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The ability to study ultracold atomic Fermi gases holds the promise of significant advances

in testing fundamental theories of many-body quantum physics. Of particular interest are strongly

interacting Fermi gases in the BCS to BEC crossover that exhibit a transition to a superfluid state

at temperatures near 0.2TF , where TF is the Fermi temperature. This transition, as a fraction of

TF , is extremely high compared to any known superfluid or superconductor. These gases are also

in a universal regime where the physics is independent of the details of the atomic interactions

and is therefore relevant to fields as diverse as condensed matter, nuclear physics and astrophysics.

In this thesis, I present an experimental probe of atomic gases that uses momentum-resolved RF

spectroscopy to realize an analog of angle-resolved photoemission spectroscopy (ARPES) in mate-

rials. This measurement reveals the energy and momentum of single-particle states in the strongly

interacting Fermi gas. In condensed matter, ARPES has proved to be one of the most powerful ex-

perimental techniques for studying the electronic structure of strongly correlated electron materials.

The ability to perform analogous measurements in ultracold Fermi gases constitutes a significant

advance in our ability to directly connect ultracold atomic gases to strongly correlated electron

systems. Taking advantage of this new measurement technique, I investigate a long-standing prob-

lem in the field of strongly interacting fermions, namely whether a pseudogap state consisting of

incoherent fermion pairs exists at temperatures above the critical temperature for superfluidity.

The photoemission data I present provide strong evidence for this state and have implications for

fundamental theories of strongly interacting Fermi gases and strongly correlated electron materials.

I also discuss the experimental confirmation of recently predicted universal relations for strongly

interacting Fermi gases, as well as some of the first experiments involving atomic Fermi gases with

p-wave pairing.
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Chapter 1

Introduction

The realization of Bose Einstein condensation in 1995 was a crowning achievement, marking

a major shift and a new direction for the field atomic physics [23, 24, 25]. To understand the sig-

nificance of this shift, we can briefly examine the history of atomic physics. Modern atomic physics

started at the beginning of the 20th century with, as the name implies, an effort to understand

the mechanics of an atom, the basic building block of all materials. It was at this time that the

failure of classical physics to explain the stability of the atom led to the revolutionary development

of quantum mechanics, and a golden age for atomic physics that spanned the 1910s and 1920s.

The new theory of quantum mechanics led to such rapid progress that, beginning with Planck in

1918, twelve of the next fifteen Nobel prizes were awarded for work in atomic physics. However,

at this point, the wild success of atomic physics became its downfall as physicists took the new

theoretical concepts developed to understand atoms and used them to begin the fields of nuclear

and particle physics, condensed matter and astrophysics. Indeed from 1933 to 1996, there were

only nine more Nobel prizes awarded in fields of traditional atomic physics. However, this drought

doesn’t tell the story of a major change that was slowly taking place in atomic physics, which was

moving away from developing theories of the mechanics of an atom, and towards controlling and

using atoms as ideal quantum systems. Much of this progress was enabled by the invention of

the laser in 1960, which gave scientists the ability to coherently and precisely control the quantum

states of atoms. Developments in the 1980s to control and entangle the quantum states of atoms

and photons would lead to dramatic demonstrations of non-locality in quantum mechanics, and
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eventually the field of quantum information, which seeks to use precise control of quantum states

to perform computation. At the same time in the 1980s, there were ongoing developments in the

use of lasers to control the motion of atoms, including the demonstration of how to slow atoms,

and achieve laser cooling of atomic gases. This eventually led to the achievement of Bose-Einstein

condensation of atomic gases in the miraculous summer for atomic physics of 1995.

Bose-Einstein condensation (BEC) is a phase transition to a new state of matter where all

of the particles in the system occupy the same quantum state. It can occur only at very low

temperatures or high densities, regimes where the quantum nature of the individual atoms in the

gas cannot be ignored. In the dilute alkali gas experiments that reached BEC in 1995, the atoms

were cooled to nanoKelvin temperatures, which is (as far as we know) the coldest temperatures ever

reached in the universe. This dramatic achievement led to an explosion in the new field of ultracold

atomic gases, with publication rates increasing exponentially to nearly a thousand academic papers

a year by 2000 [26]. Nobel prizes have been awarded in 1997, 2001, and 2005 in atomic physics

with surely many more to come to recognize this new and exciting research field.

But beyond the “wow” factor of these ultracold gases, exactly what has attracted so much

attention? While ultracold gases have enabled new progress in precision measurement, leading

to ultra-precise interferometers and atomic clocks, much of the interest comes from the potential

to use cold atomic gases as models to test fundamental theories of quantum matter. Indeed, the

work presented in this thesis regards the use of ultracold gases to test fundamental theories of

strongly interacting fermions. It is because of our ability to control and study these systems at the

quantum level, using the tools of atomic physics, that they are so useful in modeling and studying

quantum matter. Over the last 15 years, this high level of control has allowed experiments with

quantum gases to realize physics previously believed to only exist as textbook or gedanken (thought)

experiments. Indeed, until 1995 a weakly interacting Bose-Einstein condensate was widely assumed

to be a gedanken experiment, with no relevance to any physically realizable system. Yet, if all we

could do with atomic gases is realize experiments for which we already understand the physics,

this would be a shallow field. Fortunately, the development of Feshbach resonances and optical
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lattices to control atomic interactions and create strongly correlated gases means that we can use

ultracold atomic gases to investigate some of the most pressing scientific issues to date, such as

high temperature superconductivity and quantum phase transitions. Indeed, developing theories to

understand strongly correlated systems is a central challenge in nearly all modern fields of physics

including nuclear physics, astrophysics, and condensed matter. The great importance of developing

theories of strongly correlated systems, and the high level of precision and control afforded by

ultracold gases to study these regimes is what motivates the work in this thesis.

Phillip Anderson laid out the basic premise for why we study large and complicated systems

like materials or quantum gases in his oft cited paper “More is different [27]”. He writes that even

if “the elementary entities of science X obey the laws of science Y ... this hierarchy does not imply

that science X is “just applied Y.” At each stage entirely new laws, concepts, and generalizations

are necessary, requiring inspiration and creativity to just as great a degree as the previous one.

Psychology is not applied biology, nor is biology applied chemistry.” In other words, if we take

some atoms, which we understand perfectly well on an individual basis, but then let them interact

with each other to form a larger system, we may know little to nothing of use about the behavior of

that system based only on our understanding of those individual atoms. Instead, we must develop

new laws and concepts to understand this larger and more complicated system. In the extreme

case, this is quite obvious, our knowledge of the quantum mechanics of atoms does not imply we

now have all the basic tools to understand life, despite the fact that life is actually made of a

bunch of atoms obeying the laws of quantum mechanics. Amazingly, it turns out that systems

of multiple atoms become complicated so fast that simply trying to solve the basic equations of

quantum mechanics becomes impossible even for only a few tens of atoms, even with the worlds

most powerful supercomputers. This is why we need to develop new ways of understanding these

systems. At a simplified level, one can divide physics into fields that are still trying to develop a

more fundamental understanding of the basic constituents of matter and energy in the universe,

such as fields like high energy particle physics, and fields that are tackling systems for which we

understand the properties of the basic constituents but are unable to formulate complete theories
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of the whole. Our study of ultracold atomic gases falls into the latter category.

So far, physicists have been quite successful at explaining large systems of particles if those

particles are weakly interacting. This is because the behavior of the system as whole may not deviate

that far from what would be expected of a single particle, but occurring many times over in each of

the particles constituting the system. Thus, as a first approximation, one can simply try to describe

large systems by ignoring the presence of interactions. The next level of approximation, mean-field

theory, is to take into account the average interaction between particles, but ignore fluctuations

around the average. The electrons in most metals and semiconductors, as well as weakly interacting

ultracold atomic gases, are good examples of systems that can be largely understood in terms of

mean-field theory. However, a separate class of systems exist where the constituent particles are

strongly interacting with each other and deviations from mean-field theory are important. It

is in these systems that we should expect new behaviors and properties to emerge. In materials,

some examples of strongly correlated systems are high-temperature superconductors, heavy-fermion

materials, giant magneto-resistors, Mott insulators, and materials near quantum phase transitions

[28]. Many of these materials have significant potential applications, such as high-temperature

superconductors that could be used for efficient transport of electricity. Developing theories to

understand strongly correlated materials could unlock new and important technologies.

While ultracold atomic gases and strongly correlated electron materials may be worlds apart

in many ways, including their density (dense solids vs dilute gases) and temperatures (Kelvin vs

nanoKelvin), their behaviors are underpinned by many of the same theoretical concepts of strongly

interacting quantum systems. The connections to certain strongly interacting systems is especially

strong. Indeed, when the short-range atomic interactions are increased to their maximum strength

using a Feshbach resonance, the system enters a universal regime where its properties no longer

depend on the details of the atomic species or interactions[29, 30]. Any other strongly correlated

system with short-range interactions in this universal regime will behave identically, after a simple

rescaling of the parameters depending on the density. It is thought that dense nuclear matter may

in fact be in this same regime, displaying identical behavior to an ultracold atomic gas [31, 32].
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The real interest in studying ultracold atomic gases to learn about strongly interacting sys-

tems comes from the fact that the control and detailed information experimenters have with atomic

systems is so great. Ultracold atomic gases allow the experimenter to start with a simple system,

like a gas of weakly interacting particles, and incrementally add complexity by, for example, turning

up interactions with a Feshbach resonance, adding a periodic potential, or adding disorder. This

ability to start from what you understand and slowly go towards something you don’t understand

is far more difficult to achieve in materials, where the system often has many inseparable and

complicated interactions going on at once. Furthermore, atomic gases offer experimenters many

new measurement techniques that are not available in other systems. For example, a common

measurement in atomic gases is to measure the momentum distribution of the constituent parti-

cles, which is something far more difficult to achieve for electrons in materials. Almost always in

physics, the ability to make new kinds of measurements drives the development of theories and

leads to advances in basic understanding. Atomic gases thus offer the opportunity to develop a

ground-up understanding of strongly interacting systems, which can ultimately impact our ability

to understand other complicated systems, whether in condensed matter, nuclear, or astrophysics.

A central challenge in realizing the great promise of ultracold atomic gases is to develop ex-

perimental measurements that can directly connect to the theories of strongly interacting systems

and enable sensitive searches for new phenomena. In this thesis, I will discuss a new measurement

technique for strongly interacting atomic gases that I helped to develop. This technique is called

atom photoemission spectroscopy, and it has allowed us to make a number of important measure-

ments of fundamental properties of strongly interacting Fermi gases. We have used this technique

to address the existence of a pseudogap state in the BCS-BEC crossover, as well as verify a number

of recently derived universal relations known as the Tan relations. In the next section, I will give

a more detailed outline of the contents of this thesis.

Outline of Thesis Contents

Much of my graduate career was alongside John (Jayson) Stewart who wrote a Ph.D. thesis

in 2009 and, underlying my organization of this thesis, is a competing desire to give both a complete
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description of the work I have done with adequate background information, while not repeating too

much of what is already contained in Jayson’s thesis. Furthermore, background information on the

experimental apparatus is contained in Brian Demarco’s thesis, and Cindy Regal’s thesis contains

excellent introductions to Feshbach resonances and the BCS-BEC crossover. As such I will be brief

in my discussions of those topics and refer the reader to appropriate sources.

In the second chapter, I introduce and review basic concepts for quantum degenerate Fermi

gases. I also give a brief description of the experimental apparatus, explaining how we cool an

atomic 40K gas to ultracold temperatures and make measurements.

In the third chapter, I explain how we realize a strongly interacting Fermi gas using a mag-

netically tunable Feshbach resonance. I discuss the physics of Feshbach resonances in atomic gases

including the concepts of narrow versus wide resonances and s-wave versus p-wave resonances.

While most of the work in this thesis regards s-wave resonances, we conducted some experiments

using a p-wave Feshbach resonance in order to explore the possibility of creating a p-wave super-

fluid. I discuss the results of these experiments, which include forming p-wave pairs and observing

their lifetimes and non-isotropic momentum distributions. I also review some prospects for further

research of atomic gases with p-wave interactions.

In the fourth chapter, I review the results of conventional BCS theory, which describes how

fermions pair up to form a superfluid or superconductor in the presence of weak attractive inter-

actions. I then discuss what happens as the strength of interactions is increased to the limit of

the BCS-BEC crossover and, eventually, molecular pairing. The BCS-BEC crossover occurs as the

attractive interaction between fermions is increased to the limit where the typical pair size is on

order of the interparticle spacing, and thus too strongly interacting to be described by BCS theory,

but not yet to the deeply-bound molecular limit where the fermionic properties of the constituents

play no role. It is in this crossover that the gas is the most strongly correlated, and therefore where

the most interesting physics takes place. I review past experiments in the BCS-BEC crossover and

discuss some of the goals of ongoing work.

In the fifth chapter, I begin with a review of the concepts of Fermi-liquid theory and spectral
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functions, which serve as a language for discussing and understanding interacting Fermi gases. I

then present the technique of atom photoemission spectroscopy to measure the spectral function.

Atom photoemission spectroscopy measures the single-particle spectral function and is analogous

to angle resolved photoemission spectroscopy (ARPES) in materials. I present our first atom

photoemission spectroscopy measurements in the BCS-BEC crossover. Finally, I explain how we

have improved on the techniques presented in that paper to significantly increase the signal-to-noise

ratio of the data.

In the sixth chapter, I discuss the idea of a pseudogap state in the BCS-BEC crossover. This

is a state in which the Fermi gas contains incoherent pairs of fermions existing at temperatures

above the superfluid phase transition. Then, I present our atom photoemission data that searches

for evidence of this state by looking at the properties of the single-particle spectral function above

and below the superfluid phase transition. Indeed, we observe a spectral function that demonstrates

backbending both above and below the superfluid transition, consistent with the predictions of a

pseudogap state. I also present data that maps out the pseudogap regime as a function of interaction

strength and shows how the pseudogap state evolves into the molecular regime where the physics

is described by deeply bound molecules. Finally, I show comparisons to a theory of the pseudogap

state that captures many essential elements of the data.

In the seventh chapter, I present a new technique for measuring the momentum distribution

of atoms at the center of a trapped gas using intersecting hollow light beams. This technique allows

us to obtain atom photoemission spectroscopy signal from the center of the atom cloud and thereby

reduce some of the effects of density inhomogeneity. This allows us to better understand the effect

of the trapping potential on our atom photoemission experiments.

In the eighth chapter, I discuss experiments to verify the universal Tan relations for quan-

tum gases with short range interactions. These relations predict connections between numerous

measurable quantities in ultracold gases. We take advantage of multiple measurement techniques,

including atom photoemission spectroscopy, to verify these powerful relations.

In the end, I present a summary of results and a brief outlook for future research.



Chapter 2

Creating a strongly interacting quantum degenerate atomic Fermi gas with a

tabletop experiment

2.1 What is a quantum degenerate Fermi gas?

In quantum mechanics all identical particles must be considered to be completely indis-

tinguishable from each other, which implies important restrictions on the behavior of systems of

identical particles. All particles can be classified as following one of two sets of quantum mechanical

rules, Fermi-Dirac statistics or Bose statistics, and the corresponding particles are called fermions

and bosons respectively. Whether a particle is a fermion or boson is determined by a quantum

mechanical phenomena called spin, which can take on any integer or half integer value (anything

else is called an anyon). Particles with either no spin or integer values of spin are bosons, while

particles with half integer values of spin are fermions. The basic building blocs of matter, electrons,

protons, and neutrons, are all spin 1
2 particles and thus fermions. However, atoms are made up of

many of those particles and can be either bosons or fermions depending on whether they have an

even (bosons) or odd (fermions) number of constituents. An important result of Fermi statistics

is that no two identical fermions can occupy the same quantum state; this is referred to as the

Pauli exclusion principle. This arises from the requirement that the many-particle wave-function

describing a system of identical fermions must be antisymmetric under the exchange of any two of

those particles.

Let’s consider the case of two non-interacting identical fermions. To begin with, let’s take two

fermions with no internal degree of freedom so that they are completely described by their position-
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space wave-functions. We will assume there is a ground state wave-function ψ0(r) and a first excited

state ψ1(r). Intuitively, one would think that the lowest energy state for the two fermions would be

ψ(r1, r2) = ψ0(r1)ψ0(r2) where r1 (r2) is the coordinate for particle 1 (2). This wave-function puts

both fermions in the ground state. However, this wave-function is symmetric under the exchange

of particles 1 and 2, in other words ψ(r1, r2) = ψ(r2, r1), which is not allowed for fermions. The

lowest energy wave-function that obeys the antisymmetry principal, ψ(r1, r2) = −ψ(r2, r1), is

ψ(r1, r2) =
1√
2
ψ0(r1)ψ1(r2) − 1√

2
ψ1(r1)ψ0(r2). This wave-function has one particle in the ground

state and one particle in the first excited state. Thus, by restricting the two-particle wave-function

to be antisymmetric, the ground state energy is raised because we are forced to put one particle

in an excited state. Note that the two fermions can never be found at the same location since

ψ(r1 = r2) = 0.

Now, let’s consider a case where the fermions also have an internal degree of freedom, which

may be spin in the case of an electron or internal atomic state in the case of an atom. We will

consider the simple case where there are two degenerate internal states, labeled up | ↑⟩, and down

| ↓⟩. The spin wave-function of the two identical fermions can be in one of four states: the spin

triplet states | ↑⟩1| ↑⟩2, 1√
2

(
| ↑⟩1| ↓⟩2 + | ↓⟩1| ↑⟩2

)
, | ↓⟩1| ↓⟩2, and the spin singlet state 1√

2

(
| ↑⟩1| ↓

⟩2−| ↓⟩1| ↑⟩2
)
. The spin triplet states are all symmetric under exchange of particle 1 and 2, whereas

the spin singlet state is antisymmetric under exchange of particles. Since the overall wave-function

for the two fermions must be antisymmetric, if the fermions are in a spin triplet state, their position

space wave-function must be antisymmetric just as in the case where we had no internal degree of

freedom, but if they are in the spin singlet state, then their position space wave-function must be

symmetric. Thus, the lowest energy state is now ψ(r1, r2) =
1√
2
ψ0(r1)ψ0(r2)

(
| ↑⟩1| ↓⟩2−| ↓⟩1| ↑⟩2

)
,

which has one spin up particle and one spin down particle, both in the ground position-space state.

In this way, even if the internal degree of freedom is not explicitly contained in the Hamiltonian, it

can affect the energy of the system by determining which wave-functions are allowed.

If there are many fermions, the antisymmetry principal says that the overall wave-function

must be antisymmetric under exchange of any two fermions. Again assuming two degenerate



10

EF k TB

a b

E
n
e
rg

y

Figure 2.1: Fermions in a square well The quantized motional states are shown as horizontal
lines with the ground state at the bottom and energy increasing upwards. Blue circles are spin up
fermions and red circles are spin down fermions. a) The ground state of the fermion system has a
fermion of each spin into each motional level, filling up all the quantum states until there are no
more fermions. The energy of the highest occupied level is the Fermi energy. b) Finite temperature
causes excitation of fermions above the Fermi energy by energies of order kBT .
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Figure 2.2: The fermion distribution function The average occupation number of quantum
states for fermions of a single spin state are plotted as a function of the energy of the state for
different temperatures. Reduced temperatures of T/TF = 0, 0.1,and 0.6 are shown as solid, dashed,
and dot-dashed lines. At zero temperature (solid line), the occupation is 1 for all states below
the Fermi energy and 0 for all states above. At T/TF = 0.1 (dashed line) the Fermi surface is
broadened by roughly 0.1EF . At T/TF = 0.6 (dot-dashed) there is no recognizable Fermi surface
and the distribution approaches the classical limit of an exponential.
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internal states, the ground state wave-function will have one fermion of each spin in the ground

position-space state, one of each spin in the first excited state, and so on with two particles in

each state until there are no more particles, as shown in Fig. 2.1 a. The energy of the highest

occupied state is called the Fermi energy, denoted EF . If we take the example of a 3-d square well

potential, the states are labeled by their momentum ~k and the density of states in k-space, ρ(k),

is given by ρ(k)dk = V
2π2k

2dk, where V is the volume of the system. The total number of fermions

is N = 2
∫ kF
0

V
2π2k

2dk. Here the factor of two is because we can put one fermion of each internal

state in each k state, and kF is the Fermi wave vector, which is the value of k that corresponds to

the highest occupied state, and is given by kF =
√
2mEF
~ , where m is the fermion mass and ~ = h

2π ,

where h is Plank’s constant. This gives

kF = (3π2n)1/3 (2.1)

and correspondingly

EF =
~2

2m
(3π2n)2/3 (2.2)

where n = N/V is the total fermion density.

At finite temperature there will be excitations above this ground state, with some particles

near the Fermi surface being excited to states above it, as shown in Fig 2.1 b. A system at

temperature T will have excitations going up above the Fermi energy by an extra energy on order of

kBT where kB is the Boltzmann constant, Fig. 2.1. We can define a unitless reduced temperature of

the system as T/TF where TF is the Fermi temperature corresponding to EF /kB. A gas at T/TF ≪

1 will have a particle distribution that looks mostly like the ground-state particle distribution, but

with a smearing around the Fermi surface of width kBT , see Fig. 2.2. A Fermi gas at T
TF

≪ 1 is

called a quantum degenerate Fermi gas and is strongly affected by quantum statistics. As T/TF is

increased, the smearing will grow larger and larger until at T/TF ≫ 1 the particle occupation will

drop to much less than one per state, and the gas will essentially behave as a classical gas. The

particle distribution for a finite temperature Fermi gas is given by the Fermi-Dirac distribution
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function

f(E) =
1

e
E

kbT /ζ + 1
(2.3)

where ζ = eµ/kbT is called the fugacity and µ is the chemical potential, which is approximately EF

for a weakly interacting low-temperature Fermi gas.

Let’s consider an example. The valence electrons inside a metal can be considered to be a

weakly-interacting Fermi gas. If we take copper, which has a density of 9 grams/cm3, an atomic

mass of 63.5 and one valence electron, we get an electron density of 8.4 × 1028 m−3. Using the

electron mass, this gives TF = 81, 000 K. Thus, even at room temperature, copper has a reduced

temperature of approximately T/TF = 0.004, which is far into the quantum degenerate regime.

This thesis is about dilute atomic Fermi gases made up of potassium-40 (40K) atoms. A typical

atomic density in the gas is 1019 m−3 which gives TF = 270 nK, a full twelve orders of magnitude

lower than for electrons in copper. Thus, to study a degenerate atomic Fermi gas in this regime,

we will need to cool our atomic vapor to nano-Kelvin temperatures.

2.1.1 A harmonically trapped Fermi gas

Eqs. 2.2 and 2.1 give the Fermi energy and Fermi momentum for a homogenous Fermi

gas, however, in ultracold atom experiments the gas is typically confined by a harmonic potential,

which alters the density of states. For a cylindrically symmetric trap, parameterized by a radial

trap frequency ωr = 2πfr and an axial trap frequency ωz = 2πfz, which gives a trap aspect ratio

of λ = ωz/ωr, the density of states becomes ρ(E) = E2

2λ(~ωr)3
. The Fermi energy is then

EF = ~ωr(6λN)1/3 (2.4)

where N is the number of atoms in a single spin-state. A corresponding Fermi momentum can be

defined as kF =
√
2mEF /~. A typical confinement trap has ωr = 2π × 250 Hz and λ = 0.1, which

gives EF = h× 10 kHz or TF = 450 nK for N = 105 atoms.

The equation for the Fermi energy of a homogenous gas and a trapped gas can be linked

by noting that the Fermi energy obtained by plugging the peak density of an ideal, harmonically
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trapped gas at zero temperature into Eq. 2.2 gives the same Fermi energy as Eq. 2.4. In fact,

one way to think about a trapped gas is using local density approximation (LDA), which says that

each concentric shell of constant density n in the gas can be thought of as a homogenous system,

with a local Fermi energy given by Eq. 2.2. Any quantity for the trapped gas can be obtained by

calculating the same quantity for a homogenous gas with density ranging from n = 0 to n = n0,

where n0 is the peak density of the trapped gas, and then performing a density weighted average

of that quantity using the density profile of the trapped gas.

In the rest of this thesis, the Fermi energy will typically refer to Eq. 2.4; however, at times

we will also use Eqs. 2.2 and 2.1, and I will try to clearly specify when this is the case.

2.2 Cooling an atomic gas

The experimental techniques we use to create ultracold 40K gases are now more than a decade

old, and they vary little from the techniques presented in the original BEC papers of 1995, with

the exception of the final stage of evaporation being done in a far-detuned optical trap (FORT),

and that two spin states are now occupied during the evaporation. I will provide a brief description

of the experimental apparatus below; for a more detailed presentation I would recommend Brian

Demarco’s thesis [33] for everything concerning the MOT and magnetic trap, and Cindy Regal’s

[6] and Jayson Stewart’s thesis [34] for the optical trap.

The first stage of cooling is laser cooling in a magneto-optical trap (MOT). A MOT uses

counterpropagating laser beams on three orthogonal axes as well as a quadruple magnetic field to

slow down and trap atoms using the radiation pressure of light. With the MOT we are able to

create a 40K gas of a few 109 atoms cooled to a few hundred mK. The second stage of cooling

involves trapping two spin states of 40K in a cloverleaf magnetic trap and performing microwave

evaporation to selectively remove atoms with the highest energy. In the ground state, 40K is a spin

9/2 atom, and the spin states we use for evaporation are the |f,mf ⟩ = |9/2, 9/2⟩ and |9/2, 7/2⟩

states, where f is the total atomic spin andmf is the projection along the magnetic-field axis. After

evaporating for approximately 45 s in the magnetic trap, we typically achieve conditions of 25×107
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atoms at 7 µK. At this point the gas has a reduced temperature close to T/TF = 3. For the final

stage of evaporation, we use a crossed-beam FORT with lasers near 1070 nm, which is far enough

detuned from the atomic transitions near 770 nm that resonant scattering is essentially negligible.

A FORT works through the AC atomic Stark shift, and for red detuned lasers, the Stark shift will

always be negative. Thus, a focused laser beam creates a trapping potential because atoms will

be attracted to the high intensity at the focus. The laser beam creates a gaussian confinement

potential for the atoms, which can be approximated as harmonic near the center. We use a FORT

consisting of two crossed beams to achieve a higher axial trap frequency and thus a lower trap

aspect ratio. Forced evaporation in a FORT is achieved by slowly lowering the laser beam intensity

to allow the highest energy atoms to fall out of the trap. After about 10 s of evaporation in the

FORT, we reach a degenerate Fermi gas with 2× 105 atoms at or just below T/TF = 0.1.

For the evaporation stages in both the magnetic trap and the FORT, it is important to have

two spin states of 40K occupied in order to have collisions, and thus allow rethermalization of the

gas as high energy atoms are removed. In scattering theory, collisions can be understood using

partial-wave analysis on the two-particle wave functions. The wave-function of the two colliding

particles can be broken into angular and radial parts, with the angular part being described by

the spherical harmonics. An l = 0, or s-wave collision, involves two atoms interacting with a

wave-function in the lowest spherical harmonic, while an l = 1, or p-wave collision, has atoms

interacting in the first spherical harmonic. For l > 0, the collisions involve angular momenta

and there is a centrifugal barrier that can prevent the atoms from getting close, and this reduces

their chances of colliding. For interacting atoms with kinetic energy greater than the height of

the centrifugal barrier, this is not an impediment to colliding; however, for kinetic energies lower

than the barrier height, the centrifugal barrier suppresses scattering. This is known as the Wigner

threshold law. As the temperature of a gas is reduced, the average collision energy decreases, and

below a certain temperature collisions with l > 0 will be “frozen out” (except in the case of a l ̸= 0

scattering resonance as described in the next chapter). For 40K, the barrier height or threshold

for p-wave collisions is approximately 1 mK, and only s-wave collisions are energetically allowed
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in the evaporation stages of the experiment [33]. However, fermions in a single spin state cannot

interact via an s-wave channel due to the antisymmetry principal, as discussed above, and thus it

is important to occupy at least two spin states to allow collisions in the gas to take place.

The experimental apparatus consists of two glass cells connected by a meter long tube. Each

cell has a MOT. The collection cell contains potassium getters, enriched for 40K, for a source.

The getters are small samples of potassium-chloride salt and calcium that emit potassium vapor

when heated by running current through them. We can control the background vapor pressure of

potassium in the collection cell by changing the current we are running through getter. However,

the background pressure in the collection cell is too large for efficient evaporation because a typical

atom will be hit by a high-energy background atom once every second or so. This is why we have

a second cell, that we call the science cell, for evaporation where the typical time for a collision

with a background atom is approximately 100s. We move atoms from the collection cell MOT to

a second MOT in the science cell with a “push beam.”

The bias coils used for the magnetic trap in the science cell can also be used to create a

bias magnetic-field for atoms trapped in the FORT. We can create fields up to 250 G. In order to

increase interactions in the gas, we take advantage of a Feshbach resonance near 200 G that can

increase collisions in the gas by orders of magnitude. This both allows the evaporation in the FORT

to be more efficient, by decreasing the rethermalization time scale, and also allows us to create a

strongly interacting Fermi gas at the end of the evaporation. I will explain Feshbach resonances

in detail in the next chapter, including the physics behind them as well as some experiments to

measure them and use them to create diatomic molecules.

2.2.1 Measuring temperature

You might be wondering: How do we measure the temperature of a dilute microscopic gas

that is only a few nano-Kelvin? There are rather significant challenges: the gas has a size of just

a few tens of microns, it exists in an ultrahigh vacuum, it is a million times more dilute than air,

it will only scatter light that is precisely tuned to the atomic transition, and it is the coldest thing
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in the universe (assuming intelligent life somewhere else in the universe haven’t created something

even colder without us knowing); hwoever, it turns out it is not that difficult to measure the

temperature. First, we already have lasers precisely tuned to the atomic transition that we use

to make the MOT. Also, even though the gas is dilute compared to air, the trapped cloud can be

very optically dense for resonant light and absorb more than 99% of light that travels through it.

This allows us to take a picture of the cloud, using lenses to magnify and focus the image onto a

low noise CCD camera. Specifically, the atom gas absorbs photons and scatters them to create a

shadow image. By taking a second image of the light without any atoms present, we can determine

how many photons were absorbed at each position and back out the column density of the atoms.

One minor problem is that when the atoms absorb and scatter photons during an image acquisition,

they are heated. In fact, a single photon imparts an energy to an atom that is roughly equal to the

average energy of an atom in the ultracold gas. To take a high quality image, we need to scatter

hundreds of photons off of each atom, which easily imparts enough energy to the heat the gas out

of the trap. Fortunately, we are able to scatter hundreds of photons off of each atom in just a few

tens of microseconds such that they are essentially frozen in place during the picture. However,

this means that after each picture we will need to prepare another ultracold Fermi gas from scratch

in order to make another measurement.

There are two kinds of measurements we can make by taking a picture of an ultracold Fermi

gas. The first is to take a picture of the cloud while it is being held in the confinement trap. This

gives the density profile n(r) of the trapped gas. Actually, it gives the projection of n(r) onto a

2d surface. From this, the 3d density distribution can be extracted assuming symmetry and using

an inverse Abel transform. One can compare the measured n(r) to the theoretical prediction for

a non-interacting Fermi gas held in a harmonic trapping potential and extract a temperature. In

reality, this measurement turns out to be rather difficult with our apparatus due to the difficulty

of measuring a very small and optically dense sample with our imaging system. A second kind of

measurement is to take a picture after a time of flight (TOF). This involves quickly turning off the

trapping potential, after which the atom cloud begins to fall due to gravity, as well as expand as the



17

gas flies apart. If the atom cloud is weakly interacting, we can assume the expansion is ballistic, or

in other words, that no momentum changing collisions take place during the expansion. Once the

cloud has expanded to much larger than its original size, the density distribution of the cloud will

reflect the velocity distribution of the gas just before we turned the trap off. A typical expansion

time is 10 ms. With a TOF measurement, we can compare the measured velocity distribution to

the theoretically predicted velocity distribution for a harmonically trapped Fermi gas to extract a

temperature.

