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Recent developments in laser technology, in particular the advances in high-harmonic gen-

eration, enable the generation of ultrashort extreme ultraviolet (XUV) pulses with attosecond (1

as = 10−18 s) duration. Such tools open the opportunity to study electron dynamics in atoms

and molecules on its intrinsic time scale. As an example, the attosecond streaking technique was

recently applied to time resolve the photoionization process in atomic and solid systems. In this

technique, an isolated attosecond XUV pulse, that ionizes the electron in the target system, is su-

perimposed with a few-cycle streaking pulse (usually of near-infrared wavelengths). The streaking

pulse modulates the final momentum (or energy) of the photoelectron. The measured streaking

trace, i.e., the final momentum (or energy) as a function of the relative delay between these two

pulses, contains time information of the photoionization process. By comparing two streaking

traces measured for photoionization from the 2s and 2p orbitals in a neon atom, Schultze et al.

[Science 328, 1658 (2010)] found a temporal offset of 21± 5 as between them and interpreted this

value as the time delay between photoionization from the 2s and 2p orbitals. This experiment has

initiated a debate among theoreticians, in particular about the origin of the measured time delay. A

correct interpretation of the delay is extremely important for our understanding of the attosecond

streaking technique and an exact analysis of time resolved measurements of this and other ultrafast

processes.

In this thesis we systematically study the attosecond time delays in photoionization using

numerical simulations. We first propose a new method, based on the fundamental definition of a

time delay, to theoretically study the photoionization process induced by an XUV pulse from a time-

dependent perspective. We then turn to analyze the time delays measured in streaking experiments.

Our results show that for single-photon ionization the observed streaking time delay arises from
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the finite-range propagation of the photoelectron in the coupled field of the ionic potential and the

streaking pulse. Consequently, we conclude that the photon absorption occurs instantaneously at

the center of the XUV pulse, i.e., with no time delay. Our analysis further reveals that the streaking

time delay can be interpreted as a finite sum of piecewise field-free time delays weighted by the

relative instantaneous streaking field strength and provides itself as a useful tool for imaging the

presence of an additional potential located at a distance from the ionic core. We finally extend our

time delay studies to the two-photon ionization process and show that the absorption time delay is

significantly different for nonresonant and resonant two-photon ionization. Our results imply that

the absorption of two photons in the nonresonant case occurs instantaneously, without time delay,

at the center of the XUV pulse. However, in the resonant scenario we find a substantial absorption

time delay that changes linearly with the duration of the XUV pulse. Our further theoretical

analysis shows that this absorption time delay can be related to the phase acquired by the electron

during its transition from the initial ground state to the continuum.
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Chapter 1

Introduction

1.1 Electron dynamics on the attosecond time scale

Understanding of quantum electron dynamics has played an extremely important role in the

development of science and technology in the last 100 years. From chemical reactions between

different species to physical interactions of atoms and molecules with external fields, electrons

participate in nearly every aspect and their dynamics has been shown to be fundamental and

essential for all processes. Based on the energy-time uncertainty principle, ∆E∆t ∼ ~, one expects

a time scale of tens to hundreds of femtosecond (1 fs = 10−15 s) for vibrational motions in molecules

and solids (Fig. 1.1), which defines the characteristic time scale for the motion of atoms in these

materials. The time scale of electron dynamics is however even smaller since the energy spacing of

electronic energy levels is usually of the order of electron volt (eV). An intuitive picture of this time

scale is given by the simple Bohr model for a hydrogen atom. Within this model the kinetic energy

of the electron in the ground state is Ek = v2/2 = 1/2 and therefore the period of the classical

orbital is T = 2π/v = 2π in Hartree atomic units (a.u.)1 , which is on the order of 100 attoseconds

(1 as = 10−18 s and 1 a.u. = 24.19 as).

Many interesting physical processes occur in the attosecond time regime, including XUV

photoionization [2–4], strong field tunneling ionization [5, 6], molecular orbital rearrangement after

ionization [7], and many other examples. In order to time resolve these attosecond processes, it is

necessary to use measurement tools with an attosecond resolution (e.g., [1, 8, 9]). For example, if
1 Hartree atomic units, e = m = ~ = 1, are used throughout this thesis, unless otherwise stated.
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Figure 1.1: Time scales of atomic and electronic motions in atoms, molecules, nanostructures, and
solids. Figure captured from Ref. [1].
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Figure 1.2: Semi-classical description of the HHG process: (a) electron is ionized by the driving
laser through tunneling, (b) and (c) electron propagates and accelerates in the laser field, and
(d) electron returns and combines with the parent ion by emitting a high-energy photon. Figure
captured from Ref. [8].

one wants to study the real-time evolution of electronic orbitals after ionization in a molecule by

taking snapshorts of these orbitals, a “camera” with a shutter time on the attosecond time scale is

required. Without such a fine resolution, the picture taken will have too much information and the

fast motions will be smeared out. The developments of laser technology, in particular the advances

in high harmonic generation (HHG) in gases [10–20], have enabled us to generate isolated pulses

with attosecond duration, which therefore provide an extremely useful tool for observing attosecond

electron dynamics.

1.2 Attosecond pulses generated through high harmonic generation

Strong-field lasers with peak intensities on the order of 1013 to 1015 W/cm2 have field

strengths comparable to the internal electric field strength in atoms and molecules. Such a strong

field hence enables many nonlinear processes to occur, such as the HHG process, which can happen

in an atomic or molecular gas medium by focusing an intense laser beam [usually near-infrared

(IR)] onto it. The HHG process can be well explained using a semi-classical model [12–14] within

three steps (Fig. 1.2): First, an electron initially bound in an atom or molecule is ionized by the

strong laser field through the tunneling mechanism. Then the ionized electron propagates and
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Figure 1.3: Generation of a single- or double-burst attosecond pulse: (a) and (c) The spectrogram
(window Fourier transform) of the atomic HHG driven by a 5 fs, 750 nm pulse, (b) and (d) spectra
of the emitted high-energy photons. (a) and (b) are calculated for a cosine-shaped driving pulse,
while (c) and (d) are for a sine-shaped driving pulse. Filtering out the high-energy part of the HHG
spectrum yields a single (a) or double (c) attosecond XUV pulse. Figure captured from Ref. [8].
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accelerates under the influence of the strong laser field in the continuum. In the last step, with a

certain probability, the electron can be driven back and finally recaptured by the parent atomic or

molecular ion. During the recombination of the electron and the parent ion, the electron has to

emit an energetic photon in order to conserve the total energy. Classical calculations show that

only electrons ionized in the second and fourth quarters of the optical cycle of the laser field can

be driven back to the parent ion and then may recombine. This temporal confinement of HHG

therefore usually results in the generation of a train of attosecond pulses spaced by half of the

optical period of the driving laser pulse.

Classical calculations also reveal that electrons ionized at different phases of the driving laser

pulse have different trajectories, returning energies and hence lead to the emission of photons with

different energies. A maximum energy of the returning electron occurs for liberation of the electron

at 17 ◦ with respect to the maximum of each half cycle of the driving pulse with the emission of a

photon of energy Ω = 3.17Up + Ip. Here, Ip is the ionization potential of the target system, and

Up = I/4ω2 is the ponderomotive energy that refers to the cycle-averaged energy of the electron in

the driving laser field with I and ω being its intensity and frequency, respectively. The maximum

energy of the HHG photon, given by Ω = 3.17Up + Ip, corresponds to the cutoff energy of the HHG

spectrum [e.g., Fig. 1.3(b)]. These conclusions can also be derived within quantum mechanical

analysis [15]. As exemplified in Fig. 1.3(a) and (c), a time-frequency analysis [21] of the HHG

spectrum clearly shows when different photon frequencies are emitted.

For many applications one prefers to use an isolated attosecond pulse, of which the generation

is nowadays possible in a few different ways [19, 22]. Among them, one method is the so-called

amplitude gating [18, 23, 24] that makes use of a cosine-shaped laser field comprising merely

a few oscillation cycles (Fig. 1.3). In such a case only the electron wave packet ionized in the

second quarter of the central half cycle (i.e., the half cycle with largest intensity) has significant

contributions to the HHG spectrum, in particular to the high energy part of the spectrum that is

around the cutoff energy [Fig. 1.3(a)]. As a result, after filtering out the high energy part of the

spectrum, a single, isolated attosecond pulse is generated as illustrated in Fig. 1.3(a) and (b). In
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contrast, if one instead uses a sine-shaped laser field, the generated field has two identical bursts

after filtering out the same energy region [Fig. 1.3(c) and (d)]. As the first demonstration of this

method, experimentalists generated a 650 as pulse with a central frequency of 90 eV by using a 7

fs driving laser at wavelength of 750 nm [23]. Currently, the limit of this method is the generation

of a 80 as pulse centered at a photon energy of 80 eV using a 3.5 fs, 720 nm driving laser [24].

Very recently, another very promising method of generating isolated attosecond pulses based

on phase matching has been proposed and demonstrated by M.-C. Chen et al. [25]. It is well known

that electromagnetic fields emitted from different atoms (or molecules) that are phase matched

interference constructively and add up coherently [26, 27]. The phase matching condition depends

on a few parameters of the experiment, such as the pressure of the gas, the frequency, intensity,

and duration of the driving laser pulse [28–30]. In particular, the temporal window over which

phase matching occurs shrinks rapidly with increasing driving laser wavelength [25, 30]. In the

experimental demonstration a 14-cycle driving laser pulse at a central frequency of 2 µm has been

used, which is more stable and easier to generate than few-cycle 800 nm pulses. When the intensity

of the driving laser is increased to 1.6 × 1014 W/cm2 (with a proper pressure of argon gas), the

temporal phase matching window is confined to the half peak cycle of the driving pulse and thus

a single, isolated soft X-ray pulse is generated. A pulse of duration of 300 as at a central photon

energy of 140 eV has been observed. Due to its simple and robust properties, this novel scheme

not only provides a new way of generating isolated attosecond pulse but also may make attosecond

science and technology accessible to a broader community.

1.3 Attosecond streaking technique and its application to photoionization

The concept of the streak camera has been around for a few decades with the original intention

to characterize the temporal structure of a short light pulse [32, 33]. On the left side of Fig. 1.4 a

schematic view of a conventional streak camera is shown. In such an apparatus photoelectrons are

knocked off a photocathode by a short light pulse. The time-dependent ionization probability is

proportional to the temporal intensity of the pulse. During the propagation to the detector screen,
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Figure 1.4: Conventional (left, captured from Ref. [1]) and attosecond (right, captured from
Ref. [31]) streak cameras. The conventional streak camera uses a transverse voltage ramp to deflect
photoelectrons ionized by the incident light pulse. Electrons ionized at different instants have dif-
ferent ionization probabilities and also different horizontal deflections on the detector screen. One
can therefore reconstruct the temporal structure of the incident pulse from the electron distribution
on the screen. The attosecond streak camera uses an attosecond XUV pulse to initiate an ultrafast
process (e.g., ionization) and a few-cycle IR pulse to streak the momentum of the electron. By
scanning the XUV pulse at different positions of the streaking pulse, one can measure the momen-
tum as a function of the relative delay between these two pulses, i.e., a streaking trace. The time
information of the ultrafast process is stored in the streaking trace.

Figure 1.5: Physical principle of the attosecond streak camera. Electrons released by the attosecond
XUV pulse at different positions of the streaking pulse have different final momenta, which are
approximately given by Eq. (1.1). Figure captured from Ref. [1].
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the electrons are deflected by a transverse microwave voltage ramp V (t) and the degree of deflection

is directly related to the release instants of the electrons. Therefore the spatial distribution of the

photoelectrons on the screen can be converted to the temporal structure of the incident pulse. Such

a conventional streak camera setup can reach a subpicosecond (1 ps = 10−12 s) resolution for a

voltage ramp that is within a fraction of a nanosecond (1 ns = 10−9 s).

The attosecond streak camera shares the concept with the conventional one and was originally

introduced to measure the temporal structure of an attosecond XUV pulse [23, 34–36]. It consists of

two laser pulses: an attosecond XUV pulse that initiates an ultrafast process (e.g., ionization of the

electron in atoms and molecules), and a few-cycle streaking pulse (usually an IR pulse) that is used

to modulate the final momentum of the photoelectron according to its release instant (see the right

side of Fig. 1.4). Photoelectrons ionized by the XUV pulse at different phases of the streaking field

have different final asymptotic momenta, which can be easily estimated using classical mechanics

by neglecting the Coulomb potential of the parent ion. Assuming that the electron is released at

instant ti and then propagates in the streaking field Es(t), the final momentum is given within this

approximation by

kf ' k0 −
∫ T

ti

Es(t)dt = k0 −As(ti), (1.1)

where k0 =
√

2(ω − Ip) is the field-free asymptotic momentum with ω being the XUV photon

energy and Ip being the ionization potential of the system and As(t) is the vector potential of the

streaking pulse with duration T and As(T ) = 0. As illustrated in Fig. 1.5, the final momentum

clearly depends on the ionization instant and therefore temporal information of the ionization (as

well as the XUV pulse) is mapped onto the momentum space. By scanning the application of the

XUV pulse as a function of the phase of the streaking pulse, one can obtain a so-called streaking

trace (Fig. 1.6), which shows the final energy (or momentum) of the photoelectron as a function of

the relative delay between the two pulses. As we will discuss in this thesis such a streaking trace

records useful information about the ultrafast process initiated by the XUV pulse.
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1.4 Time delay in photoionization and previous theoretical interpretations

As an important demonstration of the possible use of the attosecond streaking technique in

attosecond science, Schultze et al. [3] applied it to study temporal dynamics of the XUV photoion-

ization process in atoms. They intended to address a few very fundamental questions like: Is there

any time delay between ionization processes from different orbitals, for example, the 2s and 2p

orbitals in a neon atom? And when does the XUV photoionization occur in an atom? In their

experiment two streaking traces are recorded simultaneously for electron emission from the 2s and

2p orbitals in a neon atom2 by scanning a 200 as attosecond pulse with energy of 100 eV (energetic

enough to ionize either electron) with respect to a 4 fs IR streaking pulse (left side of Fig. 1.6).

The answer to the first question appears to be easy to find by directly comparing the two

streaking traces of the 2s and 2p photoelectrons. A time delay of 21 ± 5 as for the ionization of

the 2p electron with respect to the ionization of the 2s electron was found in the comparison of the

traces using several different data processing algorithms [3]. The authors hence claimed they have

observed that the 2p electron takes more time to ionize than the 2s electron. In order to clearly

see that there is indeed a small temporal shift (or time delay) between the traces, which is not so

obvious in the original experimental data (left side of Fig. 1.6), we show also an example of time

delay streaking results from Ref. [37] on the right side of Fig. 1.6, which are based on numerical

simulations of streaking experiments in two atoms. By comparing the two traces from ground state

ionization of the hydrogen atom and the helium ion atom, a time delay of about 30 as can be clearly

seen from the inset of this figure.

In order to address the second question, one common way is to use the streaking trace

predicted by the original streaking formula, Eq. (1.1), as a zero-time reference. Since the relative

delay between the XUV and streaking pulses is defined to be the time difference of the center of

the XUV pulse with respect to that of the streaking pulse with a positive sign representing that the

XUV pulse is applied at the trailing edge of the streaking pulse, one actually uses the center of the
2 The same idea has been also applied to a solid system to study the photoionization time delay between ionization

from a valence and a conduction band [2].
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Figure 1.6: Streaking traces from experimental measurements in neon atoms (left, captured from
Ref. [3]) and numerical simulations in hydrogen and helium ion atoms (right, captured from
Ref. [37]). In the left figure the upper and lower traces correspond to the 2s and 2p electrons
respectively. In the right figure the central white line of each trace is the expectation value of the
momentum.
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Figure 1.7: (a) Streaking traces obtained from numerical simulations for photoemission in the 1D
Coulomb potential VC(z) = −3.0/

√
z2 + 2.0. A 8-cycle streaking pulse with Is = 1× 1012 W/cm2,

λs = 800 nm, and φs = −π/2 is used in the calculations. We compare the streaking trace obtained
from the TDSE (blue solid line) with that from the original streaking formula, Eq. (1.1), (green
dashed line). (b) An enlargement of (a) to show the momentum shift ∆k, the streaking time delay
∆ts, and the relation between them.
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XUV pulse as the zero time reference when comparing the experimentally observed or theoretically

calculated streaking traces to the predicted one. To exemplify this concept, in Fig. 1.7 we show the

streaking trace from the numerical solution of the time-dependent Schrödinger equation (TDSE)

corresponding to photoemission of an electron in a 1D model potential (blue solid line) as well

as the trace predicted by the original streaking formula, Eq. (1.1), (green dashed line). Here we

only show the expectation value of the numerically obtained final momentum in order to visualize

the relative shift between the two traces. A clear temporal offset (or time delay) can be seen in

Fig. 1.7(b) when we zoom into a certain part of the traces. As used by others (e.g., [37–39]), we

denote such a temporal offset as the streaking time delay ∆ts. Theoretically, the trace from the

original streaking formula provides a reference to study the origin of time delays and we will take

advantage of this method in all of our studies within this thesis.

The photoionization time delay experiment by Schultze et al. [3] has initiated a lot of theo-

retical interest, in particular in view of the interpretation of the delay. In the original report [3],

Schultze et al. gave a qualitative estimation and explanation of the delay by relating it to the

so-called Wigner-Smith (WS) time delay [40, 41]. The WS time delay is a concept introduced

in scattering studies and is defined to be the time difference between the time a particle spends

within the scattering potential and the time that a free particle with an equal final energy spends

in the same region under the condition that the region extends from −∞ to +∞. For a short-range

potential that decays faster than 1/r, the WS time delay can be evaluated by

∆tWS =
dϕ

dE
, (1.2)

with ϕ being the scattering phase shift. Since the WS delay diverges for a long-range Coulomb

interaction [41], Schultze et al. [3] employed Eq. (1.2) to avoid the divergence problem, which later

raised concerns from some theorists including us (e.g., [42, 43]). This WS delay concept was later

revisited by Kheifets et al. in Ref. [44], in which an extension of this method was proposed to

take account of the extra phase shift induced by the multielectron correlation effect3 . However,
3 Although its relation to the streaking time delay remains somehow unclear, the WS time delay concept in the
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neither the original WS calculation nor the extension could reproduce the time delay measured in

the experiment.

In order to seek further interpretation, it was proposed to compare the streaking time de-

lay with the WS time delay for some single-electron potentials such as the hydrogen atom and

the helium ion atom, in which direct numerical simulations of streaking experiments without any

approximations are possible. Nagele et al. [37] and Zhang et al. [52] independently found that, gen-

erally, the streaking time delay is not given by the WS time delay calculated using Eq. (1.2) even

for these simple single-electron systems, except for very short-ranged potentials. This discrepancy

however implies there should be some additional contribution to the streaking time delay. Nagele

et al. [37] pointed out that the (classical) propagation of the photoelectron in the coupled field of

the atomic potential and the streaking pulse can induce an extra momentum shift to the original

formula, Eq. (1.1), and therefore should give rise to an additional time delay. This coupling effect

can be viewed as a correction to the strong field approximation (that neglects the Coulomb poten-

tial) used in the derivation of Eq. (1.1). They hence proposed to use a classical-trajectory Monte

Carlo simulation, which treats the Coulomb potential on equal footing with the streaking field, to

calculate this coupling related time delay and showed that the obtained coupling delay ∆tCLC
4 is

equal to the streaking time delay. However, the authors did not further elaborate on this result.

Instead, inspired by this result, Ivanov et al. [38] derived an analytical formula for the cou-

pling time delay ∆tCLC via a quantum approach based on eikonal approximation. Based on this

approximation, their analysis implies that for a hydrogen atom the streaking time delay can be

approximated as ∆ts = ∆tWS + ∆tCLC with ∆tWS given by Eq. (1.2). By separating the neon

potential into a −1/r potential and a remaining short-range part, they applied this relation to both

parts and obtained a total time delay of 18 as, which is within the uncertainty of the measured

streaking delay of 21± 5 as and seems to explain the experimental result. However, later Nagele et

mean time has been widely used in theoretical analysis of time delays in atomic and molecular photoionizations
(e.g., [45–51]).

4 Here, “CLC” refers to “Coulomb laser coupling”. Since the coupling delay ∆tCLC is induced by the classical
propagation of the electron in the coupled field the ionic potential and the streaking pulse, most of the time we call
it propagation time delay ∆tprop in this thesis.
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al. [53] pointed out that the sum rule ∆ts = ∆tWS + ∆tCLC cannot be generalized to short-range

potentials since for short-range potentials the streaking time delay is found to be equal to the WS

time delay and hence there should be no coupling delay contribution. As a result they interpreted

that the coupling delay ∆tCLC solely arises from the coupling effect of the long-range tail of the

Coulomb potential with the streaking field. In other words, they suggested to separate the whole

potential into two parts, where for the short-range part ∆ts = ∆tWS while for the long-range part

∆ts = ∆tCLC. Since the long-range Coulomb tail is the same for single-electron systems with the

same parent ion charge, they further proposed that one can calculate the coupling delay by employ-

ing ∆tCLC = ∆ts−∆tWS for the hydrogen atom and then make use of it for all other more complex

systems. Similar to the work of Ivanov et al. [38], Zhang et al. [39] also obtained the coupling time

delay ∆tCLC using eikonal approximation and compared it with the streaking time delay, but they

did not further relate their results with the proposed sum rule. Therefore, up to now, the debate

about the interpretation of the streaking time delay even in single-electron systems is still going

on. In particular, the following questions remain not fully answered: Is the streaking time delay

related to the WS time delay? If yes, how are they related? For a short-range potential, is there

a coupling time delay and how can it be calculated? Is the sum rule ∆ts = ∆tWS + ∆tCLC true?

And is it necessary to separate a Coulomb potential into two parts (short-range and long-range) in

order to apply the proposed sum rule accordingly?

Meanwhile some other effects including the polarization effect and the multielectron effect

were also investigated. For example, Baggesen et al. [54], Zhang et al. [39], and Nagele et al. [37]

independently studied the influence of the polarization of the initial state due to the streaking pulse

on the streaking time delay. Although they reach different conclusions for which initial state this

effect is present and how the time delay related to this effect can be calculated, their works indicate

that this effect may influence the streaking time delays measured in streaking experiments. Another

important effect in streaking experiments is the multielectron correlation in photoionization. Due

to the properties of noble gases, experimentalists prefer to use them in studying ultrafast processes,

which however may increase the theoretical difficulty in analyzing them. The neon atom used by
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Schultze et al. in the time delay experiment is such an example. There are ten electrons in a neon

atom and at least eight of them (2s and 2p electrons) will rearrange during the photoionization

process in the delay experiment even though only one of them will be ionized. The correlation effect

has been shown (e.g., [44, 53, 55, 56]) to be important and may have a quite significant contribution

to the measured delay. However, due to the complexity of this multielectron system, solving the

problem from first principles without any approximations is still not feasible.

The time delay concept can also been implemented using the so-called reconstruction of

attosecond beating by interference of two-photon transition (RABITT) technique, in which an

attosecond pulse train is used instead of an isolated pulse (see Refs. [4, 57] for details). Theoretically,

it was shown (e.g., [58, 59]) that the RABITT technique gives rise to the same time delay as the

attosecond streaking technique if applied to the same system.

