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The field of mode-locked fiber lasers has grown tremendously over the last

10 years. In the last few years, in particular, this class of laser has moved from

just offering a low cost, rugged and compact source of ultrashort pulses to offering

state of the art ultrashort pulses. Rapid progress in fiber development has lead to

a variety of specialty fibers: highly nonlinear fiber for various wavelength ranges,

high dopant gain fiber, double-clad high gain fiber, and dispersion compensating

fiber (to name just a few). These fundamental developments resulted in higher

performance fiber laser systems. For instance, the high dopant gain fiber and

the nonlinear fiber resulted in the ability to make fiber frequency combs at any

wavelength. The double-clad fiber has allowed researchers to push the average

power of Yb fiber lasers to >10 W; a level which is already above that offered

from the popular Ti:sapphire system.

In this thesis, Erbium based mode-locked fiber lasers are examined from a

development and application point of view. The first two chapters review some

of the basic concepts that are used throughout this thesis. Chapter 3 covers a

crucial advance necessary for fiber lasers to be used in precision experiments:

frequency control and frequency dissemination over fiber links. The first point is

accomplished with a fast intra-cavity actuator, while the second point is addressed

using a stabilized fiber link. Chapter 4 then reviews two atomic physics based

experiments that used stabilized fiber lasers.

The next two chapters describe and present characterization for a new

method of achieving a mode-locked fiber laser based on a device known as a
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waveguide array. We believe this method could yield one of the most robust and

compact mode-locked fiber lasers ever created. The experiment detailed in Chap-

ter 5 involved measuring the pulse shaping of these waveguide array devices via au-

tocorrelation. This measurement was the first demonstration of pulse shortening

in waveguide arrays. Further characterization in Chapter 6 measured the effects of

multi-photon absorption on the discrete spatial soliton that is formed at high peak

power in the waveguide array. This experiment showed that multi-photon absorp-

tion in the device effectively clamps the spatial soliton power distribution, with

increases beyond a certain peak intensity causing virtually no change in the output

distribution. The last experiment in Chapter 6 details a measurement of the full

electric field shaping of the waveguide array using Frequency-Resolved Optical-

Gating. Analysis of the data shows that the waveguide array has a spectral phase

attraction point. Thus, any value for the input spectral phase is transformed,

upon traveling through the waveguide array, into one output spectral phase. The

last chapter provides a big picture overview of the topics covered in this thesis,

and takes a look at the future directions in which this work is headed.
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Chapter 1

Introduction

Mode-locked lasers are an extremely useful type of laser. Simply stated,

their output is a phase coherent train of very short pulses (< 1 picosecond).

The usefulness of such a system, while perhaps not obvious at first, is immense.

Application of these lasers range from micro-machining metals [1] all the way to

facilitating the most precise frequency measurements ever made [2]. Based on the

many proposals for new technologies that utilize mode-locked lasers [3, 4], it is

clear that these lasers will be an invaluable tool for future technologies.

This thesis deals with a particular type of mode-locked laser known as an

Erbium doped, mode-locked fiber laser. These lasers have received much attention

due to their low cost, low power consumption, long term robustness, and ease

of long distance transmission (through single-mode fiber). The first experiments

presented here cover the topic of stabilizing the repetition frequency of these lasers.

Initial demonstrations of these lasers showed large amounts of high frequency noise

in these systems [5]. Thus, we set out to build a laser with a fast intra-cavity

actuator to cancel this frequency noise. The system that was built employed an

electro-optic modulator to allow for noise cancellation up to fourier frequencies

of > 200 kHz. This fast actuator allowed for 2 orders of magnitude reduction

in the timing fluctuations of the laser pulses [6]. We then turned our attention

towards synchronizing remotely located fiber lasers using this fast actuator in
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conjunction with a stabilized fiber link. Applications of this technology include

coherent aperture synthesis of radio telescopes, precise frequency dissmenation,

and pump-probe timing in long range accelerator experiments [7]. This experiment

led to extremely low timing fluctuations for a kilometer scale system [8]. These

two experiments are covered in Chapter 3.

Chapter 4 of this thesis presents two atomic physics experiments that were

conducted using mode-locked fiber lasers and passive optical cavities. The first

experiment employed a home-built Er fiber laser for broadband molecular detec-

tion in a broadband cavity ringdown setup [9]. This laser was built with several

intra-cavity actuators that allowed for long range and tight frequency control.

The second project in this chapter dealt with a commercial Ytterbium doped fiber

laser for use in a high-field physics experiment. In this project we coupled the high

power Yb laser (13 W average power, 90 fs pulses) to a passive enhancement cavity

with an intra-cavity focus to produce a peak intensity of 3×1014W/cm2 [10]. This

experiment was the initial demonstration of a system aimed at achieving high-

order harmonic generation in a noble gas, a process that could allow for shifting

a frequency comb to ultra-violet wavelengths.

The last two chapters cover a device that could be used to provide an

easy and robust method of mode-locking. Simulations of these devices, known

as waveguide arrays, show that they exhibit all of the features required for mode-

locking. In the first experiment we set out to test these theories by measuring

the pulse shaping characteristics via autocorrelation (Ch. 5). We found that at

high peak power the waveguide array effectively shortened the input pulses in

the time domain [11]. This behavior is consistent with a saturable absorber, the

element required for mode-locking. In Chapter 6, I present the results from a

characterization of the waveguide array in terms of spatial power distribution and

spectral phase. We observed several interesting phenomenon in this study includ-
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ing power clamping of spatial solitons and spectral phase attractor points. This

thesis concludes with a look towards the next experiment, which is to build a

novel mode-locked laser based on waveguide arrays.

In the following sections of this chapter, I will lay out the fundamentals of

the mode-locking process and give a brief historical account of the invention of

mode-locking. Then, I will describe several effective saturable absorbers. In the

last two sections I will introduce the Erbium fiber gain medium and examine the

rate equations for such a system, and discuss a powerful tool based on mode-locked

lasers known as frequency combs.

1.1 Mode Locking Fundamentals

The term mode-locking refers to the requirement of phase locking many

different frequency modes of a laser cavity. This locking has the result of inducing

a laser to produce a continuous train of extremely short pulses rather than a

continuous wave (cw) of light. In principle, though, a continuous train of pulses

can be generated from a Q-switched laser. The difference between these two

scenarios lies in the optical phase of the pulses. The mode locked pulses are phase

coherent with each other, while the Q switched pulses are not. This simple fact

has massive ramifications in regards to the application of these two types of lasers.

To understand the mode locking process, we will begin by looking at a cw

laser in the frequency domain. For a single longitudinal mode cw laser (ν=c/2nL

for a Fabry-Perot cavity), we have the situation shown in Fig. 1.1-(a). Here,

only one resonant mode of the laser cavity overlaps in frequency with the gain

medium. Thus, the laser emits a cw beam with a narrow range of frequencies

(E(t) = E1e
i(ω1t+φ1)). In general, however, the gain medium could overlap with

several modes. We can describe the output of such a laser in the time domain as:
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E(t) =
N∑
n

Ene
i(ωnt+φn) (1.1)

where the sum is over all of the lasing cavity modes, En is the amplitude of

the nth mode, ωn is the angular frequency of the nth mode, and φn is the phase

of the nth mode. For the single-mode laser, this sum just has one term as given

above. As we will see, the phase term plays the key role in the difference between

incoherent multimode lasing and mode locking.

Let’s make things more interesting by increasing the gain bandwidth to

overlap with more of the cavity modes (see Fig. 1.1-(b)). In this configuration,

there are 3 terms in Equation 1.1. The output of such a laser depends critically on

the phase relationship between the 3 modes. If each mode has a randomly varying

phase with respect to the other modes, then a time domain detector on the output

would show us that the laser is emitting a cw beam with a large amount of intensity

noise (see Fig. 1.2-(a)), while a frequency domain detector would show us that the

energy was contained in narrow spikes (with lots of intensity noise) spaced evenly

by the free spectral range (FSR) of the cavity. However, if we can fix the relative

phases to a set value, then the situation changes dramatically (see Fig. 1.2-(b) and

(c)). With fixed phase relationships, the three modes can combine to interfere in

such a way as to constructively interfere at multiples of the roundtrip time of the

cavity, while they destructively interfere elsewhere. This process creates shorter

pulses as the number of phase locked modes increases. A MATLAB simulation

was used to create Fig. 1.2 (note: the code for this simulation can be found in

Appendix A).

A natural question to ponder is exactly how do we achieve this phase locking

of the longitudinal modes? To answer this question we will switch to the time

domain picture of mode-locking. We know that a mode-locked laser produces
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Figure 1.1: Resonant cavity modes and the gain spectrum of a laser. Part (a)
shows single-mode lasing, where the gain envelope overlaps with just one cavity
resonance. Part (b) shows multimode lasing, where the gain envelope overlaps
with several cavity resonances.
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simulated), (b) 5 phase coherent modes, and (c) 80 phase coherent modes. The
pulse train emerges as ultrashort intensity spikes (fs scale) spaced by longer ns
intervals (roundtrip time of the cavity).
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ultrashort pulses at a rate equal to the round trip time of the optical cavity.

This means there has to be some part of the laser that prefers to make the laser

produce pulses over cw radiation. This statement equates to saying that we need

some element that provides high loss at low intensity (cw radiation) and lower

loss at high intensity (pulsed operation). Such a device is known as a saturable

absorber. As will be discussed in the next section, real atoms were the first

saturable absorbers used. The operational principles of atoms or molecules as

saturable absorbers are straightforward: low intensity light is absorbed by the

atoms and re-emitted into 4π steradians (i.e. out of the laser cavity), while high

intensity light fully excites the atoms and passes most of its photons through the

medium. Clearly, the main feature of the saturable absorber is its decreasing loss

with increasing intensity. As will be seen in later sections, this behavior can be

mimicked with optical processes that have nothing to do with actual atomic or

molecular resonance absorption.

1.2 A Brief History of Mode Locking

The history of mode-locked lasers began not long after the first demonstra-

tion of a continuous wave lasing in 1960. While Maiman’s [12] ruby laser was

created at Hughes Research Laboratory in California, the creation of the first

mode-locked laser would occur on the opposite coast of the United States at Bell

Laboratories in New Jersey. In 1964, Hargrove et al. [13] used an extremely clever

acousto-optic technique to provide a loss modulation in a Helium-Neon laser cav-

ity, which led to the laser being actively mode locked. While the pulses were still

relatively long by today’s standards (several nanoseconds), this demonstration

opened the door for many more researchers to push the boundaries of ultrashort

optical pulses. Only one year later, in 1965, Mocker and Collins showed that they

could achieve transient locking of the modes of a multimode Q-switched laser [14].
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Since only a few modes were involved in this process, the pulse widths were on

the order of 10s of ns. Their technique, however, required no active modulator,

and thus was the first demonstration of passive mode locking. The component

that locked the modes in their laser was a saturable Q-switching dye (cryptocya-

nine in methanol). The downside to this dye was that it required the laser to be

Q-switched in order to saturate and thus the laser emitted mode locked pulses

only at the Q-switched intervals. The transient nature of the mode locked pulses

proved to be problematic in practical applications (ultrafast spectroscopy, nonlin-

ear optics, etc.). This problem was solved in 1972 when Ippen et al. introduced

a laser based on the saturable dye (Rhodamine 6G) that could mode lock contin-

uously [15]. The pulses from this laser were found to have pulse widths of only

1.5 picoseconds. After this demonstration, researchers pushed the gain bandwidth

further with other types of saturable dyes, and developed external cavity pulse

compression techniques (based on adding new spectral content through nonlin-

earity, then recompressing through chromatic dispersion). This lead to the 1987

demonstration by Fork et al. of a 6 fs pulse [16]. That’s 6 orders of magnitude

in 22 years! Few fields in physics can claim that sort of progress in such a short

time.

This discussion of the development of mode locked lasers would not be com-

plete without a look at effective (fast) saturable absorber systems. Although,

atomic/molecular transitions in dyes were the first method discovered to passively

mode-lock a laser, this method is by no means the only way. A landmark paper

in 1984 by Mollenauer et al. demonstrated this fact [17]. This experiment showed

that the saturable absorber effect can be simulated by optical phenomenon. This

approach has several advantages including the fact that the recovery time of an

optically based saturable absorber can be extremely fast (≈ a few optical cycles)

since it does not depend on an atomic/molecular resonance. These types of ab-
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sorbers, which have lead to the shortest pulses ever created, are discussed in the

next section.

1.3 Effective Saturable Absorbers: Kerr Lens Mode locking and

Additive Pulse Mode Locking

This section deals with a type of saturable absorber known as an effective

saturable absorber. For this special class of saturable absorbers, some process

other than atomic/molecular absorption is used to achieve a saturable absorp-

tion effect. The fact that these absorbers do not have to rely on actual atomic

transitions means that the recovery time for the saturable absorber can be much

faster than atoms. Slow saturable absorbers produce < 1 ps pulses by shortening

the leading edge of the pulse via saturable absorption and the trailing edge via

gain saturation. However, if the saturable absorber recovers fast enough, it can

shorten both sides of the pulse using the saturable absorber effect. The most com-

mon method of achieving such an absorber in the lab is to exploit the intensity

dependent index of refraction: n(I) = n0 + n2I, where n0 is the index of refrac-

tion, n2 is the nonlinear index coefficient, and I is the optical intensity. Since

non-resonant optical processes are extremely fast, the nonlinear index responds

on the order a few optical cycles. Thus, the recovery time for a saturable absorber

based on this effect is essentially instantaneous. In the following paragraphs I will

briefly review two types of mode locking based on effective saturable absorbers:

Kerr Lens Mode Locking (KLM) and Additive Pulse Mode Locking (APM).

In most realizations of Kerr Lens Mode locking (KLM) [18] the nonlinear

index of refraction creates a lens into the gain medium, which then causes self-

focusing of the beam. Combined with an intra-cavity aperture, this effect creates a

situation where the cavity prefers pulsed operation: if the laser is in cw operation,

there is a high loss due to the aperture, while in pulsed operation the beam focuses
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through the aperture with minimal loss. The most popular type of mode-locked

laser based on this is the Titanium-doped Sapphire laser. In these lasers, mode-

locking has been achieved with hard apertures (i.e. irises put into the beam path)

and with soft apertures (i.e. aperturing in the gain medium). Due to the large gain

bandwidth of the Ti:Sapphire medium (650-1100 nm) and the ultrafast recovery

time of the saturable absorber mechanism, optical pulses less than 2 optical cycles

(≈5 fs for Ti:Sapphire wavelengths) have been observed [19].

The operation of APM is slightly less intuitive since it relies on interference

of circulating pulses. In the first realization of APM [17], this interference was

between pulses in two coupled cavities (see Fig. 1.3). The main cavity has the

gain medium and an output coupler, while the secondary cavity has a nonlinear

section (i.e. an optical fiber). Pulses that are coupled to the nonlinear cavity

experience an intensity dependent phase shift (this is how the system differentiates

the peak from the wings). When these pulses are coupled back to the main

cavity they can be made to overlap with the normal pulses in such a way as to

constructively interfere at their peaks, while destructively interefering at their

wings. Thus, the addition of multiple pulses (with interferometric control) results

in pulse shortening on every round trip, just like a real saturable absorber.

One special type of APM based on nonlinear polarization rotation(P-APM) [20]

is particularly useful in a fiber laser cavity. In this scheme, the pulses that are

added are not from separate cavities, but are co-propagating pulses with different

polarization. To achieve this, elliptically polarized pulses propagate in a Kerr

medium to produce nonlinear polarization rotation. Experimentally this situa-

tion can be produced by inserting a quarter-wave plate into the fiber cavity (in

a free space section), so that linear polarization can be turned into elliptical (see

Fig. 1.4-(a)). The highest intensity part of the pulse (i.e. the peak) undergoes a

nonlinear phase shift and thus rotates its polarization some amount. The wings of
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Figure 1.3: Additive pulse mode locking. The nonlinear cavity has a nonlinear
section that provides the effective saturable absorber. When the cavity lenghts
are adjusted correctly, the pulses from nonlinear and main cavity interfere con-
structively at their peaks and destructively elsewhere. This results in a low loss
for high intensity, and a high loss for low intensity.
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this pulse, which have low intensity, do not undergo this phase shift and thus ex-

perience no rotation (see Fig. 1.4-(b)). A quarter-wave plate and linear polarizer

at the output of the Kerr medium (fiber) turn the intensity dependent polariza-

tion into an intensity dependent transmission (i.e. saturable absorber). This type

of mode locking can produce pulse widths that are close to the gain bandwidth

limit of Erbium (≈100 fs).

I will conclude this discussion on saturable absorbers with a look at the

pulse shortening rates of each of these types of mode-locking. Active mode-locking

introduces a large loss modulation in the cavity. This strong interaction between

the modulator and the cavity means that the pulse shortening rate (δτ/τ) is very

high in the initial stages of pulse formation, and is given by δτ/τ = mω2
mτ 2/4

(where m = modulation depth and ωm = modulation frequency) [21, 22]. Thus,

as the pulse gets shorter, the pulse shortening rate decreases as the square of the

pulse width (see Fig. 1.5). This is the reason that active mode-locking produces

relatively long pulses (ps regime). A slow, passive saturable absorber has a pulse

shortening rate given by δτ/τ = ms/2, where ms is the modulation depth of

the absorber. Since the modulation depth only depends on the pulse energy, the

pulse shortening rate is independent of pulse width. Finally, the pulse shortening

rate for a fast saturable absorber is given by δτ/τ = γW/2τ , where γ is the

self-amplitude modulation coefficient and W is the photon flux density. Thus, the

pulse shortening rate is proportional to 1/τ . This means shorter pulses experience

larger pulse shortening rates. This runaway process is eventually limited by the

gain bandwidth filter and dispersion in the laser cavity.

We can think of these pulse shortening rates in terms of self-starting as well.

The large pulse shortening rate of active mode-locking means that even an initially

long pulse will initiate the mode-locking process since there is large pulse shaping

per pass. However, since the pulse shortening decreases with pulse width, the
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Figure 1.4: Nonlinear Polarization Rotation. (a) Experimental components
needed for NPR. Typically, the Kerr medium is a single-mode optical fiber. A
quarter-wave plate transforms the elliptical polarization after the fiber back into
a linear polarization. The polarizer after this wave plate selects out the peak
of the pulse. (b) Schematic of the nonlinear polarization rotation process. The
wings of the pulse undergo little or no rotation relative to the peak of the pulse.
This polarization difference is turned into a loss when the pulse is analyzed at the
polarizer.
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ultimate pulse width is limited. The slow saturable absorber has a lower initial

pulse shortening per pass, but the performance of the absorber does not fall off

with shorter pulse widths. Thus, slow saturable absorber mode-locking has been

demonstrated to self-start and produce shorter pulses than active mode-locking.

The fast saturable absorber is clearly the hardest to self-start due to its initial

pulse shortening rate. A long initial pulse undergoes very little shaping due to

the weak effect of the fast saturable absorber. However, once a fluctuation is

produced that is short enough to initiate the mode-locking process, the ultimate

pulse width is limited only by the broadening effects mentioned above.

Now that we have developed a basic understanding of mode-locked lasers,

I would like to examine a particular type of mode-locked laser that has a gain

medium based on Erbium doped fiber. Erbium based mode-locked fiber lasers are

particularly interesting due to the emission wavelength of Erbium and its ties to

the telecommunications industry. In the next section I will discuss the benefits to

researchers due to this relationship.

1.4 Erbium-doped Mode-Locked Fiber Lasers

Mode locked fiber lasers have been the subject of intense research and ap-

plication over the last 20 years [17, 23, 24, 25, 26, 27, 28, 6]. Erbium based fiber

laser systems, in particular, have many advantages over solid-state or gas cav-

ity lasers. An all fiber cavity needs no realignment and the telecommunications

components that comprise the active devices (i.e. diode pumps) are specified to

last 20 years of continuous use. Also, the components needed to build a fiber

laser are relatively cheap due to their mass production in the telecommunications

industry. As of 2009, a nonlinear polarization mode-locked fiber laser could be

built for an expense of less than 4,000 USD. For comparison, in the same time

period a typical solid-state Titanium doped Sapphire mode locked laser could be
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Figure 1.5: Pulse shortening rates for active and passive (slow and fast) saturable
absorbers. The poor self-starting ability of most fast saturable absorber lasers
is due to their ineffectiveness at long pulse widths. Thus, in many systems a
slow saturable absorber starts the mode locking process or some sort of large
perturbation is introduced into the system to jump start the mode locking with
a shorter pulse than the unperturbed cavity could yield.
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purchased from a vendor for around 100,000 USD. While the typical output power

of a Ti:Sapphire system is roughly an order of magnitude larger than that of a

mode-locked Er fiber laser, it is straightforward and inexpensive to build an Er

amplifier that allows the Er-based system to reach average power levels close to

those of the Ti:Sapphire oscillator. Using a frequency doubling crystal, one can

even transform the 1550 nm centered Er laser to Ti:Sapphire wavelengths around

750 nm. Finally, the relatively small gain bandwidth of the Er gain medium can

easily be converted into an octave of spectrum using highly nonlinear fiber. All

of these factors have played a part in the rapid emergence of fiber lasers in the

world of ultrafast physics in the last 10 years.

