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Search for an electron electric dipole moment with trapped molecular ions

Thesis directed by Prof. Eric Cornell

The search for a permanent electron electric dipole moment (eEDM) serves as a test of

fundamental symmetry violations and of physics beyond the Standard Model. Trapped molecular

ions in the 3∆1 metastable electronic state are suitable candidates for an eEDM search due to

their large effective electric fields and long electron spin coherence times. This thesis presents the

quantum state manipulation and coherent spectroscopy of trapped HfF+ molecular ions in rotating

bias fields for an eEDM search. The quantum state manipulation, which involves preparation of

a large fraction of molecular ions in a single desired quantum state as well as rotational-state-

resolved detection, is complicated by the lack of HfF+ spectroscopic information prior to the start

of this thesis. We performed state preparation by first state-selectively autoionizing neutral HfF

such that 35% of the HfF+ are formed in a single rovibrational level of the electronic ground

state 1Σ+, and then transferring those ions into the desired Stark levels of a single hyperfine-

rovibrational manifold of the 3∆1 state. Rotational-state-resolved detection is accomplished by

both laser-induced fluorescence and resonance-enhanced multi-photon photodissociation, where the

latter is preferred as the state detection method of choice because its efficiency is two orders of

magnitude higher compared to fluorescence. With the quantum state manipulation techniques

developed, we performed Ramsey spectroscopy of the trapped HfF+ ions in the presence of rotating

bias electric and magnetic fields, demonstrating electron spin coherence times as long as 150 ms.

Finally, we present a preliminary measurement of the eEDM at the |de| < 10−25 e cm level.



Dedication

To Wah Sing, Hui Sok, Zhi Heng, and Travis.



Acknowledgements

This thesis work could not have been completed without the help of many people, most of

whom are at JILA. JILA houses a wonderful scientific community, which I am fortunate to be a

part of for my graduate school.

Of the people at JILA, I would first like to thank my graduate school advisor, Eric Cornell.

From painting intuitive pictures to calling us out on software issues, Eric is a boundless source of

creative ideas, an effective problem-solver, and a gifted teacher. I will miss his motivational emails

explaining the merits of higher data-collection efficiency in terms of spending less time in the lab

and more time skiing. As a mentor, Eric also cares deeply about his students. I am immensely

grateful to his concern and advice on issues ranging from health to career.

Jun Ye has been a fantastic co-advisor, injecting a healthy amount of enthusiasm into the

eEDM experiment. His wealth of technical expertise on all things lasers, experience with molecules,

and persistent demand for scientific rigor have contributed to my growth as a scientist.

From the conception of this experiment, John Bohn and his former student Ed Meyer have

provided both extensive theory support and a lively dose of humor. Chris Greene and his former

student Jia Wang taught us about angular momentum in the autoionization of Rydberg molecules.

We have also had many fruitful collaborations with Bob Field from MIT, who shared with us the

finer points of diatomic molecular structure and with whom we co-authored several papers.

Through the regular Cornell-Jin group meetings, Debbie Jin has offered much physical insight

into our problems and has a knack for asking questions that keep our minds focused on the big

picture. I would also like to thank the rest of the Cornell-Jin group members for their friendship,



vi

their patience, and their magnanimity in lending us various kinds of equipment. Similarly, our

experiment has also benefited from our interactions with the Ye group, the Lewandowski group,

the Thompson group, the Nesbitt group and the Lineberger group. Our access to so many groups

of expertise within a single building — be it securing the last-minute loan of a servo loop filter or

obtaining technical advice on pulsed Nd:YAG lasers — has been instrumental to our experimental

progress.

JILA’s collaborative environment goes beyond the interactions between the research groups.

The technical staff in the instrument shop, electronics shop and computing department have pro-

vided critical support for our experiment, for which I am very grateful. Special mention goes to

Todd Ascinar for machining our ion trap, to Hans Green and Blaine Horner for many creative

vacuum-compatible solutions, to Terry Brown and Carl Sauer for advice on all things electronics,

and to J. R. Raith for his computer wizardry. Pam Leland and Krista Beck also made sure that

we never had to worry about administrative issues.

Much of the work in this thesis was performed together with my fellow eEDM labmates,

whom I have had the pleasure to work with at one point or another. Russ Stutz showed me the

ropes on the eEDM experiment and left the experiment in excellent running condition when he

graduated. Kang-Kuen Ni was one of my first friends in Boulder and joined the eEDM effort as

our powerhouse postdoc in the last 14 months. She has always encouraged me to push myself to

greater heights, be it making a run for an eEDM measurement before graduating or convincing me

to ski through glades. Matt Grau and I have spent many late nights taking data or bolting vacuum

chambers, and over the years I think I may have learned more from him than I have taught him.

Kevin Cossel’s expertise on cavities, molecular spectroscopy and baked treats have greatly benefited

our experiment from his involvement in the comb spectroscopy setup and more recently, the ion

trap setup. With Kevin and Matt taking over the experiment, I am sure many exciting results will

soon be forthcoming. I would also like to thank Tyler Yahn, Laura Sinclair, Dan Gresh, Herbert

Looser, Tyler Coffey, Trent Fridey and Yiqi Ni for their impactful contributions to the JILA eEDM

effort. Tyler Yahn was a very talented machinist and keen learner; Laura Sinclair led the initial



vii

effort to perform comb spectroscopy on HfF+; Dan Gresh has made a huge impact on the molecular

spectroscopy of both HfF+ and ThF+; Herbert Looser was both a very patient physics teacher and

an avid Labview programmer; Tyler Coffey, Trent Fridey and Yiqi Ni are undergraduates who have

built all sorts of useful apparatus for the experiment.

My graduate school career was partly financed by A*STAR, for which I am grateful.

Prior to my time at JILA, Vladan Vuletić, James Thompson and Jon Simon have been
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Chapter 1

Introduction

1.1 Motivation for an electron electric dipole moment (eEDM) search

The electron is a fundamental particle of mass me, charge −e and spin S = ~/2. The

electron spin and charge give rise to a magnetic moment µe = geµBS/~, where µB = e~/(2me) is

the Bohr magneton and ge is the magnetic g-factor. According to relativistic quantum mechanics

as described by the Dirac equation, ge = 2. Quantum electrodynamics (QED), however, predicts

that ge deviates slightly from 2, i.e.

ge
2

= 1 + C2

(α
π

)
+ C4

(α
π

)2
+ . . . , (1.1)

where α is the fine-structure constant, the coefficients Cn are calculated from the QED Feynman

diagrams of order n depicting an electron being scattered by a static magnetic field [14]. A precise

measurement of the electron magnetic g-factor provides a stringent test on QED; in fact, with the

current precision on the g-factor to 13 decimal places [33], QED has been tested out to the eighth

order term C8

(
α
π

)4
in Eq. (1.1). [2, 3].

What about an electron electric dipole moment (eEDM)? If the center of mass and center of

charge of the electron are slightly displaced (see Fig. 1.1), the displacement would give rise to an

eEDM. Such a permanent electric dipole moment is fundamentally different from that induced by a

finite external electric field, for example in a polar molecule like OH. In this thesis, we only consider

the case where the eEDM points only either along or against the direction of electron spin: if the

eEDM is to point along a different direction (such that it can be expressed as a linear combination
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of directions parallel and orthogonal to the electron spin), quantum mechanics would have required

additional quantum numbers beyond ms to describe the electron [44].

Spin

Mass

Charge

|d |< 1.05 x 10 e cm

(Hinds, 2011)
e

-27

Figure 1.1: A displacement between the electron’s center of mass and center of charge gives the
electron an electric dipole moment.

To date, no eEDM has been observed. More precisely, the current experimental limit on

the eEDM is |de| < 1.05 × 10−27 e cm [36]. The observation of an eEDM would have profound

implications on both fundamental symmetries and grand unified theories of physics. Fig. 1.2a illus-

trates how the presence of an eEDM implies a direct violation of both time-reversal (T) symmetry

and parity (P) symmetry. Under time-reversal (parity inversion), the electron spin (eEDM) flips

direction while the eEDM (electron spin) remains unchanged. In either operation, the relative

direction between the spin and EDM are different compared to the initial configuration, implying

direct T and P violation. By the CPT theorem, direct T violation implies CP violation and vice

versa. While CP violation has already been observed in neutral kaon decay in 1964 [13], direct T

violation has only been observed in the B0 meson decay experiment as recently as 2012 [47]. The

observation of an eEDM would be another experiment that directly confirms the violation of T

symmetry.

As explained above, the eEDM arises from CP violation. In the Standard Model, the CP-

violating terms are calculated to be so small that the eEDM is predicted to be < 10−38 e cm

[70]. CP- and T-violating terms in the Standard Model also predict that the amount of matter

and anti-matter in the early universe should have been approximately equal, in which case the

two kinds of matter should annihilate such that the universe has almost no remaining matter.
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Nevertheless, the fact that there is an asymmetry between the amount of matter and anti-matter

in the universe is one of the key weaknesses of the Standard Model. Theories beyond the Standard

Model (e.g. supersymmetry) allow for CP-violating terms of much larger magnitudes than that in

the Standard Model. These theories predict an eEDM in the range of 10−29–10−26 e cm [9, 7, 69].

If we can probe eEDM more precisely at a level that is one to two orders of magnitude beyond the

current experimental limit, we can either validate or constrain more rigorously the various theories

beyond the Standard Model (Fig. 1.2b). Of note is the fact that the electric dipole moment of

the electron as predicted by the Standard Model is several orders of magnitude smaller than that

predicted by the other extension theories. Such a low “Standard Model background” facilitates the

discrimination of these extension theories from the Standard Model should an eEDM be observed.

1.2 Measuring the eEDM

1.2.1 Figure-of-merit

How would one measure the eEDM? In the presence of an external electric field E and

magnetic field B, the Hamiltonian for an electron with eEDM de is:

He(E ,B) = − (deE + µeB) · σ

|σ| . (1.2)

The frequency difference between an electron in its state of spin-down versus spin-up (and assuming

de aligned parallel to the spin) is then given by

ωe(E , B) = −2

~
(deE + µeB) . (1.3)

The measurement of the transition frequency between the spin-up and spin-down states is known

as electron spin resonance (ESR) spectroscopy. To attribute the ESR frequency to de only, the

electron spin-flip frequency is measured with a fixed external magnetic field and the external electric

field E first applied parallel to B and then anti-parallel to B. The difference in the two measured

frequencies then gives 4deE (Fig 1.3a). (One may question the necessity of applying a magnetic field

to measure de; after all, the electron frequency shift from de can be obtained from only reversing
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Figure 1.2: (a) The presence of an eEDM implies the direct violation of time reversal (T) symmetry
and parity inversion (P) symmetry. As depicted, under either time reversal or parity inversion, the
electron’s spin and eEDM change from being anti-aligned to aligned. Although the electron spin
and eEDM are illustrated to be initially anti-aligned, the same argument of T and P violation
holds if the electron spin and eEDM are initially aligned. (b) Theories extending physics beyond
the Standard Model predict eEDM values much higher than that predicted by the Standard Model
[9, 7, 69]. These theories can be tested more rigorously by pushing the current eEDM experimental
limit down by another one to two orders of magnitude.
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the electric field direction. The magnetic field is useful for biasing the measurement frequency

away from 0 Hz, so that the eEDM shift is insensitive to noise sources near DC.) Conversely, one

may add the two transition frequencies measured in a fixed electric field but with the magnetic

field applied aligned and anti-aligned to E (Fig. 1.3b). Whether the magnetic field or electric field

direction is being reversed, the deliberate change should be performed relatively quickly (so that

one is insensitive to drifts in the other experimental parameters) and is henceforth referred to as a

‘chop’. Combining the measured transition frequencies from the four chops, we get

ωe(E , B) + ωe(E ,−B)−
(
ωe(−E , B) + ωe(−E ,−B)

)
= 8deE . (1.4)

The statistical sensitivity of an eEDM measurement is governed by three quantities: the

magnitude of the electric field E experienced by the electron spin, the coherence time τ , and the

square root of the number of spin-flip transitions
√
N detected in a given integration time, say, of

one day. Fig. 1.4a–c shows how each quantity affects the eEDM measurement, where the eEDM

measurement is depicted in each of these cases as a chop in only the external electric field direction

and the statistical distribution of measured transition frequencies for a given electric field direction

manifests as a spectral line. Firstly, the higher the electric field E experienced by the electron

spin, the larger the separation between the center of each spectral line. Secondly, the longer the

coherence time of the measurement, the narrower the linewidth of each frequency and the better

the two spectral lines can be resolved. Thirdly, each spectral line is composed of a large number

of trials detecting the spin-flip transition, each of which is independent and therefore the result

follows a Poisson distribution. The signal-to-noise ratio of each spectral line is hence given by

the square root of the number of spin-flip transitions. The higher the signal-to-noise ratio, the

better the determination of each spectral line center. The combination of E , τ and
√
N forms the

figure-of-merit for determining the statistical limit of an eEDM measurement:

δde =
~

2eEτ
√
N
. (1.5)
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Figure 1.3: (The eEDM may be determined by measuring the electron spin-flip transition frequency
in the presence of an external electric and magnetic field aligned parallel to each other, and then (a)
reversing the direction of the electric field and taking the difference of the two transition frequencies,
or (b) reversing the direction of the magnetic field and summing the two transition frequencies.
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Figure 1.4: The eEDM measurement figure-of-merit, which is inversely proportional to the statisti-
cal uncertainty on the eEDM, is proportional to (a) the electric field E experienced by the electron,
(b) the coherence time τ , and (c) the square root of the number of spin flips detected

√
N .



7

1.2.2 HfF+ molecular ions for an eEDM measurement

While the discussion of the eEDM measurement so far focuses on a single unpaired electron,

the eEDM measurement is never carried out on a bare electron, as the application of a large electric

field would invariably cause the electron to fly away. Sandars [72, 73, 74, 75] suggested the use

of electrons in atoms and molecules for probing the eEDM, where the valence electron’s energy

level can be shifted by the electric field Eeff induced in the polarized atom or molecule upon the

application of an external electric field Eext. The induction of an effective internal electric field

from Eext can be accounted for using a loophole of Schiff’s theorem [76, 15], a discussion of which is

beyond the scope of this thesis. For atoms, the scale of the internal electric field goes as the cube of

the nuclear charge times the applied external field Z3Eext, such that the electric field experienced

by the unpaired electron of interest can be as high as 72 MV/cm in a heavy atom like thallium

[71]. In this case, Eext was already maximized at about 100 kV/cm, above which arcing between

the plates can occur in vacuum. To obtain a higher internal electric field, one would either have to

go to an atom of even higher Z or turn to polar molecules.

For polar molecules, the internal effective electric field saturates at a specific value Emax
eff ,

unlike in atoms where the internal electric field continues to be proportional to the applied field

for obtainable laboratory electric fields. The saturation occurs when the applied electric field is

large enough to fully mix adjacent molecular states of opposite parity. In the 2Σ+ state of YbF,

the closest two states of opposite parity are adjacent rotational levels spaced by ∼ (2π)40 GHz, so

the applied electric field of 10 kV/cm was able to induce an effective electric field of 14.5 GV/cm

but not as large as the maximum possible value of 26 GV/cm [39]. Nonetheless, the effective

electric field obtained was already two orders of magnitude higher than that in thallium. Ideally,

one would like to be able to obtain similarly high an effective electric field with a polar molecule

with an external electric field as small as 10 V/cm, so as to access Emax
eff more easily and to reduce

systematic effects from, say, leakage currents from the electric field plates; for this purpose, the 3∆1

electronic state, present in a class of molecules such as ThO [55, 87], WC [46], HfF+ and ThF+
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[56, 62, 55, 45], is a suitable candidate. The 3∆1 configuration in those species comes from an

s and a d valence electron. The diffuse d electron gives rise to an Ω-doublet of opposite parity

levels spaced as closely as (2π)1 MHz, such that as little as 2 V/cm is required to fully polarize the

molecule. The s electron experiences relativistic effects near the nucleus of the heavy atom (e.g.

Th, W, Hf), such that once the molecule is polarized, the internal electric field can be as high as

90 GV/cm!

Of the molecules with the 3∆1 state, some are neutral molecules whereas others are molecular

ions. Trapping neutral molecules is difficult to date, so all the eEDM neutral molecule experiments

work with molecular beams. The coherence time of the eEDM measurement is then limited to

that taken for the molecules to traverse the electric field plates (i.e. ∼1 ms). Molecular ions, on

the other hand, can be easily trapped with electric fields in an ion trap. It is fortuitous that the

molecular ions proposed for the eEDM measurement such as HfF+ and ThF+ tend to have 3∆1

lifetimes of at least three orders of magnitude longer than 1 ms, so we can take advantage of the

ion trap to perform an eEDM with much longer coherence times (∼300 ms) than for the neutral

molecules. The downside to using molecular ions, however, is that the density of molecular ions

tends to be limited by space-charge repulsion between multiple ions, so the number of spin-flip

transitions in an eEDM experiment can be orders of magnitude smaller for molecular ions than for

neutral molecules. Since the eEDM figure-of-merit is proportional to Eeffτ
√
N , for similar effective

electric fields, there is no obvious winner between neutral molecules and molecular ions, and each

experimental group simply has to work as hard as they can on both τ and
√
N to achieve the better

statistical sensitivity!

For this thesis work, the species of choice is the molecular ion HfF+. Among the different

eEDM experimental groups, the JILA group is the only one employing molecular ions. Beyond a

discussion of the statistical limit to de, molecular ions have the advantage that the longer τ leads

to a narrower spectral linewidth, which makes us less vulnerable to systematic errors that affect

the lineshape.

Fig. 1.5a–c shows the 3∆1, ν = 0, J = 1 energy level structure for 180Hf19F for three different
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cases: (a) in the absence of any external fields, (b) with an external electric field but ignoring

the effect of an eEDM, and (c) with both an external electric and magnetic field and accounting

for the eEDM. Since the nuclear spin of fluorine is 1/2 and 180Hf has no nuclear spin, the J = 1

rotational level has two hyperfine levels, F = 3/2 and 1/2. Without any external fields, the states of

well-defined parity are given by |±〉 = (|Ω = +1〉± |Ω = −1〉)/
√
2. For F = 3/2, each state of well-

defined parity has four degenerate levels, which are the fourmF projections of the hyperfine angular

momentum onto a quantization axis. In the eEDM experiment, the external electric field serves as

the quantization axis. When present, the external electric field mixes the states of opposite parity

to give states where Ω, which is the total projection of orbital and electron spin angular momentum

onto the internuclear axis n̂, is a good quantum number. The F = 3/2 and 1/2 levels split into four

and two Stark manifolds, respectively, while states of the same mFΩ remain degenerate. Finally,

in the presence of an external magnetic field colinear with the external electric field, the stretch

states of the same mFΩ in the F = 3/2 hyperfine level are split by the frequencies

ωu = 3guFµBB + 2deEeff , (1.6a)

ωℓ = 3gℓFµBB − 2deEeff , (1.6b)

where g
u/ℓ
F is the magnetic g-factor of the upper and lower Stark manifolds. The sign of the eEDM

transition frequency shift can be understood as the following: for the upper manifold {|a〉 , |b〉}, the

effective electric field points parallel to B. Assuming that de is aligned with the electron spin, state

|a〉 (|b〉), which has been shifted upwards (downwards) by the Zeeman effect, is displaced further up

(down) by the effective electric field, giving an extra energy splitting of 2deEeff on top of the usual

Zeeman splitting. Conversely, for the lower manifold {|c〉 , |d〉}, Eeff points in the opposite direction

as B. The sign of the energy splitting 2deEeff is then opposite to that of the Zeeman splitting. The

magnetic g-factors of the upper and lower Stark manifolds are predicted to be very similar, such

that a chop of the electric field amounts to performing the electron spin resonance on the upper

versus lower Stark manifold. The ability to sample the magnetic field using the same molecular

species as a co-magnetometer is another advantage of using an Ω = 1 level such as the 3∆1 level
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[18, 23]. Analogous to Eq. (1.4), the eEDM signal is then given by the four-way chop:

ωu(Eext, B) + ωu(Eext,−B)−
(
ωℓ(Eext, B) + ωℓ(Eext,−B)

)
= 8deEeff . (1.7)

In HfF+, Eeff saturates at 24 GV/cm [62]. From Eq. (1.7), a determination of de at the level

of 1 × 10−28 e cm — about an order of magnitude better than the present experimental limit —

then demands that the sum frequency shift of 8deEeff be measured to as precisely as (2π)5 mHz!

At this point, three commonly asked questions may arise in the reader’s head:

(1) How does one measure such a small frequency shift as (2π)5 mHz?

(2) How does one experimentally determine Eeff?

(3) How can one, in the first place, apply an external bias electric field without ejecting the

HfF+ ions from their ion trap?

The answer to the first question is that the absolute frequency to be measured in any given

chop of Eeff and B is only ωu/(2π) ≈100 Hz, and for an estimated spectral linewidth of 2 Hz, the

spectral line center only needs to be determined to a precision of 1/2000 to measure a shift of of the

line center by 1 mHz. The absolute frequency measurement for a particular chop is in turn given

by Ramsey spectroscopy. Instead of using a narrow laser or radiofrequency source to probe the

eEDM transition (say, ωu), we first populate all the ions in |a〉 (with none in |b〉). We then apply

a π/2 pulse to create an equal superposition of the two stretch states (i.e. |b〉+ |a〉), wait for some

duration T over which |a〉 dephases relative to |b〉 (i.e. |b〉+ e−iωuT |a〉), and finally apply another

π/2 pulse to read out the relative phase ωuT as a fraction of ions in state |a〉. As T is varied such

that the relative phase changes from 0 to 2π, the final fraction of ions in state |a〉 oscillates from 0

to 1, and the frequency of oscillation then gives ωu.

The need to obtain a reliable value for Eeff is important because de can only be extracted

from a measured frequency after having knowledge of Eeff. All the values for Eeff for the different

molecules listed earlier in this chapter come from ab-initio calculations of the molecular potentials,

which therefore motivates the second question. Unfortunately, there is no way to experimentally
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Figure 1.5: HfF+ energy levels within the 3∆1, ν = 0, J = 1 state. This figure is adapted from
[45], with the energy ordering of the hyperfine levels switched to reflect the results experimentally
obtained in this thesis. (a) In the absence of an external electric field, each hyperfine level possesses
two closely-spaced states of opposite parity {|+〉 , |−〉}, while the hyperfine mF projections are
degenerate. (b) With an external electric field (that also sets the quantization axis), the states of
opposite parity are mixed and the hyperfine levels are split into (2F +1)/2 Stark manifolds, where
the molecule internuclear axis n̂ is aligned parallel (anti-parallel) to the external electric field for
the lower (upper) Stark manifold. (c) In the presence of a magnetic field parallel to Eext, the mF

sublevels undergo a Zeeman shift. The eEDM-sensitive transitions are denoted by ωu/ℓ, with the
eEDM having oppositely signed contributions to ωu and ωℓ (see text).
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measure Eeff. For the case of YbF, several different calculations were performed to obtain Eeff,

amongst which the agreement was valid to within 10% [39]. The 10% error on Eeff ultimately had

almost no bearing on the eEDM result reported [36]. For HfF+, we hope to check the validity of the

ab-initio calculations by measuring other important experimental parameters such as the hyperfine

structure of 179Hf19F and 177Hf19F and comparing against the predicted values, thereby indirectly

giving confidence to the calculated value of Eeff.

The issue raised by the last question comes from the fact that a DC bias electric field is

either smaller than the trapping fields, such that the HfF+ ions will simply be displaced to a new

position in the trap, or larger than the trapping fields, such that the HfF+ ions will be ejected from

the trap. For a bias field of Eext =10 V/cm, the latter case applies. The trick is to apply the bias

electric field in a rotating manner, where the rotation frequency ωrot is fast enough for the ions to

remain trapped but slow enough for the ions’ internuclear axis to track the electric field direction

adiabatically. In fact, the application of a rotating quantization axis is unique to our experiment

amongst trapped ion experiments.

1.2.3 Challenges of using HfF+

Unlike atoms, molecules have many more quantum states: besides electronic, hyperfine and

Zeeman sublevels, molecules also have vibrational and rotational levels. As explained in the de-

scription of the Ramsey time-of-flight spectroscopy, full quantum control of the Zeeman-hyperfine-

rovibronic states of HfF+ is needed to carry out the eEDM measurement. The implementation of

quantum state preparation, state manipulation and state readout at the level of (2π)100 Hz was

complicated by the fact that no spectroscopic information on HfF+ was available when our exper-

iment first began. Some theoretical calculations of the low-lying states were performed [62, 63],

but those had uncertainties as large as 30 THz (i.e. 50 nm uncertainty for a transition centered at

700 nm), such that theorists could not agree on whether the ground state of HfF+ was 1Σ+ or 3∆1

[54]. There was a lot of work to do!

In general, spectroscopy of molecular ions is a lot more challenging than spectroscopy of
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neutral molecules because of the much lower density (by three orders of magnitude in typical

setups) of molecular ions. Along our journey towards precision spectroscopy of HfF+ in the 3∆1

state, we were fortunately aided by the low-lying electronic state assignments that came out of

Heaven et. al.’s experiments [4] and by a parallel JILA experiment performing velocity modulation

spectroscopy in a discharge tube [82, 16].

Beyond assigning the energy levels, we had to create a large fraction of HfF+ ions in a single

desired quantum state. While a high ion number was important to increasing the spin-flip detection

count rate, more ions also meant more ion-ion collisions that could also lead to decoherence on

our Ramsey measurements, so efficient state preparation was key to maximizing the former while

minimizing the latter constraint. One method to state-selectively create HfF+ was to photoionize

neutral HfF using two resonant photons, which meant that we needed to first find the ionization

energy of neutral HfF as well as vibronic states of neutral HfF that could serve as intermediate

states for two-photon photoionization. The eEDM-sensitive transitions lay in the 3∆1 metastable

state, so special effort (such as combining photoionization with stimulated Raman transfer) was

needed to populate that electronic state.

For state detection, a popular atomic physics technique is laser-induced fluorescence (LIF),

where the number of fluorescence photons is proportional to the number of molecular ions excited

by a laser addressing a particular transition. Unlike atoms, molecules generally have no cycling

transitions, which makes LIF a rather painful way of probing the molecules. Photodissociation,

where the HfF+ molecule is state-selectively broken up into Hf+ and a fluorine atom, promised a

much higher detection efficiency by counting ions. However, to enable photodissociation as a state

readout technique, we had to perform UV spectroscopy of high-lying bound and dissociating states

of HfF+ in our ion trap.

Finally, the manipulation of molecular ions with a rotating bias electric field meant non-trivial

physics to be explored, which was in itself a very happy problem to have, since it finally signified

our departure from “shot-in-the-dark” survey spectroscopy!
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Figure 1.6: Major state manipulation steps that had to be performed to enable to eEDM mea-
surement: state preparation of HfF+ in a single desired quantum level using (a) photoionization
and (b) Raman transfer, and state detection using either (c) laser-induced fluorescence or (d)
photodissociation. This figure has been adapted from [81, 16].
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1.3 Overview of thesis

Unlike many physics theses, there is no single “experiment setup” chapter that can ade-

quately summarize the experiment setup used in this thesis work. From neutral HfF molecules

to a molecular ion beam to trapped molecular ions, the experiment setup is constantly chang-

ing (with many vacuum breaks!) and is thus described in its appropriate chapter. Chapter 2

presents the spectroscopy of neutral HfF performed using resonance-enhanced multiphoton ioniza-

tion (REMPI), with the goal of identifying suitable vibronic states at 30000–33000 cm−1 that can

be used as intermediate states in two-photon autoionization to create HfF+. The state-selective

nature of two-photon autoionization is probed by performing LIF on a beam of HfF+ ions, as de-

scribed in chapter 3, where we show that as much as 30% of the total ion yield can be formed in a

particular |J,mJ 〉 state. For the remainder of the thesis, the HfF+ ions are trapped in a radiofre-

quency Paul trap, whose design and associated electronics particular to the eEDM experiment are

given in chapter 4. Chapter 4 also discusses various techniques that have been used to characterize

the ions’ in-trap behavior. Chapter 5 revisits the implementation of LIF, this time with trapped

HfF+ ions. Beyond chapter 5, we abandon LIF as a technique for state detection and turn instead

to photodissociation, for which the spectroscopy of high-lying HfF+ states and usefulness of pho-

todissociation as a readout tool are illustrated in chapter 6. In chapter 7, the stimulated Raman

transfer of HfF+ ions from the ground 1Σ+ state to the desired quantum states in 3∆1 is described,

and we experimentally map out, for the first time, the level structure presented in Fig. 1.5a–b.

Finally, chapter 8 discusses the implementation and physics of coherent Ramsey spectroscopy with

trapped HfF+ ions in a rotating bias field and closes with a preliminary measurement of the eEDM

at the 10−25 e cm level.



Chapter 2

REMPI spectroscopy of neutral HfF [51]

The first stage of preparing HfF+ ions in a single desired ro-vibronic level is to state-selectively

autoionize neutral HfF prepared using the optical-optical double resonance (OODR) technique [52].

In OODR, two ultraviolet (UV) photons of different frequencies are used, where the first photon

is tuned to an intermediate state of neutral HfF and the second photon further excites HfF to

a Rydberg state above the lowest ionization threshold at 59462(2) cm−1 [4, 52]. Since the final

state of the autoionized product depends strongly on the intermediate state accessed by the first

UV photon, there is a need to characterize and understand the neutral HfF states that lie in the

vicinity of and above 30000 cm−1, some of which may hold promise as intermediate states for HfF+

ion-creation in the desired 3∆1 state.

The HfF spectroscopy published to date includes transitions to excited states as high as

28600 cm−1, detected by laser-induced fluorescence [1, 30], and resonance-enhanced multi-photon

ionization (REMPI) [4]. This chapter1 presents HfF spectroscopy performed in the 30000–

33000 cm−1 range, using both 1+1 REMPI and 1+1′ REMPI, which complements the previously

published spectroscopic results.

2.1 Experiment setup

Figure 2.1 shows a schematic of the experimental setup used to ionize a HfF molecular

beam via (1+1) REMPI. The source and time-of-flight mass spectrometry (TOFMS) chambers are

1 Most of this chapter has already appeared in Reference [51].
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separately pumped. A gas comprising 1% SF6 and 99% Ar is released into the source chamber

through the opening of a pulsed valve (800 µm orifice, 120 psi backing pressure) for 150 µs. In the

presence of SF6, the ablation of a Hf rod by the fundamental of a Nd:YAG pulsed laser (5–7 ns,

25 mJ/pulse, focused beam diameter 230 µm) creates HfF. We can also use the second harmonic

of the Nd:YAG laser to perform the ablation; both cases gave no difference to the number of HfF

molecules created. The HfF molecular beam is cooled through supersonic expansion to a rotational

temperature of ∼ 10 K. The beam is collimated by two skimmers (1 mm orifice diameter, separation

distance 29 cm) before passing through a home-built TOFMS, which is a series of six disks arranged

along a common axis [83].

In the TOFMS chamber, a UV laser, tuned such that two photons are required to ionize

HfF, intersects the molecular beam perpendicularly in the TOFMS region A. The resultant HfF+

ions drift under an electric field of 1 V/cm toward region B. Regions B and C of the TOFMS are

operated in the Wiley-McLaren mode [88]: when in region B, the ions are spatially focused by a

small electric field of 0.25 V/cm until they reach region C, in which the ions are velocity-focused,

by a transient electric field of 1 kV/cm for 500 ns, toward a microchannel plate assembly (MCP)

positioned 56 cm away. The ion signal is enhanced by a transimpedance amplifier and read out

by an oscilloscope. The TOFMS has a fractional mass resolution of at least 1/200, allowing us

to resolve individual isotopologues of HfF+ that differ by 1 amu (natural relative abundances in

parentheses): 176Hf19F (5.2%), 177Hf19F (18.6%), 178Hf19F (27.3%), 179Hf19F (13.6%) and 180Hf19F

(35.1%). Figure 2.2(a) gives a pictorial summary of all the oscilloscope traces recorded over multiple

vibronic bands, while Fig. 2.2(b) shows a sample of an oscilloscope trace for a particular wavelength

of the UV laser. All five isotopologues of HfF+, well-separated in arrival time on the MCP, appear

as laser frequency striations of different intensities.

As detailed in Ref. [52], cold (∼ 10 K rotational temperature) HfF molecules are created by

ablating a Hf target in the presence of 1% SF6 and 99% Ne (690 kPa backing pressure), followed by

supersonic expansion through a 800 µm diameter nozzle. The molecular beam is collimated by two

1 mm diameter skimmers separated by 29 cm before passing through a home-built time-of-flight
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mass spectrometer (TOFMS), which is a series of six disks arranged along a common axis [83].

Most of the HfF spectra presented in this chapter are recorded using (1+1) REMPI, in

which the spectral resolution is limited to 0.1 cm−1 (FWHM), the linewidth of the UV laser. The

UV photoionization radiation comes from a 532 nm-pumped dye laser operating with DCM dye,

frequency doubled in a KDP crystal (100-200 µJ/pulse, 10 ns, 0.1 cm−1 FWHM). Its wavelength

is continuously monitored by a wavemeter calibrated against Ne spectral lines.

Two of the HfF vibronic bands are recorded with high spectral resolution (0.003 cm−1)

using (1+1′) REMPI, where two co-propagating laser pulses simultaneously intersect the molecular

beam at the same intersection point. The first photon (3 µJ/pulse, 10 ns, 150 MHz FWHM) is the

frequency doubled output of a home-built two-stage Rhodamine 101 dye cell amplifier. The dye cell

amplifier is seeded by a continuous-wave ring dye laser operating with Rhodamine 610 Chloride dye.

It is pumped by the second harmonic of a Nd:YAG laser. The seed laser frequency is monitored by

a high-precision wavemeter that is regularly calibrated against the 87Rb D2 transition. The second

photon in (1+1′) REMPI, held at a fixed wavelength of 351.5 nm, is provided by the same dye laser

as that used in the (1+1) REMPI setup, but operating with LDS722 dye.

In this chapter, transitions between energy levels of HfF are labeled as {ν0/103}, where ν0 is

the vibronic band origin in cm−1 [5].

2.2 HfF spectra in the range 30000–33000 cm−1

A survey scan of HfF transitions was conducted over the frequency range 30000–33000 cm−1

(Fig. 2.3(a)), which is the range encompassed by the frequency doubled output of the DCM dye.

Most of the strong transitions were scanned in detail and were found to belong to either an Ω′ =

3/2← Ω′′ = 3/2 transition (Fig. 2.3(b)) or a Π1/2 ← Ω′′ = 3/2 transition (Fig. 2.3(c)).

