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Next-generation hard-disk drives will require smaller magnetic bits and faster

magnetization switching; hence, better understanding of nanoscale magnetic material is

one of the key factors in developing of these devices. Here, I present the first ultrafast

magnetization dynamics studies by use of extreme ultraviolet radiation from a tabletop

high-harmonic generation source. This new probing technique offers three advantages

over conventional ones: ultrafast time resolution, element selectivity, and the tabletop

size.

I report three experiments showing that high harmonics are a powerful tool for

probing magnetization in magnetic materials. First, our group measures simultaneously

the magnetizations of Ni and Fe in Permalloy using the transverse magneto-optical Kerr

effect. Second, we study laser-induced demagnetization dynamics in two ferromagnetic

alloys: Permalloy and Permalloy-Cu. Contrary to a common expectation that the

dynamics in strong exchange-coupled alloys would be identical, we discover that the

magnetization of Fe decays earlier than that of Ni during the first 60 fs. To explain this

delay, we propose a simple model incorporating a finite exchange-time factor into the

magnetization rate equations. Finally, to confirm the observed sequence of dynamics

in alloys, we conduct the magnetization study of elemental Fe and Ni with identical

experimental conditions. The results indicate that the order of demagnetizations in the

elemental forms is the same as that in Permalloy: Fe demagnetizes faster than Ni does.
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(b) The synchrotron asymmetry data at 45◦ (black line) is compared

with an asymmetry by use of the high-harmonic source (blue line). Both

results are in agreement (top). The figure also displays high-harmonic

spectra reflected from a Permalloy grating before (green line) and after

(dashed green line) reversing the magnetization (bottom). . . . . . . . . 90

6.6 The asymmetry spectrum at 45◦ of Ni (Top) calculated from high-harmonic

spectra reflected from a Ni grating with two signs of the magnetization

(bottom). In contrast to Permalloy, only Ni contributes to the asymmetry

spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.7 Magnetic asymmetries with three angles of incident, 55◦ (red), 62◦ (blue),

72◦ (green), measured from high-harmonic generation light source (a typ-

ical spectrum at the bottom). The M-shell absorption edges of Fe and Ni

are shown as vertical lines. The three measurements employs p-polarized

probe light. In contrast, with s-polarized probe light, the asymmetry

signal disappears (black). . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.8 Element-selective hysteresis loops of a Permalloy grating measured near

the Ni (top) and Fe (bottom) M-edges, with the selected energies indi-

cated on the bottom. Fe and Ni have the same hysteresis loop because

of the tight exchange coupling in Permalloy. . . . . . . . . . . . . . . . 95



xxiii

6.9 (a) The asymmetry of Permalloy as a function of Palladium capping-

overlayer thickness. The asymmetries near Fe and Ni M-edges, labeled

on the inset, decay exponentially with the decay constants of 3.02±0.4

nm (Ni) and 2.68±0.9 nm (Fe). (b) f2 parameter of Pd from [13] to

illustrate the positions of absorption edges to show that the our high-

harmonic spectra (blue shade) are far away from strong absorption edges

of Pd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.10 (a) The geometry of a magnetic trilayer of Fe, Cr and Ni. (b) The

asymmetry measured from this sample is dominated by the top layer

(Ni), while we only observe a weak signal for Fe. . . . . . . . . . . . . . 98

6.11 The wavelength tunability of high-harmonic generation. High-harmonic

and asymmetry spectra are measured with three different sizes of an iris

diaphragm. The iris reduces the peak intensity of the laser resulting in

the blueshifting inside the capillary. We can tune the harmonic energies

across the full range of high-harmonic comb. . . . . . . . . . . . . . . . 101

6.12 The long-term stability test of high-harmonic spectra reflected from PyCu

grating over 16 hours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.13 (Top) Photon energy of high harmonics calculated from the ‘center-of-

mass’ of harmonics (Figure 6.12) near Ne (blue) and Fe (red) M-edges.

The discontinuities in photon energies, e.g., at 5th or 10th hour, occur

after the optimization of harmonic flux or laser timing. (Bottom) The

RMS noise during the stable hours. . . . . . . . . . . . . . . . . . . . . . 105

6.14 Intensities of the high harmonics near Ne (blue) and Fe (red) M-edges.

The final intensity is only 70% of the starting level because of permanent

sample damage causing by constantly pumping with a laser beam. . . . 106



xxiv

7.1 Tuning the Curie temperature of Permalloy by alloying with copper.

Curie temperature is measured by superconducting quantum interference

device (SQUID) magnetometry. (Data from Justin Shaw, Han Nembach,

and Thomas Silva) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 The static asymmetry spectra of Permalloy–Cu (60:40) (orange) and

Permalloy (green). The asymmetry of Permalloy–Cu is six times less

than that of Permalloy. Both measurements are performed at the room

temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3 Static asymmetry of Permalloy–Cu as a function of temperature. Asym-

metries near M-edges of Fe and Ni are presented in red and blue respec-

tively. Power law fits give the direct determination of Curie temperature

(Tc) and critical exponent (β), which have the same results for both Fe

and Ni. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.4 The ultrafast demagnetization dynamics of Ni (blue) Fe (red) in (a)

Permalloy and (b) Permalloy–Cu. Both dynamics are measured with

the same pump fluence (2 mJ/cm2). . . . . . . . . . . . . . . . . . . . . 114

7.5 The long time scan of the asymmetry dynamics (up to 150 ps) of Permalloy-

Copper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.6 The phenomenological description of demagnetization dynamics by an

exponential model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.7 Solutions to the rate equation to describe the delayed demagnetization

dynamics in three different special cases: (a) short exchange time τE ,

(b) long exchange time, and (c) long nickel demagnetization time (τN ).

The demagnetization dynamics of Ni and Fe are plotted in blue and red,

respectively. The time constants for Ni, Fe and the exchange time are

indicated by blue, red, and green vertical lines, respectively. The time

zero is shown in the dashed line. . . . . . . . . . . . . . . . . . . . . . . 121



xxv

7.8 The delay of demagnetization dynamics of Fe (red) and Ni (blue) in

Permalloy–Cu. (a) The time zero is set to Fe data. During the short

time delay, exponential equation can only describe Fe data. In this case,

Ni demagnetizes slower than Fe by about 100 fs. (b) When the time zero

from Ni is ‘delayed’ by 59 fs with respect to Fe, the exponential fit to Ni

is improved. In this case, both elements have the same demagnetization

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.9 Explaining the dynamics of Permalloy and Permalloy–Cu by the model

equations (Equation 7.1). The model describes both data very well with-

out assuming the time zero shift between Fe and Ni as in Figure 7.8b.

The inset shows the log-scale plot to visualize that Fe and Ni demagnetize

at the same rate after the exchange time (τEx = 66± 6 fs). . . . . . . . 127

7.10 Fluence-dependent demagnetization dynamics of Ni (blue) Fe (red) in

Permalloy–Cu with the fluences of (a) 1.7 and (b) 1.4 mJ/cm2. . . . . . 129

7.11 Demagnetization time (τM ) as a function of demagnetization amplitude

of Fe (red) and Ni (blue) in Permalloy–Cu. . . . . . . . . . . . . . . . . 129

7.12 Intrinsic demagnetization time for Fe (τF ) and exchange Time (τE) (de-

fined in Equation 7.1) as a function of pump fluence. Both parameters

are not the strong increasing functions of laser fluence, and we can rule

out the hot-electron screening mechanism for the decoupling of demag-

netization delay between Ni and Fe. . . . . . . . . . . . . . . . . . . . . 130

7.13 The grating structure does not artificially contribute to the time-resolved

dynamics. The demagnetization dynamics of Ni in Permalloy are ex-

tracted from the first (blue) and second order (green) of the 65.6 eV

harmonic. Both fit results are identical within the error bars. . . . . . . 131



xxvi

7.14 A similar comparison between the demagnetization dynamics of Fe in

Permalloy–Cu extracted from the m = +1(blue) and m = −1 order

(green) of the 54 eV harmonic. . . . . . . . . . . . . . . . . . . . . . . . 131

7.15 Error-bar size from the exponential fit of the demagnetization time (τM )

(green triangles) and the corresponding RMSE (brown open circles) as

a function of the number of data and total acquisition time. The power

law fit to the data gives almost an inverse-square relationship between

the error and acquisition time. The data set is from Ni in Permalloy–Cu

(Figure 7.8b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.1 A non-exhaustive list of demagnetization times of Ni and Fe reported in

literatures. The amplitude of demagnetization is indicated in the paren-

theses. No experiment has compared the demagnetization time of Fe and

Ni in the same experimental conditions. . . . . . . . . . . . . . . . . . . 136

8.2 (a) Diffraction pattern from a Fe–Ni binary grating. The spectra of high

harmonics from the two signs of magnetization are shown in green and

brown. The energies of harmonics up to the forth order are labeled with

their photon energy and dedicated Fe or Ni absorption M-edges. (b) A

calibrated spectrum (green and brown) and the corresponding asymmetry

(black). The asymmetry is quenched (dashed and dotted lines) following

the demagnetization by a laser pulse. . . . . . . . . . . . . . . . . . . . 138

8.3 The comparison of laser-induced demagnetization dynamics between Fe

(photon energies at 55.5 and 52.9 eV) and Ni (photon energy at 66.2

eV) in Fe–Ni grating for the time delay up to (a) 3 ps (top) and 600 ps

(bottom). For both ranges, Fe demagnetizes faster than Ni and has less

quenching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.4 Fluence-dependent demagnetization dynamics of Ni in Fe–Ni grating. . . 142



xxvii

8.5 (a) Demagnetization amplitude (A), (b) demagnetization time (τM ), and

(c) magnetization recovery time (τR) describing fluence-dependent de-

magnetization dynamics (Figure 8.4) in a Ni–Fe grating. . . . . . . . . 143

8.6 Heat capacities of Nickel composing of three contributions: electron (red),

lattice (blue) and spins. Electron heat capacity is linear in temperature

from the free-electron approximation (Equation 8.4). Lattice heat capac-

ity is estimated from Debye’s theory (Equation 8.5). The contribution

from the spin system can be seen from an abrupt reduction in total heat

capacity at Curie temperature. Data from [20] . . . . . . . . . . . . . . 145

8.7 Simulation results for temperatures of electron, lattice and spin in nickel

after an excitation by a 2.25 mJ/cm2 pump pulse. The demagnetization

dynamics are a consequence from the temperature rise of the spin system. 148

8.8 The best optimized simulation result to fit the demagnetization dynamics

data. The best fit coupling parameters are Gel = (0.93 ± 0.13) × 1016

Wm−3K−1, Ges = (27.0± 2.5)× 1018 Wm−3K−1, Gsl = 3× 1016 W m−3

K−1 (fixed), and laser fluence (J) = 1.61± 0.02 mJ/cm2. The measured

pomp fluence is 2.4 mJ/cm2. . . . . . . . . . . . . . . . . . . . . . . . . 148

8.9 Demagnetization time (τM ) as a function of demagnetization amplitude

(A) from two theoretical and three experimental results. The experi-

mental data are from two different samples, Ni–Fe grating (blue square

and diamond) and Ni grating (blue triangles), and a literature result

from Ni thin film (green squares) measured with visible L-MOKE tech-

nique [21]. From the same reference, I extract the theoretical prediction

described by Elliot-Yafet mechanism (red dashed line) to compare with

three-temperature model calculation presented here (red line). . . . . . 150



xxviii

A.1 Gibbs free energy from three special cases: with zero external magnetic

field H = 0 at (a) T > Tc (b)T > Tc, and (c) with applied magnetic field

below Tc. The magnetization at thermal equilibrium can be found from

the minima of each free energy curve. In (b), the two possible states of

spontaneous magnetization are marked as Ms. And, in (c), the magnetic

field distorts the free energy curve resulting in only one global minimum

labeled as Meq. The other possible magnetization is in the metastable

state, Mms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.2 Equilibrium magnetization calculated from Landau’s theory normalized

by the value at T = 0K as a function of temperature normalized to Tc.

The plots show four different cases when the magnetic field H is increased

from zero in (a) to (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

A.3 Spontaneous magnetization normalized by the maximum possible value

of magnetization, M0 = ngµBJ of the giving J quantum number, when

all of the spin states on all atoms are identical at the absolution zero.

The temperature is scaled by Curie temperature TC = nwC. . . . . . . . 181

B.1 Output from the code. The raw diffraction patterns (red and blue for

two signs of magnetic field) from Permalloy grating at 45◦ are plot with

the calibrated photon energy from the fit indicated on the top. The

harmonics used as an input for the fitting are in red. With the optimized

value of the fundamental energy, the code extrapolates to lower energy

harmonics (blue), the second order diffraction pattern (black) and the

negative diffraction order (Figure B.2). . . . . . . . . . . . . . . . . . . 187

B.2 Extrapolation of the fit results from the fitting code shown in Figure B.1

for the negative first (blue) and second (black) orders . . . . . . . . . . 188

C.1 KEPCO PC12 (located at the back of the power supply) connection diagram190



xxix

C.2 a control circuit to synchronize the CCD camera (fire Signal) to KEPCO

BOP power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191



Chapter 1

Introduction

1.1 Hard-Disk-Drive Technologies

Former Google chief executive Eric Schmidt estimated that every two days, we

create five exabytes of data (1 EB = 1012 MB). This is as much information as hu-

mankind created from the dawn of civilization until 2003 [22]. If we stored all of this

data in floppy disks, the whole United States would be covered with floppy disks within

nine years. Clearly, we need more efficient information storage in smaller devices at

cheaper prices. This motivation, together with the competition with other storage tech-

nologies such as solid state drives, is pushing magnetic-data-storage industries to build

hard-disk drives that are faster, denser, and cheaper [23].

The advancement in hard-disk technologies can be quantitatively described in

terms of areal density. Areal density is defined as the number of bits in one square

inch of hard-drive media (Figure 1.1). In 1956, it was on the order of kbit/in2, which

is now approaching 1 Tbits/in2. This nine orders-of-magnitude improvement is due to

the exponential growth of areal density, which now doubles every two years. The trend

is analogous to Moore’s law, which predicts that the number of transistors in integrated

circuits has doubled every year [24].

To maintain this growth rate, new technologies have been incorporated into hard-

disk drives. For example, disk-read heads, which are data readers from storage media,

were fabricated from ferrite material, making them too large and insensitive to the
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small magnetic fields required for today’s data reading. In 1990, industries turned to

magnetoresistance-read heads, which are more compact and sensitive. From then on,

the areal density grew at higher rate. The trend continues today as industries shift to

giant- and tunneling-magnetoresistance heads (Figure 1.1).

In addition to the advancement in read heads, a breakthrough has also occurred

in storage media [25]. As the areal density increases, the size of and the spacing between

bits shrink down. As a result, thermal fluctuations can more easily cause data loss. This

effect, known as the superparamagnetic effect, limits the maximum areal density to 36

Gbits/in2 [26, 27] for longitudinal storage media where magnetization is in the plane

of the disk surface. To overcome this limit, industries now design hard-disk drives in

which the bit magnetization is perpendicular to the media. Industries introduced this

perpendicular recording into commercial hard drives in 2005 [28, 29, 30]. This relatively

new technology alone should allow the areal density to reach above 1 Tbits/in2 (Figure

1.1).

To improve the areal density further in the future, industry is developing two

leading candidates for hard-disk technologies: (1) bit-patterned media and (2) head-

assisted magnetic recording (Figure 1.2). Bit-prepatterned media enhance stability of

data storage at high bit density. Unlike conventional recording where each bit occupies

several naturally formed grains on the storage material, bit-patterned media are capable

of storing one bit on a prepatterned island (of the size as small as tens nanometers) fab-

ricated by nanolithography techniques. The orderliness reduces the superparamagnetic

effect on bits, resulting in more magnetically stable hard drives.

However, magnetically stable materials have a drawback; the data writing process

requires the stronger switching magnetic field beyond the capability of conventional

write heads. Head-assisted magnetic recording solves this problem by using the laser to

heat up magnetic bits, so they switch more easily in response to the smaller magnetic

field [31, 32, 33, 34]. The combination of bit-patterned media and head-assisted magnetic
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news & views

In 1878 Oberlin Smith introduced to the 
world the idea of magnetically storing 
the electrical signals produced by the 

telephone on a steel wire. More than 
130 years later, and a�er moving from 
wires on drums recording analogue signals 
to disks capable of storing digital data, 
magnetic recording has �rmly established 
itself as the dominant computer data storage 
technique. �e current device of choice is 
the hard disk drive (HDD).

Modern HDDs use read and write 
transducers positioned by air bearings a 
few nanometres above a disk (made from a 
magnetic medium and rotating at a linear 
speed of tens of metres per second) to access 
the data. Figure 1a shows an illustration 
of the standard perpendicular recording 
scheme in a HDD where the transducers 
are located at the vertical trailing end of the 
scanning head.

�e areal recording density of HDDs 
has been doubling roughly every two 
years. Various technology innovations 
and breakthroughs, including thin-�lm 
technology, giant magnetoresistance 
(GMR) heads and the use of perpendicular 
recording in place of longitudinal recording, 
have helped to maintain this trend.

Today, the areal recording density of 
HDDs based on perpendicular recording 
technology has exceeded 200 gigabits (Gb)
per square inch. �is corresponds to a 
data-bit size of less than 150 nm in width 
and 25 nm in length. But perpendicular 
recording is only a short-term solution; 
its ultimate areal density is expected to be 
limited to about 1 Tb in−2. At this density, 
conventional magnetic recording will hit the 
superparamagnetic limit where the ambient 
thermal energy and neighbouring bit 
polarizations are able to change the direction 
of the magnetic moment for a single 
bit. Many solutions have been proposed 
for further increases in areal recording 
density, but two of the most promising 
are heat-assisted magnetic recording 
(HAMR) and the use of bit patterned media 
(BPM). Although there are debates about 
which approach will eventually succeed, 

it is likely that some combination of the two 
approaches will ultimately lead to recording 
densities of 300 Tb in−2 (ref. 1).

Both HAMR and BPM have pros and 
cons. For example, the recording medium 
for HAMR has better thermal stability and 
higher resistance to changing magnetic 
polarization. �erefore it can retain a 
much higher recording density at room 
temperature, but on the other hand,  

at this temperature, it also requires a 
much higher recording magnetic �eld, 
which is beyond the capability of thin-�lm 
recording transducers like those used in 
currently available HDDs. HAMR uses laser 
radiation to heat the recording area of the 
medium momentarily and thus reduce its 
polarization resistance below that of the 
magnetic �eld emitted from the recording 
head (Fig. 1b).

In contrast, BPM attempts to overcome 
the thermal stability problem by replacing 
the current continuous medium with well-
de�ned single-domain magnetic islands for 
individual bits. Nanoimprinting provides 
a potentially low-cost method of media 
fabrication, but the major challenge still to 
be met is to fabricate a master mould with 
the smallest possible bit size to achieve 
a high areal density. �e development of 
advanced nanolithography technologies is 
required for the realization of BPM.

�e idea of using laser light to assist 
magnetic recording, as in HAMR, is 
not new to the data storage industry. In 
fact it has been used for over 10 years in 
magneto-optical drives, which can record at 
a bit size as small as 150 nm with the aid of a 
hot spot generated by an infrared laser beam 
focused to a small spot by a high-numerical-
aperture lens. �e density of data achievable 
for magneto-optical drives can be improved 
by using shorter-wavelength laser sources 
or solid immersion lenses. However, these 
di�raction-based methods are ultimately 
limited to laser beam spot sizes of the order 
of half the wavelength of light. By using a 
solid immersion lens with high-index oils, 
the wavelength can be shrunk to about 
a quarter of the vacuum wavelength. To 
achieve a density of 1 Tb in–2, however, the 
laser beam needs to be focused down to a 
size of about 25 nm, which is substantially 
beyond the capability of conventional optics.

On page 220 of this issue, Bill Challener 
and colleagues from the hard disk 
manufacturer Seagate disclose2 results 
from their �rst-generation HAMR head, 
which makes use of surface plasmons to 
allow focusing of a light beam below the 

DATA STORAGE

Heat-assisted magnetic recording
By using light to assist the recording process, hard disk drive capacity could potentially be increased by two 
orders of magnitude. The idea is to heat the magnetic medium locally, thus temporarily lowering its resistance to 
magnetic polarization.

Liang Pan and David B. Bogy

Figure 1 | Schematic of perpendicular recording 
HDD and heat-assisted magnetic recording 
(HAMR) systems. a, In a conventional HDD, a 
perpendicular recording head works above a disk 
medium where the data are stored as vertical 
magnetized bits. The write transducer, consisting 
of write coils, a write pole and a return pole, is 
at the vertical trailing end of the scanning head. 
b, A HAMR head recording to a disk medium with 
high thermal stability. A laser is used to heat the 
medium locally in order to assist the recording 
process by temporarily lowering its resistance to 
magnetic polarization.
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References [4, 5].
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recording may lead to an areal density of 300 Tbits/in2, which is two orders of magnitude

larger than the areal density of the current commercial hard drives [5].

However, before we incorporate bit-patterned media and head-assisted magnetic

recording into hard drives, we need to understand more about the physics governing

these new technologies. We need an experimental tool that allows us to probe ma-

terials with both nanoscale spatial resolution and femtosecond time resolution. The

spatial-resolution requirement is set by the size of pillars in bit-patterned media. The

time-resolution requirement is fundamental to understand the relationship between light

and magnetism that governs head-assisted magnetic recording. Therefore, we need (1)

light sources ranging in the extreme ultraviolet or soft x-ray range to probe magnetic

nanostructures and (2) short pulses to explore the dynamics on the femtosecond time

scale.

1.2 Probing Nanostructures with Extreme Ultraviolet and Soft

X-rays

To probe nanoscale magnetic structures, we require light at short wavelengths.

The smallest detectable feature (i.e., spatial resolution) is related to wavelength (λ), as

∆r =
0.5λ
NA

, (1.1)

where ∆r is spatial resolution, NA is the numerical aperture. It describes the size of the

imaging optics (e.g., a lens) used to measure the emitted light from an object. Since the

visible range is 400 to 800 nm and the maxmium numerical aperture is close to unity,

optical microscopy can only detect objects down to approximately 200 nm in size. This

spatial resolution is already larger than the bit size used in commercial hard drives since

2000 (Figure 1.1), the probing wavelength must be shortened beyond the visible range

to the extreme ultraviolet and soft x-ray regions.

Extreme ultraviolet light ranges from 30 to 250 eV, and soft x-rays range from
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250 eV to several keV. With extreme ultraviolet or soft x-rays, the spatial resolution can

be reduced to below a hundred nanometers, enabling such applications as microscopy

[35] and lithography [36]. The spatial resolution is small enough to detect structures in

hard-drive media up to an areal density of 10 Tbits/in2 (extreme ultraviolet) and 1000

Tbits/in2 (soft x-rays) (Figure 1.3).

In additional to the advantage of spatial resolution, many elemental absorption

edges exist in the extreme ultraviolet and soft x-ray regions. Across these edges, the

absorption of materials drastically changes by a slightly shift of light photon energies

because of the excitation of an inner-shell electron to valence levels. The locations of

absorption edges are element specific because the atomic energy levels are unique for

each element. Such element selectivity is very useful for many scientific applications

[37, 38] including magnetism. By taking advantage of the unique absorption, we can

probe magnetization in an element-specific manner. The absorption edges of naturally

occurring ferromagnetic elements, e.g., iron, cobalt, and nickel, are located in the ex-

treme ultraviolet and soft x-ray regions. The extreme ultraviolet region contains M-shell

absorption edges where core 3p electrons are excited to the valence 3d levels. The soft

x-ray region contains L-shell absorption edges where deeper core 2p electrons are excited

to the same valence 3d levels.

1.3 Probing Laser-Induced Magnetization Dynamics with Short

Pulses

In addition, we will require short-pulsed light in the range of extreme ultraviolet

or soft x-ray to understand the dynamical behaviors in materials of future hard-disk

technologies. Femtosecond pulses are needed because many important magnetization

dynamics occur on the femtosecond time scale (Figure 1.4).

Precession dynamics at nanosecond time scales were thought to be the fastest

magnetic phenomena. Since 1996, however, the developments of short-pulsed laser tech-
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nologies has enabled studies of dynamics at time scales down to femtoseconds. For ex-

ample, Beaurepaire et al., discovered that demagnetization by a short-and-intense laser

pulse occurs in a few hundreds of femtoseconds [9]. Recently, Bigot et al., discovered

that coherent coupling of light and magnetization occurs in attoseconds [10].

Magnetization dynamics in the femtosecond range involve interactions between

light and magnetization. In addition to the direct application for heat-assisted mag-

netic recording, these dynamics are also important for basic physics for three reasons.

First, magnetization dynamics at ultrafast time scales are directly involved with the

interaction among quantum particles such as laser photons, electrons, and phonons.

Second, the time scales of ultrafast dynamics fall into the range where the characteristic

times of spin-orbit and exchange interactions, the fundamental magnetic interactions,

are both involved [11] (Figure 1.5). It is challenging to explain the observed dynamical

behavior with our current theoretical understanding. Third, the first demonstration of

ultrafast magnetization dynamics in 1996 [9] brought much attention to understanding

these dynamics. Curiosity and new ideas opened up many new research areas such as

all-optical switching of magnetization [39], laser-induced ferromagnetic resonance [40],

time-resolved x-ray magnetism [41], and terahertz emission during demagnetization [42].

