-over-end rotation

of the molecule. States with differing values of L are mixed. Recall the form of the

spin-rotation operator in Eq. (3.9). Now consider a Π state and couple in an excited

Σ state through the perturbative expansion in (3.9). The interaction returning to the

Π state can connect to a state with the same value of Λ = +1 (which gives the spin-

rotation parameter for the Π state), or can connect to the Π state with Λ = −1. In the

latter case a term which couples states of +|Λ| to those with −|Λ| arises. Therefore,

in the absence of an applied electric field, the ground states will be symmetric and

antisymmetric combinations of ±|Λ|.

In a ∆ state, Λ-doubling cannot happen at second order in perturbation theory

because a Σ state with Λ = 0 cannot be coupled in. Therefore, in a perturbative

treatment, one will need 4th-order perturbation theory. The mixing caused by this

approach will depend on the energy separation of the ∆ state from both Π and Σ

states.

Recall from Fig. 3.8 that the approximate separation of the electronic states of

interest is known. The general process to find the number of parameters is to take an

expansion of the sum of HRot and HSO raised to the 2|Λ| power. To do so, there will

need to be 2|Λ| − 1 energy denominators. In what follows, the first line is a schematic
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and the second line is the result after simplifications (see Refs. [16, 75] for more details)

HΛD ∝ (HRot +HSpin)
2|Λ|/(∆E)2|Λ|−1

HΛD =
1

2
q̃∆(J4

+ + J4
−) − 1

2
p̃∆(J3

+S+ + J3
−S−) +

1

2
õ∆(J2

+S
2
+ + J2

−S
2
−) − (3.39)

1

2
m̃∆(J+S

3
+ + J−S

3
−) +

1

2
ñ∆(S4

+ + S4
−).

The last two terms on the bottom line of Eq. (3.39) are irrelevant for 3∆ molecules be-

cause they flip the spin projection Σ beyond the maximal/minimal values and therefore

annihilate the state. Each operator is such that (∆Ω + ∆Σ) − ∆Λ = 0. For example,

the õ∆ is an operator which takes Ω = 1 → Ω = −1. For the 3∆1 states of interest

for an eEDM search, this is the operator which causes a direct splitting between the

symmetric and antisymmetric combinations of ±|Λ| states. The operators p̃∆ and q̃∆

connect states with ∆Ω = ±3 and ±4 and therefore affect the 3∆1 state via higher

orders in perturbation theory.

Expressions for õ∆, p̃∆, and q̃∆ are given by [75]

õ∆ = 4
√

30
VAVAVBVB

∆E1∆E2∆E3











S S 2

1 1 S′











(2S − 2)!

(2S + 3)!
(3.40)

p̃∆ = 4
√

35
VAVBVBVB

∆E1∆E2∆E3
(3.41)

q̃∆ = 8
VBVBVBVB

∆E1∆E2∆E3
, (3.42)

where VA(B) is the matrix element of the spin-orbit (rotational) Hamiltonian between

differing states. 〈3∆1|AL−|3Π1〉 is an example of VA, whereas 〈3∆1|BL−|3Π0〉 is an

example of VB . The ∆Ei are the energy differences between the state of interest and

the intermediate states. For a 3∆ state built from s and d atomic orbitals, the number

of Π and Σ states is limited to a few. The sum is fairly straightforward to calculate. In

HfF+, the Ω = 1 state is of concern, and it is governed by the õ∆ parameter. Edoub is
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thus (recall that J = 1 in the ground state)

EΩ=1
doub = 2õ∆J(J + 1)

≈
8

6×5!

√
30A2B2

(E3∆ −E3Π)2(E3∆ −E1Σ)
J(J + 1)ε2d (3.43)

= 2 × 10−7 cm−1.

Using methods similar to the polarizing field in Eq. (3.30), one can write

Epolarize &
EΩ=1

doub

dmol
, (3.44)

which leads to an Epolarize ≈ 50 mV/cm. The value of dmol = 4 Debye obtained via the

molpro calculations is used. In HfF+ the splitting between states of opposite parity in

the ground J = 1 level is ωef = 4õ∆ = 10 kHz. It should be noted that this is including

the 1Σ state which is actually dominated by the atomic s2 configuration. Thus, the

estimate includes a reduction which arises from the mixing of d0 contributions into the

s2 state, which is accounted for by the presence of εd in Eq. (3.43). There are two powers

of εd because it appears twice in the summation; once for each appearance of 1Σ.

3.3.3 Hyperfine interactions in 3∆1 molecules

Because Fluorides are present again, there will be hyperfine structure. Being a bit

more complicated because of the orbital motion, there are three terms, two of which are

similar to 2Σ molecules given in Eq. (3.13). Because there is orbital angular momentum,

a new term ∝ I · L is present.

HHFS = ℵ~I · ~L + b~I · ~S + cIzSz. (3.45)

The term with ℵ is the orbital angular momentum interacting with the nuclear spin. I’ve

included a simplified form of the contact and spin-dipolar interactions from Eq. (3.13).

Due to the expected strong Hund’s case (a) nature of these molecules, spectroscopic

measurements will not identify individual parameters in the above equation, instead
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only finding the net energy shift

〈. . . |HHFS| . . . 〉 = (ℵΛ + (b+ c)Σ)Ω = hΩ. (3.46)

| . . . 〉 signifies a state with the relevant quantum numbers of interest. Note that changing

Ω → −Ω implies Σ → −Σ and Λ → −Λ therefore leaving this expression invariant, as it

should be in order to be time-reversal invariant. In the limit of pure case (a), there are

no Ω changing operators. However, given enough measured transitions, it is possible to

assign values to ℵ, b, and c in the hyperfine Hamiltonian. For clarity, the relation of

b to bF is given by bF = b + (1/3)c. bF absorbs part of the spin-dipolar coupling into

it’s definition. It is a little easier to deal with in the 3∆ molecules. In addition, the

spin-dipolar term has been greatly simplified with many of the constants being lumped

into c.

Because there exists a term proportional to ~I · ~L in Eq. (3.45), one may ask

whether it can contribute to terms similar to the Λ-doubling Hamiltonian; the answer is

yes. In order to see the origin of the exact terms an expansion is needed. Note that the

hyperfine interaction is smaller than the spin and rotation interactions since it is reduced

by a factor proportional to µN/µB , the ratio of the nuclear to Bohr magneton. Thus,

a perturbative approach can be taken akin to the method used to find the Λ-doubling

terms. Once again, 4th-order perturbation theory is required to connect Λ = ±2 to

Λ = ∓2. Thus

HP.E. ∝ ((HRot +HSpin) +HHFS)
2|Λ|, (3.47)

where P.E. refers to perturbative expansion and terms that involve the first power of

HHFS are kept. Because terms proportional to H2
HFS are going to be even smaller, they

are ignored. The first term in the expansion of Eq. (3.47) is just the usual Λ-doubling

Hamiltonian as in Eq. (3.39), so it has already been worked out. The next term is

HHFSΛD ∝ 2|Λ|HHFS(HRot +HSpin)
2|Λ|−1/(∆E)2|Λ|−1/(∆E)2|Λ|−1. (3.48)
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In spectroscopic terms this yields an expression of the form

HHFSΛD =
1

2
c∆(J3

+I+ + J3
−I−) − 1

2
d∆(J2

+I+S+ + J2
−I−S−) + (3.49)

1

2
e∆(J+I+S

2
+ + J−I−S

2
−) − 1

2
f∆(I+S

3
+ + I−S

3
−).

Here the notation I+ and I− is used to indicate the raising and lowering operators of I

that act on the internuclear axis. Therefore, I+ and I− raise and lower the value of Ω

because I couples to J .

Of the four terms in (3.49), only the d∆ term has been previously published, in a

study of the NiH molecule where there is a curiously large Λ-doubling for a ∆ electronic

state [76, 77]. From what is known, the remaining three terms are new. The simple

explanation for the algebra that leads to the expression in (3.49) is that since I± acts on

the internuclear axis projection, one merely is swapping instances of the interaction BL±

with ℵL±, or replacing one instance of the rotational Hamiltonian with the hyperfine

orbital Hamiltonian. Therefore, the term e∆ can be written as a perturbative sum in

a manner similar to õ∆ in Eq. (3.40). Note that there are many ways in which to

permute this interaction, three times more than ways in which one can permute the

regular Λ-doubling interaction.

Using this, the expectation for the size of the hyperfine Λ-doubling parameters

can be expressed in terms of their regular Λ-doubling counterparts. The four terms c∆,

d∆, e∆, and f∆ can be related to the terms q̃∆, p̃∆, õ∆, and m̃∆. Thus

c∆ ≈ −2
ℵ
B
q̃∆, (3.50)

d∆ ≈ −3

2

ℵ
B
p̃∆, (3.51)

e∆ ≈ −ℵ
B
õ∆, (3.52)

f∆ ≈ −1

2

ℵ
B
m̃∆. (3.53)

The minus sign is due to the replacement of −2BL± with ℵL±. There is no term

proportional to ñ∆ because this parameter contains only terms which raise and lower
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on Σ. Now, since ℵ is not an easily determinable parameter in a pure Hund’s case (a)

molecule, either many measurements are needed, or this scaling relation is to be treated

as very approximate. If one can measure the term hΩ (c.f. Eq (3.46)) for both 3∆1 and

3∆3, the average will yield a value of ℵ. In addition, measuring h2 in the 3∆2 state will

give the value of ℵ as well since Σ = 0 in that state. Therefore ℵ = h2/2 = (h1 + h3)/4.

The ability of the terms in Eqs. (3.50)–(3.53) to predict the size of the interaction can

be seen in NiH. There, (h3/2 + h5/2)/4 = 22.8 MHz and p̃∆ = 188.6 MHz. This would

yield a prediction for d∆ = −0.03 MHz. The measured value is d∆ = 0.8(1) MHz. As is

evident, this estimate is off by more than an order of magnitude and has the wrong sign.

The discrepancy is hard to locate since the experimental work is not entirely positive

about the assignment of d∆. However, NiH is a rather complicated molecule in the

sense that there are many d electrons to account for. This complicates the perturbative

calculations. In HfF+, there is only one d electron and this simplifies the number of

electronic states to consider. Thus, the scaling rule developed in Eqs. (3.50)–(3.53) is

expected to be a better predictor.

3.3.4 3∆1 molecules in electric and magnetic fields

3∆1 molecules are interesting. Because N is no longer a good quantum number,

the electric and magnetic fields will both act on J , the sum of N and S. I will separate

the electric and magnetic interactions in what follows.

3.3.4.1 Electric fields

I now turn to the calculation of the application of electric and magnetic fields.