The REMPI spectra were modeled by the following Hamiltonian for the Ω = 3/2 states [35]:

E(J) = Te +Gν +BJ(J + 1) , (2.1)

where Te is the electronic energy (difference in energy between the extrapolated minima of the
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X2∆3/2 and electronically excited states) and Gν is the energy of the vibrational level ν. For the

Π1/2 states, there is strong Λ-doubling and transitions from the Λ-doubled X2∆3/2 ground state

into both Λ-doublets of a given rotational level can be resolved, even in the low-resolution spectra.

Since no prior information is known about the parity of a given member of a Λ-doublet, the doublets

are assigned ‘a’/‘b’ instead of the usual spectroscopic notation ‘e’/‘f ’ [11]. Their energy levels can

be modeled by the following polynomial [48]:

Ea/b(J) = Te +Gν +BJ(J + 1)−/+ (−1)(J+ 1
2
)

2
(p+ 2q)

(
J +

1

2

)
. (2.2)

Following Ref. [1], we assume that the 2Π spin-orbit splitting is large enough for us to consider

only the diagonal matrix element
〈
2Π1/2 |H|2Π1/2

〉
in our description of the Λ-doublets. Among

the Π1/2 states, the 4Π1/2 states can borrow oscillator strength from the 2Π1/2 states via spin-

orbit coupling. Since transitions into the 4Π1/2 upper levels would look very similar to those into

2Π1/2, we have left out the superscript in the term symbol for the Π1/2 levels. Based on the Λ-

doubling, none of the observed spectra belong to excited states of Σ character, which have been

previously reported in the ranges 13800–14400 cm−1 [30] and 19700–20000 cm−1 [1]. For both

Π1/2 and Ω′ = 3/2 types of excited electronic states, the centrifugal distortion term, DJ2(J + 1)2,

is neglected because the supersonic HfF molecular beam is too cold to populate rotational levels

beyond J = 21/2, which would be required for an accurate determination of D.

Although all five isotopologues were observed, only the two most abundant (178Hf19F and

180Hf19F) were analyzed. (In Section 2.5, we extend for selected bands our analysis to the 177Hf19F

and 179Hf19F isotopologues.) For a given transition, the two isotopologues’ REMPI spectra are

simultaneously fit to a contour described by a common set of fit parameters: temperature, intensity,

band origin for 180Hf19F (180ν0 = 180T ′
e − 180T ′′

e + 180G′
ν′ − 180G′′

ν′′), band origin for 178Hf19F

(178ν0), lower state rotational constant (B′′), excited state rotational constant (B′) and, where

applicable, the Λ-doubling constant (p + 2q)/2. Since the rotational constants of a given state for

the two isotopologues are related to each other by the inverse ratio of their reduced masses µ (e.g.,

180B/178B =178 µ/180µ), the B-value ratios are held fixed for the simultaneous contour fit. The
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Figure 2.3: (a) Coarse (1+1) REMPI scan of excited HfF states near 30000 cm−1. The ion signal
shown is the integrated ion signal for all five HfF isotopologues. Two main types of transitions have
been identified in this survey scan: Ω′ = 3/2 ← Ω′′ = 3/2 (marked by asterisks, typical spectrum
shown in (b)) and Π1/2 ← Ω′′ = 3/2 (marked by arrows, typical spectrum shown in (c)). (b)
Detailed (1+1) REMPI scan of the {31.89} vibronic band. The red smooth curve is a contour fit to
the data shown as connected black dots. (c) Detailed (1+1) REMPI scan of the {32.98} vibronic
band. The blue smooth curve is a contour fit to the data shown as connected black dots. (d) High
resolution (1+1′) REMPI spectrum of the {32.32} vibronic band. Individual upper state rotational
levels of opposite parity can be resolved.
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resolution of our data is insufficient to detect a difference between the (p+2q)/2 terms for different

isotopologues.

The molecular constants for the observed HfF transitions are summarized in Table 2.1. The

numbers in parentheses indicate the 1σ-standard deviation in the last digit. The standard deviation

for each fit parameter was calculated from a histogram of fit parameters obtained by bootstrapping

the residuals of the fit [24]. The bootstrapping process adds the residuals, obtained after a single

fit iteration, randomly to the fitted data to form a new data set, which is then re-fit against

the model; this process is repeated a hundred times to get a hundred sets of fit parameters for

the histogram. For the bands examined in high-resolution (1+1′) REMPI scans, (1+1) REMPI

data for the same bands was also available for comparison. We find good agreement between the

values of ν0 from the coarse (1+1) REMPI spectra and from the (1+1′) REMPI spectra, where the

uncertainty in ν0 is the specified accuracy of the wavemeter, i.e. 0.1 cm−1. The global systematic

error of 0.1 cm−1 is determined by how often the wavemeter is calibrated against the Ne spectral

lines. For each vibronic band, because the spectra of all isotopologues are simultaneously recorded,

the isotope shifts from the (1+1) REMPI scans and (1+1′) REMPI scans agree well when the

error calculated by the bootstrap method is at least 0.01 cm−1. Similarly, the uncertainties in

B′ and B′′ appear to be dominated by the bootstrap statistics when they are at least as large as

0.001 cm−1. When the purely statistical standard deviations in the isotope shift or {B′, B′′} fall

below 0.01 cm−1 and 0.001 cm−1 respectively, the uncertainties reported in Table 2.1 have been

increased to reflect an estimate of the corresponding systematic errors. We find that the purely

statistical uncertainty estimated using the bootstrap method accounts well for the uncertainty in

the Λ-doubling parameter.

2.3 Lower states of observed transitions

From previous work, the electronic ground state of HfF is 2∆3/2 and for ν = 0, the rota-

tional constants are B =0.284 001(7) cm−1 and 0.283 668(6) cm−1 for the 178Hf19F and 180Hf19F

isotopologues respectively [1]. From our own laser-induced fluorescence studies [30], we get the
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Table 2.1: Summary of molecular constants (all in cm−1) for observed transitions. The numbers in parentheses denote the 1σ uncertainties,
assigned as explained in the text.

Ω′ 180T̃ ′
e

180ν0 − 178ν0
180Hf19F 178Hf19F

(p + 2q)/2
ν0 B′′ B′ ν0 B′′ B′

3/2

27165(74) -1.67(4) 30272.97(10) 0.282(3) 0.249(3) 30274.63(10) 0.283(3) 0.249(3) -
27307(19) -1.838(10) 30731.53(10) 0.2864(01) 0.2532(10) 30733.37(10) 0.2867(10) 0.2535(10) -
28137(19) -1.150(10) 30277.59(10) 0.2859(10) 0.2596(10) 30278.74(10) 0.2862(10) 0.2599(10) -
31831(19) -0.030(10) 31886.71(10) 0.2832(10) 0.2638(10) 31886.74(10) 0.2835(10) 0.2641(10) -
31833(19) -0.335(10) 32466.00(10) 0.2852(10) 0.2630(10) 32466.34(10) 0.2855(10) 0.2633(12) -
32385(56) 0.00(3) 32384.89(10) 0.2810(10) 0.2625(12) 32384.88(10) 0.2813(10) 0.2628(10) -

1/2

27471(19) -2.962(12) 32980.34(10) 0.2823(10) 0.2503(10) 32983.31(10) 0.2826(10) 0.2506(10) 0.0735(9)
29565(19) -1.464(12) 32282.12(10) 0.2849(10) 0.2586(10) 32283.58(10) 0.2852(10) 0.2589(10) 0.0176(6)
29682(37) -1.43(2) 32343.44(10) 0.2843(10) 0.2623(10) 32344.87(10) 0.2846(10) 0.2626(10) 0.0787(7)
29723(37) -1.71(2) 32905.78(10) 0.2800(12) 0.2499(12) 32907.5(2) 0.2803(12) 0.2502(11) 0.0159(7)
31276(37) -0.49(2) 32188.26(15) 0.280(2) 0.257(2) 32188.75(15) 0.281(2) 0.257(2) 0.057(2)
31349(37) -0.81(2) 32856.7(2) 0.2841(13) 0.2568(12) 32857.5(2) 0.2844(13) 0.2571(11) 0.054(3)
31485.1(5) -0.4503(3) 32322.7375(2) 0.28364(2) 0.25667(2) 32323.1878(2) 0.28395(2) 0.25695(2) 0.04252(3)
31629(37) -0.62(2) 32782.57(11) 0.2832(10) 0.2573(10) 32783.2(2) 0.2835(10) 0.2576(10) 0.074(2)
31690.0(4) -0.2834(2) 32217.15454(14) 0.28378(2) 0.26019(2) 32217.43796(14) 0.28409(2) 0.26047(2) 0.08537(2)
31799(19) -0.553(14) 32822.37(12) 0.2814(10) 0.2553(10) 32822.93(10) 0.2817(10) 0.2556(10) 0.0879(12)
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isotope-averaged rotational constants to be Bν=0 = 0.2836(4) cm−1, Bν=1 = 0.2822(10) cm−1 and

Bν=2 = 0.2791(12) cm−1. We found [30] that in our apparatus a majority of the HfF molecules are

created in the ground vibronic state, although populations in multiple lower vibrational levels can

be retained, athermally, in the supersonic expansion.

In this chapter, all characterized transitions appear to originate from the 2∆3/2 ground state

of HfF. In principle, the vibrational assignment of the lower state can be inferred from a precise

fit to the lower state’s rotational constant and comparison against the values obtained in Ref. [30].

The vibrational quantum number of the lower state was indeed obtained from our high-resolution

(1+1′) REMPI data (Fig. 2.3(d)), which shows that some bands we observe come from the ground

vibronic state. However, the (1+1) REMPI data are too noisy, too broad in linewidth, and have

population in too few rotational states to permit a precise enough determination of B′′.

2.3.1 A tool for understanding vibronic bands

The spectra of HfF in the vicinity of 30000 cm−1 are complicated; tools are needed to sort

out the spectra and to group together excited states that belong to the same electronic orgin. For

most of the vibronic bands, we did not have available to us sufficiently precise determinations of

both B′ and B′′ to determine the vibrational numbering of upper and lower state levels. Instead,

we used the isotope shift, ∆ν ≡ 180ν0 − 178ν0, to determine an estimate of the electronic energy,

T̃ ′
e, for each excited vibrational level.

Assuming that the electronic and vibrational energies are separable, we can write the vibronic

band origin for the isotopologue iHf19F as

(i)ν0 =
(i)T ′

e − (i)T ′′
e + (i)G′

ν′ − (i)G′′
ν′′ , (2.3)

and, assuming an approximately harmonic potential, we can write

180G′
ν′ − (i)G′

ν′ =

(√
(i)µ−

√
180µ√

(i)µ

)
180G′

ν′ , (2.4)

where (i)µ is the reduced mass for isotope (i). A similar relation applies for G′′
ν′′ , thus if we define

180T ′′
e ≡ 0, we combine Eqs. (2.3) and (2.4) to give an estimated value of the electronic energy,
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180T̃e:

180T̃e ≡ 180T ′
e − 180T ′′

e

= 180ν0 + η
[
∆ν −

(
180T ′

e − 178T ′
e

)
+
(
180T ′′

e − 178T ′′
e

)]
, (2.5)

where η ≡
√

178µ/(
√

180µ −
√

178µ) ≈ 1861. Then, assuming that the electronic contribution to

the isotope shift is much smaller than the vibrational contribution [35],

180T̃ ′
e =

180ν0 + η∆ν . (2.6)

Even in the case that the electronic contribution to the isotope shift (180T ′
e− 178T ′

e− 180T ′′
e + 178T ′′

e )

is not much smaller than the vibrational contribution (180G′
ν′ − 178G′

ν′ − 180G′′
ν′′ +

178G′′
ν′′), two

bands that share common upper and lower electronic states should get, from Eq. 2.6, very similar

values for 180T̃ ′
e, even if ν ′′ and ν ′ are different for the two bands. Again, this depends on the

assumption of harmonic potentials and of separable electronic and vibrational contributions to the

band energy.

Figure 2.4 is a graphical summary of the observed Ω′ = 3/2 ← X2∆3/2 bands and Π1/2 ←

X2∆3/2 bands in HfF. Part (a) of the figure shows the isotope shifts, where an isotope shift is

estimated to be about -0.3 cm−1 for a change in vibrational quanta of ν ′ − ν ′′ = +1. Some isotope

shifts of anomalously large magnitude (1.5 cm−1 to 3 cm−1) are further discussed in Section 2.5.

Part (b) shows the estimated electronic energy versus band origin, in which transitions that share

the same pair of lower and upper electronic states are expected to line up horizontally. In Fig. 2.4(b)

we see two bands {31.89} and {32.47} that, while their band origins are separated by 579 cm−1,

have 180T̃ ′
e values that differ by only 13 cm−1 (identical within measurement uncertainty). It is

likely that these two bands share a common electronic transition with 180T̃ ′
e ≈ 31840 cm−1, as

indicated by the y-axis. We note that 579 cm−1 would be a reasonable excited state vibrational

spacing. We can see, from the spacing of data points in the y-direction in Fig. 2.4(b), that there

are at least four distinct Ω′ = 3/2 electronic levels: near 27200, 28150, 31850 and 32400 cm−1.

As a caveat, we note that several of the bands have unreasonably large isotope shifts. We discuss

possible causes for anomalous isotope shifts in Section 2.5 below.
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For the Π1/2 ← X2∆3/2 transitions, from Fig. 2.4(b) we can see immediately that there are

multiple distinct Π1/2 electronic levels: one with 180T̃ ′
e ≈ 27500 cm−1, at least one with 180T̃ ′

e ≈

29600 cm−1, and multiple levels with 180T̃ ′
e in the range 31500 ± 300 cm−1. One cannot say for

certain that the three bands with 180T̃ ′
e ≈ 29600 cm−1 share a common electronic transition. With

reference to Table I, we see the {32.34} band has a Λ-doubling constant quite distinct from that of

the {32.91} band, which suggests either two distinct electronic transitions or, more likely, a local

perturbation of one of the bands. For the cluster of six Ω′ = 1/2 bands with 180T̃ ′
e between 31200 and

31800 cm−1, the spread in 180T̃ ′
e is too large for the bands to share a common electronic transition.

Moreover, the respective rotational constants for the bands {32.22} and {32.32} are determined so

precisely that we can say with some confidence that these two bands share a common lower level

vibrational level (ν ′′ = 0), but belong to distinct upper vibrational levels. Since the values of ν0

are too close together to make it likely that the upper levels are adjacent vibrational levels of the

same electronic state, it seems quite likely that the two bands terminate in distinct electronic upper

levels. For the bands {32.19} and {32.86}, the vibronic band origins differ by 668.41(14) cm−1,

which is within 2σ of the 1–0 vibrational energy splitting of the X2∆3/2 ground state [30]. Further,

both bands fit to the same B′ whereas one band fits to a value of B′′ that is consistently smaller

than that of the other band. This strongly suggests that the bands {32.19} and {32.86} arise from

the ν ′′ = 1 and ν ′′ = 0 ground vibrational levels, respectively.

2.4 Rotational line strengths

In the (1+1) REMPI experiments, the transition excited by the second photon is typically left

unsaturated, so the observed REMPI line strengths are actually a convolution of the line strengths

for both the first and second step in REMPI. We have observed in other work [52] that the above-

threshold ionization spectrum is highly structured. This structure corresponds to νRyd > 0 levels

that autoionize into ν+ = 0 vibrational levels of HfF+. Qualitatively, the Hönl-London expressions

for Hund’s case (a) molecules work well to describe the observed rotational line intensities. This is

the case for all observed bands except two Ω′ = 3/2← X2∆3/2 bands: {30.73} and {32.47}.
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Figure 2.4: (a) Isotope shifts (triangles denoting Ω′ = 3/2 ← X2∆3/2 transitions and circles
denoting Π1/2 ← X2∆3/2 transitions) and (b) calculated electronic energies for the Ω′ = 3/2 ←
X2∆3/2 transitions (dashed lines terminating on the left axis) and Π1/2 ← X2∆3/2 transitions

(dashed lines terminating on the right axis). The spread in 180T̃ ′
e values indicates at least four

distinct Ω′ = 3/2 electronic states and at least six distinct Π1/2 electronic states.
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To fit the line intensities in a given vibronic band, we included terms that described possible

interference effects between parallel (Ω′ − Ω′′ = 0) and perpendicular (Ω′ − Ω′′ = ±1) transitions

[48]. For example, a nominal Ω′ = 3/2 (for clarity, also denoted here as Ω′
N) excited state could

also possess some Ω′ = 1/2 (= Ω′
N − 1) and/or Ω′ = 5/2 (= Ω′

N + 1) character from mixing (via

the Hamiltonian term -BJ∓L±) with nearby “dark” states. When the excited state is no longer a

good Hund’s case (a) state due to these admixtures, transitions between the 2∆3/2 ground state

and all three admixed Ω′ components are allowed. The line strength S(J ′,Ω′
N ;J ′′Ω′′) for a given

rotational line is given by:

S(J ′,Ω′
N ;J ′′Ω′′) ∝∣∣∣∣∣∣∣

µα




J ′ 1 J ′′

−Ω′
N (Ω′

N − Ω′′) Ω′′


 + µβ




J ′ 1 J ′′

−(Ω′
N + 1) (Ω′

N + 1− Ω′′) Ω′′




+µγ




J ′ 1 J ′′

−(Ω′
N − 1) (Ω′

N − 1− Ω′′) Ω′′




∣∣∣∣∣∣∣

2

, (2.7)

where µα, µβ, and µγ refer to the transition dipole matrix elements between the ground state and

the admixed excited states (of Ω′
N , Ω′

N+1, and Ω′
N−1 character, correspondingly). Note that, since

the µα, µβ, µγ amplitudes are summed and then squared, interference effects are present. These

matrix elements are allowed to vary in the contour fits. If the second and third terms are ignored,

the line strength expression reduces to the normal Hönl-London factor [94].

For the Π1/2 excited states, the ∆Ω = ±1, 0 transition selection rule requires the last term to

be zero. Between the two remaining transition dipole matrix elements, µα tends to dominate for

all of the observed Π1/2 ← X2∆3/2 bands. Similarly, µα tends to be the dominant dipole matrix

element for all of the Ω′ = 3/2 ← X2∆3/2 bands except for two, {30.28} and {32.47}. Figure 2.5

compares the contour fits performed using the Hönl-London expressions versus Eq. (2.7) to describe

rotational line intensities for each of the anomalous bands. In both cases, the incorporation of

interference effects in Eq. (2.7) gives rise to a better fit. In particular, the contour fits indicate an

admixture from a nearby Ω′ = 1/2 state (where µγ is dominant), which suggests that the observed
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upper state is of nominal 2Π3/2 character, the transition “brightness” from the ground state has

been lent to it from a nearby Π1/2 state. In fact, the rotational line strengths imply that at least

one of the two bands ({32.47}) is located very close to a Π1/2 ← X2∆3/2 band, as seen in Fig. 2.4.

The observed admixture of electronic states is the reason for using Hund’s case (c) notation to

specify the Ω′ = 3/2 excited states.

2.5 Large isotope shifts

As shown in part (a) of Fig. 2.4, several bands were observed to have isotope shifts more

negative than -1.6 cm−1, which would correspond to the upper state of the transition having

vibrational energy that exceeds the lower state vibrational energy by more than 3000 cm−1. If we

assume a typical upper-state vibrational spacing of ∼ 600 cm−1, a 3000 cm−1 vibrational change

implied a change in vibrational quanta, ∆ν ∼ 5. Deriving bond lengths from observed rotational

constants, one calculates extremely small Franck-Condon factors for such transitions. This poses

a mystery: how were we able to excite these transitions? One possible explanation could be

that interactions between potential curves, say an anticrossing of some sort, generate a few levels

described by anomalously large vibrational constants, as depicted in Fig. 2.6(a). An upper-state

vibrational constant as large as 1000 cm−1, for instance, could yield an acceptably large Franck-

Condon overlap for the corresponding ∆ν = 3 transition. But it seems unlikely there would be

multiple electronic states with such exotically large curvatures in their potential curves. Moreover,

in Fig. 2.4, the x-axis spacing between some pairs of points that are clumped along the y-axis

suggests that at least some of the large-isotope-shift bands have relatively modest upper-state

vibrational spacing, perhaps 450–600 cm−1.

As an alternative hypothesis to the picture of transitions involving large changes in the num-

ber of vibrational quanta, the anomalous isotope shifts could arise from isotope-specific accidental

degeneracies between two mutually perturbing excited states, each of which have, in the absence

of perturbation, smaller isotope shifts (Fig. 2.6(b)). In this case, the perturbing state would not

only cause the 178Hf19F and 180Hf19F states to split apart from each other, but also cause all of
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Figure 2.5: Contour fits (red) to the Ω′ = 3/2 ← X2∆3/2 {30.73} and {32.47} bands (data shown
as connected black dots). In (a, c), the contour fits are constrained to use Hönl-London expressions
for the rotational line strengths, which are shown here to be inadequate for a good description
of the observed line intensities, especially for those in the Q branch. In (b, d), the contour fits
are allowed to take into account possible interference effects between parallel and perpendicular
transition moments. In both cases, µγ dominates over the other transition dipole matrix elements,
indicating that the nominal Ω′ = 3/2 upper states in both cases appear to possess an admixture
from nearby Ω′ = 1/2 states.
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the other isotopologues to follow an irregular splitting that is not linear with
√

1/(i)µ. Figure 2.7

displays the isotope splitting between the four most abundant isotopologues for several bands with

large isotope shifts. The isotopologues are found to follow a linear energy spacing relative to the

inverse square root of their reduced masses, which is what we expect in the absence of such an

isotopologue-specific perturbation and where the observed isotope shift is determined primarily by

√
1/(i)µ vibrational energy shifts.

The high visibility of bands that had large isotope shifts could also be due to spin-orbit

interactions between vibrational levels that belong to different excited states, as shown in Fig. 2.6(c).

The observed excited state of a high vibrational quantum number, ν ′d, could have been an initially

“dark” electronic state that became observable by spin-orbit interaction with a “bright” electronic

state of much lower vibrational quantum number, ν ′b. This would provide the latter with decent

Franck-Condon overlap with the lower state. Such a spin-orbit interaction would be proportional

to the vibrational overlap matrix element, 〈ν ′d|ν ′b〉 [48], which is estimated to be large only for

ν ′d ≈ ν ′b ± 1 for all the observed excited states in HfF.

One plausible explanation for the large isotope shifts is that there may be a third state that

induces an indirect interaction between the observed state and another “bright” state, where the

“bright” state is of a significantly lower vibrational quantum number and has large Franck-Condon

overlap with the lower state (Fig. 2.6(d)). It is likely that there are other plausible explanations for

the observation of such anomalously large isotope shifts, and we invite the interested spectroscopist

to offer his or her ideas.

2.6 Intermediate states for OODR autoionization

Among the six Π1/2 ← X2∆3/2 bands with 180T̃ ′
e in the range 31200–31900 cm−1, two of

the bands ({32.22} and {32.32}) have been scanned at high resolution, using the (1+1′) REMPI

technique. Their distinct Λ-doubling constants, coupled with the close proximity of the electronic

energy levels, indicate that they must belong to electronically distinct states in order to exhibit such

small repulsion. Their dominant electronic configurations must differ by at least two spin-orbitals,
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Figure 2.6: Four hypotheses for the observation of large isotope shifts. (a) Avoided crossing of
potential energy curves, giving rise to anomalously large vibrational spacings. (b) Isotope-specific
accidental degeneracies between two mutually perturbing excited states, ψ′

1 and ψ
′
2. In this picture,

the isotope splittings would not be linear in
√

1/(i)µ. (c) Local perturbation between a high-ν ′d level
of a “dark” electronic state and a low-ν ′b level of a “bright” electronic state. The higher ν ′d level
becomes observable by borrowing brightness from the low-ν ′b level, but it has the normal isotope
shift of a high-ν ′d level. (d) Indirect coupling between the high-ν ′d level and low-ν ′b level.



33

0

1

2

3

180

179

178
177 30.73 { }

(i)
ν 0 −

 18
0 ν 0 (

cm
−

1 )

0

1

2

3

180

179

178

177 32.34 { }

0

1

2

3

180

179

178

177
 32.91 { }

√
1/(i)µ

(i)
ν 0 −

 18
0 ν 0 (

cm
−

1 )

0

2

4

6

180

179

178

177 32.98 { }

√
1/(i)µ

Figure 2.7: For the vibronic bands {30.73}, {32.34}, {32.91}, and {32.98}, the isotope shifts are
found to vary linearly with the inverse square root of the isotopologue reduced masses, which
suggests that anomalously large isotope shifts are indeed due to a large ∆ν and not to isotope-
specific perturbations.
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e.g. sdδ(3∆1)nℓλ versus s2(1Σ+)n′ℓ′λ′, where sdδ(3∆1) or s
2(1Σ+) refers to the core configurations,

and nℓλ or n′ℓ′λ′ refers to an additional electron in a more highly excited orbital. These two

configurationally distinct states could potentially be used as intermediate states to access different

states of HfF+ when performing OODR autoionization, which is relevant to our goal of preferential

population of the metastable 3∆1 state rather than X1Σ+ for the eEDM experiment. These two

vibronic states have indeed been observed to yield very different autoionization spectra, as shown

in Fig. 2.8. We are in the process of characterizing the electronic states of the ions so produced.
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Figure 2.8: OODR autoionization spectra measured by tuning the first photon to access a partic-
ular excited rotational state (J ′ = 1/2(a)) using the vibronic bands (a) {32.22} and (b) {32.32}
(ion signal inverted for clarity), then scanning the second photon to map out the spectrum of au-
toionizing Rydberg states accessible from that intermediate state. Each case gives a unique set of
autoionization resonances, suggesting that the ionic core of the autoionizing Rydberg state differs
between the two cases.

2.7 Summary

A plethora of HfF bands in the 30000–33000 cm−1 region have been observed using (1+1)REMPI

and (1+1′) REMPI. We have characterized six Ω′ = 3/2 ← X2∆3/2 and ten Π1/2 ← X2∆3/2 vi-

bronic bands. To sort out the spectra, we used the isotope shift for a given band to determine the

electronic energy, 180T̃ ′
e, for the upper electronic state. This method of grouping bands only works

for bands where the potential energy curves are fairly well-approximated by a harmonic poten-

tial. Two bands exhibit interference effects between parallel and perpendicular transition moments
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through their rotational line strengths. Several bands with anomalously large isotope shifts had

intensities much larger than predicted based on the expected small Franck-Condon factors for tran-

sitions from the low-ν ′′ lower state. Among the six Π1/2 ← X2∆3/2 bands with electronic energy

offsets crowded in the vicinity of 31300–31800 cm−1, there are at least two electronically distinct

states. When such configurationally distinct states are used as intermediate states in the OODR

preparation of Rydberg states, these states provide access to at least two possible routes for creating

distinct HfF+ electronic states after autoionization decay, which will be important for the selective

formation of ionic HfF+ in the desired 3∆1 quantum state for the eEDM experiment.



Chapter 3

Autoionization for preparing HfF+ in a single rovibronic (1Σ+) state [52]

A high-precision search for the eEDM demands the preparation of as many HfF+ ions of a

single isotope as possible in a particular |J+,M+〉 rovibronic, Zeeman sublevel. Unwanted ions

created in other states are co-trapped and can collide with the relevant ions, contributing to the

dephasing of the latter species. The reduction in both the relevant sample number and coherence

time can doubly hurt the sensitivity of an eEDM experiment. Hence, the state preparation of HfF+

in a single rovibronic, Zeeman level is an important but non-trivial task.

The strategy we use to prepare HfF+ in a state-selective manner is the autoionization of

Rydberg HfF molecules excited from ground state HfF using the optical-optical double resonance

(OODR) technique [48]. These autoionizing states lie above the lowest ionization threshold. Their

ion-core is excited and decays after a short time, releasing energy to kick out the Rydberg electron.

Will the resultant state of the ion have some memory of the state of its parent Rydberg molecule?

In principle, the above question can be answered by building a model of autoionization based

on multichannel quantum defect theory (MQDT) [25, 37, 80, 31], like that performed for CaF

[41]. This model calculates the quantum defect matrix elements µ(R, E) and their derivatives with

respect to the internuclear distance R and energy E , which can then be used to describe the Rydberg

energy spectrum, dynamics of autoionization and resultant ion states. However, constructing such a

quantum defect model demands extensive knowledge of Rydberg levels to provide input parameters;

such knowledge is presently lacking for HfF.

Alternatively, we tackle the question of Rydberg state – ion state branching ratios by experi-
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mentally probing the post-autoionization states of HfF+ with laser-induced fluorescence (LIF). Ion

LIF has been reported before by other groups as a tool to examine the states of ions created from

resonance-enhanced multiphoton ionization (REMPI) [20, 27, 28, 90, 67] , electron-impact ioniza-

tion [59] and ion-molecule collisions [32]. A slightly different but related form of state detection

is the grating-dispersed fluorescence obtained from highly-excited ions formed by photoionization

using synchrotron light sources [43, 68, 38, 17, 66]. In our experiment, the ions are formed from a

Rydberg band at 54 cm−1 above the lowest ionization threshold. The upper levels of this Rydberg

band are energetically allowed to decay only to the X1Σ+(ν+ = 0) vibronic ground state of HfF+,

although the ions could be spread out over as many as ≈ 200 distinct |J+,M+〉 rotational-Zeeman

sublevels. The ion distribution over the various |J+,M+〉 states remain to be unveiled through

their LIF intensities.

To predict the ion population distributions, which are connected to the observed fluorescence

intensities, we present a simplified model of autoionization that assumes: 1. the Rydberg molecule

has the same electronic ion-core as its autoionization product, and 2. the Rydberg electron flies

off with the same angular momentum as it possessed when it was bound to the molecule, i. e. the

dynamics of autoionization are radial only. The first assumption is based on the picture that

the Rydberg state undergoes vibrational autoionization as opposed to electronic autoionization;

in vibrational autoionization, propensity rules tend to favor a νRyd = 1 → ν+ = 0 decay process

[48]. The second assumption means that unlike the quantum defect model, the simplified model

neglects the matrix elements of ∂µ/∂R that are off-diagonal in the Rydberg electron’s orbital

angular momentum l. We do not yet understand the HfF Rydberg spectrum sufficiently well, in

fact, to independently test these two assumptions. Instead, the severe lack of information obligates

us to propose an initial model that is as simple as possible. As will be seen, the model can be

adjusted to give a good account of the ion rotational distributions, and with no further adjustment

it does well predicting the orientation and M+ populations of a particular J+ level. That said, on

the basis of the present work alone, we cannot rule out electronic autoionization nor the presence of
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angular dynamics in the autoionization process. The remaining sections of this chapter1 detail the

experimental methods, autoionization theory and results of our LIF studies on autoionized HfF,

with the primary goal toward maximizing ion creation in a desired single |J+,M+〉 state.

3.1 Experiment setup

Fig. 3.1 shows a schematic of the OODR-LIF experiment setup used to ionize a HfF molecular

beam and probe the resultant ionic states. The source chamber is the same as that described in

Section 2.1, while the OODR-LIF chamber replaces the TOFMS chamber. The two skimmers

responsible for collimating the molecular beam are also now replaced by skimmers of 3 mm orifice

diameter, separated by 12.5 cm. Three co-propagating lasers — two for OODR and one for LIF of

the ions — enter and exit the OODR-LIF chamber through Brewster-angled windows mounted on

15-cm long tubes, in which baffles are placed to reduce scattered light. The three lasers intersect

the molecular beam axis at 90◦ and the HfF+ ions produced are accelerated by an electric field

of 0.3 V/cm through 5 cm to two microchannel plates (MCP) stacked in a chevron configuration.

The ion signal, after amplification by a transimpedance amplifier, is monitored on an oscilloscope.

Fluorescence photons are collected above and below the ion beam for 2 µs after the ions are excited.

The mirror on top collects most of the fluorescence photons and directs them to a parabolic mirror

below, which in turn focuses them onto a photomultiplier tube (PMT). To further reduce scattered

light counts, the photomultiplier tube is not gated on until 200 ns after the LIF laser fires. A

bandpass filter centered at 820 nm is also placed between the top collection mirror and the parabolic

mirror. The photon signals are amplified by a transimpedance amplifier, accumulated over at least

500 shots using a separate channel of the oscilloscope and counted individually using a peak-finding

algorithm.

All three lasers involved in addressing the energy levels in the OODR-LIF scheme, as depicted

in Fig. 3.2, are dye lasers. The first OODR laser pulse (309 nm, 1.5 µJ/pulse, 10 ns, 150 MHz

FWHM) is the output of a home-built two-stage Rhodamine 101 dye cell amplifier, frequency

1 Most of this chapter has already appeared in Reference [52].
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doubled with a β-BBO crystal. The dye cell amplifier is seeded by a continuous-wave ring dye laser

operating with Rhodamine 610 Chloride dye and pumped by the second harmonic of a Nd:YAG

laser. The Nd:YAG second harmonic at 532 nm also pumps a dye laser operating with Pyridine 2,

the output of which is frequency-doubled with a KDP crystal to produce the second OODR laser

pulse (345–370 nm, 100–200 µJ/pulse, 10 ns, 0.1 cm−1 FWHM). The second laser pulse is delayed

by 14 ns relative to the first laser. The LIF laser pulse (769 nm, 6–8 ns, 0.5 uJ/pulse, 100–200 MHz)

is the output of a home-built two-stage LDS 798 dye cell amplifier, which is pumped by the second

harmonic of a Nd:YAG laser and seeded by an external cavity diode laser at 769 nm to address

the [13.0]1(ν ′ = 0) ← X1Σ+(ν ′′ = 0) transition1 [16] in 180Hf19F+. The LIF laser is delayed

by 2 µs relative to the OODR lasers. Dichroic mirrors are used to overlap the three laser beams

spatially before they enter the vacuum chamber. The laser pulses are linearly polarized either

by the orientation of their frequency-doubling crystals or by passing through a polarizing beam

splitter. They can then be set to either left or right circular polarizations using quarter and half

waveplates for the appropriate wavelength ranges. Throughout the experiment, the frequencies

of the seed lasers for both the first OODR and LIF lasers are locked to a single rotational line

using a high-precision wavemeter that is regularly calibrated against the 87Rb D2 transition. The

frequency of the second OODR laser is monitored by both the high-precision wavemeter and a

second wavemeter that is internally calibrated against Ne spectral lines.

To record OODR autoionization spectra, we fix the first OODR laser pulse on a single rota-

tional line of a given parity of the [31.5]1/2 ← X2∆3/2 transition
2 [51] in the 180Hf19F isotope while

scanning the second laser pulse in frequency. We use circular dichroism techniques (i.e. we compare

the ion signal obtained when both lasers are polarized with the same helicity versus when polarized

with opposite helicity) to identify transitions to various Rydberg rotational levels (denoted as J)

in the autoionization spectra [96, 65].