1.4 Extreme Ultraviolet Pulses from High-harmonic Generation

Since the first demonstration of ultrafast magnetization dynamics in 1996 [9],

ultrafast lasers have been used to perform various pump-probe studies. Magnetization

has been probed via the Kerr effect, the Faraday effect, and surface second-harmonic

generation. However, these techniques do not provide element-specific information since

the visible photon energy of laser is not large enough to reach any magnetic absorption

edges. Extreme ultraviolet or soft x-ray light is required for element-selective probes of

magnetic materials.

The most common sources for extreme ultraviolet and soft x-ray light are syn-
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chrotrons and free-electron lasers. Both of these sources meet the nanometer-wavelength

and femtosecond-pulse-duration requirements for element-selective studies of ultrafast

magnetization dynamics. Synchrotron radiation is generated by accelerating relativistic

electron bunches in a circular path. The spectra of light emitted from synchrotrons

cover from infrared to x-ray range. The photon flux from synchrotron radiation is often

large. However, the pulse duration of synchrotron radiation is dependent on the size of

electron bunches, which range from a few hundred picoseconds to nanoseconds. This

pulse duration is too broad to capture ultrafast magnetization dynamics. To generate

shorter light pulses for ultrafast studies, short bunches of electrons are ‘sliced’ out from

broad electron bunches by femtosecond laser pulses [43, 44]. The synchrotron radiation

emitted from these shorter bunches yields short pulses. The soft x-ray pulse duration

from this slicing technique is approximately 100 fs [45], which is barely short enough to

probe ultrafast magnetization dynamics.

Magnetization dynamics studies can also use free-electron lasers, which provide

bright short-pulsed light across the electromagnetic spectrum (infrared [46], ultraviolet

[47], soft x-ray [48], and x-ray [49]). The photon flux from free-electron lasers is, in gen-

eral, very intense, enabling collection of enough statistics with one probe pulse (single-

shot experiment, e.g Reference [50]). A drawback of these large-scale light sources, such

as synchrotrons and free-electron lasers, is the limited uses accessibility because of the

cost (∼ $1B [51]) and scale of the facilities (∼ a few km [52]).

More accessible light sources for extreme ultraviolet and soft x-rays are based on

high-harmonic generation. These light source are referred as ‘tabletop’ because they fit

on one optical table and do not require any special infrastructure. Using laser pulses

from a standard laser-amplifier system, high-harmonic generation routinely produces

photons in the extreme ultraviolet region with a useful photon flux (1012 photons per

second). In the time domain, the pulse duration of the high harmonics is very short,

ranging from a few femtoseconds to attoseconds. With the two advantages of short
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wavelength and short pulse duration, high harmonics are suitable for both probing

ultrafast dynamics and for microscopy at short length scales.

In the past, many research groups worldwide applied high harmonics to atomic

and molecular spectroscopy [53, 54, 55], condensed matter research [56, 57], heat trans-

portation studies [58], and microscopy [59, 60, 61]. Although high harmonics are re-

garded as a plausible tool for studying ultrafast magnetization dynamics [62], no one

has successfully demonstrated this application until 2009 by our group [63]. We employ

high harmonics to study magnetization dynamics by combining ultrafast time resolution

with element selectivity into one tabletop experiment. This thesis describes this work

in detail.

1.5 Outline of the Thesis

This thesis consists of two parts. The first part contains reviews of related past

work (Chapter 2–4), and the second part presents our experiments (Chapter 5–9). In

Chapter 2, I review the basic physics of high-harmonic generation using a semiclassical

three-step model. In Chapter 3, I discuss magneto-optical effects in the extreme ultra-

violet range and calculate contrast levels from various magneto-optical effects. One of

these effects, the transverse Kerr effect, is used to probe magnetization for subsequent

experiments reported in this thesis. In Chapter 4, I review past work on laser-induced

ultrafast demagnetization dynamics.

In Chapter 5, I give a detailed explanation of our experimental setup and data-

acquisition technique. In Chapter 6, I present experimental results using the high-

harmonic probe to measure static magnetizations. I show that magnetic contrast up

to 30% originates from the transverse magneto-optical Kerr effect at the M edges of

iron and nickel. The chapter also covers the wavelength tunability and stability of our

high-harmonic generation source. In Chapter 7, I present time-resolved magnetization-

dynamics studies of ferromagnetic alloys, i.e., Permalloy and Permalloy–copper. Sur-
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prisingly, the magnetization of iron decays faster than nickel during the first tens of

femtoseconds, even in the presence of strong exchange coupling between iron and nickel.

A phenomenological model based on this finite exchange time is introduced. In Chapter

8, I compare the demagnetization dynamics of elemental iron and nickel. Our results are

in agreement with the dynamics observed in alloys. In addition, the measured fluence-

dependent magnetization dynamics in nickel are in agreement with past experimental

results measured by optical lasers and theoretical predictions. In Chapter 9, I conclude

the thesis with a discussion of future prospects for magnetic-imaging experiments.



Chapter 2

High-hamonic Generation

2.1 Introduction

Later on in this thesis, I will present experimental results on magnetization dy-

namics studies with short extreme-ultraviolet pulses from high-harmonic generation.

With this method, the photon energies of lasers are multiplied by a factor of 40, from in-

frared to extreme ultraviolet. Recently, by use of an intense mid-infrared laser, our group

demonstrated that high harmonics are now in the soft x-ray region by up-converting the

photon energy by 5000 [64]. No matter how high the orders of harmonics are, the basic

physics to describe high-harmonic generation is still the same. In this chapter, I cover

the mechanism behind high-harmonic generation using a simple approach based on clas-

sical mechanics. The model answers many important questions about properties of high

harmonics, such as why high-harmonic generation can produce an isolate attosecond

pulse and why high-harmonic spectra are discrete combs of photon energies. But before

introducing the model, I will discuss the most important ingredient for high-harmonic

generation: intense laser light pulses.

2.2 Ultrashort Pules and Nonlinear Optics

To be involved with any nonlinear optical phenomena, we need an intense source

of electromagnetic field. Indeed, the first demonstration of a laser in 1960 [65] was

followed immediatly by the discovery of nonlinear optics in 1961 [66, 67]. Later on, laser
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technologies push nonlinear optics even further by providing short light pulses. With

light pulses, higher intensity levels can be temporarily reached as the pulse duration of

the laser pulses are generally very short, in the range of a few tens of femtoseconds. To

visualize the number, our standard laser-amplifier system produces 2.25 mJ of energy

per light pulse, which sounds weak; but since all of the energy concentrates in an

infinitesimal burst of a laser pulse (30 fs), the peak power is enormous. The peak power

is about 75 GW which is in the same range of the power consumption by American

televisions during a Super Bowl game (57 GW). If a lens focuses this laser pulse to

a moderate size (100 µm diameter), the peak intensity is elevated to 9.5 × 1022 W
cm2 ,

corresponding to the peak electric field of 8.5× 1010 V
m . This peak electric field is close

to the electric field inside an atom estimated from E = 1
4πε0

e
a2
0

= 5.1 × 1011 V
m , where

e is the fundamental electronic change, ε0 is the permittivity in vacuum, and a0 is the

Bohr radius.

If this laser electric field shines on any materials, atoms will react to light in dif-

ferent ways. At this extreme condition, the standard approximation for the interaction

between light and matter does not hold any longer. And the response of polarization

(P ) could be written as a Taylor series of function to the electric field (E) [68],

P = ε0(χ(1)E + χ(2)E2 + χ(3)E3 + ...) (2.1)

where χ(i) are the i-th order of susceptibility. When the electric field is weak, only

the first order of the expansion is a good approximation since the higher-order sus-

ceptibilities are typically small, and light is in the regime of linear optics. However,

with the large amount of peak electric field in femtosecond-laser pulses, the higher or-

der terms become significant resulting in nonlinear optical phenomena. For example,

second-harmonic generation originates from the second-order susceptibility tensor, χ(2),

which is in the order of 10−12m
V for solids [69]. The contribution to the polarization,
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which is the product between χ(2) and the peak electric field, E, of our laser pulse, is

significant comparing to the first order susceptibility, χ(1) which is in the order of unity.

And the significant amount of second-harmonic light can be generated.

2.3 High-Harmonic Generation

To reach the extreme ultraviolet region of the electromagnetic spectrum, we need

to generate the 40th order harmonic of the laser. One possibility is to use the 40th-

order susceptibility χ(40) of a solid. Unfortunately, conventional harmonic generation

from solid-state materials is in the regime known as perturbative nonlinear optics where

the conversion efficiency of higher orders of harmonics decrease as the reciprocal of the

harmonic order. As a result, the conversion efficiency to extreme ultraviolet light is

infinitesimal. In addition, the solid-state materials are not very tolerant to the intense

laser light and tend to absorb most of extreme-ultraviolet radiation.

The situation is different in gaseous state. Electrons are strongly bounded to the

atoms but have some finite probability to ionize to the continuum states with a laser

pulse. Then, the laser electric field manipulates the trajectories of electrons which might

again interact with ions. Processes involved this mechanism are no longer in the regime

of perturbative nonlinear optics [70].

High-harmonic generation is a non-perturbative nonlinear optical process [71,

70, 72, 73, 74, 75], first demonstrated in the late 1980s [76, 77, 78]. High orders of

odd-multiple harmonics of the laser are generated up to a cut-off energy. Among the

harmonic orders, the conversion efficiencies are relatively constant which is the signature

of a non-perturbative regime.

The simplest model to understand and describe high-harmonic generation is the

semi-classical three-step model [79]. As the name implies, the model composes of three

basic mechanisms: tunneling ionization, free propagation, and recombination.
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2.3.1 Step 1: Tunneling Ionization

When the laser electric field is comparable to the field inside atoms, the laser

electric field potential (VE = eEx, where x is the distance away from the nucleus) can

significantly distort the Coulomb potential from the nucleus. Consequently, there is

a finite probability that an electron quantum-mechanically can tunnel away from the

parent atoms.

Ammosov, Delone, and Krainov (ADK) described the rate of this tunneling ion-

ization [80]1 by the ADK equation:

W (t) = − 1
N(t)

dN(t)
dt

= ωp|Cn∗|2(
4ωp
ωt

)2n∗−1e
− 4ωp

3ωt , (2.2)

where N(t) is the number of neutral atoms at time t, ωp = Ip
h̄ , Ip is the ionization

potential of gases (24.59 eV for He, 21.56 eV for Ne, and 15.76 eV for Ar), ωt =
√

e|E(t)|
2mIp

,

n∗ = Z
√

IH
Ip

, |Cn∗ |2 = 22n∗

n∗Γ(n∗+1)Γ(n∗) , IH is the ionization potential of hydrogen (13.6

eV), E(t) is the laser electric field, m is the mass of an electron, Z is the order of

ionization, and Γ(x) is Gamma function defied as Γ(x) =
∫∞

0 e−ttx−1dt.

When the ionization is first-order kinetic (neutral atom → ion + e−), the ratio

of the number of ions (N0 − N(t)) to the initial number of atoms (N0) defined as the

ionization fraction (η = 1− N
N0

) can be calculated from

η(t) = 1− exp[−
∫ t

−∞
W (t′)dt′]. (2.3)

With the ADK rate equation (Equation 2.2), the fraction ionization can be cal-

culated (Figure 2.1). During the first half of the laser pulse, the fraction ionization

behaves like a step function where ionizations occur mostly at crests and troughs of the

electric field wave, which happens at every half period of the laser electric field. At the
1 The justification for using this ADK rate equation is derived from the Keldysh parameter [81],

γ =
q

Ip
2Up

, where Ip is the ionization energy of the atom and Up is the pondermotive potential defined

in Equation 2.6. For the tunneling ionization described by the ADK equation, γ needs to be <1,
otherwise the ionization is in the multi-photon regime. Our laser gives γ around 0.4 for neon.
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second half of the laser pulse, the ionization fraction statutes at a some point of time,

when the electric field becomes weaker.

2.3.2 Step 2: Free Propagation

After the electron-tunneling ionization, laser electric field modulates electron tra-

jectory. This simple three-step model describes this behavior by classical mechanics:

mẍ = eE, (2.4)

where x is the distance away from the atom, m is electron mass, e is electron charge

and E is electric field. The electric field is defined with the phase constant (φ) and

amplitude (E0(t)):

E = E0(t) cos(ωt+ φ). (2.5)

This equation of motion has an analytical solution if the field amplitude (E0) is

a constant. After integrating the equation of motion and setting the initial conditions

to zero for both position and velocity [82], we can construct the electron trajectories. A

constant electric field amplitude is a good approximation because the profile variation

of the pulse envelop is slow comparing to the time scale of high-harmonic generation,

i.e., one half of an optical cycle. In contrast to the pulse profile, the phase factor, φ,

is more critical. Physically, the phase constant corresponds to either a constant phase

shift of the laser field or the time for tunneling ionization to happen2 . In this case, I

use a Gaussian-envelop electric field (Figure 2.1) to calculate electron trajectories from

different laser phases, φ. The time zero of the calculation is set to the peak of the laser

pulse.

I calculate only the phases φ from 0 to π since the trajectories just reverse when

the electric field changes sign. For the phase of 0 < φ < π
2 , initially, the electric field

carries the electron away from the ion. Then, when the electric field reverses the sign,
2 This is because the phase can be absorbed into the time parameter by defining φ = ωt0
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the electron trajectory is also reversed and crosses the starting point (x = 0) (solid lines

in Figure 2.2); therefore, the recombination between the ion and electron, the third step

in our simple model, can occur. However, for the phase of π
2 < φ < π, the electron only

drifts away from the ion and never returns.

In addition, the calculation results validate the assumption made in the equation

of motion (Equation 2.4), which assumes that electrons are free from atoms, and the

electron trajectory can be described with classical mechanics. The calculation suggests

that the distance which the electron is carried away by the electric field is in an order of a

few nanometers (Figure 2.2). This distance is significantly greater than the atomic radii

which are in the order of Å. This large distance confirms the free electron approximation.

Moreover, the maximum possible kinetic energy of the electron is about 180 eV which is

much lower than the rest mass of an electron at 0.5 MeV, validating the use of classical

mechanics rather than a relativistic approach.

2.3.3 Step 3: Recombination

From the calculated electronic paths in the previous step, one half of the electrons

reverse the direction of the propagation and cross the origin (x = 0) again. It is possible

for these returning electrons to recombine with the ions. Since these electrons gain some

kinetic energy during the course of travel, the remaining energy after recombining with

the ions is released into high-harmonic photons. I calculate the return kinetic energies

for different laser phases, φ (Figure 2.3). At the phase of 0.09π, the electron gains the

highest possible kinetic energy, and if high-harmonic generation occurs at this phase,

the harmonic will yield that highest photon energy, called the cutoff energy, hνcutoff .

It is conventional to write the cutoff energy in the term of pondermotive energy defined

as mean kinetic energy gained during one laser optical cycle,

Up =
e2|E0|2
4mω2

=
e2I

2mεocnω2
∝ Iλ2, (2.6)
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where E0 is the peak electric field, ω is laser frequency. The maximum possible kinetic

energy gained is 3.17Up (Figure 2.3). The ion is initially in the excited state where the

energy is equal to the ionization potential Ip; therefore, the cut-off energy is equal to

hνcutoff = Ip + 3.17Up. (2.7)

The cutoff rule suggests three degrees of freedom to control the cutoff energy of

high harmonics: the ionization energy Ip, the driving laser wavelength λ, and laser in-

tensity I. First, the cutoff energy can be extended by choosing gas species that have high

ionization potential. For this reason, nobel gases are usually preferred as high-harmonic

media and helium shows the largest cutoff energy among all noble gases. Moreover,

the ADK fractional ionization decreases greatly with higher ionization potential. The

mechanism allows for the phase match of high-harmonic conversion at higher photon

energy. I will discuss this point in the next section. Second, the high-harmonic cutoff in-

creases with a longer wavelength driving laser. This approach allows for high-harmonic

generation at water window and soft x-rays [83, 84]. Third, the cutoff is extended when

electrons gain more kinetic energy by more intense laser pulses. This observation implies

that the cutoff energy is higher by the conversion with a shorter laser-pulse duration.

Up to now, my consideration on high-harmonic generation is based only on one

laser cycle located at the peak of the laser pulse (t = 0 in Figure 2.1), which is the time

zero of the electron trajectories in my calculation. However, this time zero is not the

only possibility. As described by ADK the equation for the tunneling ionization rate,

the ionization can also take place anywhere at the crests and troughs of the electric-field

wave (Figure 2.1). With different time zeros, the same cut-off rule still describes the

highest high-harmonic energy (Equation 2.7) because the pulse envelop is slowly varying

comparing to the laser optical cycle. But since the pondermotive energy depends on

the electric field, the numerical value of high-harmonic cutoff from the peak of the laser

pulse is always the highest.
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From the picture of tunneling ionizations at every half-optical cycles, the three-

step model also predicts the time structure of harmonics. In the time domain, high

harmonics are actually a train of pulses with the spacing between pulses of about one

half of the laser optical cycle, T2 = 1
2f . The high-harmonic pulse duration, which ranges

from attoseconds to a few femtoseconds, is determined by the number of optical cycles

involved in the tunneling ionization. When the number of cycles is lower, the total

harmonic pulse duration is shorter. This idea motivates the driven of high-harmonic

with laser composing of the fewest optical cycles to generate a single attosecond pulse

[85, 86, 87].

In addition, by looking at high-harmonics as a pulse train, the high-harmonic

spectra must be in the form of frequency combs. Since a period of high-harmonic

pulse train is 1
2f , by performing a Fourier transform, the spectra are also a comb of

delta function but with the separation of 2
T = 2f . This spectral spacing agrees with

the experimental high-harmonic spectra that contain only odd multiples of harmonics.

With this idea, to create harmonics at all integer orders, one method is to seed a small

amount of second harmonic light with the fundamental light [88]. The second harmonic

beam breaks the symmetry of the nobel gas media such the tunneling ionizations occur

at every full optical cycle, T = 1
f . As a result, the spacing between harmonics reduces

to one fundamental frequency, f .

2.4 Phase Matching

In the previous Section, the three-step model is only used a simple picture for an

interaction between the laser field and a single atom to predict the cutoff energy of high

harmonics. In practical, high-harmonic generation involves a large number of atoms

(∼ 1023) and some conditions must be met to yield the highest photon flux. Similar to

most of the nonlinear processes, the laser phase velocity (klaser = kω ) must be equal

to the phase velocity of harmonics (kharmonic = kqω). If any phase mismatch exists,



25

∆k = klaser − kharmonic, the two light fields will destructively interfere at some point of

time resulting in the low high-harmonic intensity.

The phase-matching of high-harmonic generation is available in many geometries

[75]. Our group uses a hollow-waveguide geometry that employs glass capillaries filled

with noble gases. The confinement of gas atoms in a capillary allows us to adjust the

gas pressure to reach the phase-matching condition because the phase mismatch, ∆k,

is pressure dependent,

∆k ≈ N(
u2

11λ

4πa2
− P (1− η)

2π
λ

(∆δ + n2) + Pηnareλ), (2.8)

where N the harmonic order, u11 the first zero of Bessel function J0(≈ 2.4), λ is the

laser frequency, a is the diameter of the waveguide, P is the pressure, η is ionization

fraction (Equation 2.3), n2 = ñ2I is the nonlinear index of refraction, ∆δ is the difference

between the refractive indices of the fundamental and high harmonics, na is the number

density of atoms at 1 atm, and re is the classical electron radius.

In the above equation, three sources of the phase mismatch contribute to each

term: the waveguide geometry, dispersion in a neutral gas, and dispersion in a plasma,

respectively [89, 90]. The phase-matching conversion achieves when the control of pres-

sure balances contributions since the waveguide geometry (first term) and the plasma

term (third term) contribute oppositely to the neutral term (second term). However,

the possibility for the phase-mismatch compensation breaks down at high ionization

fraction, η. By setting the second and the third terms of the phase mismatch condition

to zero, the critical ionization fraction, ηc, which is the maximum possible value of η for

any phase matching, is

ηc =
1

1 + nareλ2

2π∆δ

. (2.9)

The critical ionization fraction are ≈ 4% for Ar, ≈ 1% for Ne, and ≈ 0.5% for He [84, 90]

from 780 laser nm. These numbers suggests that the bright high-harmonic generation

happens only at the early part of the laser pulse where the ionization fraction is still
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lower than the critical value (Figure 2.1). As a result, experimentally observed harmonic

cutoff energies are always lower than the estimation by use of the peak intensities.

2.5 Conclusions

Semiclassical three-step model is a powerful and intuitive approach to understand

high-harmonic generation. The model predicts the cutoff energy of high harmonics by a

classical mechanic approach. In time domain, high-harmonics are a series of pulses with

the period of one half optical cycle between them, which explains why high-harmonic

spectra are combs of odd-interger harmonics. Besides the three-temperature model, the

phase matching condition must be fulfilled to yield the brightest high-harmonic flux.



Chapter 3

Magneto-optics in the Extreme Ultraviolet

3.1 Introduction

In the previous chapter, we explore the fundamental physics behind high-harmonic

generation to produce short pulses in the range of extreme ultraviolet. This section cov-

ers another important subject of how can high harmonics or any light in the extreme-

ultraviolet region can probe magnetism.

Table 3.1: Example of Magneto-optical Effects

Magneto-optical
Effects

Geometry a Detection Schemeb References

Transverse MOKEc R I [91, 12, 92, 93]
Polar and Longitu-
dinal
MOKE

R P [94]

Magnetic Circular
Dichroism

T I [95, 96, 97, 98, 99]

Linear Dichroism
Dichroism

T I [100, 101]

Faraday Effect T P [102, 103, 104, 105, 106]

a R = Reflection, T= Transmission
b I = Intensity measurement , P= Polarization analysis
c Magneto-optical Kerr Effect

A typical approach to probe magnetization is to employ the interaction between

light and the magnetization via magneto-optical phenomena [107, 108, 109]). By mea-

suring the properties of light induced from magnetic interactions, the state of magneti-
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Figure 3.1: Magneto-optical effects as the probes of magnetizations

zation can be inferred. Although there are many types of magneto-optical effects (Table

3.1), the fundamental physics behind all of them are directly related to the symmetry

reduction by magnetization. Mathematically, the symmetry of materials consider from

a permittivity tensor (ε̂), defined as D = ε̂E. For isotropic materials, the permittivity

tensor is a constant (ε), which relates to the reflective index (n0 =
√
ε). But for mag-

netized magnetic materials, the constant generalizes to a matrix (ε̂) that contains an

off-diagonal element (ε′):

ε̂ =


ε ε′ 0

−ε′ ε 0

0 0 ε

 . (3.1)

In this case, I simplify the form of matrix ε̂ by assuming that all off-diagonal elements

are identical and the magnetization has no x or y components.

The off-diagonal element, ε′, or the magneto-optical constant, is directly related

to magnetization because the matrix transform in the same way1 . Moreover, the
1 This permittivity tensor represents the magnetization in z direction; therefore, the tensor should

transform in the same way as a vector in z direction. For example, if we perform a 180 degree rotation

along x axis by a rotation matrix T̂ =
“

1 0 0
0 −1 0
0 0 1

”
, the rotation transformation, ¯̂ε = T̂T ε̂T̂ , will result in

the same matrix, but with the opposite sign of ε′ ( ε′ turns to −ε′.). The transformation is equivalent
to the reversal of magnetization.
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opposite sign in the off-diagonal element is the direct consequence of Onsager’s relation,

εij(M) = −εji(M) = εji(−M) [110]. One of the most important properties of ε′ is that

its size is usually small compare to the diagonal element,

|ε′| � |ε|. (3.2)

The condition is valid in in extreme ultraviolet and soft x-ray range where ε′ is in the

order of 10−3 [12] and the refractive index, n0 =
√
ε, is close to unity [111] (Figure 3.2).

The condition allows for the simplification of many equations by Taylor expansions up

to the highest order in ε′. Relying on this approximation of the permittivity tensor, I

will discuss the four magneto-optical effects: transverse magneto-optical effect, magnetic

linear dichroism, magnetic circular dichroism and Faraday effect.

3.2 The propagation of light through media

The first step of the analysis is to describe the propagation of light through

magnetic materials. At the end, we will have an equation to determine the refractive

index as a function of the magnetic constant (ε′).

The propagation of light in extreme ultraviolet or soft x-ray range can be ex-

plained by a plane wave [111],

E = E0e
i(k·r−ωt). (3.3)

Although the equation is in a simple form, a special attention is needed here

because it contains the refractive index, n which is highly dispersive and material specific

in extreme ultraviolet or soft x-ray range. It is convenient to write the reflective index

in the term of

n = 1− δ + iβ. (3.4)

The motivation of writing n in the above form is understandable by combining



30

48 50 52 54 56 58 60 62
Photon Energy (eV)

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Real 

0.2

0.4

0.6

0.8

1

Imaginary 

re
fra

ct
iv

e 
in

de
x

Real 

Imaginary 

Fe
 M

2,
3

Fe
 M

2,
3

M
aa

gn
et

ic
 C

on
st

an
t 

Figure 3.2: The refractive index (n0 top) and the magnetic constant, which is the off-
diagonal element of the permittivity tensor, (ε′ bottom) of Fe around M-shell absorption
edges (red dashed line). Data from [12, 13]
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Equation 3.3 and 3.4,

E = E0e
i(k0(1−δ+iβ)k̂·r−ωt) (3.5)

= E0e
i(k0·r−ωt)e−i(k0δk̂·r)e−(k0βk̂·r) (3.6)

where k0 = ω
c = |k|

n = k
n is the wavevector in vacuum. The parameter δ controls the

phase shift due to the presence of media, while the parameter β describes the absorption

in media. Experimentally, the reflective indexes in extreme ultraviolet or soft x-ray range

deviate by only small amount from unity, i.e. β, δ are small numbers (Figure 3.2).