First, I will address the Stark effect. As in the case of 2Σ molecules, the Stark effect

acts along the internuclear axis. However, N is not a good quantum number. Thus, the

electric field acts on J . The form of the interaction is the same as in Eq. (3.28). The
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matrix elements are

〈ηJΩIFMF | − d · E|ηJ ′Ω′IF ′MF 〉 = −dE(−1)F−MF +F ′+2J+1+I−ΩΘ[J, J ′, F, F ′] ×






F 1 F ′

−MF 0 MF













J 1 J ′

−Ω 0 Ω






(3.54)

×











J ′ F ′ I

F J 1











,

where Θ[J, J ′, F, F ′] is the same as in Eq. (3.16). This interaction preserves the value of

Ω andMF . In fact, this would seem to imply a linear Stark shift since







J 1 J ′

−Ω 0 Ω






∝

Ω when J = J ′. However, in the presence of the interactions in Eq. (3.39), the ground

state is given by linear combinations of +|Ω| and −|Ω|. Thus, the Stark effect is zero

to first order in E because the two terms cancel. However, should one be in a field large

enough to overcome the splitting caused by the parameter in Eq. (3.40), the term respon-

sible for splitting levels of symmetric and anti-symmetric combinations of ±|Ω|, then

the linear Stark regime enters. The field must be larger than that given by Eq. (3.44).

The intent is two work with fully polarized molecules, thus the best choice of basis is

the Ω basis.

The way in which to define whether the regime of a signed Ω, i.e. linear Stark

shifts, is by whether or not the inequality

|dE|J(J + 1) + F (F + 1) − I(I + 1)

2F (F + 1)J(J + 1)
� |õ∆|J(J + 1), (3.55)

holds. Given the numbers for d and õ∆ in HfF+, the requisite field needs to be |E| �

50 mV/cm, same as the result in Eq. (3.44); the polarizing field. Thus, fields on the

order of several V/cm will suffice for polarizing the molecule and choosing the signed

Ω basis. Luckily, these fields can be efficiently constructed in the lab in contrast to

the fields required to polarize 2Σ molecules. In addition, the Stark shift illustrates that

states with the same MF Ω go the same way in energy. Thus, unlike Fig. 3.6, there will
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be an upper and lower component. This is due to the Λ-doubling and provides a way

to check systematics by measuring shifts in the upper component and compare them to

shifts in the lower component. This will be discussed a little later after we understand

the Zeeman interactions.

3.3.4.2 Zeeman interaction

Next is the Zeeman interaction. Unlike the Stark effect, the Zeeman terms are

horrendous. The magnetic field will act on anything that has a magnetic moment,

hence the electron spin, the electron orbital angular momentum, the rotational angular

momentum, the nuclear spin, and then even higher order corrections. You guessed it, I

will go through each in a simple manner and estimate the size of the effect. The basic

Zeeman Hamiltonian is given by 4 terms:

HZeem = (gL + gr)µBB · L + (gS + gr)µBB · S (3.56)

−grµBB · J− gNµNB · I.

The spin and orbital pieces combine to give

〈κ|HZeem(S,L)|κ′〉 = ((gL + gr)Λ + (gS + gr)Σ)µBB ×

(−1)F−MF +F ′+2J+I+1−ΩΘ[F, F ′, J, J ′] × (3.57)






F 1 F ′

−MF 0 MF













J 1 J ′

−Ω 0 Ω

















J ′ F ′ I

F J 1











+(gS + gr)µBB
∑

q=±1







J 1 J ′

−Ω q Ω













S 1 S

−Σ q Σ′







×(−1)F−MF +F ′+2J+I+1−Ω+S−ΣΘ[F, F ′, J, J ′]Π[S]

×







F 1 F ′

−MF 0 MF

















J ′ F ′ I

F J 1











.

The use of κ is to signify the quantum numbers of interest. They are the same as the

quantum numbers in the Stark effect in Eq. (3.54). I have separated out the contribu-
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tions that preserve the value of Ω and those that change it. Notice that those which

change the value of Ω also change the value of Σ. This is to keep zero change in Λ.

This term is usually labeled the anisotropic spin-Zeeman effect. It is responsible for

decoupling the electron spin from the molecular axis as the strength of the magnetic

field is increased. It is often easiest to denote the interaction via gl multiplied by the

Ω-changing operators.

The nuclear and rotational Zeeman terms are

〈κ| − gNµNB · I|κ′〉 = −gNµNB(−1)F−MF +J+I+1+F Θ[F, F ′]Π[I] (3.58)

×







F 1 F ′

−MF 0 MF

















F ′ I 1

I F J











〈κ| − grµBB · J|κ′〉 = −grµBB(−1)F−MF +J+I+1+F ′

Θ[F, F ′]Π[J ] (3.59)

×







F 1 F ′

−MF 0 MF

















F ′ J ′ 1

J F I











These Zeeman interactions are the dominant ones. Their size is easy to estimate. For

the spin and orbital pieces collect terms to find that gLΛ + gSΣ ≈ 0. This is because

gLΛ = 1 and gSΣ = −2 in the 3∆1. Small perturbations originating from QED effects

as well as interactions with excited electronic states will cause gL to differ from 1 and

gS to differ from 2. While QED is hard to discern, the electronic effects scale from

the inclusion of excited states with the same value of Ω into the state of interest, i.e.

3∆1. The inclusion of spin-orbit coupling will bring in 1,3Π1 states into the Ω = 1 wave

function. The Zeeman matrix element 〈3Π1|HZeem|3∆1〉 6= 0. Therefore, the cross terms

arising from taking the 〈Ω = 1|HZeem|Ω = 1〉 matrix element (which is a combination of

1,3Π1 and 3∆1 states) will not be zero. The size of this effect will scale as A/∆E, where

A is the spin-orbit constant and ∆E is the electronic energy separation. From the ab

initio calculations, this is a 0.1–1% effect depending on the state coupled in. Thus, the

sum gLΛ + gSΣ ≈ 0.1 at the largest.

This is one of the appealing features of a 3∆1 state, it is relatively immune to
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small variations in an applied magnetic field. The dominant contributions nearly cancel

each other out. The remaining terms are gN and gr, both of which are of the order and

me/µmol. Therefore, these interactions are of the order 10−3 and thus also quite small.

The anisotropic g-factor gl, which accounts for the mixing in of other Ω states and helps

to decouple the electron spin from the molecular axis, is also of order 10−3. Because it

works to decouple spin, it can be related to the other spin-decoupling interactions, like

spin-rotation. In fact, to make an estimate, swap one instance of BL± in the expression

for γ in Eq. (3.9) with the magnetic field. In so doing, it is seen that gl ≈ γ/B, where

B is the rotation constant. In OH, where extremely detailed spectroscopy has been

performed, gl = γ/B = 6 × 10−3, while the measured value is gl = 4 × 10−3 [16]. This

is excellent agreement for such a simple argument.

The remaining Zeeman terms are all related to the orbital Zeeman interaction

and involve higher orders. As in the case of the Λ-doubling and hyperfine induced Λ-

doubling, the orbital Zeeman interaction will cause Λ-doubling to occur. Interactions

which connect +|Λ| → −|Λ| will be Λ-doubling related. However, there will also be terms

that connect Λ → Λ and thus will not be parity dependent. Brown and coworkers [77, 16]

have written down the effective Zeeman Hamiltonian. It is arrived at by taking the sum

of the HSpin +HRot and B · L to the 2|Λ| power and dividing by the energy differences,

as was done in Eq. (3.47). The result is

Hother
Zeem = (3.60)

− µB

2
grD(B+J−J+J− + B−J+J−J+) +

µB

2
g′rD(B+J+J+J+ + B−J−J−J−)

+
µB

2
glD(B+S−J+J− + B−S+J−J+) − µB

2
g′lD(B+S+J+J+ + B−S−J−J−)

− µB

2
grS(B+S−S+J− + B−S+S−J+) +

µB

2
g′rS(B+S+S+J+ + B−S−S−J−)

− µB

2
glS(B+S−S+S− + B−S+S−S+) − µB

2
g′lS(B+S+S+S+ + B−S−S−S−)

In the above I have collected the terms that are similar. Primes denote Λ-doubling

terms. The first line describes the coupling of the rotation of the molecule with the
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magnetic field. This is very much akin to centrifugal distortion effects and is thus

labeled with a rD for distortion due to rotation. The second line is akin to a distortion

of the anisotropic correction (think gl). Thus, they are labeled with an lD. The B±

signify the raising and lowering of angular momentum along the internuclear axis, thus

are Ω changing. Each interaction changes Ω. Terms with an same number of B± and

J∓ operators will return Ω to the same initial value; grD and glD.

The final two lines are higher-order spin interactions and are thus labeled with

rS for spin-spin-type corrections to the rotation and lS for spin-spin-type corrections

to the anisotropic terms. The last line is anisotropic because the final Ω state must be

different from the initial one.

Provided that the electronic states that are coupled in are limited to configura-

tions arising from the sd-atomic configuration, then the magnitude of the higher-order

g-factors are expected to be the same in the primed and unprimed interactions. This is

because they are limited to talking with excited Π and Σ states only. However, if one

has Φ and Γ states, then the primed and unprimed g-factors will differ from each other

in magnitude.

Assuming that the primed and unprimed terms will be of similar size because

they talk with the same electronically excited states, the size of the g-factors can be

estimated in a manner similar to the c∆ etc. terms:

g′rD ≈ −2
q̃∆
B

(3.61)

g′lD ≈ −3

2

p̃∆

B
(3.62)

g′rS ≈ − õ∆
B

(3.63)

g′lS ≈ −1

2

m̃∆

B
(3.64)

For the 3∆1 state, it is the g′rS term that is of interest. It connects states of Ω = pm1 →

Ω = ∓1 and therefore acts differently on the states of opposite parity in the absence of

the electric field. õ∆ = 10 kHz was estimated, which yields this term to be of the order



78

g′rS = 10−6.

This is important since it changes the way in which states with even (odd) parity

respond to the application of a magnetic field, thus causing a systematic shift that

mimics an eEDM signal in an eEDM measurement. However, in the absence of the

electric field this term is of order 2 × 10−6. In the presence of the electric field strong

enough to polarize the molecule, where Ω is a signed quantity, this interaction is off-

diagonal and therefore only contributes in second order and thus is negligible. The scale

will be (g′rSµBB)2/2dmolE , or the strength of the Λ-doubling Zeeman shift to the Stark

splitting between states of opposite Ω (but same MF ).