1 “[13.0]1(ν′ = 0)” refers to an excited state of vibrational quantum number ν′ = 0, total angular momentum
projected on the body-fixed axis Ω = 1, and at 13,0xx cm−1 from the vibronic ground state of HfF+.

2 Similarly, “[31.5]1/2” refers to an excited state of Ω = 1/2, and at 31,5xx cm−1 from the vibronic ground state
of HfF.
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Rovibronic state detection of the HfF+ ion yield is accomplished by counting fluorescence

photons that are emitted down to the X1Σ+(ν ′′ = 1) vibronic level [63, 4] when the ions are

excited by the LIF laser pulse. The frequency of the LIF laser is chopped every 100 shots between

being on-resonance and 500 MHz off-resonance of a rotational line. The number of fluorescence

photons detected when the horizontally-polarized LIF laser is tuned to an R(0), Q(1), Q(2), ... ,

Q(5) transition is related to the rotational populations in the J+ = 0, 1, 2, ..., 5 levels respectively.

Both OODR laser pulses are set to right circular polarizations. LIF detection is carried out when

the second OODR laser pulse is tuned to both on-resonance and ±0.35 cm−1 off-resonance of

an autoionizing line, so as to subtract out the contribution to the measured LIF intensities from

non-resonantly produced ions.

To determine the orientation of the ions formed in the J+ = 1 rotational state, the LIF

laser is fixed on either the Q(1) or the R(1) transition. With both OODR lasers right circularly

polarized, we chop between having the LIF laser left and right circularly polarized and measure the

respective fluorescence signals. Half waveplates and quarter waveplates are mounted on motorized

rotation stages to perform the polarization switching.
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Figure 3.1: Schematic of the OODR-LIF apparatus. The molecular beam axis, the direction of
propagation of the three co-propagating lasers and the axis of fluorescence photon collection are
mutually perpendicular. From the ions, the fluorescence collection mirror on top subtends a polar
angle of δθ = 75◦, whereas the parabolic mirror below subtends θ = −11.8◦ to 8.4◦. A 820nm-
bandpass filter, placed between the top collection mirror and the parabolic mirror, is not shown.
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Figure 3.2: Neutral HfF and HfF+ energy levels addressed in the OODR-LIF scheme. The quantum
numbers assigned to each rotational level follow those given in Section 3.3. The transitions marked
by roman numbers correspond to the following: I) first excitation photon in the OODR technique,
II) second excitation photon in the OODR technique, III) autoionization, IV) laser-driven transition
in LIF, and V) fluorescence photons detected by the PMT.
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3.2 Autoionizing states of hafnium fluoride

Transitions to different Rydberg rotational levels can be made by tuning the first OODR

laser pulse to access intermediate states of different J ′ and parity, as shown by the stacked plots in

Fig. 3.3a. The various rotational transitions driven by the first OODR laser pulse are labeled on

the top left corner of each subplot. Since the Ω-doublets of the X2∆3/2 ground state in HfF cannot

be resolved by the first OODR laser, the parity of the Rydberg states can only be determined

up to an overall sign and is assigned as either ‘a’ or ‘b’ instead of as ‘e’ or ‘f’. The Rydberg

rotational levels are identified using the circular dichroism technique outlined in Section 3.1; for

the autoionization spectrum shown in Fig. 3.3a, both OODR lasers are chosen to be right circularly

polarized to enhance the autoionization line intensity from higher J states. The level spacings arise

from half-integer pattern-forming quantum numbers, which indicate that the Rydberg electron

is core-penetrating, i.e. the inner lobe of its wavefunction lies inside the molecular ion-core [40].

Since no transition to the J = 1/2 level is observed, the Rydberg vibronic band is inferred to have

Ω = 3/2. The Ω-doublets of the Rydberg vibronic band have no observable energy splitting, even up

to J = 11/2. The Rydberg rotational energies are fit to the polynomial E(J) = T0+BRydJ(J +1),

yielding a rotational constant of BRyd = 0.2911(6) cm−1. The J = 7/2 and 11/2 levels are found

to be perturbed by as much as -0.16(2) cm−1 and +0.27(3) cm−1 from the expected energy levels

of a rigid rotor.

The Rydberg vibronic band characterized at 54 cm−1 above the lowest ionization threshold

(59462(2) cm−1) is part of a broader scan of the autoionization spectrum, shown in Fig. 3.3b. In

contrast to the anomalously clean series of rotational lines in Fig. 3.3a, the HfF autoionization

spectrum is generally cluttered. Although the pulse energy of the second OODR laser is reduced

to avoid saturating the transitions to Rydberg states, the autoionization spectrum contains many

broad features, the narrowest of which, at 0.3 cm−1, is three times broader than the linewidth

of the second OODR laser. This broadening cannot be attributed to either lifetime or hyperfine

structure. The clutter of features makes it impossible for us to identify a clean Rydberg series of
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lines leading to ionization thresholds 3 .

The identification of various Rydberg series and their underlying Rydberg electron character

could potentially lead to predictions of ion rovibronic distributions. Alternatively, we can measure

the distributions of the ions formed and work backwards to elucidate the character of the Rydberg

electron. Toward this end, we developed a simplified model of autoionization, presented in the

following section.

3.3 Theory

In this simplified model of autoionization, the Rydberg molecule is treated as a Rydberg

electron attached to a 1Σ+ ion-core at relatively short distances. The good quantum numbers of

the resonant Rydberg state include the total angular momentum of the molecule J , its projection

on the molecular z-axis Ω (approximately), its projection on the laboratory z-axis MJ , and the

parity of the molecule. The quantization (ẑ) axis in the laboratory is provided by the direction

of laser propagation. The anisotropic interaction between the outermost electron and the ion-core

couples the orbital angular momentum l and total angular momentum j of the Rydberg electron.

Neglecting the vibrational part, we write the short-range Rydberg states as a superposition of basis

states having definite values of l and j:

Ψres =
∑

lj

Aljψ
|Ω|P
lj , (3.1)

where Alj is the probability amplitude of the corresponding {l, j} partial wave, and where

ψ
|Ω|P
lj = 1√

2

[
R (J |Ω|MJ)

∑

Ωσ

C
j|Ω|
lΩ;sσYlΩχsσ

− (−1)j+J−l+P R (J − |Ω|MJ )
∑

Ωσ

C
j−|Ω|
lΩ;sσ YlΩχsσ

]
. (3.2)

In Eq. (3.2), C, YlΩ, and χsσ denote a Clebsch-Gordan coefficient, spherical harmonic, and spinor

wavefunction, respectively. R (JΩMJ) is related to the Wigner rotation matrix DJ
MJΩ

, which is a

3 The lowest and excited HfF ionization thresholds have been identified using pulsed field ionization – zero electron
kinetic energy (PFI-ZEKE) photoelectron spectroscopy[4]
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Figure 3.3: (a) Stacked plots of OODR autoionization spectra, measured by scanning the frequency
of the second photon while holding the first photon fixed on different ground-intermediate transi-
tions (denoted on the left of the figure as ‘P(3/2)’, etc.) to access different intermediate rotational
states. The identified Rydberg rotational energy levels are marked by solid black lines with their
corresponding assignments. The autoionization spectra shown as blue dots (red triangles) belong
to the same parity ‘a’ (‘b’). The ionization energy given by the x-axis is referenced to the ground
rovibronic level in neutral HfF [1] and is offset from the ionization potential, 59462(2) cm−1. (b)
A broader scan of OODR ionization spectra is conducted in an electric field of ≈ 25 V/cm, which
explains the appearance of peaks in ion creation at ∼ 30 cm−1 below the ionization potential of
HfF. The peak marked by an asterisk is the same peak as that in (a).
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function of the Euler angles {α, β, γ} ,

R (JΩMJ) =

√
2J + 1

8π2
[
DJ

MJΩ
(αβγ)

]∗
. (3.3)

The parity of the molecule is given by (−1)P .

After autoionization, the distance between the emitted electron and the ion-core is large.

This long-range (electron +HfF+) system is described by the total ionic angular momentum J+,

its projection M+ on the laboratory z-axis, and its projection Ω+ on the body-fixed z-axis. Here,

Ω+ = 0 since the ion is in a 1Σ+ state. Because the short-range states have a definite total angular

momentum J and projection on the laboratory z-axis MJ , we also want to construct the long-range

states with definite J and MJ . We assume that the Rydberg electron flies off with the same {l, j}

angular momenta it possessed when bound to the molecule, i.e. there are no angular dynamics in

autoionization. The {l, j} partial waves of the system after autoionization can then be written as

φJ
+

lj =
∑

M+mj

CJMJ

J+M+;jmj
R
(
J+,Ω+ = 0,M+

)
×
∑

λms

C
jmj

lλ;sms
Ylλχsms . (3.4)

Eqs. (3.2) and (3.4) can be related by a rotational frame transformation,

ψ
|Ω|P
lj = (−1)j+|Ω|∑

J+

CJ+0
j−|Ω|,J |Ω|

√
1 + (−1)l+J++PφJ

+

lj . (3.5)

Hence, after autoionization, the probability for a Rydberg state with quantum numbers J and MJ

to produce an ion in the |J+,M+〉 state is

P J,MJ

J+,M+ =
∑
lj

|Alj |2
[
CJ+0
j−|Ω|,J |Ω|

]2 [
CJMJ

J+M+,jmj

]2 [
1 + (−1)l+J++P

]
. (3.6)

In the experiment determining the ions’ rotational distribution, the resonant Rydberg state is

prepared by two right circularly polarized laser pulses. The OODR excitation steps are denoted as

(X2∆3/2)J
′′ → (Π1/2)J

′ → (Rydberg Ω = 3/2) J . The molecules are assumed to reside initially in

a random distribution of M ′′
J sub-levels. The relative probability for a resonant Rydberg molecule

to be prepared in a |J,MJ 〉 level is then given by

P J
MJ

=
∣∣∣CJ ′MJ−1

J ′′MJ−2;11C
JMJ

J ′MJ−1;11

∣∣∣
2
, (3.7)
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where saturation effects are assumed negligible. The final (unnormalized) rotational distribution

of the ions is obtained by combining Eq. (3.6) with Eq. (3.7):

P J
J+M+ =

∑

MJ

P J
MJ
PMJ

J+M+ . (3.8)

The rotational distribution given by Eq. (3.8), however, cannot be compared against the

experiment directly. In the experiment, LIF signals for the different J+ states are measured.

The ions are excited by an x-polarized laser tuned to the rotational transition J+ → J+′

and

subsequently emit photons as they decay radiatively to some lower state J+′′

. The x-polarized

laser can be described by a linear combination of two spherical harmonics 1√
2
(Y1−1 − Y11). Since

the photomultiplier tube collects photons of both Y1−1 and Y11 polarizations emitted in almost all

directions, we can add the probabilities corresponding to each spherical harmonic incoherently. For

a given spherical harmonic Y1q, the relative signal strength has been adapted as a generalization of

Eq. (23) in Ref. [34]:

I
(q)

J+M+,J+′

=
(
2J+ + 1

) (
2J+′

+ 1
)

×




J+ 1 J+′

−Ω+ Ω+′ − Ω+ Ω+′




2


J+ 1 J+′

−M+ −q M+′




2

×
J+′

+1∑

J+′′=|J+′−1|

J+′′

∑

M+′′=−J+′′

(
2J+′

+ 1
)(

2J+′′

+ 1
)

×




J+′

1 J+′′

−Ω+′

Ω+′ − Ω+′′

Ω+′′




2


J+′

1 J+′′

−M+′ −q′ M+′′




2

. (3.9)

The first two lines describe the laser excitation step and the last two lines describe the spontaneous

emission step of the LIF process. The summation in the last two lines gives unity. Hence, for a
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given |J+,M+〉 state, the relative LIF signal strength for an x-polarized LIF excitation is given by

IJ+M+,J+′ =
1

2

(
I
(+1)

J+M+,J+′ + I
(−1)

J+M+,J+′

)

=
1

2

(
2J+ + 1

)(
2J+′

+ 1
)

×




J+ 1 J+′

−Ω+ Ω+ − Ω+′

Ω+′




2

×







J+ 1 J+′

−M+ −1 M+′




2

+




J+ 1 J+′

−M+ 1 M+′




2

 . (3.10)

Finally, the relative LIF signal strength, to be compared against the measured LIF intensities that

trace over the M+ levels, is given by

IJ+,J+′ =
1

N
∑

M+

P J
J+M+IJ+M+,J+′ , (3.11)

where N is a normalization factor chosen such that
∑

{J+,J+′}
IJ+,J+′ = 1. We use Eq. (3.11) to fit

IJ+,J+′ to the measured LIF signal and determine the values of |Alj |2. The effects of excited state

(J+′

) alignment and orientation on the photon collection efficiency were evaluated and found to be

very small.

When probing the orientation of the ions, the LIF excitation laser is either right or left

circularly polarized. The LIF signals for these cases are then given by

γR =
∑

M+

P J
J+M+I

(1)

J+M+,J+′ , (3.12a)

γL =
∑

M+

P J
J+M+I

(−1)

J+M+,J+′ . (3.12b)

3.4 Rotational distributions and parity propensities in autoionization decay

The fluorescence intensities, measured by exciting ions formed in various rotational states of

the X1Σ+, ν+ = 0 vibronic ground state after autoionization, are given in Fig. 3.4a. We focus on

the ions produced from both parities of the J = 3/2 and 5/2 rotational Rydberg levels. Although

the Rydberg molecules at 54 cm−1 above ionization threshold are energetically allowed to decay into
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many rotational levels of HfF+, they are observed to autoionize into only a few rotational levels.

The Rydberg molecules of a given parity are further observed to decay into ion rotational levels of

the same parity, i.e. molecules from the ‘a’ (‘b’) Rydberg state primarily form ions in the odd (even)

rotational states, as shown on the left (right) side of Fig. 3.4a. Both the rotational propensity and

parity propensity observations have also been reported for near-homonuclear molecular ions like N+
2

and NO+ created from REMPI [27, 90, 61], and are accounted for in a theory paper by Xie and Zare

[91]. For a polar molecule like CaF+, however, the parity propensity rule tends not to hold due to

extensive l-mixing for the Rydberg electron. For the HfF vibronic band reported here, the parity

propensity observation indicates the release of a Rydberg electron with l of predominantly one

parity. On the other hand, the non-negligible formation of ions in rotational states of both parities

implies that the Rydberg electron was ejected with a superposition of orbital angular momenta.

We use Eq. (3.11) from the simplified autoionization model to generate fluorescence inten-

sities for each allowed {l, j} and fit them against the LIF data to obtain the angular momentum

composition of the Rydberg electron. We note that since the overall parity of the Rydberg states

cannot be determined a priori, there are two possible sets of Alj to which the data could have fit.

However, the fits only converged for one of the two cases, strongly suggesting that the Rydberg

states denoted by ‘a’ (‘b’) should be assigned the parity P = +1(−1) in Eq. (3.1). In this case, the

fit results gave 67.5(3.7)% p3/2, 9.8(4.5)% d3/2 and 22.7(5.3)% d5/2 character to the Rydberg elec-

tron, where the numbers in parenthesis indicate the 1σ-error. In accordance with the half-integer

quantum number progression of the Rydberg rotational states, the Rydberg electron is found to be

in primarily a core-penetrating state. The mixed {l, j} character of the HfF Rydberg state has also

been reported for CaF Rydberg molecules [41]. We acknowledge that in contrast to the presented

model, other groups have reported significant angular dynamics in autoionization, which may be

accounted for within the framework of MQDT: for example, the Rydberg electron may have only

a single set of {l, j} when bound to the molecule, but flies off with multiple {l, j} [61], leading to

the formation of ions in rotational states of both parities. Since the {l, j} composition of the HfF

Rydberg state is not known a priori, we cannot claim the validity of our model over others.
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From the fits to the LIF intensities, the population distribution of HfF+ ions in the various

rotational states can be obtained (see Fig. 3.4b). There can be as many as 60% of the ions created

in a single rovibronic state (highlighted as black solid bar plots), which is significant for the state

selective creation of HfF+ for future experiments.

3.5 Preservation of orientation in autoionization decay

Certain experiments demand not only the creation of molecular ions in a particular rovibronic

state, but in a single Zeeman level of that state. To this end, we experimentally determine the

orientation of HfF+ formed in the J+ = 1, ν+ = 0,X1Σ+ state from the Rydberg levels J = 3/2(a)

and J = 5/2(a) prepared using two right circularly polarized OODR photons. The ‘a’ parity states

are chosen to maximize the ion signal, given the parity propensity rule observed in the previous

section. Unlike when measuring the ion rotational populations, the orientation was only determined

for when the OODR lasers are tuned to the resonance of an autoionizing line, as the non-resonant

ions were found to contribute to only ≈ 20% of the population in J+ = 1.The orientation is related

to the contrast ratio C for the fluorescence signal (γR, γL) measured when chopping between right

and left circular polarizations for the LIF laser, where C is defined as

C ≡ γR − γL
γR + γL

. (3.13)

The contrast ratio is a convenient quantity immune to drifts in ion production. As a systematic

check of our polarizations, we measured the contrast ratio when both OODR laser pulses are left

circularly polarized and found C to be of the same magnitude but opposite sign as when both lasers

were right circularly polarized, as expected.

The contrast ratios for the Q(1) and R(1) transitions are related to the orientation O0 and

alignment A0 of the ions through the following [26]:

CQ(1) =
3(1 +G1)O0

A0 − 2(1 +G2)
, (3.14a)

CR(1) =
15(1 +G3)O0

A0 + 10(1 +G4)
, (3.14b)
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Figure 3.4: (a) The Rydberg molecules, labeled by J and parity on the top right corner, are
observed to autoionize into only a few ion rotational levels. These rotational distributions are
probed by measuring the number of LIF photons, as shown in blue/red with error bars. In one
case (J+ = 0 ← J = 5/2 (b)), the measured LIF intensity appears negative, which is a statistical
artifact of the multiple signal subtractions performed to account for scattered light photons and
the rotational distribution of background ions. The narrower bar plots are theory fits to the data.
(b) The calculated rotational distribution of ions is obtained based on the fits to the rotational line
intensities above. The creation of ∼ 60% of the ions in a single rotational level, as highlighted by
the solid black bars, can be a significant advantage for future experiments. The ions formed in the
J+ = 1 state, marked by crosses above the bar plots, have their M+ distributions further examined
(see Fig. 3.5).
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where {Gi} . 0.05 are correction factors that account for the anisotropy of the fluorescence collec-

tion setup (depicted in Fig. 3.1). The orientation and alignment parameters are in turn related to

the M+ populations, which are displayed as plots with error bars in Fig. 3.5. The narrower bar

plots show the contrast ratios and M+-level distributions predicted from Eq. (3.12) of Section 3.3,

using the same Rydberg electron composition of {l, j} inferred from the rotational distributions.

The agreement between theory and experiment is good for the M+ = 1 population but only fair

for the M+ = 0,−1 populations, part of which may be attributed to the oversimplification of the

model’s assumptions. We note that of the decay into a single rovibronic state, the population in a

single Zeeman level may be as high as 54(7)% (from J = 3/2(a)) or even 73(6)% (from J = 5/2(a)).

In particular, the former number, combined with the formation of 60% of the ions in that same

rovibronic state, means that as many as 30% of the HfF+ ions created from a certain autoionizing

resonance can be in a single |J+,M+〉 level.

Different rotational levels can have different maximal (minimal) values for their orientation,

given by Omax
0 (= −Omin

0 ) = 1/(J +1). Therefore, instead of comparing the orientation parameter

of the Rydberg molecule to that of the autoionized product, we compare the fractional orientation

O′
0:

O′
0 =

O0 −Omin
0

Omax
0 −Omin

0

. (3.15)

O′
0 is 1 (0) when only the |M+ = +J+〉 (|M+ = −J+〉) states are populated and 0.5 when there is no

orientation. From the values reported in Table 3.1, we find that the autoionization of HfF Rydberg

molecules to the J+ = 1, ν+ = 0,X1Σ+ rovibronic state preserves orientation qualitatively, which

bodes well for the creation of HfF+ predominantly in a single Zeeman, rovibronic level for other

experiments.

3.6 Summary

We have spectroscopically characterized a vibronic band of the autoionization spectrum in

HfF at 54 cm−1 above the lowest ionization threshold. We directly probe the decay of its Rydberg
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Figure 3.5: The Rydberg molecules in (top) J = 5/2(a) and (bottom) J = 3/2(a), prepared using
two right circularly polarized photons in OODR, are observed to decay into the ion rotational level
J+ = 1 with a certain orientation. The ions’ orientation, related to theM+ population distribution
(right), is inferred from measurements of contrast ratios (left) for the Q(1) and R(1) LIF transition.
The narrower bar plots are the theory predictions for the M+ populations.

Table 3.1: Fractional orientation O′
0 of Rydberg HfF molecules in a given rotational level J and

of the ions formed in J+ = 1 after autoionization. The HfF orientation is calculated from the
polarizations of the OODR lasers; the HfF+ orientation is predicted from the simplified model of
autoionization described in the text; the HfF+ (measured) column refers to values inferred from
LIF polarization contrast ratios in Fig. 3.5.

J
Fractional orientation

Rydberg HfF HfF+ HfF+

(calculated) (predicted) (measured)

3/2 (a) 0.835 0.633 0.645(62)
5/2 (a) 0.865 0.867 0.730(86)
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states (J = 3/2, 5/2) into various rotational states of the X1Σ+, ν+ = 0 vibronic ground state of

HfF+ by performing laser-induced fluorescence on the ions. The measured fluorescence intensities

are fit using a simplified model of autoionization that assumes no angular dynamics and that the

Rydberg state has the same electronic ion-core as its autoionized state. The fit parameters imply

that the Rydberg electron has dominant p3/2 character with some mixing from the d orbitals. Using

the same Rydberg electron character, the model predicts qualitative preservation of orientation

when the Rydberg molecule autoionizes to the J+ = 1, ν+ = 0,X1Σ+ state, which was corroborated

by fluorescence intensity measurements carried out after excitation by a circularly polarized laser.

Thanks to a combination of rotational propensity, parity propensity and preservation of orientation

during autoionization, we find that we can create as many as 30% of the HfF+ ions in a single

Zeeman level of a rovibronic state. Having an initial population of 30% of the ions in a single

|J+,M+〉 level could prove to be very advantageous for future experiments such as the eEDM

search.

We note that although this work has concentrated on one vibronic band of a core-penetrating

Rydberg state, there is a body of core-nonpenetrating states in HfF that has yet to be uncovered

with experiment. Core-nonpenetrating states have almost pure l character. With l ≥ 2 for HfF,

the Rydberg electron hardly exerts a torque on the ion core rotational states when ejected, which

means that the resultant ion rotational states are likely to follow that of the Rydberg molecules

more closely. [42] This lends core-nonpenetrating Rydberg states even more promise for populating

ions of a desired |J+,M+〉 level with high efficiency.



Chapter 4

Ion traps

The aspect that best distinguishes the JILA eEDM experiment from the other eEDM efforts is

the fact that we work with molecular ions. As mentioned in the Introduction, molecular ions can be

trapped easily with electric fields, whereas the trapping of neutral molecules is d ifficult. Trapped

molecular ions offer a potentially long coherence time, which the eEDM statistical sensitivity is

proportional to. Ions can be trapped using a Paul trap or a Penning trap, and the JILA eEDM

experiment employs the former. In this chapter, we review the basics of a linear Paul trap, describe

our own design of a linear Paul trap, and demonstrate several techniques used to characterize and

diagnose the ions’ in-trap behavior.

4.1 Linear Paul trap basics

4.1.1 A simple picture for the quadrupole trap

The conventional linear Paul trap consists of four radial (x̂, ŷ) electrodes and two axial end

cap (ẑ) electrodes (Fig. 4.1a). To confine the ions along the axial direction, one can apply a DC

voltage to the end cap electrodes Vec, such that the potential between the electrodes is described

by Φ1(x, y, z):

Φ1(x, y, z) =
1

2

∂2Φ1

∂z2

(
z2 − x2 + y2

2

)

= k1Vec

(
z2 − x2 + y2

2

)
, (4.1)
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where k1 is a geometrical term related to the end cap electrode voltages giving rise to a second

derivative of the potential ∂2Φ1/∂z
2. The deconfining potential along the radial direction (−(x2 +

y2)/2) comes from Φ1 having to satisfy Laplace’s equation ∇2Φ = 0. To confine the ions in the

radial directions, one can apply an additional radiofrequency (RF) voltage to the radial electrodes,

creating a time-varying quadrupole potential Φ2(x, y, t):

Φ2(x, y, t) =
1

2

∂2Φ2

∂x2
(
x2 − y2

)
cos(ωrf t)

= k2Vrf
(
x2 − y2

)
cos(ωrf t) , (4.2)

where k2 is again a geometrical factor relating the radial electrode voltages to the second derivative

of Φ2. The total ion trap potential is given by Φ = Φ1 +Φ2.

At any one point in time, Eq. (4.2) describes the radial potential as a saddle, i.e. it is

confining along one direction but deconfining along its perpendicular direction. Averaging over the

ions’ trajectory for 1 RF cycle, however, the radial potential becomes a harmonic pseudopotential

well in which ions can be trapped, as depicted in Fig. 4.1b. For simplicity, Fig. 4.1b considers

only the ion behavior along the x̂ direction. Initially, the electric field (of direction and magnitude

shown by the arrows) points outwards from x = 0 and displaces an ion from x0 to x1(> x0), where

the magnitude of the electric field at x1 is larger than that at x0. Half a RF cycle later, the electric

field switches direction and the ion moves back to x2, where x2 < x0 since |E(x1)| > |E(x0)|.

Another half-cycle later, the ion is at x3, where x3 < x1 since |E(x2)| > |E(x1)|. Continuing such

analysis, one can see how the ion eventually oscillates back and forth through the origin as if it is

in a harmonic potential well (i.e. secular motion), while exhibiting some “jerky motion” at a small

amplitude and at the radio frequency ωrf (i.e. micromotion).

4.1.2 Pseudopotential

To derive an expression for a 1-dimensional harmonic pseudopotential ψ in which a trapped

ion moves, we start with the force exerted on the ion of mass m and charge e:

mẍ = eE0(x) cos(ωrf t) = eE(x) , where E0(x) = −2k2 Vrf x . (4.3)
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Figure 4.1: (a) Linear Paul trap with the depicted electrodes providing radial (x̂, ŷ) confinement
(adapted from [29]). The axially confining (ẑ) potential and axial electrodes are not shown. (b)
A simple picture for the motion of an ion in a linear Paul trap. The arrows depict electric fields
along the x̂ axis of a linear Paul trap, oscillating at frequency ωrf. An ion (shown as the black
dot) starting at some initial position is subject to a force whose direction (along x̂) switches sign
every half RF cycle, causing the ion to exhibit micromotion whose amplitude is larger when the
ion is farther from the trap center. Overall, there is a net pushing of the ion towards the trap
center whenever the ion is displaced, hence the ion behaves like a harmonic oscillator with added
micromotion. (c) Stability diagram for the linear Paul trap with axial confinement, expressed in
terms of the trap parameters a and q, which are proportional to the axial end cap electrode voltage
Vec and RF voltage VRF , respectively. For sets of {a, q} within the gray shaded region, the ions
can be stably trapped.
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Using the simple picture given in Section 4.1.1, we assume that the ion motion can be separated

into its secular motion X̄ and a fast but small amplitude micromotion δ that occurs at the drving

RF frequency ωrf:

x = X̄ + δ , δ = A cos(ωrf t) , (4.4)

where X̄ ≫ δ, δ̈ ≫ ¨̄X. To figure out the amplitude of micromotion A, we substitute the above

expression for x and δ into Eq. (4.3). ¨̄X and δ are subsequently neglected because the secular

motion is negligible on the time scale of the micromotion and the micromotion amplitude is too

small.

m
(
��̄̈X + δ̈

)
= eE0(X̄ + �δ) cos(ωrf t)

−mω2
rfA cos(ωrf t) = eE0(X̄) cos(ωrf t)

A = −eE0(X̄)

mω2
rf

⇒ δ = −eE0(X̄)

mω2
rf

cos(ωrf t) . (4.5)

Eq. (4.5) shows that the amplitude of the micromotion increases as the ions move farther from the

trap center.

The pseudopotential D̄ is related to the force exerted on the ion, averaged over one micro-

motion cycle F̄ : F̄ /e = −~∇D̄. Performing a Taylor expansion of F̄ /e about the secular position X̄

and then averaging over a cycle of the micromotion:

1

e
F̄ (X̄) =

1

e

〈(
F (x = X̄) +

∂F

∂x
|x=X̄

(
x− X̄

))〉

micromotion t

=

〈
E(x = X̄) +

∂E
∂x
|x=X̄ · δ

〉

t

=

〈

((((((((E0(X̄) cos(ωrf t) +
E0(X̄)

X̄
cos2(ωrf t) ·

(
−eE0(X̄)

mω2
rf

)〉

t (4.6)

In the last line, we made use of the fact that E0(x) is linear in x, so that ∂E
∂x = E/x. Then,

−~∇D̄(X̄) = −eE0(X̄)

2mω2
rf

⇒ D̄(X̄) =
eE0(X̄)2

4mω2
rf

. (4.7)
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Incidentally, the kinetic energy of the micromotion δ averaged over 1 RF cycle is also related to

D̄(X̄):

〈Uδ〉 =
1

2
mω2

rf

〈
δ2
〉

=
1

4

eE0(X̄)2

mω2
rf

= eD̄(X̄) . (4.8)

4.1.3 Mathieu equations

More generally, the motion of an ion in an rf trapping potential is described by Mathieu

equations. Here we derive the Mathieu equations for an ion of mass m and charge e in the ion trap

described in Section 4.1.1, with the DC and radial RF potentials given by Eqs. (4.1) and (4.2),

respectively.

We start with the expressions for the electric fields in all 3 directions:

−→Erf = −−→∇Φ2 = −2k2Vrf(xx̂− yŷ) cos(ωrf t) , (4.9a)

−→Ez = −−→∇Φ1 = k1Vec(−2zẑ + xx̂+ yŷ) , (4.9b)

−→E =
−→Erf +

−→Ez . (4.9c)

Using Newton’s second law m−̈→r =
−→
F = e

−→E , we get




ẍ

ÿ

z̈




=
e

m




(−2k2Vrf cos(ωrf t) + k1Vec)x

(+2k2Vrf cos(ωrf t) + k1Vec)y

−2k1Vecz



. (4.10)

We now make the substitutions:

τ = ωrf t/2 , (4.11a)

dx

dτ
=

dx

dt

2

ωrf

, (4.11b)

d2x

dτ2
=

d

dτ

(
dx

dt

2

ωrf

)
=

4

ω2
rf

d

dt

(
dx

dt

)
=

4

ω2
rf

ẍ , (4.11c)
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which then give rise to

d2x

dτ2
+ (−4k1Vec + 2 · 4k2Vrf cos(2τ))

e

mω2
rf

x = 0 (4.12)

d2y

dτ2
+ (−4k1Vec − 2 · 4k2Vrf cos(2τ))

e

mω2
rf

y = 0 (4.13)

d2z

dτ2
+ 8k1Vec

e

mω2
rf

z = 0 . (4.14)

Now, let a ≡ −4k1Vece
mω2

rf
, q ≡ 4k2Vrfe

mω2

rf
. Then, where r̈τ now refers to d2r/dτ2,




ẍτ

ÿτ

z̈τ




+




(a+ 2q cos(2τ))x

(a− 2q cos(2τ))y

(−2a)z




=




0

0

0



. (4.15)

Fig. 4.1c shows the stability diagram for the Mathieu equations. For certain values of {a, q}

(depicted as the gray regions), the ion motion is stable and the ion remains trapped. For other sets

of {a, q} (depicted as the white regions), the ion follows an unstable trajectory and is ejected from

the trap.

Where a is small compared to q and where q2 ≪ 1, we can rederive the pseudopotential in

terms of a and q by plugging Eq. (4.4) into Eq. (4.15) [29]:

��̄̈X + δ̈ = −(�a+ 2q cos(2τ))(X̄ + �δ)

⇒ δ =
qX̄

2
cos(2τ) , (4.16)

which is the same expression as that given in Eq. (4.5). Plugging Eq. (4.16) into the first line of

Eq. (4.15) again to solve for X̄ and averaging over one micromotion cycle, we get an equation of

motion describing the secular motion:

〈
¨̄X
〉
τ

= −
〈
(a+ 2q cos(2τ))

(
X̄ +

qX̄

2
cos(2τ)

)〉

τ

=

〈
−aX̄ −������

2qX̄ cos(2τ)−
������qX̄

2
cos(2τ) − q2X̄ cos2(2τ)

〉

τ

= −
(
a+

q2

2

)
X̄ . (4.17)
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Recalling that τ = ωrf t/2, we can see that the ion’s pseudopotential in the radial and axial directions

are D̄r = mω2
rr

2/2 and D̄z = mω2
zz

2/2, where

ωr =
ωrf

2

√
q2

2
+ a (r = x, y) , (4.18a)

ωz =
ωrf

2

√
−2a . (4.18b)

4.1.4 Multiple ions

So far, the ion motion described applies very well to that of a single trapped ion. When

multiple ions are trapped, the potential felt by any given ion is modified due to space charge

repulsion by other ions. The maximum ion density is set by the confining pseudopotential D̄ being

as strong as the deconfining potential from the space charge repulsion φi [29]:

−∇2φi = ∇2D̄ =
ρmax

ǫ0

⇒ ρmax

ǫ0
= ∇2

(
D̄x + D̄y + D̄z

)

= 2

(
mω2

r +
1

2
mω2

z

)

= m
ω2
rf

4

(
q2

2
+ a+

q2

2
+ a− 2a

)

= m
ω2
rf

4
q2 . (4.19)

For our typical trap parameters, q = 0.59 and ωrf = (2π)50 kHz, so the maximum number of ions

that can be confined in a spherical cloud of radius r2σ = 3 mm is

Nmax =
ρmax

e2

(
4

3
πr32σ

)
= 1.1 × 105 . (4.20)

Another useful estimate is the following expression for the mean field space-charge repulsion

energy Umf of a cloud of Nions ions confined in a sphere of radius r [45, 83]:

Umf

kB
=

Nionse
2

4πǫ0rkB
≈ 3K ×

(
Nions

1000

)( r

0.5 cm

)−1
. (4.21)

Where Umf is significant compared to the temperature T of trapped ions, instabilities and heating

are more likely to occur.
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4.1.5 Rotating field

The application of a rotating bias electric field ~Erot on top of the RF and DC voltages in

the {x̂, ŷ} plane is a novel feature in the operation of ion traps. The rotating bias field serves to

polarize the HfF+ molecule and to provide a quantization axis for the eEDM experiment. If it were

not rotating, the bias electric field would simply eject the ions out of the trap. So, ~Erot is kept

rotating at a frequency slow enough for the molecular axis to track but fast enough so that the ions

stay trapped as the radius of rotation remains small compared to the trap extent:

~rrot = −
e~Erot
mω2

rot

. (4.22)

This circular micromotion ~rrot is superimposed on top of the trap RF micromotion and secular

motion. In contrast to the RF micromotion, ~rrot is not a function of secular displacement. To avoid

resonantly driving and heating the ions with the rotating bias field, care is taken to choose the

rotating field frequency to be incommensurate with respect to ωrf. The kinetic energy of the ions’

circular micromotion, averaged over a rotation cycle, is much higher than the other energy scales

in the ion trap:

Urot =
e2E2rot
2mω2

rot

. (4.23)

Table 4.1 lists the typical frequencies, electric fields, length scales and kinetic energies encountered

by the ions’ secular motion, trap RF micromotion and rotating circular micromotion.

