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When our Sun was young it rotated much more rapidly than it does now. Obser-

vations of young, rapidly rotating stars indicate that many possess substantial magnetic

activity and strong axisymmetric magnetic fields. There is furthermore an observed cor-

relation between the stellar rotation rate and surface magnetism. Yet the origins of the

magnetic activity or the correlation with rotation remain unclear. We conduct simula-

tions of dynamo action in rapidly rotating suns with the 3-D MHD anelastic spherical

harmonic (ASH) code to explore the complex coupling between rotation, convection

and magnetism. Here we study global-scale flows of differential rotation and meridional

circulation as well as dynamo action realized in the bulk of the convection zone for stars

rotating from one to fifteen times the current solar rate.

We find that more rapidly rotating stars generally have stronger flows of differ-

ential rotation but weaker meridional circulations that break into multiple cells in both

radius and latitude. Surprising localized states arise in the rapidly rotating simulations,

with convection modulated in longitude. In the most rapid rotators convection can be

entirely confined to narrow active nests which persist for thousands of days and propa-

gate through the shearing flow of differential rotation at their own distinct velocity.

We find that substantial organized global-scale magnetic fields are achieved by

dynamo action in these rapidly rotating suns. Striking wreaths of magnetism are built

in the midst of the convection zone, coexisting with the turbulent convection. This

is a great surprise, for many solar dynamo theories have suggested that a tachocline

of penetration and shear at the base of the convection zone is a crucial ingredient

for organized dynamo action, whereas these simulations generally do not include such
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tachoclines. Some dynamos achieved in these rapidly rotating states build persistent

global-scale fields which maintain amplitude and polarity for thousands of days. Other

dynamos can undergo cycles of activity, with fields varying in strength and even changing

in global-scale polarity. As the magnetic fields wax and wane in strength, the primary

response in the convective flows involves the axisymmetric differential rotation, which

begins to vary on similar time scales. Bands of relatively fast and slow fluid propagate

toward the poles on time scales of roughly 500 days. In the Sun, similar patterns are

observed in the poleward branch of the torsional oscillations, and these may represent

a response to poleward propagating magnetic field deep below the solar surface.

In one simulation, rotating at three times the solar rate, we explore how the

wreaths of magnetism are built and maintained by the differential rotation and the

turbulent correlations. We further explore whether a simple mean-field theory can

reproduce our 3-D results and find several discrepancies. We generally find that wreath-

building dynamos are present in every region of parameter space we have sampled,

including simulations of the solar dynamo. We find that previous simulations had

bottom boundary conditions which make wreath formation difficult if not impossible,

but that new simulations of the solar dynamo can produce strong magnetic wreaths.

Lastly, we show that wreaths of magnetism survive in the presence of a tachocline

of penetration and shear at the base of the convection zone. These wreaths fill the

convection zone and undergo quasi-regular reversals of global-scale polarity.
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Chapter 1

Convection, Rotation and Magnetism

We live near a magnetic star and our Earth is embedded within its magnetized

wind. The surface of the Sun is covered in magnetism on all scales, with global-scale

structures including prominences that reach high into the solar atmosphere (Fig. 1.1a)

as well as smaller concentrated magnetic structures like sunspots, where the magnetism

becomes strong enough to largely halt the turbulent convection leaving dark regions at

the surface (Fig. 1.1b). On the smallest scales visible at the surface, magnetic fields

are swept aside by vigorous granulation which are convective cells that overturn every

10-15 minutes and have flows that are near the speed of sound. The magnetism collects

in the surrounding network of downflow lanes, where it is swept out by the slower

flows of supergranulation, whose characteristic timescales are closer to a day. There the

magnetism traces out the supergranular network, and expands outwards into the solar

chromosphere and corona.

Solar magnetism is far from being static, and it evolves on many timescales, with

a prominent and regular eleven-year cycle of sunspots and global-scale polarity reversals.

We stand at the start of a new cycle now (called cycle 24); few sunspots are present

on the solar disk and eruptive events and space storms are rare. Over the next eleven

years we will likely see spots emerging at the surface, initially at higher latitudes (near

±30◦) and then at lower and lower latitudes until, near the end of the cycle, they appear

almost at the solar equator. Time-latitude maps of spot emergence form characteristic
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Figure 1.1 — Solar magnetism at many scales. (a) On global-scales, a large prominence
lifting off the limb of the Sun is revealed in this SOHO EIT image. A scaled-image of the
Earth (inside blue circle) is provided for comparison. (b) On finer scales, as seen in this
image from the SSVT, sunspots at the surface are regions of strong magnetism. Tick
marks indicate 1Mm spacings. Individual sunspots are roughly the size of the Earth.

“butterfly” patterns and these diagrams illustrate the migration of the active latitudes

as the cycle progresses (Fig.1.2a). When sunspots emerge at the solar surface, they

generally have characteristic polarities and orientations. Spots can be large or small,

with most as large as the Earth or larger.

Within the sunspots, the magnetism can evolve on very short timescales. In some

active regions the strong magnetic fields reconnect, leading to explosive releases of energy

in the form of high-energy photon flares and eruptive plasma coronal mass ejections. As

these photons and magnetized plasma storms strike the Earth’s magnetosphere, they can

profoundly affect our modern society, imperiling astronauts and satellites in space and

scrambling communications and navigation systems on the ground. The largest solar

storms can threaten the very infrastructure of national power grids and can disrupt or

destroy computational systems.

As the cycle progresses, the sunspots will become more numerous, peaking in

number roughly midway through (Fig. 1.2b). Generally, the number of sunspots present

on the solar disk increases rapidly at the start of a new solar cycle and then declines

more gradually. It is during the later half of the cycle that the largest storms and
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Figure 1.2 — Temporal variation of global-scale solar magnetism. (a) Butterfly di-
agram, or time-latitude map, showing emergence of sunspots at the surface. When a
new cycle begins, sunspots emerge first at high latitudes. As time passes, they become
more numerous and appear at lower latitudes. When their number is near maximum,
the global-scale polarities reverse. As their number declines and the sunspots approach
the equator, a cycle begins anew with opposite polarity sunspots. (b) Percentage of the
visible solar disk that is covered by sunspots. These figures adapted from Hathaway
(2009).

eruptive events tend to occur, though major flares and eruptions can occur at any time.

Near the middle of the roughly eleven-year solar cycle, when the number of sunspots

is near maximum, the magnetic poles of the Sun flip in polarity. As the number of

sunspots declines and the active latitudes approach the equator, a cycle begins anew

with sunspots of opposite polarity emerging at high latitudes. Though the timing of the

solar cycle is fairly regular, the magnetic activity shows modulation on longer timescales

as well. Some cycles are strong, with many spots, while some cycles are weak. At

times,as during the Maunder Minimum, the surface of the Sun has remained barren of

sunspots for decades.
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1.1 Operation of the Solar Dynamo

Solar magnetism and the cycles of magnetic activity must arise from organized

dynamo action in the Sun’s interior. This dynamo action is achieved by turbulent

plasma motions in the solar convection zone, which spans the outer 29% of the Sun in

radius. Here vigorous convective motions and rotation couple to drive the differential

rotation and meridional circulation. These flows are important ingredients in stellar

dynamo theory, and in many theories the differential rotation plays an important role

in building and organizing the global-scale fields. The meridional circulations may

be important for returning flux to the base of the convection zone and advecting it

equatorward, enabling cycles of magnetic activity.

The manner in which the Sun achieves global-scale dynamo action is gradually

being sorted out. The seat of this dynamo is generally thought to be located in the

tachocline, an interface of shear between the differentially rotating convection zone and

the radiative interior which is in solid body rotation (e.g., Parker 1993; Charbonneau

& MacGregor 1997; Ossendrijver 2003). Helioseismology, which uses acoustic oscilla-

tions to probe the radial structure of the Sun as well as convective flows beneath the

surface, has revealed that the solar differential rotation profile observed at the surface

prints throughout the bulk of the convection zone with two important regions of shear

(Fig. 1.3a). The near-surface shear layer occupies the outer 5% of the Sun while the

tachocline is at the base of the convection zone and separates the strong differential

rotation of that region from the uniform rotation of the deeper radiative interior (e.g.,

Thompson et al. 2003; Thompson 2009).

The stably stratified tachocline may also provide a region for storing and ampli-

fying coherent tubes of magnetic field which may eventually rise to the surface of the

Sun as sunspots. It has generally been believed that magnetic buoyancy instabilities

may prevent fields from being strongly amplified within the bulk of the convection zone
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Figure 1.3 — Differential rotation and the solar dynamo. (a) Helioseismically deter-
mined differential rotation profile for the Sun, showing the best determination to date
of the internal angular velocity Ω profile (Thompson 2009), with fast (red) equator and
slow (blue) poles. Two layers of radial shear are prominently visible, one near the sur-
face and one at the interface between the convection zone and the radiative interior.
This deeper layer, the tachocline, may be the seat of the global solar dynamo. (b) Sketch
of processes likely at work in the solar dynamo. In interface dynamo models, magnetic
fields in the convection zone are wound up by helical convective flows (1) and pumped
downwards into the tachocline by the compressible convection (2). There the field is
organized and stretched into global-scale structures (3) which may become buoyantly
unstable and rise to emerge at the surface as sunspots (4). As they transit the convection
zone, the magnetic tubes are influenced by rotation and some of the field is shredded
by convection, closing the loop back to (1). Meridional circulations may additionally
contribute to the transport of field down to the tachocline.

itself (Parker 1975). In the now prevalent “interface dynamo” model, solar magnetic

fields are partly generated in the convection zone by helical convection, then trans-

ported downward into the tachocline where they are organized and amplified by the

shear. Ultimately the fields may become unstable and rise to the surface. This model

is illustrated in Figure 1.3b.

In the interface dynamo model, magnetic fields are amplified by turbulent flows

throughout the convection zone. This “magnetic chaff” is pumped downwards into the

tachocline by asymmetries in the compressible convection, which generally has fast and

narrow downflows and slower and broader upflows. In the tachocline, the fluctuating

magnetic fields are stored and gradually stretched out by the differential rotation into

global-scale coherent sheets of magnetism. These magnetic sheets become strong enough
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to undergo magnetic buoyancy instabilities, and this may break up the sheet into rising

magnetic tubes of predominantly toroidal magnetic field. If these tubes survive their

transit of the convection zone, they emerge at the surface as sunspots. Coriolis forces

cause the rising tubes to twist, which leads to the observed tilt angle of emerging

sunspots and may contribute to the global-scale poloidal field.

Though some tubes of magnetism may survive, many more are likely to be shred-

ded by the intense turbulence in the convection zone. Generally, to emerge at the

surface, the average magnetic energy density of the tube must exceed the kinetic energy

density of the strongest downflows that the tube encounters during its rise (e.g., Cline

2003; Fan et al. 2003; Abbett et al. 2004; Jouve & Brun 2009). This strong criteria may

be difficult to satisfy in the solar tachocline (Vasil & Brummell 2008, 2009). As the mag-

netic structures are shredded, helical convection twists the toroidal field into poloidal

field. This poloidal field is amplified in the convection zone before being caught in the

vigorous downflows and pumped into the tachocline closing the loop on the dynamo

circuit, though some may also be transported by the global-scale meridional circula-

tions. This dynamo model and the cartoon sketch shown in Figure 1.3b summarize the

fundamental features found in most modern solar dynamo theories (e.g., Charbonneau

2005; Miesch 2005).

1.2 Theoretical Treatments of Stellar Convection

The elements of the solar dynamo are often interpreted in a mean-field framework,

where the complex turbulent correlations in the induction equation are linearized in

terms of the global-scale magnetic fields. In these approaches, the magnetism and

plasma flows of the interior are separated into mean components and fluctuations about

those means. These means are usually taken over large spatial scales and long temporal

epochs, and are often assumed to be much larger in amplitude than the fluctuating

magnetic and velocity fields.
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The language of mean-field theory has become the language of dynamo theory.

In this terminology, the production of mean poloidal field through the winding up of

toroidal field by helical convection is called an α-effect (e.g., Moffatt 1978; Steenbeck

et al. 1966). The stretching of mean poloidal field into mean toroidal field by the

shearing flows of differential rotation is called an Ω-effect.

In the solar dynamo, the tachocline of shear at the base of the convection zone is

thought to play a key role by providing a region where the Ω-effect can operate without

turbulent convection shredding and disrupting the global-scale toroidal fields. The fields

there are thought to grow in strength until magnetic buoyancy carries them upwards

into the convection zone. There, some of this toroidal field is shredded and turned into

poloidal field by the α-effect from the convection and by Coriolis forces on the rising tube.

Some flux survives to erupt at the solar surface, creating sunspots, active regions and,

eventually, explosive solar magnetic activity. Some of the poloidal field generated by

this process is pumped downward by convection into the tachocline where it is amplified

into toroidal field, thus completing the dynamo cycle. Conceptual models similar to this

are called “α − Ω” dynamos, with the α-effect dominating the production of poloidal

field and the Ω-effect largely responsible for the production of the toroidal fields. These

models and variants incorporating the global-scale flow of meridional circulations have

shaped our current views on solar and stellar magnetism. Other variants including α2

and α2Ω dynamos are also proposed for the Sun and particularly for other stars (e.g.,

Küker & Rüdiger 1999, 2005b; Chabrier & Küker 2006).

Though instructive, these theories fall short in describing the fully nonlinear dy-

namo processes occurring in real stars. A fundamental assumption of mean-field theories

is that the large-scale fields can be separated from the small-scale fluctuations, and in

these theories the fluctuations are often assumed to scale in strength with the mean

fields. In the turbulent environment of stellar convection, fields of all scales interact

and are of similar magnitude, with strong local fluctuations that are not dependent on
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the weaker large-scale fields. Major 3-D simulations (e.g., Brun et al. 2004; Browning

et al. 2006) and observations suggest that, at least in the bulk of the convection zone,

magnetism occurs over a broad range of scales with little separation between “mean”

scales and fluctuations, and that the mean fields are not the dominant players in the

overall magnetism. The impact of this lack of scale separation in both the magnetic

and velocity fields is unclear and a subject of active research in both the dynamo and

turbulence communities. As an additional concern, mean-field theory is fundamentally

a linear theory, and while it can describe the initial growth of magnetic fields it cannot

address their ultimate saturation as the fields strengthen and react back on the flows

that create them. Some attempts have been made to include such nonlinear effects,

with “α-quenching” and “Ω-quenching” terms added to the mean-field equations, but

such treatments are fairly ad-hoc and the subject of substantial debate.

1.3 Exploring Magnetism in Other Stars

Our Sun is not the only magnetic star. Indeed, magnetism appears to be a

ubiquitous feature in stars across the Hertzsprung-Russell (H-R) diagram. When our

Sun was younger, it must have rotated much more rapidly, as is suggested both by the

solar wind which continually removes angular momentum from the Sun and by many

observations of rapidly rotating solar-like stars. Some of these young suns are observed

to rotate as much as 50 times faster than the current solar rate. In more rapidly rotating

suns the coupling between rotation and convection is strong and must continue to drive

global scales of flow. These young solar-type stars, which rotate much more rapidly

than the sun’s current rate, possess much stronger magnetic activity.

Rotation appears to be inextricably linked to stellar magnetic activity. Obser-

vations indicate that in stars with extensive convective envelopes, chromospheric and

coronal activity – which partly trace magnetic heating of stellar atmospheres – first

rise with increasing rotation rate, then eventually level off at a constant value for ro-
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Figure 1.4 — Observational rotation-activity correlations in main-sequence stars. (a) X-
ray activity measured by its luminosity Lx as a function of rotation period, showing
growth and saturation phases of the relationship across broad populations of stars.
(b) Different stellar types (approximately indicated) saturate at various levels of activity
Lx and reach saturation at rotation rates dependent on spectral type. The growth of
activity with more rapid rotation is similar in all G-, K- and M-type stars (adapted
from Pizzolato et al. 2003). (c) Despite their lack of tachoclines, most fully-convective
stars (types M3.5-M9) show signs of magnetic activity, here measured by Hα emission.
Indeed, the fraction of active stars increases with decreasing mass (adapted from West
et al. 2008).

tation rates above a mass-dependent threshold velocity (e.g., Noyes et al. 1984; Patten

& Simon 1996; Delfosse et al. 1998; Pizzolato et al. 2003). Activity may even decline

somewhat in the most rapid rotators (e.g., James et al. 2000). This rotation-activity

correlation is shown in Figure 1.4a, b for a variety of solar-like stars. Similar correspon-

dence is observed between rotation rate and estimates of the unsigned surface magnetic

flux (Saar 1996, 2001; Reiners et al. 2009).

Global-scale magnetic activity has also been observed in the lower-mass main-

sequence (dwarf) K- and M-type stars. Their convection zones occupy an increasingly

large fraction of the interior and their tachoclines must play a diminishing role in the

overall dynamics, being located in ever deeper regions of the star. Even fully convective

stars, such as M-dwarfs with masses below 0.35 solar masses, show strong surface mag-

netism through observations of Hα emission (e.g., Hawley et al. 1996; Mohanty & Basri

2003; West et al. 2004, 2006, 2008) and magnetically sensitive FeH line ratios (Reiners &

Basri 2007, 2008). Though these stars possess no tachoclines and should have distinctly

different stellar dynamos than the sun, there is no observed break in magnetic activ-
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ity with stellar type. Indeed, the fraction of magnetically active stars increases as the

stellar mass decreases (Fig. 1.4c). These stars also show rotation-activity correlations.

Recent observations of magnetic fields in a fully convective M-dwarf by Donati

et al. (2006) are raising further questions for stellar dynamo theory. There, Zeeman

Doppler imaging is used to map the surface of the rapidly rotating and fully convective

star v374 Peg. These observations indicate strong, organized axisymmetric fields that

have strengths of a few kilo-Gauss but no surface differential rotation. The global-

scale fields appear to be stable on one-year timescales (Morin et al. 2008). The stable

axisymmetric nature of these fields is in striking contrast to theoretical predictions for

fully convective stars (e.g., Küker & Rüdiger 1999, 2005b; Chabrier & Küker 2006).

Observations of stellar magnetism are indirectly raising serious questions about the

current paradigm of solar dynamo theory, where the tachocline is thought to play a

crucial role in amplifying and organizing the global-scale fields and the radial velocity

shear of differential rotation is a necessary ingredient for dynamo action.

The rotation-activity relationship is tightened across the full range of solar-like

stars when stellar rotation is given in terms of the Rossby number Ro ∼ P/τc, with P the

rotation period and τc an estimate of the convective overturning time (e.g., Noyes et al.

1984). Expressed in this fashion, a common rotation-activity correlation appears to

span spectral types ranging from late F to late M (e.g., Patten & Simon 1996; Mohanty

& Basri 2003; Pizzolato et al. 2003; Reiners & Basri 2007). These stellar magnetic fields

must be generated by dynamo action in the stellar convection zones. At present, the

rotational dependence of this dynamo action is unknown. In mean-field theory, both

generation terms are sensitive to rotation – the α-effect because it is proportional to

the kinetic helicity of the convective flows, which sense the overall rotation rate, and

the Ω-effect because more rapidly rotating stars are generally expected to have stronger

differential rotation. But the detailed nature of these effects in the solar dynamo and

the appropriate scaling with rotation has been very difficult to elucidate.
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Rotation and stellar magnetism are inextricably linked, as the stronger magnetic

fields in rapidly rotating stars are thought to produce a larger outward transport of

angular momentum by the magnetized stellar winds, which slowly spin down the stars.

(e.g., Weber & Davis 1967; Skumanich 1972; MacGregor & Brenner 1991; Matt & Pu-

dritz 2008). The time needed for significant spindown appears to be a strong function of

stellar mass (e.g., Barnes 2003; West et al. 2004). Solar-mass stars slow less rapidly than

somewhat less massive G and K-type stars, but still appear to lose much of their angular

momentum by the age of the Hyades (about 1 Gyr). They spin more slowly yet when

they are as old as the Sun. Present day observations of the solar wind likewise indicate

that the current angular momentum flux from the Sun is a few times 1030 dyne cm (e.g.,

Pizzo et al. 1983), suggesting a time-scale for substantial angular momentum loss of a

few billion years. Analyses of stellar spindown as a function of age and mass have thus

provided further constraints on stellar magnetism and its connections to rotation.

In addition, recent observations of solar-type stars suggest that the topology of the

global-scale fields changes with rotation rate, with the rapid rotators having substantial

global-scale toroidal magnetic fields at their surfaces (Petit et al. 2008). The overall

picture that emerges from these observations is that rapid rotation, as realized in the

younger Sun and in a host of other stars, can aid in the generation of strong magnetic

fields, and that young stars tend to be rapidly rotating and magnetically active, whereas

older ones are slower and less active (e.g., Barnes 2003; West et al. 2004, 2008).

A full theoretical understanding of the rotation-activity relationship, and likewise

of stellar spindown, has remained elusive. Some aspects of these phenomena probably

depend upon the details of magnetic flux emergence, chromospheric and coronal heating,

and mass loss mechanisms – but the basic existence of a rotation-activity relationship is

widely thought to reflect some underlying rotational dependence of the dynamo process

itself (e.g., Knobloch et al. 1981; Noyes et al. 1984; Baliunas et al. 1996).
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Research into the stellar magnetism of solar-like stars is timely. These lower-

mass stars are the primary targets of the NASA Kepler mission and the ESA CoRoT

satellite, which both seek to find the signatures of Earth-like planets orbiting other

stars and to perform asteroseismology on some of these stars. These solar-like stars

have large habitable zones and are the closest analogues to our own Sun and solar

system. In the search for their possible life-bearing worlds, we will learn much more

about their host stars. Kepler will observe about 105 stars over the course of the mission,

searching for other Earths by the transit method. While searching for the slight dips

in stellar light from these eclipses, the satellite will make detailed measurements of

surface magnetic activity and differential rotation through high-precision photometry.

For several hundred low-mass stars, Kepler will also carry out asteroseismology, which

will yield new insights into the masses, sizes and ages of these stars, possibly along with

measurements of their convection zone depths and internal rotation. Such observations

are likely to lead to a renaissance in stellar physics, challenging our views on stellar

structure, aging processes and stellar magnetism. A much better understanding of

stellar magnetism and activity may well shed new light on the solar dynamo and may

be crucial for reliably detecting distant Earths.

Probing the nature of these dynamos and the impact of faster rotation on the

internal stellar dynamics requires both accurate observations and detailed dynamical

models of the stellar interiors. The faster flows of differential rotation are much easier

to detect than the relatively slow motions associated with meridional circulations; ob-

servations across the HR diagram indicate that differential rotation is a common feature

in many stars. Asteroseismic observations with the Kepler and CoRoT missions may

soon begin to constrain the internal rotation structure. At present only measurements

of surface differential rotation are available, as assessed with a variety of techniques

including photometric variability (Donahue et al. 1996; Walker et al. 2007), Doppler

imaging (Donati et al. 2003) and Fourier transform methods (Reiners & Schmitt 2003).
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At our current state of knowledge, stellar magnetism raises three fundamental

questions, which missions like Kepler and CoRoT will begin to address in great obser-

vational detail

(1) Where are global-scale magnetic fields built and organized within the interiors

of stars like our sun?

(2) Why is there a correlation between rotation rate and magnetic activity, and

why is this behavior similar in stars with very different convection zone depths?

(3) What role do tachoclines play in stellar dynamos?

To probe these questions more deeply, we can now turn to simulations of magnetohy-

drodynamic (MHD) convection and dynamo action. These large computations must be

carried out on supercomputers, and these theoretical tools are helping to sort out the

mysteries of stellar magnetism.

1.4 Global Models of Stellar Dynamos

Advances in supercomputing have enabled three-dimensional (3-D) simulations

that are beginning to capture many of the dynamical elements of the solar convection

zone. Early global-scale simulations of solar convection by Gilman (1975, 1977, 1979)

under the Boussinesq approximation were extended by the pioneering work of Gilman

& Glatzmaier (1981). Such global-scale simulations of solar convection conducted in

full spherical shells sought to capture the largest scales of convective flows and began to

study how they can establish differential rotation and meridional circulations. However,

the range of spatial and temporal scales present in solar convection are vast and thus

the computational resources required by the modeling are daunting.

Through recent advances in massively parallel computer architectures, 3-D solar

convection simulations are now beginning to make detailed contact with the observa-

tional constraints provided by helioseismology (e.g., Brun & Toomre 2002; Miesch et al.
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Figure 1.5 — Snapshot of 3-D ASH solar dynamo simulation which includes a tachocline.
This layer of shear and penetration is located at the base of the convection zone. (a) Ra-
dial velocity in orthographic projection at 0.88 R⊙, showing the north pole and equa-
torial regions with upflows in light tones and downflows in dark tones (scale in m/s).
(b) Its mean profile of angular velocity Ω(r, θ), with a solar-like differential rotation
profile in the bulk of the convection zone and near uniform rotation in the deeper in-
terior. (c) Radial cuts of Ω at selected latitudes. These simulations are beginning to
capture in a self-consistent fashion the key ingredients of latitudinal and radial shear.
(d) Profile of temporally- and azimuthally-averaged longitudinal magnetic field 〈Bφ〉,
with substantial mean field present in the tachocline and little in the convection zone
above. (e) Accompanying mean poloidal field lines, with polarity indicated by color.
These snapshots are from a model based on the simulation of Browning et al. (2006).

2006, 2008). Other efforts have focused on the vigorous turbulence and the dynamo

action achieved in the bulk of the solar convection zone (Brun et al. 2004), with recent

studies beginning to include the tachocline as a region of penetrative overshoot, shear,

and magnetic field amplification (Browning et al. 2006). Facilitated by these compu-

tational advances, models of convection and dynamo action within the cores of A-type

stars have also begun to be investigated (Browning et al. 2004; Brun et al. 2005; Feath-

erstone et al. 2007, 2009), as have models of fully-convective M-dwarf stars (Browning

2008) and red giant branch stars (Palacios & Brun 2007; Brun & Palacios 2009).

To date, most models of stellar differential rotation and dynamo action in stars

like our Sun that rotate more rapidly have been carried out in 2-D under the simplifying

assumptions of mean-field theory (e.g., Rüdiger et al. 1998; Küker & Stix 2001; Küker

& Rüdiger 2005a,b). The time is ripe to pursue the question with fully 3-D simulations

of global-scale stellar convection.
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Simulations of the global-scale solar dynamo have generally affirmed the view

that the tachocline may play a central role in building the globally-ordered magnetism

in the Sun. Early 3-D simulations of solar convection without a tachocline at the base

of the convection zone achieved dynamo action and produced magnetic fields which

were strongly dominated by fluctuating components with little global-scale order (Brun

et al. 2004). When a tachocline of penetration and shear was included, remarkable

global-scale structures were realized in the tachocline region, while the convection zone

remained dominated by fluctuating fields (Browning et al. 2006). These results are

illustrated in Figure 1.5.

These simulations are making good progress toward clarifying the elements at

work in the operation of the solar global-scale dynamo, but for other stars many ques-

tions remain. In particular, observations of large-scale magnetism in fully convective

M-stars (Donati et al. 2006), along with the persistence of a rotation-activity correla-

tion in such low-mass stars, hint that perhaps tachoclines may not be essential for the

generation of global-scale magnetic fields. This view is partly borne out by 3-D simu-

lations of M-dwarfs under strong rotational constraints (Browning 2008), where strong

longitudinal mean fields were realized despite the lack of either substantial differential

rotation or a stable interior and thus no classical tachocline. Major puzzles remain in

the quest to understand stellar magnetism and its scaling with stellar rotation.

With growing computational resources available, the time has come to extend

these solar simulations to broader classes of stars. Such studies will enhance our un-

derstanding of stellar dynamo action, by making detailed contact with the evolving

observations of stellar magnetism in stars like our sun. Studying dynamo action in

other stars is likely to shine new light on the uncertain physical processes at work

within the solar dynamo.
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1.5 Convection and Dynamo Action in Rapidly Rotating Suns

Encouraged by the success of the solar simulations, we have begun exploring

convection and dynamo action in younger and more rapidly rotating suns in this thesis.

We have found that younger suns likely possess a much stronger differential rotation

and that the flows of meridional circulation become weaker with more rapid rotation.

At high rotation rates, the convection becomes strongly modulated in strength with

longitude. Striking localized patterns of convection emerge at the equator, and these

active nests of convection dominate the transport of heat and angular momentum in

that region. At the highest rotation rates, the convection can be entirely confined to

narrow intervals (or active nests) in longitude.

Modulated convection has persisted under more turbulent conditions and the

active nests of convection appear in some dynamo simulations as well. When present,

these nests of localized convection persist for long intervals of time and despite their

small filling factor maintain a strong differential rotation. The emergence of spatially

localized convective states has been observed in other systems, particularly in theoretical

studies of doubly-diffusive systems such as thermosolutal convection (e.g., Spina et al.

1998; Batiste et al. 2006), in laboratory studies of convection in binary fluids (e.g.,

Surko et al. 1991), and in simulations of magnetoconvection where isolated “convectons”

have been observed (Blanchflower 1999). In shells of rapidly rotating fluid, temporally

intermittent patches of localized convection emerged in Boussinesq simulations of the

geodynamo (Grote & Busse 2000) and in anelastic simulations of convection in young

suns with much deeper convection zones (Ballot et al. 2006, 2007). In many of these

systems, spatial modulation occurs in the weakly nonlinear regime close to the onset of

convection. In contrast, our simulations of stellar convection in younger suns are in a

regime of fully developed turbulent convection.
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We have begun preliminary simulations of the dynamo action possible in these

stars and have found several surprises. These MHD simulations span the convection zone

alone, as the nature of tachoclines in more rapidly rotating suns is at present unclear.

We find that a variety of dynamos can be excited, including steady and oscillating states,

and that dynamo action is substantially easier to achieve at these faster rotation rates

than in the solar simulations. Some of the oscillating simulations undergo quasi-regular

global-scale polarity reversals, with the mean toroidal and poloidal fields exchanging

polarities.

In these rapidly rotating solar-type stars, substantial global-scale organization

of magnetic fields can occur in the middle of the convection zone. These wreaths of

magnetism fill the convection zone and appear to be a general feature of our dynamos,

appearing now in our solar dynamos as well. Generally, we find that the dynamos

operating in the rapidly rotating suns may not require the presence of a tachocline,

being able to instead organize global-scale fields in the bulk of their convection zones.

We describe briefly in Chapter 2 the 3-D magnetohydrodynamic anelastic spher-

ical harmonic simulation code called ASH and the parameter space explored by our

simulations that are carried out in spherical shells. In Chapter 3, we discuss the nature

of convection realized in more rapidly rotating stars and the emergence of spatially-

localized patterns of convection. Here we also examine the global-scale flows realized

in our simulations, including differential rotation and meridional circulation, and their

scaling with more rapid rotation. A more detailed exploration of the active nests of

convection is presented in Chapter 4.

We then turn to dynamo simulations, examining in Chapter 5 the persistent

wreaths of magnetism achieved in a rapidly rotating dynamo rotating at three times

the current solar rate. In Chapter 6 we examine time-dependent behavior and organized

global-scale polarity reversals in a dynamo rotating five times faster than the Sun. We

return in Chapter 7 to the three solar dynamo with persistent magnetic wreaths and
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examine how those global-scale structures are created and maintained. In Chapter 8 we

explore the broad parameter space sampled by rapidly rotating dynamos spinning at up

to fifteen times the solar rate. We find that magnetic wreaths are a nearly ubiquitous

feature in all of these simulations. Here we also return to the Sun itself and find wreaths

of magnetism as well. We further briefly consider convective and dynamo processes at

work in older, more slowly spinning suns. In Chapter 9 we show preliminary results for

wreath-building dynamos that include tachoclines of shear and penetration. We find

that magnetic wreaths continue to fill the convection zone and undergo cycles of polarity

reversal. Here we summarize our explorations of rapidly rotating dynamos and look to

projects of the future.



Chapter 2

Elements in Modeling 3-D Stellar Convection and Dynamo Action

To study the coupling between rotation, magnetism and the large-scale flows

achieved in stellar convection zones, we must employ a global model which simultane-

ously captures the spherical shell geometry and admits the possibility of zonal jets and

large eddy vortices, and of convective plumes that may span the depth of the convection

zone. The solar convection zone is intensely turbulent and microscopic values of viscos-

ity and magnetic and thermal diffusivities in the Sun are estimated to be very small.

Numerical simulations cannot hope to resolve all scales of motion present in real stellar

convection and must instead strike a compromise between resolving dynamics on small

scales and capturing the connectivity and geometry of the global scales. Here we focus

on the latter by studying a full spherical shell of convection.

2.1 Anelastic MHD Formulation

Our tool for exploring MHD stellar convection is the anelastic spherical harmonic

(ASH) code, which is described in detail in Clune et al. (1999). The implementation

of magnetism is discussed in Brun et al. (2004). ASH solves the 3-D MHD anelastic

equations of motion in a rotating spherical shell using the pseudo-spectral method and

runs efficiently on massively parallel architectures. We use the anelastic approximation

to capture the effects of density stratification without having to resolve sound waves

which have short periods (about 5 minutes) relative to the dynamical time scales of the
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global scale convection (weeks to months) or possible cycles of stellar activity (years

to decades). This criteria effectively filters out the fast magneto-acoustic modes while

retaining the slow modes and Alfvén waves. Under the anelastic approximation the

thermodynamic fluctuating variables are linearized about their spherically symmetric

and evolving mean state, with radially varying density ρ̄, pressure P̄ , temperature T̄

and specific entropy S̄. The fluctuations about this mean state are denoted as ρ, P ,

T and S. In the reference frame of the star, rotating at average rotation rate Ω0, the

resulting MHD equations are:

∇ · (ρ̄v) = 0 , (2.1)

∇ · B = 0 , (2.2)

ρ̄

[
∂v

∂t
+ (v · ∇)v + 2Ω0 × v

]
=

−∇(P̄ + P ) + (ρ̄ + ρ)g +
1

4π
(∇ × B) × B − ∇ · D,

(2.3)

∂B

∂t
= ∇ × (v × B) − ∇ × (η∇ × B), (2.4)

ρ̄T̄

[
∂S

∂t
+ v · ∇(S̄ + S)

]
=

∇ ·
[
κrρ̄cp∇(T̄ + T ) + κ0ρ̄T̄∇S̄ + κρ̄T̄∇S

]

+
4πη

c2
j2 + 2ρ̄ν

[
eijeij −

1

3
(∇ · v)2

]
,

(2.5)

where v = (vr, vθ, vφ) is the local velocity in the stellar reference frame, B = (Br, Bθ, Bφ)

is the magnetic field, j is the vector current density, g is the gravitational acceleration,

cp is the specific heat at constant pressure, κr is the radiative diffusivity and D is the

viscous stress tensor, given by

Dij = −2ρ̄ν

[
eij −

1

3
(∇ · v)δij

]
, (2.6)
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where eij is the strain rate tensor. Here ν, κ and η are the diffusivities for vorticity,

entropy and magnetic field. We assume an ideal gas law

P̄ = Rρ̄T̄ , (2.7)

where R is the gas constant, and close this set of equations using the linearized relations

for the thermodynamic fluctuations of

ρ

ρ̄
=

P

P̄
− T

T̄
=

P

γP̄
− S

cp
. (2.8)

The mean state thermodynamic variables that vary with radius are evolved with the

fluctuations, thus allowing the convection to modify the entropy gradients which drive

it.

The mass flux and the magnetic field are represented with a toroidal-poloidal

decomposition as

ρ̄v = ∇ × ∇ × (Wr̂) + ∇ × (Zr̂), (2.9)

B = ∇ × ∇ × (βr̂) + ∇ × (ζr̂), (2.10)

with streamfunctions W and Z and magnetic potentials β and ζ. This approach ensures

that both quantities remain divergence-free to machine precision throughout the simula-

tion. The velocity, magnetic and thermodynamic variables are all expanded in spherical

harmonics for their horizontal structure and in Chebyshev polynomials for their radial

structure. The solution is time evolved with a second-order Adams-Bashforth/Crank-

Nicolson technique.

ASH is a large-eddy simulation (LES) code, with subgrid-scale (SGS) treatments

for scales of motion which fall below the spatial resolution in our simulations. We treat

these scales with effective eddy diffusivities, ν, κ and η, which represent the transport

of momentum, entropy and magnetic field by unresolved motions in the simulations. In

these simulations ν, κ and η are taken for simplicity as functions of radius alone and are
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proportional to ρ̄−1/2. This adopted SGS variation, as in Brun et al. (2004), Browning

et al. (2006) and Ballot et al. (2007) yields lower diffusivities near the bottom of the

layer and thus higher Reynolds numbers. In their stellar structure, our simulations here

are similar to case AB as reported in Brun & Toomre (2002) though with a different SGS

functional form (there ν, κ ∝ ρ̄−1), and here we shall consider the effects of faster Ω0

(there Ω0 = Ω⊙). Acting on the mean entropy gradient is the eddy thermal diffusion κ0

which is treated separately and occupies a narrow region in the upper convection zone.

Its purpose is to transport entropy through the outer surface where radial convective

motions vanish.

Our simulations are still separated by many orders of magnitude from the in-

tensely turbulent conditions present within the solar convection zone. They are likely

to capture many aspects of the dynamics of solar convection, and we are encouraged

by the success that similar simulations (e.g., Miesch et al. 2000; Brun & Toomre 2002;

Miesch et al. 2006, 2008) have had in beginning to match the detailed observational

constraints for differential rotation within the solar convection zone provided by helio-

seismology (c.f. Thompson et al. 2003).

2.2 Boundary Conditions and Their Impacts

In this thesis we will explore how patterns of convection and dynamo-generated

magnetism change in more rapidly rotating suns. In models of the solar dynamo, the

magnetic fields observed at the surface are thought to be in the convection zone, with

the tachocline of penetration and shear at the base of the convection zone possibly

allowing field to be stored and organized on global-scales. The tachocline is a complex

internal boundary layer. Below the tachocline lies the radiative zone, a region of stable

stratification. Above it is the intensely turbulent and highly magnetized convection zone.

Plunging downflows originating there splash into the tachocline, carrying magnetic field

downwards and likely driving gravity waves and large-scale circulations. In the Sun, the
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origin and maintenance of the tachocline remains unclear, but it seems likely that slow

meridional circulations in that layer are crucial to its long term evolution. These flows

likely have turnover times of millions of years while the fast downflows in the convection

zone evolve on timescales of a few days.

In nearly all of the simulations contained in this thesis, we will explore dynamics

within the convection zone only. Simulations which include model tachoclines are now

being conducted in ASH, with the first simulations of the solar dynamo coupled to a

tachocline reported on in Browning et al. (2006). Explorations that include a tachocline

will be extended to the rapidly rotating suns in the future, and preliminary results for

such a system will be shown in Chapter 9. However, the majority of our simulations

here consist of spherical shells of convectively unstable fluid which capture the bulk of

the solar convection zone in radius. We adopt boundary conditions appropriate to this

region, and for now we neglect the region of penetration, shear and stable stratification

at the base of the convection zone.