The more fundamental physics behind the material phase shift and the absorption

are described through scattering processes. The parameters δ, β are related to the real

and imaginary part of the atomic scattering factor (f0 = f0
1 − if0

2 ):

δ =
nareλ

2

2π
f0

1 (3.7)

β =
nareλ

2

2π
f0

2 , (3.8)

where the zero superscript implies that the scatterings is at the small angle (forward

scattering approximation), na is the average density of atoms, and re = e2

4πε0mc2
, the

average radius of electron2 . The calculation of the scattering amplitude is very com-

plicated for multi-electron atoms and typically the data come from experiments. The

tabulated data of the scattering factors can be found in x-ray databases [13] (Figure

3.3).

The previous consideration on refractive index does not account for magnetic

contribution. To calculate the refractive index inside magnetic materials, we start with

2 This expression can be derived simply by equating the “electrostatic energy” of an electron, e2

4πε0re
,

with its rest mass mc2.
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the Maxwell’s equations:3

∇×H =
1
c

(ε̂ · Ė) (3.9)

∇×E = −1
c
Ḣ, (3.10)

and by combining the two, we get

c2(∇2E−∇(∇ ·E)) = ε̂ · Ë. (3.11)

With the plane wave solution (Equation 3.3), the final equation is

−k(k ·E) + k2E = k2
0 ε̂ ·E. (3.12)

The equation allows for the calculation of refractive index n which is implicit inside

the wavevector, k = ωn
c . The magnetic contribution comes from the permittivity tensor

(Equation 1). To find the refractive index, we have to solve a vector equation (Equation

3.12). The solutions depend on the direction of light propagation and magnetization;

therefore, the analysis must be separated into special cases for each of the magneto-

optical effect.
3 H represents magnetic field, which has the unit of Oersted (Oe) in CGS and Ampere per meter

(A/m) in SI. B, on the other hand, is not the magnetic field but a magnetic flux density which has a
unit of Gauss (G) in CGS Tesla (T) in SI.
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Figure 3.4: The geometry of transverse-magneto optical Kerr effect (T-MOKE). Mag-
netization aligns in the sample plane and transversly to the plane of incidence. Here,
the magnetization is in the z direction. The incident polarization is in p-polarization.

3.3 Transverse Magneto-optical Kerr Effect (T-MOKE)

3.3.1 Calculating Magnetization Dependent Refractive Index

Transverse magneto-optical Kerr effect (T-MOKE) describes the coupling of mag-

netization to the light field into the reflectivity of p-polarized light [112] when the mag-

netization is aligned transverse to the plane of incidence (Figure 3.4). I first discuss this

geometry because it is important for all experiments covered in this thesis. T-MOKE

is chosen for the experiments because it is suitable for extreme ultraviolet high har-

monics. The probing of magnetization via T-MOKE does not require any polarization

analysis technique or circular-polarization conversion (Table 3.1), which are challenging

techniques in extreme-ultraviolet region [113, 114, 115, 116].

To understand the dependence of magnetization on reflectivity, I set up the co-

ordinate system such that the magnetization aligns in the z direction, and the incident

and transmitted light is in the xy plane,

kI = (k0 cos θ, k0 sin θ, 0) (3.13)

kT = (k cos θT , k sin θT , 0). (3.14)

I assume that light approaches from a vacuum (|kI | = |kR| = k0) into a magnetic
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material (|kT | = k = nk0). The refractive angle (θT ) relates to the incident angle (θ)

by Snell’s law, sin θ = n sin θT .

Then, I substitute the wave vector into Equation 3.12 with E = [ExT , EyT , EzT ],

k2
0


ε− n2 sin θ2

T ε′ + n2 sin θT cos θT 0

−ε′ + n2 sin θT cos θT ε− n2 cos θ2
T 0

0 0 ε− n2

 ·


ExT

EyT

EzT

 = 0. (3.15)

The next step is to solve these equations. This system of equations always has a

trivial solution of [ExT , EyT , EzT ] = 0. The determinant of the matrix must be zero for

the nontrivial solution:

(n2 − ε)((n2 − ε)ε− (ε′)2) = 0, (3.16)

which has the solutions,

n2
s = ε (3.17)

n2
p = ε+

ε′2

ε
. (3.18)

Interestingly, these two possible refractive indexes are independent from the ge-

ometrical angles. The method of finding the refractive indexes becomes an eigenvalue

problem. For each of the value of n2
s,p, which are ‘eigenvalues’, we can solve for their

‘eigenvectors’ by substituting the values of n2
s,p back to Equation 3.15. The results are

es =


0

0

1

 (3.19)

ep =


1

ε′ sin θT−ε cos θT
ε′ cos θT+ε sin θT

0

 , (3.20)

for n2
s = ε and n2

p = ε+ ε′2

ε , respectively.
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The above results indicate that there are two possible reflective indexes for the

system; one is magnetic (through ε′) and the other is only optical. The choice of reflective

indexes is dependent on the direction of polarization. If any unpolarized light enters the

media, the beam will split into two parts weighted by the amount of projection on the

eigenvectors shown above. This phenomenon also happens in non-magnetic, anisotropic

materials, in which case it is known as birefringence.

The first eigenvalue, es, reveals that the light with polarization along the z axis,

i.e. s-polarized light, does not interact with magnetization. One the other hand, the

magnetic effect contributes to the second eigenvector, ep, which is elliptical polarized

light (ε′ and ε are in general complex numbers). This polarization is almost p-polarized

because a Taylor series expansion of the expression for ep up to first order in ε′ yields

ep =


− sin θT − ε′

ε sec θT

cos θT

0

 . (3.21)

Because ε′ is usually a small complex number, the eigenvector ep is mostly linearly

p-polarized.

From the above analysis, the origin for the T-MOKE can be traced to the de-

pendence of refractive indexes on the magnetization. Indirectly, the reflectivity must

also involve magnetization. The next step of our analysis is to find the reflectivity by

applying the boundary conditions to the E and H fields to solve for reflectivity. And to

simplify the mathematics, we will consider only special cases for s- and p-polarization

as they are linearly independent eigenvectors of the system.
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3.3.2 Reflectivity of p-polarized Light

In the case of p-polarized probe light, the relevant electric-field vectors are

EI = EI0(− sin θ, cos θ, 0) (3.22)

ER = ER0(− sin θ,− cos θ, 0) (3.23)

ET = ET0(− sin θT −
ε′ sec θT

ε
, cos θT , 0). (3.24)

where, in the transmitted field (Equation 3.24), I employ the derived eigenvectors (Equa-

tion 3.21). In the same manner, the wavevectors (k) are

kI = k0(cos θ, sin θ, 0) (3.25)

kR = k0(− cos θ,− sin θ, 0) (3.26)

kT = k0

√
ε+

ε′2

ε
(cos θT , sin θT , 0). (3.27)

Similarly, magnetic field vectors are calculated from the relation H = k×E
k0

:

HI = (0, 0, EI0) (3.28)

HR = (0, 0, ER0) (3.29)

HT =

√
ε+

ε′2

ε
)(0, 0, ET0(1 + tan θT

ε′

ε
). (3.30)

Then, the electromagnetic boundary conditions require the continuity of electro-

magnetic field at the interface,

EIy + ERy = ETy (3.31)

HIz + HRz = HTz. (3.32)

With all of the provided information, the transmission coefficient, i.e. the ratio

of the transmitted electric field amplitude to the incident electric field, is

ET0

EI0
=

2 cos θ

cos θT + cos θ(1 + tan θT ε
′

ε )
√
ε+ ε′2

ε

, (3.33)
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and the reflection coefficient is

ER0

EI0
=

cos θT − cos θ(1 + tan θT ε
′

ε )
√
ε+ ε′2

ε

cos θT + cos θ(1 + tan θT ε
′

ε )
√
ε+ ε′2

ε

. (3.34)

Both coefficients are simplified by expanding up to the first order in ε′,

ET0

EI0
=

2 cos θ√
ε cos θ + cos θT

− 2 cos θ2 tan θT ε′√
ε(cos θT +

√
ε cos θ)2

(3.35)

ER0

EI0
=
√
ε cos θ − cos θT√
ε cos θ + cos θT

+
2 sin θT cos θε′√

ε(cos θT +
√
ε cos θ)2

. (3.36)

Finally, by writing ε in the term of the reflective index n0, and the angle of

incidence θ in the term of refracted angle θT by the Snell’s law4 ,

sin θ = n0 sin θT , (3.37)

the transmission and reflection coefficients become

ET0

EI0
=

2 cos θ

n0 cos θ +
√

1− sin θ2

n2
0

+
2 cos θ2 sin θε′

n2
0

√
1− sin θ2

n2
0

(n0 cos θ +
√

1− sin θ2

n2
0

)2

= T0 + TM ε
′ (3.38)

ER0

EI0
=

n0 cos θ −
√

1− sin θ2

n2
0

n0 cos θ +
√

1− sin θ2

n2
0

+
sin 2θε′

n2
0(n0 cos θ +

√
1− sin θ2

n2
0

)2

= R0 +RM ε
′, (3.39)

where T0 = 2 cos θ

n0 cos θ+

r
1− sin θ2

n2
0

, R0 =
n0 cos θ−

r
1− sin θ2

n2
0

n0 cos θ+

r
1− sin θ2

n2
0

, TM = 2 cos θ2 sin θε′

n2
0

r
1− sin θ2

n2
0

(n0 cos θ+

r
1− sin θ2

n2
0

)2
,

and RM = sin 2θε′

n2
0(n0 cos θ+

r
1− sin θ2

n2
0

)2
.

The first terms in both equations are exactly the Fresnel’s coefficients (T0, R0)

[117] for p-polarized light. They are optical contributions to the reflected and trans-

mitted light, while the magnetic contributions are in the second terms. Because of the

relative size between ε′ and ε, the optical terms usually dominate the reflection and

transmission over magnetic term. The magnetic term is only significant near absorption

edges where ε′ becomes important (Figure 3.2).
4 The p-polarized refractive index is second order in magnetic contribution (Equation 3.18); therefore

only the first order term is kept here.
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Before moving on to the next section, I would like to mention an important ter-

minology. The optical reflectivity (R0 defined in Equation 3.39) is zero at the particular

angle called Brewster angel (θB). By setting the reflectivity term (R0) to zero, the

Brewster angle can be found at,

sin2 θB =
n2

0

1 + n2
0

, (3.40)

or equivalently

tan θB = n. (3.41)

For extreme ultraviolet and soft x-rays, n is close to unity; therefore, the Brewster

angle is approximately 45◦.

3.3.3 Asymmetry parameter

The reflection coefficient (Equation 3.39) is not a measurable parameter because

we can only measure the intensities but not the electric field. By measuring the intensity,

we measure the modulus square of the field (|ER0|2), which also contains a quadratic

term on the ε′ as well as the linear term. To extract only the magnetic information,

a typical method is to switch the sign of magnetization, which reverses the sign of ε′.

Then, the two intensities are subtracted to remove the optical contribution (|R0|2). It

is also convenient to normalize the result by the sum of the data in order to get rid of

the intensity fluctuations (|EI0|2). We call this the asymmetry parameter,5 A,
5 Without mentioning the magneto-optical contrast mechanism, I use the term asymmetry A for

T-MOKE geometry only. Later on in this chapter, similar parameters from magnetic linear dichroism
asymmetry AMLD and magnetic circular dichroism asymmetry AMCD are also introduced.
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A =
|ER0(ε′)|2 − |ER0(−ε′)|2
|ER0(ε′)|2 + |ER0(−ε′)|2

≈ 2
<[R∗0RM ε

′]
|R0|2

(3.42)

= 2<[
R∗0RM ε

′

R0R∗0
] (3.43)

= 2<[
sin(2θ)ε′

(n4
0 cos2 θ − n2

0 + sin2 θ)
], (3.44)

In the second line, I assume that in the denominator the optical reflectivity |R0|2

is significantly larger than the magnetic part |RM ε′|2. The approximation is typically

very good specially when the photon energy is not at the resonance, and when the angle

of incident is far away from 45◦. The maximum error is less than 10% (Figure 3.5).

The final expression of the asymmetry is linear in ε′. By measuring the asym-

metry, we directly probe magnetization, if the prefactor in Equation 3.44 remains a

constant during the measurement. This condition usually satisfies for the static asym-

metry measurement at a constant wavelength. The asymmetry maximizes when the

denominator is zero at the angle of incident of

sin2 θB =
n2

0

1 + n2
0

, (3.45)

or equivalently

tan θB = n. (3.46)

This special angle is exactly the Brewster angle as discussed earlier.

By applying the asymmetry equation (Equation 3.44), I calculate T-MOKE asym-

metry of Fe as a function of photon energy and the angle of incidence (Figure 3.6, 3.7).

The calculated asymmetry of Fe indicates that the maximum asymmetry above 50%

peaks around the absorption M-edges of Fe with the angle of incidence around 45◦.

This result suggests that the experimental incident angle should be close to the Brew-

ster angle to maximize the magnetic signal, although the reflectivity is very low but still

in a reasonable order of 10−5.
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Figure 3.8: Magnetic linear dichroism geometry. The refractive index of linear polarized
light transmitted through the in-plane magnetized sample with thickness d is depen-
dent on the relative orientation between the magnetization vector and the polarization

where np =
√
ε+ ε′2

ε and ns =
√
ε, for perpendicular and parallel polarization, respec-

tively. The difference in refractive index results in the polarization-dependent contrast
of absorption.

3.4 Magnetic Linear Dichroism

Another magneto-optical effect directly related to T-MOKE is magnetic linear

dichroism (MLD). The effect describes the quadratically dependent of the absorption

on the in-plane magnetization, and only the component of polarization that is normal

to magnetization has the magnetic contribution.

We start the analysis by setting up the geometry in the same way as T-MOKE

with at normal incidence (θ = 0) to simplify the math (Figure 3.8). At normal incidence,

the two reflective indexes of magnetic materials are still ns =
√
ε and np =

√
ε+ ε′2

ε ≈
√
ε + ε′2

2ε
3
2

(Equation 3.18). The former applies when the polarization is parallel to

magnetization, while the latter is for the perpendicular case which is quadratically

dependent on magnetic constant ε′.

Magnetic linear dichroism is the effect based on transmission geometry. There-

fore, we have to consider an equation that describes intensity attenuation after light

transmitting through a material. Since the imaginary part of the refractive index is re-
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sponsible for the absorption (Equation 3.6), the transmitted intensity6 after the sample

thickness d for light at wavelength λ is

I

I0
=
|E|2
|E0|2

= e−2k0=[n]d ≈ 1− 4
π

λ
=[n]d. (3.47)

Magnetic linear dichroism originates from the contrast in this transmitted inten-

sity of light when light polarization is parallel and perpendicular to the magnetization,

or

I

I0⊥
− I

I0 ‖
= e−2k0=[np]d − e−2k0=[ns]d (3.48)

≈ 2πd
λ
=[
ε′2

ε
3
2

]. (3.49)

In the second line, I expand the expression up to the highest order in ε′. This expression

suggests that magnetic linear dichroism is quadratic to magnetization. Therefore, only

the rotation of magnetization by 90◦ causes the contrast but not the magnetization

reversal, as in T-MOKE.

To get a good comparison of the magnetic contrast level between T-MOKE and

magnetic linear dichroism, I define ‘MLD asymmetry’, AMLD:

AMLD =
I
I0⊥ −

I
I0 ‖

I
I0⊥ + I

I0 ‖

. (3.50)

I calculate magnetic linear dichroism asymmetry for 50 nm thick Fe film for the

photon energy range around Fe M-edges (Figure 3.9). The contrast is very small (10−2%)

comparing to T-MOKE which is understandable from the quadratically dependent of

the magnetic constant (ε′2). The low contrast level and strong absorption at M-edges

make magnetic linear dichroism very challenging for any experiments. Applications are

more practical at L-edges with soft x-rays [100, 101] because of the magnetic contrast

level and the transmission are an order of magnitude larger than those of M-edges.
6 At normal incidence, the transmittance, T , are interchangeable with the absorbtion, Abs, since the

reflectivity is negligible at that angle (Equation 3.38, 3.39) and T = 1−Abs
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Figure 3.9: Magnetic linear dichroism asymmetry of 50 nm thick Fe film for the photon
energy around M-shell absorption edges at normal incidence (dark blue). The contrast
is very small (0.03%). The light transmissions of both parallel and perpendicular polar-
ization (red and red dotted lines) range from 1 to 10%, but the different between them
are too small to see in this graph scale.
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3.5 Magnetic Circular Dichroism (MCD)

In the previous two sections, we discuss two magneto-optical effects, T-MOKE and

magnetic linear dichroism. In both cases, we consider the situation where magnetization

aligns in the plane of the interface. In the following two sessions, I will describe magnetic

circular dichroism and Faraday effect that assume out-of-plane magnetization.

Magnetic circular dichroism describes the differential absorption of the magne-

tized magnetic materials based on the helicity of the circular polarized light (left or

right). The effect is linearly dependent on the magnetization; therefore, the switch-

ing of magnetization direction can as well cause the magnetic contrast by keeping the

polarization state.

3.5.1 Macroscopic View

To derive the equation for magnetic circular dichroism contrast, I employ the

same lines of reasoning as T-MOKE. I define to coordinate such that the out-of-plane

magnetization is along the z direction, and light is at the normal incidence (Figure 3.10).

Therefore, the wave vector (kT ) is

kT = (0, 0, k). (3.51)

With the substitution of this wave vector into Maxwell’s equation (Equation 3.12),

the refractive index for magnetic circular dichroism can be found from the determinant

of the matrix equation. The two refractive indexes are

n1 =
√
ε+ ε′ (3.52)

n2 =
√
ε− ε′, (3.53)

where eigenvectors for this geometry are circular polarization bases,
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Figure 3.10: The geometry of magnetic circular dichroism. The magnetization is ori-
ented out-of-plane, while the incident angle is set to the normal incidence. The magne-
tization is set to point along the z direction. The differential absorption arises between
the left- and right-circular polarized light because of the dependent of refractive index
on the polarization helicity: n1 =

√
ε+ ε′, n2 =

√
ε− ε′.

e1 =
1√
2


1

−i

0

 (3.54)

e2 =
1√
2


1

i

0

 . (3.55)

The results indicates that the refractive indexes depend on the helicity of the

incident circular-polarized beam. By repeating the same steps as in magnetic linear

dichroism, the contrast from the differential absorption of left- and right-handed circular

polarized light is

I

I0LCP
− I

I0RCP
= e−2k0=[n1]d − e−2k0=[n2]d (3.56)

≈ 4
πd

λ
=[

ε′√
ε
],

where d is the sample thickness, λ is the wavelength of circular polarized light. This

expression indicates that magnetic circular dichroism is linear in magnetization and the

contrast reverses the sign when the magnetization is at the opposite direction.
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Similarly to the case of T-MOKE and magnetic linear dichroism, I define magnetic

circular dichroism asymmetry AMCD as

AMCD =
I
I0LCP

− I
I0RCP

I
I0LCP

+ I
I0RCP

. (3.57)

Magnetic circular dichroism gives a significant contrast level of 8% for 50 nm Fe

film, which is two orders of magnitude larger than magnetic linear dichroism, considered

in the previous section. The significant contrast is due to the linearly dependence on

the magnetic constant ε′ (Equation 3.57). By increasing the thickness of the magnetic

material, the contrast level is also improved. However, as a drawback, the transmission

through sample is also exponentially reduced by material thickness (Figure 3.12).

3.5.2 Microscopic View

Magnetic circular dichroism can be described by an alternative approach that

is related to the microscopic picture of band structures. For ferromagnetic elements,

energy band can be splitted into two for spin up and down, known as the Stoner’s

picture. The 3d valence bands are slightly shifted with respect to each other by the

exchange coupling. This exchange splitting is one of the fundamental mechanism for

ferromagnetism. If the Fermi level, the highest energy level for electrons to occupied,

is located in the spin-split valence band, the total number spins up and down become

unequal resulting in some levels of spin polarization. This different in the number of

spin up and down in the valence band is directly related to the magnetic moment.

When a material absorbs a circular polarized photon exactly at the M-edge, an

electron from the core 3p levels is also excited to the valence 3d band. Since this

excitation is spin selective as constrained by the selection rules, only one spin state can

be excited depending on the helicity of the circular polarization. By this spin selective

excitation and the exchange splitting of the valence band, the excitation probabilities,
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Figure 3.11: Magnetic circular dichroism asymmetry of 50-nm-thick Fe film as a function
of photon energy around M-edges at normal incidence (dark blue). The maximum
contrast near M-shell absorption edge is about 6%. This contrast level is two orders of
magnitude greater to that of magnetic linear dichroism (Figure 3.9). The transmission
of polarization left- (red lines) and right- (red dotted lines) circular-polarized light are
in the range of 1–10%.
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Figure 3.12: Magnetic circular dichroism asymmetry of Fe as a function of the material
thickness and photon energy around M-edges at normal incidence. The asymmetry
increases with the thickness, but the transmission also exponentially reduces. Fe M2,3

are labelled with a vertical dashed line. The transmission of light at the photon energies
giving the highest asymmetries is shown on the left axis.
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Figure 3.13: (a) A simplified ferromagnetic band structure is composed of the spin-
up (left) and spin-down bands (right). Electrons fill these levels (pink area) up to the
Fermi level (dotted line). In this case, more electrons are in the spin-down states because
the spin-down band is lower in energy by an exchange energy (Eex). If the material
absorbs a circular polarized photon at the M3 edges, a 3p 1

2
core electron (green spheres)

is excited to the unoccupied levels in 3d bands (white area). The transition is spin
conservative; therefore, an electron can only be excited to the same spin state. In this
simplifed picture, the spin-up down electron cannot be excited to the valence because
empty states are not available. The contrast in electronic excitation probabilities of left-
and right-circular polarized photons results in the contrast in light absorption, which is
the origin of magnetic circular dichroism. (b) I simplify the band structure to semicircles
and place the Fermi level such that the spin-down band is fully occupied. The real band
structure of Fe is more complicated [14].
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which are directly related to the absorption, are different for left- and right-circular

polarization. This mechanism causes the magnetic circular dichroism.

3.6 Faraday Effect

Another magneto-optical effect that is closely related to magnetic circular dichro-

ism is Faraday effect. Faraday effect involves with the rotation of the plane of linearly

polarized light induced by magnetization. The angle of rotation is linear in the magneti-

zation. The physics behind the Faraday effect is identical to magnetic circular dichroism

discussed in the previous section. Since linearly polarized light can be decomposed into

the sum of left- and right-circular polarized light, each of the components will experi-

ence a different refractive index as it propagates through a magnetic material. As a

result, the two circular polarization bases have a different phase retardation, and the

final transmitted light ends up having a rotated polarization.

To understand the above mechanism mathematically, I use the same coordinate

system as in the previous section (Figure 3.10). The incident light polarization is at the

angle φ with respect to the x axis,

EI = EI0


cosφ

sinφ

0

 . (3.58)

This linearly polarization is then written as a liner combination of left and right-

circular polarization bases (Equation 3.54, 3.55),

EI = EI0(
eiφ√

2
e1 +

e−iφ√
2

e2). (3.59)

After transmitting through the material, the two bases contain difference phase

factors, and the final wave equation becomes

ET = EI0(
ei(φ+k0

√
ε+ε′d)

√
2

e1 +
e−i(φ−k0

√
ε−ε′d)

√
2

e2). (3.60)
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The equation can be written in a more symmetric form as

ET = EI0e
ik0n̂d


cos δ2

sin δ
2

0

 , (3.61)

where n̂ =
√
ε+ε′+

√
ε−ε′

2 and δ = 2φ+ k0(
√
ε+ ε′ −

√
ε− ε′)d.

This result indicates that the polarization angle rotates from φ to φ+k0

√
ε+ε′−

√
ε−ε′)d

2 .

However, the polarization rotation is not the only effect on the incident light because

the term
√
ε+ ε′ −

√
ε− ε′ ≈ ε′√

ε
is in general a complex number. Magnetization also

induces some degree of ellipticity into the linearly polarized light. The two polarization

effects can be decomposed into two parts by the equation ∆φ = ϕF + i tan εF ,

ϕF =
πd

λ
<[

ε′√
ε
] (3.62)

tan εF =
πd

λ
=[

ε′√
ε
]. (3.63)

by taking the limit of ε� ε′ [106, 107].

I calculate the Faraday rotation constant, defined as the rotated angle per thick-

ness of sample (k = ∆φ
d ), which is approximately 6,000 degrees per millimeter (Figure

3.14). This number agrees with the measurement at M-edges with a synchrotron[106].

3.7 Conclusions

In this sections, I derive the contrast conditions for four magnetic-optical effects:

transverse magnetic-optical Kerr effect, magnetic linear dichroism, magnetic circular

dichriosm and Faraday effect. All of the derivations start with the same permitivity

tensor (Equation 3.1) and the empirical magnetic constant ε′ of iron [12]. Among

these effects, T-MOKE gives the highest contrast up to 55% asymmetry with the probe

photon energy near M-edges and at the angle of incidence of 45◦. When the material

thicknesses is set such that the transmission matches with T-MOKE reflectivity at
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Figure 3.14: Faraday rotation angle (blue) and ellipticity (red) as a function of photon
energy around M-edges of Fe (50 nm thick at normal incidence). The Faraday rota-
tion constant defined as the rotated polarization angle per material thickness (blue) is
displayed on the right axis.
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Brewster angle, magnetic circular dichroism allows for less contrast at 16% between

the absorption of left- and right-circular polarized light (3.12). Finally, magnetic linear

dichroism gives the least asymmetry at 0.09% between the absorption of light with

parallel and perpendicular polarization to magnetization7 .