1.5 Organization of this thesis

As discussed in the last section, the debate on the interpretation of the streaking time delay is

still ongoing and many related questions need to be addressed, even for single-electron systems like

the hydrogen atom. In order to contribute to this debate and provide an independent interpretation

of the streaking time delay, we study the time delay concept as well as the streaking experiment

in detail and systematically in this thesis. Inspired by the concerns about the sum rule ∆ts =

∆tWS+∆tCLC, we investigate the problem from two aspects: On the one hand, we start our studies

by revisiting the WS time delay concept including the proposal of a new time-dependent numerical

method to calculate ∆tWS and its application in the photoionization process. On the other hand, we

employ a classical model to describe the electron dynamics in the coupled field of the ionic potential

and the streaking pulse and calculate the coupling (or propagation) time delay. Based on the results

from these two aspects, we are able to conclude that: (a) The WS time delay indeed diverges for

a long-range potential and therefore is not suitable to explain (even partially) the streaking time

delay. (b) For single-photon ionization (SPI) in a single-electron system (without polarization

effect), the coupling (or propagation) time delay is equal to the streaking time delay and hence it
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is the only contribution to the streaking delay. Moreover, the coupling time delay, or equivalently

the streaking time delay, can be interpreted as the sum of piecewise field-free time delays weighted

by the ratio of the instantaneous streaking field strength relative to the field strength at the instant

of ionization5 . With our understanding of the attosecond streaking technique, in particular of the

streaking time delay, we are able to use this tool to study other ultrafast processes such as the

two-photon ionization (TPI) process, in which a few new and interesting phenomena are observed

in our numerical simulations. The structure and organization of this thesis is given as follows.

In Chapter 2 we review the numerical model that we use to describe the atomic or molecular

system of interest as well as the method that is utilized to numerically solve the corresponding

time-dependent Schrödinger equation (TDSE). We first introduce two different methods to obtain

a single-active-electron (SAE) model for a multielectron system, which can significantly reduce our

numerical cost in simulating laser-matter interactions. Then in the second section we review the

solution of the TDSE in a grid representation using the finite difference method. The propagation

scheme, the method of obtaining the initial eigenstates, and the boundary conditions are described

in detail respectively in this section as well.

Chapter 3 is the central part of this thesis, in which we study the time delay in SPI from a

few different perspectives. In the first section, we introduce a new numerical method to calculate

the WS time delay for the photoionization process based on its fundamental definition by solving

the TDSE. This new method gives a time-dependent view on the WS time delay and thus clearly

shows its evolution during the propagation of the electron in the potential, which is not available

from the original definition of the WS time delay. The results reconfirm that the WS time delay

is an ill-defined concept for photoionization in a long-range potential and hence its application to

the streaking experiment is questionable. In the second section, we focus on the analysis of the

streaking experiment. We propose to consider the electron dynamics after the photon absorption

in the combined field of the ionic potential and the streaking field by a classical model. The
5 We define the instant of ionization as the instant of the transition of the electron into the continuum by absorbing

photons.
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results for the propagation time delay given by this model indeed agree very well with the streaking

time delay obtained in TDSE simulation, which indicates that the propagation time delay is the

only contribution to the streaking time delay, i.e., the streaking time delay arises from the finite

propagation of the electron from the instant of ionization to the end of the streaking pulse in the

combined potential. We further show that one can interpret the propagation time delay as a finite

sum (or integral) of the piecewise field-free time delays weighted by a relative field strength. We

also note that the finite-range property of the streaking time delay opens the possibility to use the

streaking technique as a new tool of imaging. To relate our theoretical analysis to the experiment,

we also study the influence of some experimental parameters such as the presence of the additional

static field and the long tail of the streaking pulse on the streaking time delay.

Our studies of the streaking time delay in SPI imply that the photon absorption in SPI

occurs most likely (in a quantum mechanical sense) at the center of the attosecond XUV pulse. In

Chapter 4, we extend our studies to two-photon absorption processes. After properly accounting

for the propagation (or measurement-induced) time delay, we show that for the nonresonant TPI,

the two-photon absorption process occurs simultaneously with SPI, i.e., most likely at the center

of the XUV pulse. However time delays obtained for the resonant TPI are significantly different:

The absorption of the second photon occurs with a positive time delay with respect to the center

of the XUV pulse and this delay changes linearly with the XUV duration. In the second section,

we confirm these findings from the streaking simulations with a trajectory analysis based on TDSE

simulations and an analysis of the phase acquired in the two-photon absorption process using

second-order perturbation theory. These findings in TPI, in particular the linear dependence of

the absorption time delay on the XUV duration, suggest a new way of controlling the initiation of

ultrafast processes, which for example may be useful in controlling chemical reactions. In the third

section of this chapter, we review our early work of two-photon coherent control of excitation in

molecular model potentials, which does not directly relate to the time delay work but may inspire

some future applications of the TPI delay. We end our thesis with a summary of our work in these

five years.



Chapter 2

Numerical Model and Method

It is well-known that ultrafast quantum processes, including the interaction of atoms and

molecules with laser fields, can be described by the time-dependent Schrödinger equation (TDSE),

that however usually does not have an analytical solution. Nowadays with the development of super

computers, numerically solving the TDSE is becoming more and more popular. Therefore, before

we discuss certain quantum processes in detail, it is necessary to introduce and clarify the model

and method we use in our numerical simulations. In section 2.1, we describe the single-active-

electron (SAE) model, in which only one electron in a multielectron system is treated as active

while all the others are considered to be frozen as a background. In section 2.2, we present our

numerical approaches to solving TDSE, including the methods of obtaining initial field-free states,

propagating the wave function in the time domain, and applying different absorbing boundary

conditions.

2.1 Single-active-electron model for atoms and molecules

Consider a system consisting of N nuclei and n electrons interacting with an external field

A(r, t). The Hamiltonian of such a system is given by

H(R1, · · · ,RN ; r1, · · · , rn; t) =
∑
α

1
2mα

[pα − ZαA(Rα, t)]2 +
∑

i

1
2mi

[pi + A(ri, t)]
2

+ V (R1, · · · ,RN ; r1, · · · , rn),

(2.1)

where pα and pi are the canonical momentum operator for the nucleus α with position Rα, mass

mα, and charge Zα and electron i with position ri, mass mi, and charge Zi = 1, respectively and
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the last potential term consists of three contributions from the charge-charge Coulomb interactions,

i.e.,

V (R1, · · · ,RN ; r1, · · · , rn) =
∑
α

∑
β>α

ZαZβ

|Rα −Rβ|
−

∑
α

∑
i

Zα

|Rα − ri|
+

∑
j

∑
i>j

1
|ri − rj |

. (2.2)

To study the electron and nuclei dynamics in such a system from first principles, one needs to solve

the corresponding TDSE, which is very challenging even for a two-particle (six-dimensional) system

via numerical approaches. Therefore, approximately describing a complex multielectron system

with simple models is always of interest for theoreticians. In the case of investigating ultrafast

electron dynamics in atoms and molecules, the dynamics of the complex system can be often well

approximated by the Born-Oppenheimer approximation, in which the nuclei barely change their

positions and hence can be assumed as fixed in the time window of the electron dynamics. This

approximation reduces the system from an (N+n)-particle problem to an n-electron problem, which

effectively decreases the numerical complexity. Furthermore, when analyzing electron dynamics,

almost in all cases only a few electrons participate in the interactions with internal or external fields

and in many cases (e.g., the HHG process) only one electron is effectively involved. This leads to the

development of single-active-electron (SAE) models, in which only one electron is treated as active

and the analysis is focused on the dynamics of this electron in the quantum process of interest.

Meanwhile, all the other electrons are considered to be frozen and their influence on the active

electron is modeled by an effective potential. There are different approaches of generating a SAE

potential for the same system. Here in this section, we introduce two of them, namely, the potential

average (PA) method, and the optimized effective potential (OEP) method.

2.1.1 Potential average method

The idea of the PA method is very intuitive. For an n-electron system with all nuclei fixed,

the wave function and the potential can be written as Ψ(r1, · · · , rn) and V (r1, · · · , rn), respectively,

with r1 to rn being the electron’s positions. Then the SAE potential can be constructed as

V (r1) =
∫

dr2 · · · drnΨ∗(r1, · · · , rn)V (r1, · · · , rn)Ψ(r1, · · · , rn)∫
dr2 · · · drnΨ∗(r1, · · · , rn)Ψ(r1, · · · , rn)

, (2.3)
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Table 2.1: Comparison of eigenenergies (in atomic units) from different methods for neon atom.
The experimental values are from Ref. [60], the HF results are from Ref. [61], and all the other
results are from our calculations.

orbital experimental HF PA LSDA KLI+SIC+LSDA
1s −31.979 −32.772 −32.520 −30.306 −31.129
2s −1.782 −1.930 −1.244 −1.271 −1.662
2p −0.797 −0.850 −0.457 −0.442 −0.805
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Figure 2.1: Neon photoionization cross section as a function of photon energy. The blue solid
line with circles are numerical TDSE results by simulating the photoionization process in the SAE
potential produced using the PA method, and the green solid line with asterisks are data from
Ref. [62]. The relative error between them are shown as the red dashed line with squares (right
axis).
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where we assume the electron with coordinate r1 is the active electron and integrate out all the other

coordinates r2 to rn. For most of the atoms, the multielectron wave function can be respresented

in terms of Slater type functions, which can be found in some references. And for a complex

system like a molecule, one can use quantum chemistry softwares (e.g., GAUSSIAN and GAMESS)

to calculate its wave function. Usually the wave function is in a Hartree-Fock (HF) form, which

consists of one Slater determinant or a sum of several Slater determinants.

To simplify the model, we further assume that our wave function can be written in the Hartree

approximation, i.e.,

Ψ(r1, · · · , rn) = φ1(r1) · · ·φn(rn), (2.4)

where φi(ri) is the normalized wave function of the ith electronic orbital, and for different orbitals,

φ(r)’s are orthogonal. As mentioned above, the potential of a complex system with electrons

(labeled by i and j) and fixed nuclei (labeled by α and β) is given by

V (r1, · · · , rn) =
∑
α

∑
β>α

ZαZβ

|Rα −Rβ|
−

∑
α

∑
i

Zα

|Rα − ri|
+

∑
j

∑
i>j

1
|ri − rj |

. (2.5)

Since the first term here does not depend on r, it does not change when substituted to Eq. (2.3).

For the second term, if i = 1, we have

∑
α

〈 Zα

|Rα − r1|
〉 =

∑
α

φ∗1(r1)(Zα/|Rα − r1|)φ1(r1)
φ∗1(r1)φ1(r1)

(2.6)

=
∑
α

Zα

|Rα − r1|
, (2.7)

which also remains unchanged under Eq. (2.3). When i 6= 1, we have

∑
α

∑
i6=1

〈 Zα

|Rα − ri|
〉 =

∑
α

∑
i6=1

∫
φ∗i (ri)(1/|Rα − ri|)φi(ri)dri∫

φ∗i (ri)φi(ri)dri
(2.8)

=
∑
α

∑
i6=1

∫
|φi(ri)|2

|Rα − ri|
dri. (2.9)

In our current model, all the nuclei are assumed to be fixed, so the double sum integral above is

a constant, which is equivalent to a shift of all energy levels. Now we consider the third term, if
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j = 1, then

∑
i6=1

〈 1
|r1 − ri|

〉 =
∑
i6=1

∫
φ∗i (ri)(1/|r1 − ri|)φi(ri)dri∫

φ∗i (ri)φi(ri)dri
(2.10)

=
∑
i6=1

∫
|φi(ri)|2

|r1 − ri|
dri. (2.11)

For j 6= 1, we have

∑
i>j

∑
j 6=1

〈 1
|ri − rj |

〉 =
∑
i>j

∑
j 6=1

∫ ∫
φ∗i (ri)φ∗j (rj)(1/|ri − rj |)φi(ri)φj(rj)dridrj∫ ∫

φ∗i (ri)φ∗j (rj)φi(ri)φj(rj)dridrj
(2.12)

=
∑
i>j

∑
j 6=1

∫ ∫ |φi(ri)|2|φj(rj)|2

|ri − rj |
dridrj . (2.13)

This double sum is also a constant, which does not influence the shape of the effective potential.

Thus, by neglecting the constant terms, we can write down the SAE potential as

V (r1) = −
∑
α

Zα

|Rα − r1|
+

∑
i6=1

∫
|φi(ri)|2

|r1 − ri|
dri. (2.14)

The physical meaning of each term in Eq. (2.14) is clear: the first term is the attraction energy

between the active electron (associated with coordinate r1) and the nuclei, and the second term

is the repulsion energy between the active electron and all the other frozen electrons, which now

are treated as an electron distribution. For an ultrafast process in which the Born-Oppenheimer

approximation applies, we can calculate an effective potential for each nuclei configuration {Rα},

in case we want to include the nuclear motions.

To test this model, we calculate eigenenergies of several lowest energy levels for small atoms

(e.g., He, Li, and Ne) and compare them with the accurate experimental results. Interestingly, this

simple model provides good results for the lowest inner shell orbital (for atoms, the 1s orbital),

where we find that the calculated energy is very close to the real one (e.g., see Table 2.1). This

indicates that the exchange-correlation effect, which is neglected by this model, is not important

for the most inner-shell electrons. We have also calculated the photoionization cross section as a

function of photon energy for several atoms. For the neon atom (Fig. 2.1) there is a good agreement

between results of our TDSE calculations based on the present SAE model and those from Ref. [62].
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2.1.2 Optimized effective potential method

The PA method we proposed in the last subsection is easy to implement and works well for

inner-shell electrons. However, it ignores the important exchange-correlation effect and is therefore

not ideal for outer-shell electrons (see Table 2.1), which however are of importance in many laser-

matter interaction processes (e.g., HHG). Fortunately, some more accurate models for outer-shell

electrons have been established and well-tested based on density functional theory (DFT). In this

section, we introduce one modified optimized effective potential (OEP) scheme using the self-

interaction-free DFT.

In the Kohn-Sham (KS) DFT formulation [63], the one-electron effective potential is given

as

Vσ(r) = −
∑
α

Zα

|Rα − r|
+

∫
ρ(r′)
|r − r′|

dr′ + Vxcσ(r), (2.15)

where Rα and r are defined as before, σ is the spin polarization, ρ(r) is the total electron density

ρ(r) =
∑

σ

Nσ∑
i=1

|φiσ(r)|2, (2.16)

and Vxcσ(r) is the exchange-correlation potential given by

Vxcσ(r) =
δExc[ρ↑, ρ↓]

δρσ(r)
. (2.17)

Once the specific form of the exchange-correlation functional Exc[ρ↑, ρ↓] is known, we can solve the

KS equation [
−1

2
∇2 + Vσ(r)

]
φiσ(r) = εiσφiσ(r), (2.18)

in a self-consistent way.

However, in the traditional DFT, most forms of Exc[ρ↑, ρ↓], such as the local spin density

approximation (LSDA) [63], contains spurious self-interaction contributions. This self-interaction

contribution can be seen from the total energy

E[ρ↑, ρ↓] = T [ρ]−
∑
α

Zα

∫
ρ(r)

|Rα − r|
dr +

1
2

∫ ∫
ρ(r)ρ(r′)
|r − r′|

drdr′ + Exc[ρ↑, ρ↓], (2.19)
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where T [ρ] is the total noninteracting kinetic energy. For a one-electron system the last two

terms should in principle cancel each other. However, in real calculations, one has to take some

approximations of Exc[ρ↑, ρ↓], which usually do not satisfy this requirement. The self-interaction

contribution may result in an inaccuracy of the energies of the outer-shell orbitals, because it

causes an incorrect long-range behavior of the effective potential in Eq. (2.15). Thus, to construct

a good SAE model for outer-shell electrons, one has to find some efficient way to eliminate the self-

interaction contribution. Many methods have been suggested to solve the self-interaction problem.

Here we introduce two of them: the self-interaction correction (SIC) method [64] and the Krieger-

Li-Iafrate (KLI) method [65–67] based on the optimized effective potential (OEP) scheme [68, 69].

In the SIC approach [64], the following form of the exchange-correlation functional is used:

ESIC
xc [ρ↑, ρ↓] = Exc[ρ↑, ρ↓]−

∑
σ

Nσ∑
i=1

{1
2

∫ ∫
ρiσ(r)ρiσ(r′)
|r − r′|

drdr′ + Exc[ρiσ, 0]}, (2.20)

where ρiσ is the electron density of the ith spin σ-orbital. This ESIC
xc [ρ↑, ρ↓] , which can effec-

tively remove the self-interaction contribution, however, leads to different potentials for different

orbitals [64]. So the wave functions for different orbitals are not orthogonal and orthogonalization

is required.

Another promising approach is the OEP scheme [68, 69], in which one uses the HF exchange-

only energy functional

EHF
xc = −1

2

∑
ijσ

∫ ∫
φ∗iσ(r)φiσ(r′)φ∗jσ(r′)φjσ(r)

|r − r′|
drdr′. (2.21)

In the one-electron limit, this functional can cancel out with the third term in Eq. (2.19), and

therefore is self-interaction-free. To make use of this orbital-dependent (not density-dependent)

functional in a DFT approach, it was proposed [69] to choose a one-electron effective potential

V OEP
σ (r) such that it can minimize the total-energy functional, i.e.,

δEOEP[{φi↑, φj↓}]
δV OEP

σ (r)
= 0, (2.22)

which can be converted to an integral equation and then solved together with Eq. (2.18). While

the physical idea of the OEP method is simple, its computational implementation is quite difficult
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due to the integral equation derived from Eq. (2.22). Krieger, Li, and Iafrate [65–67] suggested an

approximative procedure to circumvent this difficulty, in which the OEP V OEP
σ (r) is determined

by solving linear equations instead of the complicated integral equation.

In the KLI approach, the exchange-correlation potential is shown to be

V KLI
xcσ (r) =

∑
i

ρiσ(r)
ρσ(r)

vxciσ(r) +
∑
i6=m

ρiσ(r)
ρσ(r)

(V KLI
xciσ − vxciσ), (2.23)

where

vxciσ(r) =
δExc[φiσ]
φiσδφ∗iσ

= − 1
φiσ(r)

∑
j

∫
φiσ(r′)φ∗jσ(r′)φjσ(r)

|r − r′|
dr′, (2.24)

V
KLI
xciσ = 〈φiσ|V KLI

xcσ (r)|φiσ〉, (2.25)

vxciσ = 〈φiσ|vxciσ(r)|φiσ〉, (2.26)

and the second summation in Eq. (2.23) does not include the highest-occupied orbital mσ. The

term of V
KLI
xciσ − vxciσ can be obtained by solving the following linear equations

Nσ−1∑
i=1

(δji − (Mσ)ji)(V
KLI
xciσ − vxciσ) = V

S
xcjσ − vxcjσ, (2.27)

where

(Mσ)ji =
∫

ρjσ(r)ρiσ(r)
ρσ(r)

dr, (2.28)

and

V
S
xcjσ = 〈φjσ|

Nσ∑
i=1

ρiσ(r)vxciσ(r)
ρσ(r)

|φjσ〉. (2.29)

At the time of the development of the KLI method, the HF nonlocal exchange-only functional

in Eq. (2.21) was used. This functional is accurate for the exchange part of Exc, but is computa-

tionally more expensive than the DFT Exc’s, such as LSDA. Thus, in some reference papers [67, 70]

it has been suggested to use a combined version of the KLI method and the SIC method. It com-

pletely follows the KLI procedure, while the only change is that, at the step of Eq. (2.24), one uses

the self-interaction-free Exc in Eq. (2.20) rather than that in Eq. (2.21). For the widely-used simple

LSDA functional [63], Eq. (2.24) then yields

vxciσ(r) =
(

6
π

)1/3

{−[ρσ(r)]1/3 + [ρiσ(r)]1/3} −
∫

ρiσ(r′)
|r − r′|

dr′. (2.30)
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This new KLI-SIC scheme is self-interaction-free, orbital-independent, and computationally not

expensive. The improvement on computational efficiency becomes particularly important when a

time-dependent process is considered, in which one needs to reconstruct the SAE at each time step.

As a summary of the two methods to generate a SAE potential, we compare eigenenergies

of different orbitals obtained using different methods for a neon atom in Table 2.1, in which the

experimental eigenenergies from Ref. [60] serve as reference. We see that, for outer-shell orbitals,

the KLI-SIC method with the LSDA functional gives best results, while the PA method performs

best for the inner-shell orbital. Furthermore, it appears that all methods can give a reasonable

result for the inner-shell orbital. Therefore, it is usually a good choice to use the KLI-SIC method

if electrons from many orbitals participate in the process of interest. For some atoms, the SAE

potential based on KLI-SIC is fitted to an analytical formula with several fitting parameters and

these parameters are given in Ref. [71].

2.2 Numerical methods of solving time-dependent Schrödinger equation

To numerically simulate laser-matter interactions, we need to solve the TDSE

i
∂Ψ(r, t)

∂t
=

[
Ĥ0 + ĤI(t)

]
Ψ(r, t), (2.31)

where r is the coordinate of the particle, Ĥ0 is the field-free Hamiltonian of the system, and ĤI(t)

describes the interaction of the system with the laser field. In the SAE approximation and using

the length-gauge, this equation yields

i
∂Ψ(r, t)

∂t
=

[
p2

2
+ V (r) + E(t) · r

]
Ψ(r, t), (2.32)

where p = −i∇ is the momentum operator, V (r) is the SAE potential, and E(t) is the laser

field. Using the standard Crank-Nicolson method [72], this second-order differential equation can

be discretized on a grid in space and time and then numerically solved.
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2.2.1 Propagation method

For a small time step ∆t, the solution of Eq. (2.31) can be approximated as

Ψ(t + ∆t) ' e−iĤ(t)∆tΨ(t) '
1− i∆t

2 Ĥ(t)

1 + i∆t
2 Ĥ(t)

Ψ(t), (2.33)

where the Cayley unitary transformation [73] is used in the second step in order to preserve the

norm of the wave function. This equation can be further written as(
1 + i

∆t

2
Ĥ(t)

)
Ψ(t + ∆t) =

(
1− i

∆t

2
Ĥ(t)

)
Ψ(t). (2.34)

Moreover, the Hamiltonian Ĥ(t) can be decomposed into different coordinate directions, where

each component is a one-dimensional (1D) Hamiltonian given by

Ĥx(t) = A(x, y, t)
∂2

∂x2
+ B(x, y, t)

∂

∂x
+ V (x, y, t), (2.35)

where x is the coordinate of interest and y stands for all the other coordinates. Discretizing this

1D Hamiltonian using the second-order central scheme, Eq. (2.34) yields

Ψn(t + ∆t) + i
∆t

2

(
An(t)

Ψn+1(t + ∆t)− 2Ψn(t + ∆t) + Ψn−1(t + ∆t)
(∆x)2

+Bn(t)
Ψn+1(t + ∆t)−Ψn−1(t + ∆t)

2∆x
+ Vn(t)Ψn(t + ∆t)

)
= Ψn(t)− i

∆t

2

(
An(t)

Ψn+1(t)− 2Ψn(t) + Ψn−1(t)
(∆x)2

+ Bn(t)
Ψn+1(t)−Ψn−1(t)

2∆x
+ Vn(t)Ψn(t)

)
,

(2.36)
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where n represents the grid point (xn, y) in the discretized space grid. It is not difficult to show

that this equation leads to the following system of linear equations:

2X1 3X1 0 0 · · · 0 0 0

1X2 2X2 3X2 0 · · · 0 0 0

0 1X3 2X3 3X3 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · 1XN−1 2XN−1 3XN−1

0 0 0 0 · · · 0 1XN 2XN





Ψ1(t + ∆t)

Ψ2(t + ∆t)

Ψ3(t + ∆t)
...