For a non-degenerate Fermi gas, we can use classical thermodynamics, which predicts a

gaussian distribution for the velocities, with the rms velocity
√

⟨v2⟩ being related to temperature

by the equipartition theorem as 1
2m⟨v2⟩ = 3

2kbT . Once the gas is cooled below approximately

T/TF = 0.6 it becomes necessary to account for quantum effects and use Fermi-Dirac statistics to

understand velocity distributions. Below T/TF = 0.1, the velocity distribution approaches the zero

temperature limit of a trapped Fermi gas and it becomes difficult to measure the temperature to

high accuracy due to imaging resolution and a limited signal-to-noise ratio. The lowest temperature

gases we have measured are T/TF = 0.07± 0.01.

For more detailed discussions of measuring the temperature of a trapped Fermi gas, I would

recommend the discussions in the theses of Brian Demarco, Cindy Regal, and Jayson Stewart

[33, 6, 34].



Chapter 3

Feshbach resonances

In this chapter, I will discuss how atoms in an ultracold gas interact with each other and,

specifically, how these interactions can be tuned using a Feshbach resonance to make the system

strongly interacting. Feshbach resonances can enhance scattering in any angular momentum chan-

nel, and I will discuss both experiments near an s-wave and near a p-wave Feshbach resonance. In

particular, I will present a new measurement of the location of an s-wave Feshbach resonance for

40K atoms as well as experiments creating and observing p-wave molecules near a p-wave Feshbach

resonance. The theoretical discussion of Feshbach resonances follows largely from Ref. [35] al-

though for the s-wave case similar treatments can be found elsewhere, for example Ref. [4]. Cindy

Regal’s thesis [6] is also a good reference for the particular case of 40K Feshbach resonances. The

experiments involving the p-wave Feshbach resonance were published in references [2, 3].

3.1 Interactions in an ultracold atomic gas

One of the great features of using ultracold atomic gases to study the physics of strongly

interacting systems is that the interactions at the two-body level, between two isolated atoms, can

be understood in a rather simple framework. This is due to the fact that we are usually in a situation

where the dominant interaction, the Van der Waals interaction, which falls off as r−6 where r is the

distance between atoms, is a short-range interaction and can be mapped onto a pseudopotential

consisting of a delta-function interaction. The interaction can then be characterized by single

parameter, a, the s-wave scattering length. This amounts to an approximation for scattering at low



19

energy with a short-range potential. Specifically, the s-wave scattering amplitude from a short-range

potential can be expanded for low k as

f(k) =
1

−1
a + reff

k2

2 − ik
(3.1)

where ~k is the collision momentum, and reff is the effective range of the potential [36, 35]. In the

limit ka→ 0, the scattering amplitude asymptotes to a constant value, −a, which gives a scattering

cross section σ = 4πa2. For ka ≫ 1 and reffk ≪ 1, we find f = i/k giving the unitarity limited

cross section of σ = 4π
k2
. In the limit where reffk ≪ 1, the interaction can be modeled by a delta

function pseudopotential and the atom-atom interaction energy becomes [35]

U(r) = λδ(r) (3.2)

where λ is adjusted to produce the proper scattering length via

a =
m

4π~2
λ

1− λ
λc

(3.3)

where m is the atom mass and λc is the critical value of λ where a bound state appears in the

attractive delta-function potential (λc < 0) [35]. It can be seen that as λ → λc the scattering

length diverges. It is in this limit of large scattering length where the many-body system becomes

strongly interacting.

This delta function pseudopotential reproduces all of the essential physics of the more compli-

cated atom-atom interaction [35] (note: it is important to impose a proper cutoff at large momenta

for the delta function potential to obtain a non-zero scattering length [35]).

In principle, the scattering length a depends on the details of the full atom-atom potential,

but in practice a is almost completely determined by the position of the single bound state closest

to the threshold energy for two atoms scattering with zero collision energy (as in the case above

for the delta function potential). If there is a bound state at an energy slightly below threshold,

the scattering length is positive. If there is a bound state exactly at threshold, there will be a

zero energy scattering resonance and |a| → ∞. In a situation where there is no bound state below
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threshold, but if the potential were to be made a little bit deeper one would appear, the scattering

length is negative [36].

This picture gives an idea of how one could tune the scattering length and thus the strength

of the pseudopotential. If the interatomic potential could be tweaked in such a way as to move the

position of the last bound state around threshold then the scattering length, and thus the strength

of the pseudopotential, could be tuned to any value. This is exactly how a magnetic-field Feshbach

resonance works. It turns out that the position of the bound states relative to the threshold

energy of the atoms can be tuned using the differential Zeeman energy shifts of the various spin

channels[6, 35]. The magnetic-field strength, B0, where a new bound state appears at threshold

corresponds to the peak of a Feshbach resonance, and near B0 the scattering length tunes with the

magnetic field strength B as [4, 6]

a = abg(1−
w

B −B0
) (3.4)

where abg is the background scattering length, w is the width of the resonance, and B0 is the center

position of the Feshbach resonance, see Fig. 3.1. Feshbach resonances are an amazing tool for

studying strongly interacting quantum gases because they allow us to tune the scattering length to

any value simply by varying the strength of an applied external magnetic field.

The bound state that is brought into resonance can be either an s-wave (ground-state rota-

tional) or p-wave (1st excited rotational) molecular state and the corresponding scattering resonance

then occurs in the s-wave or p-wave collision channel. Away from any scattering resonance, the low

collision energies in ultracold gases mean that p-wave scattering is usually “frozen out” in accor-

dance with the Wigner threshold law. However, in the presence of a p-wave scattering resonance,

a spin-polarized Fermi gas can be dominated by p-wave interactions. This raises the interesting

possibility of creating a p-wave paired superfluid. Before we discuss this possibility further, it will

be helpful to go over a few more concepts and basic measurements. In particular, an understanding

of the concepts of broad and narrow resonances is essential.
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Figure 3.1: A Feshbach resonance The scattering length near an s-wave Feshbach resonance for
40K atoms is plotted as a function of magnetic field. The solid lines are the theoretical prediction
given by Eq. 3.4 where the parameters B0 and w were adjusted to fit the data and abg was
known from previous measurements. The data points (circles and squares) are measurements of
the scattering length from rf spectroscopy of mean-field energy shifts. The data shows that the
scattering length, and therefore the strength of the atom-atom interactions, can be tuned over a
large range. It is important to note that one would not expect to be able to measure scattering
lengths above a few thousand Bohr radii (a0) in this experiment due to the unitarity limit. This
figure is taken from Ref. [1]

.
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3.2 Wide vs narrow resonances and universality

The situation I described in the last section, where the interactions can be parameterized by

a single parameter, the scattering length a, and understood in terms of a delta function pseudopo-

tential, is the situation of a universal or broad resonance [6, 35]. To understand what is meant by

this, consider Eq. 3.1, which gives the scattering amplitude for s-wave collisions, and take ka→ ∞.

In order for the scattering amplitude to be approximately what it would be in the case where

reff = 0, we require reffk ≪ 1 for all relevant k in the system [35]. We can see this by rewriting eq.

3.1 as f(k) = i
k (1 +

i
2reffk −

i
ka)

−1. For a degenerate Fermi gas, this means we require reffkF ≪ 1,

where kF is the Fermi wavevector, for a “broad” or “universal” Feshbach resonance. The resonance

is universal in the sense that the scattering only depends on the scattering length a, as opposed to

a situation where higher order terms would need to be taken into account and interactions would

depend on the details of the full atom-atom potential. It is “broad” in the sense that when ka→ ∞

all collisions in the gas are resonant; in other words, they all have the unitarity limited value for

the scattering amplitude. An equivalent definition of a broad resonance is that the energy width

of the resonance, given by Γ = 4~2
mr2eff

, be larger than the Fermi energy [35].

If a resonance is narrow, then only a small fraction of collisions in a band of energies of width

Γ (or a band of momenta of width ~/reff) are resonant. The width of that band depends on reff , and

therefore the physics is not universal. Interestingly, when the resonance is narrow the many-body

problem can be treated perturbatively, even at the center of the resonance [35].

Studying the scattering problem in a two-channel model allows one to relate reff to the

parameters of the Feshbach resonance, which is fundamentally a multi-channel scattering problem.

It can be shown that

reff = − 2~2

mµcoabgw
(3.5)

where µco is the difference in magnetic moment between the closed and open channels and is

typically close to 2µB where µB is the Bohr magneton [35, 4, 37]. For the 40K resonance, near 202

G, we find reff ≈ −60a0. Using a typical value of kF we have kF reff ≈ −0.03, so the resonance is
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well into the universal regime.

The discussion above centered on s-wave resonances, but it turns out that the situation for

p-wave resonances is a bit different due to the existence of a centrifugal barrier. In particular, the

long-range nature of the centrifugal barrier (the potential falls of as 1
r2
) ensures that a quasi-bound

resonance state with a well defined energy persists down to asymptotically low scattering energies.

In contrast, for s-wave scattering resonances, a quasi-bound state only exists at high energies and is

not accessed when one is in the limit of a broad resonance [35]. For p-wave scattering, the expansion

for the scattering amplitude becomes

fp(k) =
k2

−ν−1 + 1
2k0k

2 − ik3
(3.6)

where ν, the scattering volume, is the p-wave analog of the scattering length and k0 is the

analog of the effective range [38, 35]. By expanding the scattering amplitude in the low energy

limit it can be shown there is a resonance at energy E ≈ 2~2
mνk0

, which scales approximately linearly

with magnetic field [2, 35], and has an energy width given by

Γp ≈
4m1/2E3/2

k0~
. (3.7)

Unlike the energy width for a broad s-wave resonance, where there is no quasi-bound state

and the resonance is at zero collision energy, the width of the p-wave resonance depends on a finite

resonant scattering energy and scales as E3/2. This means that as E → 0, then
Γp

E ∝ E1/2 → 0.

In other words, in the low energy limit the p-wave resonance is always a narrow resonance. The

physical reason for this is that the energy width Γp of the p-wave resonance can be thought of in

terms of the inverse tunneling time into a quasi-bound state at energy E, which scales as E3/2 [35]

due to the centrifugal barrier (see Fig. 3.2). At low energies, the tunneling time becomes infinite

and thus the energy width goes to zero.
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Figure 3.2: Tunneling through a p-wave barrier The schematic curve V (R) shows the atom-

atom potential with the p-wave centrifugal barrier equal to ~2
mR2 where R is the internuclear sepa-

ration. The curve is not drawn to scale as the height of the barrier is h × 5.8 MHz for 40K atoms
whereas the depth of the full potential is in the THz regime. The red line is a sketch of the wave
function for a low energy quasi-bound state which oscillates quickly inside the potential, decays
exponentially underneath the centrifugal barrier, and then oscillates slowly in free space at large
R. For E much smaller than the barrier height, the tunneling time through the barrier scales as
E−3/2 where E is the scattering energy.
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3.3 Measurement of molecule binding energies and resonance centers

In this section I describe measurements of the molecule binding energies near an s-wave

resonance and near a p-wave Feshbach resonance. These binding energies can be used to determine

Feshbach resonance parameters including the center of the resonance. While previous work in our

group made determinations of the positions and widths of these resonances, the measurements I

present here are more precise and also give some important insight into these resonances. The

measurement of the p-wave molecule binding energies was published in Ref. [2].

3.3.1 Determination of s-wave Feshbach resonance parameters with rf molecule

dissociation

One way to efficiently create Feshbach molecules is to adiabatically convert atom pairs into

molecules by slowly ramping the magnetic field from above the resonance (where there is no bound

state near threshold) to below the resonance where a bound state exists [39]. This method was

first demonstrated in Ref. [39] for a resonance between the |9/2,−9/2⟩ and |9/2,−5/2⟩ states of

40K near 220 G. The s-wave resonance we are interested for the purpose of this thesis is between

the |9/2,−9/2⟩ and |9/2,−7/2⟩ states of 40K and occurs near 202 G [6]. Here, we create molecules

in an atom gas consisting of an equal mixture of atoms in the |9/2,−9/2⟩ and |9/2,−7/2⟩ states

at T/TF = 0.1 by ramping the magnetic field from 203.5 G to a value B below the resonance. The

ramps are done at rates much slower than 40µs/G to be well within the adiabatic limit for creating

molecules [39].

In order to measure the molecule binding energy, we perform rf spectroscopy on the gas.

Specifically, we apply an rf field at a frequency near the energy splitting of the |9/2,−7/2⟩ and

|9/2,−5/2⟩ states, which is approximately 47 MHz for fields near 200 G. Then, we selectively

image any atoms in the |9/2,−5/2⟩ state and record their number as a function of the rf frequency.

To make sure the rf lineshape is unaffected by many-body effects, we first turn off the trapping

potential and let the cloud expand for 5− 15 ms to lower the atom density before applying the rf
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Figure 3.3: RF molecule dissociation (Main figure) An rf lineshape taken at 201.25 G at fre-
quencies near the |9/2,−7/2⟩ and |9/2,−5/2⟩ energy splitting. The sharp feature at lower energy
corresponds to the bare transition for an unpaired atom with a width determined by the energy
resolution. This energy splitting can be used to calibrate the magnetic field. The broad feature at
higher energy is the molecule dissociation feature. The solid line is the combination of a gaussian for
the bare atom transition and a theoretical molecule dissociation curve (eq. 3.8) for the higher fre-
quency feature. By fitting the the molecule dissociation curve, the binding energy for the molecule
at this magnetic field is obtained. In this case, we obtain a binding energy of h× (46.4± 1.5) kHz.
(Inset) A schematic showing the transitions corresponding to the two observed features. Three
solid lines mark the energies (vertical axis) of the three lowest mF states. Initially, only the lower
two states are occupied. The shorter arrow marks the bare atom transition of the rf lineshape. If
the atom is bound in a molecular state its energy is lowered by EB (dotted line) and the transition
is shifted to higher frequency. In addition, the atoms can be dissociated into a continuum state
with finite kinetic energy above the bare |9/2,−5/2⟩ line, which accounts for the high frequency
tail of the molecule dissociation feature.
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pulse. The power of the rf pulse is modulated by a gaussian envelope with a full width 1/e2 max

duration of 300 µs, such that the Fourier limited energy resolution is a Gaussian of full width 1/e2

max equal to 4.3 kHz. A sample rf lineshape is shown in Figure 3.3.

Two features can be observed in the lineshape. A narrow feature at low frequency corresponds

to flipping the spin of unpaired or free atoms from the |9/2,−7/2⟩ state to the |9/2,−5/2⟩ state. The

center frequency of this feature can be used to calibrate the experimental value of the magnetic field.

A second broad feature at higher energy corresponds to the dissociation of bound molecules. The

shape of this feature is determined simply from the wavefunction overlap between the molecular

state and scattering states of two atoms and Fermi’s golden rule. An analytic formula for the

number of atoms transferred as a function of rf frequency is given in Ref. [39, 40] to be

I(νrf ) ∝
√
hνrf − EB

(hνrf )2
(3.8)

where νrf is the rf frequency minus the frequency of the single-atom transition and EB is the

molecule binding energy. Here we have assumed that interactions between the initial and final

states are negligible.

By fitting the rf lineshape to Eq. 3.8 we can determine EB. This measurement was repeated

for a number of magnetic-field values with the results plotted in Figure 3.4. The binding energy of

the Feshbach molecules near the resonance is well approximated by [6]

EB =
~2

m(a− r0)2
(3.9)

where a is given by Eq. 3.4 and r0 ≈ 60a0 is the range of the Van der Waals potential [6]. Fitting

the binding energy data to this formula with r0 = 60a0 and abg = 174a0 yields B0 = 202.20±0.02 G

and w = 7.04±0.1 G. The parameters r0 and abg are constrained by theory and other measurements

[6, 41], however, prior to this measurement B0 was only known to within an error of 0.07 G [6].

In this experiment, rf spectroscopy simply served as a tool to measure the binding energy of a

low density and, hence, weakly interacting gas of Feshbach molecules. This was possible because we

have an analytic formula for the Fesbach molecule wavefunction (Φ(r) ∝ e−r/a

r [4]) and can predict
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Figure 3.4: s-Wave molecule binding energy Measurements of molecule binding energies near
the s-wave Feshbach resonance between the |9/2,−7/2⟩ and |9/2,−9/2⟩ states of 40K atoms (black
dots) are plotted as a function of magnetic field. The black line is a fit to eq. 3.9. The fit values
are given in the text.
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the rf lineshape (Eq. 3.8) based on this and Fermi’s golden rule. However, we will see in Chapters

5,6 how rf spectroscopy can also be used as a tool for probing a strongly interacting system where

we do not know the form of the many-body wave function.

3.3.2 Determination of p-wave molecule binding energies with magneto-association

To measure the binding energy of p-wave molecules we took advantage of another spectro-

scopic technique pioneered at JILA and demonstrated for s-wave resonances in 40K by our group

in Ref. [42]. The technique is a molecule association technique whereby one starts with a gas of

unpaired atoms and then oscillates the magnetic field at a frequency close to the molecule binding

energy divided by h. The oscillating field drives the atoms into bound molecules via a stimulated

emission process. When molecules are formed they can be lost due to inelastic collisions with other

atoms or molecules, which allow them to fall into deeply bound molecular states and gain enough

energy to escape the confinement trap. Thus, an atom loss feature can be a signature of molecule

association.

In these experiments, we cool a balanced spin mixture of atoms in the |9/2,−9/2⟩ and

|9/2,−7/2⟩ states to T/TF = 0.2. We ramp the magnetic field to a value near the p-wave Feshbach

resonance, which occurs near 199 G. Then, we apply a small sinusoidal oscillation to the magnetic

field at a frequency νmod for a duration of 36 ms. We record the number of atoms in the |9/2,−7/2⟩

as a function of νmod; sample lineshapes are shown in Fig. 3.5.

In Fig. 3.5, we observe an asymmetric atom loss feature that has a width that increases

with the cloud energy EG = 1
2m⟨v2⟩, where the rms velocity is obtained from a Gaussian fit

to the expanded cloud. EG is thus a measure of the average kinetic energy of the particles and is

proportional to the range of atom collision energies. The width and shape of the association feature

arises from the distribution of collision energies in the atom cloud. To determine the binding energy

of the molecule, we measure the peak energy of the loss feature as a function of EG and extrapolate

to EG = 0. We repeated this measurement at multiple fields around the resonance and the results

are shown in Fig. 3.6.
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Figure 3.5: p-Wave molecule magneto-association lineshapes Lineshapes for association to
a bound p-wave molecule using a sinusoidally modulated magnetic field. For this data, B = 198.12
G. We find that the line shape is asymmetric and has a width that depends on the kinetic energy of
the atoms EG, which is defined in the text. The data are for values of EG of h× 2.0 kHz (circles),
h × 4.5 kHz (triangles), and h × 6.0 kHz (squares). To highlight the asymmetry and dependence
on EG, the total number of atoms, Natom, for each lineshape was scaled to one. This figure is from
Ref. [2].
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Figure 3.6: p-Wave molecule energies Energy of the molecule as a function of magnetic field for
both the ml = 0 (open circles) and ml = ±1 (closed circles) resonances. E < 0 corresponds to a
bound molecule; E > 0 corresponds to a quasi-bound state. ∆B is the detuning from the ml = ±1
resonance position, which we measure to be B = 198.30± .02 G. Linear fits give a slope of 188± 2
kHz/G for the ml = 0 resonance and 193 ± 2 kHz/G for ml = ±1. The inset shows data for the
ml = 0 resonance that suggest some non-linearity near the resonance. These data were taken all in
one day to reduce the uncertainty in the magnetic field. This figure is from Ref. [2].
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As can be seen in Fig. 3.6, there are two features, which we identify as corresponding to

p-wave molecules with different values of ml. We measure the magnetic-field difference between the

resonances for molecules with ml = ±1 and ml = 0 to be approximately 0.5 G. The splitting arises

from the magnetic dipole interaction and was first observed in Ref. [43] and explained in Ref. [38].

For both molecule features, we observe a linear dependence of the pair energy, E, on magnetic-field

detuning. We measure the center of the ml = ±1 resonance, the lower magnetic-field feature, to

be 198.30± 0.02 G.

Interestingly, we can follow the molecule association feature to positive energies where no

true bound molecular state exists. The feature at positive energies is due to association to a long-

lived resonance state, or quasi-bound state, with the lifetime of that state being determined by the

tunneling time through the centrifugal barrier (Fig. 3.2). The tunneling time causes the width of

these features to be as much as three times larger than for bound states, for data taken with similar

initial cloud energies.

We can take advantage of this resonant state to directly observe the presence of p-wave

molecules and distinguish between the ml = 0 and ml = ±1 states. For these experiments we

found it advantageous to use a spin polarized gas of atoms in the |9/2,−7/2⟩ state to eliminate

non-resonant s-wave collisions. We start with a 95/5 mixture of |9/2,−7/2⟩ and |9/2,−9/2⟩ and

then obtain a nearly pure spin-polarized gas with a slow sweep through the s-wave resonance at

202.2 G where inelastic losses on the low side of the resonance ensure that nearly all |9/2,−9/2⟩

atoms are lost [44]. At this point, we run into the unfortunate situation whereby the gas cannot

rethermalize any further because s-wave collisions are forbidden by quantum statistics. We lower

the trap depth to reach 105 atoms, but the gas is no longer in thermal equilibrium.

While we can create molecules using magneto-association as discussed above, it turns out

to be far more efficient to simply hold the magnetic field near the Feshbach resonance for a few

ms. To detect the presence of molecules, we quickly increase the magnetic field, in 10 µs, to a

value above the resonance where the quasi-bound molecules have a large positive energy. The

ramp adiabatically converts the bound molecule into the quasi-bound state. The paired atoms
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Figure 3.7: Dissociated p-wave molecule clouds Images of dissociated p-wave Feshbach
molecules. A linear grayscale indicates the optical depth, with white corresponding to more ab-
sorption of the resonant probe light. The images are taken after a 4 ms ballistic expansion from
the trap and therefore show the velocity distribution of the atoms resulting from the dissociation of
the Feshbach molecules. The left image corresponds to the ml = ±1 resonance and the right image
corresponds to the ml = 0 resonance. The image plane is transverse to the quantization axis, which
is defined by the external magnetic field. The images show the expected angular distributions for
p-wave pairs. This figure is from Ref. [3].
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then tunnel out of the centrifugal barrier and this energy is converted to kinetic energy of atoms

flying apart. We then immediately turn off the optical trap, expand for a variable time of 1.9 to

5 ms, and take an absorption image. If we wish to remove the unpaired atoms before imaging the

molecules, we can use a pulse of laser light that is resonant with the free atoms while the magnetic

field is still at a value on the bound state side of the resonance. Since the molecules do not absorb

this light they are unperturbed. The result is a large energetic cloud of atoms, as seen in Fig. 3.7.

This is similar to a detection scheme used in Ref. [45] for narrow s-wave resonances. The angular

distributions seen in Fig. 3.7 are consistent with p-wave pairing.

3.4 Measurement of molecule lifetimes

In the discussion of p-wave resonance, we saw that to parameterize the resonance we need to

measure the lifetimes of the resonant states. We accomplish this using two methods. One method

takes advantage of the molecule detection technique discussed above. Here, we create molecules on

resonance and then ramp to a field where we wish to measure the lifetime. Then, we detect the

number of molecules by quickly jumping the field to a value where the pair energy is much higher

and will be converted to kinetic energy of free atoms, as discussed above. These measurements are

shown as circles in Fig. 3.8.

A second technique takes advantage of magneto-association. Here, we can use the measured

width of the magneto-association line shapes to deduce an energy width or lifetime of the quasi-

bound molecules. It is important to remove the effect of broadening due to the finite energy

distribution of the atoms in order to measure the intrinsic energy width we are interested in. These

points are shown as squares in Fig. 3.8.

Putting these two measurements together and fitting a line through the data we find that the

inverse tunneling rate τ−1 = αE3/2 with α = 1

h
3
2
(2.2± 0.1)10−3s

1
2 . This agrees well with a theory

prediction from John Bohn [2] shown as the solid line in Fig. 3.8. If we use the inverse tunneling

rate to calculate an energy width using Γp = τ−1/(2π), and take E = h×10 kHz, which is a typical

Fermi energy for our system, we find an energy width of h× 0.35 kHz, which is much smaller than
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Figure 3.8: p-Wave molecule lifetimes Lifetimes of p-wave molecules are plotted as a function
of the molecule energy. Negative energies (left) correspond to bound molecules, while positive
energies (right) correspond to quasi-bound pairs. Data for the ml = 0 resonance are shown in open
symbols, while ml = ±1 are closed symbols. The two dotted lines on the left indicate averages of
the measured bound state lifetimes. The solid line on the right is a theory curve for the quasi-bound
lifetimes. This figure is from Ref. [2].
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EF , putting us well into the narrow resonance regime.

We can also use direct molecule detection to measure the lifetimes of bound molecules below

the resonance using the same method as for the quasi-bound molecules. Here, we measure lifetimes

of 2.3 ± 0.2 ms for the ml = 0 molecules and 1.0 ± 0.1 ms for ml = ±1 molecules. These values

show no measurable dependence on binding energy or magnetic-field value. Theory work from John

Bohn predicts molecule lifetimes set by dipolar relaxation rates of 8.7 ms and 6.8 ms for the ml = 0

and ml = ±1 molecules [2]. Dipolar relaxation is a process where two atoms fall into lower energy

spin states and fly apart with the extra kinetic energy. In the dipolar relaxation process angular

momentum is conserved by an increase or decrease in the orbital angular momenta of the atoms.

Dipolar relaxation is possible for these p-wave Feshbach molecules because atoms in the |9/2,−7/2⟩

are not in the lowest energy spin state. The fact that we measured shorter lifetimes than predicted

by theory points to other possible decay mechanisms such as collisional decay.

It is important to remember that Feshbach molecules are molecules in the least bound state of

the atom-atom potential and that many other deeply bound states exist. In the pseudo-potential

approximation, we ignore the presence of these states as they have no effect on the two-body

scattering and interactions. However, if three or more atoms come together, inelastic processes

that leave two atoms in a deeply bound state become possible. If two of the atoms are already

in the Feshbach molecule state, the wave-function overlap with the more deeply bound states is

significantly increased and the process can be strongly enhanced.

In order to test whether atom-molecule collisions were playing a role in the p-wave molecule

lifetimes, we measured the molecule lifetime after removing all remaining free atoms. Since the

conversion efficiency of atoms to molecules was about 20%, the remaining free atoms were the

most likely collision partners for the molecules. Free atoms were removed with a resonant pulse of

light that heated them out of the trap. Using this technique, we measured a molecule lifetime of

7± 1 ms for the ml = 0 molecules (Fig. 3.9), consistent with the theoretical prediction for dipolar

relaxation.

If a p-wave resonance existed in the lowest energy Zeeman state, it would be possible to
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Figure 3.9: Effect of atom removal p-wave Feshbach molecule lifetime after removal of free atoms.
The molecules were created at the mL = 0 resonance. The solid line is a fit to an exponential decay
which gives a lifetime of 7± 1 ms. This figure is from Ref. [3].



38

eliminate dipolar relaxation as a possible decay channel. However, no such resonance exists for

40K. Interestingly, 6Li has a p-wave resonance in the lowest energy state and, following our work,

groups in Australia and Japan set about creating and measuring p-wave molecule lifetimes in 6Li

[46, 47]. The Japanese group was able to observe p-wave molecule lifetimes that were limited only

by inelastic collisional losses [46].

It is interesting to contrast the general features of the p-wave molecule lifetime measurements

with previous s-wave molecule lifetime measurements performed by our group [44]. First of all,

measurements of quasi-bound state lifetimes were not possible for the broad s-wave resonance. For

the s-wave resonance, we expect the quasi-bound state lifetimes to be extremely short, and thus

the energy width of any feature to be very large, since there is no centrifugal barrier. In fact, for

a broad s-wave resonance there is no quasi-bound state immediately above the resonance [35]. On

the bound-state side of the resonance, the s-wave molecule lifetimes are found to depend strongly

on magnetic-field detuning from the resonance. This is because the size of the s-wave molecule is a

strong function of binding energy and hence detuning from the resonance. Smaller molecules have

better wave function overlap (Frank-Condon overlap) with deeper bound molecular states and thus

decay more rapidly into those states via inelastic collision processes. In contrast, the size of the

p-wave molecules are not expected to vary with molecule binding energy since their size is largely

set by the presence of the centrifugal tunneling barrier.

Furthermore, the s-wave molecules are found to have long lifetimes at small binding energies,

which are much longer than what we measured in the case of p-wave molecules. This can be

attributed to the greater size of the s-wave molecules and hence smaller overlap with deeper bound

states as well as a stronger Pauli suppression of inelastic processes [48].

3.5 Creating p-wave molecules near the Feshbach resonance

As noted above, we found that it was possible to produce large numbers of p-wave molecules

by setting the magnetic field to a value near the resonance and waiting. With our method to see the

molecules, we could dynamically probe this process. In these experiments, we ramp the magnetic
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Figure 3.10: p-Wave molecule creation (a) Measured atom number as a function of time that
the magnetic field is held at the mL = ±1 resonance. (b) Measured molecule number for the same
hold time on resonance. The inset shows the timing sequence for this experiment. The number
of molecules is measured using the dissociation technique described in the text (solid line.) The
number of atoms is measured by ramping the field below the resonance (dashed line) where the
imaging does not detect molecules. This figure is from Ref. [2].
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Figure 3.11: p-Wave molecule creation vs. magnetic field Number of molecules created for a
1 ms hold vs. magnetic-field detuning from the resonance. The data suggest that molecule creation
occurs only when the p-wave resonant state has a positive energy that is less than the maximum
collision energy between atoms in the Fermi gas.
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field to a value near the Feshbach resonance and then hold for a variable amount of time. To detect

the presence of molecules we quickly jump the field above the resonance and expand the cloud as

described in the previous section. Alternatively, the number of atoms can be measured by ramping

the field below the resonance where the imaging light is not sensitive to the bound molecules. The

experimental sequence is shown in the inset of Fig. 3.10. In Fig. 3.10, we show the number of

atoms and molecules as a function of hold time near the resonance. The data in Fig. 3.10 was

taken for the magnetic-field value where we observe the highest conversion efficiency to molecules.

The molecule population increases rapidly for approximately 1 ms and then decays with a time

constant on the order of a few ms. At long times both the atom and molecule populations decay

monotonically, indicating that inelastic loss processes are taking place.

In Fig. 3.11, we show the number of molecules created after a 1 ms hold time for different

detunings from the Feshbach resonance and also for different values of the Fermi energy. We see

that molecule creation occurs only over a small range of magnetic-field values near the resonance.

The molecule creation feature is asymmetric and has a width that increases with increasing cloud

energy. This suggests the width of the feature arises from the atomic kinetic energy distribution in

the cloud rather than any intrinsic width. This is consistent with our determination that the gas

is in the narrow resonance limit.