These calculations suggest that T-MOKE is an ideal geometry for high-harmonic

experiments at extreme ultraviolet region since T-MOKE (1) gives the highest magnetic

contrast level, (2) requires only a linearly polarized light source, and (3) does not need

any polarization analysis techniques. Later on in this thesis, T-MOKE is used to probe

the demagnetization dynamics, which is the subject of the next chapter.

7 Faraday effect is excluded from this comparison since the contrast is not related to the intensity
change.



Chapter 4

Laser-induced Ultrafast Demagnetization Dynamics

4.1 Introduction

In the previous two chapters, I discussed high-harmonic generation and magneto-

optical effects for the probing of magnetic materials. By combining the two techniques,

our research group studies laser-induced demagnetization dynamics, which is one of the

most exciting fields in modern magnetism. The reports of many experimental studies

indicate that the magnetization, as inferred from magneto-optical contrast, is reduced

within a few hundreds of femtoseconds after a laser excitation. This surprisingly fast

demagnetization opens up many questions such as: What are the fundamental physics

behind the abrupt change of magnetization? What contributes to the demagnetization

speeds? Is a few hundreds femtoseconds already the fastest possible time dynamics?

What are the roles of microscopic quasi-particle entities (electrons, photons, phonons,

spins, and magnons)? And, what are the dynamics in the case of nanoscale magnetic

structures? Finding the answers to these questions may eventually result in our ability

to control the dynamics of nanomagnets at the femtosecond time scale.

Historically, the first report of ultrafast demagnetization was in 1996 [9]. Beau-

repaire et al. demonstrated that the Kerr-effect contrast of nickel is quickly reduced

within 1-2 ps after the excitation a laser pulse. This result brought a great excitement

to the research community since the demagnetization time is faster than the timescale

of the spin-lattice relaxation approximately at 100 ps [118], which was thought to be
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the fastest limit of any magnetization dynamics. Not too long after its first discovery,

the ultrafast demagnetization dynamics were repeated by many experimental groups

[119, 120, 121, 122, 123, 124].

Today, the field of ultrafast magnetization dynamics has been expanded greatly.

The dynamics were studied in many magnetic materials such as multilayers [125],

exchange-biased layers [126, 127], half metals [128], semiconductors [129], ferrimagnets

[130], and Heusler materials [131]. Bigot et. al. proposed the occurrence of coherent

magnetization dynamics, in which the phase of spins and the laser field are strongly cor-

related during the laser pulse [10]. The advancement of short-pulse x-ray technologies

allows for the probing the demagnetization dynamics with soft x-ray pulses. Many ex-

citing results were reported from this new technique [41, 132, 16, 130]. Finally, the field

of ultrafast magnetization dynamics had spawned many new areas of research such as

all-optical switching of magnetization [39], laser-induced ferromagnetic resonance [40],

and terahertz emission during the demagnetization [42].

4.2 Electron-Lattice-Spin Dynamics

From a theoretical point of view, we can understand the ultrafast magnetization

dynamics by separating magnetic systems into three subsystems of the electrons, spins

and lattice. The three systems have different roles at different time scales during the

course of dynamics. Electrons react directly with a laser pulse. The occupied electrons

below Fermi level are optically excited to the unoccupied levels with the energy equal to

the laser photon energy (∼ 1.5 eV). After the initial exception, the temperature becomes

well-defined only after electrons equilibrate by the electron-electron scattering process

into a thermal energy distribution among electrons. The electron temperature can be

inferred from the shape of the electronic distribution, which is of the Fermi-Dirac type.

Although the electrons are at thermodynamic equilibrium with respect to each

other, comparing to spins and lattices, they are not. To cool down, electrons interact
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Figure 4.1: (a) The three-temperature model presumes that magnetic materials can
be broken up into three separate thermal reservoirs: electrons, spins, and lattice. All
reservoirs interact with one another with the indicated time scales. (b) Electronic
density of states after pumping by a laser pulse: (I) non-equilibrium distribution right
after an optical excitation, (II) thermalized ‘hot’ electron distribution, and (III) the
distribution after scattering processes with lattice or spins to cool down the electron
temperature. Figure from [15].
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with the lattice through electron-phonon scattering that occurs on a time scale called

the electron-lattice relaxation time (τel), which is on the order of picoseconds.

The electron kinetic degree of freedom also interacts with the spin degree of freedom.

However, the microscopic model leading to this process is still unclear. Although it

is generally understood that the spin-orbit coupling is ultimately responsible for such

processes. Since magnetization is the macroscopic manifestation of spins, the demagne-

tization time is a good estimate for the electron-spin relaxation time (τes) of a few

hundred femtoseconds. Spins can also couple to the lattice system, but the spin-lattice

relaxation time (τsl) is on the order of hundreds of picoseconds. Thus, the spin-lattice

mechanism is too slow to account for the demagnetization dynamics. At the longer time

scale of more than a nanosecond, the temperature of all systems reduces by transferring

the excessive heat to other sources such as air or substrate to cool down all sub-systems

to the initial states.

4.2.1 Three-temperature Model

The most simple mathematical model to describe the above picture is the three-

temperature model [9]. The model considers the thermodynamics of the three sub-

systems and assigns temperatures to each system, i.e. electron temperature (Te), spin

temperature (Ts) and lattice temperature (Tl), with the assumption that all tempera-

tures are a well-defined at all times. This assumption breaks down specially at the initial

part of the dynamics when the concept of electron temperature has not yet existed. In

addition, the kinetic electronic and spin degrees of freedom are the so tightly coupled

and correlated. It is hard to understand how each can be regarded as having different

temperatures.

Three-temperature model is an extension of the two-temperature model, a stan-

dard method used to analyze ultrafast laser excitations in non-magnetic materials

[133]. The two-temperature model accounts for the temperature dynamics of electrons
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(Te(r, t)) and lattice (Tl(r, t)) with the interaction term between electrons and lattice

system, Gel(Tl − Te):

Ce(Te)
∂Te
∂t

= Gel(Tl − Te) + P (r, t)

Cl(Tl)
∂Tl
∂t

= Gel(Te − Tl)− κ∇2Tl(r, t), (4.1)

where Ce(l) is the heat capacity of electrons (lattice), P (r, t) is the laser heating term,

and κ∇2Tl describes diffusion of heat via lattice. The extension to the three-temperature

model incorporates spin temperature Ts and the additional coupling constants Ges, Gsl:

Ce(Te)
∂Te
∂t

= Gel(Tl − Te) +Ges(Ts − Te) + P (r, t)

Cl(Tl)
∂Tl
∂t

= Gel(Te − Tl) +Gsl(Ts − Tl)− κ∇2Tl(r, t)

Cl(Tl)
∂Ts
∂t

= Ges(Te − Ts) +Gsl(Tl − Ts). (4.2)

The numerical solution to this system of equations predicts many characteristics

of demagnetization dynamics such as the linearity between pump fluence and demag-

netization amplitude at the low fluence limit. The detailed numerical calculation will

be presented in Chapter 8 of this thesis. With some approximations, three-temperature

model can be solved analytically1 . The analytical solution to three-temperature model

[17, 134] is

∆M
M

= −A2τE −A1τM
τE − τM

e
− t
τM − τE

A1 −A2

τE − τM
e
− t
τE −A3e

− t
τR , (4.4)

where τM is the observed demagnetization time, τE is the magnetization recovery time

and τR is the slow recovery time of magnetization to the original state. The analytical

solution to the three-temperature model provides a general shape of demagnetization
1 (1) At low fluence, heat capacity of spins is negligible. (2) Heat capacity of electrons and lattices

are constant. (3) Spin dynamics follow the rate equation:

dTs
dt

=
Te − Ts
τM,e

+
Tl − Ts
τM,l

, (4.3)

where the observed demagnetization time contains the contribution from electrons and lattices: 1
τM

=
1

τM,e
+ 1

τM,l
. (4) Magnetization is linear in spin temperature.
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Figure 4.2: Three-temperature model. (a) The electronic system is first excited by a
laser pulse, P (t). The ‘hot’ electrons then cool down by transferring energy to lattice
and spin system with coupling constant Gel and Ges. Spin and lattice can couple
together with the coupling constant Gsl. Finally, the temperatures of all three sub-
systems reduce to ambient temperature through heat transportations κ∇2Tl. (b) The
numerical solution of three-temperature model in nickel with the pump fluence of 2.5
mJ/cm2.
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dynamics and explains why exponential equations can describe phenomenologically the

experimental demagnetization data.

4.2.2 Microscopic Models

The basic physics by three-temperature model does not consider any microscopic

pictures of electron, spin and lattice dynamics. A complete theory to describe laser

induced demagnetization must include the scattering processes between all involved

fundamental entitles. Such information is still missing from our current understanding

of the ultrafast demagnetization dynamics.

To my knowledge, one of the most controversial mechanisms to describe the laser-

induced demagnetization dynamics is based on electron-phonon scattering accompanied

by a spin flip. The mechanism is related to the Elliot-Yafet mechanism process [135, 136]

that describes the enhancement of the spin-flip probability by an electron-scattering

process. Because of the spin-orbit coupling, the two electronic spin states (|↑〉, |↓〉)

are no longer good quantum numbers, and the states are the linear combination of

both spins. An electron-electron scattering due to phonons or impurities can cause

the flipping of the spins. Koopmans et al. choose the absorption and emission of a

phonon to conserve the local angular momentum [137, 138, 21]. The model provides the

relaxation channel for spins such that the magnetization time can be quenched within

the timescale of electron-lattice relaxation (∼ ps) [137]. If such a fast relaxation channel

does not exist, spins can only relax through the spin-lattice relaxation channel which is

slow (∼ ns).

By having such a microscopic picture, many dynamical behaviors after the exci-

tation by a laser pulse has been predicted.
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4.2.2.1 Damping-Constant-Dependence of the Demagnetization Time

Koopmans et al. [137] solved for the demagnetization time as a function of two

measurable parameters, Gilbert damping constant (α), and Curie temperature (Tc)

[137]:

τM = F (
T

Tc
)
1
4

h̄

kBTC

1
α
, (4.5)

where the pre-factor (F ( TTc )) is the temperature dependent function and equals to unity

at the low fluence limit.

The formula above predicts the demagnetization time of 425 fs for Permalloy2

which is in the right order of our observed value (τM = 197 fs). Several experimen-

tal groups attempted to verify this trend of demagnetization time by studying a series

of Permalloy samples with different types of rare-earth doping to modify the damping

constants (Ho, Dy, Tb and Gb [139], Pd and Dy [140]). Unfortunately, this simple

equation of demagnetization time (Equation 4.5) failed to predict the variation of de-

magnetization time with the damping constant and Curie temperature. In Reference

[140], the authors concluded that the band structures from rare-earth metals are too

localized. The rare earths only contribute in slow dynamics involving damping con-

stants but not in fast dynamics involving demagnetization. These results suggested

that damping constant cannot be related to the demagnetization time in a straightfor-

ward manner as in Equation 4.5 for rare-earth–doped Permalloy. Further studies on

transition-metal–doped alloys should be considered.

4.2.2.2 Two Types of Demagnetization Dynamics

Koopmans et al. combined the three-temperature model with the Elliot-Yafet

mechanism [21] to construct a more complete model for demagnetization dynamics.

They predicted that the demagnetization dynamics can be described into two catagories:
2 α = 0.005, Tc = 853
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type I and II dynamics. In type I dynamics, the demagnetization (electron-spin relax-

ation channel) happens faster (τM ≈ 0.1ps) than the electron-lattice relaxation time

(τel ≈ ps). Transition ferromagnetic metals (Fe, Co, and Ni) have this behavior at the

room temperature. In contrast, type II occurs when the spin-flip scattering has a poor

efficiency. As a result, the demagnetization time (τM > ps) is slower than the electron-

lattice relaxation time. Since electrons and spins are not yet under equilibrium before

the complete demagnetization, magnetization can still reduce even further at longer

time delay, which results in two-step demagnetization dynamics. The type II dynamics

are predicted in rare-earth metal (Gd) and transition metals (Fe, Co, and Ni) near the

Curie temperature. The model explains the long demagnetization time for Gd [118].

The figure-of-merit to separate between the two types of dynamics is given by the

ratio Tc
µat

, where Tc is Curie temperature and µat is local magnetic moments per atom,

which controls the spin-flip scattering efficiency.

4.2.2.3 Angular Momentum Consideration

The motivation of the Elliot-Yafet mechanism is due to the conservation of an-

gular momentum. Since magnetization also contains angular momentum, the angular

momentum must go somewhere after the demagnetization. And the total angular mo-

mentum from all reservoirs (magnetization, lattice, phonons),

Ltot = L + S + Llattice + Lphoton, (4.6)

must be conserved all the time including during the ultrafast time scale. The first

two terms contribute from magnetic moment, which is the microscopic parameter to

magnetization. The magnetic moment is composed of orbital and spin moments, µ =

µB(L + 2S).

The microscopic picture described by the Elliot-Yafet mechanism conserves the

angular momentum by assigning the lattice system as the final angular momentum
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“sink”. This observation is supported by two experiments. (1) Time-resolved XMCD

measurement suggested that both L and S are not the angular-momentum sinks because

both parameters are quenched during the demagnetization dynamics [16]. (2) The

photon angular momentum is not involved in the dynamics [17] (Figure 4.3). From this

evidence, the only remaining angular momentum “bath” is the lattice, which is assumed

in the Elliot-Yafet mechanism. This angular-momentum transfer to the lattice can be

thought of as an ultrafast version of Einstein-de Haas experiment [141], which is the

observation of a mechanical rotation of bulk solids after switching the magnetization.

Other than considering the Elliot-Yafet scattering process, some alternative the-

ories are available. For example, electron-electron scattering mechanism alone can re-

produce the demagnetization dynamics [142]. In this model, only Coulomb scattering

and spin-orbit coupling are considered. The driving force for the demagnetization is the

scattering between majority and minority bands. This model is in line with the past

theoretical result suggesting that only requirements for demagnetization dynamics are

the laser field and spin-orbit coupling [143]. Experimental data of Co, Ni [142], and

Heusler alloy [131] were reproduced by this mechanism.

More available microscopic models are spin-flip scattering mediated by magnons

[144] and sp-d model to describe the demagnetization in semiconductors [145].

4.2.3 Thermal Mechanism: the Landau-Lifshitz-Bloch equation

Instead of considering microscopic scattering processes as the basic physics of de-

magnetization dynamics, the explanation of ultrafast magnetization dynamics can take

another route by a phenomenological ‘equation of motion’ to solve for the magnetiza-

tion as a function of time. The equation is directly related to Landau-Lifshitz-Gilbert

equation, which is a standard equation to describe magnetization precession dynamics,
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-M×(M×Heff)
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Figure 4.4: All possible torques that cause the magnetization dynamics governed by
Landau-Lifshitz-Bloch equation. The precession term (green) drives magnetization
(black) to precess around the effective magnetic field, Heff (red). The damping term
(blue) reduces the radius of precession and aligns the magnetization toward the field.
The longitudinal relaxation term (orange) causes the demagnetization.

M(t):
dM
dt

= −γM×Heff −
γα

M2
M× (M×Heff ), (4.7)

where γ is the gyromagnetic constant and Heff is the effective magnetic field con-

tributed by applied, anisotropy, and dipolar magnetic fields. The first term describes

the magnetization precession around the effective field, Heff . The second term accounts

for the damping of the magnetization toward the field by introducing a phenomenolog-

ical damping parameter α. If the second term did not exist, the magnetization would

precess forever, and we could not reverse magnetization by any external magnetic field.

Since demagnetization dynamics are too fast for the precession dynamics (≈ 1
GHz = ns),

the Landau-Lifshitz-Gilbert equation above cannot account for the demagnetization in

femtosecond time scales.

A modification to Landau-Lifshitz-Gilbert equation has been made to generalize

the equation at elevated temperatures. At higher temperature, a fluctuation of the local

fields on each atom becomes important [146]. Such a microscopic fluctuation leads to

the Landau-Lifshitz-Bloch equation [147]:
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dM
dt

= −γM×Heff + γα‖
(M ·Heff )M

M2
− γα⊥
M2

M× (M×Heff ). (4.8)

The extra term, ((M ·Heff )M), describes relaxation along the direction of mag-

netization, which reduces the size of magnetization vector in the case of ultrafast demag-

netization (Figure 4.4). The damping parameters, α‖, α⊥, and the field, Heff , become

temperature dependent, which is the only input parameter for Landau-Lifshitz-Bloch

equation. The authors of Reference [148, 149] reconstructed the demagnetization dy-

namics by using the electronic temperature as an input to the model. They concluded

that demagnetization dynamics is driven by hot electrons. Another consequence from

Landau-Lifshitz-Bloch dynamics, known as the critical slow-down, is the reduction of

the magnetic relaxation times, i.e. α‖, when the temperature approaches the Curie

temperature [150].

4.3 Conclusions

The understanding of ultrafast demagnetization dynamics induced by a laser pulse

is challenging from both theoretical and experimental aspects. Theoretically, the com-

plete explanation of the dynamics requires an understanding of the fundamental inter-

actions between photons, electrons, spins and lattice at femtosecond time scales. Such

a complete theory is not available today. Experimentally, the dynamics involves the

fast probing of magnetization modulation. Short pulses are, therefore, required for

pump-probe studies. Traditionally, demagnetization dynamics studies make use of laser

pulses, which do not provide any element selectivity, and all of the available theoretical

explanations considered do not consider this element-selective information either. In

the rest of this thesis, I will present studies of ultrafast demagnetization dynamics with

extreme-ultraviolet light pulses from high-harmonic generation that enable element-

selective determination of demagnetization times.



Chapter 5

Laser-Pump–High-harmonic-Probe Experimental Setup

5.1 Introduction

In this chapter, I will provide an overview of the experimental setup for studying

ultrafast demagnetization dynamics covered in the subsequent chapters. Important

components of the experimental apparatus are the pump-probe beam paths (Section

5.2), samples and spectrometers (Section 5.3), magnets (Section 5.4), and the vacuum

system (Section 5.5). The chapter concludes with the acquisition technique used to

increase the signal-to-noise ratio of the data (Section 5.6).

5.2 High-Harmonic-Probe–and–Laser-Pump Geometry

The setup starts with a standard laser amplifier system to produce short pulses for

high-harmonic generation and induce the demagnetization dynamics. The laser makes

use of a chirped-pulse amplification technique [151] to amplify the average output power

of 5 W at 2kHz repetition rate, equivalent to 2.5 mJ per pulse. The spectral bandwidth

is 80-nm full width at half maximum with the center wavelength at 790 nm (Figure 5.1).

The pulse duration is 25 fs measured by the frequency-resolved optical gating (FROG)

technique [152].

The laser beam is sent to a beamsplitter to divide the beam into probe and

pump arms. The probe arm requires more laser power (90%) because it involves high-

harmonic generation, while we use the rest of the power (10%) to induce demagnetization
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Figure 5.1: Output spectra from the Ti:sapphire oscillator and the chirped-pulse am-
plifier.

dynamics.

5.2.1 The Probe Arm: High-harmonic Generation

For high-harmonic generation, we couple the probe laser beam to a fused quartz

150-µm-diameter capillary (Wilmad-Labglass LN002 Q-0.150M-0-0-1Meter) with a 50-

cm plano-convex lens that focuses the beam to the optimal size near 64.35 % of the

capillary diameter [153]. We mount the lens on a translation stage to adjust the focal

spot for the best coupling efficiency. We makes use of a v-groove fixture, described

in detail in [154], to hold the capillary (Figure 5.3). The v-groove connects to the

experimental chamber by custom-made tee adaptors.1 We adjust the front and the

back ends of the v-groove by use of two-dimensional translation stages. The optimal

coupling to the capillary happens when the output beam is in an Airy pattern. To

monitor the mode of the beam, we use a silver mirror to reflect the beam vertically

through a viewport. We flow neon or argon, which are our high-harmonic generation
1 A 1/2-inch stainless steel tee (316L-8TB7-3) welded to (1) a stainless steel tubing (to connect to

the experiment, SS-8-UT-A-12BT), (2) a bored-through adapter to the 1/4 inch Ultra-torr fitting (to
hold the v-groove, SS-4-UT-A-8BT) and (3) a bored-through adapter to the 1/2 inch Ultra-torr fitting
(to connect to the vacuum pump)
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media, into the capillary (controlled by MKS 640A13TW1VA2V) with the optimized

pressure around 450 torr for Ne and 70 torr of Ar. For gas inlets in the original design,

two holes with the separation of 5 cm are drilled through the outer diameter of the

capillary. However, the high-harmonic flux is improved by introducing another hole

next to one of the existing holes (Figure 5.2). This extra hole serves as the gas inlet,

while we evacuate gas through the other two holes.

The residual laser beam also collinearly propagates along with the harmonics,

and we need to get rid of the laser beam because high-harmonic intensity is always

significantly weaker. We use a 200-nm-thick aluminum filter (Lebow) to block most of

the laser light and transmit 70% of the extreme ultraviolet harmonics. The Al filters

are protected in a filter wheel described in Reference [154]. A filter replacement during

the pumping or venting of the vacuum chamber are very convenient with filter wheels.

Then, we send harmonics to a gold-coated toroidal mirror, which is our focusing

optics. The toroidal mirror (ARW optical 50mm x 25 mm substrate R1= 3220 mm

R2= 90.5 mm) focuses the beam onto the detector with a slight vertical astigmatism to

improve the spectral resolution. As such, the high-harmonic beam at the sample is not

at the focus. Nevertheless, the beam creates a spot size of 1 mm at the sample.

We use a CCD (charge coupled device) camera to detect high harmonics (Andor

Newton DO920P-BN). The camera is a sensitive instrument to detect light in the range

of extreme ultraviolet or soft x-rays (Figure 5.4). The CCD chip is cooled down to -60◦c

to reduce the thermal noise. The camera continuously acquires high-harmonic spectra

in a kinetic-series mode, where sequences of exposures are made without transferring

the spectra to a computer. The distance from the sample to CCD camera is set to 30

cm. Before the camera, two additional Al filters block the residual pump light when

performing time-resolved experiments because every Al filter always contains many small

pinholes that let the laser light transmit. And we need two filters to weaken the residual

pump light through a filter.
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Figure 5.3: A photo of a v-groove fixture filled with orange plasma of Ne. The laser
beam travels from the left.

We use a half-wave plate to control the polarization angle of the laser, which is the

same polarization as high harmonics. In Chapter 3, I explained why we need p-polarized

light to reflect from the sample to probe the magnetization. However, since s-polarized

light always reflects more efficiently than p-polarization, we design the beam path such

that the polarization of the incoming high harmonics is s-polarized (perpendicular to

the optic table) with respect to the toroidal mirror to improve the reflectivity. After-

ward, the sample is oriented perpendicular to the laser polarization to be in p-polarized

geometry, hence the beam must reflect upward from the optics table after the sample

(Figure 5.2, 5.5).

We put an iris diaphragm just behind the half-wave plate to control the intensity

of the incoming beam. The energies of high-harmonic spectra are tunable by controlling

the iris size (Chapter 6). To yield the best data statistics, we adjust high-harmonic

spectra such that one harmonic peaks at the asymmetry maxima.

5.2.2 The Pump Arm

The remaining laser power (10%) is used for pumping the sample to induce de-

magnetization dynamics. We first offset the optical path length of the pump and probe

pulses by a motorized linear stage (Aerotech ANT130-160-L). The stage moves with
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Figure 5.4: Charge-coupled device (CCD) cameras as sensitive detectors for extreme
ultraviolet or soft x-rays. The plot shows quantum efficiency of the sensor defined as
the efficiency of photons to be converted to the the electronic signal. The blue bar
highlights the wavelength range high harmonics employed in this thesis. Reproduced
from [19]).

(a) p-polarization
     used for
     • magnetic probe
        

Rsample =10-4RToriod = 0.62

To CCD Camera (b) s-polarization
     used for
     • HHG flux optimization
     • photoacoutsic probe

Rsample =10-2RToriod = 0.52

Figure 5.5: Two states of polarization: (a) p-polarization has low sample reflectivity
but can probe magnetization. (b) s-polarization has higher reflectivity; therefore, we
use this polarization for flux calibration or probing small variation in sample reflectivity
such as photoacoustic wave. The drawing geometry is based on the experimental set up
(Figure 5.2). We set up the sample reflection upward such that, for p-polarized light,
the toridal mirror has 20% higher in reflectivity
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1-nm resolution with 250-nm accuracy. The pump beam enters the experimental cham-

ber using a lens (1m focus) glued on the vacuum chamber. The lens and the toroidal

mirror together act to reduce the pump beam size on the sample. We recombine the

paths of the pump and probe pulses into near collinear propagation with a mirror that

has a hole drilled through its center. The pump reflects from the front surface of the

mirror, while the probe passes through the hole. The size of the pump beam on the

sample is 2.5 mm in diameter. The difference in angle between pump and probe arms

at the sample is less than 1◦. The spatial and temporal overlap between pump and

probe pulses is determined indirectly via the cross correlation; the second-harmonic

light is generated when pump and probe pulses overlap at the BBO crystal co-located

at the sample position. The accuracy of this method is within ±10 fs. We attenuate

the amount of pumping intensity by a continuous neutral density filter wheel. The back

reflection beam from the filter is useful for tracking the position of the pump beam to

ensure the spatial overlap between pump and probe.

