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Causality and Communication: Relativistic astrophysical jets and the implementation of science

communication training in astronomy classes

Thesis directed by Prof. Mitchell C. Begelman

Part I: Relativistic jets emitted from the centers of some galaxies (called active galaxies)

exhibit many interesting behaviors that are not yet fully understood: acceleration and collimation

over vast distances, for instance, and occasional flaring activity. In the first part of my thesis, I

examine the possibility of collimation and acceleration of relativistic jets by the pressure of the

ambient medium surrounding the jet base. I discuss the differences in predicted jet behavior due to

including the effects of a magnetic field threading the jet interior, and I describe the conditions that

create some observed jet shapes, such as the “hollow cone” structure seen in M87 and similar jets.

I also discuss what happens when the pressure outside of the jet drops so slowly that the jet shocks

repeatedly, generating entropy at its boundary. Finally, I examine the spectra of the 40 brightest

gamma-ray flares from blazars (active galaxies with jets pointed toward us) recorded by the Fermi

Gamma-ray Space Telescope in its first four years of operation. I develop models to describe the

observed behavior of these flares and discuss the physical implications of these models.

Part II: The ability to clearly communicate scientific concepts to both peers and the lay public

is an important component of being a scientist. Few training programs exist, however, for scien-

tists to obtain these skills. In the second part of my thesis, I examine the impact of two different

training efforts for very early-career scientists: first, a short science communication workshop for

science, technology, engineering and math (STEM) graduate students, and second, science com-

munication training integrated into existing astrophysics classes for undergraduate STEM majors

and early STEM graduate students. I evaluate whether the students’ written communication skills

demonstrate measurable improvement after training, and track students’ attitudes toward science

communication.
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Chapter 1

Introduction

1.1 Causality and Communication

A thesis is usually very narrowly focused, but in my case, this presents a problem: how does

one unite a thesis covering two topics as disparate as high-energy astrophysics research and science

communication research? The title of this thesis, first suggested in humor by Phil Armitage, actually

forges an insightful connection: both topics focus on the ideas of causality and communication.

In relativistic astrophysical jets, where the flow moves nearly at the speed of light, it can

often outrun the soundspeed within the jet. This results in a loss of communication between the

jet and its environment that can play a major role in the ultimate structure and dynamics of the

system. If the environment downstream of the jet can’t receive warning in the form of sound waves

before the jet arrives, it is unable to move out of the way — which can result in shocks as the jet

material slams into the ambient medium. We refer to this loss of communication between the jet

and its environment as “loss of causal contact”. My research on astrophysical jets primarily focuses

on what happens to the jet after this loss of causality and communication has occurred.

In undertaking this research, it didn’t take long to establish a fun parallel in my life: the pro-

cess of trying to explain special relativistic astrophysics to a layperson also resulted in a prompt loss

of communication. Though the sense of the word is different, the outcome was the same: the flow

of information was not transmitted smoothly, because it was not being communicated effectively.

It was this process of attempting to explain my astrophysics research to general audiences that first

interested me in the theory behind specialized communication for different audiences, and led me
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to pursue the research projects presented in the second half of thesis, in which I study ways to train

future scientists to avoid the loss of communication that is so common when describing complex

research topics.

1.2 Outline of Remainder of Thesis

Part I of this thesis contains the work that I’ve done on various aspects of relativistic jets.

Chapter 2 provides an introduction and some background to astrophysical relativistic jets and their

characteristics. Chapters 3 – 5 are reproductions of three papers (the first two published and

the third submitted) I completed with Dr. Mitch Begelman on the structure of ultrarelativistic

astrophysical jets. These are theory-based papers in which we propose models for how these jets

are accelerated and collimated. Chapter 6 contains an observational paper I completed with Dr.

Krzysztof Nalewajko, in which we perform spectral analysis of bright blazar flares detected by the

Fermi Gamma-ray Space Telescope.

In Part II of this thesis, I transition to the research I have completed with Dr. Seth Hornstein

in the field of science education research, with an emphasis on science communication. Chapter 7

provides an introduction and some background to science communication theory, as well as an

overview of the statistical methods used in this part of the thesis. Chapters 8 and 9 detail the

bulk of my research on the effectiveness of providing science communication training for science,

technology, engineering and math (STEM) undergraduate and graduate students.

Appendix A contains some additional derivations not included in Chapter 3. Appendix B

contains the text of the application for ComSciCon 2013 and all of the assessment instruments

used in the ComSciCon study. Appendix C contains samples of all of the training materials and

assessment instruments used in the study of science communication training in the classroom.
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PART I
Relativistic Jets



Chapter 2

Preface to Part I

2.1 Overview of Relativistic Outflows

Relativistic jets exist throughout the universe in many forms. These jets can travel over vast

distances, move at nearly the speed of light, and stem from sources that range from stellar-mass to

billions of times that. The primary aspect that relativistic jets have in common is that they are all

emitted from a region close to an accreting compact object, likely using energy extracted from the

object itself or from the material feeding it.

Relativistic outflows tend to fall into three main categories: active galactic nuclei (AGN),

microquasars (MQs), and gamma-ray bursts (GRBs). Table 2.1 summarizes a few properties of

these three systems, and a brief description of each follows here:

Active galactic nuclei are particularly luminous compact regions at the centers of some

galaxies. Their activity is inferred to be due to the accretion of material onto the supermassive

black hole at the galaxy’s center. The jets that are emitted from the poles of the accretion disk

around the black hole can extend over distances of millions of light years.

Microquasars are galactic systems that are analogous to AGN, but on smaller scales. They

result when a stellar-mass black hole in a binary star system accretes matter from its companion

star. In a similar scenario to AGN, an accretion disk forms around the black hole, and jets that can

extend over distances of roughly a light year are emitted from the poles of the disk.

Gamma-ray bursts are sudden flares of energy thought to be released when a high-mass star

collapses in on itself, forming a black hole at its center. As material rapidly accretes onto this black
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hole, extremely energetic jets are produced that punch through the remaining stellar envelope to

escape at the surface. The jets typically extend over distances of only a few light hours, but they

produce some of the highest luminosities observed in the universe.

While much of the work in the first part of this thesis is applicable to a broad range of astro-

physical jets, we focus primarily on modeling the jets emitted from AGN; thus the remainder of this

introduction will be spent further discussing these systems. I will provide some basic background

necessary for understanding the next four chapters of this thesis, breaking down the classification

of AGN and their basic phenomenology, discussing the properties and physics of blazar jets, and

briefly reviewing characteristics of the spectra of blazars. The reader already familiar with these

concepts can skip ahead to Chapter 3.

Table 2.1: Comparison of properties of relativistic astrophysical jet systems

AGN MQs GRBs

Mass of central object 106 − 1010 M� 1− 10 M� 1− 10 M�

Luminosity 1042 − 1048 erg s−1 1031 − 1037 erg s−1 1047 − 1052 erg s−1

Terminal Γ† 1− 50 1− 3 100− 1000
†where Γ = (1− (v/c)2)−1/2 is the bulk Lorentz factor

2.2 Classification of AGN

AGN are the most powerful steady sources of luminosity in the universe. Unlike normal

galaxies, whose spectra are dominated by starlight in the optical or dust in the IR, AGN have

extremely broad spectra with large amounts of energy emitted from the radio or infrared all the

way through X-rays or even gamma-rays (Fabian, 1999). AGN are often characterized by variability

on timescales as short as a few days, which implies that emission must come a small region of

order light days in size. AGN can be classified into different categories based on phenomenological

features:

Seyfert galaxies have relatively slow, weak, poorly collimated flows (Marscher, 2010). These
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galaxies have modest luminosities and are radio-quiet (i.e., radio emission is weak), yet they are

well-studied because they generally lie near to us (Fabian, 1999). Seyfert spectra show prominent

emission lines of highly ionized atoms that cannot be produced by stars (Rosswog & Brüggen,

2007).

Radio galaxies have spectra similar to normal elliptical galaxies, except that they exhibit an

excess amount of energy in radio wavelengths. The category of radio galaxies includes Fanaroff-

Riley type I galaxies, which have strong jets with relativistic speeds, and Fanaroff-Riley type II

galaxies, which have some of the most luminous, highly focused and relativistic beams (Marscher,

2010).

Quasars are extremely luminous galactic nuclei that outshine their host galaxies. Their spec-

tra are nearly featureless, and about 10% of quasars are radio-loud, a feature that is generally

associated with having a collimated relativistic outflow (Fabian, 1999).

Blazars are AGN where the jet happens to be aligned (or nearly so) with our line of sight.

Despite their cosmological distances, blazars are easily detected because their radiation has been

boosted by special relativistic effects (this is discussed in more detail in §2.4). Blazars emit polar-

ized light with a featureless, nonthermal spectrum typical of synchrotron radiation (radiation emit-

ted when charged particles are accelerated radially); this synchrotron emission generally swamps

any absorption or emission lines in the spectrum. Blazars are extremely luminous and highly

variable, and are characterized by large X-ray and gamma-ray luminosities (Rosswog & Brüggen,

2007). The brightest blazars are further subclassified as flat-spectrum radio quasars (FSRQs) and

BL Lacertae (BL Lac) objects, which both radiate most of their energy in MeV and GeV gamma-rays

(Fossati et al., 1998).

2.3 Phenomenology of AGN

AGN are powered by the energy released as matter falls down the potential well of the central

black hole. Because this matter carries angular momentum, it settles into a disk on scales much
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smaller than a pc around the black hole, and viscous stresses then transport angular momentum

outwards, releasing energy as the material is moved inwards. On larger scales, where angular

momentum doesn’t dominate the dynamics and temperatures are lower, molecular gas and dust is

thought to form into a toroidal structure generally referred to as the dusty torus.

There exist two additional regions of material: 1) the Broad Line Region (BLR), an area

consisting of fast-moving clouds orbiting fairly close in to the central black hole, extending approx-

imately up to 0.1 pc for bright AGN (Kaspi et al., 1996), and 2) the Narrow Line Region (NLR), an

area consisting of slower-moving clouds orbiting further out from the central black hole, extending

approximately 10− 1000 pc out (Alexander & Hickox, 2012). A jet extending from the poles of the

accretion disk in radio-loud galaxies such as blazars can interact with the clouds in both of these

regions.

2.4 Blazar Jets as Relativistic Outflows

Very-long-baseline interferometry (VLBI) first allowed for resolution of structure within blazar

jets, leading to the discovery that, in some cases, there were features within the jets that appear to

be moving faster than the speed of light (e.g. Cohen et al., 1971, Jorstad et al., 2001). This was

taken as the first evidence that blazar jets likely have relativistic velocities. For a special-relativistic

object moving at velocity v at an angle of θ with respect to the line of sight, its apparent velocity

is given by vapp = v(sin θ)(1 − β cos θ)−1, where β = v/c. This is maximized at vapp = vΓ when

sin θ = 1/Γ, where Γ = (1 − β2)−1/2 is the bulk Lorentz factor. Thus, jets with apparent veloc-

ities significantly higher than c could indeed be observed if the outflow is relativistic and the jet

is oriented at an angle near sin−1(1/Γ). Complementing this evidence for relativistic jets are ob-

servations of blazar jet variability on timescales in the range of minutes to years. Assuming that

variability is limited by the time it takes for a sound wave to cross the source, these timescales

are far shorter than should be possible given the source size (Hoyle et al., 1966, Aharonian et al.,

2005), providing another indication that the jets are likely relativistic.
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It is not coincidence that the best-studied jets are those that are pointed toward us and have

very high velocities. Relativistic motion also results in Doppler boosting, an amplification of the

observed luminosity. The Doppler factor, given by D = Γ−1(1− β cos θ)−1, is maximized for θ = 0.

Relativistic aberration causes most of the emission to be beamed into a cone of opening half-angle

Θ ∼ 1/Γ, and if the emission is steady-state, the flux density is boosted by a factor of D2. Thus it

is as a result of the relativistic nature of blazar jets that they have become the best-studied variety

of jets: the relativistic beaming of their radiation increases their observed brightness so that they’re

easy to detect — even at low emitted luminosities — so long as the jet points within a few degrees

of the line of sight. Due to the same effect, AGN jets that are not pointed to within a very narrow

angle of our line of sight will be much harder to detect, since their radiation will be similarly

beamed away from us. Blazar observations themselves provide a clear example of this: while the

jet that is pointed toward us is boosted in luminosity, the receding counter-jet is diminished and

often isn’t even detectable (e.g. Bridle & Perley, 1984).

2.5 Phenomenology of Blazar Jets

Blazar jets are modeled as being emitted along the poles of the AGN accretion disk and pow-

ered either by extraction of energy and angular momentum from the accretion disk itself (Blandford

& Payne, 1982) or by extraction of the spin energy of the black hole (Blandford & Znajek, 1977).

Because of the swamping of their spectra by the synchrotron radiation, no spectral features of

the moving matter within jets are observed, preventing us from making reliable estimates about

particle energy flux and mass, values of magnetic fields, or even the material composition of the

jet. Observations lead us to assume that electrons are a necessary component since an excessively

high magnetic field would be needed to produce the observed synchrotron radiation power (which

is proportional to B2/m2) with only protons. Overall charge neutrality within the jet could be

provided by either protons or positrons.

Hydrodynamic models of AGN jets consist of several successive regimes (see Figure 2.1). The
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jet is launched with a high initial Lorentz factor — or accelerates to one fairly quickly — but it

also initially contains a large amount of internal energy. In this regime, the jet is considered to be

“pressure-dominated”. As the jet propagates, however, the internal energy is gradually converted

into kinetic energy, and the jet material is further accelerated until reaching a maximal point where

all of the jet’s energy is kinetic. In this regime the jet is “inertia-dominated,” and it is now essentially

a ballistic flow, coasting at a constant velocity until it is disturbed. Throughout this acceleration

regime, which is expected to exist on scales of tens to thousands of Schwarzschild radii (approxi-

mately 0.1 pc, for a 108 M� black hole), the jet also undergoes collimation. Beyond this region, the

jet propagates into the intergalactic medium and is gradually decelerated as it drives a shock into

the material, eventually spreading out into large radio lobes where it deposits all of its energy.

Acceleration via adiabatic expansion occurs fairly gradually in relativistic hydrodynamic jets.

Conversion of thermal energy into kinetic is governed by the relativistic Bernoulli equation, which

states that p ∝ Γ−4 along streamlines, where p is the thermal pressure of the jet. Thus acceleration

in relativistic jets occurs over long distances — a pressure drop by a factor of two corresponds to

only a ∼ 20% increase in the bulk Lorentz factor of a relativistic jet.

As discussed in Chapter 1, an important consideration when modeling relativistic jets is that

of causal contact. Causal contact between two parts of a jet is lost when they are expanding away

from each other faster than a sound wave can travel between them. In a relativistic jet, the sound

speed as viewed in the lab frame is cs =
c

Γ
√

3
(it is decreased by a factor of Γ as a result of time

dilation). Thus, in the case of a jet with a half-opening angle of Θ, the outer wall of the jet remains

in causal contact with the jet center only if the opening angle obeys Γ−1 > sin Θ ≈ Θ. Indeed,

this limiting value for maintaining causal contact provides a useful characteristic scale within the

jet, as will be seen later. Observations confirm that blazar jets frequently have opening angles

approximately of the order of Γ−1 (see Figure 2.2).
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Figure 2.1: Cartoon illustrating the various physical and emission components of an AGN with a
relativistic jet, shown on a logarithmic length scale. Adapted from Marscher, 2010.

2.6 Spectral Energy Distributions of Blazars

As previously mentioned, the emission from blazar jets is nonthermal, and the spectral en-

ergy distributions of blazars are very broad, with radiation extending from radio to gamma-ray

frequencies. The continuum emission can generally be attributed to four main mechanisms: 1)

the radio emission is dominated by synchrotron emission from the jet, 2) the infrared emission is

primarily due to thermal radiation from the warm, dusty torus, 3) the optical/ultraviolet emission

is largely due to thermal emission from the accretion disk and the hot gas around it, and 4) the
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Figure 2.2: Blazar jet half-opening angle vs. Lorentz factors from 8 radio-loud quasars, 5 BL Lac
objects, and 2 radio galaxies with blazar-like radio emission. The line corresponds to θ ∝ Γ−1.
From Marscher, 2006, adapted from Jorstad et al., 2005.

X-ray and gamma-ray emission is thought to be due to inverse Compton scattering of low-energy

seed photons off of relativistic electrons in the jet.

One open question about emission from blazars is that of the source of the low-energy seed

photons to produce the gamma-ray radiation we observe. It is unclear whether the source of

the seed photons is internal to the jet (i.e., synchrotron emission from the jet itself; Maraschi

et al. (1992)), externally located but near the central engine (e.g., coming from the BLR; Sikora

et al. (1994a)), or located further from the source (e.g., emitted by the dusty torus; Wagner et al.

(1995)). One way of placing constraints on the source of gamma-ray emission is to better under-

stand the features seen in blazar spectra, including spectral “breaks”, or sudden decreases in flux
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observed above a certain energy. More will be said about this in Chapter 6.

Emission from blazars is inherently variable, often quite dramatically, on timescales as short

as hours or even minutes (Marscher, 2010); an example of this can be seen in Figure 2.3. Analysis

of blazar spectra frequently relies on first processing data by integrating over a large span of time

— often weeks or months (e.g. Abdo et al. (2009), Abdo et al. (2010b), Poutanen & Stern (2010)).

This process ignores the high level of variability, and possibly loses important information as a

result. This is another topic that will be addressed in Chapter 6.
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Figure 2.3: Variation of flux over time in blazar 3C 279 in radio, optical, and X-ray emission, as
presented in Marscher, 2010.



Chapter 3

Boundary Layers in Hydrodynamic Relativistic Jets

3.1 Preface

This paper appeared in Monthly Notices of the Royal Astronomical Society, Volume 426, Issue

1, pp. 595-600 and was completed under the guidance of Dr. Mitch Begelman. This is the first

of three papers examining the impact of the ambient medium on collimation and confinement

of relativistic jets that have lost causal contact with their surroundings. This paper focuses on

the purely hydrodynamic case. In addition, the solutions presented in this paper conserve energy

within the boundary layer, and the flow is irrotational, isentropic, and behaves adiabatically; we

relax some of these assumptions in Chapters 4 and 5 of this thesis.

Abstract

We study the collimation of relativistic hydrodynamic jets by the pressure of an ambient medium

in the limit where the jet interior has lost causal contact with its surroundings. For a jet with

an ultrarelativistic equation of state and external pressure that decreases as a power of spherical

radius, p ∝ r−η, the jet interior will lose causal contact when η > 2. However, the outer layers

of the jet gradually collimate toward the jet axis as long as η < 4, leading to the formation of a

shocked boundary layer. Assuming that pressure-matching across the shock front determines the

shape of the shock, we study the resulting structure of the jet in two ways: first by assuming that

the pressure remains constant across the shocked boundary layer and looking for solutions to the

shock jump equations, and then by constructing self-similar boundary-layer solutions that allow for
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a pressure gradient across the shocked layer. We demonstrate that the constant-pressure solutions

can be characterized by four initial parameters that determine the jet shape and whether the shock

closes to the axis. We show that self-similar solutions for the boundary layer can be constructed that

exhibit a monotonic decrease in pressure across the boundary layer from the contact discontinuity

to the shock front, and that the addition of this pressure gradient in our initial model generally

causes the shock front to move outwards, creating a thinner boundary layer and decreasing the

tendency of the shock to close. We discuss trends based on the value of the pressure power-law

index η.

3.2 Introduction

The idea that AGN outflows are highly collimated is supported by observations (e.g. Begel-

man et al., 1984, Jorstad et al., 2005), implying that confinement must occur. The cause of this

confinement, which may occur at distances of just a few tens of Schwartzschild radii from the cen-

tral black hole (Junor et al., 1999), is however not yet well-understood. It is generally accepted that

some collimating agent is necessary, but this still allows for a variety of possibilities, both external

(e.g. pressure confinement via an ambient static medium Eichler, 1982; Komissarov & Falle, 1997,

inertial confinement via a slow outflow or wind surrounding the jet Komissarov, 1994b; Bromberg

& Levinson, 2007) and internal (magnetic confinement via hoop stress due to the toroidal magnetic

field component Benford, 1978; Begelman et al., 1984).

Pressure confinement is of particular interest because accretion disk winds surrounding an

AGN provide an ideal external medium for interaction with the jet. Moreover, another collimating

agent such as magnetic hoop stress cannot function alone; without an ambient medium to confine

the globally-expansive magnetic field, collimation will not occur (Begelman, 1995; Komissarov

et al., 2007, 2009; Komissarov, 2011). Thus pressure confinement may be relevant both on its own

and in conjunction with other processes.

In this context, we note that numerical simulations that study confinement and acceleration
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of the flow by MHD processes treat the action of the external medium as an applied boundary con-

dition (e.g. Komissarov et al., 2007, 2009; Komissarov, 2011). In this work, we study the detailed

physics of jet collimation by the external medium as a first step towards a complete treatment

of both the action of the external medium and magnetic effects in collimating and accelerating

relativistic jets.

The location and mechanism of jet collimation is interesting because it provides insight into

energy dissipation within the jet. In a steady jet, there are two main sites where energy dissipation

is likely to occur: at the jet spine, as a result of kink instabilities driven by the toroidal magnetic

field (Begelman, 1998; Eichler, 1993), and at the interface between the jet and its environment, as

a result of shear instabilities (Micono et al., 2000; Perucho et al., 2010; Barkov & Baushev, 2011)

or collimation shocks, as we discuss here.

In the case of a jet with an opening half-angle of θ and a bulk Lorentz factor of Γ, the

outer edge of the jet remains in causal contact with the jet center only if the opening angle obeys

Γ−1 > sin θ ≈ θ. In this work, we assume a relativistic equation of state and examine the case

where causal contact between the jet’s spine and edge has been lost. Thus we model the jet as

having a transverse structure consisting of two components: an inner region in which the flow

is undergoing free expansion as it accelerates, and an outer shocked boundary layer region that

results from the loss of causal contact within the jet. The geometrical shape that the jet assumes

as it propagates is a direct result of its response to the collimating forces exerted by the ambient

medium, and calculating that shape for the case of pressure confinement will be a major focus of

this paper.

Our goal is to determine the basic jet structure and geometry under a simple set of collimation

and acceleration assumptions, providing a model for the jet’s steady-state configuration. This will

allow more realistic initial conditions for simulations of instabilities and turbulence, which will in

turn provide a model for AGN jets to which we can compare observational signatures.

While we specifically reference AGN jets in this work, our results can easily be extended to

other relativistic outflows, such as a gamma-ray burst in the collapsar model, collimated by the
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stellar envelope it breaks through, as discussed in Bromberg & Levinson, 2007 (hereafter BL07).

In this paper we use the shock conditions for a hydrodynamic, relativistic jet to derive the

basic structure of the jet. This problem has been previously studied in the case of a "cold" (inertia-

dominated) jet (Komissarov & Falle, 1997; Nalewajko & Sikora, 2009), but we now focus on the

collimation behavior of a "hot" (pressure-dominated) jet.

We initially follow a similar approach to that of BL07, but deviate from its methods in our

treatment of entropy distribution within the jet. Bromberg & Levinson, 2009 (BL09) performs a

similar analytical inspection in the limit of small angles; we generalize this to all angles.

In §3.3 we find solutions for the jet shape using the Kompaneets approximation. In §3.4 we

examine self-similar solutions for the boundary layer when a pressure gradient is allowed to form

across the layer, and then revise our solutions from §3.3 to include this pressure gradient. In §3.5

we conclude, summarizing the results and discussing future work.

3.3 Kompaneets Approximation

We consider a cylindrically symmetric, ultrarelativistic jet injected into an ambient medium

that has a power-law pressure profile. We wrap the physics of the shocked ambient medium into this

external pressure profile and focus on the structure of the jet itself. In this stage of the treatment, we

ignore magnetic fields and assume that the external pressure due to the ambient medium creates

the sole collimating force on the jet.

We define R and z as dimensionless parameters in cylindrical coordinates describing the

radial and axial distances as scaled by z0, the height at which the jet initially encounters the external

medium. The jet is injected with an initial opening half-angle of θ0 and impacts the wall of the

ambient medium at the point thus denoted as (R0 = tan θ0, z0 = 1). We assume the jet is injected

from a point source with steady flow, and streamlines are conical and characterized by the angle

θj .

We further suppose that the interior of the jet is undergoing free expansion. As relativistic
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adiabatic expansion obeys pV 4/3 ∼ const, it therefore exhibits a corresponding pressure profile of

pj ∝ r−4, where r is the spherical radius defined as r ∝ (R2 + z2)1/2 in cylindrical coordinates.

The gradual acceleration via adiabatic expansion of the jet interior is governed by the relativistic

Bernoulli equation, which describes the conversion of thermal to kinetic energy as p ∝ Γ−4 along

streamlines (see, e.g., Landau & Lifshitz, 1959).

Where the jet impacts the ambient medium with a supersonic normal velocity, a shocked

layer will form, as indicated schematically in Figure 3.1. The layer is bounded on the inside by a

shock front, and on the outside by a contact discontinuity. There is no mass flux across the contact

discontinuity, and the pressure must be matched on either side of it. Adopting a pressure profile for

the ambient medium of ps ∝ r−η, for a parameter η, this fixes the pressure external to the jet and

immediately inside the contact discontinuity.

We now adopt the Kompaneets approximation (Kompaneets, 1960; see e.g. BL07 and Komis-

sarov & Falle, 1997), treating the pressure as a function only of z within the shocked layer. Thus the

pressure profile of the external medium extends across the shocked layer with no pressure gradient

in the axial direction, greatly simplifying the problem.

In this paper, we focus particularly on the less-explored case of an external pressure profile

with 2 < η < 4 (see e.g. BL07 for an example of treatment of this regime). An η < 2 implies that if

the jet begins in causal contact it will remain in causal contact, suggesting that a shocked boundary

layer would not form. For η = 4 the ambient pressure profile is equivalent to that of free expansion,

matching the pressure within the jet, and an η > 4 would result in a rarefaction at the jet boundary

(Begelman et al., 1984). Thus the regime between these two values is a logical place to examine.

Physically, this pressure profile range could describe multiple scenarios for the confining

medium. The ram pressure of a head-on wind decreases as p ∝ r−2, and any obliquity would serve

to steepen that pressure profile (Eichler, 1982). The range is similarly relevant if the confining

medium were an accretion flow such as Bondi accretion (p ∝ r−5/2), and it would not be an

unrealistic range for a disk corona, or a stellar envelope in a GRB collapsar model.

The flow parameters across the inside boundary of the shocked layer are governed by the rel-
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Figure 3.1: Diagram indicating the angles and orientation of the axes relative to the inner shock
wall. θj is the angle the jet streamline makes with the z-axis. Ψj is the angle it makes with the
shock normal, and αj is the angle between the shock normal and the vertical.
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ativistic oblique shock-jump conditions. These establish conservation of mass, momentum, energy,

and tangential velocity:

njΓjβj,x = nsΓsβs,x (3.1)

wjΓ
2
jβj,x = wsΓ

2
sβs,x (3.2)

wjΓ
2
jβ

2
j,x + pj = wsΓ

2
sβ

2
s,x + ps (3.3)

βj,y = βs,y (3.4)

where the x-direction is chosen perpendicular to the shock front and the y-direction is tangential

(see Figure 3.1). The subscript j denotes quantities within the freely-expanding inner jet region,

and the subscript s denotes quantities within the shocked boundary layer. Here β = v/c, and

w ≡ ε + p where ε is the total proper energy density, given by ε = ρ + 3p with ρ defined as the

proper rest mass density. Considering the case of an ultrarelativistic gas in the regime where the jet

is still accelerating, we assume that ρ� p and the equation of state is p = ε/3, such that w ≈ 4p.

Examining the geometry of the problem, we recognize that the angle of impact of the stream-

line with the shock front, sin Ψj , can be represented in terms of θj and αj , respectively the angle

the streamline makes with the z-axis and the angle that the shock tangent makes with the z-axis.

By noting that tanαj = dRj/dz, where Rj is the shape of the shock front, and assuming conical

streamlines such that tan θj = Rj/z, we can combine the geometry of the problem with the general

shock jump conditions to obtain a differential equation governing the shape of the inner shock wall,(
Rj − z dRj

dz

)2

(
R2
j + z2

)(
1 +

(
dRj

dz

)2
) =

1

8Γ2
j

(
3
ps
pj

+ 1

)
. (3.5)

This can be solved analytically for dRj/dz and numerically integrated to findRj(z). A more detailed

derivation of this equation is given in Appendix A.

To solve for the shape of the contact discontinuity separating the shocked layer from the

ambient medium, denoted as Rc, we assume energy-momentum conservation through a volume of

the shocked layer, as described in BL07. As in BL07, we assume that the flow parameters within the
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shock depend only on the vertical distance z in order to make the problem analytically tractable.

Making the further assumption that |βj | ≈ 1, we obtain a differential equation (also derived in

greater detail in Appendix A) similar to that in BL07 governing the contact discontinuity:

d

dz

(
psΓ

2
sβs,z(R

2
c −R2

j )
)

= 2pjΓ
2
jRj

sin Ψj

cosαj
. (3.6)

We insert into this the known expressions for ps, pj and Γj from the previous paragraphs.

While a shock exists, Γs and βs,z are obtained from the original shock jump conditions; if the shock

closes to the axis then Γs and βs,z are obtained by assuming adiabatic expansion within the fully-

shocked jet. We then numerically integrate Eq (3.6) simultaneously with the differential equation

for the inner shock wall, solving for both Rj(z) and Rc(z). Thus we obtain the shapes of the shock

front and the contact discontinuity in terms of the initial pressure ratio ps,0/pj,0, the initial opening

angle θ0, the initial Lorentz factor Γj,0, and the pressure power-law index η.

Examining the effects of varying these four parameters, we see that under certain conditions

the external pressure can drive the shock front back to the jet axis, resulting in a fully-shocked

jet. The jet is more likely to close when ps,0/pj,0 is large and η is small. Initial under- or over-

pressurization of the jet strongly affects whether or not it closes, but for physical scenarios we

would expect that the pressure is approximately balanced where the jet first impacts the wall,

ps,0/pj,0 = 1. Increasing η can change whether or not the shock will reach the axis and, for cases

where the jet does close, drives the point at which this occurs down the z-axis, further from the

source. Two examples are shown in Figure 3.2: one in which the shock converges to the axis and

one in which it doesn’t. This demonstrates the effect that η can have when all other parameters are

held constant.

Whether or not a jet closes and, if it does, the value of z at the point where the shock meets

the axis is dependent upon the value of the product θ0Γj,0, rather than on θ0 or Γj,0 individually.

Assuming that the initial pressure ratio and η are held constant, we find that all jets with the same

value of θ0Γj,0 close at the same point on the z-axis. Increasing θ0Γj,0 causes the jet to close further

down the axis from the source, until the point where it no longer closes. This dependence of the



22

0.00 0.05 0.10

2

4

6

8

10

R � z0

z
�

z
0

(a) η = 7/3

0.0 0.5 1.0

20

40

60

80

100

R � z0

z
�

z
0

(b) η = 11/3

Figure 3.2: Two examples of the solutions for the shock front and associated contact discontinuity.
In the first plot, η = 7/3; in the second η = 11/3. For both plots the remaining parameters are held
constant at ps,0/pj,0 = 1, Γj,0 = 50, and θ0 = 1/50.
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closure point on θ0Γj,0 is illustrated in Figure 3.3 for 2 < η ≤ 3, assuming ps,0/pj,0 = 1. For η > 3,

θ0Γj,0 < 1 is required to produce a jet that closes.

We find that the shape of the contact discontinuity is initially dependent upon the values

of the four parameters ps,0/pj,0, θ0, Γj,0, and η. For large z, however, the contact discontinuity

asymptotes to one of two shapes: if the shock closes to the axis, then the flow is governed by free

expansion beyond that point and the contact discontinuity takes the shape Rc ∝ zη/4, as found in

previous works such as BL07, BL09 and Levinson & Eichler, 2000. If the shock does not close to the

axis, however, then the contact discontinuity takes the shape Rc ∝ z, in contrast to these previous

works.

The discrepancy between our work and previous studies appears to arise as a result of entropy

treatment: in our work, we assume that as long as the shock has not yet closed to the axis, the

continued addition of material into the boundary layer ensures that the boundary layer cannot

have constant entropy throughout, and thus the layer is not governed by adiabatic expansion. We

instead solve for all quantities directly from the shock jump equations, without making assumptions

about the behavior of material within the boundary layer.

This difference in the behavior while the jet remains open is crucial, since this model for the

jet can only be accurately applied in the regime in which it remains open. After the jet has closed,

complex effects such as rarefaction waves or oblique shock reflections (e.g. Gomez et al., 1995)

will likely arise, and this simple model no longer adequately describes the jet’s behavior.

The conical asymptote that we find in this approximation will be an important factor in our

ability to refine this model, as shown in §refsec:ss.

3.4 Self-Similar Treatment of the Boundary Layer

The Kompaneets assumption of constant pressure across the shocked layer is inconsistent

with basic intuition: in a realistic large-scale jet, one would expect that the curvature of the stream-

lines as the jet collimates would go hand in hand with a force inwards along the radius of curvature.
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various values of η, ranging from η = 13/6 on the right to η = 3 on the left, in increments of 1/6.
Here again, ps,0/pj,0 = 1. The closure point does not depend on the value of Γj,0 individually.
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Because of the special-relativistic length contraction along the direction of motion, the curvature

appears to the fluid to be more extreme than it is in the lab frame by a factor of Γ, resulting in a

sizable centripetal force for even slight curvature. Due to this centripetal force, a pressure gradient

should then form across the boundary layer, with higher pressure at the outer wall of the jet and

lower pressure at the shock front.

With this in mind, we now refine the model in §3.3 by including effects of a transverse

pressure gradient within the boundary layer. Even assuming a steady state and axial symmetry, this

problem intrinsically involves the solution of partial differential equations in two dimensions, so we

simplify the problem by seeking self-similar solutions. In order to do so, we treat the streamlines

as being very nearly conical (an assumption justified by the results of §3.3) and calculate their

deviation from conical as a function of position within the boundary layer, thus examining the

effects of a pressure gradient across the boundary layer.

3.4.1 Self-Similar Solutions

We assume that the opening angle of the jet is much greater than 1/Γ, such that causal

contact has been lost. We further suppose that the boundary layer that forms has a thickness that

is of order ∆θ ∼ 1/Γ, ensuring that the boundary layer is very thin compared to the width of the

jet. The radius of curvature of the jet is then much larger than the width of the boundary layer,

allowing us to treat the curvature as a small effect.

Given the assumption of nearly conical streamlines, we can in this case treat the entropy

and the Bernoulli constant as being the same on all streamlines, implying potential flow. These

assumptions are physically realizable if the majority of the material within the shock enters at ap-

proximately the same point near the base of the jet; we will later demonstrate that this assumption

is self-consistent here.

The flow within the boundary layer is governed by the energy equation, momentum conser-
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vation along streamlines, and mass conservation:

ρ = Ap3/4 (3.7)

Γw

p3/4
= B (3.8)

∇ · (ρβΓ) = 0 (3.9)

where A and B are constants. We henceforth treat the problem in the spherical polar coordi-

nates r, θ and φ for convenience in describing a jet with approximately radial streamlines. As the

maximum transverse speed that can be achieved without a shock forming is of order 1/Γ, we can

therefore assume that βθ is of this order, and βr is of order one. Adopting this characteristic scale,

we state that ∂
∂θ ∼ Γ ∂

∂r . Writing out βr and employing the fact that β2
θ + Γ−2 � 1, we have

βr ≈ 1 − 1
2(β2

θ + Γ−2). Using this, we then combine the flow equations, retaining terms only to

lowest order.