3.6 p-wave superfluids

Ultimately, the goal of this research was to explore the possibility of creating a strongly

interacting Fermi gas dominated by p-wave interactions where a p-wave paired superfluid state

might be accessed. Such an unconventional superfluid would be extremely interesting from the

point of view of condensed matter physics due to the vector order parameter (compared to the

s-wave case) and possibilities for quantum phase transitions [49, 50, 51, 52]. Furthermore, in two

dimensions it is predicted that such a system could exhibit non-Abelian topological excitations,

which is a topic of wide interest with possible applications to decoherence-free quantum computing

[53].
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In order to study many-body physics in a strongly interacting atomic gas, it is important

for the rate of inelastic processes in the gas to be small compared to the rate of elastic scattering.

One way to think about this is that the true ground state of the cold atom gas is actually for

all the atoms to bind together and crystalize. In this sense, the dilute gas is in a highly excited

metastable state. However, as long as the relaxation rate to lower energy states is slow enough, it

can essentially be ignored. In this case, we can study the physics of the metastable state, which

is governed by elastic scattering processes between the atoms and can be mapped onto a pseudo-

potential problem that has no deeply bound states. In practice, one runs up against some inelastic

processes, and in particular, three-body collisions that lead to the formation of more deeply bound

dimers. The amount of energy released in such a collision is so great that the atoms promptly fly

out of the trap and stick to the wall of the vacuum chamber. Thus, the presence of inelastic decay

to deeply bound states manifests itself as atom and molecule loss in the trapped gas. As long as

this loss process is slow compared to many-body timescales in the system, which are generally set

by the elastic collision rate, we can study the low energy many-body physics of the quantum gas.

In the case of Fermi gases near s-wave resonances, this criteria is met as long as one doesn’t

go too far onto the molecule side of the resonance [6]. However, it does not seem to be met in the

case of the narrow p-wave resonance. Atom and molecule lifetimes near the p-wave resonance in

our system were too short for us to observe any elastic scattering processes. The Japanese group

confirmed that for 6Li near the p-wave resonance inelastic collision rates were too large to allow for

equilibration of the system [46].

Nevertheless, I am hopeful that this is not the end of the story. We were never able to develop

a satisfactory model of the molecule creation process that we observed for a cold gas held near the

p-wave resonance [3]. It is possible that interesting many-body physics is occurring here at the

same time as the inelastic decay processes. If we knew what questions to ask and had a good way

to probe the gas, there might be interesting physics to be learned. I suspect atom photoemission

spectroscopy, the main topic of this thesis, would be an interesting tool to try and apply to this

system and there is a group out there working towards this possibility [54].
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Moreover, it is predicted that for atoms confined to two-dimensions the ratio of the elastic to

inelastic loss rates would be more favorable, though still less favorable than the s-wave case [48]. An

optical Feshbach resonance could perhaps be used to enhance p-wave collisions while minimizing

inelastic rates. Also, optical lattices may help in preventing three-body loses [55]. While these

routes to p-wave superfluidity are uncertain, the reward of success would be high and it may be

a worthwhile endeavor to pursue them (assuming you already have tenure). However, for the rest

of this thesis, I will return to studies of strongly interacting gases via a broad s-wave Feshbach

resonance.



Chapter 4

Fermi superfluids and the BCS-BEC crossover

In this section I discuss the BCS theory of superfluidity (or superconductivity in metals)

and the concept of the BCS-BEC crossover. My discussion of BCS theory comes from the book

by J.R. Schrieffer [5], which was written back in 1964 but is still quite readable, as well as the

classic many-body theory book by Fetter and Walecka [56], and also the helpful review [4]. For

the BCS-BEC crossover, I will present some of the early results obtained in our group from Cindy

Regal’s thesis [6] and also use insights from the review [4].

4.1 The pairing theory of Fermi superfluidity (BCS Theory)

4.1.1 Cooper pairs

While a non-interacting Bose gas undergoes a phase transition at low temeperatures to a Bose-

Einstein condensate, non-interacting Fermi gases have no phase transitions even as the temperature

is lowered to zero. Furthermore, Fermi gases with short-range repulsive interactions remain a Fermi

liquid, a state similar to a non-interacting Fermi gas but with renormalized parameters, down to

zero temperature (with the possible exception of a transition to a ferromagnetic state if interactions

are extremely strong [57]). However, if attractive interactions exist, an instability in the Fermi liquid

state is introduced and the system has a transition to a superfluid state at low temperatures. A

hand-wavy way to think about this transition is to say that the attractive interactions allow the

fermions to form pairs, those pairs are bosons, and the bosons can undergo Bose condensation.

What is truly amazing about the superfluid transition however, is that it occurs even for arbitrarily
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weak attractive interactions, even though those attractions would be far too weak to bind together

two fermions in free space. To get some insight into this conundrum, it is helpful to examine what

has been termed the Cooper instability.

-k

kOccupied
States

kF

Figure 4.1: Cooper’s problem In Cooper’s problem, two fermions coexist with a non-interacting
Fermi sea (filled circle). The two fermions with zero center of mass momentum interact via a weak
attractive interaction. The Fermi sea affects the problem only by Pauli blocking, which prevents
states with momentum less than ~kF from being occupied. Shown are possible wave vectors k and
−k outside of the Fermi sea that the two fermions may occupy. In the absence of the Fermi sea,
the kinetic energy cost associated with forming a bound state would outweigh the energy decrease
from forming a paired state. However, in the presence of the Fermi sea it can be shown that a such
a pair will lower the energy of the two fermions below 2EF . This many-body pair is stabilized by
the Fermi sea and called a Cooper pair.

The thought experiment is as follows [58]: Consider a non-interacting Fermi sea and then

add two interacting fermions with zero center-of-mass momentum on top of that Fermi sea (Fig.

4.1). The Fermi sea affects the problem only by Pauli blocking, which prevents the two fermions

from occupying any of the k states below the Fermi surface. If there were no interactions, the two

new fermions would have energy 2EF since each would have to sit on top of the Fermi sea. With

attractive interactions, it turns out they can lower their energy a small amount by forming a loosely

bound state called a Cooper pair. This problem is worked out in detail in a number of textbooks

and reviews. For the problem of fermions where the interactions can be characterized by scattering

length a, the binding energy would be EB = 8
e2
EF e

−π/kF |a|. This bound state could not exist in

the absence of the underlying Fermi sea and therefore the pair is really a many-body pair, although
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it is important to note that in this case the correlations with all the other atoms in the Fermi sea

are not caused by interactions but by quantum statistics.

Now, we have not solved the problem of many fermions interacting via a weak attractive

interactions, but we can use our insight from the Cooper problem to guess what the solution will

look like. In the fully interacting problem, many fermion pairs should form and condense leading

to a superfluid state. It turns out the pairing gap of the full many-body state in the BCS limit is

actually [5, 56, 4]

∆0 =
8

e2
EF e

−π/2kF |a| (4.1)

4.1.2 Properties of the superfluid state

4.1.2.1 Critical temperature

The first natural question about the superfluid state is what is the critical transition temper-

ature. In order for the Cooper pairs to survive, one might guess that the temperature should be

on the order of the pair binding energy. This turns out to be approximately correct with [5, 56, 4]

Tc = TF
eγ

π

8

e2
EF e

−π/2kF |a| =
eγ

π
∆0 (4.2)

where γ is Euler’s constant and eγ ≈ 1.78.

For 40K, the background scattering length is 174a0 and in our experiments typically k−1
F ≈

2000a0 which would give Tc
TF

≈ 10−8; this is far below the temperature range that is experimentally

accessible. Without a Feshbach resonance to enhance interactions, atomic Fermi gas experiments

would not be able to access the superfluid regime.
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4.1.2.2 The energy

The total energy of the superfluid is lowered from the non-interacting state by pairing and

can be written [5, 56, 4]

EBCS =
3

5
NEF − ∆0

2
ρ(EF )∆0 (4.3)

where ρ(EF ) is the density of states at the Fermi energy. The first term is simply the non-interacting

energy of the normal state. The second term is the pairing energy and can be interpreted as coming

from ρ(EF )∆0 paired atoms each with pairing energy ∆0
2 . In other words, pairing occurs in a region

of energy width ∆0 about the Fermi surface.

4.1.2.3 The gap

Figure 4.2: The temperature dependence of the pairing gap The temperature dependent
pairing gap ∆(T ) as a fraction of the gap at zero temperature, ∆0, is plotted as a function of the
temperature compared to the critical temperature T/Tc. The pairing gap vanishes at Tc. This
figure is taken from Ref. [4].

In the superfluid phase at finite temperature, the pairing gap decreases as T increases and

above Tc it vanishes. In the BCS limit, the pairing gap can be considered to be the order parameter
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for the phase transition. In other words, the sudden appearance of pairing and the gap are the

same phenomenon as the transition to a superfluid. The temperature-dependent gap formula must

be solved numerically and is plotted in Fig. 4.2.

4.1.2.4 Pair-size

In the BCS limit, the pair wave function at large r can be approximated as sin(kF r)e
−r/πξ

[4] where ξ can be written 2
kF

EF
∆ . Since ∆ is much smaller than EF in the BCS limit, the pair size

is much greater than the average inter-particle spacing, which is of order 1
kF

. This is the reason it

is not so easy to simply say the BCS superfluidity is a bunch of fermion pairs that Bose condense.

Rather, it is a system of many very large and overlapping pairs where the pair constituents are all

strongly correlated with each other through the Pauli exclusion principle.

4.1.2.5 Quasi-particles and the excitation spectrum

Another question is how does the gap manifest itself in the excitation spectrum and what

do the single-particle states look like in the paired superfluid. One way to answer this question

is to examine the solution of the BCS problem by canonical transformation. We can write the

mean-field BCS Hamiltonian in second quantization in grand canonical (non-particle conserving)

form as [56, 4]

HBCS =
∑
k,σ

(ϵk − µ)a†k,σak,σ −∆
∑
k

(a−k↓ak↑ + a†k↑a
†
−k↓) (4.4)

where a†k,σ(ak,σ) are the fermion creation (destruction) operators for a fermion at momentum

k with spin σ and ϵk = ~2k2
2m is the bare fermion energy. In order to diagonalize the Hamiltonian,

we introduce the quasi-particle operators

γk,↑ = ukak↑ − vka
†
−k↓ (4.5)

γk,↓ = ukak↓ + vka
†
−k↑ (4.6)
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This transformation is canonical if the anticommutation relations {γk,σγ†k′,σ′} = δk,k′δσ,σ′ are

satisfied, which leads to u2k + v
2
k = 1. If we plug eq. 4.5 into eq. 4.4 and do enough algebra, we find

[5, 56, 4]

HBCS =
∑
k,σ

Ekγ
†
k,σγk,σ (4.7)

where

Ek =
√

(ϵk − µ)2 +∆2 (4.8)

Thus, the elementary excitations of the system are given by the γ†k,σ’s and Ek is the energy due

to a quasi-particle at momentum k. The energy to add a particle at k is Ek(N+1)−E(N) = µ+Ek,

where Ek(N) is the energy of an N-particle system with a quasi-particle excitation at k. The energy

to remove a particle at k is E(N) − Ek(N − 1) = µ − Ek. These excitation energies are plotted

in the top part of Fig. 4.3. As can be seen, there is gap of 2∆ between the lower and the upper

branch. One way to think about this spectrum is to say the lower branch for the quasi-particle hole

excitations represents the energy of the single-particle states in the ground state and the upper

branch are the excitations.

It is also possible to obtain the values of uk and vk, which are also called the coherences. We

find [5, 56, 4]

u2k =
1

2
(1 +

ϵk − µ

Ek
) (4.9)

v2k =
1

2
(1− ϵk − µ

Ek
) (4.10)

The coherences are plotted in the bottom of Fig. 4.3. We see that away from the Fermi

surface the quasi-particles are essentially the bare particle and hole operators. Only near the Fermi

surface where pairing occurs is there significant particle-hole mixing between states with opposite

spin and momenta.
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Figure 4.3: BCS quasi-particles Top) The dispersion relation for the BCS quasiparticles. The
top branch (red) is the energy of excitations on top of the BCS ground state (adding unpaired
fermions). The lower branch (blue) is the energy associated with removing particles in the BCS
ground state. The dashed line is the free-particle dispersion. The upper and lower branches of
the BCS dispersion are separated by twice the pairing gap ∆. Bottom) The coherences u2k (red)
and v2k (blue) are plotted vs k. Far from the Fermi surface, the coherences approach either 1 or 0
showing that in those limits the quasi-particle states are the same as the free-particle states. Near
the Fermi surface, the quasi-particles are superpositions of particle and hole states with opposite
momenta and spin. The coherence v2k gives the occupied k states in the ground state and shows
that the momentum distribution is smeared out [5]. The plots here are for a gap equal to 0.2EF .

We have used µ =
~2k2F
2m for a weakly interacting Fermi gas.
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4.2 Turning up interactions: The BCS-BEC crossover

From eq. 4.2 we know that reaching the superfluid regime in our 40K gas will not be possible

with background interactions. But how high can we make Tc if we enhance interactions by turning

up the scattering length using a Feshbach resonance? With the Feshbach resonance, we can tune

the scattering length all the way up to −∞ where a true bound state is on the verge of appearing

in the atom-atom potential. If we plug this into eq. 4.2, we find Tc = 0.61TF . However, this is

clearly outside the regime of validity for BCS theory, which requires weak interactions and ∆ ≪ EF

[5, 56, 4] (here we would have ∆ = 1.1EF ). If we backtrack to an interaction strength where we

still expect BCS theory to be approximately correct, say kFa = −1, we find Tc = 0.13TF and

∆ = 0.23EF . This temperature is experimentally accessible.

It is instructive to look at what happens as the Feshbach resonance is crossed and a true

bound state is introduced into the two-particle potential. This is the “BEC side” of the resonance.

The reason for the name is clear; if we go far enough so that we are again in the limit of weak

interactions ( 1
kF a ≫ 1) the ground state is a Bose-Einstein condensate of dimer molecules where

the binding energy of each molecule is given in Eq. 3.9 to be ~2/(ma2) for a broad Feshbach

resonance. Here, the pair size is on order of the scattering length a [4] and thus much smaller than

the inter-particle spacing. In this limit, we can calculate Tc from the Bose-Einstein condensation

temperature with a boson density of n/2 bosons and mass 2m. This gives Tc/TF = 0.22 for the

BEC limit.

We can guess that in the range of interaction strengths of −1 < 1
kF a < 1 the transition tem-

perature is in the range of 0.1−0.2 TF , which is an extremely high superfluid transition temperature

for a Fermi gas. This is the region of the BCS-BEC crossover, named because we are going from

the limit of small negative scattering length where the superfluid state is described by conventional

BCS theory to the limit of small positive scattering length where the ground state is a molecular

BEC. It was first proposed by Leggett [59] that this crossover should be smooth with the ground

state being a Fermi superfluid all the way across. As a first naive approximation, an adaptation
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Figure 4.4: Pairs in the crossover The different regimes of pairing are shown for a Fermi gas
with attractive interactions. In the BEC limit, the pairs are tightly bound molecules with a pair
size much smaller than the inter-particle spacing and the critical temperature is given by that for
Bose-Einstein condensation of weakly interacting bosons, which is approximately 0.22TF . In the
BCS limit, where the attractive interactions are weak, Cooper pairs can form and the Fermi gas
is a BCS superfluid. Here, the critical temperature is exponentially small, given by eq. 4.2. The
crossover takes places for interaction strengths of 1

kF a = −1 to 1. In this region, the pair size is on
order of the inter-particle spacing and the gas is strongly interacting with a critical temperature in
the approximate range of 0.1− 0.2TF . This figure is taken from [6].
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to conventional BCS theory can be made by allowing the chemical potential, which equals EF on

the BCS side, to vary continuously to its limit of −Eb/2 on the BEC side where Eb is the molecule

binding energy [59, 60, 61]. This allows one to solve for quantities like the chemical potential,

the gap, and the pair wave function. The theory predicts that the pair size varies smoothly from

the BCS limit of large Cooper pairs to a pair size on the order of the interparticle spacing in the

crossover and then to a pair size on the order of the scattering length a in the BEC limit [4], as

shown in Fig. 4.4. The minimum fermion excitation energy varies smoothly from twice the BCS

gap, eq. 4.1, to a value on order of the Fermi energy in the crossover and then to the molecule

binding energy on the BEC side [6]. However, while this theory captures some of the physics of

the crossover, it is not quantitatively accurate since it does not take into account all of the strong

correlations that occur in the BCS-BEC crossover. In fact, no controlled theory has been possible

in this regime due to the lack of a small parameter with which one can apply perturbation theory

[35]. From the point of view of experiments, though, this is exactly the regime we want to be in,

where many-body correlations are the strongest and the system is the hardest to understand. It is

here that we can hope to make measurements that contribute to fundamental many-body quantum

theories.

The first major experimental goal was to demonstrate that a superfluid could be achieved

in this strongly interaction regime and that a smooth crossover between the BCS and BEC limits

of interacting fermions did indeed exist. The first experimental evidence for the strongly inter-

acting Fermi superfluid came from our group in 2004 with the observation of a condensate in the

center-of-mass pair momentum distribution [7]. This experiment is somewhat analogous to the ob-

servation of Bose-Einstein condensation by looking at the atom momentum distribution and seeing

a condensate peak at zero-momentum. The important difference is that with fermions, there is

no condensate in the atom momentum distribution. The trick was to find a way to measure the

center-of-mass momentum distribution of the pairs, and this was done by projecting the pairs in

the many-body system onto tightly bound molecules by ramping across the Feshbach resonance.

Further confirmation of superfluidity followed in 2005 when the group at MIT found that at low
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Figure 4.5: BCS-BEC crossover phase diagram An experimental measurement of condensate
fraction, N0/N , as a function of temperature and interaction strength allows one to map out the
superfluid region in the BCS-BEC crossover. The right side of the plot is the BCS side and the left
side is the BEC side. The transition temperature is the highest near the center of the crossover
( 1
kF a = 0) and on the BEC side; Tc falls off quickly on the BCS side. On the vertical axis the

temperature reported, (T/TF )
0, is that of a weakly interacting gas before an adiabatic ramp that

increases the interaction strength. This figure is taken from [6] and was first published in [7].
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temperatures they could observe a vortex lattice by rotating the gas [62]. Since then a number of

experiments have been consistent with the observation of a superfluid state including measurements

of thermodynamics [63, 13] and collective excitations [64, 65]. It turns out the method developed

at JILA to measure the pair condensate is quite sensitive to the transition and therefore is good for

measuring Tc and mapping out the phase diagram. This was done in Ref. [7] and the main result

is reproduced in Fig. 4.5. As can be seen in Fig. 4.5, the critical temperature decreases on the

BCS side of the diagram and levels out to about 0.15TF on the BEC side. It is important to note

that the temperature given is that of a weakly interacting Fermi gas before it was adiabatically

ramped to the strongly interacting regime. In this ramp, entropy is conserved but the temperature

is expected to increase. On the BCS side, and even at unitarity, this effect is rather small (about

a 15% increase in T
TF

at Tc at unitarity [66]) but the temperature increase can be quite large for

adiabatic ramps into the BEC regime [66].

After this great experimental achievement, the goal of the next generation of experiments

became a bit more murky. Clearly, we had the ability to generate a very interesting system, where

correlations were so strong that theories based on approximations were uncontrolled and insight

into the system was more difficult. Furthermore, it was a system that was relevant to other strongly

correlated systems like quark-gluon plasmas, neutron stars, and strongly correlated electron sys-

tems. So, the goal had to be to somehow make measurements that could give physical insight and

guide theoretical frameworks in a way that would lead to a better overall understanding of this

strongly correlated fermion system. A great number of experiments were done that helped con-

tribute to this goal, including measurements of momentum distributions [67] and potential energy

[30] in our group and other measurements of thermodynamic quantities, collective excitations, rf

spectroscopy (to name only a few) in other groups across the world [4]. All of these measurements

could be compared with theories and with quantum Monte-Carlo simulations to test their accuracy

and to try to gain physical insight.

In this thesis, I will present some experimental measurements that I think have been partic-

ularly helpful in getting to the heart of this strongly correlated system. These measurements are
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based on momentum-resolved rf spectroscopy and they directly measure the single-particle spec-

tral function of the fermion system in a way that is analogous to angle-resolved photoemission

spectroscopy of strongly correlated electron materials. The spectral function tells us about the

single-particle states and knowledge of it allows us to describe the system in the language of Fermi

liquid theory and standard quantum many-body theory. Measuring the spectral function will help

us answer some basic questions, such as can we describe this system in terms of quasi-particles

and does the normal gas behave as a Fermi liquid or does a pseudo-gap state exist? Furthermore,

the spectral function is an excellent quantity to directly compare with theories because it is a

fundamental quantity of the system.

In the next chapter, I will explain what the single-particle spectral function is and how it

behaves for the paradigms of Fermi liquids and BCS superfluids. I will also explain how we can

measure it experimentally and what some initial experiments can tell us about the BCS-BEC

crossover.



Chapter 5

Fermi liquids, spectral functions, and photoemission spectroscopy

In this section I introduce the language of Fermi liquid theory and spectral functions and show

how these quantities help us understand the nature of interacting Fermi systems. I discuss how to

measure the spectral function of an atomic Fermi gas using a momentum-resolved rf spectroscopy

technique. I present our first measurements of the spectral function in the BCS-BEC crossover,

however I try to be brief as these experiments are discussed in detail in Jayson Stewart’s thesis

[34]. I also describe how we improved the signal-to-noise ratio of these measurements by changing

our imaging scheme, and I present some recent higher-signal-to-noise data. My discussion of Fermi

liquids and spectral functions borrows often from Refs. [56, 68, 69] as well as from course notes

from Jim Shepard and Victor Gurarie for many-body physics courses taught at CU. The original

photoemission data I present was published in Ref. [9].

5.1 Landau’s Fermi liquid theory

As discussed in Chapter 2, the single-particle eigenstates of a non-interacting Fermi gas are

plane-wave states characterized by a wave-vector k and energy ~2k2
2m . In the many-body ground

state, fermions fill these states up to the Fermi surface at wave-vector kF . Excitations on top

of this ground state can be classified as particle or hole excitations. A particle excitation is the

occupation of an extra state k > kF above the Fermi surface with an excitation energy of
~2|k2−k2F |

2m

compared to the ground state of the N + 1 particle system. If k − kF ≪ kF the excitation energy

can be approximated as ~vF |k− kF | where vF = ~kF
m is called the Fermi velocity. A hole excitation
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is the absence of a particle in a state k < kF and has the same energy as the particle excitation,

with k now being the wave-vector of the empty state.

For an interacting Fermi gas, the plane-wave states are no longer the eigenstates and it is not

clear how to describe the system in terms of a simple picture as we did for the non-interacting gas.

Landau’s bold insight was to adapt the non-interacting picture of single-particle plane-wave states

for the interacting system with a few simple modifications. A thought experiment shows that this

should be a valid approximation for excitations near the Fermi surface. In this thought experiment,

we first postulate that there is still a well-defined Fermi surface in the interacting system. Then,

we add a particle excitation at momentum k⃗ above the Fermi surface and ask what the probability

is for that particle to scatter into another state. The mechanism for scattering is to collide with

another particle with |⃗k′| < kF into two final states above the Fermi surface, say k⃗1 and k⃗2, see

Fig. 5.1. If the matrix element for collisions around the Fermi surface is roughly constant, this is

a question of phase space. In other words, how many possible collision partners and final states

exist? We require conservation of momentum and energy, as well as |⃗k′| < kF and |⃗k1|, |⃗k2| > kF .

We can satisfy conservation of momentum by taking k⃗′ = k⃗1 + k⃗2 − k⃗. Then we can write the total

number of possible collisions for a single-particle excited above a filled Fermi sea as

N(k) =

∫
d3k⃗1

∫
d3k⃗2 δ(|⃗k|2+ |⃗k1+k⃗2−k⃗|2−|⃗k1|2−|⃗k2|2)θ(|k1|−kF )θ(|k2|−kF )θ(kF−|⃗k1+k⃗2−k⃗|)

(5.1)

where θ(x) = 1 for x > 0 and θ(x) = 0 for x < 0; this is the zero temperature limit of the Fermi

Dirac function. To model a finite temperature gas, the θ functions can be replaced by Fermi Dirac

functions, which give the probability of occupation, (θ(kF −k) → f(E, T )). An analogous equation

can be written down to describe the phase space for a hole excitation below the Fermi surface to

decay (see Fig. 5.2).

It turns out for k − kF ≪ kF , N(k) ∝ (k − kF )
2 or N(k) ∝ E(k)2 [56, 68, 69] (see Fig. 5.2).

This is remarkable because it says the number of collision possibilities for a particle at k to scatter

to another state goes to zero near the Fermi surface. Thus excitations near the Fermi surface are
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Fermi Sea

Figure 5.1: Quasi-particle decay process A particle excitation is made by placing a fermion in
the momentum state k⃗ above the Fermi surface. It can decay by colliding with another fermion
below the Fermi surface in state k⃗′. The final states are k⃗1 and k⃗2, which must be above the Fermi
surface. The number of possible collisions that conserve energy and momentum is proportional to
|k−kF |2. As k → kF , the number of possible collisions decreases to zero because of Pauli blocking.
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Figure 5.2: Hole-decay phase space The total number of collisions, or phase space, for a hole
excitation to decay is plotted versus k/kF for different temperatures. The y-axis is plotted in
arbitrary units. From lowest to highest, the curves shown correspond to temperatures of T

TF
= 0,

0.1, 0.2 and 0.4. The dotted line is a quadratic curve meant to show the low energy limit where
N(k) ∝ |kF −k|2. As temperature increases, the phase space for collisions at k = kF is proportional
to T 2 at low T

TF
. A hole excitation decays when two fermions inside the Fermi sea collide, with

the final state being one fermion filling the hole at k and the other excited out of the Fermi
sea. The equation describing this process is analogous to Eq. 5.1, but for hole excitations and
finite temperature. It can be written N(k) =

∫
d3k⃗1

∫
d3k⃗2 δ(|⃗k1|2 + |⃗k2|2 − |⃗k|2 − |⃗k1 + k⃗2 −

k⃗|2)f(k1, T )f(k2, T )(1 − f(|⃗k1 + k⃗2 − k⃗|, T )), where f(k, T ) is the Fermi Dirac function describing

the probability for a state with wave-vector k, and energy ~2k2
2m , to be occupied at temperature T .
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long-lived. Because the inverse collision time goes to zero faster than the excitation energy, the

excitations near the Fermi surface can be treated as quasi-particles. An identical argument can be

made for hole excitations near the Fermi surface, as plotted in Fig. 5.2. This justifies our postulate

that there will still be a well-defined Fermi surface in the interacting system. However, just because

a particle or hole excitation near the Fermi surface has a well-defined energy, the magnitude of the

excitation energy does not have to be identical to the non-interacting case. Even if there is no phase

space for momentum changing collisions, there are still interactions and virtual processes that can

lead to a shift in the excitation energies. This leads us to call these excitations quasi-particles,

because they now consist of a particle excitation plus that particle’s interactions with all the other

fermions. For fermions interacting via a short-range potential, the 1/e lifetime of an excitation at

k is given by

τ−1 =
EF

~
2

π
(kFa)

2 |k − kF |2

k2F
(5.2)

in the limit k − kF ≪ kF and kFa ≪ 1 [56]. Note that the scattering rate is proportional to the

two-body scattering cross-section 4πa2.

Near the Fermi surface, we can write the quasi-particle excitation energy as ~2kF
m∗ |k − kF |

where m∗ is called the effective mass of the quasi-particles. For fermions interacting via a short-

range potential, the effective mass is given by m∗

m = 1+ 8
15π2 (7 ln 2− 1)(kFa)

2 in the limit kFa≪ 1

[56]. The properties of the quasi-particles can be used to determine numerous basic properties of

the interacting Fermi gas such as the heat capacity (proportional to m∗), compressibility, sound

velocity, and transport properties [56, 68, 69]. This treatment of interacting Fermi gases in terms of

quasi-particles is known as Landau’s Fermi liquid theory and has been very successful in describing

a large class of electronic materials and interacting Fermi gases [56, 68, 69]. However, it is important

to remember that: 1) the quasi-particle theory is only strictly valid near the Fermi surface, where

the quasi-particles represent well-defined excitations and that 2) the total energy of the system

does not equal the sum of the quasi-particle energies (since this would ignore interactions between

quasi-particles).
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Landau’s Fermi liquid theory can be contrasted with the low energy theory for bosons (also

developed in part by Landau), which predicts that the low-lying excitations are phonon-like and

cannot simply be thought of as renormalized particles [69].

5.2 Green’s function and many-body quantum theory

One way to put Fermi liquid theory into a more formal framework is to examine the properties

of the Green’s function of a many-body system. First, let’s examine the Green’s function for a single

particle. In this case, the Green’s function is the probability that a particle at an initial position

xi is found at xf after a time t and can be written [36]

G(xf , xi, t) = −i
∑
n

e−iEntψn(xf )ψ
∗
n(xi) (5.3)

For particles in a box, the Fourier transform of eq. 5.3 gives

G(k,E) =
1

E − ~2k2
2m + iϵ

, (5.4)

where ϵ is needed for convergence but is to be taken to zero. This shows that the energy eigenstates

are actually poles of the Green’s function [36]. This turns out to be a general structure for any

one-particle Hamiltonian [36].

For a many-body problem, the Green’s function is defined in an analogous way. Here we add

or subtract a particle at position xi and ti in the many-body system, let the system propagate, and

then check the overlap of that system with one where we add or subtract a particle at xf and tf

[56]. Analyzing the properties of the Green’s function in Fourier space shows that, in analogy to the

single-particle problem, the poles of the Green’s function represent the energy due to an excitation

from adding or subtracting a particle at k [56] (either Ek(N + 1) − E(N) for particle excitations

or E(N) − Ek(N − 1) for hole excitations where Ek indicates the system has an excitation at k).

For a Fermi liquid, the Green’s function, G(k,E) can be written

G(k,E) =
θ(kF − k)

E − ~2k2
2m − Σ(k)− iϵ

+
θ(k − kF )

E − ~2k2
2m − Σ(k) + iϵ

(5.5)
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where Σ(k) is called the self energy and contains all the physics due to the interactions [56].

The two terms correspond to quasi-hole and quasi-particle excitations. The poles will occur at

E = ~2k2
2m +ReΣ(k) and this is then the energy of quasi-hole or quasi-particle excitation at energy

E and momentum k. An important difference from the single-particle case is that the self energy can

also have an imaginary component that gives a finite width or lifetime to the quasi-hole excitation.

kF kF

Non-Interacting Fermi-Liquid

Figure 5.3: Fermi liquid spectral functions Left) A representation of the spectral function for
a non-interacting gas. Hole excitations are shaded. In this case, the spectral function consists of
delta-function peaks at the non-interacting plane-wave energies. Right) A representation of the
spectral function for a Fermi liquid. Here the sharp peaks represent the quasi-particles, located at
the poles of G(k,E), and the broad peaks represent the incoherent contributions to G(k,E). Near
the Fermi surface, the quasi-particle peaks become sharper and contribute a greater fraction of the
spectral weight. These figures are adapted from Ref. [8].

An important quantity is the spectral functionA(k,E) = − 1
π ImG(k,E). For a non-interacting

Fermi gas, Σ = 0 and the spectral function is given by A(k,E) = δ(E − ~2k2
2m ) (Fig. 5.3). For a

Fermi liquid, using eq. 5.5, we see that

A(k,E) =
−1

π

ImΣ(k)(
E − ~2k2

2m − ReΣ(k)
)2

+
(
ImΣ(k)

)2 (5.6)

which is the equation for a Lorentzian resonance centered at the quasi-particle excitation energy

~2k2
2m +ReΣ(k) and with a width given by ImΣ(k) (see Fig. 5.3). For a Fermi liquid with short-range

interactions, ImΣ(k) near the Fermi surface is given by ~τ−1 where τ is the collision time given in

eq. 5.2. The effective mass m∗ is found from m∗ = ( 1
m + 1

~2kF
∂ReΣ(k)

∂k |kF )−1.