5.3 Samples as Spectrometers

After the high-harmonic beam reflects from a magnetic sample, the spectra of

high harmonics must be analyzed with a spectrometer because the magnetic response

is strongly dispersive. However, to incorporate an additional spectrometer requires the

inclusion of a few more optics such as gratings and toroidal mirrors [155]. However, at

the present capability of our light source, the high-harmonic flux after reflecting from

the sample is rather limited because of the strong absorption (10−4, Chapter 3) near

the Brewster angle, and the inclusion of any more lossy optical components is highly

unfavorable. We solve this problem by turing the sample into a spectrometers [156].

We use magnetic grating samples to diffract high harmonics and disperse the harmonic

energies (Figure 5.6). These samples are made by Justin Shaw and Tom Silva from

NIST by use of photolithography techniques. We optimize the present experimental
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Figure 5.6: Optical and scanning electron micrographs of Permalloy-grating samples
showing 1 µm line and space (2 µ m period). Scanning-electron-microscope image is
taken by Justin Shaw from NIST.

setup for a grating with 2µm period.

5.4 Magnets

Other important pieces of our experiment apparatus are the magnets, which pro-

duce external magnetic fields to saturate the magnetization. I make use of two magnet

geometries in this thesis work. Both types of magnets are driven by a bipolar power

supply (Kepco BOP 20-10ML4886).

5.4.1 Helmholtz coil

A Helmholtz pair is composed of two sets of coils with the same direction of

winding. The coil radius must be equal to the separation between the coil forms (Figure

5.7a) . At this special condition, magnetic field at the center of the coil is equal to

B = (
4
5

)
3
2
µ0NI

R
, (5.1)

where µ0 is permeability of free space (1.2566×10−6Tm/A), R is coil radius, I is electrical

current and N is the number of wire turns. For our case, N is 33 turns, and radius R is

3 cm while the current I can be varied from -10 to 10 A. The measured magnetic field

follows perfectly the prediction from Equation 5.1 (Figure 5.8).
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Figure 5.7: Two Magnet Geometries used in this thesis: (a) Helmholtz coil (b) soft-
iron-yoke magnet. The dimension parameters described in the text are defined in both
figures. The yoke-magnet model is drawn by Carson Teale and Patrik Grychtol.
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Figure 5.8: Magnetic field generated by our Helmholtz coil with 33 wire turns and 3-cm
radius. The blue line is the prediction from Equation 5.1.
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The Helmholtz coil geometry has two advantages. Firstly, the coil produces a

highly uniform magnetic field. The magnetic field generated is uniform almost every-

where between the coils. Secondly, since the Helmholtz coil utilizes an air core, the total

magnetic inductance comes only from the copper wire, which is typically low at our op-

eration frequency at 0.5-1 Hz (1.4 mH 2 ). One of the disadvantages of the Helmholtz

coil is the small amount of generated magnetic field (H =100 Oe for our case); hence,

we are limited to soft magnetic-material samples such as Permalloy. Moreover, the ex-

perimental setup is complicated by the requirement for cooling water that must be fed

into the vacuum chamber to reduce the heat from the coils.

5.4.2 Soft-iron Yoke Magnet

When magnetic samples require larger amount of magnetic field to switch, we use

a soft-iron yoke magnet. The magnet is composed of a loop of magnetized soft-iron as

a core. The magnetic field is only confined inside the iron core, unless there is a small

gap to make the field accessible to the outside. Typically, modeling of yoke magnets is

very complicated. But if the magnet is simplified to be a perfect magnetic circuit with

no flux leakage besides the gap, the output magnetic field inside the gap (Hgap) is

Hgap =
NI

lgap + lcore
Agap
Acore

1
µcore

, (5.2)

where N is the number of wire turns, I is the current, lgap is the width of the gap, lcore

is the total length of the yoke, Agap is the surface area of the gap, Acore is the surface

area of the yoke, and µcore is the permeability of the core (Figure 5.7b).

The equation suggests that the magnetic field increases with the number of turns

of wire or the amount of current. From the textbook value [20], µcore for iron at satura-

tion is about 5000. The number implies that neither the reduction of magnetic-circuit

2 I estimate the inductance in µH from the formula 2R2N2

9R+10L
[157], where R is the coil radius in inch,

N is the number of turns and L is the length of the coil in inches along the direction of the coil axis.
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pathlength lcore nor the focusing of magnetic poles toward the gap Agap
Acore

are critically

important. In our coil (N = 300 lgap = 1cm, Agap ≈ Acore, µcore =5000, I = 10A),

the maximum magnetic should be 3800 Oe, but our field measured is only 500 Oe. The

performance of our yoke magnet does not follow very well with the theoretical predic-

tion as in the case of Helmholtz coil. This discrepancy indicates that the assumptions

to derive Equation 5.2 are not adequately met. Although the field is smaller than the

prediction, this magnetic field is large enough to switch varieties of samples such as Fe

and Ni films.

To adapt this magnet into our experiment, we designed this iron-yoke magnet

to have samples located between the gap (Figure 5.9). We inserted part of the yoke

into the vacuum chamber through Ultratorr feedthroughs but keep the coil outside the

chamber. The design simplifies the experiment by not incorporating the water cooling

line into the vacuum system.

5.5 Vacuum System

We use three vacuums pumps in our experimental apparatus. At the high-

harmonic capillary, a dry scroll pump (Varian TS300) evacuates the gas for high-

harmonic generation. Second, another dry scroll pump (Varian TS300) connects to

a differential-pumping-section piece with a 45◦ surface and a hole in the middle to im-

prove the pumping efficiency. Finally, a turbo molecular pump (Pfieffer HiPace 80),

backing up by a smaller dry scroll pump (Varian SH110), pumps down the rest of the

system. The base pressure of the system is 10−6 torr and, because of the compact size of

the experiment, the system can be pumped down quickly to 10−5 torr within 5 minutes.

To vent the system, we make use of an automatic venting value (Pfeiffer TVF 005) to

increase the venting speed and protect the turbo pump. The complete venting is done

in 10 minutes. We use two types of experimental chambers depending on the types of

magnets. The Helmholtz coil fits into a spherical CF chamber (Kimball Physics 6 inch
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IR Pump

EUV Probe
Magnetic Field

Water Line

Coil

Ultra-Torr Feedthrough 
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Figure 5.9: Photo of a sample holder and an electromagnet incorporated into a compact
experimental chamber (top view). The magnetic samples are located between the gap
of the electromagnet where pump and probe beam overlap (red and purple arrows).
The electromagnet is composed of soft-iron yoke (green dashed line) magnetized by
a coil. Magnetic filed is applied transversely to the sample plane of incidence in T-
MOKE geometry (green arrow). Part of the yoke is inserted through Ultra-torr vacuum
feedthroughs. The beam height is four inch from the optics table, and the holes on the
optical table are one inch apart.
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Spherical Octagon Chamber MCF600-SphOct-F2A8), and the soft-iron-yoke magnet is

inserted into a custom-made KF40 cube.

5.6 Data Acquisition

Because of intensity fluctuations from high-harmonic source (Figure 6.14), syn-

chronization between magnets and the CCD camera must be incprporated into the

experiment. This requirement follows from our experimental technique to measure two

high-harmonic spectra with two opposite directions of magnetization to calculate T-

MOKE asymmetry. Recall that the reflected intensity of p-polarized light with the

presence of magnetization is proportional to

|ER0|2 = |EI0|2(|R0|2 + 2<[R∗0RM ε
′] + |RM ε′|2), (5.3)

where |EI0|2 is related to the incident intensity, |R0|2 is the optical contribution, and

|RM ε′|2 is the magnetic contribution. By reversing the sign of magnetization, the mag-

netic constant has the opposite sign (ε′ → −ε′). From this condition, we can calculate

the asymmetry according to the Equation 3.44. We always assume that the incident

intensity of light must be equal such that the factor |EI0|2, which appear in both numer-

ator and denominator of asymmetry equation, cancels out. The two reflected spectra

must be measured sequentially and faster than the time scale of the intensity fluctua-

tions. We accomplish this condition by switching magnetization as quickly as possible

at every camera exposure.

The current direction of the electromagnet is controlled using a simple circuit

driven by the “fire” output of the andor CCD3 (Figure 5.10a). The signal is high

(+3 V) when the camera is taking exposures and 0 V during the readout. Then, we

use a simple electronic circuit (Appendix 3) or a commercial delay generator (Stanford

Research DG535) to divide the frequency of the fire signal by a factor of two (Figure
3 This output can be located at the back of the camera enclosure for newly design cameras, or from

an output box (Andor IO160 for old style cameras with PCI cards.
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5.10b). Next, we offset this output voltage down by a half amplitude with a DC power

supply. This electrical signal is then used to drive the magnet power supply by inserting

the signal into the programing input. With a minor gain adjustment using a simple

circuit (Appendix 3) (Figure 5.10c), the final wave form is in the correct phase, and the

sign of the current wave switches at every CCD camera exposure (Figure 5.10d).

We apply the same idea of synchronization to hysteresis measurements. In this

case, we do not apply a magnetic field to saturate magnetization in both directions

(H > Hs and H < −Hs). However, we only sweep the field between the saturation

(H > Hs) and an intermediate state (−Hs < H < Hs). The new asymmetry parameter

(Ahys) can be defined as

Ahys(H) =
|ER0(H > Hs)|2 − |ER0(H)|2
|ER0(H > Hs)|2 + |ER0(H)|2 (5.4)

=
(2<[R∗0RM ε

′(H > Hs)]− 2<[R∗0RM ε
′(H)])

2|R0|2 + 2<[R∗0RM ε′(H > Hs)] + 2<[R∗0RM ε′(H)]
(5.5)

≈ <[R∗0RM (ε′(H > Hs)− ε′(H))]
|R0|2

(5.6)

Again the idea behind this asymmetry definition is to eliminate the optical re-

flectivity |R0|2 and the incidence intensity |EI0|2. This hysteresis asymmetry (Equation

5.6) is good for hysteresis loop measurements because the parameter is proportional

to the magnetization through ε′(H) with only a constant offset of ε′(H > Hs). The

approximation in the third line assumes that the expression can be written in the first

order in magnetic constants, ε′(H) and ε′(H > Hs). This approximation breaks down

when the angle of incidence is near 45◦, or the photon energy is near the absorption

edges (Figure 5.11), and in our experiment, we made use of a more grazing incident

angle at 72◦.

Experimentally, hysteresis loops are measured by synchronizing the CCD camera

with magnetic fields oscillating between the saturated field Hs and the measured field

H. The field H can be swept across the whole range by adjusting the offset voltage

(Figure 5.10c).
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Figure 5.10: The synchronization between the CCD camera and the magnetic power
supply. Start from (a), the fire output from CCD camera in the kinetic-series mode
gives a high signal during the exposure and a low signal during the readout. Then,
(b), an electronic circuit modifies the signal waveform. (c) A DC-power supply offsets
the voltage down. Finally, (d), the waveform becomes an input into a current-power
supply. After a series of exposures, the exposures with the same sign of magnetic field
are averaged together for the calculation of asymmetry.
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Equation 5.6. The plot shows where the second order term, |RM ε′s|2 is significant
when compared to the first order term, 2<[R∗0RM ε

′
s]. This hysteresis asymmetry is not

proportional to magnetization when the angle of incidence is close to 45◦, or the photon
energy is near M edges.



Chapter 6

Probing Magnetization by Use of Extreme Ultraviolet High-harmonics

6.1 Introduction

This chapter covers experimental results showing that extreme ultraviolet high

harmonics are capable of probing static magnetization. Acquiring these static results is

an important step toward the time-resolved studies presented in the next chapter. In the

next section, I present the measured high-harmonic spectra and the method to calibrate

photon energy from the CCD images. Then, by switching the magnetization, I discuss

the observed magnetic asymmetry in reflected spectra via the transverse magneto-opitcal

Kerr effect (T-MOKE), which is directly related to magnetization. At the end of this

chapter, I present important information about the tunability and stability of our high-

harmonic generation light source.

6.2 High-harmonic Spectra

In our experimental geometry (Section 5.3), we diffract high harmonics from

magnetic grating samples to spectrally resolve the photon energy of the harmonics. We

use a CCD camera to capture images of high-harmonic diffraction patterns. The photon

energies of harmonics are dispersed along the CCD chip, and then need to relate the pixel

information back to the photon energy. Employing the geometry of our spectrometer

and sample parameters, I calibrate the image pixel number to photon energy using the

following procedure:
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6.2.1 Diffraction Formula

Starting with the diffraction formula for gratings:

d(sin(β)± sin(α)) = ±mλ (6.1)

where d is grating period, m is diffraction order, λ is wavelength, and the α is incident

angle, and θ is diffracted angle (Figure 6.1), I convert the diffracted angles (θ) to the

number of image pixels (n), CCD pixel size (D) and the sample-to-CCD distance (z)

(inset of Figure 6.1). The wavelength (λ) can be written in the form of high-harmonic

photon energies, which are odd multiples of the fundamental photon energy (Eo) ,

E = hc
λ = NEo, where h is the Plank’s constant, c is the speed of light, and N is an

odd integer. Then, the diffraction formula (Equation 6.1) is transformed to

n = (arcsin(
mhc

EoNd
− sin(α)) + α)

z

D
, (6.2)

which describes the pixel location n for the the Nth-order harmonic in the case of m-th

order diffraction.

6.2.2 Fit to Data to the Diffraction Formula

The above equation has two unknown variables: the fundamental photon energy

(Eo) and harmonic orders (N). To find these two parameters, I perform a curve fitting

to the experimental data with the diffraction formula (Equation 6.2) with N as the in-

dependent parameter (x) and n as the dependent parameter (y). The free parameter for

the fit is the fundamental energy (E0). Initially, I locate the highest order of harmonics

N that coincides with the L-edges of Al filters (72 eV or Nmax ≈ 45) used to block the

laser light after the high-harmonic waveguide, which limits the highest photon energy.

This corresponds to a starting guess as the the position to energy conversion might be

slightly different. Only the correct order of harmonics gives a good fitting result (Figure

6.2).
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Figure 6.1: The diffraction geometry from a grating (Equation 6.1), where d is the
grating period, α is the incident angle, D is the pixel size, n is the number of image
pixels , and z is the sample-to-CCD distance.
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Figure 6.2: Determination of the correct high-harmonic orders. The diffracted distance
(n, in pixel) measured from the CCD image is plotted as function of the inverse high-
harmonic order (N scaled with e

hc) from three series of high-harmonic orders. The series
N = 23, 25, 27, ...43 (blue) is the correct high-harmonic order since it gives the best
fitting.
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For our experimental geometry, we can simplify the fit equation greatly by setting

the angle of incidence (α) to 45◦. In this special case, the factor hc
EoNd

in the Equation

6.2 becomes a small number (∼ 0.01 for 60 eV) compared to sinα = sin 45◦ ≈ 0.7;

therefore, the fitting function (Equation 6.2) is approximately

n ≈
√

2
mhcz

EoNdD
. (6.3)

The result shows that n is linearly dependent on 1
N (Figure 6.2). In addition,

Equation 6.3 implies that the fit can only yield the ratio z
Eo

, so that either the funda-

mental photon energy (Eo) or the sample-to-CCD distance (z) must be predetermined

from a measurement. Usually, the distance z is more convenient to measure.

6.2.3 Results

I calibrate a high-harmonic spectum diffracted from a Permalloy grating with a

period of 2 µm (Figure 6.2). The sample-to-CCD distance (z) is 29 cm, and the angle

of incident is set to 45◦. The fit gives Eo = 1.61 ± 0.002 eV. This result corresponds

to 770 ± 1 nm wavelength. The fundamental photon energy is slightly blue-shifted in

the same way as reported in Reference [155]. The blueshift originates from a non-linear

optical process in the capillary discussed in Section 6.4.

From this information, I map diffraction-pattern pixels to photon energy (Figure

6.3). The result is verified by determining the photon energies of the higher-order

diffraction patterns (m > 1). For example, the second order diffraction photon energy

must be one-half of the first-order diffraction1 .

I repeat the same fitting method for calibrating the high-harmonic spectrum from

argon (Figure 6.4). The intensity of high harmonics generated by argon is generally one

to two orders-of-magnitude larger than that of neon because of the lower ionization
1 This comes from the factor mλ in Equation 6.1. The second order diffractions overlap with the

first order diffractions where λm=1 = 2λm=2.
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Figure 6.3: High-harmonic spectrum from neon reflected from a Permalloy grating with
p-polarized light and the exposure time of 0.5 s. The second-order diffraction pattern is
visible in in the spectrum, and the locations of them are exactly one half of the photon
energies of the corresponding first-order harmonics as shown by the blue and red dots.
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potential and higher gas trasmittivity. In this case, the signal level from the CCD

camera are ten times greater, even with a five times shorter exposure..

6.3 Asymmetry Spectra

6.3.1 Static Asymmetry of Permalloy

After calibration of the high-harmonic spectrum, the asymmetry spectrum (in-

troduced in Chapter 3) can be calculated. The first important step is to subtract the

background level of the CCD images because of ‘dark current’, which originates from

thermally generated electrons that accumulate inside the CCD pixels. Precise back-

ground subtraction is essential to avoid bias in calculation of the asymmetry. Its con-

tribution can be seen from the definition of asymmetry, A = I+−I−
I++I−

. With the presence

of the background level (B), the detect signal on CCD is

(I+(−))measured = I+(−) +B. (6.4)

The background level cancels out in the numerator but not in the denominator,

(I+ + I−)measured = I+ + I− + 2B = (k + 1)(I+ + I−), (6.5)

where k is defined as the ratio of the background level to the signal level (B = k I++I−
2 ).

As a result, the measured asymmetry is smaller by a factor of k + 1 than the actual

value,

(
I+ + I−
I+ − I−

)measured =
1

(k + 1)
(
I+ − I−
I+ + I−

). (6.6)

Thus the background must be subtracted out to yield the actual asymmetry

(B = k = 0). As a drawback, the background subtraction can cause a noisy asymme-

try spectrum at the background level because of the division by zero (I+ + I− =0 ).

The problem can be addressed in part by averaging the asymmetry spectra over many

repeated measurements.
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Figure 6.4: A typical high-harmonic spectrum using argon as the nonlinear medium and
reflecting from a Permalloy grating with s-polarized light using an exposure time of 0.1
s.
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Figure 6.5: (a) Asymmetry spectra as a function of the angle of incidents. The spectra
are measured from BESSY synchrotron (data courtesy from P. Grychtol, R. Adam and
C. M. Schneider, Forschungszentrum Jülich, Germany) (b) The synchrotron asymmetry
data at 45◦ (black line) is compared with an asymmetry by use of the high-harmonic
source (blue line). Both results are in agreement (top). The figure also displays high-
harmonic spectra reflected from a Permalloy grating before (green line) and after (dashed
green line) reversing the magnetization (bottom).
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After averaging multiple asymmetry spectra, a clean asymmetry can be calcu-

lated (Figure 6.5). Largest asymmetry (30%) is measured near Fe and Ni M-edges of

both elements (53 eV for Fe and 67 eV for Ni). Fe and Ni contribute to the asym-

metry spectrum by exhibiting two sets of positive and negative contrasts, which is the

consequence of the bipolar nature of the magneto-optical constant at resonance tran-

sitions. The asymmetry measured by high-harmonic generation source is in agreement

with a T-MOKE measurement of the same Permalloy grating obtained at the BESSY

synchrotron (Figure 6.5). A slight mismatch comes from the qualitatively distinctive

spectra between high-harmonic generation and synchrotron radiation, which is com-

posed of discrete harmonics for high-harmonic generation and is a quasicontinuum for

synchrotron radiation.

The measured asymmetry of Permalloy is in contrast to that of Ni. With one

constituent element, the asymmetry only shows one positive and negative contrast near

Ni M-edges (Figure 6.6) .

Thus far, the experimental geometry is set to 45◦. If the asymmetries are mea-

sured at more grazing-incident angles (higher incident angles α) (Figure 6.7), the asym-

metry parameter drops quickly from 30% to less than 10%. This reduction in asymmetry

is also found in the synchrotron result and earlier in the T-MOKE calculation (Figure 6.5

and 3.6). Moreover, by tuning the polarization of harmonics from p- to s-polarization,

the asymmetry disappears as expected from the derived refractive index of s-polarized

light (Equation 3.18).

6.3.2 Element-Selective Hysteresis

By generalizing the static asymmetry measurement, magnetic hysteresis is mea-

sured by extracting asymmetries as a function of the external magnetic field, H. I have

already explained the experimental method to measure the hysteresis loop (Section 5.6),

which suggests that the angle of incidence should be more grazing (62◦) to make sure
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Figure 6.6: The asymmetry spectrum at 45◦ of Ni (Top) calculated from high-harmonic
spectra reflected from a Ni grating with two signs of the magnetization (bottom). In
contrast to Permalloy, only Ni contributes to the asymmetry spectrum.
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72◦ (green), measured from high-harmonic generation light source (a typical spectrum
at the bottom). The M-shell absorption edges of Fe and Ni are shown as vertical lines.
The three measurements employs p-polarized probe light. In contrast, with s-polarized
probe light, the asymmetry signal disappears (black).
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that the asymmetry and magnetization are linearly dependent. In this case, our group

extracts two hysteresis loops near Fe and Ni M-edges (Figure 6.8). The loops have a

square shape, as expected for a patterned grating material with field applied along the

easy axis [158]. The measurements at both M-edges yield identical hysteresis loops,

with a coercivity2 of 800 A/m (10 Oe). The observation of nearly identical hysteresis

loops for Fe and Ni in Permalloy is the consequence of the strong exchange coupling

between the local magnetic moments of Fe and Ni.

6.3.3 Attenuation of Asymmetry Signal with a Palladium Capping Layer

Besides the hysteresis measurement, extreme ultraviolet light can be exploited

to probe the surface properties of layered magnetic structures because of the short

penetration depth of only a few tens of nanometers at energies below absorption edges.

To demonstrate this ability, the asymmetries for Permalloy gratings with Palladium (Pd)

capping layers of different thickness on top of the Permalloy gratings are measured. Pd

is used because it does not oxidize or have any strong absorption edge near either the Ni

or Fe edges (Figure 6.9b). This allows the measurement of the asymmetry decay because

of the absorption of harmonics by the Pd overlayer. Tabulated data for Pd, with an

assumed density of 1.2×104 kg/m3, predict attenuation lengths of 3.6 nm and 3.3 nm, at

55 eV and 67 eV, respectively, for the angle of incidence at 62◦. The asymmetries near

the Ni and Fe absorption edges decay exponentially as a function of the capping-layer

thickness (Figure 6.9). Data fitting yields decay lengths of 3.02±0.4 nm (Ni M-edge) and

2.68±0.9 nm (Fe M-edge) which are very close to the predicted penetration depth. This

data shows the sensitivity of asymmetry to the surface properties of magnetic material

and exhibits potential for using M-edge as a near-surface-sensitive magnetic probe.
2 The amount of magnetic field where the magnetization crosses zero.
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Figure 6.8: Element-selective hysteresis loops of a Permalloy grating measured near the
Ni (top) and Fe (bottom) M-edges, with the selected energies indicated on the bottom.
Fe and Ni have the same hysteresis loop because of the tight exchange coupling in
Permalloy.
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decay exponentially with the decay constants of 3.02±0.4 nm (Ni) and 2.68±0.9 nm
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Grating Material and thickness Ni Fe

Si3N4

20 nm 0.29 4.29
10 nm 1.14 2.95

Cr
10 nm (Figure 6.10) 1.15 0.98

5 nm 0.50 4.02
2 nm 0.21 3.64

Table 6.1: Optimizing the grating structures to improve the signal-to-noise ratio of the
data, defined as a ratio of the average of asymmetries to their standard deviation. The
asymmetry is acquired near the M-edges of Ni and Fe using 30 data sets of 25 s exposure
time each.

6.3.4 Multilayers

Since the asymmetry decays exponentially as a function of the Pd buried thick-

ness, the magnetic signals of the layer underneath may be too weak to allow for probing

of magnetization in the case of magnetic-multilayer structures, which are useful for

many spintronic applications [159, 136]. Here, I present a result to demonstrate that

the asymmetry signal near absorption edges is strong enough to measure even with some

degree of attenuation.

A sample employed here is a trilayer of Fe(10 nm)/Cr(2 nm)/Ni(5 nm) from the

bottom to the top (Figure 6.10). The grating pattern on the top layer is made from 10

nm of Cr. Light is absorbed by Ni and Cr, but the penetration depths of both elements

are longer (∼10 nm) comparing to Pd (∼2 nm). The longer penetration depth can

be understood from the general trend that the higher atomic mass (Z), the stronger

material absorption.

For this sample condition, the magnetic asymmetry is dominated by Ni (10%)

since it is the top layer. But near Fe edge, we observe a slight negative asymmetry

(-2%), which may be attributable to the Fe layer. However, this Fe asymmetry is not

large enough for the demagnetization dynamical studies. We tried to improve the signal-

to-noise ratio of the data by improving both the diffraction efficiency of the gratings
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Figure 6.10: (a) The geometry of a magnetic trilayer of Fe, Cr and Ni. (b) The asym-
metry measured from this sample is dominated by the top layer (Ni), while we only
observe a weak signal for Fe.
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and the amount of the asymmetry contrast. Both factors are controlled by the choice

of grating materials and thicknesses. The diffraction efficiency is the highest when the

reflected light from the top surface and the groove of the grating destructively interfere

with each other by the optical-path difference due to the grating thickness. On the other

hand, the asymmetry is exponentially reduced as a function of the grating thickness as

demonstrated in the previous section. Both requirements are strongly photon-energy

dependent; therefore, it is not trivial to find the best grating structure for the Fe and

Ni M-edge photon energies simultaneously.