If we now assume that the external pressure is a power law in spherical radius r, pe ∝ r−η,

then we can find self-similar solutions for the flow structure near the wall of the jet in the specific

case of a pressure-dominated jet, or near enough to the jet source that the Lorentz factor is much

less than its asymptotic value (Γ � Γ∞). In this limit, the equations reduce to a pair of coupled

partial differential equations for the Lorentz factor Γ and the transverse velocity βθ within the

boundary layer:

1

r

∂

∂r

(
r2

Γ2

)
+

∂

∂θ

(
βθ
Γ2

)
= 0 (3.10)

∂

∂r
(rβθ) + βθ

∂βθ
∂θ

+
1

2

∂

∂θ

(
1

Γ2

)
= 0. (3.11)

We now seek self-similar solutions of the form

1

Γ
= r−η/4g(ξ), p = r−ηg4(ξ), βθ = r−η/4h(ξ), (3.12)

where we have chosen the constant in the Bernoulli equation to be unity (i.e. pΓ4 = 1) for

simplicity. In these solutions g and h are functions of a similarity variable ξ that describes the

distance from the contact discontinuity, normalized by the expected scale of the boundary layer,
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ξ ∝ (θc − θ)/∆θ. The angular thickness of the boundary layer is expected to scale as ∆θ = 1/Γc,

such that ξ ∝ rη/4(θc − θ), where θc = θc(r) is the location of the contact discontinuity.

The fact that the streamlines at θc must be parallel to the contact discontinuity, requiring that

βθ(θc) = rdθc/dr, yields the further constraint that

dθc
dr

= h(0)r−(1+η/4). (3.13)

Choosing the proportionality constant such that ξ is defined as

ξ = − 1

h(0)
rη/4(θc − θ) (3.14)

absorbs the boundary condition into the similarity variable and ensures collimating solutions (such

that h(0) < 0).

The boundary condition g(0) = 1 is enforced so that the pressure is matched at the contact

discontinuity, but h(0) is allowed to range. Assuming solutions of this form, we define

w(ξ) =
g(ξ)

g(0)
, q(ξ) =

h(ξ)

h(0)
and µ =

(
g(0)

h(0)

)2

(3.15)

with w(0) = q(0) = 1. Further defining x = (1 − ηξ/4), we obtain a set of coupled linear ordinary

differential equations for w(x) and q(x) that can be cast to reflect the existence of a critical point:

(µw2)′ =

8
η (1− η

4 )(2x− q)µw2

µw2 − 2(x− q)2
(3.16)

q′ =

8
η (1− η

4 )
(
µw2 + q(x− q)

)
µw2 − 2(x− q)2

. (3.17)

The critical point occurs where the denominator of these equations goes to zero, forcing the

numerators to also go to zero at this point in order to prevent q′ and (µw2)′ from diverging.

The critical point can be physically understood as a type of sonic point, in analogy with the

critical points discussed in Blandford & Payne, 1982 (BP82). Setting the denominator in Eqs (3.16)

and (3.17) equal to zero yields the constraint that Γ2β2
ξ = 1/2 at the critical point, where βξ =

β·∇ξ/|∇ξ|. This constraint is mathematically equivalent to two conditions: that the speed of sound

waves measured in the lab frame in the direction of∇ξ must vanish (analogous to BP82’s condition
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that the sound speed normal to the similarity surfaces is equal and opposite to the component of

flow speed in the same direction), and that the sound speed along the similarity surfaces is equal

to the fluid speed and carries no signals in this direction (analogous to BP82’s condition that the

wave signals are normal to the similarity surfaces).

The physical solutions for q and w are those that pass through the critical point; the solu-

tions that don’t pass through the critical point display unphysical behavior, such as crashing and

becoming double-valued.

Requiring finite q′ and (µw2)′ at the critical point results in three possible sets of relations

among q, w, µ and x specifically at the critical point. Each one of these sets of relations at the

critical point applies uniquely to one of the three regions η < 8/3, η = 8/3, and η > 8/3 to produce

physical solutions. Thus, while Eqs (3.16) and (3.17) must generally be solved numerically, we can

use these constraints at the critical point to help identify the solutions of interest.

One such family of solutions occurs when µ = 1/2 and q(ξ) = w(ξ), i.e., when h(ξ) =

−
√

2g(ξ) everywhere. The solutions for p ∝ g(ξ)4 in this case are shown in Figure 3.4(a).

The most interesting result evident is that the structure of the solutions is divided based on

the value of η. For η = 8/3 the solution is analytic and linear: q = w = 1− 2ξ/3. This implies that

the pressure decreases monotonically from the outer wall of the boundary layer (ξ = 0) inward,

with p ∝ g(ξ)4 ∝ (1− 2ξ/3)4, while the Lorentz factor Γ increases linearly inward.

For η > 8/3, within this special family, the solutions decrease monotonically and asymptote

to zero, with the steepest decrease in q and w occurring for η ≈ 8/3. The curve for η = 4 is roughly

constant at q = w ≈ 1.

Solutions for η < 8/3 within this special family are also possible, but they are not single-

valued: at the critical point the derivatives diverge and the solutions do not continue to larger

values of ξ. For these solutions to be physical, the boundary layer would have to be truncated at a

point before where the solutions crash and become double-valued.

By looking beyond this special family of solutions, it is possible to identify a solution for every

2 < η < 4 wherein the pressure is a monotonically decreasing, single-valued function of ξ.
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Figure 3.4: Pressure within the shock as scaled by the external pressure. The contact discontinuity
is located at ξ = 0. (a) Curves for 2 < η < 4 in increments of 1/6 (beginning at η = 13/6 and
ending at η = 23/6), for the special case that h(ξ) = −

√
2g(ξ) everywhere. The value of η increases

when viewing the curves from lower left of the graph to the upper right. The curves for η > 8/3
are physical, while the curves for η < 8/3 are not unless truncated. (b) Physical solutions for
2 < η ≤ 8/3 only, when the relation between g and h is allowed to vary. The value of η decreases
when viewing the curves from lower left of the graph to the upper right. In both figures, the solid
curve corresponds to η = 8/3; the orange region contains curves for η < 8/3 and the blue region
contains curves for η > 8/3.
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In the case of η ≥ 8/3, the unique physical solutions are the solutions that belong to the

special family where µ = 1/2 and q = w. For η < 8/3, however, the value of µ is not fixed. Instead,

for each value of η there is a single value of µ that yields the physical solution that traverses the

critical point. For these solutions, µ varies from µ = 1/2 for η = 8/3 to µ = ∞ for η = 2 (see

Figure 3.5). When η < 8/3 the solutions for w asymptote to zero, but the solutions for q become

negative at finite ξ, as in the η = 8/3 case (where w and q reach zero simultaneously). The steepest

decrease in q thus occurs for η ≈ 2, whereas the steepest decrease in w now occurs for η ≈ 8/3.

The physical pressure solutions for η < 8/3 are plotted in Figure 3.4(b), and the physical solutions

for q(ξ) (describing the spatial dependence of the transverse velocity) are plotted in Figure 3.6.

Thus we find solutions that all display monotonically decreasing pressure from the contact

discontinuity across the boundary layer, as we would expect for a pressure gradient arising from

centripetal acceleration. Solutions for η ≈ 2 have a nearly constant pressure across the boundary

layer, but the pressure profiles become steeper as η increases to 8/3. The pressure for η = 8/3 is

the only solution that goes to zero at a finite value, thereby forming a boundary layer of thickness

ξ ∼ 1, or ∆θ ∼ 1/Γ. Above η = 8/3 the pressure profiles begin to decrease more gradually again,

and for η ≈ 4 the profiles again approach a constant.

Physically, this has very interesting implications. For η = 8/3, the pressure dropping to zero

at a fixed value of ξ implies that all of the jet material has piled up in the outer region of the

boundary layer. Thus the jet is a hollow cone: the material is concentrated against the outer wall

of the jet, and the inner region is essentially evacuated. This “edge pileup” has been studied as

a possibility in quasar jets previously, e.g. Zakamska et al., 2008. Observationally, Zakamska et

al. suggested this phenomenon as an alternative explanation for observed edge-brightening in jets,

which is more commonly interpreted as a result of the Kelvin-Helmholtz instability occurring at the

jet boundary.

For values of η near 8/3, while the material is not immediately all piled up against the wall,

the structure is not dissimilar. The region against the outer wall has the highest pressure, and the

sharp pressure decrease interior to the outer wall suggests that most of the material is still in the
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Figure 3.6: Physical solutions for q(ξ) within the shock, where the relation between g and h has
been allowed to vary. The contact discontinuity is located at ξ = 0. Curves for 2 < η < 4, in
increments of 1/6 (again beginning at η = 13/6 and ending at η = 23/6), are plotted. The value of
η increases when viewing the curves from lower left of the graph to the upper right, with the solid
curve corresponding to η = 8/3. The coloring is the same as that in Figure 3.4.
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outer region. While not truly a hollow cone, this structure could still account for observed edge-

brightening in jets. Moving in either direction away from η = 8/3, however, this region becomes

broader and the jet becomes more evenly distributed.

For large and small enough values of η, the pressure gradient becomes small and the devi-

ation of the pressure within the shock from the external pressure is minimal, suggesting that the

Kompaneets approximation is a valid approximation in this region. For values of η nearer to 8/3,

however, the Kompaneets approximation is clearly not a reasonable one.

The fact that the pressure profile begins level at η = 2, steepens as η approaches 8/3, and

then levels out again as η approaches 4 can be explained as the result of a tradeoff between two

opposing effects: as η increases, the degree of collimation decreases. This causes a decrease in the

centripetal force, and therefore the pressure gradient should decrease accordingly. But an increase

in η also means an increase in the rate of jet acceleration (as measured by the increase of Γ with

r), which will result in a steeper pressure gradient across the boundary. This acceleration effect

appears to be stronger in the region where 2 < η < 8/3, but the collimation effect wins out in

the region where 8/3 < η < 4. The two effects are in balance when η = 8/3, leading to maximal

compression of the gas against the wall of the jet.

This dividing behavior at η = 8/3 is not entirely unexpected, as can be shown by a quick

calculation. The power carried by a pressure-dominated jet is given by

L ∝ pΓ2A, (3.18)

where p is the pressure and A is the cross-sectional area of the region carrying most of the power.

If we assume that the power is concentrated in an outer layer of width ∆θ = 1/Γ, then viewed

end-on the cross-sectional area of that ring would be A ∝ r2/Γ, supposing that the jet is conical

to first order with very slow collimation. Using the external pressure profile and employing the

relativistic Bernoulli equation, we see then that

L ∝ r−η/2A = r−3η/4+2. (3.19)
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If we demand that the jet power be distance-independent, thus containing a finite amount of energy

in the boundary layer, then this scaling implies that η = 8/3 must be true.

For η < 8/3, we have L scaling with radius to some positive power, such that for r → ∞,

L→∞. Thus, given a roughly conical jet, the power carried cannot remain constant with η < 8/3.

Reexamining Eq (3.19), however, we can see that if the area scaled as some smaller power of r

rather than as described, then the jet power could be maintained as a constant despite the lower

value of η. Thus, for η < 8/3, the jet must become more strongly collimated, causing the cross-

sectional area to grow more slowly than in the conical case, in order for the jet power not to

diverge.

For η > 8/3, it would appear that L → 0 as r → ∞. This is misleading, however, given that

for this range in η, the integrals over ξ of the energy contained within the boundary layer diverge.

Thus, in a total spatial integral of L over both ξ and r, the r-scaling of L → 0 and the ξ-scaling of

L→∞ can combine to counteract each other, making it possible to obtain physical solutions under

which a finite amount of energy is contained within the boundary layer after all.

3.4.2 Extension to the Kompaneets Model

This self-similar construction provides an important view of the behavior within the boundary

layer, but to properly understand observations of the large-scale AGN jets that we seek to model,

we must examine how the boundary-layer physics fits into that of the jet as a whole.

To this end, we now attempt to extend the Kompaneets model by repeating §3.3 with the

addition of a pressure gradient across the boundary layer. The form of this added pressure gradient

will come from our self-similar boundary-layer model, and in this section we work in cylindrical

coordinates to facilitate the matching.

Applying the self-similar model to the structure developed in §3.3 inherently renders the

problem no longer self-similar, as length scales are introduced into the problem. Nonetheless, the

combination of methods is instructive in the description of general trends that are expected when

adding a pressure gradient to the Kompaneets model.
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Because ξ is a function of distance from the contact discontinuity (θc−θ), using the self-similar

pressure solutions in the model in §3.3 requires that we already know the shape of this outer wall.

As the self-similar model was developed with the assumption of an approximately conical contact

discontinuity, we solve this problem by fitting a conical solution to each contact discontinuity found

in §3.3 using the Kompaneets approximation and then using this fit as a fixed input for the location

of the outer wall. As was shown in §3.3, approximating the contact discontinuity as conical is

justified in the case of jets where the shock never closes to the axis, or in the region of the jet before

the shock closes. It is this regime that we study.

We examine three representative cases — one for η < 8/3, one for η = 8/3, and one for

η > 8/3 — and use these to infer the general behavior of the jet shape after the addition of a

pressure gradient.

For η = 7/3, the physical self-similar solution is that for which µ = 4.575. From this we fit an

analytic function to the numerical solution for g, of the form

g(ξ) = a+
b

(ξ + c)
+

d

(ξ + e)2
, (3.20)

where a, b, c, d, and e are constant parameters determined by the fit. We then modify the expression

for the pressure within the boundary layer so that ps ∝ r−η g4(ξ). We find that the results display

the expected physical effect of adding this pressure gradient: the shock front moves outward to

match the decreased pressure.

For η = 8/3, the solution for g(ξ) was analytic:

g(ξ) = 1− 2

3
ξ. (3.21)

Using this function to add a pressure gradient into the case from §3.3, we again find that the

shock wall moves outward to match the decreased pressure function. Two examples are shown in

Figure 3.7: one in which the shock front initially closed to the axis in the Kompaneets approxima-

tion, and one in which it initially remained open. Due to the approximation of a conical contact

discontinuity breaking down beyond the point where the shock front initially closes, we cannot
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Figure 3.7: The shock front and contact discontinuity for two cases: one in which the jet originally
closes (a) and one in which it originally remains open (b). Left plots demonstrate the jet under
the Kompaneets approximation, from §3.3. Right plots indicate the new position of the shock front
after the addition of the pressure gradient. The contact discontinuity remains unchanged in this
approximation.
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draw conclusions from these models in that regime. Nonetheless, it is clear that the addition of a

pressure gradient either causes the shock front to converge to the axis at a distance further down

the jet axis, or else it prevents the shock front from ever reaching the axis. Either way, one can see

from Figure 3.7 that the addition of the pressure gradient causes the shocked boundary layer to

become thinner.

For η = 3, we can again fit the function given by Eq (3.20) to the numerical solution of g(ξ).

This time the physical solution corresponds to µ = 1/2. Again modifying the Kompaneets solution

of §3.3 with this pressure gradient, we find that here too the shock moves outward and forms a

thin boundary layer. As with the η = 8/3 solutions, cases that originally closed to the axis in the

Kompaneets approximation either close further down the axis or no longer close.

We would hope that the energy within the shocked layer increases with radius, despite the

message of the luminosity scaling worked out at the end of §3.4.1. As a test of this, for η = 3, we

can integrate the total energy contained in the boundary layer in a slice across the jet at a fixed z:

L ∝
∫ Rc

Rj

pΓ2RdR. (3.22)

Comparing this enclosed energy at a few different values of z (see Figure 3.8), we can see

that although the total energy within the layer would be decreasing if ξ were fixed along the shock

(the dashed curves show the fixed-ξ energy through a given value of z), the net energy instead

increases as we go to higher z because we move to different values of ξ in the process of traveling

along the shock. Thus the solution is entirely physical: the energy behind the shock increases with

an increase in distance from the source, as is required.

3.5 Conclusion

We have evaluated the shape of the shocked boundary layer of a hot jet with an ultrarelativis-

tic equation of state, in the case that it is injected into an ambient medium that has a power-law

pressure profile of p ∝ r−η with 2 < η < 4. Using the shock jump conditions and momentum
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conservation and assuming that the pressure remains constant across the boundary layer, we found

that whether the shocked layer closes to the axis — and where it closes, if it does — is dependent

upon the values of the initial pressure ratio, the power-law index, the initial bulk Lorentz factor,

and the product of the initial opening angle and initial Lorentz factor.

We also found that, in the Kompaneets approximation, the contact discontinuity asymptotes

to the shape Rc ∝ zη/4 in the case where the shock has closed to the axis, but to a conical shape,

Rc ∝ z, in the case of a non-closing shock or in the region of the jet before the shock has closed.

Due to the expectation of a pressure gradient arising from the centripetal force created by the

slight collimation of the jet, we then created a self-similar model of the boundary layer that allows

for a pressure gradient across the layer. From this we found solutions for which pressure decreases

monotonically across the boundary layer for all values of the power-law index η.

An η of 8/3 constitutes a special solution where the pressure goes to zero at a finite distance

from the outer wall. For values of η greater or less than 8/3, the pressure approaches zero asymp-

totically. The curve for pressure steepens for values of η near 8/3 and approaches a constant value

for η → 2 or η → 4.

The drastic decrease of the pressure inwards from the contact discontinuity for values of η

near 8/3 suggests that most of the material is pushed up against the outer wall, creating a hollow-

cone structure for the jet that may be observable as edge-brightening. It also indicates that the

Kompaneets approximation is not valid for these values of η. For values of η near 2 or 4, however,

the Kompaneets approximation may be reasonable, since the pressure decrease is very gradual.

To better understand these results, we then revised the Kompaneets solutions to include the

pressure gradient of the self-similar boundary-layer model. We held the outer wall fixed and solved

for the new position of the shock front by pressure-matching across the shock jump. We found that

the addition of the pressure gradient caused the shock front to move outward in order to match the

lower pressure, resulting in a thinner boundary layer and preventing the shock from closing to the

axis in places where it originally had done so. We also confirmed that the total energy contained

within the boundary layer was an increasing function of height z, as is required.
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The inherent difficulty of examining this problem analytically required us to make several

simplifying assumptions over the course of this work. One such assumption, made in §3.4 to obtain

the boundary-layer solutions, is that all the material within the boundary layer is on the same

adiabat. This would be true if the majority of the material entered the boundary layer at roughly

the same location, however this is not the case in general. But for the boundary-layer solutions

where the pressure drops rapidly (η near 8/3), most of the material must be pushed up against

the contact discontinuity early on. This suggests that it must all have entered the boundary layer

near the jet base, which demonstrates self-consistency with the same-adiabat assumption for this

regime. Nonetheless, in future work we intend to explore the possibility of treating the jet material

on different adiabats.

It is widely believed that magnetic effects contribute to the collimation of relativistic jets

(see e.g. Komissarov, 1999). While the models discussed here are purely hydrodynamic, they can

have important applications both in interpreting the data obtained in three-dimensional general

relativistic magnetohydrodynamics simulations that provide a self-consistent description of the jet

launching mechanism (e.g. Beckwith et al., 2008, 2009; McKinney & Blandford, 2009) and in

improving the physical content of boundary conditions imposed in simulations that study the role

of magnetic fields in large-scale jet collimation (see e.g. Komissarov et al., 2007, 2009; Komissarov,

2011).

In the former case, the Poynting-flux dominated jet is sheathed by an unbound outflow (Haw-

ley & Krolik, 2006), which may have important implications for the operation of current-driven

instabilities (McKinney & Blandford, 2009). However, the numerical resolution used in these sim-

ulations is generally insufficient to adequately resolve the sharp density and pressure gradients

present in these regions. Combining the models presented here with the conditions present in the

ambient medium at the base of the jet (e.g. the disk corona) in these simulations will allow us to

assess the extent to which numerical resolution affects simulation outcomes.

In the case of simulations that study the role of magnetic fields in large-scale jet collimation,

the work presented here will allow a more complete physical treatment of the effects of the ambient
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medium. In these simulations (Komissarov et al., 2007, 2009; Komissarov, 2011), this boundary is

generally treated as a rigid wall, where fluid quantities (such as gas density and pressure) are simply

copied across the boundary, while the normal component of vector quantities (e.g. velocity and

magnetic field) is reflected. The models presented here will allow improvement of this treatment

by specifying jump conditions for hydrodynamic quantities at this boundary, consistent with the

shape of the wall — thereby including the collimating effect of the ambient medium.

These calculations mark the first step towards a more complete treatment of both the action

of the external medium and magnetic effects in collimating and accelerating relativistic jets. The

next step in this work is to include the effect of a toroidal magnetic field, allowing for magnetic

confinement. Together, this work and its magnetized extension will provide us with an equilibrium

model from which we can explore instabilities and radiative mechanisms of the jet near its base,

leading to improved constraints on jet dissipation and associated radiative signatures. Through

this work we hope to further our understanding of jet collimation and, in particular, boundary-

layer behavior.



Chapter 4

Boundary Layers in Magnetized Relativistic Jets

4.1 Preface

This paper appeared in Monthly Notices of the Royal Astronomical Society, Volume 422, Issue

3, pp. 2282-2290 and was completed under the guidance of Dr. Mitch Begelman. This is the second

of three papers examining the impact of the ambient medium on collimation and confinement of

relativistic jets that have lost causal contact with their surroundings. This work focuses on how

the results of Chapter 3 change with the addition of a toroidal magnetic field threading the jet. In

particular, we examine the relative contributions of gas pressure and magnetic pressure to the jet’s

confinement, collimation, and acceleration.

Abstract

We study the collimation of relativistic magnetohydrodynamic jets by the pressure of an ambient

medium, in the limit where the jet interior loses causal contact with its surroundings. This fol-

lows up a hydrodynamic study in a previous paper, adding the effects of a toroidal magnetic field

threading the jet. As the ultrarelativistic jet encounters an ambient medium with a pressure profile

with a radial scaling of p ∝ r−η where 2 < η < 4, it loses causal contact with its surroundings

and forms a boundary layer with a large pressure gradient. By constructing self-similar solutions to

the fluid equations within this boundary layer, we examine the structure of this layer as a function

of the external pressure profile. We show that the boundary layer always becomes magnetically

dominated far from the source, and that in the magnetic limit, physical self-similar solutions are
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admitted in which the total pressure within the layer decreases linearly with distance from the

contact discontinuity inward. These solutions suggest a ‘hollow cone’ behavior of the jet, with the

boundary layer thickness prescribed by the value of η. In contrast to the hydrodynamical case,

however, the boundary layer contains an asymptotically vanishing fraction of the jet energy flux.

4.2 Introduction

The outflows from active galactic nuclei (AGN) are thought to be highly relativistic (Begelman

et al., 1984) and highly collimated (e.g. Jorstad et al., 2005), but the cause of this collimation is

uncertain.

Because jet-launching is generally believed to be electromagnetically driven (e.g. Blandford

& Payne, 1982; Contopoulos & Lovelace, 1994), one of the most commonly-accepted explanations

for the observed collimation is that jets are threaded with magnetic fields that cause collimation

via magnetic tension (e.g. Benford, 1978; Begelman, 1995). Supporting this theory, it has been

demonstrated that both relativistic and non-relativistic hydromagnetic outflows must eventually

become collimated (Chiueh et al., 1991; Heyvaerts & Norman, 1989). For magnetic fields acting

alone, however, collimation will only happen on extremely large scales (Eichler, 1993; Begelman

& Li, 1994; Begelman, 1995).

To cause jets to collimate on reasonable scales, there must be an additional mechanism at

work. A logical culprit is confinement by the pressure of an external medium. Pressure confinement

has been demonstrated to act effectively on its own (e.g. Levinson & Eichler, 2000; Bromberg &

Levinson, 2007; Kohler et al., 2012), and accretion disk winds surrounding an AGN provide an

ideal ambient medium to help to collimate the jet.

There have been many numerical studies of magnetized jets (e.g. Komissarov, 1999; Hawley

& Krolik, 2006; Beckwith et al., 2008; McKinney & Blandford, 2009), with the goal of forming

a self-consistent description of the jet-launching and collimation mechanisms. These numerical

simulations have several restrictions, however, one of which being that the boundary of the jet,
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rather than having its shape determined by pressure balance, is generally treated as a rigid wall (e.g.

Komissarov et al., 2007, 2009; Komissarov, 2011; Tchekhovskoy et al., 2010). This construction

doesn’t allow the ambient pressure to affect collimation of the jet.

Treatments that do include effects of the external medium commonly focus on describing jets

that remain in causal contact (e.g. Zakamska et al., 2008; Lyubarsky, 2011). As an ultrarelativistic

jet expands into an ambient medium with a pressure profile p ∝ r−η, it will eventually lose causal

contact if η > 2 and the opening angle is greater than 1/Γ, where Γ is the bulk Lorentz factor of the

fluid. Observations of gamma-ray bursts indicate that these relativistic jets largely have opening

angles greater than 1/Γ (e.g. Piran, 2004; see Tchekhovskoy et al., 2010 for discussion), and AGN

outflows with large Lorentz factors may similarly be causally disconnected; thus the poorly-studied

regime of a jet that has lost causal contact is of physical interest.

In a previous paper (Kohler et al., 2012, hereafter KBB12) we developed a model describing

the recollimation boundary layer of a purely hydrodynamic, “hot” (pressure-dominated) jet with

an ultrarelativistic equation of state. In this model, we assumed that the pressure outside the jet

decreases with r so rapidly that the jet interior loses causal contact with its boundary, resulting in

a shocked boundary layer forming within the jet. Though the jet interior is causally disconnected,

the boundary layer is nevertheless narrow enough to remain in causal contact itself. Assuming

self-similarity as a function of r, we calculated how the transverse structure of the jet boundary

layer depends on the value of η in the external pressure profile.

We now expand this work to include, in addition to collimation by the external medium, the

effects of a magnetic field within the jet. We include only a toroidal field, as it is the toroidal field

that dominates the dynamics at large radii, far outside the light cylinder (Begelman et al., 1984;

Contopoulos, 1995; Beskin, 2009). In §4.3, we first demonstrate that seeding a jet with a magnetic

field at the base will always cause it to become magnetically dominated at large radii. We then find

self-similar solutions for the boundary layer of the jet in the limit of magnetic dominance. In §4.4

we discuss the results, and in §4.5 we conclude.
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4.3 Self-Similar Treatment of the Magnetized Boundary Layer

We use spherical coordinates to model a hot, ultrarelativistic jet that is symmetric about the z-

axis and has approximately radial streamlines – an approximation justified because the jet interior

is causally disconnected from the environment. We assume that the jet is injected from a point

source with steady flow, and we examine the jet in its steady-state configuration.

We focus on modeling the boundary layer of jet material that forms at the interface between

the jet and the stationary ambient medium. This layer is bounded on the inside by a shock front

or a rarefaction front, and on the outside by a contact discontinuity. There is no mass flux across

the contact discontinuity, and the pressure must be matched on either side of it. The physics of the

ambient medium is wrapped into the external pressure profile pe.

We adopt a pressure profile for the ambient medium of pe ∝ r−η, fixing the pressure external

to the jet to be dependent only on the parameter η. We focus on the case of ambient pressure where

2 < η < 4, as in our work in KBB12 or in, e.g., Bromberg & Levinson, 2007, because the jet interior

is out of causal contact with the exterior for this range in η. Physically, this pressure profile range

could describe a confining wind, an accretion flow, a disk corona, or even a stellar envelope in a

GRB collapsar model (e.g. Bromberg et al., 2011).

As in KBB12, we assume that the opening angle of the jet is much greater than 1/Γ, such that

causal contact has been lost. We construct a boundary layer that remains in causal contact, such

that its thickness is of order ∆θ ∼ 1/Γ. The boundary layer is thus very thin compared to the width

of the jet. The radius of curvature of the jet is then much larger than the width of the boundary

layer, allowing us to treat the curvature as a small effect.

We begin with the equations for relativistic MHD (RMHD) in flat spacetime (e.g. Dixon,

1978; Komissarov, 1999; Zakamska et al., 2008), including the effects of a toroidal magnetic field

within the jet. We ignore rotation since our regime of interest is far outside the light cylinder and,

indeed, far outside the fast magnetosonic surface, rendering rotation effects unimportant. We again

assume an ultrarelativistic equation of state such that the total proper energy density is given by
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ε = ρ + 3p ≈ 3p, where ρ and p are, respectively, the proper rest mass density and the pressure of

the fluid within the boundary layer.

The continuity equation remains unchanged with the addition of a magnetic field,

∇ · (ρβΓ) = 0, (4.1)

where β and Γ are the velocity (β = v/c) and the bulk Lorentz factor of the fluid within the

boundary layer. Assuming an energy equation of p ∝ ρ4/3 and taking θ ∼ constant, the continuity

equation becomes

1

r2

∂

∂r
(r2p3/4Γβr) +

1

r

∂

∂θ
(p3/4Γβθ) = 0 (4.2)

in spherical coordinates.

Denoting the observer-frame magnetic field within the jet boundary layer asB, and using the

ideal MHD condition to express the observer-frame electric field as E = −v ×B, the momentum

equation can now be written as

(4pΓ2 +B2)(β · ∇)β +∇(p+
1

2
B2Γ−2)

−B[∇ · (BΓ−2)]− Γ−2(B · ∇)B = 0, (4.3)

where the parallel and perpendicular components of the momentum equation are obtained by

taking the respective vector dot and cross product of β with Eq (4.3).

Finally, we add the equation for flux freezing,

∇× (β ×B) = 0. (4.4)

Writing this in spherical coordinates, and assuming a toroidal magnetic field B = B(r, θ)φ̂, we

have

∂

∂r
(rβrB) +

∂

∂θ
(βθB) = 0. (4.5)

The full form of these four equations admit self-similar solutions only in the case where

η = 4, which corresponds to a quasi-monopole flow with no collimation and therefore no distinct
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boundary layer. For all other values of η, the full equations allow only for trivial solutions due to

overconstraint of the system. We now demonstrate, however, that it is not appropriate to use these

equations in their full form. They should instead be examined in the magnetically-dominated limit

– where they do admit non-trivial self-similar solutions.

4.3.1 Demonstration of Asymptotic Magnetic Dominance

Suppose that the magnetic field takes the form B = rp3/4Γf(r, θ) where f is some function

of r and θ. Inserting this into Eq (4.4), we obtain

∇ · (p3/4Γβf) = 0 (4.6)

which can be expanded and combined with Eq (4.1) to show that

β · ∇f = 0, (4.7)

indicating that the function f must be constant along streamlines.

Because the contact discontinuity is a streamline, we can therefore state that B ∝ rp3/4Γ

along the contact discontinuity. As in Zakamska et al., 2008, we now define a magnetization

parameter βB as the ratio of magnetic to gas pressure (the inverse of the usual plasma beta). Along

the contact discontinuity this parameter is thus given by

βB =
B2

pΓ2
∝ r2p1/2. (4.8)

Because pressure must be matched across the contact discontinuity, the external pressure

pe ∝ r−η must be balanced at that point by the total internal pressure within the boundary layer,

ptot = p+B2/Γ2. We now examine βB in two extreme cases: the limit where the pressure balance

at the contact discontinuity is supplied solely by the gas pressure within the boundary layer, and

the limit where the balance is supplied solely by the magnetic pressure within the layer.

In the gas pressure-dominated case, the internal gas pressure p is equivalent to the external

pressure pe, and must therefore scale in the same way, such that p ∝ r−η. Applying this to Eq (4.8)
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demonstrates that in this case, βB ∝ r(4−η)/2. Thus, for 2 < η < 4, βB scales as r to some positive

power.

In the magnetically-dominated case, the external pressure is balanced by the magnetic pres-

sure such that B2/Γ2 ∝ r−η. This scaling implies that the internal gas pressure is given by

p ∝ r−(2/3)(η+2), and we obtain βB ∝ r(4−η)/3. Again, for 2 < η < 4, βB scales as r to some

positive power.

Thus we see that in both extreme cases, βB grows with increasing r. This suggests that no

matter how small a magnetic field the jet is seeded with, the boundary layer will eventually become

magnetically-dominated far from the jet source. With this in mind, we now repeat the calculations

performed in KBB12 with the inclusion of a toroidal magnetic field, specifically in the limit where

βB � 1.

4.3.2 Solutions in the Magnetic-Dominance Limit

We first rederive the fluid equations in §4.3.1 in the limit where βB � 1. Continuity and flux

freezing are unchanged, but terms in the momentum equation containing 1/βB are negligible in

this limit.

We now make scaling arguments as in KBB12: we assume βθ is of order 1/Γ, since this is the

maximum transverse speed that can be achieved without a shock forming, and βr is of order one.

With this characteristic scale, ∂
∂θ ∼ Γ ∂

∂r . Expressing βr in terms of βθ and Γ and employing the fact

that β2
θ + Γ−2 � 1, we have βr ≈ 1− 1

2(β2
θ + Γ−2). Using these scalings and keeping terms only to

lowest order, the parallel and perpendicular components of the momentum equation are:

r
∂p

∂r
+ βθ

∂p

∂θ
+
B

Γ2

(
B + r

∂B

∂r
+ βθ

∂B

∂θ

)
= 0 (4.9)

B2

(
r
∂βθ
∂r

+ βθ + βθ
∂βθ
∂θ
− 1

Γ3

∂Γ

∂θ

)
+
∂p

∂θ
+
B

Γ2

∂B

∂θ
= 0. (4.10)
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We now attempt to construct self-similar solutions in the following fashion:

1

Γ
= g(ξ)r−x, βθ = h(ξ)r−x,

B = b(ξ)rx−η/2, p = a(ξ)r−α, (4.11)

such that the external gas pressure is matched by the internal magnetic pressure, B2/Γ2 ∝ r−η. In

these solutions x and α are constant free parameters describing the radial scaling, and g, h, b and

a are functions of a similarity variable ξ (as in KBB12) that describes the distance from the contact

discontinuity, normalized by the expected scale of the boundary layer, ξ ∝ (θc−θ)/∆θ. The angular

thickness of the boundary layer is expected to scale as ∆θ = 1/Γc, such that ξ ∝ rx(θc − θ), where

θc = θc(r) is the location of the contact discontinuity.

The fact that the streamlines at θc must be parallel to the contact discontinuity, requiring that

βθ(θc) = rdθc/dr, yields the further constraint that

dθc
dr

= h0r
−(x+1), (4.12)

where h0 = h(ξ = 0) is a negative constant for collimating solutions. While the flow is very

nearly radial, this expression describes the small deviation of the flow lines resulting from subtle

collimation. Choosing the proportionality constant such that ξ is defined as

ξ = − 1

h0
rx(θc − θ) (4.13)

absorbs the boundary condition into the similarity variable and ensures collimating solutions (such

that h0 < 0).

We now recast the fluid equations in terms of these functions. The continuity and flux-

freezing equations are fully self-similar and become, respectively,(
3
a′

a
− 4

g′

g

)(
xξ − 1 +

h

h0

)
+

(
4x+ 8− 3α+ 4

h′

h0

)
= 0 (4.14)

b′

b

(
xξ − 1 +

h

h0

)
+

(
x− η

2
+ 1 +

h′

h0

)
= 0, (4.15)

where primes denote differentiation with respect to ξ.



49

Now examining the parallel component of the momentum equation, one can see that the

radial scaling does not automatically vanish:

b2g2

a

[
1 + x− η

2
+
b′

b

(
xξ − 1 +

h

h0

)]
+rη−α

[
a′

a

(
xξ − 1 +

h

h0

)
− α

]
= 0. (4.16)

Because we are specifically examining the regime where βB ∝ B2/(pΓ2) ∝ rα−η � 1, however, we

can assume that rη−α will be very small for large r, rendering the second term negligible.