However, there is an important effect to consider. The electric field couples in

excited rotational states of the molecule. Thus, there could be an electric field dependent

difference in the way the molecules respond to an applied magnetic field. See Fig. 3.10

for a physical picture. As is evident in the figure, the lines with J ′ = J +1 and MΩ < 0

(> 0) are gained upon (gaining on) the lines of J with MΩ < 0 (> 0). This causes

the states with MΩ < 0 to have a stronger coupling to the magnetic field as a function

of applied electric field than their MΩ > 0 counterparts. This can be seen from a

perturbative approach

|J̃ ,MΩ > 0〉 = |J,MΩ > 0〉 + η>|J + 1,MΩ > 0〉, (3.65)

|J̃ ,MΩ < 0〉 = |J,MΩ < 0〉 + η<|J + 1,MΩ < 0〉, (3.66)

where

η≷ =
〈JMΩ ≷ 0|HStark|J + 1,MΩ ≷ 0〉

2B(J + 1) ∓ γFMΩdE . (3.67)

The factor γF is given by

γF =
J(J + 1) + F (F + 1) − I(I + 1)

2F (F + 1)J(J + 1)
, (3.68)

the diagonal contribution to the Stark interaction. It is like an electric g-factor. Now

apply the Zeeman Hamiltonian to the the states |J̃〉 ( 〈J̃ |HZeem|J̃〉). Taking the appro-
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Figure 3.10: The Stark effect in 3∆ molecules that shows how the application of an
electric field can change the way in which the molecule responds to an applied magnetic
field in different Ω states. The axes are in units of the rotational constant B. When
the energy of the field is comparable to B, we enter a new regime of the Stark shift as
it deviates from linear. The Λ-doubling constant has the exaggerated value B/100 so
as to be somewhat visible. This distorts the range over which the linear Stark effect is
applicable. The dashed lines in the upper part of the panel correlate to the solid lines
of the same color in the lower portion of the panel. The black and red arrows indicate
the coupling of MΩ states.
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priate matrix elements by applying Eqs. (3.57) and (3.54) to the terms and expanding

the denominators in Eqs. (3.65) and (3.66) to the first order in dE/B yields

δgF (E) =
∑

J ′,F ′

dE
B(J + 1)

gF

γFΩ
Π[F, F ′, J, J ′] (3.69)

×







F 1 F ′

−MF 0 MF







2





J 1 J ′

−Ω 0 Ω







2








F ′ J ′ I

−J F 1











2

.

In the level of interest (J = 1,MΩ = ±1) for eEDM spectroscopy the difference between

positive and negative MΩ is

δgF=3/2

gF=3/2
=

9

40

dE
B
. (3.70)

This is about a part in 105.

The two transitions of interest are labeled in Fig. 3.11. The upper transition W u

will have a slightly different shift in frequency than the lower one W ` due to the eEDM.

A systematic that must be controlled is the difference in magnetic response due to the

electric field dependent g-factor difference. What is nice here is that there is no need

to reverse the sign of the magnetic field relative to the electric field because the 3∆1

molecules have a built in co-magnetometer; the Λ-doublet. However, whereas in the 2Σ

case the sensitivity was limited to the ability to exactly reverse the applied magnetic

field, here the sensitivity is to the difference in magnetic response. The difference

W u −W ` ∝ deEeff + δgFµBB.

The blue lines indicate the Stark shift while the red lines indicate the Zeeman

shift. The õ∆ has been greatly exaggerated. The eEDM shift is denoted by the green

lines. One way in which to cancel out the effect of the varying g-factors is to chop

the magnetic field. This is discussed in the forthcoming paper from the JILA eEDM

collaboration [78]. In so doing, the difference in the transitions W u and W ` is

W u(B) +W u(−B) +W `(B) +W `(−B) = 8deEeff +
δgF

gF
µBB, (3.71)
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4o�D

EStark

EZeem

Figure 3.11: The basic Stark (blue lines )and Zeeman (red lines) spectrum of a 3∆1

molecule. The transition labeled W u is of interest in an eEDM experiment. The “co-
magnetometer” transition labeled W ` is also of interest as the difference between W u

and W ` will cancel out the magnetic field shifts provided the g-factors are the same in
the upper and lower components of the Λ-doublet. The Λ-doublet splitting has been
greatly exaggerated as well as the eEDM shift labeled by the green lines. Black lines
indicate the zero field shifts.
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which is 4 times stronger than the 2Σ case with the added benefit of having a weaker

dependence on the systematic control of B due to the smaller g-factors.



Chapter 4

Beyond the Geometric Phase

The mathematical difficulties of a theory of rotation arise chiefly from a want of

geometrical illustrations and sensible images, by which we might fix the results of the

analysis in our minds.

– James Clerk Maxwell

And so begins over 25 years of research into the geometric phase introduced by

Berry in 1984 [18]. In the proposed experiment by the JILA eEDM team, the molecular

ions will be in a rotating electric field [78]. This electric field will couple to the electric

dipole moment of the molecule and in so doing introduce an additional phase into the

dynamic evolution of the internal states of the molecule. It is this additional phase,

which will appear as an energy shift in the measurement, which must be understood.

The ions will rotate in the plane defined by θr = π/2 (the angle the electric field makes

with the axis of rotation), which gives the maximum coupling between states of M

differing by unity (as will be seen in the following discussion).

In addition, the ions will be confined in the z-direction by an electric field that

will change the value of the θr = π/2 small amounts and the plane of rotation is shifted

up and down. While this effect will be ignored in the development of the dressed state

picture, it will be included in the final section (4.6) as a discussion of how it may affect

a measurement in the 3∆1 system. I will develop a formalism whose punchline is that,

while it complicates a measurement of the eEDM, does not prohibit such a search. This
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formalism takes many steps, and some simple examples will be worked out so as to build

intuition.

4.1 The basics

Any quantum mechanical system in a stationary state accumulates a dynamical

phase over time proportional to the energy of that state. To determine energy differ-

ences, based on phase differences accumulated between two such states, is the basis of

Ramsey spectroscopy; the workhorse of high-precision measurement. For this reason,

small effects that can add spurious phase shifts must be understood and kept under

control. What effects, you may ask? Effects like the ones which crop up when a particle

is driven by a periodically rotating field, which creates non-stationary states.

If the total Hamiltonian H(t) has an explicit time dependence, then this depen-

dence will generate an additional phase evolution. For example, precision spectroscopy

of trapped ions must contend with the fact that the ions are in motion, and experience

varying ambient fields during the course of their orbit. Otherwise, these ions would leave

the trap, thereby making an electron electric dipole moment (eEDM) search irrelevant.

In the case of a Hamiltonian with a slow, periodic time dependence H(t + τ) =

H(t), Berry [18] has given a famous description of the additional phase. Berry’s original

treatment requires that the period τ be far larger than any other relevant time scale of

the system, and thus finds an “adiabatic” phase shift. This shift is largely independent

of the detailed way in which the Hamiltonian varies with time, and leads to an elegant

geometric description of the phase [18, 79, 80, 81, 82, 83, 84]. Maxwell would be so

proud for finding such a description.

Extensions to this formalism have considered the next-order corrections if the

rate of change of the Hamiltonian is not strictly adiabatic [85, 86, 87, 88, 89, 90, 91].

A more general Floquet theory has also been advanced, which allows one to consider

the effect of overtones of the fundamental period τ [92, 93, 91]. In addition, the ideas
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have been extended to particles with dynamic properties [94], gauge structure [95],

the quantum Hall effect [96], to relativistic effects using the Dirac equation [97], and to

supersymmetric black holes in 5 dimensions [98]. Yes, I said supersymmetric black holes

in 5 dimensions thereby bringing us full circle to supersymmetry from the introduction.

This will be the last mention of supersymmetric black holes in 5 dimensions.

Thus far, applications of the Berry phase have mostly considered the effect of the

time-dependence on quantum mechanical particles without internal structure, although

atoms with two or several levels have been considered [99, 93, 100]. However, the

job of precision spectroscopy is precisely to reveal this internal structure. Corrections

to Berry’s phase arising from degrees of freedom internal to an atom or molecule is

our concern in understanding the intricacies of a trapped molecular ion in an eEDM

experiment. To establish a concrete formalism for this, we will consider a particular

case, namely, a diamagnetic or electrically polar species in the presence of a magnetic

or electric field, whose direction precesses on a cone with an angular frequency ωr (see

Fig. 4.1). The system evolves in time according to the field variation, combined with

whatever intrinsic Hamiltonian governs the particle’s internal structure. The internal

structure dictates regimes of linear and quadratic Zeeman (Stark) shifts with respect to

the applied magnetic (electric) field.

A main point in deriving the non-dynamic phase in this situation is to recognize

the periodicity of the driving field. By analogy to the periodic driving of a near-resonant

laser field applied to a two-level atom, we consider “field-dressed” states of the Hamil-

tonian in the spirit of quantum optics [101, 100]. This viewpoint effectively counts the

energy of the atom itself, plus that of the photons of frequency ωr arising from the

driving field. The additional energy shift due to the rotating field is then equivalent to

the ac Stark effect in optics. By constructing the complete Hamiltonian in this way, we

are able to accommodate the particle’s internal structure. We are also able to consider

arbitrary rates of rotation, not just those that are adiabatic with respect to the parti-
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Figure 4.1: The axis of rotation with laboratory-fixed coordinates {ξ, η, ζ} as well as
the field coordinates defined by {x, y, z}. The field direction rotates about the ζ-axis
with angular frequency ωr.
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cle’s Hamiltonian. Nevertheless, in what follows we will focus primarily on results for

low rotation rates, to better draw analogies with the usual adiabatic phase [18]

I will walk through the basic derivation of the dressed state formalism in Sec. 4.2

and find the general transformation from a Hamiltonian with an explicit time-rotating

field, into an effective dressed Hamiltonian whose eigen-energies yield the shifted ener-

gies. I’ll illustrate this transformation first with a simple two-level atom, then generalize

it to an arbitrary atom or molecule. In Sec. 4.3 I’ll briefly re-visit a structureless particle

with arbitrary total spin, showing that the results reduce to Berry’s in the limit of slow

rotation. Sec. 4.4 illustrates the application of the method to a particle composed of

two interacting spin-1/2 objects, to show most clearly the effect of their fine structure

on the Berry phase. Sec. 4.5 considers a simple case of a dipolar molecule in a rotating

electric field, to assess the influence of molecular end-over-end rotation on the phase.

After having understood these basics, I’ll address the form of 3∆1 molecules in a rotat-

ing electric field and a complexity that arises due to the Λ-doubling and rotation of the

electric field (Sec. 4.6).

4.2 General spin-j system: A dressed state derivation

A general derivation for the spin-j system will entail the use of a dressed state

ansatz. A dipole ~µ interacting with a time-varying field ~F(t) can be described by the

following Hamiltonian

H(t) = H0 − ~µ · ~F(t), (4.1)

where ~F(t) can be electric or magnetic that acts on an appropriate moment ~µ of the

atom or molecule. ~F rotates on a cone at frequency ωr and tilt angle θr as depicted in

Fig. 4.1. Here H0 is a Hamiltonian in the absence of the applied rotating field. It can

be used to describe the hyperfine elements of an atom or it can be a detailed molecular

Hamiltonian that includes such items as rotation, spin-spin, nuclear spin, or λ-doubling.
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The Hamiltonian can equally be represented in a basis referred to the axis of rotation or

to the instantaneous field axis. Later I will take the instantaneous field axis. I’ll begin

by quantizing along the axis of rotation. Place this structured object in a rotating field

~F ; let there be an electric or magnetic dipole that interacts with the field in the usual

way, i.e. it is a scalar interaction of two vectors.

To work with this Hamiltonian, it is convenient to pick two basis sets:

|(κ)jmζ 〉

|(κ)jmj〉 (4.2)

Because j is the total of all relevant angular momenta, its projection onto an axis is

unambiguously defined as mζ in the lab fame and mj in the rotating frame, as above.