One area of focus in this thesis is the differential rotation which is naturally es-

tablished within a shell of fluid that experiences no external torques. In these systems,

convection and magnetism built by dynamo action act to redistribute angular momen-

tum within the convection zone and establish gradients of angular velocity in both radius

and latitude. Our velocity boundary conditions that are implemented in ASH are fairly

straight forward and are chosen to eliminate external torques. The velocity boundary

conditions imposed at the top and bottom of the convectively unstable shell are:

(1) Impenetrable top and bottom: vr = 0 ,

(2) Stress-free top and bottom:

(∂/∂r)(vθ/r) = (∂/∂r)(vφ/r) = 0 , (2.11)

In recent solar simulations (Miesch et al. 2006, 2008) a latitudinal gradient of

entropy has been imposed to mimic the balance likely achieved within the sub-adiabatic
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tachocline. This modified boundary condition (with S|r=rbot
= F (θ) constant in time)

slightly modifies the thermal wind balance achieved throughout the convection zone and

can modify the profiles of differential rotation. The overall angular velocity contrast in

latitude remains similar. Ballot et al. (2007) explored the consequences of such a bound-

ary condition in one of their young, rapidly rotating suns with deep convection zones

and found that the results were similar to those of Miesch et al. (2006). In these simu-

lations of rapidly rotating suns however, we do not employ such a treatment. Instead, a

latitudinal contrast in entropy is naturally established throughout the convection zone

and at the bottom boundary by the convection itself. We make this choice because

of our uncertainties about the structure of stellar tachoclines. In the case of the Sun,

bounds can be placed on this thermal gradient from helioseismic observations of the

tachocline.

In other stars we have no such asteroseismic observations of their tachoclines. In

the more rapidly rotating suns, we thus do not yet know how the tachoclines scale with

rotation rate, magnetic activity or stellar age. As such, the possible thermal structure

of those tachoclines is poorly constrained. With these observational uncertainties in

mind we choose constant flux thermal boundary conditions and allow the convection

to establish its own gradients of entropy in latitude within the convection zone. The

thermal boundary conditions at the top and bottom of the shell are thus

(3) Constant entropy gradient at top and bottom:

∂(S + S̄)/∂r = const . (2.12)

2.3 Magnetic Boundary Conditions

The most natural choice for the magnetic boundary conditions is somewhat less

clear, and thus deserves some detailed discussion. Typically in ASH we employ one of

three treatments for magnetism at the boundaries. Those conditions are:
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(4) Match to external potential field at top:

B = ∇Φ and ∇2Φ = 0
∣∣
r=rtop

,

(5) Perfect conductor at bottom:

Eθ = Eφ = 0

Br = (∂/∂r)(rBθ) = (∂/∂r)(rBφ) = 0 , (2.13)

(6) Radial field only at the boundary:

B = Br .

In our later discussions, it will be helpful to understand the impact of these dif-

ferent boundary conditions on the transport of angular momentum and energy through

the boundary. We examine those properties for each boundary condition in turn.

2.3.1 Potential Field Boundaries

A potential field boundary condition is most appropriate when the region outside

the boundary mimics a vacuum or other extremely good insulator. Under the potential

field approach, no currents can cross the boundary, nor can currents be supported in the

external volume. Magnetic fields can however extend out of the simulation, in a fashion

the preserves ∇ ·B = 0. This boundary condition is most appropriate near the surface

of the star, though it entirely neglects the dynamics present in the photosphere, as well

as the complex balances achieved in the chromosphere of the star and the likely force-

free corona. The dynamo simulations in this thesis use this as their upper boundary

condition.

Our boundaries are impenetrable to the fluid motions, and thus the transport of

energy by magnetism is from the Poynting flux. This flux is

FPoynting = S =
c

4π
(E × B) =

c

4π

(
(−v × B + η∇ × B) × B

)
, (2.14)
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where we have used Ohm’s law to replace the electric field. We are most interested in

the flux of energy entering or leaving the volume, which is given by the radial flux at

the boundary. This is

Sr = − c

4π

(
Br (B · v) + vr

(
B2

)
+ η

(
[∇ × B] × B

)
r

)
, (2.15)

where we use a vector identity to expand the first term in the electromotive force. Our

impenetrable boundary conditions ensure that vr = 0. Using this, and expanding the

diffusion term we obtain

Sr = − c

4π

(
Br (B · v) + η

(
[∇ × B]θ Bφ − [∇ × B]φ Bθ

) )
. (2.16)

With a potential field boundary condition, B = ∇Φ and ∇ × B = 0, and thus

the diffusive terms vanish. There is however radial field that can cross the boundary,

and thus an overall energy flux of

Sr = − c

4π
Br (B · v) . (2.17)

In these simulations, both the mean and fluctuating magnetic fields contribute to a

Poynting flux through the boundary. The radial fields enter only through the Br factor,

as vr = 0 at the upper surface. With stress-free boundary conditions, vθ and vφ are

non-zero. The horizontal magnetic fields Bθ and Bφ can also be non-zero, though the

azimuthally averaged longitudinal field is zero. This can be seen from

〈Bφ〉 =
1

r sin θ

∂

∂φ
〈Φ〉 = 0 , (2.18)

where angle brackets denote an average in longitude. This quantity is zero because

there are no longitudinal gradients in the azimuthally averaged quantities by definition

of the average.

There is clearly a fluctuating Poynting flux through a potential field boundary.

Indeed, the horizontal fields can contribute to a mean Poynting flux through their cor-

relation with the horizontal flows, and the colatitudinal field Bθ can contribute on both
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mean and fluctuating scales, while the longitudinal field Bφ contributes only through

correlations between the fluctuating fields and fluctuating velocities. This mean flux is

given by

〈Sr〉 = − c

4π

(
〈Br〉

(
〈Bθ〉〈vθ〉 + 〈B′

θv
′

θ〉 + 〈B′

φv′φ〉
)

+ 〈B′

rB
′

θv
′

θ〉 + 〈B′

rB
′

φv′φ〉
)

, (2.19)

with fluctuating fields B′ = B−〈B〉 and flows v′ = v−〈v〉, with again 〈B′〉 = 〈v′〉 = 0

by definition. Generally, the total Poynting flux across a shell is very small, as local

regions of inward and outward directed flux tend to cancel one another when an average

is taken across both the northern and southern hemispheres.

The transport of angular momentum in the hydrodynamic simulations will be

discussed later in detail in §3.4. In the dynamo simulations, the magnetic contribution

to the radial angular momentum flux through a boundary is given by

FMS
r = −r sin θ

4π
〈B′

rB
′

φ〉 , (2.20)

FMT
r = −r sin θ

4π
〈Br〉〈Bφ〉 , (2.21)

with FMS the angular momentum transport from fluctuating Maxwell stresses and FMT

the transport by large-scale magnetic torques (Brun et al. 2004, 2005). At a potential

field boundary, 〈Bφ〉 = 0, thus FMT vanishes. In principle there could be a remaining

flux from the fluctuating terms; in practice there is not. Locally there is a flux, but

when integrated over a full shell FMS
r is near zero. This is likely related to the nature

of the external potential field. With no currents and no external forces, the external

region is entirely connected to the simulation and there is no ability to remove angular

momentum entirely from the coupled system.
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2.3.2 Perfect Conductor Boundaries

A perfect conductor boundary condition is more appropriate when the external

volume is filled with a plasma that is very highly conductive. This boundary condition

prevents magnetic field from crossing the boundary, though currents can flow through.

This boundary condition seems most appropriate at the bottom of the convection zone,

and it appears that such a boundary condition is more in keeping with the internal

boundary layer that forms when we capture a mock tachocline within our simulations

(see §9.2). The dynamo simulations generally have perfectly conducting bottom bound-

aries.

Perfect conductor boundaries have no radial Poynting flux. To show this, we

recall that the horizontal electric fields Eθ and Eφ vanish at the boundary, as does the

radial magnetic field. Thus the radial Poynting flux is

Sr =
c

4π

(
EθBφ − EφBθ

)
= 0 . (2.22)

We can see how this feeds into our magnetic boundary conditions by examining equa-

tion (2.16). At a perfect conducting boundary, that equation becomes

Sr = − c

4π
Br (B · v) +

c

4π

η

r

([
1

sin θ

∂

∂φ
Br −

∂

∂r
(rBφ)

]
Bφ −

[
∂

∂r
(rBθ) −

∂

∂θ
Br

]
Bθ

)

= − 0 +
c

4π

η

r

([
0 − ∂

∂r
(rBφ)

]
Bφ −

[
∂

∂r
(rBθ) − 0

]
Bθ

)
= 0 , (2.23)

and thus our requirement that ∂/∂r(rBθ) = ∂/∂r(rBφ) = 0 at a perfect conductor.

Perfect conducting boundaries also do not support a radial flux of angular mo-

mentum. This is guaranteed by the radial field vanishing at the boundary, which causes

both FMS
r and FMT

r to vanish as well.
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2.3.3 Radial Field Boundaries

The last boundary condition, that of a radial field only, is not used in these dy-

namo simulations, but has often been important in magnetoconvection studies where an

external field is imposed. This boundary condition is numerically simple to implement

and corresponds to a system where the external volume is a region of high magnetic

permeability (e.g., Jackson 1998, pg. 194).

Radial field boundaries have no Poynting flux. The impenetrable condition for

velocities (vr = 0) eliminates the contribution from Brvr, and the lack of horizontal

magnetic fields eliminates the radial component of (∇ × B) × B. Likewise, there is no

angular momentum flux across this type of boundary. This results again from 〈Bφ〉 = 0

and B′

φ = 0 at the boundary.

2.3.4 Magnetic Boundary Conditions and Effects on CFL Limits

The properties of our three possible boundary conditions are summarized in Ta-

ble 2.1. To summarize, the perfectly conducting and radial field only boundary condi-

tions do not permit a flux of energy or angular momentum across the boundary and thus

in or out of the system. Potential field boundary conditions do permit a flux of energy

and angular momentum, though the azimuthally-averaged magnetic fields do not con-

tribute to the transport of angular momentum through the boundary. Generally, we find

that the total flux of energy or angular momentum through a potential field boundary is

small, as the contributions from the northern and southern hemispheres largely cancel

each other. Horizontal magnetic fields are permitted near potential field boundaries and

perfectly conducting boundaries, but are not permitted at a radial field only boundary.

Likewise, radial magnetic fields can thread through the potential field boundaries and

radial field only boundaries, but are not present at a perfectly conducting boundary.
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Table 2.1. Properties of Magnetic Boundary Conditions

Energy Angular Momentum Radial Alfvén CFL limited

Type Sr F MS
r F MT

r va = Br√
4πρ̄

Potential Field − c
4π

Br(B · v) − r sin θ
4π

〈B′
rB

′
φ〉 0 yes

Perfect Conductor 0 0 0 no

Radial Field 0 0 0 yes

Note. — Boundary conditions affect the flux of energy and angular momentum in and out of
the system. With some boundary choices the simulation may be CFL limited by Alfvén waves
near the boundary.

The choice of magnetic boundary conditions can also have direct effect on the

typical timesteps achieved by a simulation. Our simulations will become numerically

unstable and diverge if we exceed the Courant-Friedrichs-Lewy (CFL) criteria by taking

timesteps which are too large. Thus our our timesteps must be shorter than the the

fastest flow of information between individual grid points. In dynamo simulations,

this becomes an issue with boundary conditions that permit a radial magnetic field.

Here, Alfvén waves traveling radially encounter the fine grid-spacing inherent to our

Chebyshev expansion. The CFL timestep limit in the dynamo modeling is dominated

by these relatively rapid waves and becomes

τ = α0 τCFL,B = α0

(vA,r

∆r

)
= α0

(
Br√
4πρ̄

1

∆r

)
, (2.24)

with α0 a safety factor which is slightly less than unity.

The limitation arises because we are able in these dynamo simulations to admit

waves which propagate through the narrow grid near the boundaries. In contrast,

our hydrodynamic simulations of stellar convection zones do not encounter a similar

limitation, as vr smoothly tends to zero as the boundary is approached, and typically

decreases sufficiently quickly that the narrow grid spacing is not felt. Hydrodynamic

simulations that include penetration into a stable layer may of course encounter similar
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limitations when stacked Chebyshev domains are used to resolve the internal interface

and where the radial motions are non-zero. In our dynamo simulations, the Alfvén wave

CFL timestep, set by waves at the upper potential field boundary, can be one or two

orders of magnitude more stringent than the limits set by either the convection or the

Alfvén waves propagating in the rest of the domain. In a practical sense, this stringent

CFL limit increases the computational cost of dynamo simulations with radial field or

potential field boundaries by well over an order of magnitude compared to comparable

hydrodynamic cases or dynamo cases with perfect conducting boundaries at top and

bottom.

2.4 Approach to Hydrodynamic Simulations

Our numerical model is a relatively simple description of the solar convection

zone that captures the essential spherical geometry and global connectivity of that

domain. Solar values are taken for heat flux, mass and radius and a perfect gas is

assumed. Near the solar surface the H and He ionization zones, coupled with radiative

losses, drive intense convective motions on very small scales which appear at the surface

as granulation. Capturing granulation in a global simulation would require spherical

harmonic degrees of order 4000 and this is currently too demanding. We therefore

position the top of our domain slightly below these ionization layers. In these simulations

our lower boundary is positioned near the base of the convection zone, thus omitting the

stably stratified radiative interior and the shear layer at the base of the convection zone

known as the tachocline. We make this choice both because the nature of tachoclines

in rapidly rotating stars is quite uncertain at present and because simulations that

include penetration into a stable region are quite challenging in terms of computational

resources.
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Table 2.2. Parameters for Primary Hydrodynamic Simulations

Case Nr, Nθ , Nφ Ra Ta Re Re′ Ro Roc ν κ Ω0/Ω⊙

G1 96 × 256 × 512 3.22 × 104 3.14 × 105 84 63 0.92 0.61 2.75 11.0 1
G2 96 × 256 × 512 1.75 × 105 3.21 × 106 205 85 0.55 0.45 1.72 6.87 2
G3 96 × 256 × 512 4.22 × 105 1.22 × 107 326 103 0.41 0.36 1.32 5.28 3
G4 96 × 256 × 512 7.89 × 105 3.18 × 107 433 119 0.33 0.31 1.09 4.36 4
G5 96 × 256 × 512 1.29 × 106 6.70 × 107 543 133 0.28 0.27 0.94 3.76 5
G7 192 × 512 × 1024 2.63 × 106 2.06 × 108 763 154 0.22 0.22 0.75 3.01 7
G10 192 × 512 × 1024 5.58 × 106 6.74 × 108 1051 188 0.17 0.18 0.59 2.37 10

G3a 96 × 256 × 512 7.83 × 105 2.41 × 107 528 158 0.50 0.34 0.94 3.76 3
G3b 192 × 256 × 512 2.26 × 106 8.02 × 107 1121 324 0.70 0.32 0.52 2.06 3
G5b 192 × 512 × 1024 4.03 × 106 2.23 × 108 1347 274 0.41 0.26 0.52 2.06 5

Note. — All simulations have inner radius rbot = 5.0× 1010cm and outer radius of rtop = 6.72× 1010cm,
with L = (rtop − rbot) = 1.72 × 1010cm the thickness of the spherical shell. Evaluated at mid-depth
are the Rayleigh number Ra = (−∂ρ/∂S)(dS̄/dr)gL4/ρνκ, the Taylor number Ta = 4Ω2

0L
4/ν2, the rms

Reynolds number Re = vrmsL/ν and fluctuating Reynolds number Re′ = v′
rmsL/ν, the Rossby number

Ro = ω/2Ω0 , and the convective Rossby number Roc = (Ra/TaPr)1/2. Here the fluctuating velocity v′

has the differential rotation removed: v′ = v − 〈v〉, with angle brackets denoting an average in longitude.
The Prandtl number Pr = ν/κ is 0.25 for all simulations. The viscous and thermal diffusivity, ν and κ, are
quoted at mid-depth (in units of 1012 cm2s−1). The rotation rate of each reference frame Ω0 is in multiples
of Ω⊙ = 2.6 × 10−6 rad s−1 or 414 nHz. The viscous time scale at mid-depth τν = L2/ν is 1250 days for
case G1 and is 3640 days for case G5. Additional cases considered other rotation rates at 1.25, 1.5, 1.75
and 6 Ω⊙.
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We focus here on the bulk of the convection zone, with our computational domain

extending from 0.72R⊙ to 0.965R⊙, thus spanning 172 Mm in radius. The total density

contrast across the shell is about 25. The reference or mean state of our thermody-

namic variables is derived from a one-dimensional solar structure model (Brun et al.

2002) and is continuously updated with the spherically symmetric components of the

thermodynamic fluctuations as the simulations proceed. These values are illustrated in

Figure 2.1 after convection has readjusted the stratification.

Our hydrodynamic studies here explore a variety of solar-like stars rotating from

1 to 10 Ω⊙ (cases G1-G10). All cases use the same initial stellar structure. We seek

to explore the general effects of rotation on stellar convection rather than the evolution

of a particular star, which would require modifications to the stellar structure as the

star aged. In surveying the effects of more rapid rotation on global-scale convection,

we seek to achieve reasonably high levels of turbulence in the resulting flows. Thus our

trajectory through the parameter space of Ω0, ν, and κ attempts to maintain strong

nonlinearity without having the increasing Ω0 serve to laminarize the convection. As

we increase the rotation rate, we simultaneously decrease the effective eddy diffusivities

ν and κ to maintain the supercriticality of the simulated turbulent convection. We note

that the critical Rayleigh number for the onset of convection scales with rotation as

Rac ∝ Ta2/3 ∝ Ω
4/3
0 ν−4/3 for Boussinesq convection (e.g., Chandrasekhar 1961; Dormy

et al. 2004). Lower diffusivities lead to both longer viscous and thermal diffusion time

scales and to flows possessing finer spatial scales. Achieving equilibrated states in these

systems requires high resolution simulations carried out over extended periods. We have

taken a middle ground between attempting to maintain constant supercriticality (which

may require scaling ν, κ ∝ Ω−2
0 ) and keeping resolution requirements reasonable by

scaling our diffusivities as ν, κ ∝ Ω
−2/3
0 . All of our cases studied are highly supercritical,

noting that the critical Rayleigh number for these simulations at 1 Ω⊙ is Rac ∼ 1000

(Gilman & Glatzmaier 1981; Miesch 1998). We have also maintained a constant Prandtl
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Figure 2.1 — Radial variation of mean stellar structure in the ASH models. (a) Entropy
gradient (dS̄/dr) for cases G1, G5 and G10 (as labeled). At higher rotation rates the
entropy gradient becomes steeper throughout the convection zone, even for our most
turbulent cases (case G5b, long dashes). (b) Temperature and density (latter ranging
from 0.203 to 0.008 g cm−3 in the region simulated) for case G1. (c) Pressure scale
height HP (in Mm and fractional solar radii), for case G1, with cases G2-G10 similar
in their mean stratification.
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number Pr = ν/κ = 0.25 in all of our simulations. The parameters of our models are

detailed in Table 2.2. Our choice of scalings for the eddy diffusivities with rotation rate

may have some influence on the nature of the convective patterns and mean flows we

achieve. To assess some of the sensitivity the choice of our path through parameter

space, we have also sampled a limited range of more turbulent simulations at a few

rotation rates (cases G3a, G3b and G5b).

Some of our simulations are initialized by perturbing a quiescent state in solid

body rotation. The growth of convection leads to velocity correlations that serve to

redistribute angular momentum within the shell, building a differential rotation and

meridional circulation. We evolve the simulation for long periods compared variously

to convective overturning times, rotation periods or typical diffusive times. Other sim-

ulations were started from these evolved states and then run for long intervals after

all adjustments have been made to the frame rotation rate Ω0 and to the viscous and

thermal diffusivities.

All of the hydrodynamic simulations discussed in this thesis are at approximately

the same level of maturity in their evolution. Case G1 was the progenitor case at 1 Ω⊙

and was evolved for some 3000 days after branching away from case AB from Brun &

Toomre (2002), which itself has seen about 10000 days of total simulated life. Starting

with this case, each subsequent simulation was spun up from the next fastest case (i.e.,

G3 was spun up from G2) and evolved for over 4000 days, or many hundreds of rotation

periods.

The time evolution of case G5, which was started from an evolved state, is shown

in Figure 2.2. At day zero the rotation rate Ω0 and eddy diffusivities ν and κ are set

to appropriate values for case G5. The convection responds and equilibrates to these

changes on a timescale of a few hundred days but the mean flows of differential rotation

and meridional circulation take significantly longer to fully equilibrate. As shown in

Figure 2.2b the differential rotation can take nearly 4000 days to equilibrate. During
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Figure 2.2 — Evolution of kinetic energies in hydrodynamic case G5. (a) Volume-
averaged kinetic energy densities of differential rotation (DRKE), convection (CKE)
and meridional circulations (MCKE) shown in logarithmic plot for the first 6500 days
of the simulation. Convective kinetic energies adjust very quickly, but the energy of the
mean circulations take longer to equilibrate. After approximately 4000 days all three
energies have reached a stationary state. (b) Linear plot of evolving DRKE and CKE.
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this interval the convection and meridional circulations are redistributing angular mo-

mentum and heat, building a latitudinal contrast of angular velocity and of temperature

with hot poles, cool mid-latitudes and a warm equator (see Chapter 3). After 4000 days

the profile of differential rotation remains nearly steady and we are able to explore the

time evolution of the patterns of convection.

After similar intervals of evolution, all cases appear to be statistically stationary

in terms of the angular momentum fluxes and the kinetic energies. We believe that the

differential rotation profiles presented are effectively stationary, though there are small

fluctuations as determined from short averages over a few rotation periods. Certain

cases (including G5) were evolved for much longer intervals (over 10000 days and more

than 2000 rotation periods) to explore the long-term behavior of convective patterns

in these rapidly rotating systems. To test that our results are not unduly subject to

hysteresis in the system, we explored a branch of cases which were successively spun

down from 5 Ω⊙ to 1 Ω⊙. No significant hysteresis was found.

We shall discuss the properties of cases G1-G10 in Chapters 3 and 4, and there

explore the nature of the convective patterns realized, as well as the differential rotation

and meridional circulation that are achieved for a range of rotation rates.

2.5 Hydrodynamic Progenitors to Dynamo Simulations

The hydrodynamic progenitors used in our dynamo solutions are slightly differ-

ent from the solutions presented as cases G1-G10. In conducting those hydrodynamic

studies, we learned that at the highest rotation rates the unresolved flux carried out

the top of the domain by κ0 was beginning to imprint deeper into the convection zone.

This occurs because dS̄/dr generally increases in amplitude in the more rapidly rotating

simulations.
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In most of the hydrodynamic simulations, the κ0 diffusion term has the form

κ0 = κ0,top

(
ρ̄top

ρ̄

)α

+ κ0,C (2.25)

with κ0,top the diffusivity at the top boundary, and κ0,C a small constant (of order

1010 cm2 s−1) added to smooth out potential spikes in dS̄/dr near the bottom of the

convection zone, and α controlling the tapering of the unresolved flux in radius. The

value of κ0,top is chosen to transport a solar luminosity through the upper boundary,

with

Lu

∣∣
r=rtop

=
(
4πr2κ0ρ̄T̄∇S̄

) ∣∣
r=rtop

= L⊙. (2.26)

In all of these rapidly rotating simulations κ0,top = 2.979 × 1014, based on the self-

consistently determined profiles of entropy, temperature and density within ASH.

In cases G1-G10, we chose α = 4. Larger values of α lead to stronger confinement

of the unresolved flux to the top of the convection zone, but also lead to heating within

the entropy equation and modification of the entropy gradients. Thus, in cases H3 and

H5, we chose α = 7 to better confine the unresolved flux in a narrow upper boundary

layer. As a result, this flux is largely confined within the upper 10% of the convection

zone and shows only small variations with rotation rate.

In these cases the profile of dS̄/dr is somewhat steeper near the top of the convec-

tion zone. This effect is visible in Figure 2.3, where the stellar structure of cases H3 and

H5 are compared with that in cases G3 and G5. The profiles of dS̄/dr come into good

agreement at depths below 0.87R⊙ for both branches of simulations, but are deeper for

cases H3 and H5 near the top of the convection zone. This leads to somewhat stronger

driving of the convection as the Rayleigh numbers are also higher near the top of the

domain. This partially explains why cases H3 and H5 have higher Reynolds numbers

and higher Rossby numbers (Table 2.3) than cases G3 and G10 (Table 2.2). The ef-

fects of this are subtle, resulting primarily in slightly stronger latitudinal gradients of

differential rotation and temperature in the uppermost regions of the shell.
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Figure 2.3 — Radial structure of dynamo progenitor simulations. Shown is the entropy
gradient (dS̄/dr) for dynamo progenitor cases H3 and H5 (solid lines) compared with
hydrodynamical cases G3 and G5 (dashed lines). The entropy gradient in the dynamo
progenitor cases is somewhat steeper throughout the convection zone, and the minimum
is deeper. This leads to higher Rayleigh numbers in these simulations and stronger
driving. Though the convection is driven more strongly, the temperature, density and
pressure profiles are nearly identical to those shown in Figure 2.1. Overlain with a blue,
dashed line is a 1-D solar structure model computed with the CESAM code by Brun
et al. (2002).

The entropy gradient from a 1-D, helioseismically-constrained solar structure

model is also shown in Figure 2.3. The equilibrated profiles of dS̄/dr in ASH tend

to be somewhat steeper than the solar model at depths below 0.95 R⊙ and significantly

shallower in the upper convection zone. The large change in dS̄/dr between about

0.93R⊙ and the surface appears to result from heating in that layer by our adopted un-

resolved flux. New simulations are now being explored in ASH, with different treatments

of the unresolved flux, and these models appear able to better match the structure of

dS̄/dr from the solar model. Here however, all of our simulations have dS̄/dr profiles

akin to those illustrated in Figure 2.3.
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Convective structures in these hydrodynamic progenitor cases are similar to those

realized in cases G1-G10, though the patterns tend to be slightly more complex near the

top of the shell. The patterns of convection for cases G5 and H5 are shown in Figure 2.4.

Shown in global Mollweide projection are radial velocities at a radius of 0.95R⊙ and

near the upper boundary. These cases were well evolved and possess intricate convective

patterns and solar-like differential rotation profiles, with fast zonal flow at the equator

and slower flows at the poles. The prominent modulation visible in case G5 (Fig. 2.4a)

is less visible in case H5. Here in case H5 fine-scaled convection has filled in the regions

between the patches and obscures the modulation. These modulated convective states,

called active nests of convection, will be explored in detail in Chapter 4 for case G5 and

G10. Time-longitude maps indicate that these structures are still present in case H5

and remain comparable in amplitude to those seen in case G5.

Ultimately, these changes in stratification are modest compared to the overall

structure of the star. As such, the profiles of density, temperature and pressure are

nearly unaffected by the changes in the entropy gradient.

2.6 Studies of Dynamo Action in Rapidly Rotating Suns

We have explored a number of dynamo scenarios in our rapidly rotating suns.

Two solutions, one rotating at three times the current solar rate (3Ω⊙) and one rotating

five times the solar rate (5Ω⊙), will be the primary focus of our discussion of dynamo

action in Chapters 5, 6 and 7. We begin here by discussing the basic formulation of the

dynamo studies. The parameter space explored by our broader family of dynamos will

be discussed in turn in Chapter 8.

The dynamo simulations were initiated from mature hydrodynamic progenitor

cases which had been evolved for at least 5000 days at each rotation rate and were well

equilibrated. Our simulations at three and five times the solar rate Ω⊙ lie again on a path

where the SGS diffusivities ν, κ and η decrease as Ω
−2/3
0 , in order to maintain vigorous
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Figure 2.4 — Patterns of convection in cases G5 and H5. (a) Snapshot of radial velocity
vr in global Mollweide projection for case G5 near the upper boundary (0.95R⊙) with
scale indicated. Downflows are dark and narrow, while upflows are broad and indicated
by light tones. A prominent modulation in longitude is visible near the equator. These
active nests of convection persist for thousands of days. (b) Radial velocities in case H5
at same depth, showing somewhat more vigorous convection. Here the active nests are
obscured by the finer-scale convection but are still visible over long intervals of time.
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convection as rotation attempts to constrain and quench the motions. The fundamental

characteristics of our primary dynamo simulations and their hydrodynamic progenitors

are summarized in Table 2.3; other cases will be defined in Chapter 8.

To initiate our dynamo cases, a small seed dipole magnetic field was introduced

and evolved via the induction equation. The time evolution of magnetic and kinetic

energies is presented for case D3 in Figure 2.5. Here and throughout the thesis, day 0

refers to the last adjustments made to the simulation (generally to the rotation rate Ω0

and eddy diffusivities ν, κ and η). This time-trace shows about 7000 days of simulated

time throughout the history of the dynamo. As shown, the energy in the magnetic fields

is initially many orders of magnitude smaller than the energy contained in the convective

motions. These fields are amplified by shear and grow to become comparable in energy

to the convective motions. Generally the dynamos spend about 2000 days reaching fully

equilibrated states.

These dynamo simulations are computationally intensive, requiring both high spa-

tial resolution to correctly represent the velocity fields and long time evolution to capture

the equilibrated dynamo behavior, which may include cyclic variations on time scales of

hundreds to thousands of days. The strong magnetic fields can produce rapidly moving

Alfvén waves which seriously restrict the Courant-Friedrichs-Lewy (CFL) timestep lim-

its in the upper portions of the convection zone. Case D3, rotating three times faster

than the current Sun, has been evolved for over 7000 days (or over 2 million timesteps

with typical timesteps of 300 seconds), and case D5, rotating five times faster than the

Sun, has seen more than 17000 days of evolution (representing more than 10 million

timesteps, with typically 140 seconds of evolution per timestep).

These two cases were conducted at magnetic Prandtl number Pm = ν/η = 0.5, a

value significantly lower than employed in our previous solar simulations. In particular,

Brun et al. (2004) explored Pm = 2, 2.5 and 4, and Browning et al. (2006) studied

Pm = 8. The high magnetic Prandtl numbers were required in the solar simulations to
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Table 2.3. Parameters for Primary Dynamo Simulations

Case Nr, Nθ , Nφ Ra Ta Re Re′ Rm Rm′ Ro Roc ν η Ω0/Ω⊙

D3 96 × 256 × 512 3.22×105 1.22×107 173 105 86 52 0.378 0.311 1.32 2.64 3
D5 96 × 256 × 512 1.05×106 6.70×107 273 133 136 66 0.273 0.241 0.940 1.88 5
H3 96 × 256 × 512 4.10×105 1.22×107 335 105 — — 0.427 0.353 1.32 — 3
H5 96 × 256 × 512 1.27×106 6.70×107 576 141 — — 0.303 0.268 0.940 — 5

Note. — Dynamo simulations at three and five times the solar rotation rate are cases D3 and D5, and their
hydrodynamic (non-magnetic) companions are H3 and H5. All simulations have inner radius rbot = 5.0 × 1010cm
and outer radius of rtop = 6.72 × 1010cm, with L = (rtop − rbot) = 1.72 × 1010cm the thickness of the spherical shell.
Evaluated at mid-depth are the Rayleigh number Ra = (−∂ρ/∂S)(dS̄/dr)gL4/ρνκ, the Taylor number Ta = 4Ω2

0L
4/ν2,

the rms Reynolds number Re = vrmsL/ν and fluctuating Reynolds number Re′ = v′
rmsL/ν, the magnetic Reynolds

number Rm = vrmsL/η and fluctuating magnetic Reynolds number Rm′ = v′
rmsL/η, the Rossby number Ro = ω/2Ω0

, and the convective Rossby number Roc = (Ra/TaPr)1/2. Here the fluctuating velocity v′ has the axisymmetric
component removed: v′ = v − 〈v〉, with angle brackets denoting an average in longitude. For all simulations, the
Prandtl number Pr = ν/κ is 0.25 and the magnetic Prandtl number Pm = ν/η is 0.5. The viscous and magnetic
diffusivity, ν and η, are quoted at mid-depth (in units of 1012 cm2s−1). The rotation rate Ω0 of each reference frame
is in multiples of the solar rate Ω⊙ = 2.6× 10−6 rad s−1 or 414 nHz. The viscous time scale at mid-depth τν = L2/ν is
3640 days for case D5 and the resistive time scale is 1820 days. Rotation periods at three and five times the solar rate
are in turn 9.3 days and 5.6 days.
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Figure 2.5 — Evolution of kinetic and magnetic energies in dynamo case D3. (a)
Volume-averaged kinetic energy densities of differential rotation (DRKE), convection
(CKE) and meridional circulations (MCKE) shown in logarithmic plot. Magnetic en-
ergy densities in fluctuating magnetic fields (FME), mean toroidal fields (TME) and
mean poloidal fields (PME) are shown growing from an initial seed field. The dynamo
saturates after roughly 1700 days. After saturation, DRKE has changed substantially
but CKE and MCKE are largely unaffected. (b) Zoom in logarithmic plot of evolving
kinetic and magnetic energies, emphasizing their behavior after saturation. Time is
counted from day 0, when the last adjustments were made to parameters controlling
the simulation (i.e. Ω0, η, etc.).
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reach sufficiently high magnetic Reynolds numbers to drive sustained dynamo action. In

the simulations of Brun et al. (2004) only the simulations with Pm > 2.5 and Rm′ & 300

achieved sustained dynamo action, where Rm′ is the fluctuating magnetic Reynolds

number. We are here able to use a lower magnetic Prandtl number for three reasons.

Firstly, more rapid rotation tends to stabilize convection and lower values of ν and

η are required to drive the convection. Once convective motions begin however they

become quite vigorous and the fluctuating velocities saturate at values comparable to

our solar cases. Thus the Reynolds numbers achieved are fairly large and we can achieve

modestly high magnetic Reynolds numbers even at low Pm. Secondly, the differential

rotation becomes substantially stronger with both more rapid rotation Ω0 and with lower

diffusivities ν and η. This global-scale flow is an important ingredient and reservoir of

energy for these dynamos, and the increase in its amplitude means that low Pm dynamos

can still achieve large magnetic Reynolds numbers based on this zonal flow. Thirdly, the

critical magnetic Reynolds number for dynamo action likely decreases with increasing

kinetic helicity (e.g., Leorat et al. 1981). Helicity generally increases with rotation rate

(e.g., Käpylä et al. 2009), so the rapidly rotating flows considered here achieve dynamo

action at somewhat lower Rm than the models of Brun et al. (2004), which rotated at

the solar rate.

Case D3, which builds persistent wreaths of magnetism, is presented in Chapter 5.

Case D5 at five times the solar rate has time-dependent wreaths that flip global-scale

polarity and is presented in Chapter 6. An analysis of terms contributing to building

and destroying the persistent magnetic fields is carried out for case D3 in Chapter 7. A

variety of other dynamo cases, some at higher turbulence levels and rotation rates, will

be in turn discussed in Chapter 8.



Chapter 3

Convection in Rapidly Rotating Younger Suns

We begin our exploration of convection and dynamo action in rapidly rotating

suns with a series of hydrodynamic simulations which sample rotation rates between

1−10Ω⊙. These correspond to cases G1-G10 in Table 2.2. In these systems, we explore

how the patterns of convection are modified by more rapid rotation. We study the

resulting differential rotation and meridional circulation and their scaling with rotation

rate. In Chapter 4 we examine how novel modulated patterns of convection arise in the

most rapidly rotating simulations.

These two chapters are based on work published in Brown et al. (2008)1 and are

largely a restatement of that paper. As the primary author of this paper, I conducted the

simulations presented here, performed the analysis and wrote the text. My co-authors

provided advice and guidance throughout the process, helping frame the questions which

form the core of the study. Preliminary versions of these results have been presented

in Brown et al. (2004), Brown et al. (2006), Brown et al. (2007a), and Brown et al.

(2007d).

3.1 Early Results of Modulated Convection

In our early simulations of rapidly rotating suns we found that strongly localized

states of convection emerged with more rapid rotation (Brown et al. 2004). A selection

1 Brown, B. P., Browning, M. K., Brun, A. S., Miesch, M. S., & Toomre, J., 2008, “Rapidly Rotating
Suns and Active Nests of Convection”, ApJ, 689, 1354–1372.
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Figure 3.1 — Convective patterns in mildly turbulent simulations. Cases shown are
rotating at (a) one, (b) three and (c) five times the solar rate. Shown as snapshots are
radial velocities near top of layer in global Mollweide projection, with upflows light and
downflows dark (scaling indicated by accompanying colorbars). Poles are at top and
bottom, and the equatorial region appears at middle, with equator indicated by bold
dashed line. Thin dashed lines denote circles of constant latitude or longitude, and the
thin surrounding line indicates the location of the stellar surface at R⊙. A striking
pattern of convection localized into nests near the equator emerges as the rotation rate
increases.
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of these simulations in Figure 3.1 present snapshots of radial velocity near the top of the

domain in global Mollweide projection, showing the entire spherical surface with minimal

distortion. With more rapid rotation, a prominent longitudinal modulation appears

in the patterns of equatorial convection. At the higher rotation rates the equatorial

convection is confined to one or two nests, with streaming zonal flow filling the regions

outside these nests of convection. These nests can persist for intervals spanning many

hundreds of rotation periods, often with little change. Two nest states sometimes evolve

into single nest states as one nest overtakes another.

The simulations shown in Figure 3.1 are less turbulent than the cases presented

in the rest of this chapter, each possessing Reynolds numbers that are about three-fold

smaller near the surface than in our new simulations. In these early models, a large

portion of the energy transport in the upper convection zone was carried by unresolved

scales of motion. This parametrized SGS flux, represented by κ0, dominated transport

in the upper 30% of the convection zone, leading to weaker enthalpy transport and

weaker resolved convection there. This parametrized flux acts as a volume cooling term

that removes flux from the regions where it is dominant; the dynamics were influenced

by the presence of this cooling layer. The cases presented in detail in this chapter have

a narrower unresolved flux layer, confined now to the upper 10% of the convection zone,

and consequently much more vigorous convection is realized throughout the domain. In

these more turbulent cases, the phenomena of localized nests of convection is realized

at somewhat higher rotation rates.

3.2 Convective Patterns and Evolution with Rotation

The variation of convective patterns with increasing rotation rate Ω0 in our more

rapidly rotating suns is illustrated in Figure 3.2. Snapshots of the radial velocity near

the top of the domain (0.95R⊙) are shown in Mollweide projection for four cases: G1,

G3, G5 and G10. The convection patterns are complex and time dependent, with
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Figure 3.2 — Convective patterns in primary hydrodynamic cases. Shown are radial
velocity patterns in Mollweide projection at 0.95R⊙ (left) and differential rotation pro-
files (middle, right) with increasing rotation rate in (a, e) for case G1, (b, f) for G3, (c, g)
for G5, and (d, h) for G10. At higher rotation rates the horizontal scale of convective
cells shrinks at all latitudes and cells are more strongly aligned with the rotation axis. A
striking pattern of modulated convection emerges at low latitudes with faster rotation,
consisting of spatially modulated or patchy convection. These active nests of convection
are propagating structures which persist for long periods of time. At middle are profiles
of mean angular velocity Ω with radius and latitude. These differential rotation profiles
all involve fast equators (prograde relative to the frame rate Ω0, indicated by tickmark
on scale) and a monotonic decrease of Ω as the poles are approached. At right are radial
cuts of the angular velocity at selected latitudes, as labeled. The dark dashed contour
denotes the constant propagation rate of the nests where discernible.
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asymmetries between the upflows and downflows owing to the density stratification.