To optimize for the grating condition, we varied the thickness of both Cr and

Si3N4 capping-layer gratings (Table 6.1). The signal-to-noise ratio (defined as the ratio

of the average asymmetry to its standard deviation) at Fe M-edges is enhanced by Si3N4

gratings or thinner Cr gratings. This observation can be explained by the weaker ab-

sorption of Si3N4 comparing to Cr; therefore, Si3N4 gratings yield the higher asymmetry.

However, as a drawback, the grating efficiency for the Ni M-edge harmonic is reduced as

the grating bars become more transparent to light. Therefore, there must be a balance

between the two photon energies. From this data, the grating made from 10 nm of Si3N4

appears to be the best compromise to improve both Fe and Ni signal-to-noise ratios.

Thus far, in this chapter, I cover magnetic measurements of the asymmetry pa-

rameter. However, in the next two sections, I would like to switch our attention to non-

magnetic measurements that provide important information about our high-harmonic

generation source including the tunability and stability analysis.

6.4 Tunability of High-harmonic Spectra

To achieve the best signal-to-noise for asymmetry measurements, the photon en-

ergies of the harmonics that are the nearest to M-edges will ideally be shifted to the
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maxima of the asymmetry spectra. We can shift the photon energies of harmonics by

adjusting the prisms in the oscillator or the laser chirp [160]. However, the most conve-

nient way to tune the harmonic spectra is by a slight intensity adjustment of the driving

laser. The fundamental mechanism behind the energy shifting is due to a non-linear

interaction between laser and plasma known as ‘plasma-induced blue-shifting’ [161, 155]

. The laser photon energy is shifted (∆E) in the presence of plasma by

δE =
h2N

2πmec

1
E

dη

dt
L. (6.7)

In this equation, the Planck’s constant (h), the speed of light in vacuum (c), the

electron mass (m), and the interaction length (L) are constants. The number density

of atoms (proportional to the gas pressure), N , can cause the wavelength shift, but

the gas pressure has to be optimized to achieve the best phase matching [89, 84]. The

only free parameter here is the rate of change in ionization fraction, dη
dt , which is a

sensitive function of the laser-pulse electric field (Chapter 2); therefore, a small change

in the laser intensity will result in a slight shift of the fundamental photon energy of

high-harmonic generation, which is enlarged at the high orders of harmonics (N ≈ 40).

A shift of ∼ 3
40 eV = 0.075 eV is needed to cover the whole comb of high-harmonic

separations.

Experimentally, we tune the laser intensity easily by adjusting the size of an iris

diaphragm in front of the high-harmonic capillary (Figure 6.11). The harmonics can be

tuned over the full spacing of the high-harmonic separation, while the intensity is slightly

reduced. However, regardless of the tuning of high-harmonic spectra, the asymmetry

peaks associated with M-edge transitions of Ni and Fe are always located at the same

photon energies.
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Figure 6.11: The wavelength tunability of high-harmonic generation. High-harmonic
and asymmetry spectra are measured with three different sizes of an iris diaphragm.
The iris reduces the peak intensity of the laser resulting in the blueshifting inside the
capillary. We can tune the harmonic energies across the full range of high-harmonic
comb.
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6.5 Long-term Stability Test of High-harmonic Spectra

Because of the extreme nonlinearity involved in high-harmonic generation, the

intensities and spectra of high harmonics change with a slight change in environmen-

tal conditions. Many conditions can be controlled, such as gas pressure and capillary

alignment; while some parameters are more challenging to keep stable, such as room

temperature, vibrations, and humidity. As a result, the high-harmonic intensities and

spectra drift over time in these experiments. In this section, the intensity and photon en-

ergy of high harmonics are measured as function of time for 16 hours in order to monitor

the stability of our light source at the present stage in its current implementation.

I collected a series of high-harmonic spectra over 16 hours (Figure 6.12). These

spectra were collected as part of the time-resolved pump-probe measurement for a

Permalloy-Cu grating (Chapter 7). Generally, the structure of the diffraction pattern

remains relatively constant throughout the scan, but the spectra have some obvious

discontinuities in intensities (e.g., at 1.75 and 13 hours), which result from our inten-

tional efforts to adjust the laser timing, realign the high-harmonic capillary, and refill

the liquid-nitrogen dewar for the laser crystal.

From this data, I calculated the photon energy of the high harmonics near the

Fe and Ni M-edges (Figure 6.13) from the centroids of the reflected intensities. The

high-harmonic photon energies are relatively stable (about 0.2 eV for Ni and 0.13 eV

for Fe of RMS noise3 ) when compared to the photon energies of the Ni (68 eV) and

Fe (53 eV) M-edges. The stability improves after the first two hours of data acquisition

because the room temperature tends to be more stable at night. At these stable hours,

the RMS noise reduces by one order-of-magnitude to 0.01 eV.

By observing that the ratio between the RMS deviation of Ni intensity to that

of Fe intensity ( 0.2
0.13 = 1.5) is similar to the ratio of the harmonic orders (39

31 = 1.3),

3 Defined as (∆y)i =
p

(yi − ȳ)2 with ȳ =
PN

i=1
N

.
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grating over 16 hours.
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the energy drift presumably originates from the shift of the fundamental energy of the

pump laser for the high-harmonic generation. This shift can come directly from the

drift of the laser center wavelength or indirectly from the variation in laser intensity via

the blueshifting inside the capillary (Section 6.4).

Finally, I consider the intensities of the harmonics near the Fe and Ni M-edges

as a function of time. The intensities of the harmonics (Figure 6.14) show a greater

variation than the that of photon energy. The intensity reduces to about 70% of the

initial value by the end to the scan. The reduction in the intensity at the 16th hour is

irreversible. The intensity degradation might be due to (1) permanent damage of the

grating structure by continuous pumping for 16 hours4 or (2) the slow condensation of

a water film on CCD surface after cooling down for an extended period of time.

The stability of the high-harmonic signal is improved by making sure that the

pump laser is perfectly mode-coupled to the inner diameter of the high-harmonic capil-

lary, as demonstrated in Reference [162]. We solve this problem by use of a motorized

mirror mount to keep the laser pointed at the same position. We use a CMOS cam-

era (Mightex) to monitor the beam position from a small portion of the laser beam

picked off by a pellicle beamsplitter. We implemented this pointing-stability setup in

the experiment described in Reference [163], allowing us to take more data with a longer

acquisition time and a constant pump-probe beam overlap.

6.6 Conclusions

In this chapter, I present measurement results of the static magnetization with

high-harmonic-generation light source using T-MOKE. The asymmetry peaks at the

expected photon energies near M-shell absorption edges. In Permalloy, we measure a

maximum asymmetry of 30% near the M-shell absorption edges of Fe and Ni. The ex-

perimental results agree with an independent measurement that employed synchrotron
4 Recall that I analyze this data set from a pump-probe measurement.
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radiation with a Permalloy. Then, static T-MOKE is used for an element-selective

hysteresis measurement, a near-surface sensitivity probe of magnetic samples, and a

measurement of different layers in magnetic multilayers. Moreover, I showed that pho-

ton energies of high harmonics are tunable by adjusting the laser peak power with an

iris diaphragm. Finally, I analyze the stability of our high-harmonic light source. The

high-harmonic photon energies are very stable as the spectra only drift by 0.3% during

16 hours of operation.

In the next two chapters, measurement of the T-MOKE magnetic asymmetries

as a function of pump-probe time delay, the element-selective dynamics in Permalloys

can be studied.



Chapter 7

Ultrafast Decoupling of Magnetization Dynamics for Fe and Ni in

Permalloy

7.1 Introduction

In the previous chapter, I discussed the element-selective measurments of mag-

netizations from T-MOKE asymmetry at the photon energies near M-edges. By taking

advantage of the broad photon-energy range of high-harmonic generation to cover all M-

shell absorption edges of 3d ferromagnets, asymmetries from different elemental edges

can be measured simultaneously, as demonstrated in the hysteresis loop measurement.

In this chapter, the scope of the measurements is expanded from static to dynamic mea-

surements by determining the magnetic asymmetry with respect to the pump-probe time

delay.

This chapter covers the experimental results that compare the magnetization

dynamics of Fe and Ni in Permalloy (Ni0.8Fe0.2) and Permalloy–Cu ((Ni0.8Fe0.2)0.6Cu0.4).

Our research team shows that the dynamics of the two elements are delayed with respect

to each other, despite the strong exchange coupling that aligns their magnetic moments

in thermodynamic equilibrium. These experimental results are fundamentally important

and have not been addressed either theoretically or experimentally at the time of writing.

Therefore, we introduce a phenomenological rate equation to describe the finite coupling

in these materials. We interpret these delay times as the characteristic time scales of

the exchange interaction.
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At the time of writing, Radu et al. [130] recently reported a similar element-

selective dynamics between Fe and Gd in a GdFeCo compound. This material has fer-

rimagnetic order, where the magnetic moments of Gd and Fe are oppositely aligned.

The coupling between Fe and Gd sub-lattices is typically weak, and the distinct mag-

netization dynamics could be expected. Particularly, in GdFeCo, this material exhibits

distinct temperature-dependent properties of the localized 4f ferromagnet (Gd) and the

itinerant 3d ferromagnet (Fe) in thermodynamic equilibrium. As a result, the com-

pensation point, where the magnetization of the two sub-lattices perfectly cancelled,

exists. In contrast, this particular behavior does not exist in our ferromagnetic alloy

samples. The moments for both Fe and Ni have the same temperature dependence; the

delay between the two magnetic moments is not expected.

7.2 Samples: Permalloy and Permalloy–Copper

Our sample is Permalloy, which is the Ni–Fe alloy at the ratio close to 80-20.

The crystal structure of Permalloy is face-center cubic with a random placement of Fe

and Ni atoms. Permalloy has high magnetic permeability (µ), low coercivity (mag-

netic field to reduce magnetization to zero), small magnetostriction (the change of the

material size when magnetized), large anisotropic magnetoresistance and giant magne-

toresistance (GMR) in Permalloy/Cu/Co film [164, 165], and a good contrast between

the conductivity of majority and minority electron spins [166, 167]. Because of these

properties, Permalloy was used in the GMR read heads in hard-disk drives [168].

In our case, we choose Permalloy for three reasons. First, Permalloy is a soft

ferromagnetic material, which only requires a low magnetic field to switch the mag-

netization (40 Oe). This allows us to switch the magnetic field quickly and use our

Helmholtz coil with large field uniformity (Chapter 5). Second, the energy separation

of M-edges of Fe and Ni in Permalloy are quite far apart (15 eV) [169] compared to

the high-harmonic spacing (3 eV). As a result, the magnetic signals from both elements
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do not interfere to each other, and two distinct harmonics can be assigned to Fe and

Ni (Figure 6.5 and 6.6). Finally, because of it is a well-known and stable alloy, we are

certain that Permalloy does not segregate into Fe and Ni-rich sections that can cause

any artificial decoupled demagnetization dynamics.

We would like to study the role of the exchange coupling in the demagnetization

dynamics of Fe and Ni. In the particular case of Permalloy, the interatomic exchange

coupling is large as indicated by the Curie temperature (Tc) of 850 K. Therefore, the

dynamics of Fe and Ni are expected to be similar. We repeat our measurements with

Permalloy diluted by Cu (Permalloy–Cu). The alloying of Cu with Permalloy results in

a reduction of the volume-averaged exchange parameter through the reduction of the

number of ferromagnetic nearest-neighbor atoms. Such alloys also retain the high per-

meability associated from pure Permalloy and avoid any discontinuous crystallographic

phase transitions with varying Cu content. This provides us with the ability to tune

Tc over a broad temperature range (Figure 7.1). As a result, the exchange coupling

is further reduced by the renormalization of the effective exchange integral near Tc

[170, 171]. We choose a sample composition of ((Ni0.8Fe0.2)0.6Cu0.4) where Tc is just

above the room temperature (Tc ≈ 400 K). X-ray diffraction verifies that our samples

are a solid solution of fcc phases.

The asymmetry is reduced even further at high temperature since the asymme-

try is directly linked to magnetization. We measure the asymmetry as a function of

temperature up to 425 K, which is above Tc. We choose to measure the asymmetry

near both Fe and Ni M-edges from the harmonics at 55 eV and 68 eV, respectively

(Figure 7.2). The measurement shows that the Fe and Ni asymmetries share the same

temperature dependence and both asymmetries vanish at the same temperature. By

fitting a power law (A(T − Tc)β) to the magnetization curves, we can extract the Curie

temperatures of Ni and Fe. The fit results give the Curie temperatures of Fe and Ni of

403.5 ± 1.1 K and 405.5 ± 3.7 K, respectively; therefore, within the error bars, Fe and
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Both measurements are performed at the room temperature.
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Ni have the same Tc. The fact that both Fe and Ni have the same Tc in Permalloy–Cu

(not 1043 K for bulk Fe and 631 K for bulk Ni, or 850K for Permalloy) implies that

our sample is a single-phase alloy without any segregation between Fe, Ni and Cu. The

other important fit parameter is the critical exponent β. Our fit results yield the critical

exponents around 0.5 (0.467± 0.072 for Ni and 0.495± 0.084 for Fe), which is the value

from Landau mean-field theory (Appendix 1).

7.3 Ultrafast Demagnetization Dynamics

To study the demagnetization dynamics, we measure magnetic asymmetry was a

function of the time delay between pump and probe pulses (see the video in [172]). In

Permalloy, the T-MOKE asymmetry for both Fe and Ni follows a typical shape observed

in demagnetization studies (Figure 7.4a) . Initially, the magnetization decreases rapidly

down to about 30% within 500 fs, and followed by magnetization relaxation at a longer

time scale of a few picoseconds. A closer inspection of the data on short timescales

(Figure 7.9A) indicates that the demagnetization of Ni is delayed in comparison to that

of Fe by approximately 10-20 fs. This delay for Ni in Permalloy is subtle and thus was

not observed in our firs studies [63] because the temporal resolution in that experiment

and the data quality were not sufficient enough to resolve such a small shift of the

demagnetization. A delay of the demagnetization dynamics in Permalloy at ultrafast

timescales was not expected as Fe and Ni are strongly coupled via exchange.

For Permalloy-Copper, the demagnetization dynamics of Fe and Ni are clearly

different from that of Permalloy with the same pump fluence (Figure 7.4b) in four

characteristics. (1) The demagnetization time is significantly slower. The asymmetries

slowly reach their minima within a picosecond compared with 500 fs in Permalloy.

(2) The asymmetry recoveries are very slow, and cannot be resolved within the time

window of our scan, although the scan range is extended to 150 ps (Figure 7.5). (3)

The asymmetries of Fe and Ni are both quenched by 80%, which is significantly larger
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than those of Permalloy. (4) Upon close inspection near time zero (Figure 7.8B), we

unambiguously observe a delay in the dynamics between Ni and Fe, reenforcing the

observation in Permalloy.

Characteristics (1-3) can be understood by the low Curie temperature of our

Permalloy–Cu sample (Tc = 400 K) and thermodynamics. A larger amount of quenching

for a given fluence is expected when the samples’ temperature approaches the Curie

point when the magnetization is a more sensitive function of temperature; a slight

change in temperature causes a large reduction in magnetization. The slow-down of both

the demagnetization and recovery times is the result of the higher spin heat capacity

near the Curie temperature (Figure 8.6). The closer the system is driven to Curie

temperature, the more amount of heat is required to increase the spin temperature.

Moreover, the slow down of dynamical behavior agrees with theoretical predictions of

‘critical slowing-down’ dynamics near the Curie point [173, 146].

These explanations cannot account for the delayed demagnetization dynamics

between Fe and Ni, and we attribute the larger demagnetization delay to the reduction

of exchange coupling, which I will discuss in the next two sections. However, I would

like to first argue that this observed delayed does not originate from three possible

experimental errors. First, the distinct demagnetization dynamics are not the result

of time-zero determination error because we extract the demagnetization dynamics for

Fe and Ni simultaneously from the whole high-harmonic spectra. Second, chirp of the

high-harmonic spectra, which might cause the time delay between every Fe and Ni

probe pulses, cannot cause the delay because the observed delay of demagnetization

dynamics in Permalloy–Cu (60 fs) is significantly larger than a typical high-harmonic

pulse duration (<10 fs). Finally, our research group thoroughly characterize of our

samples to prove that our samples are single-phase alloys with no segregation between

Fe and Ni.
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7.4 Rate Equations for Coupled-demagnetization Dynamics

Currently, there is no theoretical approach to describe this delayed dynamical

behavior, and the behavior has never been previously observed by any experimental

approach. In the work by Radu et al. [130], the demagnetization dynamics of Fe and

Gd are on independent timescales during the early time scale. These data show that

the two elements demagnetize independently rather than the delayed but still coupled

behavior. To gain a more physical insight, Thomas Silva, from NIST Boulder, posited

the following phenomenological model to describe our experimental data with coupled

first-order rate equations,

dmF

dt
=
−mF

τF
− mF −mN

τE
(7.1)

dmN

dt
=
−mN

τN
− mN −mF

τE
,

where mF and mN are the normalized Fe and Ni magnetizations (asymmetries), τF and

τN are the elemental decay times for Fe and Ni in the absence of exchange coupling,

and τE is the characteristic exchange time described the coupling between Fe and

Ni systems. The motivations of the model equations come from the following three

observations:

(1) The model assumes that each elements have exponential dynamics. Phe-

nomenologically, the demagnetization dynamics can be very well represented by expo-

nential functions. For example in Reference [139], the transient MOKE signals were

very well fit with the following function,

f(t) = A(1− e−
t
τM )e−

t
τR +B(1− e−

t
τR ), (7.2)

where τM is the demagnetization time, τR is the magnetization recovery time, A is the

exponential amplitude to describe the amount of the demagnetization, and B is the
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Figure 7.6: The phenomenological description of demagnetization dynamics by an ex-
ponential model.

amount magnetization at longer time delay which is typically a small number compared

to A (Figure 7.6).

The exponential-like shape of the demagnetization dynamics can be understood

thermodynamically from a three-temperature model that has exponential solutions with

some approximations (Equation 4.4).

(2) To account for distinct demagnetization dynamics between Fe and Ni at early

time delay, we assign the element-specific demagnetization times for Fe and Ni (τF and

τN ).

(3) To consider the exchange coupling, we define the second exponential term to

damp down any difference between mF and mN with a time constant τE .

7.4.1 Analytical Solutions

The rate equation can be solved analytically with a standard differential equation

technique. First, I write the equation in the form of

 dmF
dt

dmN
dt

 =

 − 1
τF
− 1

τE
1
τE

1
τE

− 1
τN
− 1

τE


 mF

mN

 = A

 mF

mN

 . (7.3)

Then, I diagonalize the matrix A to write the solutions in the term of its eigenval-
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ues (λ±) and eigenvectors (ν±) in the form of

 mF

mN

 = c1ν+e
−λ+t+c2ν−e

−λ−t. The

final function is simplified by introducing the two “reduced time” parameters defined

as:

τ̄ =
τNτF
τN + τF

(7.4)

τ̃ =
τNτF
τN − τF

. (7.5)

The eigenvalues and eigenvectors of A are

λ± =
1
2

(
1
τ̄

+
2
τE
±

√
τ2
E + 4τ̃2

τE τ̃
) (7.6) −ν+

1

 ,

 −ν−
1

 (7.7)

where ν± = τE∓
√
τ2
E+4eτ2

2eτ . Therefore, the solutions of Equation 7.1 are

mF = −c1ν−e
−λ+t − c2ν+e

−λ−t

mN = c1e
−λ+t + c2e

−λ−t. (7.8)

The final step is to apply the initial condition to find the coefficients c1 and c2.

The simplest way is to normalized the initial dynamics to unity (mF (t = 0) = mN (t =

0) = 1). These particular solutions for this initial condition are

mF =
1 + ν+

ν− − ν+
ν−e

−λ+t − 1 + ν−
ν− − ν+

ν+e
−λ−t

mN = − 1 + ν+

ν− − ν+
e−λ+t +

1 + ν−
ν− − ν+

e−λ−t. (7.9)

In our publication [174], we write the solutions in a somewhat different form by

use of the relations,

1− ν− = −(1 + ν+)ν− (7.10)

−(1− ν+) = −(1 + ν−)ν+

(1− ν−)ν+ = 1 + ν+

(1− ν+)ν− = 1 + ν−.
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7.4.2 Special Cases

I consider three special cases for the solutions (Equation 7.9) to our model equa-

tions (Figure 7.7): short exchange time, long exchange time, and long intrinsic demag-

netization time for Ni. Although the detailed dynamical behaviors are different in these

special cases, they all have two common features. (1) Initially, the dynamics of Fe (red)

and Ni (blue) behave independently for times shorter that the exchange time (green

vertical lines). (2) At longer times, the elemental dynamics for both Ni and Fe con-

verge to the same value as expected by the introduction of the term proportional to the

exchange-time parameter.

In the first special case, when the exchange time is short compared to τF and τN

(Figure 7.7a), both elements behave almost identically except for the initial part. This

behavior agrees with the experimental finding in the case of Permalloy.

Second, when the exchange time is long compared to τF and τN (Figure 7.7b),

both elemental dynamics become more clearly distinctive and behave almost as if they

are independent. This behavior describes the systems with weak exchange coupling,

such as when Fe and Ni are fully phase-segregated or, for this thesis, in the binary

grating (Chapter 8).

Third, when the demagnetization time constant of one element, e.g. Ni, ap-

proaches infinity (τN → ∞), the dynamics behave such that the magnetization of the

other element (Fe) reduces fairly quickly and then ‘drags down’ the other element by the

exchange coupling. As a result, the dynamics of the slower element are simply ‘delayed’

with respect to the fast element. This type of dynamics fits our demagnetization results

from Permalloy–Cu1 . To put this special case into an extreme, I consider the limit of

τN → ∞ and τE � τF of the solutions of our model equations up to the first order in
1 Also for Permalloy but since the exchange time is also short in this case, the dynamics also behave

like in the first special case (short τE)



121

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 M
ag

ne
tiz

at
io

n
a)

τE = 0 .06
τF = 0 .2
τN = 0 .5

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 M
ag

ne
tiz

at
io

n

b)

τE = 1
τF = 0.2
τN = 0 .5

0 0.2 0.4 0.6 0.8 1
Time (ps)

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 M
ag

ne
tiz

at
io

n

c)

τE = 0 .06
τF = 0 . 2
τN = 50000

Figure 7.7: Solutions to the rate equation to describe the delayed demagnetization
dynamics in three different special cases: (a) short exchange time τE , (b) long exchange
time, and (c) long nickel demagnetization time (τN ). The demagnetization dynamics of
Ni and Fe are plotted in blue and red, respectively. The time constants for Ni, Fe and
the exchange time are indicated by blue, red, and green vertical lines, respectively. The
time zero is shown in the dashed line.
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τE
τF

(Equation 7.9),

τ̄ = τ̃ = τF (7.11)

λ+ =
2
τE

+
1

2τF
(1 +

τE
4τF

) (7.12)

λ− =
1

2τF
(1− τE

4τF
) (7.13)

ν± = ∓1 +
τE
2τF

(7.14)

mF =
τE
4τF

e
− 2t
τE

(1+
τE
4τF

) + (1− τE
4τF

)e−
t

2τF (7.15)

mN = − τE
4τF

e
− 2t
τE

(1+
τE
4τF

) + (1 +
τE
4τF

)e−
t

2τF (7.16)

The special case (Equation 7.11 and 7.16) indicates that the dynamics are no

longer controlled by Ni, and the dynamics will behave closely to exponential decay

functions with the time constant of twice the demagnetization time constant of Fe after

dropping all the first order terms in τE
τF

.

Before moving on, this solution to the model equations only allows for a fully

demagnetization (i.e. quenched by 100%). Moreover, the equations do not account for

the magnetization recovery. Therefore, we need to include these extra phenomenological

behaviors by modifying the solutions (Equation 7.9) such that

mF → A(mF − 1)e(− t
tR

) + 1, (7.17)

where A is the amount of demagnetization quenched and τR is the recovery time.

7.5 Analyzing the Demagnetization Dynamics

7.5.1 Extracting the Demagnetization Time from Exponential Fits: The

Delay of Demagnetization Dynamics

Before considering the data fitting to the model equations, I start with the data

analysis from a simple exponential equation (Equation 7.2) to show that this simple

exponential equation cannot simultaneously describe the demagnetization dynamics of
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Figure 7.8: The delay of demagnetization dynamics of Fe (red) and Ni (blue) in
Permalloy–Cu. (a) The time zero is set to Fe data. During the short time delay,
exponential equation can only describe Fe data. In this case, Ni demagnetizes slower
than Fe by about 100 fs. (b) When the time zero from Ni is ‘delayed’ by 59 fs with
respect to Fe, the exponential fit to Ni is improved. In this case, both elements have
the same demagnetization time.
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Table 7.1: Permalloy Fit Results by Exponential Equation

Fe Ni
Parameters Value Error Value Error

A 0.3221 0.0243 0.3475 0.0126
τM (fs) 199 34 222 17
τR(ps) 5.0 1.4 4.1 0.4
∆t (fs) 19 0.4
τM (fs) 197 13

Fe and Ni. I present only results from Permalloy–Cu because of the much more visible

amount of the delay between Fe and Ni. Since the Permalloy–Cu data show no recovery

of the magnetization at long times, the recovery time is set to infinity without disrupting

the fit results (Figure 7.8a). From the fit, only Fe follows the exponential trend; while

Ni is poorly fit with the model, as can be measured from its error bar size.