Table 4.1: Typical frequencies, length scales and kinetic energies for the ions’ secular motion, trap
RF micromotion and circular micromotion due to Erot.

Motion ω
2π (kHz) E (V/cm) Length scale (mm) Kinetic energy (K)

Secular motion 4 0.03 2 30
Trap RF micromotion 50 0.3 0.2 30

Rotating field micromotion 253 16 0.3 2800
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4.2 JILA eEDM ion trap version 2

4.2.1 Trap construction

Equipped with the basic knowledge of ion traps and rotating bias fields, we now turn to the

JILA eEDM ion trap. Prior to this thesis work, a first generation ion trap has already been built

and demonstrated to trap HfF+ ions by resolving the mass-to-charge ratios of the ion species[83].

A second generation ion trap needed to be constructed to provide both a uniform rotating field

and efficient spin readout using laser-induced fluorescence. Given our ability to create HfF+ ions

of a single isotope using photoionization, there was a less pressing need for the second generation

ion trap to exhibit a high mass resolution capability. Instead of isolating different HfF+ isotopes,

all we require is to isolate HfF+ from Hf+ (see Chapter 6).

As demonstrated in Chapter 3, laser-induced fluorescence of ions can serve as a method of

state-sensitive ion detection. Fig. 4.2a and b show a schematic and photograph of the second

generation ion trap, respectively. Central to the ion trap design are two ellipsoidal mirrors, each

of which focuses light from the trap center to the other mirror’s exit after a single reflection off

the mirror. Light is then directed through light pipes to photomultiplier tubes (PMTs) outside

the vacuum can. The radial extent of each mirror (177.8 mm in diameter) is chosen such that the

largest angle of incidence to the light pipe is 45◦. The mirrors are held at ground, whereas the light

pipes, being electrically insulated from the mirrors, serve as the end cap electrodes providing axial

confinement in a linear Paul trap. Both the mirrors and light pipes are machined out of aluminum,

hand-polished to a mirror finish and coated with gold. The solid angle subtended by the mirrors is

0.6 × 4π steradians and the reflectivity of gold coated on the hand-polished surface is 0.85, making

the combined efficiency of both light pipes capturing light emitted from a 1 cm diameter ion cloud

as high as 0.5.

The electrodes responsible for radial confinement of the ions are shaped as fins to minimize

their shadow cast on the mirrors. The shaping of electrodes as narrow fins, however, may compro-

mise the radial field homogeneity [19], thus there are six electrodes instead of four as in a usual
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Paul trap so as to improve the uniformity of the rotating field in the trap center. Nevertheless, the

trapping potential still mimics that of a conventional quadrupole trap, as two pairs of electrodes

are tied to the same RF voltage within the pair (Fig. 4.2c). Each stainless steel, electropolished fin

electrode is 8 cm apart from its diagonally opposing fin, and shaped like a parabola to obtain more

uniform fields in the axial direction. The ends of each fin are machined into threaded rods with

flat edges to guide the positioning of each fin at a relative angle of 60◦ to its adjacent fins. With

this ion trap design, the rotating field is calculated to have an inhomogeneity of as small as 0.5%

over a 1 cm diameter ion cloud, assuming perfect assembly and trap driver electronics.

The trap confinement coefficients k1Vec and k2Vrf can be obtained by simulating the trap

potential in SIMION and calculating the second derivatives of the potential. The center of the

quadrupole potential can be approximated as two parabolas of opposite sign, one along x̂ and the

other along ŷ. By applying 1 V to fins 2, 3, 5 and 6, and -2 V to fins 1 and 4 while holding the end

cap electrodes at ground (see Fig. 4.2c), the radial trap confinement coefficients along x̂ and ŷ are

given by

k2xVrf = 595V/m2 , (4.24)

k2yVrf = −603V/m2 . (4.25)

Along the axial direction, applying 1 V to the end cap electrodes while holding the radial fin

electrodes at ground gives the axial trap confinement coefficients

k1zVec = 26.1V/m2 . (4.26)

4.2.2 Trap driver electronics

To drive each ion trap fin electrode, several electronic inputs are used: a quasi-DC voltage that

can be gated and ramped on and off, a trapping RF voltage at 40–50 kHz, and a rotating voltage at

253 kHz, for which adjacent fins have a 60◦ relative phase shift. The end cap electrodes have the DC

voltage component only. The DC voltages are the buffered output of a 8-channel digital-to-analog
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Figure 4.2: (a) Side view schematic of the ion trap. (b) Photograph of the bottom electrodes,
mirror and six fins, taken during a test assembly of the ion trap. In this test assembly, the bottom
end cap electrode had a different cross section profile than the electrode used in the final assembly
(see also Fig. 5.1c). (c) Bird’s eye view schematic of the HfF source and ion trap setup.
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converter (DAC, part number NI6733), which is then passed through a multiplexer comprising a

series of DG409 analog switches actuated by the TTL outputs of a Labview-controlled DIO64. The

multiplexer switch enables the fins to apply either a DC shim voltage for the trap or an electric field

impulse to ‘stop’ or ‘kick’ the ions as necessary. The trapping RF voltage is provided by an Agilent

function generator 33220A, whose output amplitude can be amplified with a voltage-controlled gain

op-amp (AD8336). The voltage-controlled gain op-amp allows the ion trap spring constants to be

ramped up and down dynamically. Finally, the rotating voltages are applied by six digital delay

synthesizer (DDS) channels (from two synchronized AD8429 chips), with one channel for each fin

electrode. Each channel’s amplitude, phase, and frequency are digitally programmed in Labview,

where a ramp of any one of these attributes can be triggered dynamically using TTL. A single DDS

channel output is differentially amplified by an op-amp OP-27, and then amplified with a variable

gain by another OP-27 that uses a multiplying digital-to-analog converter (DAC chip AD5543) as

its feedback resistor. The multiplying DAC and second OP-27 allow for dynamic ramps of the

rotating voltage amplitude between several different values.

The DC voltage, trap RF voltage and AC-coupled rotating voltages are then sent to the main

ion trap driver to be buffered, summed and then amplified. Fig. 4.3 shows a schematic of the main

trap driver circuit. LM318N op-amps are used for buffering the DC voltages, whereas OPA627

op-amps are used for buffering the trap RF voltages and summing up all the different inputs for

a given electrode. The output of each summing OPA627 op-amp is then amplified with a gain of

100 using a PA98 op-amp that is driven by a ±200 V/0.1 A power supply. The PA98 op-amps are

attached to a water-cooled aluminum block to manage their heat dissipated. In fact, relay switches

(Meder BE05-2A85-P) ensure that the PA98 op-amps can be turned on only if the chilled water is

already flowing. As connected in Fig. 4.3, the PA98 can provide an output voltage of ±200 V and

current of 63 mA, and with a gain of 100, its maximal slew rate is at 1000 V/µs.

To drive a large amplitude rotating field at high frequency given the limited output current,

it is important to reduce the capacitive load seen by a PA98. The total capacitance load of a

PA98 is 126 pF, of which 40 pF comes from a radial fin (32 pF) and its two SHV connectors (4 pF
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8-channel
DAC

Multiplexer

Input DC Voltage

Input Rotating Voltage

Input TrapRF Voltage

Ion trap Driver

(Presently
unused)

Buffers

Summing amplifier

Power amplifier

Interlocks

Figure 4.3: Schematic of the trap driver inputs and electronics used to generate the voltage applied to a single fin electrode. In the trap
driver, the ‘TRAPX’ and ‘TRAPY’ buffer op-amp outputs are shared amongst 4 and 2 fin electrodes, whereas the ‘SEC’ and ‘DC’ buffer
op-amps, summing amplifier and power amplifier are repeated 7 more times for all 6 fin electrodes and the 2 end cap electrodes.
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each), whereas the remaining capacitance comes from using a 183 cm RG-62 cable to connect the

PA98 output to a fin electrode. To monitor an electrode’s voltage while minimizing the oscilloscope

probe’s capacitance seen by the PA98, 1% of each PA98 output is tapped off using a voltage divider

and sent through a buffer (not shown in Fig. 4.3). With these capacitive loads, the PA98s can

provide a rotating field of up to ±24 V/cm (from ±150 V applied, so that 50 V is reserved for Vrf)

at 300 kHz without significant distortion.

4.2.3 Experiment sequence for ion trapping

Putting the trap electrodes and driver electronics altogether, the ion trap as used in the

eEDM experiment is typically driven as described in the following sequence (see also Fig. 4.4a) and

discussed in more detail in Section 4.3.

(1) Neutral HfF molecules are created in the source chamber, as already described in detail in

Chapter 2. The neutral molecules undergo supersonic cooling to a rotational temperature

of ∼10 K as they traverse a differentially pumped chamber into the ion trap chamber. The

ion trap chamber does not have any vacuum pumps directly attached to it, although it is

attached (with a conductance of 420 l/s) to a nearly empty adjacent six-way cross with a

Varian TV551 turbo pump mounted on top.

(2) The cooled cloud of neutral HfF molecules, entrained in the argon buffer gas, are excited

via optical-optical double resonance to a Rydberg state and autoionized in-trap. The ions

inherit the 600 m/s center-of-mass velocity of the neutral beam.

(3) The trap electrodes apply an electric field along -x̂′ to stop the HfF+ ion beam in the center

of the trap.

(4) The trap RF voltages (along with any DC shims for the radial fins) and end cap voltages

are immediately turned on to start confining the ions.

(5) (Optional) The amplitude of the rotating field is ramped on, held fixed for a given duration,
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and then ramped back down to zero.

(6) (Optional) The trap RF voltages and end cap voltages may also be ramped up over time

to provide a more or less tightly confining trap as necessary.

(7) When the trap confining voltages are turned off after a given trap duration, a uniform

electric field is applied along x̂, x̂′ or −x̂ to ‘kick’ the ions onto one of the two ‘fast’

microchannel plate assemblies (MCPs) or onto an ‘imaging’ MCP, which is a phosphor

screen located behind two stacked microchannel plates. These MCPs allow us to diagnose

the ions’ in-trap motion in the x̂, ŷ and ẑ directions.

Fig. 4.4b shows the sequence of voltages applied to one of the fin electrodes (fin 3) for the last four

steps. The following section details our efforts to optimize the trap loading and characterize the

ion trap.

4.3 Trap loading and characterization

4.3.1 Basic assumptions and terminology

Before launching into a presentation of our trap optimization and characterization techniques,

we first lay out the assumptions we often make when considering the ions’ motion in the trap. For

an individual ion, its simple harmonic motion in the trap is independent of other ions. This means

that an ensemble of trapped ions behave roughly like an ideal gas, where the mean field energy and

collisions are both small. The mean free path of an ion between collisions is very long compared

to the size of the ion cloud, such that in a 3-dimensional harmonic trap with incommensurate trap

frequencies ωx 6= ωy 6= ωz, the motion along each direction is separate.

Formally, the secular motion of the ith ion in the jth direction can be expressed as

rij = Ai
j cos(ωjt+ φi) , (4.27)

where ωj is the trap frequency along the jth direction. We assume the following distributions for
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Figure 4.4: (a) Bird’s eye view schematic of the HfF source and ion trap setup. In the ion trap
chamber, HfF+ are formed in-situ by autoionization, trapped, and then ejected onto one of the
three diagnostic MCPs, which allows us to detect both the ion number and motion in-trap. The
top and bottom end cap electrodes are not shown. (b) Voltage output on one of the radial fin
electrodes (fin 3).
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the phase φ and amplitude A for a cloud of ions:

(a) f(φ) is uniform,

(b) f(A) ∝ Ae−
mω2A2

kBT , (4.28)

where mω2A2 is the total (kinetic and potential) energy of the ions and T is the temperature of

the cloud. A note of caution is that these assumptions are not necessarily valid, but we make them

for their simplicity.

The overall motion of the ion cloud can be described in terms of a ‘slosh’ and ‘breathe’ if the

following occurs:

f(φ) 6= f(φ+ π) (sloshing) ,

f(φ) + f(φ+ π) 6= f(φ+
π

2
) + f(φ+

3π

2
) (breathing) .

So far, we have also assumed that the trap is perfectly harmonic. In the presence of trap anhar-

monicities or ion-ion collisions, φj randomizes and the cloud can spread out as the sloshing and

breathing can transform into a hotter cloud.

Experimentally, the slosh and breathe are characterized by motion in the center-of-mass of

the cloud (r̄, ˙̄r) and a change in the cloud radius (σr, σṙ), respectively. In the absence of breathe,

σṙ = ωσr. The ion cloud temperature TJ along the jth trap direction can also be inferred from the

cloud width σj:

Tj =
m

kB
v2j =

m

kB
(ωjσj)

2 . (4.29)

The slosh and breathe can in turn be combined with the cloud width into an effective width σeff,j:

σeff,j =
√
σ2j + σ2CM,j + σ2b,j , (4.30)

where σj is the spread of individual ions’ secular motion averaged over the cloud with the dis-

tribution given by Eq. (4.28), σCM,j is the root-mean-squared slosh amplitude, and σb,j is the

root-mean-squared breathe amplitude.
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4.3.2 Trap loading

In many ion-trap experiments [29, 49], the ions are created using electron-gun ionization or

photoionization, and then cooled via laser cooling or sympathetic cooling to 10–100 of µK upon

being trapped. The eEDM measurement, however, can be performed with the HfF+ ions being as

hot as 10–30 K [45]. When the HfF+ ions are initially created via autoionization, their translational

temperature (in the moving frame) is the same as that of the supersonically cooled molecular beam,

i.e. 10 K. No further cooling of the ions is then required during the trap duration as long as the ions

can be brought to a stop from 600 m/s without additional heating, and the RF heating within the

ion trap occurs on a time scale long compared to the eEDM measurement. After stopping the ions,

the loading of the ion trap is considered optimal if the effective spatial width σeff,j as described by

Eq. (4.30) is dominated by σj . Since each contribution to the width is added in quadrature, as long

as σCM,j and σb,j are less than a third of σj, their contribution to the effective width is about an

order of magnitude smaller than σj.

All three contributions can be measured simultaneously by looking at the ions’ arrival on the

‘imaging’ MCP (for motion along the trap axes ŷ, ẑ) or the ‘fast’ MCP housed in the same trap

chamber (for motion along the trap axis x̂) as a function of the trap duration. Measurements of

the slosh and breathe tend to be made at short trap times (i.e. after only a few trap cycles), where

the slosh and breathe, if their amplitudes are discernible, are expected to take place at the trap

frequency and twice the trap frequency, respectively. At longer trap times, the slosh and breathe

amplitudes may be diminished if the ions interact with each other or with trap anharmonicities and

cause dephasing. Fig. 4.5a shows a typical set of slosh, spatial width and breathe data measured

along the x̂ axis on the ‘fast’ MCP over a few trap cycles, where each data point is obtained by

fitting the time-of-arrival distribution of the ions on the ‘fast’ MCP to a Gaussian distribution and

recording its center and standard deviation. In the plotted example, the trap loading is sub-optimal

since the slosh amplitude is three time that of the spatial width.

To achieve optimal loading with minimal slosh, two conditions need to be met: firstly, the
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ion cloud’s center-of-mass velocity needs to be removed, and secondly, the position at which the

ions come to a stop (from 600 m/s) needs to be the same as that when the ions are close to the

trap center. More precisely, the distance between the position at which the ions come to a stop

and the trap center determines the slosh amplitude. To meet the first condition, the ‘stop’ electric

field pulse applied opposite to the center-of-mass velocity needs to give the correct impulse to the

ion cloud, and can be varied by changing the amplitude-duration product of the pulse. To meet

the second condition, the DC shim voltages of the ion trap center need to be adjusted. Since the

principal trap axes are a linear combination of the direction of center-of-mass velocity x̂′, the above

two conditions must be fulfilled in both the x̂ and ŷ directions (see Fig. 4.4a). To optimize this two-

dimensional walk of parameters for a given trap axis (say, x̂), we can plot the real and imaginary

parts of the ions’ slosh as obtained from Fig. 4.5a as a point on a complex plane (Fig. 4.5b), where

x = Ax cos(2πφx), y = Ax sin(2πφx). Varying the ‘stop’ pulse walks the points on the complex

plane along the direction û, whereas adjusting the DC shims walks the points along v̂. Using this

information, once we figure out where a point describing a given slosh behavior lies on the complex

plane −→w = |u|û + |v|v̂, we can easily minimize the slosh by jumping it towards the origin of the

complex plane.

The breathe of the ion cloud can be minimized by matching the in-trap temperature to the

initial temperature of the moving cloud, i.e. the trapping potential energy and initial kinetic energy

are close to the equal partition point. If the trap is too tightly confining for the initial temperature,

the ion cloud will breathe inwards at the start of the trap. Conversely, if the trap is too weakly

confining for the initial temperature, the ion cloud will initially breathe outwards. The typical trap

frequencies are about ω = (2π)3–6 kHz.

All of the above slosh and breathe measurements of the ion cloud have been taken with the RF

component of the trap voltages set to a particular initial phase φrf, e.g. VF inX = −Vrf cos(ωrf t+φrf).

At different times within a RF cycle, the speed of the micromotion can vary between zero and

eE(x0)/(mωrf), where x0 is the position of maximum displacement from the trap center. (The

displacement of micromotion may be ignored because it is typically about a tenth of the secular
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displacement, as shown in Table 4.1.) The RF initial phase φrf is then chosen such that at the start

of the trap, the least amount of micromotion velocity is excited. Similarly, when the ion cloud is

‘kicked’ out of the trap towards one of the diagnostic MCPs, the RF end phase is chosen so that

the micromotion velocity does not add to the overall velocity, and the spread of ions on the MCP

is solely due to the ions’ secular motion. In other words, where φrf is set to minimize the excitation

of initial micromotion velocity, the trap duration Ttrap is chosen such that ωrf Ttrap = 2πn, where

n is a positive integer.

4.3.3 Microchannel plate transfer matrices

In the previous section, we have only tried to minimize the slosh and breathe relative to

the width of the ion cloud as detected on the MCP. Ultimately, however, we are interested in the

width of the ions in-trap σtrap,j. The width of ions on the detector may be scaled down or up from

the in-trap width, depending on whether the ions get focused or de-focused on their way to the

detector. Further, the distribution of ions on the MCP may reflect either the position or velocity

distribution of ions in-trap, or some linear combination of the two, depending on how long the

ions take to travel towards the detector compared to a trap oscillation. For many atomic physics

experiments using time-of-flight expansion to probe the atomic cloud width, the atoms take a long

time to fall to the detector, so the cloud width as seen on the detector is mainly due to the in-trap

velocity distribution . Conversely, one can imagine applying a very high electric field pulse to

push ions towards a nearby MCP such that the flight time Tdet is much shorter than a trap cycle

(ωjTdet ≪ 1), in which case the in-trap position distribution gets ‘frozen’ out and is projected (up

to some scale factor) directly onto the MCP.

To figure out how the width as seen on the detector maps onto the in-trap width, we assume

that the trapped ions undergo small displacements about the trap center, so that any change in

the position or velocity remains linear. We can then use the following transfer matrix formulation:



zdet

żdet


 =Mz




ztrap

żtrap


 =




m11,z m12,z Tdet,z

m21,z m22,z Tdet,z







ztrap

ωzztrap


 . (4.31)
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Figure 4.5: Motion of trapped HfF+ ions along x̂, where the position and width of the ions are
mapped onto arrival time on the ‘fast’ MCP in microseconds. (a) (Top) The center-of-mass slosh of
the ion cloud versus trap duration is fit to a sine wave, from which the trap frequency is extracted to
be (2π)6.4 kHz; (bottom) standard radius of the ion cloud as a function of trap duration. While the
breathe of the ion cloud is negligible in this case, the center-of-mass slosh is significant compared
to the standard cloud width, indicating sub-optimal loading conditions. In fact, its slosh amplitude
and phase can be summarized as a single point on a complex plane (point ‘1’) in (b). (b) A summary
of different slosh behaviors for different trap loading parameters. Varying the voltage pulse used
to ‘stop’ the 600 m/s HfF+ ions walked the slosh summary points along û, whereas changing the
position of the DC trap center moved the slosh summary points along v̂.
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By denoting żtrap = ωzztrap in Eq. (4.31), we also assume that there is no breathe. The goal is to

experimentally determine the matrix elements m11,j and m12,j of the transfer matrix Mj . m21,j

and m22,j are not evaluated because the MCPs do not give the velocity distribution of ions upon

hitting the detector. Using Eq. (4.31), the width of the ions as seen on the detector σdet is then

related to the in-trap width σtrap via a factor mσ,j:

σdet,j = mσ,j σtrap,j =

√
(m11,j)

2 + (m12,j Tdet,j ωj)
2 σtrap,j (4.32)

To figure out m11,z and m12,z, we applied a ‘kick’ of known impulse to the ions along the

ẑ direction and measured the slosh response of the ions as seen on the ‘imaging’ MCP (Fig. 4.6).

Any immediate displacement of the ions came from the change in velocity due to the impulse, as

indicated by the blue dashed line ending with a blue cross in Fig. 4.6. On the other hand, the ions’

displacement after a quarter of a trap cycle reflects the change in position effected by the impulse

kick, as indicated by the blue dotted line ending with a blue triangle. In the depicted case, after

an applied voltage kick of 120 Vµs between the top and bottom electrodes, we expected the ions to

slosh with an amplitude of 1.76 mm based on SIMION calculations. Since the changes in position

and velocity showed up as a displacement of 1.45 mm and 2.28 mm on the MCP respectively, the

transfer matrix elements m11,z and m12,z are 0.824 and 1.30 for a flight time of Tdet = 0.045 ms to

the ‘imaging’ MCP. The above procedure of measuring the ions’ response to a voltage ‘kick’ can also

be applied to the x̂ and ŷ directions. Table 4.2 summarizes the transfer matrix elements and mσ

values for typical trap frequencies and detector flight times in all three directions. Equipped with

the transfer matrix elements, we can then characterize the ion trap in terms of its patch charges

and anharmonicities by determining how the ions respond in-trap to various voltage settings.

4.3.4 Trap characterization I: patch charges

Patch charges can be easily introduced if there was any grease left on the trap electrodes when

the trap was assembled, or can develop over time if hafnium or other additional material was slowly

deposited on the electrodes. Of the effects that patch charges can have on the ions, the two that we
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Figure 4.6: To extract the ions’ motion in-trap from that on the MCP, a deliberate kick is applied
to the ions (shown here in the ẑ direction) and the resultant slosh response is fit to a sine wave.
The displacement at tkick and at a quarter trap cycle after tkick, given by the dashed line down to
the cross and the triangle, respectively) then maps onto a change in velocity and position due to
the applied impulse. By comparing the expected and measured slosh response, we can deduce the
MCP transfer matrix elements.
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Table 4.2: Summary of MCP transfer matrix elements and mσ values for typical trap frequencies
and detector flight times in all three directions. m11,m12 andmσ are dimensionless for the directions
ŷ and ẑ, and have units [µs/mm] for x̂.

Detector m11 m12 Tdet (ms) ω
2π (kHz) mσ

x ‘Fast’ MCP 0.129 0.093 0.021 5.9 0.148

y ‘Imaging’ MCP 0.412 1.60 0.045 4.2 1.94

z ‘Imaging’ MCP 0.824 1.30 0.045 3.7 1.59

care most about are dipolar and quadrupolar effects. Dipolar patch charges (simulated as +Vpatch

and −Vpatch on two opposing electrodes) can displace ions away from the ion trap center, while

quadrupolar patch charges (simulated as +Vpatch on each of the two opposing electrodes) can modify

the trap frequencies relative to that expected from SIMION calculations. By characterizing patch

charges, we can understand how closely the resultant ion trap potential resembles that calculated

from SIMION when the effects of patch charges are accounted for, which may (or not!) indicate

whether the ion trap assembly is built as a faithful realization of its design. Further, it is important

to null out dipolar effects so that the ions do not shift in position over time.

Along the ẑ direction, both dipolar and quadrupolar patch charges can be simultaneously

quantified by first trapping the ions, and then adiabatically ramping up or down the axial confine-

ment to avoid exciting a large slosh. The ions’ center-of-mass motion along ẑ is measured on the

‘imaging’ MCP for a few oscillation cycles and both the post-ramp offset and axial frequency are

recorded. In the presence of a dipolar patch electric field Ez,patch, the ions shift to a new position

z0:

Uz =
1

2
mω2

zz
2 − qEz,patchz

=
1

2
mω2

z

(
z − qEz,patch

mω2
z

)2

+
1

2
m

(
qEz,patch
ωz

)2

⇒ z0 =
qEz,patch
mω2

z

. (4.33)

Fig. 4.7a shows how the post-ramp offset varies with axial frequency. The dipolar patch field can

be extracted from the slope of the fit in Fig. 4.7a, which in this case turns out to be -0.21(3) V/m.
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To elucidate the quadrupolar patch field ∂Ez,patch/∂z, we can examine the trap axial frequency

instead. Fig. 4.7b shows how the square of the axial trap frequency, rescaled by ωrf, varies against

the trap parameter a, where a can be calculated given the specified DC voltages applied to the end

cap and fin electrodes. Using Eq. 4.18b, we expect the data points to fall on a line of slope -2, and

any offset is attributed to a quadrupolar patch field:

ωz =
ωrf

2

√
−2a+ apatch

⇒
(
2ωz

ωrf

)2

= −2a+ apatch , (4.34)

where apatch =
2e

mω2
rf

∂Ez,patch
∂z

. (4.35)
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Figure 4.7: (a) The ions’ in-trap displacement is measured as a function of the inverse trap frequency
squared, from which the slope yields the axial dipolar patch field Ez,patch. (b) The ratio of trap
secular frequency to the RF frequency, squared, is plotted against the applied end cap electrode
voltage (proportional to az). The slope is fixed to be -2, in accordance with Eq. (4.34), and the
offset indicates the quadrupolar patch field ∂Ez,patch/∂z.

For the radial directions, a dipolar patch electric field would not only displace the ions (the

displacement is more apparent if the DC potential is weak compared to the pseudopotential), but

also induce excess micromotion arising from the non-zero RF voltages at the center of the DC
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potential [8]:

x = (x0 +Ax sin(ωxt+ φx))
(
1 +

qx
2
cos(ωrf t)

)
, (4.36)

where x0 is the displacement described by Eq. 4.33 for the patch field Ex,patch. The micromotion

qxx0/2 is considered to be in “excess” of the regular micromotion that has zero amplitude when the

ions are at the trap center but whose amplitude increases when the ions move away from the trap

center. To determine the radial dipolar patch field, we can probe the micromotion amplitude when

the ions are displaced by an equal amount from the trap center. How these ion in-trap positions

map onto the detector positions have already been determined from the MCP transfer functions

as outlined in Sec. 4.3.3: in Fig. 4.8, for instance, ions at positions ‘1’ and ‘2’ correspond to ions

that are displaced farthest from and nearest towards the ‘fast’ MCP, respectively. Where there is

a dipolar patch field Ex,patch displacing the ions away from the detector, the micromotion of ions

at position ‘1’ is larger than those at position ‘2’, as shown in Fig. 4.8a. In Fig. 4.8b, the patch

field has been compensated for by applying DC shim voltages to the fin electrodes, such that the

micromotion measured at the two equal displacements display the same amplitudes.

4.3.5 Trap characterization II: anharmonicities

To lowest order, the confinement of ions in an ion trap is harmonic with a trap frequency

of ω0. However, once the ions access larger displacements from the trap center, anharmonic terms

(e.g. bz4) in the trapping potential Φ start to matter. Anharmonic terms can modify the observed

trap frequency ω, depending on the ions’ oscillation amplitude z:

U =
1

2
mω2

0z
2 + bz4 =

1

2
mω2

0z
2

(
1 +

2bz2

mω2
0

)

≡ 1

2
mω2z2

⇒ ω = ω0

√
1 +

2bz2

mω2
0

≈ ω0

(
1 +

bz2

mω2
0

)
(4.37)

The JILA eEDM ion trap was designed to have the anharmonic contribution be as small as

1.2% over a trap radius of 1 cm to minimize systematic effects in measuring the eEDM signal. An
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towards) the ‘fast’ MCP detector. (a) A dipolar patch field has displaced the ions away from the
center of the harmonic pseudopotential formed by the RF voltages (denoted as ‘AC trap’), so the
micromotion tends to be larger at position ‘1’ than at ‘2’. (b) When the dipolar patch field is nulled
out, the micromotion is equal at both positions ‘1’ and ‘2’.
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experimental determination of the trap anharmonicities would not only check the trap assembly

configuration against its design parameters but also help us (together with other measured quanti-

ties) estimate systematic effects for the eEDM measurement. To measure the trap anharmonicity,

we kicked the ions along the axial direction and measured its resultant slosh amplitude and fre-

quency. Fig. 4.9 shows a summary of the trap frequency dependence on the slosh root-mean-square

amplitude, from which the anharmonic contribution to the frequency is determined to be 1.7% over

a trap radius of 1 cm.
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Figure 4.9: Plot of slosh frequency versus root-mean-square amplitude, where the different slosh
amplitudes have been excited by kicking the ions. The blue data points are fit to a curve given by
Eq. (4.37).

4.4 Rotating field characterization

Many of the tools already developed in Section 4.3 are directly applicable to the character-

ization of the rotating bias electric field. A characterization of the rotating field inhomogeneity is

not purely an academic exercise, but has profound implications on potential systematic effects for

the eEDM experiment. Briefly (see [45, 83] for details), if Erot was always larger in the region z > 0

than that in z < 0 by 0.03%, a frequency shift of ωmax = 0.0003 δmF ωrot
Ez,max

Erot ≈ (2π)0.23 Hz

would be added to the energy difference between the two Zeeman sublevels |a〉 and |b〉 in a single

3∆1 Stark manifold (see Fig. 1.5). The net systematic effect after performing the four-way eEDM

chop described by Eq. (1.7) is then a frequency shift of (δgF /gF )ωmax = (2π)0.45 mHz, which
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translates to a systematic error of δde = 9× 10−30 e cm. These values assume ωrot = (2π)250 kHz,

Ez,max = 1 V/cm, Erot = 10 V/cm and δgF /gF = 0.002.

Although the rotating field is applied in the (x̂, ŷ) plane, inhomogeneities in Erot along x̂ and

ŷ transform into an inhomogeneity along ẑ by Laplace’s equation:

~∇ · ~Erot = 0 ⇒ ∂Erot
∂z

= −∂Erot
∂x

− ∂Erot
∂y

. (4.38)

Further, if the axial direction is not orthogonal to the plane of rotation, one can obtain higher-

order spatial dependencies of Erot in the axial direction, i.e. ∂nErot
∂En

rot
6= 0. Expressing the rotating

field inhomogeneity as a Taylor expansion in z, we get

Erot
E0rot

= 1 +
1

E0rot
∂Erot
∂z

z +
1

2

1

E0rot
∂2Erot
∂z2

z2 + . . . , (4.39)

where E0rot is the nominal value of the bias field.

In the presence of an inhomogeneous rotating field, the ions experience a ponderomotive force

that causes the ions to undergo secular motion in addition to its circular micromotion, like that

described in Section 4.1.2. Analogous to Eq. (4.8), the ponderomotive potential energy eD̄rot(X̄)

is the same as the kinetic energy Urot given by Eq. (4.23). The total potential energy experienced

by the trapped ions in an inhomogeneous rotating field is then

U =
1

2
mω2

0z
2 +

e2

2mω2
rot

E2rot =
1

2
m
(
ω2
0 + (∆ω)2

)
(z − z0)2 . (4.40)

The effect of Urot on the ions’ secular motion is described by a mean displacement z0 and a

quadrature difference in secular frequency with and without a rotating field (∆ω)2. The first order

gradient in Erot can be extracted from z0:

∂U

∂z
= mω2

0z +
e2

mω2
rot

Erot
∂Erot
∂z

= m
(
ω2
0 + (∆ω)2

)
(z − z0)

⇒
∣∣∣∣
1

E0rot
∂Erot
∂z

∣∣∣∣ ≃
(
mωrotω0

eE0rot

)2

z0

= 4.3

(
ωrot

(2π)253 kHz

)2( ω0

(2π)1 kHz

)2(1 V/cm

Erot

)2 ( z0
1 cm

)
cm−1 ,(4.41)
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where the (∆ω)2 term can be neglected. A further round of differentiation yields the expression

for the second order gradient:

∂2Erot
∂z2

= mω2
0 +

e2

mω2
rot

[(
∂Erot
∂z

)2

+ E0rot
(
∂2Erot
∂z2

)2
]
= m

(
ω2
0 + (∆ω)2

)

1

E0rot
∂2Erot
∂z2

≃
(
mωrot

eE0rot

)2

(∆ω)2

= 4.3

(
ωrot

(2π)253 kHz

)2( (∆ω)2

((2π)1 kHz)2

)(
1 V/cm

E0rot

)
cm−2 . (4.42)

To experimentally characterize the rotating field inhomogeneity, the ions’ secular motion is

monitored with and without a rotating field. For the case with the rotating field present, Erot needs

to be ramped on quickly compared to a cycle of secular motion but slowly compared to the rotation

frequency ωrot to avoid kicking the ions. Erot is ramped off at the same speed as its turn-on ramp,

at a short but fixed time interval before the end of the trap duration. Fig. 4.10 shows the ions’

mean displacement and secular frequency, as detected on the ‘imaging’ MCP, plotted as a function

of Erot. The plotted mean displacement has already been converted into the in-trap displacement

using the MCP transfer matrix. Using Eq. (4.41), the first order inhomogeneity 1
E0
rot

∂Erot
∂z z over a

typical cloud 2σ-radius of z = 3 mm is 6(1) × 10−5. Similarly, from Eq. (4.42), the second order

inhomogeneity in Eq. (4.39) over z = 3 mm is measured to be 1.0(1) × 10−4.