Thus narrow, fast downflow lanes are surrounded by broad, relatively weak upflows.

There is a clear difference in both the scale and structure of convection at high

and low latitudes. In the equatorial regions (roughly ±30◦ in latitude), the downflows

organize into large structures (loosely called banana cells) aligned with the rotation axis,

thus extending in the north-south direction. At high rotation rates this tendency for

alignment becomes pronounced, largely in the spirit of the Taylor-Proudman theorem,

and the downflow network exhibits little of the east-west branching visible in case G1.

These downflow lanes propagate in a prograde sense relative to the bulk rotation rate

and do so more rapidly than the differential rotation which they themselves establish.

The nests of convection, when they appear at the higher rotation rates, propagate at an

intermediate rate as denoted by the heavy dashed contours in Figure 3.2f −h. We defer

discussion of the nature of these nests of convection to Chapter 4. Individual convective

cells persist for about 10 to 30 days.

In the higher latitude regions, the convection cells are more isotropic and the

downflow network organizes on smaller scales. Convection in these regions is vigorous

and complex, with upflows and their downflow networks in a constant dance. The

convective cells have a cusped appearance, with downflows leading upflows as both

propagate in a retrograde fashion (most apparent in Figs 3.2b, c). Strong vortical plumes

form in the interstices of the downflow network at both high and low latitudes. In the

polar regions above the middle of the convection zone, the sense of vorticity in these

downflow plumes is generally cyclonic: counterclockwise in the northern hemisphere and

clockwise in the southern. As they descend through the mid-layer their vorticity changes

and they become largely anti-cyclonic. In contrast, the polar upflows are anti-cyclonic

at all depths.
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The latitudinal variation of convection patterns can be in part understood by

considering a cylinder tangent to the base of the convection zone and aligned with the

rotation axis. Within our geometry, this tangent cylinder intersects the outer boundary

at about ±42◦ of latitude. It is well known that in a rotating convective shell the flow

dynamics are different inside and outside of the tangent cylinder, owing to differences in

the connectivity of the flows, the influence of the Coriolis forces and distance from the

rotation axis (e.g., Busse 1970). These differences become more evident as the rotation

rate, and hence the rotational constraints on the convection, increases. With more rapid

rotation the longitudinal extent of the convective cells becomes progressively smaller.

Linear theory, in the Boussinesq approximation, predicts that the wavenumber of the

most unstable mode scales with rotation as m ∝ Ta1/6 ∝ Ω
1/3
0 ν−1/3 (e.g., Chandrasekhar

1961; Dormy et al. 2004) for polar and equatorial convection. This effect is found in

anelastic systems as well (Glatzmaier & Gilman 1981) and in our simulations is evident

at both high and low latitudes.

Shown at right in Figures 3.2e−h are the profiles of differential rotation (as angu-

lar velocity Ω) realized in these simulations. These Ω(r, θ) profiles are azimuthally and

temporally averaged over a period of roughly 200 days. All of our more rapidly rotating

stars exhibit solar-like differential rotation profiles, with prograde (fast) equators and

retrograde (slow) poles. Contours of constant angular velocity are aligned nearly on

cylinders, influenced by the Taylor-Proudman theorem, though recent simulations of

solar convection suggest that this is sensitive to the treatment of the bottom thermal

boundary condition (Miesch et al. 2006). As first shown in mean-field models by Rempel

(2005) and then in global-scale convection models by Miesch et al. (2006), introducing

a weak latitudinal gradient of entropy at the base of the convection zone, consistent

with a thermal wind balance in a tachocline of shear, can serve to rotate the Ω contours

toward the more radial alignment deduced from helioseismology without significantly

changing either the overall Ω contrast with latitude or the convective patterns. We
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expect similar behavior here, as briefly explored by Ballot et al. (2007) in younger suns

with deeper convection zones, but have not explored this issue in detail at the higher

rotation rates. More rapidly rotating suns may very well also possess tachoclines, but

at this stage there is no observational evidence of this. Thus we have simplified these

simulations by imposing a constant entropy at the bottom boundary. Our contours of

Ω in Figure 3.2 show some differences between the northern and southern hemispheres,

particularly at higher latitudes, and these differences decrease with more rapid rotation.

The patterns of convection are not simply symmetric about the equator, and thus the

accompanying mean zonal flows can be expected to show some variations between the

two hemispheres. Also shown are radial cuts of Ω at six fixed latitudes that make evident

the angular velocity contrasts with radius and latitude achieved in these simulations.

The absolute contrast in latitude and radius clearly grows with rotation rate, and will

be discussed in §3.5.

A most striking result of our simulations is the emergence of persistent, spatially

modulated convection in the equatorial regions at high rotation rates. At these low

latitudes, convection becomes modulated in longitude and forms distinct active nests

where the convective vigor is enhanced compared to the regions outside. The amplitude

of the convective motions and enthalpy transport is larger within these nests, and indeed

at the highest rotation rates, convection in the equatorial band is confined entirely to

the nests. These nests of convection propagate at a velocity distinct from either the

zonal flow of differential rotation or that of the individual cells of convection and persist

for very long periods of time (more than 5000 days in case G5). The nature of these

active nests of spatially localized convection will be explored in detail in Chapter 4.

Weak modulation in longitude is already evident at low rotation rates. When

long time series are considered, we have positively identified nests of convection in all

simulations rotating at Ω0 & 3 Ω⊙. As the rotation rate increases, the modulation level

gradually increases; at the highest rotation rates (& 7 Ω⊙) the equatorial convection is
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almost solely confined to the nests. The convection realized in case G10 (Fig. 3.2d) is

marked by this extreme modulation, with strong upflows and downflows inside the nest

and very little convection in the surrounding regions. These most rapidly rotating cases

maintain a strong differential rotation profile, even though the equatorial convection

occupies only a narrow interval in longitude. The regions outside the nest are filled

with fast streaming zonal flows consistent with the differential rotation.

3.2.1 Radial Connectivity of Convection

The nests of enhanced convection span the convection zone and propagate every-

where at a constant prograde angular velocity relative to the bulk rotation rate of the

star. A contour corresponding to this characteristic propagation rate is overplotted on

the differential rotation profiles in Figures 3.2f − h for cases G3, G5 and G10. As is

evident from these profiles, the angular velocity associated with the differential rotation

exceeds that of the propagation rate of the nests near the surface and is slower than

that near the base of the convection zone. The nests of convection therefore live within

an environment of substantial zonal shear with radius, as is quantified for case G5 in

Figure 3.3. Here the shearing zonal velocity of differential rotation is plotted in latitude

at six radial depths. At all depths there is substantial zonal flow through the nests of

convection.

Other studies of solar convection with ASH show that strong downflow lanes ex-

tend throughout the entire depth of the domain (Miesch et al. 2000; Brun & Toomre

2002; Miesch et al. 2008). In our more rapidly rotating stars, this connectivity with

depth changes markedly, as is illustrated for case G5 in Figure 3.4 showing radial veloc-

ities throughout the convection zone. In these rapidly rotating suns, the strong variation

of mean zonal flow with radius in the equatorial regions prevents all but the strongest

downflows from spanning the convection zone. Within the nest of enhanced convection

the plumes are able to traverse the convection zone. Yet in the quieter regions outside,
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Figure 3.3 — Profile of 〈vφ〉 in case G5. The variation of mean zonal velocity 〈vφ〉 with
latitude for case G5 is sampled at six radial cuts as labeled and shown here relative to
the uniform propagation rate of the nests of convection. The nests experience a strong
prograde zonal flow (positive) near the top of layer and a prominent retrograde flow
within the lower half.
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Figure 3.4 — Connectivity of radial velocity with depth in case G5. Shown at the
same instant in Mollweide view are vr (a) near top of domain (0.95R⊙), (b) at mid
depth (0.85R⊙), and in (c) for an equatorial cut in longitude over full depth range.
Strong plumes span the convection zone in the equatorial regions only within the nest
of enhanced convection. The weaker cellular flows outside the nests are confined by
shear to the upper reaches.
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the weaker downflow plumes are truncated by shear before reaching the middle of the

convection zone. It is evident (Fig 3.4c) that the amplitude of convective motions is

pronounced at all depths within the nest of active convection.

The downflowing plumes are influenced by the strong radial shear and some break

into multiple cells with radius even before the full blown nests of localized convection

emerge, as is evident already in our simulation rotating at twice the solar rate (case G2).

When the downflow networks only span a portion of the convection zone and experience

a limited range of the full density stratification, the importance of compressible effects

decreases. This has important consequences for the energetics of the simulations, par-

ticularly the radial kinetic energy flux, as will be addressed in §3.7. In contrast, the

downflowing plumes in the polar regions experience much less shear from either the

differential rotation or the relatively weak meridional circulations and continue to span

the entire convection zone depth.

3.2.2 Thermal Structuring

In these rapidly rotating suns, the turbulent alignment of convection with the

rotation axis leads to a net latitudinal transport of enthalpy, yielding a prominent lati-

tudinal gradient of temperature. The resulting thermal structuring in case G5 is shown

in Figure 3.5, presenting both the mean temperature profile and representative temper-

ature fluctuations in a snapshot near the surface. In the latter, individual convection

cells are associated with small fluctuations with amplitudes of a few K. Downflows are

generally cool while upflows are relatively warmer. The enhanced enthalpy transport

within the active nests of convection appears as positive temperature fluctuations in the

equatorial region.

Evident at high latitudes (Fig. 3.5c) are broad spatial structures (in addition

to small-scale convection) which appear in the temperature fluctuations and are not

readily visible in the maps of radial velocity (see Fig. 3.4 at same instant). These
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Figure 3.5 — Temperature structures within case G5. Mean latitudinal variations in
temperature are shown relative to their spherical average T̄ in (a) as contours with radius
and latitude and (b) as cuts at fixed radii at the top (solid, 0.96R⊙), middle (dashed,
0.84R⊙) and bottom (dotted, 0.72R⊙) of the domain. (c) Temperature fluctuations in
a snapshot near top of domain (0.95R⊙) relative to the mean structure in (a).

structures are long lived and appear to be a separate phenomena from the nests of

convection. The polar patterns propagate in a retrograde sense more rapidly than the

differential rotation in which they are embedded, and though streaming wakes from the

active nests print weakly into the polar regions, the polar patterns and nests appear

to be distinct phenomena. The large-scale polar patterns are not evident in the slowly

rotating cases (G1 and G2); in the most rapidly rotating cases this modulation attains

a more complicated form than the two-lobed structure shown here.

The zonally-averaged thermal structure (Fig. 3.5a, b) is quite smooth and is char-

acterized by warm poles and a cool equator, with yet cooler mid-latitudes. In contrast,

the mean entropy increases monotonically from equator to pole, due to effects of pres-

sure. All of the more rapidly rotating cases have similar latitudinal thermal profiles,

though the temperature difference between equator and pole increases with more rapid

rotation, as will be discussed further in §3.3. In case G5, the latitudinal pole to equator

temperature contrast is approximately 100 K throughout the convection zone. These

latitudinal variations remain small at all rotation rates in comparison to the spherically

symmetric background T̄ , which ranges from 2.7×105 K near the surface to 2.2×106 K

near the bottom of the convection zone (as shown in Fig. 2.1).
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3.3 Thermal Wind Balance

Rapidly rotating systems are constrained by the Taylor-Proudman theorem to

have minimal variations in flow dynamics along the direction of the rotation axis. In

stratified flows, gradients in density and pressure contribute to baroclinic terms in the

vorticity equations (Pedlosky 1982; Zahn 1992) which maintain flows that can break the

Taylor-Proudman constraint. In our rapidly rotating suns, convective plumes tilt toward

the rotation axis as rotation effects increase. This results in latitudinal as well as radial

transport of enthalpy and builds a latitudinal gradient of temperature and entropy. Such

gradients arise naturally in a rotating convective system even with uniform thermal

boundary conditions. For a nearly adiabatic stratified, rotating, non-magnetized fluid

it can be shown that in the limit of small Rossby number and negligible viscous effects

the zonal component of the vorticity equations reduces to the well known thermal wind

balance (e.g., Brun & Toomre 2002; Miesch et al. 2006):

∂v̂φ

∂z
=

g

2CP rΩ0

∂Ŝ

∂θ
, (3.1)

where z is directed along the rotation axis and a hat denotes an average in longitude

and time. We have further assumed that the turbulent pressure is negligible.

From equation (3.1) it is clear that departures from rotation constant on cylinders

(as observed in the solar interior by helioseismology) can be maintained by a latitudinal

gradient of entropy. The left and right hand sides of equation (3.1) are shown for

case G5 in Figure 3.6. In the bulk of the convection zone, the differential rotation

profiles realized in these more rapidly rotating suns are substantially in thermal wind

balance. Significant departures arise near the inner and outer boundaries (Fig. 3.6c)

where Reynolds stresses and boundary conditions play a dominant role, as was found

in earlier simulations of solar convection (Brun & Toomre 2002).
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Figure 3.6 — Thermal wind balance achieved in case G5. (a) Gradients of v̂φ along the
rotation axis, ∂v̂φ/∂z, (b) the scaled latitudinal entropy gradient from the right-hand
side of eq. (3.1), and (c) their difference, with contours in the latter rescaled to show
the departures near the boundaries. The bulk of the convection zone is in thermal wind
balance, but substantial departures arise near the top and bottom of the domain where
Reynolds stresses dominate.

Another striking property of the thermal wind balance is that increasing Ω0 leads

to more cylindrical profiles of v̂φ unless ∂Ŝ/∂θ also adjusts with the rotation rate. In

our more rapidly rotating suns we find that the latitudinal gradients of temperature and

entropy increase with more rapid rotation. The growth of ∆Ŝ (difference between the

surface value of Ŝ at say 60◦ and the equator) with increasing rotation rate Ω0 is shown in

Figure 3.7. The latitudinal structure of entropy is always monotonic in these simulations,

with lower entropy at the equator and higher entropy at the poles. Convection in these

more rapidly rotating systems establishes stronger latitudinal gradients of entropy, but

not enough in these simulations to maintain the Ω profiles unchanged.

Accompanying the growth of ∆Ŝ is a growth in the latitudinal temperature con-

trast, as shown by the maximum temperature contrast in latitude near the stellar surface

in Figure 3.7. Typically, the maximal contrast occurs between the poles and latitudes

of ±40◦, as seen in Figure 3.5 for case G5 with a contrast of about 100 K. In the
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Figure 3.7 — Scaling of ∆Ŝ and maximal latitudinal temperature contrast with Ω0.
The latitudinal contrast of entropy ∆Ŝ (plotted as diamonds) is measured between
equator and high latitudes at 0.96R⊙. It increases with more rapid rotation. The more
turbulent cases (G3a, G3b and G5b as labeled) have larger entropy contrasts, in keeping
with their generally stronger differential rotation. Blue triangles indicate the maximum
temperature contrast in latitude at the upper boundary in each simulation.

rapidly rotating simulations, the primary flux balance in latitude is between thermal

eddy diffusion κρ̄T̄ 〈∂S/∂θ〉 and convective enthalpy transport Cpρ̄〈v′θT ′〉. Here convec-

tive transport moves warm material to the poles as the downflows align more strongly

with the rotation axis while eddy diffusion works to erode the gradient. The meridional

circulations appear to play a relatively minor role in maintaining the overall latitudinal

entropy contrast.

3.4 Angular Momentum Redistribution

In these simulations of stellar convection, complex couplings between rotation and

convection build the profiles of differential rotation and meridional circulation. With

stress-free boundary conditions at the top and bottom of the shell there are no net

torques and thus the total angular momentum is conserved. Couplings between rotation

and convection lead to a global-scale redistribution of angular momentum, resulting in
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the sustained flows of both differential rotation and meridional circulation. To assess the

transport of angular momentum in these systems we follow the approach of Miesch et al.

(2008), examining the average radial and latitudinal angular momentum transport as

detailed in their equations (10)-(12) (see also Brun & Toomre 2002; Miesch 2005). The

angular momentum fluxes from Reynolds stresses (RS), meridional circulations (MS)

and viscous diffusion (VD) are

F RS = ρ̄r sin θ
(
〈v′rv′φ〉r̂ + 〈v′θv′φ〉θ̂

)
, (3.2)

F MC = ρ̄L
(
〈vr〉r̂ + 〈vθ〉θ̂

)
, (3.3)

F VD = −ρ̄νr2 sin2 θ∇Ω, (3.4)

where

L = r sin θ (Ω0r sin θ + 〈vφ〉) (3.5)

is the specific angular momentum.

The total radial and latitudinal fluxes of angular momentum are shown for case G1

and G5 in Figure 3.8. Here we have integrated in co-latitude and radius respectively

to deduce the net fluxes through shells at various radii and through cones at various

latitudes (c.f., Miesch 2005). The three major contributions arise from Reynolds stresses,

meridional circulations and viscous terms. Velocity correlations lead to net angular

momentum transport by Reynolds stresses as convective structures develop organized

tilts and align partially with the axis of rotation (e.g., Brummell et al. 1998; Brun &

Toomre 2002; Miesch et al. 2008). This alignment is particularly prominent in the fast

downflow lanes, and becomes stronger as rotation increases.

Turning first to our solar case (G1, Fig. 3.8a, b), we see that in radius the merid-

ional circulations and Reynolds stresses play similar and nearly equal roles in transport-

ing angular momentum outward. The viscous flux meanwhile is negative and transports

angular momentum inward, in keeping with the positive radial gradient of the differen-

tial rotation profile (eq. 3.4), and the total flux in radius is nearly zero. The transport
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Figure 3.8 — Angular momentum fluxes in radius and latitude for cases G1 and G5.
Shown are time averages of the integrated radial (Fr) and latitudinal (Fθ) angular
momentum flux for case G1 (a, b) and case G5 (c, d). Contributions arise from Reynolds
stresses (RS), meridional circulations (MC) and viscous diffusion (VD). Their total is
also shown (Sum). Transport by viscous diffusion remains comparable in all cases, while
the transport by Reynolds stresses and meridional circulations changes markedly with
more rapid rotation.
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in latitude is somewhat different. Here meridional circulations combine with viscous

fluxes to transport angular momentum away from the equator and toward the poles

(i.e., positive in the southern hemisphere and negative in the northern hemisphere).

This tendency is opposed by Reynolds stresses, which continuously accelerate the equa-

torial regions and dynamically maintain the angular velocity contrast ∆Ω in latitude.

The transport of angular momentum in our more rapidly rotating cases are all

similar in form and are well represented by case G5 (Fig. 3.8c, d). In these more rapidly

rotating stars, the radial balance is dominantly between the Reynolds stresses transport-

ing angular momentum outward and viscous terms transporting it inward. The viscous

transport is similar in magnitude to that of case G1, though the radial boundary layers

are now much narrower. The transport by Reynolds stresses is nearly twice as large, and

this likely arises from the strong alignment of convective structures in both polar and

equatorial regions. In these stars the weaker meridional circulations become relatively

minor and disorganized players in the radial flux balance, moving angular momentum

outward in some regions of the shell and inward in others. This opposing behavior

between the upper and lower convection zone arises from the meridional circulations

breaking into multiple cells in radius.

The balances achieved in the latitudinal transport in case G5 (Fig. 3.8d) are more

complex. As the rotation rate has increased, the total viscous transport has remained

nearly constant, with the significantly stronger gradients of angular velocity in the

differential rotation profiles offset by the lower turbulent diffusivities dictated by our

path through parameter space. That these two opposing actions should conspire to

produce a nearly constant profile of viscous angular momentum transport is striking

and not intuitive. This is particularly apparent when we examine the two other terms

in the flux balance. The meridional circulations have reversed their role from our solar-

like case G1 and now work with the Reynolds stresses to accelerate the equator and

spin down the polar regions. The reduced contribution of the meridional circulations
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to the total balance arises as the flows become both weaker and multi-celled in radius

and latitude. The smaller transport by Reynolds stresses appears to result from the

destruction by radial shear of some of the downflow plumes.

3.5 Differential Rotation and Scaling with Rotation

In analyzing our simulation results, it is the differential rotation established by

the convection that may yield the most direct contact with observations. Stellar obser-

vations across the HR diagram indicate that differential rotation is a common feature

in many stars, particularly stars of spectral class F and later. In the sun, differential

rotation has been measured throughout the bulk of the convection zone (as reviewed by

Thompson et al. 2003), but at present for more distant stars only the surface differen-

tial rotation can be inferred. A variety of observational techniques have been employed,

ranging from photometric variability studies (e.g., Donahue et al. 1996; Walker et al.

2007), Doppler imaging techniques (e.g., Donati et al. 2003) and Fourier transform

methods (e.g., Reiners & Schmitt 2003). Typically, these observations seek to measure

the amount of angular velocity contrast at the stellar surface, denoted as ∆Ω∗, though

what is being measured may be somewhat uncertain. Variations in ∆Ω∗ have been

found with both rotation rate and spectral type, however these quantities are correlated

and in observations to date it is difficult to disentangle their possible separate effects

(Reiners 2006).

Different techniques measure fundamentally different tracers of surface differen-

tial rotation, either following variability of Ca emission (photometric), darkening from

inferred starspot presence (photometric and Doppler imaging) or rotational broadening

of absorption lines of unspotted stars (Fourier transform methods). Each technique

also is most applicable in only a limited region of stellar parameter space. As such,

overlapping surveys are in short supply. Generally, most observations indicate that the

relative shear, ∆Ω∗/Ω∗, depends on the stellar rotation rate Ω∗ as a power law, though
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different surveys find different scalings for the differential rotation, expressed as

∆Ω∗

Ω∗

∝ Ωn
∗ (3.6)

(e.g., n = −0.3± 0.1 in Donahue et al. 1996 and n = −0.34± 0.26 in Reiners & Schmitt

2003, but n = −0.85 ± 0.10 in Barnes et al. 2005). Whereas some global models of

convection in more rapidly rotating stars have been conducted (e.g., Rüdiger et al.

1998; Küker & Stix 2001; Küker & Rüdiger 2005a,b), these have been largely carried

out in 2-D under the simplifying assumptions of mean-field theory.

The amount of latitudinal shear observed at the surface ∆Ω is an important

quantity both for interpreting stellar observations and for many dynamo theories. Here

we define ∆Ω more specifically as the difference in angular velocity between the equator

and say at 60◦ latitude, namely

∆Ω = Ωeq − Ω60 ∝ Ωm
0 . (3.7)

Going to higher latitudes yields comparable behavior. As shown in Figure 3.9, we find

that ∆Ω increases with rotation rate in our simulations, with m = 0.3 in the most

rapidly rotating simulations. The radial shear also increases with more rapid rotation,

and at the equator the difference between the mean angular velocity at top and bottom

of the shell scales as m = 0.4 for the rapid rotators. Because m < 1, the relative

shear ∆Ω/Ωeq decreases with rotation rate Ω0 for the rapid rotators, in nearly a power

law fashion for the path through parameter space explored here. The scaling exponent

from Equation (3.6) exhibited by these cases is n = −0.6, but this may be influenced

by our choice in the scaling of diffusivities with rotation. We are encouraged that our

more turbulent cases G3b and G5b, with the same diffusivities at different rotation

rates, exhibit similar behavior. Our choice of low Prandtl number also has an effect

on this scaling (see Ballot et al. 2007). Additionally, different treatments of the SGS

unresolved flux, which has the most effect in the upper 10% of the convection zone, can
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Figure 3.9 — Scaling of ∆Ω and ∆Ω/Ωeq with Ω0. (a) Angular velocity contrast ∆Ω
in latitude between equator and 60◦ (diamonds) and in radius across the shell at the
equator (blue triangles). The more rapidly rotating cases appear to follow a power law,
which for the latitudinal contrast is m = 0.3 and for the radial contrast is m = 0.4 (as
in eq. 5.1). (b) Relative latitudinal angular velocity contrast ∆Ω/Ωeq, with the shown
power law having n = −0.6 (as in eq. 3.6). The scaling may vary with the path in
parameter space, as suggested by cases G3a, G3b and G5b.

alter the particular scaling law. The early simulations presented in Brown et al. (2004)

and shown in Figure 3.1, which had a much thicker unresolved flux layer, had a scaling

of n = −0.8 in the rapid rotation limit. We have found that normalizing ∆Ω by Ω0

rather than Ωeq leads to a systematic offset for n of about -0.05 in the inferred scaling

law.
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3.6 Meridional Circulations and Scaling with Rotation

The meridional circulations realized within our simulations are of significance

since they can variously transport heat, angular momentum and even magnetic fields

between the equator and the poles, though the latter are not included in the present

simulations. Our time and longitude-averaged meridional circulation patterns are shown

in Figure 3.10 for cases G1, G5 and G10, depicted as streamlines of mass flux Ψ,

r sin θ〈ρ̄vr〉 = −1

r

∂Ψ

∂θ
and r sin θ〈ρ̄vθ〉 =

∂Ψ

∂r
(3.8)

and averaged here over a period of at least 150 days.

In our more rapidly rotating cases the meridional circulations have broken into

several cells strongly aligned with the rotation axis (Fig. 3.10b, c), particularly in the

equatorial regions. Weak connections between the equatorial and polar regions persist

at the highest rotation rates studied, with organized flows along the tangent cylinder.

These internal flows weaken with more rapid rotation. The meridional circulations are

complex and time dependent, with large fluctuations around the statistically-steady

states shown here, involving variations comparable to or larger than the mean values

themselves. The circulations are driven by small imbalances between relatively large

forces and their nature is subtle. The variation of the meridional flows near the surface

(0.96R⊙) with rotation rate is shown in Figure 3.10d. The amplitude of the flows

decreases substantially with more rapid rotation. Peak velocities drop from 22 m s−1 in

case G1 to 14 m s−1 in G5 and about 7 m s−1 in G10.

The total energy contained in these meridional circulations decreases quickly with

more rapid rotation, as shown in Figure 3.11. This drop in energy is independent of

the detailed structure of the convection, showing no change in behavior at the transi-

tion to spatially modulated convection. In contrast to the energy contained in convec-

tion (CKE) and differential rotation (DRKE), the energy in the meridional circulations

(MCKE) is much less sensitive to the level of turbulence in any particular simulation, as
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Figure 3.10 — Changes in structure of meridional circulations with faster rotation.
Shown are profiles of time and azimuthally averaged meridional circulations with lati-
tude and radius for (a) case G1, (b) case G5 and (c) case G10 with streamlines of mass
flux Ψ overlaid. Colors indicate the sense (red counter-clockwise, blue clockwise) and
magnitude of the meridional velocity 〈vm〉 = 〈vr〉r̂ + 〈vθ〉θ̂. With more rapid rota-
tion the meridional circulation cells align strongly with the rotation axis and weaken
in amplitude. (d) Amplitude of the mean latitudinal component vθ at the top of the
simulation for case G1 (blue), G5 (black), and G10 (red), with regions of poleward and
equatorward flow denoted.
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Figure 3.11 — Scaling of kinetic energy of meridional circulations (MCKE) with Ω0. The
MCKE is normalized by that energy in case G1 at the solar rate (2.5 × 104 ergs cm−3).
The kinetic energy of these circulations decreases with rotation rate; a power law scaling
of Ω−0.9

0 is shown for reference.

indicated by cases G3, G3a and G3b (detailed in Table 3.1). The meridional circulations

remain important to the global-scale dynamics as their gradual redistribution of angular

momentum contributes to the large angular velocity gradients in latitude. Yet they are

inefficient at transporting heat out of the star and at redistributing thermal material

to maintain the latitudinal gradients of temperature and entropy (which correspond to

the thermal-wind component of the achieved differential rotation).

This finding is in striking contrast to the assumptions of many Babcock-Leighton

dynamos, which often take the meridional velocity to scale as vm ∝ Ω or vm ∝ log Ω

(e.g., Charbonneau & Saar 2001; Dikpati et al. 2001). In these models faster meridional

circulations lead to shorter dynamo cycles as surface flux is returned more rapidly to

the tachocline. Currently, the observational data does not appear good enough to dis-

tinguish between the competing models and we will have to await better measurements

of the scaling between cycle period and rotation rate and possible observations of the

meridional circulations themselves (Rempel 2008). Existing 2-D mean-field models of
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rapidly rotating suns (Küker & Stix 2001; Rüdiger et al. 1998; Küker & Rüdiger 2005a)

also predict an increase of meridional circulation velocities with more rapid rotation.

This is in contrast to their decrease in our simulations.

3.7 Energy Balances and Flux Transport

Convection is responsible for transporting the stellar flux emerging from the deep

interior through the convection zone. In these simulations, the total luminosity L(r)

and its components are

Fe + Fk + Fr + Fu + Fν =
L(r)

4πr2
= Ft , (3.9)

with

Fe = cpρ̄vrT ′, Fk = 1
2
ρ̄vrv2 , (3.10)

Fr = −κrcpρ̄
dT̄
dr , Fu = −κ0ρ̄T̄

dS̄

dr
, Fν = −v · D

∣∣
r
, (3.11)

where Fe is the enthalpy transport by convective motions, Fk is the kinetic energy flux,

Fr is the transport by radiation, Fu is the unresolved SGS heat flux for parametrized

transport by scales of motion below the resolution of our simulation and Fν is the

SGS viscous flux. Figure 3.12 shows the flux balance with radius achieved in cases G1

and G5, averaged over horizontal surfaces and converted to relative luminosities. In

the deepest layers the radiative flux becomes significant as the radiative conductivity

steadily increases with depth. By construction this flux suffices to carry all of the

imposed flux through the lower boundary, where the radial velocities and convective

flux vanish. A similar role is played near the top of the convection zone by the sub-grid

scale transport which yields Fu. The main role of Fu is to transport energy outward

through the impenetrable upper boundary where the convective fluxes vanish and the

remaining fluxes are small, thereby avoiding the building of strong superadiabatic radial

gradients there.



71

The functional form of κ0(r) is chosen so that the entire stellar luminosity will be

transported at the surface of the simulation by Fu. A subtlety of this treatment of the

SGS flux lies in dS̄/dr. In the more rapidly rotating simulations, we find that convection

is less able to establish an adiabatic profile throughout the convection zone. Instead,

much of the convection zone remains slightly superadiabatic (dS̄/dr < 0). This property

is also realized in local-domain simulations of rapidly rotating convection, where more

rapid rotation leads to enhanced horizontal mixing through vortex interactions and a

resulting decrease in enthalpy transport as vertical velocities and thermal perturbations

become more decorrelated (Julien et al. 1996; Brummell et al. 1996). The change of

dS̄/dr with rotation rate is shown in Figure 2.1a for four of our simulations. Fixing

the amplitude and structure of κ0(r) across simulations leads Fu to influence a greater

portion of the convection zone at more rapid rotation, as indicated by the slight growth

of Fu in case G5. Though this effect becomes stronger as our simulations rotate more

rapidly, at no point in these simulations does Fu transport more than 10% of the total

luminosity at mid convection zone.

In all these simulations, the strong correlations between radial velocities and tem-

perature fluctuations yield the enthalpy flux Fe, which dominates the energy transport

at mid convection zone. Both warm upflows and cool downflows serve to transport flux

out of the star, and the two carry comparable amounts of flux to one another in the

rapidly rotating simulations. In going to the more rapidly rotating simulations, we find

that the average convective enthalpy flux through the polar regions is greater than that

through the equator. This is shown in Table 3.1. In case G1 (at the solar rate) slightly

more flux is transported through the equator than the poles, but as the rotation rate

increases significantly more flux is transported through the poles than the equator. This

latitudinal variation becomes somewhat weaker in our more turbulent cases (G3a, G3b

and G5b), but remains present. Interestingly, cases G7 and G10 follow similar trends in

their equatorial enthalpy transport, despite the emergence of strong nests of convection
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Figure 3.12 — Average radial energy fluxes in cases G1 and G5. Energy fluxes are
shown with radius with case G1 (dashed) and G5 (solid) overlain for comparison. Shown
are the radiative luminosity (Fr), convective enthalpy transport (Fe), unresolved flux
(Fu), kinetic energy transport (Fk), and the total flux through the simulation (Ft),
all normalized by L⊙/(4πr2). Case G1 has a large positive convective enthalpy flux
throughout the domain, with the excess in luminosity largely balanced by an inward
flux of kinetic energy. At higher rotation rates (as in G5), the kinetic energy flux is
nearly zero throughout the domain. In both cases Fν is negligible and not shown.

at the equator and the suppression of convection in the rest of that region.

In case G1, convection transports slightly more enthalpy than the solar luminosity.

This over luminosity is balanced by an inward transport of kinetic energy, which is pri-

marily due to compressible effects and the transport of v2
r within strong downflows that

span the convection zone and feel the full density stratification (Hurlburt et al. 1986).

In the more rapidly rotating cases, the prominent differential rotation shears apart the

convection cells. The downflows lose much of their coherence and only the strongest

downflows within the nests of localized convection survive to span the full convection

zone. Individual downflows thus feel less density stratification, and compressible effects

become less important, leading to a balance in the transport of v2
r between the upflows

and downflows. Instead, as shown in Table 3.1 the sense of Fk reverses in the equatorial

regions, becoming dominated by the outward transport of v2
φ. The polar regions remain

largely unchanged and the total Fk across spherical surfaces is nearly zero.
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Table 3.1. Flux Balances and Energies

Case Fe,pole
a Fe,eq

a Fk,pole
a Fk,eq

a CKEb DRKEb MCKEb ∆Tmax
c

G1 1.014 1.140 -0.118 -0.190 3.28 2.26 0.025 5.50
G2 1.300 0.684 -0.088 0.046 2.64 13.2 0.015 28.0
G3 1.349 0.628 -0.077 0.071 2.40 20.5 0.011 53.5
G4 1.327 0.631 -0.065 0.073 2.21 25.5 0.009 78.5
G5 1.329 0.625 -0.079 0.078 2.11 30.1 0.007 107
G7 1.298 0.581 -0.097 0.080 1.69 38.7 0.005 171
G10 1.236 0.623 -0.093 0.090 1.51 47.1 0.003 271

G3a 1.268 0.655 -0.071 0.068 2.73 27.7 0.012 58.7
G3b 1.101 0.780 -0.065 0.043 3.34 37.9 0.013 62.4
G5b 1.172 0.668 -0.047 0.081 2.44 57.4 0.008 134

aAverage convective enthalpy (Fe) and kinetic energy (Fk) fluxes at mid-layer
scaled by the solar flux, shown for polar (latitudes above ±60◦) and equatorial
(from ±30◦) regions.

bKinetic energy density relative to the rotating coordinate system, for convec-
tion (CKE), differential rotation (DRKE) and meridional circulations (MCKE),
averaged over the full shell and over ∼ 300 days; units are 106 erg cm−3.

cMaximum temperature contrast at 0.96R⊙ in K, typically occurring between
pole and ±40◦
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Volume-averaged energy densities for a selection of our simulations are shown

in Table 3.1. At the solar rotation rate, convective kinetic energy (with kernel 1
2
ρ̄v

′2

and labeled CKE) and the kinetic energy in the average differential rotation (1
2
ρ̄〈vφ〉2,

DRKE) are comparable. As the rotation rate is increased, DRKE grows strongly and

convective energy decreases slightly, leading DRKE to dominate the total energy budget.

This is true even in our significantly more turbulent solutions. The energy in meridional

circulations (1
2
ρ̄(〈vr〉2+〈vθ〉2), MCKE) is always small, and decreases in both magnitude

and percentage of the total energy with more rapid rotation.

3.8 Conclusions

When stars like our sun are young they rotate much more rapidly than the present

sun. In these stars rotation must strongly influence the convective motions and may

lead to stronger global-scale dynamo action. In this chapter, we have explored the

effects of more rapid rotation on global-scale convection in simulations of stars like our

sun. The mean zonal flows of differential rotation become much stronger with more

rapid rotation, scaling as ∆Ω ∝ Ω0.3
0 or as ∆Ω/Ωeq ∝ Ω−0.6

0 . In striking contrast, the

meridional circulations become much weaker with more rapid rotation, and the energy

contained in them drops approximately as Ω−0.9
0 . Accompanying the growing differential

rotation is a significant latitudinal temperature contrast, with amplitudes of 100 K or

higher in the most rapidly rotating cases. The maximum temperature contrast near the

surface occurs between the hot poles and the cool mid latitudes at about ±40◦. If this

latitudinal temperature contrast prints through the vigorous convection at the stellar

surface, it may appear as an observable latitudinal variation in intensity. The thermal

contrast would presumably persist for long periods compared to stellar activity, offering

a way to disentangle this intensity signature from that caused by spots of magnetism

at the stellar poles.
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These simulations are entirely hydrodynamic and this provides a major caveat to

our findings on the scaling of differential rotation and latitudinal temperature contrast

with rotation rate Ω0. Prior MHD simulations of stellar convection have demonstrated

that in some parameter regimes strong dynamo-generated magnetic fields can react back

strongly on the differential rotation, acting to lessen angular velocity contrasts or largely

eliminate them (e.g., Brun et al. 2005; Featherstone et al. 2007; Browning 2008). It is

unclear whether the scaling trends identified here for differential rotation as a function

of Ω0 will survive in the presence of dynamo action and magnetic fields. Likewise,

magnetic fields may lessen the strong temperature contrasts realized here, doing so

through their feedback on the convective flows and energy transport. We expect that the

weaker meridional circulations may be less affected by magnetic feedbacks, and thus the

prediction that meridional circulations lessen in energy and amplitude with more rapid

rotation may be of greater significance though harder to confirm observationally. Weaker

meridional circulations in more rapidly rotating stars will have a strong impact on many

theories of stellar dynamo action, including the Babcock-Leighton flux-transport model

favored for solar-type stars. To answer such questions, we will turn in due course

in Chapters 5-8 to MHD simulations that capture dynamo action in the bulk of the

convection zone.



Chapter 4

Dynamics Within Confined Nests of Convection

The emergence of localized nests of convection at higher rotation rates is a striking

feature that calls out for an explanation. In many ways, it is quite surprising that

convection chooses to be confined to narrow intervals in longitude, but such states have

also been realized in a number of other dynamical systems. Generally the appearance

of nests is a challenge to explain in detail, yet the onset of spatially modulated states

which are their precursor is better understood.