Alternatively, an improvement of the fitting result to the Ni data can be achieved

by moving the time zero of the exponential fit equation of Ni with respect to Fe 59 fs

(Figure 7.8b). This time shift can be calculated by minimizing the mean square error

of the fit to the Ni data. After delaying Ni with respect to Fe, the error bar size of Ni is

reduced the same level as Fe, and the demagnetization times of Fe and Ni become very

similar. Although the fit results are improved, this arbitrary shift of the time zero is

unphysical since our measurement technique locks the time axis for Fe and Ni together.

This delay behavior also exists in Permalloy but the time shift is smaller (19 fs).

Table 7.1 and 7.2 summarize the fit results for Permalloy and Permalloy–Cu, respec-

tively. The top parts of both tables show the fit results when no time zero is shifted

Table 7.2: Permalloy-Copper Fit Results by Exponential Equation

Fe Ni
Parameters Value Error Value Error

A 0.7609 0.0115 0.7817 0.0190
τM (fs) 241 15 337 27
∆t (fs) 59 0.6
τM (fs) 251 13
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Table 7.3: Permalloy Fit Results by Model Equations

Parameters Value Error
A 0.345 0.007

τE(fs) 14 6
τF (fs) 94 6

τN (104 ps) 10 0.3
τR (ps) 6.45 0.57
τM (fs) 151 15

between Fe and Ni; while the bottom parts show the results when the zero of Ni is

delayed by ∆t with respect to Ni. Again for Permalloy, the demagnetization time of Fe

and Ni becomes equal after considering the shift of time zero.

7.5.2 Extracting the Exchange Time through the Model Equations

In addition to the model with exponential fits with time shift (∆t), our differential

equation (Equation 7.1) can reproduce the behaviors found in both Permalloy and

Permalloy–Cu (Figure 7.9). The fit parameters are summarized in Table 7.3 and 7.4.

For Permalloy and Permalloy–Cu, both fits give fast time constants for Fe (∼ 100

fs) and infinitely large time constants for Ni (∼ 106 ps), i.e. τN � τF . The fits to

the model show that, after the characteristic exchange time τE , the Ni magnetization,

which is initially nearly unaffected by the pump pulse, is dragged down by the rapidly

demagnetizing Fe. The intrinsic demagnetization time of Fe (τF ) is close to one half of

the time scale of the exponential-decay demagnetization time as discussed above from

a proper limit of the analytic equation (Equation 7.16).

By considering the exchange-time constant (τE), it is very tempting to relate this

exchange times to the exchange energy (EEx) of ferromagnetic systems via the time-

energy product EExτE = h. To estimate the ratio of the exchange energy, the ratio of the

Curie temperature for Permalloy to Permalloy–Cu is 2.1, which is the ratio of exchange

energy at 0 K ( EExPermalloy
EExPermalloy−−Cu

). At room-temperature, we also need to account for the

renormalization of exchange by scaling the magnetization ratio M(T )
M(T=0) . The ratio of this
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Table 7.4: Permalloy-Copper fit Results by Model Equations

Parameters Value Error
A 0.77 0.01

τE(fs) 66 6
τF (fs) 112 5

τN (106 ps) 1.45 0.03
τR (ps) 115 103
τM (fs) 199 34

quantity is 1.56 for Permalloy–Cu, according to the SQUID data; therefore, the ratio

of exchange energies between Permalloy and Permalloy–Cu at room temperature is

about 1.56 × 2.1 = 3.3. The ratio of the exchange times (τE) extracted from our data

for Permalloy–Cu to Permalloy is 4.7+4.3
−1.7. Thus, the scaling of the exchange energy and

the exchange time τE between Permalloy and Permalloy–Cu are compatible with our

interpretation. Moreover, to numerically estimate the exchange energy directly from the

time-energy product (∆E∆t = h), the exchange energy is about 0.3 eV for Permalloy,

which is in the right order of magnitude [11].

Our interpretation is very promising; the exchange time can be extracted from

a simple phenomenological model, and a simple inverse relationship between exchange

time and the exchange energy. However, we only measure two samples with two distinc-

tive ranges of the exchange coupling. In the future, it would be interesting to repeat

the study for samples with a broader range of exchange coupling by alloying Permalloy

with different amount of copper or by elevating the sample temperature to reduce the

exchange coupling via exchange renormalization.

7.6 Fluence-Dependent Demagnetization Dynamics and the Role

of Hot Electrons

To understand more concerning the microscopic mechanism of delayed magne-

tization dynamics, we consider the role of hot electrons, which are directly related to

a microscopic picture of demagnetization dynamics. Initially, a laser pulse coherently
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Figure 7.9: Explaining the dynamics of Permalloy and Permalloy–Cu by the model
equations (Equation 7.1). The model describes both data very well without assuming
the time zero shift between Fe and Ni as in Figure 7.8b. The inset shows the log-scale
plot to visualize that Fe and Ni demagnetize at the same rate after the exchange time
(τEx = 66± 6 fs).
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interacts with electrons in the material within ≈ 0 − 50 fs [10], creating hot electrons.

Subsequently, the hot electrons relax to a thermalized population, accompanied by a

spin-flip scattering process that lead to ultrafast demagnetization on timescales of 100

- 500 fs [9, 142, 21, 148]. The details of the scattering process remain the subject of

an intense debate (Chapter 4). Since the time-scale for hot-electron dynamics is about

the same time scale of the measured exchange times (Permalloy τE = 14 fs, Permalloy–

Cu τE = 66 fs), it is therefore important to include the laser-induced hot electrons

in the discussion of the magnetic dynamics at such ultrashort < 100 fs time scales.

Hot electrons can screen the Coulomb potentials on femtosecond time scales [175, 57].

Such screening might also reduce the exchange interaction in ferromagnetic conductors

[176]. If the screening really reduces the exchange coupling, we would expect a strong

dependence of the exchange time on the pump fluence.

We study the fluence-dependent demagnetization dynamics for Permalloy-Copper

by attenuating the pump power (Figure 7.10). By slightly decreasing the pump power

(350 mw to 250 mw), the quenching of the T-MOKE magnetic asymmetry is signifi-

cantly reduced (80 % to 50 %). With the exponential fit equation, we observe a linear

relationship between the pump fluence and the demagnetization amplitude (A) (Fig-

ure 7.11). On the other hand, the demagnetization time constants, τM , have a weakly

decreasing trend with fluence.

By performing the model-equation fit, we can extract the exchange time pa-

rameter τE to quantitatively account for the delay of Fe and Ni dynamics. For our

fluence-dependent dynamics, the exchange time does not show any large dependence on

the pump fluence (Figure 7.12). All fiting results report similar values if around 80 fs

for τE , as opposed to a strongly decreasing trend with the fluence, as would be expected

if hot-electron screening really reduces the exchange coupling. Therefore, we rule out

the hot-electron screening mechanism for the demagnetization delay between Ni and Fe.
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in Equation 7.1) as a function of pump fluence. Both parameters are not the strong
increasing functions of laser fluence, and we can rule out the hot-electron screening
mechanism for the decoupling of demagnetization delay between Ni and Fe.

7.7 Grating Artifacts

Besides hot-electron screening effects, the observed dynamics might originate from

the grating structure fabricated into our samples. These grating structures may alter the

magneto-optical measurements, as evident in the hysteresis measurements from various

diffraction orders [177]. In this section, I present convincing results showing that the

grating structures do not change the observed ultrafast dynamics reported earlier. I

compare the demagnetization dynamics measured from the two orders of diffraction

from Permalloy. Earlier, the demagnetization dynamics is analyzed from the first order

diffraction (m = 1). The dynamics is compared with that measured from the second

order diffraction (m = 2) at identical photon energies. The two diffraction orders give

the same dynamics within the error bars (Figure 7.13). This measurement confirms

that the grating structures do not contribute any spurious signal to our time-resolved

measurements. The same comparison is repeated for Fe in Permalloy–Cu by comparing

the m = ±1 orders (Figure 7.14).
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7.8 Signal-to-noise Analysis

I would like to conclude the chapter with the error analysis of our time-resolved

data to to estimate the required acquisition time needed for our measurements at the

present stage. I estimate the error by calculating two parameters: (1) the error bars

of the demagnetization time (τM ) and (2) root-mean-square error (RMSE)2 of the fit.

Both parameters are ploatted as a function of data acquisition time (Figure 7.15). For

Permalloy–Cu dynamics, presented earlier (Figure 7.8b), both error parameters behave

in a similar way; therefore, they can both represent the quality of data. By fitting

both curves with a power law, y = A
xn , the errors scale down almost as an inverse square

(n ≈ 0.55). This means that to decrease the error bars by a factor of two, the acquisition

time must be prolonged by a factor of four. For the present experimental conditions, we

require at least ten hours of acquisition to determine demagnetization times with the

errors within 20%. In the future, we wish to reduce the acquisition time by upgrading

the laser to give higher high-harmonic flux by operating at higher repetition rate.

7.9 Conclusions

We observe that the demagnetization dynamics of Fe and Ni in Permalloy and

Permally-Cu are delayed with respect to each other at the early times (<100 fs). This

delayed behavior of magnetization dynamics has not been previously predicted or ob-

served in any metallic alloys. We prove that the observed delays do not originate from

hot-electron screening or experimental errors such as time error, sample phase segre-

gation, and grating artifact. We propose a phenomenological model to describe this

surprising behavior by introducing an extra factor involving the exchange time. We
2 The RMSE is defined as

RMSE =

sPN
i ((yi(xi)− yfit(xi))2

N
(7.18)

where yfit(xi) is the resultant fit function evaluated at each data point, xi. For our case, the function
is in the form of Equation 7.2.
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estimate the exchange time of 14 fs for Permalloy and 66 fs for Permalloy-Copper. To

interpret this exchange time as a characteristic time of the exchange energy, we point

out that our measured exchange times are reasonable values when assuming that it

is inversely proportional to the exchange energy. However, to confirm this observa-

tion, we need to perform additional systematic studies on Permalloy with different Cu

concentrations or at elevated sample temperatures.

It is essential also to point out that our phenological approach cannot explain why

the intrinsic demagnetization times extracted for Ni (τN ) are significantly larger when

compared to Fe (τF ). We can only point out that, for unknown reasons, Fe spins are

strongly affected by hot electrons, while the effect on the Ni moment is much weaker.

To confirm our measurement results, I present results in the next chapter that give a

direct comparison between the demagnetization dynamics of elemental Fe and Ni to

show that Fe indeed demagnetizes faster than Ni in its elemental form.



Chapter 8

A Direct Comparison between the Ultrafast Demagnetization

Dynamics of Fe and Ni

8.1 Introduction

In this chapter, I present an experimental comparison between the demagneti-

zation times (τM ) of pure Fe and Ni. No systematic experiment has compared both

dynamics with identical experimental conditions. In the past, many studies focused on

Ni because of its low Curie temperature of 627 K, comparing to that of Fe of 1043 K,

and the reported demagnetization times of Ni span from 70 to 300 fs (Figure 8.1). In

contrast, to my knowledge, there is only one reference for the demagnetization time of

Fe, varying from 50 to 80 fs [178].

We employed the element selectivity of extreme ultraviolet light from high-harmonic

generation to probe demagnetization dynamics of Fe and Ni with identical experimental

conditions. We measured the magnetizations of both elements in parallel with identical

pump fluence, time zero, probe pulse duration and sample structures. These identical

experimental conditions ensure that Fe and Ni dynamics are equivalent since the mea-

sured demagnetization rate is affected by all of those factors. First, demagnetization

time depends significantly on pump fluence: the stronger pump fluence, the slower the

demagnetization time. Second, experimental errors, such as zero-delay determination

and probe-pulse duration, can contribute to the demagnetization-time measurement.

Finally, the models used to extract the demagnetization dynamics by fitting to the data
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Figure 8.1: A non-exhaustive list of demagnetization times of Ni and Fe reported in
literatures. The amplitude of demagnetization is indicated in the parentheses. No ex-
periment has compared the demagnetization time of Fe and Ni in the same experimental
conditions.

can affect the demagnetization time.

Another motivation to compare the demagnetization dynamics between Fe and Ni

is from our observed dynamics in Permalloy and Permalloy–Cu (Chapter 7). Our mea-

surement results indicate that Fe demagnetizes before Ni suggesting the Fe has a better

spin-flip efficiency than Ni, and it is interesting to compare the trend of demagnetization

time of Fe and Ni in their elemental forms.

In addition to the comparison between Fe and Ni dynamics, this chapter covers

the study of fluence-dependent dynamics of Ni. The dynamical behavior as a function

of fluence is in agreement with past results. I compare the observed results with two

theoretical models based on a three-temperature model and the experimental results

reported by Koopmans, et al [21]. All results benchmark our measurement technique

with high-harmonic generation light source.
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8.2 The Samples: Fe–Ni Binary Gratings

To compare elemental demagnetization dynamics between Fe and Ni simultane-

ously, our research team developed grating samples that consist of alternating stripes of

pure Fe and pure Ni. (Figure 8.2). These samples are fabricated by Justin Shaw from

NIST. The samples are made from 1 µm stripes of Ni with 4-µm center-to-center spac-

ing. The second lithography step is used to pattern 1-µm wide Fe stripes in-between

the previously fabricated Ni stripes, yielding alternating stripes of Fe and Ni with a

center-to-center spacing of 2 µm. In both cases, the thicknesses of the individual Ni

and Fe layers are 10 nm, and a 2-nm Ta seed layer was initially deposited for adhesion.

After removal from the deposition chamber, these samples are quickly transferred to a

vacuum storage chamber to minimize the surface oxidation and the corrosion of Fe.

With this sample geometry, the spacing between each element is 2 µm, which

ensures no ferromagnetic coupling between Fe and Ni. However, the overall grating

period is doubled from the work described earlier in Chapter 6-7, and the harmonic

spacing measured on the CCD camera are twice as closer. As a result, the determination

of the harmonic orders is more complicated. The photon energy of each harmonics is

identified by fitting to the diffracted formula described in Chapter 5 (Figure 8.2). The

harmonic energies can be labeled accurately up to the fourth-order diffraction pattern.

The diffraction patterns from Ni and Fe can be located. The results match the large

measured asymmetries observed in the spectrum. We choose the magnetic asymmetries

from the second-order diffraction patterns, which provide the best signal-to-noise ratio.

By pumping the grating with the same pump pulse, energy from a laser pulse is

deposited equally on Fe and Ni. Since both elements absorb the same amount of light

at 780 nm (42% for Fe and 40% for Ni calculated from the website in [179]), the same

amount of hot electrons are created in each element to initiate the demagnetization

dynamics.
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(a)A medium scan: up to 3 ps (Figure 8.3, top)

Elements and Photon Energy A τM (fs) τR (ps)
Ni (66.2 eV) 0.45 ± 0.01 157 ± 9 9.0 ± 1.3

Fe (55.5 eV and 52.9 eV) 0.19 ± 0.01 98 ± 26 10.9 ± 7.4
(b) A short scan: up to 600 fs (Figure 8.3, bottom)

τR is set to infinite.
Elements and Photon Energy A τM (fs)

Ni (62.6 eV) 0.37 ± 0.01 122 ± 7
Fe (55.5 eV and 52.9 eV) 0.111 ± 0.0004 77 ± 16

Table 8.1: Curve-Fitting Results to the Demagnetization Dynamics of Ni and Fe from
a Fe–Ni grating. The parameters are defined in Equation 8.1

8.3 Demagnetization Dynamics

Demagnetization dynamics are measured from the harmonics with the largest

asymmetries near M-shell absorption edges of Fe and Ni. Both Fe and Ni demagnetize

independently immediately after the laser excitation (Figure 8.3). The dynamics differ

noticeably from pure Permalloy, which show the delay of dynamics between Fe and Ni

(Chapter 7). Independent demagnetization is expected when no coupling exists each

element. From exponential fits, the demagnetization time of Fe is less than that of Ni by

59 ± 28 fs (Table 8.1). The trend of the demagnetization times agrees with the response

from Fe and Ni in Permalloys, where Fe demagnetizes before Ni. The large error bar

results solely from the Fe dynamics, which have worse data quality than Ni, resulting

from various sources: the lower amplitude of demagnetization, sample oxidation, and

the stronger absorption at the Fe M-edges with respect to the Ni M-edges. To reduce

the error bar, the data from Fe has been averaged over two different harmonics (photon

energies at hν = 55.5 and 52.9 eV) as indicated in Table 8.1.

At the long time delay, the demagnetization quenching is different for Fe and Ni

corresponding to a qualitatively different behavior than for Permalloys. Ni demagnetizes

more than Fe by a factor of 2.5. The amount of demagnetization can be understood from

the spin density of Fe comparing to Ni at equilibrium. Fe has a larger magnetic moment
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per atom than Ni by about the factor of 3.5 [20]. Therefore, Fe has more spins to be

flipped in optical-induced–spin-flip scatterings than Ni. Consequently, Fe demagnetizes

by a smaller percentage than Ni given that each material absorbs the same number of

photons from the same light pulse.

The measured demagnetization times can be confirmed by comparing the results

from different diffraction orders. By repeating the analysis on the 1st and 4th order

diffraction of the harmonics at photon energy of 66.2 eV, we found that the demagne-

tization times of Ni (τ1st
M = 150± 13 fs, τ4th

M = 149± 10 fs) are still in agreement with

the second-order diffraction value (τ2nd
M = 157± 9 fs from Table 8.1).

The measurements were repeated on the time scales up to 600 fs. The magneti-

zation recovery becomes less critical compared to the demagnetization part. Therefore,

the magnetization recovery time, τR, can be set to infinity. The demagnetization time

is slightly smaller compared to when the magnetization recovery time is finite (157 vs

122 fs for Ni). The reduction in the demagnetization time results from the constraint

to put the magnetization-recovery time to infinite. The dynamics at short time scales

clearly show that the dynamics of the two elements are independent of each other.

8.4 Fluence-Dependent Demagnetization Dynamics

8.4.1 Experimental Results

Ultrafast demagnetization dynamics depend critically on the pump fluence. To

systematically study the dependence of the dynamical parameters on the pump fluence,

we attenuate the pump-beam power and repeat the demagnetization measurements.

The laser fluence is reduced from 2.4 to 0.3 mJ/cm2 (Figure 8.4). The measurements

are performed continuously to make sure that the laser conditions are equivalent for all

scans. We choose difference time steps for the two lowest fluences by having more data

points at short delay times because the demagnetization time is expected to be faster
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Figure 8.4: Fluence-dependent demagnetization dynamics of Ni in Fe–Ni grating.

at the lower fluence.

The asymmetry is clearly quenched more strongly at higher fluences. Quantita-

tively, this trend can be understood by performing an exponential fit to the data. We

choose the phenomenological equation:

f(t) = 1−A(1− e−
t
τM )e−

t
τR (8.1)

where A is demagnetization amplitude, τM is the demagnetization time, and τR is the

magnetization-recovery time. The demagnetization amplitude shows a linear trend in

fluence (Figure 8.5a). The error bars of the fit, however, increase at the low fluences

as the demagnetization approaches the noise level of 3.5%. By performing a linear fit

to the fluence (J) in mJ/cm2 and demagnetization amplitude (A), we get the function

A = (0.21± 0.04)J + (0.01± 0.05). It is linear as expected. The relation is reasonable

because the function extrapolates to zero at the zero fluence. Since the demagnetization

amplitude depends linearly on fluence, the fluence value can be mapped to demagne-

tization amplitude. By presenting the data with the amplitude, we can compare the

results between different measurements. To show that fluence information is not compa-

rable between different published results, I use Reference [148] and [21] as an example.
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namics (Figure 8.4) in a Ni–Fe grating.
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Both papers report the demagnetization dynamics of Ni with about the same amount of

quenching (40%). However, the fluences reported are an order-of-magnitude different,

i.e. 50 mJ/cm2 in Reference [148] and 2.2 mJ/cm2 in Reference [21].

The magnetization recovery time (τR) on the order of a few picoseconds is an

increasing function of the demagnetization amplitude. In the same manner, the demag-

netization time (τM ) is also an increasing function of the demagnetization amplitude

or fluence by varying from 80 to 170 fs. This is the same trend given by past results

[21, 180]. By performing a linear extrapolation down the the zero demagnetization am-

plitude, the data give the minimum demagnetization time of 78.4 ± 9 fs, which agrees

with the calculation in Reference [21] and the experimental results at low fluence limit

[181]. In the next section, I will reproduce this relation between demagnetization time

(τM ) and amplitude (A) using a three-temperature-model calculation.

8.4.2 Three-Temperature-Model Simulation

Some properties of the observed fluence-dependent demagnetization dynamics can

be reconstructed by use of three-temperature model (Chapter 4). The three-temperature

model describes the heat transfer between three systems, i.e. electrons, lattice and spins,

by assigning a temperature for each system (Te, Tl, Ts). The model does not include any

microscopic scattering physics, describing a more fundamental picture of demagneti-

zation dynamics, but only through thermodynamic consideration. This formalism is

the first approach to describe the temperature dynamics for ultrafast demagnetization

[9], to consider the precession dynamics induced by a laser pulse [182], and recently to

predict two regimes of demagnetization dynamics by incorporating the model with the

microscopic Elliot-Yafet scattering [21].
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Figure 8.6: Heat capacities of Nickel composing of three contributions: electron (red),
lattice (blue) and spins. Electron heat capacity is linear in temperature from the free-
electron approximation (Equation 8.4). Lattice heat capacity is estimated from Debye’s
theory (Equation 8.5). The contribution from the spin system can be seen from an
abrupt reduction in total heat capacity at Curie temperature. Data from [20]

Three-temperature model can be written as

Ce(Te)
∂Te
∂t

= Gel(Tl − Te) +Ges(Ts − Te) + P (r, t)

Cl(Tl)
∂Tl
∂t

= Gel(Te − Tl) +Gsl(Ts − Tl)− κ∇2Tl(r, t)

Cs(Ts)
∂Ts
∂t

= Ges(Te − Ts) +Gsl(Tl − Ts), (8.2)

where Ce, Cl and Cs are heat capacities of electrons, lattice and spins, respectively, κ is

thermal conductivity, P (t) is a laser heating function. The coupling constants, Gel, Ges,

and Gsl, are introduced to the model as empirical parameters. In this simulation, some

assumptions are needed for these parameters.

8.4.2.1 Heat Capacities

Heat capacity of magnetic material is composed of the heat capacities from elec-

tron, lattice and spins (Figure 8.6 for Nickel),

C = Ce + Cl + Cs. (8.3)

Specifically, the contribution from spins is obvious from an abrupt drop of the heat

capacity at the Curie point of nickel (Tc = 628K) (Figure 8.6).
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The electron heat capacity is linear in temperature:

Ce = Ce0Te, (8.4)

where the heat capacity constant Ce0 is 6000 Jm−3K−2 for Co [182], 1064 Jm−3K−2 for

Ni [9] and 750 Jm−3K−2 for Pt. The linearity of the electron heat capacity comes from

a free-electron approximation [110, 183].

The heat capacity of the lattice sub-system can be described by Debye’s theory

[110, 183]:

Cl = 9NAk(
T

TD
)3

∫ TD
T

0

x4ex

(ex − 1)2
dx (8.5)

where NA is Avogadro’s number, TD is the Debye temperature (420 K for Fe, 385 K for

Co and 375 K for Ni [110]), and k is the Boltzmann constant (Figure 8.6).

Finally, the heat capacity of the spin system is estimated by subtracting electron

and lattice heat capacities from the total heat capacity (Equation 8.3).

8.4.2.2 Coupling Constants

The constants Gel, Ges, Gsl are empirical parameters for coupling between elec-

tron, lattice and spin sub-systems together. These parameters are material-specific and

do not depend on experimental conditions such as pump fluence or pump-probe laser

wavelength [184, 185]. The coupling constants are free parameters to optimize to the

experimental data.

8.4.2.3 Laser-Heating Term

I assume that the pulse profile has a Gaussian shape in time and is exponentially-

decaying through the sample thickness because of the sample absorption [184]:

P (t) = 0.94
1−R− T

τpδ
J exp(−x

δ
− 2.77(

t

τp
)2), (8.6)
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where R is sample reflectivity, T is sample transmission, τp is pulse duration, δ is

penetration depth, x is the probe thickness inside the sample and J is the laser fluence.

The reflectivity, transmission and penetration data of various materials can be found

from Reference [179, 186]. In this simulation, I choose the parameters as the following:

T = 0.38, R = 0.22, τp = 30 fs, δ = 14 nm for Ni interaction with 780 nm light. The

probe thickness is set to 9 nm corresponding to the attenuation of high-harmonics near

Ni M-edges from an x-ray database [13].

8.4.2.4 Heat Transport Term

The term κ∇2Tl describes heat transport via phonons through the substrate or

environment. However, phonon heat transport is usually on a nanosecond time scale,

which is too slow to consider in this simulation [58].

8.4.3 The Comparision between Experiment and Simulation Results

After applying all of the information above, I can initially calculate the temper-

atures of electrons, lattice and spins (Figure 8.7). The electron temperature is quickly

elevated because of the laser pulse. Then, electrons cool down by thermalizing with the

lattice and spins. From the value of coupling constants used in this simulation, spins

are more efficient for the energy transfer than lattice. As a result, spin temperature is

raised quickly comparing to lattice.

To relate temperatures to magnetization, I map the spin temperature to magneti-

zation with a spontaneous magnetization curve calculated by Weiss’s model (Appendix

1). Then, the simulation can be adjusted to the experimental data by optimizing the

coupling constants (Ges, Gel) to experimental data. Here I use a nonlinear curve-fitting

routine (nonlinfit in Matlab) to search for the best coupling constants. In addition,

the pump fluence is set as a free parameter.