4.5 Fluorescence

So far, the trap and rotating field characterization results have implied that the JILA eEDM

ion trap is fairly well-matched in its assembly compared to its design. How well the ion trap performs

in terms of ion fluorescence collection, which is one of the trap’s major design considerations, has

yet to be seen and will be presented in the following chapter.
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Chapter 5

Spin readout techniques (I): fluorescence

The ability to detect HfF+ in a state-sensitive manner is an integral part of the eEDM

measurement: in the Ramsey spectroscopy of an eEDM-sensitive transition, the transition frequency

is measured by counting the relative HfF+ left in one of the two spin states as a function of the free

evolution time between two π/2 pulses. In the context of Ramsey spectroscopy, the state detection

process is also known as the spin readout process.

Before beginning the Ramsey pulse sequence, state-sensitive detection of HfF+ is also used to

determine the number of ions prepared in the desired state. As shown in Chapter 3, we have already

demonstrated the ability to detect the rotational states of HfF+ using laser-induced fluorescence

(LIF), so it is tempting to extend that to LIF in-trap, as discussed in this chapter. It is important

to bear in mind that LIF is not used as the final means of state detection for the eEDM experiment,

especially with the development of resonance-enhanced multi-photon dissociation (REMPD) as a

state detection method that is two orders of magnitude more efficient than LIF (see Chapter 6).

Nevertheless, this chapter discusses the design considerations behind the incorporation of LIF with

an ion trap, with the aim of maximizing fluorescence photon collection while minimizing scattered

light. At the end of this chapter, we also present estimates for cavity-enhanced absorption as a

plausible state detection technique.
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5.1 Experiment setup

5.1.1 Fluorescence collection

The LIF that is performed on the trapped ions makes use of the same transitions as that on

the molecular beam in Chapter 3: a 1 µJ/pulse laser at 769 nm (output by a dye cell amplifier seeded

by a diode laser) drives a rotational transition in the 1Π1 ←1 Σ+ (ν ′ = 0, ν ′′ = 0) band [16, 81], and

fluorescence photons emitted on the 1Π1 →1 Σ+ (0, 1) band are detected by a photomultiplier tube

(PMT). As with almost all molecular transitions, this one is non-cycling, which means that once a

molecular ion gets excited by a 769 nm photon and fluoresces, it lands in a dark state and cannot

be re-excited by the same laser on the LIF experiment time scale. Hence, the in-trap fluorescence

collection setup, comprising two large gold mirrors as detailed in Chapter 4, was built to capture

photons with as high an efficiency as possible.

By design, most of the photons exit the light pipe onto a PMT with an angle of 45◦, favoring a

PMT with the photosensitive material close to its flat entrance surface (e.g. Hamamatsu R7600U-

20-M4) as opposed to one with a curved glass surface, from which the photosensitive material

is farther recessed (e.g. Hamamatsu R3896). Since the preferred PMT (R7600U-20-M4) has a

square-shaped active area (18 mm × 18 mm), the light pipe also has a matching square profile

(11 mm × 11 mm) (see Fig. 5.1). The use of R7600U-20-M4 over R3896, however, comes at a

price: the quantum efficiency of the photosensitive material is 5% and 15% at 818 nm for the

former and latter PMT, respectively. In fact, both PMTs are specified to have the same quantum

efficiency curves, but the R3896 has been measured to have an uncharacteristically high quantum

efficiency. Nevertheless, the overall efficiency of fluorescence photon collection with the ion trap

setup described so far in combination with two R7600U-20-M4 PMTs is still higher (2.6%) than

that for the ion beam (1.2%).
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Photosensitive
material

(a) (b) (c)

Figure 5.1: Schematic of a light pipe used in combination with (a) a PMT of curved entrance glass
surface, where the photosensitive material is farther recessed, and (b) a PMT of a flat entrance
surface, where the photosensitive material is nearer to the light pipe. (c) Photograph of the exit of
a light pipe whose square profile matches that of the R7600U-20-M4 PMT.
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5.1.2 Scattered light, the nemesis

Despite the fact that LIF had already worked for us in a molecular beam, in-trap LIF is not

without its challenges. Performing LIF in the presence of a ‘shiny’ environment — where the trap

electrodes and large gold mirrors have been polished to a highly reflective finish — means that it

is also easy for scattered light to make its way to the PMT! To optimize the LIF signal-to-noise

ratio, one must try to suppress the the background noise coming from scattered photons.

Scattered light is typically suppressed using three approaches: time gating, wavelength fil-

tering, and spatial filtering. Time gating in the LIF context means that the chain of high voltages

within the PMT circuit is only turned on after the 769 nm laser fires, so that the avalanche process

converting prompt scattered light into voltage pulses is suppressed when the excitation laser fires

(Fig. 5.2a). Even if HfF+ had a cycling transition, the need for time gating also eliminates the

possibility of collecting multiple photons from any single trapped ion by shining on the LIF laser

continuously.

Wavelength filtering is carried out by detecting the fluorescence photons at a different wave-

length (818 nm) from the excitation wavelength (769 nm). When performing LIF on a molecular ion

beam, we were able to efficiently filter out 769 nm light by placing a narrowband (10 nm FWHM,

820 nm center wavelength) dichroic filter in a region where the light rays were perpendicular to the

filter. With the ion trap setup, however, photons exit the light pipe at a range of angles from 0◦

to 45◦. Since the transmission of a dichroic bandpass filter tends to be blue-shifted as the angle of

incidence increases (Fig. 5.2b), the 820 nm bandpass filter would both step on the transmission of

818 nm light and ineffectively filter out 769 nm light. Unlike dichroic filters, colored glass filters do

not suffer from any sensitivity to the angle of incidence and are also highly transmissive in their

passband (>90%). However, they tend to refluoresce after absorbing photons in the filter stopband,

and the band edge separating the stopband and passband regions is typically as broad as ≈100 nm.

A hybrid of the above two types of filters is the “colored glass alternative” dichroic long-pass filter,

which offers a high transmission in the passband and a relative sharp (10 nm width) band edge,
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although the band edge width and position can also be tuned by the angle of incidence (Fig. 5.2c).

Such a filter (Newport CGA830) with a nominal band edge at 830 nm is placed between the light

pipe and the PMT to allow for high transmission (>90%) at 818 nm while stepping on scattered

light at 769 nm after accounting for the distribution of angles of incidence.

Besides the 769 nm laser, the much stronger UV pulsed laser (∼1 mJ/pulse, 368 nm) used

to ionize neutral HfF can also give rise to scattered light. (The other ionization laser at 309 nm

has < 10 µJ/pulse.) The UV scattered light could in principle be suppressed by time gating if the

ionization lasers were to fire a long time before the LIF pulse was applied. However, experiments

probing the rotational lifetime of the molecules need to perform LIF starting from very short times

after ionization, i.e. where time gating alone is insufficient to deal with scattered photons from

the intense ionization laser pulse. Further, the stray UV photons hitting metal surfaces off the

vacuum chamber or ion trap tend to be absorbed and reemitted as red-detuned photons over a

large wavelength range. In this respect, the aforementioned CGA830 long-pass filter helps to filter

out scatter from the UV laser, but is not aggressive enough on its own. A colored glass filter (IR-80,

passband >760 nm) is inserted between the CGA830 and PMT to provide a high absorbance of

any scattered light within its stop band while avoiding the refluorescence of UV light.

The last approach to deal with scattered light, spatial filtering, is typically done by carefully

imaging the detection target onto the PMT, while rejecting light from other areas with the help

of a pinhole. Since the light pipes of the ion trap are non-imaging, the pinhole technique does not

work. Nevertheless, given the fact that a significant fraction of scattered light arises from lasers

(UV, 769 nm) passing through the entrance and exit Brewster windows of the ion trap chamber,

we can reduce the scattered light off of these windows with the following methods:

(1) Setting the polarization of the lasers to be p-polarized relative to the Brewster window

orientation (i.e. horizontal polarization). In fact, since the fluorescence collection optics are

positioned above and below the ions, the fluorescence signal is maximized for a horizontally

polarized excitation laser.
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(2) Using Suprasil, a fused silica material with low bubble content, in place of regular quartz

or fused silica for the Brewster windows.

(3) Extending the distance between the ion trap and each Brewster window.

(4) Inserting baffles between the ion trap and each Brewster window (Fig. 5.2d). The baffles are

machined out of stainless steel to a conical razor blade tip and painted with Ball Aerospace

Flat Black paint. The razor blade tip limits the extent of diffraction fringes that may result

if the laser beams are clipped and diffracted by the baffles. The diameter of the baffles

opening, 14 mm, is chosen to be a compromise between not clipping the laser beams versus

decreasing the probability of scattered light off the windows making its way into the ion

trap chamber.

The above techniques of suppressing scattered light also tends to deteriorate the signal collec-

tion efficiency a little. Most notably, time gating and wavelength filtering reduces the fluorescence

photon collection efficiency by 0.7 and 0.6, respectively. According to the collection efficiency bud-

get outlined in Table 5.1, with ∼500 ions in a single rovibronic level, the total number of photons

detected by a single PMT is estimated to be only 0.8 per shot, where the loss in efficiency is mostly

dominated by the PMT quantum efficiency. Nevertheless, the combination of all three scattered

light suppression techniques brought the scattered counts down to 0.1 photon per shot.

5.2 LIF signal

With the estimated signal-to-noise ratio optimized, we proceeded to detect the states of the

trapped HfF+ ions using LIF. Fig. 5.3a shows a LIF spectrum of ions that have been trapped for

2 ms, recorded by scanning the frequency of the 769 nm laser centered on the Q(1) rotational line.

The LIF signal is on the same order of magnitude as that estimated, i.e. 0.4 photons per shot.

The rotational line has a full width half maximum of 240(24) MHz, which is dominated by the RF

micromotion-induced Doppler effect of the trapped ions. In order to detect a LIF signal beyond

2 ms of trapping time, we needed to install a home-built fast shutter [53, 78] to block the weak
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Figure 5.2: (a) Time gating of the PMT to reduce the detection of scattered light from the 769 nm
excitation laser. (b) Plots of the bandpass filter FB820 transmission versus wavelength for different
angles of incidence. (c) Plots of the colored glass alternative long-pass dichroic filter CGA830
transmission versus wavelength for different angles of incidence. In both (b) and (c), the gray dashed
lines denote the excitation laser wavelength at 769 nm, at which scattered light is the strongest and
needs to be suppressed most aggressively. The dotted black lines denote the fluorescence wavelength
at 818 nm, at which the filters need to have high transmission for efficient fluorescence collection.
(d) Photograph of a light baffle, which is placed in between the ion trap and Brewster window to
reduce scattered light.



92

Table 5.1: Effects of various components of the fluorescence collection experiment on the collection
efficiency.

Total number of trapped ions 800

Fraction of ions in 1Σ+, ν ′′ = 0, J = 1 0.6
Saturation 0.5
Franck-Condon overlap

〈
1Π1, ν

′ = 0|1Σ+, ν = 1
〉

0.3
Spatial overlap of lasers, ions and imaging axis ∼ 1 (optimistic!)
Detection solid angle for 1 cm ion cloud 0.6
Reflectivity of gold mirrors 0.85
Tranmission of filters and vacuum flange window 0.6
Signal remaining after time gating 0.7
PMT efficiency at 818 nm 0.05

Total photons per shot on both PMTs 0.75

continuous-wave component of 769 nm light whenever the 769 nm dye cell amplified pulse was not

firing, otherwise the continuous-wave component of the light (coming from the seed diode laser,

transmitted through the dye cell) would pump away ions on resonance and serve as a source of LIF

signal decay. Fig. 5.3b shows the LIF signal measured as a function of the trap duration with the

shutter in place. There is an initial decay of the HfF+ LIF signal over the first few milliseconds,

after which the LIF signal remains constant over 40 ms. One clue to the source of initial LIF

signal decay comes from how the decay amplitude is less pronounced when the ions are squeezed

by ramping to tighter trap frequencies. Fig. 5.3c shows the LIF signal versus trap duration for a

HfF+ cloud that is 1.8 times smaller in area (along the radial directions x̂, ŷ) compared to that in

Fig. 5.3b. The LIF signal from 10–40 ms is correspondingly 1.9(4) times higher in Fig. 5.3c. It

seems, then, that the LIF signal collection at long times is simply limited by the initial expansion

of the HfF+ ions in the trap, which reduces the spatial overlap between the HfF+ ions and the

imaging axis formed by the light pipes.

5.3 Estimates for cavity-enhanced detection

Let us return to the fluorescence collection efficiency budget outlined in Table 5.1, and think

of possible ways to improve it. One might look at the main culprit, the quantum efficiency of the
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Figure 5.3: (a) Frequency scan of the 1Π1 ←1 Σ+(0, 0)Q(1) transition, taken by performing LIF
on ions that have been trapped for 2 ms. (b) Plot of LIF signal as a function of trap duration for
a 3 kHz trap. The signal is fit to a decaying exponential with offset C. (c) Plot of LIF signal as a
function of trap duration for a 6 kHz trap. The tighter trap in (c) yields a larger LIF signal C at
long times compared to the weaker trap in (b).
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PMT, and exclaim, “Aha! Why don’t we use an avalanche photodiode instead, where the quantum

efficiency is much higher in the visible red or near infrared wavelengths?” The problem with the

avalanche photodiode is its high dark count rate per square millimeter of active area (∼108 counts

per second compared to ∼100 counts per second for a PMT with the same active area). The dark

count rate can be reduced by shrinking the size of the active area, but unfortunately, for collecting

photons from a relatively diffuse cloud of ions, the signal is correspondingly compromised in a way

that reduces the signal-to-noise ratio. On the other hand, the output of a single-mode cavity may

be efficiently focused onto a small-area avalanche photodiode, thus it is worth considering cavity-

enhanced detection techniques. For the cavity-enhanced techniques presented in this section, we

refer the reader to References [84] and [95] for detailed explanations, and use the results from those

two Vuletić-group papers to estimate experimental parameters particular to our trapped HfF+ ions.

Cavity-enhanced techniques may be applied to either fluorescence or absorption for detecting

the states of HfF+. In both cases, the coupling between the cavity and a single molecular ion can

be described by the cooperativity η, which is related to the ion-cavity coupling g, cavity decay

linewidth κ and ion spontaneous decay linewidth Γ by

η = 4g2/(κΓ) . (5.1)

In terms of experimental parameters like the cavity finesse F , cavity mode waist wc and scattering

cross section σs, we get the expression for η to be

η =
4σsF
π2w2

c

. (5.2)

For cavity-enhanced fluorescence, the ratio with which a molecular ion emits fluorescence

photons into the cavity compared to that into free space is given by η. The ion number resolution

∆N one can hope to achieve with fluorescence from N ions is [84]

∆N =

√
2N

qηp
, (5.3)

where q is the photodiode quantum efficiency and p = 1 is the number of photons scattered per

molecular ion. On the other hand, for cavity-enhanced absorption, the ion number resolution is
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[84, 95]

∆N =

√
1

2qηp
. (5.4)

Comparing between Eqs. (5.3) and (5.4), cavity-enhanced absorption has the potential for much

higher ion number resolution.

It is worth noting that there are a number of different cavity-enhanced absorption techniques,

such as noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICEOHMS)

[93], where the molecular ions are modulated at a frequency that is the same as the free spectral

range of the cavity. This section follows the particular experiment described in [95], where the

Rb atoms are only modulated at a small fraction (≈ 1/44) of the cavity free spectral range. The

frequency modulation of the Rb atoms is performed so as to place the first order red sideband near

or on resonance with the cavity, and then the cavity reflection of that sideband is heterodyned

against the carrier. The shift in cavity resonance, which shows up as a shift in the dispersive

lineshape, is then proportional to the number of ions coupled to the cavity.

Suppose, then, that we are interested in using cavity-enhanced absorption to resolve up to

∆N ≤ 10 ions. For a sample of 50 ions in a single rovibronic state, a signal-to-noise ratio ≥ 5

offered by cavity absorption can only be achieved with competing spin readout methods if the total

detection efficiency is as high as 50%. To achieve ∆N ≤ 10 with a reasonable photodiode quantum

efficiency of q = 0.5, Eq. (5.4) dictates that η > 0.01. We now examine more closely the expression

for η in Eq. (5.2) and estimate reasonable parameters needed to achieve η > 0.01.

For atoms that can be well approximated as a two-level system due to the use of a cycling tran-

sition, the scattering cross section is σatoms = 3λ2/(2π). For molecules without cycling transitions,

the scattering cross section is reduced from σatoms by the Franck-Condon overlap and electronic

and rotational state branching ratios. Of the HfF+ states lying below 22000 cm−1 with transitions

to 3∆1, the
3Π0− states (at ≈10400 cm−1 and ≈19200 cm−1) and 3Σ0− state (at ≈21700 cm−1)

decay only to the 3∆1 state [86]; of these, the [10.4]3Π0− ←3 ∆1(ν
′ = 0, ν ′′ = 0) transition has the

most favorable Franck-Condon overlap, as shown in Table 5.2. Including the rotational branching
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ratio of the |J ′ = 0,Ω′ = 0, F ′ = 1/2〉 ← |J ′′ = 1,Ω′′ = 1, F ′ = 3/2〉 transition, the best scattering

cross section we can achieve is then σs = 0.52 × 0.5σatoms = 0.26σatoms . So far, we have not

yet taken into account the Doppler width of the ions. With a typical Doppler width of Γdopp =

30 MHz along the axial direction, the scattering cross section is diluted down by Γ/Γdopp ∼ 104,

i.e. σs = 2.6 × 10−5 σatoms .

Table 5.2: Franck-Condon overlaps | 〈ν ′′ = 0|ν ′〉 |2 between the 3∆1, ν
′′ = 0 state and excited states

[10.4]3Π0−, [19.2]3Π0− and [21.7]3Σ0− of various vibrational levels ν ′. The notation for the excited
electronic states follows the same convention as that used in Chapter 2.

ν ′ 0 1 2 3 4 5 6

[10.4]3Π0− 0.52 0.36 0.11 < 0.01 < 0.01 < 0.01 < 0.01
[19.2]3Π0− 0.30 0.07 0.04 0.21 0.22 0.12 0.04
[21.7]3Σ0− 0.31 0.04 0.08 0.26 0.21 0.08 0.02

Given the above scattering cross section, the remaining parameters we can choose to fulfil

η > 0.01 are the cavity finesse and mode waist: the lower the finesse desired, the smaller the mode

waist needed. The cavity mode waist is limited by the number of ions we can squeeze radially in

the trap. With the eEDM linear Paul trap presented in this thesis, the highest trap frequency we

can obtain in the radial direction is (2π)28 kHz, which comes from applying |Vrf | = 200 V and

ωrf = (2π)60 kHz. (Increasing ωrf does not help because we are limited by Vrf .) Using the typical

trap radius of 2 mm for a (2π)4 kHz trap, we can only get a radius of 0.76 mm with the squeezed

trap. Alternatively, we can run the eEDM ion trap as a cylindrical Paul trap, i.e. |Vrf | cos(ωrf t)

is applied to all six radial fins and a weak DC cylindrical quadrupole field that further confines

the ions radially is generated by the end cap electrodes. The cylindrical Paul trap does not offer

a higher trap frequency (maximum achievable ω = (2π)24 kHz) because the end cap electrodes in

the existing design are spaced too far apart. With the cavity mode waist limited to 0.76 mm, we

require, for a resolution of ∆N ≤ 10 ions, that the cavity finesse be F ≥ 1010.

State-of-the-art cavities have finesses in the range of 105 − 106 and are dominated by losses

in the cavity mirrors [92]. The required cavity finesse of 1010, then, is quite impossible. The main
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limitation is the small scattering cross section due to the ion cloud’s large Doppler widths. With

these challenges in mind, we retired the idea of implementing cavity-enhanced absorption. We may

revisit it as a spin-readout technique to be used with future generations of eEDM experiments

where the molecular ions may be sympathetically cooled to much lower temperatures and where

the ion trap geometry is more compact.



Chapter 6

Spin readout techniques (II): photodissociation

In the previous chapter, we saw how we could detect the state of HfF+ ions in the 1Σ+(ν ′′ = 0)

level using laser-induced fluorescence. A possible path from there to the eEDM measurement is

to extend the capability of LIF to 3∆1(ν
′′ = 0) state detection, where a known transition to the

3Φ2(ν
′ = 1) level can be excited by a 684 nm laser, and fluorescence down to the 3∆1, ν = 2 level at

763 nm can be measured and reasonably well-filtered from the excitation wavelength [16]. However,

as shown in Table 5.1, the LIF efficiency can be easily nickled-and-dimed down to a paltry 0.18%

for a single PMT, and the dominant limitation in efficiency — the quantum efficiency of the PMT

at 763 nm — remains as miserly as 8%. Given these numbers, even if we were to optimistically

populate 30 HfF+ ions in a given |F,mF , J,Ω〉 state of the 3∆1, ν
′′ = 0 manifold, our readout signal

would only be 0.05 photons per shot. With a repetition rate of 4 Hz (limited by the pumping speed

in the ablation/source chamber to remove residual gas after the pulsed valve fires, also assuming a

coherence time of 0.25 s), such a low readout signal would mean as long as 2.5 hours spent to reach

1× 10−27 e cm.

Counting photons from non-cycling transitions in a diffuse cloud of molecular ions is hard.

Counting ions, on the other hand, is relatively easy: the quantum efficiency of detection for a

highly energetic (> 2 keV) ion hitting a single MCP channel can be on the order of unity. The

overall efficiency of the ion detector is then limited by the open area ratio (ratio of active channel

area to the total MCP area) and by the transparency of the ground mesh above the MCP to

approximately 25%. In all the experiments discussed so far, HfF+ ions have been counted using
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the MCP in a manner indiscriminate for the ions’ internal state. To be sensitive to the state of

HfF+, one can use a laser to resonantly excite HfF+ molecules to a repulsive potential, which breaks

apart the molecules into Hf+ and F. The Hf+ atomic ions can then be counted on a MCP. Using

such a resonance-enhanced multi-photon dissociation (REMPD) scheme, the detection efficiency

is potentially much higher than that for LIF: if it were higher, say, by a factor of 10, the eEDM

measurement could be carried out 10 times faster to reach the same statistical sensitivity (assuming

the same level of noise). To quote Eric’s famous motivational refrain, this would ideally translate

to “less time spent taking data, more time spent skiing”.

Performing REMPD, alas, is easier said than done. Firstly, we have to find the repulsive

curves, which are likely to lie > 50000 cm−1. Secondly, photodissociating in a rotational state

specific way means that we also have to find intermediate bound states of energy < 40000 cm−1, so

that we can drive a bound state-bound state transition with a weak but narrow UV/visible laser

before hitting the repulsive curve. A simultaneous search for (at least) two unknown potential

curves is non-trivial, especially since theoretical calculations on HfF+ have only been performed up

to 22000 cm−1. This chapter presents the following: the basics of photodissociation; the experiment

sequence and layout needed to prepare for a survey scan of high-lying HfF+ states; spectroscopy

of HfF+ states at > 30000cm−1; our preliminary understanding of the repulsive curve; the experi-

mental efficiency of photodissociation as a state readout method.

6.1 Basics of photodissociation

6.1.1 Direct photodissociation

In direct photodissociation, a HfF+ molecule is excited by a laser (or multiple lasers) to a

molecular potential that is purely repulsive in nature, before breaking apart into its constituent

atoms:

HfF+ + hν → Hf+ + F . (6.1)
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Repulsive molecular potentials lie above the bond dissociation energy D0, which is the minimum

energy necessary to break apart a molecule starting in its ground rovibronic state. D0 has been

estimated from ab-initio calculations to be 51400(300) cm−1 [62]. As shown in Fig. 6.1a, D0 can

also be estimated from the measured bond dissociation energy of neutral HfF (55600 ± 1600 cm−1

[6]) and the ionization energies of HfF and Hf (59462 cm−1 and 55048 cm−1, respectively) [4, 12]

to be 51200 ± 1600 cm−1:

D0(HfF
+) = D0(HfF) + IE(Hf)− IE(HfF) . (6.2)

If the repulsive molecular potential arises from constituent atomic orbitals that are in their ground

configurations (i.e. Hf+(2D3/2) + F(2P3/2)), the potential energy at large internuclear separation,

DR→∞, asymptotes towards the bond dissociation energy (Fig. 6.1b). Conversely, if the repulsive

potential is the result of anti-bonding between excited atomic orbitals, DR→∞ is higher than D0

(Fig. 6.1c).

The excitation of molecules to the repulsive potential takes place quickly compared to the

motion of the constituent atomic nuclei, i.e. where the Born-Oppenheimer approximation is valid.

The energy of the molecules at the point of excitation on the repulsive curve (U∗) that is in excess

of DR→∞ gets released as the kinetic energy of the dissociation products. For Hf+ and F, the

lighter fluorine atom flies away with 10 times as much kinetic energy compared to the Hf+ ion.

When the trap is dumped onto the MCP, the Hf+ ion, being 10% lighter than HfF+, is separated

from any residual HfF+ molecular ions in time-of-flight and detected on a MCP.

To figure out the position and width of the photodissociation resonance, we can use the

reflection approximation [48, 35]: the repulsive potential in the vicinity of U∗, where U∗ is many

vibrational energies above DR→∞, can be approximated as a linear negative slope. For such high-

lying vibrational levels, the vibrational wavefunction amplitudes are mostly concentrated at the

wavefunction turning points, i.e. at the internuclear separation where the repulsive slope lies (see

Fig. 6.1d). The Franck-Condon overlap between these high-lying dissociative vibrational states and

the lower vibrational state gives the probability of dissociation for a given laser frequency. Therefore,
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over the range of frequencies connecting the lower state to the repulsive slope, the photodissociation

resonance looks like the wavefunction of the lower state reflected about the negative linear slope of

the repulsive potential.

As mentioned previously, there are no theoretical calculations describing HfF+ molecular

potentials lying above 22000 cm−1, and certainly none above the bond dissociation energy. Never-

theless, it has been estimated, by extrapolating from the calculated molecular potential of PtH+

[54], that a 3Σ repulsive potential of slope 80000 cm−1/Å lies at 71000 cm−1 [83]. It is forbidden to

make a transition directly from the ground 1Σ+ state to a 3Σ state, so one would need to go through

an intermediate mixed-spin state. The photodissociation transition to the 3Σ state is estimated to

have a resonance of width 4200 cm−1 and cross section 3.8 × 10−19 cm−2 (assuming an electronic

transition dipole moment of 0.3 ea0), which requires a 266 nm laser pulse of energy ≈250 mJ to

saturate an ion cloud of 2 mm radius.

6.1.2 Predissociation

A 10 ns laser pulse at 266 nm with a few hundred mJ of energy demands a rather hefty

Nd:YAG laser for its source. In order to use less pulse energy for photodissociation, one can

use predissociating molecular states. In pre-dissociation, the molecule is excited to a bound-state

molecular potential that has an avoided crossing with a repulsive potential (see Fig. 6.2) [48, 35]:

HfF+ + hν → HfF+(∗) → Hf+ + F . (6.3)

Comparing between predissociation and direct dissociation is analogous to comparing between au-

toionization and direct photoionization. Since the oscillator strength for a bound-bound transition

tends to be stronger than for a bound-free transition, the laser pulse energy required to access a

predissociating/autoionizing state tends to be smaller compared to that for its direct analog. The

predissociation/autoionization resonances are also generally narrower, which means that they are

harder to find! For predissociation, the reflection approximation does not hold because of structure

in the upper bound-repulsive potential. In fact, sometimes the point of avoided crossing may occur



102

D (HfF)0

D (HfF )0

+

IE(Hf)

IE(HfF)

Hf + F

Hf + F
+

HfF
+

HfF

X
2D3/2

HfF
+

X
1 +S

Hf + F
+

D (HfF )=D0 R

+

8

U* U*

HfF
+

Hf + F
+(*)

Hf + F
+

D (HfF )0

+

DR 8

(a) (b) (c)

(d)

R R R

E
n
e
rg

y

E
n
e
rg

y

E
n
e
rg

y

Figure 6.1: (a) Schematic of ground state molecular potentials for both neutral and ionic HfF,
illustrating how to derive the bond dissociation energy of the HfF+ molecular ion species from the
ionization energies and bond dissociation energy of the neutral molecule species. (b) Schematic of
ground and repulsive molecular potentials in HfF+, where both molecular potentials come from Hf+

and F atomic orbitals in their ground state configuration, such that the repulsive potential at large
internuclear distances DR→∞ tends to the bond dissociation energy D0. U

∗ is the energy needed
to access the repulsive potential from the ground state. (c) Schematic of ground and repulsive
molecular potentials in HfF+, where the repulsive potential is composed of atomic orbitals in
an excited state configuration, i.e. DR→∞ > D0. (d) Using the reflection approximation, the
dissociation resonance (vertical Gaussian) is a reflection of the lower state’s wavefunction (thin
line) about the repulsive potential that has been approximated as a linear negative slope, as shown
in the depicted example for Cl2 [35].
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such that U∗ is barely above DR→∞, which means that the constituent atoms fly off with a much

lower kinetic energy, simplifying their detection.

Hf + F
+

HfF
+(*)

R

E
n
e
rg

y

Figure 6.2: The avoided crossing of a bound state (blue dashed line) and repulsive state (red dashed
line) gives rise to a predissociating potential (black line) and a more tightly confined bound state
(purple line).

6.2 Practical challenges and considerations

6.2.1 HfF+ creation

For photodissociation to work as a state detection method on the eEDM experiment, the

question is not so much the nature of the molecular potential at > 50000 cm−1, but where we need

to tune our lasers to hit a repulsive/predissociating state. The best tunable laser at our disposal for

performing a survey spectroscopy of HfF+ lines — a SIRAH Precision Scan pulsed dye laser and its

motorized doubling crystal setup — was already being used to deliver the second photon at 368 nm

for photoionizing HfF. Since we did not know how likely we were to succeed in performing photodis-

sociation, we were reluctant to buy another pulsed dye laser system specially for photodissociation.

Instead, we freed up our existing pulsed dye laser by using 308 nm (unchanged from before) +
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355 nm (the third harmonic of a Nd:YAG laser) to excite neutral HfF to the autoionizing Rydberg

state. Since the total energy of a 308 nm and a 355 nm photon lies above the ionization threshold

for the ionic 3∆1 state, this autoionization scheme meant that the HfF+ ions could be formed in

the 1Σ+(ν = 0), 1Σ+(ν = 1) and 3∆1(ν = 0) states, which would dilute the number of ions in

any given quantum state and possibly reduce our chances of seeing a photodissociation signal from

a particular state. We attempted to circumvent the problem of initial state dilution by searching

for a different intermediate state in neutral HfF that could be addressed using 312–320 nm light,

so that when combined with the second photon at 355 nm, would only allow the creation of 1Σ+

ions. Unfortunately, most of the transitions identified in the target wavelength range originated

from the ν = 1 vibrational level of the X2∆3/2 state in neutral HfF, which meant that the two-

photon Rydberg autoionizing states still lie above multiple ionization thresholds. Thus, we stuck

to the autoionization scheme with the 308 nm and 355 nm lasers. In retrospect, and as shown in

Section 6.3, having the additional HfF+ population in three different vibronic states turned out to

be a useful feature in understanding photodissociation spectroscopy!

6.2.2 Lasers, lasers and more lasers

As outlined at the start of this chapter, there is a need to search for HfF+ states in two

frequency regions: repulsive/predissociating states above 50000 cm−1 and bound states below

40000 cm−1. To avoid performing a two-dimensional search for states, we needed to increase

our chances of successfully accessing multiple molecular states by shining as many lasers as pos-

sible onto the ions. The lasers we had at our disposal were the following: the fundamental and

second harmonic light from the SIRAH Precision Scan tunable dye laser, all four harmonics of

the Nd:YAG laser (1064 nm, 532 nm, 355 nm, 266 nm), 308 nm and 769 nm (previously used for

LIF). Overlapping 8 laser beams, most of which possess pulse energies of ∼ 1 mJ, over such a wide

range of wavelengths turned out to be a non-trivial task. Fig. 6.3 shows a layout of the optics used

to combine all 8 laser beams using dichroic mirrors, for the particular case where the wavelength

range of the Precision Scan dye laser in the fundamental was 547–581 nm (using Pyrromethene 580
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dissolved in ethanol as the dye gain medium). Dichroic mirrors (see Table 6.1) instead of beam

splitters were preferred in the optical setup so as to minimize loss of laser pulse energy. Since the

laser beams are propagating collinearly through the vacuum chamber, the successful attainment of

a LIF signal meant that the lasers are overlapped with the trapped ions.

Since the Nd:YAG laser used to generate 355 nm light and pulse-amplify 308 nm light for

photoionization was also used to pump the tunable pulsed dye laser, the lasers used for photoion-

ization and photodissociation fired at the same time. Care had to be taken to match the lasers’

path lengths so that the laser beams are temporally overlapped when they traverse the ion cloud.

The presence of the photodissociation lasers at the time of photoionization, however, is unwelcome:

two-photon ionization from 266 nm, for instance, could dominate the ionization process so much

that the HfF+ ions could be formed with initial population spread across an even larger number

of vibronic states. Shutters were therefore used to gate out any laser other than the 308 nm and

355 nm lasers during photoionization. Given the 10 Hz repetition rate of the Nd:YAG laser, the

photodissociation is then carried out only after the ions have been trapped for 100 ms.

Table 6.1: Specifications of dichroic and broadband mirrors used to overlap laser beams of different
wavelengths for photodissociation.

Reflected Transmitted Damage
Optic

λ (nm) λ (nm) Threshold

MPQ-245-390 245–390 0.92 J/cm2, 10 ns at 532 nm
LWP-45-Rp-266-Tp-308 258–274 >308 10 J/cm2, 20 ns, 20 Hz
LWP-45-Rp-300-Tp-355 291–309 >355 10 J/cm2, 20 ns, 20 Hz
LWP-45-Rp-355-Tp-515 345–365 >515 10 J/cm2, 20 ns, 20 Hz
LWP-45-Rp-532-Tp-607 516–548 >607 10 J/cm2, 20 ns, 20 Hz
SWP-45-Rp-780-Tp-633 757-803 600–685 10 J/cm2, 20 ns, 20 Hz
BBDS 350–1100 1 J/cm2 at 355 nm
BSR31 355 532/1064 4 J/cm2, 20 ns, 20 Hz
BSR15 1064 532 10 J/cm2, 20 ns, 20 Hz
DMLP567 380–550, 532, 1064 584–700 2 J/cm2

DMLP900 400–872 932–1300 1.21 J/cm2 at 532 nm
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Figure 6.3: Layout of optics used to overlap 8 laser beams (wavelengths in italics) in a search for
photodissociation transitions. Table 6.1 gives a list of specifications for most of the optics shown.
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6.2.3 Hf+ detection

For photodissociation to occur, the combination of laser frequencies needs to be higher than

the bond dissociation energy. On the other hand, if too high a dissociation potential is accessed,

the dissociation products (notably Hf+) can fly away with a kinetic energy so large and in such a

near-isotropic manner, that the detection efficiency on a MCP located along a given direction is

diminished. The MCP detection can be improved by using the trap electrodes to give the ions a

big velocity ‘kick’ vkick,x towards the MCP — big enough to overwhelm the velocity vPD inherited

from photodissociation. The angle subtended by the two velocities should be smaller than the

angle subtended by the MCP (9 mm radius of active area, 11.6 cm from the ion trap center) (see

Fig. 6.4a):

vPD,y

vkick,x
≤ 0.9

11.6
= 0.08 , (6.4)

where
1

2
mHf

(
v2PD,x + v2PD,y + v2PD,z

)
=

3

2
mHfv

2
PD =

1

10
(U∗ −DR→∞) . (6.5)

For a ‘kick’ velocity of 5500 m/s, Eqs. (6.4) and (6.5) predict that we can access dissociation

potentials as high as 41000 cm−1 above DR→∞.