In the superfluid phase, the spectral function of a Fermi gas changes markedly from the Fermi
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liquid phase. The spectral function splits into two branches and the energy of the quasi-particles

is given by eq. 4.8 and shown in Fig. 4.3. Importantly, at the Fermi surface (E = µ), the spectral

function is zero because the gap prevents any states from existing in this region.

Ultimately, the knowledge of the spectral function tells us what has happened to the single-

particle states in the interacting system. The nature of those single-particle states tells us how we

should think about the physical system we are studying and can help give us physical intuition.

Is it a Fermi liquid described by fermionic quasi-particles, a superfluid described by pairing, or is

it something completely different? Furthermore, the Green’s function is a fundamental quantity

that many-body perturbation theory directly computes and so is a good quantity to measure and

compare to theory. If a theory does not at least qualitatively get properties of the spectral function

right, then it is not a good theory of the underlying physics in the system.

5.3 Photoemission spectroscopy

While several observables of a many-body quantum system can be related back to the Green’s

function, experiments that directly remove or add single fermions are the most direct probes of this

quantity. In materials, angle resolved photoemission spectroscopy (ARPES) directly measures

the spectral function of the electrons [8]. ARPES removes electrons via the photoelectric effect.

The energy and momentum of the ejected electrons are measured with a hemispherical electron

spectrometer (Fig. 5.4). As long as the electron is able to leave the material without colliding with

any other electrons, its momentum is preserved. Thus, by using kinematics and knowledge of the

photon energy and emission angle, one can back out the electron energy and momentum in the

material [8]. This energy and momentum information allows one to reconstruct the electron spectral

function by making a two-dimensional plot of the intensity of measured electrons as function of

energy and momentum (see Fig. 5.5). Of course, this technique can only measure occupied single-

electron states. To measure the unoccupied states, or excitations, there is inverse photo-emission

spectroscopy or (IPES) as well as tunneling experiments [8].

ARPES has proven to be an extremely important measurement tool for understanding the
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Figure 5.4: Angle-resolved photoemission spectroscopy In ARPES, a high energy photon
kicks an electron out of the sample via the photoelectric effect. The electron is measured in an
electron analyzer that determines the electron energy. This figure is adapted from Damascelli et
al. [8].
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Figure 5.5: ARPES data A surface plot is shown representing an ARPES data set obtained from
a Bi2Sr2CaCu2O8+δ for a cut in momentum space, which is shown in the upper left corner and
which goes through the Fermi surface (ω = 0). The electron counts are indicated by the red and
yellow colors. The quasi-particle dispersion, marked by the white dots, can be followed up to the
Fermi surface where the quasi-particles are the sharpest and best defined. Cuts through the data
at constant energy (ω = 0) and constant momentum (k = kF ) are shown at the top and lower right
respectively. These cuts are called momentum distribution curves (MDC) for fixed energy and
energy distribution curves (EDC) for fixed momentum. The EDC shows both the quasi-particle
feature and broad incoherent background and can be compared to the interacting Fermi gas picture
of Fig. 5.3. This figure is taken from Ref. [8].
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electronic properties of solids and, in particular, for learning about the nature of strongly correlated

electron systems such as high-Tc superconductors, colossal magneto-resistors, graphene, and many

others. In particular, ARPES has been important in the discovery of the d-wave symmetry of the

gap and elucidation of the properties of the pseudogap state in high-Tc cuprates [8].

It is natural to seek a way to make the same kind of measurement in ultracold atomic Fermi

gases. With photoemission spectroscopy for a Fermi gas in the BCS-BEC crossover, one could

address questions about the basic nature of the gas. How do the single-particle states evolve from

the BCS-like quasi-particles to deeply bound molecules on the BEC side? Can a Fermi liquid state

persist with resonant interactions? How large is the pairing gap? At what point do pairing and

superfluidity become separate phenomena and does a pseudogap state of many-body pairs exist in

the crossover?

0
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Figure 5.6: Momentum-resolved atom rf spectroscopy a) In momentum-resolved rf spec-
troscopy experiments, one outcouples atoms by flipping them to a weakly interacting spin state via
an rf transition. This is analogous to ejecting an electron from a material with a high energy photon
Fig. 5.4. b) The rf photon drives a vertical (momentum conserving) transition. By measuring the
energy and momentum of the outcoupled atoms (upper curve), we can determine the quasi-particle
excitations and their dispersion relation (lower curve). Φ is the Zeeman energy difference between
the two spin states of the atom and is analogous to the work function energy of a material. This
figure is taken from [9].

Momentum-resolved rf spectroscopy gives us a tool to achieve an analogue of the photoemis-

sion spectroscopy measurement for ultracold atomic gases [9]. I will also refer to this measurement

as atom photoemission spectroscopy or simply PES. The spectroscopy takes advantage of the many
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spin states of the atoms in these cold gases. In a magnetic field, the degeneracy of these states

is split by the Zeeman interaction and at magnetic field strengths around the Feshbach resonance

(≈ 200 G), the splitting is on order of h×50 MHz. This Zeeman splitting is much larger than other

energy scales in the system, for example EF ≈ h × 10 kHz. Fortunately, all the spin-relaxation

mechanisms available to atoms in the two lowest energy spin-states are either forbidden or strongly

suppressed, so a gas mixture of atoms in those spin states happily stays that way without relaxing.

In 40K, our strongly interacting Fermi gas consists of a mixture of atoms in the |9/2,−9/2⟩ and

|9/2,−7/2⟩ states with all the other spin states being unoccupied. An rf magnetic-field transverse

to the quantization axis with frequency νrf can induce spin changing transitions when hνrf equals

the energy splitting of the spin states. In particular, an atom in the |9/2,−7/2⟩ state can be

flipped by an rf photon to the |9/2,−5/2⟩ state with νrf ≈ 47 MHz at fields near 200 G. Near a

Feshbach resonance, the interactions between atoms is highly dependent on the spin-states. While

interactions between atoms in the |9/2,−9/2⟩ and |9/2,−7/2⟩ states are resonantly enhanced near

magnetic field strengths of 200 G, interactions between an atom in one of those states and an atom

in the |9/2,−5/2⟩ state remain near their background values characterized by scattering lengths

on the order of 100a0. This is the key to achieving photoemission spectroscopy. An atom in the

|9/2,−7/2⟩ state that is strongly interacting can be “outcoupled” from the interacting system with

a spin-changing rf transition. This is analogous to outcoupling an electron from a material by

ejecting it with a high energy photon (see Fig. 5.6). In both cases, the energy of the fermion in

the final state, either a weakly interacting atom or a free electron, is trivially known. The spin

flipped atoms in the |9/2,−5/2⟩ state can be counted because absorption imaging resolves spin

states selectively when the Zeeman splitting is greater than the width of the absorption lineshape

(approximately 6 MHz).

In a traditional (momentum-integrated) rf spectroscopy experiment, one measures the num-

ber of atoms outcoupled, or transferred to the weakly interacting spin-state, as a function of the

frequency νrf (see Fig. 8.1). This sort of experiment has now been used to infer information about

the pair wave-function [40] and pairing gap [19] in the BCS-BEC crossover as well as to measure
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the contact [10], a subject of Chapter 8. However, a momentum-integrated rf spectroscopy experi-

ment cannot resolve important questions about the single-particle states such as the existence of a

pseudogap state or Fermi-liquid-like behavior [70, 71].

Momentum-resolved rf spectroscopy (Fig. 5.6), takes advantage of the fact that the rf photon

has a negligible momentum compared to the atom’s momentum and so the spin-flip transition does

not change the atom’s momentum state (this is a vertical transition in the language of photoemission

spectroscopy). The momentum of the spin-flipped atom, and thus the momentum of the atom inside

the interacting system, can be measured in a time-of-flight experiment. With this information,

we can reconstruct the fermionic spectral function. Specifically, the rate of atoms transferred at

momentum k and rf frequency νrf , I(νrf , k) is related to the spectral function via

I(νrf , k) ∝ k2A(k,E)f(E) (5.7)

with E = ~2k2
2m − h(νrf − ν0), where hν0 is the Zeeman splitting of the two spin-states [72]. f(E) is

the Fermi-Dirac distribution function, which appears because photoemission spectroscopy measures

only the occupied part of the spectral function. The energy E is offset so that E = 0 corresponds to

the energy of a non-interacting atom at rest (as opposed to the usual condensed matter convention

where E is measured with respect to the Fermi energy or chemical potential). To understand where

this formula comes from, we can look at energy conservation for an rf transition. Initially, we have

a photon of energy hνrf and the energy of the interacting system with N atoms. Then, we remove

one atom and put it into another spin-state where it will have energy ~2k2
2m + hν0. Thus, the energy

change to the interacting system from removing one particle at momentum k is ~2k2
2m − h(νrf − ν0).

The factor of k2 out front in eq. 5.7 is just the volume factor for the number of states at momentum

k.

Momentum-resolved rf spectrsocopy compared to ARPES for materials removes some com-

plications but also introduces some new ones. For example, ARPES suffers from ejected electrons

colliding with other electrons on their way out of the material [8]. This introduces a background

signal and limits ARPES to probing near the material surface. For two-dimensional materials, this
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limitation is just technical but for other materials it can make measurements of bulk properties

difficult [8]. With atoms, the interactions between the atoms in the outcoupled spin state and the

rest of the atoms is so weak that this is not a problem. In other words, the mean free path of the

outcoupled atom is much larger than the system size [9]. Furthermore, in ARPES there is a matrix

element for the process of removing an electron with a photon that depends on the angles and

wave-vectors of the photon and electron [8]. This matrix element is not always known well enough

to divide out [8]. In the atom case, the emission process is simply a Zeeman spin-flip transition and

the matrix element is constant [72]. Experimentally, the photon source in the atom case (an rf field)

is far easier to produce than a synchrotron x-ray radiation source (somewhat of an understatement)

or even a laser based UV ARPES source. Also, the detection of atoms by time-of-flight absorption

imaging is quite a bit simpler (requiring only a low power laser, CCD camera and imaging optics)

than the detection of elctrons with an electron spectrometer. A further general advantage is the

ability of ultracold atom gas experiments to reproduce identical samples repeatedly whereas this

can be a real challenge in materials science.

However, it is important to note a number of new issues introduced in momentum-resolved rf

experiments for atoms. In the atom case, to acquire the full spectral function a range of frequencies

are needed, as opposed to ARPES where the entire spectral function for a 2-dimensional material

can be measured with a single photon frequency (due to the non-conservation of momentum and

energy in the direction perpendicular to the material surface [8]). In ARPES, the energy resolution

of the measurements is typically set by the detector resolution and can be made very small compared

to the Fermi energy (meV compared to eV) [8]. In the atom case, our energy resolution will be

Fourier limited by the duration of the rf pulse, which must be kept much shorter than the oscillation

period of the confinement potential in order to keep the momentum of the outcoupled atoms from

changing. In our experiments, this limits us to a resolution of approximately 0.2EF , although there

is some room for improvement here if the aspect ratio of the confinement trap can be reduced.

Perhaps the most challenging complication of the ultracold atom gas experiments comes from the

density inhomogeneity introduced by the confinement trap. Since the trap is harmonic, the density
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is greatest in the center and then decreases to zero with increasing distance from the center. This

inhomogenous system can be thought of in terms of a local density approximation. This means

locally, inside the atom gas, we can think of the properties of a given shell of the gas with constant

density n as having the properties of a homogenous system at that density. The total gas is

composed of many of these shells, each with a different density. That means the spectral function

we measure will actually be the equivalent of averaging the spectral function of many homogenous

gases with different densities and therefore different values of quantities like EF , kF and µ, which

will range from their peak values at the center of the cloud all the way to zero near the edge.

However, this is not as bad as it sounds. Because we know the trap is harmonic, a theory that

can predict the spectral function for a homogenous gas can easily be extended to predict the trap-

averaged spectral function. The real disadvantage is that this trap averaging can wash out sharp

features and make it more difficult to do a quantitative analysis of the data in the absence of theory.

I will discuss this issue more and devote a later chapter to some work we have done to decrease the

density inhomogeneity and understand its effect on the data.

5.4 Photoemission spectroscopy experiments with a strongly interacting

Fermi gas

Ok, enough discussion, it’s time to look at some data! In Fig. 5.7, momentum-resolved rf

spectroscopy data for a Fermi gas near a Feshbach resonance are shown. For these experiments,

the Fermi gas was cooled to ( T
TF

)0 = 0.16 at a magnetic field strength of approximately 203.5 G

where the gas is weakly interacting ( 1
kF a ≈ −3). The subscript 0 indicates the measurement was

made in the weakly interacting regime. To change interactions, the gas was then adiabatically

ramped to a field B around the resonance. In Fig. 5.7a, the measured spectral function of a

weakly interacting Fermi gas with EF = h× 9.3 kHz and kF =
√
2mEF
~ = 8.6 µm−1 is plotted. The

Fermi energy is determined by EF = ~ω(3N)1/3, where ω is the geometric mean of the confinement

trap frequencies and N is the total number of atoms. Interactions are decreased by ramping the

magnetic field to B = 208.43 G, near the zero-crossing of the resonance, resulting in an interaction
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Figure 5.7: Atom photoemission spectra a) An atom photoemission spectra, obtained with
momentum-resolved rf spectroscopy, for a weakly interacting atom gas. The quasi-particle disper-
sion (white dots) obtained from gaussian fits to vertical cuts through the data (EDCs) is quadratic
and indistinguishable from the expected non-interacting dispersion (black line). b) The spectrum
for a strongly interacting Fermi gas near the center of the BCS-BEC crossover. The quasi-particle
dispersion is BCS-like, exhibiting backbending near k = kF . c) The spectrum for a Fermi gas in the
molecular regime. The top feature is a result of unpaired atoms, which can be treated as a weakly
interacting Fermi gas. The lower feature is due to the pairs, which are in the molecular regime and
exhibit a negatively dispersing spectrum. EDC’s from this data set are shown in Ref. [10].



73

strength of 1
kF a = −9.8. For this gas, the data reveal a spectral function that follows the expected

parabolic curve ~2k2
2m (black line in Fig. a) of a non-interacting Fermi gas. Each white dot is the

center position of a fit to a vertical cut through the data at constant momentum called an energy

distribution curve (EDC). An EDC at k gives information about a single-particle excitation at

momentum k. Specifically, the location of the peak of the feature is the energy or real part of the

self energy ReΣ(k). The width of the feature is related to ImΣ(k). We obtain values for the center

and width by fitting a gaussian Ae−
(E−E0)

2

2w2 to each EDC. For the data in Fig. 5.7, we find the

EDC widths are constant and equal to 2.2±0.1 kHz, which is consistent with our expected Fourier-

limited energy resolution of 2.15 kHz (rms width). It is expected that the intrinsic quasi-particle

widths are much smaller than our energy resolution, with ImΣ(k) ≪ EF for a weakly interacting

gas, as can be seen in Eq. 5.2. Momentum states are occupied up to kF with a smearing in k

consistent with a harmonically trapped gas at a temperature of T
TF

= 0.16.

In Fig. 5.7 b., the momentum-resolved rf spectroscopy data for a gas at B = 202.1 and

1
kF a = 0.17 [73] is plotted. The Fermi energy, as defined above, is h × 10.4 kHz and kF = 9.1

µm−1. Here, we observe a downward shifted dispersion that back-bends near kF . This back-

bending indicates pairing and is well fit by a BCS-like dispersion curve (white line in Fig. b.)

with E = µ −
√

(ϵk − µ)2 +∆2 where ϵk = ~2k2
2m . The best fit gives µ = h(12.6 ± 0.7 kHz) and

∆ = h(9.5±0.6 kHz). However, these fit values cannot be immediately interpreted as measurements

of the chemical potential and the gap for two reasons: the spectral function is obtained from

a trapped gas with inhomogenous density, and the gas is in the BCS-BEC crossover, where the

dispersion from BCS theory may not be correct. I discuss BCS fits to atom-photoemission data in

the BCS-BEC crossover in more detail in the next chapter.

We find the widths of the EDCs are now broadened beyond our energy resolution indicating

that the intrinsic energy widths of the quasi-particles may be large. Another possible source of

broadening is averaging the signal over the trap. I will present a more detailed comparison of the

widths and amplitudes of the EDCs with theory in Chapter 6. It is worth noting that this gas

is very close to the transition temperature ( T
TF

)0 = 0.17 ± 0.01 measured in Chapter 6 (Fig 6.5).
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The fact that even at this high temperature we observe a BCS-like dispersion with back-bending

that is consistent with a large gap is already an indication of pseudogap behavior, since it cannot

be explained by BCS theory (Fig. 4.2). The temperature dependence of this behavior and its

relation to the existence of a pseudogap phase is investigated in Chapter 6. It is important to note

that due to the attractive interactions we expect the gas to contract as we adiabatically increase

interactions; this leads to a greater atom density in the center of the cloud as compared to the

weakly interacting gas. Based on previous measurements [30], we expect this to result in a local

Fermi energy of EF (r = 0) = 12.4± 0.7 kHz at the trap center.

Momentum-resolved rf spectroscopy data for a gas on the BEC side of the Feshbach resonance,

at B = 201.51 G and 1
kF a = 1.1 is shown in Fig. 5.7c. For this gas, EF = h × 9.3 and kF = 8.6

µm−1. Here, we observe that the dispersion is clearly split into two features. The high energy

feature follows the free particle dispersion (black line) and is similar to the data for a weakly

interacting gas plotted in panel a. This feature is due to unpaired atoms, which far on the BEC

side can be considered to be weakly interacting with each other and with the pairs. The lower

energy feature is broad and negatively dispersing at all momenta. This feature is due to the pairs,

which can now be considered to be in the molecular regime. The fact that the spectrum disperses

downward starting at zero momentum instead of at kF indicates that Fermi statistics do not play

a significant role in the physics of the molecular gas. Furthermore, the large widths of the EDCs

suggests that the single-particle excitations are extremely poor quasi-particles and the gas should

not be thought of as consisting of fermionic degrees of freedom; this is consistent with the fact that

we are in the molecular regime of the BCS-BEC crossover. The downward energy shift at zero

momentum represents the amount of energy required to break apart a pair, and hence the pair

binding energy. We measure this offset to be h× 28 kHz, which is close to the measured two-body

binding energy at this field of h×25±2 kHz. Because the pairing is a two-body effect, we can model

the rf dissociation process and produce a Monte-Carlo simulation that shows remarkable agreement

with the experimental data, (see Fig. 5.8). In this model, we assume a thermal distribution for

the molecule center-of-mass motion and use the predicted distribution of relative kinetic energy
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of the atoms for rf dissociation of weakly bound molecules [74]. In this simulation, the widths of

the EDCs are a result of the center-of-mass motion of the molecules. See Appendix D for more

information on the simulation.

5.5 Improvements to the signal-to-noise ratio

The results presented above represent some of our first attempts at atom photoemission

spectroscopy and an immediate subsequent goal was to improve the signal-to-noise ratio of the

data. In order to produce the intensity plots shown in Fig. 5.7, we acquire images of outcoupled

atoms for a range of rf frequencies. Each image contains information relating to a parabolic cut

in the spectral function (eq. 5.7). To extract that information, the momentum distribution of

the outcoupled atoms must be derived from the image. The absorption image actually shows the

momentum distribution projected onto a two-dimensional surface and an inverse Abel transform is

required to convert this to a 3-d momentum distribution [9]. Because the momentum distribution

is isotropic, we can perform an azimuthal average of the images about the center of the cloud

before doing the inverse Abel transform. The signal-to-noise ratio of the images is directly related

to the final signal to noise of the photoemission spectra. If we directly image the outcoupled

atoms in the |9/2,−5/2⟩ state using the optical transition to the |11/2,−7/2⟩ excited state, the

signal-to-noise ratio is poor because this is not a cycling transition. The |11/2,−7/2⟩ state has a

branching ratio of 0.9 to fall back into the |9/2,−5/2⟩ state, which means that if an atom absorbs

7 photons it has a 50% chance of being pumped into another spin state and “going dark” (i.e.

1−0.97 ≈ 0.5). This means that to avoid saturation effects, we have to keep the average number of

photons absorbed well under 7 per atom, which severely limits the signal-to-noise ratio. In contrast,

atoms in the |9/2,−9/2⟩ state can be imaged on a transition to the |11/2,−11/2⟩ state, which is a

closed transition. With this transition, we typically scatter 100 photons per atom. Therefore, it is

obvious we would prefer to transfer the outcoupled atoms to the |9/2,−9/2⟩ state for imaging. This

can be done quite simply with two rf π-pulses that transfer the atoms in two steps, going through

the |9/2,−7/2⟩ state. However, there is a catch. The |9/2,−9/2⟩ and |9/2,−7/2⟩ states are already
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Figure 5.8: Molecule spectrum simulation A Monte-Carlo simulation of momentum-resolved
rf spectroscopy of a molecular gas with the same conditions as Fig. 5.7 c. The white line is the fit
to the data in Fig. 5.7 c. See Appendix D for more information.
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populated by the atoms in the strongly interacting Fermi gas, and because we only outcouple a

small percentage of the atoms in each experiment, the atoms in those states far outnumber the

atoms in the |9/2,−5/2⟩ state that we want to image. The rf pulses are coherent and, in principle,

a perfect π pulse would completely switch the populations of the states however, a more realistic

efficiency of 98% transfer would leave a large background signal. This is why we did not attempt

this scheme in the original experiments.

6

8

1.5

7.85
Optical Trap

RF Pulses

Blast Beams

Time

Trap Off Image

Figure 5.9: Imaging scheme A typical timing sequence for imaging outcoupled atoms with an
8 ms time-of-flight expansion. All times are in ms. The first rf pulse outcouples atoms from the
strongly interacting system into the |9/2,−5/2⟩ state and is typically 0.3 ms long. After a 6 ms
wait, the first blast pulse removes atoms in the |9/2,−7/2⟩ state and then a second one removes
atoms in the |9/2,−9/2⟩ state. Each blast pulse is typically 0.1 ms long. After the two blast pulses,
two rf π pulses transfer the outcoupled atoms to the |9/2,−9/2⟩ state for imaging.

The technique we later developed works by first removing the atoms in the |9/2,−9/2⟩ and

|9/2,−7/2⟩ states with resonant light pulses. If these pulses remove 98% of the atoms and then we

have an rf pulse that is 98% efficient, we get a combined efficiency of 99.96%, which is adequate for

our purposes (for 2× 105 atoms, this would leave a background of only 20 atoms, compared to the

thousands we typically outcouple). The resonant light pulses must remove atoms from the desired

states and not perturb the outcoupled atoms in the |9/2,−5/2⟩ state. In order to accomplish this,

both resonant pulses drive the atoms to the |9/2,−9/2⟩ excited state. This is a σ− transition for

atoms in the |9/2,−7/2⟩ state and a π transition for the |9/2,−9/2⟩ atoms. These transitions are
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favorable because atoms in the |9/2,−9/2⟩ excited state have zero probability to fall back into the

|9/2,−5/2⟩ ground state. Also, the branching ratio to fall into the F = 7/2 ground-state hyperfine

manifold is approximately 0.6, which means the atoms will only need to absorb a couple photons

before they are removed to a dark state. Finally, the frequency of these transitions is not close

to any transition for the |9/2,−5/2⟩ ground state (see Appendix A for transitions and branching

ratios). Nevertheless, we find that excessive power in these blast beams can off-resonantly excite

a small percentage of the atoms in the |9/2,−5/2⟩ and some of these excited atoms can fall back

into the |9/2,−5/2⟩ ground state with increased momentum due to the absorption and emission of

a photon. This then gives an artificial contribution to the photoemission spectra. To minimize this

effect, we find that the power in the removal beams should be kept only high enough to remove

95% − 98% of the atoms and that the removal should happen as close in time to the imaging as

possible. The timing of the sequence is shown in Fig. 5.9. Using this imaging method, we increased

the signal-to-noise rato in our images by a factor of 3 to 4. A data set taken using this imaging

technique is shown in Fig. 5.10 and can be compared with Fig. 5.7b. EDC’s from the data set are

plotted in Fig. 5.11.
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Figure 5.10: High signal-to-noise ratio PES Data taken with the similar conditions to the data
of Fig. 5.7b using the new imaging scheme to improve the signal-to-noise ratio. On the left, the
data is plotted on a linear color scale, as in Fig. 5.7b. On the right is the same data but with a
log color scale to better show the data at high momentum.
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Figure 5.11: EDCs EDCs from the data set shown in Fig. 5.10 are plotted with values of k
kF

= 0.1

(top) to k
kF

= 1.45 (bottom). The EDC at k
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= 1.0 is shown in bold. Black dots indicate the
centers of the gaussian fits. Each plotted EDC is the average of EDCs over a range of approximately
0.15kF and has been normalized to have an area of unity.



Chapter 6

The Pseudogap state of a strongly interacting Fermi gas

In this chapter I will address the issue of the normal state of a strongly interacting gas in the

BCS-BEC crossover, and, in particular, the possible existence of a pseudogap phase that arises from

incoherent fermion pairs. The existence and meaning of a pseudogap phase has been a contentious

issue in this field, but it is a question of utmost importance if we are to fully understand the

BCS-BEC crossover and make new contributions to the field of strongly correlated systems. I will

present atom photoemission spectroscopy data, both as a function of temperature and interaction

strength, in order to explore the normal state in the BCS-BEC crossover and to compare to a theory

of the pseudogap phase. The majority of this work is published in two articles, Refs. [18, 16].

6.1 The pseudogap phase in the BCS-BEC crossover

The ground state of a strongly interacting Fermi gas across the BCS-BEC crossover is always

a paired superfluid, even if the nature of those pairs changes dramatically (consider the pair size and

binding energy, for example). In contrast, the normal state, the state that exists at temperatures

above the critical temperature for superfluidity, Tc, cannot be described by the same qualitative

framework in both limits. In the BCS limit, which is characterized by weak attractive interactions,

the normal state is a Fermi liquid, which is a state similar to a non-interacting Fermi gas but with

renormalized parameters, as described in the previous chapter. In this limit, the pairs and the gap

completely vanish above Tc, leaving no trace of the superfluid ground state. However, in the BEC

limit, where the pair binding energy is much larger than kbTc, the normal state is a molecular gas.
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Here, the pairing of the fermions is not connected to the formation of a superfluid, but rather is a

result of the presence of a deeply-bound molecular state in the two-body potential. In this case,

which I also refer to as the molecular regime, the pairs only dissociate at temperatures T ≈ Eb/kb,

where Eb is the pair binding energy. It should be noted that, because there is no phase transition in

the crossover, the Fermi liquid state must smoothly connect to the molecular gas in the BCS-BEC

crossover.

This raises an interesting question: can only deeply bound pairs exist outside a superfluid

state or might it also be possible for many-body Cooper pairs to form outside the superfluid state

near the center of the BCS-BEC crossover? A state where many-body pairing exists outside the

superfluid state is termed a pseuodogap phase. A potential phase diagram is shown in Fig. 6.1. In

the BCS state, pairing leads to the formation of two excitation branches separated by an energy

gap (see Fig. 4.3) where no single-particle states exist. In the pseudogap phase, it is predicted that

pairing will lead to a qualitatively similar spectral function, except that the quasi-particles will

acquire energy widths and the density of states will not go all the way to zero in the gap (hence

the name pseudogap) [15, 11]. The dispersion of the spectral function in the pseudogap regime can

be written

E(k) = µ±

√(
~2
2m

(k2 − k2L)

)2

+∆
2

(6.1)

where the +(−) is for the upper (lower) branch, kL is the wave-vector where the two branches are

at their point of closest approach (in the BCS limit kL = kF and in the BEC limit kL = 0), ∆ is

the magnitude of the pseudogap, and µ determines the midpoint in energy between the upper and

lower branches [15, 16].

At high enough temperatures, pairs in the pseudogap and molecular regimes will dissociate

leaving a thermal Fermi gas. The temperature marking the characteristic temperature above which

pairs dissociate is called T ∗, and is shown as the upper dashed line in Fig. 6.1. Pairs that form

above Tc are also called pre-formed pairs because they form before entering the superfluid phase.

There are at least two possible definitions to mark the boundary of T ∗ and identify the pseudogap
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Figure 6.1: Phase diagram of BCS-BEC crossover This plot shows a schematic phase diagram
of the BCS-BEC crossover as a function of interaction strength, 1/kFa and temperature. The solid
line shows the location of the critical temperature for the superfluid fluid phase transition, Tc. The
thin dashed line marks the characteristic temperature for pairing T ∗, which merges with Tc in the
BCS limit. The thick gray dashed line marks the crossover from the pseudogap phase where many-
body Cooper pairs exist to the molecular phase where the pairing is expected from the two-body
physics. The phases denoted are NF for a normal Fermi liquid, PG for the pseudogap phase, SF
for superfluid, and MB for the molecular regime. All of the lines except the solid line marking
Tc represent crossovers and not actual phase transitions. This phase diagram is partially adopted
from Ref. [11]
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regime based on the spectral function [11, 75]. One definition is to look at the density of states,

obtained from the spectral function by integrating over the momentum axis. A dip in the density

of states near the Fermi surface would indicate the presence of pre-formed pairs and a pseudogap

phase. Another definition is to look at whether the EDC at k = kL has two distinct peaks. If

two distinct peaks are present this clearly indicates a pseudogap. These two definitions do not

necessarily coincide and, depending on the situation, either one may lead to a higher characteristic

pairing temperature T ∗ (see for example Ref. [11]).

Distinguishing whether the pseudogap state is mainly present in the density of states or

also present in a two peaked EDC near the Fermi surface is an interesting question and may help

differentiate between various theories of the pseudogap [75]. For example, theories that emphasize

pairs in the pseudogap state with predominantly low momentum (extended BCS-Leggett theories)

tend to predict well separated quasi-particle branches, while theories that consider pairs with a

broad range of momenta (NSR type theories) tend to predict a pseudogap only in the density of

states for intermediate temperatures because the large energy widths in the spectral function render

the branches indistinguishable near the Fermi surface [75].

The distinction between the pseudogap phase, where many-body pairs exist, and the molecu-

lar phase where thermal molecules exist is important. In the pseudogap phase, the fermionic nature

of the gas should still be apparent and, in particular, Pauli blocking must play an important role

in pair formation, as in the classic Cooper pair case. Pairing in this regime is highly-non-trivial. In

the molecular phase, one expects pairs simply based on the existence of a deeply bound two-body

state. In this phase, the underlying Fermi statistics would not play an important role and the

pairing is a rather trivial phenomenon. The crossover from the pseudogap phase to the molecular

phase will be an important topic in the second half of this chapter.

In the prediction of a pseudogap phase, we have a true question about the nature of the

single-particle states of the strongly interacting Fermi gas in the BCS-BEC crossover. Are those

states similar to a Fermi-liquid or are they paired states? The later case would represent a break

with the highly successful Landau Fermi liquid theory that has been so successful at describing
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interacting Fermi gases. Either way, it is clear that these basic questions raised in the BCS-BEC

crossover are questions we must address in our quest to better understand strongly interacting

Fermi systems.

6.2 (Some) History of the pseudogap phase and relation to high temperature

superconductors

It is interesting and useful to examine some of the history of the pseudogap phase, both in

theory and experiments, and in particular the connections to the high Tc cuprates. This section is

not a complete literature review of the subject, but rather a snapshot of a few interesting points.