Erbium doped fiber is particularly useful over other rare-earth doped fibers

(i.e. Ytterbium, Neodymium, Thulium, etc.) due to silica glass’s low loss window

in the telecommunications C band (Conventional band: 1530−1565 nm). As

can be seen in Fig. 1.6, the lowest loss (due to fundamental process of Rayleigh

scattering) in the glass fiber is around 0.2 dB/km. This low loss level allows for

light from an Er laser to be transmitted over several hundred kilometers, a fact

that will be exploited in an experiment in Ch. 3.

1.5 Rate Equations for Lasers Based on the Er+3 Gain Medium

To understand the operation of an Er doped fiber laser, we begin with the

energy level diagram (see Fig. 1.7). The Er+3 ion is a quasi-3 level system, meaning

that although the lowest state in the lasing scheme is not the true ground state it

is still low energy enough that it has some population due to thermal excitation.

The two most popular methods of pumping this ion are to use either 980 nm light

or 1450 nm light generated from a semiconductor laser (e.g. InGaAs for 980nm).

The 980 nm method, which will be discussed in the following paragraphs, and the

1450 nm scheme result in similar efficiencies.
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C band: 1530-1565 nm

Erbium gain: 1480-1620 nm

Figure 1.6: Fiber loss versus optical wavelength [29]. The minimum loss is around
1.55 µm. The peaks near .95 µm, 1.25 µm, and 1.39 µm are due to OH absorption.
High quality fiber production techniques can minimize the amount of OH that is
trapped in the fiber during the drawing process, thus pushing the peaks down to
the floor set by the fundamental Rayleigh scattering loss.
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Figure 1.7: Energy level diagram for Er+3 ion. The 4I13/2 state is the metastable
state (lifetime ≈ 10 ms). The transition from the 4S3/2 state (populated by two-
photon absorption from the pump) is responsible for the familiar green glow of Er
fiber lasers [30].
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The trivalent erbium ion, when pumped with 980nm light, is excited to the

4I11/2 state, which decays to 4I13/2 (see Fig. 1.7). The decay between 4I11/2 and

4I13/2 is non-radiative (multiple phonon decay) and occurs within a few µs, while

the metastable state (4I13/2) has a lifetime of ≈ 10 ms. Since the 4I11/2 state has

such a short lifetime, we can make the approximation that this highest excited

state has zero steady-state population (i.e. no population accumulates). This

approximation reduces the number of participating energy levels to two. We can

now write down the relevant rate equations that describe the number of erbium

ions in the upper (N2) and lower (N1) energy levels:

dN1

dt
= A21N2 + (N2σ

s
e −N1σ

s
e)

Is

hνs

+ (N2σ
p
e −N1σ

p
a)
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hνp

(1.2)

dN2

dt
= −A21N2 + (N1σ

s
a −N2σ
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e)

Is

hνs

+ (N1σ
p
a −N2σ

p
e)

Ip

hνp

(1.3)

where A21 is the Einstein A coefficient (inverse lifetime) for spontaneous

emission, σ
s(p)
e(a) is the cross section for stimulated emission (absorption) at the

signal (pump) wavelength, Is(p) is the signal (pump) intensity, and hνs(p) is the

energy of each individual signal (pump) photon. By dividing the beam intensity

by the photon energy of that beam, we get the total number of photons passing

through a given area (i.e. photon flux).

To achieve lasing, we must have population inversion such that N2 > N1.

The threshold for this condition occurs when the ion density in N2 just equals N1.

By setting the eqns. (1.2) and (1.3) equal and solving for the pump intensity we

find the threshold intensity for population inversion:

Ipth
=

hνp

τ(σp
a − σp

e)
(1.4)

For a pump wavelength of 980 nm, this intensity is roughly 6 kW/cm2. Since
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the mode field area of a single-mode Er fiber is around 20 µm2, the pump power

needed to achieve inversion is on the order of a few milliwatts. This calculation

is for a lossless cavity, however. Due to losses in fiber splices, the output coupler,

and losses in the coupling of the pump diode to the fiber, the actual pump power

required for lasing threshold is on the order of 10s of milliwatts (typical 980 nm

pump diodes reach average powers beyond 600 mW). It is also instructive to look

at the evolution of the signal beam as it propagates through the gain (amplifying)

section of the laser cavity. A simple differential equation governs the signal in the

presence of a 2-level gain medium:

dIs(z)

dz
= (N2σ

s
e −N1σ

s
a)Is(z) ⇒ Is(z) = I0e

gl (1.5)

where I0 is the intensity entering the gain section, g is the gain (given by

N2σ
s
e − N1σ

s
a), and l is the total length of the gain section. For our analysis, we

will consider the absorption of the signal beam to be zero, thus g = N2σ
s
e. The

gain is then dependent only on the density of excited atoms N2 and the emission

cross section of the excited Er atoms at the signal wavelength (σs
e). The emission

cross section is a constant, thus to determine the gain we only have to find N2.

Using eqn. 1.3, we have:

dN2

dt
= −A21N2 + (−N2σ

s
e)
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+ (N1σ
p
a)

Ip

hνp

(1.6)

In the small signal limit, the pump intensity is much larger than the signal

intensity (Ip >> Is). Using this approximation along with the fact that we are

analyzing a steady-state scenario (d/dt → 0) we can ignore the Is term and set

the left hand side of eqn. 1.6 equal to zero. Solving for N2 yields:

N2(Is << Ip) = τN1σ
p
a

Ip

hνp

= τR (1.7)
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where R is the rate at which ground state atoms are excited to the metastable

state. This equation shows that the density of excited atoms in the small-signal

limit is simply given by the lifetime of the exited state (τ) multiplied by excita-

tion rate R. Using the fact that g = N2σ
s
e, the small signal gain is g0 = τN2σ

s
eR.

As the signal beam is increased to higher intensity, however, we must take into

account the term in eqn. 1.6 that involves Is. Solving for N2 yields:

N2 =
N2(Is << Ip)

1 + Is/Isat

(1.8)

And the large signal gain is thus:

g =
g0

1 + Is/Isat

(1.9)

where Isat = 1/σs
eτ is the saturation intensity. And finally, the differential

change in signal intensity per length of gain in the strong pump regime is:

dIs

dz
=

Isg0

1 + Is/Isat

(1.10)

The picture of the signal evolution is now complete. At low signal lev-

els, there is an exponential increase in the number of signal photons in the gain

medium. However, as the signal level is increased further the gain begins to satu-

rate and asymptotically approaches a value of ≈ Isatg0 = R. Thus, at high signal

levels, the signal intensity increases linearly with the pump intensity.

The fundamental characteristics of lasing, small-signal gain, and gain sat-

uration have now been covered. This should provide the reader with a basic

working knowledge of Er+3 fiber lasers. This type of laser is used extensively

throughout this thesis. In the last section of this chapter, I will briefly discuss a

very important technology based on mode-locked lasers: the frequency comb.
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1.6 Frequency Combs

With the advent of the frequency comb [31] in the late 1990s, mode-locked

lasers began to receive much attention from the frequency metrology community.

In principle, the frequency comb could have been realized much earlier. The

long delay between the first mode-locked laser and the first frequency comb can

probably be attributed to the vast gap between the two fields that were necessary

to create the frequency comb. On one side, the field of precision measurements

was focused on creating actuated lasers that would have the narrowest possible

spectral linewidth. On the other side, the field of ultrafast spectroscopy was

mainly interested in creating extremely short time domain bursts of electric field,

which necessarily require that the pulses have a large spectral bandwidth. These

two goals, which seem to be in direct opposition of each other, can be achieved

simultaneously with a frequency comb.

In the following paragraphs, I will give a description of the frequency comb

from a graphical viewpoint [32]. This description will not touch on many advanced

frequency comb topics that could be covered such as fixed points [33], nonlinear

effects, or octave spanning oscillator techniques [34]. As was mentioned, the fre-

quency comb is based on mode locked lasers. In fact, many researchers use the

two words interchangeably. This is not quite right, however, since technically a

frequency comb really refers to a mode locked laser that has been carrier-envelope

phase stabilized. To understand the meaning of this statement, lets look at a

time domain picture of the pulses emitted from a mode locked laser (see Fig. 1.8).

The time domain output of the laser can be viewed as the multiplication of the

fast electric field oscillations and an envelope function (the ultimate limit on the

envelope width would be an envelope that encompasses only 1 cycle of the electric

field). It can be shown that the envelope travels at a speed known as the group
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velocity (vg = c
n−λdn/dλ

), while the fast oscillations travel at the phase velocity

(vp = c/n). These two velocities are, in general, not equal and thus lead to a

walk-off or slippage between the two entities, known as carrier-envelope offset

phase. Using the shift theorem of Fourier transforms [35], we see that the Fourier

transform turns this time domain phase slip into a frequency offset, fo. Thus, the

optical frequencies of the comb can be written in terms of two radio frequencies

as

νn = nfrep + fo (1.11)

where νn is the optical frequency of the nth comb mode and frep is the rep-

etition frequency of the laser. Clearly, a random variation of the offset frequency

would smear out the comb in frequency space and make it useless for any sort

of precision measurement. An analogy to this sort of measurement would be like

trying to measure the length of something with a ruler that is always moving back

and forth slightly. Thus, it is clear that to do any sort of precision measurement

with a mode-locked laser, we need to stabilize this offset frequency (and thereby

produce a frequency comb).

The first technique that achieved the ability to measure (and thus stabilize)

fo relied on the so-called f-2f interferometer (quite a technical achievement by

itself!). This technique is based on a simple manipulation of equation 1.11. In

this scheme, light from a Ti:sapphire laser was sent through a highly nonlinear

fiber with low net dispersion to broaden the bandwidth of the pulses to an oc-

tave [31]. The octave spanning pulses were then coupled into an interferometer

where in one arm the light was passed through a second harmonic crystal and un-

derwent sum-frequency-generation (SFG). The two beams were then recombined

on a beamsplitter, sent through an optical filter, and detected onto a photode-
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Figure 1.8: Optical frequency comb (courtesy of S. T. Cundiff). (a) Time domain
picture of the electic field pulse-to-pulse evolution showing the carrier-envelope
phase slip. (b) Frequency domain picture of the frequency comb. The carrier
envelope phase slip translates, via a Fourier transform, into an overall shift of the
comb (fo). The fo degree of freedom is thus referred to as the translational mode
of the comb, while the frep degree of freedom is referred to as the breathing mode
of the comb (since frep controls the spacing between frequency modes)
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tector to produce a heterodyne beat at fo. A bit of mathematics is required to

understand why this happens. The octave spanning pulse bandwidth ensures that

we have optical frequencies present in a range from νn to ν2n, while the second

harmonic arm converts the νn light to ν2n light via SFG. Filtering out the highest

frequencies with the optical filter, and using the frequency comb equation, we can

thus write the frequencies present in the two arms as:

ν2n = 2nfrep + fo (1.12)

2νn = 2nfrep + 2fo (1.13)

Once these two beams form a heterodyne beat on the photodetector, we can

take the difference frequency which is:

2νn − ν2n = (2nfrep + 2fo)− (2nfrep + fo) = fo (1.14)

The first demonstration of this method [31] opened the door for an explo-

sion of experiments involving the frequency comb. Precision metrology benefited

dramatically from the compact all-in-one nature of the frequency comb (compared

to the comb’s predecessor: the frequency chain [36]), while new techniques such as

broadband cavity-ringdown spectroscopy [37] have been developed based on the

comb (see Ch. 4 for more details).

1.7 Conclusions

The purpose of this chapter was to introduce the underlying technology

used in this thesis: the mode-locked laser. Each of the projects in the following

chapter relies on a laser we built in-house (except for one experiment). The reader

should now have a good idea of how a mode-locked Er3 fiber laser operates. The
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next chapter will examine some details of laser stabilization that are crucial to

understanding in the subsequent chapters.



Chapter 2

Laser Stabilization

Mode-locked fiber lasers can have significant amounts of noise (i.e. phase or

intensity noise) on their outputs. This fact is due to several aspects of the fiber

laser: the cavities are typically high gain/high loss environments, acoustic fluctu-

ations can cause pressure variations on the fiber at high frequencies, and thermal

fluctuations can cause long timescale drifts of the repetition frequency. If these

lasers are to find use as a frequency comb for applications such as high-precision

spectroscopy or gearing for an optical clock, this situation must be remedied.

The issue of laser noise was addressed very early on in the development

of lasers. In fact, the first paper to be published on active feedback control

to reduce laser frequency noise was published only 5 years [38] after the first

demonstration of the laser by Maiman [12]. The art of laser stabilization is thus

quite advanced at the present, with many demonstrations of clever techniques [39,

40]. In principle, the only difference between the various techniques is the way in

which they generate the error signal. Once the error signal is created, it can then

be filtered and amplified before being used to control an intra-cavity actuator. In

this chapter, I will discuss the fundamentals of several laser locking schemes that

will be used in later chapters, and discuss several metrics for evaluating system

performance.
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2.1 Feedback Control: The Basics

Feedback control is simply a technique that controls a process by performing

a comparison between a system’s output and a reference and then adjusting the

output in some way. There are two fundamentally different types of feedback:

positive and negative. Positive feedback increases the deviation from the normal

output. Perhaps the most well-known form of positive feedback is amplification.

Negative feedback, on the other hand, minimizes the difference between the output

and some reference standard. In this way, the system’s output tracks the reference.

While it is common in the field of laser stabilization to think that negative feedback

is the more useful of the two types, this perception was not always so. In fact,

when Harold Black applied for the first patent for negative feedback in 1928 [41],

the patent was not granted until more than 9 years later due to the perception that

his device would not do anything useful; the patent office reportedly treated it as if

it were a perpetual motion machine. Over 80 years later, negative feedback in the

form of phase-locked loops (PLLs), key components in FM signal demodulation,

is ubiquitous in modern electronics (even available as an integrated circuit). PLLs

are also quite common in many labs around JILA where they are implemented in

laser stabilization schemes.

Negative feedback in the context of laser stabilization has a rich history with

many well developed techniques. The main idea is that if you can somehow derive

an error signal (that represents how much the laser’s phase or frequency has drifted

relative to some reference), then that error signal can be shaped and fed back to

an actuator in the laser that controls the laser frequency. In this way, the output

frequency of the laser can be stabilized to extremely high levels (coherence times ∼
seconds). While there are a multitude of methods in laser frequency stabilization,

these techniques can be broadly lumped into three general categories: phase-
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locking to an RF reference, optical reference cavity locking, and spectroscopic

transition locking. Phase-locking to an RF reference is experimentally the easiest

to implement in terms of required components, but this method does have some

drawbacks in ultimate performance. Optical reference cavities yield the tightest

locking (∼mHz linewidth at optical frequencies), but require an narrow linewidth

reference cavity [42]. Spectroscopic transition locking provides long term stability

due to the locking of the laser to a natural atomic/molecular resonance. This

chapter will examine the first two techniques since they will be used in later

chapters.

2.2 RF locking via Phase Locked Loops

In this section, I will describe how phase-locked loops can be used to stabilize

the pulse train of a mode-locked laser. The fundamental elements required in such

a phase-locked loop system are shown in Fig. 2.1. The goal of the PLL is to keep

the repetition frequency of the laser at a steady value. This repetition frequency

can have lots of noise depending on the construction of the laser. Processes that

change the length of the fiber are important as these small length fluctuations

cause repetition frequency fluctuations (∆l/l = ∆frep/frep. Processes such as

pressure fluctuations from acoustic waves, thermal fluctuations of the fiber, and

mechanical vibrations can all conspire to create a noisy system. In fact, a free-

running Er+3 mode-locked fiber laser can easily have > 1 ps of timing jitter. By

locking frep to a low-noise reference, we can transfer the stability of the reference

to the pulse train and reduce this timing jitter to much lower levels.

To accomplish this, a portion of the output of the oscillator is split off

and detected on a photodetector. This signal, which is now an electrical signal, is

compared to a reference that produces, in principle, an extremely stable frequency.

The mixer device is used for this comparison. As will be discussed later, when
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Figure 2.1: Schematic of the fundamental elements of a phase locked loop used for
stabilizing the pulse train from a mode-locked laser. The photodetector measures
the repetition rate of the laser (frep), which is then stabilized to some RF reference.
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the two frequencies are identical the mixer produces a voltage that depends on

the phase difference between the two signals. This voltage represents an error

signal that can be shaped in the frequency domain by a loop filter and amplified

before being fed back to the oscillator. An actuator in the oscillator uses the error

signal to correct the oscillator frequency such that the phase difference between

the oscillator and the reference is reduced to 0. In the following, I will describe

the PLL mathematically and derive some equations that predict the performance

for the feedback loop.

The mixer is at the heart of the comparison between the system and the

reference. In effect, its output is an analog multiplication of two sinusoidal sig-

nals. The signal from the photodetector can be written as a(t)=Asin(ωt+φ(t)),

while the reference signal can be written as b(t)=Asin(ωt+φ2(t)) (when the ref-

erence frequency is equal to the repetition frequency). These two signals are then

multiplied in the mixer to yield:

Vmixer(t) =
KmAB

2
{sin(2ωt + φ1(t) + φ2(t))− sin(φ1(t)− φ2(t))} (2.1)

where Km is the mixer coefficient. The first term oscillates at twice the

fundamental frequency (ω = 2πfrep, while the second term is the phase sensitive

(DC) term. We are interested in the second term since a phase difference between

the two signals produces a voltage. Experimentally, we can easily separate the two

signals by low-pass filtering the mixer output to produce just the phase sensitive

DC term. One slight detail is missing from this discussion, however. How did

we choose that both mixer inputs were sine waves (two cosine waves would work

equally as well) instead of one or both being a cosine wave (i.e. shifted by 90◦)?

Experimentally, it is quite easy to get a time delay difference in the two paths

such that one oscillating signal was delayed/advanced by 90◦ or more. To account
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for this, a phase shifter is typically placed in the local oscillator (LO) arm before

the mixer (see Fig. 2.1). Using the phase shifter, the experimenter can bring the

two signals into phase, or to say this in mathematical terms: make them the same

trigonometric function. The end result of all of this is that we have a voltage signal

that is proportional to the phase difference between our reference signal and our

device’s signal. Thus, it is only a matter of implementing negative feedback to an

actuator in our laser to keep the phase difference (mixer output voltage) at zero.

This next section will take a look at how we shape the error signal through

filtering and amplification before feeding back to the actuator. The general clas-

sification of this process is called loop filtering, and the construction of the loop

filter plays a critical role in achieving a tight phase-locked loop. The loop filter is

the only knob in the feedback loop that can be changed to match the actuator’s

response. Indeed, optimization of the loop filter results in the best achievable

lock for a given actuator, thus it is of paramount importance to understand the

operation and design considerations of this critical piece.

The simplest feedback loop we can imagine is just to directly take the low-

pass filtered output of the mixer and connect it to the actuator. In this scheme,

we would hope that an increase in voltage from the mixer tunes the actuator such

that it changes the laser in such a way as to reduce the output voltage of the

mixer (negative feedback). An equally likely possibility in this scheme is that an

increase in mixer voltage tunes the actuator such that it results in an increase

in mixer voltage (positive feedback). Thus a slight change in the mixer voltage

would immediately cause the system output to run away from any sort of set

point. To ensure that we don not end up in a positive feedback system, we could

put some electronics (loop filter) in between the mixer output and the input to the

actuator that would allow us to flip the sign of the error signal. Thus, we could

take our very basic loop filter to any phase locked loop and be assured that we
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could arrange the system to be in negative feedback mode. Very quickly, however,

we would learn that this simple loop filter has many shortcomings. First of all,

the signal from the mixer is most likely too weak to drive the actuator to its full

dynamic range. Thus, some sort of amplification of the error signal would be nice.