A higher ‘kick’ velocity not only increases the range of energies over which we can detect

dissociation potential curves, but also tends to increase the mass resolution between the dissociated

Hf+ ions and the remaining HfF+ ions, both of which get ejected at the same time. This is because

a higher ‘kick’ velocity maps the HfF+ ion cloud width onto a narrower distribution in arrival time

(see Fig. 6.4b), and the well separated ion peaks provide a good level of discrimination between

any dissociated Hf+ signal ions and the tail of the HfF+ distribution.

Besides ions from the HfF+ distribution contaminating the Hf+ signal, the photodissociation

signal to noise ratio can be reduced due to two sources of background: 1. the photodissociation lasers

can ionize residual background gases to give ions that show up at all times on the MCP, including

the time window corresponding to the Hf+ signal; 2. the photoionization lasers can off-resonantly

ionize Hf to give Hf+ (henceforth referred to as “aboriginal” Hf+), which remains trapped for the

entire duration until the photodissociation lasers fire. To remove the background ions created by
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the photodissociation lasers, we can trap any dissociated Hf+ ions for a short time before ejecting

the ion cloud onto the MCP, thereby separating the dissociation signal in time from the promptly

ionized gases. Specifically, the additional post-dissociation trap duration Ttrap should be chosen so

that the energetic Hf+ ions can be focused onto the MCP over their flight time to the detector Tdet

(Fig. 6.4c). For ions in a trap of secular frequency ω and oscillation amplitude y0, the focusing

condition is expressed as a zero net displacement in the transverse direction ŷ:

y + ẏTdet = y0 sin(ωTtrap) + ωy0Tdet cos(ωTtrap) = 0 ,

tan(ωTtrap) = −ωTdet ,

Ttrap =
1

ω

(
− tan−1(ωTdet) + π

)
. (6.6)

While typical trap frequencies lie in the range of (2π)3–6 kHz, the trap frequencies in all three

directions are ramped up to the same value of (2π)13 kHz just before photodissociation, so as to

squeeze the ion cloud and allow for better spatial overlap with the dissociation laser beams. For

Tdet = 21 µs and ω = (2π)13 kHz, the post-dissociation trap wait time according to Eq. (6.6) is

then Ttrap = 0.026 ms. Since the ions can be ejected from the trap only after an integer number of

trap RF cycles to avoid imaging the RF micromotion velocity, Ttrap is chosen to be a multiple of

the refocusing time 0.026 ms and (2π)/ωrf , which, in the case of ωrf = (2π)50 kHz, ends up giving

Ttrap = 0.1 ms.

To reduce the aboriginal Hf+ ions created by the photoionization lasers (in particular,

355 nm), one can operate the ion trap in a regime that is stable for HfF+ but unstable for Hf+ up

to the time of dissociation. Alternative to ramping the trap to a different set of {a, q} parameters,

we can ‘kick’ the ion cloud twice (along x̂) during the trap cycle to ‘hide’ the promptly created Hf+

ions under the HfF+ distribution when the ion cloud is ejected after dissociation (see Fig. 6.5). The

first ‘kick’ sets both HfF+ and Hf+ ions sloshing in the trap at frequencies differing by 10% (for

a≪ q, the trap frequency is approximately proportional to q and therefore inversely proportional to

the ion mass). After some time Thide, the two ion species dephase in their slosh motion such that a

second ‘kick’ removes (adds to) the momentum imparted by the first ‘kick’ for the HfF+ (Hf+) ions.
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Figure 6.4: (a) To be fully captured by the MCP detector (subtending a solid angle Ω from the
ion cloud), the Hf+ ions need to be ejected towards the MCP with a longitudinal velocity vkick,x
that is large compared to their transverse velocity vPD,y. (b) Arrival time of Hf+ (red) and HfF+

(blue) ions on the ‘fast’ MCP: the faster the ejection velocity vkick, the shorter the arrival time and
the better resolved the two ion species. This data is taken by simulating the presence of Hf+ and
HfF+ ions in the trap by ionizing both neutral Hf atoms and HfF molecules. (c) Trajectory of the
Hf+ ion cloud when ejected from the trap after a refocusing time Ttrap, so that the Hf+ ions are
focused onto the MCP.
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The HfF+ ion cloud subsequently becomes stationary while the Hf+ ions’ center-of-mass sloshes

with an even greater amplitude, until the trapped ions are ejected at Ttrap after photodissociation,

at which time the Hf+ ions should be initially moving along −x̂ and eventually catch up with the

arrival of HfF+ on the MCP. Using the double ‘kick’ method, we reduced the background Hf+ ions

by a factor of 4. Nevertheless, the application of the double ‘kicks’ suffered from reproducibility

issues due to interference on the ion trap voltages from nearby laser shutters, so we eventually

discarded the procedure and lived with the small amount of aboriginal Hf+ background.

6.3 Photodissociation spectroscopy of HfF+

6.3.1 An initial disappointment

When we first begun to look for photodissociation lines, the 10 mJ 266 nm laser immediately

started photoionizing the background gas to give 2–5 ‘Hf+’ ions per shot. The photodissociation

signal-to-noise ratio would have been only 0.1 if our initial photodissociation efficiency was 1%.

Thus, we temporarily removed the 266 nm laser from the photodissociation sequence and scanned

through the wavelength range afforded by using Pyridine 2 in the tunable pulsed dye laser (691–

751 nm in the fundamental). This dye, in combination with the other fixed wavelength lasers, would

allow us to access a sum frequency range of 49000–58000 cm−1 if using a two-photon transition and

67000–77000 cm−1 with a three-photon transition. This scan yielded no photodissociation signal,

which was somewhat discouraging.

Given that the HfF+ bond dissociation energy was ≈ 52000 cm−1, we would have been hoping

to hit either a predissociating state below 60000 cm−1 with two on-resonant photons or a predisso-

ciating/repulsive state above 60000 cm−1 with three on-resonant photons. Both situations required

us to be at least ‘doubly lucky’. On the other hand, if we were able to employ the 266 nm laser, we

could access states above 60000 cm−1 with two photons, and if the predissociating/repulsive state

there was broad enough, we could potentially access it even if one of the two photons was at a fixed

wavelength! It was therefore necessary to solve the problem of background ionization by 266 nm,
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Figure 6.5: Hiding aboriginal Hf+ ions. (a) A pair of velocity ‘kicks’ is applied to the ions at times
t0 and t0+ thide, which are chosen such that the Hf+ and HfF+ ions are moving in phase and out of
phase relative to each other, respectively. In this way, the HfF+ ions remain stationary whereas the
Hf+ ions oscillate with an even larger velocity after the second ‘kick’. When the photodissociation
lasers fire, the Hf+ ions should be moving away from the detector, so that they eventually arrive
the MCP at the same time as the heavier HfF+ ions. (b) Two oscilloscope traces depicting the
arrival of Hf+ and HfF+ with (red) and without (blue) the pair of ‘kicks’. Without the ‘kicks’, the
bump at earlier (later) time indicates the arrival of Hf+ (HfF+). With the ‘kicks’, both ion species
arrive at the same time. This data is recorded with the Hf+ and HfF+ ions created by ionizing
both neutral Hf atoms and HfF molecules.
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so that we could include the 266 nm laser without hurting our signal to noise ratio.

Ions produced by the 266 nm laser turned out to obey the following characteristics: 1.

they were produced regardless of whether HfF neutral molecules were being created in the source

chamber; 2. they could be trapped for several hundred milliseconds; 3. when ejected onto the

‘fast’ MCP, their arrival time was 30 times broader than the arrival time window of the Hf+ ions,

corresponding either to a wide range of masses or a very diffuse cloud of trapped ions. Based on

these observations, we concluded that the ions came from background gases introduced into the

vacuum chamber during the trap assembly (also affectionately termed “isogreasanol”), and could

be decreased by baking the vacuum chamber. Indeed, after baking the ion trap setup to 200◦ over

two days, the background ionized gas decreased by an order of magnitude, and we were poised to

retackle photodissociation.

6.3.2 HfF+ lines galore!

To increase the chances of accessing high-lying dissociative states with two on-resonant pho-

tons, we changed the gain medium for the tunable pulsed dye laser to Pyrromethene 580 (funda-

mental wavelength range 547–581 nm). This allowed us to access frequencies as high as 69000-

74000 cm−1 with either two tunable 34500–37000 cm−1 photons (for 1+1 REMPD) or a tunable

31400–36400 cm−1 photon and a fixed 37600 cm−1 (266 nm) photon (for 1+1’ REMPD). To our

pleasant surprise, we found several HfF+ transitions in the frequency range 32500–36500 cm−1,

made by a UV photon from the frequency-doubled output of the tunable dye laser. The fact that

we can detect the HfF+ transitions by counting Hf+ indicates that we are hitting at least one dis-

sociating state. The dissociating state(s) could be accessed by either the fixed 266 nm or a second

tunable (> 32900 cm−1) photon, which means that the state lies above 70500 cm−1.

Fig. 6.6 shows a summary of the HfF+ transitions found in the vicinity of 35000 cm−1,

scanned using both Pyrromethene 580 and Pyrromethene 597 as the gain medium of the tunable

dye laser. The gap in the spectrum is due to Wood’s anomaly, which is a grating configuration

that causes the dye laser to stop lasing in that wavelength region for a 1800 lines/mm grating.
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Since many of the transitions at 35000 cm−1 come from two 32900–36500 cm−1 photons accessing

a dissociating state, the intensities of transitions shown in Fig. 6.6 reflect a convolution of both

the photodissociation resonance (which is almost surely not saturated by the second photon) and

the variation in gain of the tunable dye laser; in particular, the pulse energy is diminished in the

vicinity of the Wood’s anomaly. The assignment of vibronic bands is aided by the initial population

of HfF+ ions in three different vibronic states: using the known spacing between the three initial

vibronic states [16], we can identify transitions between the same upper state at > 30000 cm−1

and one of the three lower vibronic states, as indicated by the line markers in Fig. 6.6. Some of

the isolated transitions that remain unidentified may come from upper states that have allowed

transitions only to either the 1Σ+ or 3∆1 state, but not both.

−2500 −2000 −1500 −1000 −500 0 500 1000 1500

H
f+

First photon frequency (cm−1) − 35000 cm−1

Figure 6.6: REMPD spectroscopy of HfF+ transitions at 32500–36500 cm−1, detected by photodis-
sociating HfF+ into Hf+ and F. The gap in the spectrum is due to Wood’s anomaly of the laser
grating that causes a loss in laser intensity. Transitions that have been identified as originating from
the 1Σ+(ν ′′ = 0),1 Σ+(ν ′′ = 1) and 3∆1(ν

′′ = 0) lower states to excited states at > 30000 cm−1 are
denoted by red, green and blue vertical lines, respectively. Vertical lines connected by a horizontal
magenta line belong to transitions terminating on the same upper vibronic state.

To identify the individual rotational lines of a given vibronic band, we tried to reduce the

pulse energy of the first photon (provided by the tunable dye laser) to avoid power broadening the

rotational lines. However, since the tunable dye laser was sometimes also responsible for providing

the second photon in photodissociation, a lower dye laser pulse energy also reduced the overall

photodissociation signal, making it more difficult to discern different rotational lines. Instead of

lowering the dye laser pulse energy, a narrowband continuous wave laser at 13002 cm−1 tuned to
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resonance of one of the rotational lines in the 1Π1 ←1 Σ+(0, 0) transition was used to first optically

pump away ions from a given 1Σ+(ν ′′ = 0, J ′′) lower state before photodissociating the HfF+ ions.

The presence of the continuous wave laser would leave a depletion gap in the vibronic band at

≈ 35000 cm−1, which can in turn be identified as a rotational line of that band. Fig. 6.7 shows

the rotational lines identified using such depletion spectroscopy for a vibronic band at 35975 cm−1.

The lower state rotational constant was fixed to be the known value for the 1Σ+(ν ′′ = 0) state,

i.e. 0.305 cm−1 [16]. The upper state rotational constant was then identified to be 0.269 cm−1, and

the lack of a Q branch indicated that the upper state has Ω′ = 0.

6.3.3 Nature of photodissociating state at 72000 cm−1

While having one tunable dye laser allowed us to perform REMPD spectroscopy of HfF+

intermediate states, a scan of HfF+ states above the bond dissociation energy could be carried out

only with two tunable lasers. Fig. 6.8a shows a spectrum of the dissociating states at 72000 cm−1,

measured by tuning the first photon (70 µJ) to resonance with the vibronic band at 35976 cm−1 and

then scanning the second photon (≈1 mJ). Care was taken to tune the second photon off-resonance

from transitions at 36000 cm−1 (see Fig. 6.8b) to avoid artificially enhancing the dissociation process

arising from the more intense second photon addressing multiple rotational levels. The plotted Hf+

ions are taken to be the difference between chopping the first photon on versus off, to account for

any variations in the background ionization process with the second photon’s frequency. To our

surprise, there is structure in the dissociation resonance at 72000 cm−1, which can indicate that:

(1) the intermediate state at 36000 cm−1 is at a high-lying vibrational level, and is mapped

onto the dissociation resonance using the reflection approximation for a purely repulsive

curve, or

(2) the dissociating state at 72000 cm−1 is a predissociating state whose structure comes from

one or more avoided crossings, or

(3) some combination of the above reasons.
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Figure 6.7: Depletion spectroscopy of the Ω′ = 0 ←1 Σ+ vibronic band at 35975 cm−1 (shown as
the unresolved, thick black line in the second lowest panel). To resolve the individual rotational
lines, the vibronic band is scanned over in the presence of a depletion laser driving a particular
rotational transition of the 1Π1 ←1 Σ+ band, and the difference in Hf+ with and without the
depletion laser is plotted as the colored lines with error bars. The thin black line (bottom panel)
denotes the simulated vibronic band with its R branch on the right (dot-dashed vertical lines) and
P branch on the left (dashed vertical lines).
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To truly understand the nature of the dissociating states, more spectroscopy work — specif-

ically, more scans of the dissociation resonances and a better understanding of the intermediate

states at 35000 cm−1 — needs to be done. Nevertheless, the goal of preforming photodissociation

is not to understand the high-lying states of HfF+, but to use dissociation as an efficient detection

tool for the states involved in the eEDM search. One way to efficiently carry out photodissociation

is to look for the dissociation resonance with the largest cross section, which involves a non-trivial

two-dimensional search for HfF+ states with two tunable lasers dedicated for dissociation. The

other method is to use the fourth harmonic of a Nd:YAG laser at 266 nm to access the second

dissociation transition. In the latter case, even if the dissociation cross section is small, we can

maximize the dissociation efficiency by saturating the second transition with higher pulse energy.

The latter scheme is much easier to implement than using two tunable lasers, and is hence employed

as the method of dissociation for the remainder of this thesis.

6.4 Photodissociation as a readout tool

6.4.1 Saturation of dissociation transition

Fig. 6.9 shows the saturation curve, which is a plot of photodissociation efficiency versus

pulse fluence, for the dissociation resonance accessed by saturating the Ω′ = 0 ←1 Σ+ transition

at 35975 cm−1 with the first photon and varying the pulse fluence F (i.e. pulse energy for a given

beam area) of 266 nm as the second photon. Each point on the saturation curve is taken to be the

difference in Hf+ ions counted with the first photon present versus absent, so as to remove the effects

of a more intense 266 nm pulse more efficiently ionizing the background gas. The saturation curves

were recorded for two different 266 nm beam waists. For the bigger beam waist (w0 = 5.0 mm),

the saturation curve (open circles) is mostly linear. For the smaller beam waist (w0 = 3.3 mm), the

Hf+ counts (open triangles) clearly saturate above 50 mJ/cm2 but to a smaller value of ion counts,

due to laser overlap with a smaller fraction of the ion cloud. Each saturation curve is fit to a single

exponential A(1− exp(−F/FS)), where FS is the saturation fluence. The single exponential is only
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Figure 6.8: (a) Dissociation resonance accessed by two photons of total energy 71600–72400 cm−1,
recorded by tuning the first photon to 35976 cm−1 and scanning the frequency of the second
photon. When scanning the dissociation resonance in (a), care was taken to step cleanly over any
one-photon transitions shown in (b). (b) HfF+ transitions accessed by a single photon of energy
35800–36200 cm−1.
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an approximate functional form due to complicating overlap details between the dissociating lasers

and the ion cloud. As a sanity check, the linear slopes of the two curves at small pulse fluence differ

by a ratio of 2.4, which is comparable to the ratio of the 266 nm beam areas in the two cases. The

saturation data indicates that as long as the ion cloud is smaller than the dissociation laser beams,

the dissociation transition can be saturated with the 266 nm pulse fluence being > 50 mJ/cm2.
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Figure 6.9: Saturation of the 1+1’ photodissociation transition with 266 nm laser pulse energy.
Two different beam waists were used for the 266 nm laser: (blue circles) w0 = 5.0 mm and (red
triangles) w0 = 3.3 mm. The saturation behavior is fit to a single exponential A(1− exp(−F/FS)).
The smaller exponential amplitude for the smaller beam waist is due to a less complete spatial
overlap between the 266 nm laser and the ion cloud.

6.4.2 Efficiency of photodissociation

Saturating the dissociation transition does not necessarily guarantee that all the HfF+ ions in

a single rovibronic state will be dissociated. Competition could arise between the photodissociation

process and radiative decay of the dissociating state down to a lower state of HfF+, such that

the photodissociation efficiency saturates with laser pulse energy to a value that is < 100%. To

understand the maximum achievable photodissociation efficiency for the repulsive curve accessed by

the 266 nm laser, we first ensured that both (1+1’) REMPD photons are saturating their respective

transitions, and that their beam waists are large enough so that spatial overlap with the ion cloud
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will not be an issue. We then reverted to creating HfF+ ions with a well-defined rotational state

distribution, i.e. by autoionizing neutral HfF such that 35% of the HfF+ is formed in the J = 0

rotational state of the ground vibronic level (shown in Chapter 3). The total HfF+ ion number

with and without the photodissociation lasers were then recorded, and we made sure that the MCP

detector was not saturated to reflect accurate ion numbers. The loss in HfF+ was 30% that of the

HfF+ ions in a single rovibronic state without dissociation, indicating that the photodissociation

efficiency is 30%. On the other hand, the HfF+ number loss was the same as the Hf+ ion number

detected, indicating that the detection efficiency of dissociated Hf+ ions is as high as 100%. The

overall efficiency of photodissociation as a state readout technique is therefore 30%, which is likely

to be limited by competition with other processes like spontaneous emission. The photodissociation

efficiency of 30%, nevertheless, is two orders of magnitude higher than that of LIF!



Chapter 7

Stimulated Raman transfer into 3∆1

The statistical sensitivity of an eEDM measurement is proportional to the square root of

the number of ions making the eEDM transition. An improvement to the statistical sensitivity

can come from a higher state detection efficiency, as offered by photodissociation over LIF, or

from a larger initial population of ions in a particular |J,mJ ,Ω〉 level of the 3∆1(ν = 0) state.

In Chapter 3, we have shown that as many as 30% of the autoionized HfF+ can be populated

in a given |J,mJ〉 level of the ground 1Σ+(ν ′′ = 0) state using optical-optical double-resonance

autoionization. The autoionization technique can in principle be extended to form 3∆1(ν = 0) ions.

One such example was the use of 308 nm + 355 nm as ionization lasers in the photodissociation

experiments. The Rydberg states accessed by the ionization lasers, however, underwent either

vibrational autoionization to form 3∆1 ions or electronic autoionization to form 1Σ+ ions (i.e. the

ion core of the Rydberg state was in a different electronic state from the final ion formed). Electronic

autoionization is undesirable because it dilutes the ion population amongst multiple vibronic states.

It is plausible to embark on a search for a Rydberg state that only vibrationally autoionizes into the

3∆1(ν = 0) state, yet this effort requires a clean understanding of the molecular orbital composition

of both the Rydberg states and the neutral HfF intermediate states at ≈30000 cm−1 — a rather

daunting task for a molecule of which very little is known in general! Even in the best case scenario

where only vibrational autoionization is present, several rotational-hyperfine states of the 3∆1 will

still be populated besides the desired |J = 1, F = 3/2〉 state. Additional lasers will then be needed

to clean out population in the unwanted states.
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An alternative to autoionizing directly into 3∆1 is the stimulated Raman population transfer

of ions from 1Σ+ to the 3∆1 state. The excited state 3Π0+(ν
′ = 1) at 11115 cm−1 has been shown

to have a strong electronic dipole moment and Franck-Condon overlap to both the 1Σ+ and 3∆1

states [16, 63]. The three levels form a Λ-type system (Fig. 7.1), of which the two lower levels |1〉

and |3〉 couple to |2〉 via lasers of Rabi frequencies Ω1 and Ω3 respectively, but not directly to each

other. Ions can therefore be autoionized first into the 1Σ+ state with a significant fraction in a given

|J,mJ〉 level, and then transferred via a Raman process to the 3∆1 state. The stimulated Raman

transfer process can be adequately described using three-level physics — a coherent process with

potentially a huge efficiency for quantum sate manipulation! The physics and results of stimulated

Raman transfer are described in this chapter.

7.1 Basics of stimulated Raman transfer

In the rotating wave approximation, the Hamiltonian for the three-level system as illustrated

in Fig. 7.1 is described by the following matrix in the basis of states |1〉 , |2〉 and |3〉:

H =
1

2




0 Ω1 0

Ω3 2∆− iγ Ω3

0 Ω1 2δ



, (7.1)

where ∆ is the one-photon detuning from the excited state, δ is the two-photon detuning, and

Ω1,Ω3 are the Rabi frequencies of the lasers coupling |2〉 ← |1〉 and |2〉 → |2〉, respectively. Eq. (7.1)

assumes that the ions that have decayed out of |2〉 (at a rate γ) completely leave the three-level

system. For the 3Π0+(ν
′ = 1, J ′ = 1) state, the probability of decaying back to either the 1Σ+(ν ′′ =

0, J ′′ = 0) state or the 3∆1(ν = 0, J = 1) state is less than 10% each. So, the Hamiltonian given by

Eq. (7.1) remains an adequate description. Had it been otherwise, the master equation approach

should be used instead of modeling the decay as an imaginary term in the Hamiltonian.

If the two-photon resonance condition is fulfilled (δ = 0), an eigenstate of the Hamiltonian is
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Figure 7.1: (a) ‘Bare’ states used in the stimulated Raman transfer of population from |1〉 to |3〉
via adiabatic elimination of |2〉. The bare states are addressed by lasers of Rabi frequencies Ω1

and Ω3 and of detunings ∆ and δ from the one-photon and two-photon transitions, respectively.
(b) Three-level system shown as “dressed” states; where the two-photon detuning δ is zero, the
dressed states are symmetric and antisymmetric superpositions of the bare states |1〉 and |3〉. The
point of closest separation in the avoided crossing is given by the two-photon Rabi frequency Ω2γ .
Individual ions are transferred from |1〉 to |3〉 as their velocities (and hence Doppler shifts) sweep
through zero with their secular motion in half a trap cycle.
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the dark state |ψd〉, which does not couple to the decaying excited state |2〉:

|ψd〉 =
1√

Ω2
1 +Ω2

3

(Ω3 |1〉 − Ω1 |3〉) . (7.2)

Coupling to the dark state is one way of enabling population transfer from |1〉 to |3〉 without loss, by

first turning on the laser coupling Ω3 and then ramping on Ω1 while Ω3 is adiabatically turned off.

This technique has been very successful for the coherent population transfer of Feshbach molecules

to their ground state [60]. However, |ψd〉 is no longer an eigenstate once δ 6= 0, as is the case for

the eEDM experiment with trapped ions possessing two-photon Doppler widths of 3 MHz.

Instead of coupling to |ψd〉, the population transfer with HfF+ ions can be carried out using

adiabatic elimination. Namely, the two transfer lasers are far-detuned from resonance to |2〉, such

that the off-resonant scattering rate from |2〉 is slow compared to the time it takes to perform the

transfer:

γsc(∆) =
γ

2

I/I0

1 + I/I0 + (2∆/γ)2

≈ γ

2

I

I0

( γ

2∆

)2
for large ∆ . (7.3)

Applying the Schrödinger equiation to the Hamiltonian from Eq. (7.1) and with the state expressed

as |ψ〉 = c1 |1〉+ c2 |2〉+ c3 |3〉, we obtain:

iċ1 =
Ω1

2
c2 , (7.4a)

iċ2 =
Ω1

2
c1 + (∆ − iγ

2
)c2 +

Ω3

2
c3 . (7.4b)

iċ3 =
Ω3

2
c2 + δc3 . (7.4c)

With adiabatic elimination, the population in |2〉 is unchanged over time, i.e. ċ2 = 0. The population

dynamics in the states |1〉 and |3〉 can then be described as i ˙|ψ′〉 = H2γ |ψ′〉, where |ψ′〉 = c1 |1〉+

c3 |3〉, and

H2γ ≈ 1

2




Ω2
1

2∆ Ω2γ

Ω2γ
Ω2

3

2∆ + 2δ


 , (7.5)

where Ω2γ =
Ω1Ω3

2∆
. (7.6)
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The two-photon effective Hamiltonian H2γ is the same as that for a two-level system with Rabi

frequency Ω2γ connecting the two states |1〉 and |3〉. Fig. 7.1b shows the dressed state picture for

the three-level system with adiabatic elimination, where |1〉 and |3〉 are connected by an avoided

crossing and the frequency separation between the two crossings at the point of closest approach

is given by Ω2γ . The two-photon detuning plotted on the horizontal axis needs to be swept (over

time Tsweep) slowly compared to (Ω2γ/2)
2 to fulfill the adiabatic condition for efficient population

transfer from |1〉 to |3〉. More generally, the probability of adiabatically following the dressed

eigenstate is given by the Landau-Zener formula:

PLZ (|1〉 → |3〉) = 1− exp

(
−2π (Ω2γ/2)

2

2δ/Tsweep

)
. (7.7)

In the JILA eEDM experiment, the ions at 20 K experience one-photon Doppler shifts of

±(2π)30 MHz. At some point during a half-trap cycle, each individual ion moves from positive to

negative velocities (or vice versa) and sweeps through the two-photon detuning of ±(2π)3 MHz in

doing so. (The two-photon detuning of the Λ-system is about one-tenth that of the one-photon

Doppler shift because the difference in frequency between the two transitions is one-tenth of any

one of the transition frequencies.) Therefore, the stimulated Raman transfer is simply performed

by leaving both co-propagating transfer lasers on simultaneously for a half-trap cycle (Tsweep =

π/ωtrap). As long as Ω2γ is large enough to fulfill the adiabatic condition, the Raman transfer will

be efficient (>50%). However, where Ω2γ is small, the transfer lasers will have to be left on for

multiple half-trap cycles. In subsequent half-trap cycles, the population transfer is no longer fully

coherent, i.e. ions can also be transferred back from |3〉 to |1〉, so that over time the population

equilibrates to 50% in either |1〉 or |3〉. All this assumes that the population in |2〉 is small due to

the adiabaticity of the transfer process.
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7.2 Estimation of Raman transfer parameters

7.2.1 Strategy

Eq. (7.7) describes the Raman transfer efficiency that can be accomplished for a given set

of Rabi frequencies, one-photon detuning, two-photon detuning and sweep time. Several of these

crucial parameters were not yet experimentally established before we started building the Raman

transfer experiment, namely: the lifetime of the 3Π0+ excited state, which sets an upper limit on

Tsweep, and the Rabi frequencies for both transitions {Ω1,Ω3}. The Rabi frequency Ωi is related

to laser intensity Ii by the following:

Ii =
1

2
ǫ0cEi

2 =
1

2
ǫ0c

(
~Ωi

〈2 |d| i〉

)
2 , (7.8)

where 〈2 |d| i〉 is the rovibronic transition dipole matrix element between |2〉 and |i〉 = |1〉 , |3〉. In

the limit of infinite laser intensity or negligible Doppler shift, the Raman transfer efficiency can be

as high as 100%. However, as mentioned at the end of Section 7.1, the two-photon Doppler shift is

±(2π)3 MHz. Additionally, since the laser power is finite and the ions are spread across a 3 mm 2σ-

radius cloud, the Raman transfer laser intensity is limited. It is therefore important to first estimate

the 3Π0+ lifetime and the Rabi frequencies that can be achieved with reasonable laser intensities.

The main unknowns related to the lifetime and Rabi frequencies are the rovibronic transition

dipole matrix elements 〈2 |d| i〉. Specifically, the electronic components of these transition dipole

matrix elements
〈
3Π0+ |d| 1Σ+

〉
and

〈
3Π0+ |d| 3∆1

〉
require more work to be determined, since the

vibrational and rotational dipole matrix elements can be easily calculated from the vibrational

wavefunction overlap and Clebsch-Gordan coefficients.

Unfortunately, of the HfF+ data available to us, none are directly related to the transition

dipole matrix elements we need to calculate:

(1) Transitions to the 3Π0+ state have been identified spectroscopically by performing velocity

modulation spectroscopy in a discharge tube at ≈850 K, but the density of populations is

not normalized, making an absolute measurement of the transition dipole matrix elements



126

impossible. On the other hand, it is plausible to extract the relative ratio of the relevant

transition dipole matrix elements from the spectroscopic intensities.

(2) Petrov et. al. had directly calculated
〈
3Π0+ |d| 1Σ+

〉
and

〈
3Π0+ |d| 3∆1

〉
from ab-initio

theory [63], but given the large uncertainty in the other ab-initio results (e.g. transition

frequencies), we would prefer to extract the absolute transition dipole matrix elements

from experiment. Nevertheless, it is interesting to note that the ratio of
〈
3Π0+ |d| 1Σ+

〉

to
〈
3Π0+ |d| 3∆1

〉
reported in [63] falls within 30% of that extrapolated from the velocity

modulation spectroscopy data, so we also use the theoretical ratio of dipole matrix elements

to guide our estimations.

(3) LIF experiments of HfF+ ions have yielded both the lifetime of the excited state and

saturation fluence of the LIF transition, but the LIF transition is that between 1Σ+ and 1Π1.

The lifetime and saturation fluence measurements provide independent ways to estimate

〈
1Π1 |d| 1Σ+

〉
, but neither of the two methods yield a transition dipole matrix element

connecting to the 3Π0+ state.

Given the above data and constraints, the strategy to estimate
〈
3Π0+ |d| 1Σ+

〉
and

〈
3Π0+ |d| 3∆1

〉

is as follows: we first calculate
〈
1Π1 |d| 1Σ+

〉
in two ways using the two LIF measurements of life-

time and of saturation fluence; the extent to which the two extracted dipole matrix elements agree

with each other gives us some measure of faith in the accuracy of our LIF measurements. We then

relate
〈
1Π1 |d| 1Σ+

〉
to
〈
3Π0+ |d|ψel,i

〉
using the ratios of dipole matrix elements available from

both the velocity modulation spectroscopy data and Petrov et. al.́s calculations. Finally, we ac-

count for vibrational and rotational wavefunction overlaps to obtain the total rovibronic transition

dipole matrix elements 〈2 |d| i〉, with which we estimate the 3Π0+ state lifetime and Raman transfer

Rabi frequencies.



127

7.2.2 Estimation of
〈
1Π1 |d| 1Σ+

〉
from an LIF measurement of the 1Π1 lifetime

We first present one of two ways to estimate the transition dipole matrix element
〈
1Π1 |d| 1Σ+

〉
,

i.e. from an LIF measurement of the 1Π1 decay lifetime. The 1Π1 is most likely to decay to either

1Σ+ or 3∆2, as indicated by the electronic transition dipole matrix elements given in Table 7.1

[64, 63]. The observed decay rate is then the sum of decay rates to the individual lower electronic

and vibrational states:

1

τ(1Π1, ν ′ = 0)
≈
∑

ν′′

1

τ(1Π1, ν ′ = 0→ 1Σ+, ν ′′)
+

1

τ(1Π1, ν ′ = 0→ 3∆2, ν ′′)
, (7.9)

where
1

τ(1Π1, ν ′ = 0→ ψel,i, ν ′′)
=

2e2

3ǫ0hc3
ω3
∣∣〈ν ′ = 0|ν ′′

〉 〈
1Π1 |r|ψel,i

〉∣∣2 . (7.10)

In Eq. (7.10), ω refers to the radial frequency difference between the 1Π1(ν
′ = 0) and ψel,i(ν

′′)

levels (see Table 7.2 for a table of electronic energies and [4] for a list of vibrational energies). Due

to diminishing Franck-Condon factors, only the first four vibrational levels of the lower electronic

state are summed over in Eq. (7.9).

To measure the lifetime of the 1Π1(ν
′ = 0) state, the decay of fluorescence photons was

measured on a photomultiplier tube as a function of delay time after firing the LIF laser. Fig. 7.2

shows the measured lifetime of the 1Π1(ν
′ = 0) state to be 1.15(4) µs. The measured lifetime

is close to the predicted lifetime of 0.86 µs calculated from the transition dipole matrix elements

〈
1Π1 |d|ψel,i

〉
in Table 7.1. If the relative values of the transition dipole matrix elements are to be

trusted, the dipole matrix elements only need to be scaled by an overall factor of 0.87 to match the

measured lifetime, which gives
〈
1Π1 |d| 1Σ+

〉
= 0.48 e a0.

Table 7.1: Calculated transition dipole matrix elements (in ea0) between states of HfF+ given by
the corresponding row header and column header [64]. If denoted by an asterisk, that value is
obtained from Reference [63].

1Σ+ 3∆1
3∆2

3∆3
1∆2

3Π0+
3Π1

3Π2
1Π1 0.55 0.03 0.18 0∗ 0.021∗ 0.002∗ 0.135∗ -0.006∗
3Π0+ 0.15 0.27 0∗ 0∗ 0∗
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Figure 7.2: Lifetime of the 1Π1(ν
′ = 0) state measured using LIF.