4.1 Spatially Localized Convection in Other Settings

The phenomena of spatially localized convection has a rich history, variously ap-

pearing in laboratory experiments and numerical simulations. Much interest in confined

states of convection was motivated by the discovery of such states in binary fluid convec-

tion (e.g., Anderson & Behringer 1990; Kolodner & Glazier 1990; Niemela et al. 1990;

Surko et al. 1991), where traveling waves of convection appear via subcritical Hopf

bifurcations and near onset are seen to evolve into traveling patches of convection sepa-

rated by regions of nearly quiescent fluid. From a theoretical perspective, these confined

states near onset are accessible to weakly nonlinear theory and considerable progress has

been made in understanding their nature (e.g., Riecke 1992; Barten et al. 1995; Batiste

& Knobloch 2005; Batiste et al. 2006; Burke & Knobloch 2007). The confined states

found in binary convection differ from our active nests of convection in several respects.
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The most important is that in binary convection there is no net vertical transport of

solute. The confined states instead pump solute horizontally and create regions of stable

vertical stratification in the quiescent regions. A possibly related phenomena is that of

localized states in magnetoconvection, as studied by Blanchflower (1999) and in 3-D by

Blanchflower & Weiss (2002). Here single convective cells (called “convectons”) formed

in a region of initially uniform strong vertical magnetic field by a process of flux expul-

sion. Convection within the localized states was strong and was entirely suppressed in

the surrounding medium. These convectons could contain several convective cells and

were generally stationary, though some solutions exhibited time dependent behavior.

Recently, progress has been made addressing these systems in approximate 2-D models

(Dawes 2007).

Confined states are also realized in other doubly diffusive systems, as in theoretical

studies of thermosolutal convection (Knobloch et al. 1986; Deane et al. 1987, 1988; Spina

et al. 1998). In the latter studies a variety of traveling convective patches were found,

and in these the convective transport of heat and solute was enhanced compared to that

in the interpatch regions. In all cases the patches propagated in the same direction as

the individual convective cells, though more slowly. Such behavior persisted for long

periods of time. These localized states occurred well above the onset of convection,

and convection continued in the interpatch regions. There may also be analogues in

convection within the Earth’s atmosphere, where deep convection in the tropics tends to

be organized on global scales into regions of locally enhanced convection which propagate

in a prograde sense. These organized convective structures are called the Madden-Julien

Oscillation and appear to have their origin in the coupling of convective motions with

equatorially trapped waves (perhaps Rossby or Kelvin waves; see review by Zhang 2005).

The spatially modulated states in our simulations of stellar convection exist at

Rayleigh numbers far above the onset of convection. Spatially modulated states in

this parameter regime have also been observed in geophysically motivated 3-D Boussi-
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nesq simulations of convection within a thick, rotating spherical shell (Grote & Busse

2000; Busse 2002; Busse & Simitev 2005). In these studies, spatially localized states

emerged at moderate Rayleigh numbers, involving an equilibrium between the shearing

flow of differential rotation destroying convective eddies and the Reynolds stresses in

the convection driving the differential rotation. These effects led to localized states

where convection occupied a limited portion of the domain and the region outside the

convective patch was filled with quiescent streaming flow and almost no radial motions.

In the quiescent regions the thermal gradients become increasingly unstable until they

are advected back into the patch where they help sustain the convective eddies. The

patches in these geophysical simulations moved slowly retrograde and persisted up to

Rayleigh numbers of about 106. Beyond this point the differential rotation became so

strong that no sustained convection was possible. Instead the system began to behave

as a relaxation oscillator, with short bursts of convection temporarily building a strong

differential rotation which then sheared out the convective eddies. Convective transport

remained suppressed until the shear of differential rotation decayed viscously, where-

upon a new burst of convection would begin the process anew. In all cases with localized

convection, significant oscillations were seen in the kinetic energies of both differential

rotation and convection (Grote & Busse 2000).

Similar states have also been realized in anelastic simulations of stellar convection

in spherical shells for a rotating younger sun with a much thicker convection zone (Ballot

et al. 2006, 2007). The spatially modulated states found there appear in the equatorial

convection for models with low Prandtl number (Pr = 0.25, as in the models of this

paper). Localized states turn into bursty, vacillating convection at large Taylor numbers

(Ta & 109), much like those in Grote & Busse (2000). Localized states observed in

thick convective shells (with typical aspect ratios χ = rbot/rtop = 0.58) differ in many

important respects from the states we find in our relatively thin shells of convection

(χ = 0.76), most notably in their temporal stability, which we will next discuss.
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4.2 Properties of the Active Nests

Our active nests of convection appear first as regions of mildly enhanced con-

vective amplitude. As the rotation rate increases, convection in the equatorial regions

gradually becomes more localized (as in Fig. 3.2) and eventually is present only within

the active nest. In some of our systems we observe two nests or patches in longitude

(such as case G5) and in some only a single nest (as in case G10). Generally, convection

at the highest rotation rates possesses only a single nest, and for moderate rotation rates

the system can alternate between two-nest states and single-nest states, suggesting that

several attractors exist within the phase space.

To study the temporal evolution of our convective patterns in more detail, we

employ time-longitude maps as shown in Figure 4.1. Here radial velocities are sampled

at the equator for all longitudes, considering case G5 at three depths (near the top,

middle and bottom of the convection zone) and doing so over an interval of 260 days

(or about 45 rotation periods). In these maps, structures propagating in a prograde

fashion relative to the frame of reference are tilted to the upper-right and patterns

propagating in a retrograde sense tilt to the upper-left. To construct these maps we

have chosen a frame of reference propagating in a prograde sense relative to the bulk

rotation frame (Ω0 = 1.3 × 10−5 rad s−1 or 2070 nHz), with constant relative angular

velocity 6.75 × 10−7 rad s−1 (107 nHz, for a total rotation rate of 1.052 Ω0). This

corresponds to the propagation rate of the modulated convection pattern, and thus

the nests appear stationary in this frame. In the Ω0 reference frame the nest takes

about 108 days to complete one lap around the equator, thus for the time interval

shown in Figure 4.1 the nests travel about 870◦ in longitude and completes about 2.4

circuits around the equator. The active nests of convection can persist for extremely

long periods of time. The two nests visible in Figure 4.1 remain coherent for over 5000

days of simulated time.
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Figure 4.1 — Nests of convection in G5 shown in time-longitude maps at three depths.
Radial velocity vr is sampled (a) near top (0.95R⊙), (b) middle (0.85R⊙) and (c) bottom
(0.73R⊙) of layer. These samples are extracted at the equator, using a reference frame
tracking the nests and starting from a mature state in the simulation. Two nests are
visible, and individual convective cells appear as paired upflows and downflows, which
propagate slightly faster than the mean zonal flow that they establish and thus pass
through the nests. (d, e, f) Time averages with longitude of entropy fluctuations S̃ and
convective kinetic energy density K̃ in these samples.
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Individual convective upflows and downflows appear as streaked red and blue re-

gions respectively. In the upper convection zone (0.95R⊙), the convective cells propagate

more rapidly than the nests of convection. Here they overtake the nests from behind

(from smaller longitudes) and then slowly swim through at a reduced speed. Within

the nests convective cells collide and interact, and the strongest survive to emerge from

the front of the nest, where they speed up as they then propagate through the more

quiescent region. When this occurs, typically a small wave train comprised of 2 to 3

upflow/downflow pairs escapes, and as they enter the quiescent regions these convec-

tive cells speed up to once again outpace the zonal flow. In the lower convection zone

(0.73R⊙), the nests propagate more rapidly than the convective cells, and the individual

upflows and downflows appear as strong retrograde-directed streaks. Also visible in the

lower convection zone are low-amplitude velocity structures of rapid retrograde propaga-

tion. They appear to be the weak equatorward extension of the large-scale (retrograde

rotating) polar patterns evident in Figure 3.5. At mid-convection zone (0.85R⊙), nearly

all vertical flow is occurring within the nests of active convection, though the strongest

cells outside the nest in the upper convection zone manage to weakly print down to this

intermediate depth.

The typical angular velocities of the differential rotation, the individual convective

cells and the active nests of convection are shown in Figure 4.2 for case G5 and detailed

for several cases in Table 4.1. The nests of convection propagate at a constant angular

velocity at all depths in the convection zone and over the entire range of latitudes (±30◦)

where they are present. In contrast, the angular velocity Ω of the differential rotation

varies substantially with radius and latitude. At all depths, the individual convective

cells propagate more rapidly than the zonal flow of differential rotation which they

drive. Because the nests of convection propagate at an intermediate prograde rate, they

experience a head-wind from the differential rotation in the deep convection zone and a

tail-wind near the surface. Despite this strong radial shear, the nests remain coherent
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Figure 4.2 — Angular velocities of various structures with radius in case G5. The mean
shearing zonal flow of differential rotation Ω is denoted for all depths at the equator
(solid curve) and at ±15◦ latitude (dotted). The propagation rate of the active nests
(diamonds) is constant across the entire latitude and radial range where they appear
(±30◦). The average velocity of individual convective cells at the equator (asterisks) is
more rapid than the mean zonal flow they establish. Their propagation is faster than
the nests near the top and slower near the bottom. The global rotation rate Ω0 is 2070
nHz (marked).

across the entire convection zone for long periods compared with either the lifetime

of individual convective cells (10-30 days), the rotation period of the star (5 days) or

typical thermal and viscous diffusion times (τκ = 910 days, τν = 3640 days, both at

mid-depth). The time for the differential rotation to lap the nests at the equator is

about 112 days near the surface and 143 days at the bottom of the shell.

At the higher rotation rates, single stable nests of convection dominate the equa-

torial region. Time-longitude maps are shown in Figure 4.3 for the equatorial radial

velocity at two depths in case G10, our most rapidly rotating simulation. Within the

nest, convection remains vigorous, with the strongest downflow networks still spanning

the entire depth of the convection zone. This nest again propagates in a prograde sense

relative to Ω0, with constant relative angular velocity 8.3 × 10−7 rad s−1 (132 nHz, for
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Table 4.1. Angular Velocities of Various Structures

Case Ω0 Ωnest Ωeq,top Ωeq,bot Ωc,top Ωc,bot

G1 2.60 — 0.341 0.060 0.535 0.180
G3 7.80 0.511 1.094 0.220 1.176 0.330
G5 13.00 0.675 1.319 0.197 1.381 0.288
G10 26.00 0.830 1.497 0.140 1.623 0.280

G3a 7.80 0.690 1.295 0.265 1.421 0.373
G3b 13.00 0.670 1.555 0.250 1.590 0.413
G5b 13.00 0.750 1.778 0.246 1.800 0.430

Note. — All angular velocities in µrad s−1 and, except for
the frame rate Ω0, are given relative to Ω0. The differen-
tial rotation at the equator Ωeq is measured at 0.95R⊙ (top)
and 0.73R⊙ (bot). The mean propagation rate of individ-
ual convective structures Ωc is measured at the same depths
in time-longitude maps of vr and has a typical variance of
±0.04 µrad s−1 .
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Figure 4.3 — Time-longitude map of single nest of convection in case G10. As in
Fig. 4.1, radial velocity vr is shown (a) near top and (b) near bottom of layer. Here
a single nest is realized, with individual convective cells almost entirely confined to
the nest, though they continue to propagate within it. (c, d) Time averages S̃ and K̃
constructed in the same reference frame.
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a total rotation rate of 1.032 Ω0). Over the interval shown the nest completes almost 3

circuits of the equator relative to the Ω0 reference frame. Individual convective cells con-

tinue to swim through the nest, moving more rapidly near the surface and more slowly

in the deep convection zone. The very strong radial shear prevents all but the strongest

of downflows from spanning the full convection zone. In the region outside the nest,

convection is strongly suppressed and the main features are the weak flows associated

with the retrograde propagating polar pattern. In the upper convection zone, occasional

weak convective disturbances appear upstream of the nest. As these fluctuations enter

the nest they grow in amplitude.

Our nests of active convection may owe their existence to a competition between

the shearing action of differential rotation acting on the individual convective eddies

and Reynolds stresses within the convection helping to maintain the strong zonal flows.

Unlike the systems studied by Grote & Busse (2000) and Ballot et al. (2007), our patchy

convection is not accompanied by relaxation oscillation behavior or large exchanges

between the kinetic energy in convection and in the differential rotation. Rather, our

nests are not bursty in time and instead persist for long periods in quasi-steady states.

This is true even for our most rapidly rotating case considered here (G10) and at

much higher turbulent driving (G5b), though these simulations exist at Taylor numbers

below the threshold suggested by Ballot et al. (2007) (Ta & 109). Coupling between

equatorially trapped waves and convection may also have a role, but the contribution

of this coupling to spatial localization has been difficult to elucidate.

4.3 Detailed Structure of an Active Nest of Convection

We focus here on the structure of the nests so evident in Figures 4.1 and 4.3 for

cases G5 and G10, but devote particular attention to the single nest realized in the

latter as a representative case. The active nests extend throughout the depth of the

convection zone. This is illustrated most clearly in Figure 4.4a, showing the vertical
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Figure 4.4 — Detailed structure of convective nest in case G10. This snapshot of nest
structure is shown at relative day 221 of Fig. 4.3. (a) Radial velocities in an equatorial
cut shown for all longitudes and radii. (b) Companion entropy fluctuations S about
their spherical means S̄ (in cgs units), with high entropy fluid in red tones. (c) Radial
velocity in the equatorial region shown near the top of layer.
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profile of radial velocities with longitude in a cut at the equator. Convection is broken

into multiple cells, one set above 0.9R⊙ and another below 0.8R⊙. Only within the nest

do strong downflows span the convection zone. The nest is embedded in a region of

strong latitudinal and radial zonal shear (as shown by the tilted nature of its structure),

yet the pattern propagates at a constant angular velocity at all depths and latitudes.

At the surface and near the equator the nest propagates more slowly than the zonal

wind, whereas at the base of the convection zone it propagates more rapidly. Individual

convective structures swim still more rapidly and both enter and exit the region of

enhanced convection. As such, the nest experiences a strong retrograde flow at the base

and a strong prograde flow near the surface.

The thermal structure of the nests is revealed by their entropy fluctuations, as

shown in Figure 4.4b. In the upper convection zone, the mean zonal flow advects

low entropy fluid into the nests from the left side. This fluid is then swept away by

intermittent downflows and replaced by higher entropy fluid from below. In the lower

convection zone, higher entropy fluid is swept into the nest from the right and lower

entropy exits to the left. At mid convection zone, regions outside the nest remain

convectively unstable, but only weak radial motions are driven here.

The mean longitudinal structure of the nests can be assessed by forming temporal

averages of various properties in a frame co-rotating with the nests of convection (these

averages denoted by a tilde). This is done at the equator for entropy S̃ and convective

kinetic energy density K̃ (with same form as CKE) for case G5 in Figure 4.1d − f and

for case G10 in Figure 4.3c, d. There are distinctive differences between the leading (to

the right) and trailing (to the left) portions of the profiles, with S̃ showing a gradual rise

and steeper drop in going to decreasing longitudes (from right to left). The envelope of

S̃ is largely similar in form at the top and bottom of the convection zone. In contrast

K̃, which traces the fluctuating velocities of convection, changes form with depth, being

skewed in the direction of the mean zonal flow. At the top of the convection zone this
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Figure 4.5 — Mean circulations associated with the nest in case G10. (a) Time averaged
radial (colors) and horizontal flows (arrows) near the top and (b) near the bottom of
the shell, in a reference frame tracking the nest. The strong zonal flow of differential
rotation has been subtracted at each latitude and is shown by the solid curves (both
scaled by 125 m s−1 arrow length, with zero velocity relative to the nest indicated by
the vertical line). Within the nest strong eddy currents partially decelerate the flow,
while outside the streaming mean zonal flow dominates.
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sense of skew is toward the right, and at the bottom it is toward the left.

These nests must have gradual circulations associated with them, though these

are a challenge to discern as they are much weaker than the strong mean zonal flows.

We can get some sense of them by averaging the vertical and horizontal flows in the

surroundings of a nest while tracking it over long time intervals. Shown in Figure 4.5 are

the slow circulations associated with the nest in case G10 near the top and bottom of the

convection zone. These flows have been averaged over a period of 615 days starting at

the beginning of the interval shown in Figure 4.3. The flows suggest a systematic zonal

circulation from fore to aft in the upper convection zone and toward higher latitudes

and diverging from the nest at depth, though to achieve this we have subtracted the

fast mean zonal flow which varies with latitude as shown. The mean upflows and

downflows in the nest are quite weak, with amplitudes of a few m s−1, as compared with

the convection which can have peak velocities of a few hundred m s−1. Test particles

released in the flow would not simply circulate according to these mean circulations

and would be instead swept along by the strong mean zonal flow and of course by the

vigorous convection cells that propagate through the nest. Some test particles would

encounter strong downflows and would be swept down through the nest to the bottom

of the convection zone while others would likely be carried horizontally out the nest and

remain at a similar depth. Yet Figure 4.5 indicates that a weak large-scale circulation

is realized, and this may serve to slowly pump fluid through the system. These mean

circulatory flows may also serve to inform analytic models of such nests of convection.
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4.4 Conclusions

A striking feature of these simulations is the emergence of a pattern of strongly

modulated convection in the equatorial regions. These nests of active convection are

regions of enhanced convective vigor and transport which propagate at rates distinct

from either the mean zonal flows of differential rotation or the individual convective

cells. In the most rapidly rotating systems, such as case G10, convection at the equator

is entirely dominated by motions inside the nest with only very weak radial motions

present in the regions outside the nest. Though their impact on the convection is most

obvious in the rapidly rotating limit, we find some evidence for weak modulation even

in our more slowly rotating cases.

All of our simulations stop short of the turbulent stellar surface, and it is thus

difficult to estimate how these nests of active convection may affect stellar observations

in detail. The convective velocities associated with the nests are small compared to the

nearly supersonic flows in stellar granulation, and in the Sun such global-scale convec-

tive structures have evaded direct detection despite intensive searches throughout the

near-surface layers by helioseismology. The extremely localized nests found in our most

rapidly rotating cases may however influence the thermal stratification and thus convec-

tive vigor in the near surface regions, as most of the flux at the equator is transported

through a narrow range of longitudes. These nests may act as traveling hot spots with

enhanced convection even in the surface layers where the higher emerging flux escapes

the system.

These spatially localized states of convection may also have some bearing on the

active longitudes of magnetic activity observed in the Sun, if the enhanced pummeling

of the tachocline by the convection within the nest preferentially destabilizes magnetic

structures within the tachocline that then rise to the surface. If they do survive in a

magnetic environment, then their strongest signature is likely to emerge in magnetic
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stars, where magnetic fields threading the bulk of the convection zone may be concen-

trated in the nests and mimic giant, propagating starspots which survive for very long

epochs in time. If the nests lead to active longitudes of enhanced magnetic activity in

rapidly rotating stars, we might expect these long-lived magnetic structures to propa-

gate at a rate different from the stellar rotation rate as measured at the surface or from

the stellar differential rotation.

We recognize that our simulations remain separated by many orders of magnitude

from the parameter space of real stellar convection. As such, we must be cautious with

our interpretations of the overall dynamics. However, we have found that these nests

of convection are a robust feature over a range of parameters and that they are able

to persist as entities for as long as we could pursue their modelling. Thus one should

be prepared to consider the possibility of their presence also in real stellar convection

zones, where they may appear as long-lived propagating features.

Our current family of dynamo simulations indicate that nests of convection can

coexist with magnetism in portions of parameter space. We will explore this possibility

in Chapter 8, but first we turn to a more general exploration of dynamo activity in these

rapidly rotating suns.



Chapter 5

Global Dynamo that Builds Persistent Wreaths of Magnetism

Having explored the coupling of convection and rotation in our hydrodynamic

simulations, it is now time to turn to the question of possible dynamo action in rapidly

rotating suns. The hydrodynamical simulations showed us that the shearing flows of

differential rotation generally grow in amplitude with more rapid rotation, possessing

rapid equators and slower poles, while the meridional circulations weaken and break up

into multiple cells in radius and latitude. More rapid rotation can also substantially

modify the patterns of convection in a surprising fashion. With more rapid rotation,

localized states begin to appear in which the convection at low latitudes is modulated

in its strength with longitude. At the highest rotation rates, the convection can become

confined to active nests which propagate at distinct rates and persist for long epochs.

Motivated by these discoveries, we turn here to explorations of the possible dy-

namo action achieved in solar-type stars rotating at three and five times the current

solar rate. Magnetism leads to strong feedbacks on the flows, particularly modifying

the differential rotation and its scaling with overall rotation rate Ω0. The magnetic

fields which form in these dynamos have prominent global-scale organization within the

convection zone, in contrast to previous solar dynamo simulations (Brun et al. 2004;

Browning et al. 2006). Quite strikingly, we find that coherent global magnetic struc-

tures arise naturally in the midst of the turbulent convection zones. These wreath-like

structures are regions of strong longitudinal field Bφ organized loosely into tubes, with



93

fields wandering in and out of the surrounding convection. These wreaths of magnetism

differ substantially from the idealized flux tubes supposed in many dynamo theories,

though they may be related to coherent structures achieved in local simulations of dy-

namo action in shear flows (Cline et al. 2003; Vasil & Brummell 2008, 2009). Here we

explore the nature of magnetic wreaths realized in our global simulations, and discuss

their temporal behavior.

The contents of Chapters 5, 6 and 7 are based on work submitted for publication

as Brown et al. (2009)1 and are mainly a restatement of that paper under review. As the

primary author of this paper, I conducted the simulations presented here, performed the

analysis and wrote the text. My co-authors provided advice and guidance throughout

the process, helping frame the questions which form the core of the study. Preliminary

versions of these results have also been presented in Brown et al. (2007b), Brown et al.

(2007c), Brown (2009a), and Brown (2009b).

We begin by turning to case D3 whose formulation is shown in Figure 2.5. This

dynamo yields fairly persistent wreaths of magnetism in its two hemispheres, though

these structures did wax and wane somewhat in strength once established. Examining

the properties of this dynamo solution helps to provide a perspective for the greater

variations realized in our more rapidly rotating case D5.

5.1 Patterns of Convection in Case D3

The complex and evolving convective structures in our dynamo cases are sub-

stantially similar to the patterns of convection found in our hydrodynamic simulations.

Our dynamo solution rotating at three times the solar rate, case D3, is presented in Fig-

ure 5.1, along with its hydrodynamic progenitor, case H3. The radial velocities shown

near the top of the simulated domain (Figs. 5.1a, e) have broad upflows and narrow

1 Brown, B. P., Browning, M. K., Brun, A. S., Miesch, M. S., & Toomre, J., 2009, Persistent wreathes
of magnetism in a rapidly rotating sun, ApJ, under review.
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Figure 5.1 — Convective structures and mean flows in cases D3 and H3. (a) Radial
velocity vr in dynamo case D3, shown in global Mollweide projection at 0.95R⊙, with
upflows light and downflows dark. Poles are at top and bottom and the equator is the
thick dashed line. The stellar surface at R⊙ is indicated by the thin surrounding line.
(b) Profiles of mean angular velocity Ω(r, θ), accompanied in (c) by radial cuts of Ω
at selected latitudes. A strong differential rotation is established by the convection.
(d) Profiles of meridional circulation, with sense of circulation indicated by color (red
counter-clockwise, blue clockwise) and streamlines of mass flux overlaid. (e − h) Com-
panion presentation of fields for hydrodynamic progenitor case H3. The patterns of
radial velocity are very similar in both cases. The differential rotation is much stronger
in the hydrodynamic case and the meridional circulations there are somewhat weaker,
though their structure remains similar.

downflows as a consequence of the compressible motions. Near the equator the convec-

tion is aligned largely in the north-south direction, and these broad fronts sweep through

the domain in a prograde fashion. The strongest downflows penetrate to the bottom

of the convection zone; the weaker flows are partially truncated by the strong zonal

flows of differential rotation. In the polar regions the convection is more isotropic and

cyclonic. There the networks of downflow lanes surround upflows and both propagate

in a retrograde fashion.
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The convection establishes a prominent differential rotation profile by redistribut-

ing angular momentum and entropy, building gradients in latitude of angular velocity

and temperature. Figures 5.1b, f show the mean angular velocity Ω(r, θ) for cases D3

and H3, revealing a solar-like structure with a prograde (fast) equator and retrograde

(slow) pole. This property is also realized for cases D5 and H5 with faster rotation. Fig-

ures 5.1c, g present in turn radial cuts of Ω at selected latitudes, which are useful as we

consider the angular velocity patterns realized here with faster rotation. These Ω(r, θ)

profiles are averaged in azimuth (longitude) and time over a period of roughly 200 days.

Contours of constant angular velocity are aligned nearly on cylinders, influenced by the

Taylor-Proudman theorem.

As discussed in Chapter 1, helioseismology has revealed that in the Sun the con-

tours of angular velocity are aligned almost on radial lines rather than on cylinders. The

tilt of Ω contours in the Sun may be due in part to the thermal structure of the solar

tachocline, as first found in the mean-field models of Rempel (2005) and then in 3-D

simulations of global-scale convection by Miesch et al. (2006). In those computations,

it was realized that introducing a weak latitudinal gradient of entropy at the base of

the convection zone, consistent with a thermal wind balance in a tachocline of shear,

can serve to tilt the Ω contours toward a more radial alignment without significantly

changing either the overall Ω contrast with latitude or the convective patterns. We

expect similar behavior here, but at present, observations of rapidly rotating stars only

measure differential rotation at the surface and do not offer constraints on either the

existence of tachoclines in young suns or the nature of their internal differential rotation

profiles. As such, we have neglected the possible tachoclines of penetration and shear

entirely in these models and instead adopt the simplification of imposing a constant

radial entropy gradient at the bottom of the convection zone.

The differential rotation achieved is stronger in our hydrodynamic case H3 than

in our dynamo case D3. This can be quantified by measurements of the latitudinal



96

angular velocity shear ∆Ωlat. Here, as in Chapter 3 we define ∆Ωlat as the shear near

the surface between the equator and a high latitude, say ±60◦

∆Ωlat = Ωeq − Ω60, (5.1)

and the radial shear ∆Ωr as the angular velocity shear between the surface and bottom

of the convection zone near the equator

∆Ωr = Ω0.97R⊙ − Ω0.72R⊙ . (5.2)

We further define the relative shear as ∆Ωlat/Ωeq. In both definitions, we average the

measurements of ∆Ω in the northern and southern hemispheres, as the rotation profile

is often slightly asymmetric about the equator. Case H3 achieves an absolute contrast

∆Ωlat of 2.22 µ rad s−1 (352 nHz) and a relative contrast of 0.247. The strong global-

scale magnetic fields realized in the dynamo case D3 serve to diminish the differential

rotation. As such, this case achieves an absolute contrast ∆Ωlat of only 1.17 µ rad s−1

(186 nHz) and a relative contrast of 0.136. This results from both a slowing of the

equatorial rotation rate and an increase in the rotation rate in the polar regions. These

results are quoted in Table 5.1, along with related measurements for our five solar

dynamo case D5 and hydrodynamic cases H3 and H5. It is interesting to note that

in both dynamo cases the amount of latitudinal and radial shear is almost the same,

whereas in the hydrodynamic simulations the more rapidly rotating case H5 has larger

angular velocity contrasts than the slower case H3.

The meridional circulations realized in the dynamo case D3 are very similar to

those found in its hydrodynamic progenitor (case H3). As illustrated in Figures 1d, h,

the circulations are multi-celled in radius and latitude. The cells are strongly aligned

with the rotation axis, though some flows along the inner and outer boundaries cross

the tangent cylinder and serve to couple the polar regions to the equatorial convection.

Flows of meridional circulation are slightly stronger in the dynamo cases than in the

purely hydrodynamic cases, and these flows weaken with more rapid rotation.
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Table 5.1. Near-surface ∆Ω in Cases at 3 and 5Ω⊙

Case ∆Ωlat ∆Ωr ∆Ωlat/Ωeq Epoch

D3 1.17 0.71 0.136 6460-6920
D5avg 1.14 0.71 0.083 3500-5700
D5min 0.91 0.39 0.067 3702
D5max 1.43 0.98 0.102 4060
H3 2.22 0.94 0.246 -
H5 2.77 1.31 0.192 -

Note. — Angular velocity shear in units of
µrad s−1, with ∆Ωlat and ∆Ωlat/Ωeq measured near
the surface (0.97R⊙) and ∆Ωr measured across the
full shell at the equator. For the dynamo cases, these
measurements are taken over the indicated range of
days. In oscillating case D5, these measurements are
averaged over a long epoch (avg), and are also taken
at two instants in time when the differential rota-
tion is particularly strong (max) and when magnetic
fields have suppressed this flow (min). The hydrody-
namic cases are each averaged for roughly 300 days.
Case D3 also shows slow variations in ∆Ωlat over
periods of about 2000 days.
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5.2 Kinetic and Magnetic Energies

Convection in these rapidly rotating dynamos is responsible for building the dif-

ferential rotation and the magnetic fields. In a volume averaged sense, the energy

contained in the magnetic fields in case D3 is about 10% of the kinetic energy. About

35% of this kinetic energy is contained in the fluctuating convection (CKE) and about

65% in the differential rotation (DRKE), whereas the weaker meridional circulations

contain only a small portion (MCKE). The magnetic energy is split between the con-

tributions from fluctuating fields (FME), involving roughly 53% of the total magnetic

energy, and the energy of the mean toroidal fields (TME) that are 43% of the total. The

energy contained in the mean poloidal fields (PME) is only 4% of the total magnetic

energy. These energies are quoted in Table 5.2 and are defined as

CKE =
1

2
ρ̄
[
(vr − 〈vr〉)2 + (vθ − 〈vθ〉)2 +

(vφ − 〈vφ〉)2
]
, (5.3)

DRKE =
1

2
ρ̄〈vφ〉2, (5.4)

MCKE =
1

2
ρ̄
(
〈vr〉2 + 〈vθ〉2

)
, (5.5)

FME =
1

8π

[
(Br − 〈Br〉)2 + (Bθ − 〈Bθ〉)2 +

(Bφ − 〈Bφ〉)2
]
, (5.6)

TME =
1

8π
〈Bφ〉2, (5.7)

PME =
1

8π

(
〈Br〉2 + 〈Bθ〉2

)
. (5.8)

where angle brackets denote an average in longitude.

These results are in contrast to our previous simulations of the solar dynamo,

where the mean fields contained only about 2% of the magnetic energy and the fluctu-

ating fields contained nearly 98% (Brun et al. 2004). In simulations of the solar dynamo

that included a stable tachocline at the base of the convection zone (Browning et al.

2006), the energy of the mean fields in the tachocline can exceed the energy of the
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Table 5.2. Energies in Cases at 3 and 5Ω⊙

Case CKE DRKE MCKE FME TME PME

D3 2.31 4.35 0.010 0.36 0.29 0.029
D5avg 1.85 4.46 0.006 0.55 0.43 0.048
D5min 1.70 2.85 0.005 0.50 0.25 0.062
D5max 1.85 7.52 0.007 0.39 0.65 0.042
H3 2.56 22.2 0.012 - - -
H5 2.27 34.3 0.008 - - -

Note. — Volume-averaged energy densities relative to the
rotating coordinate system. Kinetic energies are shown for
convection (CKE), differential rotation (DRKE) and merid-
ional circulations (MCKE). Magnetic energies are shown for
fluctuating magnetic fields (FME), mean toroidal fields (TME)
and mean poloidal fields (PME). All energy densities are re-
ported in units of 106erg cm−3 and are averaged over 1000 day
periods except for time-varying case D5, where intervals are
as in Table 5.1.
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fluctuating fields there by about a factor of three, though the fluctuating fields still

dominate the magnetic energy budget within the convection zone itself. Simulations

of dynamo activity in the convecting cores of A-type stars (Brun et al. 2005) achieved

similar results. There in the stable radiative zone the energies of the mean fields were

able to exceed the energy contained in the fluctuating fields, but in the convecting core

the fluctuating fields contained roughly 95% of the magnetic energy. Simulations of

dynamo action in fully-convective M-stars do however show high levels of magnetic en-

ergy in the mean fields (Browning 2008). In those simulations the fluctuating fields still

contain much of the magnetic energy, but the mean toroidal fields possess about 18% of

the total throughout most of the stellar interior. In our rapidly rotating suns, the mean

fields comprise a significant portion of the magnetic energy in the convection zone and

are as important as the fluctuating fields.

Convection is similarly strong in all four rapidly rotating cases, and CKE is similar

in magnitude. The differential rotation in the dynamo cases is much weaker than in

the hydrodynamic progenitors and DRKE has decreased by about a factor of five. The

magnetic fields and differential rotation in case D5 change in time, but the average

energy contained in DRKE is nearly the same in both dynamo cases despite their very

different rotation rates. This is in striking contrast to the behavior of the hydrodynamic

cases, where DRKE is much larger in the more rapidly rotating case H5 than in case H3.

Meridional circulations are comparably weak in all cases.

The amount of energy contained in the magnetic fields is different in these two

dynamo cases, with energies generally stronger in case D5 than in case D3. In an

average sense, all three magnetic energies are about 1.5 times greater in case D5 than

in case D3. Case D5 shows substantial time variation, and at periods either FME or

TME can become quite similar to those values realized in case D3. Meanwhile, PME is

always stronger in D5 than in D3.
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5.3 Wreaths of Magnetism

These dynamos produce striking magnetic structures in the midst of their turbu-

lent convection zones. The magnetic field is organized into large banded, wreath-like

structures positioned near the equator and spanning the depth of the convection zone.

These wreaths are shown at two depths in the convection zone in Figure 5.2. The dom-

inant component of the magnetic wreaths is the strong longitudinal field Bφ, with each

wreath possessing its own polarity. The average strength of the longitudinal field at

mid-convection zone is ±7 kG and peak field strengths there reach roughly ±26 kG.

Threaded throughout the wreaths are weaker radial and latitudinal magnetic fields,

which connect the two structures across the equator and also to the high-latitude re-

gions.

These wreaths of magnetism survive despite being embedded in vigorous convec-

tive upflows and downflows. The convective flows leave their imprint on the magnetic

structures, with individual downflow lanes entraining the magnetic field, advecting it

away, and stretching it into Br while leaving regions of locally reduced Bφ. The slower

upflows carry stronger Bφ up from the depths. Where the magnetism is particularly

strong the convective flows are disrupted. Meanwhile, where the convective flows are

strongest, the longitudinal magnetic field is weakened and appears to vanish. In reality,

the magnetic wreaths here are diving deeper below the mid-convection zone, apparently

pumped down by the pummeling action of the strong downflows.

The deep structure of these wreaths is revealed by field line tracings throughout

the volume, shown in Figure 5.3 for the same instant in time. The wreaths are topologi-

cally leaky structures, with magnetic field lines threading in and out of the surrounding

convection. The wreaths are connected to the high-latitude (polar) convection, and on

the poleward edges they show substantial winding from the highly vortical convection

found there. This occurs in both the northern and southern hemispheres, as shown in
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Figure 5.2 — Magnetic wreaths and convective flows sampled at the same instant in
case D3. (a) Longitudinal magnetic field Bφ near the top of the shell (0.95R⊙) and
(b) at mid-depth (0.85R⊙). Strong flux structures with opposite polarity lie above and
below the equator and span the convection zone. (c, d) Weaker radial magnetic field Br

permeates and encircles each wreath. (e, f) Strong convective upflows and downflows
shown by Vr pass through and around the wreaths. The regions of strong magnetism
tend to disrupt the convective flows while the strongest downflows serve to pump the
wreaths to greater depths.
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Figure 5.3 — Field line visualization of magnetic wreaths in case D3. (a) Snapshot
of two wreaths in full volume at same instant as in Fig. 5.2. Lines trace the magnetic
fields, color denoting the amplitude and polarity of the longitudinal field Bφ (red, pos-
itive; blue, negative). Magnetic field threads in and out of the wreaths, connecting the
two opposite polarity structures across the equator (i.e., region A) and to the polar
regions where the magnetic field is wound up by the cyclonic convection. (b) Same
snapshot showing south polar region. (c) Zoom in on region A showing the complex
interconnections across the equator between the two wreaths and to high latitudes.
Convective flows create the distinctive waviness visible in all three images.
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two views at the same instant (north, Fig. 5.3a and south, Fig. 5.3b). It is here that the

global-scale poloidal field is being regenerated by the coupling of fluctuating velocities

and fluctuating fields. Magnetic fields cross the equator, tying the two wreaths together

at many locations (Fig. 5.3c). The strongest convective downflows leave their imprint on

the wreaths as regions where the field lines are dragged down deeper into the convection

zone, yielding a wavy appearance to the wreaths as a whole.

5.4 Wreaths Persist for Long Epochs

The wreaths of magnetism built in case D3 persist for long periods of time, with

little change in strength and no reversals in global-scale polarity for as long as we

have pursued these calculations. The long-term stability of the wreaths realized by the

dynamo of case D3 is shown in Figure 5.4. Here the azimuthally-averaged longitudinal

field 〈Bφ〉 and colatitudinal field 〈Bθ〉 are shown at mid-convection zone at a point after

the dynamo has equilibrated and for a period of roughly 5000 days (i.e., several ohmic

diffusion times). During this interval there is little change in either the amplitude or

structure of the mean fields. This is despite the short overturn times of the convection

(10-30 days) or the rotation period of the star (∼ 9 days). The ohmic diffusion time at

mid-convection zone is approximately 1300 days.

Though the mean (global-scale) fields are roughly steady in nature (Figs. 5.4a, b),

the magnetic field interacts strongly with the convection on smaller scales. Several

samples of longitudinal field Bφ are shown in full Mollweide projection at mid-convection

zone (Fig. 5.4c). The magnetic fields are clearly reacting on short time scales to the

convection but the wreaths maintain their coherence.

There are also some small but repeated variations in the global-scale magnetic

fields. Visible in Figure 5.4b are events where propagating structures of 〈Bθ〉 reach

toward higher latitudes over periods of about 1000 days (i.e., from day 3700 to day

4500 and from day 5600 to day 6400). These are accompanied by slight variations
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Figure 5.4 — Persistent wreaths of magnetism in case D3. (a) Time-latitude plots
of azimuthally-averaged longitudinal field 〈Bφ〉 at mid-convection zone (0.85R⊙) in a
view spanning latitudes from ±70◦, with scaling values indicated. The two wreaths
of opposite polarity persist for more than 4000 days. (b) Mean colatitudinal magnetic
field 〈Bθ〉 at mid-convection zone over same interval. (c) Snapshots of Bφ in Mollweide
projection at mid-convection zone, shown for three times indicated in a, b. The wreaths
maintain constant polarity over long time intervals, but still show variation as they
interact with the convection. Time t2 corresponds to the snapshot in Fig. 5.2b.

in the volume-averaged magnetic energy densities and the comparable kinetic energy

of the differential rotation. These variations are also visible in the differential rotation

itself, as shown in Figure 5.5. The differential rotation is fairly stable, though some time

variation is visible at high latitudes. This is better revealed (Fig. 5.5b) by subtracting the

time-averaged profile of Ω at each latitude, revealing the temporal variations about this

mean. In the polar regions above ±40◦ latitude, speedup features move poleward over

500 day periods. These features track similar structures visible in the mean magnetic

fields (Fig. 5.4b).