A more subtle flaw in our loop filter has to do with the fact that we are

feeding the full error signal (i.e. all frequencies) back to our actuator. Our actuator

won’t be able to tune the laser frequency at infinite speed. In fact, there will be

a characteristic frequency above which the actuator will move the wrong way

(positive feedback). We do not want to provide an error signal at or above this

frequency for obvious reasons. Thus, the loop filter needs to have some adjustable

filters that allow us to shape the frequency content of the error signal such that

it removes all frequencies higher than the cutoff frequency. The loop filter we

want now contains all of the essential elements: sign correction, filtering, and

amplification. The sign correction and amplification parts are trivial. In the

following paragraphs I will examine in detail the filtering process and develop

some basic knowledge that every experimenter using a PLL should know.

To optimize the phase locked loop, we need to give the actuator an error

signal that is custom shaped to match the actuator’s frequency response. In

frequency ranges where the actuator responds well, the feedback signal needs to

be large so that the actuator can tightly lock to the phase reference. In frequency

ranges where the actuator does not respond quickly enough or has a resonance,

we need to roll off the feedback signal so that we do not provide positive feedback

or drive a resonance. To achieve this sort of control over the feedback signal, we

must use some basic operational amplifier circuit designs. The three fundamental

types of gain are proportional (flat gain versus frequency), integral (decreasing

gain versus frequency), and differential (increasing gain versus frequency) (PID).

The circuit diagrams and gain versus frequency plots for each type of gain can be
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Figure 2.2: Basic circuit diagrams and frequency response of the gain for PID
control. (a) and (d) show the circuit diagram and gain versus frequency for pro-
portional gain. The gain is flat across all frequencies, and is just the ratio of the
feedback resistor to the input resistor. (b) and (e) show the same plots for integral
gain, which exhibits a gain roll-off at a rate of -6 dB/octave. (c) and (f) show
derivative gain, which has the same slope magnitude as the integral gain, but with
opposite sign.

seen in Fig. 2.2.

The functioning of each of these circuits can be understood using the basic

rules of the operation of operational-amplifiers. For instance, the two inputs to

the op-amps must be kept at the same potential, or the node at the inverting input

must have no current flow. Using this rule, lets first analyze the proportional gain

circuit. If Vin goes from zero to some positive voltage, then the current flowing into

the node through resistor R1 is Iin = Vin/R1. To cancel this current, the output

of the op-amp has to increase its current output from zero to Iout = Vout/R2.
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When Iin = Iout, the current flowing into the noninverting input is zero, and

the output voltage from the op-amp is Vout = R2

R1
Vin. Thus, proportional gain is

independent of frequency, and given by G = R2/R1. For frequencies at which the

actuator responds well we should use proportional gain to amplify the feedback

signal. However, if we just use proportional gain, we will eventually amplify

either a resonance in our actuator or provide positive feedback at high frequencies

since proportional gain is the same for all frequencies. Also, proportional gain

will actually never allow the system to reach zero error as it becomes vanishingly

weak close to zero. Thus, we need some way to roll off the gain such that we can

effectively remove frequencies beyond a certain point from our feedback signal

and correct this zero error issue of proportional gain. This is where integral gain

becomes useful (the circuit diagram for integral gain is shown in Fig. 2.2-(b)).

Following the same analysis that we did for proportional gain, the current flow

into the inverting input node is held to zero by the op-amp. Again, any current

flowing into the input will be detected by the op-amp, and the op-amp will swing

its output voltage to compensate for this and make the current flow into the node

go back to zero. This time, however, the output sees a feedback capacitor instead

of a resistor. Using the previously derived equation for the gain of a feedback

mode op-amp, G = R2/R1, we simply need to know the effective resistance of

the capacitor (i.e. capacitive reactance). From basic electronics the capacitive

reactance is given by χc = − 1
iωC

. Thus, the gain of this circuit is:

G = ZC/ZR = − 1

iωRC
(2.2)

This equation shows the gain is now frequency dependent. The magnitude

of this gain can be calculated by taking the absolute value squared, while the

phase of the gain can be calculated by φ = arctan Im(G)
Re(G)

. The magnitude of the
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gain for the integrator rolls off at a rate of -20 dB/decade (or -6 dB/octave), while

the phase of the gain is -90◦. The integrator gain can be thought of as integrating

the error signal over some time. Thus, any small error offset of proportional gain

is integrated up and corrected by this type of feedback. Finally, the gain for the

differentiator (as seen in Fig. 2.2-(c)) is essentially the inverse of the integrator’s

gain. Since the feedback resistor is divided by the input capacitive reactance, the

formula for the gain is:

G = ZR/ZC = −iωRC (2.3)

The magnitude of the gain for the differentiator is shown in Fig. 2.2-(f). The

slope of the gain response is +20 dB/decade (or +6 dB/octave), and the phase

of the differentiator is +90◦. These three op-amp circuits form the basis for all

loop filter control. These basic elements can be combined to form complex signal

shaping circuits that allow the experimenter to optimize the feedback circuit so

that the full potential of the actuator is realized.

2.2.1 Phase Locked Loops and Frequency Combs

Phase locked loops can be used to stabilize the frep degree of freedom of

a mode-locked laser. In fact, the scheme from Fig. 2.1 can be used. A very

relevant question though, is what happens when you detect a pulsed laser on

the photodetector rather than a cw laser. To answer this question, lets begin

by taking a look at the optical frequency domain picture of the frequency comb

(Fig. 2.3-(a)). As we have seen before, the energy is contained in the comb teeth

at regular intervals of frep (note: fo doesn’t matter here). When the frequency

comb is photodetected, the optical comb modes produce beats in the photodiode

semiconductor that effectively downshift the optical comb to a radio frequency (rf)

comb 2.3-(b). This effect essentially moves the frequency comb into a frequency
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range that is commensurate with the speed of modern electronics (MHz to GHz).

Once the rf comb is generated, one comb mode is selected (via band-pass

filtering) for locking to an rf reference. The rf comb mode signal is then sent

to the mixer, where it is mixed with a stable local oscillator (LO) reference. To

achieve the best performance, the mixer needs to have a strong signal from both

the LO source and the photodiode. Typically, a large amount of amplification

(∼30 dB) is needed to bring the photodiode signal up to a usable level for the

mixer (∼0 dBm for most mixers). As will be discussed in the next chapter, careful

photodiode design can increase the rf signal directly from the photodiode by as

much as 10 dB. Still, for most phase detection systems, some level of amplification

is required.

The phase noise detection process is susceptible to other noise processes

that are not related to actual phase errors between the two frequency sources.

These sources of extra phase error include amplifier flicker noise (1/f), amplitude-

to-phase conversion, shot noise, and thermal noise [43]. Of these noise processes,

shot noise and thermal noise (also known as Johnson noise) are fundamental. The

SSB phase noise floor due to thermal (Johnson) noise is given by [44]:

Lthermal
φ (f) =

kTR

2V 2
0

=
kT

2Prf

=
kT

2R(η2P 2
opt)

(2.4)

where T is the temperature, R is the resistance, η is the responsivity of the

photodetector, Prf is the electrical power, and Popt is the optical power incident

on the photodetector. The SSB phase noise floor due to photon shot noise is given

by [45]:

Lshot
φ (f) =

eiavgR

Prf

=
e

ηPopt

(2.5)

where e is the electron charge and iavg is the average photocurrent. A

typical InGaAs photodetector has a responsivity (η) of around 0.9 mA/mW at
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Figure 2.3: Frequency domain picture of a frequency comb. (a) An optical fre-
quency comb with repetition frequency frep. (b) The downshifted comb at radio
frequencies. Due to beating between optical comb modes on the photodiode, a
stable radio frequency comb is generated. The information in this signal can be
used for phase locking the frequency comb to an rf reference.
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1550 nm. In the equations above, I used the fact that the rf power can be related

to the incident optical power on the photodetector by using the responsivity:

Prf = (η2R)P 2
opt. An important point to take away from eqns. 2.4 and 2.5 is that

the thermal noise decreases as 1/P 2
opt, while the shot noise decreases as 1/Popt.

This leads to a crossover point where the thermal noise goes below the shot noise

at sufficiently high power. A simple log-log plot of this behavior is shown in

Fig. 2.4. Clearly, photon shot noise presents the ultimate noise floor for such a

phase detection system.

2.3 Optical Frequency Locks: Pound-Drever-Hall Locking

To understand how to best lock a laser to an optical cavity we begin with

an analysis of how to best use an optical cavity to derive an error signal. A simple

way to implement the cavity as a frequency discriminator is to simply monitor

the transmission of the laser power through the cavity. The common side-lock

technique does just this by using a photodetector at the output of the cavity to

monitor the cavity transmission power. By locking the laser frequency to a point

on the side of the transmission resonance peak, one can achieve locking by forcing

the laser frequency to always give a set intensity at the output photodetector. This

technique suffers from a few drawbacks, however. The most obvious flaw is that

amplitude noise from the laser is detected as frequency noise by the photodetector.

Thus, via the feedback loop, amplitude noise is written onto the laser as frequency

noise. Another drawback of this technique is that if the laser frequency jumps to

the other side of the transmission peak, the feedback loop will have the wrong

sign of correction and the lock will be broken.

A better method would be to look at the reflected beam and simply lock

the laser such that it minimizes the reflection from the cavity (i.e. keep the laser

frequency equal to the cavity resonance frequency). At resonance, the reflected
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Figure 2.4: Phase Noise floors for thermal and shot noise. This simulation was
done with η = 0.9, R = 50Ω, and T = 300k. Note that the two noise floors
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photodetector gets closer to the quantum limit of 100%, the crossing point between
these two noise floors moves to lower power. This means that the noise floor for
a perfect photodetector would quickly be limited by shot noise.
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beam from the cavity and the leakage field from the cavity destructively interfere

resulting in the reflected power going to zero. However, when off resonance the

immediately reflected beam and the cavity leakage beam don not fully destruc-

tively interfere. The typical way to talk about the reflected beam is by using the

reflection coefficient F (ω) = Eref/Einc, where ω is the optical laser frequency. For

a Fabry-Perot type cavity composed of two mirrors with reflection amplitude r,

the reflection coefficient as a function laser frequency ω is:

F (ω) =
r(eiω/∆νfsr − 1)

1− r2eiω/∆νfsr
(2.6)

Note that if ω is an integer multiple of ∆νfsr, the numerator of eqn. 2.6

vanishes and the reflection coefficient is zero (i.e. there is no reflection and the

laser and cavity are said to be impedance matched).

The first way you might think to implement a reflection based locking scheme

would be to use the reflected power curve (i.e. |F (ω)|2, see Fig. 2.5) as your

error signal. The problem with that, however, is that the curve is symmetric

about the resonance. So you would not know from a change in reflected power

whether or not the laser frequency had drifted higher or lower. A better option

would be to measure the asymmetric phase curve of the reflection coefficient (i.e.

tan−1(Im {F (ω)} /Re {F (ω)})), as shown in Fig. 2.6.

In principle, if we could measure this optical phase directly our locking

scheme would be complete. However, it is not yet possible (due to electronics

speed) to measure an optical phase directly. This leads us to the Pound-Drever-

Hall scheme, which is simply a way to indirectly measure the reflection coefficient’s

phase. The way this scheme accomplishes this is to modulate the incident field’s

phase (at radio frequencies) to generate sidebands that yield relevant phase infor-

mation when the sidebands interfere with the carrier beam on a photodetector.
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Figure 2.5: Reflected power versus detuning from resonance (in units of cavity
FSR) for an optical beam incident on an optical cavity.
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Figure 2.6: Phase of the beam reflected from the optical cavity in a PDH setup
versus cavity detuning (in units of the cavity FSR).

In the following section, I will briefly review the mathematics required for a full

understanding of how this is accomplished and how the error signal is generated.

The electric field incident on the cavity can be expressed (assuming cw

operation) as Einc = E0e
iωt, where ω is the optical carrier frequency. We can use

an EOM, Pockels cell, or one of many other options to impart a phase dither on

the field incident on the cavity. This phase dither, with a modulation depth β,
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and a frequency Ω, moves energy from the carrier frequency to nearby sidebands

located at ± Ω. Mathematically, this can be seen by expanding the dithered

electric field using Bessel functions:

Einc = E0e
i(ωt+βsin(Ωt)) ≈ J0(β)eiΩt + J1(β)ei(ω+Ω) − J1(β)ei(ω−Ω) (2.7)

The first term on the right hand side of eqn. 2.7 is simply the carrier field,

the second term is the higher frequency sideband, and the third term is the lower

frequency sideband. Two things should be taken away from this equation: (1) the

amount of power in the carrier and sidebands depends only on the modulation

depth β, and (2) there is a 1800 phase shift between the low frequency sideband

and the high frequency sideband. For small β (i.e. β < 1), the carrier and first-

order sidebands contain nearly all of the power. This is the regime in which the

PDH system operates. The next step is to calculate the error signal based on the

fact that these three beams are being reflected off of the cavity and detected at

the photodetector. Since the reflection coefficient is a function of frequency, the

reflected electric field can be written as Einc multiplied by the reflection coefficient

at the corresponding frequencies:

Eref = F (ω)J0(β)eiΩt + F (ω + Ω)J1(β)ei(ω+Ω) − F (ω − Ω)J1(β)ei(ω−Ω) (2.8)

The reflected signal measured on the photodetector is |Eref |2. The terms of

|Eref |2 that oscillate at Ω are given by [46]:

ε = 2
√

PcarrierPsb [F (ω)F (ω + Ω)∗ − F (ω)∗F (ω − Ω)] [cos(Ωt) + isin(Ωt)] (2.9)

To extract the terms that are oscillating at Ω and leave out the myriad other

signals present, we first mix the photodetector output with the local oscillator (at

frequency Ω), then low pass filter to get the dc error signal. The resulting Pound-

Drever-Hall error signal is shown in Fig. 2.7. As can be seen in the figure, the steep
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slope of the PDH error signal is caused by the resonance behavior on either side

of the central zero point. In fact, for a given modulation depth β, the sensitivity

of the PDH interferometer scales as Finesse/FSR. As an example of the error

sensitivity of this method, consider this scenario: a 1 mW beam is phase dithered

with a modulation depth of β = 1.08 (which turns out to be the optimum β

for maximizing the sensitivity [47]) before being directed into an optical cavity

with Finesse of 500,000 and an FSR of 100 MHz. This system would have a

sensitivity of 13µW/Hz, meaning a 1 Hz change (out of 1015Hz) would be easily

detected by the electronics! This high level of sensitivity is the reason the PDH

lock has become the standard for high precision laser locking [42]. The PDH

locking scheme works equally well for mode-locked lasers as is demonstrated in

the High-Harmonic-Generation experiment of Ch. 4 of this thesis.

2.4 Measuring It

Now that we have introduced several different locking schemes, a natural

question to ask is how well is the lock working? In principle, there are many

ways to answer this question. The most common method is to analyze the error

signal. The simplicity of splitting off a portion of the feedback signal with an rf

splitter makes this option very attractive. Another method, commonly employed

in optical clock measurements, is to create a heterodyne beat by overlapping the

spatial modes of the reference and the source onto a photodiode. Analysis of this

beat frequency will reveal the relative frequency stability of the two lasers. In

this section I will discuss the fundamentals of noise analysis and illustrate a few

experimental examples of a measurement system.

Many tools have been developed to evaluate the stability of a frequency

source. In principle, each of these tools answers the same question: how well

does the frequency source stay at the desired frequency? The difference between



45

Figure 2.7: Pound-Drever-Hall error signal. The error signal is normalized by
dividing by the factor

√
2PcPs. The modulation frequency Ω is 110 MHz, or

37% of the cavity’s FSR. A Mathematica notebook for this calculation is given in
Appendix A.2.
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the various measurement techniques lies in the timescales at which the data is

taken. For long time scales (up to hours, days, months, etc.) we have the Al-

lan variance [48], which measures the fractional frequency variation as a function

of averaging time. On the other extreme of timescales we have the phase noise

measurement technique. This measurement records frequency fluctuations on an

extremely fast timescales (limited by the speed of the electronics). Both measure-

ments provide useful characterizations of frequency sources, and their use simply

depends on the application. For instance, if a system had large thermal fluctua-

tions that cycled on an hour timescale, the phase noise measurement would not

be sensitive to these changes and an Allan variance measurement should be used.

However, the phase noise measurement could detect diode current processes that

would be much too fast for the Allan variance method.

2.4.1 Phase/Frequency Noise Spectral Density

To begin the discussion of the various techniques, we need to more clearly

define what it is that we are measuring. The most simple and complete way of

writing a frequency source mathematically is:

Vsource(t) = V0(t)cos(2πν0t + φ(t)) (2.10)

where V0(t) is the amplitude (time dependent when amplitude noise is

present), ν0 is the natural oscillator frequency, and φ(t) is the phase (time de-

pendent when phase/frequency noise is present).

Recall that for the PDH locking scheme, sinusoidal phase modulation of a

sine wave leads to sidebands in the frequency domain. A very powerful way to

think about noise on a laser is considering the noise as random phase modulation

of the carrier frequency [49]. The most intuitive way to quantify this is to simply
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take a ratio of the power contained in one of these sidebands (Pssb) over the power

contained in the carrier (Pc), known as the Power Spectral Density (PSD):

Pssb(f)

Pc

=

∣∣∣∣
Essb(f)

Ec

∣∣∣∣
2

= [J1(δφpeak(f))]2 (2.11)

[J1(δφpeak(f))]2 =
δφpeak(f)2

4
=

δφrms(f)2

2
(2.12)

The only remaining detail to address is the issue of over which bandwidth

we measure the power in the sideband. The standard definition is 1 Hz. Thus,

the quantity Pssb(f) is the power contained in a 1 Hz frequency window located

at fourier frequency f away from the carrier. We are now in a position to define

the Single-Sideband Phase Noise Spectral Density as:

L(f) =
1

2

δφrms(f)2

b
(2.13)

where b is the detection bandwidth (1 Hz). The units of L(f) are thus rad.2/Hz.

Experimentally, the quantity that is often measured is twice L(f) due to that

fact that an FFT machine lumps the positive and negative fourier frequencies

together. This quantity is known as the double-sided phase noise spectral density

Sφ(f). The SSB-Phase noise is often expressed in dBc/Hz (where dBc refers to

dB below the carrier of the sideband in a 1 Hz window). Mathematically, the

SSB-Phase noise can be written in terms of the double sided PSD:

Lφ(f) = 10log10(
1

2
Sφ(f)) (2.14)

So we simply need to measure Sφ(f) to get the phase noise, but how do we

do that? A typical way to do this is to use a doubly-balanced mixer. As mentioned

in the last section, the mixer output is a voltage that depends on the relative phase

of its two inputs. A good way to think of the phase noise then is to imagine one of

the inputs as a perfect sine wave with no phase errors (i.e. reference). The other
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input, however, has some amount of phase error associated with it and thus jitters

back and forth. The mixer voltage then oscillates according the phase differences

detected between the reference and the noisy input. For stabilized lasers the phase

excursions are small and we can employ the small angle approximation:

V (t) = V0sin(φ(t)) ≈ V0δφ(t) (2.15)

The mixer output, V (t) is then fed to an FFT-machine that calculates the

Fourier transform of the time domain voltage record. The FFT machine records

the signal in units of V/
√

Hz.

V (f) = V0δφrms(f) ⇒ δφrms(f) =
V (f)

V0

[
rad.√
Hz

]
(2.16)

The quantity V0 is the phase to voltage coefficient of the mixer, which can

be measured by recording the voltage change as the phase difference between the

two inputs is tuned between 0 and π. Thus, by recording V (f), we can construct

Sφ(f) or Lφ(f).

It useful here to make a connection to another commonly quoted metric of

laser noise, the Frequency Noise Spectral Density (FSD). The basic difference is

that we record frequency fluctuations as a function of fourier frequency rather than

phase fluctuations. These two types of fluctuations are related by the equation:

2πδν(t)t = δφ(t) (2.17)

Taking a time derivative of this equation, performing a fourier transform,

and solving for δν(t) yields:

δνrms(f) = fδφrms(f) (2.18)

Thus, the frequency noise spectral density (given by the square of eqn. 2.18) is

simply the phase noise spectral density multiplied by f 2. The units of frequency
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noise spectral density are Hz2/Hz. A commonly quoted quantity for frequency

fluctuations is the residual frequency fluctuations defined as:

∆ν =

√∫ fh

fl

f 2φrms(f)2df (2.19)

2.4.2 Timing Jitter

The two noise spectral densities mentioned above each have their place in

the lab. Which one you choose to measure is determined partially by the system

that you are measuring, the tools available, and the goals of the experiment itself.