The term pseudogap originally came from the high Tc cuprates where a number of experi-

ments discovered anomalous properties of the normal state in the underdoped region of the hole-

doped cuprate phase diagram (Fig. 6.2). Both tunneling and ARPES experiments that probed

the single-particle electron structure found that a superconducting-like gap feature, the pseudogap,

persisted above Tc to a much larger temperature T ∗. ARPES experiments showed that the pseu-

dogap retained the same d-wave structure as the superfluid gap and transformed smoothly into the

superconducting gap [8] as a function of hole-doping. This behavior is not observed in conventional

superconductors, where the gap is present only in the superconducting state, as predicted by BCS

theory [5].

While no complete microscopic theory of the high-Tc superconductors exists, various phe-

menological theories have been proposed to explain the pseudogap phase. These theories fall mainly

in either the pre-formed pairs category, which would be similar to the situation of the proposed

pseudogap phase in the BCS-BEC crossover discussed above, or in the non-pairing or competing

order category, where the pseudogap forms due to some other phenomenon.

In order to shed light on whether the pseudogap phase might originate from pairing, experi-

mentalists have looked for evidence of whether the quasi-particle dispersion in the pseudogap phase

resembles the BCS-like dispersion of Eq. 6.1 that originates from pairing. Experiments were done

indicating that the dispersion was indeed BCS-like; with back-bending occuring near the Fermi
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Figure 6.2: Typical hole-doped high-Tc phase diagram A typical phase diagram for a high-Tc
superconductor as a function of temperature and hole doping. SC stands for the superconducting
state and AFM stands for the anti-ferromagnetic insulator state. The superconducting phase exists
for a dome-shaped region of finite hole concentration. The hole concentration where Tc is maximal
is called optimally doped. The pseudogap phase exists in the temperature region of Tc < T < T ∗ in
the underdoped region of the phase diagram. Theories of the phase diagram based on the BCS-BEC
crossover predict that varying hole concentration plays the role of changing interaction strength
with smaller hole concentration corresponding to stronger interacting strength (and hence a larger
pseudogap region) [12]. This figure is taken from Ref. [12].
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surface [76], a symmetric upper branch indicating the particle-hole mixing of the quasi-particles

expected from Cooper pairing [77, 78], and a smooth connection to the superconducting gap [79].

However, some of these observations are contradicted in other experiments such as Ref. [80, 81].

Ultimately, this important issue remains unresolved and highly controversial.

For the preformed pairs theory of the pseudogap, there have been many attempts to under-

stand the pseudogap in the BCS-BEC crossover and apply that to qualitatively understand the

pseudogap of the high-Tc superconductors, for example Refs. [61, 15, 12]. However, it is clear that

to really model the cuprates one should take into account the two-dimensional nature as well as

the lattice structure and pairing symmetry [12]. The Fermi-Hubbard model has been proposed to

address these issues, however, the doped Fermi-Hubbard model remains unsolved [82].

Nevertheless, if the pseudogap in high-Tc superconductors does arise, at least in part, from

pre-formed pairs due to strong pairing correlations, it is reasonable to think that we may gain

some insight by studying the pseudogap regime in the strongly correlated BCS-BEC crossover. In

particular, experiments of Fermi gases in the BCS-BEC crossover can confirm whether or not a

pseudogap state consisting of preformed pairs can arise from strong interactions and whether that

state indeed leads to BCS-like features of the spectral function. Perhaps more importantly, exper-

iments with atomic gases in the BCS-BEC crossover can test the validity of theoretical approaches

to understand the pseudogap phase in strongly interacting Fermi gases. This approach can lead to

a better understanding of strongly interacting fermions and ultimately progress towards the even

more difficult problem of developing a microscopic theory of the high-Tc superconductors. It is

important to note that in the BCS-BEC crossover realized by atomic gases, the presence of a pseu-

dogap state could be unambiguously attributed to pairing interactions as no other explanations

exist, in contrast to the competing explanations of the pseudogap for the high-Tc superconductors.

In atomic Fermi gases, despite a large body of theoretical work on the pseudogap phase

[83, 84, 85, 15, 12, 86, 87] (to name a few), there has not been convincing experimental evidence

to confirm the presence of the phase in the BCS-BEC crossover, other than the work presented

in this thesis. Previous rf spectroscopy experiments claimed to identify pairing above Tc, such as
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Ref. [88], but these experiments turned out to be difficult to interpret and ultimately unable to

distinguish between a paired and unpaired state [34].

Furthermore, recent measurements at ENS of the equation of state for a Fermi gas at the

center of the BCS-BEC crossover (1/kFa = 0) find a linear dependence of the pressure with (T/µ)2,

which they interpret as consistent with a Fermi liquid above the critical temperature [13, 89].

The density of states near the Fermi surface determines how a system will respond to changes in

temperature and thus thermodynamic measurements such as the ENS data can indirectly probe

this quantity. A model of the pseudogap using a BCS-like dispersion (Eq. 6.1) with no energy

width, such that a real gap exists in between the upper and lower quasi-particle branches, can be

compared to the ENS data. This comparison shows that the ENS data would only be consistent with

a pseudogap smaller than 0.05EF [89]. However, a more realistic model of the spectral function with

finite width, such that the pseudogap was partially filled in, would allow the data to be consistent

with a larger value for the pseudogap [89]. Indeed, NSR theories of the pseudogap predict that the

gap should become significantly filled in at temperatures above the critical temperature as shown

in the inset of Fig. 6.3 (see also Refs. [11, 75]). Fig. 6.3 shows that the predicted behavior of the

pressure from an NSR theory (black line) is indeed linear and consistent with the ENS data (blue

circles). This also explains how the quantum Monte Carlo data from Ref. [90], which predicts a

pseudogap phase, is in good agreement with the ENS data [91]. The ENS data, NSR theory, and

Quantum Monte Carlo calculations indicate that thermodynamic measurements may be a poor

probe of the nature of the single-particle states near the Fermi surface in the strongly interacting

Fermi gas due to the large energy widths of those states [92].

6.3 Atom photoemission spectroscopy and the pseudogap phase in the BCS-

BEC crossover

The ideal measurement tool for identifying the pseudogap regime would be one that had direct

access to the single-particle fermion states, allowing one to directly check the density of states and

properties of the spectral function. The technique of atom-photoemission spectroscopy, based on
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Figure 6.3: Pressure of a normal unitary Fermi gas Main Figure) Red circles are experimental
measurements of the pressure for a homogeneous Fermi gas at 1/kFa = 0, obtained in Ref. [13].
Blue squares show the result of a quantum Monte Carlo calculation obtained in Ref. [14]. The black
line is the prediction from a finite temperature NSR theory of the pseudogap [15, 16]. The linear
behavior of the pressure in the theory, despite the existence of a pseudogap in the density of states
up to temperatures as high at T/Tc = 1.6, demonstrates that thermodynamic measurements of
Ref. [13] cannot exclude a pseudogap phase. Inset) The inset shows the density of states obtained
from the same theory versus the temperature T/Tc. The black dashed curve shows the density of
states for a non-interacting Fermi gas. This figure is taken from Ref. [16].
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momentum-resolved rf spectroscopy, has the potential to achieve exactly that by directly measuring

the single-particle spectral function. There is however one catch. Photoemission spectroscopy

measures only the occupied single-particle spectral function as can be seen from the presence of the

Fermi function in Eq. 5.7. To measure a gap in the density of states or to resolve the upper branch

of the quasi-particle dispersion, one needs to examine the full spectral function. In principal, the

full spectral function can be obtained by dividing out the Fermi function from the photoemission

data if the temperature and chemical potential are known. However, this would require atom-

photoemission data for a homogenous sample. In a trapped sample, as studied in the previous

chapter and this chapter, the Fermi-function has a radial dependence and so cannot be divided out

from trap-averaged data [16]. I will present progress towards obtaining photoemission data from a

homogenous sample in the next chapter.

However, this is not to say that the trap-averaged data cannot help resolve the issue of the

presence of the pseudogap in the BCS-BEC crossover. From the occupied spectral function, we will

be able to examine the dispersion of the lower quasi-particle branch and look for an indication of

a BCS-like dispersion with back-bending near the Fermi surface. We will also be able to compare

spectral functions at different temperatures and look for evidence (or lack thereof) of a change

from a paired state to a Fermi-liquid state at the critical temperature, as would be predicted by

conventional BCS theory. We can also compare the trap averaged photoemission data to theories

of the pseudogap state to determine if they are consistent.

In this series of experiments, we prepare an ultracold gas of fermionic 40K in the |9/2,−9/2⟩

and |9/2,−7/2⟩ states near 203.5G as in Ref. [9]. At the end of the evaporation, we increase the

interactions adiabatically with a slow magnetic-field ramp to the Feshbach scattering resonance.

To vary the temperature of the cloud, we either truncate the evaporation or parametrically heat

the cloud by modulating the optical dipole trap strength at twice the trapping frequency. To

determine the temperature of the Fermi gas, we expand the weakly interacting gas and fit the

momentum distribution to the expected distribution and extract (T/TF )0, where the subscript

indicates a measurement made in the weakly interacting regime, before ramping the magnetic field
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to the Feshbach resonance. For the data presented here, we obtain clouds with final temperatures

ranging from (T/TF )0 = 0.12 to 0.43 with N = 1.0 × 105 to 1.8 × 105 atoms per spin state. The

trap frequencies vary depending on the final intensity of the optical trap and range from 180 to

320 Hz in the radial direction and 18 to 27 Hz in the axial direction. Correspondingly, the Fermi

energy, EF ranges from h× 8 kHz to h× 13 kHz, where h is Planck’s constant. The Fermi energy

is obtained from N and the geometric mean trap frequency, ν, as EF = hν(6N)1/3. We define the

Fermi wave-vector as kF =
√
2mEF /~ and the Fermi temperature as TF = EF /kB. The energy

resolution of the experiments is given by the inverse duration of the rf pulse and is equal to 2.15

kHz (rms width) or a range of 0.16− 0.27EF .

Figure 6.4: Data in the pseudogap regime We take data along a vertical cut (arrow) in the
phase diagram at 1/kFa = 0.15± 0.03 by varying the temperature of the gas.

The dimensionless parameter that characterizes the interaction strength for this data is

1/kFa = 0.15 ± 0.03. At this interaction strength we measure the critical temperature to be

( Tc
TF

)0 = (0.17 ± 0.02) based on the condensate fraction measurement technique [7], see Fig. 6.5.

By varying the temperature, we take photoemission data along a vertical line in the phase dia-

gram through the pseudogap region as shown in Fig. 6.4. The photomession data is shown in Fig.
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Figure 6.5: Measuring Tc Using time-of-flight expansion at B = 202.1 G, where our photoemission
experiments are performed, we map out the condensate fraction. Temperature is measured in the
weakly interacting regime before the adiabatic ramp to strong interactions. We find ( Tc

TF
)0 =

0.17 ± 0.02. Note that the density of the trapped cloud decreases with increasing distance from
the trap center, and therefore, in a local density picture, even at T

TF
= 0.17 only the part of the

gas at the very center of the trap is below Tc . The horizontal error bars represent one standard
deviation of systematic uncertainty in the temperature and the vertical error bars represent a
standard deviation of statistical error in the measurements.
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6.6 and Fig. 6.7. In Fig. 6.6, we plot the fraction of out-coupled atoms as a function of their

single-particle energy and momentum for temperatures encompassing the pseudogap regime. In

the intensity plots, white dots indicate the centers derived from unweighted gaussian fits to each

of the energy distribution curves, or EDCs, (vertical trace at a given wave-vector). The energy

dispersion mapped out with these fits (white dots) can be contrasted to the expected free particle

dispersion for an ideal Fermi gas (black curve) and are also plotted in Fig. 6.8 along with theory

curves (solid lines) that are discussed below. In Fig. 6.7 we show the same data plotted as EDCs for

wave-vectors ranging from k/kF = 0.1 to k/kF = 1.4. In order to show the evolution of the spectral

function from below Tc through the pseudogap regime the data are shown for four temperatures,

(T/TF )0 = 0.13, 0.21, 0.25 and 0.35, corresponding to (T/Tc) = 0.74, 1.24, 1.47 and 2.06.

For the data below Tc (Fig. 1a), we see a smooth back-bending that occurs near k = kF ,

similar to what was found in the data of Fig. 5.7b and Fig. 5.10, which were taken at a slightly

higher temperature but the same interaction strength. The white curve in Fig. 1a shows a BCS-

like dispersion curve, Eqn. 6.1, obtained by fitting to the white dots for momenta in the range

0 < k < 1.4 kF . While we cannot use this fit to extract the gap and chemical potential in a model-

independent way due to the harmonic trapping confinement, the BCS-like fit is consistent with a

large pairing gap, on order of EF , consistent with the data of Fig. 5.10, and as expected for a

Fermi gas near the center of the BCS-BEC crossover [6, 4].

In the case of a pairing gap, we expect the spectral function to exhibit a BCS-like dispersion

with back-bending at k near kF . For the three lowest temperatures, we observe this behavior. In

fact, we observe no qualitative change from the data at T/Tc = 0.74 to the data at T/Tc = 1.24.

We interpret this as strong evidence in favor of the existence of a pseudogap regime above Tc

comprised of uncondensed pairs in the strongly interacting Fermi gas. The data at the highest

temperature, T/Tc = 2.06, also displays back-bending but in a qualitatively different way. In this

data, we observe a sharp kink in the dispersion (obtained from the Gaussian fits to the EDCs) at a

momentum of k = 1.5kF . This may seem strange because at high temperature, above T ∗ where no

pairs exist, one naively expects to observe a purely upwardly dispersing feature. However, it turns
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Figure 6.6: Photoemission spectra across the pseudogap regime. Spectra are shown for
Fermi gases at four different temperatures, each with an interaction strength characterized by
(kFa)

−1 ≈ 0.15. The intensity plots show the fraction of out-coupled atoms as a function of
their single-particle energy (normalized to EF ) and momentum (normalized to kF ), where E = 0
corresponds to a non-interacting particle at rest. The spectra are normalized so that integrating
them over momentum and energy gives unity. White dots indicate the centers extracted from
gaussian fits to individual energy distribution curves (traces through the data at fixed momentum).
The black curve is the quadratic dispersion expected for a free particle. a At T = 0.74 Tc, we observe
a BCS-like dispersion with back-bending, consistent with previous measurements [9]. The white
curve is a fit to a BCS-like dispersion, Eq. 6.1 b,c At T = 1.24 Tc and T = 1.47 Tc, respectively,
the dispersion with back-bending persists even though there is no longer any superfluidity. d At
T = 2.06 Tc, the dispersion does not display back-bending in the range of 0 < k < 1.5 kF . In all
the plots there is a negative dispersion for k/kF > 1.5. We attribute this weak feature (note the
log scale) to a universal property of the Fermi gas related to short-range correlations.
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Figure 6.7: Energy distribution curves (EDCs) EDCs are obtained by taking vertical traces at
fixed k through the photoemission spectra shown in Fig. 1. We show EDCs between k

kF
= 0.1 (top)

and k
kF

= 1.4 (bottom) for the four data sets with T/Tc labeled above each figure. Each plotted

EDC is an average of EDCs over a range of approximately 0.15kF . The EDC at k
kF

= 1.0 is shown
in bold. Black dots indicate the centers of the gaussian fits to the EDCs. Each EDC is normalized
to have an area of unity. Vertical dotted lines are placed at the local EF that corresponds to the
estimated average density of the gas.
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Figure 6.8: Single-particle dispersion curves The fits to the EDC centers are shown for the
four temperatures in Fig. 6.6 and Fig. 6.7 a,b,c and d, represented by black, blue, red, and green,
respectively. We observe a BCS-like dispersion, smooth back-bending near k

kF
= 1, for temperatures

below and moderately above Tc. For the highest temperature, we observe a quadratic dispersion
near k

kF
= 1 and a sharp discontinuity near k

kF
= 1.5. The lines are theory curves that include

effects of the harmonic trap, as described in the text. The error bars on the points represent one
standard deviation of uncertainty from our fits.
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out that the short-range correlations between the fermions, due to the contact interaction, lead to

the existence of a broad, downwardly dispersing feature at high momenta regardless of whether

the system is a superfluid, Fermi-liquid, or other state, see Fig. 6.9. It should be noted that the

strength of the broad, downwardly dispersing feature is dependent on the state of the system, and,

moreover, the strength of the feature can be related to various other quantities in the system, such

as the total energy, in a universal way. This is the subject of Chapter 8 and Ref. [10].

If back-bending is possible even in a Fermi liquid system, how can we tell whether the spectral

functions in the intermediate temperature regime actually indicate pairing? First of all, as noted

in the caption of Fig. 6.9, the back-bending present in a Fermi-liquid is actually the result of two

separate features in the spectral function: one upwardly dispersing feature that is eventually cutoff

by the Fermi function, and one downwardly dispersing feature. In this situation, one would expect

a discontinuity in the fits to the EDC’s as the fits jump from the upward feature to the downward

feature. This should be evident both in a sharp cusp in the dispersion occurring at k > kF and

a change in the amplitudes of the gaussian fits. A sharp cusp in the dispersion at T/Tc = 2.06

is evident in Fig. 6.6 d and Fig. 6.8 (green circles). A sharp drop in the amplitude is evident in

Fig. 6.10 (green circles). For the data sets in the intermediate temperature regime, T/Tc = 1.24

and 1.47, we do not observe this behavior. In these data sets, the smooth back-bending of the

dispersion near kF is strong evidence for BCS-like pairing.

Furthermore, if the back-bending in the intermediate temperature regime were indeed due

solely to the universal feature and not pairing one would expect the maximum energy of the occupied

spectral function, Emax, to increase approximately proportional to the temperature of the gas as

the upwardly dispersing quasi-particle branch became occupied up to higher and higher energy. We

do not observe this smooth dependence as shown in Fig. 6.11. Instead, we observe a sharp increase

in Emax for temperatures above (T/TF )0 = 0.25, where the spectral function appears to revert to

Fermi-liquid like behavior. This is further evidence for a suppression in the density of states in the

intermediate temperature range due to a pseudogap phase.

In Fig. 6.8, we compare our atom-photoemission spectra to a BCS-BEC crossover theory
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Figure 6.9: Universal structure of an interacting Fermi liquid A logarithmic intensity plot of
A(k,w)/(kFa)

2 for a Fermi liquid with repulsive interactions (kFa = 0.1) taken from Ref. [17]. This
figure shows both a quasi-particle branch dispersing upwards (red line) as well as a comparatively
broader and weaker feature that is downwardly dispersing (black dashed line). The downwardly
dispersing feature can be associated with short-range correlations due to the contact interaction
that are not related to pairing [17]. In photoemission spectroscopy we measure the occupied spectral
function, A(k,w)f(w) where f(w) is the Fermi function. The Fermi function serves as a cutoff for
signal at high energy which results in the upper quasi-particle feature terminating at some finite
momentum. Beyond this momentum only the lower feature will persist and the EDC’s will reveal
a dispersion that jumps to the downwardly dispersing feature, as seen in Fig. 6.6 d or the green
curve in Fig. 6.8.
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Figure 6.10: EDC amplitudes We show the amplitudes from the gaussian fits to the EDCs for
the same experimental data as shown in Figs. 6.6,6.7, and 6.8. The fit amplitudes evolve smoothly
for the lower temperatures (black, blue, and red circles in order of increasing temperature) but
jump discontinuously for the highest temperature gas (green circles).



100

(T/T )F 0

E
/E

m
a

x
F

0.1 0.2 0.3

0

0.5

1.0

1.5

Figure 6.11: Maximum energy of the dispersion We show the maximum energy of the dis-
persion, Emax, for temperatures ranging from (T/TF )0 = 0.13 to (T/TF )0 = 0.35. Emax is the
highest energy of the dispersion obtained from the gaussian fits to the EDCs. The vertical dashed
line marks the critical temperature, Tc at (T/TF )0 = 0.17. There is a clear jump that occurs for
temperatures above (T/TF )0 = 0.25 indicating that for temperatures below that value Emax is
suppressed by an energy gap. In future experiments, it would be interesting to take more points
in the region of (T/TF )0 = 0.25 to 0.35 to map out the sharp increase in Emax. From left to right:
the first, third, fourth, and sixth points are from the data in Fig. 6.6 published in Ref. [18], the
second point is the from the second panel on the top of Fig. 6.13 published in Ref. [16], and the
fifth point, at (T/TF )0 = 0.3 is from an unpublished data set.
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that is based on a diagrammatic t-matrix approximation that includes pairing fluctuations and is

described in Ref. [15] (also referred to as NSR theory [75]). To compare to the experimental data,

we fit theoretical EDCs to single Gaussians to extract the centers; the results are shown as lines

in Fig. 6.8. The theory, which predicts the existence of a pseudogap in the density of states for

the intermediate temperatures of (T/Tc)0 = 1.24 and 1.47, is in excellent qualitative agreement

with the experimental data. In particular, the theory lines show smooth BCS-like back-bending

for the lower temperatures and a kinked dispersion for the highest temperature, (T/Tc)0 = 2.06,

where a pseudogap state is no longer present. We will compare predictions of the spectral function

from theory to experimental data in more detail in the next section of this Chapter. For now, I

will simply note that the good agreement of our data above Tc with a theory of the pseudogap is

further evidence in support of the existence of a pseudogap state in the strongly interacting Fermi

gas. In a similar manner, the theoretical work of Ref. [93] finds that back-bending of the trap

averaged photoemission data corresponds to the existence of a pseudogap state in the center of

the trap. I should also remark that other theories that have predicted a pseudogap state for the

strongly interacting Fermi gas appear to at least qualitatively agree with our data, see for example

Refs. [94, 72].

For temperatures below Tc, the theory [15] predicts a dispersion that is shifted to lower energy

than the data. This disagreement can be attributed to a sharp variation of the order parameter

with temperature close to Tc. This may suggest the theory predicts too high of an order parameter

just below Tc.

6.4 Pseudogap to molecular gas crossover

To learn more about the pseudogap phase, I will present, in this section, atom photoemission

data for different interaction strengths in the BCS-BEC crossover, ranging from the center of the

crossover, at 1/kFa = 0, to well into the molecular regime, at 1/kFa = 1.1, at temperatures near or

just above the critical temperature Tc (see Fig. 6.12). It is important to recall that at T = Tc only

the very center of a trapped atom gas is actually at the critical temperature, and the vast majority
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of atoms should be considered to have a temperature above the local Tc. Thus, the photoemission

data presented here probe the pseudogap regime. Furthermore, by investigating this region of

interaction strengths, we will probe the crossover from the pseudogap state, where the underlying

fermionic properties of the system remain important, to the molecular regime where the pairing

can be considered primarily a two-body effect. We will see that the value of the wave-vector, kL,

(see the pseudogap dispersion 6.1), which determines where the two quasi-particle branches are at

their point of closest approach, can characterize whether a gas is in the pseudogap or molecular

regime. A value of kL near kF will indicate the presence of a remnant Fermi surface, indicating

the importance of the fermionic nature of the system. In the molecular regime, kL approaches 0. I

will also show detailed comparisons of the data to the NSR theory of Ref. [15], which predicts this

behavior of kL. The experimental data and theory comparisons are in Ref. [16].

Figure 6.12: Data taken near Tc in the pseudogap and molecular regime We take data near
Tc for different interaction strengths ranging from 1

kF a = 0.0 to 1.1. This region is the heart of the
pseudogap phase and the crossover to a molecular phase.

The photoemission data is shown in Fig. 6.13. Some general observations regarding the data

can be made immediately. In the data sets at 1/kFa = 0.45 and higher, two distinct spectral
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Figure 6.13: Photoemission spectra near Tc in the pseudogap and molecular regime
The six panels show data taken at different interaction strengths, parameterized by 1/kFa, and
T/Tc = 1.0 ± 0.1, (see Fig. 6.12). The interaction strengths span the center of the pseudogap
regime to the molecular regime. The black line is the free particle dispersion and the white dots
are obtained from Gaussian fits to the EDCs. In the first two data sets (1/kFa = 0.0 and 0.15)
only a single spectral feature is resolved and so the fits are single Gaussians. In the other four
data sets (1/kFa = 0.45, 0.6, 0.8 and 1.1) two spectral features are resolved and the fits are double
Gaussians. The white lines are fits to the back-bending spectral features with Eq. 6.1.
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features become distinguishable with the higher feature being upwardly dispersing and close to the

free-particle dispersion. Furthermore, as the value of 1/kFa is increased, the lower feature shifts

downwards and changes shape to become flatter and eventually monotonically decreasing in the

molecular limit.

These general features can be interpreted as follows. In the molecular limit, unpaired fermions

are weakly interacting and so should have a spectral function identical to a weakly interacting

Fermi gas. It has been previously found that in this temperature range, the conversion of atoms to

molecules after a magnetic-field sweep from the BCS to BEC limits is only 75% efficient, see Ref.

[95]; and so we expect a finite number of unpaired atoms to contribute to the photoemission signal.

Because the three-body recombination rate is relatively slow in our gas, these unpaired atoms can be

out of chemical equilibrium with the molecules. This explains the upwardly dispersing feature that

follows the free-particle dispersion in the data sets closest to the molecular limit (1/kFa = 0.8 and

1.1). As for the data sets closer to the pseudogap regime, such as the spectrum at 1/kFa = 0.45 and

1/kFa = 0.6 , it might seem surprising to observe a spectral feature near the free-particle dispersion,

as we expect the atoms in this regime to be strongly interacting. However, it is important to recall

that this photoemission data is for a trapped gas and that atoms at the edge of the cloud will be at

low density, and hence weakly interacting, regardless of the scattering length. Thus, the spectral

feature near the free particle line observed in data sets in the strongly interacting regime are likely

due to atoms at the edge of the cloud, see for example Ref. [93].

In the spectra nearest to the center of the crossover, 1/kFa = 0.0 and 0.15, only one spectral

feature is observed. However, in this situation the lower branch of the spectral function is close

enough to the free particle line that the contribution from weakly interacting atoms at the edge of

the cloud cannot be clearly resolved. For data sets in the strongly interacting regime, in addition

to weakly interacting atoms at the edge of the cloud, one might expect some signal due to unpaired

atoms near the center of the cloud, where they would be strongly interacting. These excitations

would be similar to the quasi-particles we derived in the BCS theory and would have a dispersion

different from the free-particle dispersion, see Fig. 4.3. However, we expect the presence of the
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Fermi function in the photoemission signal, Eq. 5.7, to suppress any contributions from quasi-

particle excitations. Furthermore, near the Fermi surface, where quasi-particles are most easily

excited, the two branches of the spectral function may not be resolved due to the large energy

widths of the quasi-particles [75, 16, 11]. The inhomogenous density introduced by the trapping

potential and signal from atoms at the edge of the cloud would further serve to obscure any sign

of the upper quasi-particle branch. These reasons may also explain why the upper branch of the

quasi-particle dispersion is not observed in data taken at higher temperature, (see Fig. 6.6).

The changes in the dispersion of the lower spectral feature that we observe as a function of

1/kFa are important. The shift of the dispersions to lower energy for increasing 1/kFa is due to

the increasing binding energy of the pairs as we cross into the molecular regime. Perhaps more

interestingly, the shape of the dispersion also changes in the data. Near the center of the crossover,

in the data at 1/kFa = 0.0 and 0.15, the dispersion is qualitatively similar to the BCS quasi-particle

dispersion, Eq. 4.8, with an increasing dispersion at low momenta and back-bending occurring near

the Fermi surface k/kF = 1. Back-bending near k/kF = 1 signifies that Fermi statistics still play

an important role in the gas and indicates that the back-bending dispersion is caused by many-

body Cooper pairs. As we approach the molecular regime with larger values of 1/kFa, we observe

that the dispersions flatten and eventually become purely downwardly dispersing, as expected for

molecules, see Fig. 5.8. Here, Fermi statistics do not play an important role and k/kF = 1 is no

longer a special point.

The point where back-bending occurs is determined by the parameter kL in Eq. 6.1. The

value of kL extracted from BCS fits to the data (white lines in Fig. 6.13) is shown in Fig 6.16.

The molecular regime should be marked by a two-body molecular binding energy greater than the

temperature, leading to the formation of pairs in the absence of many-body effects. The two-body

pair binding energy compared to the Fermi energy is given by Eb/EF = 2(kFa)
2 (see Eq. 3.9) and

this can be compared to the approximate critical temperature of (T/TF )0 = 0.17, which is given in

terms of the temperature of the gas before the adiabatic ramp to strong interactions. We find that

EB/kBTF = 0.0, 0.05, 0.41, 0.72, 1.28 and 2.42 for the data sets shown in Fig. 6.13.
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6.5 Comparisons to a theory of the pseudogap

In this section, we compare the data of Fig. 6.13 to a theory of the pseudogap introduced in

Ref. [15]. This theory predicts a pseudogap in the density of states over a wide range of temperature

and interaction strength for a gas in the BCS-BEC crossover [75, 15, 11] (see inset of Fig. 6.3).

For comparison with the trap-averaged data of Fig. 6.13, EDCs are produced by taking theoretical

spectra for homogenous gases and averaging them over predicted density profiles of the gas, which

are obtained from the same theory. For details of the theory, I refer the reader to Refs. [15, 16].

Figure 6.14: Comparison of experimental and theoretical EDCs Here we plot experimental
EDCs (red circles), obtained from vertical cuts through the first 5 data sets of Fig. 6.13, and the
corresponding theoretical EDCs (blue lines) from an NSR theory based on Ref. [15]. This figure is
taken from Ref. [16]. See text for discussion.

The comparisons of the EDCs can be seen in Fig. 6.14. The dispersions and energy widths

obtained from the EDCs are shown in Fig 6.15. A first remark that can be made regarding

Figs. 6.14 and 6.15 is that the theory reproduces the amplitude, center, and energy widths of the

experimentally measured EDCs quite well. This suggests that the spectral functions produced by

NSR-type theories [75, 15, 11] capture the essential physics of the pseudogap regime in the BCS-
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Figure 6.15: Comparison of experimental and theoretical dispersions and widths (a) We
plot dispersions (red circles) obtained from unweighted Gaussian fits to the EDCs of the backbend-
ing feature (left peak) of the data in Fig. 6.13. Solid green lines mark the free-particle dispersion.
(b) We plot the widths (full width at half maximum), shown as red circles, that are obtained from
unweighted Gaussian fits to the EDCs of the backbending feature (left peak) of the data in Fig.
6.13. Blue lines are obtained from the theoretical spectra, shown in Fig. 6.14, that include the
effects of trap averaging. Dashed lines are obtained from theoretical spectra for a homogeneous gas
with density equal to the predicted average density of the trapped gas. This figure is taken from
Ref. [16]. See text for discussion.
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BEC crossover. The theory also confirms that the parameter kL decreases rapidly in the area of

the crossover from the pseudogap regime to the molecular regime and marks the disappearance of

a remnant Fermi surface in the strongly interacting gas, as can be seen in Fig. 6.16.

In some of the data sets in Fig. 6.14, it is clear that the theory and experiment disagree on

relative weight of the upper and lower peaks. However, this relative weight is very sensitive to the

temperature and chemical potential. As such, the discrepancy is not surprising since the theory

overestimates Tc by approximately 30% [16].

Given that the theory reproduces the essential features of the data, we can ask the question,

what does the theory tell us about the effect of trap averaging? To investigate this, dispersions and

energy widths obtained from theoretical EDCs for a homogenous gas with a density equal to the

average density of the trapped gas are shown as dashed lines in Fig 6.15. From this we can make a

few remarks. Both a homogeneous gas and the the trapped gas show similar qualitative features.

In particular, the BCS-like shape of the dispersion with back-bending at the wave-vector kL is not

affected by the trap. Furthermore, Fig. 6.15 shows that the large single-particle excitation energy

widths, which are on the order of the Fermi energy, near the Fermi surface, do not appear to be

caused by the trapping potential but, according to the NSR theory are actually intrinsic energy

widths. This would imply the gas is far from the regime of a Fermi liquid where single-particle

excitations at the Fermi surface correspond to narrow energy peaks in the spectral function and

can be treated as weakly interacting quasi-particles [68].