These evolving structures of magnetism and faster and slower differential rotation

appear to be the first indications of behavior where the mean fields themselves begin to

wax and wane substantially in strength. As the magnetic Reynolds number is increased,

this time varying behavior becomes more prominent and can even result in organized

changes in the global-scale polarity. Such behavior is evident in our case D5.
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Figure 5.5 — Temporal variations of differential rotation in case D3. (a) Angular
velocity Ω at mid-convection zone (0.85R⊙), with ranges in both nHz and µrad s−1.
The equator is fast while the poles rotate more slowly. (b) Temporal variations are
emphasized by subtracting the time-averaged profile of Ω(r, θ), revealing speedup struc-
tures at high latitudes and pulses of fast and slow motion near the equator. These
bands have average amplitudes of ±20 m s−1 and peak amplitudes of about ±60 m s−1.
(c) Angular velocity shear ∆Ωlat (eq. 5.1) near the surface (upper curve, green) and at
mid-convection zone (lower, red).
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5.5 Conclusions

The ability for a dynamo to build wreaths of strong magnetic fields in the bulk

of the convection zone has largely been a surprise, for it had generally been supposed

that turbulent convection would disrupt such magnetic structures. To avoid these dif-

ficulties, many solar and stellar dynamo theories shift the burden of magnetic storage,

amplification and organization to a tachocline of shear and penetration at the base of

the convection zone where motions are more quiescent. In contrast, our simulations of

rapidly rotating stars are able to achieve sustained global-scale dynamo action within

the convection zone itself, with the magnetic structures both being built and able to

survive while embedded deep within the turbulence. These dynamos are able to cir-

cumvent the Parker instability by means of turbulent Reynolds and Maxwell stresses

that contribute to the mechanical force balance and prevent the wreaths from buoyantly

escaping the convection zone. This striking behavior may be enabled by the stars ro-

tating three to five times faster than the current Sun, which yields a strong differential

rotation that is a key element in the dynamo behavior. It is quite interesting that in our

dynamo cases the angular velocity contrast in latitude and radius is almost constant at

differing rotation rates, whereas our hydrodynamic cases tend to have increasing ∆Ω

with more rapid rotation Ω0.

As we have seen in this chapter, we have achieved some dynamo states that are

persistent. Others flip the sense of their magnetic fields. In our case D3 the global-scale

fields have small vacillations in their amplitudes, but the magnetic wreaths retain their

identities for many thousands of days. This represents hundreds of rotation periods and

several magnetic diffusion times, indicating that the dynamo has achieved a persistent

equilibrium. As we will see next in Chapter 6, increasing the rotation rate yields more

complex time dependence.



Chapter 6

Cyclic Dynamo Action Achieved at 5 Ω⊙

Our more rapidly rotating simulation, case D5 at five times the current solar rate,

also builds strong wreaths of magnetism that span the convection zone. However, in

this simulation the dynamo is not steady in time and instead goes through cycles of

activity. During a cycle, the global-scale magnetic fields wax and wane in strength and

at the lowest field strengths they can flip their polarity. We shall begin by looking at

the general properties of the convective flows and their associated differential rotation

and meridional circulation, and then turn to examining the nature of the magnetic fields

and their time-varying behavior.

6.1 Patterns of Convection in Case D5

Figure 6.1a shows a snapshot of the patterns of convection realized in case D5

near the top of the domain. Much as in the radial velocity patterns shown for case D3

(Figs. 5.1a,5.2e), here with faster rotation we continue to have prominent north-south

aligned cells in the lower latitudes and more isotropic patterns near the poles. There is

some modulation with longitude in the equatorial roll amplitudes. The downflows are

fast and narrow, while the upflows are broader and slower. The convection establishes

a prominent differential rotation, with a fast equator and slow poles (Fig. 6.1c).

As in case D3, here too the convective downflow structures propagate more rapidly

than the differential rotation in which they are embedded. In the equatorial band, these
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Figure 6.1 — Patterns of convection in case D5. This simulation is rotating at five times
the solar rotation rate. (a) Radial velocity vr in Mollweide projection at 0.95R⊙ for
case D5. This snapshot samples day 3880 (time t1) when the magnetic fields are strong.
(b) Companion hydrodynamic case H5, whose stronger differential rotation shears out
convective structures in the mid-latitudes. (c) Profile of mean angular velocity Ω(r, θ)
for case D5, with (d) radial cuts of Ω at selected latitudes. (e) Meridional circulations
for case D5, with magnitude and sense of circulation indicated by color (red counter-
clockwise, blue clockwise) and streamlines of mass flux overlaid.
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structures move in a prograde fashion and at high latitudes in the retrograde sense. In

the polar regions, the radial velocity patterns have a somewhat cuspy appearance, with

the strongest downflows appearing to favor the westward and lower-latitude side of each

convective cell. This may be a consequence of the strong retrograde differential rotation

in those regions.

The convective structures are quite similar to those realized in the hydrodynamic

case H5 (Fig. 6.1b), though there are some noticeable differences, particularly at the

mid latitudes (around ±30◦). In the hydrodynamic case there is little radial flow in

these regions, as the strong differential rotation shears out the convective cells. This

region is equatorward of the tangent cylinder, an imaginary boundary tangent to the

base of the convection zone and aligned with the rotation axis. For rotating convective

shells, it has generally been found that the dynamics are different inside and outside the

tangent cylinder, due to differences in connectivity and rotational constraint in these

two regions (e.g., Busse 1970). The tangent cylinder in our geometry intersects with

the stellar surface at roughly ±42◦ of latitude. In our compressible simulations, we

generally find that the convective patterns in the equatorial regions are bounded by a

conic surface rather than the tangent cylinder (Brown et al. 2008). In case H5 the strong

differential rotation serves to disrupt the convection at the mid-latitudes. In contrast,

in the dynamo case D5 the differential rotation is substantially weaker in both radial

and latitudinal angular velocity contrasts (Table 5.1). As is evident in Figure 6.1a, the

convective cells fill in this region quite completely.

The time-averaged angular velocity profile Ω(r, θ) is shown for case D5 in Fig-

ures 6.1c, d. The latitudinal angular velocity contrast ∆Ωlat and radial contrast ∆Ωr in

this case is remarkably similar in amplitude to that realized in case D3 (Table 5.1), even

though the basic rotation rate Ω0 is substantially faster. This is in marked contrast to

our hydrodynamic companion cases where faster rotation leads to greater angular veloc-

ity contrasts. The accompanying meridional circulation patterns for case D5 (Fig. 6.1e)
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appear to have three major cells of circulation in each hemisphere. These flows are

weaker than in case D3. They are very similar to the circulations found in case H5.

6.2 Oscillations in Energies and Changes of Polarity

The dynamo action realized by the convection in case D5 exhibits significant

changes in time. This time-varying behavior is readily visible as oscillations of the

volume-averaged kinetic and magnetic energy densities, as shown in Figure 6.2a at a

time long after the dynamo has saturated and reached equilibration. Here the kinetic

energy of differential rotation (DRKE) undergoes factor of five changes on periods of

500-1000 days. As DRKE decreases the magnetic energies increase. Moving in concert

are the mean toroidal (TME) and mean poloidal (PME) magnetic energies. The mean

poloidal fields appear to lag slightly behind the mean toroidal fields as they both change

in strength. The fluctuating magnetic energies (FME) track the largest rises in the

mean fields but decouple during many of the deepest dips. In contrast, the variations in

convective kinetic energies (CKE) show little organized behavior in time, and appear to

change substantially only when the differential rotation is highly suppressed during the

period from day 7500 to day 8300. The energy contained in the meridional circulations

(MCKE) is weaker and not shown. Though it varies somewhat in time, there is not a

clear relation to the changes in magnetic energies.

Magnetic energies in case D5 can rise to be a substantial fraction of the kinetic

energies. Averaged over the nearly 16000 days shown here, the magnetic energies are

about 17% of the kinetic energies. During individual oscillations the magnetic energies

can range from a few percent of the kinetic energies to levels as high as 50%. The kinetic

energy is largely in the fluctuating convection and differential rotation, with CKE fairly

constant and ranging from 15-60% of the total kinetic energy as DRKE grows and

subsides, itself contributing between 40 to 85% of the kinetic energy. The magnetic

energies are largely split between the mean toroidal fields and the fluctuating fields, with
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Figure 6.2 — Complex time evolution in case D5 with flips in polarity of magnetic
wreaths. (a) Volume-averaged energy densities for kinetic energy of convection (CKE),
differential rotation (DRKE) and for magnetic energy in fluctuating fields (FME), in
mean toroidal fields (TME) and in mean poloidal fields (PME) as labeled. Oscillations
on roughly 500-1000 day periods are visible in the magnetic energies and in DRKE,
though CKE stays nearly constant. (b) Mean toroidal field 〈Bφ〉 averaged over entire
northern and southern hemispheres (labeled) at mid-convection zone (0.85R⊙). Early in
the simulation, opposite polarities dominate each hemisphere. Several reversals occur,
along with several extreme excursions which do not flip the polarity of the global-
scale field. During the interval from roughly day 7700 to 10200, the dynamo falls
into peculiar single polarity states, with one polarity dominating both hemispheres.
Bracketed interval from day 3500 to 5700 spans one full polarity reversal; (c) shows
volume-averaged energy densities during this period, and (d) the mean toroidal field
with same vertical axis scales as in (a, b). Thick labeled tick marks above a, c indicate
time samples used in later images.
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TME containing about 35% of the magnetic energy on average, FME containing about

61% and PME containing 4%. The roles of these energy reservoirs change somewhat

through each oscillation. At any one time, between 10 and 60% of the magnetic energy

is in TME while FME contains between 30 and 85% of the total. Meanwhile, PME can

comprise as little as 1% or as much as 10% of the total. Generally, PME is about 12%

of TME, but because PME lags the changes in TME slightly, there are periods of time

when PME is almost 40% of TME.

The global-scale magnetic fields can reverse their polarities during some of the

oscillations in magnetic energies. This is evident in Figure 6.2b showing averages at mid-

convection zone of the longitudinal magnetic field 〈Bφ〉 over the northern and southern

hemispheres. Reversals in field polarity occur periodically, with typical time scales

of roughly 1500 days. These reversals appear to happen shortly after peak magnetic

energies are achieved, but do not occur every time magnetic energies undergo a full

oscillation. Rather, it appears that several failed reversals occur where the magnetic

energies drop and the average fields decline in strength, only to return with the same

polarity a few hundred days later, for each successful polarity reversal.

We focus in the following discussion on one such reversal, shown in closeup in Fig-

ures 6.2c, d and spanning the interval of time between days 3500 and 5700. Two reversals

occur during this interval, with the global polarities flipping into a new state at roughly

day 4100 and then changing back again at about day 5500. Detailed measurements of

kinetic and magnetic energies during this interval are shown in Table 5.2.

6.3 Global-Scale Magnetic Reversals

The nature of the global-scale magnetic fields during the reversal spanning days

3500-5700 are presented in detail in Figure 6.3. Several samples of longitudinal magnetic

field Bφ are shown at mid-convection zone spanning this time period. The timing of

these samples is indicated in Figure 6.2 by numeric labels and likewise in Figure 6.3a
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which shows azimuthally-averaged 〈Bφ〉 in a time-latitude map that spans the reversal.

Before a reversal, the magnetic wreaths of case D5 are very similar in appearance

to the wreaths realized in case D3. They are dominated by the azimuthally-averaged

component of Bφ, while also showing small-scale variations where convective plumes

distort the fields (Fig. 6.3b). At mid-convection zone, typical longitudinal field strengths

are of order ±13 kG, while peak field strengths there can reach ±40 kG. Meanwhile 〈Bφ〉

is fairly anti-symmetric between the northern and southern hemispheres (Fig. 6.3g).

Shortly before a reversal, the magnetic wreaths strengthen in amplitude and become

more anti-symmetric about the equator.

They reach their peak values just before the polarity change at roughly day

4000 but then quickly begin to unravel, gaining significant structure on smaller scales

(Fig. 6.3c). At the same time, prominent magnetic structures detach from the higher-

latitude edges and begin migrating toward the polar regions. Meanwhile, 〈Bφ〉 loses

its anti-symmetry between the two hemispheres, with 〈Bφ〉 in one hemisphere typically

remaining stronger and more concentrated than in the other (Fig. 6.3h). The stronger

hemisphere (here the northern) retains its polarity for about 100 days as the fields in

the other hemisphere (here southern) weaken and reverse in polarity. At this point the

new wreaths of the next cycle, with opposite polarity, are already faintly visible at the

equator.

Within 100 days these new wreaths grow in strength and become comparable

with the structures they replace, which are still visible at higher latitudes (Figs. 6.3d, i).

The mean 〈Bφ〉 begins to contribute significantly to the overall structure of the new

wreaths, and soon the polarity reversal is completed. In the interval immediately after

the reversal, small-scale fluctuations still contribute significantly to the overall structure

of the wreaths, and Bφ has complicated structure at mid-convection zone. At this

time, the peak magnetic field strengths are somewhat lower, at about ±20 kG. As

〈Bφ〉 becomes stronger, the wreaths return to an anti-symmetric state, with similar
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Figure 6.3 — Evolution of Bφ during a polarity reversal in case D5. (a) Time-latitude
plot of 〈Bφ〉 at mid-convection zone. (b−f) Snapshots of Bφ in Mollweide projection at
mid-convection zone (0.85R⊙) at times indicated by numbers in a. Between reversals the
field is dominated by the mean component, but during reversals substantial fluctuations
develop. (g−k) Accompanying samples of azimuthally-averaged 〈Bφ〉, showing structure
of mean fields with radius and latitude at same instants in time.
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amplitudes and structure in both the northern and southern hemispheres (Figs. 6.3e, j).

They look much as they did before the reversal, though now with opposite polarities.

The wreaths from the previous cycle appear to move through the lower convection

zone and toward higher latitudes. This can be seen variously in the time-latitude map

at mid-convection zone (Fig. 6.3a), in the Mollweide snapshots (Figs. 6.3c − e), as well

as in the samples of 〈Bφ〉 (Figs. 6.3h− j). This poleward migration is likely due to hoop

stresses within the magnetic wreaths and an associated poleward-slip instability (e.g.,

Spruit & van Ballegooijen 1982; Moreno-Insertis et al. 1992). Even at late times some

signatures of the previous wreaths persist in the polar regions, and are still visible in

Figures 6.3e, j at day 4390. They are much weaker in amplitude than the wreaths at

the equator, but they persist until the wreaths from the next cycle move poleward and

replace them. As they approach the polar regions, the old wreaths dissipate on both

large and small scales, for the vortical polar convection shreds them apart and ohmic

diffusion reconnects them with the relic wreaths of the previous cycle.

Though reversals occur on average once every 1500 days, substantial variations

can occur on shorter time scales. Here at mid-cycle the mean longitudinal field 〈Bφ〉

becomes quite weak as the wreaths become concentrated in smaller longitudinal intervals

of the equatorial region (as in Figs. 6.3f, k at day 4780). At other times the mean

longitudinal fields become quite asymmetric, with one hemisphere strong and one weak

(i.e., during days 4900-5200) before regaining their anti-symmetric nature shortly prior

to the next reversal.

6.4 Temporal Changes in Differential Rotation

The strong magnetic fields in case D5 suppress the global-scale flow of differential

rotation. As the fields themselves vary in strength, the differential rotation responds

in turn, becoming stronger as the fields weaken and then diminishing as the fields are

amplified. These cycles of faster and slower differential rotation are visible in the traces
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of DRKE shown in Figure 6.2a. We revisit here the interval explored in closer detail

both in Figure 6.2c and in Figure 6.3, spanning days 3500 to 5700 of the simulation and

one full polarity reversal.

The angular velocity Ω at mid-convection zone is shown for this period as a time-

latitude map in Figure 6.4a. Here again the timing marks t1–t5 refer to the snapshots of

Bφ shown in Figures 6.3b−k. In the equatorial regions, the differential rotation remains

fast and prograde, but with some modulation in time. Prominent structures of speedup

are visible propagating toward the poles at the high latitudes. These structures are

much more evident when we subtract the time-averaged profile of Ω for this period at

each latitude (Fig. 6.4b). They appear as strong, tilted fast (red) structures extending

from roughly ±30◦ latitude poleward. In the northern hemisphere, three such structures

are launched over this interval. In contrast, in the south only two such structures are

evident. One is perhaps launched around day 4500 but does not survive or propagate.

Comparing these features with the propagation of magnetic fields shown in Figure 6.3a

over the same interval, we find that velocity speedup features are well correlated with

the poleward migration of mean longitudinal magnetic field. The velocity features bear

some resemblance to the poleward branch of torsional oscillations observed in the solar

convection zone over the course of a solar magnetic activity cycle, though on a much

shorter time scale here as befits the correspondingly shorter time between magnetic

polarity reversals in these dynamo simulations.

These velocity features propagate toward the poles relatively slowly. In a period

of roughly 500 days they travel about 40◦ in latitude, or a distance of about 410 Mm.

Their propagation velocity is about 0.8 Mm day−1 or about 9 m s−1. This is consider-

ably slower than the fluctuating latitudinal flows associated with the convection which

at this depth have peak speeds of ±200 m s−1 during this time period. The meridional

circulations have amplitudes of about ±6 m s−1 here but do not have a latitudinal struc-

ture at all similar to the pattern propagation. The propagation speed of the speedup
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Figure 6.4 — Time-varying differential rotation in case D5. (a) Time-latitude map
of angular velocity Ω at mid-convection zone (0.85R⊙). There are substantial tempo-
ral variations at both the equator and high latitudes. (b) These are accentuated by
subtracting the time-averaged profile of Ω(r, θ) at each latitude. Visible are poleward
propagating speedup structures at high latitudes and more uniform modulations near
the equator. (c) Corresponding variations in ∆Ωlat near the surface (upper curve, green)
and at mid-convection zone (lower, red).
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patterns is closer to the Alfvén velocity of the mean latitudinal magnetic fields, namely

vA,θ =
〈Bθ〉√
4πρ̄

. (6.1)

At mid-convection zone the mean density is about 0.065 g cm−3 and 〈Bθ〉 in the pole-

ward propagating plumes ranges between roughly ±1.5 kG, yielding Alfvén velocities

of about ±17 m s−1. This poleward migration may also be due to a poleward-slip in-

stability arising from the strong toroidal fields. In this scenario, if we neglect rotation

and turbulent pumping in latitude (e.g., Moreno-Insertis et al. 1992; Jouve & Brun

2009), the propagation speed should be approximately the Alfvén velocity of the mean

toroidal magnetic fields, or about ±45 m s−1 based on a mid-convection zone Bφ of

approximately ±4 kG in the propagating features. If the poleward-slip instability is

occurring, the velocity speedup features may result from conservation of angular mo-

mentum in the plasma that travels poleward with the wreaths. Rotation is likely to

partially stabilize wreaths against poleward-slip (Moreno-Insertis et al. 1992), and this

may help explain their slower poleward propagation. The leaky topology of the wreaths

will allow plasma to escape these structures, and this may modify the rate of their pole-

ward propagation. The weak propagating features seen in case D3 (Fig. 5.5) required

nearly 700 days to propagate a similar distance in latitude. This difference may be due

to the somewhat lower magnetic field strengths achieved in that dynamo.

With the expanded sensitivity of Figure 6.4b, we can see that the equatorial

modulation appears as fast and slow pulses which span the latitude range of ±20◦.

These variations are fairly uniform across this equatorial region. The velocity variations

at the equator do not correspond with the equatorial propagating branch of torsional

oscillations seen in the Sun (Thompson et al. 2003). In the Sun, the equatorial branch

may arise from enhanced cooling in the magnetically active regions (e.g., Spruit 2003;

Rempel 2006, 2007).
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The temporal variations of the angular velocity contrast in latitude ∆Ωlat is shown

for this period in Figure 6.4c. At mid-convection zone (sampled by red line) the varia-

tions in ∆Ωlat are modest, varying by roughly 15%. Near the surface (green line) ∆Ωlat

shows more substantial variations, with large contrasts when the fields are strong in the

magnetic cycle (prior to t1) and smaller contrasts when the fields are in the process of

reversing (t2, t3). These near-surface values of ∆Ωlat are reported in Table 5.1, averaged

over this entire period (avg) and at points in time when the contrast is large (max, at

day 3702) and small (min, at day 4060).

6.5 Sampling Many Magnetic Cycles in Case D5

The variations of angular velocities over considerably longer intervals of time

for case D5 are shown in Figures 6.5a, b. Here too we see the equatorial modulation

over many magnetic cycles and the poleward propagating speedup bands. Asymmetries

between the northern and southern hemisphere are evident at many times in different

cycles. The latitudinal angular velocity contrasts shown in Figure 6.5c exhibit large

variations. Successive magnetic cycles can have distinctly different angular velocity

contrasts, and there are additional long-term modulations that span many magnetic

cycles.

A sampling of the associated magnetic field behavior is shown in the time-latitude

maps of 〈Bφ〉 and 〈Bθ〉 in Figures 6.6a, b. From day 1500 to 7300, four cycles occur in

which wreaths of opposite polarity are achieved in each hemisphere. After this period,

the dynamo explores unusual single-polarity states. Here either a single wreath is built

(t7), or two wreaths of the same polarity (t6) occupy the two hemispheres. After

day 10700 the dynamo emerges from this state and returns to building two wreaths of

opposite polarity which flip in their sense an additional three times as the simulation

continues.
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Figure 6.5 — Extended history of varying differential rotation in case D5. (a) Variations
of Ω(r, θ) at mid-convection zone. (b) Temporal variations are emphasized by subtract-
ing the time-averaged profile of Ω. Poleward propagating speedup structures are visible
in each magnetic oscillation. (c) Variations in ∆Ωlat near the surface (upper curve,
green) and at mid-convection zone (lower, red).
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Figure 6.6 — Time-latitude plots of magnetic fields in case D5. Shown at mid-
convection zone are (a) mean longitudinal field 〈Bφ〉, and (b) mean colatitudinal field
〈Bθ〉. Cycles of activity are visible, with fields changing polarity in the equatorial re-
gion. Also prominently visible are plumes of field reaching toward the polar regions in
a manner recalling Fig. 5.4. The time samples used in Figs. 6.3 and 6.7 are indicated.
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The poleward propagating magnetic features shown previously in Figures 6.3a are

evident throughout this longer time sampling, now appearing as nearly vertical streaks

in both 〈Bφ〉 and 〈Bθ〉. These features continue to correlate well with the velocity

speedup features evident in Figure 6.5b.

6.6 Strange States and Wreaths of a Single Polarity

These oscillating dynamos occasionally wander into distinctly different states,

and this occurs for case D5 around day 7300. Instead of the two nearly anti-symmetric

wreaths of opposite polarity above and below the equator, the dynamo enters a state

where the polarity in each hemisphere is the same, as shown in Figures 6.7a, b at day

8903. Here two wreaths of same polarity occupy the two hemispheres and persist for an

interval of more than 500 days. The positive-polarity Bφ reaches average amplitudes of

18 kG while the negative polarity structures have average amplitudes around 3 kG. The

azimuthally-averaged profiles of 〈Bφ〉 emphasize that these wreaths span the convection

zone and have the same polarity everywhere. During this interval of time, the mean

poloidal field has changed from an odd-parity state, with strong contributions from

the odd-ℓ components, to an even-parity state where the even-ℓ components are more

prominent.

The dynamo can also achieve states where only a single wreath is built in the

equatorial regions, as in Figures 6.7c, d at day 9590. Here a single strong wreath of

positive polarity fills the northern hemisphere, with 〈Bφ〉 reaching a peak amplitude

of +18 kG. This unique structure persists for about 800 days before the dynamo flips

polarity and builds a strong wreath of negative polarity. The predecessor of this new

wreath can be seen in profiles of 〈Bφ〉 where a much weaker structure of negative polarity

is visible in the lower convection zone.

The strong magnetic fields realized in the single wreath states react back on the

convective flows. This is evident in the accompanying snapshot of radial velocities
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Figure 6.7 — Strange single-polarity states in case D5. (a) Snapshot of Bφ at mid-
convection zone, showing two strong wreaths of the same polarity. (b) Instantaneous
profile of 〈Bφ〉 at same time. (c) Snapshot of Bφ at mid-convection zone at a time
when a single wreath is formed. (d) Weaker negative polarity structures are visible in
profile of 〈Bφ〉 at same instant. (e) Accompanying snapshot of vr at mid-convection
zone, showing flows strongly affected by magnetism. (f) The instantaneous differential
rotation, shown here as profile of Ω(r, θ), is unaffected by the strong wreath.
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at mid-convection zone (Fig. 6.7e). In a narrow band spanning 0 − 20◦ latitude and

coinciding with the strong tube, the upflows and downflows have been virtually erased.

Fluctuations in vφ and vθ are also very small in this region, and the flow is dominated

by the streaming flows of differential rotation. Within the wreath the total magnetic

energy (ME) at mid-convection zone is locally about 10 to 100 times larger than the

total kinetic energy (KE), while outside the wreath KE exceeds ME by factors of roughly

10 to 104 at this depth. We see similar restriction of the convective flows whenever the

magnetic fields become this strong.

The differential rotation itself (Fig. 6.7f) is largely unaffected by the presence of

the strong magnetic wreath. There is no clear signature of faster flow down the middle of

the wreath. Likewise, there is no sign of the structure in profiles of the thermodynamic

variables P, T, S, or ρ, with the mean profile instead dominated by latitudinal variations

consistent with thermal wind balance.

6.7 Conclusions

In our case D5 the oscillations can become large, and may result in the global-

scale fields repeatedly flipping their polarity. At times this dynamo appears to be cyclic

but in other intervals it behaves more chaotically.

The transition to richer time dependence with increasing rotation rate in case D5

appears to arise from subtle changes and phasing relationships between the toroidal and

poloidal magnetic production terms. These are difficult to assess, since the production

terms themselves are complex in space and now vary in time as well. It is evident that

the mean poloidal fields lag the changes in the mean toroidal fields, and there is clear

migration of magnetic field to the higher latitudes during a reversal. This latitudinal mi-

gration may result from a polarward-slip instability, triggered by the stronger magnetic

fields that are generated by this dynamo, and this migration may lead to the oscilla-

tions in field strength and polarity. The analysis of magnetic field production that we
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have carried out for case D3 (Chapter 7) requires significant averaging of the turbulent

correlations, accomplished there by time averaging, to obtain a coherent picture of the

balances achieved. This has not yet been tractable for the oscillating solutions, as the

generation terms change on shorter time scales than needed to obtain stable averages

of the turbulent processes. It appears that the imbalances in the production and de-

struction of mean magnetic fields during cyclic behavior are modest, and currently we

cannot pinpoint just which terms out of the large medley serve to drive the oscillations.

These dynamo oscillations are not special to case D5. Indeed, we have explored a

broader class of oscillating dynamo solutions, which will be detailed in Chapter 8. Some

of these solutions are realized by taking our more slowly rotating case D3 to higher levels

of turbulence by reducing the eddy diffusivities, while others are achieved at even higher

rotation rates. We find such global-scale oscillations and polarity reversals fascinating,

since these appear to be the first self-consistent 3-D stellar dynamo simulations which

achieve such temporally organized behavior in the bulk of the convection zone.

Accompanying the oscillations in global-scale magnetic field are changes in the

differential rotation, and these signatures are the most likely to be found through stellar

observations. The angular velocity contrast ∆Ωlat between the equator and high lati-

tudes can vary by 20% over periods of hundreds or thousands of days. The patterns of

speedup which we find propagating toward the polar regions of these dynamos may have

correspondence with the polar branch of the torsional oscillations which are observed

in the Sun. The speedup features may arise from conservation of angular momentum in

fluid which is partially trapped within the wreaths as they slip toward the poles. The

leaky nature of our wreaths will modify this somewhat and that may explain why the

wreaths are not stabilized by rotation (e.g., Moreno-Insertis et al. 1992).

In the next chapter, we return to our steady case D3 to examine how the magnetic

fields are produced and maintained by the turbulent convection and global-scale flows

against resistive dissipation.



Chapter 7

Analysis of Production terms in Dynamos with Sustained Wreaths

The magnetic wreaths formed in case D3 are dominated by strong mean longi-

tudinal field components and show little variation in time. To understand the physical

processes responsible for maintaining these magnetic wreaths, we examine the terms

arising in the time- and azimuth-averaged induction equation for case D3. We derive

diagnostic tools to evaluate the generation and transport of magnetic field in a magne-

tized and rotating turbulent convection zone. This derivation is in spherical coordinates,

and is under the anelastic approximation.

7.1 Production of Axisymmetric Toroidal Field

We begin our analysis by exploring the maintenance of the mean toroidal field

〈Bφ〉. Here it is helpful to break the induction term from equation (2.4) into contribu-

tions from shear, advection and compression. In the induction equation (2.4), the first

term on the right hand side represents production of magnetic field while the second

term represents its diffusion. We rewrite the production term to make the contributions

of shear, advection and compressible effects more explicit as

∇ × (v × B) = (B · ∇)v − (v · ∇)B − B(∇·v). (7.1)
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Under the anelastic approximation the divergence of v can be expressed in terms of the

logarithmic derivative of the mean density because

∇· (ρ̄v) = 0 = ρ̄(∇·v) + (v · ∇)ρ̄,

and therefore

∇· v = −vr
∂

∂r
ln ρ̄. (7.2)

The induction equation thus becomes

∂B

∂t
= (B · ∇)v︸ ︷︷ ︸

shearing

− (v · ∇)B︸ ︷︷ ︸
advection

+ vrB
∂

∂r
ln ρ̄

︸ ︷︷ ︸
compression

−∇ × (η∇ × B)︸ ︷︷ ︸
diffusion

(7.3)

As labeled, the first term represents shearing of B, the second term advection of B, the

third one compressible amplification of B, and the last term ohmic diffusion.

To identify the processes contributing to the production of mean (axisymmetric)

field, we separate our velocities and magnetic fields into mean and fluctuating com-

ponents v = 〈v〉 + v′ and B = 〈B〉 + B′ where angle brackets denote an average in

longitude. Thus 〈v′〉 = 〈B′〉 = 0 by definition. Expanding the production term of

equation (7.3) we obtain the mean shearing term

〈(B · ∇)v〉 = (〈B〉 · ∇) 〈v〉 + 〈(B′ · ∇)v′〉, (7.4)

the mean advection term

−〈(v · ∇)B〉 = − (〈v〉 · ∇) 〈B〉 − 〈(v′ · ∇)B′〉, (7.5)

and the mean compressibility term

〈vrB
∂

∂r
ln ρ̄〉 =

(
〈vr〉〈B〉 + 〈v′rB′〉

) ∂

∂r
ln ρ̄. (7.6)

In a similar fashion, the mean diffusion term becomes

−〈∇ × (η∇ × B)〉 = −∇ × (η∇ × 〈B〉). (7.7)
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The axisymmetric component of the induction equation is written symbolically

as:

∂〈B〉
∂t

= PMS + PFS + PMA + PFA + PMC + PFC + PMD (7.8)

With PMS representing production of field by mean shear, PFS production by fluctu-

ating shear, PMA advection by mean flows, PFA advection by fluctuating flows, PMC

amplification arising from the compressibility of mean flows, PFC amplification arising

from fluctuating compressible motions, and PMD ohmic diffusion of the mean fields. In

turn, these terms are

PMS = (〈B〉 · ∇) 〈v〉 , PFS =〈(B′ · ∇)v′〉 ,

PMA = − (〈v〉 · ∇) 〈B〉 , PFA = − 〈(v′ · ∇)B′〉 , (7.9)

PMC = (〈vr〉〈B〉) ∂

∂r
ln ρ̄ , PFC =

(
〈v′rB′〉

) ∂

∂r
ln ρ̄ ,

PMD = − ∇ × (η∇ × 〈B〉) .

We now expand each of these terms into their full representation in spherical coordinates.

∂〈Bφ〉
∂t

= PMS + PFS + PMA + PFA + PMC + PFC + PMD

PMS =

[
〈Br〉

∂

∂r
+

〈Bθ〉
r

∂

∂θ

]
〈vφ〉 +

〈Bφ〉〈vr〉 + cot θ〈Bφ〉〈vθ〉
r

(7.10)

PFS =

〈[
B′

r

∂

∂r
+

B′

θ

r

∂

∂θ
+

B′

φ

r sin θ

∂

∂φ

]
v′φ

〉
+

〈B′

φv′r〉 + cot θ〈B′

φv′θ〉
r

(7.11)

PMA = −
[
〈vr〉

∂

∂r
+

〈vθ〉
r

∂

∂θ

]
〈Bφ〉 −

〈vφ〉〈Br〉 + cot θ〈vφ〉〈Bθ〉
r

(7.12)

PFA = −
〈[

v′r
∂

∂r
+

v′θ
r

∂

∂θ
+

v′φ
r sin θ

∂

∂φ

]
B′

φ

〉
−

〈v′φB′
r〉 + cot θ〈v′φB′

θ〉
r

(7.13)

PMC = (〈vr〉〈Bφ〉)
∂

∂r
ln ρ̄ , PFC =

(
〈v′rB′

φ〉
) ∂

∂r
ln ρ̄ (7.14)

PMD = η∇2〈Bφ〉 −
η〈Bφ〉

r2 sin2 θ
+

dη

dr

(
1

r

∂(r〈Bφ〉)
∂r

)
(7.15)
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7.2 Maintaining Wreaths of Toroidal Field

The evolution of the mean longitudinal (toroidal) field 〈Bφ〉 is described sym-

bolically in equation (7.8), with individual terms defined in equation (7.9). When we

analyze these terms in case D3, we find that 〈Bφ〉 is produced by the shear of differential

rotation and is dissipated by a combination of turbulent induction and ohmic diffusion.

This balance can be restated as

∂〈Bφ〉
∂t

≈ PMS + (PFS + PFA + PMD) ≈ 0 , (7.16)

with PMS representing production by the mean shearing flow of differential rotation, PFS

by fluctuating shear, PFA by fluctuating advection, and PMD by mean ohmic diffusion.

Those terms are in turn

PMS = (〈B〉 · ∇) 〈v〉
∣∣
φ
, (7.17)

PFS =
〈(

B′ · ∇
)
v′

〉 ∣∣
φ
, (7.18)

PFA = −
〈(

v′ · ∇
)
B′

〉 ∣∣
φ
, (7.19)

PMD = −∇ × η∇ × 〈B〉
∣∣
φ
, (7.20)

where brackets again indicate an azimuthal average and primes indicate fluctuating

terms: v′ = v − 〈v〉. The detailed implementation of these terms is presented for our

spherical geometry in equations (7.10-7.15). These terms are illustrated in Figure 7.1

for case D3, averaged over a 450 day interval from day 6450 to 6900.

The structure of 〈Bφ〉 is shown in Figure 7.1a. The shearing flows of differential

rotation PMS (Fig. 7.1b) act almost everywhere to reinforce the mean toroidal field. Thus

the polarity of this production term generally matches that of 〈Bφ〉. This production is

balanced by destruction of mean field arising from both turbulent induction and ohmic

diffusion (sum shown in Fig. 7.1c). The individual profiles of PFS, PFA and PMD are

presented in turn in Figures 7.1d, e, f . The terms from turbulent induction (PFS and

PFA) contribute to roughly half of the total balance, with the remainder carried by ohmic
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Figure 7.1 — Generation of 〈Bφ〉 in case D3. The view is from ±45◦ latitude to empha-
size the equatorial regions. (a) Mean toroidal field 〈Bφ〉 with wreaths strongly evident.
(b) Production by PMS serves to build 〈Bφ〉. This rate term generally matches the sense
of 〈Bφ〉, thus being negative (blue in colorbar, with ranges indicated) in the core of the
northern wreath and positive (red) in that of the southern wreath. (c) Destruction of
mean toroidal field is achieved by the sum of the two fluctuating (turbulent) induction
terms and the ohmic diffusion (PFS + PFA + PMD). This sum clearly has opposite sense
and similar magnitude to PMS. We break out these three destruction terms in the fol-
lowing panels. (d) Fluctuating (turbulent) shear PFS is strongest near the high-latitude
side of each wreath, and (e) fluctuating (turbulent) advection PFA is strongest in the
cores of the wreaths. The sum of these terms (PFS + PFA) is responsible for about half
the destructive balance, with the remainder coming from (f) the mean ohmic diffusion
PMD. Some differences arise in the boundary layers at top and bottom.

diffusion of the mean fields (PMD). In the core of the wreaths, removal of mean toroidal

field is largely accomplished by fluctuating advection PFA (Fig. 7.1e) and mean ohmic

diffusion PMD (Fig. 7.1f), with the latter also important near the upper boundary.

Turbulent shear becomes strongest near the bottom of the convection zone and in the

regions near the high-latitude side of each wreath. Thus PFS (Fig. 7.1d) becomes the

dominant member of the triad of terms seeking to diminish the mean toroidal field there.

We find that the mean poloidal field is regenerated in roughly the same region.

In the analysis presented in Figure 7.1 we have neglected the advection of 〈Bφ〉 by

the meridional circulations (denoted by PMA), which we find plays a very small role in

the overall balance. We have also neglected the amplification of 〈Bφ〉 by compressibility
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effects (namely, PMC and PFC), though it does contribute slightly to reinforcing the

underlying mean fields within the wreaths.

To summarize, the mean toroidal fields are built through an Ω-effect, where pro-

duction by the mean shearing flow of differential rotation (PMS) builds the underlying

〈Bφ〉. In the statistically steady state achieved, this production is balanced by a com-

bination of turbulent induction (PFS + PFA) and ohmic diffusion of the mean fields

(PMD).

7.3 Production of Axisymmetric Poloidal Field

When analyzing the production of the mean poloidal field, two contributions arise.