Using this logic, the parallel and perpendicular components of the momentum equation be-

come, respectively,

b2g2

a

[
1 + x− η

2
+
b′

b

(
xξ − 1 +

h

h0

)]
= 0 (4.17)

h(1− x) + h′
(
xξ − 1 +

h

h0

)
+
g2

h0

(
g′

g
+
b′

b

)
= 0. (4.18)

Assuming that b, g, a and h are finite and non-zero, Eqs (4.15) and (4.17) imply that h′ = 0.

This assumption results in Eq (4.15) becoming

b′

b
= −x− η/2 + 1

xξ
(4.19)

and yields the following general solutions for the functions describing the transverse behavior

within the boundary layer:

h = h0 (4.20)

b = Aξ−(2+2x−η)/2x (4.21)

g = ±
[
Bξ(2+2x−η)/x − 2h2

0x(x− 1)

2 + x− η
ξ

]1/2

(4.22)

a′

a
=

3α− 4− 2η

3x
ξ−1 − 4

3
(1− x)

(
g

h0

)−2

, (4.23)

where A and B are constants of integration that are defined by the boundary conditions.

To produce physical solutions, we examine the special case where we prevent b′ from having

a singularity at ξ = 0 by setting x− η/2 + 1 = 0, implying that b is a constant. In terms of boundary
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conditions h0, g0, b0, and a0, which serve as scaling factors and allow us to determine our functions

self-consistently, the physical solutions within the boundary layer are therefore

h = h0 (4.24)

b = b0 (4.25)

g = −h0

[(
g0

h0

)2

− (4− η)ξ

]1/2

(4.26)

a = a0

(
h0

g0

)4/3
[(

g0

h0

)2

− (4− η)ξ

]2/3

, (4.27)

with the constraints x = η
2 − 1 and α = 2

3(η + 2), such that

1

Γ
= gr1−η/2, βθ = hr1−η/2,

B = br−1, p = ar−(2/3)(η+2). (4.28)

A check for self-consistency shows that the density in the lab frame, given by p3/4Γ, has no

dependence upon θ and scales as r−2, as is expected for nearly radial flow.

It should be noted that for the toroidal magnetic field and corresponding electric field to exist

within the boundary layer, there must be a current distribution and charge distribution within the

layer, and a current sheet and surface charge at the outer boundary where the magnetic and electric

fields terminate. Calculating the current distribution within the jet from the solutions in Eq (4.28),

one can see that longitudinal current within the jet is conserved in the case of approximately radial

streamlines, providing another check of self-consistency.

4.4 Discussion of Results

The first important result of this solution is that, in the observer’s frame, both the magnetic

field B and the transverse jet velocity βθ have only radial dependence; they are constant across the

boundary layer. This is in direct opposition to the results from the strictly hydrodynamic limit (see

KBB12, §3.1), where βθ decreases monotonically from the outside of the boundary layer inward for

all cases where 2 < η < 4.
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Figure 4.1: Special-case solution for g(ξ) in terms of the pressure-profile parameter η and boundary
conditions g0 and h0.
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Another significant point is that the solution for the magnetic field has no dependence in

either dimension on the parameter η, meaning that the magnetic field that develops within the

boundary layer is not affected by the pressure profile of the medium that the jet passes through.

The Lorentz factor Γ, on the other hand, does have a radial dependence on η. As expected,

we see that the jet is accelerated as it propagates outward: Γ ∝ rη/2−1 scales as a positive power of

r.

We now examine the pressure profile within the boundary layer as prescribed by this solution.

Since we have demonstrated that the magnetically-dominated regime is the relevant regime in this

problem, the total pressure within the layer is approximately described by the magnetic pressure

B2

Γ2
∝ b20h2

0

[(
g0

h0

)2

− (4− η)ξ

]
. (4.29)

In KBB12 we demonstrated that in the strictly hydrodynamic case, the pressure monotonically

decreases for all η, but decreases linearly with ξ only for the case where η = 8/3 (KBB12, §3.1). In

this specific case, the pressure drops to zero within the boundary layer, indicating that all of the jet

material is piled in a thin boundary layer in a ‘hollow cone’ structure. As the value of η gets further

from 8/3 in either direction, the pressure profile becomes less steep, implying that the boundary

layer broadens and the structure of the jet becomes less like a hollow cone.

The magnetic case is a little more difficult to interpret due to the unspecified boundary con-

ditions g0 and h0 in Eq (4.29), but we can make some qualitative observations. First, it is clear that

the magnetic case parallels the hydrodynamic case in that all solutions for pressure (which, since

magnetically dominated, scales as 1/Γ2 in the boundary layer) monotonically decrease with ξ for

2 < η < 4. This means that the pressure is greatest at the contact discontinuity where it is matched

with the external pressure, and it decreases inwards across the layer (see Fig. 4.1), as is expected

due to the collimation.

A major contrast between the magnetic and hydrodynamic cases is that in the magnetic case

it is true for all values of η that the pressure decreases linearly and vanishes at a critical value of ξ,

in this case ξcr = (g0/h0)2 /(4− η). Thus any jet can form a hollow cone structure in the magnetic
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case, with a boundary layer of thickness ∆ξ = ξcr. The impact of η, then, is instead to determine

the thickness of the boundary layer: jets injected into an ambient medium with a pressure profile

parametrized by a low η (a gradual decrease in external pressure) will therefore develop the most

pronounced hollow-cone structure, whereas jets injected into a medium that has a higher η (a steep

decrease in external pressure) will exhibit a thicker boundary layer.

The distinction between the magnetic and hydrodynamic cases is most evident, however,

when examining the global energy constraints for these solutions, as in KBB12. In this case, we

assume that all the power in the boundary layer is in the form of Poynting flux, given by L ∝ B2A,

where A is the cross-sectional area of the boundary layer. As we are assuming a boundary layer of

width ∆θ = 1/Γ, the cross-sectional area of that ring is A ∝ r2/Γ, implying that the power within

the boundary layer scales as L ∝ r1−η/2. Thus for 2 < η < 4, the boundary layer contains less and

less energy as one goes further out in r.

This loss of energy is indicative of a unique situation in the magnetic case: rather than being

bounded on the inside by a shock front through which material is added, as in the hydrodynamic

case, at large r the boundary layer instead appears to be bounded on the inside by a rarefaction

front, through which material is leaving the layer and returning to the main jet.

We can verify the position of this rarefaction front by calculating the location of the surface

at which the fluid motion normal to the surface is equivalent to the local speed of sound. This

condition can be stated as

β2
ξr =

β2
f

Γ2
(

1− β2
f

) , (4.30)

where βξr is the velocity normal to the surface of the rarefaction front ξr, and βf is the local sound

speed, which is given by the relativistic expression for the fast magnetosonic speed in the hot-jet

limit,

β2
f =

4
3p+B2

4p+B2
. (4.31)
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This calculation yields an approximate position for the rarefaction front of

ξr = ξcr −
(η − 2)3/2

(4− η)5/2

(
2a0

3b20

)3/4( g0

h0

)1/2

r(η−4)/4, (4.32)

indicating that the rarefaction front occurs at a location just before the pressure within the bound-

ary layer drops to zero, allowing matching across the front to the conditions in the interior of the

jet. At large r, the position of the rarefaction front asymptotes to the location of the pressure

zero-point.

Looking at how the Lorentz factor Γ scales with r along the rarefaction front, we see that

Γ ∝ r3η/8−1/2. We know that the Lorentz factor scales as Γ ∝ rη/2−1 at the contact discontinuity,

and we expect it to scale as Γ ∝ r in the jet interior to be consistent with free expansion (see also

Lyubarsky, 2011). Thus, for 2 < η < 4, the scaling of Γ at the rarefaction front is consistent with an

intermediate acceleration between the two, providing a smooth transition between the boundary

layer and the jet interior.

More insight into the boundary-layer energy loss can be attained by examining the position

of the contact discontinuity (θc) and the inner boundary (θs = θ(g = 0)) as a function of radius.

Using the solutions found in Eq (4.28), the width of the boundary layer is given by

θc − θs = −g
2
0/h0

4− η
r1−η/2, (4.33)

indicating that the width is decreasing in r.

Furthermore, integrating Eq (4.12) using the above equation allows us to find the form of

the inner and outer boundaries individually:

θc = θ0 −
h0

η/2− 1
r−(η/2−1) (4.34)

θs = θ0 +

(
h0

4− η

)[(
g0

h0

)2

− 4− η
η/2− 1

]
r−(η/2−1). (4.35)

From this, we can see that the outer boundary is collimating, but less and less so with increasing r.

The inner boundary, on the other hand, is decollimating when the condition(
g0

h0

)2

>
4− η
η/2− 1

(4.36)
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is met, with the boundary conditions prescribed by matching across the rarefaction front to so-

lutions for the jet interior (such as those described by Lyubarsky, 2011). When this condition is

satisfied, the boundary layer intercepts fewer and fewer streamlines of new material from within

the jet interior. The decollimation, too, weakens with increasing r, with the inner and outer bound-

aries meeting asymptotically.

These results suggest that the boundary layer of a magnetically dominated jet decreases

in width with increasing distance from the source, and contains a decreasing amount of energy as

material leaves the boundary layer across the rarefaction front to rejoin the jet interior. Nonetheless,

a sharp pressure gradient is maintained across the layer, insulating the interior of the jet from the

external medium.

4.5 Conclusion

We have evaluated the structure of a boundary layer within a hot, magnetohydrodynamic jet

with an ultrarelativistic equation of state. We assumed that the jet as a whole is causally discon-

nected from its surroundings, but the boundary layer is thin and therefore in causal contact. We

examined the impact on jet collimation of a toroidal magnetic field within the jet as well as an

ambient medium with a pressure profile of p ∝ r−η, with 2 < η < 4.

We first demonstrated that the basic RMHD equations can be used to show that any jet

boundary layer seeded with a toroidal magnetic field at its base will eventually become magnetically

dominated at large radii.

We then constructed self-similar solutions for the boundary layer in the limit where the jet

pressure is dominated by magnetic pressure. We found a special case of physical solutions where

the jet pressure decreases linearly across the boundary layer, dropping to zero at a location set by

the boundary conditions and the value of the pressure profile parameter η. The boundary layer

thickness is dependent upon the value of η, with increasing η producing an increasingly wide

boundary layer.
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We further found that the thickness of the boundary layer decreases with radial distance, and

the boundary layer contains a decreasing amount of the jet energy. This suggests that the addition

of a magnetic field fundamentally changes the jet at large radius: whereas in the hydrodynamic

case the inner boundary of the layer is a shock front through which material enters the layer, in

the magnetohydrodynamic case the layer is bounded on the inside by a rarefaction front through

which material leaves the boundary layer and rejoins the interior of the jet.

We found the position of this rarefaction front to occur just inside the layer from the location

where the pressure vanishes, providing a smooth transition between the boundary layer and the jet

interior and allowing for matching across the rarefaction front to the conditions in the jet interior.

This matching would prescribe the values of the boundary conditions within the layer, and could

potentially yield a solution where the rarefaction front is gradually decollimating, intercepting

fewer and fewer streamlines as radial distance from the source increases.

In spite of the thinning of the boundary layer with radial distance, a sharp pressure gradient

is nonetheless maintained across the layer, causing it to function as an insulating buffer between

the jet interior and the ambient medium. Unlike the hydrodynamic case, the solutions for the

structure of a magnetized jet do not have clear observational implications. Though the boundary

layer contains a decreasing amount of energy as one looks further from the source, the layer might

nonetheless have a high emissivity, which could be observationally important if the flow within the

boundary layer is pointed along our line of sight.

The results presented in this paper provide the premise for a more complete treatment in

numerical simulations of the effects of the ambient medium on collimation, both by demonstrating

the behavior of the jet when the outer wall is allowed to change its shape, and by providing models

that can be used to assess the effects of numerical resolution on simulation outcomes.

Ultimately, these results provide a foundation for future work examining energy dissipation

in magnetized jets and the associated radiative observational signatures.



Chapter 5

Entropy Production in Relativistic Jet Boundary Layers

5.1 Preface

This paper appeared in Monthly Notices of the Royal Astronomical Society, Volume 446, Issue

2, p.1195–1202 and was completed under the guidance of Dr. Mitch Begelman. This is the third

of three papers examining the impact of the ambient medium on collimation and confinement of

relativistic jets that have lost causal contact with their surroundings. In this paper, we return to

the work of Chapter 3 and relax some of the strict assumptions made, including that the flow is

irrotational, isentropic, and behaves adiabatically. Instead, we consider the case where the ambient

pressure external to the jet decreases slowly, and entropy is generated within the boundary layer

as a result of multiple shocks being driven into the flow.

Abstract

Hot relativistic jets, passing through a background medium with a pressure gradient p ∝ r−η

where 2 < η ≤ 8/3, develop a shocked boundary layer containing a significant fraction of the jet

power. In previous work, we developed a self-similar description of the boundary layer assuming

isentropic flow, but we found that such models respect global energy conservation only for the

special case η = 8/3. Here we demonstrate that models with η < 8/3 can be made self-consistent

if we relax the assumption of constant specific entropy. Instead, the entropy must increase with

increasing r along the boundary layer, presumably due to multiple shocks driven into the flow as it

gradually collimates.
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The increase in specific entropy slows the acceleration rate of the flow and provides a source

of internal energy that could be channeled into radiation. We suggest that this process may be

important for determining the radiative characteristics of tidal disruption events and gamma-ray

bursts from collapsars.

5.2 Introduction

Relativistic jets are becoming increasingly relevant as a component of high-energy astro-

physical systems. Not only are these jets observed in the context of active galactic nuclei (AGN),

microquasars, and gamma-ray bursts (GRBs), but they are now also considered to be an expla-

nation of the flares seen from some tidal disruption events (TDEs), events in which a star is torn

apart by the tidal forces exerted by a normally-dormant, massive black hole (Zauderer et al., 2011;

Tchekhovskoy et al., 2014).

When a relativistic jet is launched, it slams into the gas and dust surrounding the source.

Two things are thought to happen as these jets propagate outward. First, after they are launched

with what are thought to be fairly modest speeds (Georganopoulos & Marscher, 1998), they are

accelerated to Lorentz factors of typically a few for microquasars (Meier, 2003), 10-20 for blazars

(Sikora et al., 1994b; Jorstad et al., 2005), and hundreds or even thousands for GRBs (Lithwick &

Sari, 2001). Second, they experience some form of collimation that results in the relatively narrow

jet opening angles observed in most blazars and GRBs (e.g. Doeleman et al., 2012; Jorstad et al.,

2005; Sari et al., 1999; Goldstein et al., 2011). As jets from active galactic nuclei are observed

to first become collimated near their source (Junor et al., 1999; Jorstad et al., 2005), we seek a

description to explain simultaneous collimation and acceleration at the base of the jet, where the

internal-energy-dominated flow first interacts with the ambient medium.

Close to the central black hole, inside the Alfvén surface, jets can be collimated by the inertia

of the disk at the jet base, transmitted by magnetic tension along the flow (e.g. Blandford, 1976;

Lovelace, 1976; Koide, 2004; Narayan et al., 2007). At larger scales, however, causal connection
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between the disk and the flow is lost, creating a need for additional confinement by the pressure

of an external medium (Begelman, 1995). Additionally, collimation by magnetic tension has been

demonstrated to occur very slowly (Eichler, 1993; Tomimatsu, 1994; Begelman & Li, 1994; Beskin

et al., 1998), and cannot explain the collimation scales observed.

In contrast to collimation where gas pressure is crucial, jet acceleration is generally assumed

to be dominated by magnetic stresses. However, there are situations where other forces may play a

dominant role. As an example, recent observations of TDEs indicate that some may exhibit powerful

jets — but there is not enough magnetic flux available to power such a jet without invoking a relic

field (see e.g. Tchekhovskoy et al., 2014). This provides additional motivation to study the effects

of external pressure confinement on jet acceleration and collimation.

The environments around relativistic jets provide ideal scenarios for pressure confinement:

there exist both static collimating environments such as the dusty torus of an AGN or the stellar

envelope surrounding a GRB (e.g. Eichler, 1982; Komissarov & Falle, 1997), as well as the potential

for collimation by dynamic means, such as by the ram pressure of a disk wind (e.g. Komissarov,

1994a; Bromberg & Levinson, 2007). Pressure confinement and magnetic tension could work to-

gether to collimate a flow, as we describe in Kohler & Begelman (2012). Alternatively, pressure

confinement could act alone — a possibility which is our focus both in Kohler et al. (2012), here-

after KBB12, and in the current paper.

When a hydrodynamic, relativistic jet is injected into an ambient medium with a pressure

profile that scales as p ∝ r−η where η > 2, the jet interior will ultimately lose causal contact

with its surroundings (Begelman et al., 1984). If η < 4, a shocked boundary layer forms at the

interface between the flow and the ambient medium, and the outer region of the jet experiences a

collimating force from the pressure of that environment.

The range of 2 < η < 4 for the external pressure profile could describe many scenarios for a

confining medium, such as the ram pressure of a disk wind (see Eichler, 1982), a disk corona, or a

stellar envelope. This regime may be particularly relevant to the currently-explored topic of TDEs;

in Coughlin & Begelman (2014), for example, the range calculated for the accretion disk that forms
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around the central black hole in a TDE is 3/2 < η < 4. Developing models of the jet flow in this

range of ambient pressure profiles is therefore an important task for understanding the structure of

the jets that form in a variety of interesting scenarios.

This problem has been previously approached in a variety of ways. Three-dimensional gen-

eral relativistic MHD simulations such as Beckwith et al. (2008), Beckwith et al. (2009), and McK-

inney & Blandford (2009) provide self-consistent descriptions of the jet launching mechanism and

propagation of a Poynting-flux-dominated jet sheathed by an unbound flow, but these simulations

are limited by their inability to sufficiently resolve the sharp pressure and density gradients that

occur in these regions. Other numerical studies of the large-scale collimation of jets treat the ex-

ternal medium as a rigid wall with a prescribed geometry, enclosing a cavity into which the jet is

injected (e.g. Komissarov et al., 2007, 2009; Komissarov, 2011; Tchekhovskoy et al., 2010). Simu-

lations that focus specifically on modeling gamma-ray burst jets breaking out of a stellar envelope

— which generally describe either Poynting-flux-dominated jets (e.g., Proga et al., 2003; Bromberg

et al., 2014) or thermally-accelerated jets (e.g., Aloy et al., 2005; Lazzati & Begelman, 2005) —

often suffer from similar constraints on resolution and boundary conditions, as well as the addi-

tional complications of time-dependent jet behavior (though the inclusion of this time-dependent

analysis is of course more realistic than steady-state idealizations).

Because of these limitations, simplified analytic models are extremely helpful for improving

the physical content of the boundary conditions employed in numerical simulations, as well as for

interpreting the extent to which numerical resolution affects the outcomes of these simulations.

As such, we opted to pursue an analytic approach that instead treats the external pressure as a

boundary condition, but leave the physical shape of the boundary free to be determined as a result

of interaction between the jet and the ambient medium.

Simplified analytic treatments of this problem can also vary greatly in approach, however.

Works such as Komissarov & Falle (1997), Nalewajko & Sikora (2009), and Lyubarsky (2009) focus

on the interaction between a cold jet (dominated by inertia) and the ambient medium. In contrast,

Levinson & Eichler (2000) assumed a hot jet (dominated by the internal energy), but examined
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the structure and behavior of the jet in the limiting case where the jet becomes fully shocked upon

impact. Other treatments, such as Zakamska et al. (2008), Begelman et al. (2008), and Lyubarsky

(2011), focus on modeling jets that remain in causal contact.

In contrast to these studies, we are interested in the case where the jet loses causal contact

as it propagates, forming a boundary layer of shocked jet material at the point of impact with the

ambient medium. This problem was previously addressed in Bromberg & Levinson (2007); in this

paper, the authors model the effects of both a stationary external medium and a disk wind on a

hot, hydrodynamic jet that has lost causal contact when it impacts the external environment. The

authors assume that the pressure remains constant across the boundary layer in this case, and they

then examine the impact of the initial conditions, such as initial opening angle and Lorentz factor,

on the structure of the jet as it balances its internal pressure with the pressure of the ambient

medium.

In KBB12, we repeated their calculations, solving for the structure of a boundary layer just

inside the contact discontinuity that separates the jet from its surroundings. We found results sim-

ilar to those of Bromberg & Levinson (2007), though we treated the entropy within the boundary

layer slightly differently, which resulted in a difference in the collimating behavior of the outer

boundary of the jet (see KBB12 for details). We then took our analysis a step further, however: due

to the curvature of the jet as it collimates, we expect a pressure gradient to form across the bound-

ary layer, so we opted to refine the boundary-layer treatment to allow for varying pressure across

different streamlines. In the limit of ultrarelativistic flow (bulk Lorentz factor Γ � 1), we found a

method of constructing self-similar models specifically for the structure within the boundary layer

(see, again, KBB12 for results). These models, however, only gave physically reasonable results

for certain values of η: global energy conservation was only respected for the special case where

η = 8/3. Our models in KBB12 were also simplified by the use of several underlying assumptions

that are commonly adopted in analytic treatments; in particular, that the flow in these solutions

was both irrotational and isentropic.

In this paper, as a follow-up to KBB12, we now propose a set of more general solutions to the
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boundary-layer problem of a hot relativistic jet that has lost causal contact, and we demonstrate

that these solutions provide physical results for the range of η that was not well-described by KBB12

(which is the interesting regime for astrophysical scenarios such as TDEs). These solutions, unlike

in our previous paper, do not require the jet to be either adiabatic or irrotational, and they allow

for entropy to be a varying function of position within the boundary layer.

Our motivation in this work is, as before, to create steady-state models of the underlying

jet behavior, onto which effects such as instabilities and radiation can be added. Our models

provide insight into the locations of the bulk of the jet luminosity, as well as the locations of energy

dissipation, which indicate potential radiation signatures that can be used for comparison with

observations.

In §5.3 we describe the problem, summarize the behavior of the solutions we found in KBB12,

and explain why we seek a new family of solutions here. In §5.4 we describe how we obtain these

new solutions, in §5.5 we discuss the results and their implications, and in §5.6 we conclude.

5.3 Casting the problem

We assume an axisymmetric, ultrarelativistic, hot jet. Flow launched from the source initially

expands adiabatically, propagating outward on conical streamlines until it impacts the ambient

medium. Given a particular bulk Lorentz factor for the flow, there exists a minimum angle of

impact that will result in the flow shocking. For the flow to shock, the speed of sound waves

measured in the lab frame in the direction perpendicular to the shock surface must vanish; this is

equivalent to the condition that β⊥ = 1/
√

2Γ, as described in KBB12. From this, and using the

definition of the bulk Lorentz factor Γ = (1 − β2)−1/2, one can show that the minimum angle of

impact that will result in a shock is given by

sin θi =
1√

2(Γi − 1)1/2
, (5.1)

where Γi is the bulk Lorentz factor at the point of impact. Plotting θi in Figure 5.1, we can see that

the angle of impact necessary to result in a shock is fairly small even for low values of Γi, indicating
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Figure 5.1: Minimum angle of impact necessary to produce a shock, plotted as a function of the
initial bulk Lorentz factor of the flow at the point of impact. The shaded region corresponds to
combinations of angle and Lorentz factor that will result in a shock forming.

that formation of a shocked boundary layer is a very likely result.

5.3.1 Isentropic solutions

As mentioned in §5.2, in KBB12 we sought self-similar solutions to the fluid equations within

this shocked boundary layer. In this treatment we adopted several major simplifications to the

problem: we assumed that the flow was adiabatic and isentropic, and that the flow was irrotational.

In all solutions that we found, the overall shape of the jet remained very close to conical, but the

relatively small amount of collimation due to the pressure of the ambient medium had a large

impact on the behavior of the flow within the boundary layer.

The admitted solutions could be grouped into three families based upon how quickly the

external pressure pe ∝ r−η dropped off. The behavior of each of those isentropic families is sum-

marized briefly below.

(1) η = 8/3

Solutions for which the external pressure profile is exactly pe ∝ r−8/3 are a special case of

solutions: the pressure within the boundary layer decreases from the contact discontinuity

inward, dropping to zero at a finite distance and forming a narrow boundary layer contain-
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ing a fixed flux of jet energy. These “hollow cone” solutions are the only isentropic solutions

to conserve energy globally; the power carried by the jet, given by L ∝ pΓ2A ∝ r−3η/4+2

where p is the pressure and A is the cross-sectional area of the region carrying most of the

power, is constant with radius in this case.

(2) η > 8/3

Solutions for which the external pressure profile drops off more steeply than pe ∝ r−8/3

have pressure within the boundary layer that decreases from the contact discontinuity in-

wards, but this pressure drops off asymptotically. The resulting solutions demonstrate “hol-

low cone” behavior for values of η near 8/3, but the boundary layer becomes wider and the

cone progressively more filled as the value of η increases toward 4. For these solutions, the

power carried by the boundary layer scales as r to a negative power. We demonstrated in

KBB12, however, that because the transverse integrals of energy diverge, truncated solu-

tions can still be constructed that conserve energy globally.

(3) η < 8/3

There exist isentropic solutions for which the external pressure profile drops off less steeply

than pe ∝ r−8/3, however, for these solutions the power carried by the boundary layer

scales as r to a positive power. In KBB12, we argued that global energy could potentially

be conserved if the jet cross-section gradually decreased with increasing radius, resulting

in total energy remaining constant. We have since determined, however, that no such

strongly-collimating solution can be constructed in a self-consistent way in the regime of

η < 8/3. To find a set of solutions for the flow in this regime that do behave physically,

we must now relax some of the assumptions we made in KBB12 about the behavior of the

flow.
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5.3.2 Entropy-generating solutions

Why might the regime of η < 8/3 not have physical solutions with fixed entropy, as we

assumed in KBB12? We argue here that our assumption of isentropic flow over-constrained the

problem in this regime. This can be more readily understood from a physical point of view: consider

a boundary layer in contact with an ambient medium that has a slowly-decreasing pressure profile.

Because the pressure outside the jet is significantly higher than inside, and because the flow impacts

the ambient medium at an oblique angle, the initial shock that forms at the point of impact may

not decrease the speed of the flow enough to prevent it from shocking again further downstream.

Figure 5.2 illustrates, in the observer frame, the angle by which the flow is deflected when

crossing a shock, as a function of the impact angle, for a series of curves describing different

upstream Mach numbers. The plot also indicates the values of the deflection and impact angles for

which the speed of the flow is still greater than the sound speed, downstream of the shock; from

this, it can be seen that for an oblique shock the flow can easily remain supersonic after shocking.

In addition, we will later demonstrate that the flow continues to be accelerated after crossing to

the downstream side of the shock. This acceleration makes it even more likely that the flow could

shock again as it propagates outward in radius. One can imagine, then, the jet flow undergoing

not just one, but a series of shocks, with each successively decreasing the speed perpendicular

to the shock and deflecting streamlines closer to the shock tangent. This process would result in

a gradually collimating flow, but each shock would also generate entropy, providing a source of

internal energy.

Flow undergoing a series of shocks in this way would be difficult to model analytically;

however, the motion can be approximated. By envisioning the flow as forming a single shocked

boundary layer — but allowing the specific entropy within the layer to vary spatially — we can

approximate the entropy generation that would occur over the course of a series of shocks. By not

insisting that the fluid be irrotational, we provide the additional freedom needed for the flow to

mimic the behavior of crossing multiple shocks.
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Using this physical model, we now describe the construction of the problem under these

terms and the solutions that are admitted as a result.

5.4 Deriving the boundary-layer flow

As in KBB12, we model a hot, ultrarelativistic jet that is cylindrically symmetric about the z

axis. We assume that the jet is injected from a point source with steady flow and approximately

radial streamlines, and we suppose that the ambient medium has a pressure profile that declines

as pe ∝ r−η where r is spherical radius and η is some constant satisfying 2 < η < 4 (see Bromberg

& Levinson, 2007 for another treatment of this regime). For an external pressure that decreases

at such a rate, the jet will lose causal contact and become gradually collimated by the ambient

pressure; we now examine, in the steady-state limit, the shape that the jet takes as a result of this

collimation.

When the jet plows into the external medium supersonically, a boundary layer of shocked jet

material forms at the interface between the jet and the stationary ambient medium. We model this

boundary layer with a thickness of order ∆θ ∼ 1/Γ such that the layer maintains causal contact,

and we wrap the physics of the corresponding ambient medium into the pressure profile pe.

In our model, the initial opening angle of the jet is assumed to be less than π/2 and greater

than the minimum angle of impact for a shock, given by Eq (5.1), such that causal contact is lost

across the jet and a shock forms when the jet impacts the ambient medium. We note that the initial

opening angle does not otherwise play a role in establishing the structure that is formed across

the boundary layer, because we construct here solutions of the boundary layer only, rather than

attempting to solve for the entire structure of the jet. For further insight into the full jet structure,

as well as details about how the initial conditions at the jet base affect the jet shape and behavior,

we refer the reader to our previous paper, KBB12, as well as other works (e.g. Levinson & Eichler,

2000; Bromberg & Levinson, 2007).
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Figure 5.2: Plot of the deflection angle of flow across a shock for a range of impact angles, assuming
that the flow is supersonic upstream of the shock. Individual curves correspond to different values
of the upstream Mach number,M1 =

√
2(Γ2

1 − 1)1/2. The dashed line divides the parameter space
into two regions: that in which the flow is subsonic downstream of the shock, and that in which it
is still supersonic after shocking.
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5.4.1 Fluid equations

The boundary layer of the jet is bounded on the inside by a shock front, through which

jet material enters, and on the outside by a contact discontinuity, separating it from the ambient

medium. To find solutions describing the fluid flow within the boundary layer, we start from the

covariant form of the relativistic, hydrodynamic fluid equations (e.g. Dixon, 1978; Zakamska et al.,

2008):

∇ν(ρuν) = 0 (5.2)

∇νTµν = 0, (5.3)

where

Tµν = wuµuν + pgµν (5.4)

is the stress-energy tensor. Here ρ is the proper rest mass density, w is the enthalpy, p is the pressure,

uµ = (Γ,Γβ) is the 4-velocity of a fluid element (with β = v/c), and gµν is the space metric. The

enthalpy is defined as w ≡ ε+ p where ε is the total proper energy density, given by ε = ρ+ 3p.

Assuming flat spacetime and time independence, and using number density n, these equa-

tions can be written in vector notation as

∇ · (nΓβ) = 0 (5.5)

∇ · (wΓ2β) = 0 (5.6)

wΓ2(β · ∇)β +∇p = 0, (5.7)

describing continuity, energy conservation, and momentum conservation, respectively.

Treating the problem in the spherical polar coordinates r, θ and φ, we examine the ordering

of the various terms in these equations. As the maximum transverse speed that can be achieved

without a shock forming is of order 1/Γ, we can assume that βθ is of this order, and that βr is

of order one. Adopting this characteristic scaling, we state that ∂
∂θ ∼ Γ ∂

∂r . Writing out βr and

employing the fact that β2
θ + Γ−2 � 1, we have βr ≈ 1− 1

2(β2
θ + Γ−2). Finally, we also assume that
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θ ≈ constant, i.e., that the streamlines are roughly radial; we will calculate their deviation from

radial. Using all of these arguments, we hereafter retain terms only to lowest order.

5.4.2 Constructing self-similar solutions

As in KBB12, we construct a self-similar variable ξ that describes the distance into the bound-

ary layer from the contact discontinuity, normalized by the expected scale of the boundary layer:

ξ ∝ (θc − θ)/∆θ, where θc = θc(r) is the position of the contact discontinuity. Assuming that ρ� p

such that w ≈ 4p, we now search for solutions to the fluid equations that take the form

p = g4(ξ)r−η, βθ = h(ξ)r−δ,

1

Γ
= j(ξ)r−δ, n = k(ξ)r−α. (5.8)

In these solutions δ and α are constant free parameters describing radial scaling, and g, h, j and

k are arbitrary functions of the similarity variable ξ, with notation chosen for consistency with

KBB12. The interior pressure has the same radial scaling as the pressure of the ambient medium

because the gas pressure in the boundary layer must match the external pressure at the contact

discontinuity. The boundary condition g(0) = 1 is enforced so that the pressures are matched

at the contact discontinuity, but h(0) is left free. Finally, the streamlines must be parallel to the

contact discontinuity at its location, θc, which requires that βθ(θc) = rdθc/dr and yields the further

constraint that

dθc
dr

= h(0)r−(1+δ). (5.9)

In contrast to KBB12, where we did not specifically enforce that the boundary layer maintain

constant power, we now impose this condition. The power carried by a pressure-dominated jet is

given by L ∝ pΓ2A, where A is the cross-sectional area of the jet. If we examine the jet’s power

concentrated in the boundary layer, which has width ∆θ ∼ 1/Γ, then L ∝ pΓr2. Using the pressure

scaling p ∝ r−η we see that for power to remain constant, the radial scaling of the Lorentz factor

within the layer must be δ = η − 2.
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By taking the scalar and vector products of β with Eq (5.7), the momentum equation can be

broken down into components parallel and perpendicular to the fluid motion, respectively. It can be

shown (e.g., Landau & Lifshitz, 1959) that the parallel component of the momentum conservation

equation can be reworked to obtain the relativistic Bernoulli equation:

Γw

n
= B (5.10)

where B is a constant function along streamlines.

Unlike in KBB12, we make no assumptions that the flow is either irrotational or adiabatic.

Instead, we obtain an additional equation by supposing that there is no flow across surfaces of

constant ξ; that is, we claim that ξ is a streamfunction. Thus, to Eqs (5.5) – (5.7) we add one final

equation:

β · ∇ξ = 0. (5.11)

This definition clarifies that the Bernoulli constant B = B(ξ). Thus Eq (5.10) allows us

to determine both the radial scaling for n and the transverse distribution for Γ: α = 2 and

j(ξ) = 4g4(ξ)
B(ξ)k(ξ) .

As the boundary layer is expected to scale as ∆θ = 1/Γc, where Γc is the Lorenz factor along

the contact discontinuity, we can define our self-similar variable ξ as

ξ = − 1

h(0)
rη−2(θc − θ). (5.12)

Using this definition with Eq (5.11), we can solve for the form of the spatial distribution of

the transverse velocity, h(ξ). Thus we now have

p = g4(ξ)r−η, βθ = h(0) (1− (η − 2)ξ) r2−η,

1

Γ
=

4g4(ξ)

B(ξ)k(ξ)
r2−η, n = k(ξ)r−2. (5.13)

Note here that h(0) is a negative value, in order to provide collimating solutions for βθ.
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Finally, turning to Eq (5.7) and keeping terms only to lowest order, we can write the perpen-

dicular component of the momentum conservation equation as

wΓ2

(
∂βθ
∂r

+
βθ
r

∂βθ
∂θ

+
βθ
r

)
+

1

r

∂p

∂θ
= 0. (5.14)

Substituting the solutions from Eq (5.13) yields a differential equation that governs the behavior

of g(ξ) and k(ξ): (
B(ξ)k(ξ)h(0)

4g4(ξ)

)2

(3− η) (1− (η − 2)ξ) +
g′(ξ)

g(ξ)
= 0, (5.15)

where the prime indicates a derivative with respect to ξ. We now explore these results further.

5.5 Results

5.5.1 Radial scaling

Looking at the form of the solutions to Eq (5.13), we can first discuss the evident radial

scalings. By construction, the pressure within the layer decreases radially with the same scaling

as the pressure of the ambient medium. In the entropy-generating solutions for η < 8/3 here,

the Lorentz factor must scale as Γ ∝ rη−2 in order to satisfy energy conservation within the layer,

whereas in the isentropic solutions found for η ≥ 8/3 in KBB12, the Bernoulli equation instead

forced the Lorentz factor to scale as Γ ∝ rη/4.