Fig. 6.17 shows that, according to this NSR theory, the fact that we can map out a single

back-bending dispersion for the entire range of momenta k/kF = 0 to 2.0 is actually due to the

suppression of high energy states from the Fermi function in the photoemission signal, Eq. 5.7. In

the full spectral function predicted by the theory, the upper and lower branches are only distin-

guishable at low (k/kF < 0.9) and high (k/kF < 1.5) momenta and the two branches merge into a

single broad feature near the Fermi surface (see also Refs. [75, 11]). It is important to note that,

along with the existence of two distinguishable branches (with similar spectral weight) at low and

high momenta, the spectral functions obtained from NSR theory contain a dip in the density of



109

0 0.5 1.0 1.5
0

0.2

0.4

0.6

0.8

1

1/k aF

kL

Figure 6.16: Comparison of experimental and theoretical kL The value of kL (Eq. 6.1)
obtained from theoretical dispersions (black line) and from the data (red squares). This figure is
taken from Ref. [16]. See text for discussion.
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Figure 6.17: Dispersion with and without Fermi function at 1/kFa = 0.15 The plot shows
the experimental dispersion obtained from trap averaged photoemission data at Tc at 1/kFa = 0.15
(red circles). The dashed line is obtained from a theoretical prediction for a homogeneous gas
with density equal to the predicted average density of the atom cloud. The black line is obtained
from the theoretical prediction but without the inclusion of the Fermi function. The black line
thus traces out the dispersion of the lower branch in the full spectral function. In the region of
(0.9 < k/kF < 1.5) the two branches of the dispersion cannot be distinguished due to the large
energy widths. This figure is taken from Ref. [16].
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states at the Fermi surface due to a pseudogap, see Fig. 6.3 inset.

6.6 Extracting information from BCS-fits to the spectral functions

Fits to the experimentally obtained dispersions using the expected pseudogap dispersion, Eq.

6.1, are shown as white lines in Fig. 6.13. The functional form of Eq. 6.1 obviously matches the data

very well. However, it is not clear if the best fit values of the parameters are particularly meaningful.

After all, the photoemission spectra are obtained for trap-averaged data where the gas does not

have a well-defined value for the gap and chemical potential due to the density inhomogeneity.

Furthermore, we obtain the dispersions from gaussian fits to the EDCs, but the intrinsic EDCs

may have a different functional form and could be asymmetric. Another complication is that any

excitations due to finite temperature will tend to pull the gaussian fits of the EDCs to higher

energies. For all these reasons, it is difficult to directly extract a value for gap (or pseudogap) and

chemical potential from these fits.

However, the fits qualitatively capture three important features in the dispersions that are

predicted by theory. As a function of increasing 1/kFa, we observe that the wave-vector where

back-bending occurs shifts to lower momentum. This is clearly captured by the parameter kL and

is discussed in the previous section. We also observe that the dispersions shift to lower energy with

increasing 1/kFa. This reflects a decrease in the chemical potential, which gives a constant energy

offset in the dispersion given by Eq. 6.1. Also, with increasing 1/kFa, the dispersions become flat

over a larger range of k near kL, which gives an increase in ∆. The values obtained in the fits are

shown as red circles in Fig. 6.18 and both of these features can be observed.

However, the values obtained for µ and ∆ are larger than the expected values for a zero

temperature homogeneous gas, which are shown as stars in Fig. 6.18 and are obtained from Refs.

[20, 19, 21]. This may seem counterintuitive since the density inhomogeneity due to the trap means

that most of the cloud will have a lower density and presumably smaller values of the gap and

chemical potential. This can be understood by considering the effect that atoms at low density will

have on the data. Atoms at low density are weakly interacting and thus contribute spectral signal
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Figure 6.18: BCS fits Top) Red circles show the values of ∆ obtained from fits to the data in Fig
6.13 using Eq. 6.1. The error bars are due to uncertainty in the fits. Black circles show the value
of ∆ obtained by taking half the distance between Emax and the free-particle line as described in
the text and in Fig. 6.19. For these points I have included an additional systematic error due
to the uncertainty in Emax from error in the calibration of the magnetic field. Both the red and
black circles are values of ∆ in units of the Fermi energy for the trapped gas, which is obtained
from the total number and trap frequency (Eq. 2.4). The stars show the value of the gap for a
homogeneous gas at zero temperature, inferred from momentum-integrated rf spectra, in units of
the Fermi energy of the homogenous gas (Eq. 2.2) [19]. The line is a guide to the eye. Bottom) Red
circles show the values of µ obtained from fits using Eq. 6.1. Black circles show the values given by
the midpoint of Emax and the free-particle line. The stars show the values of µ for a homogeneous
gas at zero temperature obtained from Refs. [20, 21].
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Figure 6.19: Extracting the gap and chemical potential In this example, the minimum of
the upper quasi-particle branch intersects the free-particle dispersion line ~2k2

2m . This occurs when
µ+∆ ≈ k2L. If this case, we can estimate the gap and chemical potential from the maximum energy
of the lower quasi-particle dispersion. The gap will be half the distance between this maximum
energy and the free-particle line. The chemical potential will be the energy halfway in between
the maximum of the lower dispersion and the free-particle line. In this example, values used are
µ = 0.4, ∆ = 0.4 and kL

√
0.8, which are very close to the values predicted for a zero temperature

gas at 1/kFa = 0 [19].
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close to the free-particle line. Furthermore, because the local value of kF is also smaller, atoms

at low density contribute signal at low momenta. This has the effect of pulling the trap-averaged

dispersions to higher energy for small k/kF . This shift to higher energy leads to larger values of µ

and a flattening of the dispersion that gives larger values of the gap ∆. This at least partly explains

why the values obtained from the fits to Eq. 6.1 for µ and ∆ are larger than expected.

An alternative approach for extracting µ and ∆ from the data is to use information about

the position of the upper branch for quasi-particle excitations. The upper and lower branches of

the dispersion are symmetric about µ and separated by a minimum energy of 2∆ (Fig. 6.19).

In the BCS limit, where the chemical potential is equal to the Fermi energy, the minimum of

the upper branch is above the free particle line (~
2k2

2m ) by an energy equal to the gap. In the

molecular limit, the upper branch is simply the free-particle line, since unpaired atoms are weakly

interacting. Interestingly, theoretical predictions and measurements based on rf spectra [20, 96, 19]

put the minimum energy of the upper quasi-particle branch at 1/kFa = 0 within 0.01EF of the

free-particle dispersion. Since both at resonance and in the molecular limit, the minimum of the

upper quasi-particle branch touches the free-particle line, it is a reasonable assumption that the

minimum of the upper branch is near the free-particle line in the range of interactions strengths

examined in this chapter, 0 < 1/kFa < 1.1. The gap can then be estimated from half the distance

between the measured maximum of the lower branch and the free-particle line, and the chemical

potential can be estimated by taking the energy halfway in between that maximum and the free-

particle line (Fig. 6.19). The values obtained for µ and ∆ using this analysis are shown in Fig.

6.18. While this analysis technique does not resolve the problem of density inhomogeneity, it does

appear to lead to a better estimation for µ and ∆ than the parameters extracted directly from fits

to the data with Eq. 6.1.

The value of the maximum energy of the lower dispersion is best obtained by reparametrizing

Eq. 6.1 using Emax = µ −∆ such that E(k) = Emax + ∆ −

√(
~2
2m(k2 − k2L)

)2

+∆
2
. While fits

to the data using Eq. 6.1 suffer from a strong correlation between the gap and chemical potential

parameters, the values obtained for Emax are robust and not strongly correlated with the other fit
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parameters; this may reduce systematic errors.

6.7 Conclusions

At this point, we can summarize a few conclusions that can be made from the photoemission

experiments presented thus far. The data reveal a BCS-like back-bending dispersion in the normal

state over a large range of temperatures (T/Tc = 1.0 − 1.5) and interaction strengths (1/kFa =

0.0 − 1.1). At higher temperatures (T/Tc > 1.5), we observe a spectral function consistent with

theories of a Fermi liquid with short-range interactions (Fig. 6.9). As a function of interaction

strength, we observe a crossover from a pseudogap regime where the dispersion back-bends at

the Fermi wave-vector (kL ≈ kF ), indicating the existence of a remnant Fermi surface, to the

molecular regime where kL = 0. The crossover occurs in the range of 1/kFa ≈ 0.45 − 0.8. A

comparison to a finite temperature NSR theory of the BCS-BEC crossover reveals good agreement

and provides further evidence for the existence of pseudogap phase. In addition, the theory gives

an indication that the presence of a trapping potential does not qualitatively alter the features of

the photoemission spectra. In particular, this serves as evidence that the large energy widths of

the single-particle excitations that we observe may be intrinsic widths, indicating an absence of

quasi-particles in the strongly interacting gas. Finally, while the NSR theory of the pseudogap is

consistent with linear behavior observed in recent thermodyanmic measurements [13] (Fig. 6.3),

theories based on an extended BCS-Leggett theory, for example Refs. [12, 75], that predict a strong

dip in the density of states and relatively narrow energy widths are probably not consistent with the

ENS data [89]. The excellent agreement of our data with the NSR theory of the pseudogap serves

as further evidence that the spectral function in the pseudogap regime, in the range of interaction

strengths investigated here, is likely dominated by single-particle excitations with large energy

widths, possibly caused by pairs with large center-of-mass momentum [75], and thus a density of

states with a gap that becomes significantly filled in above Tc.

So far our experimental evidence for the pseudogap state is : BCS-like back-bending of the

trap-averaged occupied spectral function (Figs. 6.6 and 6.13), the non-linear behavior of Emax (Fig.
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6.11) and the strong agreement with a theory of the pseudogap phase in the BCS-BEC crossover

(Fig. 6.14). The inhomogenous density of the atomic gas, which is a consequence of the trapping

potential, prevents us from directly measuring the pseudogap by dividing out the Fermi function

in the photoemission data. In the next chapter, I will present progress towards photoemission

spectroscopy of a homogenous sample. This data provides further evidence for the existence of a

pseudogap regime and single-particle exctitaions with anomalously large energy widths.



Chapter 7

Towards atom-photoemission spectroscopy of a homogeneous gas

In the previous chapters, I have presented atom-photoemission data for a trapped gas, which

necessarily has a spatially inhomogeneous density. This inhomogeneity can lead to broadening of

spectral features and makes it impossible to divide out the Fermi function from the photoemission

data. Spatial inhomogeneity can also be an issue for ARPES experiments on electronic materials

containing impurities, non-uniform doping, or a non-uniform chemical potential. However, there is

one major advantage of the trapped gas compared to an ARPES experiment with a non-uniform

material, which is that the density profile of the gas is smooth and can be predicted and measured.

This means we can still compare to theories, via a local density approximation. We can also predict

some of the general features we expect to arise due to the inhomogeneity, such as an increased

spectral weight near the free-particle dispersion due to weakly interacting atoms near the edge of

the gas. Also, importantly, every trap-averaged sample we study is identical, as opposed to different

material samples.

In the last chapter, I showed that we can obtain a significant amount of information about

the spectral function in the BCS-BEC crossover from trap-averaged photoemission data. Here,

we examined qualitative features of the data and also compared to a theory of the crossover.

However, it is clear that photoemission spectra of a homogeneous atomic gas would be very useful.

In particular, one would like to measure the energy widths for the homogeneous gas, and the

dispersion of the quasi-particles. In addition, for data on a homogeneous gas, one could divide

out the Fermi function and measure the gap or pseudogap in the density of states. Ultimately,
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photoemission data obtained from a homogeneous sample would allow for more sensitive tests of

theories of the crossover and advance our goals of developing a better understanding of strongly

interacting Fermi gases.

In this chapter, I will present progress towards photoemission spectroscopy of a homogeneous

cloud. Unfortunately, the obvious solution of creating a uniform trapping potential, or box trap,

instead of a harmonic trap, turns out to be technically very difficult. In particular, it would be

difficult to make a box trap small enough to achieve the same atom densities obtained in the

harmonic trap. Instead, we tried a different approach, which would allow us to keep the harmonic

trap, but remove photoemission signal arising from atoms at the edges of the cloud. We refer to

this approach as the hollow light beam method (or, around the lab, as the donut beam method).

The data provide further evidence that the energy widths of quasi-particles near the Fermi surface

are a significant fraction of the Fermi energy as well as show what the effect of the inhomogeneous

density is on the quasi-particle dispersions. The work presented in this chapter will be the subject

of forthcoming publications.

It should be noted that other experiments have shown it is possible to obtain momentum-

integrated rf-spectra for a homogeneous Fermi gas by imaging the atoms transferred by the rf field

in-situ, without a time-of-flight expansion [97]. However, it is not possible to use this technique for

photoemission spectroscopy, which requires momentum information that can only be obtained by

time-of-flight imaging. Rather, we needed a technique that would give both spatial selectivity and

momentum information for the atomic gas.

7.1 Focusing on the center of the cloud

The method of using hollow light beams to investigate effects of density inhomogeneity is

based on the idea that removing atoms at low density leaves behind a sample that is more homoge-

neous. This can be seen from Fig. 7.1, which shows the atom density as a function of scaled radius

from the cloud center (a), and the number of atoms in the cloud as a function of scaled atom density

(b) for a zero temperature Fermi gas in a harmonic trap. If we can remove atoms at low density,
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Figure 7.1: Atom density distribution of a trapped Fermi gas a) The radial density profile
of a T = 0, harmonically trapped Fermi gas. r/RTF is the scaled radius, where each component
(x,y,z) is divided by the Thomas Fermi radius in that direction. The total number of atoms at a
given radius is 4πn(r)r2dr. b) The number of atoms in the cloud at a given density n/n0 is plotted,
where n0 is the density at the center of the cloud. There are, of course, 0 atoms at n/n0 = 0 and
also 0 atoms at density n/n0 = 1, because this corresponds to a singular point at the center of the
cloud. The average density of atoms is approximately navg/n0 = 0.51 and the median density is
0.54.
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we will be left with a distribution of atoms that has a higher average density and less variation in

density. This can be done by removing atoms at large radius. In the limit where one removes all

the atoms except just those at r = 0, the remaining gas would be completely homogeneous with a

density equal to the peak density of the original atom cloud. Unfortunately, there would also be

no atoms left. Instead, we use the hollow light beams to remove 30− 70% of the total atoms, and

thereby significantly decrease the number of atoms at low density.

The hollow light beams remove atoms by optically pumping them to another spin state that

interacts only weakly with the atoms in the spin states we are interested in. When we take a picture

of the gas, only the atoms that have not been optically pumped will show up. The hollow light

beam is dark in the center, and focused onto the cloud, and so will have no effect on atoms at the

center of the cloud. We require two (cylindrical) intersecting hollow light beams in order to remove

atoms at the edges of the three-dimensional cloud. Laguerre-Gaussian beams, with a profile in the

far-field given by

I(r) = I0r
2le

−r2

2w2 (7.1)

where l is the order of the beam and w is the waist, are obtained using absorption masks patterned

with a forked diffraction grating with l dislocations, see for example Ref. [98].

The atom cloud is cylindrically symmetric with a Thomas Fermi radii (given by RTF =

1
ω

√
2EF
m ) of approximately 10 µm and 125 µm in the radial and axial directions, respectively. For

these experiments, we use a hollow light beam with l = 1 and w = 11 µm propagating along the

axial direction to remove atoms in the radial directions and a beam with l = 2 and w = 90 µm

propagating perpendicular to the axial direction to remove atoms in the axial direction. Fig. 7.2

shows the atom removal probability as a function of scaled radius.

7.1.1 Optical pumping

Because we are interested in measuring the momenta of the remaining atoms, it is necessary

for the optical pumping to be highly efficient. If an atom absorbs a photon from a hollow light

beam and then returns to the initial state, instead of being optically pumped out, it will have an
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Figure 7.2: Atom removal probability The surface plot shows the probability for atoms to re-
main after optical pumping with the hollow light beams as a function of scaled radius in the radial
direction and in the axial direction. The radii are scaled to the Thomas Fermi radii in those direc-
tions. The color map shows the probability to remain, with red corresponding to high probability
to remain and blue corresponding to high probability to be optically pumped and removed from
the imaging. Integrating over all radii, approximately 65% of the atoms in a degenerate Fermi gas
would be optically pumped.
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increased momentum due to the photon recoil. To make matters worse, the photon recoil, ~k where

k = 2π
λ , is approximately equal to a typical Fermi momentum ~kF in our experiments. In order to

minimize this, we choose the hollow light beams to be resonant with transitions to excited states

that have small branching ratios to decay back into the initial state.

In this work, we have tried two different transitions, both resonant with the |9/2,−5/2⟩

ground state that we use for the atom photoemission experiments. One transition uses the |9/2,−7/2⟩

electronically excited state. This state has a 0.02 probability to decay back to the |9/2,−5/2⟩ ground

state, or in other words, only a 1 in 50 chance. The downside for this transition is that 3 MHz

away there is a π transition (∆mF = 0) to the |9/2,−5/2⟩ excited state, which has a 0.6 branching

ratio for decay back to the |9/2,−5/2⟩ ground state. The higher branching ratio also means the

π transition is stronger and easier to excite. As a result, a small error in the polarization of the

hollow light beam can cause significant excitations with the π transition, and this results in poor

optical pumping. The second transition we tried is to the |5/2,−3/2⟩ excited state. This state

has a slightly larger branching ratio back to the original state (0.095), however, there are no other

nearby transitions that can be off-resonantly excited.

With either transition, we still have to worry about a small number of atoms that absorb a

photon from one of the hollow light beams and then fall back into the |9/2,−5/2⟩ ground state with

an increased momentum. Increasing the power of the hollow light beam does not help with this

issue because the center of the beam is dark, and so there will always be a region where the intensity

of the beam is such that atoms will only absorb a single photon on average (the probability that an

atom will absorb two photons and still remain in the same state is negligible for both transitions).

The size of this region can be made smaller by using beams parameterized by larger values of l.

However, the limited resolution of our optics delivery system prevents us from effectively using a

beam with l > 1 for the beam with the 11 µm waist.

The number of atoms that will absorb a photon and fall back into the same state with a

changed momentum can be modeled using the radial profiles of the atom cloud and light beams.

We find that these atoms typically correspond to 5−10% of the total number of atoms that remain
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(see Fig. 7.3, or Appendix B for details). These atoms are an undesirable background signal. To

subtract out the background, we model the momentum distribution of these atoms by convoluting

the momentum distribution of the atoms that absorbed light from the hollow light beams with

a spherical shell of momentum of momentum ~k, where k is the amplitude of the photon wave-

vector. We find the measured size of the background signal is approximately equal for both possible

transitions, despite the difference in branching ratios.

7.2 Application to a weakly interacting Fermi gas

As a first application of the hollow light beams, we can measure the momentum distribution

of atoms at the center of a quantum degenerate, weakly interacting trapped Fermi gas. The

momentum distribution of weakly interacting fermions is described by the Fermi-Dirac distribution

(remember all the way back in Chapter 2 Eq. 2.3). The hallmark of the Fermi-Dirac distribution is a

sharp Fermi surface at wave-vector kF . At zero temperature, the distribution is characterized by the

full occupation of momentum states below kF and zero occupation above. At finite temperature,

the distribution near the Fermi surface becomes smeared over a region of k-states spanning an

energy width on order of kbT . However, in a trapped Fermi gas, the Fermi surface is not apparent

in the momentum distribution. This can be understood from a local density approximation. The

wave-vector marking the Fermi surface of a homogeneous Fermi gas (Eq. 2.1) depends on the

fermion density, which in a trapped gas varies as a function of distance from the trap center. A

trapped gas can be thought of as a collection of Fermi gases, each described by a different value of

kF . When we measure the momentum distribution of all the atoms in the trap, we average together

Fermi-Dirac distributions parameterized by values of kF ranging from 0 (corresponding to atoms

at the edge of the trap) to the maximum value of kF (corresponding to atoms at the center of the

trap). In fact, the shape of the momentum distribution is identical to the density distribution [33]

(this is a special feature of harmonically trapped gases) and looks like Fig. 7.1 a) with the x-axis

as atom momentum.

If we could measure the momentum distribution of a select group of atoms in the trap, ones
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Figure 7.3: Background signal The measured number of atoms, as a function of k/kF , where
N ∝ n(k)k2, is shown with (black line) and without (red line) hollow light beams. The experimental
data with the hollow light beams contain a contribution from the background signal (green line),
which is calculated from a model. It is clear a background signal is present in the measured density
distribution because the data with atoms removed by hollow light beams actually has higher signal
for k > 1.15k/kF than the data where no optical pumping occurs. The data here have been
smoothed to better show the difference between the curves at large k/kF .
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with nearly constant density, then we could actually observe a sharp Fermi surface. The hollow

light beams allow us to accomplish exactly this. In this experiment, we cool an equal mixture of

atoms in the |9/2,−7/2⟩ and |9/2,−9/2⟩ ground states to a temperature of T/TF = 0.10± 0.02 at

a magnetic field of approximately 203.5 G. Then, we ramp the magnetic-field strength to a value

in the range of 205− 209 G, corresponding to scattering lengths of −285 to −15 Bohr radii, where

the Fermi gas can be considered to be weakly interacting. We then use an rf π-pulse to transfer

all of the atoms in the |9/2,−7/2⟩ state to the |9/2,−5/2⟩ state where they will be resonant with

the hollow light beams. After the rf pulse, the trapping potential is turned off and the hollow light

beams are turned on for 40 µs (this is a short enough duration that the expansion and movement

of the cloud due to gravity are negligible). The intensities of the hollow light beams are adjusted to

control the total number of atoms optically pumped away. The momentum distributions for clouds

where 0% and 60% of the atoms are removed is shown in Fig. 7.4. The momentum distributions

for the cloud with 60% of the atoms removed clearly shows a sharp Fermi surface. To parameterize

the sharpness of the Fermi surface we can fit the clouds to Fermi-Dirac distributions. In these fits,

we let the temperature and value of kF vary, as well as an overall scaling factor. For the cloud with

60% of the atoms removed, the fit gives T/TF = 0.19 ± 0.04, which is much lower than the trap

averaged cloud, which fits to T/TF = 0.6± 0.1.

In Fig. 7.5, we show the value of T/TF obtained from a fit to the momentum distribution

versus the fraction of atoms remaining after optical pumping with the hollow light beams. The

fraction is varied by varying the intensity of the beams. The line is an expected value obtained

from a Monte Carlo simulation using the Fermi Dirac distribution and calculated atom removal

probability (Fig. 7.2). In the limit of blasting away all of the atoms, we would expect T/TF = 0.1,

which corresponds to the degeneracy of atoms at the center of the trap.

The fact that the hollow light beams allow us to observe a Fermi surface confirms that the

technique works as we expect and demonstrates the potential to uncover properties of a homoge-

neous Fermi gas from a trapped gas. The technique is ideally suited for observing a Fermi surface,

in part because of the favorable dependence of kF on the density (kF ∝ n1/3). As an example,
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Figure 7.4: Observing a Fermi surface The fermion momentum distribution, n(k) with (black
circles) and without (red circles) optical pumping from the hollow light beams. The distributions
are separately normalized to have an area of 1. Fits to the data with a Fermi-Dirac distribution
for a homogeneous gas are shown (black and red lines). The fit to the data with optical pumping
gives T/TF = 0.19±0.04 and the fit to the data with no optical pumping gives T/TF = 0.58±0.14.
The optical pumping intensity was set to remove approximately 60% of the atoms. The error bars
shown are statistical error; there may be residual systematic errors due to imperfections in the
imaging system.
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Figure 7.5: Varying optical pumping intensity The value of T/TF obtained from fits to the
momentum distribution of atoms after optical pumping with hollow light beams versus the fraction
of atoms remaining after the optical pumping. The black line is a prediction from a model, which
is described in the text. The temperature of the trapped gas before blasting is 0.11± 0.02TF . The
power ratio of the two beams was set by measuring the number of atoms optically pumpbed by
each beam on its own. The number of atoms optically pumped by the beam propagating along the
axial direction was approximately twice the number of atoms optically pumped by the other beam.
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this means that if we eliminate all the atoms from regions with a density less than half the peak

density, the total variation in kF would only be 20%.

7.3 Studying the effect of the trapping potential on atom-photoemission

spectroscopy

We can now apply the hollow light beam technique to atom photoemission spectroscopy and

begin to answer some questions regarding the effect of the trapping potential on the photoemission

data. In particular, I will address the effect of the trapping potential on the shape of the single-

particle dispersion and the energy widths of the quasi-particles. The first issue is important because

BCS-like fits to the trap-averaged dispersions produce significantly larger values for the gap and

chemical potential than what has been predicted by theory (see Fig. 6.18). While it is obvious that

the trap confinement can affect the shape of the dispersion, and thus the values of fit parameters, we

would like to investigate this effect experimentally and see if the data is consistent with theoretical

predictions of the quasi-particle dispersion of a homogeneous gas.

The second issue is also very interesting. In the trap-averaged photoemission data, we mea-

sured energy widths near the Fermi surface that were a significant fraction of the Fermi energy (see

Fig. 6.15). Answering the question of whether or not the widths are due to averaging over the

density inhomogeneity, or are reflective of large intrinsic energy widths is a critical issue. The quasi-

particle energy widths are an important component of understanding the nature of the strongly

interacting gas in the pseudogap region and large widths would indicate a departure from typical

Fermi-liquid behavior.

The comparisons to theoretical predictions presented in the previous chapter suggest answers

to both of these questions. In the case of the shape of the dispersions, the theory, which predicts

reasonable values for the gap and chemical potential of a homogeneous Fermi gas [99, 100], agrees

with our trap averaged data after using a local density approximation. This suggests the trap

averaged data are consistent with theoretically predicted dispersions for a homogenous gas. The

theory also predicts that, while the energy widths of trap-averaged data are somewhat broadened
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by the density inhomogeneity, they are also reflective of large intrinsic quasi-particle energy widths.

It is the goal of this chapter to provide further experimental evidence for these claims by using the

method of hollow light beams to obtain photoemission signal from the center of the Fermi gas.

In these experiments, the trap is parameterized by a radial trap frequency of ωr = 2π · 210

Hz and an axial trap frequency of ωz = 2π · 16 Hz. We obtain a 50/50 mixture of atoms in the the

|9/2,−9/2⟩ and |9/2,−7/2⟩ spin states. Our final stage of evaporation occurs at a magnetic field

of 203.5 G. At the end of the evaporation, we have 1.2× 105 atoms per spin state at a normalized

temperature T
TF

= 0.13± 0.02.

After the evaporation, we increase the interaction strength adiabatically with a slow magnetic-

field ramp to either 202.17G or 202.10G near the center of the Feshbach scattering resonance.

Here, the interaction strengths can be characterized by the parameter 1
kF a = 0.05 ± 0.05 and

0.20±0.05 where kF is the Fermi wavevector given by
√
2mEF /~. Using our previous measurements

of the the size of an interacting Fermi gas [30], we estimate the peak and average density of the

interacting cloud for the interaction strengths of (0.05, 0.20) to be given by (1.44, 1.51)± 0.1n0 and

(0.70, 0.73) ± 0.05n0 where n0 is the density of a homogenous gas with a Fermi energy of EF and

is given by Eq. 2.2.

For the photoemission experiments, the strongly interacting atomic gas is probed with an rf

pulse to transfer a small fraction of the atoms in the |9/2,−7/2⟩ state to the |9/2,−5/2⟩ state.

Immediately after the transfer, the trapping potential is switched off, so the atoms in the |9/2,−5/2⟩

state can ballistically expand and be imaged to obtain their momentum distribution. To perform

photoemission spectroscopy on the core of the gas, we use the technique of crossed hollow light

beams to optically pump away |9/2,−5/2⟩ atoms in the low density regions at the edges of the

atom gas. The hollow light beams are pulsed on for 40 µs immediately after the trap is switched off

(and thus, immediately after the rf pulse). The intensity of the beams is such that the integrated

photoemission signal is reduced by approximately 60%. As in the case of a weakly interacting gas

(Fig. 7.3), the optical pumping from the hollow light beams leaves a small number of atoms in

the |9/2,−5/2⟩ with increased momentum, creating a small high-momentum background in the
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photoemission signal. We model this background and subtract it out as described in Fig. 7.3 and

the Appendix B. The rf pulse amplitude envelope is gaussian, with a full width, 1/e4 amplitude

duration ranging from 300 µs to 100 µs. A duration of 300 µs is used for rf frequencies near the

free-particle dispersion, and shorter durations are used for larger detunings of the rf frequency,

because the atoms outcoupled at those frequencies have large momenta and the hollow light beams

must be pulsed on before the positions of the atoms can significantly change.

The results of photoemission experiments at two magnetic-field strengths with (b,d) and

without (a,c) the hollow light beam are shown in Fig. 7.6. The white circles in Fig. 7.6 are the

centers obtained from Gaussian fits to vertical cuts at constant k in the spectra and map out the

dispersion for the occupied single-particle states. From Fig. 7.6, it is clear that removing atoms

from the edge of the trap does not qualitatively change the spectra. For both 1
kF a = 0.05 and 0.20,

we observe a BCS-like dispersion with back-bending near the Fermi wavevector kF for the trap

center data.

To quantitatively compare the spectra taken with and without the hollow light beam, we

show in Fig. 7.7 the results of Gaussian fits to the EDCs for both the trap-averaged spectra

(black circles), and the trap center spectra obtained with the hollow light beams (red squares). In

the top panel, we plot the centers obtained from the fits. For k
kF

< 0.75 the trap center data is

clearly shifted to lower energy compared to the trap averaged data. This is expected because atoms

near the edge of the trap are at low density where the local 1/kFa is large and the gas is weakly

interacting. Therefore, these atoms contribute signal near the free particle line at low k
kF

. In fact,

in comparing the two sets of spectra in Fig. 7.6, it is clear that the main effect of the hollow light

beams is to decrease intensity near the free-particle line at k < kF . This can also be seen in the

momentum distributions, which are plotted in Fig. 7.8. Here, the trap center data has lower signal

at low momenta.