One is for the mean radial field and one for the mean colatitudinal field. Evaluating

the production of poloidal field in terms of the radial and colatitudinal field is a bit

complex, and in practice the production of the mean poloidal vector potential is a more

useful quantity. For clarity however, it is useful to first exhibit the production terms

for radial and colatitudinal in a fashion similar to those evaluated for the mean toroidal

field. With the same analysis approach, the induction equation for those two fields are

in turn

∂〈Br〉
∂t

= PMS + PFS + PMA + PFA + PMC + PFC + PMD ,

PMS =

[
〈Br〉

∂

∂r
+

〈Bθ〉
r

∂

∂θ

]
〈vr〉 −

〈Bθ〉〈vθ〉 + 〈Bφ〉〈vφ〉
r

, (7.21)

PFS =

〈 [
B′

r

∂

∂r
+

B′

θ

r

∂

∂θ
+

B′

φ

r sin θ

∂

∂φ

]
v′r

〉
−

〈B′

θv
′

θ〉 + 〈B′

φv′φ〉
r

, (7.22)

PMA = −
[
〈vr〉

∂

∂r
+

〈vθ〉
r

∂

∂θ

]
〈Br〉 +

〈vθ〉〈Bθ〉 + 〈vφ〉〈Bφ〉
r

, (7.23)

PFA = −
〈[

v′r
∂

∂r
+

v′θ
r

∂

∂θ
+

v′φ
r sin θ

∂

∂φ

]
B′

r

〉
+

〈v′θB′

θ〉 + 〈v′φB′

φ〉
r

, (7.24)

PMC = (〈vr〉〈Br〉)
∂

∂r
ln ρ̄ , PFC =

(
〈v′rB′

r〉
) ∂

∂r
ln ρ̄ , (7.25)

PMD = η∇2〈Br〉 − 2η
〈Br〉
r2

− 2η

r2

∂〈Bθ〉
∂θ

− 2η cot θ〈Bθ〉
r2

, (7.26)
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and

∂〈Bθ〉
∂t

= PMS + PFS + PMA + PFA + PMC + PFC + PMD ,

PMS =

[
〈Br〉

∂

∂r
+

〈Bθ〉
r

∂

∂θ

]
〈vθ〉 +

〈Bθ〉〈vr〉 − cot θ〈Bφ〉〈vφ〉
r

, (7.27)

PFS =

〈[
B′

r

∂

∂r
+

B′

θ

r

∂

∂θ
+

B′

φ

r sin θ

∂

∂φ

]
v′θ

〉
+

〈B′

θv
′
r〉 − cot θ〈B′

φv′φ〉
r

, (7.28)

PMA = −
[
〈vr〉

∂

∂r
+

〈vθ〉
r

∂

∂θ

]
〈Bθ〉 −

〈vθ〉〈Br〉 − cot θ〈vφ〉〈Bφ〉
r

, (7.29)

PFA = −
〈[

v′r
∂

∂r
+

v′θ
r

∂

∂θ
+

v′φ
r sin θ

∂

∂φ

]
B′

θ

〉
−

〈v′θB′
r〉 − cot θ〈v′φB′

φ〉
r

, (7.30)

PMC = (〈vr〉〈Bθ〉)
∂

∂r
ln ρ̄ , PFC =

(
〈v′rB′

θ〉
) ∂

∂r
ln ρ̄ , (7.31)

PMD = η∇2〈Bθ〉 +
2η

r2

∂〈Br〉
∂θ

− η〈Bθ〉
r2 sin2 θ

+
dη

dr

(
1

r

∂(r〈Bθ〉)
∂r

− 1

r

∂〈Br〉
∂θ

)
. (7.32)

In practice we use the above equations to diagnose and understand the local production

of poloidal field, but will not show these terms explicitly.

Instead, we find that when analyzing the production of mean poloidal magnetic

field, the balances achieved are somewhat clearer if we consider its vector potential

rather than the two separate fields themselves. The mean poloidal field 〈Bpol〉 has a

corresponding vector potential 〈Aφ〉, where

〈Bpol〉 = 〈Br〉r̂ + 〈Bθ〉θ̂ = ∇ × 〈A
∣∣
φ
〉

= 1
r sin θ

∂
∂θ 〈Aφ sin θ〉 r̂ − 1

r
∂
∂r 〈rAφ〉 θ̂

= ∇ ×

〈
Aφφ̂

〉
.

(7.33)

The other components of the poloidal vector potential disappear, as terms involv-

ing ∂/∂φ vanish in the azimuthally-averaged equations. Likewise, the φ-component of

the possible gauge term ∇λ is zero by virtue of axisymmetry. We recast the induction

equation (eq. 2.4) in terms of the poloidal vector potential by uncurling the equation
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once and obtain

∂〈Aφ〉
∂t

= v × B
∣∣
φ
− η∇ × B

∣∣
φ
. (7.34)

This can then be decomposed into mean and fluctuating contributions, and represented

symbolically as

∂〈Aφ〉
∂t

= EMI + EFI + EMD, (7.35)

with EMI representing the electromotive forces (emf) arising from mean flows and mean

fields, and related to their mean induction. Likewise, EFI is the emf from fluctuating

flows and fields and EMD is the emf arising from mean diffusion. These are in turn

EMI = 〈v〉 × 〈B〉
∣∣
φ

= 〈vr〉〈Bθ〉 − 〈vθ〉〈Br〉, (7.36)

EFI = 〈v′ × B′〉
∣∣
φ

= 〈v′rB′

θ〉 − 〈v′θB′

r〉, (7.37)

EMD = −η∇ × 〈B〉
∣∣
φ

= −η
1

r

(
∂

∂r
(r〈Bθ〉) −

∂〈Br〉
∂θ

)
. (7.38)

7.4 Maintaining the Poloidal Field

The production of mean poloidal field is achieved through a slightly different

balance, with turbulent induction producing poloidal field and ohmic diffusion acting

to dissipate it. The mean flows play only a modest role in the overall balance.

In case D3 we find that the mean poloidal vector potential 〈Aφ〉 is produced by

the fluctuating (turbulent) emf and is dissipated by ohmic diffusion

∂〈Aφ〉
∂t

≈ EFI + EMD ≈ 0 , (7.39)

with EFI the emf arising from fluctuating flows and fluctuating fields, and contributing

to the mean induction. The EMD is the emf arising from mean ohmic diffusion. These

terms are

EFI = 〈v′
× B′〉

∣∣
φ

= 〈v′rB′

θ〉 − 〈v′θB′

r〉, (7.40)

EMD = −η∇ × 〈B〉
∣∣
φ
. (7.41)
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Figure 7.2 — Production of mean poloidal vector potential 〈Aφ〉 in case D3. The view
is restricted to ±45◦ latitude to emphasize the regions of production. (a) Mean poloidal
vector potential 〈Aφ〉, with sense denoted by color (red, clockwise; blue, counter-
clockwise). (b) The fluctuating (turbulent) emf EFI acts to build the vector potential.
This term is strongest near the bottom of the convection zone and the poleward side of
the wreaths. (c) Mean ohmic diffusion EMD acts everywhere in opposition to EFI. The
cores of the wreaths are positioned at roughly ±15◦ latitude (Fig. 7.1a).

The contribution arising from the omitted term EMI (see eq. 7.36), related to the emf

of mean flows and mean fields, is smaller than these first two by more than an order

of magnitude. Additionally, EMI has a complicated spatial structure which does not

appear to act in a coherent fashion within the wreaths to either build or destroy mean

poloidal field.

The mean vector potential 〈Aφ〉 is shown in Figure 7.2a, with poloidal field lines

represented by the overlying contours. The mean radial magnetic field 〈Br〉 is about

±1 kG in the cores of the wreaths, whereas the mean colatitudinal field 〈Bθ〉 has an am-

plitude of roughly −2 kG (thus directed northward in both hemispheres), concentrated

near the bottom of the convection zone.
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The production of 〈Aφ〉 by the fluctuating (turbulent) emf EFI is shown in Fig-

ure 7.2b. Here too we average over the same 450 day interval. This term generally acts

to reinforce the existing poloidal field, having the same sense as the underlying vector

potential in most regions. It is strongest near the bottom of the convection zone and is

concentrated at the poleward side of each wreath. This is similar, though not identical,

to the structure of destruction of mean toroidal field by fluctuating shear PFS (Fig. 7.1d).

It suggests that mean toroidal field is here being converted into mean poloidal field by

the fluctuating flows.

There are two terms that contribute to EFI, as shown in equation (7.40). Much

of that fluctuating emf arises from correlations between fluctuating latitudinal flows

and radial fields 〈−v′θB
′
r〉, which follows the structure of EFI (Fig. 7.2b) closely. The

contribution from fluctuating radial flows and colatitudinal fields 〈v′rB′

θ〉 is more complex

in structure. Near ±20◦ latitude, this term reinforces 〈−v′θB
′
r〉, but acts against it at

higher latitudes and thus diminishes the overall amplitude of EFI. The mean ohmic

diffusion EMD (Fig. 7.2c), almost entirely balances the production of 〈Aφ〉 by EFI.

This shows that our mean poloidal magnetic field is maintained by the fluctuating

(turbulent) emf and is destroyed by ohmic diffusion. In mean-field dynamo theory, this

is often parametrized by an “α-effect.” Now we turn to interpretations within that

framework.

7.5 Exploring Mean-Field Interpretations

Many mean-field theories assert that the production of mean poloidal field is likely

to arise from the fluctuating emf. This process is often approximated with an α-effect,

where it is proposed that the sense and amplitude of the emf scales with the mean

toroidal field

〈v′
× B′〉 = α〈B〉, (7.42)
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where α can be either a simple scalar or may be related to the kinetic and magnetic

(current) helicities. In isotropic (but not reflectionally symmetric), homogeneous, in-

compressible MHD turbulence

α =
τ

3
(αk + αm) , (7.43)

αk = −v′ ·
(
∇ × v′

)
, (7.44)

αm =
1

4πρ
B′ ·

(
∇ × B′

)
, (7.45)

as discussed in Pouquet et al. (1976) and Brandenburg & Subramanian (2005). Here

τ is the lifetime or correlation time of a typical turbulent eddy. In mean-field the-

ory, these fluctuating helicities are typically not solved directly and are instead solved

through auxiliary equations for the total magnetic helicity or are prescribed. Here we

can directly measure our fluctuating helicities and examine whether they approximate

our fluctuating emf.

To assess the possible role of an α-effect in our simulation, we show in Fig-

ures 7.3a, b the fluctuating kinetic and current helicities αk and αm realized in our

case D3, averaged over the same 450 day analysis interval. To make an estimate of the

α-effect, we approximate the correlation time τ by defining

τ =
HP

v′
, (7.46)

where HP is the local pressure scale height and v′ is the local fluctuating rms velocity,

which are functions of radius only. Estimated by this method, the turnover time τ has

a smooth radial profile and is roughly 10 days near the bottom of the convection zone,

3 days at mid-convection zone, and slightly less near the upper boundary. If we use the

fast peak upflow or downflow velocities instead of the rms velocities, our estimate of τ

is about a factor of 4 smaller. Our mean-field α (eq. 7.43) is shown in Figure 7.3c. In

the upper convection zone, this is dominated by the fluctuating kinetic helicity while

the fluctuating magnetic (current) helicity becomes important at depth.
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Figure 7.3 — Estimating the mean-field α-effect in case D3. (a) Fluctuating kinetic he-
licity αk. (b) Fluctuating magnetic (current) helicity αm. (c) Mean-field α, constructed
by combining αk and αm with a turbulent correlation time τ .

We form a mean-field emf (right-hand side of eq. 7.42) by multiplying our derived

α (Fig. 7.3c) with our 〈Bφ〉 (Fig. 7.1a), and show this in Figure 7.4a. The turbulent emf

EFI, which is the left-hand side of equation (7.42), can be measured in our simulations

and is shown again in Figure 7.4b. Although there is some correspondence in the two

patterns, there are significant differences. In particular, the mean-field emf has peak

amplitudes in the cores of the wreaths (at ±15◦ latitude) and is negative there. In

contrast, the actual fluctuating emf given by EFI is positive and has its highest amplitude

at the poleward side of the wreaths. Thus the mean-field emf predicts an incorrect

balance in the generation terms and would yield a distinctly different mean poloidal

magnetic field. To assess whether better agreement may be achieved with a latitude-

averaged emf, we average the mean-field emf and EFI separately over the northern and

southern hemispheres and plot these quantities in Figure 7.4c. Though both have a

similar positive sense near the base of the convection zone, the hemisphere-averaged

EFI becomes small above 0.8R⊙ whereas the averaged mean-field emf α〈Bφ〉 is large

and negative there. Thus even the averaged emfs are not in accord.
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Figure 7.4 — Comparison of emfs in case D3. (a) Profile of proposed mean-field emf
given by α〈Bφ〉. (b) Actual turbulent emf EFI measured in the dynamo. (c) Variation
of hemisphere-averaged emfs with fractional radius. The mean-field approximated emf
is shown in blue, and EFI in red. The average over the northern hemisphere is shown
solid, the southern is dashed.

In summary, it is evident that a simple scalar α-effect will predict the wrong

sign for the fluctuating emf in the two hemispheres, as 〈Bφ〉 is anti-symmetric across

the equator while 〈Aφ〉 is symmetric. An α-effect based on the kinetic helicity and

magnetic helicity may capture some sense of the fluctuating emf, as those quantities are

themselves anti-symmetric across the equator. Yet Figure 7.4 suggests that there are

significant discrepancies between this particular approximation and our turbulent emf.

In particular, this mean-field α-effect misses the offset between the generation regions

for mean toroidal and mean poloidal field. This offset in latitude of the generation

regions may be important for avoiding the α-quenching problems encountered in many

mean-field theories. A more complex mean-field model, which takes spatial gradients

of 〈Bφ〉 into account, may do better. In particular, the Ω × J-effect (e.g., Moffatt &

Proctor 1982; Rogachevskii & Kleeorin 2003) may be at work in these systems, and

preliminary explorations indicate that this term matches the spatial structure of our
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EFI better than the above α-effect. A tensor representation of the α-effect may do

much better, and test-field techniques could be employed to measure this quantity (e.g.,

Schrinner et al. 2005, and recently reviewed in Brandenburg 2009).

7.6 Production of Fluctuating (Non-Axisymmetric) Field

Left out of this analysis is the fluctuating component of the induction equation,

which produces the small-scale but strong fluctuating magnetic fields. In case D3 these

fields do not appear to be a dominant feature, but as will be seen in Chapter 8 the

fluctuating fields become prominent in our more turbulent dynamo simulations. For

completeness, we include their induction equation here. This can be derived by sub-

tracting the mean induction equation (7.8) from the full induction equation, yielding

the following equation for the fluctuating fields

∂B′

∂t
= (〈B〉 · ∇)v′ + (B′ · ∇)〈v〉 + E

−(〈v〉 · ∇)B′ − (v′ · ∇)〈B〉 − F

+(〈vr〉B′ + v′r〈B〉) ∂

∂r
ln ρ̄ + G

−∇ × (η∇ × 〈B′〉) , (7.47)

where the quantities E = (B′ ·∇)v′ −〈(B′ ·∇)v′〉, F = (v′ ·∇)B′ −〈(v′ ·∇)B′〉, and

G = (v′rB
′ − 〈v′rB′〉) ∂

∂r ln ρ̄, represent the difference between mixed stresses from which

we subtract their axisymmetric mean. In the standard mean-field derivation, these

quantities are siblings of the G-current involving the mean electromotive force 〈v × B〉

and its 3-D equivalent v ×B (i.e., the so called “pain in the neck” term, Moffatt 1978).

7.7 Conclusions

In our persistent case D3 we are able to analyze the generation and transport

of mean magnetic field. We find that our dynamo action is of an α − Ω nature, with

the mean toroidal fields being generated by an Ω-effect from the mean shearing flow of
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differential rotation. This generation is balanced by a combination of turbulent induc-

tion and ohmic diffusion. The mean poloidal fields are generated by an α-effect arising

from couplings between the fluctuating flows and fluctuating fields, with this production

largely balanced by the ohmic diffusion. This is unlike the toroidal balance, for here the

mean flows play almost no role and the turbulent correlations are constructive rather

than destructive. In assessing what a mean-field model might predict for the magnetic

structures realized in case D3, we find that the isotropic, homogeneous α-effect based

on kinetic and magnetic (current) helicities fails to capture the sense of our turbulent

emf. In general, our EFI is poorly represented by an α〈Bφ〉 that is so determined.

The realization of global-scale magnetic structures in our simulations, and their

great strength relative to the fluctuating fields, may in part be a consequence of the

relatively modest degree of turbulence attained here. Whether such structures can be

generated and sustained amidst the far more complex flows in actual stellar interiors

is not yet clear. If such structures are indeed realized in stars, they may or may not

survive to print through the highly turbulent convection occurring just below the stellar

photosphere. If they do appear at the surface, some global-scale magnetic features may

propagate toward the poles along with the bands of angular velocity speedup. There are

some indications in stellar observations that global-scale toroidal magnetic fields may

indeed become strong in rapidly rotating stars (Donati et al. 2006; Petit et al. 2008),

though small-scale fields may still account for much of the magnetic energy near the

surface (Reiners & Basri 2009). The global-scale poloidal fields may be more successful

in surviving the passage through the turbulent surface convection. If they do, the

stellar magnetic field will likely have significant non-dipole components. Thus the mean

poloidal fields observed at the surface may give clues to the presence of large wreaths

of magnetism that occupy the bulk of the convection zone.



Chapter 8

Menagerie of Wreath-Building Dynamos

In the preceding chapters we have extensively explored the characteristics of two

dynamo solutions. Those simulations, cases D3 and D5 at three and five times the solar

rotation rate, are part of a much larger family of simulations that we have conducted

which explore the interplay between convection, rotation and magnetism in younger

suns. In this chapter we present a sampling of simulations rotating from half the current

solar rate to fifteen times the solar rate. This spans a range of ages for a star like the

sun, from just a few million years after formation when its rotating quite rapidly to a few

billion years older than the current age of the Sun, when our star will rotate more slowly.

Rotation and age are inextricably linked, and there are likely to be significant changes

in the stellar structure over these interval of several billion years, as the luminosity of

the star gradually increases, helium settles into the core and the depth of the convection

zone itself shifts. Here we have neglected those changes by retaining a stellar structure

appropriate for the current Sun. We have instead explored only the effects of faster and

slower rotation, to begin disentangling the varied physical effects present in real stellar

observations. Future work should clearly include an exploration of the dual variation

of rotation and structure with age, as in Ballot et al. (2007), but at present observed

stellar ages remain highly imprecise which complicates such efforts.



143

The parameter space explored by the simulations is summarized in Tables 8.1-8.3.

Table 8.1 details our successful dynamos at varying levels of turbulence conducted at a

fixed magnetic Prandtl number Pm = 0.5 and fluid Prandtl number Pr = 0.25. One set

of simulations (D3-D15) are conducted on the familiar parameter path with turbulent

diffusivities scaling as

ν, κ, η ∝ (Ω0)
−2/3 . (8.1)

Other simulations (D3a, D3b, etc.) sample varying levels of turbulence at each rotation

rate. At the lower rotation rates (Ω0 ≤ 1.5Ω⊙), dynamo action was not realizable

at Pm = 0.5 along this main branch of solutions, but is achieved for more turbulent

simulations (D1.5a, D0.5a, etc.). Table 8.2 details an additional selection of simulations

which were carried out at higher magnetic Prandtl numbers (Pm = 1 − 4) for various

rotation rates. Lastly, a selection of failed dynamos are reported in Table 8.3, to help

constrain the boundaries in parameter space for dynamo action in these simulations.

The parameter space explored by this family of dynamo solutions is illustrated

in Figure 8.1. Here the primary input parameters of our dynamo simulations, the

turbulent diffusivity η and the bulk rotation rate Ω0, are shown for all of our convection

zone dynamos. As detailed in the tables, triangles denote dynamos with Pm = 0.5

while diamonds denote high Pm dynamos. The failed dynamos are shown with blue

crosses. As becomes immediately apparent, near the solar rotation rate there appears

to be a deep dip in this parameter space where successful dynamos can occur, and such

dynamos must be run at substantially lower diffusivities. A few dynamos are labeled

with case names in Figure 8.1 for reference with the tables.

All dynamos shown in Figure 8.1 build large-scale magnetic wreaths in the bulk

of their convection zone. The character of the wreaths changes somewhat across this

parameter space. Generally, magnetic wreaths in the rapidly rotating simulations (Ω0 &

3Ω⊙) fill the bulk of the convection zone, with substantial structure in both radius and
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Table 8.1. Overview of Dynamos at Pm=0.5

Case Nr, Nθ, Nφ Ra Ta Re Re′ Rm Rm′ Ro Roc ν η Ω0/Ω⊙ Time-dependence

Dynamos on the η ∝ Ω
−2/3

0 path (denoted in Fig. 8.1 with black triangles)

D3 97 × 256 × 512 3.28×105 1.22×107 173 104 86 52 0.374 0.315 1.32 2.64 3 S
D5 97 × 256 × 512 1.04×106 6.70×107 268 132 134 66 0.272 0.241 0.940 1.88 5 C
D10 97 × 512 × 1024 3.22×106 6.75×108 253 228 126 114 0.153 0.134 0.592 1.18 10 C
D15 129 × 512 × 1024 7.05×106 2.61×109 288 272 144 136 0.119 0.101 0.452 0.904 15 C

Dynamos at other turbulence levels (denoted with colored triangles)

D0.5a 145 × 256 × 512 2.52×104 2.01×105 154 127 77 63 2.45 0.688 1.72 3.43 0.5 S
D0.5b 145 × 512 × 1024 1.43×104 8.03×105 395 347 197 173 3.29 0.779 0.859 1.72 0.5 O/C?

D1.5a 97 × 256 × 512 2.33×105 5.02×106 215 178 107 89 0.993 0.404 1.03 2.06 1 S
D1.5b 257 × 512 × 1024 7.24×105 2.01×107 483 414 241 207 1.54 0.371 0.515 1.03 1 O/C?

D3a 97 × 256 × 512 5.84×105 2.41×107 244 154 122 77 0.447 0.295 0.940 1.88 3 O/C
D3b 143 × 512 × 1024 1.11×106 6.08×107 343 273 171 136 0.566 0.257 0.592 1.18 3 C

D10 L 97 × 512 × 1024 2.15×106 2.68×108 331 110 165 55 0.131 0.177 0.940 1.88 10 C

Note. — Dynamo simulations at many different rotation rates. All simulations have inner radius rbot = 5.0 × 1010cm and outer radius of
rtop = 6.72 × 1010cm, with L = (rtop − rbot) = 1.72 × 1010cm the thickness of the spherical shell. All quantities are the same as defined in
Table 2.3. Briefly recapping, evaluated at mid-depth are the Rayleigh number Ra, the Taylor number Ta, the rms Reynolds number Re and
fluctuating Reynolds number Re′, the magnetic Reynolds number Rm and fluctuating magnetic Reynolds number Rm′, the Rossby number Ro ,
and the convective Rossby number Roc. For all simulations, the Prandtl number Pr = ν/κ is 0.25 and the magnetic Prandtl number Pm = ν/η
is 0.5. The viscous and magnetic diffusivity, ν and η, are quoted at mid-depth (in units of 1012 cm2s−1). The rotation rate Ω0 of each reference
frame is in multiples of the solar rate Ω⊙ = 2.6 × 10−6 rad s−1 or 414 nHz. The viscous time scale at mid-depth τν = L2/ν is 3640 days for
case D5 and the resistive time scale is 1820 days. Rotation periods at three and five times the solar rate are in turn 9.3 days and 5.6 days. The
time-dependence of the dynamo is indicated, with dynamos that build persistent and steady wreaths labeled by S, dynamos where the energies
oscillate significantly by O, and dynamos that achieve cycles of polarity reversal by C. These cases are denoted in Figure 8.1 with triangles.
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Table 8.2. Dynamos at Higher Pm

Case Nr, Nθ , Nφ Ra Ta Re Re′ Rm Rm′ Ro Roc ν η Pm Ω0/Ω⊙ Time-dependence

M3 129 × 512 × 1024 7.18×104 1.25×106 179 125 716 500 1.04 0.656 1.37 0.343 4 1 O/C?
M3-pcpf 129 × 512 × 1024 7.31×104 1.25×106 162 123 651 492 1.01 0.663 1.37 0.343 4 1 C

D1.25a-pm2 145 × 256 × 512 1.72×105 3.48×106 238 211 476 422 1.29 0.419 1.03 0.52 2 1.25 O?

D3-pm1 145 × 256 × 512 2.98×105 1.22×107 149 102 149 102 0.372 0.300 1.32 1.32 1 3 C
D3-pm2 145 × 512 × 1024 3.08×105 1.22×107 145 101 291 202 0.370 0.306 1.32 0.660 2 3 C
D3-pm4 145 × 512 × 1024 3.12×105 1.22×107 161 94 644 377 0.336 0.308 1.32 0.330 4 3 C?

D5-pm1 97 × 256 × 512 8.24×105 6.70×107 180 132 180 132 0.241 0.214 0.940 0.940 1 5 C

Note. — Parameters are defined in Table 8.1. The dynamos shown in this table are at relatively high magnetic Prandtl numbers, with Pm = 1− 4. These
cases are denoted in Fig. 8.1 with diamonds. Case M3 was initially published in Brun et al. (2004) and has been continued here for comparison. Cases M3
and M3-pcpf are at Prandtl number Pr = 0.125, rather than Pr = 0.25 as in the other simulations of this thesis. Case D1.25a-pm2 has been run to help
constrain the boundary of sustained dynamo action and has currently only evolved for 1000 days.
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Table 8.3. Dynamos That Failed

Case Nr, Nθ, Nφ Ra Ta Re Re′ Rm Rm′ Ro Roc ν η Pm Ω0/Ω⊙

D1a 97 × 256 × 512 5.67×104 8.03×105 138 118 69 59 1.22 0.494 1.72 3.43 0.5 1
D1a-pm1 97 × 256 × 512 5.66×104 8.03×105 140 118 140 118 1.22 0.493 1.72 1.72 1 1
D1a-pm2 97 × 512 × 1024 5.23×104 8.03×105 139 121 279 243 1.23 0.475 1.72 0.859 2 1
D1b 97 × 256 × 512 1.22×105 2.23×106 220 212 110 106 1.65 0.444 1.03 2.06 0.5 1
D1b-pm1 97 × 256 × 512 1.23×105 2.23×106 224 212 224 212 1.64 0.447 1.03 1.03 1 1

D1.25a 145 × 256 × 512 1.72×105 3.48×106 238 211 119 106 1.29 0.419 1.03 2.06 0.5 1.25
D1.25a-pm1 145 × 256 × 512 1.72×105 3.48×106 238 211 238 211 1.29 0.419 1.03 1.03 1 1.25

D1.5 145 × 256 × 512 8.73×104 1.21×106 137 74 68 37 0.682 0.516 2.10 4.19 0.5 1
D3 L 97 × 256 × 512 1.21×105 2.82×106 109 41 54 20 0.279 0.409 2.75 5.50 0.5 3

Note. — These simulations failed to attain substantial dynamo action. Some are marginal, with very low magnetic energies, but in
most cases the magnetic energies decline exponentially. These cases are denoted in Fig. 8.1 with crosses and are labeled F.
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Figure 8.1 — Map of full dynamo η − Ω0 parameter space. These parameters are the
eddy diffusivity η and bulk rotation rate Ω0. Solutions at magnetic Prandtl number
0.5 are shown with triangles while cases at higher magnetic Prandtl numbers are shown
with diamonds. Cases that build steady, persistent magnetic wreaths are labeled S,
while those that undergo oscillations but rarely flip polarities are O and those that
undergo many polarity reversals are C. Cases shown with blue crosses and labeled F
are failed dynamos, where magnetic energies drop over long periods of time. Question
marks indicate where the time-dependence remains uncertain. See Tables 8.1 (triangle
symbols), 8.2 (diamonds) and 8.3 (crosses) for simulation details.

latitude, as seen previously in cases D3 and D5 (Chapters 5-7). The mean poloidal field

is typically complex, with generally two different polarities in the polar and equatorial

regions. These wreaths can also be single structures that cross the equator and primarily

have a single polarity, as will be seen for the most rapidly rotating cases D10 and D15. In

the more slowly rotating cases (Ω0 . 1.5Ω⊙), the wreaths become increasingly confined

to the bottom of the convection zone, and while they retain their latitudinal extent,

much of the prominent radial structure seen in the rapidly rotating cases disappears.

At present it is unclear whether this is a matter of more effective turbulent pumping in

those simulations, or changes in the differential rotation and the velocity shear available
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for amplifying the magnetic fields. The mean poloidal field in these slower rotating

simulations is often of a single polarity throughout the convection zone.

Many of the dynamos in Figure 8.1 exhibit temporal variations, with either oscil-

lations in magnetic energies or cycles of activity where the polarity of the global-scale

magnetic fields routinely changes. The labeling denotes the temporal characteristics of

the dynamo solution, with steady solutions that do not oscillate noticeably indicated

by S, solutions that oscillate frequently but rarely change their global-scale polarity by

O/C, and solutions that routinely interchange polarities by C.

Overall, we have found three solutions that are steady in nature (cases D0.5a,

D1.5a, and D3), and these generally appear to cluster near the boundary in parameter

space between successful dynamos and failed dynamos that do not successfully regen-

erate their magnetic fields. Even these steady simulations evince small oscillations in

their volume-averaged magnetic energy densities, as seen previously in case D3 (Chap-

ter 5). As the magnetic Reynolds number increases, the flows and magnetic fields tend

to become more time-dependent, with the dynamos showing either large oscillations in

their magnetic energies or undergoing repeated global-scale magnetic polarity reversals.

We begin by returning to familiar ground, exploring with more extensive sampling

the turbulent parameter space in a series of simulations rotating three times faster than

the Sun. We first examine the onset of time-dependent behavior in simulations at three

times the current solar rate.

8.1 Higher Levels of Turbulence at 3 Ω⊙ and Pm = 0.5

In our simulations rotating at three times the solar rate, we have examined how

our wreaths of magnetism change as we raise the overall level of turbulence. This is

accomplished along one of two paths in parameter space. On the first path, we si-

multaneously decrease ν, κ and η, thus maintaining a fluid Prandtl number of 0.25 and

magnetic Prandtl number of 0.5 as the diffusivities are decreased. This path corresponds
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to dynamo cases D3, D3a and D3b. On this path the convection becomes more complex

and turbulent and in hydrodynamic simulations would drive a substantially stronger

differential rotation. Both the fluid Reynolds number and the magnetic Reynolds num-

ber increase in the successively more turbulent simulations. In these dynamo solutions

we find that wreaths of magnetism persist but begin to undergo oscillations similar to

those found in case D5 rotating at five times the solar rate.

Case D3a – The time-dependence of case D3a is shown in Figure 8.2. This

simulation is somewhat more turbulent than case D3, with typical rms and fluctuat-

ing Reynolds numbers of 244 and 154 respectively, and rms and fluctuating magnetic

Reynolds numbers of 122 and 77. Case D3a undergoes many oscillations in energy and

mean field strength with a typical timescale of 500 days, as shown in the time traces

of Figure 8.2a, b. Generally, the azimuthally averaged toroidal and poloidal fields are

stable, retaining the same polarity through many such oscillations. Only very rarely

(twice in the 16000 days shown here) do the global-scale fields flip in polarity. This

is evident in time-latitude plots of 〈Bφ〉 at mid-convection zone, shown in Figure 8.2c.

Here we note that the large excursion in mean field strengths occurring between days

13000-14500 corresponds to a strong, single polarity state. As in case D5 during similar

excursions, we find that during this interval of time the mean poloidal field has changed

from an odd-parity state, with strong contributions from the odd-ℓ components, to an

even-parity state where the even-ℓ components are more prominent. The dynamo exits

this state at roughly day 14500 and appears to return to a more normal state, with two

opposite polarity wreaths and a predominantly odd-parity poloidal field.

Throughout the history of this case, weak magnetic structures appear to prop-

agate from the equatorial regions to both poles. As in case D5 (Chapter 6), these

magnetic structures are associated with local bands of slightly faster differential rota-

tion which also propagate toward the poles (Fig. 8.2d). These structures are observed

with each oscillation, being launched from the equatorial regions roughly every 500 days.
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Figure 8.2 — Time-dependent behavior in the oscillating case D3a. (a) Volume-
averaged kinetic and magnetic energies, showing DRKE, CKE, TME, PME and FME
as labeled. Many small oscillations occur on roughly 500 day timescales, with a large
excursion around day 9000. (b) Mean 〈Bφ〉 averaged over northern and southern hemi-
spheres at mid-convection zone. Despite the many oscillations, a global-scale polarity
reversal occurs only once (near day 9000), with a second significant excursion between
roughly days 13000-14500. (c) Time-latitude maps of 〈Bφ〉 at mid-convection zone.
During roughly days 13000-14500 a strange, single-polarity state emerges. (d) Time-
latitude map of Ω′ at mid-convection zone, with time average removed to emphasize the
poleward propagating velocity structures.
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At a few intervals in the simulation, very strong magnetic features appear near the poles

(i.e. near days 5500-6000 and 9000-9500). At present it is unclear whether these are

formed through local amplification of 〈Bφ〉 by either the turbulence or the differential

rotation, or if they represent a geometric amplification of magnetic field as particularly

strong wreaths slip to the poles and are concentrated into a smaller volume there. These

polar magnetic structures are associated with strong velocity structures.

The patterns of convection achieved in case D3a are shown in Figure 8.3. The

convective cells are a little more complex than in case D3 (compare with Fig. 5.2) and

the amplitude of the motions is 10% faster than in that case. The toroidal field in this

more turbulent case is somewhat higher, with typical field strengths at mid-convection

zone of almost ±10 kG and peak field strengths of roughly ±35 kG. In comparison,

typical field strengths in case D3 were ±7 kG with peak strengths of roughly ±26 kG.

This snapshot is taken at an instant when the mean toroidal fields are quite strong

(TME is at a peak). As such, the magnetic wreaths are visibly dominated by the mean

toroidal field 〈Bφ〉 and their structure appears quite similar to those found in case D3.

When the fields are weaker (say at day 12500 when TME and PME are at a minimum),

the structure of the wreaths is very similar, though their typical field strengths at mid-

convection zone are then only ±5 kG, with peak field strengths of ±20 kG. Thus at the

times when 〈Bφ〉 is weak, case D3a returns to a state very similar to case D3. When

case D3a is in a single-polarity state, between days 13000-14500, the magnetic fields

at mid-convection zone tend to be in a single wreath of negative polarity that wanders

across the equator. Surrounding this structure is weaker positive polarity field.

The differential rotation in this case is similar to that realized in the less turbulent

case D3. As shown in Figure 8.3d, the equator remains fast and prograde while the poles

are filled with retrograde flow. There is substantial radial shear near the equator. The

mean toroidal field associated with the wreaths of magnetism (Fig. 8.3e) is comparable

in strength to the fields achieved in case D3, but the cores of the wreaths are located
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Figure 8.3 — Patterns of convection in case D3a. (a) Radial velocity vr in Mollweide
projection near the top of the shell (0.95R⊙). (b) Toroidal magnetic field Bφ at mid-
convection zone (0.85R⊙) and (c) near the bottom of the convective shell (0.73R⊙).
These snapshots are shown at day 12200, a time when the mean magnetic fields are
strong. Also shown are 100 day averaged profiles of (d) angular velocity Ω, with fast
equator and slow poles, (e) mean toroidal field 〈Bφ〉 and (f) mean poloidal vector
potential 〈Aφ〉 with contours representing the mean poloidal field lines.
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slightly closer to the equator than in case D3 where they straddled ±15◦. The poloidal

vector potential (Fig. 8.3f) is also similar in morphology, though now the equatorial

region is comparable in strength to the poleward regions. In case D3, the vector potential

near the equator was about a factor of three weaker than that found in this case above

latitude ±15◦.

Case D3b – When the level of turbulence is increased further (case D3b, Fig. 8.4a-

d), the global scale fields appear to flip far more frequently. This simulation is yet more

turbulent, with typical rms and fluctuating Reynolds numbers of 343 and 273 respec-

tively, and rms and fluctuating magnetic Reynolds numbers of 171 and 136. Though

this simulation has not achieved nearly as much time evolution, with 3300 days of total

evolution since the last adjustment of diffusivities, the global scale fields have already

exchanged polarity at least once. We thus suspect that these oscillations are due to

the higher magnetic Reynolds number achieved rather than being linked intrinsically to

the higher rotation rate used in D5. At times, the magnetic wreaths survive for long

intervals, with one pair existing from roughly day 1400 to day 2100. At other periods,

strong wreaths are built in each hemisphere but only survive for short periods of time,

disappearing within a few hundred days. This behavior holds true at deeper locations

within the convection zone as well. After day 2700, wreath building occurs predomi-

nantly in only the southern hemisphere. As in the other simulations, prominent velocity

structures are launched toward the polar regions. In the interval of simulated time, only

a few such structures have appeared, with possibly two in the northern hemisphere and

one in the southern.

The patterns of convection achieved in case D3b are shown in Figure 8.5. The

radial velocity structures are more complex than in case D3a and average amplitudes

of motion have increased a further 20% (or roughly 35% faster than the radial flows in

case D3 at this depth). The toroidal fields have amplitudes very similar to those realized

in case D3a, with typical strengths of ±10 kG at mid-convection zone and peak ampli-
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Figure 8.4 — Time-dependent behavior in the cyclic case D3b. (a) Volume-averaged
kinetic and magnetic energies, and (b) mean 〈Bφ〉 averaged over northern and southern
hemispheres at mid-convection zone. Individual quantities are colored as in Fig. 8.4a, b.
Though this simulation has evolved for only a short period, one polarity reversal has
already occurred. (c) Time-latitude maps of 〈Bφ〉 at mid-convection zone. The large
structures visible at the poles near day 1500 appear to be part of the initial transient
as the dynamo equilibrates and adjusts the profile of differential rotation. (d) Time-
latitude map of Ω′ at mid-convection zone, with time average removed to emphasize the
poleward propagating velocity structures.
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Figure 8.5 — Patterns of convection in case D3b. (a) Radial velocity vr in Mollweide
projection near the top of the shell (0.95R⊙). (b) Toroidal magnetic field Bφ at mid-
convection zone (0.85R⊙) with two wreaths of opposite polarity. (c) Wreaths near
the bottom of the convective shell (Bφ at 0.73R⊙). These snapshots are shown at
day 2050, a time when the mean magnetic fields are strong. Also shown are 100 day
averaged profiles of (d) Ω, (e) 〈Bφ〉 and (f) 〈Aφ〉.
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Figure 8.6 — Bφ achieving a more non-axisymmetric state in case D3b. (a) Mid-
convection zone snapshot of Bφ at day 2400 and (b) at day 2860. At these times the
wreaths have become highly non-axisymmetric structures. (c) Same fields near bottom
of convection zone (0.73R⊙) at day 2400 and (d) at day 2860.

tudes of ±35 kG. The toroidal fields at the poles are much stronger in case D3b than

in the previous 3Ω⊙ simulations, with fine-scale structure and typical field strengths

of ±1.5 kG. In comparison, the polar Bφ of case D3a had amplitudes of ±1 kG, while

those fields in case D3 rarely exceeded ±0.5 kG in amplitude. The profiles of differen-

tial rotation (Fig. 8.5d), mean toroidal magnetic field (Fig. 8.5e) and the mean poloidal

vector potential (Fig. 8.5f) are all fairly similar to those found in case D3a.

The wreaths of magnetism in case D3b frequently attain strongly non-axisymmetric

states. This is shown at two different times in Figure 8.6. At around day 2400 (Fig 8.6a),

a region of reversed polarity appears in the midst of the southern hemisphere. This pos-

itive polarity Bφ replaces the preexisting negative wreath, and is more equatorially lo-

cated than the previous wreaths (see Fig. 8.5b). The wreath in the northern hemisphere

appears to peel apart and unwind toward the north pole. At this time the dynamo falls

into a state where the southern hemisphere is generating magnetic wreaths, while the

northern hemisphere is full of more complex structures, as near day 2900 (Fig. 8.6b).
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Here 〈Bφ〉 in the southern hemisphere is negative, but a positive polarity structure

of substantial amplitude occupies roughly 25% of the domain in longitude. Near the

bottom of the convection zone (Fig. 8.6c, d) the story is similar. There are distinct

wreath-like structures in each hemisphere, but individual structures occupy only about

180◦ in longitude before being replaced by a structure with opposite polarity. As a

result of this cancellation, 〈Bφ〉 is very small in the lower convection zone. In case D3b

the mean toroidal fields no longer dominate the structure of the wreaths, and these

structures must be analyzed on local scales.