ΨN−1(t + ∆t)

ΨN (t + ∆t)



=



2Y1 3Y1 0 0 · · · 0 0 0

1Y2 2Y2 3Y2 0 · · · 0 0 0

0 1Y3 2Y3 3Y3 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · 1YN−1 2YN−1 3YN−1

0 0 0 0 · · · 0 1YN 2YN





Ψ1(t)

Ψ2(t)

Ψ3(t)
...

ΨN−1(t)

ΨN (t)


,

(2.37)

where N is the total number of grid points in x direction and

1Xn =
i∆t

2(∆x)2
An(t)− i∆t

4∆x
Bn(t), (2.38)

2Xn = 1− i∆t

(∆x)2
An(t) +

i∆t

2
Vn(t), (2.39)

3Xn =
i∆t

2(∆x)2
An(t) +

i∆t

4∆x
Bn(t), (2.40)

1Yn = − i∆t

2(∆x)2
An(t) +

i∆t

4∆x
Bn(t), (2.41)

2Yn = 1 +
i∆t

(∆x)2
An(t)− i∆t

2
Vn(t), (2.42)

3Yn = − i∆t

2(∆x)2
An(t)− i∆t

4∆x
Bn(t). (2.43)
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The matrix on the left side of Eq. (2.37) is tridiagonal and the linear equations can hence be solved

by the typical LU decomposition method with a time complexity of O(N log N).

For a 2D Hamiltonian in (x, y) coordinates, it can be decomposed as

Ĥ(t) = Ĥx(t) + Ĥy(t), (2.44)

in which the mixing (x, y) terms are separated symmetrically. Then the wave function at time

t + ∆t is given by

Ψ(t + ∆t) ' e−i[Ĥx(t)+Ĥy(t)]∆tΨ(t)

' e−iĤy(t)∆t/2e−iĤx(t)∆te−iĤy(t)∆t/2Ψ(t),
(2.45)

where in the second approximation the Baker-Campbell-Hausdorff formula [74] is used. This ap-

proximation can be shown to have an accuracy of O(∆t3). So, for obtaining the wave function

Ψ(t + ∆t), we first propagate the wave function Ψ(t) in y direction by a time step of ∆t/2, then

propagate the updated wave function Ψ′(t) in x direction by ∆t, and finally propagate again the

further-updated wave function Ψ′′(t) in y direction by ∆t/2. In each x- (or y-) direction propagation

step, Eq. (2.37) is solved for all y (or x) values. The propagation in 3D case is similar

Ψ(t + ∆t) ' e−i[Ĥx(t)+Ĥy(t)+Ĥz(t)]∆tΨ(t)

' e−iĤz(t)∆t/2e−iĤy(t)∆t/2e−iĤx(t)∆te−iĤy(t)∆t/2e−iĤz(t)∆t/2Ψ(t),
(2.46)

where the order of (x, y, z) does not matter as long as the symmetry of the propagator is preserved.

The generalization to higher dimensions is straightforward and not limited to Cartesian coordinates.

2.2.2 Methods of obtaining initial states

We have reviewed the approach of propagating the wave function in time in the last sub-

section. However, before the start of the propagation, one needs to know the initial condition for

the differential equation, which is usually one of the eigenstates of the system of interest. These

eigenstates can be obtained by solving the boundary condition problem of the time-independent

Schrödinger equation

Ĥ0Ψ(r) = EΨ(r), (2.47)
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Figure 2.2: Comparison of eigenstates calculated from the ITP [(a)-(d)] and spectral [(e)-(h)]
methods. We have considered a hydrogen atom in (ρ, z) coordinates. The field-free propagations
of the 1s state are shown for four different propagation steps (N = 0, 3000, 6000, and 9000) with a
time step of ∆t = 0.02. When using the spectral method, the eigenenergies are obtained from the
ITP calculations and then the eigenfunctions are evaluated from Eq. (2.59).
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with certain boundary conditions [e.g., Ψ(r = 0) = Ψ(r = ∞) = 0 for 3D Coulomb potential]. For

1D systems, Eq. (2.47) can be solved easily with the typical diagonalization or shooting method,

which may however become extremely slow and difficult for systems with higher dimensions. For-

tunately, it has been shown that the imaginary time propagation (ITP) method and the spectral

method are two very powerful and efficient tools to resolve this problem.

The idea of the ITP method is based on the propagation of a randomly-assumed wave function

(usually a Gaussian wave packet for atoms) in the field-free Hamiltonian, i.e.,

i
∂Ψ(r, t)

∂t
= Ĥ0Ψ(r, t). (2.48)

Expanding the wave function in the Hilbert space of Ĥ0, one obtains the time-dependent wavefunc-

tion Ψ(r, t) as

Ψ(r, t) =
∑

j

cjφj(r)e−iEjt, (2.49)

where φj(r) is the jth eigenstate with energy Ej , and cj is the projection coefficient of Ψ(r, t = 0)

on φj(r). If we do an imaginary time propagation instead of the real time evolution, i.e., t → −it′,

the wave function after N steps of propagations becomes

Ψ(r, t = N∆t) =
∑

j

cjφj(r)e−EjN∆t. (2.50)

When N is large enough, all the other terms are negligible small as compared to the first term,

which can be seen from
cje

−EjN∆t

c0e−E0N∆t
= (cj/c0)e(E0−Ej)N∆t → 0. (2.51)

Therefore, the ground state is given by

φ0(r) = Ψ′(r, t = N∆t), (2.52)

where Ψ′(r, t = N∆t) here denotes the normalized wave function. The excited states can be

obtained with the same idea, while the only modification is that those states that are lower in

energy than the calculated state need to be projected out at every propagation step. For degenerate

states, one has to use the symmetry of the wave function to distinguish them, which can be done
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by using only half of the grid in the imaginary time propagation. As an example, for the 1s state of

an atom, it has a symmetry of Ψ(ρ, z) = Ψ(ρ,−z) in the (ρ, z) coordinates. We hence only use the

half grid with ρ > 0 and z > 0, and set the first- and second-order derivatives at z = 0 according

to the symmetry, i.e., Ψ′(z = 0) = 0 and Ψ′′(z = 0) = 2[Ψ(∆z)−Ψ(z = 0)]/∆z2.

The ITP method is easy to implement and the resulting eigenfunctions work well for most

of our simulations. However, for some calculations, especially when excited states are involved, its

accuracy is not ideal. This is due to the error accumulation in the calculation since the higher states

are calculated based on the lower states. Moreover, when two states have close eigenenergies but

are not degenerate, this method converges very slowly and its accuracy is also questionable. Even

for a ground state, we clearly see some probability flux emerging during the field-free propagation

of the initial states calculated using ITP [see Fig. 2.2(b)-(d)], when the background probability is

chosen to be small (e.g., 10−16 in Fig. 2.2). We therefore like to introduce another method called

spectral method to improve the eigenfunctions for some high-precision calculations.

The spectral method [75] is also based on the propagation of an initially-guessed wave func-

tion. Let us define a correlation function C(t) as

C(t) = 〈Ψ(r, t = 0)|Ψ(r, t)〉 =
∫

Ψ∗(r, t = 0)Ψ(r, t)dr, (2.53)

which can be further reduced to

C(t) =
∑

j

|cj |2e−iEjt, (2.54)

using Eq. (2.49). The Fourier transform of this equation is

C̃(E) =
∑

j

|cj |2δ(E − Ej), (2.55)

from which the eigenenergies Ej can be obtained from the peaks of this spectrum. With a known

Ej , the eigenfunction can be reconstructed from

φj(r) = a

∫ ∞

−∞
Ψ(r, t)eiEjtdt, (2.56)

where a is determined by normalization. In practice, integrating to infinity is impossible, so the
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following window function

w(t) =


1− cos(2πt/T ), if 0 6 t 6 T,

0, if t > T,

(2.57)

is suggested to keep the integration within the region (0, T ), with T being the total propagation

time. We thus have

C̃(E) =
1
T

∫ T

0
C(t)w(t)dt, (2.58)

and

φj(r) =
a

T

∫ T

0
Ψ(r, t)w(t)eiEjtdt, (2.59)

which both can be numerically evaluated easily.

To efficiently make use of Eq. (2.59), one needs very accurate eigenenergies (e.g., at least with

an accuracy of 10−6 a.u.), which however may be not easy to extract from the correlation spectrum

calculated from Eq. (2.58) in simulations. Our numerical experience shows that the eigenenergies

calculated from the ITP method are usually very accurate and well beyond our requirement of

using Eq. (2.59). We therefore propose a combined scheme of the ITP and the spectral methods,

in which we use the ITP method to calculate the eigenenergies and then obtain the wave functions

from the spectral method using Eq. (2.59). Results in Fig. 2.2 [(e)-(h)] show that the quality of

the eigenstate is greatly improved using this combined scheme.

2.2.3 Absorbing boundaries

During laser-matter interactions, ionization is the most general consequence and also contains

a lot of useful and significant information about the system. To simulate ionization processes, we

always need to propagate the ionizing wave packet, i.e., the outgoing ionization probability, on our

numerical grid. Usually such a wave packet has a momentum in the outgoing direction, finally

it will hence hit and be reflected by the boundaries of our grid, if no boundary conditions are

used. Such a reflection will cause some artificial physical processes, such as the interference with

an outgoing wave packet that approaches the boundary at a later time, and therefore needs to
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be eliminated. While there exists many different carefully-designed boundary conditions that can

solve this problem, we introduce two most-widely used ones: the masking function method and the

exterior complex scaling (ECS) method.

In the masking function method one simply multiplies the wave function by a cosine-based

function that smoothly decays from 1 to 0 in the absorbing region. Considering the 1D case, this

method gives

Ψ(x) = Ψ(x)fmask(x) = Ψ(x) cosα(
π

2
x− x0

x1 − x0
), (2.60)

where x0 and x1 are the starting and ending points of the absorbing region (x0 < x < x1),

respectively, and α is a coefficient selected depending on the specific problem. The masking function

boundary is easy to code and works well for most cases, especially for those problems where a little

reflection is allowed to occur.

To suppress the reflection to an even lower level, one can use the ECS method ([76] and

references therein), in which an exponentially decaying term in the propagator can absorb the

outgoing flux, if a complex coordinate axis is artificially assumed in the absorbing region as

x = x0 + (x− x0)eiη. (2.61)

Here, η is the scaling angle with 0 < η < π/2, and we have again simplified our model to 1D

and assumed that x0 is the starting point of the absorbing boundary. Under these assumptions

and together with the length-gauge, the solution of the reduced 1D TDSE from Eq. (2.32) in the

absorbing region yields

Ψ(t + ∆t) = e−i[p̂2/2+V0(x)+E(t)x]∆tΨ(t)

= e−i cos(2η)p̂2∆t/2e− sin(2η)p̂2∆t/2e−iV0(x)∆te−iE(t)[x0+(x−x0)eiη ]∆tΨ(t),
(2.62)

with the potential term V0(x) untransformed in this region and

e−iE(t)[x0+(x−x0)eiη ]∆t = e−iE(t)[x0+(x−x0) cos η]∆teE(t)[x0+(x−x0) sin η]∆t. (2.63)

It is now clear that the second exponential term in the second row of Eq. (2.62) decays exponentially

and hence can absorb the outgoing probability that enters the boundary region. However, one may
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note that the second exponential term on the right-hand side of Eq. (2.63) may become an undesired

source when the sign of the laser field E(t) is positive. In some extreme conditions, this term may

cause the wave function to explode and therefore induce numerical problems. He et al. [76] hence

suggested to drop the eiη term in Eq. (2.63), i.e., to do the propagation using

Ψ(t + ∆t) = e−i cos(2η)p̂2∆t/2e− sin(2η)p̂2∆t/2e−iV0(x)∆te−iE(t)x∆tΨ(t), (2.64)

which means the untransformed standard field coupling is used over the entire grid including the

absorbing region. This simple modification of the traditional ECS method has been shown to

strongly absorb the outgoing flux without any undesired explosion and also effectively suppress

reflections as compared to the masking function method [76].



Chapter 3

Time Delays in Single-Photon Ionization

Due to the great advances in the development in laser technologies, nowadays we are able

to use attosecond XUV pulses to observe, study, and even control electron dynamics in atoms and

molecules on their intrinsic time scale [1]. As an important application, the time information of

XUV-induced single-photon ionization has been extracted using the attosecond streak camera [2, 3]

as well as the RABITT technique [4]. A substantial time delay (a few tens of attoseconds) between

ionization from different orbitals has been reported in both neon [3] and argon [4] atoms, and

therefore initiated a lot of theoretical interest in interpreting the physical origin of such a time delay.

In this chapter, we want to contribute to this debate by exploring this problem from several different

perspectives and finally giving our understanding of this photoionization time delay. In section

3.1, we introduce a new numerical method of calculating the Wigner-Smith (WS) time delay in

the photoionization process using its fundamental definition from a time-dependent perspective. In

section 3.2, we turn to the experimental measurement of the streaking time delay and systematically

study problems related to the streaking experiment, including the physical interpretation of the

streaking time delay, the finite-range property of this delay and its application to imaging, as well

as the influence of pedestal and additional static field on this delay.
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3.1 Calculation of Wigner-Smith-like time delays from a time-dependent

perspective1

In this section, we propose a time-dependent theoretical approach to calculate time delays in

photoionization, which not only is more general for different cases (e.g., short- and long-range poten-

tials) but also provides more information about the process than the traditional time-independent

methods. This new numerical method is based on the fundamental definition of a time delay and

realized using the back-propagation technique. The time delays calculated using this new method

are then compared with those from the traditional methods, namely, the phase derivative method

and the trajectory method. We also apply this method to study the influence of the parameters

of the XUV pulse in the XUV photoionization process as well as the parameters of an additional

laser pulse in the laser-assisted photoionization on the time delay.

3.1.1 Wigner-Smith time delay

The Wigner-Smith (WS) time delay concept was originally introduced and developed for a

scattering process [40, 41]. It is defined to be the difference between the time tp(R) a particle

spends in a certain region R of a potential and the time t0(R) that a free particle spends in the

same region without the presence of the potential (Fig. 3.1). Since a scattering process usually

starts and ends far away from the scattering center, one requires that the region R extends to

infinity in the definition of the WS time delay and therefore mathematically the WS time delay is

given by

∆tWS = tp(R)− t0(R)|R→∞. (3.1)

For scattering in a short-range potential, the WS time delay is related to the scattering phase shift

ϕ by

∆tWS =
dϕ

dE
. (3.2)

1 The results of this section are presented in J. Su, H. Ni, A. Becker, and A. Jaroń-Becker, Phys. Rev. A 87,
033420 (2013) and J. Su, H. Ni, A. Becker, and A. Jaroń-Becker, J. Mod. Opt. 60, 1484 (2013).
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Figure 3.1: Schematic diagram for the WS time delay in a scattering scenario. The WS time delay
∆tWS is defined as the difference of two times: one is the time tp(R) a particle (or wave packet)
spends in region R within the potential (upper row), the other one is the time t0(R) that a free
particle spends in the same region R without the presence of the potential (lower row), as the region
R extends to infinity, i.e., ∆tWS = tp(R)− t0(R)|R→∞.



38

Wigner [40] has given a beautiful derivation of Eq. (3.2) by using a superposition of two

monoenergetic beams of slightly different energies as a substitute for a wave packet. Here, alterna-

tively, we derive this formula by employing a wave packet analysis. To make our derivation simple

but without losing the central physical idea, we restrict the motion of the particle along the x

direction, i.e., considering a 1D scattering process. As initial condition, we assume that a particle

is propagating towards a short-range potential V (x) from x = −∞, given by the following incident

wave function

Ψ(x, t) =
∫

A(k)ei(kx−Et)dk, (3.3)

where k is the momentum and E = k2/2. To obtain the classical trajectory of the incident particle,

one uses the stationary phase approximation. According to this approximation, the rapid phase

variation in Eq. (3.3) will generally lead to destructive interference so that the integral is determined

by the point where the phase is stationary

d

dE
(kx− Et) =

x

k
− t = 0, (3.4)

which further reduces to a trajectory as

t =
x

k
. (3.5)

After the particle passes through the potential, the wave function of the particle at x = ∞ can be

expressed by

Ψ(x, t) =
∫

A(k)ei[kx−Et+ϕ(E)]dk, (3.6)

where ϕ(E) is the scattering phase shift. Using the stationary phase analysis again, one obtains

the trajectory of the outgoing particle after the scattering as

t =
x

k
+

dϕ(E)
dE

. (3.7)

According to its original definition, the WS time delay is the delay the particle accumulates during

its propagation in the scattering potential as compared to a freely-propagating particle. It is obvious

that Eqs. (3.7) and (3.5) describe the motions of the scattering and the corresponding free particles
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respectively, and therefore the WS time delay associated with this scattering process is dϕ(E)
dE by

comparing these two trajectories. While the above derivation for the WS time delay is based on a

1D assumption, one can generalize this procedure and show that Eq. (3.2) is also true for a more

general 3D case, for which a detailed discussion can be found e.g. in Ref. [77]. Due to the fact

that a photoionization process is a half scattering process, the application of the WS time delay

formula for a photoionization process is straightforward: its WS time delay is 1
2

dϕ(E)
dE , where again

ϕ(E) is the phase shift for the complete scattering process.

One may note that the above derivation for the WS time delay does not hold for a long-

range potential, because the outgoing wave function of the particle can not simply be expressed by

Eq. (3.6), which is derived by assuming the potential vanishes quickly enough when x → ∞. For

long-range potentials, usually there are more terms in the phase of the scattered wave function.

As an example, for the Coulomb potential, there exists a logarithmic phase term of the form

(1/k) ln(2kr). Consequently, the time delay is not only position dependent but also diverges when

r →∞, which we will later discuss in detail.

The above method of calculating the WS time delay, i.e., using Eq. (3.2), is simple and not

difficult to evaluate for a photoionization process. However, such a method has a few drawbacks:

On the one hand, the WS time delay calculated via Eq. (3.2) for a short-range potential only

gives one time delay value for an ultrafast process, which is time-independent and does not allow

a time-dependent analysis of the process. On the other hand, such a method cannot be applied to

long-range potentials such as the Coulomb potential, which exists in all atoms and molecules. As

an alternative, it has been proposed (e.g., [37, 38, 44]) to still employ Eq. (3.2) to calculate the

WS time delay by using the Coulomb scattering phase shift. Such an idea however does not match

the original definition of the WS time delay and only accounts for the short-range part of the total

potential. Moreover, for a given problem it is not always obvious how one should separate the full

potential into a short-range and a long-range part.

We therefore seek for an alternative time-dependent theoretical approach to calculate time

delays in photoionization, which addresses some of the concerns regarding the WS time delay and
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its determination. We further attempt to apply such an approach in time-dependent numerical

grid simulations, which are known to be a powerful tool in calculating and analyzing processes on

an ultrashort time scale. The present theoretical analysis of a time delay is intended to be general

and not focused, in particular, on the recent streaking experiments. Once formulated, tested and

established this may turn out in future as a useful step towards understanding the physics of time

delays in streaking experiments and other precise measurements of ultrashort time scales.

Our proposal is based on the quantum mechanical expression for the time a particle spends

inside a certain region R of a potential. By comparing this time to the corresponding time for

a free particle, a time delay is given, which is well-defined for any finite region. To the best of

our knowledge, this fundamental definition of a time delay has not been applied in the analysis

of time-dependent processes initiated or driven by ultrashort laser pulses. It however offers a few

interesting features: First, for any finite region R the time delay is well-defined for any physical

relevant potential and independent whether or not the limit for an extension of the region towards

infinity exists. This enables a theoretical analysis in particular for long-range potentials without

any restriction of the potential. Second, in the limit to infinity, if well-defined, the time delay

should converge to the WS delay. Third, the time delay can be determined as a function of time

after the emission of the photoelectron even during its interaction with some other external fields

such as the IR field present in the streaking experiment. This expands the options for a theoretical

analysis of ultrashort time-dependent processes. Fourth, there is no a-priori separation of short-

and long-range parts in the potential necessary and the influence of both contributions can be

studied.

3.1.2 Theoretical method and back-propagation technique

For a particle in a given normalized state Ψ(r, t), the time it spends inside a region R of a

potential V (r) can be expressed as [78]

tΨ,R =
∫ ∞

−∞
dt

∫
R

dr|Ψ(r, t)|2. (3.8)
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Figure 3.2: Schematic diagram for understanding Eq. (3.8). We consider a normalized delta wave
packet that enters the region R at instant ti and leaves R at tf . In the lower panel we plot the
probability to find the wave packet in the region R, i.e.,

∫
R |Ψ(r, t)|2dr, as a function of time.

Eq. (3.8) calculates the area of the red rectangular region, i.e., Sred = (tf − ti)× 1 = tf − ti, which
is essentially the time the wave packet spends in the region R.
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In order to understand this interpretation, we consider a normalized delta wave function that enters

the left side of the region R (i.e., [xi, xf ]) at instant ti and then leaves the right side at tf (see

Fig. 3.2). One may note that the inner integration in Eq. (3.8), i.e.,
∫
R |Ψ(r, t)|2dr, is equal to the

probability to find the wave packet in the region R. Since the wave packet is in the region R only

during the time interval [ti, tf ], the result of the inner integration is always zero at other times.

Therefore the double integration in Eq. (3.8) can be determined by the area of the red rectangular

region that is

tΨ,R = Sred = (tf − ti)× 1 = tf − ti. (3.9)

This is just the time the wave packet spends in the region R. One major advantage of this time

formula is that it does not require time information about when the wave packet enters and leaves

the region R, as long as the wave packet is initially outside this region. Such a property may

become useful for calculating times when the start and end points for a process of interest are not

available. One may also notice that for such an application the probability needs to be 1 when the

wave packet is in the region R. Thus one needs to normalize the wave packet when making use of

this formula.

While tΨ,R is, in general, finite for finite regions and any Ψ(r, t), it is useful to compare tΨ,R

to the time spent by a free particle in R (or another reference time):

tΨ(0),R =
∫ ∞

−∞
dt

∫
R

dr|Ψ(0)(r, t)|2. (3.10)

Here, Ψ(0)(r, t) is the free particle state corresponding to Ψ(r, t). The difference between tΨ,R and

tΨ(0),R defines the time delay associated with Ψ(r, t), the region R, and the potential V (r)

∆tΨ,R = tΨ,R − tΨ(0),R. (3.11)

Similar to the WS time delay, the quantity ∆tΨ,R should have a finite limit as the radius of R grows

to infinity if the interaction vanishes quickly enough. Thus, ∆tΨ,R→∞ and the associated quantum

mechanical operator are well-defined for short-range potentials V (r) only.