From the fitting results, I found the spin-lattice (Gsl) coupling constant is not
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Figure 8.7: Simulation results for temperatures of electron, lattice and spin in nickel
after an excitation by a 2.25 mJ/cm2 pump pulse. The demagnetization dynamics are
a consequence from the temperature rise of the spin system.
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orthogonal to the electron-lattice (Gel) constant, i.e. both parameters cannot fit simul-

taneously to receive good error bounds of both parameters, which control the magne-

tization recovery parameter (τR). One of them has to be determined as a constant.

On the other hand, electron-spin coupling constants (Ges) and pump fluence (J) are

orthogonal because the former controls the demagnetization time (τM ), and the latter

determines the demagnetization amplitude (A).

The best fit coupling parameters are Gel = (0.93 ± 0.13) × 1016 Wm−3K−1,

Ges = (27.0 ± 2.5) × 1018 Wm−3K−1, and laser fluence is 1.61 ± 0.02 mJ/cm2. I set

the spin-lattice coupling Gsl to 3 × 1016Wm−3K−1 according to Beaurepaire et al [9].

Among these coupling parameters, spin-lattice coupling constant (Gsl) is the smallest

since the spin-lattice scatting is the least efficient relaxation channel [11].

With the same set of the coupling constants, I compare the calculated demagneti-

zation dynamics with the experimental data from Ni–Fe grating described earlier in this

chapter (Figure 8.8) . The simulated demagnetization dynamics are in reasonably good

agreement with the trend of the measurements. This agreement is not too surprising

because there are three free parameters to adjust to the experimental data, which are

the same as the three degrees of freedom to the demagnetization dynamcics (τM , τR,

A).

After calculating the appropriate values of coupling parameters, I would like to

calculate the dynamics as a function of pump fluence. I use the same set of coupling

constants because they are independent of pump fluence [184]. The amplitude of the

demagnetization (A) and the demagnetization times (τM ) are calculated as functions of

fluence from 1-4 mJ/cm2.

The simulation results are compared with the experimental data. I choose the

experimental data from four independent sources: our data from Ni–Fe grating (Section

3 and Section 4.1), our data from Ni grating, and the literature data by Koopmans et

al[21]. Moreover, this calculation matches with the theoretical result from Koopmans
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temperature model calculation presented here (red line).
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et al. although the three-temperature model simulation shown here is only based on

thermodynamic considerations. The agreement between the two independent calcula-

tions is due to the close relationship between the two formalisms. Koopmans et al.

treated electron-lattice relaxation and dynamics in the same way as presented here by

using an empirical coupling constant (Gel). One of the major differences is the spin

relaxation part. The authors of Reference [21] employed the microscopic Elliot-Yafet

mechanism to cause the spin-flip scattering and conserve angular momentum during the

demagnetization. In contrast, I simplify the analysis by introducing the spin-lattice and

spin-electron coupling constants.

The agreement between the four independent data sets benchmarks all of our

results from time-resolved demagnetization measurements in three ways. First, the data

confirm our high-harmonic identification technique at Ni M-edges from the diffraction

patterns containing both Fe and Ni (Figure 8.2), which is the same technique used to

distinguish between Ni and Fe in Permalloy. Second, the agreement with the data in

the literature proves that the gratings do not interfere with the ultrafast time dynamics,

and it is legitimate to use gratings as magnetic samples. Finally, we have a benchmark

for our measurement technique with the well-established MOKE technique in visible

wavelength. The results are in a good agreement despite the difference in the probe-

wavelength of light (60 eV vs 3 eV), electronic states involved (3p core levels vs 3d

valence levels), and experimental geometry (T-MOKE vs L-MOKE).

8.5 Conclusions

In conclusion, in the first half of this chapter, I compare the demagnetization

dynamics between Fe and Ni from Ni–Fe gratings. The result confirms our experimental

finding in Permalloy and Permalloy–Cu that the demagnetization dynamics of Ni are

delayed with respect to that of Fe. We observe that with identical optical excitations

on both elements, Fe demagnetizes faster than Ni. The results suggests that Fe is
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intrinsically more efficient for hot-electron-driven–spin-flip processes. Moreover, Fe and

Ni demagnetize independently, in contrast to the delay behavior found in Permalloy and

Permalloy–Cu because of the lack of exchange interaction to lock Fe and Ni together.

In the second half of this chapter, I present the fluence-dependent demagnetiza-

tion dynamics for Ni–Fe gratings. The demagnetization times agree with the simula-

tion results based on three-temperature model and a more advanced three-temperature

model given by Koopmans et al. [21]. In additional, experimental results from different

sources, i.e. Ni grating and Ni thin film from Reference [21] measured with optical

laser pulse, also follow the prediction by our model. These results provide an important

foundation for future magnetization dynamics studies with extreme-ultraviolet light

from high-harmonic generation.



Chapter 9

Conclusions and Magnetic Imaging

9.1 Conclusions

In this thesis, I report the first combined application of two well-established fields:

high-harmonic generation (Chapter 2) and extreme-ultraviolet magneto-optics (Chap-

ter 3) to explore one of the most exciting problems in magnetism: the laser-induced

demagnetization dynamics (Chapter 4). In previous chapters,

• I discuss the method and experimental apparatus for measuring the element-

selective magnetization dynamics with extreme-ultraviolet high harmonics (Chap-

ter 5).

• By use of the transverse magneto-optical Kerr effect, magnetic asymmetries in

reflectivity up to 30% are detected near M-shell absorption edges of Fe and

Ni in Permalloy (Chapter 6). With this large contrast, our group measured

hysteresis loops for Fe and Ni in Permalloy, which are identical because of the

strong ferromagnetic exchange coupling. In addition, we show that the magnetic

asymmetry decays exponentially with the metallic over-layer thickness in a few

nanometers corresponding to the penetration of harmonics into palladium. This

technique demonstrates the near-surface sensitivity of our probe light.

• We took advantage of the ultrafast time resolution and element-selectivity to
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study laser-induced demagnetization dynamics in Permalloy, Permalloy–Cu (Chap-

ter 7), and Fe–Ni binary grating (Chapter 8).

• We report that the asymmetry dynamics of Fe and Ni are delayed relative to

each other (Chapter 7). The delay time is significantly enhanced when the

exchange coupling is reduced by diluting copper into Permalloy. Exponential

fits to the data reveal that demagnetization of Ni is delayed with respect to

Fe by ∼10 fs in Permalloy and by ∼60 fs in Permalloy-Copper. We confirm

that the observed delays do not originate from (1) phase segregation in our

alloy samples, (2) hot-electron screening, and (3) experimental errors such as

time-zero determination.

• We describe the delayed magnetization dynamics by a simple model that in-

corporates a finite exchange-time factor into the magnetization rate equations

(Chapter 7). The data analysis indicates that Fe demagnetizes first after the

interval of the laser pulse while Ni remains unaffected until after the exchange

time. Afterwards, the magnetization of Ni is dragged down by Fe because of

the exchange coupling.

• We compare the demagnetization dynamics between Fe and Ni with identical

experimental conditions (Chapter 8) in Fe–Ni grating. Fe still demagnetizes

faster than Ni in qualitative agreement with our observations for Permalloy and

Permalloy–Cu.

• We measured fluence-dependent demagnetization dynamics. The demagnetiza-

tion times agree with the simulation results based on three-temperature model.

In addition, the experimental results are compared with both theoretical and

experimental magneto-optical Kerr effect in visible [21]. The agreement bench-

marks our technique for probing ultrafast demagnetization dynamics with a
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high-harmonic generation light source.

9.2 Magnetic Imaging

From the results presented earlier, we took advantage of two features of high-

harmonic generation and M-edge T-MOKE: element-selectivity and ultrafast time res-

olution. However, our studies do not take advantage of the potential for high spatial

resolution imaging. That is a consequence of the short wavelength of high harmonics. As

mentioned in the introduction (Chapter 1), future studies will require the incorporation

of nanomagnetic imaging with dynamical studies.

Beforehand, magnetic imaging with high-harmonic generation light source must

be demonstrated. Previously, our research group has shown that high harmonics are

capable of lensless microscopy by the coherent diffractive imaging technique [59, 187,

188]. In this work, high harmonic light is focused onto nano-structured samples and

recorded the diffraction patterns in the far field. Since the phase information is lost

during intensity measurements with light detectors (e.g. CCD), the phase must be

retrieved by iterative algorithms [189, 190, 191, 192] or alternatively by encoding the

phase into holograms [193, 194, 195, 188]. Both methods allow for a complete image

reconstruction by a single Fourier transform. In the past, a single high harmonic with

photon energy near 42 eV from argon [59] or near 90 eV from helium [196] must be

selected by multilayer-mirror monochrometers. Multiple-wavelength diffractive imaging

bypasses this requirement and improves the photon flux [61, 197]. Moreover, single-shot

experiments were recently demonstrated [198, 60]. Although, much attention has been

brought to the field, the imaging of magnetic materials with high-harmonic generation

light source has not yet been demonstrated.

In the synchrotron community, however, magnetic diffractive imaging is still an

active field because of two reasons; first, circular polarized x-rays are common in syn-

chrotrons through helical undulaters [199] or bending magnets [96]. With the accessibil-
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ity to circular-polarized radiation, the contrast for diffractive imaging in a transmission

geometry is provided by x-ray–magnetic-circular dichroism (Chapter 3). Second, the

contrast level provided by x-ray–magnetic-circular dichroism is large at L-shell absorp-

tion edges at soft x-ray wavelengths that are available in many synchrotrons worldwide.

The reported contrast levels are up to 50% for iron, cobalt and nickel [200]. X-ray

microscopes have been built based upon photo-emission electron spectroscopy [201] or

zone-plate microscopy [200]. In addition, lensless holography experiments have been

demonstrated [202, 203].

From these existing ideas, magnetic microscopy with a table high-harmonic light

source can be achieved in three ways. First, similar all of the results described in

this thesis, the transverse magneto-optical Kerr effect can be employed as a contrast

mechanism. The experiment must be conducted in reflection geometry, in contrast to

the transmission geometry used in all of the past microscopy efforts with the high-

harmonic light source. Lensless imaging in a reflection geometry is possible as recently

demonstrated in a synchrotron [204].

Second, an alternative approach is to first convert the polarization of high harmon-

ics to circular polarization. Unfortunately, there is not an efficient ‘quarter waveplate’

at extreme ultraviolet wavelength because of the strong absorption of any materials.

One idea is to induce some degree of ellipticity be use of the Faraday effect (Chapter 3)

as demonstrated with soft x-rays at L-edges [205]. However, at M-edges, the applica-

tions of this conversion technique are impractical since the light transmission and the

Faraday effects are significantly weaker. From the calculation presented in Chapter 3,

to convert a linearly polarized beam to a perfect circular-polarization at 55 eV needs an

Fe film that is 1125 nm thick1 . At this thickness, no harmonic can transmit through

any sample ( the transmission is in the order of 10−35!). A more reasonable method

to obtain circular polarization is by use of quadruple reflectors [99, 116] or multilayer
1 From the calculated value of about 2◦ of ellipticity induced per 50 nm Fe film at 55 eV.
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optics [206].

Finally, magnetic imaging in a transmission geometry with linearly polarized light

is possible by use of different physics from the magneto-optical effects. Recently, mag-

netic imaging was demonstrated by taking advantage of magnetic scattering with lin-

early polarized synchrotron radiation [207, 208]. The experiments employ the well-

known technique of small-angle magnetic scattering [209, 210, 211, 212, 213, 214, 215,

216, 217], used in the past to estimate the size and correlation of magnetic domains from

the angular distributions of the scattering patterns. In the past, the magnetic scattering

experiments were only limited in synchrotrons, but recently experiments were demon-

strated in free-electron laser [218] and high-harmonic generation [219] at M-edges. This

approach is the most efficient and promising among the three proposed methods.

Another challenge to overcome for the future magnetic-imaging experiment is to

reduce the wavelength of high-harmonic generation. For high harmonics at extreme ul-

traviolet, the diffraction limit only allows for the spatial resolution that suits for imaging

magnetic nanostructures up to the areal density of ∼1 Tbits/in2. However, in 2020, the

industry expects the areal density to be in 10 Tbits/in2 (Chapter 1). To be able to image

such small nanostructures, harmonics must be in soft x-rays at L-shell absorption edges.

To demonstrate this ability, our group recently reported high-harmonic generation at

soft x-ray wavelengths by driving the conversion with an intense mid-infrared laser. The

long wavelength driving laser extends the cut-off of high-harmonic generation (Chapter

2) [84, 83, 75]. The generated photons cover the L-shell absorption edges of Fe, Co and

Ni [64]. However, improvement of the soft x-ray flux for actual applications is still a

great engineering challenge.

But if all off these barriers can be overcome in the near future, we may see

the combination of ultrafast time resolution, nanoscale spatial resolution, and element
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selectivity in a magnetic experiment with a tabletop light source.
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Appendix A

Mean Field Theories

A.1 The Landau theory

In this chapter, a mean field theory by Landau will be summarized [220]. The

theory is useful for explaining the critical phenomena when the temperature of ferro-

magnetic materials approaches to Curie temperatures. The analysis starts with the free

energy that is defined as

G(H,T ) = F (M,T )− µ0HM. (A.1)

The magnetization (M) at equilibrium can be derived from this free energy by finding

M that minimizes the function. First, the free energy (G(H,T )) is expanded by a Taylor

series of magnetizationM . Only the even-order terms are in the expansion because of the

time reversal symmetry, i.e. without any external magnetic field (G(H = 0, T )), the free

energy should be identical regardless of the magnetization sign: F (M,T ) = F (−M,T ):

G(H,T ) = AM2 +BM4 + CM6 + ...− µ0HM (A.2)

where A,B,C... are dependent from the temperature. To simplify the algebra, the

series is expanded up to 4th order in M . The zeroth order in M is set to zero since it is

just an energy offset. The function form of the free energy can be deduced from three

observations (Figure A.1);
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(a) (b) (c)

G G G

M M M

T > Tc T < Tc T < Tc
H=0 H=0 H=0

-Ms Ms MeqMms

Figure A.1: Gibbs free energy from three special cases: with zero external magnetic
field H = 0 at (a) T > Tc (b)T > Tc, and (c) with applied magnetic field below Tc. The
magnetization at thermal equilibrium can be found from the minima of each free energy
curve. In (b), the two possible states of spontaneous magnetization are marked as Ms.
And, in (c), the magnetic field distorts the free energy curve resulting in only one global
minimum labeled as Meq. The other possible magnetization is in the metastable state,
Mms

(1) No spontaneous magnetization should be present above Tc. When T > Tc and

H = 0, G should have only one global minimum at M = 0.

(2) Magnetization should exist when T < Tc and H = 0. However, there is no

constraint for the magnetization to align at any particular direction, and both states

should have identical energy. Then G should have two local minima at ±Ms when

T < Tc and H = 0.

(3) If the magnetic field is applied blelow Tc, the symmetry of the free energy

function should be broken. And the magnetization, M , should have oriented along the

magnetic-field direction. And G should have only one global minima because of the

distortion in F (M,T ) by the term µ0HM .

In order to achieve the first two requirements, the second-order explansion con-

stant A has to be negative when T < Tc and positive when T > Tc, if B is always

positive. At this condition, A should change sign at T = Tc and can be written in the

form of a(T − Tc) as a > 0. Then Equation A.2 can be written as

G(H,T ) = a(T − Tc)M2 +BM4 − µ0HM (A.3)

To search for magnetization at equilibrium without an external magnetic field,
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i.e. spontaneous magnetization (Ms), we need to solve for the local minima from the

free-energy function when ∂G
∂M = 0, which is

2a(T − Tc)Meq + 4BM3
eq = µ0H, (A.4)

where eq is label to indicate the equilibrium state but with the presence of magnetic

field. By setting H = 0, the spontaneous magnetization becomes

Ms,eq = ±
√
a(T − Tc)

2B
. (A.5)

Here, we have derived an important equation showing that by the Laudau’s theory,

the spontaneous magnetization approaches Curie temperature by a square-root function.

However, with an external magnetic field, the magnetization is not exactly zero above the

Curie temperature. And this small amount of magnetization at the Curie temperature

can be found from Equation A.4,

Meq(T = Tc) = (
µ0H

4B
)

1
3 . (A.6)

In general, the equilibrium magnetization cannot be written in an analytical form,

and only numerical solution can be obtained (Figure A.2) by solving Equation A.4

numerically.

A.2 Weiss Molecular-Field Theory

The first attempt to explain ferromagnetic phenomena has been dedicated to

Pierre Weiss. He made an assumption about the existence of the“molecular magnetic

field,” which is proportional to magnetization:

Hw = nwM. (A.7)

The proportionality constant nw is typically in the range of 10-100, and this field

is added to the contribution from the applied magnetic field H.



179

0.7 0.8 0.9 1 1.1
0

0.1

0.2

0.3

0.4

0.5

Tc

T

M M
0

(a) (b)

(c)

(d)

Figure A.2: Equilibrium magnetization calculated from Landau’s theory normalized by
the value at T = 0K as a function of temperature normalized to Tc. The plots show
four different cases when the magnetic field H is increased from zero in (a) to (d).

To calculate the magnetization, the amount of magnetic moment per unit volume,

we need to perform the thermodynamic average,

〈mz〉 =
∑

imiexp(−εi/kBT )∑
i exp(−εi/kBT )

(A.8)

where i is summed over all possible J quantum number. The states are labeled by

quantum numbers MJ and have 2J + 1 in total. The energy of each state εi can be

written as

εi = εMJ
= µ0miHtot = µ0gµBMJ(nwM +H) (A.9)

These summations can be executed analytically [1], and the result is

〈mz〉 = m0BJ(x) (A.10)

where

BJ(x) =
2J + 1

2J
coth

2J + 1
2J

x− 1
2J

coth
x

2J
, (A.11)

where

x =
µ0gµB(nwM +H)J

kBT
, (A.12)

and m0 = gµBJ , which is the maximum magnetic moment allowed in each state.
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The magnetization which is a macroscopic version of 〈mz〉 can be found by scaling

the parameter by the number of atoms per volume,

M = n〈mz〉 = M0BJ(
µ0gµB(nwM +H)J

kBT
). (A.13)

With the presence of Weiss field (nwM), the average M becomes a transcendental

equation, and M is need to be solved numerically. For the spontaneous magnetization,

where H is set to zero, this equation is simplified to

Ms

M0
= BJ(x0), (A.14)

where x0 = µ0gµBnwMsJ
kBT

= µ0m0nwMs

kBT
. And by defining M0 = nm0, as magnetization at

T = 0K, the ratio becomes
Ms

M0
=

kBTx0

µ0nwnm2
0

. (A.15)

By solving these two equations numerically, we can calculate the spontaneous

magnetization; however, the Equation (A.15) can be parameterized with the param-

agnetic Curie constant (C) by considering the high temperature limit of the function

BJ(x) with x� 1:

B(J) ≈ J(J + 1)
3J

x. (A.16)

At high temperature limit, the Weiss’s term nw is not very important since we

will see in the short coming that this term is small at high temperature (and zero above

TC) as the ferromagnetic contribution to the magnetization is small. The magnetization

then becomes

M = n〈mz〉 = n(m0
(J + 1)

3J
)
µ0m0H

kBT
=
µ0g

2nJ(J + 1)µ2
B

3kBT
H. (A.17)

Near Curie temperature, the (paramagnetic) magnetization is linear in H and

inversely proportion to temperature T . This follows form of the Curie’s law where the

susceptibility χ = ∂M
∂H can be written as

χ =
C

T
, (A.18)
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Figure A.3: Spontaneous magnetization normalized by the maximum possible value of
magnetization, M0 = ngµBJ of the giving J quantum number, when all of the spin
states on all atoms are identical at the absolution zero. The temperature is scaled by
Curie temperature TC = nwC.

where the Curie’s constant C is µ0g2nJ(J+1)µ2
B

3kB
. Equation A.15 is then converted to

Ms

M0
=
T (J + 1)
3JCnw

x0. (A.19)

After writing the temperature in the reduced unit of T ′ = T
Cnw

, the solutions to

the simultaneous equations (Equation A.14 and A.19), for various values J is shown in

Figure A.3

Weiss’s model can reproduce the temperature function form of the spontaneous

magnetization curves of ferromagnets. The theory predicts the disappearance of mag-

netization at the temperature T ′ = 1. Therefore, it is appropriate to define the Curie

temperature as

Tc = Cnw. (A.20)

Finally, at T = 0K, Weiss model has the solution of M = M0, which makes sense

because all atomic states are in the ground state to minimize the total energy of the

system.



Appendix B

MATLAB Code for Calibrating High-Harmonic Spectra

In this appendix, I present a simple Matlab code for calibrating of high-harmonic

spectra from diffraction patterns from CCD camera employed in the thesis. The code

is useful in general for any spectrometry of the high harmonics. The code requires the

exact knowledge of grating period, the sample-to-CCD distance and CCD pixel size,

while rough ideas for angle of incident, photon-energy range.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% load data and background

data1 = importdata(’mean even.txt’);

data2 = importdata(’mean odd.txt’);

% background subtraction

bg1 = mean(data1(484:496));

bg2 = mean(data2(484:496));

data1 = data1 - bg1;

data2 = data2 - bg2;

% calculate the asymmetry

asy = (data1-data2)./(data1+data2);
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% plot two spectra

figure(22),plot(data1,’red’);

hold on

figure(22), plot(data2,’blue’);

hold off

% parameters

% grating period in m

d = 4E-6;

% CCD size in m

D= 26E-6;

% Plank’s constant

h= 6.6256E-34;

% speed of light in m/s

c= 299792458;

% electron charge in Coulomb

e = 1.602E-19;

% zeroth order pixel number

center = 606;

% the angle of incidence in radian

alpha = 45*180/pi;

% sample to CCD distance in m

z = 0.3;

% diffracted distance along the CCD chip of harmonics in pixel

n = abs(center-[408 402 395 386 377 365]);
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% Then define then harmonic order N corresponding to the above harmonics

% The number shown below are good for HHG from Ne with energy around % 70

eV.

% Use N = [21 23 25 27 29 31] for HHG from Ar for energy around % 42 eV

% If these set of number does not give a good fit, try changing % N by ±

2.

N = [23 25 27 29 31 33 35 37 39 41 43];

lamb bar = (h*c/e./N)’;

% fit x=lamb bar y=n with a Matlab function for E 0

% define fitting function in the form of (arcsin( x
E0d
− sin(α)) + α) zD

% and set d, D, alpha, and z as constants.

% then, determine ‘x’ as the only independent variable while E 0 % is the

only free parameter.

fit equation = sprintf(’(asin(x./E 0/%f-sin(%f))+%f)*%f/D’ ...

d,alpha,alpha,z,D);

fit fn= fittype(fit equation,’independent’,’x’,’coefficient’,’E 0’);

% setup the upper and lower bound together with the starting value % to the

fit

fit options = fitoptions(fit fn);

fit options.StartPoint = [1.5];

fit options.Upper = [3];

fit options.Lower = [0];

% start the fit and show the fit result (with the error value)
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fit result = fit(lamb bar,n,fit fn,fit options)

% plot the fit result

figure(55), plot(lamb bar,n,’.’);

hold on

figure(55), plot(fit result);

hold off

% extract the fit value

E 0 = fit result.E 0;

% label the harmonics with energy to check the quality of the fit

%plot spectrum with energy labels for first order pattern

all order = [21:2:43];

for harmonics=1:size(all order,2)

label = sprintf(’\\leftarrow %.2f eV’,all order(harmonics)*E 0);

pixel = round(center-(asin(2*h*c/e/all order(harmonics)/E 0/d...

-sin(alpha))+alpha)*z/D);

if pixel > 0 & pixel<1024

figure(22),text(pixel,data2(pixel)+100,label,’horizontalalignment’...

,’left’,’rotation’,90,’color’,’green’)

end

end

% export the spectra with x-axis as the photon energy

pix = [293:476];
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photon energy = h*c/e./(d*(sin(D/z*(center-pix)-alpha)+sin(alpha)));

dlmwrite(’data1.txt’,[photon energy’ data1(pix)],’delimiter’,’�’)

dlmwrite(’data2.txt’,[photon energy’ data2(pix)],’delimiter’,’�’)

dlmwrite(’asymmetry.txt’,[photon energy’ asy(pix)],’delimiter’,’�’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The outputs from this simple code are shown in Figure B.1 and B.2. I can

determine the photon energies of harmonics, although the quality of the spectrum is

bad, as in Figure B.2).
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Figure B.1: Output from the code. The raw diffraction patterns (red and blue for two
signs of magnetic field) from Permalloy grating at 45◦ are plot with the calibrated photon
energy from the fit indicated on the top. The harmonics used as an input for the fitting
are in red. With the optimized value of the fundamental energy, the code extrapolates
to lower energy harmonics (blue), the second order diffraction pattern (black) and the
negative diffraction order (Figure B.2).
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Figure B.2: Extrapolation of the fit results from the fitting code shown in Figure B.1
for the negative first (blue) and second (black) orders



Appendix C

Electronic Diagrams



190

KEPCO
PC12

1
3
5
7
9
11
13
15
17
19

25
27

2
4
6
8

26

32
34
36

R 

R can be calculated from Vin (R/10^4) = 10V 
where Vin is amplitude to the “current programming input.” 

Figure C.1: KEPCO PC12 (located at the back of the power supply) connection diagram
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