Here κ is a shorthand notation for all the other quantum numbers required to specify

the state.

To deal with the explicit time dependence of the field rotation, I will expand into

the lab basis first, and will a trial wave function motivated by dressed states with a

little ingenuity in the choice of phase;

|ψ(t)〉 =
∑

κ′,j′,m′

ζ

Cκ′,j′,m′

ζ
e−im′

ζ
ωrt|(κ′)j′m′

ζ〉. (4.3)

We have explicitly included a time dependent phase factor with phase mζωr. Taking

the time derivative for the time-dependent Schrödinger equation (TDSE) and projecting

onto a particular state, gives

〈(κ)jmζ |i
d|ψ〉
dt

=
(

iĊκ,j,mζ
+mζωrCκ,j,mζ

)

e−imζωrt. (4.4)

As for the internal Hamiltonian H0, it may or may not be diagonal in this basis, but it

does not depend on any external field. Therefore it can be represented in a basis where

it is diagonal in mζ , whereby

〈(κ)jmζ |H0|ψ〉 =
∑

κ′,j′,m′

ζ

ei(mζ−m′

ζ
)ωrt〈(κ)jmζ |H0|(κ′)j′m′

ζ〉Cκ′,j′,m′

ζ
δmζ ,m′

ζ
(4.5)
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To treat the field interaction, I’ll use the language of tensor algebra, and express

the spherical components of ~F in the lab frame as an explicit rotation from ~F in the

rotating frame (whose z axis is, of course, defined by the instantaneous direction of ~F

itself):

Fι =
∑

ι

FqD1?
ιq (ωrt, θr, 0)

= FD1?
ιq (ωrt, θr, 0). (4.6)

F is the magnitude of the field, and q is its spherical projection in the rotating frame.

But ~F defines this frame so only the values of q = 0 will contribute. D is a Wigner

rotation matrix. In a similar manner, the dipole moment ~µ is determined by its spherical

components such that

−~µ · ~F = −
∑

ι

(−1)ιµιF−ι

= −F
∑

ι

(−1)ιµιD1∗
−ι0(ωrt, θr, 0)

= −F
∑

ι

µιe
−iιωrtd1

−ι0(θr). (4.7)

This uses the explicit expression for D in terms of a little-d function [102].

Just as I treated the internal degrees of freedom in H0 I must now treat the field

interaction.

〈(κ)jmζ | − ~µ · ~F|ψ〉 = −F
∑

κ′j′m′

ζ
ι

(−1)ι〈(κ)jmζ |µι|(κ′)j′m′
ζ〉 ×

Cκ′,j′,m′

ζ
d1
−ι0(θr)e

iωrt(−ι−m′

ζ
). (4.8)

Piecing together the different parts, and multiplying through by eimζωrt, a new TDSE

is arrived at for the coefficients C:

iĊκ,j,mζ
+ ωrmζCκ,j,mζ

=
∑

κ′,j′

〈(κ)jmζ |H0|(κ′)j′mζ〉Cκ′,j′,mζ
−

F
∑

κ′j′m′

ζ
ι

(−1)ι〈(κ)jmζ |µι|(κ′)j′m′
ζ〉Cκ′,j′,m′

ζ
×

d1
−ι0(θr)e

iωrt(−ι−m′

ζ
+mζ). (4.9)
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Now, nowhere is specified what the field ~F is, nor which structural degrees of freedom

are involved in making the dipole ~µ, and it does not matter. All that matters is that ~µ is

a vector, in which case the Wigner-Eckhart theorem applies [102]. In the total angular

momentum basis, it must be

〈(ν)jmζ |µι|(ν ′)j′m′
ζ〉 ∝







j 1 j′

−mζ ι m′
ζ






, (4.10)

where the proportionality constant involves the reduced matrix element. Then the con-

servation of angular momentum implies that m′
ζ −mζ = −ι. However, this immediately

removes the time-dependence in the exponential term in (4.9). In fact, this statement

says that any angular momentum imparted by the rotating field must be accounted for

in the projection mζ .

In some cases it will prove more useful to keep track of the individual spin com-

ponents mζi separately. For instance, suppose there were two angular momenta, mζ1

and mζ2: we would have two projection terms that would each evolve as ei mζ1ωrt and

ei mζ2ωrt. Terms in the Hamiltonian which describe the interaction of the two spins are

of the form ~s1 · ~s2 for which the interaction scales as

〈s1 mζ1 s2 mζ2|~s1 · ~s2|s′1 m′
ζ1 s

′
2 m

′
ζ2〉 ∝







s1 1 s′1

−mζ1 p m′
ζ1













s2 1 s′2

−mζ2 −p m′
ζ2






ei (mζ1−m′

ζ1
)ωr tei (mζ2−m′

ζ2
)ωr t. (4.11)

The proportionality involves a reduced matrix element. By the conservation of angular

momentum it is noted that mζ1 − m′
ζ1 = −(mζ2 − m′

ζ2) and the phase factor is still

canceled out. In fact, for any such interaction between two spins, the conservation of

angular momentum forces the time dependence to cancel out.

With the time-dependence removed, Eq. (4.9) reduces to the Schrödinger equation

for a non-rotating field tilted at an angle θr from the rotation axis. This introduces an

additional term on the left of (4.9), which is moved to the RHS and interpreted as an
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effective Hamiltonian. Thus if H0 is presented in the basis |(κ)j mj〉 diagonal with

respect to the field, then the matrix to be diagonalized is

Hdressed = H0 − ~µ · ~F − ωrmζ

= H0 − ~µ · ~F − ωrjζ , (4.12)

where mζ is the eigenvalue of the jζ operator. Now rotate this Hamiltonian from the mζ

basis to the mj basis. Since H0 does not depend on the either mζ or mj , it is unaffected

by this rotation. In the frame of the instantaneous field, where mj is the good quantum

number, the dressed Hamiltonian is written as

Hdressed = H0 − ~µ · ~F − ω̂r ·~j,

= H0 − ~µ · ~F − ωr(cos(θr)jz − sin(θr)jx). (4.13)

Here is the key result. All the time-dependence is removed. This Hamiltonian has been

previously formulated in NMR studies [103]. In the following sections I will apply it to

a few elementary cases of interest.

4.3 Pure spin-s system

As the simplest application of the general method beyond the spin-j particle, I

consider in this section a structureless particle of arbitrary spin s, as was considered

in the original formulation of Berry [18]. This spin interacts with a magnetic field

that rotates at an angle θr with respect to the axis of rotation. Using the result from

Eq. (4.13), this system is described by the Hamiltonian

Hdressed = ωLsz − ωr(cos(θr)sz − sin(θr)sx), (4.14)

where ωL = gsµBB is the m-independent Larmor precession frequency and gs is the

g-factor for the spin-s. For this section, I have reverted to the usual notation s and m

for the spin and it’s projection onto the instantaneous field axis.
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For this structureless particle, the Hamiltonian (4.14) is represented by a (2s+1)

× (2s+1) tridiagonal matrix, in the basis of states |sm〉. This matrix is explicitly given

by

H =





























m a b(s,m) 0 0 . . .

b(s,m) (m− 1) a b(s,m− 1) 0
...

0 b(s,m− 1)
. . .

. . . b(s,−m+ 1)

... 0 b(s,−m+ 1) −(m− 1) a b(s,−m)

. . . 0 0 b(s,−m) −m a.





























, (4.15)

where a = ωL − ωr cos(θr) and b(s,m) = (1/2)
√

s(s+ 1) −m(m− 1) ωr sin(θr). Ap-

pendix B sketches a derivation of the eigenvalues of this matrix, which are

λm = m
√

ω2
L + ω2

r − 2ωrωL cos(θr), (4.16)

where m takes on the values −s, . . . ,+s in integer steps.

The usual Berry phase is obtained in the adiabatic limit where ωr � ωL, in which

case

λm ≈ mωL −mωr cos(θr). (4.17)

The magnetic field completes one rotation in a time τ = 2π/ωr. In this time the spin

accumulates a dynamical phase ϕm = mωLτ . Beyond this, it acquires an additional

phase γm = φm − ϕm, where φm = λmτ , given to lowest order by

γ(0)
m = −m2π cos(θr) ⇒ 2πm(1 − cos(θr)). (4.18)

In the final step, the fact that adding 2πm (where m is either integer or half-integer)

amounts to adding a phase of ±1 to the system is used. Since Ramsey-type measure-

ments are the main concern, i.e. knowledge of phase differences between two sub-levels,

this added phase is unobservable. However, in interferometric measurements, half inte-

ger spins will introduce a sign change in the state which is observable. However, this a
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additional phase contributes an apparent extra energy of 2π∆M to a Ramsey-type mea-

surement, which is always an integer multiple of 2π and hence, unobservable. The phase

γ
(0)
m accumulated is exactly that given by the result of Berry; m times the solid angle

subtended by the rotation. This solution can be extended to regimes of non-adiabaticity.

The first order correction in ωr/ωL is

γ(1)
m = 2π m

ωr

2ωL
sin2(θr), (4.19)

which has already been identified elsewhere [85, 91]. Based on our explicit formula, we

can extract corrections to any desired order, at least for fields undergoing the simple

motion in Fig. 4.1. This additional phase can be expanded to any desired order in the

adiabatic parameter ωr/ωL. For example, the second and third-order γ (k) corrections

are

γ(2)
m = 2πm

ω2
r

2ω2
L

cos(θr) sin2(θr) (4.20)

γ(3)
m = 2πm

ω3
r

16ω3
L

(3 + 5 cos(2θr)) sin2(θr) (4.21)

Using the general dressed formalism, the limit of fast field rotation can also be

described. The phase γm (after one field period) can be approximated in this limit

(ωr � ωL):

γm ≈ 2πm− 2πm
ωL

ωr
cos(θr), (4.22)

and the first term is unobservable. In this case the dominant energy, as manifested in the

phase, is the photon energy due to the time-periodic field. On top of this, the magnetic

field interaction itself makes a small correction. This is clearly not the appropriate limit

in which to perform precision spectroscopy, since small uncertainties in the field rotation

rate would dominate the observable Larmor frequency.

A spectroscopic measurement would involve finding the energy difference be-

tween two states with different values of m, with difference ∆m. In a Ramsey-type
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experiment, this measurement seeks to measure the phase difference ωL∆mτ = ∆ϕ.

In a rotating field, however, the experiment will produce a measurement of ∆φ =

∆m
√

ω2
L + ω2

r − 2ωLωr cos(θr)τ , and thus will introduce an error. This error is given

by the difference ∆γ = γm − γm′ = ∆φ−∆ϕ, and is plotted in Fig. 4.2 as a function of

rotation rate. The different curves represent different values of the tilt angle θr.

4.4 Structured spin-J system

More generally, atoms and molecules are composite objects made of individual

spins, which are moreover coupled together to create fine or hyperfine structure. For

example, alkali atoms couple the electronic and nuclear spins into a total hyperfine state.