The above definition provides a useful concept to calculate time delays in time-dependent

processes, in particular on an ultrashort time scale. While it is known as the basis for deriving a
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time delay in scattering scenarios, it has not been applied for the theoretical analysis of processes

initiated or driven by ultrashort intense laser pulses. We thus intend to apply this method to

obtain time delays for a photoionization process in our numerical simulations. Physically, we are

interested in the time that an initially-bounded electron needs to leave a certain region (centered

about the position of the nucleus) following ionization due to the absorption of an XUV photon.

To this end, we note that the expressions above can be readily applied to a photoelectron described

by the continuum wave function Ψ(ion)
i (r, t) in our adoption of Eq. (3.8)

tΨi,R =
1

Pion

∫ ∞

−∞
dt

∫
R

dr|Ψ(ion)
i (r, t)|2, (3.12)

where Ψ(ion)
i (r, t) is normalized by the ionization probability

Pion =
∫ ∞

−∞
dr|Ψ(ion)

i (r, t →∞)|2. (3.13)

We can then define the time delay associated with the ionization from a specific initial state anal-

ogous to Eq. (3.11) as

∆tΨi,R = tΨi,R − t
Ψ

(0)
i ,R

, (3.14)

where Ψ(0)
i (r, t) is the free-particle state corresponding to the continuum wave function after tran-

sition from the initial state Ψi(r, t = 0). According to this definition, we expect negative values

for the time delays, since a free wave packet should spend more time in a given region R than the

corresponding wave packet that has the same asymptotic momentum propagating in an attractive

potential. We also consider the difference in the time delays for the ionization from two different

initial states Ψi(r, t = 0) and Ψj(r, t = 0) as

∆T (Ψi,Ψj ;R) = ∆tΨi,R −∆tΨj ,R. (3.15)

In order to use the above definitions in a numerical simulation of a photoionization process,

we need to identify the ionizing part of the wave function Ψ(ion)
i (r, t) as well as the corresponding

free particle state Ψ(0)
i (r, t). Moreover, to make use of Eq. (3.14) correctly, one needs to know the

time of ionization. Otherwise, for a wave function that is initially bound in region R, integrating the



44

time from −∞ to ∞ using Eq. (3.14) results with an infinite value. However, in traditional TDSE

simulations, it is not straightforward to obtain either the time of ionization or the form of the wave

packet after the transition into the continuum. Moreover, the information of the corresponding free

particle state is not available in the simulations either. It hence appears to be difficult to make

use of Eq. (3.14) in our calculations directly. We circumvent this obstacle by using the following

back-propagation technique.

We first solve the TDSE of the system, initially in the state Ψi(r, t = 0), under the interaction

with the external XUV field on a space-time grid:

i
∂

∂t
Ψ(r, t) =

[
p2

2
+ V (r) + Vlight(r, t)

]
Ψ(r, t), (3.16)

where p is the momentum operator, V (r) is the field-free potential of the system, and Vlight(t)

represents the interaction with the ionizing light field. After the end of the interaction with the

light field we separate the ionizing part of the wavefunction from the remaining bound parts, either

via projection onto analytically or numerically known states or via spatial separation of the ionizing

part at large distances on the grid. After removal of the bound parts we propagate the remaining

ionizing part of the wave function backwards in time without taking account of the interaction with

the light field using two different Hamiltonians, once including the potential V (r) as

i
∂

∂t
Ψ(ion)

i (r, t) =
[
p2

2
+ V (r)

]
Ψ(ion)

i (r, t), (3.17)

and once as a free particle

i
∂

∂t
Ψ(0)

i (r, t) =
p2

2
Ψ(0)

i (r, t). (3.18)

In order to calculate the time delay ∆tΨi,R for a given region R, the wavepacket has to be located

outside of R at the start of the back-propagation and the propagation needs to be terminated as

the wave packet reaches the center of R, i.e., the location of the residual target ion. The latter

point will be further discussed in the application of the method below.
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Figure 3.3: Schematic diagram for the back-propagation technique. In such a procedure we first
solve the TDSE describing the interaction of the model potential with the laser pulse forward in
time and obtain the ionizing wave packet by separating it from the whole wave function long after
the laser pulse ceases (upper panel). We then back propagate one side of the normalized ionizing
wave packet (e.g., right side) once within the potential and once as a free particle and absorb the
corresponding wave packet at the center of the grid (x = 0) by using ECS boundary at the other
side (e.g., left side) of the grid (lower panel). The difference of these two propagation times gives
a time delay that relates to the propagation on one side. Repeating this procedure again for the
other side of the ionizing wave packet and adding the two time delay contributions together, we
finally obtain a time delay for the corresponding photoionization process accumulated in region R.
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3.1.3 Application to single-photon ionization by an XUV pulse

The theoretical method outlined above is, in general, applicable to ionization of an atom or

molecule in any light field. Here we present results for the application to photoionization of an

electron initially bounded in two different model potentials. First, we use a short-range Yukawa

potential in 1D

VY(x) = − Z√
x2 + a

e−
|x|
b , (3.19)

where Z is the effective nuclear charge, a is the soft-core parameter, and b is a parameter that

determines the effective range of this 1D potential. For our simulations we choose Z = 3.0, a = 2.0,

and b = 30.0, which relate to energies of −1.6742 and −1.0124 of the ground and first excited

states. As a long-range interaction we make use of the Coulomb potential in 1D

VC(x) = − Z√
x2 + a

. (3.20)

For Z = 3.0 and a = 2.0, the energies of the lowest two states are −1.7117 and −1.0807, which are

close to the energies of the Yukawa potential.

For the interaction with the XUV laser pulse we use the length gauge, i.e.,

Vlight(t) = EXUV(t)x, (3.21)

where EXUV(t) represents a linearly polarized XUV pulse with a sin2 envelope, i.e.,

EXUV(t) = E0 sin2(πt/T ) cos(ωt + φ), (3.22)

where E0 is the peak amplitude, T is the pulse duration, ω is the central frequency, and φ is the

carrier-envelope phase (CEP).

To solve the corresponding TDSE, we use the previously introduced Crank-Nicolson method

in a grid representation. We use a spatial step of δx = 0.02 and a time step of δt = 0.002, and

the grid extends from −4000 to 4000, which is large enough to hold the full wave function in our

simulations on the grid. The initial ground and first excited states are obtained by the ITP method.

We continue the propagation of the wave function after the interaction with the XUV pulse until
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Table 3.1: Results of numerical calculations for the times tΨg ,R, t
Ψ

(0)
g ,R

and the time delay ∆tΨg ,R

for different spatial steps δx and a fixed time step of δt = 0.002. Results are obtained for ionization
from the ground state of the 1D Yukawa potential and R = [0,±460]. The parameters of the XUV
pulse were: peak intensity I = 1× 1015 W/cm2, frequency ω = 100 eV, pulse duration T = 400 as,
and carrier-envelope phase φ = −π/2.

spatial step tΨg ,R t
Ψ

(0)
g ,R

∆tΨg ,R

0.5 275.3389 274.4569 0.8820
0.2 240.6028 241.5927 −0.9899
0.1 236.8736 237.9043 −1.0307
0.05 235.9751 237.0109 −1.0358
0.02 235.7258 236.7628 −1.0370
0.01 235.6903 236.7274 −1.0371

the ionizing parts of the wave packet reach a distance beyond |x| > 500 and hence can be well

separated from the remaining bound parts. This allows us to remove the latter parts from the grid

and remain the ionizing parts of the wave function only. We then propagate the ionizing parts at

negative and positive x backwards in time independently, either under the influence of the potential,

VY or VC , or as a free particle. We determine the corresponding times tΨi,R and t
Ψ

(0)
i ,R

for both

parts of the ionizing wave function and added the two contributions. In the 1D calculations we

defined the region as R = [±xinner,±xouter], where xinner and xouter ≤ 500 are the inner and outer

boundaries, respectively, and the ±-signs apply to back-propagation of the two parts of the ionizing

wave packet along the positive/negative x-axis, respectively. We absorb the wave function beyond

the inner boundary xinner using the ECS method [76].

Based on the results of recent experimental observations and theoretical calculations, we

expect that the time delay ∆tΨi,R as well as the difference in the time delays for the ionization

from different initial states ∆T (Ψi,Ψj , R) are of the orders of a few tens of attoseconds. Resolution

of such small times requires an analysis of the time and spatial steps in the numerical simulations in

order to establish appropriate limits for grid parameters towards a convergence of the results in our

present studies. In Tables 3.1 and 3.2 we present a set of numerical results obtained for different

δx and δt in the case of the Yukawa potential. We see that a convergence of the time delay ∆tΨi,R
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Table 3.2: Results of numerical calculations for the times tΨg ,R and t
Ψ

(0)
g ,R

and the time delay
∆tΨg ,R for different time steps δt and a fixed spatial step of δx = 0.02. All the other parameters
were the same as in Table 3.1.

time step tΨg ,R t
Ψ

(0)
g ,R

∆tΨg ,R

0.1 237.0072 238.0431 −1.0359
0.05 236.0391 237.0757 −1.0366
0.02 235.7752 236.8121 −1.0369
0.01 235.7378 236.7747 −1.0369
0.005 235.7284 236.7654 −1.0370
0.002 235.7258 236.7628 −1.0370
0.001 235.7254 236.7624 −1.0370

within less than 0.001 a.u. (i.e., < 0.025 as) is reached for a time step of δt = 0.002 and a spatial

step of δx = 0.02. Similar conclusions hold for our studies with the Coulomb potential as well.

As mentioned above, the time delay ∆tΨi,R depends on the size of the region R, and should

be negative and converge to a finite limit for short-range potentials only. To test these expectations,

we perform a set of simulations for the time delays for photoionization from the ground and excited

states of both potentials as a function of xouter by fixing xinner = 0, i.e., for the region R = [0, xouter].

As expected, the values for the time delays are negative and decrease as the size of R (i.e., xouter)

increases for each of the results presented in Fig. 3.4. For the Yukawa potential (panel a) convergence

is found for outer boundaries xouter > 150. Consequently, for large values of the outer boundary

we obtain a well-defined value for the time difference ∆T (red dashed line) of the time delays for

ionization from the ground and the excited states.

In contrast, our results do not show a convergence for the time delays as a function of xouter

in the case of the long-range Coulomb potential [see Fig. 3.4(b)]. This reflects the well-known

logarithmic divergence of the time delay for the Coulomb potential in scattering processes and,

hence, for ionization from any bound state within the potential. Of course, in these cases a WS

time delay as the derivative of the phase shift [see Eq. (3.2)] cannot be defined as well, since

its derivation requires a finite limit of ∆tΨi,R→∞. It is interesting to point out that the results in

Fig. 3.4(b) further show that the logarithmic divergence is, in general, still present for the difference
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Figure 3.4: Time delays ∆tΨi,R and time difference ∆T (Ψi,Ψj , R) as a function of the outer
integration boundary xouter for two potentials: (a) short-range Yukawa potential and (b) long-range
Coulomb potential. Time delays obtained for the ground and first-excited states are represented
by blue dashed lines and green dash-dotted lines, respectively; while the red dotted lines show
the results for the time difference between the delays. In (b) the black solid and blue dashed lines
correspond to two different forward propagation distances: 〈xforward〉 = 2000 and 3000, respectively,
for the ionization from the ground state. In all calculations we have used an XUV pulse with peak
intensity I = 1 × 1015 W/cm2, central frequency ω = 100 eV, pulse duration T = 400 as, and
carrier-envelope phase φ = −π/2 for the ionization.
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Figure 3.5: Time delays and difference between time delays as a function of inner integration
boundary xinner. Symbols and laser parameters are the same as in Fig. 3.4. We also plotted the
WS time delays as black dots in this figure.
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between a pair of time delays obtained for the ionization from two different initial states. Thus, such

a time delay difference does not simply depend on the short-range character of the potential but also

contains information about the long-range part of the potential and is therefore not well-defined

as well. The present results agree well with the conclusions of early works on time delays [41]. We

may however reemphasize that any time delay obtained for a finite region via the present method is

finite and therefore well-defined, even in the case of the long-range Coulomb potential. As pointed

out above, this allows us to study certain aspects with respect to the parameters of the XUV pulse

and the effects of an additional field even in the Coulomb case.

It is necessary to point out that for the Coulomb potential the time delay also depends on

the distance that the ionizing wave packet is propagated in forward direction. This is due to the

long-range character of the Coulomb potential, since the central momentum of the ionizing wave

packet decreases with an increase of the forward propagation distance. Thus, the velocity of the

free particle during the back-propagation decreases as well. In Fig. 3.4(b) we show this effect by

showing results for the time delay from the ground state for two forward propagation distances:

〈xforward〉 = 2000 (black solid line) and 3000 (blue dashed line). As expected, the time delays for

〈xforward〉 = 3000 are slightly smaller than those for 〈xforward〉 = 2000. This shows the need to use

rather large grids for the numerical simulations in the case of a Coulomb potential. However, this

small dependence on the forward-propagation distance does not change our conclusions regarding

the convergence of the results towards infinite regions.

We also note from the results in Fig. 3.4 that the time delay increases most strongly in

the region close to the center of the potential, where the potential changes most strongly. This

indicates that the results should depend on the choice of the inner boundary xinner of the region

R. To study this feature, we fix the outer boundary of R at xouter = 500, which is large enough

to obtain converged results in the case of the Yukawa potential, and then vary the inner boundary

xinner. The results in Fig. 3.5 show the expected dependence on the choice of xinner: the absolute

values of the time delays decrease by half as xinner increases from 0 to 5. In the remainder of the

present studies we have chosen the xinner = 0 as the inner boundary, since this value corresponds



51

to the expectation value of x for all the bound states investigated here.

3.1.4 Comparison with results of other theoretical methods

Up to now, we have introduced the theoretical principle of our new method to calculate time

delays for photoionization processes and also established a numerical technique to demonstrate its

application. In order to further support our theory, we want to compare the time delays calculated

using our new method with results from those of previously existing and well-tested methods.

To this end, for a short-range potential, we like to make use of the WS time delay formula, i.e.,

Eq. (3.2), and further review another method based on the analysis of the photoelectron trajectory

in the continuum.

To make use of the WS time delay formula for the 1D Yukawa potential of Eq. (3.19), we

calculate the scattering phase shift from a time-independent scattering approach. We assume

that an electron with energy E (i.e., momentum k =
√

2E) is incident from x = −∞ towards

the Yukawa potential. We then solve the corresponding time-independent Schrödinger equation

numerically using the fourth order Runge-Kutta method up to |x| = 500, project the numerical

solution onto the appropriate plane-wave solutions for x → ±∞, and obtain the corresponding

phase shift ϕ(E). By repeating the same procedure for an electron with energy E + ∆E, we know

the phase shift ϕ(E + ∆E) and then evaluate the WS time delay approximately as

∆t
(scat)
WS (E) =

ϕ(E + ∆E)− ϕ(E)
∆E

. (3.23)

In order to take account of the energy spread of the ionizing wave packet in a specific photoionization

process, we averaged ∆t
(scat)
WS (E) over the energy spectrum of the wave packet, as obtained in our

time-dependent numerical simulations. Finally, we consider the photoionization as a half-scattering

process and divide the result of the average by two. The resulting WS time delays are shown as

black dots in Fig. 3.5 and are in good agreement with our numerical results, obtained from the

time-dependent calculations, for xinner = 0 and xouter = 500. This is in support of the applicability

of our approach to obtain time delays from the time-dependent numerical simulations.
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Figure 3.6: Extrapolation method to calculate the WS time delay. The solid blue lines show
the outer integration boundary xouter as a function of time for (a) the Yukawa potential and (b)
the Coulomb potential, calculated from Eq. (3.12) by solving TDSE. The green dashed and red
dash-dotted lines are obtained by linearly fitting the solid blue lines in two regions: [150, 250) and
[400, 500) respectively. The two insets show the behaviors near t = 0 for each line. ∆t in panel (a)
corresponds to the WS time delay for a short-range potential.
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As discussed before, the derivation of the WS time delay is based on the comparison of two

trajectories, one of the free particle and the other of the scattering particle. This actually provides

another useful way of calculating the WS time delays since both trajectories are easily accessable in

our numerical simulations of a photoionization process. In practice, the WS time delay is given as

the time difference between the time obtained by extrapolating the linear part of the photoelectron

trajectory back to the center of the potential (x = 0) and the time zero (chosen as the center of

the XUV pulse). There is no need to numerically calculate the free particle trajectory since it is

just a line that goes through the origin (i.e., x = 0 and t = 0) with the same slope as that of

the photoelectron trajectory. Usually, the photoelectron trajectory is calculated as the expectation

value of the ionizing wave packet as a function of time [44, 46]. Here, as shown in Fig. 3.6, we

instead obtain the trajectory by plotting the outer boundary xouter of the region R as a function of

tΨ,R (blue solid lines), which requires no more calculations once the back-propagation simulations

are done. As an example, we show how the WS time delay is obtained using this method for the

short-range Yukawa potential in Fig. 3.6(a), where the fit of trajectories in two different regions

gives the same time delay. However, based on our above discussions, it is expected that this method

does not work for a long-range potential, such as the Coulomb potential considered in Eq. (3.20),

since the trajectory of the photoelectron ionized from the Coulomb potential has a logarithmic

term and cannot be fitted to a linear line. This is illustrated in Fig. 3.6(b), from which one sees

the fitted lines have different interceptions with the time axis for different fitting regions.

3.1.5 Dependence of time delay on XUV pulse parameters

In order to systematically test the applicability of our time-dependent method of calculating

time delays and also study the dependence of the time delay introduced here on the parameters of

the XUV ionizing pulse, in Fig. 3.7 we present our results as functions of (a) the XUV frequency at

a fixed pulse duration of T = 400 as and (b) the duration of the XUV pulse at a fixed frequency of

ω = 100 eV. The peak intensity is I = 1× 1015 W/cm2 and the CEP is φ = −π/2 in each of these

simulations. Other than the time-dependent back-propagation method (blue diamonds), we also
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Figure 3.7: Time delays for ionization from the ground state of the Yukawa potential as functions
of (a) the XUV photon frequency (T = 400 as) and (b) the pulse duration of the XUV pulse
(ω = 100 eV). We have used three different methods to calculate the time delay: back propagation
method (blue diamonds), phase derivative method (green dashed lines with asterisks), and trajec-
tory extrapolation method (red open circles). Other laser parameters are: I = 1 × 1015 W/cm2

and φ = −π/2.
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show time delays from the other two methods: the energy derivative with respect to the phase shift

(green dashed lines with asterisks) and the trajectory extrapolation method (red open circles). The

results from different methods agree very well with each other and this again shows the application

of the time-dependent back-propagation method on time delays is solid and convincing.

The trends of the time delays also agree well with qualitative expectations. The absolute

value of the time delay decreases towards zero as the frequency of the ionizing XUV pulse and,

hence, the final kinetic energy of the emitted electron increases [Fig. 3.7(a)]. This is due to the

fact that the effect of the potential on the motion of the photoelectron becomes negligible in

the limit of infinitely large kinetic energy of the electron (i.e., infinite large XUV frequency) and

therefore the time spent in the potential approaches that of the free particle in this limit. We

further find that the absolute value of the time delay decreases with an increase of the XUV pulse

duration [Fig. 3.7(b)]. This dependence is closely related to that presented in Fig. 3.7(a) and can

be qualitatively understood as follows. It is found that the expectation value of the kinetic energy

of the ionizing wave packet increases as the XUV pulse duration increases, which causes the time

delay to increase according to its dependence on photoelectron energy in Fig. 3.7(a). Furthermore,

due to the finite pulse duration the ionizing wave packet has a certain bandwidth about a central

kinetic energy. Consequently, the time delay obtained for the wave packet can be considered as an

average over contributions at particular electron energies within the bandwidth (weighted by the

ionization probability at a given energy). As indicated by the results in Fig. 3.7(a) the time delay

does not change linearly with the kinetic energy. Therefore, the time delay obtained for a wave

packet will be smaller than its contribution at the central kinetic energy or the expectation value of

the kinetic energy. This difference decreases and, thus, the time delay for the wave packet increases

as the energy bandwidth of the wave packet decreases, i.e., as the pulse duration increases.

3.1.6 Application to laser-assisted XUV photoionization

As introduced in Chapter 1, the HHG process is a popular and promising way of generating

attosecond XUV pulses. Usually a few-cycle intense IR laser field is used to drive the HHG process.
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So in many applications using the attosecond XUV pulses, the strong laser field is present and

therefore influences the interaction of the XUV pulse and the systems of interest. In particular,

the interplay of the strong laser field and the ionic potential of the system is very important

for many attosecond measurements, including the attosecond streak camera [34], laser-induced

tomography [79], diffraction imaging of molecules [80], and many other applications. In this section,

as another application of our proposed method of calculating time delays in photoionization, we like

to extend this idea to the situation, in which the XUV photoionization is assisted by a streaking

field and the interplay of the streaking field and the ionic potential can be treated together as a

time-dependent combined potential.

The attosecond streaking experiment resembles such a set up and we like to study the effect

of a streaking field on WS-like time delays. To this end, we will first discuss how the streaking

field can be included in our numerical simulations of time delays and then study the impact of a

streaking field on the time delays for the short-range Yukawa as well as the long-range Coulomb

potentials by varying the parameters of the streaking field. We may stress that it is found (see

Section 3.2) that the time delay studied here does not correspond to those observed in streaking

experiments. The difference between these two delays are apparent and significant: the present one

is evaluated directly from the definition of a time delay from the time domain, while the streaking

time delay is extracted from a streaking trace in the momentum space.

The streaking field is considered as part of the potential V (r) in Eq. (3.16) and can be

represented by

Vs(r, t) = Es(t) · r, (3.24)

where the common length-gauge is used. Thus, in the present calculations the streaking field is

treated on equal footing with the atomic potential. After the forward propagation of the wave

function from its initial state and the separation of the bound and ionizing part of the wave

function, we then propagate the ionizing part of the wave function backwards in time once within

the combination of the atomic potential and the streaking field and once as a free particle.
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As a result, we obtain the time delay associated with the ionizing part of the wave function

in the combined potential of the short- or long-range interaction and the streaking field as

∆t
(IR)
Ψi,R

= t
(IR)
Ψi,R

− tΨ(0),R (3.25)

where t
(IR)
Ψi,R

is the time the ionizing wave packet spends in region R in the presence of both the

(short- or long-range) atomic potential and the streaking field, and tΨ(0),R is the time for the

corresponding free particle.

Here, the forward propagation of the wave function has to be continued as long as the

streaking field is present. As pointed out above, for the long-range Coulomb potential, the time

delay depends on the distance that the wave packet is propagated in the forward direction. In

order to keep the corresponding error small in our current analysis we use a large grid of −13000

to 13000 and terminate the forward propagation when the expectation value of the ionizing wave

packet reaches 8000. We increase the spatial step to δx = 0.1 and the time step to δt = 0.02 as

compared to the previous calculations to save computation time. Test calculations show that the

relative error of the present results is about 1%. In order to be consistent but also without loosing

generality, we make use of the Yukawa and the Coulomb potentials with the same parameters as

before, but choose the first excited state as the initial state. We have checked that the ionization

probability induced by the streaking field is negligible up to an intensity of 1× 1013 W/cm2.