Figure 5.3 illustrates the scaling of Γ for curves in both of these ranges: the thick line cor-

responds to Γ(r) for η = 8/3, the curves below correspond to entropy-generating solutions with

values of η less than 8/3, and the curves above correspond to isentropic solutions with values of η

greater than 8/3. From this plot, we can see that the process of entropy generation in the range

of η < 8/3 slows the acceleration rate of the flow as compared to the constant-entropy solutions

in the range of η ≥ 8/3. Nonetheless, in both ranges the Lorentz factor scales always as a positive

power of radius, verifying that flow accelerates within the boundary layer as it travels outward in

radius. This result supports our picture of the flow described in §5.3.2, wherein the fluid undergoes

repeated shocking as a result of being reaccelerated to supersonic velocities.
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Figure 5.3: Radial scaling of the bulk Lorentz factor for curves with differing values of the pressure
power-law index η, ranging from η = 2 to η = 4 in increments of 1/6.
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Examining other radial scalings in the η < 8/3 solutions, we see that the transverse velocity

decreases as the fluid travels further from the source, and the density also decreases, as expected.

Note that the radial scaling for density here is n ∝ r−2, which is consistent with an adiabatic

equation of state (wherein p ∝ n4/3) only in the special case where η = 8/3.

5.5.2 Transverse scaling: a linear family of solutions

The end equations from §5.4.2 admit a wide range of possible solutions, and thus flow can be

constructed using an appropriate combination of density profile and varying Bernoulli parameter to

fit the physical circumstances of a given system. For the purpose of examining the solutions further,

however, let us consider a simple set of solutions closely related to those we explored in KBB12:

the solutions that arise when g(ξ) is linear.

5.5.2.1 General linear solutions

Linear solutions are already hinted at in the form that βθ is demonstrated to take in Eq

(5.13); furthermore, examining linear solutions is the simplest approach and will allow us also to

draw analogies to the solutions in KBB12. So let us suppose that

g(ξ) = 1− sξ (5.16)

where s is some constant greater than zero. Using this form, Eq (5.15) reduces to

B(ξ)k(ξ) = − 4

h(0)

(
s

3− η

)1/2( (1− sξ)7

1− (η − 2)ξ

)1/2

. (5.17)

We use the negative root from Eq (5.15) here because h(0) is negative and from the expression for

Γ in Eq (5.13), we see that B(ξ)k(ξ) must be positive to obtain physical results. From here we can
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now examine the solutions that arise:

p = (1− sξ)4 r−η

βθ = h(0) (1− (η − 2)ξ) r2−η

1

Γ
= −h(0)

(
3− η
s

)1/2

(1− sξ)1/2 (1− (η − 2)ξ)1/2 r2−η

n = k(ξ)r−2

= − 4

h(0)

(
η − 2

3− η

)1/2 (1− (η − 2)ξ)3

B(ξ)
r−2. (5.18)

A few things are evident looking at these solutions. First, the pressure, transverse velocity, and

inverse of the Lorentz factor all clearly drop to zero at finite values of ξ (as does the density,

depending on the function chosen for the Bernoulli parameter). Thus the boundary layer that

forms is either of width ∆ξ = 1/s or ∆ξ = 1/(η − 2) — whichever is smaller. This is a “hollow

cone” solution for the jet, as described in §5.3.1; the jet has a narrow boundary layer that contains

a fixed energy flux.

The form of the density profile in this set of solutions remains free; it can be specified either

by fixing the profile itself by prescribing k(ξ), or by selecting a physically-motivated function to

describe how the Bernoulli parameter B(ξ) evolves. This latter point will be discussed further in

§5.5.3.

5.5.2.2 Linear solutions when s = η − 2

We can further examine a specific example of this set of solutions: that in which s = η − 2.

In this case, the solutions are given by

p = (1− (η − 2)ξ)4 r−η

βθ = h(0) (1− (η − 2)ξ) r2−η

1

Γ
= −h(0)

(
3− η
η − 2

)1/2

(1− (η − 2)ξ) r2−η

n = k(ξ)r−2. (5.19)
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We can see that this is a variable-entropy generalization of the solution found in KBB12 for

the special case of η = 8/3; that solution can be reproduced by assuming constant B(ξ), in which

case p ∝ n4/3. The generalized solution here behaves similarly: the flow forms a narrow boundary

layer wherein the pressure drops from the value of the external pressure at ξ = 0 (the contact

discontinuity) to zero at ξ = 3/2, implying that the jet material is piled up in a thin sheath around

the outside of the flow.

When we instead examine a general η, the pressure and transverse velocity still drop to zero

at a finite value of ξ, but the width of the boundary layer that forms is η-dependent: p and βθ both

go to zero when ξ = 1/(η − 2). Thus the boundary layer still has a finite width, but that width

increases as η decreases from η = 8/3 to η → 2, and the hollow cone structure widens.

We can compare the transverse distribution of pressure in this particular case to that found

in KBB12 for η ≥ 8/3. Figure 5.4 illustrates this difference, showing how much more steeply the

pressure drops off in the solutions where η < 8/3 (Figure 5.4(a)) than in the solutions where

η ≥ 8/3 (Figure 5.4(b)).

5.5.3 Entropy generation

We can now calculate the specific entropy within the boundary layer using the solutions

derived in §5.4, and see if this is consistent with the assumptions we made in constructing the

problem, as described in §5.3.2.

The specific entropy within the boundary layer scales as

σ ∝ ln
( p
nγ

)
(5.20)

where the adiabatic index is γ = 4/3 in our case of a relativistic jet. In the solutions proposed in this

paper, n ∝ r−2, meaning that the specific entropy scales as σ ∝ ln(r8/3−η). This is a constant for

η = 8/3, which is consistent with the constant-entropy solutions we found in KBB12. For η < 8/3,

the entropy increases with r, which is indeed consistent with the theory that the fluid undergoes

a series of entropy-generating shocks when the ambient pressure decreases slowly. Finally, for
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Figure 5.4: Pressure within the shock as scaled by the external pressure, for curves of constant
η. The contact discontinuity is located at ξ = 0. (a) Curves for 2 < η ≤ 8/3, with η decreasing
from the bottom curve up in increments of 1/6. In these solutions, pressure drops to zero at a
finite value of ξ for each curve. (b) For comparison (from KBB12), curves for 8/3 ≤ η < 4, with η
decreasing from the bottom curve up in increments of 1/6. In these solutions, pressure decreases
asymptotically.
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η > 8/3, entropy is a decreasing function of r, indicating that these solutions don’t make sense in

this regime.

Given the different behavior of these three different regimes, it is therefore important to

select the free parameters for the solutions in a way that is consistent with the physical picture. The

Bernoulli function B(ξ) is an initial condition, set by the description of the interior jet flow as it

crosses the shock front and enters the boundary layer; B(ξ) remains the same on a streamline, even

when crossing a shock. Pressure and density profiles should therefore be selected carefully, both to

ensure consistency with the initial flow, and to ensure that the second law of thermodynamics isn’t

violated.

5.5.4 Additional Isentropic Solutions

Interestingly, we can also find solutions for η > 8/3 using the approach described in §5.4; the

primary difference between these and the η < 8/3 solutions is that here we can’t require energy to

be conserved. The resulting solutions for η > 8/3 take the form

p = g4(ξ)r−η, βθ = h(0)
(

1− η

4
ξ
)
r−η/4,

1

Γ
=

4g4(ξ)

B(ξ)k(ξ)
r−η/4, n = k(ξ)r−3η/4. (5.21)

In this case the flow is isentropic, as in KBB12, because the collimation is too weak to generate

multiple shocks. In contrast to KBB12, however, these solutions are not irrotational, and their

density profiles are not prescribed.

For these solutions, the energy flux within the boundary layer decreases with increasing radial

distance from the source. To create physical solutions, forms of the density and pressure profiles

can be chosen that diverge in the transverse direction, as in KBB12, allowing for constant total

energy flux within the layer when the bounding shock moves to larger values of ξ with increasing

r. Linear solutions like those described in §5.5.2.1, however, are possible; they merely require that

the inner boundary is not in fact a shock front. Instead, this boundary must be something akin to a

rarefaction front, through which material leaves the boundary layer and rejoins the main jet flow.
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For an ambient medium with a pressure profile where η > 8/3, then, both the irrotational

family of solutions found in KBB12 and the family of solutions described above are isentropic, and

are reasonable physical descriptions of the flow in this regime.

5.6 Conclusion

Our goal was to obtain solutions that describe boundary-layer flow in a hot, relativistic jet

that has lost causal contact with the ambient medium. We first sought solutions that specifically

ensured that energy is conserved within the layer. We confirm here that for an external pressure

profile of pe ∝ r−η, when η = 8/3, linear solutions are possible in which the jet forms a narrow

boundary layer of width ∆ξ = 1.5 and behaves as a hollow cone, as described in KBB12, with

all of the jet material piled up against the outer edge. This solution conserves energy within the

boundary layer and the flow is irrotational, isentropic, and behaves adiabatically.

For a more gradual drop in pressure, where η < 8/3, the treatment in KBB12 was not suffi-

cient; instead, the solutions demonstrated in this paper are the physical ones. In these solutions,

we ensure conservation of energy within the boundary layer, but relax the conditions that the flow

must be isentropic and irrotational. As a result, we find solutions in which the flow undergoes re-

peated shocking, generating entropy as it propagates outward in radius and gradually collimating

in the process.

Linear solutions can be found in this regime that behave somewhat similarly to those for

η = 8/3: a boundary layer forms in which the pressure drops to zero at a finite point, prescribing

the width of the layer. Here, however, the layer width is dependent upon how steeply the external

pressure decreases: as η decreases, the layer becomes broader, and it will continue to widen until

the cone of the jet is filled. Furthermore, the rate of acceleration is slowed by the entropy genera-

tion, and the flow must no longer behave adiabatically — in fact, the density profile in this regime

is completely free, and can be chosen to fit the physical parameters of a given scenario.

Finally, for a steeper drop in external pressure, where η > 8/3, we find a new family of
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solutions that are isentropic, as in KBB12, but for which the flow is not irrotational and the density

profile is left free. Linear forms of these solutions result in an energy flux that decreases radially,

suggesting that the inner edge of the boundary layer may be a rarefaction front in this case.

This freedom to arbitrarily set up the system allows us to apply this model to a variety of

different astrophysical flows; as previously mentioned, any hot, relativistic jets without strong mag-

netic fields could conceivably be described by this model. The entropy generation included in this

model could provide a direct source of internal energy leading to radiation; thus this model is an

important first step in establishing the radiation characteristics of these astrophysical flows.
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Chapter 6

Spectral properties of the brightest gamma-ray flares of blazars

6.1 Preface

This chapter consists of components of a paper that will be submitted to Monthly Notices of

the Royal Astronomical Society. This project represents my first foray into observational astronomy:

in this paper, we examine the spectra of bright blazar flares captured by the Fermi Gamma-ray

Space Telescope’s Large Area Telescope (LAT). In contrast to Chapters 3–5, in which I focused

on modeling the steady-state, long-term behavior of relativistic jets, we now explicitly focus on

the time-dependent behavior of sudden flaring activity observed from these jets. We attempt to

determine what this variability and the behavior of the resulting spectra can tell us about the

emission processes driving these flares.

Note About Collaborative Work

Though I am the primary author on this paper, this project was completed under the guidance

of postdoctoral researcher Dr. Krzysztof Nalewajko, and this paper is not my sole work; it has been

jointly co-written with him.

Abstract

We investigate the spectral properties of the brightest gamma-ray flares of blazars detected

by the Fermi Large Area Telescope. We search for the presence of spectral breaks and measure the
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spectral curvature on typical time scales of a few days. We identify significant spectral breaks in less

than half of the analyzed flares, but their parameters do not show any discernible regularities, and

in particular they are inconsistent with gamma-ray absorption at any fixed photon energy. More

interestingly, we find that the studied blazars are characterized by significant spectral variability.

Gamma-ray flares of short duration are often characterized by strong spectral curvature, with the

spectral peak located above 100 MeV. Since these spectral variations are observed despite excellent

photon statistics, they must reflect temporal fluctuations in the energy distributions of the emitting

particles. We suggest that highly regular gamma-ray spectra of blazars integrated over long time

scales emerge from a superposition of many short-lived irregular components with relatively narrow

spectra.

6.2 Introduction

Blazars, a class of active galactic nuclei, belong to the brightest cosmic sources of high-energy

(∼ GeV) gamma-ray radiation. Their gamma-ray emission is produced by non-thermal populations

of highly energetic particles in relativistic jets. The mechanism of particle acceleration responsible

for the emergence of those populations is not yet understood, but detailed analysis of the gamma-

ray data on blazars has the potential to provide more constraints on these processes.

The Fermi Large Area Telescope (LAT) has unique capabilities in high-energy astronomy: a

very broad spectral range (∼ 100 MeV−100 GeV), a very wide field of view (∼ 60◦), and the ability

to scan the entire sky every 3 hours (Atwood et al., 2009). After several years of its mission, it has

collected a vast amount of data on the temporal and spectral behaviour of blazars. Of particular

importance are data on the brightest blazars, known as Flat-Spectrum Radio Quasars (FSRQs).

Their broad-band spectral energy distributions (SEDs) are strongly dominated by the MeV-GeV

gamma-ray band (Fossati et al., 1998), and they reach gamma-ray fluxes of 10−5 ph s−1 cm−2 and

higher (Abdo et al., 2011). At such high fluxes, they can be analyzed at very high temporal and/or

spectral resolution.
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The gamma-ray spectra of FSRQs are typically steep, with average photon indices of Γ '

2.2 − 2.7 (Abdo et al., 2010b; Ackermann et al., 2011). However, these spectra are not consistent

with simple power-laws; they can be better fit by either a log-parabola model, or a broken power-

law model. In many blazars, spectral breaks are routinely identified, and they can be parametrized

by the observed photon energy at the break Ebr,obs and the change in the photon index ∆Γ. In the

initial Fermi/LAT data on 3C 454.3, the brightest blazar of the Fermi era, a break was identified in

spectra integrated over a month of observations with Ebr,obs ' 2.4 GeV and ∆Γ ' 1.2 (Abdo et al.,

2009). In the subsequent studies of 3C 454.3, breaks were found with Ebr,obs ' 1.0− 2.8 GeV and

∆Γ ' 0.6− 1.0 (Ackermann et al., 2010; Abdo et al., 2011). In other blazars, spectral breaks were

identified with break energies Ebr ' 1.6− 10 GeV in the source frame (Abdo et al., 2010b).

It was immediately recognized that such sharp spectral breaks cannot be due to a transition to

the fast-cooling regime of electron energy distribution, which predicts a change in photon index of

∆Γ = 0.5 (Abdo et al., 2009). Also, it was demonstrated that transition to the Klein-Nishina regime

of inverse Compton scattering does not produce a sharp spectral break, but rather a smooth cut-off

(Ackermann et al., 2010; Cerruti et al., 2013). The conclusion of Abdo et al. (2009) was that these

breaks are most likely due to a break in the underlying electron energy distribution. However, Finke

& Dermer (2010) noted that this scenario is incompatible with the observed optical/UV spectra of

3C 454.3. Instead, they proposed that the observed breaks could be explained by a superposition of

two spectral components, produced by Comptonization of broad emission lines and direct radiation

of the accretion disk.

An interesting alternative was proposed by Poutanen & Stern (2010), who argued that the

gamma-ray spectral breaks in blazars could arise from absorption by recombination continua of

ionized helium (He II). This model predicts that the observed breaks should be close toEbr ' 5 GeV

in the source frame. In a subsequent study of the gamma-ray spectra of 3C 454.3 at several different

flux levels, Stern & Poutanen (2011) found a weak anti-correlation between the optical depth for He

II continuum, inferred from ∆Γ, and the total gamma-ray flux. The implication of strong absorption

by ionized helium is that gamma-ray emitting regions should be located very close (∼ 0.1 pc) to
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the central black hole, possibly shifting to larger distances with increasing gamma-ray flux.

More recent studies have cast doubt on the universal value of break energies measured in

the source frame (Harris et al., 2012) and have also suggested that some breaks identified in early

studies using Fermi/LAT data could be artifacts of inaccurate instrument response functions (Harris

et al., 2014). Stern & Poutanen (2014) relaxed their original claim after updated analysis and now

argue that only two FSRQs of the nine that they studied display spectral breaks at a consistent

energy Ebr ' 5 GeV.

Another interesting aspect of the gamma-ray spectra of blazars is the spectral curvature,

which can be probed by fitting log-parabola models to the spectra. Such models return two param-

eters — the curvature index β, and the peak photon energy Epeak (see definitions in §6.3). Typical

spectra of FSRQs have Epeak < 100 MeV with β ∼ 0.05− 0.3 (Ackermann et al., 2011; Harris et al.,

2014). Stern & Poutanen (2011) showed for 3C 454.3 that the curvature index is roughly indepen-

dent of the gamma-ray flux, but that the peak energy is strongly correlated with the gamma-ray

flux, ranging between ∼ 10− 100 MeV.

In Nalewajko (2013) (hereafter Paper I), a sample was selected of the brightest gamma-ray

flares of blazars during the first four years of the Fermi mission. The study in Paper I focused on the

temporal properties of the flares, such as duration and time asymmetry; however, time variations of

the gamma-ray photon index were also investigated. It was demonstrated that many blazar flares

exhibit significant variations of the photon index, and that some very short flares (of duration

. 1 d) show relatively hard spectra, with Γ . 2. The most notable example of such flares is the

MJD 55854 event in PKS 1510–089 (Saito et al., 2013), also included in our sample. Additional

similar events have been identified recently, and they may represent an important new class of

gamma-ray events observed in luminous blazars.

Here, we analyze the spectral properties of the sample of flares selected in Paper I. We focus

on two particular aspects: 1) the occurrence and properties of spectral breaks, and 2) spectral

curvature and spectral variations in the sample. We begin by describing our analysis of the spectral

properties of the flares in Section 6.3. We then present our results on the spectral breaks and the
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spectral curvature in Section 6.4. This is followed by a discussion in Section 6.5, and conclusions

in Section 6.6.

6.3 Data analysis

We investigate the sample of 40 bright blazar flares selected in Paper I (details of the selection

procedure are given therein). Each flare is a period of time when the observed photon flux exceed

half of the peak flux. The minimum peak flux for the sample is 7.1×10−6 ph s−1 cm−2. These flares

have durations 0.5−10 days, and they are produced by only five blazars: 3C 454.3, PKS 1510–089,

PKS 1222+216, 3C 273, and PKS 0402–362.

For each flare period, we integrate the binned SED using the standard analysis tool gtlike

from the Fermi/LAT ScienceTools software package (v9r27p1). In the analysis, we use the instru-

ment response function P7SOURCE_V6, the Galactic diffuse emission model gal_2yearp7v6_v0, the

isotropic background model iso_p7v6source, events of the SOURCE class, the region of interest of

radius 10◦, and all background sources from the 2FGL catalog (Nolan et al., 2012) within 15◦. The

energy bins are of equal width and uniformly distributed on a logarithmic scale, and they overlap

with the logarithmic shift equal to 1/3 of the logarithmic bin length. In cases of insufficient photon

statistics, standard 2σ upper limits are calculated. The results are shown in Fig 6.1 in order of

decreasing peak flux (as in Paper I).

Next, for each flare we performed maximum likelihood analysis on the unbinned data in the

energy range between Emin = 0.1 GeV and Emax = 10 GeV by fitting spectral models of a simple

power law (SPL), broken power law (BPL), and log parabola (LP). The maximum energy limit

Emax is chosen due to relatively short integration time scales, on which only a handful of > 10 GeV

photons are detected for each flare.

For the SPL fit, we used the PowerLaw2 spectral model from the Fermi analysis tools,1

dN
dE

=
N(1− Γ)E−Γ

E1−Γ
max − E1−Γ

min

, (6.1)

1 http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/source_models.html
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Figure 6.1: Time-integrated flare spectra displaying the flux (erg s−1 cm−2) vs observed energy
(GeV) of the 40 brightest gamma-ray blazar flares detected by Fermi. Statistically significant pri-
mary spectral breaks (those identified with a BPL fit to the entire spectrum) and secondary spectral
breaks (those identified with a BPL fit to only the energy range above or below the primary break
energy) are indicated by broken lines that illustrate the value of the spectral index Γ on either side
of the break. Primary breaks that are not statistically significant are indicated by open circles. The
color of the spectrum indicates the host blazar.
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where dN/dE is the differential photon flux as a function of photon energy, Γ is the spectral index,

and Emin and Emax are the fixed lower and upper bounds of the energy range. Using this model

rather than the basic power law fit allowed us to avoid artificially selecting a normalization energy

and instead fix the energy range over which we wished to apply the model. In similar fashion, we

used the BrokenPowerLaw2 spectral model for the BPL fit,

dN
dE

= N0 ×


(E/Ebr)

−Γ1 if E < Ebr

(E/Ebr)
−Γ2 otherwise,

(6.2)

where N0 is a normalization factor, Ebr is the break energy, and Γ1 and Γ2 are the spectral indices

in the range where E < Ebr and E > Ebr respectively. For the LP fit, we used the LogParabola

model,

dN
dE

= N0

(
E

E0

)−(α+βlog(E/E0))

, (6.3)

where E0 is a fixed pivot energy, N0 is the normalization, β describes the spectral curvature, and α

is a parameter related to the peak energy,

Epeak = E0 exp

(
2− α

2β

)
. (6.4)

We set the pivot energy to E0 = 500 MeV, in keeping with other analyses (e.g. Harris et al. (2012)),

after first testing that moving this pivot doesn’t have a significant impact on the likelihood value

for the fit.

In order to determine which of these three models was the best fit to the data, we performed

an Akaike Information Criterion (AIC) test, determining the AIC value for each model:

AIC = 2k − 2lnL , (6.5)

where k is the number of free parameters in the model, and L is the maximized value of the

likelihood function for the estimated model. The preferred model is then the one with the minimum

AIC, and if the difference in the AIC between two fits is such that ∆AIC > 2, the preference for

the model with the minimum AIC is generally considered to be statistically significant (refer to
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Harris et al. (2014), Bozdogan (1987), and Lewis et al. (2011) for more information on the AIC

and ∆AIC). In our case, if the BPL fit had a ∆AIC > 2 relative to the other fits, we declared this

spectral break significant and recorded the fit parameters in Table 6.1.

Uncertainties in most fit parameters were obtained directly from the fits, with the exception

of the parameter Ebr. Uncertainties in Ebr were instead estimated from the statistical uncertainty

corresponding to −2∆L = 1 for the 1-σ confidence region, where L is the log-likelihood function

(see Ackermann et al. (2010), Rolke et al. (2005) for discussion of this technique). In cases where

Ebr was unbound, we rejected the break.

In many cases, the best-fit BPL model with break energy Ebr1 did not yield a significant

spectral break, while a candidate break could be seen at Ebr2 6= Ebr1. A good example of this is

flare #10 (3C 454.3, MJD 55294) with Ebr1 ∼ 0.9 GeV and Ebr2 ∼ 9 GeV. A candidate break at

Ebr2 may not be identified by the global BPL fit due to the overall spectral curvature. This was noted

by Stern & Poutanen (2011), who found that spectral breaks can be identified more robustly when

the underlying background spectral model is a log-parabola rather than a power-law. In order to

account for spectral breaks that could have been missed by the global (primary) BPL fits, for every

flare in the sample we performed an additional search for secondary spectral breaks by fitting the

BPL, SPL and LP models separately in the energy ranges Emin < E < Ebr1 (low-energy secondary)

and Ebr1 < E < Emax (high-energy secondary). In the example of flare #10, a secondary break

was indeed identified at Ebr2 ∼ 8.4 GeV. All statistically significant secondary spectral breaks are

included in Table 6.1.
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Table 6.1: Statistically significant breaks discovered in the spectra of the 40 brightest Fermi gamma-ray flares. Breaks were
recorded if the spectrum was better-fit by a BPL rather than SPL or LP model, with a ∆AIC > 2 for the BPL compared to the
next-best fit. MJDpeak is the moment of flux peak, Fpeak is the peak flux in units of 10−6 ph s−1 cm−2, T is the duration of the flare
in days, Ebr (obs) and Ebr (source) are the break energies, in GeV, in the observer and source frame respectively, and Γ1 and Γ2

are the spectral indices on either side of the break energy. The break classification identifies the break as resulting from a fit to
the entire flare spectrum (“primary”) or resulting from a fit to only the energies below or above the primary break (“secondary:
low” and “secondary: high”).

# Blazar MJDpeak Break classification Fpeak T Ebr (obs) Ebr (source) Γ1 Γ2

1 3C 454.3 55520.0 secondary: low 77.2 ± 2.4 3.9 0.35+0.05
−0.06 0.65+0.09

−0.11 2.03 ± 0.03 2.25 ± 0.04

1 3C 454.3 55520.0 secondary: high 77.2 ± 2.4 3.9 6.46+0.62
−2.07 12.00+1.15

−3.85 2.43 ± 0.10 3.59 ± 0.31

4 3C 454.3 55550.3 secondary: high 23.6 ± 1.3 8.3 8.12+3.79
−2.47 15.09+7.05

−4.59 2.54 ± 0.05 3.32 ± 0.43

5 3C 454.3 55167.8 secondary: low 21.8 ± 1.5 4.3 0.15+0.01
−0.02 0.28+0.02

−0.04 1.62 ± 0.27 2.22 ± 0.05

6 3C 454.3 55567.8 secondary: high 19.2 ± 1.6 5.4 5.82+1.81
−2.22 10.81+3.37

−4.13 2.36 ± 0.05 3.06 ± 0.38

7 3C 454.3 55301.5 primary 16.4 ± 1.8 3.5 1.64+0.51
−0.32 3.05+0.96

−0.60 2.25 ± 0.04 2.89 ± 0.20

8 PKS 1222+216 55316.6 secondary: high 15.6 ± 0.9 0.8 7.16+1.58
−0.80 10.26+2.26

−1.14 1.97 ± 0.17 3.46 ± 0.64

10 3C 454.3 55294.1 secondary: high 15.3 ± 0.8 9.5 8.35+1.12
−2.68 15.52+2.08

−4.98 2.59 ± 0.09 4.13 ± 0.81

12 PKS 1222+216 55365.8 primary 14.2 ± 1.0 2.3 0.56+0.75
−0.05 0.80+1.08

−0.07 1.76 ± 0.08 2.27 ± 0.06

12 PKS 1222+216 55365.8 secondary: low 14.2 ± 1.0 2.3 0.17+0.01
−0.02 0.24+0.01

−0.03 2.76 ± 0.36 1.58 ± 0.13

13 3C 454.3 55163.1 primary 11.8 ± 1.4 3.0 1.37+0.27
−0.28 2.55+0.51

−0.52 2.17 ± 0.06 3.19 ± 0.23

14 3C 454.3 55305.5 primary 11.1 ± 1.5 1.9 0.56+0.22
−0.06 1.03+0.41

−0.10 1.98 ± 0.09 2.94 ± 0.15

20 PKS 1510–089 54917.0 primary 9.9 ± 0.7 2.4 1.50+0.30
−0.28 2.04+0.41

−0.38 2.03 ± 0.05 2.75 ± 0.17

21 PKS 1510–089 55851.9 primary 9.9 ± 1.0 0.7 1.05+0.25
−0.29 1.42+0.33

−0.39 2.04 ± 0.15 3.24 ± 0.48

22 3C 454.3 55195.2 primary 9.7 ± 0.8 2.2 1.97+0.49
−0.30 3.66+0.92

−0.56 2.12 ± 0.06 3.68 ± 0.46
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25 3C 454.3 55327.2 primary 8.8 ± 1.2 3.1 1.80+0.35
−0.33 3.34+0.66

−0.62 2.23 ± 0.06 2.98 ± 0.26

26 PKS 1222+216 55342.1 secondary: high 8.7 ± 0.8 1.6 1.93+1.46
−0.71 2.77+2.09

−1.02 1.82 ± 0.08 2.24 ± 0.14

30 PKS 1510–089 54961.8 primary 8.2 ± 0.7 0.6 0.56+0.22
−0.11 0.76+0.30

−0.15 2.04 ± 0.24 3.56 ± 0.49

33 3C 454.3 55154.8 primary 7.8 ± 0.9 2.4 0.27+0.04
−0.04 0.50+0.08

−0.07 1.79 ± 0.20 2.50 ± 0.09

35 PKS 1222+216 55377.5 primary 7.6 ± 0.7 1.5 0.35+0.12
−0.23 0.51+0.17

−0.33 1.86 ± 0.17 2.33 ± 0.10

37 PKS 1510–089 55876.1 secondary: high 7.4 ± 0.8 1.7 0.61+0.53
−0.10 0.83+0.72

−0.14 4.54 ± 0.90 2.31 ± 0.16

38 PKS 1222+216 55234.0 primary 7.4 ± 0.8 1.1 0.21+0.03
−0.02 0.29+0.05

−0.02 0.50 ± 0.59 2.49 ± 0.13

40 3C 454.3 55091.6 primary 7.1 ± 0.8 5.5 3.09+0.76
−0.84 5.75+1.41

−1.57 2.35 ± 0.05 4.63 ± 0.97
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6.4 Results

6.4.1 Spectral breaks

In analyzing the spectra of the 40 flares, we found that none were best fit by a SPL model, 31

were best fit by a BPL model, and nine were best fit by a LP model. Of the 31 BPL-favored spectra,

the BPL model was significantly favored over other models in 15 cases. The breaks from two of

these cases were rejected because they were unbound, but the 13 remaining primary breaks are

recorded in Table 6.1. Ten additional statistically significant breaks were found by the secondary

analysis. They are also recorded in the table (labeled to identify them as secondary breaks found

either on the low- or high-energy side of the primary break of the spectrum), for a total of 23

significant breaks detected in the 40 flares. Figure 6.1 displays the binned spectrum for each of

the 40 flares and illustrates the location of any significant primary and secondary breaks, as well

as the values of the spectral index Γ on either side of the breaks. The primary breaks that are not

significant are also noted on the spectra for reference.

As part of the analysis of the spectral breaks of these flares, we sought to test the ‘double

absorber’ model put forward by Poutanen & Stern (2010). This model predicts two increases in

the opacity of the broad-line region to gamma-ray-energy photons: one at ∼ 5 GeV (in the source

frame) due to He II recombination, and one at ∼ 20 GeV due to H I recombination. These opacity

increases result in changes in the photon index that should be seen clearly as breaks in the flare

spectra. Because our analysis does not extend beyond 10 GeV due to relatively short integration

time scales, we do not attempt to comment on the presence of the proposed break due to H I,

however, we analyze the breaks we found in the 0.1 − 10 GeV range to search for a preference for

breaks near 5 GeV. In Figure 6.2, we plot the distribution of the redshift-corrected break energies

against the peak flux of the flare. As can be seen, there is no indication for a break preference at 5

GeV or any other fixed energy in the source frame. Instead, the break energies seem to be spread

uniformly between 0.2 GeV < Ebr < 20 GeV. We do not find any indication for a correlation

between Ebr and other parameters of the flares, such as peak flux, duration, or time asymmetry.
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Figure 6.2: Distribution of the source-frame break energy Ebr (GeV) vs. the peak flux Fpeak
(10−5 ph s−1 cm−2) of the flare, plotted for all identified spectral breaks in the top 40 Fermi gamma-
ray flares. The shape and color of each point indicate the host blazar. Solid symbols indicate statis-
tically significant primary and secondary breaks, whereas unfilled symbols indicate primary breaks
that were not statistically significant.
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In Figure 6.3, we plot the distribution of the break amount, or change in the photon index ∆Γ

at the break, vs. peak flux. For two spectral breaks, we found ∆Γ < 0 (negative breaks), indicating

spectral hardening with increasing energy. Both of these breaks are secondary, and they reflect local

spectral features. For the positive breaks, we find that 0.5 . ∆Γ . 2. The value of ∆Γ = 0.5 can be

understood theoretically as resulting from a break in the electron energy distribution N(γ) ∝ γ−p

by ∆p = 1, which could be due to the transition from inefficient to efficient cooling. While a

substantial number of significant spectral breaks are close to this value in our data, roughly the

same number of breaks are clearly inconsistent with it. The value of ∆Γ does not seem to be

correlated with other parameters of the flare such as observed flux, duration or time asymmetry.

Stern & Poutanen (2011) showed that in the case of 3C 454.3 the value of ∆Γ, interpreted as a

measure of optical depth for absorption from the He II continuum, is weakly anticorrelated with

the gamma-ray luminosity (or flux). We do not find any evidence for this in our results.

6.4.2 Spectral curvature

In analyzing the flare spectra, our second goal was to examine the spectral curvature of the

40 flares. Table 6.2 contains flare details and fit parameters from the LP model applied to each

of the 40 flares across the full energy range. The spectral curvature parameter β spans the range

of ∼ 0.05 − 0.3, which is consistent with the finding that none of the flares has a gamma-ray

spectrum best described by SPL model. It also means that all the gamma-ray spectra are concave,

which is natural for spectra dominated by a single spectral component. Interestingly, we find a very

broad range of the spectral peak values, with 0.03 GeV < Epeak < 2 GeV. The very low values

Epeak < 0.1 GeV are often insignificant, as they are derived from an extrapolation of the LP model

beyond the observed energy range. Nevertheless, these low estimates correspond to the typical

shape of the gamma-ray spectra of FSRQ blazars, where the unobserved SED peak is generally

thought to lie somewhere in the ∼ 1− 10 MeV range (Fossati et al., 1998; Abdo et al., 2010c). The

cases where Epeak > 0.1 GeV would in general be considered to be atypical.
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Figure 6.3: Distribution of the change in photon index ∆Γ = Γ2 − Γ1 versus the peak flux Fpeak
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from a cooling break associated with radiative losses.
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Table 6.2: Log-parabola fit parameters for the brightest gamma-ray flares of blazars. MJDpeak is
the moment of flux peak, Fpeak is the peak flux in units of 10−6 ph s−1 cm−2, t1 is the flux doubling
time scale, t2 is the flux halving time scale, T = (t1 + t2) is the flare duration, α is the spectral index
at the pivot energy, and β is the spectral curvature. All times are in units of days.