To compare the trap center data obtained with the hollow light beams to theory for the limit

of a homogeneous cloud, we show in Fig. 7.7 a dashed line corresponding to the expected dispersion

for atoms at the center of the trap, Eq. 6.1. We use theoretical values for a homogeneous T = 0
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Figure 7.6: Photoemission data with and without hollow light beams (a) Trap averaged
photoemission data for a gas at 1

kF a = 0.05 at T
TF

= 0.13. (b) Trap center photoemission data for
the same gas obtained by removing 60% of the atoms using the intersecting hollow light beams. c)
Trap-averaged data at 1

kF a = 0.20. d) Trap center data at 1
kF a = 0.20. White dots show the centers

of gaussian fits to the EDCs of each data set. While the spectra are qualitatively similar, and both
show BCS-like backbending of the dispersion, the intensity at low momenta near the free-particle
dispersion (black line) is decreased in both of the trap center data sets. This shifts the centers of
the EDCs to lower energy.
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Figure 7.7: EDC fit results We show the centers (top) and rms widths (bottom) from gaussian
fits to the EDCs of the spectra shown in Fig. 7.6. The left side is data for a gas at 1

kF a = 0.05

and the right side is for a gas at 1
kF a = 0.20. Trap averaged data is shown as black circles and trap

center data is shown as red squares. The dashed lines in the top panels are the expected T = 0
dispersion for atoms at the center of the cloud obtained using our estimate of the peak density and
the values reported in Refs. [19, 20]. In the lower panels, the horizontal dashed lines are placed
at the experimental energy resolution due to the finite duration of the rf pulse. The resolution is
approximately 0.25EF .
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Figure 7.8: Momentum distributions Single-particle momentum distributions with (red squares)
and without (black circles) hollow light beams for the data at 1

kF a = 0.05 (left) and the data at
1

kF a = 0.20 (right) at T/TF = 0.13±0.02. The effect of the hollow light beams is to remove fermions
with low momenta. The distributions are normalized to have an area of 1. The distributions are
obtained by integrating over the energy axis of the photoemission data of Fig. 7.6.
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gas for µ of 0.38EF and 0.22EF for 1/kFa = 0.05 and 0.20 respectively, from Ref. [20]. For the

values of ∆, we use 0.47EF and 0.58EF and for kL we use 0.91 and 0.85 for 1/kFa = 0.05 and 0.20

respectively, measured for a low temperature gas in Ref. [19]. When values for the exact coupling

strength were not available, we used a linear extrapolation between the closest points. These values

where then scaled using our estimate for the peak density in the trapped gas given above. For low

momenta (k < 0.75kF ), the dispersions obtained from the data with the hollow light beams can be

seen to be approaching this limit. For larger momenta (k > 0.75kF ), the data with and without

hollow light beams appear to be similar. This indicates that atoms near the edge of the cloud

may not contribute much signal at large momenta. In order to see the data approach the expected

dispersion for the trap center at momenta near k/kF = 1, it is likely that a more homogenous

sample is necessary. It should be noted that, because the data is at finite temperature, even if

we could only measure atoms at the exact trap center, the dispersion would not fully approach

the theoretical dispersion, which is obtained in the zero temperature limit. Rather, we expect the

maximum energy of the dispersion curve to move to higher energies at finite temperature, due to

the closing of the gap and presence of signal from excitations.

Fitting the modified BCS dispersion to the trap averaged and trap center data we obtain

values of (µ,∆,kL) in terms of EF and kF shown in table 7.1.

Table 7.1: BCS Fit Results

Parameter 1
kF a = 0.05 1

kF a = 0.20

Trap average Trap center Trap average Trap center

µ 0.85 ± 0.14 0.54 ± 0.12 0.93 ± 0.18 0.47 ± 0.12
∆ 0.59 ± 0.15 0.16 ± 0.16 0.98 ± 0.19 0.54 ± 0.11
kL 1.01 ± 0.03 1.03 ± 0.03 0.87 ± 0.04 1.00 ± 0.04

The trap averaged values are on the left and the trap center values are on the right. From

this data, we can conclude that when fitting the dispersion obtained from trap-averaged data one

obtains larger values of µ and ∆ than for trap center data. This is because signal from atoms at

low density near the trap edge shift the centers of the EDCs at low momenta to higher energy.
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As expected, the size of the gap is larger for the data at 1/kFa = 0.20 compared to the data

at 1/kFa = 0.05 and the value of kL is smaller (the expected trends are shown in Fig. 6.18). One

would also expect the chemical potential to be slightly smaller at 1/kFa = 0.20, however, the error

in µ is too large to determine the trend. Interestingly, the value of the maximum energy of the

dispersion appears robust against removing atoms from the edge of the cloud. This may explain

why our estimates of the gap and chemical potential based on this value for the trap-averaged

data in Chapter 6 appear more reasonable than the values obtained directly from the BCS fit (Fig.

6.18). However, it is not clear if this value would change if the gas were made more homogeneous.

Furthermore, it should be mentioned that the EDC centers in the region kF < k < 1.4kF for the

trap-center data can be affected by the background subtraction (discussed in Fig. 7.3 and Appendix

B).

The lower panels in Fig. 7.7 shows the widths of the gaussian fits to the EDCs of the trap-

averaged and trap-center data. Surprisingly, there is little change in the EDC widths, indicating

that the widths may come from large intrinsic energy widths. This is particularly clear in the

data taken at 1
kF a = 0.20. This suggests that the gas is far from the limit of a Fermi-liquid where

the EDC energy widths should become small near the Fermi surface. In fact, it is not surprising

that sharp quasi-particles are absent if one looks at the momentum distribution Fig. 7.8. Here

n(k) is obtained by summing over the energy axis in the data of Fig. 7.6 and dividing out the

( k
kF

)2 phase-space factor. Unlike the data for a weakly interacting gas shown in Fig. 7.4, the trap

center momentum distribution for the strongly interacting gas does not show a sharp Fermi surface.

However, a sharp Fermi surface is required for application of Fermi liquid theory [68].

In summary, using two intersecting hollow light beams, we can measure the momentum

distribution of atoms at the center of a trapped Fermi gas by optically pumping atoms at large

radius to another spin state. Using the hollow light beams, we can observe a sharp Fermi surface in a

weakly interacting Fermi gas. We can also use the hollow light beams to obtain atom-photoemission

spectra for strongly interacting atoms at the center of the gas. These spectra allow us to study the

effect of the trapping potential on atom-photoemission spectroscopy. We find that the trap center
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data is qualitatively similar to the trap-averaged data, but with less signal at low k/kF near the

free-particle dispersion. The widths of the EDCs near the Fermi surface remain large, and no sharp

Fermi surface is observed. These observations indicate the gas is far from the regime of a normal

Fermi liquid. One consequence of the large energy widths is that it may be difficult to understand

transport phenomena in terms of standard Fermi-liquid theory, which assumes quasi-particles, and

strongly interacting Fermi gases are a novel system for research of dynamics in strongly interacting

systems [101].



Chapter 8

Universal relations and the contact

8.1 The contact

A typical treatment of a weakly interacting Fermi gas with short-range interactions involves

perturbation theory in the small parameter 1/kFa. However, it is obvious that the short-range

potential will have certain non-perturbative effects on the wave-functions of particles at short

distances. For example, a strongly repulsive short-range potential of range r0 will preclude the wave-

functions of any two particles from overlapping at distances smaller than r0. This implies a strong

correlation between the particles that is clearly not captured at a mean-field level approximation,

which nevertheless generally predicts the correct behavior of the system in other respects. For

example, in the Hartree-Fock approximation for a homogeneous Fermi gas, one takes the many-

body wave-function to be a Slater determinant of plane-wave states [56], yet the approximation

scheme is accurate for calculating the total energy of the system in the limit of small 1/kFa. It

is clear that this short-range behavior is not important for most properties of the system (except

in that it controls the value of the scattering length) as long as the physical interaction occurs at

length scales much smaller than other length scales in the problem.

However, a new set of relations, referred to as the Tan relations, demonstrate that the short-

range behavior of the wave-functions can actually be linked to several macroscopic properties of the

gas, such as the total energy, in a universal way, valid for all scattering lengths and phases

of the gas [102, 103, 104]. This amazing revelation is at first quite difficult to believe.

For particles interacting via a contact interaction, the wave-function describing two particles
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at small inter-particle separation, r, must behave as

lim
r→0

Φ(r) = (1/r − 1/a)A (8.1)

where r is the internuclear distance, a is the scattering length [104, 36], and A is a constant that

depends on the problem. A quantity called the contact C, can be defined by

C(R⃗) = lim
s→0

(4/s4)Npair(R⃗, s) (8.2)

where C(R⃗) is the contact density at position R⃗ and Npair(R⃗, s) is the probability of finding two

particles of opposite spin inside a sphere of radius s centered at position R⃗. The contact, C is

obtained from the contact density by C =
∫
d3RC(R⃗). The s4 behavior of Npair(R⃗, s) can be

obtained from Eq. 8.1 by noting that the probability to find the first atom simply scales as the

volume, 4
3πs

3, and the probability of finding the second atom can be obtained from 4π
∫ s
0 Φ(r)2r2dr,

which is proportional to s in the limit s≪ a. Thus, Npair(R, s) ∝ s4. If the positions of the particles

were not correlated, Npair(R⃗, s) would go as s6, and then we would find C(R⃗) = 0. If the short-range

potential has an effective range r0, the relation holds for s smaller than other length scales in the

system but larger than r0.

In a gas with only short-range interactions, the interaction energy is determined by the

probability for particles to be close to each other and this is parameterized by C. If one tunes the

scattering length, the change in the energy of the system that this produces should be proportional

to the number of fermions that are close enough together to be interacting. A formal proof, first

given by Shina Tan, showed that this relation, called the adiabatic sweep theorem can be written

2π
dE

d(−1/(kFa))
= C (8.3)

where E is the total energy in units of the EF and C is the contact in units of kF [102].

This amazing relation links the short distance properties of the particle wave-functions to the

total energy of the system. Tan’s derivation does not make any assumptions about the phase of the

gas (superfluid, normal, ect.), temperature, size, interaction strength, or even quantum statistics

of the particles and so is universally valid for all Fermi and Bose gases that can be characterized
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by short-range 2-body interactions [102, 103, 104, 105]. Although the contact may seem like a

quantity purely governed by two-body physics, it is linked to the many-body properties of the

system through the overall normalization of the wave-function that determines the constant A in

Eq. 8.1, and actually encapsulates all of the many-body physics of the system, see for example Ref.

[106].

While we do not have a good experimental method for measuring C based on Eq. 8.2,

an alternative definition involving the momentum distribution is easily derived. The momentum

distribution n(k) can be obtained by squaring the Fourier transform of Eq. 8.1, and the 1/r term

leads to a 1/k4 tail for large momenta. The amplitude of this 1/k4 is equal to C, with

C = lim
k→∞

k4n(k) (8.4)

where the limit is understood to mean in the limit where k is larger than other momenta in the

system, but less than 1/r0.

The momentum distribution is a natural quantity to experimentally measure in atomic gases

with time- of-flight expansion. It can also be directly obtained from the occupied spectral function

measured by photoemission experiments. Indeed, a high momentum feature in the spectral function

is predicted to be a universal feature in the spectral function of Fermi gases (see Ref. [17] and Fig.

6.9).

Besides Eq. 8.3, a number of other relations (the set of relations involving the contact are

termed the Tan relations) have been derived by Tan and others [103, 105, 22, 107, 101]. These

relations link the contact to a large number of experimentally measurable quantities that are listed in

the recent review of the subject in Ref. [108] and include: the pressure, rf spectra, photoassociation

rates, closed channel molecule fraction, static structure factor, and viscosity. In particular, a

generalized viral theorem for a harmonically trapped gas has also been derived [103], and I will

present an experimental verification of the relation in the next section. The generalized virial

theorem is given by

E − 2V = T + I − V = − C

4πkFa
(8.5)
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where E is the total energy and can be broken up into three terms T, I, and V , [103] where T is

the kinetic energy, I is the interaction energy, and V is the potential energy due to a harmonic

trapping potential.

Before moving on to the experimental measurement of the contact and verification of the

Tan relations, I would like to discus one more important point. The reader may have noted that a

momentum distribution that falls off as 1/k4 produces a divergent kinetic energy. While, the issue

of an obviously unphysical infinite energy is resolved by the finite range cutoff, this still leaves the

question of what happens to the extremely large but finite kinetic energy of the gas (large compared

to say the Fermi energy). The answer to this question, resolved by Tan, is that there is an equally

large (or divergent, in the case of r0 = 0) but negative interaction energy that comes from the 1/r

behavior of the wave-function at short distance [104]. Thus, while the individual terms in the energy,

T and I, diverge for a zero-range potential, the sum T + I is finite. This again demonstrates how

a basic perturbation theory can miss the short-range and large-momentum physics of the contact

interaction but nevertheless get the total energy correct.

8.2 Measuring the contact

A couple of recent works have measured the contact for a Fermi gas and compared results to

theoretical predictions, which are obtained by inserting calculations of the energy from Monte Carlo

simulations into Eq. 8.3. Specifically, photoassociation measurements to determine the closed-

channel fraction [109, 22], and inelastic Bragg scattering [107] were used to extract the contact

and compare to theory. The recent measurements of the pressure and energy of a Fermi gas in the

BCS-BEC crossover can also be used to extract the contact [13, 110, 89]. The work I present in

this chapter was published in Ref. [10] and was undertaken after the photoassociation experiments,

and concurrently with the Bragg and equation-of-state measurements. Our work is unique in

that we measured the contact using several techniques, including rf spectroscopy, the momentum

distribution, the release energy, and the potential energy and applied these measurements to directly

verify the adiabatic theorem and the generalized virial theorem in a model-independent way. In
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particular, to my knowledge, no other work has extracted the contact from rf spectroscopy or

measurements of the momentum distribution and no other work has directly tested the generalized

virial theorem.

Our measurements are done in an ultra cold gas of fermionic 40K atoms confined in a harmonic

trapping potential with a 50/50 mixture of atoms in two spin states the |9/2,−9/2⟩ and |9/2,−7/2⟩

spin states. The trap is parameterized by a radial trap frequency, which varies for these data from

ωr = 2π ·230 to 2π ·260 Hz and an axial trap frequency, which varies from ωz = 2π ·17 to 2π ·21 Hz.

Our final stage of evaporation occurs at a magnetic field of 203.5 G, where the s-wave scattering

length, a, that characterizes the interactions between atoms in the |9/2,−9/2⟩ and |9/2,−7/2⟩

states is approximately 800 a0, where a0 is the Bohr radius. At the end of the evaporation, we

have 105 atoms per spin state at a normalized temperature T
TF

= 0.11 ± 0.02, where the Fermi

temperature TF corresponds to the Fermi energy, EF = kbTF = ~ω(6N)1/3. Here, N is the atom

number in one spin state, ω is the geometric mean trap frequency given by ω = (ω2
rωz)

1/3, and kb is

the Boltzmann constant. After the evaporation, we increase the interaction strength adiabatically

with a slow magnetic-field sweep to a Feshbach scattering resonance.

To measure the contact, we obtain n(k) using ballistic expansion of the trapped gas, where we

turn off the interactions for the expansion. We accomplish this by rapidly sweeping the magnetic

field to 209.2 G where a vanishes, and then immediately turning off the external trapping potential

[67] and taking an absorption image of the cloud after 6 ms of expansion. The probe light for the

imaging propagates along the axial direction of the trap and thus we measure the radial momentum

distribution. Assuming the momentum distribution is spherically symmetric, we obtain n(k) with

an inverse Abel transform. We normalize n(k) for a 50/50 spin mixture such that∫
n(k)

(2π)3
d3k = 0.5. (8.6)

Fig. 8.1a shows an example n(k) measured for a strongly interacting gas with a dimensionless

interaction strength (kFa)
−1 of −0.08±0.04. The measured n(k) exhibits a 1/k4 tail at large k and

we extract the contact C from the average value of k4n(k) for k > kC , where we use kC = 1.85 for
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Figure 8.1: Extracting the contact from the momentum distribution and rf lineshape
(a) Measured momentum distribution for a Fermi gas at 1

kF a = −0.08 ± 0.04. Here, the wave

number k is given in units of kF , and we plot the normalized n(k) multiplied by k4. The dashed
line corresponds to 2.2, which is obtained by averaging k4n(k) for k > 1.85. (Inset) The measured
value for C depends on the rate of the magnetic-field sweep that turns off the interactions before
time-of-flight expansion. (b) RF lineshape measured for a Fermi gas at 1

kF a = −0.03± 0.04. Here,
ν is the rf detuning from the single-particle Zeeman resonance, given in units of EF /h. We plot the
normalized rf lineshape multiplied by 23/2π2ν3/2, which is predicted to asymptote to C for large ν.
Here, the dashed line corresponds to 2.1, from an average of the data for ν > 5.
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(kFa)
−1 > −0.5 and kC = 1.55 for (kFa)

−1 < −0.5. These values for kC are chosen empirically such

that for k ≥ kC the momentum distributions are in the asymptotic limit to within our statistical

measurement uncertainties. One issue for this measurement is whether or not the interactions are

switched off sufficiently quickly to accurately measure the high-k part of n(k). The data in Fig. 8.1a

were taken using a magnetic-field sweep rate of 1.2 G
µs to turn off the interactions for the expansion.

In the inset to Fig. 8.1a, we show the dependence of the measured C on the magnetic-field sweep

rate. Using an empirical exponential fit (line in Fig. 8.1a inset), we estimate that for our typical

sweep rates of 1.2 to 1.4 G
µs , C is systematically low by about 10%. We have therefore scaled C

measured with this method by 1.1.

The contact is also manifest in rf spectroscopy, where one applies a pulsed rf field and

counts the number of atoms that are transferred from one of the two original spin states into

a third, previously unoccupied, spin state [39]. We transfer atoms from the |9/2,−7/2⟩ state to

the |9/2,−5/2⟩ state. It is predicted that the number of atoms transferred as a function of the rf

frequency, ν, scales as ν−3/2 for large ν, and that the amplitude of this high frequency tail is given

by [111, 112, 113]

lim
ν→∞

Γ(ν) =
C

23/2π2
ν−3/2. (8.7)

Here, ν = 0 is the single-particle spin-flip resonance, and ν is given in units of EF /h. This prediction

requires that atoms transferred to the third spin-state have only weak interactions with the other

atoms, so that “final-state effects” are small [113, 74, 114, 115, 116, 117, 118, 119], as is the case

for 40K atoms. In Fig. 8.1b, we plot a measured rf spectrum multiplied by 23/2π2ν3/2. The rf

spectrum, Γ(ν), is normalized so that the integral over the rf lineshape equals 0.5. We observe

the predicted 1/ν3/2 behavior for large ν, and obtain the contact by averaging 23/2π2ν3/2Γ(ν) for

ν > νC , where we use νC = 5 for (kFa)
−1 > −0.5 and νC = 3 for (kFa)

−1 < −0.5. These values

for νC are chosen empirically such that for ν ≥ νC the rf spectrum is in its asymptotic limit.

The connection between the rf spectrum and the high-k tail of the momentum distribution

can be seen in the Fermi spectral function, which can be probed using photoemission spectroscopy
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for ultra cold atoms [9]. Recent photoemission spectroscopy results on a strongly interacting Fermi

gas [18] revealed a weak, negatively dispersing feature at high k that persists to temperatures well

above TF . This feature was attributed to the effect of interactions, or the contact, consistent with a

recent prediction [17]. Atom photoemission spectroscopy, which is based upon momentum-resolved

rf spectroscopy, also provides a method for measuring n(k). By integrating over the energy axis,

or equivalently, summing data taken for different rf frequencies, we obtain n(k). This alternative

method for measuring n(k) yields results similar to the ballistic expansion technique, but avoids

the issue of magnetic-field sweep rates.

In Fig. 8.2 we show the measured contact for different values of 1/kFa. The contact is

shown in units of the Fermi momentum kF . Our data do not extend to larger values of 1/kFa

where we find that our magnetic-field sweeps are no longer fully adiabatic [44]. Fig. 8.2 shows

the contact extracted using the three different techniques described above to probe two distinct

microscopic quantities, namely n(k) and Γ(ν). We find that the amplitude of the 1/k4 tail of n(k)

and the coefficient of the 1/ν3/2 tail of Γ(ν) yield consistent values for C. The error bars shown

in Fig. 8.2 include both statistical and estimated systematic uncertainties, which are roughly

equal in magnitude. In extracting the contact from the rf measurements, the largest source of

systematic error comes from residual interactions with atoms in third spin state [113]. For the

ballistic expansion measurements, the systematic uncertainty is dominated by the effect of the

finite magnetic-field sweep rate. For comparison with the data, the solid line in Fig. 8.2 shows a

prediction for the contact that was reported in Fig. 1 of Ref. [22]. This zero temperature prediction

consists of the BCS limit, interpolation of Monte Carlo data near unitarity, and the BEC limit for

a trapped gas and uses a local density approximation.

8.3 Testing the Tan relations

In the preceding section, I presented three techniques for measuring the contact that probe

the small-length scale physics of the gas through measurements of the momentum distribution and

rf lineshape. Now, we would like to test whether those measurements can indeed be used to make
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Figure 8.2: The contact We measure the contact, C, as a function of (kFa)
−1 using three different

methods. Filled circles correspond to direct measurements of the fermion momentum distribution
n(k) using a ballistic expansion, in which a fast magnetic-field sweep projects the many-body state
onto a non-interacting state. Open circles correspond to n(k) obtained using atom photoemission
spectroscopy measurements. Stars correspond to the contact obtained from rf spectroscopy. The
values obtained with these different methods show good agreement. The contact is nearly zero
for a weakly interacting Fermi gas with attractive interactions (left hand side of plot) and then
increases as the interaction strength increases to the unitarity regime where (kFa)

−1 = 0. The line
is a theory curve obtained from Ref. [22].
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predictions about macroscopic properties of the gas, such as the total energy. As mentioned above,

the total energy can be split into two well-behaved parts, the potential energy to the harmonic

trap, V , and the release energy T + I, which is the sum of the kinetic and interaction energy. We

use measurements of both of these quantities to test the adiabatic sweep theorem, Eq. 8.3, and the

generalized virial theorem, Eq. 8.5.

We measure V by imaging the spatial distribution of the atom cloud [30]. We allow the

cloud to expand for 1.6 ms to lower the optical density and then image along one of the radial

directions in order to see the density distribution in the axial direction. Because the expansion

time is 40 times shorter than the axial trap period, the density distribution in the axial direction

reflects the in-trap density distribution. The potential energy per particle, in units of EF , is then

V = 3
EF

1
2mω

2
z⟨z2⟩, where ⟨z2⟩ is the mean squared width of the cloud in the axial direction and we

have assumed that the potential energy is distributed equally in x, y, and z.

To measure T + I we turn off the trap suddenly and let the cloud expand for t = 16 ms (with

interactions) before imaging along one of the radial directions; this is similar to measurements

reported in Ref. [120]. The total release energy is the sum of the release energy in the two

radial directions and the release energy in the axial direction. For the radial direction, the release

energy per particle, in units of EF , is simply Tr + Ir = 2
EF

1
2m

⟨y2⟩
t2

where t is the expansion time

and ⟨y2⟩ is the mean squared width of the expanded cloud in the radial direction. For the axial

direction, the expansion is slower and the expanded cloud may not be much larger than the in-trap

density distribution. This is especially true near the Feshbach resonance where the cloud expands

hydrodynamically [121]. Accounting for this, the axial release energy is Tz + Iz = 1
EF

1
2m

⟨z2⟩−z20
t2

,

where z20 is mean squared axial width of the in-trap density distribution.

We extract the mean squared cloud widths from surface fits to the images, where we fit

to a finite temperature Fermi-Dirac distribution. Rather than being theoretically motivated, we

simply find empirically that this functional form fits well to our images. In order to get the best

estimate of the energy in the clouds, we perform a weighted fit where each point in the image

is weighted by the square of the distance from the center of the cloud. To eliminate systematic
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error due to uncertainty in the trap frequencies and imaging magnification, we measure the release

energy and potential energy of a very weakly interacting Fermi gas at T
TF

= 0.11, where we expect

T + I = V = 0.40EF . We then use the ratio of 0.40EF to our measured values as a multiplicative

correction factor that we apply to the data. This correction is within 5% of unity. For the point

with 1
kF a > 0 we add the binding energy of the molecules, −1/(kFa)

2, to the release energy T + I.

We show our data for the V and T + I versus (kFa)
−1 in the inset of Fig. 8.3. The error bars

shown in Fig. 8.3 include both statistical and systematic sources of uncertainty, which are roughly

equal in magnitude.

We can now test the predicted universal relations connecting the 1/k4 tail of the momentum

distribution with the thermodynamics of the trapped Fermi gas. We first consider the adiabatic

sweep theorem. The inset to Fig. 8.3 shows E obtained by summing the measured values for

T + I and V . To test the adiabatic sweep theorem, we find the derivative, dE
d(−1/(kF a)) , simply by

calculating the slope for pairs of neighboring points in the inset of Fig. 8.3. In the main part

of Fig. 8.4, we compare this point-by-point derivative, multiplied by 2π, to C obtained from the

weighted averages of the the data shown in Fig. 8.2(◦). Comparing these measurements of the left

and right sides of Eqn. 8.3, we find good agreement and thus verify the adiabatic sweep theorem

for our strongly interacting Fermi gas.

To test Eq. 8.5, in Fig. 8.4 we plot the measured difference T + I − V versus (kFa)
−1

along with C
4πkF a , where we use our direct measurements of C. We find that these independent

measurements of the left and the right sides of Eqn. 8.5 agree to within the error bars, which

include both statistical and systematic sources of uncertainty. It is interesting to note that the

measured energy difference T + I − V is small (in units of EF ), so that even a Fermi gas with a

strongly attractive contact interaction nearly obeys the non-interacting virial equation.

In conclusion, we have measured the integrated contact for a strongly interacting Fermi gas

and demonstrated the connection between the 1/k4 tail of the momentum distribution and the high

frequency tail of rf spectra. Combining a measurement of C vs (kFa)
−1 with measurements of the

potential energy and the release energy of the trapped gas, we verify two universal relationships
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Figure 8.3: Testing the adiabatic sweep theorem (Inset) The measured potential energy, V ,
and release energy, T + I, per particle in units of EF are shown as a function of 1/kFa. (Main)
Taking a discrete derivative of the data shown in the inset, we find that 2π dE

d(−1/(kF a)) (•) agrees
well with the average value of the contact C obtained from the measurements shown in Fig. 8.2
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Figure 8.4: Testing the generalized virial theorem The difference between the measured release
energy and potential energy per particle T + I − V is shown as filled circles. This corresponds to
the left hand side of Eq. 8.5. Open circles show the right hand side of Eq. 8.5 obtained from
the average values of the contact shown in Fig. 8.2. The two quantities are equal to within the
measurement uncertainty.
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[103, 104], namely the adiabatic sweep theorem and the generalized virial theorem. These universal

relations represent a significant advance in the understanding of many-body quantum systems with

strong short-range interactions. Furthermore, these relations could be exploited to develop novel

experimental probes of the many-body physics of strongly interacting quantum gases.



Chapter 9

Conclusion and Outlook

9.1 Summary

In this thesis, I presented ultracold atomic Fermi gases as an ideal system for studying the

effects of strong interactions in quantum systems. Feshbach resonances are the key tool that allow

us to vary the interaction strength between atoms in the gas and enter into the regime of the

BCS-BEC crossover. In the crossover, strong interactions cause the fermions to form pairs with a

typical pair size on order of the interparticle spacing. This pair size puts the system well beyond

the reach of the standard BCS theory of pairing but not yet to the limit where the pairs can be

understood as two-body molecules. Instead, the gas is a strongly correlated manybody system.

I introduced an atom photoemission spectroscopy technique, which is based on momentum-

resolved rf spectroscopy, to probe the strongly interacting Fermi gas in the BCS-BEC crossover.

This technique allows one to directly measure the energy and momentum of the occupied single-

particle states in the strongly interacting system. This information can be used to construct the

occupied spectral function and compare directly to many-body theories.

Using this method, we obtained atom photoemission data as a function of temperature and

interaction strength in the crossover. This data shows many of the unusual features of the gas,

including a pairing gap on order of the Fermi energy, large energy widths of the single-particle states,

and the disappearance of the Fermi surface on the BEC side of the crossover. Perhaps the most

unusual behavior of the gas revealed by the data is the persistence of a BCS-like dispersion above

the superfluid transition temperature. This is strong evidence for the existence of a pseudogap
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phase, consisting of incoherent pairs of fermions.

In order to understand the effect of the confinement trap on the photoemission data, I intro-

duced a measurement technique to obtain spatially resolved momentum information in a trapped

atomic gas. We demonstrated that this technique allows for the direct observation of the Fermi

surface in a weakly interacting Fermi gas. We then applied this technique to study the effects of

the harmonic trapping potential for the Fermi gas on the photoemission data.

Finally, I presented measurements of the amplitude of the large-momentum tail of the fermion

momentum distribution, termed the contact. I showed how this quantity could be linked to a

number of other measurable quantities in the system, such as the rf spectrum, total energy, and

virial theorem. The relations involving the contact are known as the Tan relations and are valid

for all interaction strengths and phases of the system (normal, superfluid, ect.). As such, they

represent an important new development in the study of strongly interacting systems with short-

range interactions.

9.2 Outlook

In the short-to-medium term, I believe there are some interesting research opportunities

related to the issues presented in the last two chapters of this thesis. As far as photoemission

spectroscopy in the BCS-BEC crossover goes, I think obtaining a spectrum for a homogeneous

gas is a worthy goal. In Chapter 7, we were able to see some of the effects of the trapping

potential on the data. However, the hollow light beam technique by itself is inadequate to obtain

a spectrum for a gas with density profile homogeneous enough to divide out the Fermi function

from the photoemission data. The spectral function of a homogeneous gas would be a great help

in comparing directly to theories of the pseudogap and developing a better understanding of the

properties of this strongly correlated system. For example, it would allow one to directly measure

the gap in the density of states. In order to improve upon the current results, it may be necessary

to consider modifying the trapping potential to be flatter in the center. The most difficult part

of making a box trap is obtaining sharp edges at the boundaries. However, the hollow light beam
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technique is excellent for removing atoms at the edge of the cloud. Thus, a box trap is not necessary.

For example, a quartic trapping potential (V (r) ∝ r4) might prove adequate. Other experiments in

our field have demonstrated the kind of beam shaping control necessary to achieve this. Without

data for a homogeneous gas, I fear that some questions regarding the pseudogap phase could go

unresolved, such as the energy widths of the single-particle states near the Fermi surface and the

magnitude and temperature dependence of the pseudogap in the density of states. Of course, other

measurement techniques could also shed light on the pseudogap phase, such as measurements of

the spin susceptibility [92].

Our work in Chapter 8 on the contact shows that measurements of this quantity can be a

useful tool for probing a strongly interacting gas. As with photoemission spectroscopy, measure-

ments of the contact for a homogeneous gas would be desirable. For example, the same theory

we have compared to our photoemission data also predicts a sharp increase in the contact near

the Tc [122]. However, it is predicted that this increase cannot be seen in a trapped gas with

inhomogeneous density [122]. Luckily, measuring the contact for a homogeneous gas is significantly

easier than photoemission spectroscopy for a homogeneous gas. This is because the contact can be

obtained directly from momentum integrated rf spectra. In fact, spatially resolved rf spectroscopy

has already been demonstrated in Ref. [97]. However, in Ref. [97] the fermion studied was 6Li,

where rf spectroscopy is complicated by the absence of a weakly interacting third spin state [40].

Thus our experiment with 40K would have a distinct advantage. Measurements of the contact for

a homogeneous gas as a function of temperature and interaction strength would be an important

benchmark for theories and could help us develop a better understanding of the crossover. Fur-

thermore, the behavior of the contact near Tc could give information about the pseudogap state

and the nature of the superfluid transition.

The medium-to-long term outlook is, obviously, more difficult to predict. It seems already

that the projects we deem most promising, even in the short term, can completely change on a dime

when interesting results are presented by other experimental and theoretical groups. As such, the

most likely thing to happen is there will be new predictions and observations regarding strongly
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interacting fermions that our experiment will be well suited to study. One recent development that

appears to remain an open question is the potential observation of a ferromagnetic state for strongly

repulsive fermions [57]. It would also be interesting to study Fermi liquid behavior in a low tem-

perature repulsive Fermi gas using photoemission spectroscopy or other means. Non-equilibrium

and dynamic behavior of strongly interacting quantum gases is a rich field with many open ques-

tions. The ability to quickly change the magnetic field and thus the interaction strength means we

can excite dynamic behavior. For example, measuring the time-dependence of the contact after a

magnetic field jump could be interesting, possibly using time-resolved photoemission spectroscopy.

Also, it has been pointed out that the value of the contact can be related to the shear viscosity of

a strongly interacting Fermi gas, which may itself may be approaching a lower limit predicted by

string theory [101].