We apply the ionizing XUV pulse at two positions of the streaking field: one centers at

the maximum point (zero of the vector potential) and the other centers at the central zero point

(maximum of the vector potential). In the upper row of Fig. 3.8, the results for the time delays in

the presence of the streaking field (green solid lines: XUV centered at zero of the vector potential;

blue dashed lines: XUV centered at maximum of vector potential) are shown as a function of the

outer boundary xouter of the region R for the Yukawa (left) and the Coulomb (right) potentials.

Similar as in the results without streaking field, we see that there is a well-defined limit of time

delays for the short-range Yukawa potential as the region R increases, while there is no convergence

found for the Coulomb potential.
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Figure 3.8: Time delays (upper row) and time delay differences (lower row) as a function of the outer
boundary xouter of R for Yukawa potential (left column) and Coulomb potential (right column).
For each potential we have centered the XUV pulse at two different positions, which correspond
to the maximum (blue dash-dotted line) and zero (green solid line) of the vector potential of the
streaking field, respectively. The XUV parameters are: IXUV = 1× 1015 W/cm2, ωXUV = 100 eV,
TXUV = 400 as, and φXUV = −π/2. The streaking parameters are: Is = 1× 1012 W/cm2, λs = 800
nm, Ns = 3 cycle, and φs = −π/2. The small box in (d) shows the long-range behavior of the two
curves.
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To illustrate the effect of the streaking field, we present in the lower row of Fig. 3.8 the

difference between the time delays in the presence of the streaking field to those without streaking

field as a function of xouter, i.e.,

∆T = ∆t
(IR)
Ψi,R

−∆tΨi,R, (3.26)

Although there is no well-defined limit of the time delays for infinite regions in the Coulomb case,

neither with nor without streaking field, for any finite region the time delays introduced here are

well-defined and the effect of the streaking field can thus be analyzed. The same argument applies

to the weak dependence of the Coulomb results on the distance of forward propagation in our

simulations.

For both potentials, we see that the time delay difference ∆T oscillates for xouter < 400. This

oscillation is due to the presence of the streaking field, since the ionizing wave packet propagates

up to about x ' 400 before the streaking field ceases in present simulations. We note that the

differences ∆T are small, less than 3% for the Yukawa potential and less than the numerical error

of 1% for the Coulomb potential, as compared to the time delays induced by the atomic potentials

themselves. We therefore do not find a significant effect of the streaking field, neither for a short-

range nor for a long-range potential, on the time delays in our present simulations. As pointed out

before, this result however does not allow to draw conclusions for the streaking experiment, since

time delays introduced here are not equivalent to time delays measured in streaking experiments.

Before we continue to further study the influence of the streaking field, we note a subtle point

in the results obtained for the Coulomb potential, which are presented in Fig. 3.8. While neither

the time delays with and without streaking field converge as a function of the outer boundary

xouter, we find a converged result (within the numerical error) for the time delay difference ∆T , if

the XUV pulse is centered at the zero position of the vector potential of the streaking field [see

green solid line in Fig. 3.8(d)]. This occurs since in this case the momentum distribution of the

ionizing wave packet at the end of the forward propagation is the same as that without streaking

field. In contrast, if the XUV pulse is applied at the maximum position of the vector potential, the
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final momentum distribution is shifted and thus no convergence of the time delay difference within

the range of present boundaries is found [see blue dashed line in the inset of Fig. 3.8(d)].

The conclusion that the streaking field does not influence significantly the time delay intro-

duced here holds over a large range of XUV frequencies as well as for streaking intensities up to

about 1013 W/cm2. In Fig. 3.9 we present the results of time delays obtained for (a) the Yukawa

potential and (b) the Coulomb potential with (blue lines with squares) and without (blue lines

with asterisks) streaking field as a function of the XUV frequency. Since the results are in close

agreement, we also show the relative difference between them (green lines with triangles), which

does not exceed 5% and 2% in the Yukawa and Coulomb cases, respectively.

As one would expect, the relative difference between the results of time delays obtained with

and without streaking field does increase with an increase of the streaking field intensity. This can

be clearly seen from the results shown in Fig. 3.10. It appears that for streaking intensities up

to 1012 W/cm2 the relative difference between the results is small enough such that there is no

significant effect on the time delay. While the relative difference quickly increases beyond 10% in

the case of the Yukawa potential with a further increase of the streaking intensity, the 10%-limit is

not reached for a streaking intensity of 1013 W/cm2 in the case of the Coulomb potential.

3.2 Interpretation of time delays measured in streaking experiments2

The photoemission time delay experiment in neon atom using the attosecond streaking tech-

nique has initiated a lot of theoretical discussions about understanding this experiment, especially

how one should interpret the measured time delay (e.g., [37–39, 44, 81]). As mentioned in the

introduction, it was proposed that this measured time delay consists of two contributions [37, 38]:

one is the WS time delay, which is calculated as the energy derivative with respect to the scattering

phase shift induced by the electrostatic Coulomb potential, and the other one is the propagation

time delay that the photoelectron accumulates during its propagation in the combined potential of
2 The results of this section are presented in J. Su, H. Ni, A. Becker, and A. Jaroń-Becker, Phys. Rev. A 88,

023413 (2013), J. Su, H. Ni, A. Becker, and A. Jaroń-Becker, Phys. Rev. A 89, 013404 (2014), and J. Su, H. Ni, A.
Becker, and A. Jaroń-Becker, Chin. J. Phys. 52, 404 (2014).
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Figure 3.9: Time delays with (blue lines with squares) and without (blue lines with asterisks)
streaking field as well as relative differences between the results (green lines with triangles) as a
function of XUV central frequency for (a) Yukawa potential and (b) Coulomb potential. The XUV
pulse is centered at the central zero point (maximum vector potential point) of the streaking field.
Other laser parameters are the same as in Fig. 3.8. For the Coulomb case, the time delays are
calculated at xouter = 800.
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Figure 3.10: Relative differences of time delays as a function of the streaking intensity for (a)
Yukawa potential and (b) Coulomb potential. The XUV pulse is centered at the central zero point
of the streaking field. Laser parameters are the same as in Fig. 3.8 expect IIR changes. For the
Coulomb case, the time delays are taken at xouter = 400, 800 and 1200.
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the streaking and the Coulomb fields, which is sometimes also called as the Coulomb-laser coupling

time delay. However, the sum rule ∆ts = ∆tWS +∆tprop seems to be questionable for the following

reasons: First, for a long-range Coulomb interaction, the WS time delay is not a well-defined con-

cept, as originally pointed out by Smith [41] and recently numerically reconfirmed by us [42, 43].

Evaluating it using the energy derivative with respect to the scattering phase shift, as done for a

short-range WS delay, only accounts for the short-range part of the Coulomb potential and does not

obey the original definition for the WS time delay. Furthermore, while the sum rule appears to be a

good empirical formula (e.g., [53]), a rigorous proof was never given. For instance, in Ref. [38] this

rule has been derived however based on the eikonal approximation, which is quite questionable for

the weak intensities used in streaking experiments. Furthermore, in Ref. [37] the propagation time

delay was calculated using the so-called classical-trajectory Monte Carlo method and the results do

not support the sum rule. Finally, even within the framework of the sum rule, applications differ

in some details: Ivanov et al. [38] apply the rule for both short- and long-range potentials, while

Nagele et al. [37] claim that the sum rule needs to be used for the long-range interaction only. In

the latter work, it has been assumed that the propagation time delay is zero. In order to contribute

to the ongoing debate, we like to systematically study the streaking experiment in this section.

3.2.1 Extracting streaking time delays in numerical simulations

As introduced in Chapter 1, the streaking time delay is the temporal shift of the real streak-

ing trace with respect to the trace predicted by the original streaking formula, kf = k0 −As(ti).

To obtain such a delay in numerical simulations, we need to calculate the streaking trace accu-

rately without making any approximations. To this end, we simulate a streaking experiment by

numerically solving the following TDSE

i
∂Ψ(r, t)

∂t
=

[
p2

2
+ V (r) + (EXUV(t) + Es(t)) · r

]
Ψ(r, t), (3.27)

where both the XUV and the streaking fields are assumed to have a sin2 envelope shape and

be linearly polarized in z-direction. We solve the TDSE on a grid in space and time by using
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the common Crank-Nicolson method with spatial steps determined by the specific problem. In

each simulation we propagate the wave function on the grid for a sufficiently long time until both

laser pulses cease and the ionizing wave packet is far from the ionic core. We confirm that in all

simulations the outgoing wave packets stay on the grid and do not reach its boundaries.

To obtain the momentum distribution we use one of the two following methods: one is to

project the total wave function onto the correct continuum eigenstate, the other is to spatially

separate the ionizing wave packet from the total wave function, which is possible due to the long

propagation times used in the simulations, and then perform a Fourier transform. For the latter

choice, we have to propagate the ionizing wave packet sufficiently far away from the nucleus so that

the small error due to the projection onto the plane wave is negligible.

By varying the relative delay τ between the XUV and the streaking pulses, we obtain the

streaking trace, in which the momentum of the photoelectron kf is given as a function of τ . We

usually present the streaking trace in the form of the expectation value of the momentum as a

function of the relative delay in order to compare with other calculations. For model systems

with more than one dimensions, we calculate the expectation value of the momentum in the laser

polarization direction (z axis) with an opening angle of 5 to 10 degrees. An example for a streaking

trace, over about the central cycle of a 8-cycle streaking pulse at 800 nm and 1 × 1012 W/cm2, is

shown in Fig. 1.7(a). As already pointed out, the streaking time delay relates to a momentum shift

∆k and can be understood as the temporal shift of the TDSE trace (blue solid line) with respect to

the trace predicted by the original streaking formula (green dashed line). In practice we however

do not compare these two traces directly to obtain the streaking time delay. Instead we extract

such a delay by fitting the TDSE streaking trace to

kf,z(τ) = k0,z − αAs(τ + ∆ts) (3.28)

with k0,z, α, and ∆ts as three fitting parameters, which can be retrieved using the least-square

method.
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3.2.2 Calculating propagation time delays using classical approaches

In view of the preexisting interpretation of the streaking time delay, it appears to be nec-

essary to reinvestigate the original streaking formula, kf ' k0 − A(ti), derived based on strong

field approximation (SFA). As motioned in the introduction, the original streaking formula can

be derived classically by assuming the photoelectron is set free in the continuum instantaneously

at ionization time ti with momentum k0 and then propagates only in the streaking laser field,

i.e., the ionic potential is neglected during the propagation of the photoelectron. While such an

approximation has been shown to work well in certain cases (e.g., [34]), however, for a streaking

time delay of the order of a few tens of attoseconds, which relates to a momentum shift of the

order of 10−3 a.u. (for a typical 800 nm streaking pulse with intensity of 1012 W/cm2), a more

careful method that also takes account of the ionic potential as well as the interplay between these

two fields is of course necessary. In this subsection, we calculate the propagation (or coupling)

time delay in a streaking experiment using classical approaches that take account of both fields

and then compare this calculated propagation time delay with the streaking time delay obtained in

TDSE simulations. The comparison will lead us a new interpretation of the streaking time delay

for single-photon ionization.

It is known that in strong-field physics the propagation of an electron in the continuum can

be often well described by classical analysis (e.g., [82]). We therefore make use of this method

to analyze the time delay obtained in the streaking experiment. After the transition into the

continuum due to XUV photon absorption the dynamics of the electron in the general 3D case is

given by
dk
dt

= −Es(t)−∇V (r), (3.29)

where k is the momentum of the photoelectron, Es(t) is the streaking field, and V (r) is the atomic

potential. For a linearly polarized field the simultaneous interaction of the electron with the field

and the potential takes effect along the direction of the polarization, which we choose as the z-axis:

dkz

dt
= −Es(t)−

dV

dz
. (3.30)
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One approach to solve Eq. (3.30) is to use perturbation theory by assuming |Es| � |dV
dz |. To

first order, the final asymptotic momentum is then given by [assuming A(t) = 0 and V (z) = 0 for

t →∞]

k
(1)
f,z(ti) = k

(0)
f,z(ti) + ∆k

(1)
f,z(ti)

= ki,z −As(ti) +
V (zi)
ki,z

+
∫ ∞

ti

Es(t)V
(
z(0)(t)

)
k

(0)
z (t)2

dt

' k0,z −As(ti) +
∫ ∞

ti

Es(t)V
(
z(0)(t)

)
k

(0)
z (t)2

dt, (3.31)

where k0,z =
√

k2
i,z + 2V (zi) ' ki,z + V (zi)/ki,z is the streaking-field-free asymptotic momentum,

z(0)(t) = zi + [ki −As(ti)] (t− ti) +
∫ t

ti

As(t′)dt′, (3.32)

and

k(0)
z (t) = ki,z −As(ti) + As(t), (3.33)

are the zeroth order solutions for the position and momentum of the electron. ti, zi, and ki,z are

the initial time, position, and momentum of the electron after its transition into the continuum.

We note that Eq. (3.31) is equivalent to Eq. (25) in Ref. [83], in which the authors used

a quantum approach to calculate the momentum shift induced by the so-called Coulomb-laser

coupling effect in laser-assisted photoionization based on the eikonal approximation. This result

was later adopted in Ref. [38] to study the influence of the streaking field on the measured time

delay in a streaking experiment. However, one may notice that, similar to what we have done

here, the formula derived in Ref. [83] was based on the assumption that the laser field is rather

strong (e.g., 1.5× 1014 W/cm2 in one of the numerical examples in Ref. [83]), which is usually not

applicable for a streaking experiment (streaking intensities are typically in the range of 1 × 1010

W/cm2 to 1×1012 W/cm2). Below we therefore compare results of the perturbative approach with

the numerical solution for the classical electron dynamics in order to test the applicability of the

perturbative approach.

The use of perturbation theory can be avoided by integrating Eq. (3.30) directly. By mul-

tiplying dz to both sides of Eq. (3.30) and then integrating it, the solution of Eq. (3.30) for the
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asymptotic momentum of the electron at z →∞ can be written as

kf,z(ti) =

√
k2

i,z + 2V (zi)− 2
∫ ∞

ti

Es(t)kz(t)dt

=

√
k2

0,z − 2
∫ ∞

ti

Es(t)kz(t)dt. (3.34)

Making use of this equation requires knowing kz(t), which is available by numerically solving

Eq. (3.30). As we will see later, writing the final momentum in this form is very helpful for

interpretation of the propagation time delay.

To relate the final momentum of the electron to the propagation time delay, we set the final

momentum from Eq. (3.31) or (3.34) equal to

kf,z(ti) = k0,z − αAs(ti + ∆tprop)

' k0,z − αAs(ti) + αEs(ti)∆tprop

(3.35)

as used in the fitting of the streaking results. Then the propagation time delay that the electron

accumulates in the combined field of the streaking field and the atomic potential is finally given by

[for Es(ti) 6= 0]

∆tprop,pert '
(α− 1)As(ti) +

∫ Ts

ti

Es(t)V (z(0)(t))
[k

(0)
z (t)]2

dt

αEs(ti)
(3.36)

for the perturbative approach, and

∆tprop,exact '

√
k2

0,z − 2
∫ Ts

ti
Es(t)kz(t)dt− k0,z + αAs(ti)

αEs(ti)
(3.37)

for the exact solution. One may note that in both formulas the upper limit of the integrals has

been replaced by Ts, i.e., the pulse duration of the streaking field, which is valid since Es(t) = 0

for t > Ts.

In order to show the accuracy of the predictions of the two classical approaches and also

the relation between the propagation time delay and the streaking time delay, we compare in

Fig. 3.11 the results of quantum streaking simulations (black circles) for the streaking time delay

∆ts with the classical predictions, Eq. (3.36) (blue dashed lines) and Eq. (3.37) (red solid lines), for

photoionization of an electron in (a) the 1D Coulomb potential VC(z), Eq. (3.20), with Z = 3.0 and
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Figure 3.11: Comparison of streaking time delays from quantum streaking simulations (black cir-
cles) with classical results from the perturbative approach (blue dashed lines) and the full numerical
solution (red solid lines). In our analysis we considered three potentials: (a) 1D Coulomb potential
[VC(z)], (b) the combination of 1D Coulomb and Gaussian potentials [VCG(z)], (c) 3D Coulomb
potential [V (r)].
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a = 2.0, (b) the combination of 1D Coulomb and Gaussian potentials (the electron was initially

bound in the ground state of the Coulomb potential)

V (z) = VCG(z) = − Z√
z2 + a

+ V0e
−

“
|z|−z0

σ

”2

, (3.38)

with Z = 3.0 and a = 2.0 for the Coulomb potential, and V0 = −0.5, σ = 2.0 for the Gaussian

potential centered at z0, and (c) a 3D Coulomb potential of the form

V (r) = −Z

r
, (3.39)

with Z = 1.0 and 2.0 for H atom and He ion, respectively.

The streaking time delays ∆ts in the 1D quantum simulations are obtained by scanning the

central cycle of the streaking field and then fitting the trace using Eq. (3.28). To ionize the electron

initially bounded in the 1D Coulomb potential, we have used an XUV pulse with IXUV = 1× 1015

W/cm2, ωXUV = 100 eV, TXUV = 600 as, and φXUV = −π/2. The parameters of the streaking pulse

were Is = 1× 1012 W/cm2, λs = 800 nm, Ns = 3 [Fig. 3.11(a)] or 8 [Fig. 3.11(b)], and φs = −π/2.

The 3D quantum results in Fig. 3.11(c) were extracted from Ref. [37]. In the classical calculations

we assumed a transition to the continuum at the center of the XUV pulse (i.e., ti = τ = TXUV/2).

It has been previously shown (e.g., [37, 38]) that the results of classical streaking simulations

depend on the choice of the initial position zi. We have chosen zi to be the most probable position

of the electron in the initial state [e.g., xi = 0 for VCG(z)]. Alternatively, one can sample the

initial conditions in Monte-Carlo calculations (see, e.g., [37]). To make use of the classical analysis

we further note that the propagation time delay ∆tprop in Eqs. (3.36) and (3.37) depends on the

choice of α. We determine α such that ∆tprop remains approximately constant while varying ti over

one field cycle (solid line with squares in Fig. 3.12). Please note that, independent of the choice

of α, our classical prediction for ∆tprop diverges for Es = 0. In practice, we can actually extract

the propagation time delay ∆tprop directly from the classical streaking trace by using the fitting

method. We have tested that this alternative method leads to the same time delays as those using

the time delay formula Eq. (3.36) or (3.37).
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70

The comparison in Fig. 3.11 reveals that the results of the quantum streaking simulations

(black circles) and the full classical calculations (red solid lines) are in excellent agreement with each

other. In the present set of calculations the difference between the quantum and full classical results

does not exceed 2 as, which shows that the numerical streaking simulations can be well analyzed and

interpreted using a classical approach. Such a conclusion has also been reached based on the results

of classical trajectory Monte Carlo calculations in Ref. [37]. This indicates that the transition of

the electron from the bound state into the continuum occurs instantaneously upon application of

the XUV pulse (i.e., most likely at the center of the XUV pulse) and the observed temporal offset

∆ts, or time delay, arises due to the propagation of the photoelectron in the continuum.

On the other hand the comparison further shows that the results of the perturbative classical

approach (blue dashed lines) agree neither with those of the quantum simulations (black circles)

nor with the full classical calculations (red solid lines). We find discrepancies of more than 30 as as

compared to the quantum results and the full classical results in some of our present calculations

[e.g., the low energy part in Fig. 3.11(a)]. This degree of deviation between the two classical

approaches persists for intensities of the streaking field up to 1014 W/cm2. We exemplify this

by showing in Fig. 3.13 the relative difference between the results for the momentum shift ∆k,

obtained from the two classical approaches for both VC(z) (blue solid line with circles) and VCG(z)

(green solid line with stars). We note that, in general, results of the perturbative approach and the

full numerical solution only tend to agree for high streaking field intensities, which would induce

ionization from the target by the streaking field itself.

We can therefore further conclude that the discrepancy between the results of the perturbative

classical approach and the quantum streaking simulations does arise from the first-order approx-

imation of the Coulomb potential, but not from the use of classical theory itself. The transition

of the electron from the bound state into the continuum in photoionization occurs at distances at

which the perturbation condition |Es| � |dV
dz | is not fulfilled for moderate streaking field strengths.

This conclusion is further supported by the results for the combination of Coulomb and Gaussian

potentials [VCG(z)]. In this case the final time delay has two contributions, one resulting from the
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Coulomb potential and the other from the rather weak Gaussian potential. In test calculations

we studied both contributions independently and found that in the present results the deviation

between the two classical results arises from the Coulomb potential alone. This can be also seen

from the results in Fig. 3.11(b) as the difference between the two classical results is independent of

the position of the Gaussian potential.

Before proceeding, we may briefly discuss the option to extend the perturbative classical

result for the analysis of streaking calculations. The deviations found for the first-order approx-

imation can be significant. It remains to be studied if higher-order corrections can improve the

results sufficiently or a non-perturbative treatment becomes necessary. Instead, it might be more

interesting to partition the space into an inner region close to the nucleus and an outer region, in

which |Es| � |dV
dz | is fulfilled for the outer one. Then, an application of the perturbative result

for the time delay related to the outer region appears to be satisfied. We may point out that the

(perturbative) eikonal approximation was indeed initially introduced in the context of strong-field

ionization [84]. For strong fields, in contrast to weak-field photoionization, the perturbative condi-

tion is usually well satisfied for distances beyond the tunnel exit, at which the electron enters the

continuum. Results of previous theoretical calculations [58] indicate that it might be then useful

to approximate the time delay in the inner region by the WS time delay for the short-range part

of the potential. Of course, the quality of such an approximation should depend on the potential

of interest, the streaking field strength and other parameters, which would determine the partition

between inner and outer region and the range of short- vs. long-range parts of the potential. We do

not further investigate this option, since the full classical solutions are in excellent agreement with

the present quantum streaking results and therefore provide a good starting point for our further

analysis.

3.2.3 Physical interpretation of streaking time delay in single-photon ionization

We have just shown [81, 85, 86] that for the single-photon ionization process the streaking

time delay only arises from the propagation of the photoelectron in the combined potential of the



72

streaking and the atomic fields, i.e.,

∆ts = ∆tprop. (3.40)

This implies that there is no contribution of the WS time delay ∆tWS in the streaking time delay

∆ts, which however does not agree with previous interpretations that claim the streaking experiment

is related to an intrinsic ∆tWS. In order to seek for an alternative physical interpretation for ∆ts

and also see whether or not ∆ts can be related to ∆tWS, we make use of the relation in Eq. (3.40)

and further simplify the accurate propagation time delay formula, Eq. (3.37). Noting that the

second term of the square root in Eq. (3.37) is usually small, we can expand the square root to first

order. Assuming α = 1, we obtain

∆ts = ∆tprop '
1

Es(ti)

∫ Ts

ti

Es(t)
[
1− kz(t)

k0,z

]
dt, (3.41)

which still provides accurate results for liberation of the electron at the peak of Es(t) within its

central cycle as found in test calculations.