However, there is yet another noise spectral density we can measure that is suitable

in certain experiments known as Timing Jitter Spectral Density (TSD). TSD

is essentially a scaled version of PSD (scaled by the carrier frequency). The

advantage to quoting noise in terms of TSD is that the final number for timing

jitter is independent of the carrier frequency. A phase slip of 1 radian at high

frequency represents a much different amount of stability than a phase slip of

1 radian at low frequency. Thus, PSD as a noise metric must always come with

information about the carrier frequency. However, TSD represents only the timing

fluctuations of the signal which are independent of carrier frequency. This type

of noise metric is especially useful for experiments involving synchronization of

pulses (see Ch. 3).

Returning to the equation 2.17, we can derive the TSD by letting the time

variable t become itself time dependent:

δTrms(t) =
δφrms(t)

2πν0

(2.20)

Since experimentally we take the Fourier transform of the mixer output, the

quantity we are really measuring is:
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δTrms(f) =
δφrms(f)

2πν0

(2.21)

Using equation 2.16 we can write the TSD in terms of the voltage fluctua-

tions from mixer:

δTrms(f) =
V (f)

2πν0V0

[
fs√
Hz

]
(2.22)

We can also define the integrated timing jitter as:

∆Trms =

√∫ fh

fl

[δT (f)]2 df (2.23)

It is important to note that assumption that the modulation depth of the

perturbations is small (φ(f) ¿ 1) is critical to all of the previous analysis. If this

assumption is not true, then we would have to include higher order Bessel terms

in the equation for the power spectral density. For reasonably stabilized lasers,

however, the peak phase excursions at a given Fourier frequency are generally

much less than 1 radian (in a 1 Hz window).

2.4.3 In-loop error vs. Out-of-loop error

To wrap up this discussion of error analysis, we need to examine one last

detail about the way we measure noise. The most straightforward method is

to simply monitor the error signal that is being used for feedback. One must

take care, however, in calculating the noise spectral density from this sort of error

signal. This so-called in-loop error signal(see Fig. 2.8-(a)) can yield a system noise

that is artificially low. The reason for this is that with high gain the servo loop

can suppress the fluctuations to the noise floor and then lower than the noise floor

by writing the negative of the noise floor onto the laser. Thus, the detected phase

noise will appear to be lower than the actual noise floor set by the detection
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process! A remedy for this unfortunate scenario is provided by the out-of-loop

measurement. In this setup (see Fig. 2.8-(b)), a separate measurement system is

used for the error analysis. This ensures that we are truly measuring the frequency

stability of the laser versus the reference since the loop cannot artificially suppress

a noise floor it has no information about.

This chapter has introduced the tools and concepts needed to stabilize lasers.

In particular, the PLL is an essential tool for stabilizing the timing of pulse trains

from a mode-locked laser and will be used extensively in the next chapter. This

language of frequency/phase noise is perhaps a bit confusing at first, but with

application is much easier to understand. The next chapter will put into action

some of these concepts and thus hopefully add a practical dimension of under-

standing to the concepts covered in this chapter. The reader is encouraged to use

this chapter as a reference for any frequency stability questions that may arise

during the next few chapters.
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Figure 2.8: (a) In loop error signal measurement. The error signal from the mixer
is used for both servoing the laser frequency and for noise analysis. (b) Out of loop
error signal measurement. In this setup, the error signal is derived from one set
of photodetectors/mixers/amplifiers while the actual noise analysis measurement
is done with a completely different set of these components.



Chapter 3

Tight Timing Control of a Mode Locked Erbium Fiber Laser

Controlling the repetition frequency and the offset frequency of a mode-

locked laser has received much attention since the advent of the frequency comb [50,

51, 52]. Ostensibly this is due to the fact that the precision measurement com-

munity (which developed the first frequency combs) was interested in making a

precise frequency ruler for clock measurements. There are other applications,

however, that require tight control of the mode-locked laser output. In particular,

several of these projects benefit from a mode-locked laser with tight timing control

of its pulses (i.e. frep control).

One such application [53] involves synthetic aperturing in the field of radio

astronomy. This technique uses arrays of small telescopes separated by some dis-

tance to achieve the same resolution as a telescope with a physical size equal to the

entire collection of smaller telescopes (see Fig. 3.1). The mathematical machinery

for this sort of experiment is based on the Fourier transform and requires the

full amplitude and phase of the signal in order to perform the synthetic aperture

transformation. While the data collection for the signal amplitude is straightfor-

ward, the phase data requires some level of synchronization between all of the

telescopes involved. An optical fiber with an ultra-stable mode-locked laser could

present a nice solution for this system. In this scheme, a master laser would send

its pulse train through an optical fiber to all of the telescopes. The telescopes
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would then lock their local oscillator to the repetition frequency of the master

laser (i.e. a microwave frequency that is generated through photodetection). This

common phase locking between all telescopes involved results in a phase coherent

data scan, allowing for the synthetic aperture processing to work.

Another application involving tight timing synchronization of mode-locked

lasers can be found in linear accelerator and x-ray physics [55, 56, 7]. The emer-

gence of linear accelerator based x-ray free electron lasers (XFEL) as tools for

pump-probe experiments has lead to much interest in tight timing synchroniza-

tion between laser pulses. In this technology, a conventional laser pulse is used

to pump the sample, while the time-delayed x-ray probe is used for interrogat-

ing the sample dynamics. Timing jitter between the pump pulse and the probe

pulse clearly degrades the temporal resolution of the system [7]. A major source

of timing jitter in these experiments is path length fluctuations between the two

pulses. Typically, there are large distances involved (i.e.∼ 3 km) in this type of

pump-probe due to the nature of linear accelerators (see Fig. 3.2). Thus, path

length fluctuations over a few kilometers must be reduced to as low as possible to

achieve high time resolution data.

In this chapter I will discuss two experiments that were aimed at transfer-

ring a stable optical pulse train over long distances (∼ kilometers) via an optical

fiber and synchronizing a second laser to the transmitted pulse train. The first

experiment focuses on creating a laser that can be locked to a stable reference. To

achieve extremely precise control of this laser, we introduce a novel intra-cavity

actuator with an extremely high actuation bandwidth [6]. The second experiment

takes this actuated laser and synchronizes it to a pulse train that is sent from an-

other laser over a kilometer scale optical fiber [8]. Several different optical fibers

(installed and spooled fiber) were tested and a system of active stabilization was

implemented.
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Figure 3.1: Artist’s rendering of the Atacama Large Millimeter Array (ALMA)
telescope [54] in Chile. Phase coherent data collection, achieved by phase-locking
the individual receivers to a master reference, allows for synthesis of a larger
aperture than the physical aperture of each telescope. When complete in 2012,
this telescope will be configurable to have an aperture of 150 m to 14 km. The
end result is a telescope with spatial resolution 10 times better than that of the
Very-Large Array and the Hubble Space Telescope.

Figure 3.2: Aerial view of the the Linac Coherent Light Source (LCLS) [57] at
the Stanford Linear Accelerator. Pump pulses from a conventional laser system
must be synchronized to the probe pulses of the XFEL to achieve good timing
resolution. The LCLS provides a unique tool to scientists studying a broad range
of topics from nanoscience to biology.
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3.1 Using an EOM for fast feedback control

Early work with frequency combs generated from fiber lasers [5] found a

large amount of high-frequency noise on both the pulse repetition rate and the

offset frequency. These fluctuations of the repetition frequency are likely due to

the high-gain/high-loss condition in the fiber laser cavity, which means the pulses

receive a strong spontaneous-emission perturbation on every pass through the

erbium-doped fiber [58]. Therefore, applications involving timing synchronization

require a broad bandwidth feedback loop to stabilize the repetition rate. Moreover,

in frequency metrology it is often necessary to minimize the linewidth of the

individual comb components [59]. Accordingly, a high-bandwidth actuator (> 100

kHz) capable of correcting these fluctuations is a key component for femtosecond

frequency combs produced by fiber lasers to become useful scientific tools. In the

following I will discuss a project involving the use of an electro-optic modulator

(EOM) inside a APM-NPR mode-locked laser cavity. This modulator acts as a

large bandwidth frequency/phase servo transducer, perfect for stabilizing a noisy

mode locked fiber laser.

Due to the long upper-state lifetime (∼10 ms) of erbium-doped fiber, direct

amplitude modulation of the 980 nm pump diodes is limited in speed. An alter-

native, non-mechanical actuator is an intracavity EOM [60]. While EOMs can be

used to modulate many aspects of light such as amplitude, polarization (through

the birefringence of the crystal) and phase, we were only interested in using it to

modulate the phase. To achieve such a phase modulation, we aligned the input

electric field polarization to be completely along the optical axis of the LiNb03

crystal that was in the direction parallel to the applied electric field (see Fig. 3.3).

In this configuration, we took advantage of the Pockel’s effect (linear electro-optic

effect) of the Lithium Niobate crystal and thus the index of refraction of the crys-



57

tal along that optical axis was a function of applied electric field. One can think

of an index change of the intracavity EOM as a small change in the cavity length,

thus producing a small change in the repetition frequency.

While the EOM does introduce some chromatic dispersion into the fiber

laser cavity, the change in the overall cavity dispersion is small and can be eas-

ily compensated. The combination of a high-bandwidth actuator consisting of

an intracavity EOM and a low-bandwidth, long-range actuator consisting of an

intracavity piezoelectric- (PZT-) actuated mirror allow for tight stabilization of

the fiber laser repetition frequency to a reference over a large dynamic range.

There also exists the possibility of controlling not only the repetition frequency

but also the offset frequency via an intracavity EOM. In this scenario, the phase

index would be set by a DC voltage across the EOM and the group index could be

tuned via an AC voltage modulation, at a harmonic of the repetition frequency, on

the EOM crystal [61]. The EOM modulation would impart a positive, negative,

or zero frequency shift to the pulse, depending on which part of the modulation

waveform the pulse encountered. This frequency shift coupled with the dispersive

fiber in the cavity would allow for group index control. The fiber laser used in

this experiment was based on a standard ring cavity design [62] with a polarizing

beam splitter as the output coupler (Fig. 3.4).

The EOM we employed was a 2 cm long, 5 mm thick piece of LiNbO3,

with an insertion loss of 2%. The group velocity dispersion (GVD) at 1.55 µm

for LiNb03 is +100 fs2/mm, thus leading to a group delay dispersion (GDD) of

+0.002 ps2). The EOM dispersion was compensated by adding a 9 cm long fused

silica rod (GVD = -22 fs2/mm) inside the fiber laser cavity. Overall, the laser

cavity had a net anomalous group-delay dispersion (-0.008 ps2), thus operating

in the soliton regime. This laser proved to be quite difficult to mode-lock. Most

likely this was due to the many free space components in the cavity which each
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Figure 3.3: Electro-optic modulator. Electrodes form a parallel plate capacitor
around the EOM. The input polarization is matched to the direction of the applied
electric field of the electrodes so that the linear electro-optic effect only effects the
phase of the input light.
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Figure 3.4: Schematic of the fiber laser with intracavity EOM and intracavity
PZT. The output coupler is the polarizing beam splitter (PBS). A half-wave plate
after the optical isolator allows for polarization adjustment into the e-wave axis
of the EOM. BFP, birefringent tuning plate; SMF, single-mode fiber.
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Figure 3.5: Optical spectrum of the EOM fiber laser pulses.

presented some loss. It is likely that the finesse of this cavity was very low (∼ 1-

10). Nevertheless, we were able to achieve mode-locking and in fact found that the

laser produced relatively clean pulses with pulsewidths around 170 fs (measured

via autocorrelation and assuming a hyperbolic secant pulse shape). The spectrum

for this laser is shown in Fig. 3.5.

3.2 Characterizing the performance of the EOM

We performed various tests on the EOM to understand its action on the

frequency comb. In terms of a servo actuator, two key tests are the dynamic range

of the EOM and its servo bandwidth. To measure the dynamic range, we applied

various voltage steps across the two EOM electrodes and measured the responses

of the repetition frequency. To precisely monitor these changes, we stabilized the

laser to an RF reference using a low-bandwidth 150 Hz, low-gain PZT lock. This

procedure allowed the DC value of the repetition frequency to be stable while

the fast changes in the repetition frequency induced by the EOM were monitored

through the in-loop servo error signal, which is not affected by the slow PZT

servo (Fig. 3.6). Measuring the change in the phase of the repetition frequency

signal with time after applying the voltage step allowed us to calculate the shift
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of the repetition frequency. The EOM driver provided a maximum voltage step

of 500 V to the EOM. As seen in the inset of Fig. 3.6, within this voltage range

the frequency change is linear and the maximum frequency change is ∼1 kHz

out of the 80th harmonic of the fundamental repetition rate of 93 MHz. This

maximum variation is equivalent to a total cavity length change of 0.28µm. The

theoretical cavity length change is given by ∆l = nl = r22V n3/2d, where r22

is the only nonzero component of the electro-optic tensor for LiNbO2, V is the

voltage applied across the EOM, n is the index of refraction of LiNbO2, l is the

EOM length (20 mm) and d is the distance between the electrodes on the EOM.

With an applied voltage of 500 V this equation gives a cavity length change of

0.37µm, in reasonable agreement with that extrapolated from the step response

measurement.

The EOM actuation bandwidth is determined via the measurement of its

transfer function as shown in Fig. 3.7. Again, the laser was weakly stabilized to

a reference via a low-bandwidth 150 Hz, low-gain PZT lock. We monitored the

error signal from the phase-locked loop in the Fourier frequency domain using

an FFT machine while a swept sine wave was applied to the EOM electrodes.

For the input signal frequency below 150 Hz, the transfer function is suppressed

artificially due to the low bandwidth PZT lock that was being applied. From the

plot we see that the -3 dB roll-off point of the EOM response is around 230 kHz,

while the phase lag reaches 90◦ at 200 kHz. It is important to note that this

speed of actuation is extremely hard to reach via a moving actuator (i.e. a PZT

actuated mirror).
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Figure 3.6: Step response of the EOM measured at increasing input voltages.
The ordinate axis shows the phase change of the 80th harmonic of the repetition
frequency signal. The voltage step turns on at 0 ms on the plot and stays on for
10 ms. The repetition frequency change of the laser reaches a limit of around 1
kHz (at the 80th harmonic) at a maximum of 500 V across the EOM. The inset
shows the change of the 80th harmonic of the repetition frequency of the laser
with increasing voltage across the EOM.



63

10
3

10
4

10
5

10
6

1

10

100

-180

-90

0

90

180

 

G
a
in

 [
H

z
/V

]

Fourier Frequency [Hz]

 P
h

a
s
e

 [
d

e
g

re
e

s
]

Figure 3.7: Transfer function of the EOM. The -3 dB roll-off frequency is approx-
imately 230 kHz, while the phase lag reaches 90◦ at approximately 200 kHz.
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3.3 Synchronizing the EOM laser to a free-running mode-locked

fiber laser

To investigate the practical application of the intracavity EOM we used it

to lock the repetition frequency of the fiber laser to a second, independent mode-

locked fiber laser with a fundamental repetition frequency of around 31 MHz. We

built this second laser with a long-travel translation stage that allowed length

tuning of the free-space section of the laser cavity, thus allowing for large relative

changes in frep. Separate photodetectors were used to detect the 80th repetition

frequency harmonic of the 93 MHz laser and the 240th harmonic of the 31 MHz

laser, which were then phase-sensitively compared. The error signal was then

filtered and fed back to the actuators in the slave (EOM) laser cavity. Spectral

analysis of the locking was accomplished by use of a fast Fourier-transform spec-

trum analyzer. The in-loop jitter spectral densities for the free-running case and

locking with the PZT and the EOM are shown in Fig. 3.8-(a).

The EOM and PZT together reduce the integrated jitter (over a bandwidth

from 1 Hz to 100 kHz) from approximately 1800 to 10 fs [Fig. 3.8-(b)]. The mea-

surement noise floor was determined by feeding an identical signal into both arms

of the mixer, with appropriate phase shift and amplitude adjustment. The inte-

grated jitter of the noise floor from 1 Hz to 100 kHz is less than 5 fs. Figure 3.8-(a)

shows that the locking is limited by the noise floor, which is dominated by the

RF amplifiers, below 60 Hz. At frequencies above 100 kHz the noise spectrum

is also limited by the RF amplifiers. A realistic estimate of the jitter at a larger

bandwidth can be performed by rolling off the noise floor to match the extrap-

olated free-running roll-off at high frequencies, due to the lack of servo actions

there. This method yields 20 fs of integrated jitter for a 10 MHz upper limit and

21 fs of jitter for a 50 MHz (Nyquist frequency) upper limit.
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Figure 3.8: (a) Jitter spectral density (left axis) and single-sideband phase noise
(right axis) for locking the 80th harmonic of the repetition frequency 7.5 GHz of
the laser to the second fiber laser. (b) The free-running rms jitter is around 1800
fs. With the intracavity EOM used in conjunction with the PZT, the integrated
rms jitter is reduced to 10 fs. The noise floor of the measurement is limited by
the thermal noise, which has an integrated rms jitter over 1 Hz to 100 kHz of less
than 5 fs.
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The EOM loop bandwidth is ultimately limited by resonances above 500

kHz. These resonances are most likely due to piezo-like electromechanical reso-

nances in the EOM crystal. To minimize this sort of phenomenon, we mounted

the EOM in a Teflon casing with vibration-absorbing material surrounding the

crystal. However, at high driving frequencies the mechanical resonances are not

completely suppressed. These issues could perhaps be resolved by replacing the

free-space EOM with an inline fiber EOM.

3.4 Conclusion for EOM Locking

In this experiment we showed that synchronization of a mode-locked fiber

laser to a reference via an intracavity EOM can lead to very tight locking. A

record-low level of 10 fs of integrated jitter over a bandwidth of 1 Hz to 100 kHz

was achieved. This is a reduction in the timing jitter of 2 orders of magnitude

between the free-running laser and the EOM stabilized laser. In the next section,

I will discuss an experiment to synchronize this fiber laser to another, remotely

located, fiber laser.

3.5 Remote Synchronization

Some applications of synchronized lasers, such as coherent pulse synthe-

sis [63] and precise pump-probe experiments, [64] use collocated lasers with direct

optical links of only a few meters. However, for many applications, such as those

mentioned in the introduction to this chapter, it is necessary to have remotely

located lasers separated by distances ranging from tens of meters to several kilo-

meters [65]. Transmitting optical pulses over kilometer-scale distances places strict

limits on the optical system; the most feasible way is using telecommunications

grade optical fibers, which have low loss 0.25 dB/km at wavelengths around 1550

nm. Erbium-doped fiber lasers, which emit light centered at 1550 nm, are thus em-
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ployed to utilize this transmission medium. Optical fibers, however, are sensitive

to environmental perturbations such as acoustic vibrations, thermal fluctuations,

and mechanical stresses. The resultant optical path length fluctuations introduce

timing jitter on the pulse train, which must be canceled if a remotely located laser

is to be synchronized to the incoming pulse train. In the following experiment we

demonstrate that active cancellation of this fiber transmission path noise and a

large feedback bandwidth allow for tight synchronization of two fiber lasers over

kilometer-scale transmission distances. We present an out-of-loop time-domain

analysis of the timing jitter via optical cross correlation, which allows sensitive

measurement of the jitter and verifies the frequency-domain in-loop measurements.