The resulting angular momentum structure will have a bearing on the non-adiabatic

corrections to the geometric phase accumulated. Ref. [104] has studied the effects of

an atomic spin-J system with ~L · ~S coupling while Ref. [105] analyzed the Breit-Rabi

Hamiltonian assessing the influence of hyperfine structure on the Berry phase. Both

coupling schemes can be easily addressed with the method illustrated below.

As a simple illustration of the formalism, consider a composite particle composed

of two spin-1/2 objects. This example goes beyond the structureless particle often

envisioned by the usual Berry theory. The dressed Hamiltonian is given by

Hdressed = ω1j1z + ω2j2z + ∆~j1 ·~j2 − ωr(cos(θr)Jz − sin(θr)Jx), (4.23)

where ωi = giµBB is the Larmor precession frequency of spin ji; ~J is the vector sum

of ~j1 and ~j2; and ∆ is parameter that governs the splitting between levels J = 0 and

J = 1.

The Hamiltonian (4.23) can be represented by a 4 × 4 matrix, in the basis
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Figure 4.2: The extra phase accumulated due to the rotation of the field. In the
limit of very fast rotation, ωr � ωL, the system accumulates a phase of 4π, which
is unobservable. In this limit, the states are best represented by projections onto the
axis of rotation. The various lines represent values of θr between π/2 (bottom line) and
0 (top line) in steps of π/10. As can be seen, when θr is zero, there is no measurable
phase shift, since there is no enclosed solid angle.
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{|(j1 j2)J MJ〉} =
{

|(1
2

1
2)0 0〉 , |( 1

2
1
2)1 1〉, |( 1

2
1
2)1 0〉, |( 1

2
1
2)1 − 1〉

}

Hdressed =





















−3∆
4 0 1

2(ω1 − ω2) 0

0 ∆
4 + ωZ − ωr cos(θr)

ωr√
2

sin(θr) 0

1
2(ω1 − ω2)

ωr√
2
sin(θr)

∆
4

ωr√
2
sin(θr)

0 0 ωr√
2

sin(θr)
∆
4 − ωZ + ωr cos(θr)





















,

(4.24)

where ωZ = 1
2(ω1 + ω2), is the average of the individual Larmor frequencies. The first

item to note is that if the two spins have identical Larmor frequencies, ω1 = ω2, then

this Hamiltonian is equivalent to that of a spin-0 particle and a spin-1 particle that are

independent of each other, there is no coupling between the two states. Each would

then evolve according to the previous section on pure spins. This would be the case for

the singlet and triplet excited states of the helium atom, (1s2s)1,3S state, for example.

However, should these spins be different from one another (such that ω1 6= ω2) then

coupling corrections arise.

The ordinary adiabaticity criterion specifies that the rotational frequency ωr be

small as compared to the Larmor precession frequency ωL, which in this example is

given by ωZ. However, now it becomes also necessary to specify whether the Larmor

frequency itself is large or small compared to the splitting ∆ between adjacent J -levels.

This is because the Berry phase arises from a correction to the eigenvalues of the dressed

Hamiltonian relative to the non-rotating Hamiltonian. It is therefore worthwhile to cast

the non-rotating Hamiltonian in the basis in which it is as diagonal as possible. In the

following sections we treat the two limits separately. Since our emphasis here is on the

Berry-phase limit, I consider only the limit where ωr � ωZ, where the rotation rate of

the field is small compared to the Larmor frequency. The resulting phase shifts are of

course implicit in the theory, however.
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4.4.1 Weak magnetic field, ωr � ωZ � ∆

In the low-field limit, but assuming that each Larmor frequency ωi is still far

larger than the rotational frequency ωr, one can write down expressions for the energy

quite simply. Note that in the absence of rotation, the leading-order energy shift is the

sum of the Larmor frequencies themselves, i.e., (1/2)(ω1 + ω2)MJ = ωZMJ . Leaving

this correction on the diagonal to break the degeneracy of the J = 1 level, one now

treats as perturbations the difference (1/2)(ω1 − ω2) and the rotation rate ωr.

Doing so, the leading-order correction due to rotation of the field is given by the

diagonal terms in (4.24) that contain the rotation rate ωr. This correction is the usual

Berry phase found above,

γ(0)(|J MJ〉) = −2πMJ cos θr, (4.25)

and it depends on the atomic state only through the total projection of angular mo-

mentum MJ . Thus the ordinary Berry phase in the limit of zero rotation rate is still

intact, and is independent of the internal structure.

However, the higher order corrections do depend on this structure. To leading

order in the rotation frequency ωr, a correction to the Berry phase in the |( 1
2

1
2)1 1〉

state is given by:

γ(1)(|11〉) = 2π
ωr

2ωZ
sin2(θr)

(

1 +
(ω1 − ω2)

2

4ωZ(∆ + ωZ)

)

. (4.26)

The first term is the usual first order correction for a structureless particle (cf. (4.19)),

with the replacement of ωL by ωZ. This should be expected since the energy splitting

between the two states is given by ωZ, and thus is what must be overcome by the

rotating field that couples together the differing projections. The second term in the

parentheses depends on how strongly the rotating field couples states with differing

total J , as manifested by ω1 − ω2. This new correction arises from 4th-order mixing in

perturbation theory, it is nevertheless linear in the adiabaticity parameter ωr/ωZ. A
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similar expression is found for the |1 − 1〉 state,

γ(1)(|1 − 1〉) = −2π
ωr

2ωZ
sin2(θr)

(

1 − (ω1 − ω2)
2

4ωZ(∆ − ωZ)

)

. (4.27)

As is expected from the pure spin case, this state picks up an overall negative sign.

However, due to slight changes introduced by the structure, we find a slightly different

correction to the second term in parentheses. In fact, one can write down an expression

that encapsulates the first order (in ωr/ωZ) correction as

γ(1)(|J MJ〉) = 2πMJ
ωr

2ωZ
sin2(θr)

(

1 +MJ
(ω1 − ω2)

2

4ωZ(∆ +MJωZ)

)

. (4.28)

While the first term is exactly of the form in (4.19), the second term describes how the

distant |J = 0,MJ = 0〉 state affects the accumulated first order phase γ
(1)
MJ

; namely

that the quadratic Zeeman shift in the two MJ = 0 levels distorts the system such that

the |J = 1,MJ = 1(−1)〉 state is affected more (less) by the |J = 1,MJ = 0〉 state.

The two states with MJ = 0 do not acquire a geometric phase at lowest order

in ωr, which is appropriate. In this case the leading order perturbation to the dressed

Hamiltonian is E
(±)
Z = ±[(1/2)(ω1−ω2)]

2/∆, which denotes the quadratic Zeeman shift

already present in the non-rotating system, and which does not contribute to the Berry

phase γ. The quadratic shift after a period τ = 2π/ωr is the dynamical phase the

MJ = 0 would nominally acquire. To the first order in ωr in which there is a correction

to the |J = 0,MJ = 0〉 state arises in 4th-order perturbation theory. It is given by

γ(1)(|0 0〉) = 2π
ωr

2∆
sin2(θr)

2E
(−)
Z

∆
(

1 −
(

ωZ

∆

)2
) , (4.29)

where as always the superscript “1” denotes a correction linear in ωr. Here we find a

term that appears similar to the MJ = 1 states, with the exception that it occurs in an

MJ = 0 state. A new energy scale has been introduced into the problem by adding ∆

and this allows the |0 0〉 state to acquire a first order Berry phase. However, the strength

of this phase is reduced by a term proportional to the ratio of the quadratic Zeeman
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shift in the lower level to the spin-spin energy splitting. Given our assumptions, this

term — while linear in ωr — is a product of multiple small parameters, and is generally

smaller than γ(0) for MJ = ±1 states.

For the case of the |J = 1,MJ = 0〉 state, there is also a 4th-order correction, but

it takes a very different form. After much algebra,

γ(1)(|1 0〉) = −2π
ωr

2ωZ
sin2(θr)

2E
(+)
Z

ωZ
. (4.30)

This is very different from the |0 0〉 state correction in (4.29). The important energy

scale is the linear Zeeman shift ωZ. Eqs. (4.29) and (4.30) carry an important insight;

the energy scale responsible for higher-order Berry phases is different for the two MJ =

0 states. The dominant scale in the |0 0〉 is the spin-spin splitting ∆. In the |1 0〉,

the dominant energy scale is the linear Zeeman shift. To first order in ωr, there is

a correction to the MJ = 0 states that, while similar to the shift in the |MJ | = 1

states, is reduced in magnitude. This reduction is due to the structure, the structure

that provides a quadratic Zeeman shift in the MJ = 0 states. For the lower (upper)

level, the correction depends on the relative strength of the quadratic Zeeman shift

to the spin-spin splitting (linear Zeeman shift). In the regime considered, both of

these contributions are very small. The same ideas apply to the F = 0 and F = 1

hyperfine states of Hydrogen, where the magnetic field is coupling states of the same

parity. Briefly, γ(1) is influenced by “nearby” MJ = ±1 states for the |1 0〉 level, and

comparatively less influenced by the “far away” MJ = ±1 levels in the |0 0〉 state.

It is instructive to examine these results for different cases of individual Larmor

frequencies. In the case where both particles experience the same Larmor frequency

in a field, ω1 = ω2, then these first-order corrections reduce to the usual first-order

corrections for a structureless spin-1 particle, as in Eqn. (4.19), and the additional

MJ = 0 pieces are zero as well. In another limit where one Larmor frequency dominates

the other, say ω1 � ω2, then γ(1) for the |MJ | = 1 states reduce to the first order
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correction of the dominant spin alone, reflecting the fact that the weaker spin is coupled

to the stronger one and gets dragged along for the ride. This happens, for example, in

the F = 1 hyperfine ground state of the hydrogen atom, where the nuclear g-factor is

far smaller than the electron g-factor.

4.4.2 Strong magnetic field, ω1, ω2 � ∆ � ωr

In the other limit, where the magnetic field is large compared to the splitting

between adjacent J -levels, it is more useful to construct the dressed Hamiltonian in an

alternative basis. Namely, the non-rotating Hamiltonian is more nearly diagonal in the

independent-spin basis |j1 m1 j2m2〉, where the four Zeeman energies Em1,m2 are given

simply by m1ω1 +m2ω2:

E 1
2
, 1
2

=
1

2
(ω1 + ω2)

E 1
2
,− 1

2
=

1

2
(ω1 − ω2)

E− 1
2
,− 1

2
= −1

2
(ω1 + ω2)

E− 1
2
, 1
2

= −1

2
(ω1 − ω2), (4.31)

as appropriate to this Paschen-Back limit of the Zeeman effect. This is an example of the

aside in Sec. 4.2 where the ansatz (α, β) e−i m1ωrte−i m2ωrt was made. The remaining

Hamiltonian, which includes the rotation of the field and the spin-spin interaction, is

recast as follows

Hdressed =





















E 1
2
, 1
2

+ ∆
4 − ωr cos(θr)

ωr

2 sin(θr) 0 −ωr

2 sin(θr)

ωr

2 sin(θr) E 1
2
,− 1

2
− ∆

4
ωr

2 sin(θr) −∆
2

0 ωr

2 sin(θr) E− 1
2
,− 1

2
+ ∆

4 + ωr cos(θr) −ωr

2 sin(θr)

−ωr

2 sin(θr) −∆
2 −ωr

2 sin(θr) E− 1
2
, 1
2
− ∆

4





















(4.32)
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Once again, one immediately reads the Berry-phase contribution from the diagonal

components, as

γ(0)(|j1 m1 j2 m2〉) = −2π(m1 +m2) cos(θr)

= −2πMJ cos(θr). (4.33)

The phase accumulates due to the individual spins separately, as expected when the

spins interact weakly with each other compared to their interaction with the field.