Eventually, one can consider adding a degree of complexity to our system. Reducing the

dimensionality via an optical lattice is an obvious possibility. The lower dimension could suppress

superfluidity and allow one to study the normal state down to lower temperature [12], perhaps also

sheading light on the physics of the pseudogap phase. The two-dimensional Fermi-Hubbard model

still remains the holy grail of atomic Fermi gas experiments and there are promising proposals for

reducing the entropy enough to observe magnetic behavior and map out the low-temperature phase

diagram [123].

Regardless, as experimenters develop new techniques and more sophisticated measurements to

test theoretical predictions and study many-body quantum phenomena there is sure to be dramatic

and exciting progress in this field over the next several years. I look forward to following those

developments.



Bibliography

[1] C. A. Regal and D. S. Jin, Measurement of positive and negative scattering lengths in a Fermi
gas of atoms, Phys. Rev. Lett. 90, 230404 (2003).

[2] J. P. Gaebler, J. T. Stewart, J. L. Bohn, and D. S. Jin, p-wave Feshbach molecules, Phys.
Rev. Lett. 98, 200403 (2007).

[3] D. S. Jin, J. P. Gaebler, and J. T. Stewart, in Proceedings of the International Conference
on Laser Spectroscopy, Telluride 2007, edited by L. Hollberg, J. Berquist, and M. Kasevich
(World Scientific, 2008).

[4] W. Ketterle and M. W. Zwierlein, in Proceedings of the International School of Physics
“Enrico Fermi”, Course CLXIV, edited by M. Inguscio, W. Ketterle, and C. Salomon (OS
PressAmsterdam, 2008).

[5] J. R. Schrieffer, in Theory of Superconductivity, edited by D. Pines (Addison-Wesley Publish-
ing Company, Inc., 1964).

[6] C. A. Regal, Experimental realization of BCS-BEC crossover physics with a Fermi gas of
atoms, Ph.D. thesis, University of Colorado, 2006.

[7] C. A. Regal, M. Greiner, and D. S. Jin, Observation of resonance condensation of fermionic
atom pairs, Phys. Rev. Lett. 92, 040403 (2004).

[8] A. Damascelli, Z. Hussain, and Z. Shen, Angle-resolved photoemission studies of the cuprate
superconductors, Reivews of Modern Physics 75, 473 (2003).

[9] J. T. Stewart, J. P. Gaebler, and D. S. Jin, Using photoemission spectroscopy to probe a
strongly interacting Fermi gas, Nature 454, 744 (2008).

[10] J. T. Stewart, J. P. Gaebler, T. E. Drake, and D. S. Jin, Verification of universal relations in
a strongly interacting Fermi gas, Phys. Rev. Lett. 104, 235301 (2010).

[11] S. Tsuchiya, R. Watanabe, and Y. Ohashi, Single-particle properties and pseudogap effects in
the BCS-BEC crossover regime of an ultracold Fermi gas above Tc, Phys. Rev. A 80, 033613
(2009).

[12] Q. Chen, J. Stajic, and K. Levin, Applying BCS-BEC crossover theory to high temperature
superconductors and ultracoldatomic Fermi gases, Low Temp. Phys. 32, 406 (2006).



156

[13] S. Nascimbene, N. Navon, K. Jiang, F. Chevy, and C. Salomon, Exploring the thermodynam-
ics of a universal Fermi gas, Nature 463, 1057 (2010).

[14] A. Bulgac, J. E. Drut, and P. Magierski, Spin 1/2 fermions in the unitary regime: a superfluid
of a new type, Phys. Rev. Lett. 96, 090404 (2006).

[15] A. Perali, P. Pieri, G. C. Strinati, and C. Castellani, Pseudogap and spectral function from
superconducting fluctuations to the bosonic limit, Phys. Rev. B 66, 024510 (2002).

[16] A. Perali, P. Pieri, P. F., G. C. Strinati, J. T. Stewart, J. P. Gaebler, T. E. Drake, and
D. S. Jin, Pseudogap phase and remnant Fermi surface in ultracold Fermi Gases, , arXiv:
1006.3406.

[17] W. Schneider and M. Randeria, Universal short-distance structure of the single-particle spec-
tral function of dilute Fermi gases, Phys. Rev. A 81, 021601 (2010).

[18] J. P. Gaebler, J. T. Stewart, T. E. Drake, D. S. Jin, A. Perali, P. Pieri, and G. C. Strinati,
Observation of pseudogap behavior in a strongly interacting Fermi gas, Nature Physics 6, 569
(2010).

[19] A. Schirotzek, Y. il Shin, C. H. Schunck, and W. Ketterle, Determination of the superfluid
gap in atomic Fermi gases by quasiparticle spectroscopy, Phys. Rev. Lett. 101, 140403 (2008).

[20] A. Bulgac, J. E. Drut, and P. Magierski, Quantum Monte Carlo simulations of the BCS-BEC
crossover at finite temperature, Phys. Rev. A 78, 023625 (2008).

[21] G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini, Equation of state of a Fermi
gas in the BEC-BCS crossover: A quantum Monte Carlo study, Phys. Rev. Lett. 93, 200404
(2004).

[22] F. Werner, L. Tarruel, and Y. Castin, Number of closed-channel molecules in the BEC-BCS
crossover, Eur. Phys. J. B 68, 401 (2009).

[23] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wiemand, and E. A. Cornell, Obser-
vation of Bose-Einstein condensate in a dilute atomic vapor, Science 269, 198 (1995).

[24] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Evidence of Bose-Einstein
condensation in an atomic gas with attractive interactions, Phys. Rev. Lett. 75, 1687 (1995).

[25] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn,
and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett. 75,
3696 (1995).

[26] W. Ketterle, in Nobel Prizes 2001 (Nobel Foundation, 2001).

[27] P. W. Anderson, More Is Different, Science 177, 4047 (1972).

[28] in Open Problems in Strongly Correlated Electron Systems, Proceedings of the NATO Ad-
vanced Research Workshop in Bled, Slovenia, 26-30 April 2000, edited by J. Bonca, P.
Prelovsek, R. A., and S. Sarkar (NATO Sicence Series II: Mathematics, Physics and Chem-
istry, Vol. 15, 2001).

[29] H. Heiselberg, Fermi systems with long scattering lengths, Phys. Rev. A 63, 043606 (2001).



157

[30] J. T. Stewart, J. P. Gaebler, C. A. Regal, and D. S. Jin, Potential energy of a 40K Fermi gas
in the BCS-BEC crossover, Phys. Rev. Lett. 97, 220406 (2006).

[31] E. Shuryak, Strongly coupled quark-gluon plasma: the status report, Prog. Part. Nucl. Phys.
53, 273 (2004).

[32] G. A. Baker, Neutron matter model, Phys. Rev. C 60, 054311 (1999).

[33] B. DeMarco, Quantum behavior of an atomic Fermi gas, Ph.D. thesis, University of Colorado,
2001.

[34] J. T. Stewart, Probing a strongly interacting Fermi gas, Ph.D. thesis, University of Colorado,
2009.

[35] V. Gurarie and L. Radzihovsky, Resonantly-paired fermionic superfluids, Annals of Physics
322, 2 (2007).

[36] J. J. Sakurai, in Modern Quantum Mechanics, edited by S. F. Tuan (Addison-Wesley Pub-
lishing Company, Inc., 1985).

[37] R. B. Diener and T.-L. Ho, The condition for universality at resonance and direct measure-
ment of pair wavefunctions using rf spectroscopy, (2004), arXiv:cond-mat/0405174v2.

[38] C. Ticknor, C. A. Regal, D. S. Jin, and J. L. Bohn, Multiplet structure of Feshbach resonances
in non-zero partial waves, Phys. Rev. A 69, 042712 (2004).

[39] C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Creation of ultracold molecules from a
Fermi gas of atoms, Nature 424, 47 (2003).

[40] C. H. Schunck, Y. i. Shin, A. Schirotzek, and W. Ketterle, Determination of the fermion pair
size in a resonantly interacting superfluid, Nature 454, 739 (2008).

[41] T. Loftus, C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Resonant control of elastic
collisions in an optically trapped Fermi gas of atoms, Phys. Rev. Lett. 88, 173201 (2002).

[42] M. Greiner, C. A. Regal, and D. S. Jin, Probing the excitation spectrum of a Fermi gas in
the BCS-BEC crossover regime, Phys. Rev. Lett. 94, 070403 (2005).

[43] C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Tuning p-wave interactions in an ultracold
Fermi gas of atoms, Phys. Rev. Lett. 90, 053201 (2003).

[44] C. A. Regal, M. Greiner, and D. S. Jin, Lifetime of molecule-atom mixtures near a Feshbach
resonance in 40K, Phys. Rev. Lett. 92, 083201 (2004).

[45] S. Durr, V. T., and G. Rempe, Dissociation of ultracold molecules with Feshbach resonances,
Phys. Rev. A 70, 031601(R) (2004).

[46] Y. Inada, M. Horikoshi, S. Nakajima, M. K. Kuwata-Gonokami, M. Ueda, and T. Mukaiyama,
Collisional properties of p-wave Feshbach molecules, Phys. Rev. Lett. 101, 100401 (2008).

[47] J. Fuchs, C. Ticknor, P. Dyke, G. Veeravalli, E. Kuhnle, W. Rowlands, P. Hannaford, and
C. J. Vale, Binding energies of 6Li p-wave Feshbach molecules, Phys. Rev. A 77, 053616
(2008).



158

[48] J. Levinson, N. R. Cooper, and V. Gurarie, Stability of fermionic gases close to a p-wave
Feshbach resonance, Phys. Rev. A 78, 063616 (2008).

[49] V. Gurarie, L. Radzihovsky, and A. V. Andreev, Quantum phase transitions across p-wave
Feshbach resonance, Phys. Rev. Lett. 94, 230403 (2005).

[50] C.-H. Cheng and S.-K. Yip, Anisotropic Fermi superfluid via p-wave Feshbach resonance,
Phys. Rev. Lett. 95, 070404 (2005).

[51] Y. Ohashi, BCS-BEC crossover in a gas of Fermi atoms with a p-wave Feshbach resonance,
Phys. Rev. Lett. 94, 050403 (2005).

[52] S. S. Botelho and C. A. R. S. de Melo, Quantum phase transition in the BCS-to-BEC evolution
of p-wave Fermi gases, J. Low Temp. Phys. 140, 409 (2005).

[53] N. Read and D. Green, Paired states of fermions in two dimensions with breaking of parity
and time-reversal symmetries, and the fractional quantum Hall effect, Phys. Rev. B 61, 10267
(2000).

[54] R. A. W. Maier, C. Marzok, and C. Zimmermann, Radio-frequency spectroscopy of 6Li p-
wave molecules: Towards photoemission spectroscopy of a p-wave superfluid, Phys. Rev. A
81, 064701 (2010).

[55] Y. J. Han, C. Y. H., A. J. Daley, S. Diehl, P. Zoller, and L. M. Duan, Stabilitzation of the
p-wave superfluid state in an optical lattice, Phys. Rev. Lett. 103, 070404 (2009).

[56] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (Dover Publica-
tionsMineola, New York, 1971).

[57] G. B. Jo, Y. Lee, J. H. Choi, C. A. Christensen, T. H. Kim, J. H. Thywissen, D. E. Pritchard,
and W. Ketterle, Itinerant gerromagnetism in a Fermi gas of ultracold atoms, Science 325,
1521 (2009).

[58] L. N. Cooper, Bound electron pairs in a degenerate Fermi gases, Phys. Rev. 104, 1159 (1956).

[59] A. J. Leggett, Cooper pairing in spin-polarized Fermi systems., J. Phys. C (Paris) 41, C7
(1980).

[60] P. Nozieres and S. Schmitt-Rink, Bose condensation in an attractive fermion gas: from weak
to strong coupling superconductivity, J. of Low Temp. Phys. 59, 195211 (1985).

[61] M. Randeria, J. M. Duan, and L. Y. Shieh, Superconductivity in two-dimensional Fermi gas:
Evolution form Cooper pairing to Bose condensation, Phys. Rev. B 41, 327 (1990).

[62] M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and W. Ketterle, Vortices
and superfluidity in a strongly interacting Fermi gas, Nature 435, 1047 (2005).

[63] J. Kinast, A. Turlapov, J. E. Thomas, Q. Chen, J. Stajic, and K. Levin, Heat capacity of
astronglyinteracting Fermi gas, Science 307, 1296 (2005).

[64] J. Kinast, S. L. Hemmer, M. E. Gehm, A. Turlapov, and J. E. Thomas, Evidence for super-
fluidity in a resonantly interacting Fermi gas, Phys. Rev. Lett. 92, 150402 (2004).



159

[65] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. H. Denschlag, and R. Grimm,
Collective excitations of a degenerate gas at the BEC-BCS crossover, Phys. Rev. Lett 92,
203201 (2004).

[66] Q. Chen, J. Stajic, and K. Levin, Thermodynamics of Interacting Fermions in Atomic Traps,
Phys. Rev. Lett. 95, 260405 (2005).

[67] C. A. Regal, M. Greiner, S. Giorgini, M. Holland, and D. S. Jin, Momentum distribution of
a Fermi gas of atoms in the BCS-BEC crossover, Phys. Rev. Lett. 95, 250404 (2005).

[68] P. Nozieres, in Theory of Interacting Fermi Systems, edited by D. Pines (Addison-Wesley
Publishing Company, Inc., 1964).
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Appendix A

40K Transitions

In a number of places in this thesis I discuss various optical transitions 40K atoms in a

magnetic field. In this section, I explain how the energy and branching ratios for these transitions

are calculated and list all the transitions for 40K atoms that are relevant for this thesis. The

references for this section are the book on laser spectroscopy, Ref. [124], and the review article

containing measurements of the hyperfine structure in alkali atoms, Ref. [125]. Also, when I wrote

the MATLAB program for this, I borrowed from a Mathematic code written by Jayson Stewart

that was a final project for his graduate atomic physics class. A 40K atom has nuclear spin I = 4

and electronic spin S = 1/2. In the ground state (4S1/2), where the orbital angular momentum

L is zero, we have J = L + S = 1/2. The total angular momentum F = J + I can be either 9/2

or 7/2. The F = 9/2 hyperfine state is the lower energy state that we use for experiments. The

relevant electronic transitions are to states with L = 1 and J = 3/2 (4P3/2), which are called D2

transitions. The electronically excited state can have F ′ = 11/2, 9/2, 7/2, 5/2, where the prime

signifies we are talking about the excited state.

To compute the Zeeman shifts of the hyperfine states, one needs to diagonalize the Hamilto-

nian HHFS(B) = HHFS +HZ . The hyperfine Hamiltonian HHFS can be written

HHFS =
1

2
hAJK + hBJ

3
2K(K + 1)− 2I(I + 1)J(J + 1)

2I(2I − 1)2J(2J − 1)
(A.1)

where K = 2I ·J = F (F +1)−I(I+1)−J(J+1), AJ is the magnetic hyperfine structure constant,

and BJ is the electric quadrupole interaction constant. For a magnetic field of strength B along
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the z axis, the interaction with the magnetic field is described by HZ and can be written

HZ = µBB(gjmj + gi
µN
µB

mi) (A.2)

where mj and mi are the projections of J and I along the z-axis, µB is the bohr magneton, µN

is the nuclear magneton, and gj and gi are the g-factors for the electron and nuclear magnetic

moments. The Lande g-factor, gj depends on the g-factor for the electron, g, and can be written

gj =
g
2(1 +

J(J+1)+S(S+1)−L(L+1)
2J(J+1) ).

J ,I,L,S and the total spin projection, mF , are all good quantum numbers at any field, while

F is also a good quantum number at B = 0. We label all the states by F and mF , where F then

refers to the value for that state at B = 0.

The physical constants necessary are g = 2.002319, gI = −0.3245, µB = 1.3996 MHz/G,

µN/µB = 0.000544617. For the ground state, AJ = −285.7308 and BJ = 0. For the excited state,

AJ = −7.59 and BJ = −3.5.

Figures A.1,A.2, and A.3, show all the D2 transitions from the three lowest energy Zeeman

levels in the F = 9/2 ground state at 202.2 G. Next to each excited state, the detuning (in MHz),

and transition strength are shown for the transition indicated. The values are calculated for a

magnetic-field strength of B = 202.2 G (the location of the s-wave Feshbach resonance). The

detuning is calculated from the difference in energies obtained for the states after diagonalizing the

Hamiltonian H = HHFS + HZ . The transition strength is obtained by calculating the transition

matrix element between the new eigen-states. The probability that an atom in one of the excited

states will spontaneously decay into a particular ground state is equal to the transition strength

(i.e. a transition strength of 0.02 implies a 1 in 50 chance to decay to that state).
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Appendix B

Subtracting the high-momentum background signal from optical pumping

In chapter 7, I presented a technique for measuring the momentum distribution of atoms

from the center of a trapped gas using intersecting hollow light beams to optically pump atoms at

large radius from the trap center. It was noted that this optical pumping is not perfectly efficient,

and leaves some atoms in the same state with an extra momentum kick due to absorbing and

spontaneously emitting a photon. We subtract this background using a simple model. Fig. 7.3

shows the measured atom momentum distribution with, and without the hollow light beams, as

well as the predicted background contribution. In this appendix, I will sketch out the details of the

model.

The first question to address is: how large do we expect the background signal to be based

on the branching ratio of the optical pump transition? This calculation is easily done for a cloud

at zero temperature. The density profile of the atoms is given by n = n0(1 − r2

RTF

2
)3/2, where

r2 = x2 + y2 + ( zλ)
2 and λ is the ratio of axial (along ẑ) to the radial (the (x-y) plane) trap

frequency and RTF is the Fermi radius in the radial direction, given by RTF =
√

2EF
mω2 . In our

experiment λ ≈ 10. A hollow light beam of order l has a profile given by Eq. 7.1. For a closed

transition, the probability for an atom to absorb a certain number of photons, P (N) is given

by a Poissonian distribution P (N) = e−I IN

N ! , where I corresponds to the mean number of photons

absorbed per atom. For a non-cycling transition, with a probability T for the excited state to decay

back into the original state, the probability that an atom absorbs a single photon and falls back

into the original state is TP (1). The probability to absorb two photons and still be in the original
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state is T 2P (2), which we will consider to be negligible as T ≪ 1 for the transitions considered.

We consider a single, cylindrical hollow light beam with either l = 1 and w = 1.1RTF

propagating along the axial direction (ẑ) or an l = 2 and w = λ0.75RTF propagating perpendicular

to the axial direction (along ŷ). To compute the number of atoms that fall back into the same

state, we calculate the intensity of the light beam at each position in the cloud using Eq. 7.1, and

the corresponding probability to absorb a single photon and fall back into the original state. For

the l = 1 beam, we find the number of atoms absorbing a single photon and falling back into the

same state as a fraction of the total initial number of atoms is approximately 1.12TN(0)(1−N(0))

where N(0) is the faction of atoms that absorbed 0 photons (the fraction of atoms remaining after

the optical pumping excluding those that spontaneously decayed back to the original state). For

the l = 2 beam we find the number to be approximately 0.37T
√
N(0)(1−N(0)).

The atoms that absorb a photon and fall back into the same state will receive two momentum

kicks equal to the photon recoil k0 = h 2π
λph

, where λph ≈ 767 nm. The first momentum kick will

be in the direction of propagation of the cylindrical beam due to the absorption of a photon. The

second will be in a random direction due to the spontaneous emission of a photon. For the l = 1

hollow light beam propagating along the axial direction of the cloud, we can ignore the effect of the

first photon because it is along the imaging axis (ẑ). The momentum distribution of atoms after

the spontaneous emission, nbg(k), is a convolution of the original momentum distribution of those

atoms that absorb a single photon, n1(k), and a spherical shell with a radius of k0. This can be

written

nbg(k) =

∫
n1(|⃗k − p⃗)|)δ(p− k0)

4πp2
d3p =

1

2

∫ π

0
n1(k

2 + k20 − 2kk0cosθ)sinθdθ (B.1)

In an experiment, we cannot directly measure the momentum distribution of just the atoms

that absorbed a single photon. However, a good approximation for n1(k) is to take the difference

between the momentum distribution obtained with and without the hollow light beams, which is

the momentum distribution of the atoms that absorbed at 1 or more photons.

The other hollow light beam propagates in the imaging plane (along ŷ) and so there will
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be two photon recoils. This can be modeled by taking nbg from Eq. B.1 and plugging it back

into the same equation as n1 to perform a second convolution. This neglects that the first photon

kick will always be in a particular direction, but is a reasonable approximation since we take an

azimuthal average of the images anyway. Typically, the background signal due to the l = 2 beams

is approximately half the signal due to the other beam (based on blasting 50% of the atoms with

l = 1 beam and 20% of the atoms with the l = 2 beam).

The procedure for analyzing images begins by taking images of atom clouds after time-of-

flight expansion with and without the hollow light beams. We perform inverse Abel transforms

on each image to obtain a 3D momentum distribution. We take the difference of the two mo-

mentum distributions to obtain n0(k) and then use Eq. B.1 to obtain the momentum distribution

of the background signal. We scale the first background signal to have an amplitude given by

1.12TN(0)(1 − N(0)) where we use the fraction of atoms remaining with the hollow light beams

for N(0). We scale the second background signal to be half of that. Finally, we subtract the

background signal from the momentum distribution measured with the hollow light beam. A mo-

mentum distribution with and without the hollow light beams, as well as a calculated background

signal are shown in Fig. 7.3.



Appendix C

Accounting for interactions with the third spin-state in measurements of the

contact

In photoemission experiments, and measurements of the contact, we use an rf field to transfer

atoms out of the strongly interacting system and into a weakly interacting state. In this thesis, the

strongly interacting system consists of atoms in the |9/2,−9/2⟩ and the |9/2,−7/2⟩ spin states,

which we will call states 1 and 2 respectively. The weakly interacting state is the |9/2,−5/2⟩ state,

which we will call state 3. It was pointed out in Ref. [111] that, due to residual interactions with

the third spin state, rf spectra should go as ω−5/2 at large detunning, as opposed to the ω−3/2 tail

predicted in the ideal case (Eq. 8.7). In Ref. [113], the exact form of the tail is derived and the

authors find

lim
ν→∞

Γ(ν) =
C

23/2π2
ν−3/2

(
(kFa12)

−1 − (kFa13)
−1

)2

(kFa13)−2 + ν/2
(C.1)

where a12 is the scattering length between the strongly interacting atoms, a13 is the scattering

length between states 1 and 3, and ν is the rf frequency in units of the EF /h with ν = 0 defined as

the single atom resonance. The rf field transfers atoms from state 2 to state 3. In the limit kFa13

small, this formula reduces to Eq. 8.7. In our experiments, the scattering length a13 is controlled

by a Feshbach resonance at 224.2G [6], which has a width of 7.5 G [126]. At 202.2 G, which is the

center of the Fesbach resonance for the 1 and 2 states, this gives a scattering length a13 of 233a0,

and for a typical value of kF , we find (kFa13)
−1 = 9, leading to a few percent correction to the

value of the contact (Fig. C.1). The scattering length a13 varies by less than 10a0 over the range

of magnetic-field strengths for the data presented here.
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Final state corrections will also apply to the momentum distribution obtained from photoe-

mission spectroscopy. To derive the high k tail from Eq. C.1, we use ν = 2k2, where k is the

fermion wave-vector in units of kF . This relation can be checked in the limit of rf dissociation of a

dimer molecule. In this case, the initial state is a molecule with binding energy EB. The final state

is two atoms, each with momentum of magnitude k. Conservation of energy gives ν = EB + 2k2.

At large k, we can neglect EB. Plugging this into Eq. C.1, we find,

N(k)dk = Γ(ν)dν =
C

2π2
k−2

(
(kFa12)

−1 − (kFa13)
−1

)2

(kFa13)−2 + k2
dk (C.2)

where N(k) is the number of atoms with wave-vector k. The momentum distribution, n(k), is

defined as 4π
(2π)3

n(k)k2dk = N(k)dk, such that

n(k) = Ck−4

(
(kFa12)

−1 − (kFa13)
−1

)2

(kFa13)−2 + k2
. (C.3)

From this we see that the n(k) obtained from photoemission spectroscopy will have a k−6 tail at

very large k.

Fig. C.1 shows the contact extracted from rf spectra and photoemission data using the

above equations, which take into account interactions with the third spin-state (red points). For

comparison we also show the contact we reported in Ref. [10], where we neglected interactions

with the third spin state (black points). While the corrections due to interactions with the third

spin-state generally shift the data closer to the expected theory line from Ref. [22], the magnitude

of the corrections is quite small. This justifies the approximation used in Ref. [10], which neglects

the effects of interactions with the third spin-state.
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Figure C.1: Interactions with third spin-state Top) We plot the value of the contact extracted
from photoemission data using Eq. 8.4 (black circles) and using Eq. C.3 (red circles), which
accounts for the interactions with the third spin-state. On the BCS side (1/kFa < 0), the correction
leads to smaller values of the contact, while on resonance and on the BEC side (1/kFa < 0), the
correction leads to slightly smaller values. The solid line is the prediction from Ref. [22]. Bottom)
We plot the value of the contact extracted from rf spectra using Eq. 8.7 (black stars) and using
Eq. C.1 (red stars).



Appendix D

Simulating photoemission spectroscopy of molecules

RF dissociation of weakly interacting Feshbach molecules is a well understood process because

the exact two-body wave-function of the molecule is known, see for example Refs. [74, 40]. This

means we can simulate an atom photoemission experiment in the BEC limit, where interactions

between the molecules can be ignored. In this appendix, I will explain in more detail how the

simulation of Fig. 5.8 was obtained. I will also use the model to explore the effects of condensation

and to look at the BCS-BEC crossover.

For a Feshbach molecule, the number of atoms outcoupled over a range of frequncies dν, as

a function of rf frequency ν can be written [74]

Γ(ν)dν =
2
√
EB

π

√
ν − EB

ν2
dν (D.1)

where ν is in units of EF /h and EB is the molecule binding energy in units of EF . ν = 0 corresponds

to the transition energy for free atoms. The initial state is the bound molecule, and the final state

is two free atoms with equal and opposite momentum kν , in the molecule center-of-mass frame.

The energy of each atom is k2ν , where kν is given in units of kF . From conservation of energy we

have ν = EB + 2k2ν . We plug this into Eq. D.1 to get the distribution of relative momenta for

dissociated molecules

N(kν)dkν =
27/2

√
EB

π

k2ν
(EB + 2k2ν)

2
dkν . (D.2)

For non-Bose-condensed molecules, there will also be a center-of-mass momentum. We as-

sume this momentum distribution will be a gaussian distribution with a variance ⟨k2cm⟩. In a
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trapped T = 0 Fermi gas ⟨( k
kF

)2⟩ = 3
8 , which is the ratio corresponding to the average kinetic

energy per atom compared to the Fermi energy. Thus, an estimate for the variance in the pair

momentum distribution is ⟨k2cm⟩ = 3
4 (twice the single-atom variance). In the case of Fig. 5.8, we

calculated ⟨k2cm⟩ by assuming the molecules are in thermal equilibrium with unpaired atoms, whose

momentum distribution we measure. For that case, we find ⟨k2cm⟩ = 1.3. To simulate a gas with a

condensate of molecules, we can set a fraction of the molecules to have a center-of-mass momenta

equal to zero.

The total momentum the atom will be k = kν ± kcm/2. The single-particle energy of the

atom, ES , is calculated from Eq. 5.7. Specifically, we have ES = k2 − ν = k2 − (EB + 2k2ν).

To create simulated photoemission data: I fix the binding energy EB, assume kcm and kν

are independent, generate a list of atoms obeying the probability distributions for knu and kcm,

calculate k and Es for each atom, and then plot the number of atoms versus Es and k. In these

simulations I set ⟨k2cm⟩ = 1.1.

The results of three simulated experiments with values of EB/EF = 2.5, 1.0, and 0.5 are

shown in Fig. D.1. Fits to the EDCs are shown in Fig. D.2. As noted previously, in the limit of

weakly bound molecules this simulation will be exact, and for EB/EF = 2.5 the simulation agrees

well with the data in the BEC limit (as discussed in Chap 5 and Fig. 5.8). The center-of-mass

momenta of the pairs leads to the observed energy widths, as can be seen in Fig. D.3, where a

condensate of pairs leads to a sharp spectral feature. It is interesting that the energy widths are

large, even for the long-lived pairs in the deeply bound-molecule regime. This shows explicitly that

large energy widths of the single-particle excitations does not necessarily correspond to short-lived

pairs, strong interactions between the pairs, or large pair binding energy. Rather, in this case, the

large energy widths arise only from the center-of-mass momentum distribution of the pairs.

It is interesting to look at simulations for a gas of molecules with small binding energy

compared to the Fermi energy. This is shown on the right hand side of Fig. D.1 and with a

log-scale color map in Fig. D.4. Here the simulation produces spectral functions with a BCS-like

dispersion with back-bending. In fact, this simulation is qualitatively similar to photoemission
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data taken near the center of the BCS-BEC crossover (Fig. 6.13). The qualitative agreement

is surprising because interactions between pairs must play an important role in the BCS-BEC

crossover. Nevertheless, it is suggestive that the pseudogap phase could consist of long-lived pairs

that have a large center-of-mass momenta.

In Fig. D.3, a simulation for a gas with EB = 2.5 and a 20% condensate fraction is shown.

The condensate leads to a sharp feature with a dispersion ES = −EB−k2. While this feature should

be observable in experiments, where we can obtain condensate fractions as high as 15%, it has not

been seen. The feature could be washed out due to finite experimental resolution, or a condensate

that still has significant center-of-mass motion of the pairs due to strong interactions (we have only

obtained condensates for 1/kFa < 1). This is an interesting subject for future experiments.
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Figure D.1: Simulated photoemission spectra Three simulated photoemission spetra are shown
for different values of the molecule binding energy EB/EF , labeled in the upper right corner.
The upper white line is the free-particle dispersion. The lower white line is the dispersion that
would be obtained in the limit of zero center-of-mass momentum of the molecules. The white
circles are obtained from gaussian fits to the EDCs. As EB decreases, the effect of the center-
of-mass motion of the molecules becomes important at low k/kF , and leads to a flattening, and
eventually a BCS-like back-bending in the dispersion. For the spectrum with EB/EF = 0.5, a
dashed line shows a BCS fit to the centers of the gaussians. The best fit parameters are µ, kL,∆ =
0.52± 0.14, 0.64± 0.07, 1.07± 0.15.
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Figure D.2: Dispersions and energy widths The results of gaussian fits to the EDCs of sim-
ulations with the same parameters as those in Fig. D.1 are plotted versus k/kF . Black circles
correspond to the data with EB/EF = 2.5, red circles with EB/EF = 1.0, and blue circles with
EB/EF = 0.5. Top) The rms widths, in units of the Fermi energy, are plotted. They are similar
for all three data sets and increase as a function of k/kF . The large energy widths are due to the
center of mass momenta of the molecules. These widths can be compared to those in Fig. 6.15.
Bottom) The centers of the gaussian fits.
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Figure D.3: Simulated spectrum with a condensate A simulated photoemission spectrum for
a gas with EB/EF = 2.5 and a 20% condensate fraction. The condensate creates a sharp signal
that exactly follows the lower white line, which is the dispersion in the limit of zero center-of-mass
momentum. In the simulation, the condensate was given a small center-of-mass momentum spread
⟨kcm2⟩ = 0.003kF , so that it has a finite width in the simulated spectrum.
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Figure D.4: Log plot of photoemission simulation This plot of the simulation with EB/EF =
0.5 (right hand side of Fig. D.1) uses a log intensity colormap and can be compared to the
photoemission data in the pseudogap regime plotted in Figs. 6.6 and 6.13. The upper white line is
the free particle dispersion. The lower white line is a BCS-fit to the data; the best fit parameters
are given in the caption of Fig. D.1.