The two fiber lasers used in this experiment are both erbium-doped, ring

cavity design lasers with a nonlinear polarization rotation scheme as the mode-

locking mechanism [62]. The free-running reference laser, which had a repetition

frequency of 31 MHz and operated in the normal dispersion regime (i.e. dispersion

managed soliton regime), was enclosed in an acrylic box that was mounted on an

optical breadboard. The fiber in the laser cavity was environmentally isolated by

securing the fiber to leadbacked foam inside the enclosure. The slave laser, which

had a repetition frequency of 93 MHz and operated in the anomalous dispersion

regime (i.e. soliton regime), had two crucial intracavity actuators, an electro-optic

modulator (EOM), and a piezoelectric transducer (PZT). As was demonstrated

in the last section, the intracavity EOM had a servo bandwidth of over 200 kHz,

allowing for local synchronization with a timing jitter of 10 fs. The intracavity

PZT has a long dynamic range of 14 µm, which allowed for locking times of

greater than 12 hours. The next element of synchronization is the fiber link

between the two lasers. We used two different fiber links to test our method of

actively canceling the group delay noise introduced on the pulse train by the fiber:

an installed 6.9 km fiber in the Boulder area (known as BRAN [66]) and a 4.5
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km spool of dispersion-shifted fiber (DSF). The timing jitter introduced by either

of these two fiber links is canceled (to the same degree for either link) by a PZT

fiber stretcher that has a large dynamic range [67, 68]. We used these fiber links

to simulate the timing jitter that the pulse train would experience in a real-world

implementation of this system. In this demonstration we use the configuration

shown in Fig. 3.9, where we cancel the round-trip jitter of the link instead of

the one way jitter. However, for transmission to a physically different location,

a portion of the light at the remote end must be retro-reflected and detected at

the local end to derive the timing jitter information of the fiber link [69]. A truly

remote system incorporating retro-reflection with a fiber link half as long as ours

is expected to perform at the same level as the measurements that we report here.

These two elements-fiber transfer and synchronization-are combined to achieve

the synchronization of the two lasers over a kilometer-scale fiber link. Fig. 3.9

shows a high-level diagram of the experiment. Active noise cancellation is used to

deliver a highly stable pulse train over the fiber link. Once this is accomplished,

the intracavity actuators in the slave laser synchronize its repetition frequency to

that of the incoming pulse train.

We characterize the residual timing jitter of the synchronization by using

a crossed-beam, background-free, optical cross correlation of the two lasers pulse

trains. The two pulse trains are focused onto a Lithium Iodate (LiIO3) crystal

(type-I phase matching), which generates sum frequency light (SFG) when the two

pulses overlap in time and space. To achieve temporal overlap, we use two phase-

locked loops that operate at two different timing resolutions [50]. A coarse-timing

loop operates at the fundamental frequency of 93 MHz, while a higher-resolution

loop operates at 7.6 GHz (80th harmonic of the fundamental). A phase shifter

in the fundamental frequency loop allows coarse-timing adjustments such that

temporal overlap between the two pulse trains can be found. Since the slave
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Figure 3.9: Schematic of the transfer and local synchronization setup. The syn-
chronization loop compares the incoming pulse train, which is stabilized via a
fiber noise cancellation loop, with the slave lasers pulse train; the resulting error
signal is fed back to the intracavity EOM and PZT of the slave laser. The cross
correlation is performed locally.
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laser’s repetition frequency is three times that of the reference laser, only every

third pulse from the slave laser overlaps a pulse from the reference laser. Once an

SFG signal is observed on a photomultiplier tube (PMT), we measure the total

cross-correlation width to calibrate the data. We then transfer control from the

fundamental frequency loop to the 7.6 GHz loop. A phase shifter in the high-

harmonic loop allows us to finely tune the time overlap of the pulses to position

the SFG signal at the steepest point of the cross-correlation slope to obtain the

most sensitive measurement of the pulse timing jitter, which is proportional to the

amplitude fluctuations of the SFG signal. The fluctuations are monitored through

a 50 MHz low-pass filter to determine the timing jitter within an integration

bandwidth up to the Nyquist frequency.

It is important to note that the cross correlation is performed on the same

optical table that holds the two lasers used in the experiment. This configuration

allows a direct comparison of the two lasers, which reveals the timing jitter due to

both the transmission path and the slave lasers locking ability. This measurement

verifies our synchronization capability over the fiber network. For a successful

implementation of true remote synchronization, the only change is to detect the

retro-reflected light through the transmission path, as discussed above. To char-

acterize the performance of the servo loops for synchronization over a fiber link,

we first analyze the Fourier frequency spectrum of the error signal of the phase-

locked loops. The first step is to analyze the timing jitter between the two lasers

when synchronized locally (i.e., without a kilometer-scale fiber link connecting

the two). The residual in-loop timing jitter between the two pulse trains is mea-

sured by way of the residual phase noise fluctuation between the two repetition

frequency signals in the Fourier frequency spectrum, which can be converted into

a timing jitter spectral density. Fig. 3.10-(a) shows the jitter spectral density out

to 100 kHz and a corresponding integrated jitter of 10 fs.
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Next, we characterized the jitter of the fiber-link transfer of the pulse train

from the reference laser. The error signal in this case is derived from mixing the

local rf signal with the rf signal from a photodetector that detects the transmitted

light; this error signal is then fed back to the PZT fiber stretcher, which has a

resonance around 18 kHz. This wide bandwidth actuator yields an improvement

over previous measurements [68]; we achieved approximately 16 fs of timing jitter

for either the BRAN or DSF fiber, integrated over 1 Hz to 100 kHz, as can

be seen in Fig. 3.10-(b). Importantly, we measure an out-of-loop error signal (as

discussed in Ch. 2) by using independent photodetectors for the combined transfer

and synchronization. This is shown in Fig. 3.10-(c), with a total jitter of 19 fs,

integrated over 1 Hz to 100 kHz.

Next, we improved the jitter measurement by using an out-of-loop optical

cross correlation between the two pulse trains. The goal here is to overlap pulses

from the two lasers in time and space on an nonlinear crystal. If we overlap

the pulses at their steepest slopes (see Fig. 3.11, then any timing jitter between

the two pulses will result in an amplitude change. These amplitude changes are

recorded on a photo-multiplier tube (PMT), low pass filtered, and then digitized

on an oscilloscope. The voltage width of the timing jitter signal can be converted

into timing jitter by noting how much time delay is required to move the PMT

signal from trough to peak. This approach is advantageous, since it provides a

highly sensitive detection of timing jitter without electronic noise contributions,

and it also provides an independent assessment of the system performance out of

the servo loop. The local synchronization result measured by the optical cross

correlation is shown in Fig. 3.12-(a).

The conversion coefficient of the timing jitter (phase noise) to the ampli-

tude fluctuations of the SFG signal is pre-calibrated, and thus, we can determine

the rms timing jitter directly from the amplitude fluctuations of the SFG signal.
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Figure 3.10: In-loop error signal for (a) local synchronization, (b) fiber noise
cancellation, and out-of-loop error signal for (c) long-distance synchronization.
All plots are shown over a 1 Hz to 100 kHz integration bandwidth. The fiber
noise cancellation loop has 16 fs of timing jitter, the local synchronization has 10
fs of timing jitter, and the long-distance synchronization has a timing jitter of 19
fs.
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Figure 3.11: Schematic of the cross correlation layout. The pulses from the two
lasers overlap in space on the nonlinear crystal and in time at their steepest
points. A timing jitter between the two pulses results in an amplitude change on
the photomultiplier tube. This signal is then recorded by an oscilloscope.
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Figure 3.12: Optical cross-correlation measurement of the timing jitter for (a)
local synchronization, and (b) long-distance synchronization. Both traces show
the rms timing jitter within the Nyquist bandwidth (50 MHz).

This measurement is taken in a bandwidth equal to the Nyquist frequency of 50

MHz, which ensures that it is an accurate representation of all of the noise on the

repetition frequency synchronization. We note that the direct jitter measurement

from the optical cross correlation agrees with that from the indirect approach of

integrating the residual phase noise of the error signal in the feedback loop over

a 100 kHz bandwidth, indicating that there is no significant noise contribution

beyond 100 kHz. Finally, we characterize the timing jitter of the synchronization

over the fiber link (DSF) by using the optical cross correlator. The cross correla-

tion between the two lasers reveals 19 fs of timing jitter observed over the Nyquist

frequency bandwidth as can be seen in Fig. 3.12-(b), in agreement with the result

shown in Fig. 3.10-(c). The total timing jitter is essentially the root-square sum

of the residual jitters from the local synchronization and the fiber transfer.

3.6 Cross-correlator as a timing jitter detector and ultimate limits

In experiments in which the reference laser was multiple pulsing, the cross-

correlation data showed much higher timing jitter, even though the in-loop error

signal analysis indicated tight synchronization. This observation highlights the

importance of using optical cross correlation and the danger of relying on the in-
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loop error signal. For cases in which the laser had several extra pulses (i.e., more

than four pulses), the timing jitter under the tight lock condition was so severe

that the cross-correlation signal explored its full range of 165 fs. By selecting an

appropriate polarization state of the laser, however, we were able to eliminate the

multiple pulsing and achieve the best timing jitter results.

The timing jitter suppression is currently limited by the bandwidth of the

actuators in the system: the PZT fiber stretcher, the intracavity EOM, and the

intracavity PZT. However, the fundamental limits imposed by Johnson (thermal)

noise on the rf amplifiers and shot noise on the photocurrent are quickly being

approached. Both of these effects contribute white phase noise that scales in-

versely with the rf signals power. The synchronization over the fiber link employs

the weakest optical power owing to losses in the fiber after several kilometers of

transmission, which leads to Psignal = −48 dBm for the rf signal from the photode-

tector, while the photodetector in the local system has sufficient incident light to

generate -30 dBm in the 7.6 GHz carrier. For this carrier frequency at an rf power

level of -48 dBm, Johnson and shot noise yield phase noise floors of -129 and -132

dBc/Hz. Integrating these noise floors over the slave lasers actuator bandwidth

of 200 kHz yields timing jitters of 4.7 and 3.3 fs, respectively. Employing fast

photodetectors that can receive larger optical powers will lower these fundamen-

tal noise limits. In summary, we have demonstrated synchronization through a 7

km fiber link of two femtosecond fiber lasers at a timing jitter level of 19 fs over

the Nyquist bandwidth. This measurement was performed via an optical cross

correlation, which provides the most sensitive measurement of timing jitter. We

achieved this result by combining the fiber transfer of a reference laser with the

synchronization of a slave laser using a fast intracavity actuator.
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3.7 Putting it into context

The remote synchronization experiment resulted in 19 fs of timing jitter from

1 Hz to the Nyquist frequency. A natural question to ask at this point is how

good is that? One can answer this question two ways. The first way is to consider

a mental picture of the pulses. For the active stabilization of the fiber link, we

achieved 10 fs of integrated jitter. After propagating through several kilometers

of fiber, the optical pulses are stretched to pulsewidths of many picoseconds. If

you could look at the pulse with your eyes, you would see a 10,000 fs long electric

field jittering back and forth with an rms value of 10 fs (so you would be looking

for a 0.2% change in the pulse position). The other way to view this level of

stability is in regard to what other experiments have reported. The integrated

timing jitter for the system shown in Fig. 3.1 was reported to be at a level of

34 fs over a bandwidth of 3 kHz to 3 MHz [53], while the integrated jitter for

the LCLS experiment (see Fig. 3.2) was reported to be at 200 fs over a 1 Hz to

40 MHz bandwidth [7]. Thus, our system of high bandwidth actuation via an

intra-cavity EOM in conjunction with actively stabilized fiber links has lead to

quite remarkable levels of long distance synchronization.



Chapter 4

Applications of mode-locked fiber lasers

In this chapter I will discuss two atomic physics experiments involving mode-

locked fiber lasers and passive enhancement cavities. The first experiment deals

with sensitively and simultaneously detecting the presence of a wide range of

molecules in trace amounts. The applications for this are many: ranging from

early medical disease detection [70, 71] to security screening for combustible ma-

terials. The laser used in this experiment was a home built Erbium doped mode-

locked fiber laser, with several actuators for controlling the optical frequency. A

chirped-pulse amplifier (CPA) was also constructed so that the pulses could be

launched into a highly nonlinear fiber (HNLF) with enough intensity to undergo

spectral broadening. The second experiment I will discuss examined using a pas-

sive enhancement cavity in conjunction with a noble gas to generate harmonics

of the incident frequency comb. The main goal in this experiment is to shift a 1

µm frequency comb to shorter wavelength for high resolution spectroscopy in the

UV range. This experiment used an Ytterbium doped fiber laser (developed by

IMRA America) in conjunction with a multiple-clad amplifier fiber to deliver 90

fs pulses (∼136 MHz repetition frequency) with an average power of 10 W. These

applications of rare-earth doped fiber lasers (Erbium and Ytterbium) give us a

glimpse of the potential of this class of laser.
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4.1 Coupling a Frequency Comb to a High Finesse Cavity

The common theme of this chapter is coupling a frequency comb to an

optical cavity. This section will review the basic ideas of this process. An optical

cavity is a device that consists of at least two mirrors (Fabry-Perot) arranged in

a configuration such that the photons that enter the cavity are reflected around

the cavity and end up back at the position in which they entered. If the cavity

is carefully constructed, the electric field of the entering photons and the field of

the recycled photons can interfere constructively, leading to an enhancement of

the electric field. Clearly, a high finesse cavity in which the photons are recycled

many times before leaking out, offers the possibility of achieving a large electric

field enhancement. Another consequence of a high finesse cavity is the enhanced

light-matter interaction that can take place due to the many roundtrips of the

photons. The reader should already begin to see the power of such a system.

As seen in Fig. 4.1-(a), the resonant modes of an optical cavity are equally

spaced by the free-spectral-range (FSR). For a simple Fabry-Perot cavity of length

L the FSR is equal to c/2L. In the frequency domain this means that only light at

certain frequencies (the resonances) will be transmitted into the cavity. In Fig. 4.1-

(b), the frequency spectrum of a frequency comb is shown. If the two degrees

of freedom of the comb, frep and fo, are controlled to match the transmission

spectrum of the cavity, then the light of the frequency comb will be effectively

coupled to the cavity. This condition means that a coherent accumulation of

pulses will occur in the cavity. However, dispersion in the cavity mirrors causes

the FSR to be wavelength dependent (see Fig. 4.1-(c)). For a large bandwidth such

as that produced by a frequency comb, a wavelength dependent FSR can cause

the coupling bandwidth to be reduced. Therefore it is necessary to use carefully

designed mirrors that achieve low chromatic dispersion over a large bandwidth
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(preferably as large as the frequency comb bandwidth).

It is useful to understand the coherent accumulation effect in both the fre-

quency and the time domain. The frequency domain, as explained above, is quite

straightforward in the sense that you simply want to match the frequency spectra

of the laser and the cavity. What does this mean in the time domain? Clearly, you

need to match the repetition frequency so that the entering and recycled pulses

overlap in time (i.e. envelope overlap). This is not enough, however, to achieve

constructive interference. We also need the actual phase of the electric fields to

match (see Fig. 4.2 and 4.3). To achieve this we need to be able to control the

carrier envelope offset phase so that the recycled and entering electric fields have

exactly the same electric field shape at the point at which they interfere.

4.2 Molecular Detection Experiment

Since its introduction in 1988 by O’Keefe and Deacon [72] Cavity Ring-

down Spectroscopy (CRDS) has become a powerful tool for trace detection of

molecules. Detection sensitivities of up to a few parts-per-trillion by volume have

been reported [73]. At the heart of a cavity ringdown system is a high finesse

cavity with dielectric mirrors that exhibit extremely high reflectivity. The high

reflectivity allows photons in the cavity to complete many round trips before they

leak out of the cavity. In fact, with common parameters a photon can travel an

effective length of several kilometers (∼ 10 µs storage time), greatly enhancing the

light-matter interaction. The nature of the measurement also means that it is in-

sensitive to intensity noise on the laser source. A basic layout for cavity ringdown

spectroscopy is shown in Fig. 4.4.
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Figure 4.1: (a) Passive cavity frequency modes spaced by the FSR of the cavity.
(b) Frequency comb modes spaced by the repetition rate, frep, of the mode-locked
laser. (c) Passive cavity frequency modes with cavity dispersion. The equation for
FSR then becomes dependent on the spectral phase (dφ/dν) as shown. The effect
of this dispersion is to shift the resonance frequencies of the cavity by non-uniform
amounts.
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Figure 4.2: Interference of two pulses in a passive optical cavity at the input
coupler. The incident pulse (blue line) has the same phase as the round trip pulse
(dotted green line), which leads to constructive interference (shown in the lower
pane).
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Figure 4.3: Interference of two pulses in a passive optical cavity at the input
coupler. The incident pulse (blue line) has a phase difference of π relative to
the round trip pulse (dotted green line), which leads to destructive interference
(shown in the lower pane).
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Figure 4.4: Cavity ringdown spectroscopy setup. The optical switch shuts off the
light to the cavity, then the ringdown signal is measured as a function of time. If
the pulse width is less than the round-trip time, the output shows an exponentially
decaying oscillatory structure due to the pulse sampling the output mirror every
round trip. If the pulse width is longer than the round trip time, the oscillations
are blurred and the signal is just the exponential decay.
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4.2.1 Brief explanation of CRDS

In a standard CRDS experiment, laser light is coupled to a cavity and then

shut off with an optical switch. The ringdown signal is simply the time record

of the intensity at the output mirror. If the pulse is shorter in time than the

roundtrip time of the cavity Trt, the detector at the output will see intensity

spikes every time the pulse bounces off of the output mirror. Due to mirror losses

(L0 = 2(1−R) for a Fabry-Perot cavity), though, the overall intensity detected at

the detector will exponentially decay as a function of time. If the pulse is longer

in time than the cavity, the ringdown signal will decay exponentially but the fast

carrier signal will be washed out. Mathematically we can define the ringdown time

as the time it takes the field to reach a level of 1/e of the maximum transmitted

field. For the empty-cavity case this ringdown time is:

τ0 =
Trt

L0

. (4.1)

However, if we introduce some absorbers (i.e. atoms or molecules) into the

cavity we must add a new loss term in our equations for loss through absorption.

This can be done by adding a term in the total loss as follows:

Ltot = L0 + αlc (4.2)

where lc is the cavity length and α is the absorption coefficient at a particular

wavelength. This, in turn, leads to a new ringdown equation for the case where

absorbers are present in the cavity:

τ =
Trt

L
. (4.3)

The total loss equation can be solved for the absorbance (i.e. αls) to yield

the absorbance as a function of measured ringdown times:
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αls = (1−R)
τ0 − τ

τ
(4.4)

Thus, experimentally you only need to measure the empty cavity ringdown

time (τ0) and the absorber ringdown time (τ) to determine the absorbance for

your system. Note that the ultimate limit of the sensitivity is given by how well

you can time resolve the ringdown signal and the reflectivity of the mirrors. This

is quite reasonable since a higher reflectivity means the light-matter interaction

length is longer and a better time resolution means we can determine the 1/e time

more accurately.

4.2.2 Broadband CRDS

In this experiment we performed a version of CRDS known as Broadband

Cavity Ringdown Spectroscopy (BCRDS) [37]. In this setup, a mode-locked laser

is coupled to a cavity (as was discussed in the first section of this chapter). This

configuration allows for the simultaneous detection of cavity ringdown events at

many different wavelengths. Thus, the use of the mode locked laser helps over-

come one of the main limitations of conventional cw-CRDS. Obviously, the key

component in such a system is the laser itself. For the purposes of this experi-

ment, the laser had to meet two important requirements: emit light over a large

spectral bandwidth and be able to control both degrees of freedom of the comb.

To achieve the first goal, we employed a stretched pulse cavity design (i.e. net

normal dispersion) operating with a repetition frequency of 100 MHz. This type

of laser can emit light over a larger spectral bandwidth than a soliton laser (net

anomalous dispersion) due to the absence of the Kelly sidebands [74], which clamp

the oscillator spectrum. To address the issue of frequency control in this laser,

we added three intra-cavity actuators. For long-range frequency tuning (required
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to keep the laser on the cavity resonance as the cavity is evacuated) we used a

picomotor with a dynamic range of ≈ 1/100th of the cavity length, yielding a

frequency tuning of 1.5 MHz. To achieve faster control of frep, two piezo electric

transducers were employed: a long range (17 µm dynamic range) PZT with a rela-

tively slow response and an inline fiber PZT for fast modulation (≈ 20 kHz). The

carrier-enveloped-offset frequency was controlled via pump current. The spectrum

directly from the oscillator was measured to be around 100 nm wide. While this is

quite large for an Erbium doped system, we employed an amplifier and a section

of Highly Nonlinear Fiber (HNLF) to broaden the spectrum even further such

that we were limited by the bandwidth of the mirrors (see Fig. 4.5).