8.2 High Pm Dynamos at 3 Ω⊙

To further probe the nature and sensitivity of these dynamo solutions we ex-

plore a second path through parameter space where the magnetic Prandtl number is

increased. Along this path, the viscous and thermal diffusivities ν and η are held con-

stant while the magnetic diffusivity η is decreased, yielding larger magnetic Prandtl

numbers and higher magnetic Reynolds numbers. This path corresponds to dynamo

cases D3, D3-pm1, D3-pm2 and D3-pm4. These dynamo simulations begin occupying

a similar region in parameter space as our previous dynamo simulations conducted at

the solar rotation rate (e.g., Brun et al. 2004; Browning et al. 2006). Along this path,

the magnetic Reynolds number increases while the fluid Reynolds number should re-

main approximately constant, only changing as the flows themselves respond to the

magnetism that they generate. The convection retains a comparable level of complexity

and the underlying driving of the differential rotation should be nearly constant.

Case D3-pm1 – At higher magnetic Prandtl numbers our dynamo simulations

also begin to experience significant time dependence. This occurs already in our first

case, case D3-pm1 with magnetic Prandtl number Pm = 1. The rms Reynolds number

in this case is lower than in case D3, with a value of 149, owing to the weaker differential

rotation realized in this simulation. The fluctuating Reynolds number is very similar
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Figure 8.7 — Time-dependent behavior in cyclic case D3-pm1. (a) Volume-averaged
kinetic and magnetic energies, and (b) mean 〈Bφ〉 averaged over northern and southern
hemispheres at mid-convection zone. (c) Time-latitude maps of 〈Bφ〉 at mid-convection
zone. (d) Time-latitude map of Ω′ at mid-convection zone, with time average removed
to emphasize the poleward propagating velocity structures.
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with a value of 102, but the rms and fluctuating magnetic Reynolds numbers are higher

than in that case, being 149 and 102 respectively.

The time history of case D3-pm1 is shown in Figure 8.7. At day 0 the values of

η in case D3 were dropped by a factor of two. After about 500 days the steady wreaths

from case D3 begin to break apart as new wreaths are generated near the equator. This

is visible in time latitude maps of 〈Bφ〉 (Fig. 8.7c) at mid-convection zone. The mean

toroidal fields hunt between states with two wreaths of opposite polarity and states

where one or two single polarity wreaths are built (i.e. days 3000-5000). When two

wreaths are present the simulation appears to undergo frequent and rapid reversals,

with typical timescales of only a few hundred days. Accompanying these reversals are

strong angular velocity structures that propagate toward the polar regions (Fig. 8.7d).

Case D3-pm2 – Our next case on the high magnetic Prandtl number path is

case D3-pm2, with Pm = 2. This case was initiated from case D3-pm1, and at roughly

day 600 of that simulation the eddy diffusivity η was dropped by an additional factor of

two, with ν and κ still the same as in case D3. In this simulation the rms and fluctuating

Reynolds numbers are almost the same as in its progenitor (145 and 101 respectively),

but the magnetic Reynolds numbers have increase by a factor of two to values of 291

and 202 for the rms and fluctuating quantities.

The time history for case D3-pm2 is shown in Figure 8.8. At first the wreaths

from the previous dynamo persist, but after about 250 days they are replaced by dif-

ferent polarity structures and this dynamo diverges strongly from its progenitor. After

about 1000 days the dynamo enters a state where almost all 〈Bφ〉 is located in the

northern hemisphere. The dynamo undergoes cycles in that hemisphere with the mean

fields reversing on short timescales of a few hundred days. In the southern hemisphere

the mean fields are weaker but are able to retain their average polarity and do not

experience as many reversals. Angular velocity features launch toward the north pole

frequently. These structures occasionally occur in the southern hemisphere, when the
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Figure 8.8 — Time-dependent behavior in cyclic case D3-pm2. (a) Volume-averaged
kinetic and magnetic energies, and (b) mean 〈Bφ〉 averaged over northern and southern
hemispheres at mid-convection zone. (c) Time-latitude maps of 〈Bφ〉 at mid-convection
zone. (d) Time-latitude map of Ω′ at mid-convection zone, with time average removed
to emphasize the poleward propagating velocity structures.
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Figure 8.9 — Patterns of convection in case D3-pm2. (a) Radial velocity vr in Mollweide
projection near the top of the shell (0.95R⊙). (b) Toroidal magnetic field Bφ at mid-
convection zone (0.85R⊙) with one strong wreath. (c) Two wreaths of same polarity are
near the bottom of the convective shell (Bφ at 0.73R⊙). These snapshots are shown at
day 3100, a time when the mean magnetic fields are strong in the northern hemisphere.
Also shown are 100 day averaged profiles of (d) Ω, (e) 〈Bφ〉 and (f) 〈Aφ〉.
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mean magnetic fields become particularly strong (i.e. days 3000-3800).

The patterns of convection in case D3-pm2 are shown in Figure 8.9. Near the

surface, the convective cells are very similar to those found in our other simulations

at three times the solar rate with velocities similar to those in case D3, rather than

the faster flows found in cases D3a and D3b. The magnetic fields in this case are

much stronger and show marked asymmetry, with strong fields occupying narrow ranges

of longitude. At mid-convection zone, often a single strong wreath appears in the

northern hemisphere. These states are similar to those realized occasionally in case D5,

and as there, weaker opposite polarity field surrounds the single wreath. At greater

depths, two wreaths of the same polarity occupy the two hemispheres. A profile of

the mean differential rotation (angular velocity Ω) is shown averaged over a 100 day

interval around the snapshots (Fig. 8.9d). Accompanying profiles show 〈Bφ〉 and 〈Aφ〉

averaged over the same interval (Fig. 8.9e, f). During this interval, the wreaths possess

a substantially different mean poloidal field than in our previous simulations at three

times the solar rate. Here the mean poloidal field is almost quadrupolar in nature.

Case D3-pm4 – Our highest magnetic Prandtl number case at three times

the solar rate is case D3-pm4 with Pm = 4. This simulation is quite magnetically

turbulent. The rms and fluctuating Reynolds numbers remain comparable to the other

simulations on the high-Pm branch, with values of 161 and 94 respectively. The magnetic

Reynolds numbers are much higher, with rms and fluctuating values of 644 and 377.

The fluctuating magnetic Reynolds number is among the highest achieved in any of our

rapidly rotating dynamo simulations and is comparable to those achieved in previous

simulations of the solar dynamo (Brun et al. 2004; Browning et al. 2006). Despite this

high level of magnetic turbulence, case D3-pm4 still builds significant magnetic wreaths

within its convection zone.
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The patterns of convection and the magnetic structures realized are shown in

Figure 8.10 at a time shortly after the dynamo has equilibrated. Though the veloc-

ity patterns remain very similar, the magnetic fields have significantly more fine-scale

structure. Though highly complex at mid-convection zone, the toroidal fields retain an

overall polarity in each hemisphere (Fig. 8.10b). Near the bottom of the convection

zone the wreaths again are marked by the strong mean fields (Fig. 8.10c, e). Indeed, the

magnetic fields generated within these wreaths are among the strongest achieved in any

of our rapidly rotating dynamos, with typical amplitudes of more than ±20 kG in the

fluctuating fields and peak amplitudes of ±40 kG near the base of the convection zone.

This simulation has only experienced about 1800 days of evolution and the timesteps

are heavily limited by the Alfvénic CFL with typical limits near 30 seconds or less.

8.3 Resulting Differential Rotation

In our high magnetic Prandtl number branch of simulations, we find that the mean

profile of differential rotation is somewhat different than in our Pm = 0.5 simulations.

In these higher magnetic Prandtl number cases, the equator remains prograde with

more retrograde poles, but the overall angular velocity contrast is significantly weaker.

Measurements of the angular velocity contrast in latitude and in radius are shown for

all of our dynamos at three times the solar rate in Table 8.4. These values are time-

averaged over the indicated ranges of dates and these intervals typically span several

magnetic oscillations or reversals. Case D3b is still undergoing some evolution in ∆Ω at

this time, as is case D3-pm4, which has seen approximately 1800 days of evolution and

has uncertain time-dependence. The other cases are well equilibrated. Accompanying

each measurement is an indication of the standard deviation of the angular velocity

contrast in time, with case D3 showing little variation and the more turbulent cases

showing substantially larger excursions.
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Figure 8.10 — Patterns of convection in case D3-pm4. (a) Radial velocity vr in Moll-
weide projection near the top of the shell (0.95R⊙). (b) Toroidal magnetic field Bφ at
mid-convection zone (0.85R⊙) with indistinct wreaths. (c) Two strong wreaths are at
high latitudes near the bottom of the convective shell (Bφ at 0.73R⊙). These snapshots
are shown at day 1830. The dynamo is still equilibrating at this time. Also shown are
20 day averaged profiles of (d) Ω, (e) 〈Bφ〉 and (f) 〈Aφ〉.
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Table 8.4. Mean ∆Ω in Dynamos at 3Ω⊙

Case ∆Ωlat ∆Ωr Epoch
0.97R⊙ 0.85R⊙ equator days

D3 1.18 ± 0.05 0.79 ± 0.06 0.70 ± 0.02 2000 − 6980
D3a 1.11 ± 0.18 0.68 ± 0.10 0.71 ± 0.13 2000 − 15980
D3b 1.01 ± 0.17 0.56 ± 0.07 0.71 ± 0.14 1000 − 3120

D3-pm1 0.87 ± 0.10 0.53 ± 0.07 0.55 ± 0.06 1000 − 6850
D3-pm2 0.78 ± 0.08 0.48 ± 0.05 0.48 ± 0.06 1000 − 4730
D3-pm4 0.90 ± ? 0.74 ± ? 0.38 ± ? 1830 − 1850

Note. — Angular velocity shear in units of µrad s−1, with ∆Ωlat mea-
sured at two depths and ∆Ωr measured across the full shell at the equator.

In the Pm = 0.5 branch of dynamos, the more turbulent dynamos still have a

strong differential rotation. The latitudinal angular velocity contrast ∆Ωlat in the upper

convection zone decreases slightly as the diffusivities are dropped. At mid-convection

zone the decrease is stronger. In contrast, the radial shear at the equator remains

almost constant in this group of cases. The high magnetic Prandtl number dynamos

have differential rotation profiles that become substantially weaker as η is decreased. In

this family of solutions, both the latitudinal and radial shear are markedly smaller. In

comparing to the Pm = 0.5 dynamos, case D3-pm1 and case D3b, with similar values of

η throughout the convection zone, have similar latitudinal shear at mid-convection zone

but different angular velocity contrasts in the upper convection zone and in radius.

8.4 Extreme Rotators: 10 and 15 Ω⊙ dynamos

Our most rapidly rotating dynamo simulations are currently at ten and fifteen

times the current solar rotation rate. In a star like our Sun, such rapid rotation is likely

only when the star is very young, shortly after reaching the main sequence. In these

stars, we find that the dynamos can produce magnetic fields which are strong enough to

largely quench the differential rotation. Despite this, cyclic oscillations and global-scale

polarity reversals of the mean magnetic fields continue to occur.
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In total, there are three simulations rotating in this regime. Two of these simula-

tions are rotating at 10 Ω⊙, one with the same diffusivities used in case D5 (case D10L)

and one with lower diffusivities in keeping with the scaling law of equation 8.1 (case D10).

Our most rapidly rotating dynamo is case D15, at 15 Ω⊙. Here we will briefly examine

the emergence of nests of convection in case D10L, and the suppression of differential

rotation in case D15.

Case D10L – Only one of our most rapidly rotating cases retains a strong differ-

ential rotation. This is case D10L rotating at 10Ω⊙ and with eddy diffusivities identical

to those in both case D5 and case D3a. Typical rms and fluctuating Reynolds num-

bers in this simulation are 331 and 110 respectively, with rms and fluctuating magnetic

Reynolds numbers of 165 and 55. The time history of case D10L is shown in Fig-

ure 8.11, covering 6000 days of the simulation after the initial seed magnetic fields are

introduced. The magnetic energies grow quickly to near equipartition with the kinetic

energies before they react back on the differential rotation and substantially suppress it.

Time-latitude maps of 〈Bφ〉 and Ω reveal how this quenching occurs. Case D10L

builds strong wreaths of magnetism which frequently propagate toward the polar regions

(Fig. 8.11c). These poleward-slips of 〈Bφ〉 are accompanied by substantial poleward

propagating angular velocity structures, which transport quickly rotating material from

the prograde equator to the retrograde poles. This is evident in the time-evolution

of the latitudinal and radial angular velocity contrast ∆Ω (Fig. 8.11d). During the

initial transient, the latitudinal angular velocity contrast ∆Ωlat is substantially reduced,

dropping by a factor of about two in the upper convection zone and by nearly a factor

of five at mid-convection zone. Convection rebuilds the differential rotation and by

day 2300 nearly half the angular velocity contrast has been rebuilt. At this point

however, strong magnetic wreaths are formed leading to another pulse of poleward

propagating fields and flows. The radial angular velocity contrast ∆Ωr is less affected

by the magnetism. It experiences temporal variations on similar timescales, but retains
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Figure 8.11 — Time-dependent behavior in case D10L. (a) Volume-averaged kinetic and
magnetic energies, and (b) mean 〈Bφ〉 averaged over northern and southern hemispheres
at mid-convection zone. (c) Time-latitude maps of 〈Bφ〉 at mid-convection zone. (d) An-
gular velocity contrast ∆Ω, with ∆Ωlat measured near the surface (top line, green) and
at mid-convection zone (bottom line, red) and with ∆Ωr measured across the shell at
the equator (middle line, purple). (e) Time-latitude map of full angular velocity Ω at
mid-convection zone, with fast equator and slow poles. (f) Map of Ω′ with time average
removed, emphasizing temporal variations. The initial transient slows the equator and
speeds up the poles, reducing the overall differential rotation.
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Figure 8.12 — Differential rotation and magnetism in case D10L. (a) Profile of angular
velocity Ω averaged over an interval of about 100 days when the differential rotation
is strong (days 4490-4600) accompanied by (b) radial cuts. (c) Two magnetic wreaths
are present. (d) The poloidal vector potential 〈Aφ〉 is complex and largely of a single
polarity.

an average value similar to the hydrodynamic progenitor (visible at day 0).

The mean toroidal magnetic fields have a much more complex structure than in

our three or five solar dynamos. Strong concentrations of 〈Bφ〉 appear and disappear on

short timescales near the equator while large wreaths occupy latitudes near ±20◦. Those

wreaths eventually slip toward the poles and are often replaced by wreaths of opposite

polarity (i.e. the reversals that occur near day 2500 and day 4900). Though initially

the dynamo builds quite symmetric wreaths, the wreaths which form after the initial

transient are less symmetric and frequently are substantially stronger in one hemisphere

and weaker in the other.

Time-averaged profiles in radius and latitude of the differential rotation and the

magnetic fields are shown in Figure 8.12 at a time when the differential rotation is

strong (days 4490-4600). The equatorial regions still possess a strong radial shear, and

the profile and radial cuts are similar to cases D3 and D5. Two magnetic wreaths are

formed, with a strong positive polarity in the northern hemisphere and a weaker wreath

in the southern. Here the poloidal field is quite complex and is highly asymmetric with

a major enhancement of 〈Aφ〉 visible in the northern hemisphere. This is in marked
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Figure 8.13 — Convective patterns in case D10L with nests of convection. Shown as
snapshots in Mollweide projection are radial velocities vr (a) near the surface (0.95R⊙)
and (b) at mid-convection zone (0.85R⊙). Two active nests of convection are clearly
visible. (c) Near the surface, the radial magnetic field Br is concentrated in the stronger
nest. (d) At mid-convection zone the active nests make an imprint on the magnetic
wreaths. Also visible near the south pole are the remnants of the magnetic wreath from
the previous cycle. These snapshots are of day 4490 at a period when the differential
rotation is strong.

contrast to the poloidal fields achieved in our cases at three times the solar rate, which

were dominated by low-ℓ structures with typically either largely octopolar (i.e. cases D3,

D3a, D3b) or quadrupolar (i.e. case D3-pm2) topologies.

The patterns of convection in case D10L are unique among our rapidly rotating

dynamos. The relatively strong differential rotation, combined with the rapid overall

rotation, lead to strongly localized nests of convection in the equatorial regions. These

nests are shown in Figure 8.13 at day 4490, when the differential rotation is strong.

The localized convection once again is strongly visible in the radial velocity patterns

throughout the convection zone (Fig. 8.13a, b). At this instant, two nests are visible,

separated by almost 180◦ of longitude.

The nests have substantial magnetic signatures as well, particularly in the radial

magnetic field near the surface (Fig. 8.13c). Here the stronger nest (at left) is accompa-

nied by a significant enhancement of radial field. At mid-convection zone the nests also
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Table 8.5. Mean ∆Ω in Dynamos at 10 and 15Ω⊙

Case ∆Ωlat ∆Ωr Epoch
0.97R⊙ 0.85R⊙ equator days

D10L 1.39 ± 0.27 0.83 ± 0.21 0.97 ± 0.19 1000 − 6060
D10 0.45 ± 0.08 0.22 ± 0.05 0.38 ± 0.10 2720 − 5000

D15 0.33 ± 0.07 0.12 ± 0.04 0.26 ± 0.08 1500 − 4500
D15 0.30 ± 0.04 0.10 ± 0.01 0.22 ± 0.03 2000 − 3500
D15 0.51 ± 0.01 0.17 ± 0.003 0.50 ± 0.02 3950 − 4100

Note. — Angular velocity shear in units of µrad s−1, with ∆Ωlat

measured at two depths and ∆Ωr measured across the full shell at the
equator. These measurements are averaged over the indicated range
of days. Dynamo case D15 suddenly amplifies its differential rotation
for a period of time between days 3700-4300.

make an imprint on the toroidal field, locally stretching and shredding the wreaths. In

the more quiescent regions between the nests, the wreaths are stronger and have less

fine-scale structure (Fig. 8.13d).

In case D10L the active nests of convection are clearly visible and persist for many

hundreds of days. The temporal variations in the differential rotation lead to periods

when the nests are strong and the convection is highly confined in longitude, as well

as other periods where the differential rotation and nests are weaker. Time-longitude

maps reveal that on thousand day timescales the convection alternates between states

with two or three active nests, spending a few hundred days in each state.

Cases D10 – Our other dynamo at ten times the solar rate is case D10, with

diffusivities lower by slightly more than a factor of two compared to case D10L. This

simulation is more turbulent, with rms and fluctuating Reynolds numbers of 253 and 228

and rms and fluctuating magnetic Reynolds numbers of 126 and 114 respectively. The

small spread between the rms and fluctuating values is due to the differential rotation

collapsing almost entirely.

The average angular velocity contrast achieved in these most rapidly rotating

simulations is reported in Table 8.5. In case D10, the angular velocity contrast ∆Ω
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and its temporal variations have both become much smaller than in case D10L. These

quantities are measure over an interval of almost 2300 days. There is little angular

velocity contrast in either radius or latitude.

Despite the small differential rotation, substantial toroidal magnetic fields are

generated throughout the convection zone. Now however, the mean fields comprise a

smaller proportion of the total magnetic energy while the fluctuating fields become more

prominent. The fluctuations exist on large scales, and with substantial contributions

from longitudinal wavenumbers m=1 or m=2. The structure of the magnetic fields

remains wreath-like, though now more complex. The wreaths appear to still undergo

cyclic variations in polarity.

Case D15 – In our most rapidly rotating dynamo, case D15, the differential

rotation is even weaker. This dynamo is one of the more turbulent Pm = 0.5 dynamos,

with a fluctuating Reynolds number of 272 and a fluctuating magnetic Reynolds number

of 136. This case is thus comparable to case D3b. The hydrodynamic progenitor to

this case had a very strong differential rotation, and its rms and fluctuating Reynolds

numbers were 1670 and 293 respectively.

The time history of case D15 is shown in Figure 8.14. Starting from weak seed

fields, the dynamo quickly builds strong magnetic wreaths whose energies on average

reach equipartition with the convective flows. These fields quench the differential rota-

tion, driving DRKE down into sub-equipartition with either the convection (CKE) or

the fluctuating magnetism. Though the differential rotation is weak, the dynamo still

undergoes substantial temporal variations and cycles of polarity change (Fig. 8.14b).

Time-latitude maps reveal that, as in case D3-pm2, this cyclic wreath building activ-

ity is largely confined to the northern hemisphere (Fig. 8.14c). The wreaths that are

achieved begin to slip toward the north pole almost immediately, and typically persist in

the equatorial region for less than 500 days before beginning their poleward migration.
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Figure 8.14 — Time-dependent behavior in case D15. (a) Volume-averaged kinetic and
magnetic energies, and (b) mean 〈Bφ〉 averaged over northern and southern hemispheres
at mid-convection zone. The azimuthally averaged data exists from day 660 onwards.
(c) Time-latitude maps of 〈Bφ〉 at mid-convection zone. (d) Angular velocity contrast
∆Ω, with ∆Ωlat measured near the surface (top line, green) and at mid-convection zone
(bottom line, red) and with ∆Ωr measured across the shell at the equator (middle line,
purple). The latitudinal differential rotation is highly suppressed after the dynamo
equilibrates, but the radial shear at the equator is largely unaffected. (e) Time-latitude
map of full angular velocity Ω at mid-convection zone. (f) Map of Ω′ with time-average
removed, emphasizing temporal variations. The initial transient slows the equator and
speeds up the poles, reducing the overall differential rotation. In this dynamo, the poles
actually become prograde, and retain that sense for long intervals.
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The first magnetic wreaths that form were two strong wreaths of opposite polarity

in the two hemispheres. These first magnetic wreaths slip to the poles and transport

enough angular momentum from the prograde equator that above ±70◦ the polar regions

change their sense of differential rotation from retrograde to prograde. Once prograde

flows are established in the polar regions, they persist for the full 5000 simulated days

shown here. The angular velocity contrasts become much weaker after the dynamo

saturates and reduces the differential rotation. As in case D10L, the latitudinal con-

trast is affected more strongly by the magnetism than the radial shear, though ∆Ωr

also decreases significantly (Fig. 8.14d). Dynamo case D15 has latitudinal and radial

angular velocity contrasts which range from 0.3 to 0.5µrad s−1 depending on the phase

of the dynamo oscillations (see Table 8.5). During a brief period (days 3800 - 4500) the

differential rotation in the upper convection zone becomes substantially stronger, with

both the latitudinal and radial shear increasing by more than a factor of two. The

mid-convection zone ∆Ω shows almost no variation during this interval. Even at their

peak levels (about day 400), the angular velocity contrasts in case D15 are dramati-

cally weaker than the contrast achieved in the hydrodynamic progenitor, which had a

near-surface ∆Ωlat of 3.9µrad s−1 and a radial shear ∆Ωr of 2µrad s−1.

The time-averaged profiles in radius and latitude of the differential rotation and

the magnetic fields of case D15 are shown in Figure 8.15 at a time when the differential

rotation is unusually strong (days 4000 - 4115). During this time interval, the radial

shear in the equatorial regions remains substantial, but the mid-latitudes (30◦-60◦)

have lost much of their contrast in radius or latitude. The polar regions above ±75◦

are spinning prograde at all depths. At other points in time, as indicated by the time

trace of ∆Ωr in Figure 8.14d, the radial shear at the equator becomes much weaker,

decreasing by more than a factor of two. In these states, the most visible features in

the differential rotation profile are the prograde poles, which retain their strong angular

velocity gradients at all times.



174

Figure 8.15 — Differential rotation and magnetism in case D15. (a) Profile of angular
velocity Ω averaged over an interval of about 100 days when the differential rotation
unusually strong (days 4000-4115) accompanied by (b) radial cuts. At other intervals,
the equatorial shear disappears entirely. (c) Several narrow wreaths occupy the equa-
torial region, and two strong magnetic structures are visible at the poles. (d) As in
case D10L, the poloidal vector potential 〈Aφ〉 is quite complex.

The mean toroidal field in this case is substantially weaker than in many other

simulations, with average amplitudes of roughly ±3 kG during this interval (Fig. 8.15c).

This decrease is due in part to the equatorial wreaths becoming substantially non-

axisymmetric in structure. Strong wreaths are visible at the polar regions. At present

it is unclear whether these wreaths are sustained by continual poleward transport of field

by many generations of wreaths being built at the equator, or if they are locally built

and maintained by the gradients in angular velocity near the poles. As in case D10L, the

mean poloidal magnetic field has a complex structure, with a significant enhancement

visible during this interval in the southern hemisphere.

The patterns of convection in case D15 are shown in Figure 8.16. The radial veloc-

ities show some modulation, but the strongly confined single nest of the hydrodynamic

progenitor has disappeared as the differential rotation has collapsed. Time-longitude

maps reveal that the modulation persists for more than a thousand days, and with the

weak differential rotation, the pattern remains almost stationary relative to the rotating

reference frame of the star. The strong magnetism disrupts the convective cells in some



175

Figure 8.16 — Convective patterns in case D15. Shown in global Mollweide projection
at day 4000 are (a) radial velocities vr near the surface, with visible longitudinal modula-
tion and (b) toroidal magnetic field Bφ at mid-convection zone, with highly asymmetric
structures present throughout and strong structures near the poles. These snapshots
are taken at day 4000, a time when the differential rotation is particularly strong.

regions, particularly at mid-convection zone. Shadows of these magnetic regions remain

visible in the near-surface flows.

In case D15, wreaths of magnetism continue to pervade the convection zone. Now

these structures have gained significant non-axisymmetric components which can span

more than 90◦ of longitude. These structures retain a high level of organization but

no longer encircle the entire convection zone. As a result of this, 〈Bφ〉 has relatively

low amplitudes while Bφ locally can still attain high values. In this snapshot, the peak

amplitudes of Bφ at mid-convection zone are ±38 kG. This is comparable to the peak

amplitudes achieved in case D3b.

8.5 Spinning Down to the Sun

We now return to the Sun, considering cases which rotate more slowly than three

times the solar rate. In this regime, dynamo action is somewhat harder to excite. This

is evident already in Figure 8.1 at 1.5 Ω⊙, with sustained dynamo action only appearing

in the more turbulent cases (D1.5a, D1.5b). In these respective cases, persistent or

temporally-varying wreaths are realized in the bulk of the convection zone.
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Figure 8.17 — Differential rotation and magnetism in case D1.5a. (a) Profile of angular
velocity Ω averaged over an interval of about 100 days with (b) radial cuts. (c) Two wide
wreaths occupy the equatorial region. (d) At these slower rotation rates, the poloidal
vector potential 〈Aφ〉 is much more dipolar.

Case D1.5a – Profiles of the differential rotation and magnetic wreaths generated

in case D1.5a are shown in Figure 8.17. In this simulation, the differential rotation

remains strong, with a fast equator and slow poles. The magnetic wreaths have lost

some of the strong radial extent seen in the more rapidly rotating dynamos (e.g. case D3),

and survive here near the bottom of the convection zone as structures which are highly

extended in latitude. These wreaths persist with the same polarity for more than

5000 days after the dynamo equilibrates. The mean poloidal field is more dipolar in

nature than those realized in the more rapidly rotating dynamos, and the equatorial

region has the same polarity and sense as the polar regions.

The eddy diffusivity η must be reduced even further as the solar rotation rate

is approached, and below 1.5 Ω⊙ we have shifted to high magnetic Prandtl numbers to

excite dynamo action. Those simulations that achieve sustained dynamo action possess

values of η which are comparable to our most turbulent rapidly rotating dynamos (e.g.

cases M3 and D3-pm4 at similar values of η). This choice was necessary because in this

range of rotation rates, decreasing ν and κ at fixed Prandtl number appears to lead to a

decrease in the overall differential rotation that is achieved. This is in marked contrast

to those simulations rotating faster than 1.5 Ω⊙, where decreasing ν and κ uniformly
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leads to stronger differential rotation. A strong differential rotation greatly enhances

dynamo action in these wreath-building dynamos. However, even the failed dynamos

often initially create wreaths of magnetism. In these cases, dynamo action fails because

the poloidal fields are not regenerated quickly enough. As the poloidal fields resistively

decay away, the overall magnetic energies plummet with time.

8.6 The Mystery of Case M3

We turn now to case M3 rotating at the solar rotation rate. Case M3 was initially

published in Brun et al. (2004). This simulation, at magnetic Prandtl number Pm = 4,

generated strong fluctuating magnetic fields but produced only weak mean toroidal and

poloidal fields, with little global-scale organization. There are no striking magnetic

wreaths present in the simulation. The lack of wreaths is a mystery, as case M3 appears

to lie well within the parameter space of wreath-building dynamos (Fig. 8.1). The

differential rotation achieved in this case is somewhat weaker than that achieved in

our rapidly rotating suns, but the high magnetic Prandtl number should still make the

differential rotation highly effective at stretching and amplifying wreaths of magnetism.

Case M3 differs from the rapidly rotating dynamos in three characteristics, and

one of these appears to be the answer to the missing wreaths. The first and most obvious

difference is that case M3 rotates relatively slowly, at the solar rotation rate. If wreath-

building is facilitated by more rapid rotation, than the slow rotation could explain the

lack of wreaths in case M3. Fortunately, this does not appear to be the case. Even cases

at 1.25Ω⊙ build magnetic wreaths, as do simulations that rotate more slowly than the

sun (i.e. case D0.5a). The second difference is that case M3 is at high magnetic Prandtl

number and has very high fluctuating and rms magnetic Reynolds numbers at values

of 716 and 500 respectively. If wreaths are shredded and destroyed in the presence of

high magnetic Reynolds number flows, than the lack of wreaths in case M3 would raise

serious questions for the rapidly rotating dynamos which are generally at lower magnetic
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Figure 8.18 — Energy traces for cases M3 and M3-pcpf. Shown in overlaying volume-
averaged energy traces are case M3-pcpf (solid) and the original case M3 (dashed), over
the same interval in time. At day 0 the bottom boundary condition in case M3-pcpf
was changed from potential field to perfect conductor. Shortly afterwards the energy
contained in mean toroidal fields (TME) grows substantially.

Reynolds numbers. But magnetic wreaths appear to persist in our high Pm simulation

case D3-pm4, with a similar fluctuating magnetic Reynolds number of 437.

The third and final significant difference between case M3 lies in the treatment

of the bottom magnetic boundary condition. In case M3, the bottom boundary was

taken to match onto a potential field solution, whereas in the rapidly rotating dynamos

we have treated the bottom boundary as a perfect conductor. Perfectly conducting

boundaries trap horizontal magnetic field, while potential field boundaries allow that

field to exit the simulation. To test whether the treatment of boundary conditions

affects the presence of magnetic wreaths, we have modified case M3 by changing the

bottom boundary to a perfectly conducting medium. This new case, case M3-pcpf has a

perfectly conducting bottom boundary and potential field top boundary, in the fashion

of case D3 and all of our other rapidly rotating dynamos. No other changes were made

between the two simulations. Cases M3 and M3-pcpf were continued in parallel, and

their volume-averaged energies are shown over the same interval of time in Figure 8.18.
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Figure 8.19 — Wreaths of magnetism in solar simulations. Shown are time-latitude
maps of 〈Bφ〉 at 0.75R⊙ for (a) case M3-pcpf and (b) case M3 over the same 2000 day
interval of time. The bottom boundary conditions were changed in case M3-pcpf at
day 0, and the two simulations quickly diverge. Case M3-pcpf builds strong wreaths of
magnetism while case M3 has weaker and less organized mean fields. For both cases,
the time-latitude maps are scaled from ±2 kG.



180

The energy contained in the mean toroidal magnetic fields (TME) begins to grow

almost immediately in case M3-pcpf after the change of boundary conditions. The fluc-

tuating magnetic energies (FME) and the energy of the mean poloidal fields (PME)

also grow relative to those of case M3. In response, the differential rotation is slightly

reduced, the the convective kinetic energies (CKE) and the meridional circulations

(MCKE) are basically unchanged.

Time-latitude maps of the mean toroidal field reveal that case M3-pcpf builds

magnetic wreaths, while case M3 does not. Shown in Figure 8.19 are maps of 〈Bφ〉 for

both cases over the same 2000 day interval in time. Within 300 days, case M3-pcpf has

built substantial magnetic wreaths with typical field strengths of ±2 kG and peak mean

toroidal fields of over 4 kG. In contrast, case M3 builds weak and disorganized mean

toroidal fields, with typical amplitudes of ±1 kG and peak amplitudes of ±2 kG. Those

fields are far less organized than the wreaths present in case M3-pcpf. The magnetic

wreaths in case M3-pcpf undergo a partial polarity reversal around day 1000, with the

toroidal fields in the northern hemisphere changing sign while those in the southern

hemisphere retain their negative polarity. These time-latitude maps are made at a

slightly deeper depth in the convection zone (0.75R⊙) than the maps shown for the

rapidly rotating cases. This is because the magnetic wreaths here are concentrated in

the lower convection zone, as also seen case D1.5a.

The patterns of convection and magnetism in cases M3-pcpf and M3 are shown

in Figures 8.20 and 8.21 respectively. The radial velocity structures are very similar in

both cases, as are the profiles of mean differential rotation. The toroidal magnetic fields

have fine structure throughout the convection zone, but those in case M3-pcpf also

show organization on large scales at mid-convection zone and especially in the lower

convection zone (Figs. 8.20b, c). In contrast, the toroidal fields in case M3 are compa-

rably disorganized at all depths (Figs. 8.21b, c). Time-averaged profiles of 〈Bφ〉 and the

poloidal vector potential 〈Aφ〉 show the wreaths of magnetism strongly in case M3-pcpf
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Figure 8.20 — Patterns of convection in case M3-pcpf. (a) Radial velocity vr in
Mollweide projection near the top of the shell (0.95R⊙). (b) Toroidal magnetic field
Bφ at mid-convection zone (0.85R⊙) with weak wreath signatures. (c) The wreaths are
significantly more evident are near the bottom of the convective shell (Bφ at 0.73R⊙).
These snapshots are shown at day 700, a time when the mean magnetic fields are strong.
Also shown are time-averaged profiles of (d) Ω, (e) 〈Bφ〉 with wreaths of magnetism and
(f) 〈Aφ〉. These averages span the interval from days 700-800.
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Figure 8.21 — Patterns of convection in case M3. (a) Radial velocity vr in Mollweide
projection near the top of the shell (0.95R⊙). (b) Toroidal magnetic field Bφ at mid-
convection zone (0.85R⊙) with no wreaths present. (c) There are also no wreaths near
the bottom of the convective shell, and the field amplitudes are comparable to those
at mid-convection zone (Bφ at 0.73R⊙). These snapshots are shown at day 700. Also
shown are time-averaged profiles of (d) Ω, (e) 〈Bφ〉 with no wreaths and (f) 〈Aφ〉 with
disorganized mean poloidal fields. These averages span the interval from days 700-800.
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(Figs. 8.20e, f). The mean poloidal field also shows more organization than those real-

ized in case M3 and is somewhat stronger particularly near the bottom of the convection

zone where the wreaths concentrate.

8.7 When the Sun is Old: Slowly Spinning Suns

While we have explored the likely effects of rapid rotation on convection and

dynamo action in solar type stars, we have said little on the effects of slower rotation

in these systems. As the Sun ages, its magnetized wind continues to carry angular

momentum away from the star, slowing its rotation over billion year timescales. These

older stars are relatively difficult to observe, often being in the halo of the galaxy.

As such, they have received less observational attention. However, many other stars

are effectively slow rotators. This is particularly true when we look at the rotational

constraint of convection, measured by the Rossby number. Systems with very fast

flows may act as slow rotators, even when their rotation periods are as short as the

Sun’s or several times shorter. The Sun is believed to have a Rossby number of nearly

unity, straddling the regimes of the slow and fast rotators. To understand the solar

differential rotation, we should understand the coupling of rotation and convection in

the high Rossby number regime as well. Stars that have high luminosities and low

average convection zone densities are likely to have extremely fast convective flows that

are generally less constrained by the effects of rotation. We expect this behavior in main

sequence F-type stars (Augustson et al. 2010) and also in the highly luminous red giant

stars at the end of stellar life (Palacios & Brun 2007; Brun & Palacios 2009). Some

simulations of convection in those systems are now underway.

We have conducted a limited exploration of the slow-rotation parameter space

for solar-type stars. Our primary simulation in this regime is case D0.5a, rotating at

0.5Ω⊙. This dynamo builds persistent wreaths of magnetism, though a more turbulent

simulation at that rotation rate (case D0.5b) undergoes temporal oscillations and polar-
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Figure 8.22 — Patterns of convection in case D0.5a. (a) Radial velocity vr in Mollweide
projection near the top of the shell (0.95R⊙) and (b) at mid-convection zone (0.85R⊙).
(c) Time-averaged profile of angular velocity Ω with (d) accompanying radial cuts. The
differential rotation has flipped in sense relative to the rapidly rotating simulations,
here with a retrograde equator and prograde poles. There is still a substantial angular
velocity contrast in latitude and radius. (d) Meridional circulations, with streamlines
of mass flux overlain and sense of circulation indicated by color.
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ity reversals. These successful dynamos have eddy diffusivities η which are much higher

than those necessary for dynamo action in stars rotating near the solar rate. This is

likely due to the relatively weak differential rotation in the Sun, as the slow rotators

have substantial angular velocity contrasts. Now however, the differential rotation has

changed in sense, with a retrograde equator and prograde poles.

The patterns of convection in case D0.5a are shown in Figure 8.22. The Rossby

number in this case is high, with a value of 2.45, indicating that the rotation should

only weakly influence the convective patterns. Despite this, a clear dichotomy exists

between the equatorial convection, which retains a north/south alignment on average,

and the polar convection which is more isotropic (Fig. 8.22a). In contrast to the rapidly

rotating systems, where the downflows are shorn out in radius, here the downflows

connect throughout the convection zone, with sheet-like structures near the equator

and strong vortical plumes at higher latitudes (Fig. 8.22b). This leads to a substantial

inward kinetic energy flux of almost −0.5L⊙ at mid-convection zone, which is balanced

by an outward enthalpy flux of nearly 1.5L⊙.

The differential rotation profile has flipped in sense from the rapidly rotating

simulations. In the slowly rotating regime, anti-solar differential rotation appears to

be a common feature, with retrograde equators and prograde poles (Fig. 8.22c, d). In

case D0.5a, the latitudinal angular velocity contrast ∆Ωlat near the surface is −0.65µrads−1

and the radial shear ∆Ωr across the shell at the equator is −0.26µrads−1. This is a sub-

stantial angular velocity contrast, with the latitudinal contrast being nearly 50% of the

frame rotation rate. The meridional circulations in this simulation are much stronger

and more organized than those found in the rapidly rotating simulations. Here, single-

celled structures fill each hemisphere (Fig. 8.22e). At present, it is unclear where either

the strong meridional circulations or the anti-solar differential rotation arise from. Strik-

ingly, the thermal structure of the slowly rotating simulations retains an approximate

sense of thermal wind balance, here with warm equators and cool poles.
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Figure 8.23 — Magnetic wreaths in case D0.5a. (a) Toroidal magnetic field Bφ at mid-
convection zone, with wreaths visible in the high-latitude regions. (b) Time-averaged
profiles of 〈Bφ〉, with wreaths present throughout the convection zone and (c) of 〈Aφ〉,
with a single polarity of poloidal field.