# Blazar MJDpeak Fpeak t1 t2 T α β Epeak

1 3C 454.3 55520.0 77.2 ± 2.4 2.9 1.0 3.9 2.20 ± 0.01 0.09 ± 0.01 0.17 ± 0.02
2 3C 454.3 55526.9 33.3 ± 1.8 1.1 3.9 5.0 2.31 ± 0.02 0.13 ± 0.02 0.15 ± 0.03
3 PKS 1510–089 55853.8 26.6 ± 2.0 0.2 0.4 0.6 1.76 ± 0.08 0.23 ± 0.05 0.85 ± 0.18
4 3C 454.3 55550.3 23.6 ± 1.3 3.2 5.1 8.3 2.27 ± 0.02 0.11 ± 0.01 0.14 ± 0.02
5 3C 454.3 55167.8 21.8 ± 1.5 1.2 3.1 4.3 2.29 ± 0.03 0.11 ± 0.02 0.14 ± 0.04
6 3C 454.3 55567.8 19.2 ± 1.6 2.9 2.5 5.4 2.25 ± 0.02 0.08 ± 0.02 0.09 ± 0.04
7 3C 454.3 55301.5 16.4 ± 1.8 1.3 2.2 3.5 2.32 ± 0.04 0.07 ± 0.03 <0.10
8 PKS 1222+216 55316.6 15.6 ± 0.9 0.4 0.4 0.8 1.69 ± 0.05 0.13 ± 0.03 1.67 ± 0.56
9 PKS 1510–089 55872.8 15.3 ± 1.2 0.2 0.7 0.9 2.00 ± 0.06 0.14 ± 0.04 0.51 ± 0.11

10 3C 454.3 55294.1 15.3 ± 0.8 5.9 3.6 9.5 2.36 ± 0.02 0.08 ± 0.01 0.05 ± 0.02
11 PKS 1510–089 55867.8 14.2 ± 1.5 0.5 1.5 2.0 2.11 ± 0.06 0.09 ± 0.04 0.27 ± 0.12
12 PKS 1222+216 55365.8 14.2 ± 1.0 1.0 1.3 2.3 1.97 ± 0.04 0.09 ± 0.03 0.60 ± 0.14
13 3C 454.3 55163.1 11.8 ± 1.4 2.0 1.0 3.0 2.30 ± 0.05 0.13 ± 0.04 0.16 ± 0.07
14 3C 454.3 55305.5 11.1 ± 1.5 0.8 1.1 1.9 2.36 ± 0.06 0.22 ± 0.05 0.22 ± 0.05
15 PKS 1510–089 55746.2 11.1 ± 1.4 0.4 0.5 0.9 2.26 ± 0.09 0.08 ± 0.07 <0.25
16 PKS 1510–089 54948.0 10.6 ± 2.3 0.9 1.3 2.2 2.35 ± 0.06 0.15 ± 0.05 0.16 ± 0.07
17 3C 273 55095.3 10.3 ± 0.9 0.4 1.6 2.0 2.39 ± 0.06 0.07 ± 0.05 <0.09
18 3C 273 55090.5 10.2 ± 0.9 0.4 1.2 1.6 2.36 ± 0.07 0.21 ± 0.06 0.21 ± 0.06
19 PKS 1510–089 55980.6 10.0 ± 1.3 0.5 0.8 1.3 2.11 ± 0.08 0.28 ± 0.07 0.41 ± 0.06
20 PKS 1510–089 54917.0 9.9 ± 0.7 1.9 0.5 2.4 2.12 ± 0.04 0.10 ± 0.03 0.28 ± 0.08
21 PKS 1510–089 55851.9 9.9 ± 1.0 0.2 0.5 0.7 2.26 ± 0.12 0.16 ± 0.10 0.22 ± 0.14
22 3C 454.3 55195.2 9.7 ± 0.8 0.6 1.6 2.2 2.23 ± 0.06 0.16 ± 0.04 0.24 ± 0.06
23 PKS 1222+216 55310.7 9.6 ± 0.8 0.5 0.7 1.2 1.73 ± 0.08 0.21 ± 0.05 0.96 ± 0.24
24 3C 454.3 55323.5 9.1 ± 0.9 4.2 1.8 6.0 2.36 ± 0.04 0.08 ± 0.03 0.05 ± 0.04
25 3C 454.3 55327.2 8.8 ± 1.2 1.9 1.2 3.1 2.29 ± 0.05 0.08 ± 0.04 0.08 ± 0.08
26 PKS 1222+216 55342.1 8.7 ± 0.8 0.8 0.8 1.6 1.78 ± 0.05 0.08 ± 0.03 1.93 ± 1.16
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27 3C 273 55202.9 8.7 ± 1.1 0.3 0.6 0.9 2.54 ± 0.12 0.33 ± 0.11 0.22 ± 0.07
28 PKS 1510–089 55990.8 8.5 ± 0.7 5.2 1.1 6.3 2.26 ± 0.03 0.08 ± 0.02 0.10 ± 0.05
29 PKS 1510–089 55983.1 8.4 ± 0.8 0.5 0.4 0.9 2.10 ± 0.09 0.24 ± 0.07 0.41 ± 0.08
30 PKS 1510–089 54961.8 8.2 ± 0.7 0.3 0.3 0.6 2.62 ± 0.18 0.32 ± 0.17 0.19 ± 0.11
31 3C 454.3 55214.3 8.0 ± 0.9 0.8 0.8 1.6 2.37 ± 0.09 0.23 ± 0.08 0.22 ± 0.08
32 PKS 1510–089 56002.4 7.8 ± 1.0 1.8 0.9 2.7 2.40 ± 0.06 0.10 ± 0.04 0.07 ± 0.06
33 3C 454.3 55154.8 7.8 ± 0.9 0.5 1.9 2.4 2.30 ± 0.06 0.09 ± 0.05 0.10 ± 0.10
34 PKS 1510–089 55767.6 7.6 ± 0.8 0.4 0.5 0.9 1.98 ± 0.09 0.17 ± 0.07 0.54 ± 0.14
35 PKS 1222+216 55377.5 7.6 ± 0.7 0.4 1.1 1.5 2.15 ± 0.07 0.05 ± 0.04 <0.26
36 3C 454.3 55283.9 7.6 ± 1.1 1.3 1.4 2.7 2.30 ± 0.07 0.15 ± 0.05 0.19 ± 0.08
37 PKS 1510–089 55876.1 7.4 ± 0.8 0.7 1.0 1.7 2.28 ± 0.07 0.05 ± 0.05 <0.12
38 PKS 1222+216 55234.0 7.4 ± 0.8 0.7 0.4 1.1 2.20 ± 0.11 0.18 ± 0.09 0.29 ± 0.12
39 PKS 0402–362 55827.5 7.3 ± 1.0 0.3 1.8 2.1 2.18 ± 0.08 0.19 ± 0.07 0.32 ± 0.09
40 3C 454.3 55091.6 7.1 ± 0.8 4.4 1.1 5.5 2.41 ± 0.04 0.07 ± 0.03 <0.07
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In Figures 6.4 and 6.5, we show the distributions of β and Epeak, respectively, vs. the flare

duration T . We find that flare duration has a strong influence on the shape of the gamma-ray

spectrum. Flares longer than ' 2.5 d have gently curved spectra with β ∼ 0.1 and Epeak . 0.1 GeV,

whereas shorter flares can have a stronger curvature withEpeak > 0.1 GeV. As was noted in Paper I,

most of the long flares were produced by 3C 454.3, and they also tend have more consistent average

photon indices 〈Γ〉 ' 2.3, and more symmetric distribution of the time asymmetry parameter. On

the other hand, the short flares are more typical for blazars PKS 1510-089 and PKS 1222+216.

The latter source stands out by producing flares with the highest Epeak values.

6.5 Discussion

In this work we focus on the gamma-ray spectra of blazars integrated during the highest

observed gamma-ray fluxes on relatively short time scales of T < 10 d. This is a consequence of

the flare definition adopted in Paper I, and this approach distinguishes this work from most studies

of gamma-ray spectra of blazars that focus on maximizing the photon statistics by integrating the

spectra on much longer time scales (months – years). The results of studies performed on longer

time scales may not be applicable on shorter time scales. A glance at Figure 6.1 reveals many

irregularities that are absent in the neat long-term results presented, e.g., by Abdo et al. (2010b).

In the face of such irregularities, we should not expect that these spectra can be well fit by simple

spectral models like SPL, BPL or LP. Instead, we should expect at most to produce better or worse

approximations of the real spectra with these models.

Of course, one should carefully consider whether these irregularities may be due to any sta-

tistical or systematical errors in the analysis of the Fermi/LAT data. From the standard maximum

likelihood analysis, we know how many reconstructed photons contribute to each flux measure-

ment, so the photon statistics do not concern us. The systematic errors are less understood, and the

Fermi Collaboration provides only crude estimates based on the in-orbit calibration studies (Ack-

ermann et al., 2012), but these values (∼ 10%) are much lower than the observed amplitudes of
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Figure 6.4: Distribution of the spectral curvature β (resulting from a log parabola fit to the spec-
trum) versus the duration T (days) of the flare, plotted for the 40 brightest Fermi gamma-ray flares.
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the spectral fluctuations. That the power density spectra of bright blazars are power laws without

any breaks (Abdo et al., 2010a), including 3C 454.3 in the high state (Ackermann et al., 2010),

suggests that flux measurements are equally accurate at all relevant time scales. We will therefore

assume that the observed spectral fluctuations are a real property of blazars, and not instrumental

artifacts.

Our systematic and unbiased search for the occurrence of spectral breaks returned results

that can be characterized as random. The broad distributions of break energies Ebr and break

amounts ∆Γ, and the lack of clear correlations with other flare parameters, suggests that there is

no unique physical mechanism behind them. In the double absorber model (Poutanen & Stern,

2010), spectral breaks should be observed at consistent break energy Ebr ' 5 GeV in the source

frame at all times, unless the gamma-ray radiation is produced far outside the broad-line region.

Our results do not indicate any preference for this Ebr value, which is consistent with the results of

Harris et al. (2012). The irregularity of the break parameters suggests that they reflect the random

spectral fluctuations observed in the binned spectra. At much longer integration time scales, more

regular spectral breaks could arise due to non-uniform statistics of such fluctuations.

The main finding of this work is that the spectra of long flares (T > 2 d) are more regular

than the spectra of short flares (T < 2 d), which is illustrated by the distribution of the parameters

β and Epeak of the log-parabola fits to the individual spectra (Figs. 6.4 and 6.5). The short flares

often have their spectral peak within the Fermi/LAT band (Epeak > 0.1 GeV), which is not the case

for the long-term average spectra of FSRQ blazars (Abdo et al., 2010b). This may have profound

implications for the theoretical picture of dissipation and particle acceleration in relativistic AGN

jets. The regular (gently broken power-law) gamma-ray spectra of blazars observed on long time

scales may generally be superpositions of many simple components. Each of those components may

have a narrowly peaked particle energy distribution and produce a short subflare contributing to

the overall observed light curve. If the emission of such a component is coherent in photon energy

and time, it may also be coherent in space, emitted from compact independent regions within the

jet.
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In Paper I, a dichotomy was revealed between the temporal properties of the brightest

gamma-ray flares of blazars. On one hand, most flares produced by 3C 454.3 are long, with com-

plex light curves (multiple subflares of comparable peak flux), without clear time asymmetry. On

the other hand, most flares produced by PKS 1510-089 and PKS 1222+216 are short, with sim-

ple light curves, and a tendency for the flux decay time scale to be longer than the flux raising

time scale. This dichotomy was suggested to be an observational effect, with the viewing angle of

the jet much smaller in the case of 3C 454.3, resulting in the more uniform Doppler beaming of

all emitting regions. Now we add to this picture the systematic differences between the observed

gamma-ray spectra. The spectra of long flares are more regular than the spectra of short flares,

as the former consist of more elementary narrow components. The interpretation of the source

dichotomy in terms of the viewing angle is consistent with this, as more uniform Doppler beaming

is required to observe more spectral components at comparable flux levels.

6.6 Conclusions

We performed a spectral analysis with the Fermi/LAT of the sample (selected in Paper I) of

the 40 brightest gamma-ray flares of blazars (FSRQs) detected in the first four years of the Fermi

mission. The gamma-ray spectra are integrated over relatively short time scales T < 10 d, and they

show significant and variable departures from the long-term average spectra of the same sources.

We performed a uniform search for the occurrence of spectral breaks. The break energies show a

broad distribution and no preference for the fixed value of 5 GeV in the source frame predicted by

the double-absorber model of Poutanen & Stern (2010). In order to compare the basic structures

of the observed spectra, we fitted them with a log parabola model and found an interesting trend

of the model parameters with the flare duration. Short flares (T < 2 d) often show a strong

spectral curvature with the SED peak within the Fermi/LAT range Epeak > 0.1 GeV, while all

long flares show a mild spectral curvature with a SED peak below the LAT range. The dichotomy

between typical properties of flares observed in sources 3C 454.3 vs. PKS 1510-089 and others, first
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described in Paper I, is extended to include differences between the observed gamma-ray spectra.

We suggest that the irregular gamma-ray spectra observed by the Fermi/LAT for short blazar

flares reflect compact individual emitting regions within the relativistic jets that have a narrow

energy distribution of emitting particles. The superposition of many such spectral components

peaking at different energies would then result in the regular power-law spectra observed over

long time scales.
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PART II
Science Communication



Chapter 7

Preface to Part II

7.1 Background

With federal support for science dwindling in the United States, it is now more critical than

ever to provide training for current and future scientists to advocate for science — but such training

requires first establishing more effective ways to communicate how science is done, describe the

impact of current scientific research, and convey its importance. Science communication research,

a field that crosses disciplinary boundaries at the interface between science and society, and the

topic of the second half of this thesis, works to address these concerns. The following section

provides some important background in science communication theory.

7.1.1 A Definition of Science Communication

Science communication is a surprisingly complicated concept to define, as any communica-

tion that involves different audiences, and in particular the general public, is complex and highly

contextual (Burns et al., 2003). Schirato & Yell (1997) proposes the following definition of com-

munication: “...the practice of producing and negotiating meanings, a practice which always takes

place under specific social, cultural and political conditions.” This definition captures the complex-

ities of interacting with differing audiences under varying circumstances, and the phrase “negoti-

ating meanings” in particular touches on the important distinction between communication as a

one-way flow of information versus communication as a two-way dialog.
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Burns et al. (2003) proposes a contemporary definition of science communication as “the

use of appropriate skills, media, activities, and dialogue to produce one or more of the following

personal responses to science:

• Awareness, including familiarity with new aspects of science

• Enjoyment or other affective responses, e.g. appreciating science as entertainment or art

• Interest, as evidenced by voluntary involvement with science or its communication

• Opinions, the forming, reforming, or confirming of science-related attitudes

• Understanding of science, its content, processes, and social factors

Science communication may involve science practitioners, mediators, and other members of the

general public, either peer-to-peer or between groups.

7.1.2 Importance of Science Communication

There are quite a few arguments for the necessity of effective communication of science. A

common consideration in science communication literature is the existence of moral and ethical

responsibility to increase the science literacy of the public. Increased science knowledge is not only

generally useful, but also permits the public to make intelligent decisions both in science policy

(Treise & Weigold, 2002) and in their personal lives (Nelkin, 1995). Furthermore, there is an

issue of accountability: scientific research is largely funded by public money, so scientists have an

obligation to communicate the outcomes of their research to society.

Effective communication between scientists and across research groups is imperative for sci-

entific collaboration and sharing of ideas, but scientists also benefit from communicating their

research with the general public. Continued funding is often dependent upon the public — and

policy makers — being convinced of the worth of scientists’ research; this message is particularly

clear today as we see the impact of the recent US government budget cuts to science funding.

Furthermore, communicating with the public can provide personal benefits for scientists as well:
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evidence suggests that scientists who are quoted in the media are more likely to be cited in the

formal scientific literature (Phillips & others., 1991; Kiernan, 2003).

Finally, examples abound of the dangerous consequences that can arise when scientists fail to

communicate effectively, from the public perception of vaccines (Offit & Coffin, 2003) and climate

change (Nisbet, 2009), to the criminal trial and sentencing of scientists in the wake of the deadly

2009 L’Aquila earthquake in Italy (Povoledo & Fountain, 2012). It is clear from these examples that

the process of relaying information from scientists to the general public must be undertaken with

great care.

7.1.3 Who Should Communicate Science?

Science communication has been historically governed by a linear model (see Figure 7.1):

a sequential transport of information from the scientists (producers of the information), to pro-

fessional communicators such as public information officers, to journalists, to the general public

(receivers of the information). This model is funnel-like; a simplification of information occurs at

each step of the process (Christensen, 2007).

The news media were at one time seen as having the potential to create a country of science-

literate citizens (Treise & Weigold, 2002). In the past several decades, however, this is less popular

of a view. Evidence suggests that much of the public appears to be scientifically illiterate (Hartz

& Chappell, 1997; Paisley, 1998), implying that the process of communication fails at some level.

Most science journalists don’t have a scientific education background (Weigold, 2001). Scientists

often assign the blame for communication failure to journalists; surveys indicate that scientists

don’t consider the media to portray science accurately or effectively (Basken, 2009; Besley & Nisbet,

2013).

Perhaps as a result, there has been an unprecedented level of encouragement in the last

few decades for scientists to learn to communicate with the public directly (Davies, 2008; Besley

et al., 2012; Dudo, 2012). In 1985, a report was issued by the Royal Society (The Royal Society,

1985; now known as the Bodmer Report, after the chair of the working group) evaluating public
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Figure 7.1: Diagram of the linear model of science communication, from Christensen (2007). In-
formation is sequentially transported from the scientist (producer) to the public (receiver).

understanding of science and the role that scientists should have in improving it. The report argued

that “scientists must learn to communicate with the public, be willing to do so, and indeed consider

it their duty to do so” (The Royal Society, 1985, p.6). This report played a large role in beginning

to lift the stigma associated with public outreach activities, and initiated a wave of funding and

interest amongst scientists for science communication that has maintained momentum to present

day.

Positive attitudes toward science communication among scientists are significantly more evi-

dent in the wake of the Bodmer Report and subsequent studies. In a study of nearly 1700 scientists
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performed in 2000, 84% declared that they felt they had a duty to communicate their research

findings to the public, and a surprising 69% felt that they themselves should have the main respon-

sibility for that communication (The Wellcome Trust, 2000).

7.1.4 Impediments to Scientists as Communicators

There exist, however, impediments to the goal of mobilizing scientists as science communi-

cators. Some major factors, as self-reported by participants in the Royal Society’s 2006 survey of

1400+ professional science researchers, include lack of time, lack of peer support, and issues of

discomfort, exposure and vulnerability (The Royal Society, 2006; Bowater & Yeoman, 2013). Even

amongst the scientists for whom these factors are not a deterrent, there exists a still more trouble-

some impediment: lack of training. In Hartz & Chappell (1997), Neal Lane, former director of the

National Science Foundation, is quoted as saying

With the exception of a few people ... we don’t know how to communicate with
the public. We don’t understand our audience well enough — we have not taken
the time to put ourselves in the shoes of a neighbor, the brother-in-law, the person
who handles our investments — to understand why it’s difficult for them to hear
us speak. We don’t know the language and we haven’t practiced it enough. (cited
in Hartz and Chappell 1997, p. 38)

Figure 7.2, reproduced from the book “The Hands-On Guide for Science Communicators” (Chris-

tensen, 2007), illustrates the different environments in which the three major actors in science

communication (namely, scientists, public information officers, and journalists) work. These differ-

ences also serve to illustrate the reshaping of science communication understanding that a scientist

must undergo in order to effectively communicate with the public: a scientist must learn to exhibit

many of the values of a journalist when communicating with non-specialist audiences.

Baram-Tsabari & Lewenstein (2013), p.80, phrased this issue another way:

...[S]cientists may need to “unlearn” the communication skills they have acquired
as scientists. If learning the discourse of science is essential to becoming a scientist,
learning the discourse of public communication of science is essential for scientists
engaging with the public. This process can only take place in sociocultural envi-
ronments that value such practices.
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Figure 7.2: The different environments in which the three major actors in science communication
(scientists, public information officers, and journalists) work. Figure reproduced from Christensen
(2007).
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Unfortunately, the two discourses are sometimes in tension: One rewards jargon,
the other penalizes it; one rewards precision, the other accepts approximation; one
rewards quantification, the other rewards storytelling and anecdotes.

How, then, do scientists receive the appropriate training necessary for this reframing of their

view of science communication?

7.1.5 Availability of Communication Training for Scientists

Despite this evident need for professional communication training among scientists, there are

currently few programs designed to provide scientists with effective science communication skills.

A study commissioned by the Royal Society in 2006, for instance, shows that out of a sample of

nearly 1500 professional scientists, 73% had never received any formal training in communicating

science to the non-specialist public. Of those who reported having received training, most were

only trained in the specific case of interacting directly with the press (The Royal Society, 2006).

An NSF-funded project to compile data on existing science communication programs is being

conducted by COMPASS, an organization focused on improving connections between scientists

and the wider world through communication and policy work.1 At least one website has also

attempted to gather such information,2 and a formal report from both of these two groups is

in production at this time. But the majority of the programs that currently exist target scientists

already established professionally (e.g. Basken, 2009; Besley & Tanner, 2011), and furthermore,

none of the prominent science communication training programs have performed any systematic

evaluation of their courses’ learning outcomes (as reported in Baram-Tsabari & Lewenstein, 2013).

In the remaining chapters of this thesis, I attempt to address this problem by presenting

thorough evaluations of two different science communication training programs that both target

very early-career scientists.
1 http://compassblogs.org/blog/2013/04/01/gradscicomm-how-compass-is-answering-the-national-demand-for-

science-communication-training/
2 http://www.com.uri.edu/scicom/
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7.2 Statistical methods

I include here a brief overview of the statistical methods employed while analyzing the data

in the subsequent two studies. For more information, see the references contained within this

section. A general overview of statistical methods used in discipline-based research can also be

found in Slater et al. (2011) and in Ding & Liu (2012).

7.2.1 Types of quantitative data

The nature of quantitative data in education research makes it very different to deal with

than quantitative data in astrophysics research. A scales of measure taxonomy first proposed by

Stevens (1946) argues that quantitative data generally falls into one of four categories: nominal,

ordinal, interval, or ratio. According to this taxonomy,

• Nominal data is discrete and has no order. It is sometimes also referred to as a type of

“categorical” data. An example of nominal data collected in our studies is much of the

demographic data, such as gender or nationality, where the data consists of independent

categories that have no natural ranking.

• Ordinal data is another type of categorical data that can be sorted, allowing for rank-

ordering, but the difference between the data cannot be quantified. An example of ordinal

data might be Likert-scale responses indicating agreement with a statement on a five-point

scale ranging from “strongly disagree” to “strongly agree”; these responses can be ranked,

but the degree of difference between “strongly agree” and “agree”, for example, may not

be the same as the degree of difference between “agree” and “neutral”.

• Interval data, on the other hand, can be rank-ordered and has well-defined spacing be-

tween options; it is continuous on a scale of equal intervals. Examples of interval data

include things like temperature (where the difference between 1 ◦C and 2 ◦C is the same as

the difference between 41 ◦C and 42 ◦C) or date (where the difference between July 21 and
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July 22 is the same as the difference between October 3 and October 4).

• Ratio data has all of the properties of interval data, but also possesses a meaningful zero

value to which the data on the scale can be compared. While temperature has no well-

defined zero point (20 ◦C is not twice as hot as 10 ◦C), ratio data can be compared in this

way: the distance from Ithaca, NY to Boulder, CO is roughly 1.5 times the distance from

Boulder to Santa Barbara, CA; the mass of the black hole Sgr A* is 4.3 million times the

mass of the Sun.

In traditional scientific research, most data typically falls into the categories of interval and

ratio data. As a result, we can manipulate the data with mathematical operations, and the results

still hold useful meaning in interpreting the data (Ding & Liu, 2012). Education research data,

on the other hand, often falls into the categories of nominal and ordinal data, and care must be

exercised when this data is analyzed. Even our scoring of writing samples in the following studies,

in which students were assigned a grade on a five-point scale in each of various categories, is not

technically interval data; the difference between two students scoring 4 points and 5 points in the

category of jargon, for instance, might not be the same as the difference between two students

scoring 2 points and 3 points in the same category — as much as we might like these intervals to

be the same, and as much as we might attempt to design the rubric in such a way that they are. In

spite of this, researchers often tend to treat scores like these as being a close enough approximation

of interval data, if the scores of the students follow a Gaussian distribution, that statistics

appropriate for interval data can be used to analyze them (Ding & Liu, 2012).

7.2.2 Parametric vs. non-parametric statistical analysis

The emphasized portion of the previous sentence is critical: the underlying distribution of

the scores must follow a Gaussian distribution in order for most standard statistics to be applied.

Statistics that assume a normal distribution of the variable in the population from which data

is collected are known as parametric statistics. When data is continuous and the sample size is
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sufficiently large, it is often safe to assume a normal underlying distribution, in which case statistics

that rely on the mean and standard deviation of the data are appropriate. If the data is categorical,

however, or the sample size is small, the the normality assumption does not hold. In these cases,

non-parametric statistics must be used for analysis, as these do not make any assumptions about

the underlying distributional properties. Non-parametric statistics tend to instead examine the data

in the form of frequencies (Ding & Liu, 2012).

Lack of normality is a pervasive issue in education research (Meissel, 2014); it is argued

that the majority of data collected within the social sciences doesn’t meet the conditions required

to assume normality (Micceri, 1989). For those who prefer a little more visual imagery in their

background reading: Micceri (1989), in fact, suggests that the likelihood of collecting normal data

in applied settings is comparable to the likelihood of an encounter with a unicorn. I will attempt in

the following sections not to cry “unicorn” unnecessarily, and to instead identify data that cannot

be analyzed parametrically. I will describe now the primary statistics that we employed when

analyzing our data.

7.2.3 Interrater reliability

In the case of the second study presented in the remainder of this thesis, the writing samples

collected from students were analyzed independently by two individual raters, whose scores were

then averaged. When multiple raters are involved in assigning scores, a question is raised: how can

one establish whether or not the two graders are scoring consistently? Better yet, can the degree

of agreement between the scorers be quantified?

Classical test theory (Lord, 1959; Novick, 1966) assumes that an assigned score consists of

true score plus a measurement error, which prevents one from observing the true score directly.

This measurement error can be produced by a number of things — including the instability of a

measuring instrument when measurements are made by different coders. This is known as inter-

rater reliability.

The goal of interrater reliability analysis is to determine what fraction of the variance in an
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assigned score is due to variance in the true score, after the variance due to measurement errors

between coders has been removed (Novick, 1966). Finding an interrater reliability rating of 0.7,

for instance, indicates that 70% of the observed variance is due to true variance, and 30% is due to

error variance as a result of differences in ratings between coders.

How does one establish interrater reliability? A statistic often reported in this case is percent

agreement — or, for a slightly more relaxed constraint, percent agreement within some interval

(for instance, the percent of the time two raters’ scores for a sample fall within 1 point of each

other). The problem with this method of reporting is that it doesn’t take into account the probability

of agreement by chance, and it can therefore overestimate the amount of agreement (see Cohen,

1960; Krippendorff, 1980; Hallgren, 2012).

An alternative was suggested by Cohen (1960); Cohen argued for use of a statistic now

known as Cohen’s kappa (κ), which is given by

κ =
P (a)− P (e)

1− P (e)
. (7.1)

Here P (a) is the percent agreement that is observed, and P (e) is the percent agreement that is

expected by chance. P (a) and P (e) can be established for a given set of scores by creating a

contingency table and comparing score frequencies: P (a) is given by the fraction of total scores

during which the two raters’ scores agree, and P (e) can be found by taking the sum — over all

possible scores — of the expected frequencies of agreement by chance. These expected frequencies

of agreement by chance are given by the product of the two raters’ frequencies with which they

assign the particular score (i.e., if Rater 1 assigns a "YES" 60% of the time and Rater 2 assigns a "YES"

30% of the time, then the expected frequency of agreement for a "YES" rating is 0.6× 0.3 = 0.18).

As an example, if Rater 1 assigns scores of (1, 1, 0) to three students’ samples, and Rater 2

assigns scores of (1, 0, 0) to those same three samples, then the observed agreement is P (a) = 2
3 ,

and the expected agreement is P (e) = (expected frequency of agreement by chance for a score of

1) + (expected frequency of agreement by chance for a score of 0) =
(

2
3 ×

1
3

)
+
(

1
3 ×

2
3

)
= 4

9 . Thus

the Cohen’s κ for this example is κ = (2
3 −

4
9)/(1− 4

9) = 2
5 = 0.4.
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Possible resulting values of Cohen’s κ range from -1 to 1, where 1 is perfect agreement, 0

is completely random agreement, and -1 is perfect disagreement. A commonly-adapted general

means of interpreting Cohen’s κ is given by Landis & Koch (1977), who suggest that 0.00 to 0.20

indicates slight agreement, 0.21 to 0.40 indicates fair agreement, 0.41 to 0.60 indicates moderate

agreement, 0.61 to 0.80 indicates substantial agreement, and 0.81 to 1.00 indicates almost perfect

or perfect agreement. Using this scheme, Rater 1 and Rater 2 in the example above thus demon-

strate only fair agreement. It should also be noted that some other analyses, e.g. Krippendorff

(1980), use even more conservative cutoffs.

Often in the case of ordinal or interval data, we might want to quantify the amount of

disagreement between the raters. As an example, if Rater A and Rater B gave the same sample

scores of 2 and 5, respectively, you might want the interrater reliability to reflect a greater degree

of disagreement than if Rater A gave the sample a score of 2 and Rater B a score of 3. In this case,

we can assign weighting to the score discrepancy, as proposed in Cohen (1968). This produces a

statistic known as the weighted Cohen’s κ, given by

κ = 1−
∑k

i=1

∑k
j=1wijxij∑k

i=1

∑k
j=1wijmij

, (7.2)

where the wij are elements of the weight matrix, the xij are elements of the observed matrix, and

the mij are elements of the expected matrix (refer to Cohen (1968) for details). Different kinds of

weighting can be applied, but in this study we choose to treat our scores as roughly interval, and

we assign linear weighting accordingly: if the two raters’ scores differ by one point, the weight is

1; if the raters’ scores differ by two points, the weight is 2, etc.

As Cohen’s κ is generally considered to be a fairly conservative estimate of agreement, we

quote both percent agreement as well as the weighted Cohen’s κ statistic in §9.4.1, in order to

present the most complete picture of the interrater reliability within this study.
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7.2.4 Statistical significance

In the studies that follow in the remainder of this thesis, we employ primarily pre- and post-

training comparisons to analyze the potential impact of the training we provide the students. With

such measurement tools, we would like to be able to report whether the distribution of student

scores/responses in the pre-training test/survey question is significantly different, statistically, from

the distribution in the post-training test/survey question. Without taking statistical significance

into account, we could be fooling ourselves into thinking that student abilities or attitudes have

improved when what we’re actually observing is random fluctuations.

The standard approach used to test for statistical significance in the difference between pre

and post scores is known as the paired t-test. By using paired data for each student, each student

functions as his or her own control, lowering the level of unexplained variance. With a paired t-test,

the differences between the two scores in each pair (i.e., the pre and the post score) are calculated.

The null hypothesis is typically that the two score distributions are identical, and therefore that the

average difference will be zero. The statistic t is then given by

t =
〈XD〉
sD/
√
N
, (7.3)

where 〈XD〉 is the average pair difference, sD is the standard deviation for that distribution, and N

is the sample size. Under the null hypothesis, this statistic follows a t-distribution withN−1 degrees

of freedom; thus the value of t can be converted into a p-value, which describes the probability that

such a value could have been found by chance, even if there were no difference between the two

score distributions. Typical convention for the field of education research is that p < 0.05 implies

that the difference is statistically significant, and the null hypothesis that the two distributions are

the same can be rejected at the 95% confidence level (Coe, 2002).

The paired t-test, however, relies on the assumption that the underlying scores are distributed

normally. If sample sizes are small, or there are significant outliers, this assumption doesn’t hold

true and the t-test is not reliable. In this case, an analogous non-parametric test can be used: the

Mann-Whitney test, which compares two independent sets of ordinal data (see e.g. Wallace, 2011
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for an example of use of this test, and a statistical methods book such as Wilcox, 1987 for a more

complete description of the Mann-Whitney test than what follows).

The Mann-Whitney test can be applied by combining all the scores, both pre and post, for

all students and rank-ordering the group as a whole. The null hypothesis for the test is that when

the data is then split back into the original pre and post groups, the distribution of ranks will be

the same in each group, and the two rank-totals (found by summing up the ranks in each group)

will be the same. The alternative hypothesis is — ideally — that the higher ranks will primarily be

found in the post-training group, and the two rank-totals will be significantly different. The test

statistic associated with the Mann-Whitney test is U , which reflects the difference between the two

rank-totals and is given by the following formulas:

U1 = N1N2 +
N1(N1 + 1)

2
−R1 (7.4)

U2 = N1N2 +
N2(N2 + 1)

2
−R2 (7.5)

U = min(U1, U2), (7.6)

where N1 and N2 are the sample sizes of the pre- and post-training scores and R1 and R2 are the

rank-totals for each of the two groups.

As with the t statistic, the U statistic can then be converted into a p-value that tells you the

probability that the null hypothesis — in this case, that the two score distributions are the same —

could be true by chance. This conversion can happen in one of two ways, depending on the sample

size:

(1) If the sample sizes are small (typically N ≤ 20) then you can use a lookup table of critical

U values for the Mann-Whitney test. If the U value found is smaller than the critical U

value in the p = 0.05 table, then the result is significant, and we reject the null hypothesis

that the pre- and post-training scores are the same.

(2) If the sample sizes are large, it can be assumed that the U statistic is approximately normally
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distributed. In this case, the mean and standard deviation of U are given by

µ =
N1N2

2
(7.7)

σ2 =
N1N2(N1 +N2 + 1)

12
, (7.8)

and the p-value associated with the U value can be found assuming this normal distribution.

A note about ties: if the data set being analyzed contains a large number of tied scores, two

things should be observed. First, the appropriate treatment for ranking ties is, for each group of

ties, to assign the average rank for all the scores in the tied group. For example, the scores (0, 1,

1, 2, 2, 2, 3) would be assigned the ranks (1, 2.5, 2.5, 5, 5, 5, 7). Secondly, if the sample sizes are

large and one wishes to treat the U statistic as normally distributed, the following revised version

of the variance gives better results:

σ2 =
N1N2

N2 −N

(
N3 −N

12
−
∑ f3 − f

12

)
, (7.9)

where N = N1 + N2 and the sum is taken over all scores where ties exist and f is the number of

ties at that level.

Tests such as the paired t-test and the Mann-Whitney test, then, are a useful means of deter-

mining whether two sets of scores are statistically significantly different. Once you’ve established

this, however, you may want to examine how different the two sets of scores are. This can be done

with effect size.

7.2.5 Effect size

Statistical significance combines two independent aspects: effect size and sample size. As

a result, statistical significance increases both when there is a greater effect, and when the size

of the sample increases. For purposes of better understanding only the amount by which student

responses change between the pre and post test, without having sample size conflated in the mea-

surement, we look at effect size.
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Effect size is commonly measured using Cohen’s d statistic (Cohen, 1977), which describes

the separation of the mean pre- and post-training scores in terms of the standard deviation of the

pre-training scores:

d =
〈post〉 − 〈pre〉

σpre
(7.10)

As with all statistics, interpretation of effect size must not be done blindly, but a commonly-used

rule of thumb — introduced by Cohen himself — is that a measure of Cohen’s d = 0.2 constitutes a

small effect, d = 0.5 a medium effect, and d = 0.8 a large effect. For reference, d = 0.2 would mean

that 58% of the post-test scores were higher than the mean of the pre-test scores, d = 0.5 would

mean that 69% are higher, and d = 0.8 would mean 79% are higher.

For non-normal data, however, Cohen’s d can give a misleading picture; Cohen’s d statistic

relies on the two distributions of scores being normal and having the same standard deviation

(see, e.g., Coe, 2002 for a discussion of this). For data that is not normal, we instead need a

non-parametric equivalent of Cohen’s d in order to discuss effect size.

An alternative was suggested by Cliff, 1993, known as Cliff’s δ. Cliff’s δ is a robust and

intuitive alternative to Cohen’s d, and can be used regardless of the distribution of the underlying

scores. Indeed, it is just as effective as Cohen’s d even if the scores are normally distributed; it is just

somewhat more complex to calculate (Meissel, 2014). Cliff’s δ is effectively a dominance statistic:

it is obtained by calculating the non-overlapping area of two distributions by counting cases. The

formula is given by:

δ =
#(xi1 > xj2)−#(xi1 < xj2)

N1N2
, (7.11)

where the xi1 are the scores within the post test group and the xj2 are the scores within the pre

test group. This statistic thus subtracts the number of instances of dominance in the pre test group

from the number of instances of dominance in the post test group, and reports this as a fraction of

the total possible comparisons.