As can be seen in Fig. 4.5-(b), the dispersion of the mirrors effectively cuts off

the comb and cavity coupling at the points 1450nm on the short wavelength side

and 1650 nm on the long wavelength side. Thus, we have a detection bandwidth

of 200 nm, limited by the mirror dispersion.
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Figure 4.5: (a) Spectral power density in (dBm/nm) for the fiber laser before
and after amplification and spectral broadening. (b) Dispersion and reflectivity
curves of the cavity mirrors show that low dispersion < 15 fs2 and high reflectivity
(R>0.999) are maintained between 1450 and 1650 nm.
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Figure 4.6: Broadband CRDS setup. The mode locked laser is coupled to the
cavity using mode matching optics (not shown). The optical switch turns off
the light and the monochromator directs individual wavelengths to the photodi-
ode for recording of the ringdown signal. In this experiment, the grating inside
the monochromator was scanned and the ringdown event was measured at each
individual wavelength.



89

The final experimental layout is shown in Fig. 4.6. The monochromator al-

lowed for ringdown measurements at each wavelength, with a frequency resolution

of 25 GHz. This frequency resolution has since been improved using various other

technologies included a virtually imaged phased array (VIPA) [75]. We used the

setup to measure overtone spectra of three different molecules: Carbon Monoxide

(CO), Methane (C2H2), and Ammonia (NH3). The measured absorption spectra

for each of theses gases is given in Fig. 4.7. By averaging the ringdown signals for

1 second, we achieved a signal-to-noise ratio of 1000, which yielded an absorption

sensitivity of 2x10−8 cm−1Hz−1/2. With this sensitivity we were able to detect CO

at 6 parts per million, NH3 at 20 parts per billion volume (ppbv), and C2H2 at 8

ppbv.

4.3 High Harmonic Generation: Moving the frequency comb to

the UV and beyond

In this section I will discuss coupling a mode-locked fiber laser to a passive

enhancement cavity for high-field physics purposes (i.e. intensities ∼ 1012-1016

W/cm2). This type of experiment allows for observation of some very interesting

phenomena: High-order Harmonic Generation (HHG) of frequency combs [76, 77],

attosecond pulse generation [78, 79], and even imaging molecular orbitals [80].

The following experiment focused on producing HHG for its possible application

to spectroscopy. In particular, the experiment aimed at extending the spectral

coverage of frequency combs to vacuum ultra-violet (VUV) and extreme ultra-

violet (XUV) wavelengths.

Electron energy level spacings for light atoms such as Hydrogen and Helium

are typically on the order of many eV. Accordingly, to do spectroscopy on these

atoms one needs a light source in the VUV and XUV range. Also, to calibrate the

light source for high resolution spectroscopy one needs a frequency link back to the
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Figure 4.7: Absorption spectra for 2 Torr CO, 10 mTorr NH3, and 1.5 mTorr
C2H2, showing 150 nm of spectral information.
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standard definition of the second (Cesium standard). Thus, a UV frequency comb

presents a great way to do calibrated spectroscopy of the deeply bound electron

quantum states of light atoms. One could in principle generate such a UV comb by

using a standard nonlinear crystal (χ2 6= 0) to perform sum-frequency-generation

(SFG) which shifts the comb modes to half the wavelength of the fundamental

comb. However, to reach even the low-energy side of the VUV region one would

need to start at a wavelength of 400 nm (the beginning of the UV region). Clearly,

this approach is not feasible. A better way to move the comb to short wavelengths

is to use a medium in which high-order harmonics are generated [81].

The HHG process can be understood as a 3 step process: (1) a strong laser

field drives a deeply bound electron from an atom to the continuum via tunneling

enhancement, (2) the free electron is accelerated in the laser field picking up

kinetic energy, and (3) the electron recombines with the ion emitting a single

photon with a much higher energy than the energy of the fundamental photons.

This radiation, which is in the same direction as the driving field, can have a

maximum energy (cutoff energy) equal to the ionization potential of the electron

(∼ 10 eV) plus the kinetic energy imparted by the laser field [82, 83, 78]. This

second term, known as the pondermotive energy, depends on the driving laser

intensity and thus can be quite large (∼ 60 eV). However, much of the time the

free electrons do not follow a path that leads to recombination with the nucleus

due to collisions and other effects. For most systems this is a major inhibitor of

HHG photon flux. However, a high finesse optical cavity presents a great way

to recycle the fundamental photons, thereby increasing the overall efficiency of

the system. This fact, along with the power enhancement aspect make passive

enhancement cavities a natural fit for combining HHG and the frequency comb.
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Figure 4.8: Experimental setup: LO, local oscillator;SA, saturable absorber; PZT,
piezo actuator; FBG, fiber Bragg grating; D, photodetector; PM, polarization
maintaining; SM, single mode.

4.3.1 The Ytterbium Fiber Laser and Amplifier

The light source employed in this experiment (see Fig. 4.8) was a Yb-doped

similariton [84, 85] laser in conjunction with a double-clad high power fiber ampli-

fier. The similariton laser produces parabolic shaped pulses that are self similar

solutions to the Ginzburg-Landau equation. The most useful aspect of the similari-

ton pulses is that they exhibit optical wave breaking only at nonlinear phase shift

levels that are 1 to 2 orders of magnitude higher than dispersion-managed(DM)-

solitons. Thus, the the pulse energy that can be achieved before the onset of wave

breaking can be on the order of 100 nJ/pulse. Thus, a similariton laser is a good

choice for a system involving the study of high field physics.

Another crucial element of this laser system was the amplifier section, which

used double clad Yb-core fiber. Double clad fiber consists of a Yb doped core sec-

tion surrounded by two cladding layers. Multimode pump light is guided by the

two cladding structure, while the singlemode laser light is contained in the core

section. This allows for the use of high power multimode diodes (∼100 W of cw

power at 915 nm) as optical pumps for the amplifier gain. The femtosecond pulses
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out of the laser cavity have to first be stretched so that the large energy ampli-

fication does not induce wave breaking through nonlinearity. In our system, the

approximately 100 fs pulses were stretched to 70 ps before entering the amplifier.

After the amplification, the pulses were recompressed using high-quality trans-

mission gratings leading to a net average output power of 13.1 W, with pulses as

short as 75 fs.

4.3.2 Measurement of the intra-cavity intensity

The pulses from the amplifier were then sent to the enhancement cavity (see

Fig. 4.8). The cavity used in this experiment was a 4 mirror bow-tie configuration.

The input coupler had a reflectivity of 99.94%, while the three high reflectors had

reflectivities of 99.988%. The input coupler was selected purposely to have a

transmission that was higher than the net losses of the other mirrors (i.e. not

impedance matched). A lower IC reflectivity allows more of the frequency comb

to be coupled into the cavity due to the lower dispersion. To match the amplified

laser pulse spectrum to the cavity spectrum we used a birefringent filter between

the oscillator and the amplifier, resulting in a 90% spectral overlap between the

input spectrum and output spectrum of the cavity (see Fig. 4.9-(a)).

To keep the laser frequencies matched to the cavity resonances, we employed

a Pound-Drever-Hall lock (see Chapter 2) by modulating the intra-cavity PZT

with a low amplitude, 1 MHz sine wave. The feedback loop was then closed

using the PZT (which had a 70 kHz actuator bandwidth) and a slower 1 kHz

intra-cavity fiber stretcher. The offset frequency, fo, was controlled using via

temperature tuning a section of the fiber oscillator. Using these actuators, we

were able to actively lock the laser frequencies to the cavity resonances for a time

span of several hours. The net result of the cavity was a power enhancement of

≈230, calculated by measuring the output power through one of the high reflectors.
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This means on average a photon inside the cavity will be combined with 230 other

photons, leading to a dramatic power enhancement (2.3 kW average power for 10

W input). Assuming a temporal gaussian envelope, the peak intensity at the

intra-cavity focus was 3x1014W/cm2.

To verify this level of peak intensity, we performed ionization experiments

using noble gases inside our enhancement cavity. A gas jet was mounted such

that gas could flow through the intra-cavity focus position, while electrodes (at 10

V/mm bias voltage) were mounted orthogonal to the jet to allow for the collection

of ions. We measured the plasma current through the electrodes for Xenon (ioniza-

tion energy ≈12 eV), Krypton (ionization energy ≈14 eV), and Argon (ionization

energy ≈16 eV). The results of this measurement are shown in Fig. 4.9-(b). As

expected from the ordering of the ionization energies, Xenon reached the highest

level of plasma current, followed by Krypton, then Argon. This data and the ion-

ization thresholds are comparable to previously published data [86] for ionization

of these noble gases.

This experiment marked the first time peak pulse intensities on the order of

1014W/cm2 at MHz level repetition rate were produced. Using cavity techniques

and an ionization measurement we confirmed the high peak intra-cavity intensity.

Further increases in peak intensity are being pursued [87, 88], but not without

difficulty. Perhaps the most daunting challenge is finding a way to increase the

damage threshold of the high finesse mirrors used in the enhancement cavity.

We experienced many problems with mirror damage (resulting in a significant

loss in cavity finesse) when running the experiment at high power for extended

periods of time. The problems of mirror damage can be alleviated somewhat by

ultrasonically cleaning all the components before putting them in the vacuum

chamber. Perhaps another technique to reduce the peak intensities on the mirrors

is to design a cavity that has large spatial mode sizes at the mirror positions.
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Figure 4.9: (a) Optical spectrum transmitted through the cavity (dotted, 17.2 nm
FWHM) and emitted by the laser system with (solid, 19.3 nm FWHM) and with-
out (dashed, 40 nm FWHM) filtering before the amplifier. (b) Current through
plasma for various noble gases at 10 V/mm bias as a function of laser power and
peak intensity. The gas pressure was 750 mTorr.



Chapter 5

Introduction to Waveguide Arrays

The last chapter demonstrated the many wonderful experiments one can per-

form using a mode-locked fiber laser. These experiments were successful, in large

part, due to our precise control of the fiber laser repetition frequency (frep and

fo). The next half of this thesis will address a way to achieve another important

goal that we have for mode-locked fiber lasers: a robust mode-locking mechanism.

The technology used in the lasers of the previous chapters (APM-NPR) is robust

in a long timescale operation sense, but not in an environmental sense. To make

this clearer, consider the following example: one of the NPR mode-locked lasers

in our lab has been running virtually non-stop for my entire graduate career (6

years), but if I were to move the laser box the slightest amount the mode-locking

would surely stop. To mode-lock the laser again could take a few minutes, a few

hours, or even a few days. This is a frustrating point for those interested in using

the fiber laser as a tool outside of a lab environment. Even for those working in

laboratories a more robust system could prevent lots of time being wasted trying

to find the right polarization for mode-locking. In the following chapters, we will

introduce and characterize a new type of effective saturable absorber known as

waveguide arrays for use as a robust mode-locking mechanism.

The response time of the NPR saturable absorber technique is essentially

instantaneous, thus the pulse duration is only fundamentally limited by the gain
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bandwidth of the laser. However, there are several downsides to NPR mode

locking including the environmental sensitivity of the laser and the problem of

finding the initial mode locking state by a random walk in polarization space.

The problem of finding the initial mode locking state is alleviated somewhat in the

Kerr lens mode locking of the Ti:Sapphire laser. In that laser, the experimenter’s

goal is to mis-align the cavity for cw operation, while making the pulsed operation

more gain favorable. Thus, there is a recipe for mode-locking and less time is spent

wandering around in a random polarization walk. However, the Ti:Sapphire laser

also has sensitivity issues and can drop out of mode locking with relatively modest

perturbations. Using a saturable absorber based on a totally different mechanism

(waveguide arrays), it appears that we can combine the good aspects of a KLM

laser with a robust fiber system that is polarization insensitive [89].

5.1 What are Waveguide Arrays?

Perhaps the most well known waveguide device is an optical fiber. Light

can be coupled into the optical fiber and guided with extremely low loss (<0.2

dB/km) via total internal reflection. If you bring the cores of two optical fiber

close together (i.e. to within a distance ∼ wavelength of guided light), the light

contained in the fibers will slosh back and forth between the two cores over some

characteristic distance (known as the coupling length). This power coupling is

due to the evanescent wave that exists outside of the core region. This technique

has been used to great practical success in optical fiber splitters, where the input

light power is split into two output ports. The ratio of the power between the two

outputs is simply controlled via the distance between cores or the length of the

interaction between the two cores.

The amount of coupling in this interaction is dependent on the propagation

constants (β1,2) of the two waveguides. If β1=β2 (i.e. the phase velocities are
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equal), the light field in one waveguide will completely couple over to the neigh-

boring waveguide (a scenario known as phase synchronism). If β1 6= β2, the light

field will only couple partially between the two waveguides. A phenomenological

model of this is easily constructed with two coupled differential equations:

dA1(z)

dz
= iβ1A1 + iκA2 (5.1)

dA2(z)

dz
= iβ2A2 + iκA1 (5.2)

where A1(2) is the field amplitude in waveguide 1(2) as a function of prop-

agation distance z, and κ is the coupling constant between the two waveguides.

Note that κ 6=0 only if the the waveguides are separated by a distance of a few

wavelengths. If we begin with the initial conditions that we launch all of the

power into the 1st waveguide, then A1(z=0)=1 and A2(z=0)=0. The resulting

power versus propagation plots are shown in Fig. 5.1, with part (a) showing the

case for equal propagation constants, and (b) showing the unequal case.

The scenario we have just analyzed is the case for the smallest array of

waveguides possible. While the math becomes more involved as we go from two

waveguides to 10’s of waveguides, the basic ideas stay the same: if the propaga-

tion constants are all equal then power flows freely between the waveguides, if the

propagation constants are not equal this interaction is quenched. The next ques-

tion then is, how can we selectively change the propagation constant? The answer

to this question lies in the fact that index of refraction is, in general, intensity

dependent due to the nonlinear coefficient n2 and is given by:

n(I) = n0 + n2I (5.3)

where n0 is the usual refractive index and I is the intensity in the medium.



99

0

0.5

1

N
or

m
al

iz
ed

 P
ow

er
 [a

rb
.u

.]

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

Propagation length [mm]

Waveguide 1

Waveguide 2

(a)

0

0.5

1

N
or

m
al

iz
ed

 P
ow

er
 [a

rb
.u

.]

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

Propagation length [mm]

Waveguide 2

Waveguide 1

(b)

Figure 5.1: Power versus propagation distance for two cases. In both cases, light
is launched initially into waveguide 1 (i.e. A1(z = 0)=1 and A2(z = 0)=0). (a)
Power distribution for equal propagation constants β1=β2. (b) Power distribution
for two waveguides with unequal propagation constants. In this simulation, β1

was 10% greater than β2.
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This means that the propagation constant is intensity-dependent, and β(I) =

ωn(I)
c

. Thus, if we launch a low intensity field into a single waveguide, we can expect

a broad field distribution at the output of the array due to the coupling between

adjacent waveguides. However, if we launch a high intensity field into the same

waveguide, the field will change its propagation constant relative to the neighbor-

ing waveguides effectively shutting off the power coupling. The field distribution

at the output in this scenario will be localized around the input waveguide.

These two processes (the spreading and localizing of the power distribution)

are discrete forms of the more well-known continuous phenomenon of diffraction

and self-focusing. In the literature, the low intensity scenario described above is

referred to as discrete diffraction, while the high intensity scenario is called discrete

self-focusing [90]. The reader may already be seeing a connection between this

discussion and the mode locking mechanism of the Ti:Sapphire laser system. In

the next section I will expand on this idea and introduce a medium (AlGaAs) in

which to build this effective saturable absorber.

5.2 Waveguide Arrays and Mode-Locking

The principle of operation of a waveguide array as a mode locking mech-

anism is essentially a discrete version of the KLM mode-locking of Ti:Sapphire

lasers. When several identical waveguides are separated spatially by a distance

that is on the order of the wavelength of light, evanescent-wave coupling occurs.

This results in the input field experiencing discrete diffraction. However, when

the light in the waveguide reaches a high intensity, the nonlinear index becomes

significant and effectively shuts off the coupling to neighboring waveguides. By

coupling the center waveguide to a laser cavity, we have an intensity discrimi-

nator. The low intensity (cw) fields will experience high loss due to the outer

waveguides being uncoupled to the laser cavity, while the high intensity (pulsed)
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fields will experience less loss due to the self-focusing effect and the coupled center

waveguide. Because this process relies on the nonlinear index of refraction of the

medium, the effective saturable absorber is as fast as the NPR saturable absorber

(i.e. ≈ a few optical cycles).

The waveguide arrays we will be discussing are rectangular waveguides com-

posed of 3 layers of Aluminum-Gallium-Arsenide (a III-IV semiconductor) grown

by molecular-beam epitaxy (MBE) on top of a Gallium-Arsenide substrate. The

vertical confinement is provided by a core layer of Al0.18Ga.82As with an index of re-

fraction of ncladding = 3.343, and an upper and lower cladding layer of Al0.24Ga.76As

with an index of ncladding = 3.312 (see Fig. 5.2). The lateral confinement is pro-

vided by etching ridges into the top cladding layer, which effectively writes a

periodic index profile in the lateral dimension [91]. This sort of device can be con-

structed in a different media such as silica (i.e. optical fiber). However, AlGaAs

has a major advantage in that its nonlinear coefficient (n2) is roughly three orders

of magnitude higher than that of silica. This means that self-phase modulation

and thus discrete self-focusing can occur at relatively low peak intensities (≈500

W/cm2).

Also of importance is the ability to tune the semiconductor band gap via

aluminum alloy concentration. Previous work on these devices demonstrated [92]

that the alloy concentrations mentioned above minimized multi-photon absorp-

tion, a crucial point for application in a mode-locked laser cavity (a discussion of

this can be found in Chapter 6).

5.3 Testing the Saturable Absorber Properties

From a mode-locking perspective, the waveguide array seems to be a good

candidate for a fast saturable absorber due to the spatial effects [93, 90, 94, 95].

In fact, the physics that determines the spatial profile of the transmitted beam
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Figure 5.2: The waveguide array. Two vertical cladding layers provide index
guiding in the vertical dimension, while the ridges in the top cladding layer provide
guiding in the horizontal direction. The guided mode has an ellipticity of 2.7 and
an effective mode area of 19 µm2.
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is quite rich and suitable to theoretical treatment via the discrete nonlinear

Schroedinger equation. This nonlinear equation can be tailored to include many

physical processes that are present in the waveguide array such as discrete diffrac-

tion, normal dispersion, and self-phase modulation. Many novel spatial phenom-

ena have been demonstrated using a waveguide array including discrete spatial

solitons [93, 90], discrete modulational instability [94], and optical discrete sur-

face solitons [95].

Despite the fact that most of the early experiments on waveguide arrays

used pulses to achieve the necessary peak powers, temporal effects were initially

largely ignored. Clearly, for application as a saturable absorber in a mode-locked

laser the temporal effects on the pulse by the waveguide array must be understood.

This situation led us to perform the first precise time domain measurements of

pulse shaping in waveguide arrays [11]. In the following experiment, we carefully

examined how the pulse shape in each waveguide depends on peak power of the

input pulse using intensity autocorrelation. The output of the central waveguide

showed significant shortening for high peak power due to attenuation of its lower

power wings, as predicted in 2005 [96]. Simulations of the governing coupled-mode

equations corroborate the observed experimental pulse-shaping results.

5.3.1 Theory of coupled modes

Coupled-mode theory provides an analytic reduction of the governing equa-

tions describing the propagation of electromagnetic energy in waveguides and

waveguide arrays [97]. The theory assumes that the electromagnetic field is local-

ized transversely in each waveguide and that the exchange of energy between the

waveguides can be accurately modeled by an evanescent, linear coupling. When

intense electromagnetic fields induce a self-phase modulation effect, coupled-mode

theory can be modified to include the nonlinear index of refraction [93]. The result-
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ing nonlinear coupled-mode theory agrees well with experiment [90, 98, 99, 100].

To leading-order, the nearest-neighbor coupling of electromagnetic energy in the

waveguide array is included in the discretely coupled nonlinear Schrodinger equa-

tions (DNLSE):

i
∂An

∂z
− β′′

2

∂2An

∂t2
+ γ|An|2An + c(An+1 + An−1) = 0. (5.4)

where An represents the normalized electric field amplitude in the nth waveg-

uide (n = −N, · · · ,−1, 0, 1, · · · , N and there are 2N+1 waveguides). For the sim-

ulations in later sections we assumed a linear coupling coefficient of c = 0.82 mm−1

and the nonlinear self-phase modulation parameter to be γ = 3.6 m−1W−1. The

parameter β′′ = 1.25 ps2/m is the experimentally measured chromatic dispersion

in the waveguide array. The simulations of eqn. (5.4) of the next sections are per-

formed with 41 (N = 20) waveguides [100] for various launch powers that match

experimental conditions. A pseudo-spectral method was implemented that spec-

trally transforms the time-domain solution and uses a fourth-order Runge-Kutta

for propagation in the waveguide.