The magnetic wreaths attained in this dynamo are shown in Figure 8.23. In

case D0.5a, the wreaths are located in the region strong angular velocity contrast

at high latitudes. These wreaths have complex structure at mid-convection zone,

with substantial fluctuating fields, but the 〈Bφ〉 is still visibly a major component

(Fig. 8.23a). Profiles of 〈Bφ〉 indicate that the wreaths extend throughout the con-

vection zone (Fig. 8.23b). These magnetic structures extend mainly in latitude, with

little radial structure, as also found in cases D1.5a and M3-pcpf. The accompanying

mean poloidal field shown in Figure 8.23c is of a single polarity everywhere in the

convection zone.

8.8 Conclusions

Wreaths of magnetism appear to be a ubiquitous feature in these dynamo simu-

lations. These wreaths can be persistent for long intervals of time, with little change

in their volume-averaged energies and polarities, or can show dramatic temporal oscil-

lations including quasi-regular global-scale reversals of polarity. Both the toroidal and

poloidal magnetic fields begin to show temporal variation as the level of turbulence

is increased, with both magnetic fields waxing and waning in strength over periods of

roughly 1000 days. The differential rotation grows in turn weaker and then stronger,

being slowed by the strong magnetic fields or rebuilt by the convection.
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During many of the temporal oscillations, remnant wreaths appear to slip toward

the polar regions. These magnetic structures propagate to high latitudes over a period

of roughly 500 days and are typically associated with bands of faster and slower rotating

fluid that also propagate poleward at approximately the same rate. At present, it is

unclear whether the global-scale polarity reversals are dependent on these cycles of

wreath-amplification and poleward-slip. At least one simulation, case D3a, appears to

undergo poleward-slip events without associated reversals of the global-scale polarities.

However, when case D3a does flip its global polarities, it also launches substantial

magnetic structures toward the polar regions.

Wreaths remain present in even the most turbulent simulations at all rotation

rates (i.e. cases D3b, D1.5b, and D0.5b), and are also present in our high magnetic

Prandtl number simulations (i.e. cases M3-pcpf and D3-pm4). At present, it is unclear

whether the wreaths in the high magnetic Prandtl number regime differ substantially

from those realized at low magnetic Prandtl numbers. When simulations with high

magnetic Reynolds numbers at fixed rotation rate but differing Pm are compared, the

fluctuating and mean fields appear comparable (i.e. cases D3b and D3-pm2) and tem-

poral variation is achieved at similarly low levels of η.

Indeed, these dynamos generally appear to be more sensitive to the strength and

structure of the differential rotation than the complexity or amplitude of the small-

scale convection. The magnetic wreaths produced in dynamos at Pm = 0.5 with high

levels of turbulence and very complex convective patterns, appear quite similar to the

wreaths achieved in high Pm dynamos that have more laminar convective patterns. In

the future, high Pm dynamos should be explored in the regions of parameter space

near the onset of sustained dynamo action, to determine whether the critical magnetic

Reynolds number scales with Pm and whether the fluctuating or rms magnetic Reynolds

number is a better diagnostic for successful dynamo action. These simulations may

additionally explore whether temporally varying behavior is linked to the small-scale
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convection or the global-scale differential rotation. Without question it is also vital

that more turbulent simulations be continued, to determine whether wreaths survive

in substantially more turbulent regimes. The most turbulent dynamos considered here

have fluctuating magnetic Reynolds numbers of just 500, which is far less than the values

found in astrophysical regimes.

Our most rapidly rotating dynamos, at 10 and 15 Ω⊙, generate strong magnetic

fields which significantly modify the differential rotation. The poleward propagating

velocity features seen in our dynamos rotating at three times the solar rate (cases

spanning from D3 to D3-pm4) here become strong enough to affect the underlying

differential rotation when they ultimately reach the poles. In case D15, these structures

appear to reverse the flows in the polar regions, flipping the differential rotation there

from a retrograde sense to a prograde sense.

The modulated states found in hydrodynamic simulations (Chapters 3 and 4) re-

main present in regions of our dynamo parameter space, being most evident in case D10L

which has rapid rotation, strong magnetic fields and a reasonably strong differential ro-

tation. As the differential rotation weakens, the active nests become less distinct but

remain evident when long intervals of time are examined in time-longitude maps.

Magnetic wreaths are now found in solar simulations as well as in rapidly rotating

suns. Generally, as the rotation rate decreases, magnetic wreaths are confined to the

lower portion of the convection zone and do not have the radial extent seen in case D3

and the other rapid rotators. In simulations at the solar rate, the mean toroidal fields

have relatively small amplitudes, while the fluctuating fields remain strong. Despite

this, the fluctuating fields are still organized on global-scales and wreaths are clearly

evident.

These wreath-building dynamos are sensitive to the bottom magnetic boundary

condition that is employed. In simulations at the solar rate, employing a potential field

bottom boundary leads to dynamos without wreaths (case M3), while dynamos with
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perfect conducting bottom boundaries build wreaths almost immediately (case M3-

pcpf). Indeed, when we have attempted to run a version of our three solar dynamo

case D3 with potential field bottom boundaries, we find that dynamo action is not

sustained at the values of η employed in case D3. It appears that case M3 may be

running a small-scale or fluctuating dynamo, which primarily relies on the turbulent

correlations to generate magnetism, while case D3 runs a large-scale dynamo that relies

primarily on the Ω-effect associated with the strong differential rotation. The success

of case D3 as a dynamo is clearly enhanced when the bottom boundaries both allow

horizontal magnetic fields near the boundary and prohibit their expulsion from the

simulated domain.

At present, it is unclear how the poloidal fields are regenerated in the rapidly

rotating suns. In particular, it is unknown whether this is a process arising from tur-

bulent correlations on the smallest scales or from instabilities in the shearing flows of

differential rotation. Case M3-pcpf may bridge the gap between these two regimes, pos-

sessing both a small-scale α-effect dominated dynamo and a large-scale Ω-effect dynamo

operating in the same regions of the convection zone.

Wreath-building dynamos should be present in slowly rotating stars as well. These

stars, which include both older suns and young but highly luminous main-sequence

stars, are likely to possess an anti-solar differential rotation with a retrograde rotating

equator and prograde pole. Here, wreaths appear at high latitudes, in the regions of

strong angular velocity contrast. It is unclear whether the temporally varying behavior

seen in some of the slowly spinning suns (i.e. case D0.5b) arises from the cycles of

wreath-amplification, polarward slip and angular momentum transport that appear to

operate in many of the rapidly rotating suns.



Chapter 9

Future Explorations and Wreath-building Dynamos with Tachoclines

In this thesis we have explored a variety of dynamo solutions in stars rotating

more rapidly than the sun. Magnetic wreaths arise as a near ubiquitous feature of

these simulations, irrespective of rotation rate or level of turbulence achieved. These

simulations have at present included the convection zone only. In many solar dynamo

theories, it is thought that the tachocline must play a major role. Clearly, a major thrust

of future research must be the inclusion of this important internal boundary layer.

In studies of compressible convection that include regions of penetration at the

bottom of the convection zone, organized magnetic fields are often efficiently pumped

downwards and out of the convection zone (e.g., Tobias et al. 2001; Browning et al.

2006). Magnetic wreaths might be efficiently expelled from the convection zone by the

compressible convection there. This could remove them from the region of amplification,

as the poloidal field may not be regenerated within the tachocline by the same processes

at work within the convection zone. This would likely cause magnetic wreaths to vanish

entirely. Such a finding would cast serious doubt on the viability of magnetic wreaths

in turbulent stellar convection zones.

We have begun explorations into whether magnetic wreaths survive in the pres-

ence of a tachocline in rapidly rotating suns. We find that the wreaths do survive, and

indeed continue to fill the bulk of the convection zone, even as they become rooted

within the tachocline. These wreaths still undergo temporal oscillations and cycles of
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Table 9.1. Parameters of case T3

Nr, Nθ , Nφ Ra Ta Re Re′ Rm Rm′ Ro Roc ν η

258 × 256 × 512 9.64×105 1.39×107 184 129 92 64 0.481 0.333 1.37 2.75

Note. — Simulation parameters for case T3 rotating at 3 Ω⊙ and with a tachocline of shear.
Parameters have same definition as in Table 8.1, with a deep inner radius of rbot = 3.8 × 1010cm
and outer radius of rtop = 6.72 × 1010cm. The base of convection zone is at rbcz = 4.91 × 1010cm or
0.705 R⊙. Here we define L = (rtop − rbcz) = 1.81 × 1010cm or 0.26 R⊙.

polarity reversal. Preliminary results are reported on here for one simulation rotating

at three times the solar rate, case T3, with similar input parameters to our wreath

building case D3.

9.1 Capturing a Model Tachocline within ASH

The primary parameters of case T3 are reported in Table 9.1 and are similar to our

cases D3 and D3a. Case T3 has a lower boundary at r = 0.5R⊙ and an upper boundary

at 0.965 R⊙. There is thus an overall density contrast of 48 across the convection zone

and 133 across the entire shell. This leads to somewhat lower values of ν, κ and η than

in case D3, despite the two cases sharing the same values for eddy diffusivities at the

top of the convection zone.

After thousands of days of evolution, this dynamo establishes a stable profile

of dS̄/dr, with the base of the convection zone where dS̄/dr crosses zero located at

approximately 0.705 R⊙. The fluctuating radial velocities extend somewhat deeper,

and decrease from an average amplitude of 25 m s−1 to about 1 m s−1 by a depth of

approximately 0.66R⊙. The fluctuating radial flows are much smaller below this depth.

The peak downflows are moving at almost −200 m s−1 at 0.705 R⊙ but have slowed to

roughly −10 m s−1 when they reach 0.66 R⊙.
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To prevent the diffusive spread of the differential rotation profile from the convec-

tion zone into the stable radiative zone, we taper our eddy diffusivities with a smooth

step function

ν(r) = ν0

(
ρ̄0

ρ̄(r)

)α

Φ(r) , κ(r) = κ0

(
ρ̄0

ρ̄(r)

)α

Φ(r) , η(r) = η0

(
ρ̄0

ρ̄(r)

)α

Φ(r) , (9.1)

where α = −0.5 as before, ν0, κ0 and η0 are the values at the top of the convection zone

and our taper with radius is given by

Φ(r) =
1

2
(1 − β)

(
1 + tanh

(
r − rtaper

∆taper

))
+ β . (9.2)

We recover our treatment of eddy diffusivities in the convection-zone dynamos when

Φ = 1 at all radii. In case T3 the taper function is centered at rtaper = 4.70 × 1010 cm

(0.675 R⊙) with width ∆taper = 5 × 108 cm (0.007 R⊙). The variable β controls the

amplitude of the tapering function, which ranges from a value of one in the convection

zone to β in the radiative interior. Here we set β = 10−2 thus reducing our eddy

diffusivities by two orders of magnitude in the stable radiative interior.

We expect that turbulent mixing and transport should generally be lower in the

stable radiative zone than in the unstable convection zone, but these eddy diffusivities

are still many orders of magnitude larger than the microscopic viscosities and diffusivi-

ties present in stellar interiors. Over long intervals of time, the differential rotation will

still diffusively spread into the radiative interior. By tapering our eddy diffusivities by

two orders of magnitude, we find that the differential rotation produced by convection

remains well confined to the convection zone for more than 7000 days. It is likely that

artificially lowering our viscosities is a more physically plausible approach to preventing

“tachocline-creep” than other techniques employed in the past, which included mechan-

ical forcing in the radiative zone and entropy forcing in the region of the tachocline to

retain a comparably good structure of differential rotation (e.g., Browning et al. 2006).
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Figure 9.1 — Profiles of mean flows and temperature in dynamo case T3. These
profiles are averaged over the interval from days 4050-4150 of dynamo case T3. The
hydrodynamic progenitor ran for an additional 600 days previous to day 0. (a) Profile of
differential rotation Ω with (b) accompanying radial cuts at selected latitudes as labeled.
The bottom of the convection zone at rbcz = 0.705R⊙ is marked on both with a dashed
line. The equator is prograde, the poles are retrograde and the radiative interior is
in nearly solid-body rotation between latitudes ±45◦. (c) Meridional circulations with
surface structure and amplitudes similar to those in case D3 but different at depth.
(d) Profile of latitudinal temperature variations relative to the spherically symmetric
average T̄ .

Time-averaged profiles of the differential rotation, meridional circulations and lat-

itudinal temperature variations of case T3 are shown in Figure 9.1. After a total of more

than 4500 days of evolution in both the hydrodynamic progenitor and then in case T3,

the differential rotation remains well confined to the convection zone (Fig. 9.1a). Within

the convection zone, there is a significant angular velocity contrast in latitude and ra-

dius, with a ∆Ωlat near the surface of 1.04µrad s−1 and a ∆Ωr across the convection

zone at the equator of 0.89µrad s−1. The latitudinal angular velocity contrast is similar

to that achieved in dynamo case D3b, but the radial contrast is somewhat larger. Below

the base of the convection zone, the location of the eddy diffusivity taper is visible as

a slight contour in the profile of Ω (Fig. 9.1a) and as a small kink in the radial cuts of

the same (Fig. 9.1b). In the radiative interior, a small latitudinal angular velocity con-

trast persists. This is especially prominent in the polar regions at latitudes above ±60◦.

Near the equator and up to latitudes of roughly ±45◦ the radiative interior is almost in

solid-body rotation.
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The meridional circulations achieved in case T3 are shown in Figure 9.1c. In the

upper convection zone, these circulations are similar to those found in case D3 (e.g.,

Fig. 5.1d). In the lower convection zone the flows penetrate into the tachocline and

radiative interior. This largely removes the narrow return flow seen at the base of case D3

from the convection zone. The latitudinal temperature variations achieved in case T3

are shown in Figure 9.1c. As in the other rapidly rotating simulations, the convection

builds a prominent gradient in latitude, with hot poles, cool mid-latitudes and a warm

equator near the surface. The temperature gradients appear to have spread into the

radiative interior, and the thermal wind associated with this likely helps maintain the

small differential rotation that is present there. Temperature gradients will diffusively

spread more easily than gradients in angular velocity, owing to the low Prandtl number

of this simulation (as before, Pr = 0.25). Lowering the value of β in the tapering function

would likely further curtail this spreading, as would reducing ν and κ throughout the

convection zone.

9.2 Magnetic Wreathes with a Tachocline

Case T3 continues to build large wreaths of magnetism that fill the bulk of its

convection zone. The time history of this case is shown in Figure 9.2. As in many of

our other rapidly rotating dynamos, wreaths appear at latitudes of roughly ±20◦ and

undergo cycles of polarity change. In the 5800 days shown here, four polarity reversals

occur in both hemispheres after the dynamo saturates at roughly day 1000. The wreaths

are strong at mid-convection zone and stronger yet near the base of the convection

zone (Figs. 9.2c, d). In both regions the wreaths have similar latitudinal structure.

In the tachocline, the wreaths occupy a broader range of latitudes and remain strong

(Fig. 9.2e). Time-radius maps at a fixed latitude of 20◦, in the core of the magnetic

wreaths, show that with each successive polarity reversal some field of the previous

cycle migrates deeper into the radiative interior (Fig. 9.2f). At depths below 0.6 R⊙
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Figure 9.2 — Time-dependent behavior in case T3 with a model tachocline. (a) Volume-
averaged kinetic and magnetic energies, and (b) mean 〈Bφ〉 averaged over northern and
southern hemispheres at mid-convection zone. (c) Time-latitude maps of 〈Bφ〉 at mid-
convection zone (0.85 R⊙) and (d) near the base of the convection zone (0.7 R⊙). Mul-
tiple cycles of wreath building occur in the roughly 5000 days after dynamo saturation.
(e) The wreaths extend into the tachocline (0.65 R⊙), with somewhat broader struc-
ture. At greater depths single polarity wreaths persist for the entire simulated interval.
(f) Time-radius map at a fixed latitude of 20◦, in the core of the northern hemisphere
wreaths. The black contour denotes the neutral line between successive wreaths.
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Figure 9.3 — Profiles of 〈Bφ〉 and 〈Aφ〉 in dynamo case T3. (a) Mean toroidal magnetic
field 〈Bφ〉 and (b) poloidal vector potential 〈Aφ〉 averaged over days 4050-4150 at a time
of peak mean fields. At this time, the wreaths and associated mean-poloidal field are out
of phase with the magnetic field in the deep interior. (d) 〈Bφ〉 and (e) 〈Aφ〉 averaged over
days 5000-5100 when the fields have flipped polarity and again reached peak amplitudes.
At this time, the magnetic fields in the convection zone have the same polarity as those
in the radiative interior. The bottom of the convection zone at rbcz = 0.705 R⊙ is
indicated by the dashed semi-circle.

however a single polarity of wreathes are established and persist. During the 5800 days

shown here, these deep magnetic structures slowly grow in strength. By the end of this

interval, the mean toroidal fields have reached peak amplitudes of nearly ±9 kG near

the bottom boundary, with the strongest fields appearing near latitudes of ±55◦. These

deep fields may arise from turbulent transport and pumping within the convection zone

and coupled down into the deep radiative interior. It seems more likely however that

they result from stretching of the initial weak seed field by the differential rotation

that has diffusively spread into the polar regions of the radiative interior, as the peak

angular velocity contrast there occurs at the higher latitudes where the wreaths are

located. Decreasing our tapering constant β to values of 10−3 or less should strongly

decrease the diffusive spread of differential rotation and suppress the generation of these

deep-seated wreaths.

Time-averaged profiles of the mean toroidal fields and poloidal vector potential

are shown at two intervals in Figure 9.3. At both times the wreaths of magnetism are at
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a point in the cycles of polarity reversal where the fields have attained peak amplitudes.

The mean magnetic fields associated with the wreaths extend into the tachocline down

to roughly where the eddy diffusivities taper in amplitude. This depth also roughly

coincides with the depth at which the fastest downflows have their motion substantially

braked by the stable stratification.

The mean fields produced in the convection zone undergo cycles of polarity rever-

sal, while those deep in the radiative interior always retain the same polarity. During

the first cycle shown in Figure 9.3, spanning days 4050-4150, the mean magnetic fields

in the convection zone have opposite polarity from the fields in the radiative interior

(Figs. 9.3a, b). After the fields flip in polarity and regrow in amplitude, they match

the polarity of the radiative interior fields (days 5050-5150; Figs. 9.3c, d). At present,

it is unclear whether the dynamo behaves substantially differently when the convection

either matches or opposes the fields in the radiative interior. Convective patterns and

the global-scale flows of differential rotation and meridional circulation are very similar

during both of the intervals examined here.

These simulations of dynamo action in the presence of a tachocline are very

promising. Wreaths of magnetism continue to fill the bulk of the convection zone and

undergo cycles of polarity reversal. These polarity reversals occur on similar timescales

to those found in the convection-zone dynamos studied in Chapters 6 and 8. The polarity

reversals in real stars generally have slightly longer periods than those found here, and

in the Sun magnetic polarity reversals occur on a time scale of roughly 11 years, or

about 4000 days.

Our dynamo with a tachocline shows promise, but the model could be improved

significantly. The background structure used within case T3 is shown in Figure 9.4. At

present, our thermodynamic variables are in decent agreement with the solar structure

model (a CESAM model based on work in Brun et al. 2002) throughout the bulk of

the convection zone. In the stably-stratified radiative interior, ASH diverges from the
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Figure 9.4 — Stellar structure of case T3. Shown are spherically symmetric profiles of
thermodynamic variables (a) ρ̄, (b) dS̄/dr, (c) P̄ and (d) T̄ . The adopted structure in
ASH is shown with a black, solid line and the CESAM solar structure model is shown
with a blue, dashed line (from Brun et al. 2002). The ASH entropy gradient shown
in (b) has been multiplied by a factor of 100 to make it visible. The ASH structure
and solar model are in good agreement within the convection zone, but diverge in the
radiative interior.

model. This is particularly due to the low values of dS̄/dr used in ASH within the

radiative interior. There, the values of the entropy gradient are more than two orders of

magnitude smaller than those in the solar model. Additionally, the profile of dS̄/dr used

in case T3 has developed kinks in the radiative zone (near radii 0.65R⊙ and 0.55R⊙) and

grows in amplitude too slowly as the radius decreases. This leads to a softer tachocline

than that likely present in real stars, which allows radial motions to penetrate too deeply

into the radiative interior. Additionally, T̄ is too large in the interior, while ρ̄ and P̄ are

too small. Lastly, the dS̄/dr profile used in ASH is generally too large in amplitude in

the upper convection zone, especially near r = 0.95R⊙, as was also seen in the structure

of our convection-zone models (see Figure 2.3).
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New models are in progress which are appear likely to achieve both the steep

gradient of dS̄/dr in the tachocline and the profile near the upper surface seen in 1-

D solar structure models. Exploring how 3-D effects adjust the stratification of the

tachocline will further require methods that accelerate the thermal relaxation of that

layer. Such methods are in active development (Featherstone et al. 2010). Without

an accelerated relaxation scheme, the thermal structure of the tachocline cannot be

correctly captured in ASH. This problem arises due to the long timescales required for

adjustment of the tachocline, which likely requires several million years. In comparison,

we have evolved case T3 for roughly 16 simulated years. A case with a realistic stable

region will likely have its timesteps strongly constrained by the high-frequency gravity

waves propagating there. With the real solar stratification, we expect timesteps of

roughly 200 seconds. This will be an issue for hydrodynamic simulations but is unlikely

to significantly affect the dynamo simulations, as the Alfvénic CFL near the surface

applies a more stringent limit.

These simulations of dynamo action in the presence of a tachocline are computa-

tionally demanding. To achieve the 5800 days of dynamo evolution in case T3 required

over 6 million iterations of evolution, with typical timesteps of 80 seconds each. Run-

ning on a special allocation on the Kraken-XT4 at NICS, this tachocline simulation

has required nearly 750000 cpu hours, running continuously on 512 processors there.

Simulations that include tachoclines must however form the core of future explorations

into wreath-building dynamos.
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9.3 Perspective on Rapidly Rotating Suns

Our explorations of rapidly rotating suns have taken us into interesting territory

and have ultimately raised fascinating questions about the solar dynamo. In hydrody-

namic simulations, we found that generally the global-scale flow of differential rotation

becomes considerably stronger as the rotation rate is increased. In the rapidly rotating

systems we have studied, achieving greater levels of turbulence at fixed rotation rate

leads to even stronger angular velocity contrasts in both radius and latitude. In our

dynamo studies we find that the magnetism becomes so strong that it substantially

suppresses the angular velocity contrast of differential rotation. Relative to similar

hydrodynamic simulations, the angular velocity contrast in latitude and radius of the

equilibrated dynamo solution can be reduced by more than a factor of two (i.e. cases H5

and D5). This effect becomes more pronounced as the rotation rate increases. In the

most rapidly rotating dynamos (i.e. cases D10 and D15) the differential rotation can be

wiped out almost entirely in the equatorial regions. These results may be in reasonable

agreement with observations of differential rotation, where some disagreement remains

between different groups using different observational techniques. Generally however,

observations indicate that differential rotation either grows with faster rotation or per-

haps remains nearly constant.

In contrast, the meridional circulations become substantially weaker as the rota-

tion rate increases, their volume-averaged energies falling almost inversely with rotation

rate. These flows, which in the Sun may be comprised of single cells in each hemisphere,

break apart into multiple cells in both radius and latitude. The meridional circulations

are less dependent on the level of turbulence attained, at least in the parameter space

studied here. Additionally, these circulations are largely unchanged in either amplitude

or spatial structure in the dynamo solutions.
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The weakening of meridional circulations with faster rotation raises profound

questions for stellar dynamo theory. In the case of the Sun, current theories of flux-

transport dynamos, including the Babcock-Leighton dynamo, rely on the slow merid-

ional circulations to return flux to the tachocline. It is the circulation time of that flow

which largely sets the timescale of cyclic dynamo variations.

In the Sun the eleven-year activity cycle is close to estimated turnover times

for the meridional circulations, based on the observed flow at the surface and mass-

conservation arguments. In rapidly rotating stars, measurements of either cycle period

or meridional circulation amplitude are quite difficult; the former because of the long

time scales involved (decades), and the later because of the small amplitude of the

meridional circulations relative to either flows associated with surface convection or the

fast differential rotation. Observations seem to indicate that there may be a weak cor-

relation between cycle period and rotation rate, with more rapidly rotating stars having

slightly shorter periods then the Sun (Saar & Brandenburg 1999). This is in disagree-

ment with the meridional circulations found in our rapidly rotating simulations, which

in a flux-transport framework would likely lead to significantly longer dynamo cycles.

Recent flux-transport dynamo models are beginning to explore how such variations in

meridional circulation amplitude and 2-D structure may affect the operation of the

dynamo (e.g., Jouve et al. 2009).

In many of the rapidly rotating suns, the strong differential rotation shears con-

vective cells out in radius. This can lead to changes in the radial transport of energy. In

particular, the inwards transport of kinetic energy is strongly reduced in these simula-

tions. In some regimes, striking patterns of convection modulated in longitude arise. As

the rotation rate increases, convection in the hydrodynamic models can become entirely

confined to active nests with more quiescent streaming flow inbetween. These active

nests persist for thousands of days and propagate at an angular velocity which is con-

stant at all depths of the convection zone. This angular velocity typically matches that



202

of the differential rotation near mid-convection zone. As such, the active nests experi-

ence strong shear from the differential rotation, with a relative tailwind in the upper

convection zone and a headwind in the lower convection zone. These nests reappear in

nearly the same form in one of our MHD dynamo simulations (case D10L). In other

dynamo simulations they appear to be weakly present, becoming somewhat more evi-

dent when the differential rotation is stronger. In stellar observations, such structures

may lead to the presence of magnetic features at the surface which propagate at rates

distinct from either the surface differential rotation or the overall rotation of the star.

Our dynamo simulations consistently build striking global-scale magnetic struc-

tures in the bulk of the convection zone. These structures are more topologically complex

than ideal flux tubes, whose magnetic fields are confined within bounded surfaces. The

magnetic wreaths which are self-consistently built in these rapidly rotating dynamos

have more open topologies, with field wandering throughout the convection zone, re-

connecting across the equator and being wound up in the vortical flows at high latitudes.

Some of these dynamos build persistent wreaths that survive relatively unchanged

in the midst of the convection zone for thousands of days. As the magnetic Reynolds

number increases, the wreaths become time-dependent, undergoing large oscillations

in magnetic energy. These oscillations can lead to global-scale polarity reversals, with

the mean toroidal and mean poloidal fields changing sign quasi-regularly. Associated

with these oscillations or reversals are poleward propagating magnetic structures. These

may be wreaths that become strong enough to undergo a poleward-slip instability where

magnetic tension pulls the wreaths toward smaller cylindrical radii. Accompanying these

magnetic features are local regions of more quickly rotating fluid. These angular velocity

structures can cause changes in the overall differential rotation. They may bear some

resemblance to the polar branch of torsional oscillations observed in the Sun.

Even the more slowly rotating simulations form wreaths of magnetism, including

simulations at the solar rate and slower. These wreaths tend to be more concentrated in
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the lower convection zone and less evident at mid-convection zone. Such structures may

be pumped out of the convection zone when a tachocline of shear and penetration is

included at the lower boundary. In our preliminary explorations however, we find that

when a convection zone dynamo is coupled with a model tachocline, magnetic wreaths

still form and fill the bulk of the convection zone. The wreaths realized in case T3

undergo similar polarity reversals to those found in other simulations at three times the

solar rate. Case T3 has a very soft stable stratification, and this likely underestimates

the amount of magnetism which is able to remain within the convection zone. This

may change however at higher levels of turbulence if very strong downflows are able to

overcome the shearing tendencies of the differential rotation and survive to efficiently

pump the wreaths downward.

Wreaths have not been found in previous solar simulations in part due to the dif-

ference in lower magnetic boundary conditions employed. The wreath-building dynamos

appear to work far more efficiently when the lower boundaries permit horizontal field

and prevent that field from escaping the convection zone. It is reassuring that including

a more realistic lower boundary for the convection zone by including a tachocline of

penetration and shear leads to qualitatively and quantitatively similar behavior to the

convection zone dynamos with perfectly conducting bottom boundaries. Namely, in

case T3 wreaths of magnetism form, span the convection zone, reach similar amplitudes

at mid-convection zone to other 3Ω⊙ dynamos, and undergo cyclic polarity reversals on

a similar timescale (roughly 1000 days). Simulations of the solar dynamo which include

a tachocline of penetration appear to yield very similar results, though there the wreaths

are confined almost entirely to the tachocline (Browning et al. 2006). It is unclear at

present whether the magnetic structures in that dynamo arise locally within the shear

of the tachocline or are produced in the convection zone and pumped downward. In

case T3 however, the wreaths are clearly formed in the convection zone itself.
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9.4 The Road Ahead

The rapidly rotating dynamos have opened a rich realm for further exploration.

At present, we have followed one cut through turbulent parameter space with limited

additional sampling at interesting rotation rates. The exploration of these stars is by no

means complete. Here briefly are future projects which should be pursued. Some of these

are underway presently or will be in the near future; others remain more speculative. A

number of the projects will require significant computation, but several would involve

deeper analysis of the rich dataset already produced in this research.

• How are poloidal fields regenerated in wreath-building dynamos? The

mean poloidal magnetic fields are regenerated on the poleward edge of the mag-

netic wreaths. Here, field-line tracings in case D3 reveal fields that are partly

wound up in the vortical polar convection. Larger-scale variations are also

clearly evident. It is unclear at present which scale contributes to the regen-

eration of mean poloidal fields. This question should be answerable with the

current set of simulations, by comparing features common to the three dynamos

that build persistent wreaths (cases D0.5, D1.5a and D3).

• What is the origin of cyclic reversals, and what sets their timescale?

In many of our dynamos, quasi-regular temporal oscillations are observed in

the magnetic energies and the amplitudes of the mean toroidal and poloidal

field. In many cases these are linked with global-scale reversals of polarity.

It is unclear why organized time-dependent behavior occurs when the magnetic

Reynolds number increases. Global-scale polarity reversals appear to occur even

in those cases where the differential rotation is highly suppressed (i.e. case D15).

These reversals may originate in changes to the magnetic production terms, but

elucidating their variation has proven complex. The reversals that occur in these

rapidly rotating suns typically span intervals of about 1000 days. In the Sun,
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such reversals take roughly eleven years or about 4000 days. In other solar-

like stars the timescales for reversal are comparable, though perhaps slightly

decreasing in the more rapidly rotating suns. Understanding the origin of the

organized polarity reversals, and why they are consistently shorter in these

simulations than in real stellar dynamos, must be a high priority of future

research.

• Do mean-field theories reproduce wreath-building dynamos? In our

preliminary analysis of a simple mean-field model, we find that the EMF pre-

dicted by a simple α-effect fails to reproduce the 3-D EMF measured in our

case D3. At present, it is unclear whether a more sophisticated approach will

yield better agreement. Test-field methods and further expansions of the mean-

field EMF should be carefully explored, to both understand how the 3-D dy-

namos are operating and to help improve stellar mean-field models. This anal-

ysis should be extended to the time-dependent cases, including to the initial

dynamo growth phases.

• Do wreath-building dynamos survive at high Reynolds numbers? Our

present simulations still have relatively low magnetic Reynolds numbers. As

Rm′ is increased, wreathes become more complex in spatial and temporal struc-

ture and are generally stronger in the lower convection zone than at mid-

convection zone. At present, it is unclear whether such structures survive under

highly turbulent conditions, in which a small-scale convective dynamo is ac-

tive in addition to the global-scale wreath building dynamo. Case M3-pcpf and

case D3-pm4 may be beginning to explore this coupled regime, but simulations

should be carried out with fluctuating magnetic Reynolds numbers Rm′ ∼ 1000

or higher to ensure strong dynamo action everywhere in the convection zone.
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• Are high-Pm dynamos different from low-Pm dynamos? We have con-

ducted a limited exploration on the effects of Pm on the magnetic wreaths and

generally find that it is the value of η rather than Pm that defines the temporal

variations and spatial structure of the wreathes. However, in these rapidly rotat-

ing dynamos the differential rotation itself changes as ν and κ are varied. This

complicates exploration of the boundaries in parameter space variously for sus-

tained dynamo action, temporally varying magnetism, cyclic polarity reversals

or quenching of differential rotation. At certain special rotation rates however,

clustering around 1.5 Ω⊙ in these simulations, the differential rotation appears

to be less sensitive to variation of ν or κ. More extensive simulations should

be carried out at 1.5 Ω⊙, exploring how varying Pm affects the wreaths when

other factors, including the angular velocity contrast in latitude and radius, are

approximately constant.

• Why do high Rossby numbers lead to anti-solar differential rotation?

As we have taken our rapidly rotating suns back to the solar rate and then

explored more slowly rotating stars, we have found that the differential rotation

profile often flips in sense and becomes anti-solar, with fast, prograde poles and

a slow, retrograde equator. This phenomena is however not confined to the older

suns alone. Indeed, at the solar rotation rate, dropping ν and κ to the levels

necessary to achieve dynamo action at Pm = 0.5 causes the differential rotation

to collapse entirely, or even flip sense and become anti-solar. The cause of this is

as yet unknown, but appears to be related to the convection shifting from the low

Rossby number regime that the rapid rotators inhabit to a high Rossby number

regime. At rotation rates above approximately 1.5 Ω⊙, the differential rotation

is solar in sense and becomes more strongly so as the diffusivities are dropped.

At rotation rates below about 1.5 Ω⊙, the differential rotation becomes weaker
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as ν and κ decrease. When conditions become sufficiently turbulent, the sense

of differential rotation becomes anti-solar and this inverted profile of angular

velocity is further enhanced as the diffusivities drop. The strength and sense

of differential rotation appears to correlate reasonably well with the Rossby

number of the convection, but the reason for this correlation is unknown. The

Rossby number of the flows may in turn be related to the stratification we have

adopted in our simulations. Promising work is underway on new models which

better match the helioseismically determined solar stratification, but further

work must be done on the sensitivity of the differential rotation profile, in the

Sun and in other stars, to relatively small changes in the eddy diffusivities.

• Do active nests of convection survive under more realistic conditions?

We still find strongly localized active nests of convection in one of our dynamo

simulations (case D10L). It is unclear at present why they largely vanish as the

differential rotation is quenched by strong magnetism. Weak localized struc-

tures remain and persist for thousands of days, but these structures are highly

obscured by small-scale convection which emerges as the radial angular velocity

shear decreases. We do not at present have a theory for the emergence or persis-

tence of such modulated states. These structures appear to be hydrodynamic in

nature, and they seem to survive under some magnetohydrodynamic conditions.

Further work should be done on the theoretical side to understand where active

nests arise from. Simulations should be undertaken that further constrain the

dependence of active nests of convection on rotation, on the angular velocity

shear of differential rotation, and on the hydrodynamic parameters of the sim-

ulations. Simulations should also be pursued which include tachoclines at the

base of the convection zone, to determine whether active nests survive under

conditions that are more similar to those found within stellar convection zones.
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• What is the origin of the rotation-activity relationship? These simula-

tions have not answered the questions posed by the observed correlation between

rotation and stellar magnetic activity. It is unclear whether the observed cor-

relation stems from dynamos that operate more efficiently with faster rotation

and produce more magnetism, or from subtle changes in the emergence of mag-

netism at the stellar surface which are unrelated to changes in the global-scale

dynamo itself. New observations are beginning to trace the multiple corre-

lations between magnetic activity, differential rotation and overall rotation in

stars (e.g., Saar 2008). These indicate that in the rising portion of the rotation-

activity relationship the differential rotation is also growing, and in this regime

there is a clear relation between magnetic activity and the amplitude of surface

differential rotation. In the saturation regime however, this relationship breaks

down and now magnetic activity appears to be uncorrelated with the ampli-

tude of differential rotation. This is striking. Our simulations are beginning to

explore multiple regimes, some where the differential rotation and magnetism

coexist and some where the magnetism persists at similar amplitudes but the

differential rotation is almost entirely quenched.

• Do stars with deep convection zones operate wreathy dynamos? Ob-

servations of fully convective M-dwarf stars, with masses below 0.35 M⊙, indi-

cate that these stars still have strong magnetic activity at their surfaces. These

stars do not have stably-stratified radiative interiors and thus also should not

have internal boundary layers such as tachoclines at the base of their convection

zones. Additionally, K-type stars have much deeper convection zones than the

Sun, and tachoclines in those stars are buried under more than 50% of the star

in radius. It seems highly unlikely that the traditional interface model of stel-

lar dynamos could be successfully operating in such stars. Instead, these stars
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may run dynamos in the bulk of their convection zones, and those dynamos

may be wreath-building dynamos. Convection and dynamo action in stars with

deep convection zones should be explored. Changes in stellar luminosity at lower

masses will additionally drive generally slower convective flows with correspond-

ingly lower Rossby numbers. Simulations of these stars may help disentangle

how convection, rotation and magnetism couple in stellar interiors.

• Are tachoclines important? These wreath-building dynamos are able to

organize substantial global-scale magnetic fields in the bulk of their convection

zones. They generally do so without resorting to tachoclines of penetration

and shear for the storage and organization of such fields. Wreaths persist in

the presence of tachoclines and, in the very limited explorations to date, are

largely unmodified by the presence of this internal boundary layer. What role

then do tachoclines play in stellar dynamos? These complex shear layers must

contribute in some fashion to the operation of the global-scale dynamos but their

role remains mysterious. If wreath-building dynamos continue to thrive under

more realistic conditions, it seems likely that fully-convective stars and those

with deep convection zones can still produce substantial global-scale magnetic

fields. Simulations of these stars should be undertaken, to learn how these stellar

dynamos are similar to and differ from the operation of the solar dynamo.
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9.5 Final Reflections

In this thesis we have explored how stellar convection and magnetism built by

dynamo action are affected by rotation. In rapidly rotating stars, the global-scale flows

of differential rotation become stronger while the meridional circulations appear to

become much weaker. The patterns of convection can achieve novel modulated states,

and in some cases the equatorial convection is entirely confined to narrow active nests

of convection with more quiescent flow in between. The rapidly rotating stars have

strong dynamos that can build global-scale, wreath-like magnetic structures in the bulk

of the convection zone. These wreaths can persist for thousands of days, or can become

time-dependent with global-scale magnetic polarity reversals occurring quasi-regularly.

Wreaths of magnetism can appear in solar simulations as well, and are also present in

slowly spinning stars.

These projects sample only a small portion of the rich dynamics that arise from

the coupling of convection, rotation, and magnetism in stellar interiors. Ultimately,

they strive to better answer fundamental questions about stellar magnetism: Where

are global-scale stellar magnetic fields built and organized, why is there a correlation

between magnetic activity and stellar rotation rate, and what role does the tachocline

play in a stellar dynamo?
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