This independent accumulation of phase leads to a different interpretation of

the MJ = 0 states: in the limit of small magnetic field compared to the spin-spin

energy splitting, we had attributed this to an MJ = 0 projection while here, we can

attribute this to m1 = ±1
2 accumulating ±(ωr/2) cos(θr) extra energy and the m2 =

∓1
2 accumulating ∓(ωr/2) cos(θr). To cement this idea even further, there are two

independent first-order contributions to the first-order non-adiabatic correction γ (1),

computed first neglecting ∆:

γ(1)(|j1 m1 j2 m2〉) = 2π m1
ωr

2ω1
sin2(θr) + 2π m2

ωr

2ω2
sin2(θr) (4.34)

= γ
(1)
1 (|j1 m1〉) + γ

(1)
2 (|j2 m2〉). (4.35)

This is exactly the contribution one would expect from two independent spins following

a rotating field. When the spins are anti-aligned, or m1 = −m2, no correction exists at

this order. It is worth noting that this perturbative expansion breaks down if ωr ∼ ωi.

Thus, should the rotation rate be fast with respect to one of the Larmor frequencies,

but not the other, then the measured phase difference cannot be treated perturbatively

in this regime.

The explicit effect of internal structure, manifested in the splitting ∆, appears as
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a next-order correction:

γ
(1)
1 → 2π m1

ωr

2ω1
sin2(θr)

(

1 +

(

∆

2ω2

)2
)

(4.36)

γ
(1)
2 → 2π m2

ωr

2ω2
sin2(θr)

(

1 +

(

∆

2ω1

)2
)

. (4.37)

Of course, there are many routes by which 4th-order perturbation theory can affect this

state. Only the one route which produces a phase shift proportional to ωr after one

period of oscillation is given. There is a structure correction for each non-adiabatic

spin that depends on the relative strength of the spin-spin splitting to the other Larmor

frequency. Thus, it is evident that the spin-spin splitting need be small compared to

each of the Larmor frequencies in order to make this expansion. Again, this is a more

restrictive condition on adiabaticity than is usually employed for two independent spins.

4.5 Polar molecules in a rotating electric field

Molecules bring yet another degree of freedom to the picture, namely end-over-

end rotation with eigenstates |N MN 〉. In addition, if the molecule is polar, it has

an electric dipole moment that can be acted upon by a rotating electric field. In this

section I’ll consider only diatomic molecules, and only one of a fairly simple structure, to

illustrate how the formalism applies to them. The lowest-order Berry phase was worked

out recently in this system [100], but the higher-order corrections are implicit there as

well.

For the sake of illustration why not choose the simplest of diatomic molecules,

a 1Σ molecule with no hyperfine structure. In a rotating electric field this system is

described by a Hamiltonian of the form

Hdressed = B ~N2 − ~µm · ~E − ωr(cos(θr)Nz − sin(θr)Nx), (4.38)

where ~N is the end-over-end rotational angular momentum of the molecule, µm is the

electric dipole moment of the molecule and E is the electric field strength. Working in
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the frame of the electric field along with the electric dipole moment pointing along the

molecular axis, there are no couplings of MN or Λ, where Λ is the projection of total

angular momentum onto the internuclear axis. For Σ-molecules, this means there are

no couplings to excited electronic states by the applied electric field at the low fields

considered.

For simplicity, only the coupling only between the N = 0 and N = 1 rotational

levels of the molecule is considered, which assumes weak coupling of rotational states

due to the electric field, i.e., µmE � B. The formalism can of course be extended to

arbitrarily large N values as needed. It is nice to note that this formalism has an atomic

analog: the 1S0 and 1P1 states of noble gas and alkaline-earth atoms have opposite-parity

and are coupled by the Stark interaction. This approach gives the corrections for states

of opposite parity coupled by the Stark interaction. The dressed Hamiltonian reads, in

the basis {|NMN 〉} = {|00〉, |1 − 1〉, |10〉, |1 + 1〉}

Hdressed =





















0 0 − 1√
3
µmE 0

0 2B − ωr cos(θr)
1√
2
ωr sin(θr) 0

− 1√
3
µmE 1√

2
ωr sin(θr) 2B 1√

2
ωr sin(θr)

0 0 1√
2
ωr sin(θr) 2B + ωr cos(θr)





















(4.39)

Note the the electric Hamiltonian is off-diagonal in the basis of parity eigen-states. In the

absence of the perturbation ωr, this Hamiltonian appears to have a complete degeneracy

among the three states with N = 1. In the magnetic field case above, this degeneracy

was broken by the linear Zeeman effect acting on the diagonal matrix elements. To

achieve the same feat here, one must account for the off-diagonal mixing due to electric

field. Note the similarity of this procedure to that of Vutha and DeMille [100].

First diagonalize the MN = 0 subspace, using the mixing angle δ defined by

tan(δ) = − µmE√
3B

= −x, (4.40)

with the usual eigenvectors (cos(δ/2), sin(δ/2)) and (− sin(δ/2), cos(δ/2)). The explicit
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values in terms of the parameter x are

cos

(

δ

2

)

=

√√
1 + x2 + 1

2
√

1 + x2
(4.41)

sin

(

δ

2

)

=

√√
1 + x2 − 1

2
√

1 + x2
. (4.42)

In terms of this mixing angle the transformed Hamiltonian, with electric-field-dependent

terms on the diagonal only, reads

Hdressed =





















B(1 −
√

1 + x2) − ωr√
2

sin( δ
2 ) sin(θr) 0 − ωr√

2
sin( δ

2) sin(θr)

− ωr√
2
sin( δ

2) sin(θr) 2B − ωr cos(θr)
ωr√

2
cos( δ

2 ) sin(θr) 0

0 ωr√
2
cos( δ

2 ) sin(θr) B(1 +
√

1 + x2) ωr√
2

cos( δ
2) sin(θr)

− ωr√
2
sin( δ

2) sin(θr) 0 ωr√
2
cos( δ

2 sin(θr) 2B + ωr cos(θr)





















.(4.43)

In the limit that x � 1 the diagonal terms for the two MN = 0 states are merely the

quadratic Stark shift E
(±)
S = ±(µmE)2/6B. Now read off the ordinary Berry phase from

the diagonal perturbations linear in ωr, yielding the usual

γ(0)(|Ñ MN 〉) = −2πMN cos(θr), (4.44)

where by Ñ is meant the appropriate eigenstate of the field-mixed MN = 0 states [100].

This diagonalization removed the degeneracy of the MN = 0 level with the MN = ±1

levels of the N = 1 subspace. However, the degeneracy among the MN = ±1 states still

exists.

Having quasi-broken the degeneracy in the N = 1 levels, evaluation of the first-

order non-adiabatic correction term using standard second-order perturbation theory

seems a logical next step. It is evident that both states |N,MN = ±1〉 experience

the same additional phase at this order (due to their degeneracy in the non-perturbing

Hamiltonian), given by

γ(1)(|1, ±1) = −π
(

6B

(µmE)2

)

ωr sin2(θr), (4.45)
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where an expansion in the small parameter x has been applied. Requiring this to be a

small correction identifies the adiabaticity criterion for this situation. If this case were

analogous to the magnetic field case, one would only be concerned about the magnitude

of ωr with respect to µmE , which is the stand-in for the Larmor frequency. However,

Eqn. (4.45) suggests a slightly different criterion, namely ωrB � (µmE)2 must hold in

order to recover the simple leading-order Berry phase. To understand the origin of this

criterion look at the term in the large parentheses in (4.45). It is the inverse of the

Stark energy in the absence of field rotation for the upper level. Now rewrite (4.45) as

γ(1)(|N MN = ±1〉) = −2π
ωr

2ES
sin2(θr), (4.46)

and recover a form reminiscent of the pure spin case (cf. (4.19)), where the Larmor

frequency, ωL, is replaced by ES, the quadratic Stark shift. In order to be an adiabatic

correction, it is immediately evident why ωrB � (µmE)2 must hold; the rotation rate

must be small compared to the energy splitting in that level. In this case, the splitting

is quadratic in electric field and therefore a secondary energy scale — the rotational

level splitting or internal structure — must come into play.

By similar reasoning, γ(1) corrections for the MN = 0 states can be obtained as

well. That of the lower level is given by

γ(1)(|Ñ ∼ 0 , 0〉) = −2π
ωr

2B
sin2(θr)

ES

2B
, (4.47)

where the requirement that ωr ES � B2 must hold. In this case, our assumptions

clearly support this adiabatic criterion since the regime ωr � µmE � B is assumed.

This correction is linear in ωr, but suppressed by the ratio of the Stark energy to the

rotational constant of the molecule. Physically, this is because this state is far removed

from the “degeneracy” in the N = 1 levels. It is the electric analogue of the weak

magnetic field limit of the spin-spin interaction. The correction for the upper level is

given by

γ(1)(|Ñ ∼ 1 , 0〉) = 4π
ωr

2ES
sin2(θr). (4.48)
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This correction is in the opposite direction to and twice that of the |N MN = ±1〉 states

because the |Ñ ∼ 1 , 0〉 state is influenced by the two states, MN = ±1, that are below

it in energy. This is in contrast to the coupled spins in a magnetic field case, where

each MN = ±1 contributed equally in magnitude but opposite in sign. This is due to

the lack of any linear Stark shift in the MN = ±1 levels.

It is evident that polar molecules in a rotating electric field are quite similar to

magnetic dipoles in rotating magnetic fields. There is an energy splitting in comparison

with which the rotation of the field must be small to ensure adiabaticity. If there is a

shift in energy that is linear with the applied field, then the rotation rate must be small

compared to this energy. However, if the energy scales quadratically with the applied

field, the rate of rotation must be small in comparison to the energy shift in the field.

Thus, the internal structure is quite important in regimes of quadratic field shifts and

introduces different adiabaticity requirements on ωr in terms of the applied field and

internal structure.

4.6 3
∆1 molecules

3∆1 molecules are a whole other bag of worms. In Sec. 3.3.2 it was made apparent

that they can be quite complicated. Adding a rotating electric field to the mix will

make it even more so. However, in this section only nuclear spin free systems will be

considered, so as to only present the necessary new physics. Recall Fig. 3.11. The upper

component shifts in energy with the application of an electric field. The Hamiltonian

which describes the object in the rotating field is given by

Hdress = −~µ · ~E − õ∆J
2δΩ,−Ω′ +BJ2 − ωr(cos(θr)Jz − sin(θr)Jx). (4.49)

The first term is the Stark interaction, the second the Λ-doubling which connects states

of Ω → −Ω, the third end-over-end rotation, and the last the rotating contribution. For

inclusion of any J , the total number of channels in the system scales as
∑

J 2(2J + 1),
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where the extra 2 encapsulates the two Ω’s in the problem.