5.3.2 Experimental System and Measurements

To generate the input pulses, we used a conventional mode-locked, Erbium

doped fiber laser with a repetition rate of 25 MHz (operating at 1550nm) and a

chirped-pulse amplifier/compressor system (see Fig. 5.3). Using dispersion com-

pensating fiber (DCF), the normally chirped pulses from the fiber laser were fur-

ther broadened to several picoseconds to avoid nonlinearities in the amplifier.

These stretched pulses were then coupled to a bi-directionally pumped Erbium

amplifier [101], which increased the pulse energy by a factor of 7, while maintain-

ing the original pulse shape. The output of the amplifier was temporally com-
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pressed/stretched in free-space by a diffraction grating compressor [102]. This

compressor allowed us to achieve autocorrelation widths of several ps down to 200

fs. For this experiment, the compressor was adjusted to produce 600 fs pulses

(FWHM as measured by autocorrelation), which are normally chirped and 3.8

times the Fourier transform limit. The output pulse energy was 3.5 nJ.

The pulses were coupled into the waveguide array using standard microscope

objectives (40x) mounted on 3-axis stages. The input field was mode matched to

the waveguide with a coupling efficiency > 50%, corresponding to a peak power

of 1.5 kW. The waveguide array had a 10 µm center-to-center spacing between

waveguides, with 1.5 µm tall ridges and 4 µm wide waveguides.

To verify that discrete self-focusing was occurring and to estimate the cou-

pling coefficient between adjacent waveguides, the output power distribution of

the array was measured as a function of input power (see Fig. 5.4). The energy

localizes in the center waveguides for high power due to discrete self-focusing in

the waveguide array [90]. At low power, the input light easily couples to neigh-

boring waveguides and thus yields a nearly uniform power in each waveguide at

the output end.

To measure the temporal reshaping effects of the waveguide array, back-

ground free autocorrelations were performed on the output of each waveguide.

The autocorrelation measurements were performed in the crossed-beam geome-

try with a thin BBO crystal used for Type-1 second harmonic generation (SHG).

A translation stage provided a scanning delay, while a 16-bit digitizer recorded

the SHG signal detected by a photomultiplier tube. To increase the signal-to-

noise of the measurement we also employed lock-in detection by chopping the

beam just before it entered the autocorrelator. The data traces were continuously

scanned and averaged. For reference, an autocorrelation of the input pulse was

also recorded.
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Figure 5.3: Experimental setup. The output of the fiber laser is broadened by
dispersion compensating fiber (DCF) to avoid nonlinearities in the amplifier. The
grating compressor is tuned to produce a 600 fs pulse. The variable power control
consists of a half-wave plate and a polarizer. A temporal intensity autocorrelation
of the output pulses is recorded using a photomultiplier tube (PMT).
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Figure 5.4: Measured power distribution of the output of the waveguide array. At
low peak power the energy is delocalized and has a Bessel function dependence
(dashed red line) on waveguide number. As the peak power of the launched
pulse is increased, the power distribution shifts from the Bessel distribution to
a localized distribution. The waveguide modes located symmetrically about the
central waveguide had a symmetrical power distribution (not shown).
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Fig. 5.5 shows the pulse reshaping effects of the waveguide array at each of

the input powers, with experimental results on the left and a numerical simulation

(provided by our theory collaborator: Nathan Kutz) of eqn. (5.4) on the right. At

a peak power of 400 W, the output pulses from the central and outer waveguides

were essentially identical to the input pulse (Fig 5.5-(a) and (d)). In this regime

the γ term of eqn. 5.4 is negligible. The weak pulse launched into the center

waveguide evanescently couples to neighboring waveguides. Thus, at the output

multiple copies of the input pulse can be observed in each waveguide. As the

input peak power is increased to 720 W ((b) and (e)), the pulse reshaping of

the central waveguide begins to emerge. At the highest input peak power (1.5

kW) the γ term in eqn. (5.4) becomes non-negligible and the peak of the pulse

decouples from neighboring waveguides. Meanwhile, the low intensity wings of the

pulse are coupled to the nearest neighbor waveguides. The result is a shortened

pulse in the center waveguide with the wings removed in agreement with the

predicted nonlinear pulse shortening [96, 89]. Fig. 5.5-(c),(f) shows the output

of the waveguide array at high power. The triple peaked autocorrelation of the

outer waveguides in Fig. 5.5-(c),(f) is evidence of a double peaked pulse shape.

The experimental results agree well with the numerical simulation at each power

level.

Taking a closer look at the central waveguide pulse shape as a function of

input power (Fig. 5.6) shows the reshaping increases strongly at high peak power.

In Fig. 5.6, a 600 fs pulse was launched into the central waveguide and the output

autocorrelation of the central waveguide was measured as a function of input

power. The output pulse for the highest power case shows a pulse width of less

than half that of the input pulse.
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Figure 5.5: Autocorrelation signal versus waveguide number, with experimental
results on the left ((a)-(c)) and theoretical simulations on the right ((d)-(f)). The
three power levels shown correspond to those in Fig. 5.4, with (a) and (d) at 400
W, (b) and (e) at 720 W, and (c) and (f) at 1.5 kW. Pulse shortening in the center
waveguide is observed in the 720 W and 1.5 kW cases. The autocorrelations are
offset vertically for clarity, with the central waveguide being the lowest and the
outer waveguides plotted sequentially higher on the vertical scale.
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Figure 5.6: (color online) Output autocorrelation of central waveguide for input
powers of 400 W, 720 W, 1 kW, and 1.5 kW. The inset shows the autocorrelation
FWHM as a function of input power. The dotted trace is an autocorrelation of
the input pulse.
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5.3.3 Dispersion Measurement of the Waveguide Array

To confirm that the pulse shaping we observed was due solely to nonlinear

effects in the waveguide array we had to check the effects of chromatic dispersion

in the waveguide array. However, the fabricators of this device had little interest

in knowing the chromatic dispersion and thus getting a number for this quantity

was difficult. Thus, we decided to measure it ourselves by building a white-

light interferometer [103, 104]. The white-light interferometer uses a He-Ne laser

to calibrate the time axis of the data for a Fourier transform which allows for

high precision measurements of the dispersion in the material. As summarized

in Fig. 5.7, we found that the overall GVD of the waveguide was around +1500

fs2/mm (i.e. normal).

This measurement helped make a very strong case for the validity of the

nonlinear chopping effect we observed. First of all, and perhaps the strongest

point, the input pulse was chirped with the same sign as the dispersion of the

waveguide material. Thus, if anything, one would expect the pulse to broaden in

time. Secondly, given the length of the waveguide array and the spectral width

of the input pulse, dispersion should only change the pulse length by around

60 fs, well below the change observed (>300 fs). And finally, a purely dispersive

compression [96] would be independent of the peak power in the waveguide. Thus,

the white light interferometry measurement confirmed that the pulse shaping was

due to the self-focusing/discrete-diffraction effects in the waveguide array.

5.4 Conclusions

This experiment was the first observation of nonlinear pulse shortening in

a waveguide array. From this measurement, the idea of using a waveguide array

as a saturable absorber seems to be possible. This phenomenon could also have
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Figure 5.7: White light interferometer measurement of the waveguide array de-
vice showing the group-delay dispersion versus wavelength for several independent
measurements (the thick red line is the average of all the measurements). The
slope of this plot yields the third-order dispersion (TOD). We found that the
waveguide array had a GVD of around 1500 fs2/mm at +1550 nm. This overall
dispersion is dominated by chromatic dispersion, with the waveguide dispersion
coming in at ∼ +100 fs2/mm.
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a wide range of applications involving pulse reshaping for long distance telecom-

munications. In this scenario, the fidelity of the pulses broadened by dispersion

in the fiber could potentially be regained via the chopping mechanism as only the

highest intensity parts (i.e. peaks) of the pulses would be transmitted. In the next

chapter, I will discuss two measurements we performed on the waveguide array

to examine multi-photon absorption in the AlGaAs and to investigate the pulse

shaping in terms of the full electric field.



Chapter 6

Multi-Photon Absorption and Spectral Phase Clamping

In this chapter, I will discuss two important and perhaps surprising phe-

nomenon that we observed in waveguide arrays. The first topic is multi-photon

absorption in the AlGaAs material [92]. It is important to fully map out the

intensities at which this effect becomes significant as multi-photon absorption

represents an inverse saturable absorber (i.e. losses increases with intensity). A

clean measurement of the effect of multi-photon absorption via power measure-

ment through an individual waveguide is difficult due to the coupling between

waveguides. Thus, a full power distribution measurement at the output is re-

quired. In the experiment described below we measure the power distribution

at the output of the waveguide array for various input powers at various input

chirps. We find that the discrete spatial soliton distribution becomes clamped

at high peak intensity, with virtually no change in the output power distribution

once the intensity is increased above the threshold value.

The second experiment in this chapter involves a measurement of the full

electric field (amplitude and phase) of the pulses in the central waveguide via

Frequency-Resolved Optical Gating (FROG). Surprisingly, the waveguide appears

to set the spectral phase of the pulses to a specific value, regardless of the input

chirp. This aspect of the waveguide arrays could lead to application as a novel

pulse compression system.
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6.1 Discrete Spatial Solitons

A discrete spatial soliton (DSS) is a spatial power distribution that remains

unchanged over propagation. This type of soliton has been intensely researched

over the last 20 years. Beginning with their theoretical prediction in 1988 [93],

and the first experimental observation in 1998 [90] in AlGaAs waveguide arrays,

it has been shown that discrete spatial solitons have some fundamental differences

with their continuum counterparts [105, 99]. In particular, discrete solitons can be

formed that are insensitive to angular perturbations on the input light field. Less

stable solitons will shift their power distribution laterally across the array as the

soliton propagates if there is a slight perturbation on the input angle. This shifting

is not observed for continuum solitons as they possess rotational and translational

invariance. The novel dynamics of such discrete solitons has generated interest for

soliton steering, which could have wide ranging applications in optical switching

and optical computing. Another fundamental difference between the continuum

solitons and discrete solitons is the ability of the discrete soliton to be either bright

or dark. This fact is due to the ability of the waveguide array exhibit either normal

or anomalous diffraction [105]. Mathematically, we can describe the DSS using

the discrete nonlinear Schrödinger equation (DNLSE) from Ch. 5.

Solutions of the DNLSE for the waveguide array show that, at high power,

discrete spatial solitons form [93]. In the following experiment, we examine the

evolution of the DSS power distribution as the power incident into the waveguide

is increased to levels that induce heavy multi-photon absorption.

6.2 Multi-photon absorption theory

Apart from the features mentioned in the last chapter, AlGaAs allows for

band gap engineering via changing the alloy concentration. At room temperature
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(T = 300K), the band-gap energy for AlxGa1−xAs is Eg(x) = 1.424 + 1.247x

[eV] (where x < 0.45) [106]. For alloy concentrations of x > 0.45, the band gap

becomes indirect. By changing the alloy concentration we have the ability to move

the band gap energy around so that multi-photon absorption is minimized at a

given wavelength [92]. In particular, an alloy concentration of x=0.18 yields a half

band gap energy (1.65 eV) for which two photon absorption (at 1506 nm) is just

out of the range of the telecommunications C band (1530 to 1565 nm). Although it

has been shown that this kind of band-gap engineering can eliminate the effects of

two-photon absorption (2PA) and minimize the effects of three-photon absorption

(3PA), at very high intensities multi-photon absorption invariably becomes non-

negligible. Theoretically, we can describe the total absorption coefficient α as the

sum of the absorption coefficients from the various multi-photon absorptions:

α = α1 + α2I + α3I
2 (6.1)

where α1 is the linear absorption coefficient (∼0.1 cm−1), α2 is the two-

photon absorption coefficient(∼ 0.04 cm/GW), and α3 is the three-photon ab-

sorption coefficient (∼ 0.05 cm3/GW2). Using the Erbium fiber laser and am-

plifier system from the previous chapter, we were able to reach intensities of 24

GW/cm2 in the waveguides. At this intensity level, multi-photon absorption in

the waveguide was visible. In the the next section, I will examine the effect of

3PA on discrete spatial solitons and show that 3PA effectively clamps the output

power distribution of the discrete spatial soliton; with further increases in input

power having almost no effect on the output distribution.

While this phenomenon is not yet fully understood, we are working on

simulations to aid in understanding. Physically, light in the central waveguide

self-focuses tighter at higher power but also undergoes more nonlinear absorp-



117

tion. As the average power is increased and more light is coupled into the central

waveguide, the outer waveguides also receive more energy due to the evanescent

coupling. This experimental observation is explained by the fact that we cannot

change the relative propagation constants enough to completely shut off nearest-

neighbor coupling. Thus, the outer waveguides still grow in energy (and experience

no 3 photon absorption) while the power in the central waveguide increases at a

reduced rate due to the 3 photon absorption. The net effect of this is that the

relative power distribution does not change beyond a certain intensity level.

6.3 Experimental Setup and Results of the Three Photon Absorp-

tion Measurement

The pulses that were launched into the waveguide in this experiment were

generated using the same mode-locked, Erbium doped fiber laser and amplifier

that was used in the last chapter. The pulses were coupled into the waveguide

array using standard microscope objectives (40x) mounted on 3-axis stages. The

input field was mode matched to the waveguide with a coupling efficiency >

50% (excluding Fresnel losses), and we again used a waveguide array with 10

µm center-to-center spacing between waveguides, with 1.5 µm tall ridges and 4

µm wide waveguides. The objective lens focused the input beam to around 20

µm2, which is roughly equal to the area of one waveguide mode. This tight focus,

together with the highest peak power from the compressor systems, yielded a peak

intensity of 24 GW/cm2.

Initial results were obtained by tuning the compressor such that the floure-

sense from the waveguide was at a maximum and measuring the resulting power

distribution. A 3-dimensional plot of this power distribution measurement is

shown in Fig. 6.2-(a). Adding a three-photon absorption term to the DNLSE

resulted in good theoretical matching with experiment (see Fig. 6.2-(b)). After
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Figure 6.1: Experimental Setup for the three photon absorption measurement.
The power at the output of the waveguide is apertured (to restrict measurement
to individual waveguides) and measured on a photodiode. The photodiode is
mounted on a translation stage oriented perpendicular to the direction of light
propagation. This signal is then digitized and stored on a computer.
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this measurement, we set out to get a full picture of the multi-photon absorption

as a function of peak intensity at three different input chirps.

We began by tuning the compressor to deliver a rather broad pulse with

normal chirp. An autocorrelation of this pulse is shown in Fig. 6.3-(a). The

structure on the pulses from the compressor is mainly due to self-phase modula-

tion in the erbium doped amplifier. This pulse was coupled to one waveguide in

the array, and the resulting power distribution at the output was measured (see

Fig. 6.3-(b)). Self-focusing overcomes discrete diffraction at roughly 7 GW/cm2.

Beyond this point, the central waveguide dominates the power distribution. From

Fig. 6.3-(b), however, we cannot definitely say that the power distribution of the

discrete soliton is clamped to a fixed distribution. It does appear that the distri-

bution is headed that way, but our intensity levels are not high enough to make a

strong case.

To achieve higher intensity levels, we adjusted the compressor so that it

produced the shortest output pulse (i.e. GDD ≈ 0 fs2). The shorter pulse allows

(see Fig. 6.4-(a)) us to reach an intensity of 24 GW/cm2. An identical power

distribution scan was then performed for this shorter input pulse, and the results

can be seen in Fig. 6.4-(b). As will be demonstrated later, the higher intensity

access allows us to see the distribution clamping in effect.

We then tuned the compressor so that it delivered anomalously chirped

pulses to the waveguide array. This input pulse is shown in Fig. 6.5-(a). The

power distribution for this pulse is shown in Fig. 6.5-(b). The data appears to

show a slightly higher level of clamping than the normally chirped pulse. While

this pulse is roughly as long temporally as the pulse in Fig. 6.3-(a), the sign

of the chirp is opposite. Since the waveguide array presents normal dispersion,

this input pulse must recompress slightly due to chromatic dispersion. Thus, the

anomalously chirped pulse will remain shorter inside the waveguide array and
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Figure 6.2: (a) 3d plot of the theoretical power distribution (left), theoretical
distribution with 3PA (middle), and experimental distribution (right). (b) 2d
plot of the distributions for two high power levels. This measurement was the
first indication that power clamping was occuring in the waveguide array.
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Figure 6.3: (a) Autocorrelation of the normally chirped input pulse, and (b) the
resulting 3D power distribution as a function of peak intensity. At low input
power, the power distribution is spread out and the outer waveguides actually
have more power than the central waveguide. However, as the input power is
increased, discrete diffraction gives way to self-focusing and the central waveguide
eventually dominates the power distribution.
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Figure 6.4: (a) Autocorrelation of the shortest input pulse, and (b) the resulting
3D power distribution as a function of peak intensity. As the input peak power is
increased, the relative power distribution clamps to a set distribution. The overall
power of this distribution still increases slightly, but the relative distribution is
fixed (see Fig. 6.6).
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undergo a higher level of 3PA than a normally chirped pulse of the same length.

To make a clear and direct comparison between all of the cases studied

above, Fig. 6.6 plots a power ratio of the power in the neighboring waveguides

divided by the power in the central waveguide. Thus, if clamping does indeed

occur, the ratio should level off to some set value. As can be seen in Fig. 6.6,

this effect occurs relatively early in the power scan for the shortest input pulse.

This ratio for the anomalously chirped pulse moves toward the asymptote at a

slightly higher average power than the shortest input pulse, while the ratio for the

normally chirped pulse just barely reaches the asymptote.

Perhaps the most surprising part of this plot is how well the shapes of the

ratios for symmetric waveguides match up. I should also note that the red curve

here has a high enough peak power that the little bump indicative of the transition

from discrete diffraction to self-focusing (see blue and green curves) is shifted off

to the left. In other words, even the lowest intensity points of this data are in the

self-focused regime.

In conclusion, the distribution of power in the discrete spatial soliton reaches

a set point when the three photon absorption is strong. For chirped pulses you

simply have to go to high average power (and thus high peak power) to see the

effect. By looking at three different input chirps and calculating the power ratio

as we have done, an asymptote line becomes clear, and all three chirps approach

it from different slopes. The peak intensity that is needed to reach this asymptote

is around 13 GW/cm2. The effect of 3PA on the discrete spatial soliton will be

useful for cavity design of a mode-locked laser utilizing waveguide arrays. Also,

the power clamping effect may find application as a power locking device to be

used just before an amplifier. The large downshift in power fluctuations due to

the 3PA in the waveguide array would serve to reduce amplitude noise on the

optical field before it is amplified.
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Figure 6.5: (a) Autocorrelation of the anomalously chirped input pulse, and (b)
the resulting 3D power distribution as a function of peak intensity.
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6.4 Chirp effects on self-focusing

To characterize the self-focusing as a function of peak power at various

input chirps, we scanned the pulse compressor through its entire range while

recording the power distributions. This measurement of self-focusing versus chirp

is summarized in Fig. 6.7. As expected, at the shortest input pulse, the multi-

photon absorption is dominant and creates a relative power minimum. The peaks

to the left and right of the minimum represent the best self focusing for anomalous

(left peak) and normal (right peak) chirp on the input pulse. As the chirp is further

increased, the peak power is reduced and the self-focusing begins to spread out.

For application as a mode-locking mechanism, this measurement will help design

the dispersion map of the cavity.

6.5 Spectral Phase Clamping

This section covers an experiment aimed at measuring the full electric field

shaping due to the waveguide array. In the previous chapter we examined this

shaping in terms of an autocorrelation measurement. This type of measurement,

while useful for getting a qualitative picture of the physics occurring, has several

drawbacks. First of all, the autocorrelation is a convolution of the intensity profile

of a pulse with itself, thus it is always symmetric even if the real pulse is not

symmetric. Also, the autocorrelation is a phase insensitive technique. Thus, we

do not get a clear picture of how the waveguide array is effecting the spectral

phase of the pulses. A much better method of characterizing the pulse shaping

effects of the waveguide array is Second Harmonic Generation-Frequency Resolved

Optical Gating (SHG-FROG) [107]. This technique involves recording a spectrally

resolved autocorrelation (see Fig. 6.8), or spectrogram (Spectrum vs. Time Delay).