Cliff’s δ can range between -1 and 1, where the extremes imply no overlap between the pre

and post test distributions, and 0 implies perfect overlap, suggesting that there has been no change.
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A positive Cliff’s δ implies a gain: the class’s scores have shifted higher in the post test than they

were in the pre test; a negative Cliff’s δ implies the opposite. An interesting advantage to Cliff’s δ,

reflected in these results, is that it measures the size of an effect over the entire distribution of both

groups, rather than only measuring the size of the effect for those in the center of the distribution

— a problem exhibited by parametric tests such as Cohen’s d (Meissel, 2014).

It should be noted that effect size, as measured by Cliff’s δ, and statistical significance, as

measured by Mann-Whitney’s U statistic, are not independent (Cliff, 1993). In fact, one can easily

be calculated from the other, as shown below:

δ =
2U

N1N2
− 1. (7.12)

Examining the effect size of the score shift between the pre- and post-training scores provides

us with one means of judging how much the students gained or lost over the span of the study.

Effect sizes can also be compared across classes, with caution, to provide a broad view of the

pedagogical impact of the training. We may want another way of examining the difference between

pre and post scores within each class, however; for that, we turn to normalized gain.

7.2.6 Normalized gain and normalized change

For another means of examining the change in scores over the span of the study, we employ

a statistic known as normalized change (first introduced in Marx & Cummings, 1998). The reader

familiar with education research might instead recognize the statistic of normalized gain (for the

seminal work on normalized gain, see Hake, 1998). Normalized gain is typically used to evaluate

how a student’s score on a pre-test compares to that on a post-test, and it is given by the following

formula:

g =
post− pre

100− pre
, (7.13)

where ‘post’ and ‘pre’ are the student’s post-test and pre-test scores out of 100%, respectively.

Normalized gain thus describes the amount a student learned as a fraction of the amount that they

could have learned.
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When matched data (i.e., data that includes both a pre-test and a post-test for each student

in the sample) is available, then it makes the most sense to examine the average of individual

student gains. Unfortunately, this statistic can be heavily skewed by the few students who score

exceptionally well on the pre-test — a student with a perfect pre-test score has an individual gain

of −∞ regardless of their post-test score. In order to avoid having to drop the data associated with

these students, many researchers prefer to instead use average normalized gain: in this case one

computes the overall normalized gain of the class average, rather than computing the average of

the normalized gains of individual students. The average normalized gain is given by

〈g〉 =
〈post〉 − 〈pre〉

100− 〈pre〉
, (7.14)

where 〈post〉 and 〈pre〉 are respectively the class-averaged post-test and pre-test scores out of 100%

(see Bao, 2006 for further discussion of the difference between the average of individual normalized

gains and the normalized gain of the class average).

Though average normalized gain exhibits some benefits, it still has several constraints, as

discussed in Marx & Cummings (2007). Its primary limitation is that results can become difficult

to interpret if students perform more poorly on the post-test than on the pre-test. Marx & Cum-

mings (2007) proposed a statistic they called ‘normalized change’ instead, in order to better handle

negative gains. The formula for normalized change is given by

g =



post− pre

100− pre
if post > pre

post− pre

pre
if post < pre

drop if post = pre = 100 or 0

0 if post = pre otherwise.

(7.15)

Thus if a student’s score increases, g still reflects the student’s gain as a fraction of maximum

possible gain, but if a student’s score decreases, g now reflects the loss symmetrically, as a fraction

of the maximum possible loss. This definition of g also removes the students who scored perfectly

on the pre-test or the post-test, with the argument that these students’ performance is beyond the

scope of the measurement instrument.
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Using normalized change when analyzing students’ pre-training and post-training writing

samples allows us to return to using matched data and calculating the average of individual

changes, rather than a change of the average score, which we believe captures students’ gain more

realistically. Thus, where possible, we choose to measure average normalized change rather than

normalized gain of the average.



Chapter 8

ComSciCon: Training Graduate Students to Communicate Science

8.1 Preface

The material presented in this chapter will be included in a paper to be submitted to the

journal Science Communication, and was completed under the guidance of Dr. Seth Hornstein.

In this work, I evaluate the effectiveness of ComSciCon 2013, a science communication workshop

for science, technology, engineering and math (STEM) graduate students. I co-founded and co-

organized this workshop with a group of nine graduate students from Harvard and MIT (listed in

the acknowledgements) in the summer of 2013. Many of the training methods used at ComSciCon

2013 were later adapted for use in the classroom in my study in the following chapter, Chapter 9.

My evaluation of ComSciCon was therefore largely intended as a preliminary study to assess the

effectiveness of these training and evaluation tactics. This is discussed further in Chapter 9.

Abstract

Effective science communication is imperative for the sharing of scientific ideas, continued

funding and support from policy makers, and education of the public. Science graduate students

are a prime group to target for communication training, as they will be our future scientists, edu-

cators, and education/public outreach (E/PO) professionals. To provide such training, we created

Communicating Science 2013, a professional development workshop for STEM graduate students.

This workshop taught graduate students from around the nation to effectively communicate sci-

ence to both their peers and the public. To learn about graduate students’ attitudes toward science
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communication and establish the workshop’s efficacy, we surveyed the participants both before and

after the workshop. This assessment probed topics such as communication preparation the partic-

ipants have already received, how science communication is perceived in their home department,

and what participants hoped to gain from the workshop. We describe the workshop and report the

assessment results here.

8.2 Introduction

8.2.1 About ComSciCon 2013

The Communicating Science 2013 Conference, or ComSciCon 2013, was a multi-day sci-

ence communication workshop for graduate students in science, technology, engineering and math

(STEM) fields. It was held in June 2013 in Cambridge, Massachusetts, for a group of 50 graduate

students that was selected from a pool of over 700 applicants. ComSciCon 2013 was fully organized

by a team of nine graduate students to address the lack of training and professional development

opportunities for young scientists who wish to learn to communicate with their peers and with the

public more effectively. The various components of ComSciCon are detailed in §8.3.2.

8.2.2 Research Goals

In performing a study of the participants of ComSciCon 2013, we had multiple objectives.

Our aims included both performing a comprehensive evaluation of ComSciCon itself (for the sake of

improving the workshop in future iterations) as well as probing the backgrounds and environments

of STEM graduate students, and testing and evaluating various science communication training

tactics. An outline of our research goals follows:

(1) Survey the environment that currently exists for STEM graduate students who are inter-

ested in science communication.

(a) How do ComSciCon participants perceive the support of their field, department, and

peers?
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(b) What training have the participants already received in science communication?

(c) How do the attitudes of ComSciCon participants compare to a cross-section of profes-

sional scientists (i.e., scientists surveyed in the United Kingdom in The Royal Society,

2006)?

(2) Test science communication training tactics for STEM graduate students, with the intent of

future application to larger and broader audiences (see Chapter 9).

(a) What are some appropriate training tactics?

(b) How well are our methods received?

(c) How effective are our methods?

(3) Evaluate the general ComSciCon workshop format and establish if it is effective, sustain-

able, and able to have a lasting impact.

8.3 Methods

8.3.1 Sample Selection and Participant Demographics

ComSciCon 2013 participants were selected from a pool of more than 700 applicants en-

rolled in a STEM (Science, Technology, Engineering and Math) graduate program at an accredited

U.S. university. The goal of ComSciCon 2013 was not only to train students to be more effective

science communicators, but also to build a network of students who are both interested in science

communication and able to propagate the ideas presented at the workshop. As a result, ComSciCon

organizers selected participants from the applicant pool by identifying students who have already

proven themselves to be exceptionally dedicated to the goal of effective science communication.

Applicants submitted a writing sample and a description of their current education and public out-

reach activities, both of which were used to select for the top students demonstrating strong science

communication skills and obvious initiative in leading science communication projects. As a result
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of this selection process, we believe that participants of ComSciCon 2013 represent a rather special-

ized subset of STEM graduate students: ones who were already particularly capable and interested

in science communication prior to the workshop.

Of the final selection of 50 ComSciCon 2013 participants, 48 agreed to participate in this

study. These 48 students were distributed throughout the STEM fields (see Table 8.3.1), and

roughly 85% of them were in the third year or higher of their program. The study participants

are ethnically distributed similar to the national averages for STEM doctorate recipients1 : roughly

82% identified as white, 17% identified as Asian, and 4% identified as other ethnicities (multiple

selections were possible). Study participants were heavily gender-skewed compared to national

statistics, however: 29% of participants were male and 71% female (compared to a national aver-

age of 62% male and 38% female for 2012 STEM doctorate recipients).

STEM Field Participants
(N=48)

Biology 29 %
Physics/Astronomy 25 %
Geology/Earth Science 15 %
Social Science 10 %
Chemistry 8 %
Engineering 8 %
Mathematics 2 %
Computer Science 2 %

Table 8.1: Breakdown of study participants by STEM field.

8.3.2 Provided Training: Components of ComSciCon

Training for participants was administered over the course of a 2.5-day workshop. Below we

describe the primary components of the workshop and the specific training and benefits associated

with each one.
1 based on data from http://www.nsf.gov/statistics/sed/2012/data_table.cfm
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8.3.2.1 Panel Sessions

ComSciCon participants attended seven panel sessions featuring 21 professional science com-

municators. Panel sessions included topics such as engaging non-scientific audiences, interacting

with the media, sharing science with scientists, non-academic publishing, and communicating using

multimedia. The list of panelists spanned a broad range of science communication professions and

included journalists, editors, press officers, educators, and science fiction authors. During panel

sessions, the experts spoke about about their work and backgrounds and answered questions from

workshop participants.

One benefit from these sessions is that participants — many of whom had already expressed

strong interest in careers with science communication emphasis — were exposed to a variety of

career options and introduced to contacts within these careers. The other primary benefit was that

each expert discussed personal observations from his or her experiences as well as general advice

for effective science communication; it is in the panel sessions that students gained, from a broad

variety of sources, the majority of the workshop’s theoretical training in science communication

strategies.

8.3.2.2 Pop Talks

Workshop participants were each required to give a one-minute talk about their research,

targeted at the level of the general public, to the rest of the group. Each member of the audience

was armed with two signs that they could hold up during the talk: one that read “JARGON,” to

flag language that was too specialized for a general audience, and one that read “AWESOME,” to

identify when the presenter explained something particularly well.

The pop talk sessions were the primary source of hands-on training for the students, pro-

viding them with a means of putting into practice the theoretical training they had been receiving

during the panel sessions. Arming the audience with signage allowed the presenter to receive

instantaneous feedback during his or her talk and thereby adjust accordingly.
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8.3.2.3 Write-a-Thon

At the end of the first day of the workshop, students participated in a “write-a-thon”: a

several-hour session during which they each created an original piece of science writing for the

general public, using the lessons that they had learned that day. The following day, they met in

small groups to peer-edit each other’s work. After participants updated their drafts, they met with

the experts from the panel sessions to receive professional feedback on their writing. They were

later encouraged to pursue publishing opportunities (with some provided as publishers partnering

with ComSciCon) for the pieces that they created during the workshop; roughly a quarter of par-

ticipants took advantage of these opportunities and had their work published within six months of

the workshop’s conclusion.

This portion of the workshop was intended as further practical application of the theoretical

training participants had received, this time focusing on written rather than oral communication

skills. The iterative process of peer-editing and feedback from the expert science communicators

allowed students to continue to improve their communication skills beyond their first attempt. The

publishing opportunities made available after the workshop were intended to provide students with

a means of finalizing the project that they began at ComSciCon and increase their profile within

the science communication community.

8.3.2.4 Poster Session

ComSciCon participants were invited to take part in an electronic poster session on the final

day of the workshop. Roughly 20 attendees submitted poster presentations that described the

communication and outreach initiatives that they were leading, and the posters were displayed on

digital poster boards during a several-hour period of time near the end of the workshop.

The primary benefit of the poster session was to allow students to network with each other,

discussing current and previous projects, and potentially building new collaborations. A side benefit

was that students, in presenting their posters to each other, were able to continue to practice the
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Table 8.2: Learning goals targeted in Baram-Tsabari & Lewenstein (2013).

Clarity Use appropriate language, address, readability, use basic explanations as ap-
propriate, avoid jargon, and acknowledge prior knowledge

Content Select appropriate content: engaging, interesting, and relevant to particular
audience. Include scientific information, as well as nature of science, scientific
method, and implications

Style Use style aspects creatively: humor, emotions, anecdotes, and local references
Analogy Develop analogic strategies for explaining complex topics
Narrative Use complex narrative tools as appropriate, such as character development,

conflict, and resolution

science communication skills they had learned over the course of the workshop.

8.3.3 Instruments and Measures

Two primary tools are being used to answer the research questions proposed in this study:

writing samples and an attitudes survey. Study participants were asked both before and immedi-

ately after the workshop to provide a 100 − 200 word paragraph describing their current STEM

research as though to a member of the general public. These writing samples were then analyzed

using a rubric based on the learning goals in the written science communication assessment tool

developed in Baram-Tsabari & Lewenstein (2013). This instrument quantitatively analyzes the con-

sistency of a writing sample with a specific set of learning goals for written science communication;

we selected a subset of this tool’s learning goals appropriate for evaluating ComSciCon’s impact.

Examples of learning goals that we chose to target are listed in Table 8.2.

Because the initial writing samples were part of the application process (see Appendix B.1

for the application text), and participants were selected from the pool of applicants partially based

on the quality of this writing sample (as described in §8.3.1), comparison is inherently difficult —

by definition, participants’ initial samples already exhibit many characteristics of effective science

communication! As a result, we chose to focus on a few specific characteristics that were discussed

by the professional science communicators during the panel sessions at ComSciCon, and measure
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their presence or absence in the participants’ writing before and after the workshop. Those charac-

teristics are:

(1) Jargon: Did the author avoid using any jargon terms without defining them?

(2) Relevance: Did the author answer the question “Why should the reader care?”

(3) Connection: Did the author use any analogies, metaphors, or other ways of connecting to

the reader’s experiences?

(4) Hook: Did the author use some sort of hook at the start of their summary to reel in the

reader?

(5) Appeal: Did the author use some form of humor, narrative, or other aspect of appeal to

keep the reader’s attention?

To gauge students’ perception of the environment that currently exists for them as science

communicators, as well as to better understand their own attitudes toward science communication

and to be able to compare them to other professional scientists, each study participant completed

an attitudes survey both before and immediately after the workshop, as well as an additional survey

that was administered six months later. All three surveys are reproduced in Appendix B.2 for refer-

ence. These surveys probed topics such as previous training the attendees had received in science

communication, the state of the field for students interested in science communication today, and

how the participants felt the workshop had affected their abilities to communicate science. Many

of the questions addressing students’ attitudes toward science communication and outreach were

based on a survey developed in 2006 by the Royal Society and administered to a group of nearly

1500 research scientists at higher-education institutes (The Royal Society, 2006).

8.4 Results and Discussion

As a component of ComSciCon 2013, participants were asked to fill out a survey both before

and after the workshop, as described in §8.3.3. Their responses, as well as analysis of their writing
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samples before and after the workshop, are discussed in this section.

8.4.1 General Goals and Beliefs of Participants

8.4.1.1 Perceived Support for Communicators

ComSciCon attendees were asked to report how supportive they considered other scientists to

be of those who take part in activities that engage the general public. This question was intended to

gauge the state of the field for young scientists today who attempt to pursue science communication

and outreach activities during the course of their academic careers. Figure 8.1 summarizes the

responses from participants.

Responses tended to indicate a reasonably supportive environment. 72− 78% of participants

who expressed a view reported their scientific fields, faculty in their department, and advisors to

be either “fairly supportive” or “very supportive”. That percentage is even higher — 91% — when

describing their peers. These numbers are slightly larger than those in the Royal Society study:

71% of UK scientists who expressed a view considered the researchers in their department to be

“fairly supportive” or “very supportive” toward those who take part in activities that engage the

general public.

It should be noted, however, that there may be a selection effect at work here: participants

are a select group who feel comfortable openly attending ComSciCon. In contrast, there may be

students who are concerned that attending a science communication training workshop would

cause them to be viewed negatively in their field, in their department, or by their advisors or peers.

As such, ComSciCon participants may be reporting a more positive environment toward science

communication than can be expected as the average.

8.4.1.2 Career Goals

Survey responses indicated that ComSciCon 2013 participants were a very interesting popula-

tion. The selection criteria for ComSciCon are such that only students with a demonstrated interest



131

0	  

15	  

30	  

45	  

60	  

Don't	  know	   Not	  at	  all	  
suppor6ve	  

Not	  
par6cularly	  
suppor6ve	  

Fairly	  
suppor6ve	  

Very	  
suppor6ve	  

%
	  o
f	  P

ar
(c
ip
an

ts
	  

A0tude	  Toward	  Scien(sts	  Who	  Engage	  the	  Public	  

Par(cipants'	  Scien(fic	  Field	  

(a) Scientific Field

0	  

15	  

30	  

45	  

60	  

Don't	  know	   Not	  at	  all	  
suppor6ve	  

Not	  
par6cularly	  
suppor6ve	  

Fairly	  
suppor6ve	  

Very	  
suppor6ve	  

%
	  o
f	  P

ar
(c
ip
an

ts
	  

A0tude	  Toward	  Scien(sts	  Who	  Engage	  the	  Public	  

Faculty	  in	  Par(cipants'	  Depts.	  

(b) Department Faculty

0	  

15	  

30	  

45	  

60	  

Don't	  know	   Not	  at	  all	  
suppor6ve	  

Not	  
par6cularly	  
suppor6ve	  

Fairly	  
suppor6ve	  

Very	  
suppor6ve	  

%
	  o
f	  P

ar
(c
ip
an

ts
	  

A0tude	  Toward	  Scien(sts	  Who	  Engage	  the	  Public	  

Peers	  in	  Par(cipants'	  Depts.	  

(c) Peers

0	  

15	  

30	  

45	  

60	  

Don't	  know	   Not	  at	  all	  
suppor6ve	  

Not	  
par6cularly	  
suppor6ve	  

Fairly	  
suppor6ve	  

Very	  
suppor6ve	  

%
	  o
f	  P

ar
(c
ip
an

ts
	  

A0tude	  Toward	  Scien(sts	  Who	  Engage	  the	  Public	  

Par(cipants'	  Advisors	  

(d) Advisor

Figure 8.1: Perceived level of support for scientists who engage the public, from a) participants’
scientific fields, b) faculty in participants’ departments, c) peers in participants’ department, and d)
participants’ advisors.
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in science communication were admitted as participants, and yet students’ interests and goals are

by no means uniform. As an example, the career goals of ComSciCon participants are shown in

Figure 8.2. These goals clearly represent a broad distribution of interests — from students who in-

tend to transition to a career such as science journalism that is fully science-communication-based,

to students who intend to remain in academia but hope to become more effective science com-

municators as part of their professional development. Similarly, when asked to report the number

of hours the students intend to spend on communicating science with non-experts in their future

careers, responses were distributed across the spectrum of possible answers, from 0−2 hours/week

to 20+ hours/week.
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Figure 8.2: Participants’ self-reported career goals. N=48; multiple selections were possible.

We consider this to be a very positive indicator: this means that ComSciCon is able to target

both students who plan to remain in academia and those who intend to leave it. We hope that

this will increase ComSciCon’s impact as the ideas from the training are able to spread to a larger

population of scientists.
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8.4.1.3 Attitudes Toward Science Communication

Despite the wide spread of career goals, ComSciCon participants exhibited some specific

attitudes that reflected their common interest in science communication. We compare some of

their responses here to what we consider to be a broad cross-section of professional scientists:

the 1400+ professional science researchers at higher education institutes in the United Kingdom

surveyed in 2006 by the Royal Society for a report on factors affecting science communication by

scientists and engineers (The Royal Society, 2006).

In general, both ComSciCon participants and the professional scientists surveyed by the Royal

Society believed that “scientists have a moral duty to engage with the non-specialist public about

the social and ethical implications of their research” and that “funders of scientific research should

help scientists” with this communication; roughly 70 − 80% of both the ComSciCon participants

and the professional scientists agreed with these statements (selected “strongly agree” or “agree”).

When asked who should be doing the communication of science with the public, however,

81% of ComSciCon participants disagreed with the suggestion that it is best done by trained pro-

fessionals and journalists, compared to only 44% of the professional scientists; similarly, 88% of

ComSciCon participants disagreed that it is best done by senior researchers, compared to only 54%

of the professional scientists.

When asked about the personal impact of engagement with the public, 96% of ComSciCon

participants reported that engaging with the non-specialist public in science was personally reward-

ing, and 90% agreed that public engagement could help their careers. In contrast, only 63% and

38% of the professional scientists agreed with these statements, respectively. In addition, ComSci-

Con participants are significantly more engaged in public outreach than the general cross-section

of professional scientists; when given a list of types of public outreach activities and asked to select

those that they had participated in within the past year, 91% of ComSciCon participants selected at

least one, compared to 74% of the Royal Society professional scientists surveyed.
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8.4.1.4 Previous Training

In spite of ComSciCon participants’ skew toward interest and active engagement in outreach

and science communication activities, when participants were asked what training they had pre-

viously received in science communication, 27% reported that they had never before received any

formal communication training, and 44% had only received formal training in communicating with

other scientists, but not with groups such as the public, school children, or the media. Figure 8.3

summarizes their responses.

If so few of these students selected specifically for their background in science communi-

cation activities have had formal training, what does this imply about the general population of

STEM graduate students? We argue that these responses illustrate the need for programs such as

ComSciCon to provide communication training to young scientists as a part of their professional

development.
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Figure 8.3: Participants’ self-reported previous training in science communication. N=48; multiple
selections were possible.



135

8.4.2 Self-reported Impact

ComSciCon participants exhibited no statistically significant change (as measured by a Mann-

Whitney test) in any of their general attitudes toward science communication and public engage-

ment after participating in the workshop. As participants already had very positive views toward

public engagement and science communication before the workshop, this is perhaps an unsurpris-

ing result.

Before the workshop, participants were asked to report what they felt would increase their

confidence in science communication. The responses generally fell into one of four categories: 1)

formal training, 2) practice, 3) critical evaluation of their communication attempts, and 4) success

in their attempts at communication (e.g., having an article accepted for publication). ComSci-

Con provided each of these things: formal training from professional science communicators in the

panel sessions, practice both in written communication from the write-a-thon and in oral communi-

cation from the pop talks, critical evaluation of both of these activities by peers and professionals,

and the opportunity for for success — many participants’ articles have since been published in

outlets partnering with ComSciCon, such as Scientific American, Natural History Magazine, and

Astronomy Magazine. Did participants’ confidence increase after the workshop as a result?

ComSciCon participants were asked to report their level of confidence in their science com-

munication skills in several categories, the first of which was their confidence submitting an article

to a popular science publication such as Wired, Popular Science, Scientific American, or Discover.

The distribution of their confidence ratings before and after the workshop are shown in Figure 8.4.

When the distributions are compared using a Mann-Whitney test, they are found to be different

samples at the 95% confidence level — students’ confidence gain after the workshop is statistically

significant. The effect size for the shift in confidence is quite large: the Cliff’s δ is 0.48, indicating

there is only 52% overlap between the pre and post distributions.

Similarly, participants’ reports of their confidence communicating with scientists and their

confidence communicating with the public also showed gains after the workshop; the results are
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Figure 8.4: Participants’ self-reported confidence submitting an article to a popular science maga-
zine. Confidence before the workshop is shown by the lighter bars, confidence after the workshop
is shown by the darker bars.

shown in Figure 8.5. The Cliff’s δ values for the gain in participants’ confidence communicating with

scientists and confidence communicating with the public are 0.52 and 0.33 respectively, suggesting

that these, too, are fairly meaningful pedagogical shifts.

8.4.3 Writing Sample Analysis

ComSciCon participants wrote a 100−200 word paragraph summarizing their research topics

for an audience of the general public, once in their application for ComSciCon, and once immedi-

ately after the workshop. Of the 48 study participants, 41 authorized use of both of their writing

samples in this study. We compare those samples now in order to establish whether participants’

writing styles changed after the science communication training.

The categories of jargon, relevance, connection, hook, and appeal (as described in §8.3.3)

were each evaluated on a binary scale: students were assigned a 1 if the characteristic was present,

and 0 if it was not. The results from before and after ComSciCon are shown in Figure 8.6.
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Figure 8.5: Participants’ reported confidence in a) their ability to communicate with scientists, and
b) their ability to communicate with the general public. Confidence before the workshop is shown
by the lighter bars, confidence after the workshop is shown by the darker bars.
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Figure 8.6: Scores for participants (N=41) in five categories evaluating targeted learning goals.
Asterisks indicate categories where the shift in scores is statistically significant.

It can be seen from the figure that students’ scores improved in all five of the categories;

the improvement is statistically significant at the 95% confidence level for the categories of jargon,

hook and appeal. The normalized gain (see §7.2.6) of the average score is calculated for each

category and displayed in Table 8.3; as can be seen, the average scores increased a substantial

percentage of the amount that they could have increased.

Table 8.3: Normalized gain of participants’ average score (N=48) in each of the five categories
evaluation.

Category Norm. Gain
Jargon 83 %
Relevance 67 %
Connection 37 %
Hook 32 %
Appeal 40 %

In general, participants’ writing samples were greatly improved in all five categories after the

workshop. The decrease in the use of jargon was one of the most evident enhancements, and was

unsurprising given the amount of improvement we saw in students’ awareness of jargon as they
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practiced their pop talks in front of each other during the workshop.

8.4.4 Follow-Up

ComSciCon participants were contacted six months after the completion of ComSciCon 2013

and asked to complete a follow-up survey; 35 participants opted to do so. Students were asked

about how ComSciCon had affected various aspects of their lives and goals.

One question with a particularly interesting response was that asking students to report how

participating in ComSciCon had changed their career plans. Of the 35 participants who responded,

9 reported that their career plans were unchanged. For the remaining 26 participants whose career

plans did change, however, the influence of their participation in ComSciCon was completely vari-

able. For some students, being exposed to new information caused them to consider careers they

hadn’t before. For others, that same exposure resulted in them discovering that they didn’t want

to pursue that career after all. Some students realized that remaining in academia was important

to them, while others realized that they wanted to leave it, or they wanted a career with a blend

of research and outreach components. The three main effects of ComSciCon on career plans seem

to be 1) that it made participants seriously contemplate what was and was not important to them

in a career, 2) that participants were provided with more information about the options available

to them, and 3) that participants were effectively given the opportunity to try being science writers

for a day (via the Write-a-Thon). The combination of these three items, however, appears to have

had a different impact on each participant individually.

Participants were also asked how their participation in ComSciCon 2013 had changed their

work over the past six months. Several reported having started a research blog in which they used

explanations of their work, often intended for the general public, as a means of organizing their

thoughts about their research. Others suggested that it had reframed how they thought about their

research and provided context for their work, as a result of having to think about the relevance

of their work to the general public. Still others reported that their writing skills had generally

improved since the workshop, which helped them when writing scientific papers. Finally, many
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stated that their skills communicating with other scientists in their field had improved as a result

of the workshop.

Participants were next asked how participation in ComSciCon had advanced their profes-

sional goals. Students reported the benefit of an increase in connections due to the networking

that occurred at the workshop, the addition of résumé items as a result of publication after Com-

SciCon, improved writing skills, and increased confidence communicating and presenting.

In order to probe whether connections from ComSciCon had evolved into any continued

relationships, participants were asked to report whether they had had any further interaction with

the professional science communicator panelists or other participants since the conclusion of the

workshop. Only 26% of participants reported any sort of interaction with ComSciCon panelists

after the workshop ended, but 74% reported continued interactions with other participants. In

addition, five of the 35 who responded also became organizers for the following year’s workshop,

ComSciCon 2014.

8.5 Conclusion and the Future of ComSciCon

Evidence from the participant surveys clearly demonstrates that, though ComSciCon partic-

ipants appear to be a unique group in their shared interest and background in public engagement

and science communication, they had nonetheless received very little formal training in how to ef-

fectively communicate science. Their responses also generally indicated a positive perceived view

of science communicators in their departments and fields. The clear need for programs that provide

formal training for future scientists in how to communicate science clearly with different audiences,

as well as the apparent support for science communicators, suggests that now is an excellent time

for the implementation of such programs as ComSciCon.

Overall, the model for ComSciCon was very well received. ComSciCon training specifically

addressed the primary needs expressed by participants in order to feel more confident as commu-

nicators. Feedback both from ComSciCon 2013 participants and the invited panelists indicate that
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the workshop was successful in providing useful information to participants, improving their abili-

ties and their confidence in science communication, and providing the opportunity for networking

with professionals and peers who share their interests, in many cases forming lasting relationships.

In addition to the self-reported increase in confidence, we see evidence of the success of

ComSciCon training tactics in the improved writing skills of participants; participants generally

increased their abilities to write without jargon, explain the relevance of their research to their

audience, make connections to their audience’s past experiences, and use elements of appeal in

their writing to hook their audience and keep them interested. The improvement demonstrated by

participants in this study suggests that we should consider thinking about how to adapt some of

these elements of training into larger and broader programs.

Finally, we are pleased to see that ComSciCon appears to be a partially self-sustaining ef-

fort. Participants from ComSciCon 2013 became organizers for the following year’s workshop, and

financial support from sponsoring institutes has continued beyond the initial installment. ComSci-

Con 2014 included an additional component to the workshop on how participants could implement

a local version of ComSciCon at their home institutes, thereby continuing to pass the information

learned at ComSciCon on. We hope that this growth and support continues, so that science com-

munication training can become a standard part of STEM students’ professional development.
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Chapter 9

Effects of Adding Science Communication Training to Astronomy Classes

9.1 Preface

This chapter contains the bulk of my science communication research work; the material

presented here will be included in a paper to be submitted to the Journal of Research in Science

Teaching, and was completed under the guidance of Dr. Seth Hornstein. In this chapter, I adapt

some of the training methods and assessment tools presented in Chapter 8 to be used on a larger

and broader scale in STEM classrooms. I then implement science communication training in five as-

tronomy classes and evaluate the impact that this training has on students’ science communication

skills and attitudes.

Abstract

The ability of scientists to effectively communicate with the public is imperative to our so-

ciety, yet there exist few programs designed to provide scientists with the corresponding training.

To explore this need, we target very-early-career scientists by integrating science communication

training into five undergraduate/graduate science classes. By analyzing writing samples and gaug-

ing participants’ attitudes toward science communication throughout the semester-long classes, we

demonstrate that integrating a small amount of written science communication training into ex-

isting science classes is sufficient to produce measurable improvement in students’ written public

science communication skills. We present a description of the training and the impact on students’

abilities and attitudes toward science communication here.
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9.2 Introduction

9.2.1 About This Study

Effective science communication is an important professional skill for future scientists, but as

we have already established, there exist few training programs for scientists who wish to improve

their abilities. We also believe that students beginning their science careers should not have to seek

out special professional development opportunities in order to increase their science communica-

tion skills; training in effective science communication should be a normal component of science

education at the undergraduate or graduate level..

Unfortunately, most science instructors don’t have the time to devote to an excessive compo-

nent of professional development in their classes, nor do they necessarily have the background to

teach strategies for strong science communication with different audiences. Here, we develop train-

ing materials that take up only a small amount of class time and could potentially be implemented

by instructors in any STEM course at the undergraduate or graduate level.

We test these materials in five astronomy major classes: three at the undergraduate and two

at the graduate level. We then assess the effectiveness of this science communication training in

improving the students’ skills at communicating with the general public, as well as the impact the

training had on their attitudes toward science communication.

9.2.2 Preliminary study

A preliminary study has already been executed testing some of the training materials and

assessment tools that are adapted here. The preliminary study was the evaluation of ComSciCon

2013, a science communication workshop for STEM graduate students. While the sample in that

study, a subset of the participants of ComSciCon, are a relatively select group, their responses to

the training — as well as the improvements measured in their abilities to communicate with the

general public after the training — have provided us with useful insight into which training tactics

were most successful and whether our assessment tools were appropriate for our measurement
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goals.

One example of a successful tactic from ConSciCon was “pop talks”, an activity wherein

students give one-minute talks about their research or another scientific topic of choice as though

to a general audience. Their peers then flag language not appropriate for a general audience by

holding up signs labeled with the word “JARGON”. Our analysis of ComSciCon suggested that this

training activity was particularly well-received, and a significant improvement in students’ abilities

to communicate without using jargon in their writing occurred after the training. As a result of this

outcome, we adapted pop talks to be included in the training materials used in the classroom in

the study presented here.

Our evaluation of ComSciCon hinged upon two primary measurement tools: a rubric used

to evaluate the writing samples of participants, and a survey designed to gauge the attitudes of

students toward science communication. We have used similar measurement tools in the study

presented here, based on the effectiveness of the tools used in the ComSciCon evaluation; our

rubric, for instance, has been upgraded to a more sophisticated version as a result of measurement

limitations in the evaluation of ComSciCon. The surveys were adapted to be relevant to a broad

range of students in varying stages of their academic careers.

9.2.3 Research goals

In administering science communication training broadly to several hundred students spread

across five astronomy classes and evaluating the result, we wanted to learn several things. Our two

primary research questions were:

(1) Is integrating a small amount of written science communication training into existing

science classes for majors sufficient to produce measurable improvement in students’

written public science communication skills?

(2) Is there an optimal time in the undergraduate/early-graduate career to provide this

training?
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In addition, some of our other research goals were:

• Determine what a typical student (i.e., one selected from a broad distribution of class levels,

majors, academic backgrounds, etc.) in a STEM class thinks about science communication.

• Determine what a typical student in a STEM class perceives the environment to be for those

who engage in science communication activities.

• Establish if attitudes toward science communication change after students receive training.

• Determine if there are any differences in how STEM majors and non-majors should be

trained to communicate science effectively.

9.3 Methods

Five classes containing primarily astronomy-major undergraduate students and astrophysics

graduate students were selected, and the students in these classes were provided with a small

amount of science communication training over the span of a single semester. We then assessed

the impact that this training had on the students’ written science communication skills and their

attitudes toward science communication.

9.3.1 Participants

Participants were all undergraduate or graduate students enrolled in one of five astronomy

courses at University of Colorado Boulder. All students enrolled in these classes were exposed to

the science communication training described in the next session, but each student was given the

ability to opt out of having his or her data included in this study. The five classes, the level of the

students in each class, and the approximate enrollment of each class are detailed in Table 9.1.

It should be noted that ASTR 2030 was an unusual class, both due to the fact that it con-

tained mixed levels of students (with roughly an equal number of students falling into the fresh-

man/sophomore category and the junior/senior category), and due to the fact that it contained
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Table 9.1: Description of the specific undergraduate and graduate classes targeted in this study.

Course Primary enrollment Approx.
classification enrollment

ASTR 1030: Accelerated Intro to Astronomy 1 Freshmen majors 95
ASTR 2030: Black Holes Mixed-level majors/non-majors 125
ASTR 3710: Solar System Formation/Dynamics Junior/senior majors 50
ASTR 5110: Atomic and Molecular Processes First-year graduate students 10
ASTR 5120: Radiative and Dynamical Processes Second-year graduate students 10

both STEM majors as well as a large contingent of non-majors (with a roughly equal split between

“STEM major” and “non-STEM major”). We asked students to self-report their major and year, and

used this information to examine study results for this class both as a whole and separately for

STEM majors and non-majors.

9.3.2 Training

All students in these five classes were provided with science communication training over the

span of the semester-long course. This training was designed to be unobtrusive in the context of

the overall course and create as little disruption for the class instructors as possible. The training

consisted of four components:

(1) In-class lecture/discussion

For each course, 15 minutes in each of two separate class periods were spent discussing

both the reasons why public science communication is an important skill for scientists (as

described in §7.1.2) and the specific elements of effective communication of science (e.g.,

minimizing of jargon, presenting connections to everyday life, using effective analogies,

etc., as described in Baram-Tsabari & Lewenstein (2013) and other studies such as Bowater

& Yeoman (2013)). These lessons were taught in a guest-professor format during nor-

mal class time, and they included both lecture and active-engagement components. See

Appendix C.1.1 for sample lesson plan outlines from these in-class lectures.