129

Table 7.2: Measured and calculated electronic energies (in cm−1) of ground and excited states in
HfF+. By default, the reported values are measured by Cossel et. al. [16]. If denoted by a dagger
sign, the reported value was measured by Barker et. al. [4]. If denoted by an asterisk, that value
was calculated by Petrov et. al. [63].

1Σ+ 3∆1
3∆2

3∆3
1∆2

3Π0+
3Π1

1Π1
3Φ2

0 977 2166† 3951† 11519∗ 10402 10895 13002 13933

7.2.3 Estimation of
〈
1Π1 |d| 1Σ+

〉
from LIF measurements of the saturation fluence

The dipole matrix element
〈
1Π1 |d| 1Σ+

〉
can also be estimated from measurements of the

LIF saturation fluence, F = hν/σ, where ν is the transition frequency and σ is related to the

integrated cross section σ0 =
∫
σ(ω)dω:

σ0 =
πω

3g1ǫ0~c

∣∣〈ν ′ = 0|ν ′′ = 0
〉 〈

1Π1 |d| 1Σ+
〉∣∣2 SJ ′,J ′′

2 , (7.11)

where g1 is the degeneracy of the lower state and SJ ′,J ′′
2 is the rotational line intensity given by

the Hönl-London factor. (Note that among the different rotational lines that can be probed, the

R(0) line gives g1/SJ ′,J ′′
2 = 1 whereas the Q(n) lines give g1/SJ ′,J ′′

2 = 2, which is consistent with

our observation that the saturation fluence for the R(0) line is half that of the Q(1) or Q(2) line.)

To obtain σ0 from σ, we assume the ions are Doppler-broadened with a Doppler width of

νσdopp = (2π) 30 MHz. Since the Gaussian profile shares the same area as a top-hat profile of the

same amplitude and of a top-hat full width νTH
dopp = 2

√
2νσdopp, we can make the approximation

σ0 = σνTH

dopp . (7.12)

Combining Eqs. (7.11) and (7.12), the electronic transition dipole matrix element is related

to the observed saturation fluence via

〈
1Π1 |d| 1Σ+

〉
=

1

〈ν ′ = 0|ν ′′ = 0〉

√
3ǫ0c~2ν

TH
dopp

g1
πFSJ ′,J ′′

2
. (7.13)

The observed saturation fluence from LIF studies was F = 0.52 µJ/cm2 for the R(0) line (g1 = 1),

from which we determined
〈
1Π1 |d| 1Σ+

〉
= 0.35 e a0. This electronic transition dipole moment
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is 40% smaller than that estimated in Section 7.2.2, but is nevertheless on the same order of

magnitude.

7.2.4 Estimation of 3Π0+ lifetime and Rabi frequencies for Raman transfer

To obtain the transition dipole matrix elements
〈
3Π0+ |d| 1Σ+, 3∆1

〉
from

〈
1Π1 |d| 1Σ+

〉
, we

can use the following methods:

(1) Measure the relative intensities of the 1Π1 ← 1Σ+, 3Π0+ ← 1Σ+ and 3Π0+ ← 3∆1 vi-

bronic bands as observed in velocity modulation spectroscopy [16], and then account for

the Franck-Condon overlaps to get only the relative magnitudes of electronic dipole matrix

elements. The relative electronic dipole matrix elements are then scaled by an overall factor

to match the estimated dipole matrix elements of
〈
1Π1 |d| 1Σ+

〉
from either Sections 7.2.2

or 7.2.3. Such scaling assumes a certain temperature distribution of electronic levels in the

velocity modulation discharge tube setup, for which there is unfortunately no self-consistent

check.

(2) Use the dipole matrix elements provided by Petrov and Titov in Table 7.1, but scale them

by an overall factor to match
〈
1Π1 |d| 1Σ+

〉
from either Sections 7.2.2 or 7.2.3.

From the electronic transition dipole matrix elements and Franck-Condon overlaps, the life-

time of the Raman transfer excited state 3Π0+ can be estimated using the same formulas as

Eqs. (7.9) and (7.10) but substituting for the lower electronic levels ψel,i = 1Σ+, 3∆1. Further,

the transfer laser Rabi frequencies Ωi can be calculated from a given laser intensity Ii by inverting

Eq. (7.8). More explicitly,

Ωi =
〈
3Π0+ |d|ψel,i

〉 〈
ν ′|ν ′′ = 0

〉 ∣∣∣SF
′J ′m′

FΩ′

F ′′J ′′m′′

F
Ω′′

∣∣∣
1

~

√
2I

ǫ0c
, (7.14)
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where

∣∣∣SF
′J ′m′

F
Ω′

F ′′J ′′m′′

F
Ω′′

∣∣∣ =
√

(2F ′ + 1)(2F ′′ + 1)(2J ′ + 1)(2J ′′ + 1)




J ′′ F ′′ I

F ′ J ′ 1








F ′ 1 F ′′

−m′
F m′

F −m′′
F m′′

F







J ′ 1 J ′′

−Ω′ Ω′ −Ω′′ Ω′′


 .(7.15)

The choice of rotational and hyperfine levels to be used for the population transfer warrants

some careful consideration. In 180Hf19F+, the nuclear hyperfine number is I = 1/2, so each mJ

level is further split into two mF levels. To measure the eEDM transition frequency, the ions need

to be populated in the state |F = 3/2, J = 1,mF = 3/2,Ω = 1〉. Given our ability to populate as

many as 30% of the HfF+ in |J ′′ = 1,m′′
J = −1,Ω′′ = 0〉 of the 1Σ+ ground state and assuming

equal population in each m′′
F sub-level of the |m′′

J = −1〉 state, we can populate 15% of the HfF+

in |F ′′ = 3/2, J ′′ = 1,m′′
F = 3/2,Ω = 0〉. The path that yields the strongest two-photon rotational

amplitude S |2〉|1〉S
|3〉
|2〉 is then provided by the transitions 1Σ+ (|F ′′ = 3/2, J ′′ = 1,m′′

F = 3/2,Ω′′ = 0〉)

→ 3Π0+ (|F ′ = 1/2, J ′ = 0,m′
F = 1/2,Ω′ = 0〉) → 3∆1 (|F = 3/2, J = 1,mF = 3/2,Ω = 1〉), which

can be made by a σ−-polarized photon followed by a σ+-polarized photon. This transfer scheme

works well only if the quantization axis is fixed, as is often the case in atomic physics experiments

to be either the direction of laser propagation or the direction of an external magnetic or electric

field.

In the eEDM experiment, the externally applied electric field used to polarize the molecule

has to be constantly rotating to keep the ions trapped. The quantization axis, which is set by the

electric field, is therefore constantly rotating as well. This means that even though 15% of the HfF+

can be autoionized into a single m′′
F level when the electric field is aligned with the direction of laser

propagation, the different m′′
F levels will be remixed as the quantization axis rotates. Since the

minimum time required for the Raman transfer, which is half a trap cycle, translates to multiple

rotation cycles (ωrot ≫ ωtrap), the fraction of ions occupying any one of the six m′′
F levels in J ′′ = 1

will be time-averaged to one-sixth of the total population in the J ′′ = 1 level. From Chapter 3,

we showed that the autoionization process gave 60% yield in the J ′′ = 1 level, which means that



132

the fraction of ions in a single |J ′′ = 1,m′′
F 〉 state is only 10%. On the other hand, the same

autoionization line, accessed through an intermediate state of the opposite parity, can yield 35% of

the HfF+ in the J ′′ = 0 state, where the J ′′ = 0 only has two m′′
F levels. As many as 17.5% of the

HfF+ can therefore be populated in one of the two m′′
F levels in (F ′′ = 1/2, J ′′ = 0). Due to parity

selection rules, the 3Π0+(J
′ = 0) ← 1Σ+(J ′′ = 0) transition is forbidden. The best case scenario

is then to first make a R(0) transition on the upward transfer leg (Ω1) and then a Q(1) transition

on the downward transfer leg (Ω3). For a single Raman transfer leg, the rotational amplitude |S|

is then calculated by first summing over the rotational line intensities to the different unresolved

final states and averaging over the number of initial states, and then taking the square root of that

quantity.

Table 7.3 summarizes the 3Π0+(ν
′ = 1) lifetime and Rabi frequencies Ω1,Ω3 for reasonable

transfer laser intensities of 1W/cm2. The electronic transition dipole matrix elements
〈
3Π0+ |d|ψel,i

〉

displayed in the table are extrapolated from the average of the two values for
〈
1Π1 |d| 1Σ+

〉
as cal-

culated in Sections 7.2.2 and 7.2.3.

Table 7.3: Electronic transition dipole matrix elements
〈
3Π0+ |d|ψel,i

〉
, lifetime of 3Π0+(ν

′ = 1),
and Rabi frequencies Ω1,Ω3 that can be achieved with a 1W/cm2 laser. With the help of (a) relative
intensities measured in velocity modulation spectroscopy or (b) relative dipole matrix elements
presented in Table 7.1, the transition dipole matrix elements

〈
3Π0+ |d|ψel,i

〉
are estimated from

the average value for
〈
1Π1 |d| 1Σ0

〉
as calculated in Sections 7.2.2 and 7.2.3. The Rabi frequencies

Ω1 and Ω3 are calculated for the transition 3Π0+(ν
′ = 1, J ′ = 1) ← 1Σ+(ν ′′ = 0, J ′′ = 0) and

3Π0+(ν
′ = 1, J ′ = 1)→ 3∆1(ν = 0, J = 1) respectively.

(a) (b)〈
3Π0+ |d| 1Σ+

〉
(ea0) 0.116 0.114〈

3Π0+ |d| 3∆1

〉
(ea0) 0.164 0.204

τ(3Π0+, ν
′ = 1)(µs) 15 16

Ω1/(2π) (MHz) 2.5 2.5
Ω2/(2π) (MHz) 2.1 2.7
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7.3 Experiment setup

To perform stimulated Raman transfer to the 3∆1 state via the 3Π0+(ν
′ = 1) excited state,

the transfer lasers for the upward and downward leg need to be tuned to 899.7 nm and 986.4 nm,

respectively. The 899.7 nm home-built laser is the output of a 1.5 W tapered amplifier injected by

light from an external cavity diode laser (ECDL), while the 986.4 nm laser is a Toptica DL Pro

laser, which is also an ECDL seeding a 2 W tapered amplifier. Both the home-built and Toptica

laser have extended mode-hop-free tuning ranges offered by feeding forward the ECDL grating

position (via the piezoelectric stack’s control voltage) onto the diode current [22].

The two transfer lasers need to have their relative frequencies stabilized to much better than

the inverse of the time the ions take to traverse the adiabatic crossing (illustrated in Fig. 7.1b),

which is typically

1

Ttransfer
=

2ωtrap δ

πΩ2γ
≈ 2× 105 s−1 . (7.16)

The High Finesse WS7 wavemeter that is used to measure the absolute wavelengths of the two

transfer lasers only has an accuracy on the order of 10 MHz. To stabilize the lasers to a maximum

relative linewidth of ≪ 30 kHz, the 899.7 nm and 986.4 nm lasers are locked to an optical cavity

of finesse 1500 and 3000 for the two wavelengths respectively. The details of the cavity lock setup

are beyond the scope of this thesis and will be discussed in Kevin Cossel’s thesis. Briefly, to

center the desired laser frequencies on a cavity resonance (free spectral range = 1.3 GHz), the laser

frequencies are offset by AOMs before sending them through the cavity: the 899.7 nm laser is offset

by a double-passed acousto-optical modulator (AOM) at 2 × 260 MHz, and the 986.4 nm laser is

first offset by a 800 MHz AOM and then a double-passed AOM at 2× 200 MHz. Each laser is then

locked using a Pound-Drever-Hall lock [21]. The linewidth of a single locked laser is measured to

be 10 kHz, which is also an upper bound on the relative frequency jitter between the two lasers.

In a search for the two-photon resonance (δ = 0), we scanned the transfer laser frequencies by

tuning the frequencies of the double-passed AOMs while keeping the lasers locked to the cavity. The

long-term stability of the cavity, enabled by placing the cavity in a sealed and evacuated vacuum
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chamber that is temperature stabilized to 0.01◦C, was good enough such that the two-photon

resonance line (shown in Section 7.5) drifted by less than 100 kHz over two weeks.

The two transfer lasers are switched on and off using AOMs as shutters before being fiber-

coupled to the ion trap setup. Light from both lasers is then directed onto the ions through the top

electrode/light pipe of the ion trap. The axial direction of laser propagation was chosen so as to be

insensitive to the circular micromotion from the application of a rotating field in the radial plane,

which can cause the ions to exhibit Doppler widths as large as σD = (2π)480 MHz. To achieve

reasonably high Rabi frequencies (> (2π)4 MHz), the 150 mW transfer lasers are telescoped down

to a beam waist of w = 1 mm. The spatial overlap between the smaller transfer laser beam waist

and the ion cloud was improved by ramping the trap frequencies in the radial directions up to

(2π)11 kHz, which squeezed the ions to a radial width of σi = 0.8 mm. The axial trap frequency

was simultaneously ramped down to ωtrap ≡ ωz = (2π)0.85 kHz, which not only cooled the ions to

give a smaller axial Doppler width (also the two-photon detuning δ), but also increased the sweep

time for the transfer Tsweep, making the Raman transfer occur more efficiently as described by

Eq. (7.7).

To detect the ion number in either the 1Σ+ state or the 3∆1 state, we employed the UV

doubled output of a pulsed dye laser to provide the first photon and 266 nm (provided by the

same Nd:YAG pumping the dye laser) as the second photon to access the dissociating state. The

first photon of the dissociation laser was tuned to resonance between the relevant lower state and

the upper state [35.97]Ω′ = 0, where the spectroscopic constants for the upper state have been

characterized in the previous chapter. At a pulse energy of 100 µJ and a linewidth of 0.12 cm−1,

the first dissociation photon is sufficient to resolve individual rotational states but not providing

any finer resolution (e.g. it cannot address individual hyperfine or Ω-doublet levels). This level

of resolution turns out to be a convenient feature in performing spectroscopy of the 3∆1 level

(Section 7.5), where the dissociation laser frequency does not have to be changed in order to access

different hyperfine or parity levels.
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7.4 Rabi frequency calibration

Before performing the stimulated Raman transfer, we are interested in a direct measurement

of the Rabi frequency for a given applied laser intensity, to provide both a check against the Rabi

frequency estimates presented in Section 7.2 and to obtain a better sense of our success with Raman

transfer. For such a Rabi frequency calibration, only one of the two transfer lasers is used and is

tuned to resonance between the relevant lower state |i〉 and the upper state |2〉.

Using a laser of some measured intensity, the efficiency of transferring ions from |i〉 to |2〉 in

a half-trap cycle Tsweep is given by the Landau-Zener probability:

PLZ (|i〉 → |2〉) = 1− exp

(
−2π (Ωi/2)

2

2∆/Tsweep

)
. (7.17)

Eq. (7.17) is now derived for a two-level Hamiltonian, written in the {|i〉 , |2〉} basis as

Hi =
1

2




0 Ωi

Ωi 2∆


 , (7.18)

where Ωi is the one-photon Rabi frequency (to be determined) and ∆ is the one-photon Doppler

shift. The analytical result with ∆ calculated from the standard deviation of a Gaussian-distributed

velocity spread is very similar to the numerical result obtained by thermally averaging over the

whole velocity distribution.

Once populated in |2〉, the ions spontaneously decay quickly compared to a half-trap cycle, so

that in subsequent half-trap cycles, the ions are not transferred from |2〉 back to |i〉. The probability

of decay in a single half-trap cycle can then be cleanly determined by leaving on the transfer laser

for multiple half-trap cycles and measuring the exponential time constant τi for the ions to be

depleted from state |i〉:

N1Σ+(t)

N1Σ+(t = 0)
= e−t/τ1 = [1− PLZ (|i〉 → |2〉)]t/Tsweep (7.19)

from which we can determine the Rabi frequency:

exp

(
− t

τi

)
= exp

(
− t

Tsweep
2π

(Ωi/2)
2

2∆/Tsweep

)

⇒ Ωi =

√
4∆

πτi
(7.20)
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The Rabi frequency calibration method assumes that the ion cloud is well-overlapped with the

laser, so that there are no ions on the laser beam periphery that can take a longer time to move

through the laser radially and be depleted less efficiently. To avoid the spatial overlap issue, the

laser beam is expanded to three times the ion cloud width. The fact that the Rabi frequency is

decreased with a larger beam waist is immaterial for this experiment because we are only interested

in calibrating the Rabi frequency as a function of laser intensity.

As a sanity check, we first performed the Rabi frequency calibration on the 1Π1(ν
′ = 0, J ′ =

1) ← 1Σ+(ν = 0, J = 1) LIF transition, for which the dipole matrix element has already been

estimated from two prior LIF measurements. Fig. 7.3a shows the number of 1Σ+ ions depleted as a

function of the trap time for a diode laser intensity of 0.49 mW/cm2. The depletion in ion number

is read out as the difference in 1Σ+ ions photodissociated with and without the LIF laser. The

depletion follows an exponential decay, from which the Rabi frequency is extracted using Eq. (7.20).

Fig. 7.3b is a plot of the Rabi frequency versus the laser electric field E =
√

2I/(ǫ0c), from which

the slope yields the combined rovibronic dipole matrix element to be 0.098(13) e a0. Accounting

for the vibrational and rotational dipole matrix elements, the measured electronic dipole matrix

element is
〈
1Π1 |d| 1Σ+

〉
= 0.23(3) e a0, which is 2.1 and 1.5 times smaller than that estimated

from LIF lifetime and saturation fluence measurements respectively.

Although the sanity-check experiment did not agree with previous estimates particularly well,

we proceeded with the same method of Rabi frequency calibration for the 3Π0+(ν
′ = 1, J ′ = 1)←

1Σ+(ν = 0, J = 0) upward leg of the Raman transition. Fig. 7.3c shows the summary plot of

Rabi frequency versus 899.7 nm laser electric field, and the slope gave a combined rovibronic dipole

matrix element to be 〈2 |d| 1〉 = 0.065(9) e a0. The combined rovibronic matrix element is the most

relevant for the stimulated Raman transfer experiment; expressed in a more practical manner, the

measured rovibronic matrix element would give Ωi = (2π)2.3(3) kHz for an intensity of 1 W/cm2.

On the other hand, one might again be curious about how the measured electronic dipole matrix

element compares against the estimated values in Table 7.3. In this case, the electronic dipole

matrix element is measured to be 0.08(1) e a0, which is comparable to the estimated values.
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Figure 7.3: (a) Number of HfF+ ions transferred out of the 1Σ+ state (detected as the difference in
dissociated Hf+ counts with and without the LIF laser) as a function of LIF laser duration, where
the LIF laser is tuned to resonance with the 1Π1(ν

′ = 0, J ′ = 1)← 1Σ+(ν ′′ = 0, J ′′ = 1) transition.
For this data, the Doppler width (one-photon detuning ∆) was anomalously large at 120 MHz.
Nevertheless, the decay time constant of 4.0(9) ms, which is measured for a particular LIF laser
intensity of 0.49 mW/cm2, can be converted to a LIF laser Rabi frequency of (2π)0.078(9) MHz
and plotted as a single point in (b). (b) Plot of Rabi frequency versus laser electric field for the
1Π1(ν

′ = 0, J ′ = 1)← 1Σ+(ν ′′ = 0, J ′′ = 1) LIF transition. The slope gives the rovibronic transition
dipole moment to be 0.098(13) e a0. (c) Plot of Rabi frequency versus laser electric field for the
3Π0+(ν

′ = 1, J ′ = 1) ← 1Σ+(ν ′′ = 0, J ′′ = 0) transition. The slope gives the rovibronic transition
dipole moment to be 0.065(9) e a0.
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In principle, we should also be able to extend the Rabi frequency calibration technique to

Ω3, where the lower state is the 3∆1 state. Prior to attempting the stimulated Raman transfer, we

populated the 3∆1 by using a 355 nm photon as the second photon in autoionization. However, the

exponential depletion process was measured to be very noisy with the 3∆1 state regardless of the

laser intensity, and we were unable to trust the Rabi frequency obtained; one possible reason was a

low number of HfF+ ions that autoionized into the 3∆1 level. On the other hand, after performing

the stimulated Raman transfer, we were able to cleanly deplete 3∆1 ions by sending a on-resonant

986.4 nm laser onto the ions through one of the trap radial directions with the rotating bias field

turned on at ωrot = (2π)253 kHz. This side-depletion laser (also expanded to ensure full overlap

with the ions) was only strobed on with a duty cycle of 20% when the rotating field is pointing

along the direction of propagation of the laser. In this case, the one-photon detuning was dominated

by the Doppler shift of the circular micromotion to be (2π)480 MHz and Tsweep = 2π/ωrot. By

measuring the exponential decay time constant to be 0.89(2) ms for a 70 mW/cm2 beam, we

determined the rovibronic dipole matrix element to be 〈2 |d| 1〉 = 0.04(1) e a0, or that we should

expect a Rabi frequency of 2(π)1.4(4) MHz per mW/cm2 of laser. The measured rovibronic dipole

matrix element in turn implied an electronic dipole matrix element of 0.11(3) e a0, which is about

1.7 times weaker than that in Table 7.3.

7.5 Results of stimulated Raman transfer

7.5.1 Spectroscopy of hyperfine levels in 3∆1(ν = 0, J = 1)

Having obtained a rough calibration of the Rabi frequencies, we attempted to perform the

stimulated Raman transfer, with the HfF+ ions created only in the 1Σ+(ν ′′ = 0) state, of which

35% were formed in the J ′′ = 0 level. To search for the two-photon resonance (δ = 0), the 899.7 nm

laser frequency was fixed to be red-detuned from the |2〉 ← |1〉 transition by ∆ = (2π)80 MHz,

while the 986.4 nm laser was scanned in frequency. The photodissociation laser was tuned to read

out HfF+ ions in the 3∆1(J = 1) state and no rotating bias field was applied. Fig. 7.5a shows the
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Figure 7.4: Depletion efficiency of the 3∆1 HfF+ ions as a function of the 986.4 nm side-depletion
laser duration, where the 986.4 nm laser of intensity 70 mW/cm2 is tuned to resonance with the
3Π0+(ν

′ = 1, J ′ = 1) ← 3∆1(ν = 0, J = 1) transition. The decay time constant of 0.89(2) ms
implies a rovibronic dipole matrix element of 0.04(1) e a0.
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number of 3∆1 ions dissociated into Hf+ ions as a function of the 986.4 nm laser frequency. The

two signal peaks are the two hyperfine levels of the 3∆1(J = 1) state: F = 1/2 and 3/2 (Fig. 7.5b).

(The signal for the frequency region in between the two peaks has been measured to be zero in

other data sets not shown.) The hyperfine splitting is measured to be EHF =46.5(2) MHz, which

lies in the range of the theoretical estimate of 33.9–58.1 MHz [62].
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Figure 7.5: (a) Hyperfine spectroscopy of the 3∆1(ν = 0, J = 1) state. (b) Bare states used in the
stimulated Raman transfer, with the 3∆1(J = 1) hyperfine levels explicitly denoted.

To figure out the Raman transfer efficiency, we tuned the photodissociation laser to detect the

number of HfF+ ions depleted from the 1Σ+(J ′′ = 0) state when the Raman transfer is performed.

Fig. 7.6a shows the dissociated Hf+ signal as a function of transfer time, measured without any

transfer lasers (black crosses), and with the 899.7 nm laser turned on but with (blue dots) and

without (red open circles) the 986.4 nm laser. Both lasers are tuned to the two-photon resonance

for transfer to the 3∆1(F = 3/2) level. In the absence of any transfer lasers, the HfF+ ion number

remains roughly constant at N0. With the 899.7 nm laser only, the number of HfF+ ions (N1)

decreases slowly over time due to off-resonant optical pumping of the HfF+ ions out of the 1Σ+(J =

1) state into other rovibronic states. With both transfer lasers, the HfF+ ions (N2) are depleted

more quickly, and the efficiency of depleting 1Σ+ ions, η = (N1 −N2)/N1, saturates to 53(3)% in

several half-trap cycles (Fig. 7.6b). Since some of the ions depleted by off-resonant optical pumping

(N0 − N1) are ions that would have also undergone stimulated Raman transfer with both lasers,

the Raman transfer efficiency is bounded to be between 53(3)% and (N0 −N2)/N0 = 67(2)% after
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multiple half-trap cycles.

The fact that the multiple half-trap cycles are needed to saturate the Raman transfer effi-

ciency means that the population of ions in the 3∆1 level comes from equilibrating with the ion

population in the initial 1Σ+ level. The expected efficiency of ions transferred can then be given

by the ratio of degenerate states in the final 3∆1 level to the total number of states involved. More

explicitly, there are two |m′′
F 〉 states in the initial 1Σ+ level, and eight |F = 3/2,mF 〉 states and four

|F = 1/2,mF 〉 states in the final 3∆1 level.The ratio of degenerate states is then R = 8/(8+2) =

0.8 or 4/(4+2) = 0.67 for the F = 3/2 and 1/2 final states, respectively. However, parity selection

rules dictate that in the absence of any electric fields mixing the 3∆1 states of opposite parity, there

are only four F = 3/2 and two F = 1/2 states available for the Raman transfer, which changes the

ratio of final states to total states to R =4/(4+2) = 0.67 or 2/(2+2) = 0.5 respectively (Fig. 7.7a).

In the absence of the rotating bias electric field, it is not clear the extent to which the trapping

fields are able to mix the states of opposite parity (Fig. 7.7b), so the transfer efficiency, barring

any technical issues, is expected to be in the ranges of 0.67–0.8 and 0.5–0.67 for the F = 3/2 and

1/2 levels. In any case, R is consistently higher for the F = 3/2 hyperfine level, which accounts

for the slight increase in ions transferred to the F = 3/2 level over the F = 1/2 level as observed

in Fig. 7.5a.

7.5.2 Stark spectroscopy with a rotating bias field

In the absence of an external bias electric field, the 3∆1 states of opposite parity, separated

by ωef , are given by: |−〉 = (|Ω = +1〉 − |Ω = −1〉)/
√
2, |+〉 = (|Ω = +1〉 + |Ω = −1〉)/

√
2, where

‘+’/‘−’ denote the total parity of the state. With the rotating bias electric field strong enough to

mix the states of opposite parity, Ω becomes a good quantum number and the mF levels undergo

a linear Stark splitting in the molecular frame:

ES = −mF Ω γF dmfErot + EF (assume dmfErot ≫ ωef ) , (7.21)
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Figure 7.6: (a) HfF+ ions (detected as dissociated Hf+) as a function of transfer laser duration
for the cases of (blue dots) both transfer lasers present, (red open circles) 899.7 nm laser present
only, and (black crosses) no transfer lasers. The 899.7 nm laser causes a slow off-resonant optical
pumping of HfF+ out of the 1Σ+ state over time. The presence of both transfer lasers depletes
the 1Σ+ ions more quickly. (b) Fraction of HfF+ ions depleted from the 1Σ+ state, determined
from the data shown in (a) as either (red) (N1 −N2)/N1 or (black) (N0 −N2)/N0. The depletion
fraction, which is expected to be the same as the transfer fraction, saturates after a few milliseconds
of transfer time.
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Figure 7.7: Bare states involved in the stimulated Raman transfer with their parities denoted as
‘+’ or ‘−’. (a) In the absence of an external electric field, the 3∆1 energy levels are states of well-
defined parity: |±〉 = (|Ω = +1〉 ± |Ω = −1〉)/

√
2. Parity selection rules dictate that only − ↔ +

transitions are allowed, so only the |+〉 states of the 3∆1 manifold can be populated. (b) In a weak
electric field that is still sufficient to mix states of opposite parity without giving rise to a large
Stark shift, all 12 states of the 3∆1 may be populated in Raman transfer.
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where EF is the offset for a given hyperfine level, dmf is the molecular frame dipole moment and

γF is a geometric g-factor accounting for how the total angular momentum couples to the electric

field (analogous to the magnetic g-factor for an external magnetic field) [45]:

γF =
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)J(J + 1)
. (7.22)

For F = 3/2 and 1/2, γF = 1/3 and 2/3, respectively.

Fig. 7.8a shows the spectrum of Stark-shifted levels taken by scanning the 986.4 nm laser

with a rotating bias electric field of 16 V/cm present. As expected from ES being proportional to

mFΩ, the two hyperfine levels F = 3/2 and 1/2 yield four and two Stark-split levels, respectively.

However, the Stark levels on the red-detuned side of the hyperfine level tend to be diminished in

intensity relative to the blue-detuned side. This is because the rotating field is ramped back down

to zero shortly before firing the photodissociation laser and ejecting the ions from the trap, so

that the large rotating field will not cause the ejected ions to be deflected away from the MCP

detector. The ramping down of the electric field adiabatically transforms the mF levels from states

of good Ω back to states of good parity. On the other hand, the photodissociation laser is tuned

to resonance with the [35.97]Ω′ = 0(J ′ = 1) ← 3∆1(J = 1) transition. Since the upper Ω′ = 0

state has no Ω-doubling, each rotational level has a fixed parity (-1)J
′

, so parity selection rules

dictate that only the 3∆1 |+〉 levels can make a transition to the excited (J ′ = 1) |−〉 level. The

intensities of the blue-detuned Stark levels are non-zero because the residual trapping fields induce

a small amount of mixing between the |+〉 and |−〉 levels. Based on the above explanation, we

would expect that if we repeated the Stark spectroscopy with the bias electric field ramped down

but with the photodissociation laser tuned to access the (J ′ = 2) |+〉 excited state, parity selection

rules would similarly cause the red-detuned Stark levels to be diminished in intensity compared

to the blue-detuned ones. Indeed, this prediction matched the intensities of Stark levels detected

using a R(1) photodissociation line as shown in Fig. 7.8b.

To measure equal intensities for the Stark-shifted levels on both sides of a given hyperfine

level, we carried out the Stark spectroscopy with the rotating bias field ramped down at a later
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Figure 7.8: (a) Spectroscopy of the Stark-shifted mFΩ levels in the 3∆1(J = 1) level with a
rotating bias electric field. The F = 1/2 and 3/2 levels split into two and four levels, respectively.
(a) The rotating field magnitude is always ramped down to zero before the photodissociation
laser pulse is applied, such that the Stark levels are transformed back to states of good parity.
The photodissociation laser can be tuned to either a (b) Q(1) or a (c) R(1) transition. For the
Q(1)(R(1)) dissociation transition, detection of the |−〉 (|+〉) parity states is less efficient.
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time, chosen to be large enough to mix states of opposite parity but small enough to not induce

a large deflection kick on the ions when they are ejected. The Stark spectrum was then measured

with three different bias field magnitudes: 22.4 V/cm, 16 V/cm and 8 V/cm (Fig. 7.9a–c). The

bias electric field magnitudes are determined from numerical calculations in SIMION. In accordance

with Eq. (7.21), the Stark levels grew farther apart with larger electric fields. However, at large

enough electric fields such that the Stark splitting between adjacent levels of a single hyperfine level

is comparable to the hyperfine splitting, the ||mF | = 1/2〉 states for each hyperfine level will start

to mix, and the Stark splittings are modified to give:

ES(F =
3

2
,mFΩ = ±1

2
)

=
1

2

(
EHF ∓

dmfErot
2

)
− 1

2

√(
dmfErot

6
∓ EHF

)2

+ 2

(
dmfErot

3

)2

+ EF= 3
2

(7.23a)

ES(F =
1

2
,mFΩ = ±1

2
)

=
1

2

(
−EHF ∓

dmfErot
2

)
+

1

2

√(
dmfErot

6
∓ EHF

)2

+ 2

(
dmfErot

3

)2

+ EF= 1
2

(7.23b)

(Note that the original appearance of these equations in [45] had some typographical errors, which

have now been fixed in this thesis.) The |mF | = 3/2 stretch states remain unperturbed by the

hyperfine mixing. Fig. 7.9d is a plot contrasting the linear Stark splittings given by Eq. (7.21)

(dashed lines) against the Stark shifts accounting for the mixing between hyperfine levels as de-

scribed by Eq.(7.23) (solid lines). The measured Stark spectra peak positions from Figs. 7.9a–c

are also plotted as a function of bias electric field magnitude in Fig. 7.9d, and are shown to follow

the solid curves, especially at larger electric fields. Using Eq. (7.23), we determined the molecular

frame dipole moment of HfF+ in the 3∆1 state to be 1.54(1) e a0, which turned out to be very

close to the value of 1.50 e a0 predicted by Petrov et. al. [63].

With the ability to populate two 3∆1(ν = 0) |F, J,mF ,Ω〉 quantum states by tuning the

Raman transfer lasers to a particular two-photon resonance, we are now poised to consider various

schemes for implementing Ramsey spectroscopy to measure the eEDM-sensitive transition.
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Figure 7.9: Stark spectroscopy of the 3∆1(ν = 0, J = 1) state with a rotating bias field of (a)
22.4 V/cm, (b) 16.0 V/cm and (c) 8.0 V/cm/ (d) The Stark-shifted peak positions are plotted
as a function of rotating electric field magnitude as colored dots. The dashed lines are the linear
Stark shifts from Eq. (7.21) and the solid lines are the Stark shifts including perturbation effects
as described in Eq. (7.23).



Chapter 8

Ramsey spectroscopy of the eEDM-sensitive transitions [50]

Over the length of this thesis, we have progressed from conducting HfF+ vibronic spectroscopy

with initial theoretical uncertainties of 100 THz to resolving Stark splittings in a given rovibronic-

hyperfine state at the 10 MHz level using a rotating bias field. We have already managed to isolate

and populate only two |mF ,Ω〉 levels by tuning the Raman laser frequencies to access only one of

the Stark manifolds. To measure the eEDM, we need to first measure the energy splitting between

the two |mF ,Ω〉 levels within a Stark manifold using Ramsey spectroscopy, and then repeat the

frequency measurement for the other eEDM-sensitive transition. At this stage, we only need three

remaining experimental tools to perform the Ramsey spectroscopy:

(1) a way to prepare the ions in only one of the two |mF ,Ω〉 levels,

(2) a magnetic field that is co-rotating with the bias electric field, and

(3) a method for imposing a coherence between |mF = +3/2〉 and |mF = −3/2〉.

This chapter1 describes the physics and implementation of Ramsey spectroscopy of trapped

HfF+ molecular ions in rotating bias electric and magnetic fields. The Ramsey spectroscopy, which

is the first demonstration of coherent spectroscopy of trapped ions with a rotating quantization

axis, yields a measurement of the magnetic g-factor for the 3∆1 state, which has been previously

estimated to be small but never measured. From the magnetic g-factor data, we obtain a prelim-

inary limit on the eEDM and provide an estimate of the attainable statistical uncertainty for the

1 Much of this chapter will be appearing in Reference [50].
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eEDM with current parameters. Finally, this chapter closes with an outlook for the JILA eEDM

experiment.