The information contained in the spectrogram is sufficient to retrieve the full pulse
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Figure 6.7: Relative output power versus input pulse chirp for the highest average
power available. The vertical line indicates the minimum due to multi-photon
absorption. The two peaks on either side of the minimum show that tight self-
focusing occurs for both anomalous and normal chirp. Moving beyond these peaks,
the pulse begins to spread out to a level at which the self-focusing degrades due
to the lower peak power of the pulse. In principle, a higher average power would
shift the peaks further away from the center minimum.
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shape and phase. We employed a commercial computer algorithm to analyze the

spectrograms and retrieve the electric field amplitude and phase.

Using the FROG system, we explored the extended parameter space of chirp

and average power by carefully examining the waveguide array’s effect on the full

electric field of an ultrashort pulse as a function of these variables. Surprisingly,

we find that the waveguide array has the ability, at sufficiently high peak power,

to set the output pulse’s chirp to a fixed value, irregardless of the chirp on the

input pulse. The input pulses were again generated using the system found in

Fig. 6.8. This system produces pulse energies of 3.5 nJ and allows us to change

the pulse chirp from normal (+200,000 fs2) to anomalous (-100,000 fs2).

The first test of this system was to reproduce the shortening results of the

previous chapter. Accordingly, we tuned the compressor to the same setting and

measured the spectrogram as a function of input peak power (varied using the

variable power controls of Fig. 6.8). The spectrograms were then analyzed using

the FROG inversion algorithm to produce the electric field envelopes seen in

Fig. 6.8. This plot gives us a much clearer view than the autocorrelation of what

is happening to the pulse in the central waveguide. As the input peak power is

increased, the structured input pulse (which is not shown but is equivalent to the

envelope shown in the leftmost pane) is transformed into a shortened and truly

symmetric electric field. With this confirmation, we moved on to measuring the

pulse shaping effects as a function of pulse chirp.

To get an accurate picture of how the waveguide array was affecting the

spectral phase, we first mapped out the range of electric fields from the compressor.

By tuning the distance between gratings in the compressor system we varied

the pulsewidth over a wide range as shown in Fig. 6.10. As is shown in the

figure, the retrieved spectral phase yielded maximum and minimum GDD values

of +200,000 fs2 to -100,000 fs2, respectively. We then systematically coupled each
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Figure 6.8: Experimental setup. The output of the fiber laser is broadened by
dispersion compensating fiber (DCF) to avoid nonlinearities in the amplifier. The
grating compressor allows tuning of the chirp for the input pulses. The variable
power control consists of a half-wave plate and a polarizer. Light in the central
waveguide is apertured and sent to a background-free SHG-FROG. The data
from the spectrometer (FROG trace) is stored on a computer and analyzed with
a commercial algorithm.
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Figure 6.9: Electric field envelope shortening in center waveguide as a function
of input peak power. This measurement confirms the pulse shortening effects of
the previous chapter’s autocorrelation data. At low power, the highly structured
input electric field is basically unchanged after propagation through the center
waveguide (leftmost plot). However, as the peak power is increased the pulse
shaping in the center waveguide begins to take hold and clean up the wings of
the pulse. At the highest power, the output electric field is clean and symmetric
(rightmost plot).
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of these fields (at the highest average power available) into the waveguide array

and measured the field that emerged from the central waveguide. The results of

this measurement are shown in Fig. 6.11. The effect of the waveguide array is

clear, it chops the pulses in the time domain roughly the same amount regardless

of input chirp. As Fig. 6.11 shows, this electric field reshaping occurs over a wide

range of input chirps.

Since this reshaping phenomenon is explained by a power dependent process,

we investigated the chopping effect of the central waveguide at several average

power levels. The data from this experiment, which is summarized in Fig. 6.12,

show the chopping effect in the frequency domain rather than the time domain.

Viewing the phenomenon in this domain is instructive as it tells us the amount of

linear frequency chirp on the pulse’s spectral phase. With this knowledge we can

say how much spectral phase distortion the pulse has relative to its Fourier limit.

The lowest average power level shown (26 mW) corresponds to the threshold

of the self-focusing regime for this waveguide array. The reshaping phenomenon

vanishes at the lowest power, and the output chirp of the pulse in the central

waveguide closely follows that of the input chirp. At the medium power level

(45 mW), the reshaping is observed for all input chirps except for input chirps

beyond +130,000 fs2. At these chirp levels, the pulse is too stretched out in time

to achieve the necessary peak power to undergo full reshaping. Thus, the outlier

points rapidly move toward the input chirp from the compressor. At the highest

average power (60 mW), the waveguide array sets the output GDD to around

+17,000 fs2 for all inputs. Particularly interesting is that the waveguide array

does this for either sign of input chirp (normal or anomalous).

We can classify the effect of the waveguide array as a fixed point attractor

for the spectral phase. As the average power of the input pulses is increased,

the attraction towards a fixed point GDD (∼ +17,000 fs2) becomes stronger.
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Fig. 6.13 helps to visualize this statement. In this figure, the input average power

and spectral phase is plotted as a circle, and the vector arrow points toward the

output average power and spectral phase of the pulse in the central waveguide. For

the low average power case (26 mW), the spectral phase is relatively unchanged

for each pulse (Fig. 6.13-(a)). However, near the zero GDD point, the pulses still

have enough peak power to self-focus and hence the output GDD of the central

waveguide is attracted to the fixed point. As the average power is increased to

45 mW, the attractor pulls in more of the data points(Fig. 6.13-(b)). The pulses

around 10 mm, however, are still too long to cause self-focusing and thus do not

feel a strong attraction to the fixed point. At the highest average power (60 mW),

all of the input chirps are attracted to the fixed point(Fig. 6.13-(c)). The width

of the attraction region (∼several thousand fs2) is currently limited by error in

the FROG retrieval algorithm.

The physical mechanism behind this spectral phase attraction process is

currently unclear, but is being investigated via simulation. We believe this process

is not related to soliton-like pulse shaping due to the material dispersion of the

waveguide array being normal. Furthermore, the spectral phase attraction occurs

for either sign of input chirp, a characteristic not observed in the soliton case. A

full simulation of the electric field evolution will give us insight into the dynamic

evolution of the pulse in the waveguide array, which will be extremely useful for

understanding the mechanism driving this process.

6.6 Conclusions

The characterization of the waveguide for use as a mode-locking mecha-

nism is now complete. We have shown the waveguide array shortens the pulse

significantly in a single-pass through the waveguide array. We have thoroughly

investigated the effects of multi-photon absorption on the self-focusing in the
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Figure 6.13: A vector plot showing the spectral phase attractor. The attraction
region is denoted by the dashed lines. Part (a) shows data for the 26 mW average
power case, (b) is data from the 45 mW case, and (c) is data from the 60 mW
case. At high average power, all inputs go to the fixed point of +17,000 fs2.
Recent measurements have shown that a closer spaced array (i.e. higher coupling)
tends to lower the attraction region to a lower value of normal dispersion. Further
theoretical study is required to get a clearer picture of exactly how the attraction
region depends on coupling between waveguides.
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waveguide array. Finally, we have shown that the waveguide array has a spec-

tral phase attractor point that depends on the coupling between waveguides. In

future experiments we will use all of this knowledge to build a fiber laser cavity

with an intra-cavity waveguide array as the saturable absorber. This goal will

require some technical skill as we will need to construct our own waveguides pho-

tolithographic techniques (see Appendix B). We are well on our way towards

this goal, and have already demonstrated self-focusing in home-built devices for

several arrays with different waveguide spacings. The next technical challenge

will be to anti-reflection coat the input and output facets of the array. Once this

is successful, we will be able to put the waveguide array in our fiber cavity and

hopefully achieve mode-locking.



Chapter 7

Summary and Outlook

The underlying theme of this thesis is the development and application of

mode-locked fiber lasers. In terms of application of these lasers, I presented a

wide range of experiments we performed in which a mode-locked fiber laser was

crucial: synchronization of remotely located fiber lasers, broadband molecular

detection, high-field physics and high-order harmonic generation. While these

projects highlight the wide range of application of this type of laser, this list of

applications is still very small compared to the list of potential applications. Thus,

there is quite alot of interest in developing extremely stable, compact, and robust

versions of these lasers. Toward this end, we built and successfully mode-locked

a fiber laser with a fast intra-cavity actuator (EOM). This advance led to two

orders of magnitude reduction in the timing jitter noise of the laser. While this

laser was quite stable, it was hardly compact or robust in a mode-locking sense.

In fact, one week of my life was devoted to finding the mode-locking state after a

slight bump caused the laser to drop out of mode-locking.

To address the robustness issue we have turned to waveguide arrays, which

theoretically should be more stable than NPR lasers. During the process of study-

ing the waveguide arrays we discovered several interesting phenomena that we

think could have many applications. The first experiment we performed showed

pulse chopping in the center waveguide. This could have application in telecomm
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systems where pulse broadening leads to loss of data fidelity. The second ex-

periment we performed demonstrated a power distribution clamping effect on the

discrete spatial soliton. While these results are interesting for fundamental soliton

physics, we feel it could also lead to application as an amplitude-noise reducing de-

vice. In this scheme, a waveguide array placed before an amplifier would be driven

into highly non-linear absorption resulting in a clamped output. This stable out-

put could then be amplified. In the last experiment we demonstrated that the

waveguide array has a spectral phase attraction point. Thus, for spectral phase

the waveguide is a many-input/one-output device. The most obvious application

of this would be to build a pulse compression system based on waveguide arrays.

In this scenario the device would receive any initial spectral phase, convert that

to the attractor point spectral phase, then compress the pulse to its Fourier limit

(ignoring higher-order dispersion for the moment) by sending the pulse through

a pre-calculated length of material that completely cancels the attractor point

spectral phase. In this way, any input pulse with sufficiently high peak power to

induce self-focusing would be transformed into the shortest pulse possible for the

given bandwidth (ignoring higher-order dispersion).

Based on the results from the previous experiments there appears to be a

very good chance that we can achieve a mode-locked laser based on waveguide

arrays in the near future. In fact, a setup aimed at putting the waveguide array

in a fiber cavity is already well underway. If such a laser based on waveguide

arrays is successful, it will need a name. I would like to propose that we call it

a Waveguide Array Femtosecond Fiber Laser, or WAFFL. Perhaps in the near

future, a WAFFL will be in a lab near you.
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Appendix A

Matlab codes

A.1 A simple model of a mode-locked laser

The following code is a simple model for a mode-locked laser. This model

adds up the electric field modes of a cavity (note cavity parameters can be set

in the declaration section of the code), and computes the total intensity pattern.

The mode-locking process is modeled by adding a phase term to each cavity mode.

The user can choose to have an arbitrary amount of phase noise (set by the ’factor’

parameter) between comb components. A factor equal to 0 yields a perfect comb

structure, while a factor ≥ 2π yields random intensity fluctuations.

Em = 1; % Electric field amplitude

factor = 0; % noise factor (0 = phase locked, >> 0 large phase noise)

c = 3e8; % speed of light

L = 1.5; % cavity length

FSR = c/(2*L); % free spectral range of the cavity

t = −27e−9:1e−12:27e−9; % go from −27 ns to +27 ns in steps of 1 ps.

total = 0;

Upper = 1.9355e14+80*FSR; % Upper frequency limit:

% c/lambda + % (80 comb modes * FSR)

for f = 1.9355e14:FSR:Upper % go from fundamental laser frequency to
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% higher freqs by steps of 1 FSR

phase = rand*factor; % calculate the phase for the mth mode

E = Em*cos(2*pi*f*t+phase); % calculate electric field for mth mode

total = total+E;

end

time = t./(1e−9);
plot(time,abs(total).ˆ2/max(abs(total).ˆ2))

xlim([−27 27])

A.2 Pound Drever Hall simulation

The following declarations define the modulation depth, carrier power, side-

band power cavity free-spectral range, reflection amplitude, and refelction coeffi-

cient, respectively.

β:=1.08

Pc:=N [BesselJ[0, β]2]

Ps:=N [BesselJ[1, β]2]

FSR:=
(3∗108)
2∗0.5

r:=.995

F [ω ]:=
r(Exp[ i∗ω

FSR ]−1)
1−r2∗Exp[ i∗ω

FSR ]

The following line allows the user to manipulate the modulation frequency

real-time. In the small modulation case, the error signal looks like the derivative
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of a resonance. In the large modulation case we get the classic PDH error signal:

Manipulate
[
Plot

[(
−2 ∗ √Pc ∗ Ps ∗ Im [(F [ω ∗ 109] ∗ Conjugate [F [ω ∗ 109 + Ω ∗ 106]]

−Conjugate [F [ω ∗ 109]] ∗ F [ω ∗ 109 − Ω ∗ 106])])/ 0.685, {ω,−.200, .200},
PlotRange → {−1, 1}, AxesLabel → {(ω − ω0) [GHz], ErrorSignal} ,

TextStyle → {FontSize → 23}, PlotStyle → {Thickness[0.005]}], {Ω, 1, 120}]

Fig. A.1 shows the PDH error signal when the modulation frequency is very

low (i.e. Ω ∼ 3MHz). For comparison, the figure in Ch. 2 is the error signal for

a modulation frequency of 110 MHz.
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Figure A.1: Simulation output for low modulation frequency (PDH).



Appendix B

Fabricating Waveguide Arrays

This appendix discusses the fabrication of the waveguide arrays. While

much of the data in this thesis was recorded using a waveguide array built outside

of JILA, the next generation of waveguide arrays used in the Cundiff lab will be

homemade. One of the nice properties of AlGaAs is that it lends itself to pro-

cessing via photolithography. To achieve waveguiding in the vertical dimension,

the AlGaAs wafer must be grown with varying layers of alloy concentration. The

recipe that appears to be best at minimizing multi-photon absorption is a core

layer of Al0.18Ga.82As with cladding layers of Al0.24Ga.76As. For lateral confine-

ment, photolithography is used to write ridges into the top cladding layer. It is

the purpose of this Appendix to describe the writing of these ridges into the wafer.

B.1 Growing the wafer: Molecular Beam Epitaxy

The wafer is typically grown via Molecular Beam Epitaxy (MBE), a process

invented in the 1960s at Bell Laboratories. In this process a heated crystalline

substrate (i.e. GaAs) is fixed in a high vacuum chamber, and effusion cells with

mechancial shutters are arranged around the substrate. The shutters can be

opened and closed to introduce the Aluminum, Gallium, and Arsenide atoms to

the chamber. The atoms, which have a large mean free path in the high vacuum

chamber and a large GaAs sticking coefficient, then stick to the surface of the
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substrate. A well controlled machine with a good vacuum can achieve mono-layer

precision using this process. Thus, the vertical guiding layers in our wafer can be

grown to exact thickness specification.

B.2 Processing the wafer

Once the wafer is grown, the waveguide array has to be written into the

wafer using photolithography. To achieve nice ridge profiles, each step in the

following process should be followed carefully. The first step is to cleave off a

smaller piece of the AlGaAs wafer from the main wafer. The wafer should be

grown in the (001) direction, meaning that the (001) vector is pointing up out of

the top of the wafer. The orthogonal directions (110) and (11̄0) will cleave nicely,

leaving a mirror like finish on the cleaved surface. To help understand how these

vectors relate to the acutal crystal orientation, we can use 3D models as seen in

the following figures. The following models show the lattice for GaAs (i.e. two

different atoms). AlGaAs is basically the same lattice, just with aluminum atoms

randomly placed at some of the nodes.

AlGaAs/GaAs is a form of the so-called zinc blende structure. These crystals

belong to the face-centered cubic lattice group. The orthogonal cleave directions,

(110) and (11̄0), are shown on the right hand side of Fig. B.1. Typically, if the

wafer is grown in the (001) direction, the major flat of the wafer will be either

(110) or (11̄0), while the minor flat will indicate the other direction. As will be

seen in the next section, these two directions have quite different etch properties,

so it is important to know the orientation of your wafer. A larger view of the

crystal is shown in Fig. B.2, the orientation of the bonds becomes clearer in this

picture as you can see many unit cells together.
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Figure B.1: Model of the lattice orientation of GaAs (top down view). The
orthogonal vectors for cubic symmetry are shown on the left (with the (001)
direction out of the page). The natural axis of the crystal is rotated 45◦ from the
cubic lattice vectors. These natural basis vectors are shown on the right.
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Figure B.2: Large view of the GaAs crystal. Looking down the 110 direction.
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B.3 Photolithography

Once the crystal is cleaved nicely, a standard degreasing procedure must be

performed. A typical degreasing process is: put the cleaved chip in an Acetone

soak (5 minutes), then Methonal soak (5 minutes), then de-ionized (DI) water

soak, then rinse chip under free flowing DI water, then spin-dry the wafer using

the photoresist spinner device. Once this process is complete, the chip can be

inspected for specs of dirt. If the surface appears to be free of any particles, then

the chip can then be baked at high temperature (i.e. 600 C). This removes any

moisture that is adsorbed by the surface of the AlGaAs.

The photoresist can then be spun onto the surface using the spin-coating

device. Using the Shipley S1813 positive photoresist, the spinner should rotate

at 3000 rpm for 45 seconds, producing a 1.3 µm layer of photoresist on the chip

surface (see Fig. B.3-(a)). Once the chip is coated properly, a soft bake should

be performed to drive away the solvent from the photoresist. This soft bake also

helps improve adhesion of the resist to the chip surface, and anneals the shear

stresses caused by the spin-coating. Typically, soft bakes times are on the order

of 1 minute.

The next step is to write a pattern in the photoresist using UV light (see

Fig. B.4-(b)). The photoresist polymers are 1000’s of molecules long. When ex-

posed to light, however, the polymers are broken up into chains of 10’s of molecules

and are thus much weaker. The developer essentially lifts off the photoresist at

different rates, with the weak polymer sections lifting off at a faster rate. The

chip should be put in the developer for around 40s to allow the exposed parts of

the photoresist to be lifted off completely.

After the device has reached the stage shown in Fig. B.4-(b), it is ready for

the hard bake. This bake hardens the remaining photoresist.
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AlGaAs surface

Photoresist

AlGaAs surface

Photoresist

Chrome mask UV light

(a)

(b)

Figure B.3: Schematic of the first step of patterning. (a) The photoresist is spun
onto the wafer, achieving a thickness of 1.3µm. (b) Patterning the photoresist.
The chrome mask is brought into soft contact with the photoresist, then the UV
light is fired and the exposed polymers of the photoresist are broken into smaller
chains of molecules.
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AlGaAs surface

AlGaAs surface

(a)

(b)

Figure B.4: Schematic of the second step of patterning. (a) The exposed parts of
the photoresist are then washed away using the developer chemical. (b) After de-
veloping, the remaining photoresist undergoes a hard bake to harden the material
for the etching process.



158

B.4 Etching

The last step in this whole process is wet etching of the AlGaAs (see Fig. B.5.

While it is possible (and perhaps even desirable) to etch the waveguides using a

reactive-ion etch (RIE) machine, a wet acid etch seems to work well enough and is

much less complicated. The wet etching formula that seemed to work well for the

devices made here at JILA was: 10 parts H2O, 1 part H2O2, and 1 part H2SO4

(Sulfuric Acid). An etch time of 60 seconds resulted in good coupling between

adjacent waveguides.

The etch direction has a significant impact on the waveguide profile. While

an RIE etch would in principle give a near vertical sidewall profile for etching

along either direction, the wet etch profile is very dependent on the etch direc-

tion. Etching along (110) direction gives a high aspect ratio sidewall profile (see

Fig. B.7), while etching along the (11̄0) direction gives an aspect ratio much closer

to one (see Fig. B.6).
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Figure B.5: Schematic of the last step of patterning. (a) Post-etch profile of the
waveguides. The wet etch eats away the AlGaAs and the photoresist at different
rates. The ideal situation (as shown) is to use an etch time that gives a nice
etch depth while not fully eating through the photoresist. (b) Final device profile.
After the wet etching, an organic solvent such as Acetone can be used to remove
the remaining photoresist.
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Figure B.6: Etching along the (11̄0) direction in AlGaAs. This direction gives a
v-groove type sidewall profile.
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Figure B.7: Etching along the (110) direction in AlGaAs. This direction gives a
nice sidewall profile. This is the etch direction that is used in our fabrication.