(2) Reading assignments
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Students were assigned to read two articles popularizing recent scientific results topically

related to their class (see Sanders et al. (2012) for an example source). This was intended

to demonstrate how professional writers have distilled information from scientific research

papers. See Appendix C.1.3 for a sample reading assignment.

(3) Writing assignments

Four or five homework assignments were given during the semester, in which students

were asked to write a short (100-200 word) paragraph summarizing an assigned scientific

subject, article, paper, etc. that we selected in collaboration with the course instructor to

be both topically related to the class and appropriate to the class level. See Appendix C.1.4

for a sample writing assignment.

(4) Peer-review

For each of the writing assignments after the first one, students completed anonymous

peer-review assessment of two classmates’ work based on a rubric developed in accordance

with the key points of the training. The goal of the peer-review assignments was to give

the students feedback on their own writing, reinforce the lessons from the in-class lec-

ture/discussion, and further expose them to examples of both good and bad writing. See

Appendix C.3 for the rubric provided to students for use while peer-reviewing.

9.3.3 Instruments and measures

As part of the study we attempted to evaluate both the efficacy of the training provided over

the semester and how students’ attitudes toward science communication might have changed by

the end of the semester. The tools we used to analyze these aspects are presented here.

9.3.3.1 Evaluation of efficacy of training

The first of the five writing assignments was given before the first in-class lecture/discussion

occurred, so that it could be used as a pre-training writing sample. The last of the five assignments
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Table 9.2: Learning goals targeted in the science communication training provided to study partici-
pants. These seven elements are also those on which students’ writing samples were later evaluated.

Jargon Is the writer being careful to avoid or explain words that the public might not
know?

Readability Does the writer avoid run-on sentences and make his/her message clear?
Correctness Is the writer presenting correct information?
Relevance Has the writer told you why you should care about this?
Organization Does the writer’s paragraph build upon itself in a clear, logical way?
Connection Does the writer use analogies or make connections to things his/her audience

might have experienced in everyday life?
Appeal Does the writer somehow hook the reader, use humor in his/her writing, tell

a story, or do something else to interest his/her audience?

was used as a post-training writing sample, and the efficacy of the science communication training

was then assessed by comparing the two samples for each student. The rubric used to evaluate the

writing samples was originally developed based on the written science communication assessment

tool presented in Baram-Tsabari & Lewenstein (2013), an instrument that quantitatively analyzes

the consistency of a writing sample with a specific set of learning goals for written science commu-

nication. The specific learning goals that we chose to focus on for our target group in this study

are detailed in Table 9.2; they were selected in accordance with generally accepted best practices

specifically for training scientists to more effectively communicate with the public (e.g. Baram-

Tsabari & Lewenstein, 2013; Bowater & Yeoman, 2013; Baron, 2010; Dean, 2009).

The samples were evaluated independently by two researchers familiar with the use of rubrics

to evaluate student writing, and checks were conducted to improve interrater reliability (see §7.2).

Interrater reliability was calculated two ways. For purposes of grading, we sought to ensure that the

two raters’ scores were typically within one point of each other. This was tested periodically during

sample evaluation, and if the percent agreement between the two raters was not high enough,

scoring tactics were reviewed before progressing. The overall percent agreement of the two raters

for all of the sample sets was typically above 90%, and the weighted Cohen’s κ (given by Eq

(7.2)) was typically between 0.5 and 0.7, which is generally interpreted to indicate “moderate” to
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“substantial” agreement (e.g. Landis & Koch, 1977). After all samples were scored by both raters,

the two raters’ scores were averaged to produce the final set of scores.

9.3.3.2 Evaluation of attitudes toward science communication

Students’ attitudes toward science communication were measured at the beginning and end

of the semester in each class using a survey adapted from that commissioned by the Royal Soci-

ety in 2006 to probe the attitudes of professional scientists toward public engagement (see The

Royal Society, 2006 for details). The content of the survey that we developed can be viewed in

Appendix C.2.

There were two goals of administering this survey to the students: first, to expand upon

the information obtained from the preliminary study by determining what a broad cross-section

of STEM students’ attitudes toward science communication and public engagement are, as well as

what sort of environment currently exists for students interested in public engagement and science

education; and second, to determine if any of the students’ attitudes change after the they have

been exposed to a semester of science communication training (which, as mentioned in §9.3.2 and

can be seen in Appendix C.1.1, includes a lecture component discussing the importance of — and

reasons for — communicating science).

9.4 Results and Discussion

As previously discussed, the two primary measures in this study were the students’ pre-

training and post-training writing samples and their pre-training and post-training attitude survey

responses. For the writing samples, we chose to only analyze matched data to be able to make

more robust comparisons; students who only submitted pre or post writing samples were excluded

from the data set. For the attitudes surveys, we took a different approach: because the attitudes

surveys administered before and after training were not identical (some questions only applied in

the pre-training case, and some questions only applied in the post-training case), having matched
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Table 9.3: Summary of the study sample sizes for each participating class, for the primary measur-
ing instruments of the study. The first column indicates the number of paired pre- and post-training
writing samples, and the second and third columns indicate the number of pre- and post-training
attitudes surveys completed.

Course Number of Number of Pre Number of Post
Writing Samples Survey Respondents Survey Respondents

ASTR 1030 53 58 55
ASTR 2030 80 71 80
ASTR 3710 34 38 36
ASTR 5110 11 12 11
ASTR 5120 10 9 10

data was less important. For this reason, we chose to retain all survey responses to maximize the

sample size; thus our survey data is unmatched. Our final sample sizes are presented in Table 9.3.

9.4.1 Writing sample analysis

The inset text below illustrates an example pre- and post-training writing sample produced

by a student enrolled in one of the graduate-level courses.

PRE
(Summary of: Worseck et al., 2011)
This study constrained the end of the epoch of helium reionization to a redshift (z)
of 2.7. Similar to the reionization of hydrogen in the intergalactic medium by the
energetic UV photons from hot stars, helium is ‘reionized’ in the early universe by
quasars that supply the energy necessary to excite helium from a first-ionized to a
second-ionized phase (the helium now has no electrons). Using the COS (Cosmic
Origins Spectrograph) on Hubble, the group examined the spectra of two quasars
(the nucleus of a distant galaxy), revealing the presence of characteristic absorp-
tion features of He II; these absorption features are then used in combination with
three older quasar sightlines to construct a picture of the optical depth of He II.
The optical depth is indicative of absorption in the intergalactic medium, where a
greater optical depth/absorption exhibits the presence of He II that is not yet fully
reionized. This study concluded using the spectral signatures of helium reioniza-
tion as well as optical depth measurements that reionization is occurring at z > 2.7.
This study is relevant both for the understanding of quasars themselves as well as
the composition of the early universe.

POST
(Summary of: Ramirez et al., 2014)
The climate of our sister planet, Mars, has remained a mystery to astronomers
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for decades; we want to know if there was once running water on the surface
and why it all disappeared. Using both images from spacecraft orbiting Mars and
experiments on Martian surface material conducted by rovers, scientists are able
to conclude that liquid water existed on mars billions of years ago. Scientists see
valleys on Mars that are analogous to Earth’s Grand Canyon, which was formed
from rushing rivers. For rivers to exist on Mars, the Martian atmosphere must have
been thicker billions of years ago. But up until now, astronomers have been unable
to model an atmosphere that grows thick enough to protect the liquid water from
freezing. A team of scientists out of Penn State considered molecular hydrogen in
addition to the usual carbon dioxide, and it did the trick; they were able to simulate
a Martian atmosphere capable of supporting liquid water. This study is important
because understanding Mars’ climate evolution will help climate scientists on Earth
understand our own evolving climate as well as the potential disastrous effects of
human-induced climate change.

The difference in the student’s writing style between the pre and post sample is evident here;

it can be seen that the student made gains in learning to write with less jargon, clearly explain the

point of the study and why it matters, and appeal to the reader. We now attempt to quantify these

changes across the set of students who participated in this study.

9.4.1.1 General outcomes

The pre- and post-training distributions of scores are shown for all five classes in Figures

9.1–9.5; these are included so that the reader may obtain a visual sense of how the distributions

changed for each class between the beginning and end of the semester. To quantify the difference,

the average normalized change (given by Eq (7.15)) for the students in each class is reported in

Table 9.4 for each of the seven categories. In both the figures and the table, starred categories

correspond to those that demonstrate a statistically significant difference at the 95% confidence

level between the pre- and post-training score distributions, as measured by a Mann-Whitney test

(see §7.2.4).
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Figure 9.1: ASTR 1030 (N=53) pre- and post-training writing sample score distributions. Cate-
gories with an asterisk after the title demonstrate a statistically significant difference between the
pre and post scores.
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Figure 9.2: ASTR 2030 (N=80) pre- and post-training writing sample score distributions. Cate-
gories with an asterisk after the title demonstrate a statistically significant difference between the
pre and post scores.
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Figure 9.3: ASTR 3710 (N=34) pre- and post-training writing sample score distributions. Cate-
gories with an asterisk after the title demonstrate a statistically significant difference between the
pre and post scores.



156

0	  
10	  
20	  
30	  
40	  
50	  
60	  
70	  
80	  
90	  

100	  

1	   2	   3	   4	   5	  

%
	  o
f	  S
tu
de

nt
s	  

Score	  

Jargon*	  

0	  
10	  
20	  
30	  
40	  
50	  
60	  
70	  
80	  
90	  

1	   2	   3	   4	   5	  

%
	  o
f	  S
tu
de

nt
s	  

Score	  

Readability*	  

0	  
10	  
20	  
30	  
40	  
50	  
60	  
70	  
80	  
90	  
100	  

1	   2	   3	   4	   5	  

%
	  o
f	  S
tu
de

nt
s	  

Score	  

Correctness	  

0	  

10	  

20	  

30	  

40	  

1	   2	   3	   4	   5	  

%
	  o
f	  S
tu
de

nt
s	  

Score	  

Relevance*	  

0	  
10	  
20	  
30	  
40	  
50	  
60	  
70	  
80	  

1	   2	   3	   4	   5	  

%
	  o
f	  S
tu
de

nt
s	  

Score	  

Organiza(on*	  

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

1	   2	   3	   4	   5	  

%
	  o
f	  S
tu
de

nt
s	  

Score	  

Connec&on	  

0	  
10	  
20	  
30	  
40	  
50	  
60	  
70	  
80	  
90	  

1	   2	   3	   4	   5	  

%
	  o
f	  S
tu
de

nt
s	  

Score	  

Appeal*	  

Figure 9.4: ASTR 5110 (N=11) pre- and post-training writing sample score distributions. Cate-
gories with an asterisk after the title demonstrate a statistically significant difference between the
pre and post scores.
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Figure 9.5: ASTR 5120 (N=10) pre- and post-training writing sample score distributions. Cate-
gories with an asterisk after the title demonstrate a statistically significant difference between the
pre and post scores.
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Table 9.4: Average normalized change g (in %), as described by Eq (7.15), for the five classes
studied. Positive values correspond to an average gain, and negative values correspond to an
average loss. Asterisks indicate that the pre- and post-test score distributions were statistically
significantly different.

Jar Read Cor Rel Org Con App
ASTR 1030 64* 21 29 17 51* 42* 56*
ASTR 2030 47* 31 9 5 21 32* 20*
ASTR 3710 81* 40 41 39* 22 32* 43*
ASTR 5110 100* 78* 100 44* 72* 17 60*
ASTR 5120 100 61 -5 53* 61 71* 85*

Looking at the distributions and the gains, the greatest overall improvement is seen in the

categories of jargon, relevance, connection and appeal. As the distributions are clearly not Gaus-

sian, we choose to measure the average effect size using Cliff’s δ. The average effect sizes for

these four categories are δ = 0.50, 0.38, 0.59, and 0.79 respectively, which means that the pre and

post distributions for these scores exhibit only 50%, 62%, 41%, and 21% overlap. For reference,

the equivalent overlaps in a normal distribution would correspond to values of Cohen’s d (i.e., the

number of standard deviations separating the pre and post peaks) of roughly 0.9, 0.6, 1.1, and 1.9,

respectively — which are actually quite large effect sizes.

Scores in the categories of organization and readability also improved somewhat, primarily at

the graduate student level, but rarely at a statistically significant level. For the most part, students

already possessed basic skills in organizing their thoughts and writing clearly, and these abilities

only marginally improved over the span of the semester.

One of the concerns commonly expressed about writing for the general public is that, as a

result of the effort to make the topic appealing and jargon-free, much of the scientific correctness

of the topic can be lost (e.g. Dean, 2009). We were therefore especially interested to see if scores in

the category of correctness would be anticorrelated with scores in topics such as jargon, connection,

and appeal. While there is a small net loss in correctness in one of the graduate classes, none of

the final correctness scores are statistically significantly different from the pre-training scores.



159

9.4.1.2 Comparison of different class levels

The average pre and post scores for each class is shown in Figure 9.6; the data with a sta-

tistically significant difference between the pre and post scores are indicated by asterisks. Caution

should be exercised when comparing score data between classes, as each class was given different

writing assignments, and differences in scores between classes are therefore at least partially de-

pendent on this factor. In spite of this, we would like to get a sense of general trends in differences

between the different class levels.

To attempt to remove some of the bias that comes from the fact that students in different

classes had different assignments, we can focus on the differences in average normalized change

between classes: how does the amount that students improved — out of the amount that they

could have improved — compare between classes? In particular, are there obvious differences

between the lower-division classes (1030 and 2030) and the upper-division classes (which I will

use to mean 3710 and the graduate classes, 5010 and 5120)?

The distribution of the individual students’ normalized changes was statistically significantly

different for lower-division vs. upper-division students in the categories of jargon, readability,

correctness, relevance, and appeal; upper-division students consistently improved more in these

categories than did lower-division students. Looking at the information on gains contained in table

9.4, as well as the raw averages shown in Figure 9.6, it seems that the categories of relevance

and appeal in particular reflect significantly greater gains in the upper-level students than in the

lower-level students.

Jargon, in particular, is an interesting category: gains are higher in upper-division classes,

which is in part due to the lower-division students using little jargon to begin with — the lower-

division students scored an average of 4.3 out of 5 in the category of jargon on the pretest. We

suspect this is largely due to two factors: they don’t yet know the jargon of their field, and the

articles that they were assigned to summarize didn’t contain much jargon in the first place. In

contrast, the articles assigned to the upper-division students were much more jargon-heavy, and
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Figure 9.6: Average class pre- and post-training scores for each of the five classes. Asterisks indicate
data where the difference between the pre and the post scores is statistically significant.
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Figure 9.7: Comparison of the average scores for self-identified STEM majors and non-majors in
ASTR 2030.

these students are already accustomed to expressing themselves using jargon in their field.

9.4.1.3 Comparison of STEM majors vs. non-majors

Of the 80 writing samples we had available to analyze in ASTR 2030 — the only class with a

heavily mixed demographic — 46 students opted to provide information about their declared major.

This group included 23 self-identified STEM majors and 23 non-majors; the average scores for these

two sets of students are shown in Figure 9.7. Using only this sample, we analyzed the scores in

each of these two sets of students independently. A Mann-Whitney test clearly demonstrates that

the distribution of scores for majors is statistically indistinguishable from those for non-majors,

both for the pre-training writing sample and the post-training sample.

Though we are dealing with small-number statistics (N=46), we suggest that these results

may indicate that the set of students who are STEM majors and those who are non-majors do not

generally need to be treated differently during training in a lower-division class; in the context of

our study, they seem to enter with a similar knowledge base and react the same way to the train-

ing over the span of the semester. Larger studies comparing majors to non-majors are necessary,

however, to draw any firm conclusions.
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9.4.2 Attitudes survey analysis

All students in the five target classes were asked to optionally respond to an attitudes survey

at the beginning of the semester, before any science communication training had been adminis-

tered, and again at the end of the semester after all the training had been completed. The surveys

probed topics such as the students’ perception of the importance of science communication, the

previous training the students had received in science communication, and how the students felt

the training had affected their abilities to communicate science.

9.4.2.1 Importance of science communication

Both before the training and after, students were asked the question, “How important do you

consider it to be for scientists to be able to communicate with the general, non-specialist public?”

Somewhat surprisingly, even before any discussion of or training in science communication had

occurred, responses were extremely positive: on a scale of 1 (not important) to 9 (very important),

a remarkable 92% of students selected a score of 7, 8 or 9. Responses are shown, broken down by

class, in Figure 9.8. Responses were effectively unchanged when the students were surveyed again

at the end of the semester.

9.4.2.2 Previous training

Students were asked what, if any, training they had previously received in science communi-

cation; Figure 9.9 summarizes their responses. Unsurprisingly, the higher the level of the students,

the more training they typically had received: while an average of 67% of undergraduate students

reported having received no formal science communication training, only 29% of graduate students

reported the same. The training that appears to be most commonly provided to students, however,

pertains only to communicating with scientists; 71% of undergraduates and 60% of graduates re-

ported either no formal training, or only training associated with communicating with scientists.

These numbers are slightly lower than those quoted by the Royal Society in their 2006 report (The
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Figure 9.8: Students’ initial (pre-training) responses to the question “How important do you con-
sider it to be for scientists to be able to communicate with the general, non-specialist public?”

Royal Society, 2006), wherein 73% of the 1400+ professional scientists surveyed reported that

they had never had any formal training in communicating with the non-specialist public. This

may indicate that, in the past decade, some progress has been made in development of programs

that provide science communication training to young scientists. Nonetheless, the percentage of

students who had not received any training in communicating with the public is still quite high.

9.4.2.3 Support for communicators

Students were also asked to report how supportive they considered others to be of those who

take part in activities that engage the general public. This question was intended to gauge the state

of the field for young scientists today who attempt to pursue science communication and outreach

activities during the course of their academic careers. Figure 9.10 summarizes the responses from

participants.

Responses generally indicated that students perceive a reasonably supportive environment
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Figure 9.9: Students’ self-reported previous training in science communication.

for science communicators. When averaged across the classes, 74− 91% of students who expressed

a view reported their scientific fields, faculty in their department, peers in their department, and

their advisors to be either “very supportive” or “supportive”. This is a more somewhat more posi-

tive general outlook than that reported by the group of 1400+ professional scientific researchers

interviewed in the United Kingdom in 2006; of the UK scientists who expressed a view, only 71%

reported that the researchers in their department were “very supportive” or “fairly supportive”

toward those who take part in activities that engage the non-specialist public.
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Looking at the breakdown by class level, a large percentage of the students in all classes

(88 − 100% of those who expressed a view) seemed to agree that the faculty in their department

were supportive of science communicators (as measured by a response of “very supportive” or

“supportive”). In the remaining categories, a far greater percentage of graduate students (ASTR

5110 and 5120) indicated support of science communicators by their peers (92-100%) and advi-

sors (88 − 100%) than by their field as a whole (50 − 67%). In contrast, a larger percentage of

undergraduates (ASTR 1030, 2030 and 3710) reported support of science communicators by their

field (80 − 86%) than by their peers (76 − 84%) or — for students actively engaged in research —

their advisors (64− 77%).
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Figure 9.10: Perceived level of support for scientists who engage the public, from a) students’ sci-
entific fields, b) faculty in students’ departments, c) peers in students’ department, and d) students’
advisors. N=160, 161, 157, and 119 for these categories respectively, for students who expressed
a view (i.e., answered the question and did not select “don’t know”).
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In general, current students seem to be far more optimistic than past generations about the

opinions of scientists regarding those who participate in public engagement and communication

activities. In response to the statement “Scientists who communicate a lot are not well regarded

by other scientists,” 72% of the students who expressed a view disagreed with the statement,

compared to the 11% who agreed with it. In contrast, only 56% of the professional scientists asked

the same question in the 2006 Royal Society report disagreed, and 21% agreed (The Royal Society,

2006).

9.4.2.4 Confidence Communicating

Students were asked to report their level of confidence in their science communication skills

in several categories. The first category asked how comfortable they would feel submitting an

article to a popular science publication, such as Wired, Popular Science, Scientific American, or

Discover. Figure 9.11 displays the students’ aggregate responses before and after the training. The

difference in the two distributions is statistically significant, with an effect size given by a Cliff’s δ

of 0.38.

The difference in class levels manifests itself generally as a higher degree of confidence for

upper levels. For lower-division students, only 22% reported a confidence level above 5 (on a

scale of 1-9, where 9 is “very confident”) prior to training, and 55% reported a score above 5 after

training. In contrast, for upper-division students, those averages were 39% and 65%, respectively.

Trends in students’ self-reported confidence in communicating both with scientists and with

the general public were similar: both showed a significant gain between the pre-training and post-

training surveys. The aggregate responses can be seen in Figure 9.12; the effect size for the shift

in confidence in communicating with scientists is δ = 0.31, and the effect size for the shift in

confidence communicating with the general public is δ = 0.26. Here again, students at higher class

levels on average reported higher levels of confidence, both before and after the training. The

exception is post-training scores for confidence communicating with the public: more than 90% of

both lower-division and upper-division students reported a confidence level above 5.
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Figure 9.11: Students’ confidence submitting an article to a popular science publication. Responses
are aggregated for all students, with N=188 for the pre-training responses and N=192 for the
post-training responses.
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Figure 9.12: Students’ reported confidence in their ability to a) communicate with scientists, and
b) communicate with the general public. Responses are aggregated for all students, with N=188
for the pre-training responses and N=192 for the post-training responses.
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9.4.2.5 Impressions of Training Impact

Finally, at the end of the semester students were asked to report their level of agreement

with two statements: 1) I feel like I better understand the reasons why science communication is

important now compared to the beginning of the semester, and 2) I feel like I better understand

the elements of good science communication with the public now compared to the beginning of the

semester. These questions were basically intended to gauge whether or not the students considered

the training to have been worthwhile and/or effective.

Responses to these questions are shown in Figure 9.13. An average of 61% of all students

agreed (selected “strongly agree” or “agree”) that they better understood the importance of science

communication at the end of the semester, compared to an average of 13% who disagreed (selected

“disagree” or “strongly disagree”). An average of 78% agreed that they better understood the

elements of good science communication with the public at the end of the semester, compared to

an average of 11% who disagreed.

There was no significant difference between lower-division and upper-division students in

their responses to these questions. In addition, there was no significant difference between STEM

majors and non-majors in ASTR 2030 in their responses to these questions (calculated from a

sample size of N=27 majors and N=30 non-majors).

9.5 Conclusion

In this study we selected five undergraduate and graduate astronomy courses offered at Uni-

versity of Colorado Boulder and added a small amount of science communication training to each

one. The training consisted of 30 minutes of in-class lecture time, two out-of-class reading as-

signments, four or five writing assignments given as homework, and two or three peer-grading

assignments also done out of class. This training was designed to tie in to the topical class material

and create as little disruption to the normal class instruction and goals as possible. We have pre-

sented in this paper an analysis of the results from this experiment, with our primary goal being to
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Figure 9.13: Students’ post-training agreement with the statements a) “I feel like I better under-
stand the reasons why science communication is important now compared to the beginning of the
semester,” and b) “I feel like I better understand the elements of good science communication with
the public now compared to the beginning of the semester.”
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determine whether this minimal science communication training is enough to effect change in a)

students’ written ability to communicate science to the general public, and b) students’ attitudes to-

ward science communication. Our secondary goal was to determine if there exists a specific time in

students’ careers when it is most appropriate to provide them with science communication training.

9.5.1 Success of Training

The primary result of our analysis is that students’ writing for the general public significantly

improved over the span of the semester in several categories. The biggest changes can be seen

in students’ abilities to write with minimal jargon, to express the relevance of the science topic

to the reader, to write using elements of appeal, and to use analogies and connections to which

the reader can relate. Perhaps more importantly, students did not become significantly less able

to express scientific topics correctly as a result of their increased skills in writing for the general

public; thus there do not seem to have been any negative consequences as a result of the students

having received this training.

Students’ attitudes toward science communication were not significantly changed over the

course of the semester — but this is largely because they entered the training with already very

positive attitudes toward science communication and public engagement in general. Student survey

responses seem to indicate not only that they personally have a positive view of the importance of

science communication, but also that they believe that scientists in general are far more supportive

of science communicators than has been the view in the past (e.g. The Royal Society, 2006).

Whether this implies that the “Sagan Effect” of science communicators being ill-regarded by the

scientific community has diminished in recent years, or whether it simply means that the students

are still too early in their scientific careers to yet have encountered this mindset, is unclear.

Students were overall very receptive to the science communication training and provided

positive feedback. Their reported confidence in communicating significantly improved after the

training — both in the category of communicating with the public, which was the primary focus

of the training, and in the category of communicating with scientists, which was much less em-
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phasized. Moreover, students generally reported at the end of the semester that they felt they

had gained knowledge of both why science communication is important and how to communicate

effectively.

9.5.2 Timing of Training

Perhaps surprisingly, there was no significant difference between lower-division and upper-

division (in which we include graduate-level) students in their perceptions of the importance of

science communication or their attitudes towards this training. We expected there to be greater

resistance to these concepts amongst the upper-division students, but this does not appear to be the

case based on the survey responses we received: lower- and upper-division students all consistently

agreed upon the importance of science communication and about the usefulness of the training that

they received over the semester.

Analysis of the writing samples of lower-division and upper-division students separately re-

vealed a few key differences between the two groups, however. Upper-division students demon-

strated a greater improvement than lower-division students in the abilities to communicate with

elements of appeal, to communicate with minimal jargon, and to communicate the relevance of the

scientific topic to the reader. A likely explanation is that many habits of professional scientists —

such as communicating with peers using field-specific jargon, or writing with the primary purpose

of communicating as much information as compactly as possible — are developed gradually in

science students as they progress in their careers. In the process of becoming accustomed to these

professional habits, they also become less able to relate effectively to a non-specialist audience.

9.5.3 Recommendations

The fact that so few students reported having previously received any formal training in

communicating science with a non-specialist audience serves to illustrate the lack of formal training

programs in place. These numbers, combined with the students’ clear recognition of the importance

of science communication, indicates the need for such programs to provide communication training
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to young scientists as a part of their professional development.

In spite of the difference in gains between lower-division and upper-division students, the fact

remains that both groups demonstrated significant improvement in their abilities to communicate

with the public and their confidence in doing so — as well as their confidence in communicating

with scientists. We see no reason, therefore, not to introduce science communication training at

a basic level into any undergraduate- or graduate-level science class; we believe that the training

presented here can be relatively easily implemented by any instructor and used to complement the

science material in the class. We hope that the results shown in this paper will provide a starting

point for discussion on how to encourage broad implementation of similar training in university

STEM classes.
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Chapter 10

Conclusion

This thesis investigated two types of causality and communication: the physics of relativistic

astrophysical outflows, and the implementation of science communication training for undergrad-

uate and graduate students in STEM fields.

In Chapter 3 we presented two models for the pressure confinement and resulting accelera-

tion of a hydrodynamic, ultrarelativistic jet that has lost causal contact with its environment. In this

scenario a shocked boundary layer forms where the jet impacts the ambient medium; one of our

models considered the jet structure under the assumption that the pressure within the boundary

layer is a function only of the radial distance from the source, and does not have any horizontal

structure, whereas the other model allowed for the development of a transverse pressure gradient

across the layer. We found a set of solutions fully describing the boundary layer flow in both cases,

and demonstrated that, when pressure is allowed to vary across the boundary layer, changing how

steeply the pressure drops off outside of the jet affects whether the jet fills to the axis or instead

piles up all of its material in a narrow sheath around its outer edge.

In Chapter 4 we expanded upon the model in Chapter 3 by adding the effects of a toroidal

magnetic field threading the jet. We demonstrated that the boundary layer will always become

magnetically dominated far from the source, and we found a set of solutions fully describing the

boundary layer flow in this limit. We showed that the magnetic case differed in structure from the

hydrodynamic case: the magnetically-dominated boundary layer becomes thinner with increasing

radius, and it is bounded on the inside not by a shock front, but by a rarefaction front through
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which material leaves the boundary layer and rejoins the jet. In spite of this, the layer contains

a sharp pressure gradient and functions as an insulating buffer between the jet and the ambient

environment.

In Chapter 5 we revisited the work in Chapter 3 and asked what would happen if we relaxed

some of our original assumptions, such as that the flow must be irrotational, isentropic, and adia-

batic. We showed that in the case where the external pressure decreases slowly, solutions can be

constructed wherein the entropy increases within the boundary layer with increasing distance from

the source, presumably due to multiple shocks driven into the flow as it gradually collimates. We

demonstrated that the acceleration rate of the jet slowed as a result, and that this process provides

a source of internal energy that could be channeled into radiation.

In Chapter 6 we considered time-dependent properties of relativistic outflows, rather than

the steady-state views presented in the previous chapters. We investigated the spectral properties

of the 40 brightest gamma-ray flares detected by the Fermi Large Area Telescope in the first four

years of its mission. We identified the significant spectral breaks and demonstrated that they occur

at broadly-distributed energies, disfavoring the model of spectral break production by absorption.

We also found that the flares exhibited significant spectral variability and argued, based on our

analysis, that the highly regular gamma-ray spectra of blazars integrated over long time scales

emerge from a superposition of many short-lived components with relatively narrow spectra.

In Chapter 8 we evaluated a science communication workshop for STEM graduate students

and used this evaluation to assess the current environment for students interested in science com-

munication, as well as whether or not our training tactics in the workshop were effective and

well-received. We found that, despite the students being an elite group of science communicators,

they had received little formal training previously, indicating a need for such training programs.

We demonstrated that students after the workshop had significantly improved their skills in com-

municating without jargon and explaining the relevance of their research to a general audience in

an interesting way, and we showed that their confidence in various forms of communication had

also increased.
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In Chapter 9 we took the idea of science communication training for students one step further,

and analyzed a program wherein science communication training was inserted into five astronomy

classes for undergraduate and graduate students. We found the training to be successful: in spite

of the training being fairly minimal and not taking up much class time, it had the outcome that stu-

dents improved their ability to communicate without jargon, while acknowledging the big picture,

in a way that keeps the interest of a general audience. We found that the greatest impact was on

upper-division and graduate classes, but we suggest that because this training positively impacted

all levels and had no negative consequences, it could (and should!) be implemented in any STEM

classroom.
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Appendix A

Additional Derivations

A.1 Derivation of Governing Equations under the Kompaneets Approximation

The following is a more detailed derivation of Eqs 3.5–3.6 from Chapter 3. These are cou-

pled differential equations that describe the shock front and contact discontinuity of the boundary

layer surrounding an ultrarelavtistic jet that has lost causal contact, in the specific limit where the

boundary layer is treated as having constant pressure across its width, known as the Kompaneets

approximation.

We begin again from the relativistic oblique shock-jump conditions across the shock front:

njΓjβj,x = nsΓsβs,x (A.1)

wjΓ
2
jβj,x = wsΓ

2
sβs,x (A.2)

wjΓ
2
jβ

2
j,x + pj = wsΓ

2
sβ

2
s,x + ps (A.3)

βj,y = βs,y (A.4)

where the x-direction is chosen perpendicular to the shock front and the y-direction is tangential

(see Figure 3.1). Here w ≡ ε + p where ε is the total proper energy density, given by ε = ρ + 3p.

Considering the case of an ultrarelativistic gas in the regime where the jet is still accelerating, we

assume that nmc2 � p and the equation of state is p = ε/3, such that w ≈ 4p. Thus the energy

jump condition (A.2) and momentum conservation (A.3) become

pjΓjuj,x = psΓsus,x (A.5)

4pju
2
j,x + pj = 4psu

2
s,x + ps (A.6)
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where ux ≡ Γβx is the four-velocity component along the shock normal. Eq (A.5) is now rewritten

as

ps
pj

=
u2
j,x

u2
s,x

χ (A.7)

with χ ≡ βs,x
βj,x

. Combining this and Eq (A.6), we eliminate us,x and obtain an expression for the

pressure ratio which involves only uj,x and χ:

ps
pj

= 1 + 4u2
j,x(1− χ). (A.8)

We now work to eliminate χ by recalling the definition of the Lorentz factor Γ for the jet and

shock regions:

Γ2
j(s) ≡

1

a− β2
j(s),x

(A.9)

where we have defined a as a ≡ 1− β2
j,y and employed the shock jump condition βj,y = βs,y. Using

this and the definition u2
x ≡ β2

xΓ2, Eq (A.7) becomes

ps
pj

=

a
β2
j,x
− χ2

( a
β2
j,x
− 1)χ

=
1 + u2

j,x(1− χ2)

χ
. (A.10)

Equating Eq (A.8) and Eq (A.10), we find the following two solutions for χ:

χ =


1

u2
j,x + 1

3u2
j,x

.

(A.11)

The shock solution is the second of these two, giving the correct relativistic result of χ → 1
3 as

u2
j,x → ∞. Denoting the angle Ψj as the angle between a given jet streamline and the tangent to

the shock front, we can write

βj,x = |βj | sin Ψj ≈ sin Ψj (A.12)

for ultrarelativistic flow. Substituting this and the solution for χ back into Eq (A.10), we obtain

ps
pj

=
8u2

j,x − 1

3
=

8Γ2
j sin2 Ψj − 1

3
. (A.13)
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Now examining the geometry of the problem, we recognize that sin Ψj can be represented in

terms of θj and αj , respectively the angle the streamline makes with the z-axis and the angle that

the shock tangent makes with the z-axis. By noting that sin Ψj = sin(θj − αj) and tanαj =
drj
dz

,

and assuming conical streamlines such that tan θj =
rj
z

, we write

sin2 Ψj =

(
rj − z drjdz

)2

(
r2
j + z2

)(
1 +

(
drj
dz

)2
) . (A.14)

Solving for sin2 Ψj in Eq (A.13) and equating this to the geometric solution above, we obtain our

final differential equation governing the shape of the inner shock wall,(
rj − z drjdz

)2

(
r2
j + z2

)(
1 +

(
drj
dz

)2
) =

1

8Γ2
j

(
3
ps
pj

+ 1

)
, (A.15)

labeled as Eq (3.5) in Chapter 3.

As noted at the beginning of this section, the pressure ratio has a dependence upon r and z:

ps
pj

=
ps,0
pj,0

z−η

(cos Θ0)−4 (r2 + z2)−2
, (A.16)

where
ps,0
pj,0

is the pressure ratio at the initial impact point and (cos Θ0)−4 is a normalization term.

Similarly, the free expansion in the interior of the jet results in the Lorentz factor scaling as

Γj = Γj,0 cos Θ0(r2 + z2)1/2 (A.17)

with Γj,0 describing the Lorentz factor at the initial impact point. Inserting these expressions back

into Eq (A.15), we can analytically solve for
drj
dz

and later numerically integrate this to find rj(z).

To solve for the shape of the outer wall of the shocked layer, the contact discontinuity, we use

a slight modification of the method described in BL07. Energy-momentum conservation ensures

that

∇ · Fs = 0, (A.18)

where Fs is the energy flux, or the zeroth component of the energy-momentum tensor, within the

shocked layer. We can integrate this equation over a volume of the shocked boundary layer of
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the jet, bounded on either side by the shock rj and the contact discontinuity rc, and bounded on

the bottom and top by horizontal planes at z and z + dz. But by Gauss’s theorem, this integral is

equivalent to an integral of the flux through the surfaces of the bounded volume, which can further

be written out in terms of the individual surfaces:

0 =

∫
V

(∇ · Fs)dV (A.19)

=

∫
S

(Fs · n̂)dS (A.20)

=

(∫ rc

rj

(Fs · ẑ)2πrdr

)∣∣∣∣
z+dz

+

(∫ rc

rj

(Fs · (−ẑ))2πrdr

)∣∣∣∣
z

+

∫
∂Ωj

(Fs · n̂j)dSj +

∫
∂Ωc

(Fs · n̂c)dSc, (A.21)

where n̂j(c) is a unit vector normal to the shock (contact discontinuity) surface, ∂Ωj(c) denotes

integration over the portion of the shock (contact discontinuity) surface enclosed between z and

z + dz, and dSj(c) is the corresponding surface area element. Here the terms in Eq (A.21) refer to

the flux through the top surface, bottom surface, shock surface, and contact discontinuity surface

of the bounded volume, respectively.