To avoid evaluating kz(t) by numerically solving the Newton’s equation, we approximate it

using

kz(t) ' k(0)
z (t)−As(ti) + As(t), (3.42)

where k
(0)
z (t) is the momentum of the electron in the field-free atomic potential. This approximation

is based on the assumption that the coupling effect of the streaking field and the atomic potential

on the momentum is negligible and its accuracy can be seen from results in Fig. 3.14. Within this

approximation, Eq. (3.41) then yields

∆ts '
1

Es(ti)

∫ Ts

ti

Es(t)

[
1− k

(0)
z (t)
k0,z

]
dt +

As(ti)2

2Es(ti)k0,z

' 1
Es(ti)

∫ Ts

ti

Es(t)

[
1− k

(0)
z (t)
k0,z

]
dt, (3.43)

where in the second step we have assumed that the electron is liberated at the peak of Es(t),

i.e., at As(ti) = 0. It is now instructive to further rewrite Eq. (3.43) as a sum by assuming that

the streaking field and the electron momentum are approximately constant in the time interval



73

0 50 100 150 200
1.8

2

2.2

2.4

2.6

2.8

3

time (a.u.)
m

om
en

tu
m

 (
a.

u.
)

 

 

k(0)(t)
k(0)(t)−A(t

i
)+A(t)

k(t)

Figure 3.14: Comparison of momenta calculated using different methods: full numerical solution of
the Newton’s equation (red solid line) and Eq. (3.42) (green dashed line). We have considered an
electron propagating in the combined potential of the 1D Coulomb potential VC(z) and a 3-cycle
800 nm streaking pulse with Is = 1× 1012 W/cm2. As a reference the field-free momentum k(0)(t)
of an electron propagating in VC(z) is also shown as blue solid line.

[tj , tj + δt], i.e., Es(t) ' Es(tj) and k
(0)
z (t) ' k

(0)
z (tj),

∆ts '
1

Es(ti)

N∑
j=1

Es(tj)

[
1− k

(0)
z (tj)
k0

]
δt

=
N∑

j=1

Es(tj)
Es(ti)

∆t
(j)
field-free, (3.44)

where ∆t
(j)
field-free is a piecewise field-free time delay that the electron accumulates during its prop-

agation in the time interval [tj , tj + δt] and over a related finite region [zj , zj + δz] of the potential

V (z) as compared to the propagation of a free particle over the same distance in space.

Eq. (3.44) provides us with an interesting interpretation of the streaking time delay: It is

neither the WS time delay ∆tWS nor the simple sum of finite-range piecewise field-free time delays.

Instead, the piecewise field-free time delays are weighted by the streaking field strength present

when the electron wavepacket propagates over the corresponding part of the potential. Thus, we

can conclude that the streaking time delay strongly depends on the electron dynamics in the coupled

atomic and time-varying streaking field potential.

Eq. (3.44) further indicates that in certain theoretical limits ∆ts can approach the WS time

delay ∆tWS. In particular, for short-range potentials V (r), ∆ts is approximately given by the first
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term (i.e., j = 1) of the sum in Eq. (3.44) if the electron wavepacket propagates over the full range

of the potential during [ti, ti + δt] while Es(t) ' Es(ti). This condition should be fulfilled in the

following theoretical limits: (a) the effective range of V (r) goes to zero, (b) the momentum of the

electron goes to infinity, or (c) the oscillation period of the streaking field goes to infinity. To test

our expectations we performed simulations for the following 1D potential:

V (z) = VC-WS(z) = − Z√
z2 + a

1
1 + e(|z|−zp)/b

, (3.45)

which is a product of Coulomb and Woods-Saxon potentials, where zp determines the effective

range of the potential. We have chosen b = 1 and zp > 10 such that VC-WS(z) ' VC(z) for |z| < zp,

while VC-WS(z) approaches zero quickly for |z| > zp. To obtain the WS time delays, we used the

back-propagation method introduced in the last section. In Fig. 3.15 we compare the results of

the numerical simulations for ∆ts (solid lines with circles and diamonds) as a function of (a) the

potential range zp, (b) the frequency of the ionizing XUV pulse, and (c) the wavelength of the

streaking pulse with the WS time delay ∆tWS (dashed lines with squares for (a) and (b) and solid

circles for (c)). All other parameters of the fields are kept the same in the simulations. As expected,

∆ts approaches ∆tWS in each of the three theoretical limits listed above. One may notice that for

limit (a) a quantum proof based on the eikonal approximation was given in Ref. [38], in which the

authors obtained a similar conclusion that the propagation (or coupling) time delay is equal to the

WS time delay for a short-range potential.

As mentioned above, in earlier work (e.g, [38, 53, 58]) for the long-range Coulomb interaction

the streaking time delay was often separated into the sum of the field-free WS time delay and

a contribution accounting for the coupling. Although we do not derive such a relation, we note

that in Eq. (3.44) Es(t1) ' Es(ti) and therefore the first term of the sum is equal to the field-free

time delay, which the electron acquires during [ti, ti + δt]. The corresponding ’field-free’ delay

distance over which the electron travels during this time interval depends on the electron energy

(or, XUV frequency) and the wavelength of the streaking field. In Fig. 3.16 we present classical

estimations for this distance by assuming that the electron is emitted at the peak of a 3-cycle 800
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Figure 3.16: Classical estimates for the ’field-free’ delay distance of an electron, released at the
peak of a three-cycle streaking pulse (wavelength of 800 nm) in the 1D Coulomb potential, as a
function of the XUV photon energy. This distance was determined by the position of the electron
at the time instant when the streaking field changed to 99% (solid line) and 95% (dashed line) of
the peak field strength.

nm laser pulse. We note that the calculated ’field-free’ delay distances are approximately equal to

short-range distances of atomic potentials.

The sum rule, ∆ts = ∆tWS + ∆tprop, used for the interpretation of the streaking time delays

appears to work for many systems and to some extent is related to our present interpretation,

Eq. (3.44). However, we want to emphasize that our interpretation is essentially different from the

previous one: We have demonstrated that the streaking time delay only arises from the propagation

of the electron in the combined continuum of the streaking and ionic potentials, or alternatively

the coupling effect, while previously it was believed that an intrinsic WS time delay needs to be

added.

With our present interpretation, we are also able to answer the question whether or not for

a short-range potential there is a contribution from the field coupling to the streaking time delay.

As mentioned above, consistent with our results, Ivanov et al. [38] showed that for a short-range

potential (e.g., the short-range part of the neon potential) there exists a propagation (coupling)

time delay and it is equal to the WS time delay by applying the eikonal approximation. However,

in Ref. [53], Nagele et al. pointed out that this conclusion cannot be supported by numerical
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simulations when comparing ∆ts with ∆tWS + ∆tprop. The latter quantity was shown to be twice

as large as the streaking time delay ∆ts [53]. Based on the sum rule, it was claimed by Nagele

et al. [53] that ∆tprop = 0, i.e., no contribution due to the field coupling exists for a short-range

potential. From our analysis, it is obvious that this incorrect conclusion in Ref. [53] arises due to

the use of the sum rule, which is only an assumption and has never been rigorously proven. For

such a short-range potential considered in Refs. [38, 53], to reproduce the streaking time delay ∆ts,

one can use either the propagation time delay ∆tprop or the WS time delay ∆tWS, but never both

of them because the physical origin of ∆tWS is the propagation (or coupling) effect, which however

approaches the WS time delay for a short-range potential [see Fig. 3.15(a)].

Before proceding, we note that more subtle features in our results, such as the oscillations in

Fig. 3.11(b) and the change from a decrease to an increase in ∆ts as a function of zp in Fig. 3.15(a)

can also be well understood with our classical interpretation, Eq. (3.44). The oscillations in Fig.

3.11(b) are caused by the Gaussian potential, which has a very short effective range. The streaking

delay contribution due to the Gaussian potential can be therefore written as

∆tGs (z0) '
Es(tG)
Es(ti)

∆tGWS, (3.46)

where ti and tG are the instant of ionization and the time instant at which the electron reaches

the Gaussian potential respectively. Thus, the streaking time delay induced by the coupling of the

streaking field and the Gaussian potential should have an oscillation period proportional to that

of the streaking field, which can be easily confirmed from the results in Fig. 3.11(b) by noting

that tG ' z0/k0. On the other hand, the non-monotonic behavior of the streaking time delay in

Fig. 3.15(a) can be also explained by Eq. (3.43). Assuming that the electron is ionized at the peak of

the streaking field, the absolute value of the time delay is expected to increase over the first quarter

of the streaking field cycle. However, then the field changes sign and the absolute value should start

decreasing. The turning point at zp = 50 agrees well with the classical estimate for the distance

the electron travels within the first quarter cycle after its release, namely zwp = k0Ts/4 = 54 at the

present parameters.
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3.2.4 Finite-range time delay and its application to imaging

Up to now we have established a new physical interpretation for the time delay measured

in the streaking experiment, which explains the streaking time delay as a sum of field-weighted

field-free time delays. As pointed out above, one important consequence of this interpretation is

that, in general, the WS time delay does not present or contribute to the streaking time delay.

From Eq. (3.43), one clear sees that the coupling effect is present during the time interval of [ti, Ts],

i.e., between the ionization time and the end of the streaking field, which is in contrast to the

original definition of the WS time delay in which the propagation region extends to infinity. In

order to further support such a conclusion, we present results of numerical simulations of streaking

scenarios for the Coulomb-Gaussian potential, Eq. (3.38), in which the position of the Gaussian

potential can be changed to test the effective region that affects the streaking time delay.

We consider photoemission from the ground state of the 1D Coulomb potential VCG(z) with

Z = 3.0 and a = 2.0 by an XUV pulse with IXUV = 1× 1015 W/cm2, ωXUV = 100 eV, TXUV = 600

as, and φXUV = −π/2. The parameters of the streaking pulse are Is = 1× 1012 W/cm2, λs = 800

nm, and φs = −π/2. In Fig. 3.17(a), we show the extracted values for the streaking time delay

∆ts (stars, squares, and circles) for different positions z0 of the Gaussian potential and a streaking

pulse having 8 cycles. The streaking time delay ∆ts strongly varies when the Gaussian potential is

located close to the center of the Coulomb potential and the amplitude of this variation increases

with an increase of the depth of the Gaussian potential. However, independent of the strength

of the Gaussian potential, ∆ts remains constant for z0 > zfinite ' 850, for which we obtain the

same numerical result with and without (diamond) the Gaussian potential. Our simulations show

that at the end of the streaking pulse the center of the outgoing electron wave packet is located at

zfinite ' 850. Thus, ∆ts accounts for the presence of the Gaussian potential only when the electron

wave packet reaches the potential before the interaction with the streaking pulse ceases. This is, as

expected, in contrast with the WS time delay that accounts for the potential up to infinity based

on its original definition.
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Other parameters are given in the text.
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Table 3.3: Streaking time delays for different time intervals [t1, t2) of the streaking trace. An 8-cycle
streaking pulse and two 1D potentials [VC(z) and VCG(z) (z0 = 650)], have been used for the TDSE
simulations. All values in this table are given in a.u..

[t1, t2) Coulomb Coulomb-Gaussian
[−400,−200) −0.9867 −1.3855
[−200, 0) −0.9985 −1.0765
[0, 200) −1.0085 −1.0130
[200, 400] −1.0250 −1.0250

To further confirm that it is the propagation distance of the electron during the presence

of the streaking field that determines the probing distance of the attosecond streak camera, we

determine ∆ts for streaking pulses having different durations while the Gaussian potential remains

located at z0 = 650. For short streaking pulses (Ns 6 5) we again obtain the same results for ∆ts

in simulations with [Fig. 3.17(b), green solid line with circles] and without (blue dashed line with

squares) the Gaussian potential. In each of these simulations the outgoing wave packet is located

at z < z0 = 650 at the end of the streaking pulse. In contrast, as soon as the outgoing wave packet

reaches z0 for N > 5, ∆ts deviates from the result obtained in simulations without the Gaussian

potential.

According to our analysis the streaking time delay ∆ts depends on the time interval between

transition of the electron into the continuum, ti, and the end of the streaking pulse, Ts. We therefore

expect that for a long streaking pulse the time delay, extracted from different cycles of the streaking

pulse, varies, since for emission of the electron by the XUV pulse in the raising part of the streaking

pulse it will propagate over a larger distance until the streaking pulse ceases as compared to the

case when the electron is released in the trailing part of the streaking pulse.

To test our expectations we have performed quantum streaking simulations for the 1D

Coulomb potential VC(z), Eq. (3.20), and the combination of 1D Coulomb and Gaussian potentials

VCG(z), Eq. (3.38), using an 8-cycle streaking pulse. We then extract the time delay ∆ts by fitting

the streaked momentum over different intervals of the streaking pulse using Eq. (3.28). The results

are shown in Table 3.3, where negative times in the interval [t1, t2) correspond to the raising part
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of the pulse, while positive times correspond to the trailing part of the pulse.

As expected, the extracted streaking time delay depends on the interval used for the fitting

procedure. In the case of the 1D Coulomb potential the variation of the time delays over the

streaking pulse is rather small. This indicates that the major part of the time delay is accumulated

shortly after the transition of the electron into the continuum near to the nucleus, where the

potential is strongest. In contrast for the combined Coulomb-Gaussian potential we see a strong

change of the time delay for application of the XUV pulse at the beginning of the streaking pulse

as compared to the other fitting intervals. This can be understood within our interpretation of the

time delay. If the electron is ionized early, it reaches the Gaussian potential during its propagation

at large streaking pulse field strengths. According to Eq. (3.44), this part of the potential therefore

contributes significantly to the accumulated time delay. On the other hand, if the electron is ionized

later, it reaches the Gaussian potential either when the streaking pulse is weak or after the end

of the streaking pulse (i.e., for the interval [200, 400]). In these cases the effect of the Gaussian

potential on ∆ts is small or not present at all, in agreement with Eq. (3.44). The results therefore

again confirm the finite-range property of the observed time delays. Furthermore, they actually

open a possibility to use the streaking technique to image the presence and even the position of an

additional potential (here, the Gaussian potential) within a long streaking pulse.

Previously, we have considered 1D examples which already reveal important aspects of the

physics behind the streaking measurement technique. We will now investigate the role of the

polarization direction in view of the finite-range property of the time delay and the detection of a

static potential at a distance from the location of the photoemission. To this end we consider the

following 2D potentials

V1(x, y) =

 − Z√
r2+a

− V0,1e
− (r−r0)2

σ2 for |x| 6 100,

− Z√
r2+a

for |x| > 100,

(3.47)

V2(x, y) = − Z√
r2 + a

− V0,2e
− (r−r0)2

σ2
y2

r2
, (3.48)

where r =
√

x2 + y2. Both potentials are shown in Fig. 3.18 for Z = 2.0, a = 0.164, V0,1 = 0.5,
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Figure 3.18: 2D model potentials, as defined in Eq. (3.47) [(a)] and Eq. (3.48) [(b)], plotted on a
logarithmic scale as log[−V (x, y)].

V0,2 = 0.25, r0 = 140, and σ = 5.0. In our calculations the electron is initially bounded in the

ground state of the Coulomb potential with an eigenenergy of −2.0. We then used an XUV pulse

with IXUV = 1 × 1014 W/cm2, ωXUV = 68 eV, NXUV = 10, and φXUV = −π/2 and a 3-cycle 400

nm streaking pulse with Is = 1 × 1012 W/cm2 and φs = −π/2 to streak the momentum of the

photoelectron. The TDSE is solved using a space-time grid with ∆x = ∆y = 0.3, Nx = Ny = 5000,

and ∆t = 0.05 in 2D Cartesian coordinates. The polarization of ionizing and streaking pulses

are kept parallel, but the polarization direction with respect to the orientation of the potentials is

varied.

To obtain the streaking trace as a single curve as in Fig. 1.7(a), we first perform a 2D

Fourier transform of the ionizing part of the wave function at the end of each simulation for a

given time delay between the XUV and streaking pulses. This 2D momentum distribution is then

integrated over a small opening angle (±5◦) with respect to the polarization direction of the co-

aligned ionizing and streaking pulses, since the streaking effect is expected to be strongest along

the polarization direction of the streaking pulse [37]. Next, we obtain the expectation value of the

resulting momentum distribution for a given time delay τ . Finally, by repeating the calculations

for application of the XUV ionizing pulse over the central cycle of the streaking pulse we obtain

the desired streaking trace as a function of the time delay between the two pulses and determine
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the temporal offsets by comparison with the vector potential as before in the 1D cases. We have

propagated all wave packets for different XUV-streaking delays to the same distance in space,

therefore the conclusions based on the qualitative behavior of the results presented below do not

depend on the particular choice of wave function used for calculating the momentum distributions.

In Fig. 3.19(a) we present streaking time delays as a function of the number of cycles in

the streaking pulse for the 2D potential defined in Eq. (3.47). We compare results obtained for

the full potential in which the pulses are either polarized in x- (green line with stars) or in y-

direction (red line with squares) with those in which we neglect the additional Gaussian potential

at a distance from the Coulomb potential (blue line with circles). Due to the spherical symmetry

of the pure 2D Coulomb potential, in the latter case the results are independent of the choice of

the polarization direction and we therefore show the results obtained for polarization along the x-

direction only. In contrast, with the additional Gaussian potential the results strongly depend on the

polarization direction. While the streaking time delays with and without additional potential agree

with each other for polarization of the streaking field along the x-direction, they start to deviate

from N = 6 on for polarization in y-direction. The latter behavior is similar to the 1D example

studied before. The difference in the results is due to the fact that the time delay is determined

by the photoelectron dynamics in the coupled field of the atomic potential and the streaking field

along the polarization direction. For short streaking pulses the photoelectron does not reach the

location of the additional Gaussian potential and the effect of the latter is therefore negligible,

while for longer pulses the coupling effect between the streaking field and the additional Gaussian

potential becomes present. The additional model potential is present along the y-polarization but

not in x-direction in agreement with our observations for the different polarization directions of the

field.

Next, in Fig. 3.19(b) we show the results obtained for the second 2D potential, Eq. (3.48).

Time delays for the full potential and different polarizations of the co-aligned ionizing and streaking

pulses (polarization in x-direction: green line with stars, at 45◦: cyan line with crosses, and in y-

direction: red line with squares) are compared with those obtained without additional potential
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in Eq. (3.47) [(a)] and Eq. (3.48) [(b) and (c)] and polarizations of the streaking (and co-aligned
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x-direction. In (c), the original streaking time delays for the 2D potential, Eq. (3.48) as shown in
(b), have been shifted to match the result for the shortest streaking pulse for the pure 2D Coulomb
potential.
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(blue line with circles). We note that in this case the time delays do not coincide with each

other, even for short streaking pulses, for which the photoelectron wave packet does not reach the

additional potential when the streaking pulse ceases. Further analysis reveals that this discrepancy

can be explained as due to the scattering of the photoelectron at the additional potential, which

leads to different final momentum distributions as compared to that of the pure 2D Coulomb

potential case. In order to remove this scattering effect, we shift all time delay curves such that

the results match for the shortest streaking pulse. The resulting modified time delays, shown in

Fig. 3.19(c), then reveal again the finite-range property since the curves deviate for N > 5. We

furthermore observe that the degree of deviation increases as the additional potential along the

polarization direction gets stronger.

3.2.5 Influences of pedestal and additional static field

So far, we have considered streaking pulses with a sin2-envelope, which is only an ideal

assumption for theoretical convenience. In practice the shape of the streaking pulse is usually not

regular and sometimes has an oscillating tail. According to the classical analysis, Eq. (3.44), the

streaking time delay however depends on the instantaneous field strength during the propagation

of the electron in the continuum. It is therefore interesting to study if and how the shape of the

streaking field envelope influences the observed time delays. In order to study this aspect we make

use of the following pulse envelope

Eenv(βp, Tp) =

E0 sin2(πt/Ts) for 0 ≤ t ≤ Ts/2,

(1− βp)E0 sin2(πt/Ts) + βpE0 cos2[π(t− Ts/2)/(Ts + 2Tp)] for Ts/2 ≤ t ≤ Ts,

βpE0 cos2[π(t− Ts/2)/(Ts + 2Tp)] for Ts ≤ t ≤ Ts + Tp,

0 else.

(3.49)

As shown in Fig. 3.20 the corresponding field has a pedestal in the trailing part of the pulse, which

depends on the parameters βp and Tp. For βp → 0 and/or Tp → 0, Eenv equals the commonly used
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sin2-form of the envelope with duration Ts.
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Figure 3.20: Streaking field with a pedestal (red solid line): E0 = 5.34 × 10−3 (i.e., Is = 1 × 1012

W/cm2), Ts = 331, βp = 0.2, and Tp = 750. As a comparison a basic 3-cycle 800 nm streaking
pulse (blue dashed line) is also shown.

We perform quantum streaking simulations for different values of the parameters βp and Tp

for the 1D Coulomb potential VC(z) with effective charges, Z = 1.0 and Z = 3.0 respectively, and

a streaking pulse with Ts = 331 at a wavelength of 800 nm and a peak intensity of Is = 1 × 1012

W/cm2. To ionize the electron from the ground state of each potential, we have used an XUV pulse

with IXUV = 1× 1015 W/cm2, ωXUV = 60 eV (Z = 1.0) or 100 eV (Z = 3.0), NXUV = 10 (Z = 1.0)

or 15 (Z = 3.0), and φXUV = −π/2. In each of these simulations we extract the time delay by

applying the XUV over the interval [0, Ts] of the corresponding pulse. The results are shown in

Fig. 3.21 [blue solid line with circles in (a) and (c), blue solid line with squares in (b) and (d)].

We observe that the time delays obtained for the pedestals deviate from those for the sin2-

pulse shape (Tp = 0 or βp = 0) for both potentials. This is in agreement with our interpretation of

a finite-range time delay and the dependence on the instantaneous streaking field strength during

the propagation of the electron [Eq. (3.44)], since the deviation increases as βp or Tp increases.

Quantitatively, our results however further show that the deviations due to the presence of the

pedestal are rather small [e.g., about 1% for Z = 3.0 and βp = 1.0, see Fig. 3.21(d)]. This is due to

the fact that the effect of the pedestal comes into play when the electron is at rather large distances
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Figure 3.21: Streaking time delay as a function of (a) and (b) the pedestal length Tp (βp = 0.2),
and (c) and (d) the pedestal strength βp (Tp = 750). The left column shows the results for Z = 1.0,
while the right column is for Z = 3.0. The influence of an additional static field on the streaking
time delay is also present (green dashed lines with asterisks and crosses) in (a) and (b).
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Figure 3.22: Streaking time delays as a function of the strength of the additional static field for a
basic 3-cycle 800 nm streaking field for two potentials: blue solid line with circles for Z = 1.0 and
green solid line with squares for Z = 3.0.

from the nucleus, at which the Coulomb potential is weak. Thus, we expect that for an atomic-like

system pedestals and other deviations from a sin2 or Gaussian streaking pulse shape should not

have a large effect on the observed time delays.