The concern is primarily with the Stark degenerate states MΩ = ±1, and there-

fore it would be beneficial if there were a way to understand the new physics that arises

from the rotating field. I shall choose the regime where the electric field is vastly larger

than õ∆ and ωr yet ridiculously small compared to the rotational splitting given by

2B(J + 1). Therefore, the Stark energy is the dominant energy in the system. Treat-

ing the other two interactions, Λ-doubling and rotation, as small one can try to build

an effective Hamiltonian in the basis of MΩ = ±1. The reason for this is to try to

understand the the degenerate states in terms of a 2 × 2 matrix.

The interesting item to note is that the rotating field ωr couples M to M±1 while

Λ-doubling couples Ω = ±1 to Ω = ∓1. Thus, in a perturbative approach, it is evident

that states with M = 1,Ω = −1 are coupled at some level to states with M = −1,Ω = 1.

Yet, in Fig. 3.11, these were the states where the upper transition W u is to be measured

to determine the eEDM. This is potentially hazardous because should there ever be a

case where the two states are degenerate then the rotation would introduce a complete

mixing of states, yielding new eigenfunctions proportional to |M,Ω〉±|−M,−Ω〉. If the

electron being measured in the experiment spends half its time up against the applied

axis and half its time down, the effect cancels out. And apparently, when θr = π/2

the situation is just so that the two levels are degenerate, as is evident from staring at

Eq. (4.49) long enough.

Now, in the ion trap of the JILA eEDM experiment, θr = π/2, or at least will vary

around this choice of angle. Therefore, there will need to be some way to understand

the eigenfunctions in the plane. Because the |MΩ = ±1〉 states are coupled by the

combined interactions of the rotating field and Λ-doubling, the states at the value of
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θr = π/2 are given by (in the |MΩ〉 basis)

||MΩ|,+〉 =
1√
2

(|1,−1〉 + | − 1, 1〉) (4.50)

||MΩ|,−〉 =
1√
2

(|1,−1〉 − | − 1, 1〉) . (4.51)

Neither of these states is conducive to measuring the eEDM. Therefore, the size of the

energy splitting between these states needs to be understood as well as a way to move

back into a regime of good M and Ω.

The matrix elements of interest in a fixed J -level are given by

〈JMΩ|õ∆J
2|JM − Ω〉 = 2õ∆J(J + 1)

〈JMΩ| − ~µ · ~E|JMΩ〉 = −µE MΩ

J(J + 1)
(4.52)

〈JMΩ| − ωr cos(θr)Jz |JMΩ〉 = −ωr cos(θr)M

〈JMΩ| − ωr sin(θr)Jx|JMΩ〉 = 〈JMΩ| − ωr sin(θr)(J+ + J−)/
√

2|JMΩ〉

=
(

√

(J +M)(J −M + 1)/2+

√

(J −M)(J +M + 1)/2
)

ωr sin(θr)

The raising and lowering here operators act on the laboratory defined axis of the in-

stantaneous field, as opposed to earlier in Sec. 3.3.2.

In order to understand the energies associated with the terms in Eqs.(4.50) and

(4.51), one can take a sum of the perturbative terms and raise them to the 2|M | + 1

power, then divide by ∆E2M . This is because the order at which the two states are

coupled requires 2|M | applications of the rotating field and one application of the Λ-

doubling term.

Hpeturb ∝ (HΛD +Hrot field)
2|M |+1

∆E2M

∝ HΛDH
2|M |
rot field + permutations. (4.53)

The permutations have to deal with whether the Λ-doubling occurs first, second, or

third. In fact, there are 2|M | + 1 permutations in general. In the case of 3∆1 with no
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hyperfine, this reduces to HΛDH
2
rot field, Hrot fieldHΛDHrot field, and H2

rot fieldHΛD. One

must account for each term because the energy denominators are different in each case.

To illustrate, the first term takes (using |MΩ〉 basis functions) |11〉 → |01〉 → |− 11〉 →

| − 1 − 1〉. The second term is |11〉 → |01〉 → |0 − 1〉 → | − 1 − 1〉. These multiple

paths can constructively or destructively interfere with each other, and therefore must

be accounted for separately.

The energy denominators are given by either M − (M ± 1) or ±2Ω times the the

Stark parameter µE/(J(J + 1)). Using some algebra one arrives at an expression for

the matrix element connecting |MΩ〉 to | −M − Ω〉 (at θr = π/2)

〈MΩ|Hpeturb| −M − Ω〉 = y[J,M ]õ∆

(

ωr

µE

)2|M |
. (4.54)

The function y[J,M ] depends on the many ways in which the operators can act and in

what order. It is not enlightening to write down the form since it is merely a complicated

expression, however in the case of 3∆1 ground state molecules, y[J,M ] = 16. What is

enlightening is that the interaction has a scaling law. The larger the value of M in

which one starts, the smaller is the term which couples |M,Ω〉 to | −M,−Ω〉. In the

absence of Λ-doubling or field rotation there is no coupling between these states. It is

an artifact of the combined effects.

It is worth noting that the way in which the interaction was developed is entirely

akin to the way in which one creates the effective Hamiltonian for Λ-doubling, of the

regular, hyperfine induced, or Zeeman induced varieties. In the plane of rotation de-

fined by θr = π/2, this method lends itself to being dubbed MΩ-doubling (pronounced

“momega”-doubling), because states with the same value of MΩ are degenerate and

split by an “effective” parity interaction. This parity is related to the sense of rotation

in cahoots with the orientation of the molecular axis. An outward pointing Ω (dipole

moment of the molecule pointing along instantaneous field direction) with an outward

M rotating in a positive sense is degenerate with an inward Ω, inward M rotating in a
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positive sense. If one were to look at the case of magnetic spins and bring Ω into the

definition of the g-factor, then the two states have equal and opposite g-factors such

that a positive g-factor for state M for all intents and purposes is the same as a negative

g-factor for state −M .

In the basis of |MΩ〉, the effective 2 × 2 Hamiltonian describing the interaction

between the degenerate Stark states near the value θr = π/2 is

H2×2 =







dE
2 + ωrα 16

(

ωr

dE
)2
õ∆

16
(

ωr

dE
)2
õ∆

dE
2 − ωrα






, (4.55)

where the small angle approximation has been applied and α = θr − π/2. Now, should

one want to “push” the crossing to a different value of α so as to be able to do the

experiment at θr = π/2, one would have to shift the M = 1 and M = −1 level in

addition to the shift that is applied by α. The Zeeman interaction does this because it

does not care about the sign of MΩ, just the sign of M . Therefore, applying a magnetic

field collinear with the electric field will shift the crossing to a different value of α. The

Hamiltonian in Eq. (4.55) is modified such that

H2×2 =







dE
2 + gJµBB

2 + ωrα 16
(

ωr

dE
)2
õ∆

16
(

ωr

dE
)2
õ∆

dE
2 − gJµBB

2 − ωrα






, (4.56)

where gJ = (gLΛ − gSΣ)Ω. Now, the new value α where the coupling is maximal and

|MΩ〉 states are degenerate is

α = −gJµBB
2ωr

. (4.57)

Recall that the value of gJ ≈ 0.1. Now, in the proposed experiment the ratio of the

Zeeman energy to ωr is expected to be around 0.012 [78]. Thus, the angle is shifted an

amount α = 0.06, which is small enough that the small angle approximation still holds.

What remains to be seen is whether a shift this small brings one back to the regime of

good M and Ω at the value of α = 0.

This crossing, as a function of α is presented in Fig. 4.3. The upper panel

(Eq. (4.55) solutions) shows the avoided crossing. The units on the x-axis are in terms
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Figure 4.3: The upper panel shows the avoided crossing for a purely Stark interaction.
At α = 0 (corresponds to θr = π/2), the two states are maximally mixed, which is bad
for an eEDM measurement. However, the application of a magnetic field will move the
crossing to a new value of α that is governed by the ratio of the Zeeman energy to the
field rotation energy (bottom panel).
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of gJµBB/2ωr, and on the y-axis the energy has been offset so as to center the crossing

around zero. The units on the y-axis are in terms gJµBB/2ωr as well. The application

of a magnetic field, which like the rotation of the electric field acts only on M , will move

the degeneracy to a different value of α = gJµBB/2ωr. Now, to determine whether the

eigen-states at α = 0 are states of good M and Ω one compares the energy difference

between the states |1−1〉 and |−11〉 (in the |MΩ〉) basis to the strength of the coupling

|gJµBB| � 16
(ωr

dE
)2
õ∆, (4.58)

which is met in the proposed experiment [78]. The LHS of Eq. (4.58) has the value

of gJµBB ≈ 2.5 kHz while the RHS has the value 0.25 kHz, or a factor of 10 smaller.

Thus, the values of M and Ω are fairly good in this regime.

By applying the magnetic field to shift the location of the crossing to values of

θr 6= π/2, one recovers states of good M and good Ω in the plane defined by θr = π/2.

Now, should the ions oscillate up and down across this plane, as ions in an ion trap

invariably do, they will not experience this crossing provided the amplitude of the

oscillation is less than |αosc| � 0.06. The axial electric field is expected to cause

oscillations in |αosc| ≈ 0.0005, from the parameters in the proposed experiment [78].

Therefore, the ability to perform an eEDM measurement on molecular ions in an ion

trap is completely feasible.

One item to note is that in the proposed experiment, there is hyperfine structure,

which makes the total angular momentum basis F = 3/2 in the ground state. In this

state, MF = 3/2 is the total M and this further reduces the size of the coupling strength.

The Stark and Zeeman energies will be comparable up to a geometric factor describing

the coupling of the spins J to F . Therefore, the extra complexity of hyperfine structure

actually helps to alleviate the symptomatic effects of rotating in the plane θr = π/2 by

further reducing the coupling strength between states of |MΩ〉 and | −M − Ω〉.



Chapter 5

. . . In the End

The best way to be boring is to leave nothing out.

– Francois Voltaire

And now you are either wondering what it is I have left out, or you are really

bored. I do hope it is the former.

5.1 A mild review

In this thesis I have presented three ideas all linked by their goal to understand

diatomic molecular candidates for an eEDM search. Perturbation theory played a piv-

otal role in understanding the estimation of Eeff . Standard ab initio techniques were

used to create potential energy surfaces for the new candidates and these surfaces were

in turn used to place a size on the interactions that lead to spectroscopic observables.