Denoting the relativistic flux through these surfaces by

F = wΓ2β = 4pΓ2β, (A.22)

we can first note that the last integral in Eq (A.21) will be equal to zero since, by definition, the

velocity is parallel to the contact discontinuity, meaning that βs · n̂c = 0. We may further interpret

Eq (A.21) by noting that the surface element at the shock (contact discontinuity) surface can be

written as

dSj(c) = 2πrj(c)
dz

cosαj(c)
, (A.23)

where αj(c) is the angle the tangent to the shock (contact discontinuity) makes with the z-axis, as

described previously (see Figure 3). As βj · n̂j = −|βj | sin Ψj , we now have(∫ rc

rj

(4psΓ
2
sβs,z)2πrdr

)∣∣∣∣z+dz
z

=

∫ z+dz

z
(4pjΓ

2
j |βj | sin Ψj)2πrj

dz

cosαj
. (A.24)
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In order to make this problem analytically tractable, we now assume that the flow parameters

within the shock depend only on the vertical distance z. Thus we are able to perform the integral

over r on the left-hand side of Eq (A.24). Now examining the right-hand side we see that, for a

small interval dz, the integral can be closely approximated by evaluating the integrand at z and

multiplying it by the interval dz. Thus we have

psΓ
2
sβs,z(r

2
c − r2

j )

∣∣∣∣z+dz
z

= 2pjΓ
2
j |βj |rj

sin Ψj

cosαj
dz. (A.25)

Dividing both sides of the equation by dz and employing the definition of d/dz to transform

the left-hand side, we achieve the final equation governing the contact discontinuity:

d

dz

(
psΓ

2
sβs,z(r

2
c − r2

j )
)

= 2pjΓ
2
j |βj |rj

sin Ψj

cosαj
, (A.26)

which is Eq (3.6) in Chapter 3.
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ComSciCon Materials

B.1 ComSciCon 2013 Application

Science Communication Workshop 2013 Application

Graduate students in all fields of science and engineering are invited to apply.
For more information about the workshop, please visit: http://workshop.astrobites.com/

First Name:

Last Name:

Email Address:

Phone Number:

University:

Current Position:

• Graduate Student (Masters)

• Graduate Student (Ph.D.)

• Other

Expected Graduation Date:

Field of Study:
Choose the one with which you most identify

• Astronomy/astrophysics

• Biology

• Chemistry
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• Computer Science

• Engineering: Biological

• Engineering: Chemical

• Engineering: Civil

• Engineering: Mechanical

• Engineering: Other

• Geology/Earth Science

• Materials Science

• Mathematics

• Physics

• Social Science

Would you be able to attend the entire workshop?
The workshop will run from June 13-15, 2013 in Cambridge, MA

• yes

• no

Would you need to travel to attend the workshop?

• No, I live in or near Cambridge, MA

• Yes, I would need to travel and would require accommodations

What city and state would you be traveling from?

• I would not need travel assistance or accommodations

• Other:

Your Experience Communicating Science

Please briefly describe (1-2 sentences each) two experiences you have had communicating
science to an audience other than researchers in your field. These could be long-term or
short-term experiences, oral or written projects, online or in person, for K-12 students or
adults, etc.
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• Communication Experience #1 (1-2 sentences only):

• Communication Experience #2 (1-2 sentences only):

Short Answer Questions

Why do you want to attend this workshop? In what way will it assist you in your future
career?
Please write no more than 150 words.

Writing sample prompt: how would you describe your research to the general public?
Please write no more than 100 words.

Additional Comments
This will not be considered when evaluating your application; please use this space to list any
questions or concerns you have about the workshop.
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B.2 Surveys

Survey #1 (Pre-Workshop)

Personal Information

Your name will be used only to match your responses from the pre-and post-workshop surveys. All
identifying information will be separated from your responses to the remainder of the survey.

Name

Current University

Email

Press Info: We’re interested in contacting local media outlets about ComSciCon 2013! Please
list newspapers that service your local area. Include both university papers and city or re-
gional papers.

If we contact these papers, may we give them your contact information?

Demographics

The following optional questions are for statistical purposes only.

Gender

• Male

• Female

• Other:

Ethnicity

• I am Hispanic or Latino

• I am not Hispanic or Latino

Race
(Choose one or more)

• American Indian or Alaska Native

• Asian

• Black or African American
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• Native Hawaiian or Other Pacific Islander

• White

• Other

Citizenship

• US citizen

• Permanent US resident

• International
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Personal Background
(Questions 1− 3 of 18)

(1) Year in graduate school you will be beginning in Fall 2013

• 1

• 2

• 3

• 4

• 5

• 6 or higher

(2) Field of Study

Choose the one with which you most identify

• Astronomy/astrophysics

• Biology

• Chemistry

• Computer Science

• Engineering: Biological

• Engineering: Chemical

• Engineering: Civil

• Engineering: Mechanical

• Engineering: Other

• Geology/Earth Science

• Materials Science

• Mathematics

• Physics

• Social Science

(3) Career Goals

Check all possible careers you are considering.

• Academia

• Industry

• Government

• Science policy

• K-12 teaching

• Public outreach

• Writing/publishing
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• Other:

ComSciCon 2013
(Questions 4− 6 of 18)

(4) Why are you attending ComSciCon 2013?

(5) What is the main thing you hope to get out of the workshop?

(6) Which panel(s) or speaker(s) are you most looking forward to? Why?
As a reminder, the panels are:

• Session 1: Engaging Non-Scientific Audiences

• Session 2: Science Writing for a Cause

• Session 3: Communicating Science Through Fiction

• Session 4: Sharing Science with Scientists

• Session 5: Interacting with the Media

• Session 6: World of Non-Academic Publishing

• Session 7: Communicating with Multimedia and the Web

Science Communication Background
(Questions 7− 12 of 18)

(7) What training, if any, have you had in communicating science before now? Check all
that apply. Do not include any teaching training you may have had.

• None

• Media training on being interviewed by journalists

• Training in writing for the general public

• Training in writing for scientific journal publication

• Training in speaking to the general public

• Training in speaking to other scientists

• Training in speaking to school children (of any age)

• Informal means / experience

• Other:

(8) If you indicated that you have had science communication training, who provided it?
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(9) On a scale of 1 (not at all confident) to 9 (very confident), how comfortable would
you feel submitting an article to a popular science publication (e.g. Wired, Popular
Science, Scientific American, Discover)?

(10) On a scale of 1 (not at all confident) to 9 (very confident), how confident are you in:

• Your ability to communicate with scientists?

• Your ability to communicate with the general public?

(11) How do you think you gained the science communication skills you have?

(12) What do you think would make you more confident in your science communication
skills?

Science Communication Attitudes
(Questions 13− 18 of 18)

(13) How important do you feel it is that you personally, in your current post, directly en-
gage with each of the following groups about your research? Please rate importance
on a scale of 1 (not important) to 5 (very important).

(a) General journalists (e.g. press, TV, radio, etc)

(b) Schools and school teachers

(c) Young people outside of school

(d) Policy makers

(e) Industry/business community (other than where directly concerned with funding your
research)

(f) The general, non-specialist public

(g) Non-governmental organizations (e.g. nonprofits)

(14) Thinking about public engagement with, and communication about, science, roughly
how many times in the past 12 months have you done each of the following?
Scale:

• None

• Once

• 2-3 times

• 4-5 times

• More than 5 times

(a) Worked with teachers/schools (including writing educational materials)

(b) Given a public lecture, including being part of a panel

(c) Taken part in a public dialogue event/debate
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(d) Been interviewed on radio

(e) Been interviewed by a newspaper journalist

(f) Written for the non-specialist public (including for the media, articles and books)

(g) Engaged with policy makers

(h) Engaged with non-governmental organizations (e.g. nonprofits)

(i) Worked with science centers/museums

(j) Judged competitions

(k) Given a talk to the scientific community

(l) Written for the scientific community (in any form)

(15) How important do you think it is that you personally, in your current post, engage
directly with the non-specialist adult public on each of the following? Please rate
importance on a scale of 1 (not important) to 5 (very important)

(a) The scientific findings of your research

(b) Areas of further research

(c) Policy and regulatory issues

(d) The wider social and ethical implications of your research findings for society

(e) The potential benefits of your work to individuals

(f) The scientific process/the nature of science

(g) Scientific uncertainty

(h) The enjoyment and excitement of doing science

(i) The relevance of science to everyday life

(j) To raise awareness of career options in science

(16) Below are some things scientists have said about engaging with the non-specialist
public about science and engineering. Please indicate whether you agree or disagree
for each statement.

Scale:

• Strongly Agree

• Agree

• Neither

• Disagree

• Strongly Disagree

• Don’t know

(a) Scientists who communicate a lot are not well regarded by other scientists

(b) Funders of scientific research should help scientists to communicate with the non-
specialist public

(c) Scientists have a moral duty to engage with the non-specialist public about the social
and ethical implications of their research
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(d) I don’t think my research is interesting to the non-specialist public

(e) The main reason to engage with the non-specialist public is to get their support for
science and engineering

(f) I simply don’t have time to engage with the non-specialist public

(g) I would not want to be forced to take a public stance on the issues raised by my
research

(h) Engagement with the non-specialist public is best done by trained professionals and
journalists

(i) Engaging the non-specialist public in science is personally rewarding

(j) My research is too specialized to make much sense to the non-specialist public

(k) I would need help to develop a science engagement project

(l) I would be happy to take part in a science engagement activity that was organized by
someone else

(m) Public engagement could help with my career

(n) Engaging with the non-specialist public is best done by senior researchers

(o) There are no personal benefits for me in engaging with the non-specialist public

(17) How supportive do you perceive the following groups/individuals to be towards those
who take part in activities that engage the general, non-specialist public?

Scale:

• Very supportive

• Fairly supportive

• Not particularly supportive

• Not at all supportive

• Don’t know

(a) Your field as a whole

(b) Faculty in your department

(c) Your advisor

(d) Your peers in your department

(18) How much time, on average, do you intend to spend on communicating science to
non- experts in your future career?

• 0− 2 hrs/week

• 2− 5 hrs/week

• 5− 10 hrs/week

• 10− 20 hrs/week

• 20+ hrs/week
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Survey #2 (Post-Workshop)

Personal Information
Your name, university, and email will be used only to match your responses from the pre- and
post-workshop surveys. All identifying information will be separated from your responses to the
remainder of the survey.

Name

Current University

Email

Career Goals
(Question 1 of 22)

(1) Career Goals

Check all possible careers you are considering.

• Academia

• Industry

• Government

• Science policy

• K-12 teaching

• Public outreach

• Writing/publishing

• Other:

ComSciCon 2013
(Questions 2− 12 of 22)

(2) Why did you attend ComSciCon2013?

(3) What was the most memorable thing you learned?

(4) How do you think you will apply this new knowledge?

(5) Which panel(s) or speaker(s) had the greatest impact on you and why?
As a reminder, the panels were:

• Session 1: Engaging Non-Scientific Audiences
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• Session 2: Science Writing for a Cause

• Session 3: Communicating Science Through Fiction

• Session 4: Sharing Science with Scientists

• Session 5: Interacting with the Media

• Session 6: World of Non-Academic Publishing

• Session 7: Communicating with Multimedia and the Web

(6) Which was your least favorite panel and why?

(7) What was the best piece of advice you received in this workshop?

(8) Do you think this workshop was the appropriate length?

(9) Is there anything you wish had been a part of this workshop that wasn’t?

(10) Do you have any suggestions for improving this workshop?

(11) Do you have any suggestions for future panel topics and/or panelists?

(12) Do you have any other comments about ComSciCon 2013?

Science Communication Confidence
(Questions 13− 14 of 22)

(13) On a scale of 1 (not at all confident) to 9 (very confident), how comfortable would
you feel submitting an article to a popular science publication (e.g. Wired, Popular
Science, Scientific American, Discover)?

(14) On a scale of 1 (not at all confident) to 9 (very confident), how confident are you in:

• Your ability to communicate with scientists?

• Your ability to communicate with the general public?

Science Communication Attitudes
(Questions 15− 18 of 22)

(15) How important do you feel it is that you personally, in your current post, directly en-
gage with each of the following groups about your research? Please rate importance
on a scale of 1 (not important) to 5 (very important).

(a) General journalists (e.g. press, TV, radio, etc)

(b) Schools and school teachers

(c) Young people outside of school
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(d) Policy makers

(e) Industry/business community (other than where directly concerned with funding your
research)

(f) The general, non-specialist public

(g) Non-governmental organizations (e.g. nonprofits)

(16) How important do you think it is that you personally, in your current post, engage
directly with the non-specialist adult public on each of the following? Please rate
importance on a scale of 1 (not important) to 5 (very important)

(a) The scientific findings of your research

(b) Areas of further research

(c) Policy and regulatory issues

(d) The wider social and ethical implications of your research findings for society

(e) The potential benefits of your work to individuals

(f) The scientific process/the nature of science

(g) Scientific uncertainty

(h) The enjoyment and excitement of doing science

(i) The relevance of science to everyday life

(j) To raise awareness of career options in science

(17) Below are some things scientists have said about engaging with the non-specialist
public about science and engineering. Please indicate whether you agree or disagree
for each statement.

Scale:

• Strongly Agree

• Agree

• Neither

• Disagree

• Strongly Disagree

• Don’t know

(a) Scientists who communicate a lot are not well regarded by other scientists

(b) Funders of scientific research should help scientists to communicate with the non-
specialist public

(c) Scientists have a moral duty to engage with the non-specialist public about the social
and ethical implications of their research

(d) I don’t think my research is interesting to the non-specialist public

(e) The main reason to engage with the non-specialist public is to get their support for
science and engineering

(f) I simply don’t have time to engage with the non-specialist public
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(g) I would not want to be forced to take a public stance on the issues raised by my
research

(h) Engagement with the non-specialist public is best done by trained professionals and
journalists

(i) Engaging the non-specialist public in science is personally rewarding

(j) My research is too specialized to make much sense to the non-specialist public

(k) I would need help to develop a science engagement project

(l) I would be happy to take part in a science engagement activity that was organized by
someone else

(m) Public engagement could help with my career

(n) Engaging with the non-specialist public is best done by senior researchers

(o) There are no personal benefits for me in engaging with the non-specialist public

(18) How much time, on average, do you intend to spend on communicating science to
non- experts in your future career?

• 0− 2 hrs/week

• 2− 5 hrs/week

• 5− 10 hrs/week

• 10− 20 hrs/week

• 20+ hrs/week

Writing Sample
(Questions 19− 20 of 22)

(19) Writing sample prompt: how would you describe your research to the general public?

(20) May we also include the writing sample from your ComSciCon application in this
study?

Networking
(Questions 19− 20 of 22)

(21) Below is a list of all workshop participants. Please indicate which of these partici-
pants you had ALREADY interacted with BEFORE the workshop, and the level of the
interaction.

(22) Below is a list of all workshop participants. Please indicate which of these participants
you interacted with DURING the workshop, and the level of the interaction.
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Survey #3 (6-Month Follow-Up)

Personal Information

Your name will be used only to match your responses from the pre-and post-workshop surveys. All
identifying information will be separated from your responses to the remainder of the survey.

Name

Current University

Email

Career Goals
(Question 1 of 8)

(1) Career Goals

Check all possible careers you are considering.

• Academia

• Industry

• Government

• Science policy

• K-12 teaching

• Public outreach

• Writing/publishing

• Other:

ComSciCon 2013
(Questions 2− 5 of 8)

(2) How has your participation in ComSciCon 2013 changed your work over the last 6
months?

(3) How has your participation in ComSciCon 2013 advanced your professional goals?

(4) How has your participation in ComSciCon 2013 changed your career plans?

(5) Thinking about public engagement with, and communication about, science, roughly
how many times in the past 12 months have you done each of the following?
Scale:
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• None

• Once

• 2-3 times

• 4-5 times

• More than 5 times

(a) Worked with teachers/schools (including writing educational materials)

(b) Given a public lecture, including being part of a panel

(c) Taken part in a public dialogue event/debate

(d) Been interviewed on radio

(e) Been interviewed by a newspaper journalist

(f) Written for the non-specialist public (including for the media, articles and books)

(g) Engaged with policy makers

(h) Engaged with non-governmental organizations (e.g. nonprofits)

(i) Worked with science centers/museums

(j) Judged competitions

(k) Given a talk to the scientific community

(l) Written for the scientific community (in any form)

Contact
(Questions 6− 7 of 18)

(6) Have you had any further communication with any of the *speakers* from ComSciCon
2013? If yes, how many? Please describe the level of communication (one email,
multiple emails, one phone conversation, etc). Please list the speakers with whom
you’ve communicated, if you can!

(7) Have you had any further communication with any of the other *attendees* from
ComSciCon 2013? If yes, how many? Please describe the level of communication
(one email, multiple emails, one phone conversation, etc). Please list the attendees
with whom you’ve communicated, if you can!

Press
(Question 8 of 8)

(8) To your knowledge, did a paper in your local area cover ComSciCon 2013?
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Science Communication Training in the Classroom Materials

C.1 Sample Training Materials

C.1.1 Sample Lesson Plan Outlines

Lesson Plan #1
Outline of topics that will be covered:

(1) Intro: Example of bad science communication

(2) Brainstorm ideas with class: Why is it important to be able to communicate science to
others? Some suggestions:

(a) promoting a scientifically-literate society

(b) promoting a science-oriented society: need to convince policy makers and voters that
funding scientific research is worthwhile

(c) moral obligation: taxpayer funding should be justified

(d) moral obligation: what are some examples of what happens when science communi-
cation doesn’t happen effectively?

(i) public perception of vaccines
(ii) public perception of climate change

(iii) aftermath of the L’Aquila earthquake

(3) Discuss: What makes for good science communication with the public?

(a) Jargon: Are you being careful to avoid or explain words that the public might not
know?

(b) Readability: Are you avoiding run-on sentences and making your message clear?

(c) Correctness: Are you presenting correct information?

(d) Relevance: Have you told me why I should care about this?

(e) Organization: Does your paragraph build upon itself in a clear, logical way?

(f) Connection: Are you using analogies or making connections to things your audience
might have experienced in everyday life?
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(g) Appeal: Do you somehow hook the reader, use humor in your writing, or tell a story
to interest your audience?

Lesson Plan #2
Goal: expose students to examples that reinforce the aspects of good science communication

taught in the previous lesson (jargon, readability, correctness, relevance, organization, connec-
tion, appeal).

First activity: Break into groups and have students practice giving one-minute talks describing
a basic scientific concept. Arm each student with two cards, one that reads “jargon” and one
that reads “awesome”, which they can hold up during the one-minute talks to flag jargon and let
students know when they’re explaining things well.

Second activity: Have students examine two writing samples about the same topic: one that
uses many traits of good science communication and one that uses few such traits. Have students
rate each one using the seven-level rubric, and discuss what the writers did/didn’t do well.
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C.1.2 In-Class Handout

ASTR XXXX Handout
Fall 2013

Aspects of Good Science Communication

(1) Jargon

Are you being careful to avoid or explain words that the public might not know?

Here’s an example of a jargon-heavy research description:

My research is on the relativistic blazar jets that are emitted from AGN. These
jets are observed to travel at velocities that are within a fraction of a percent of
c, but the cause of their acceleration and collimation is unclear.

Here’s a better way to describe the same research to an audience that isn’t likely to be
familiar with astrophysical terms:

My research is on the extremely fast-moving jets that are emitted from the centers
of some very active galaxies. These jets are moving almost at the speed of light,
but we’re not sure what causes them to reach these enormous speeds. We also
don’t know why the jets are shaped in a tight column instead of spraying out in
all directions.

Avoiding jargon is not the same as “dumbing things down” — it just means being aware
of your audience and whether or not they’re familiar with words that have specialized
meanings. If your audience is a group of astronomers, “dark matter” might not be jargon,
but “polymer” might be. If your audience is a group of chemists, the opposite may be true.

(2) Readability

Are you avoiding run-on sentences and making your message clear?

When writing for the public, the rule of thumb is to try to stick with one idea per sentence.
When you use complicated compound sentences, the main point often ends up getting lost.

(3) Correctness

Are you presenting correct information?

This one’s pretty self-explanatory:

The newly-discovered exoplanet is teeming with fluffy green rabbits. Scientists
hope to be able to send astronauts armed with carrots to this planet by 2017.

is only good science communication if it’s true (which would be awesome).

(4) Relevance

Have you told me why I should care about this?

This version may get the information across:
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We are currently approaching the end of the 11-year solar cycle, at which point
the Sun’s magnetic field will flip its polarity.

But this version tells people why they should care:

We are currently approaching the end of the 11-year solar cycle, at which point
the Sun’s magnetic field will flip its polarity. This part of the cycle is when the
Sun will be the most active, which can result in solar storms and space weather
that might affect astronauts in space, or even knock out power grids on Earth.

(5) Organization

Does your paragraph build upon itself in a clear, logical way?

Here’s an example of an organized explanation that first presents the main idea and then
provides supporting details:

There are two main aspects of the game of soccer that would change on Mars:
the force with which players would need to kick the ball, and players’ ability
to “bend” the ball. Players would have to change how hard they kick the ball
because the acceleration due to gravity on Mars is much lower than that on
Earth. This means that a ball given a specific initial angle and velocity would fly
considerably further on Mars than on Earth. The players’ ability to bend the ball
would change because bending relies on air resistance to deflect a spinning ball’s
path. Since the Martian atmosphere is much thinner than Earth’s, there would
be significantly less air resistance on the ball in flight — effectively preventing
bending.

(6) Connection

Are you using analogies or making connections to things your audience might have
experienced in everyday life?

This could come in the form of an analogy or metaphor:

Small daily flares are observed from the black hole in the center of our galaxy.
One proposed explanation for these flares is that Sgr A* frequently snacks on
passing asteroids.

Or a connection to common knowledge:

The radiation dose from these incoming muons on an average-sized life form
is slightly more than a ten-millionth of a Sievert (a measurement of radiation).
For comparison, a ten-millionth of a Sievert is roughly the same radiation you’re
exposed to by eating a banana, 1 Sievert will produce mild radiation sickness in
humans, and a level of 4-5 Sieverts is fatal to humans.

Or a connection to a previous event or recent news story:
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Space debris poses a threat in a number of ways. First, it has the potential to
collide with the ISS: just this June astronauts had to take shelter in the Soyuz
capsule due to concern about a piece of approaching space junk. The debris can
also deorbit in an unpredictable way and, if large enough, survive the atmosphere
and reach Earth’s surface — remember the satellite that made headlines last
month, or ROSAT’s very recent demise?

(7) Appeal

Do you somehow hook the reader, use humor in your writing, or tell a story to interest
your audience?

There are lots of ways to hook a reader! One option is to open with a compelling question:

Looking for something fun to consider today? Try this on for size: what happens
to life on Earth if a gamma-ray burst points at us from within our own galaxy?

Humor could come in the form of ironic language or understatement:

Ionization of the atmosphere and depletion of the ozone layer would probably
result in insta-sunburn, mutations and cancer, and disintegration of the food
chain as we know it — all of which would be somewhat unfortunate.

And here’s an example of using storytelling to open an article:

On an air force base in California, there is a building from which the positions
and trajectories of approximately 22,000 pieces of space junk are continually
monitored. Every spent rocket booster, or defunct satellite — in fact, every man-
made object in Earth’s orbit that’s larger than 10cm in diameter — is carefully
tracked. And while that sounds like a lot of debris, that’s only a small fraction of
what is out there.
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C.1.3 Sample Reading Assignment

Read the article on gamma-ray bursts, linked below. Besides reading for content, also pay attention
to things that the author does and doesn’t do well in writing for the general public.

Remember, some things to consider when writing for the general public include:

(1) Jargon: Is the writer being careful to avoid or explain words that the public might not
know?

(2) Readability: Does the writer avoid run-on sentences and make his/her message clear?

(3) Correctness: Is the writer presenting correct information?

(4) Relevance: Has the writer told you why you should care about this?

(5) Organization: Does the writer’s paragraph build upon itself in a clear, logical way?

(6) Connection: Does the writer use analogies or make connections to things his/her audience
might have experienced in everyday life?

(7) Appeal: Does the writer somehow hook the reader, use humor in his/her writing, or tell a
story to interest his/her audience?

Article: http://www.nytimes.com/2003/06/20/science/20GAMM.html
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C.1.4 Sample Writing Assignment

Read the article on imaging black holes, linked below. Then write a paragraph (between 100 and
200 words) summarizing it at a level that a member of the general, non-specialist public will be
able to understand.

Remember, some things to consider when writing for the general public include:

(1) Jargon: Is the writer being careful to avoid or explain words that the public might not
know?

(2) Readability: Does the writer avoid run-on sentences and make his/her message clear?

(3) Correctness: Is the writer presenting correct information?

(4) Relevance: Has the writer told you why you should care about this?

(5) Organization: Does the writer’s paragraph build upon itself in a clear, logical way?

(6) Connection: Does the writer use analogies or make connections to things his/her audience
might have experienced in everyday life?

(7) Appeal: Does the writer somehow hook the reader, use humor in his/her writing, or tell a
story to interest his/her audience?

Article: http://www.nbcnews.com/science/incredible-technology-how-see-invisible-black-
hole-6C10654146

Enter your paragraph here (100-200 words):
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C.2 Attitudes Surveys

Attitudes Survey #1

Personal Information

Your name and student number will be used only to match your responses from the pre-and post-
workshop surveys. All identifying information will be separated from your responses to the remain-
der of the survey.

Name:
Student Number:

Demographics

The following optional questions are for statistical purposes only.

Gender

• Male

• Female

• Other:

Ethnicity

• I am Hispanic or Latino

• I am not Hispanic or Latino

Race
(Choose one or more)

• American Indian or Alaska Native

• Asian

• Black or African American

• Native Hawaiian or Other Pacific Islander

• White

• Other

Citizenship

• US citizen

• Permanent US resident

• International
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Academic Background
(Questions 1-2 of 10)

(1) Year in school

• freshman

• sophomore

• junior

• senior

• 5th year or above undergrad

• grad student

(2) Field of Study

Choose the one with which you most identify

• Astronomy/astrophysics

• Other STEM (science/technology/engineering/math) field

• Non-STEM field

• Undeclared

Science Communication Background
(Questions 3-7 of 11)

(3) What training, if any, have you had in communicating science before now? Check all
that apply. Do not include any teaching training you may have had.

• None

• Media training on being interviewed by journalists

• Training in writing for the general public

• Training in writing for scientific journal publication

• Training in speaking to the general public

• Training in speaking to other scientists

• Training in speaking to school children (of any age)

• Informal means / experience

• Other:

(4) If you indicated that you have had science communication training, who provided it?

(5) What experiences, if any, have you had in communication before now? Check all that
apply.
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• Teaching (K-12)

• Teaching (university-level teaching assistant or instructor)

• Tutoring

• Giving public talks

• Giving scientific talks

• Publishing a paper

• Participating in public outreach events

• Participating in debate club/team or similar

• Taking an acting class or performing in plays, etc.

• Taking a journalism class or writing for a newpaper, etc.

• Writing for a blog

• Other experiences:

(6) On a scale of 1 (not at all confident) to 9 (very confident), how comfortable would
you feel submitting an article to a popular science publication (e.g. Wired, Popular
Science, Scientific American, Discover)?

(7) On a scale of 1 (not at all confident) to 9 (very confident), how confident are you in:

• Your ability to communicate with scientists?

• Your ability to communicate with the general public?

Science Communication Attitudes
(Questions 8-11 of 11)

(8) On a scale of 1 (not at all important) to 9 (very important), how important do you
consider it to be for scientists to be able to communicate with the general, non-
specialist public?

(9) How important do you think it is for scientists to engage directly with the non-
specialist adult public on each of the following? Please rate importance on a scale
of 1 (not important) to 5 (very important).

(a) The scientific findings of their research

(b) Areas of further research

(c) Policy and regulatory issues

(d) The wider social and ethical implications of their research findings for society

(e) The potential benefits of their work to individuals

(f) The scientific process/the nature of science

(g) Scientific uncertainty

(h) The enjoyment and excitement of doing science
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(i) The relevance of science to everyday life

(j) To raise awareness of career options in science

(10) Below are some things scientists have said about engaging with the non-specialist
public about science and engineering. Please indicate whether you agree or disagree
for each statement.

Scale:

• Strongly Agree

• Agree

• Neither

• Disagree

• Strongly Disagree

• Don’t know

(a) Scientists who communicate a lot are not well regarded by other scientists

(b) Funders of scientific research should help scientists to communicate with the non-
specialist public

(c) Scientists have a moral duty to engage with the non-specialist public about the social
and ethical implications of their research

(d) A lot of scientific research isn’t interesting to the non-specialist public

(e) The main reason to engage with the non-specialist public is to get their support for
science and engineering

(f) Engagement with the non-specialist public is best done by trained professionals and
journalists

(g) A lot of scientific research is too specialized to make much sense to the non-specialist
public

(h) In order to communicate with the public, scientists need to determine the public’s
opinions on science issues

(i) Public engagement could help with scientists’ careers

(j) Engaging with the non-specialist public is best done by senior researchers

(k) The main reason to engage with the non-specialist public is to provide them with
information

(l) There are no personal benefits for scientists engaging with the non-specialist public

(m) If the general public understood science better then there would be more public sup-
port of science

(n) It is important to get public input into science policy issues

(11) (Answer if you are in a STEM field only) How supportive do you perceive the following
groups/individuals to be towards those who take part in activities that engage the
general, non-specialist public?

Scale:
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• Very supportive

• Fairly supportive

• Not particularly supportive

• Not at all supportive

• Don’t know

(a) Your field as a whole

(b) Faculty in your department

(c) Your peers in your department

(d) Your advisor (select “Don’t know” if you don’t have an advisor)
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Attitudes Survey #2

Personal Information
Your name and student number will be used only to match your responses from the pre-and post-
workshop surveys. All identifying information will be separated from your responses to the remain-
der of the survey.

Name:
Student Number:

Science Communication Training
(Questions 1-7 of 10)

(1) On a scale of 1 (not at all useful) to 9 (very useful), rate how useful you found the
science communication training in the class.

(2) What would have made the training more useful?

(3) Do you have any other comments about the science communication training?

(4) Rate your agreement with the following statement: I feel like I better understand the
reasons why science communication is important now compared to the beginning of
the semester.

• Strongly Disagree

• Disagree

• Neither

• Agree

• Strongly agree

(5) Rate your agreement with the following statement:I feel like I better understand the
elements of good science communication with the public now compared to the begin-
ning of the semester.

• Strongly Disagree

• Disagree

• Neither

• Agree

• Strongly agree

(6) On a scale of 1 (not at all confident) to 9 (very confident), how comfortable would
you feel submitting an article to a popular science publication (e.g. Wired, Popular
Science, Scientific American, Discover)?

(7) On a scale of 1 (not at all confident) to 9 (very confident), how confident are you in:
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• Your ability to communicate with scientists?

• Your ability to communicate with the general public?

Science Communication Attitudes
(Questions 8-10 of 10)

(8) On a scale of 1 (not at all important) to 9 (very important), how important do you
consider it to be for scientists to be able to communicate with the general, non-
specialist public?

(9) How important do you think it is for scientists to engage directly with the non-
specialist adult public on each of the following? Please rate importance on a scale
of 1 (not important) to 5 (very important).

(a) The scientific findings of their research

(b) Areas of further research

(c) Policy and regulatory issues

(d) The wider social and ethical implications of their research findings for society

(e) The potential benefits of their work to individuals

(f) The scientific process/the nature of science

(g) Scientific uncertainty

(h) The enjoyment and excitement of doing science

(i) The relevance of science to everyday life

(j) To raise awareness of career options in science

(10) Below are some things scientists have said about engaging with the non-specialist
public about science and engineering. Please indicate whether you agree or disagree
for each statement.

Scale:

• Strongly Agree

• Agree

• Neither

• Disagree

• Strongly Disagree

• Don’t know

(a) Scientists who communicate a lot are not well regarded by other scientists

(b) Funders of scientific research should help scientists to communicate with the non-
specialist public

(c) Scientists have a moral duty to engage with the non-specialist public about the social
and ethical implications of their research
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(d) A lot of scientific research isn’t interesting to the non-specialist public

(e) The main reason to engage with the non-specialist public is to get their support for
science and engineering

(f) Engagement with the non-specialist public is best done by trained professionals and
journalists

(g) A lot of scientific research is too specialized to make much sense to the non-specialist
public

(h) In order to communicate with the public, scientists need to determine the public’s
opinions on science issues

(i) Public engagement could help with scientists’ careers

(j) Engaging with the non-specialist public is best done by senior researchers

(k) The main reason to engage with the non-specialist public is to provide them with
information

(l) There are no personal benefits for scientists engaging with the non-specialist public

(m) If the general public understood science better then there would be more public sup-
port of science

(n) It is important to get public input into science policy issues
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C.3 Rubric
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Score of 1 Score of 3 Score of 5 Your Score
means means means (1–5)

Jargon

Is the writer being careful to avoid 
or explain words that the public 
might not know?

Readability
Does the writer avoid run-on 
sentences and make his/her message 
clear?
Correctness
Is the writer presenting correct 
information?
Relevance

Has the writer told you why you 
should care about this?

Organization

Does the writer’s paragraph build 
upon itself in a clear, logical way?

Connection
Does the writer use analogies or 
make connections to things his/her 
audience might have experienced in 
everyday life?
Appeal
Does the writer somehow hook the 
reader, use humor in his/her writing, 
or tell a story to interest his/her 
audience?

Total (out of 35): 

Skill

Most sentences contain jargon without 
explanations, making paragraph difficult to 

read.

Some sentences contain jargon without 
explanations, but the paragraph is still 

understandable.

No sentences contain jargon without 
explanations, making the paragraph easy to 

read.

Most sentences are run-on sentences or are 
difficult to read, and the writer's message is 

obscured as a result.

Some sentences are run-on sentences or are 
difficult to read, but the writer's message still 

comes across after a few read-throughs.

Writer does not use run-on sentences, and 
his/her message is very clear.

Many sentences contain incorrect 
information. Some sentences contain incorrect information. Writer's information is entirely correct.

Writer does not explain the relevance of the 
information to the reader or discuss why 

the reader should care about it.

Writer makes an effort to explain the relevance of 
the information to the reader, but the point he/she 

is making isn't clear.

Writer clearly explains the relevance of the 
information to the reader and discusses why 

the reader should care about it.

Writer's paragraph has no logical order and 
doesn't make any sense as a whole.

Some structure and logical flow is evident in the 
paragraph, but it's still choppy, disorganized, or 

confusing.

The paragraph is well structured, with each 
sentence logically following from the previous 

one.

The writer makes no attempt at analogies, 
metaphors, or connections to everyday life.

The writer attempts analogy, metaphor or 
connection to everyday life, but not in a way that 
helps the reader's understanding of the subject.

The writer uses analogy, metaphor and 
everyday experiences clearly and accurately, in 

a way that successfully helps the reader to 
understand the subject.

The writer makes no attempt at narrative, 
humor, or some sort of hook to interest the 

reader.

The writer makes a moderate attempt at narrative, 
humor, or some type of hook.

The writer uses good narrative, clever humor, 
or an enticing hook to successfully interest 

his/her audience.