Finally, we also investigate the influence of additional static electric fields on the attosecond

streaking time delay. In an experiment the presence of such additional fields may be used in order

to direct the photoelectrons towards a detector. We therefore include an additional static field term

Estatic in Eq. (2.32) and performed quantum streaking simulations for streaking pulses with and

without pedestal. As before, we consider two 1D Coulomb potentials VC(z) with different effective

charges of Z = 1.0 and Z = 3.0 respectively. From the results presented in Fig. 3.22 we conclude

that the presence of additional static electric fields up to field strengths of Estatic = 10−5 do not

have a significant effect on the extracted time delays. The same conclusion can be also drawn

for streaking pulses with a pedestal, which can be seen by comparing the green dashed lines (for

Estatic = 10−5, stars for Z = 1.0 and crosses for Z = 3.0) with the blue solid lines (for Estatic = 0,

circles for Z = 1.0 and squares for Z = 3.0) in Fig. 3.21 (a) and (b).



Chapter 4

Time Delays in Two-Photon Ionization

The advances in laser technology, in particular the ability to generate more and more intense

ultrashort XUV pulses, have provided us the possibilities to study high-order nonlinear processes,

such as the two-photon ionization (TPI) in XUV photon energy regime. The TPI, especially

its angular momentum distribution, has been extensively investigated both experimentally and

theoretically recently (e.g., [87–90]). These investigations provide a lot of information about the TPI

process, including the phase shifts and the dipole matrix elements for individual partial waves [88,

89]. To continue and also extend our previous work, we however want to study this process from

a different perspective, namely time resolving the TPI. Similar to what has been done for single-

photon ionization (SPI), we propose to use the attosecond streaking technique to study the TPI

and retrieve the instant of transition into the continuum, which would be possible based on our

previous understanding of the propagation time delay. This chapter is organized as follows: First,

we present numerical results of streaking time delays obtained for TPI from numerical simulations

of streaking scenarios. By properly accounting for the measurement induced time delay, i.e., the

propagation time delay, we are able to retrieve the absorption time delay, i.e., the instant of

ionization with respect to the center of the XUV pulse, for both resonant and nonresonant TPI

as well as its dependence on XUV laser parameters. Next, to further support our interpretation

of the absorption time delay, we use two independent studies, namely the trajectory analysis and

the phase analysis, to reproduce our numerical results for the absorption time delay. Finally, we

review some of our previous work on two-photon coherent control that may relate to the potential
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applications of the TPI delay.

4.1 Time delays extracted in two-photon ionization using streak camera1

The application of the attosecond streaking technique in studying SPI process has already

given us interesting time information about this process and also initiated many fruitful discussions

about the origin of the time delay measured in the experiment. We therefore want to further apply

this technique to some more complex ultrafast processes, such as the resonant and nonresonant TPI,

in which “resonant” means that the central frequency of the XUV ionizing pulse is in resonance with

the energy difference of the initial ground state and one intermediate state. We will first report our

numerical results of time delays extracted in simulations of the streaking experiment, from which we

identify an apparent difference of the streaking time delay dependence on the XUV pulse duration

for these two types of TPI (Fig. 4.1). We then use our previously proposed classical approaches to

calculate the propagation time delay, which needs to be subtracted from the streaking time delay

to obtain the real photonionization instant with respect to the center of the XUV pulse. We are

then finally able to show that the nonresonant TPI occurs at the center of the XUV pulse while

the resonant TPI occurs with a positive delay with respect to the center and this delay changes

linearly with the duration of the XUV pulse.

4.1.1 Streaking time delay

As before, we use the standard Crank-Nicolson method to numerically solve the TDSE on a

grid in space and time,

i
∂Ψ(r, t)

∂t
=

[
p2

2
+ V (r) + (EXUV(t) + Es(t)) · r

]
Ψ(r, t), (4.1)

where p is the momentum operator and E(t) = E0 sin2(πt/T ) cos(ωt + φ)ẑ for both laser fields

with peak amplitude E0, pulse duration T , central frequency ω, and carrier-envelope phase φ of

the respective field. In all simulations we propagate the wave function on the grid for a sufficiently
1 The results of this section are presented in J. Su, H. Ni, A. Jaroń-Becker, and A. Becker, Time Delays in

Two-Photon Ionization, submitted.
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long time until both laser pulses cease and the ionizing wave packet can be clearly separated from

the bound wave function. We also confirm that the outgoing wave packets stay on the grid and

do not reach its boundaries. To obtain the momentum distribution, we either project the ionizing

wave packet onto the continuum eigenstates of the potential, or perform a Fourier transform. For

the latter choice, we have propagated the wave packet far enough from the core part such that the

error due to the planewave approximation is negligible.

We simulate the two-photon ionization process dressed by a streaking field for a helium (He)

atom in the 3D Cylindrical coordinates as well as a 1D Coulomb model potential. The latter

one allows us to systematically study the dependence of the measured time delays on the laser

parameters. For the 3D He atom, due to its azimuthal symmetry, we are able to solve this problem

in the 2D (ρ, z) coordinates. With spatial steps of ∆ρ = ∆z = 0.2 and a time step of ∆t = 0.02, we

obtain eigenenergies of the three lowest states as E1s = −0.90, E2s = −0.16, and E2p = −0.13, using

the single-active-electron model potential introduced in Ref. [71]. To ionize the electron initially

bound in 1s state, we choose the central frequency of the XUV field to be ωXUV = 15.63 and 21.07

eV, with the latter one corresponding to the energy difference between 1s and 2p states. The 1D

Coulomb potential is chosen to have the form of V (x) = −Z/
√

x2 + a, with Z = 3.0 and a = 0.15,

which gives the energies of the three lowest states as E0 = −5.32, E1 = −2.31, and E2 = −1.30,

for ∆x = 0.05 and ∆t = 0.01. These three states are chosen to be well-separated such that usually

only the first excited state is involved in the resonant TPI. Accordingly, we choose ωXUV = 95.62

and 81.81 eV, corresponding to nonresonant and resonant TPI processes. Other parameters for

the XUV pulse are the same for the two potentials: IXUV = 1.0× 1014 (nonresonant) or 1.0× 1013

W/cm2 (resonant), and φXUV = −π/2. To streak the photoelectron in the continuum, we have

used a 3-cycle 2400 nm streaking field with Is = 1.0× 1011 W/cm2 and φs = −π/2.

Fig. 4.2 presents our numerical results of time delays extracted from streaking traces measured

in the streaking experiment [91]. In each subfigure we show the change of the streaking time delay as

a function of the XUV pulse duration for resonant (green solid lines with squares) and nonresonant

(blue solid lines with circles) ionization. We clearly see that the changing trends of the two processes
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Figure 4.1: Schematic diagram for obtaining time delays in two-photon ionization (TPI) using
attosecond streaking technique. An electron initially bound in the ground state |g〉 is ionized by
absorbing two photons from the XUV pulse either through a resonant state |e〉 (resonant TPI)
or not (nonresonant TPI), and then streaked by the long wavelength field in the continuum. By
changing the relative delay between the XUV and streaking pulses, one obtains a streaking trace,
from which a temporal shift (or streaking time delay ∆ts) can be extracted. After accounting for
the propagation time delay ∆tprop that the electron accumulates in the continuum, we are able to
access the absorption time delay ∆tabs of the TPI process.
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Figure 4.2: Streaking time delay as a function of XUV pulse duration for (a) 1D Coulomb and
(b) 3D He potentials. Three ionization processes are considered: nonresonant TPI (blue solid lines
with circles), resonant TPI (green solid lines with squares), and one-photon ionization (red solid
lines with asterisks). Laser parameters are given in the text.
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are different: for the resonant one the time delay increases with XUV duration, however, in the case

of the nonresonant one it remains almost unchanged. Even though the streaking time delay may

have some other contributions, the significant difference between the trends of the two delay curves

already strongly indicates that the intermediate state plays an important role in the temporal

dynamics of the TPI process. It appears that, for resonant TPI, after absorption of the first

photon, the electron remains in the intermediate state for some time, before it absorbs the second

photon and then transfers into the continuum. As we will show below, for long XUV pulses (e.g.,

TXUV > 150 for 3D He atom), the time the electron spends in the intermediate state is proportional

to the XUV duration. Moreover, this difference between resonant and nonresonant TPI appears to

be an universal phenomenon, since it occurs in both 3D He atom and 1D Coulomb potential.

To clearly distinguish our new observations from those in previous well-studied SPI process

that also uses attosecond streaking technique, we also show the dependence of the streaking time

delay (red solid lines with asterisks) on the XUV duration for SPI that is induced by a 2-ωXUV

(nonresonant frequency) XUV pulse. The intensity of the XUV pulse is set to be IXUV = 1.0×1014

W/cm2 for 1D Coulomb, and IXUV = 1.0× 1012 W/cm2 for 3D He, both of which guarantee that

the photoionization process occurs in the perturbative intensity regime. Similar to the nonresonant

TPI process, the SPI time delay remains almost unchanged as the XUV pulse duration increases.

More interestingly, for the 1D Coulomb potential [Fig. 4.2(a)] the streaking time delay of SPI is

exactly the same as that of the nonresonant TPI when the duration of the XUV pulse is long

enough (e.g., TXUV > 50). This implies that the two-photon absorption occurs instantaneously as

the one-photon absorption, which occurs most likely at the center of the XUV pulse as it has been

shown in Chapter 3. However, in the 3D case [Fig. 4.2(b)], these two time delays are very similar

but not exactly equivalent. This may relate to the fact that the photoelectrons have different

angular momenta in the continuum (p wave for SPI, and a mixture of s and d waves for TPI). It

is well-known that different final states in the continuum result in different streaking time delays

(e.g., [37, 58]).
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4.1.2 Propagation time delay

It has been well-studied that the propagation of the photoelectron in the combined field of

the streaking pulse and the atomic potential can induce an extra shift in its final momentum, which

results in an temporal shift (or time delay) in the obtained streaking trace (e.g., [37, 38, 81]). Indeed,

one needs to account for this propagation time delay in order to obtain the instant of photoemission

as the instant at which the electron is set free in the continuum after the photon absorption.

Therefore, to extract a real time delay of a photoabsorption process from a streaking experiment, it

is necessary to properly account for the propagation time delay, which is actually a measurement-

induced delay. As discussed before [37, 81, 85, 92] for the SPI process, this propagation time delay

can be often well-reproduced by classical trajectory calculations. Here we can use the same idea to

obtain the propagation time delays for TPI, because once the electron is in the continuum it does

not matter if it is ionized via a one- or two-photon process. For our 1D Coulomb case, we use the

classical method introduced in Ref. [81], in which we assume the electron is initially at x = 0 and

simulate its propagation in the combined Coulomb-streaking field by solving 1D Newton’s equation

directly. By fitting the classical streaking trace to the original streaking formula, we obtain the

propagation time delays, which are shown as green solid lines with squares in Fig. 4.3(a) and (c).

For the 3D He atom case, we use the classical-trajectory Monte Carlo method introduced in Ref. [37]

in order to take into account both the distribution of the initial position of the electron in the bound

state and the final shape of the ionized wave packets in the continuum. To be clear, we have sampled

the initial position of the electron from the probability distribution of the initial eigenstate, and

chosen the distribution of the initial momentum according to the angular shape of the wave packet

(either s or d wave). The propagation time delays from different waves are added up coherently

and are also shown as green solid lines with squares in Fig. 4.3(b) and (d). One may note that,

for both 1D and 3D models, the propagation time delays have very weak dependence on the XUV

duration, which is expected, since the final electron energy that determines the propagation time

delay barely changes with the XUV duration.
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Figure 4.3: Absorption time delay (red solid lines with asterisks) as a function of XUV pulse
duration for nonresonant TPI in 1D Coulomb [(a)] and 3D He [(b)] potentials, and resonant TPI
in 1D Coulomb [(c)] and 3D He [(d)] potentials. Also shown are the streaking time delays (blue
solid lines with circles) and the propagation time delays (green solid lines with squares).
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Table 4.1: Time delays for different parameters of the streaking field. We consider resonant TPI in
the 1D Coulomb potential streaked by a 3-cycle laser pulse. XUV laser parameters are: ωXUV =
81.81 eV, NXUV = 45, IXUV = 1.0× 1013 W/cm2, and φXUV = −π/2.

λs(nm) Is(W/cm2) ∆ts(a.u.) ∆tabs(a.u.)
2400 1.0× 1011 5.65 10.34
3200 1.0× 1011 5.15 10.34
4800 1.0× 1011 4.41 10.33
4800 1.0× 1010 4.45 10.36

4.1.3 Absorption time delay

Now we are able to retrieve the absorption time delay (red solid lines with asterisks in Fig. 4.3),

a real time delay in the photoabsorption process, after properly accounting for the propagation time

delay. For long XUV pulses used in the nonresonant TPI, one sees that the absorption time delay

is exactly zero for the 1D simulations and relatively close to zero for the 3D simulations. This

is consistant with our previous finding that the nonresonant TPI occurs instantaneously as SPI,

which means both processes occur at the center of the XUV, i.e., without time delays. In contrast,

the electron appears to take a nonzero time to absorb two photons before it is set free to the

continuum in resonant TPI. Moreover, the photon absorption time changes linearly with the XUV

duration once the pulse is long enough. One may explain this difference by understanding the

TPI process in three very simple steps: First, the electron in the ground state is excited to the

excited state by absorbing one photon from the XUV field. Then it spends some time staying in

the excited state. Finally, it absorbs another photon and is set free to the continuum. Since there

is no intermediate state for the electron to stay for nonresonant TPI, it has to absorb two photons

simultaneously, which thus makes no difference to the case of SPI. Here we have to point out that

using the attosecond streaking technique we only have the time information when the electron is set

free in the continuum, i.e., the instant when the second photon is absorbed. The time information

about the absorption of the first photon is not available based on the present technique even for

the nonresonant TPI.

In order to further support our interpretation, it is of our interest to confirm that the ab-
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Figure 4.4: Absorption time delay (red dash-dotted lines) as a function of XUV pulse duration for
resonant TPI in 1D Coulomb potential for different streaking parameters (diamonds: λs = 2400
nm and Is = 1.0 × 1012 W/cm2, asterisks: λs = 3200 nm and Is = 1.0 × 1012 W/cm2, squares:
λs = 4800 nm and Is = 1.0×1012 W/cm2, and crosses: λs = 4800 nm and Is = 1.0×1011 W/cm2).
Also shown are the streaking time delays (blue solid lines) and the propagation time delays (green
dashed lines).
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Figure 4.5: Excitation probability as a function of the duration of the XUV pulse for the nonresonant
TPI in the 1D Coulomb potential. We have used two methods to calculate the excitation probability
in the first excited state: the numerical solution of TDSE (black open circles) and the perturbation
theory (red solid line).
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sorption time delay we obtained for the TPI process are independent of the measurement, i.e.,

remains unchanged as the streaking pulse parameters change. In Fig. 4.4, as expected, we see that

the absorption time delays (red dashed lines) are identically for different streaking parameters, al-

though the streaking time delays measured directly from the experiment as well as the propagation

time delays are quite different in particular when the wavelength of the streaking field changes.

This again implies that correctly accounting for the propagation time delay is crucial for obtaining

a solid absorption time delay. To clearly show this measurement independence numerically, we

further present values of the absorption time delays in Table 4.1 for NXUV = 45 (TXUV = 94.05),

from which one sees that the deviation is within 1 as, i.e., a relative difference of 0.3%.

Before we further analyze our results, we want to explain some subtle details in our results,

such as the small oscillation in Fig. 4.3(a) and the nonlinear behavior in Fig. 4.3(d) when the

duration of the XUV pulse is small. These behaviors can be related to excitations to the excited

states. When the XUV pulse is short in time domain, it has a broad bandwidth in frequency domain,

which means certain excited states within the energy bandwidth can be involved in the nonresonant

TPI. Thus, the nonresonant TPI has a significant resonant contribution as in Fig. 4.3(a) or more

than one excited state is involved in the resonant TPI. Each of these may result in a deviation

from the expected dependence of the absorption time delay on the XUV pulse duration. As an

example, a significant excitation probability in the first excited state of the 1D Coulomb potential

is observed when the XUV pulse is short as shown in Fig. 4.5(a), where we have used results from

both the TDSE solution and the perturbation theory. We further note that the oscillations in this

figure are due to the oscillating structure of the frequency spectrum of the sin2 XUV field.

4.2 Alternative studies of absorption time delays in two-photon ionization

In the last section, we have shown how one can extract the absorption time delay of the TPI

process using the attosecond streak camera and have also studied its dependence on the duration

of the XUV pulse. In particular, the linear dependence of the absorption time delay on the XUV

pulse duration for the resonant TPI appears to be very useful in potential control applications due
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to this simple linear relation. In order to further confirm our new findings and also provide some

more understanding of these new results, we make use of two different methods in this section,

namely the trajectory analysis and the phase derivative analysis, both of which have already been

introduced in the study of the SPI process in section 3.1.3.

4.2.1 Trajectory analysis

It has been shown that the trajectory of the photoelectron in the continuum contains useful

time information about the photoabsorption process (e.g., [43, 44, 46, 52]). As introduced before,

a typical way to obtain the WS time delay for the SPI process from the trajectory is to extrapolate

the linear part of the trajectory back to the time axis, where the trajectory can be obtained by

solving the TDSE numerically. The interception of this extrapolated line with the time axis is the

desired time delay. However, as emphasized before, this approach only works for ionization from a

short-range potential, while for a long-range potential such as the Coulomb potential the nonlinear

component in the trajectory makes it impossible to fit the trajectory to a linear line even for the

part that is far away from the origin.

For the systems considered in our TPI analysis, e.g., the 1D Coulomb potential, it therefore

appears on the first view impossible to make use of the trajectory analysis to obtain the time delay

because of the long-range property of the Coulomb potential. However, by noting the fact that each

TPI trajectory has a corresponding SPI trajectory that has the same long-range behavior if they

have the same final energy, we can obtain the time delay of the TPI trajectory with respect to the

SPI trajectory by treating the latter one as a reference instead of the free particle trajectory. Then,

the previously mentioned divergence problem of the WS time delay for the Coulomb potential does

not occur since the divergent contributions of the two trajectories cancel out. A similar idea has

been used to understand the physical meaning of the energy derivative of the Coulomb phase shift

in Ref. [93], where the quantum and classical scattering trajectories are compared.

To illustrate this idea, we consider the TPI and SPI processes in the 1D Coulomb potential

with Z = 3.0 and a = 0.15, the same that we used in the last section. As usual the TDSE that
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Figure 4.6: Trajectory analysis of time delays in TPI. We have shown the trajectories of the
photoelectron for three processes [(a) and (b), blue lines for TPI, green lines for original SPI, and
red lines for adjusted SPI] and the time delay as a function of the position of the photoelectron [(c)
and (d), green lines for original SPI, red lines for adjusted SPI]. The trajectory is calculated using
the expectation value 〈x〉 of the electron position as a function of time by solving TDSE. The time
delay is obtained as the time difference for the same 〈x〉 between the TPI and SPI trajectories. We
have considered both resonant (left column) and nonresonant (right column) TPI. Here the original
SPI means the SPI process initiated by an XUV pulse with ωSPI = 2ωTPI while the adjusted SPI
stands for using an XUV pulse with ωSPI = 2ωTPI + ∆ω, which makes the final energy of the SPI
wave packet exactly the same as that of the TPI wave packet. The inset in (a) shows how we obtain
the time delay between the TPI and SPI trajectories.
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describes the interaction of the electron with the XUV pulse in length gauge is numerically solved

on a space-time grid. When the XUV pulse ceases and the ionizing wave packet can be clearly

separated from the bound wave function, we are able to obtain the trajectory of the photoelectron,

i.e., the expectation value 〈x〉 of the position of the ionizing wave packet as a function of time. In

order to generate the corresponding SPI trajectory for a TPI process, we use an XUV pulse with a

doubled central frequency to ionize the electron from the ground state, i.e., ωSPI = 2ωTPI. We choose

the pulse duration of the XUV pulses for TPI and SPI to be equal, which yields NSPI = 2NTPI,

and the intensities of the XUV pulses are the same as given in the last section for the individual

cases. Once we have obtained the trajectories, the time delay between the TPI and SPI processes

is given by the time difference between the two trajectories for the same electron position 〈x〉.

The trajectories of the TPI (blue lines) and SPI (green lines) are presented in the upper panel

of Fig. 4.6 for (a) for the nonresonant TPI with NTPI = 45 (TTPI = 94.05) and (b) the resonant

TPI with NTPI = 50 (TTPI = 89.40). Since the time delay is small (a few a.u.) as compared to the

time scale (a few thousands a.u.) on the horizontal axis, we use a small inset in (a) to show the

definition of the time delay between TPI and SPI. To analyze this time delay, we show the time

delay (green lines) as a function of electron position 〈x〉 in the lower panel of Fig. 4.6 with (c) and

(d) for the resonant and nonresonant TPI, respectively. The time delay does not remain constant

as 〈x〉 changes, which means that measuring the time delay at different positions of the electron

gives with different results. Of course, such a time delay is not well-defined and hence cannot be

useful to support our previous results obtained in streaking scenarios. However, the linear change

of the time delay with 〈x〉 is caused by the fact that the final energies of the TPI and SPI are not

exactly equivalent for finite duration XUV pulses by choosing ωSPI = 2ωTPI. Indeed, the relation

for the expectation value of the final energy of the photoelectron 〈Ef 〉 = NωXUV − Ip, is strictly

valid only in the limit of an infinite long pulse, for which its energy spectrum is a delta function.

For a typical attosecond XUV pulse this relation is only an approximation, which may sometimes

cause on the attosecond time scale large errors, e.g., for the present time delay study.

To clearly show the impact of this error on the time delay, let us recall the analytical formula
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for the ionizing wave function of the photoelectron in a Coulomb potential (e.g., [92, 93]), which

for the present 1D Coulomb potential is

Ψ(x, t) ∝ exp
[
ikx− i

k2

2
t + i

Z ln(2kx)
k

+ iϕc(k) + iϕabs(k)
]

(4.2)

where k is the momentum of the electron, ϕc is the 1D Coulomb scattering phase shift, and ϕabs is

the phase acquired by the electron in the photoabsorption process that is in general not present for

a common scattering process. Using the stationary phase approximation, similar to our trajectory

analysis for SPI, we obtain the trajectory for the photoelectron in a photonionization process as

t(x) =
x

k0
− Z ln(2k0x)

k3
0

+
dϕc

dE

∣∣∣∣
E0

+
dϕabs

dE

∣∣∣∣
E0

, (4.3)

where k0 is the expectation value of the final asymptotic momentum of the photoelectron and

E0 = k2
0/2. Here the second term is a logarithmic term that changes slowly with x, which is

however responsible for the divergence property of the WS time delay for the long-range Coulomb

potential. As compared with the corresponding free-particle trajectory, the sum of the second

and third terms gives the time delay the photoelectron accumulates during its propagation in the

continuum after the photoabsorption, while the last term is the time delay acquired by the electron

in the photoabsorption process. We want to emphasize that Eq. (4.3) is general for both SPI and

TPI with the only difference is that the absorption time delay, i.e., the last term, is zero for SPI.