The theory of Λ-doubling was extended to the hyperfine realm by applying perturbative

rules and scaling laws. While the spectroscopy of 3∆ molecules may be complicated,

each term can be understood by applying simple arguments. The goal of understanding

even the most minute detail of the spectroscopy is to isolate the spectroscopic shift

due to an eEDM. Finally, a dressed state approach to Berry’s phase was developed to

address the effects of structure on the additional phases. The role that structure plays

is to systematically shift the levels of interest in an eEDM experiment, but in such a

way for which it is easily accounted.
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5.2 The future

There are other avenues to explore EDM effects. An interesting one with molecules

is to search for the neutron or proton EDM (nEDM, where n stands for nucleon). 1Σ

molecules such as TlF have been proposed as candidates for measuring the nEDM and

measurements have been made [106]. Here I offer a slightly different approach. Great

work has been performed on 199Hg as an atomic candidate for a nEDM search [107].

Since Hg can be laser cooled as well as Sr, one may consider HgSr a viable candidate

for a nEDM search in its 1Σ ground state because the molecule has the possibility to

be produced at ultracold temperatures. The Sr atom acts as a “handle” by which the

molecule can be polarized. There is much work to be done regarding this field, but

it is but one example of the use of molecules in precision studies. The same ab initio

methods employed to calculate the wave functions in for the 3∆ molecules can be used

to construct the wave functions for the 1Σ candidates.

A further examination of Berry’s phase in a dressed state picture can also be

explored. Currently, only time-variations in the angle φ, the azimuthal angle, have

been explored. One can imagine simple time-dependent θ models which would also lead

to additional phases. Trying to understand simple oscillations in θ would be an ideal

next step since these oscillations occur in ion trap environments. This oscillation would

effectively take the system through the avoided crossing in Fig. 4.3 and one can ask how

the time scale of this oscillation will affect an eEDM search.
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Appendix A

Sample molpro input

If you put tomfoolery into a computer, nothing comes out of it except tomfoolery. But

this tomfoolery, having passed through a very expensive machine, is somehow ennobled

and no one dares criticize it.

–Pierre Gallois

The items which appear in verbatim are actually coding scripts. The dialog that

is in between is for explanation as well as troubleshooting common errors.

The first thing to do is call the memory requirements. Often, one gets an error

message along the lines of “not enough memory, require ### words and have ###

words.” If this is the case, just increase the memory. “Words” is related to bits, and is

not the unit you need. Play around with it until the error message goes away.

memory,2500,m

gprint,orbital,civector;

The second line informs the program that you would like to have the orbitals and the

ci-vector coefficients printed for every HF, MCSCF and MRCI calculation.

Next one must define the basis sets of interest. This is for ThF+.

basis
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f=avtz;

ecp,th,ecp60mwb;

spdfg,th,ecp60mwb_seg;

end

This calls the aug-cc-pVTZ basis for F and the ECP60MWB effective core potential and

basis set for Th. The “seg” refers to segmented and means this basis can be used for

spin-orbit calculations. If the basis set is not known in molpro, then one can import

the basis by copying from the Stuttgart website [47] for heavy elements.

Now it is time to set the geometry

geometry

f;

th,f,r(i);

end

rlist=[1,2,3,4,5,6,7] bohr;

This geometry is in Z-matrix format. It says to place the Th atom from the F atom a

distance r(i) away, where r(i) will be defined via a call to “rlist.”

Now one is ready to calculate the meaty part. First, set the counter to zero,

then start chugging away at steps. Go from the first element to the last in “rlist” in

increments of 1. Define the “ith” element of r(i) as the “ith” element of “rlist.” I will

break it up into the RHF-MCSCF and the the MRCI+SO sections.

i=0;

do ith=1,#rlist

i=i+1

r(i)=rlist(ith);

{hf;start,atden;

wf,38,1,0;}
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{multi;frozen,2,1,1,0;closed,8,3,3,1;occ,11,4,4,2;

wf,38,1,0;

wf,38,1,2;wf,38,4,2;}

{multi;closed,8,3,3,1;occ,11,4,4,2;

wf,38,1,0;

wf,38,1,2;wf,38,4,2;}

{multi;closed,8,3,3,1;occ,12,5,5,2;

wf,38,1,0;state,2;wf,38,4,0;

wf,38,1,2;state,2;wf,38,4,2;

wf,38,2,0;wf,38,3,0;

wf,38,2,2;wf,38,3,2;}

{multi;closed,8,3,3,1;occ,13,6,6,2;

wf,38,1,0;state,2;wf,38,4,0;

wf,38,1,2;state,2;wf,38,4,2;

wf,38,2,0;wf,38,3,0;

wf,38,2,2;wf,38,3,2;}

{multi;closed,8,3,3,1;occ,13,6,6,2;

wf,38,1,0;state,3;wf,38,4,0;

wf,38,1,2;state,2;wf,38,4,2;state,2;

wf,38,2,0;wf,38,3,0;

wf,38,2,2;state,2;wf,38,3,2;state,2;}

{multi;closed,8,3,3,1;occ,13,6,6,2;

wf,38,1,0;state,5;wf,38,4,0;state,3;

wf,38,1,2;state,3;wf,38,4,2;state,3;

wf,38,2,0;state,2;wf,38,3,0;state,2;

wf,38,2,2;state,2;wf,38,3,2;state,2;}

{multi;closed,8,3,3,1;occ,13,6,6,2;maxiter,25;
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wf,38,1,0;state,5;wf,38,4,0;state,3

wf,38,1,2;state,3;wf,38,4,2;state,3;

wf,38,2,0;state,2;wf,38,3,0;state,2;

wf,38,2,2;state,2;wf,38,3,2;state,2;}

Each subsequent step in the MCSCF (or “multi”) is to gradually build wave functions

from the ground up starting with a calculation on 1Σ and 3∆, then adding progressively

more spin multiplicities and spatial symmetries. The “wf,38,Sym,2*Spin” command

lines are organized such that the pieces with degenerate spatial and spin multiplicities

are next to each other. In the MRCI terms below, the energy values are stored in

parameters. For brevity, I have only included one label, but one can save multiple. The

save command stores the orbital to be used in a spin-orbit calculation later when the

“ci;hlsmat,ecp. . . ” command is entered. “ref” commands call the reference symmetries

which are degenerate with the symmetry in the given MRCI calculation.

{ci;core,8,3,3,1;

wf,38,1,0;state,5;ref,4;options,maxit=50;save,6010.2;}

esig(i)=Energy(1);

{ci;core,8,3,3,1;

wf,38,1,2;state,3;ref,4;options,maxit=50;save,6110.2}

{ci;core,8,3,3,1;

wf,38,4,2;state,3;ref,1;options,maxit=50;save,6210.2;}

{ci;core,8,3,3,1;

wf,38,2,2;state,2;ref,3;options,maxit=50;save,6310.2}

{ci;core,8,3,3,1;

wf,38,3,2;state,2;ref,2;options,maxit=50;save,6410.2;}

{ci;core,8,3,3,1;

wf,38,2,0;state,2;ref,3;options,maxit=50;save,6510.2}
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{ci;core,8,3,3,1;

wf,38,3,0;state,2;ref,2;options,maxit=50;save,6610.2;}

{ci;core,8,3,3,1;

wf,38,4,0;state,3;ref,1;options,maxit=50;save,6710.2}

{ci;

hlsmat,ecp,6010.2,6110.2,6210.2,6310.2,6410.2,6510.2,6610.2,6710.2;

print,vls=0,hls=0}

so1(i)=Energy(1);

table,r,esig,so1,...

digits,#,#,#,#...

save,filename.txt,new;

enddo

The final command is to store the energies into a file named “filename.txt” and to

rewrite the file after each loop. The line “digits...” tells how many digits after the

decimal place to keep in each variable.

The common error messages that one finds are related to the “occ” and “closed”

cards. Sometimes, through misunderstandings, a user might not give the appropriate

number of occupied orbitals and the MCSCF will freak out because it cannot possibly

perform the requested calculation. If this is the case, merely think logically and add to

the occupied card. Add wisely because an increase in this number will greatly increase

computational time. If the error message is ambiguous, and just seems to exit, it is

likely that the “closed” space is such that only one, or possibly zero, electrons are left

in the “active” space, defined as occ-closed. An MRCI calculation cannot do anything

if there is only one, or zero, electron(s). This is because there is nothing to correlate.

This file would calculate all the states arising from the s2, sd, and d2 atomic
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orbital configuration on the Th2+ core. Recall that this will only work near the bottom

of the potential wells. The larger the value of r(i), the more these states approach

each other and the more likely tiny energy differences will cause severe problems in the

calculation. Think smart, but more importantly, think efficient. I carried the calculation

to a point of first failure and then stopped. These are the curves presented in Fig. 3.8 b.



Appendix B

Pure S appendix

In Sec. 4.3, there was a Hamiltonian of the form

H = ωLSz − ωr(cos(θr)Sz − sin(θr)Sx), (B.1)

which looks like

H =





























a1 c1 0 0 . . .

c1 a2 c2 0
...

0 c2
. . .

. . . cn−2

... 0 cn−2 an−1 cn−1

. . . 0 0 cn−1 an.





























, (B.2)

In this system, not only is this matrix symmetric, it contains the following added sym-

metry: a1 = −an, a2 = −an−1, etc. Also, the coupling coefficients ci follow a similar

property: c1 = cn−1, etc. These properties are key to simplifying the eigenvalues of the

tridiagonal matrix in this case.

Eigenvalues of an n×n tridiagonal matrix are given by the roots of the polynomial
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pn, defined recursively by

p0(λ) = 1,

p1(λ) = (a1 − λ),

p2(λ) = (a2 − λ)p1(λ) − c21p0(λ)

...

pn(λ) = (an − λ)pn−1(λ) − c2n−1pn−2(λ). (B.3)

Here the constants are defined as

am = m(ωL − cos(θr)), (B.4)

cm ∼







S 1 S

−m q m− q






. (B.5)

Thus, the symmetry pops right out.

A simple example is the case of S = 1/2. The characteristic polynomial is

p2(λ) = (λ− 1

2
a)(λ+

1

2
a) −

(

1

2
b

)2

= (λ2 − 1

4
(a2 + b2)) (B.6)

where a = (ωL −ωr cos(θr)) and b = ωr sin(θr). For the case of S = 1 a similar equation

(after simplification)

p3(λ) = λ((λ− a)(λ+ a) − 2

(

1√
2
b

)2

)

= λ(λ2 − (a2 + b2)) (B.7)

For integer values there is always a diagonal element that is 0. As is evident, this has

the same form as (B.6) with the added piece of λ multiplying everything yielding an

eigenvalue of 0. In addition, Eq. (B.7) is scaled by a factor of 4 from from Eq. (B.6),

thus making the the eigenvalues a factor of 2 larger. This is because the value of m in

(B.7) is twice as large as the value of m in (B.6).
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We can generalize the characteristic polynomial to a very simple expression due

to the added symmetries. It is given by

p2S+1 =

mmax
∏

m=(mmin≥0)

(λ2(1−δmmin,0) −m2(a2 + b2)). (B.8)

The Kronecker δ-function in (B.8) is to insure that in the event mmin = 0 there is only

one eigenvalue λ = 0.