8.1 3∆1 levels with rotating bias fields

In the presence of a constantly rotating quantization axis, adjacent projections (i.e. ∆m =

±1) of an angular momentum onto the quantization axis become mixed as viewed in the laboratory

frame that is outside of the rotating frame. For instance, for a spin-1/2 particle, the eigenstate

projections of the spin changes from {|±z〉} to {±1
2

(
|z〉 − sin θ

cos θ±1 |−z〉
)
} as the quantization axis

rotates by an infinitesimal polar angle θ. Similarly, for a constantly rotating bias electric field

(which acts as the quantization axis), adjacent mF levels of the 3∆1(ν = 0, J = 1, F = 3/2) state

become mixed. In the case of states |a〉 and |b〉 (and similarly, |c〉 and |d〉) separated by a three-

photon transition as illustrated in Fig. 8.1a, the eigenstates are {(|a〉± |b〉)/
√
2} ({(|c〉± |d〉)/

√
2})

under a rotating bias electric field, where the energy splitting ∆ between the eigenstates is given

by

∆ ∝ ωef

(
ωrot

dmfErot

)3

. (8.1)

∆ is the same as ωu/ℓ for the case of B = 0. The exponent of 3 in Eq. (8.1) comes from the fact

that three photons are needed to couple mF = 3/2 ↔ −3/2, whereas the ωef term is present to

provide a coupling between states of Ω ↔ −Ω, which must also be overcome for the three-photon

transition to occur.

So far, the above physics is valid in the absence of a magnetic field. In the presence of a

magnetic field co-rotating with the bias electric field, the mF levels can be interchangeably referred

to as either Stark or Zeeman levels. Where there is a magnetic field Brot large enough to provide

a Zeeman shift that can overwhelm the energy splitting ∆, the eigenstates then resume to be

{|a〉 , |b〉}. The full spectrum of the levels in the uppermost Stark manifold of the 3∆1(F = 3/2)

state in the presence of rotating electric and magnetic fields is given by the avoided crossing depicted

in Fig. 8.1b, where the asymptote of the avoided crossing is the Zeeman shift for each of the two
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stretch states, ±(3/2)gFµBBrot.

In accordance with Eq. (1.7), the eEDM measurement would then correspond to a Ramsey

spectroscopy measurement of the frequency splitting between the two levels at some finite ±Brot

(shown as two vertical arrows in Fig. 8.1b) for both the upper and lower Stark manifolds. Sitting

on the side of a Ramsey fringe at a given time, one can detect a small shift in the frequency (due

to the eEDM) as a shift in fringe position (Fig. 8.1c). However, the ability to sit on the side of

a Ramsey fringe requires knowledge of the Ramsey fringe frequency, or in other words, knowledge

of the spectroscopic constants ∆ and gF defining the avoided crossing, neither of which has been

experimentally determined until this thesis work.

While Eq. (8.1) gives a qualitative understanding for ∆, the g-factor for the 3∆1 state can

be estimated as follows [45]:

gF = γF
[
((gL + gr)Λ + (gS + gr)Σ) sign(Ω)− grJ(J + 1)

]
− gIκF , (8.2)

where gL and gS are the orbital and spin g-factors, and gr and gI are the rotation and nuclear

spin g-factors. gr and gI are small as they are on the order of the ratio of electron mass to

molecular mass, i.e. me/mmol ∼ 10−3. In the 3∆1 state, Λ = ±2 and Σ = ∓1 whereas gL = 1 and

gS = 2 + α/π +O
(
(α/π)2

)
, such that there is a near cancellation of the orbital and spin magnetic

moments and the overall g-factor becomes very small. On the other hand, spin-orbit mixing, which

is predominant in heavy molecules, may cause the 3∆1 state to contain admixtures of other states,

such that the cancellation of the orbital and spin magnetic moments is not as complete, giving

a bigger g-factor. In any case, the relatively small g-factor is one of the chief advantages of the

3∆1 state, because it reduces the sensitivity of the eEDM transitions to stray magnetic fields. An

experimental determination of the g-factor requires the implementation of a rotating magnetic field,

which is described in the following section.
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field), the eigenstates are equal superpositions of the stretch states of the same Stark manifold,
e.g. {|0〉 , |1〉 = (|a〉 ± |b〉)/

√
2} for the upper Stark pair. The vertical green arrows denote the

eEDM-sensitive transition frequencies. (c) Ramsey fringes measured for the upper (solid) and
lower (dashed) Stark manifolds. The eEDM signal is proportional to the amount by which the
Ramsey fringe moves when sitting on the side of a fringe.
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8.2 Experimental tools

8.2.1 Rotating magnetic field

To implement a rotating magnetic field, one can imagine running AC currents up and down

the fin electrodes in a way as to create a rotating magnetic field that is aligned parallel or anti-

parallel to the rotating bias electric field. A simpler approach to mock up Brot is by installing

a static radial magnetic field gradient using a pair of anti-Helmholtz coils: Fig. 8.2a shows a 3-

dimensional view of the coils and B field lines relative to the fin electrodes, and Fig. 8.2b depicts

the top view of the ion trap with the radial B field gradient. To understand how the static B

field gradient, in combination with the rotating electric field, gives rise to a rotating magnetic

field, consider the magnetic field lines sampled by a HfF+ ion undergoing circular micromotion at

the rotating field frequency ωrot as illustrated in Fig. 8.2b. At time 0, ~Erot points along x̂ and

since ~rrot ∝ −~Erot, the molecular ion starts out on the left side of the micromotion circle. The

magnetic field sampled by the molecular ion points in the direction −B(rrot)x̂+Bstatic(~R)ŷ, where

B(rrot) is the magnitude of magnetic field at the radius of circular micromotion rrot from the trap

center. Bstatic(~R) is the magnetic field at the center of the micromotion circle (~R). A quarter

rotation cycle later, ~Erot points along ŷ while the magnetic field sampled by the ion points along

(−B(rrot) +Bstatic(~R))ŷ. Over the course of a rotation cycle, then, the magnetic field experienced

by the ions can be decomposed into a spatially-dependent but time-invariant component Bstatic(~R)

and a time-varying component ~Brot(t) = ~∇B · ~rrot that rotates with the bias electric field, either

in phase or 180◦ out of phase (depending on whether the magnetic field lines point radially inward

or outward). By definition, Brot is positive if it lies parallel to Erot. ~Bstatic(~R) is a function of the

ions’ secular displacement within the trapping volume, but for any given instant in time, all the

ions experience identical Brot. The variation in ~Bstatic(~R) across the ion cloud is of little concern,

since the rotating quantization axis makes us primarily sensitive to the rotating component of the

magnetic field.

Fig. 8.2c shows a photograph of the anti-Helmholtz coils installed to produce the magnetic
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field gradient. Each coil (mean radius 135.9 mm) is made by winding 3 layers of 13 turns of 2.66 mm-

diameter square copper wire. The anti-Helmholtz pair produces a radial gradient of 0.08254 G/cm

for 1 A of current. The coils are driven by a Kepco BOP 20-20M bipolar power supply, whose

output can be externally controlled by an analog input voltage to provide up to ±20 A of current.

As shown in Fig. 8.2c, the coils are situated outside the trap chamber, which means that time-

varying changes to the magnetic fields are impeded by eddy currents in the large aluminum mirrors

originally designed for fluorescence collection in the trap. The eddy currents dissipate on the time

scale of 20 ms (Fig. 8.2d), which means that any ramps in the magnetic coil currents need to take

much longer than 20 ms so that the actual trap fields can follow the current drive.

8.2.2 Optical pumping

In order to perform Ramsey spectroscopy, the ions must be initialized in only one of the

two |mF ,Ω〉 levels. As explained in Chapter 7, the usual atomic physics trick of preferentially

populating the molecular ions in one of the two stretch states using circularly-polarized light does

not work due to the combination of the quantization axis rotating and the need for Raman transfer

lasers to propagate perpendicular to the plane of rotation. The following scheme, however, does

work: after the Raman lasers populate the ions in both |mF ,Ω〉 levels of a Stark manifold, a

circularly-polarized optical pumping laser (henceforth referred to as the ‘depletion’ laser) tuned to

resonance with the 3Π0+(J
′ = 1) ← 3∆1(J = 1) transition is used to deplete the ions in one of

the two stretch states. The depletion laser is aligned along the same beam path as the ionization

and dissociation lasers, and is stroboscopically turned on with a duty cycle of 20% whenever the

quantization axis lies parallel to the direction of laser propagation. The depletion laser is picked off

from the 986 nm transfer laser and sent through two acousto-optic modulators as intensity switches

that are aligned to ensure no depletion laser light is incident on the ions when the quantization axis

has rotated by 180◦. Due to the reduced depletion laser intensity and large Doppler shift associated

with vrot, as many as 250 rotation cycles may be needed to fully deplete the ions from one of the

stretch states (say, |b〉), leaving the ions in only |a〉. To change the handedness of the depletion
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laser polarization, one can simply offset the timing of the depletion laser pulses such that the laser

light is only present when the quantization axis is anti-aligned to the direction of depletion laser

polarization. In the rest of this chapter, the sequence of 250 depletion pulses (or however many are

needed for full depletion) is referred to as a ‘depletion laser strobe-sequence’.

8.3 Ramsey spectroscopy at B = 0

We now embark on experimentally mapping out the avoided crossing depicted in Fig. 8.1b.

The first step is to understand the avoided crossing splitting at the point of closest approach ∆ by

performing Ramsey time-of-flight spectroscopy in the absence of any magnetic fields. The Ramsey

sequence is as follows: after populating ions in a single Stark manifold (say, both |a〉 and |b〉

incoherently in the upper Stark manifold u), the ions in state |b〉 are optically pumped away with

a σ+-polarized depletion laser strobe-sequence. The remaining ions in |a〉 can then be expressed as

populating a superposition of the two eigenstates {|0〉 , |1〉 ≡ (|a〉±|b〉)/
√
2}, i.e. |a〉 = (|0〉+|1〉)/

√
2.

In other words, the depletion strobe-sequence is equivalent to performing a π/2-pulse on the ions,

the physics of which is analogous to the following: a beam of unpolarized light, sent through a

gedanken σ+-polarizer, becomes σ+-polarized, which is also a linear combination of horizontal and

vertical linear polarizations. A variable wait time T ensues, during which the relative phase between

the states |0〉 and |1〉 freely evolves as e−iωuT , due to |0〉 and |1〉 being the eigenstates under the

rotating electric and magnetic fields. The π/2-pulse is then applied again with a σ+-polarized

depletion laser and the Hf+ ions detected upon firing the dissociation laser only come from those

remaining in state |a〉. The number of ions remaining in |a〉 is related to the argument of the

free evolution phase as follows: at ωuT = 2nπ (where n is an integer), there is no change in the

ion number for |a〉 between the first and second π/2-pulse. Conversely, after ωuT = (2n + 1)π,

all the ions initially in |a〉 would have been transferred into |b〉, giving maximal depletion signal

with the second π/2-pulse. In general, the change in ion signal in |a〉 between the first and second

π/2-pulse is proportional to (1 − cos(ωuT )). The above Ramsey sequence can be repeated using

σ−-polarized light for the second π/2-pulse, which makes the dissociation laser sensitive to a change
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in ion population in state |b〉. The difference between the two chops (differing in the helicity of

the second π/2-pulse) then provides the relative change in ion population between states |a〉 and

|b〉, which is proportional to the relative phase between the two states accumulated during T . To

normalize for any drifts in ion number at a given wait time T , the ion number is also recorded

without any π/2 pulses applied. The combination of these chops give the fractional difference in

ion population between states |a〉 and |b〉 as a function of the free evolution time T , and is shown

as a Ramsey fringe in Fig. 8.3b.

Fig. 8.3c shows the zero-magnetic-field Ramsey fringe frequencies plotted as a function of

rotating bias electric field magnitude for both Stark manifolds {|a〉 , |b〉} and {|c〉 , |d〉}. For a

given Erot, the average of the two fringe frequencies is inversely proportional to E3rot (Fig. 8.3d),

as predicted by Eq. (8.1) for a three-photon transition. On the other hand, the slight frequency

difference δ∆ between the two Stark manifolds comes from interactions with the F ′ = 1/2 hyperfine

level, i.e. the upper Stark manifold is further repelled from the F ′ = 1/2 levels than the lower Stark

manifold. Since the mF = ±3/2 states are connected to the m′
F = ±1/2 states in the F ′ = 1/2

manifold through a one-photon transition, the frequency difference δ∆ is proportional to the ratio

of the Stark shift to the hyperfine energy difference ((dmfErot)/EHF )
1, and akin to the expression

for ∆, δ∆ is also proportional to 1/(dmfErot)3. More precisely, perturbation theory on the Hilbert

space of 12 |F,mF ,Ω〉 sub-levels in the 3∆1(J = 1) rotational state yields the following expressions

[54]:

∆ =
1

2

(
∆ℓ +∆u

)
= 27ωef

(
ωrot

dmfErot

)3

, (8.3)

δ∆ =
1

2

(
∆ℓ −∆u

)
=

81

8
ωef

(
ωrot

dmfErot

)3(dmfErot
EHF

)
. (8.4)

The lines shown in Fig. 8.3c–e come from a simultaneous fit to ∆, δ∆, ∆ℓ and ∆u using Eqs. (8.3)–

(8.4), and the data gives good agreement with perturbation theory. The sole fit parameter,

ωef/(2π), is determined to be 830(50) kHz, which is a more precise value for the zero-field splitting

between states of opposite parity compared to its previous estimate of 740 kHz, where the latter

has been obtained by extrapolating from ωef/(2π) observed in high-lying rotational levels of HfF+
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in a discharge tube [16].

8.4 Ramsey spectroscopy at B 6= 0

Having understood the avoided crossing splitting at the point of closest approach, we now

turn to measuring gF . In principle, gF can be determined by performing Ramsey spectroscopy in

the same way as described in Section 8.3 but with a finite magnetic field gradient applied throughout

the Ramsey sequence. However, as Brot gets larger, the Ramsey fringe contrast decreases because

the eigenstates at larger Brot are more similar to the mF stretch states and the depletion laser

strobe-sequence behaves less like a π/2-pulse. With a lower fringe contrast, the fringe frequency is

more difficult to determine.

There is a simple modification to the Ramsey sequence in Section 8.3 that can still yield

fringes of relatively high contrast. Starting with no magnetic field, the depletion laser strobe-

sequence is used to create an equal superposition of |a〉 and |b〉. The magnetic field gradient is then

ramped on, held a finite value for the free evolution time T , and finally ramped back down to zero

for the second depletion laser strobe-sequence acting as the π/2-pulse. The main problem with the

magnetic field ramps is the fact that eddy currents in the ion trap occur on a time scale significant

to the coherence time of the Ramsey fringes. In order for the magnetic field at the trap center to

reliably follow the expected field values from driving currents, the magnetic field ramps then have

to occur on the time scale slower than that of the eddy currents, which means that after accounting

for two magnetic field ramps, there is hardly any free evolution time that one can afford to wait

for before the Ramsey fringe contrast diminishes due to decoherence. In a future iteration of the

eEDM experiment, designed to avoid large eddy currents (e.g. by removing the aluminum mirrors

from the ion trap), one can revisit this idea of ramping the magnetic field, in which case one only

has to be careful to account for the ramps affecting the initial phase of the Ramsey fringe.

Another method of performing the Ramsey π/2-pulses uses the fact that the avoided crossing

splitting ∆ depends strongly on the rotating electric field magnitude. Fig. 8.4a shows the avoided

crossing for two values of Erot. The Ramsey sequence is carried out as follows (Fig. 8.4b): at a given
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applied magnetic field gradient, we first populate, say, the upper Stark manifold, and then apply

a σ+-polarized depletion laser strobe-sequence such that the ions are only left in state |a〉. The

rotating electric field magnitude is subsequently jumped down to a lower value, which increases the

avoided crossing splitting so that the ions in state |a〉 are projected onto a basis of eigenstates that

are nearly equal superpositions of |a〉 and |b〉. After waiting for a short time, the rotating electric

field magnitude is increased back to its original value, such that the total duration of any changes

in the electric field corresponds to a π/2-pulse. The ions are allowed to evolve freely in time T , and

the same π/2-pulse is repeated to project the ions back into either state |a〉 or |b〉, which can be

read out using the circularly polarized depletion laser and dissociating the remaining HfF+ ions.

The Ramsey fringe frequencies obtained from applying the above electric-field-ramp sequence

are plotted for several different magnetic field gradients in Fig. 8.4c. The avoided crossing is mapped

out for both the upper and lower Stark manifolds, and the data for each Stark manifold is fit to

the following function:

ωu/ℓ

2π
= 2

√(
∆u/ℓ

2(2π)

)2

+

(
3

2
µBg

u/ℓ
F (rrot · ∇B −Bu/ℓ

offset)

)2

, (8.5)

where the radius of circular micromotion rrot = 0.22 mm for a rotating electric field magnitude

of 11.6 V/cm during the free evolution wait time. The second order Zeeman effect is negligible

at the level of . 10−2 compared to the linear Zeeman effect for our experimental parameters.

The fit parameters yielded ∆u = 25(1) Hz and ∆ℓ = 36(1) Hz, which are in good agreement

with that expected from Eqs. (8.3)–(8.4). The magnetic field offsets fit to Bu
offset = 0.15(11) mG

and Bℓ
offset = 0.02(9) mG, although lower offsets have been obtained when considering a subset of

Ramsey fringe data taken within a short time window of each other. One source of contribution to

Boffset comes from currents driven up and down the fin electrodes to provide the rotating voltages:

Irot = Vrot ωrotCfin , (8.6)

Boffset = 3
µ0Irot
2πrfin

, (8.7)

where Irot is the current for a single fin, Vrot is the amplitude of the rotating voltage, Cfin is the

capacitance between two oppositely placed fin electrodes and rfin = 4 cm is the distance between
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the trap center and any given fin. The factor of 3 in Eq. (8.7) is a geometrical factor accounting for

the fact that the six fin electrodes are spaced 60◦ apart and adjacent fins are driven out of phase

by 60◦. The total capacitance of a single fin (without its SHV-feedthroughs) is measured within

the assembled ion trap to be 32 pF, which is likely to be dominated by the capacitance between

the fin and aluminum mirror at the two points of closest approach. Using an estimated capacitance

of 5 pF between opposite fins, for a rotating electric field of 11.6 V/cm or Vrot = 75 V, Boffset is

calculated to be 0.089 mG, which is about the same as that measured. This effort should be quite

stable and thus readily cancelled.

Finally, the fit of the avoided crossing yields the magnetic g-factors |guF | = 0.00306(1) and

|gℓF | = 0.00305(1). Both magnetic g-factors are measured to be very small and within a factor

of two of that predicted by Eq. (8.2), which means that there is little state mixing from other

levels into the 3∆1 state. The reported error on the g-factors (δgF = 10−5) is only the statistical

error. We have yet to estimate the systematic error on gF , which is likely to be dominated by the

uncertainty on the value of Erot. The upper and lower Stark manifolds are expected to exhibit a

slight difference in gF due to three contributions, which are briefly listed as the following [45]:

(1) Centrifugal distortion terms in the zero-electric-field Hamiltonian, giving a parity-dependent

gF ,

(2) Perturbations to the |mF ,Ω〉 levels from Erot mixing adjacent rotational levels, in which

case one gets

δgF =
9dmfErot
40Be

gF , and (8.8)

(3) Perturbations to the |mF ,Ω〉 levels from the rotating quantization axis coupling mF levels

between the two hyperfine states (i.e. between |F = 3/2,mF = ±1/2〉 and

|F ′ = 1/2,m′
F = ±1/2〉):

δgF =

√
6

γ2F=3/2

ω2
rot

dmfErotEHF
gF . (8.9)

Since there is an electric field of 11.6 V/cm applied, the first contribution is negligible. The second

and third contributions are calculated to be 1.8×10−6 and 4.1×10−6 respectively, which are so far
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in agreement with the (crude) measured difference. One should note that by mapping out the whole

avoided crossing as shown in Fig. 8.4c, neither the difference in g-factors nor Boffset is measured in

a manner optimal for high precision. Instead, one should chop quickly between four sets of Ramsey

fringes taken at some finite ±∇B and for both the upper and lower Stark manifolds in order to

determine δgF and Boffset more precisely.

8.5 Sign of magnetic g-factor

So far, the application of Ramsey spectroscopy to determine the magnetic g-factor only yields

the magnitude of gF , but not its overall sign: regardless of whether the ions in |a〉 (or |c〉) absorb

from or emit energy into the rotating magnetic field, the cos(ωuT ) signal remains unchanged. The

sign of gF is important especially if a non-zero electron EDM has been measured, as it is also related

to the sign of the non-zero eEDM. Even if a finite eEDM has not yet been measured, determining

the sign of gF involves a cute piece of physics that is not necessarily encountered in many physics

experiments: Berry’s phase. One may think that Berry’s phase, which would add a systematic shift

to the eEDM-sensitive transitions, is unavoidable for our experiment due to the constant rotation

of trapped molecular ions. The demonstration of our understanding of Berry’s phase through an

experiment such as measuring the sign of the g-factor is therefore a fantastic reason on its own to

perform such an experiment!

To understand how Berry’s phase may be used to determine the sign of gF , let us first take

a step back and revisit the Hamiltonian with a rotating quantization axis ~F that has been tilted

away from the plane of rotation by an angle α = (π/2) − θ (Fig. 8.5a) [45, 57]:

Hdressed = H0 − ~dmf · ~Erot +Hrot , (8.10)

where Hrot = −ωrot (cos(θ)Fz − sin(θ)Fx) . (8.11)

θ is the polar angle, whereas Fz and Fx are the projections of the quantization axis onto the ẑ

and x̂ axes. The Berry’s phase accumulated from the tilt of the quantization axis away from the
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horizontal plane of rotation then gives rise to an energy shift

EBerry = −mFωrot sin(α) ≈ −mFωrotα . (8.12)

For HfF+ ions confined to the plane of rotation, EBerry = 0. However, the trapped ions also undergo

axial oscillations, such that the quantization axis (electric field) can be tipped away from the plane

of rotation, introducing a Berry’s phase. Considering only states |a〉 and |b〉 and ignoring any

contributions to their energies from an eEDM, the Hamiltonian in the state basis {|a〉 , |b〉} then

becomes

H =




3
2gFµBBrot +

ωmax

2 cos(ωzt)
∆
2

∆
2 −3

2gFµBBrot − ωmax

2 cos(ωzt)


 , (8.13)

where ωmax = −mFωrot(Ez,max/Erot) is the Berry’s phase picked up from the tilt of the quantization

axis (Ez,max/Erot) and where Ez,max is the maximum axial electric field experienced by the ions as

they oscillate away from the plane of rotation (z = 0).

For a cloud of ions oscillating about the z = 0 plane with a random initial phase in the axial

direction, the Berry’s phase accumulated by some ions oscillating above the plane of rotation cancels

out that accumulated by ions oscillating below the plane of rotation, such that the overall Berry’s

phase is zero. On the other hand, if the entire ion cloud is oscillating, say, in the region z > 0, the

ions can accumulate an overall Berry’s phase, which, depending on the relative orientations of the

quantization axis (electric field) and the magnetic field, can shift state |a〉 up or down in addition

to the Zeeman shift (with the opposite Berry’s phase shift for |b〉). For ωmax cos(ωzt) > 0, the two

terms dominating the energies of states |a〉 and |b〉 (i.e. (3/2)gF µBBrot versus (ωmax/2) cos(ωzt))

will have the same sign if gFBrot > 0, so that the two levels are further split apart with the Berry’s

energy shift (and vice versa if gFBrot < 0).

Experimentally, to determine the sign of gF , we carried out the same Ramsey sequence as

described in Section 8.4 but with an additional ‘kick’ applied to the ions along the axial direction

before performing the first π/2-pulse. The axial frequency was lowered to (2π)0.8 kHz, such that

the ions would be moving in only the upper half region z > 0 in the first 625 µs. According to

Eq. (8.13), such an upward kick to the ions yields ωmax > 0, and the accumulated Berry’s phase
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would shift the Ramsey fringe frequency to be larger or smaller depending on the sign of gF . The

experiment can then be repeated with the ions kicked down into the region z < 0 to make sure

that the Ramsey fringe shifts in the opposite direction compared to the chop with the upward kick.

Fig. 8.5d shows the Ramsey fringes obtained with the ions kicked into z > 0 (blue dots) and also

into z < 0 (red crosses), for the case where Brot > 0. Relating the fringe phase shift observed in

the first 625 µs (shaded region on the plot) to Eq. (8.13), one can therefore determine the sign

of the g-factor.2 As an additional sanity check, the two chops are repeated, this time with an

outward radial magnetic field gradient, i.e. Brot < 0. As expected, the Ramsey fringe phase shifts

are now reversed compared to that plotted in Fig. 8.5d for the kicks in the two axial directions, as

the relative sign between gFBrot and ωmax cos(ωzt) has flipped.

One should note that there is at least one other alternative method for measuring the sign of

gF : one can instead measure the Stark splitting between adjacent mF levels in both the presence

and absence of a rotating magnetic field, by first populating state |a〉 using the Raman transfer

lasers and depletion strobe-sequence, and then applying RF photons to couple |a〉 to its adjacent

state |F = 3/2,mF = 1/2,Ω = −1〉. For Erot = 16 V/cm, the Stark splitting is 10.5 MHz, which

means that to determine the sign of gF by recording a 100 Hz shift on the RF transition, Erot needs

to be stable to 10−5 , which is plausible but no mean feat to achieve.

8.6 A preliminary eEDM measurement and some implications for sensitivity

to systematics

Returning to the avoided crossing mapped out in Section 8.4, we can combine the Ramsey

fringe frequencies recorded at some finite ±∇B and for both the upper and lower Stark manifolds

as the terms in the ‘four-way chop’ described in Eq. (1.7) to give a preliminary limit on the

eEDM: |de| < 10−25 e cm. A serious measurement of the eEDM would involve sitting on the side

of a Ramsey fringe and looking at a shift of the Ramsey fringe position for any given chop, as

2 At the time of thesis submission, we still have not yet reached a consensus on the sign of the g-factor. However,
the method of determining the sign by kicking the ions and observing the subsequent Ramsey fringe phase shift
remains on a fairly solid foundation. The final consensus on the sign of the g-factor will be reported in Reference
[50].
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opposed to recording the entire fringe. For imperfect π/2-pulses, the initial phase of the Ramsey

fringe may be less well-understood, which means that in addition to sitting on only a side of

the Ramsey fringe, we may also have to measure the initial phase of the fringe. These chops

would have to be performed with a ‘blind’ offset added to each frequency measurement so that

the experimenters will not be biased towards a particular eEDM value [36]. The final reported

eEDM value is then given by the offset combined with the statistical uncertainty and systematic

uncertainty: de = (doffsete ± δdstate ± δdsyste ).

As mentioned at the beginning of this thesis, δdstate is inversely proportional to the figure-

of-merit, which is in turn proportional to the effective electric field, coherence time and square

root of the number of spin-flip transitions detected. The potentially long coherence time offered

by trapped molecular ions over neutral molecules is one of the chief advantages of the JILA eEDM

experiment. In Fig. 8.6a, we show that we can currently achieve coherence times longer than

150 ms, which is approximately two orders of magnitude higher than all other molecule eEDM

experiments that offer a similarly large effective electric field. The long coherence time of 150 ms,

combined with Eeff = 24 GV/cm and 4 spin-flips detected per shot at a repetition rate of 1 Hz, puts

our present statistical uncertainty at δdstate = 2.2×10−28 e cm/
√
day. Further, the 100-times higher

resolution provided by the narrower spin-flip transition linewidth means that we are less sensitive to

systematic effects that distort the lineshape. The source of decoherence beyond 150 ms is presently

a topic of investigation, and preliminary studies point to ion-ion interactions as a plausible factor,

although a more detailed study needs to be performed to sort through the different decoherence

sources. The ultimate goal we wish to achieve for the coherence time is the rovibronic lifetime of

the 3∆1(ν = 0, J = 1) state, which has been measured to be as long as 1.6(4) s (Fig. 8.6b). With a

longer coherence time, both our statistical uncertainty and sensitivity to systematics can be further

lowered.

Returning to the (coarse) measurements of δ∆ and δgF obtained in Sections 8.3 and 8.4, we

examine the implications of these quantities for potential systematics in an eEDM measurement.

As explained in Reference [45], the most important contributions to a systematic effect that could
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survive the four-way chop are quantities that influence ωu and ωℓ separately, e.g. δgF and δ∆.

Firstly, for a given δgF , a systematic shift from any stray rotating magnetic fields or magnetic field

gradients would be reduced by δgF /gF after the four-way chop:

ωu/ℓ(Erot, Brot +Bstray
rot ) + ωu/ℓ(Erot,−Brot +Bstray

rot ) = 6g
u/ℓ
F µBB

stray
rot ± 2deEeff , (8.14)

[
ωu(Erot, Brot +Bstray

rot ) + ωu(Erot,−Brot +Bstray
rot )

]

−
[
ωℓ(Erot, Brot +Bstray

rot ) + ωℓ(Erot,−Brot +Bstray
rot )

]

= 12δgFµBB
stray
rot + 4deEeff . (8.15)

Further, Bstray
rot can be reduced by compensating for it with a non-chopped rotating magnetic field

Bshim
rot . The combination of Bshim

rot and our theoretical values for δgF is expected to put our eEDM

systematic sensitivity below 10−28 e cm. Secondly, δ∆ gives rise to a systematic shift if a chop in

Brot causes a change in Erot by δEchop:

[ωu(Erot + δEchop, Brot)− ωu(Erot − δEchop,−Brot)]

−
[
ωℓ(Erot + δEchop, Brot)− ωℓ(Erot − δEchop,−Brot)

]

= 8
δ∆

∆
ηδEchop

≈ 3

(
dmfErot
EHF

)
ηδEchop . (8.16)

where η is the analog of the sensitivity of ωu/ℓ to Erot as gF is to Brot:

ηu/ℓ ≡ ∂ωu/ℓ

∂Erot
∣∣
E0
rot,Brot

=
(∆u/ℓ)2

g
u/ℓ
F µBBrotErot

. (8.17)

For Erot = 11.6 V/cm, Brot = 15 mG and a plausible value of δEchop = 100 µV/cm, η =

(2π)1.6 Hz/(V/cm) and the remainder systematic shift given by Eq. (8.16) is estimated to be

(2π)0.25 mHz, which is at the 5× 10−30 e cm level.

8.7 Conclusions and outlook

By the end of this thesis, we have developed all the techniques required to perform an eEDM

measurement: the quantum state preparation is accomplished by first autoionizing neutral HfF
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molecules into the true electronic ground state 1Σ+, and then performing a Raman transfer of the

HfF+ molecular ions into the desired 3∆1 quantum states, while the efficient state detection is

achieved by rotational-state-resolved photodissociation. In the meantime, the ions remain trapped

in a RF Paul trap of a novel design and are subject to rotating bias electric and magnetic fields.

The rotating electric bias field is unique to our ion trap experiment and has not been utilized in any

other RF Paul traps. We have provided the first demonstration of coherent Ramsey spectroscopy of

ions in a rotating bias field, where the π/2-Ramsey-pulses are implemented by ramping the rotating

electric field.

For the eEDM measurement, the combination of Ramsey fringes taken at opposite magnetic

fields and with different sublevels of the 3∆1 state gives |de| < 10−25 e cm, and our present

numbers for the coherence time and spin-flip transitions detected put our statistical sensitivity

at δd1σe < 2.2 × 10−28 e cm/
√
day. The sources of decoherence remain to be understood and the

coherence time to be improved, after which a full systematic evaluation of the eEDM will be carried

out, with the goal of achieving |de| < 10−29–10−28 e cm. Besides performing the four-way chop

that adds to the eEDM signal, other chops that can serve as sanity checks include chopping the

polarization of the depletion laser for the first or second strobe-sequence and chopping the sign

of rotation ωrot → −ωrot. Unlike other eEDM experiments where the direction of electric field is

applied by a pair of parallel plates can be reversed, the direction of electric field cannot be chopped

in the same sense for the JILA eEDM experiment. The electric field direction is in effect always

“inward” with respect to the circular motion. However, chopping for systematics from motional

magnetic fields arising from ~E ×~v can be easily performed by reversing the sign of rotation, whereas

for beam experiments, the same chop requires building a second source of molecules symmetrically

about the electric field plate setup. With Kevin Cossel and Matt Grau leading the charge on the

coherence time experiments, I am confident that the systematic evaluation will proceed speedily,

and I look forward to a new limit on the eEDM coming forth from the ion trap setup!

In the longer term, we have plans to switch from HfF+ to ThF+, a molecular ion that shares

many of the advantages offered by HfF+, except that ThF+ is better: firstly, Eeff ≈ 90 GV/cm [55],
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which is three times higher than that of HfF+, and secondly, the 3∆1 state is likely to either be

the true electronic ground state or no more than 315 cm−1 above the ground state [5]. In either of

those cases, the 3∆1 level is likely to be more long-lived than the present lifetime of the 3∆1 level in

HfF+. Unfortunately, the issues with using ThF+ are the same as they were for HfF+ six years ago:

more spectroscopic information about ThF+ (as well as neutral ThF) needs to be obtained, from

which the quantum state preparation and state detection schemes have to be worked out. Dan

Gresh has revived the frequency-comb-enhanced velocity-modulation spectroscopy technique for

ThF+ in a discharge tube, with which he has started to observe some ThF+ transitions. Hopefully,

in the near future, sufficient ThF+ transitions can be identified and the discharge tube setup can be

converted into a second ion trap experiment for ThF+ state manipulation. With HfF+ and ThF+

experiments running in parallel, the JILA eEDM effort is an exciting one to watch, especially if a

nonzero eEDM is detected!

Returning to the coherent spectroscopy on trapped HfF+ molecular ions in a rotating bias

field, it is tempting to think about the rotating bias field technique in the context of the larger

molecular ion community. Many molecular ion experiments are built [89] either to carry out pre-

cision spectroscopy (e.g. on simple molecules like HD+ to test ab-initio theory [10] and to look

for time-variation in the mass ratios me/mp [77]) or to use the additional levels provided by the

rotational and vibrational degrees of freedom to perform quantum information processing [79].

With the exception of Penning trap experiments [85, 58], these molecular ion experiments tend to

under-utilize the electric dipole moment of molecular ions despite its importance as both a test

of ab-initio calculations and as a degree of freedom in isolating particular Stark-Zeeman quantum

states for quantum information experiments. The application of a rotating bias field in a RF Paul

trap is a general technique that brings out the advantages of polar molecules while still preserving

the simplicity of an ion trap, and can have an impact on others in the molecular ion community

beyond those interested in an electron electric dipole moment search.
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