Considering the time delay between the TPI and SPI trajectories, we get

∆t =

[
x

kTPI
0

− Z ln(2kTPI
0 x)

(kTPI
0 )3

+
dϕc

dE

∣∣∣∣
ETPI

0

+
dϕabs

dE

∣∣∣∣
ETPI

0

]
−

[
x

kSPI
0

− Z ln(2kSPI
0 x)

(kSPI
0 )3

+
dϕc

dE

∣∣∣∣
ESPI

0

]
,

(4.4)

where we have dropped the absorption time delay term for SPI since it is zero. By assuming that

kSPI
0 = kTPI

0 + ∆k = k0 + ∆k and ∆k is sufficiently small, we can further simplify Eq. (4.4) as

∆t ' ∆k

k2
0

x− 3∆k

k4
0

Z ln(2k0x) +
dϕabs

dE

∣∣∣∣
E0

, (4.5)

which contains a linear term in x that is responsible for the linear trend of the green lines in

Fig. 4.6(c) and (d). In this simplification step we have also assumed that the third terms in each
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Figure 4.7: Time delay obtained from trajectory analysis as a function of XUV pulse duration.
We have used two ways of calculating the time delays from the trajectories: one relies on fitting
the original time delay curve [e.g., green lines in Fig. 4.6(c) and (d)] to Eq. (4.5) (green lines with
squares), the other one relates the time delay to the constant delay line [e.g., red lines in Fig. 4.6(c)
and (d)] (red lines with asterisks). Results for both nonresonant [(a)] and resonant [(b)] TPI are
shown. Also shown are the absorption time delays (blue lines with open circles) of TPI extracted
from streaking scenarios.
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trajectory, i.e., the energy derivative of the scattering phase shift, cancel out. While such an

assumption is valid for the 1D Coulomb potential, one needs to take special care for the more

general 3D case because different ionization processes will generally result in different final angular

momenta (p wave for SPI, s and d waves for TPI) and thus in different scattering phase shifts even

though their final momenta are close. In the limit of ∆k → 0, Eq. (4.5) reveals that the time delay

between the TPI and SPI processes is given by

∆t =
dϕabs

dE

∣∣∣∣
E0

. (4.6)

Now, it is apparent that there are two ways to obtain the time delay between TPI and SPI

from the trajectory calculation: One is to extract the last constant term in Eq. (4.5) by fitting

the time delay curves [green lines in Fig. 4.6(c) and (d)] to Eq. (4.5). The other one is to satisfy

the condition of ∆k = 0 by changing the frequency ωSPI of the SPI XUV pulse. Then the time

delay is directly available from the constant time delay curve [red lines in Fig. 4.6(c) and (d)]. In

Fig. 4.7 we show results for the time delay obtained using these two methods for different XUV

pulse durations. As expected, results from these two methods are in very good agreement for both

resonant and nonresonant TPI processes. More importantly, we find that both results also agree

well with the absorption time delays (blue lines with circles in Fig. 4.7) extracted from streaking

scenarios for TPI. This agreement is not surprising since our present time delay and the previous

extracted absorption time delay have the same reference point, namely the SPI process, which

occurs at the center of the XUV pulse that is the reference point of the absorption time delay. The

trajectory analysis presented here is a completely independent study of the time delay even without

the presence of the streaking field and therefore is another strong support of our new findings.

4.2.2 Phase derivative analysis

As widely discussed (e.g., [40, 41]), the time delay in a process can often be related to

the energy derivative of the phase that the particle acquires during this process (also see our

trajectory analysis in the last subsection). We therefore like to make use of this idea to seek
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another independent way to confirm and understand our new findings. Based on second-order

time-dependent perturbation theory, the complex amplitude cf of the ionizing wave packet in the

continuum state |f〉 ionized from initial state |i〉 after the XUV pulse ceases can be written as [89],

cf =
∑
m

µfmµmi

∫ T

0
ei∆fmtE(t)

(∫ t

0
ei∆mit

′
E(t′)dt′

)
dt, (4.7)

where T is the duration of XUV pulse E(t), µjk and ∆jk = Ej−Ek are the dipole transition matrix

element and the energy difference between states |j〉 and |k〉, respectively. For nonresonant TPI, if

all resonant states are out of the XUV bandwidth, Eq. (4.7) can be further simplified as [94, 95],

cf ∝ af =
∫ T

0
ei∆fitE2(t)dt, (4.8)

where we have dropped the dipole matrix element since its phase is related to the scattering (or

propagation) of the electron in the continuum, which is not of our interest. For resonant TPI, we

can further rewrite Eq. (4.7) as,

cf ∝ af =
∫ T

0
ei∆frtE(t)

(∫ t

0
ei∆rit

′
E(t′)dt′

)
dt, (4.9)

by assuming only state |r〉 is within the field bandwidth. Now it is clear that the absorption time

delay can be related to the phase of the complex amplitude as (e.g., [38, 44]),

∆tabs =
d

dE
[arg(af )]− T

2
, (4.10)

where we need to substract T/2 because our pulse starts from 0 instead of −T/2.

For a sin2 XUV profile considered in our simulations, Eq. (4.10) can be evaluated numerically.

As illustrated in Fig. 4.8, the agreement between absorption time delays extracted from streaking

measurement and those based on the phase analysis is acceptable. In particular, in the case of

nonresonant TPI, these two sets of time delays are exactly identical (all equal zero) for a long XUV

pulse [e.g., T > 60 in Fig. 4.8(a)]. Furthermore, the perturbation theory also well predicts the

linear dependence of the time delay on the XUV duration for the resonant case [see Fig. 4.8(b)].

These successes confirm our expectation that the absorption time delay is directly related to the

energy derivative of the phase that the electron acquires during the photon absorption process.
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Figure 4.8: Comparison of absorption time delays from different methods: numerical streaking
experiment (blue dashed lines with circles) and phase analysis (red solid lines). As before, both
nonresonant [(a)] and resonant [(b)] TPI processes are studied.
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And, indeed, this phase information is accessible using the attosecond streaking technique once

the propagation effect is correctly accounted for. More interestingly, for resonant TPI, the linear

dependence of the time delay on the XUV duration actually opens the possibility to use the duration

of the ionizing pulse to control the emission time of the photoelectron, which may significantly

influence the dynamics of the subsequent processes in a chemical reaction.

4.3 Control of two-photon processes2

In the last two sections, we have studied the TPI process in atoms and reported and analyzed

new findings about the time delay in such a process. These findings, in particular the linear depen-

dence of the absorption time delay on the XUV pulse duration, provide a new way of controlling

electron dynamics in physical and chemical interactions. Similar to this idea, at the beginning of

my Ph.D. studies, we have also done some work about coherent control of nonresonant two-photon

excitation (TPE) to bound and dissociative states in molecules [96]. Hence in this section we like

to briefly review the results of this project. The basic idea of this coherent control work is to utilize

a train of laser pulses that is phase modulated in its spectrum using the pulse shaping technique to

either enhance, or weaken, or even eliminate transitions between certain states in a molecule. We

want to emphasize that this work may not directly relate to the previous time delay work, however,

it may give us some intuitive ideas and inspirations about the application of the new findings in

TPI. The section is organized as follows: First we like to give a brief introduction to coherent

control by introducing some recent work in this area. We then turn to our work by discussing the

theoretical models used for describing dissociative and bound states of a molecule in the second

subsection. Finally, as the major part of this work, the control of excitations to dissociative and

bound states in the model potentials are investigated with the help of numerical simulations.
2 The results of this section are presented in J. Su, S. H. Chen, A. Jaroń-Becker, and A. Becker, Phys. Rev. A

84, 065402 (2011).
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4.3.1 Short introduction to coherent control

Initial ideas of quantum coherent control were based on quantum path interferences using

phase-controlled laser fields [97] and pump-dump (pump-probe) schemes using sequences of laser

pulses with tunable delays [98, 99]. At first glance the former technique makes use of coherence

properties of light fields in the frequency domain while the latter takes advantage of the temporal

evolution of a process. However, converting the respective analysis from one domain to the other

often adds a complementary view on a particular control scheme [100]. Recent development of

femtosecond pulse shaping techniques extends the variety of schemes in quantum coherent control

(for a review, see [101]). Since pulse shaping is usually achieved by manipulating amplitude, phase,

and polarization of the frequency spectrum of a laser pulse, applications to coherent control of

transitions in atoms and molecules is often analyzed in the frequency domain based on the multi-

pathway interference concept. For example, destructive and constructive interference among various

pathways can tune few-photon absorption probabilities to zero or maximum by modification of the

spectral phase of the pulse (e.g., [94, 102–105]). In particular, the experiment in Ref. [94] has

demonstrated a way to control the nonresonant TPE probability between two states in a caesium

atom with a femtosecond pulse train that is tailored using the pulse shaping technique.

Theoretically, Chen et al. [106] recently investigated some of these control schemes based

on spectral phase modulations from the complementary time-dependent perspective via numerical

solutions of the TDSE of an atom. The analysis shows that TPE probabilities in an (hydrogen)

atom are controlled via destructive or constructive interferences between the amplitudes induced

by consecutive subpulses in a pulse train. The results also provide insights into the control of

atomic (2+1)-photon ionization processes. Here, we like to supplement these previous theoretical

studies by the time-dependent analysis of the control of different types of two-photon transitions

in molecules. In particular, we consider two different types of nonresonant excitations, namely

bound-to-bound state and bound-to-dissociative state transitions.
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Figure 4.9: Potential energy curves of the ground and lowest lying excited states of our 2D molecular
model systems: (a) model with a dissociative excited state [Eq. (4.11)] and (b) model with bound
excited states [Eq. (4.12)]. We are interested in controlling excitations between states of the blue
and red curves.

4.3.2 Theoretical models

To study the control of excitations in molecules, we make use of two models describing the

interaction of a SAE diatomic molecule with an external field. It is well known that the first excited

state (2pσu) of the H+
2 molecule is a dissociative state. The following 2D model, which accounts

for the coupled electronic and nuclear dynamics, in a SAE diatomic molecule has been frequently

applied in simulations of H+
2 interacting with a laser field. The field-free Hamiltonian is given by

H1(R, z) =
p2

R

2M
+

p2
z

2m
− 1√

(z + R/2)2 + a1

− 1√
(z −R/2)2 + a2

+
1√

R2 + b
, (4.11)

where M and m are the reduced masses of the nuclei and the electron, respectively. R is the

internuclear distance, z is the electron position with respect to the center of mass of the nuclei,

and a1, a2 as well as b are soft-core Coulomb parameters. In the case of H+
2 one chooses a1 = a2.

However, the symmetry of the corresponding Hamiltonian prohibits a two-photon transition from

the electronic ground state to the first dissociative state.

For our goal to study the coherent control of TPE processes, one could instead consider

transitions to the second dissociative state. But, in view of the steep decline of the potential energy

curve of the first excited state as a function of the internuclear distance, (dominant) one-photon
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transitions to the first excited state cannot be neglected for an ultrashort laser pulse having a

broad bandwidth. As an alternative, we choose to study a molecular model system with a1 6= a2 to

break the symmetry of the Hamiltonian. In our studies, we arbitrarily choose a1 = 1.0, a2 = 2.0,

and b = 0.03. The adiabatic potential energy curves for the ground and first excited state of this

system, calculated using ITP of the corresponding TDSE, are shown in Fig. 4.9(a). The equilibrium

distance of the two protons is R0 = 3.36, and the energy gap between the states at R0 is ∆E = 6.88

eV. The curve of the first excited state has a shallow well, which however does not influence the

dissociative character of the state for wave packets pumped from the initial ground state close to

the equilibrium distance.

To study transitions between bound states, we use a molecular model system, in which the

Coulomb repulsion 1/R is replaced by a Morse potential in the Hamiltonian, i.e.,

H2(R, z) =
p2

R

2M
+

p2
z

2m
− 1√

(z + R/2)2 + a1

− 1√
(z −R/2)2 + a2

+D
[
1− e−λ(R−R0)

]2
−D, (4.12)

where D is the depth of the well, R0 is the equilibrium distance, λ =
√

k/2D with k is the bond

force constant, and all the other parameters are the same defined as before. Using a1 = a2 = 4.0,

D = 0.4, λ = 0.5, and R0 = 2.0, the potential energy curves of the ground and first two excited

states, shown in Fig. 4.9(b), are well separated. We consider nonresonant two-photon transitions to

the second excited state, which is possible in the present model since the energy difference between

the ground and the first excited states clearly exceeds the corresponding photon energy required

for the two-photon transition.

To investigate the time evolution of the TPE process, we consider the corresponding TDSE of

the molecular model systems interacting with a laser pulse linearly polarized along the internuclear

axis (j = 1, 2),

i
∂

∂t
Ψ(R, z; t) = [Hj(R, z) + E(t)z] Ψ(R, z; t), (4.13)

which is solved with ∆R = 0.03, ∆z = 0.2, and ∆t = 0.01 using our common grid method. The

population in the ground and excited bound states are obtained by projection on the respective field-

free states, which for the laser parameters used in the present study is a reasonable approximation
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even during the interaction with the external field. In the case of the excited dissociative state the

population is calculated as Pexc = 1−
n∑

ν=0
Pν , where ν denotes the vibrational mode in the electronic

ground state and n is the total number of the vibrational states considered. The ionization and

dissociation probabilities are calculated as the outgoing probability flux at the respective boundaries

of the grid. At the edges we use cos1/6 mask functions to suppress reflections. We have checked

that the results are not influenced by remaining small inaccuracies due to the boundary conditions.

We use a grid of NR × Nz = 600 × 200 points (NR × Nz = 400 × 600 points) for the dissociative

(bound) state model.

4.3.3 Control of excitation to dissociative state

First, we investigate control of TPE from a bound to a dissociative molecular state. To this

end, we consider the dissociative state model and a spectral phase modulated laser field of the form

E
(ω

2
+ Ω

)
= E0sech

(
1.76Ω
∆ω

)
exp [iα cos(βΩ + φ)] . (4.14)

Such fields have been used recently by Silberberg and coworkers [94] to study the control of

two-photon transitions in atoms. For our numerical simulations we choose the central frequency

ω/2 = 3.44 eV (half of the energy gap of the desired transition), the bandwidth ∆ω = 0.2 eV,

the modulation depth α = 1.2024, and the modulation frequency β = 35 fs, while the modulation

phase φ is varied. A Fourier transform (FT) of these fields yields a pulse train in the temporal

domain [e.g., see Fig. 4.10(a)]. In our studies we fix the (overall) peak intensity in the pulse train

to I0 = 1× 1012 W/cm2, which for the present frequencies is within the perturbation regime.

In the atomic case it was shown [95] that using φ = 0 a dark pulse is formed and the final

population in the excited state at the end of the pulse train vanishes. On the other hand the

excitation probability was found to be maximized for pulse with φ = π/2, which is therefore called

a bright pulse. In contrast, we find that for the two-photon transition to a dissociative state in the

present molecular model system that the final excitation probability is independent of the specific

value of φ, as exemplified by the results for φ = 0 (left column) and π/2 (right column) in Fig. 4.10.
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Figure 4.10: Two-photon coherent control of excitation to a dissociative molecular state. The upper
panels show that the electric field distribution as a function of time [i.e., the Fourier transform of
Eq. (4.14)] for (a) φ = 0 and (b) φ = π/2. The insets show the central field cycle and the carrier-
envelope phase (CEP) of each subpulse. In the lower panels the time evolution of the probabilities
in the first excited state (blue solid line) is presented for (c) φ = 0 and (d) φ = π/2. We also show
the dissociation probabilities (red dashed lines).
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Figure 4.11: Same as Fig. 4.10, but for a molecular model system with fixed internuclear distance
R = R0.
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The excitation probability increases stepwise as a function of time with the interaction of every

subpulse in the train. Moreover, the final excitation probability is equal to the probability for

dissociation at the end of the molecular model system (red dashed lines). This indicates it is the

nuclear dynamics that causes the breakdown of the coherent control scheme.

In order to confirm this assumption, we perform another series of calculations in which we

fixed the internuclear distance R = R0 in Eq. (4.11) to suppress any nuclear dynamics but keep all

other parameters unchanged except the central frequency ω/2 = 3.48 eV. The central frequency is

slightly increased since the ground state energy of the fixed nuclei model is lower than that of the

2D model. The results of the fixed nuclei model for φ = 0 (Fig. 4.11, left column) and φ = π/2

(Fig. 4.11, right column) agree with the findings for the atomic case. For φ = 0 the final excited

population is (close to) zero (dark pulse), while for φ = π/2 the population is maximized (bright

pulse). Thus, from the temporal analysis of the process we conclude that coherent control of the

TPE to a dissociative molecular state using a train of pulses [or, a spectral phase modulated pulse of

the form given in Eq. (4.14)] fails since each of the wave packets pumped to the excited state by the

subpulses in the train quickly propagates to larger internuclear distances. Therefore, concerning the

control of the total population in the excited (dissociative) state there is no signature of destructive

nor constructive interferences between the wave packets generated from subsequent pulses.

4.3.4 Control of excitation to bound states

Next, we investigate the influence of nuclear dynamics on the control of two-photon excita-

tions to bound molecular states. As shown above, this dynamics becomes effective for the present

control scheme over the time delay between two subsequent pulses in a pulse train, since the

fundamental control mechanism is based on the interference between two electronic wave packets

induced by consecutive subpulses [106]. It is well known from studies in wave packet interferome-

try [107, 108] that, in the case of a two-pulse scenario, a control of the excitation probability can

be achieved via the pulse delay τ and the relative phase φrel of the two pulses. For example, the
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effective coherent control of the excitation of a superposition of two vibrational states requires

τ = N
2π

E21 − E20
= NTrevival (4.15)

and varying φrel. Here, E2i is the energy of the ith vibrational level of the second excited electronic

state of our model. The pulse delays have to coincide with the multiples of the revival period Trevival

of the vibrational wave packet created in the excited electronic state. This enables the control via

efficient interference of wave packets generated by subsequent pulses, since the contributions in

both vibrational levels of the second excited electronic state are in phase at these times.

The above analysis for the two-pulse sequence can be readily applied to the spectral phase

modulated fields used by Silberberg and coworkers by noting that the modulation frequency β

in Eq. (4.14) corresponds to the time delay τ between the consecutive subpulses in the train in

the temporal domain. Furthermore, the relative phase φrel between the consecutive subpulses is

determined by the modulation phase φ in Eq. (4.14). Thus, setting β = NTrevival we expect to

achieve an efficient control pattern by changing φ. To test our expectations, we do simulations by

choosing α = 1.2024, β = 8Trevival = 85.6682 fs, ω/2 = 5.83 eV, ∆ω = 0.1 eV, and I0 = 1 × 1011

W/cm2. Note that we have chosen such a narrow bandwidth that only the lowest two vibrational

levels of the second electronic state can be excited. The results of the simulations (circles and

asterisks) for excitation to these two vibrational states as a function of the modulation phase φ

are shown in Fig. 4.12. The same dependence of the two excitation probabilities on φ clearly

confirms our expectations. We also show results calculated from the second-order perturbation

theory (red dashed lines) in Fig. 4.12. Although the coefficient of the transition amplitude [94, 95]

is not taken into account in our perturbation calculations, by normalizing the values from the

perturbation theory to the maximum probability from the TDSE, we can see a good agreement of

results from these two theories. The temporal analysis of the populations in the vibrational states

(Fig. 4.13) clearly exhibits the destructive and constructive interference effects for the subsequent

pulses in the train for the spectral phase modulation of a dark (left column) and a bright pulse

(right column).
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Figure 4.12: Excitation probabilities to the ground vibrational (ν2nd = 0, circles and dashed line)
and the first excited vibrational states (ν2nd = 1, asterisks and dashed line) as functions of φ.
A spectral phase modulated field defined in Eq. (4.14) is used with parameters: α = 1.2024,
β = 8Trevival = 85.6682 fs, ω/2 = 5.83 eV, ∆ω = 0.1 eV, and I0 = 1 × 1011 W/cm2. The symbols
(circles and asterisks) are numerical results obtained by solving the TDSE, while the curves (dashed
lines) are obtained using second-order perturbation theory.
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Figure 4.13: Two-photon coherent control of excitations to a superposition of two vibrational states.
The upper panels show that the electric field distribution as a function of time [i.e., the Fourier
transform of Eq. (4.14)] for (a) φ = 0.96π (dark pulse) and (b) φ = 0.46π (bright pulse). The insets
show the central field cycle and the CEP of each subpulse. In the lower panels the time evolution
of the probabilities in the ground (blue solid line) and first excited (red dashed line) vibrational
state is presented for the (c) dark and (d) bright pulses, respectively. Also shown is the ionization
probability (black dashed-dotted line).



Chapter 5

Conclusions

In this thesis we have systematically studied the attosecond time delays in single- and two-

photon ionization using theoretical analyses and numerical simulations. For single-photon ionization

(SPI) we have developed a new numerical method to calculate the Wigner-Smith-like time delay

from a time-dependent perspective and proposed an alternative interpretation for the time delay

measured in the streaking experiment. This new interpretation provides a deeper understanding of

the attosecond streaking technique and thus allows us to use it to study other ultrafast processes

such as the two-photon ionization (TPI) process.

In Chapter 2, we reviewed the numerical model and method used to describe laser-matter

interaction. We first reviewed the single-active-electron model, in which only one electron in a multi-

electron system is treated as active to reduce costs in numerical simulations. We then presented

our numerical approaches to solving the TDSE, including the methods of obtaining initial field-

free states, propagating the wave function in time domain, and working with different absorbing

boundary conditions.

We carefully studied time delays in SPI in Chapter 3. This chapter consists of two major

aspects: On the one hand, we calculated the WS time delay for SPI from its fundamental defi-

nition using a new time-dependent method. Such a method provides a time-dependent analysis

of the photoionization process and is more general for different potentials than the previous time-

independent definition. On the other hand, we investigated the time delay measured in SPI using

the attosecond streaking technique and proposed a new interpretation of such a measurement. Our
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new interpretation suggests that the streaking time delay arises from the measurement, i.e., the

propagation of the electron in the coupled field of the streaking pulse and the ionic potential after

the absorption of the photon, and thus can be calculated using classical mechanics. The streaking

time delay can be further understood as the sum of piecewise field-free time delays weighted by the

relative instantaneous streaking field and only relates to a finite-range part of the ionic potential.

The latter finite-range property allows us to use the attosecond streaking technique as an imaging

tool.

We further extended our studies to present results on time resolving the TPI process in

Chapter 4. Based on our understanding of time delays in SPI, in particular, the new interpretation

for the streaking time delay, we are able to make use of the streaking technique to retrieve the time

delay of two-photon absorption with respect to the center of the XUV pulse. By accounting for

the propagation time delay obtained from classical simulations, we could retrieve the absorption

time delay from the streaking time delay extracted from the streaking trace. Our results reveal

that the streaking time delay is zero for nonresonant TPI, but it is nonzero and changes linearly

with the XUV pulse duration for resonant TPI. We further confirmed our findings using two other

independent methods: the trajectory analysis based on quantum simulations and the phase analysis

using second-order perturbation theory. Since the TPI time delay results may be further applied

to control the later dynamics followed by the photoionization process, we took the opportunity

here to review our previous work on coherent control of two-photon excitations in molecular model

systems.
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