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Theoretical Studies of Ultrafast Correlated Electron Dynamics in Single and Double Photoioniza-

tion

Thesis directed by Prof. Andreas Becker

Recent advances in laser technology have led to the generation of attosecond laser pulses,

whose duration is in the range of the natural time scale of electron dynamics, and thus make the

observation and even control of electron dynamics in atoms and molecules possible. While the

single-electron dynamics is more thoroughly studied, the correlated dynamics of two electrons is

less understood, especially in the context of resolving the ultrafast temporal information in double

photoionization.

In this thesis, we first study the energy exchange via electron correlation upon photon ab-

sorption over large distances in the two-site double photoionization of the helium dimer, which is

found to be a two-step process. In the first step, one electron in one atom absorbs the photon and

gets ionized. In the second step, this electron propagates towards the neighboring atom and knocks

out the other electron. We then introduce the Hamiltonian reduction method to further study the

effects of different interactions in the single and double photoionization of the helium dimer.

Next, we analyze the selection rules for the emission of two electrons from the helium atom,

the helium dimer, and general molecules following the absorption of a few photons in an intense

laser field. In particular, the back-to-back emission of the two electrons with equal energy sharing

is either suppressed or not depending on the number of photons absorbed from the field.

Finally, we study the time delay between the single and double photoionization processes.

We first propose a self-consistent-time method to account for the Coulomb-laser coupling effect and

obtain the intrinsic photoabsorption time delay measured by the attosecond streak camera. We

then proceed to time resolve the correlated emission of two electrons in the knockout process of the

helium dimer with respect to the first step of single ionization.
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Chapter 1

Introduction

The last 30 years have been a prosperous period of time in ultrafast science thanks to the

availability of femtosecond (1 fs = 10−15 s) laser technology, most notably the Ti:sapphire lasers [1],

which are capable of producing intense femtosecond laser pulses tunable in the red to near-infrared

(NIR) range with intensities exceeding 1015 W/cm2 in the focal spot. The real-time observation and

control of atom motions, as well as energy exchange between atoms in molecules and condensed

matter systems have been achieved (refer to Ref. [2] for a review of femtochemistry). Recent

advances in laser technology have led to the generation of attosecond (1 as = 10−18 s) extreme

ultraviolet (XUV) laser pulses. The duration of these pulses is in the range of the natural time

scale of electron dynamics, and thus make the observation and even control of electron dynamics

in atoms and molecules possible (refer to Ref. [3] for a recent review of attosecond physics). In this

chapter, we give a brief introduction to the background and some basic concepts of attosecond and

strong-field physics and outline the overall structure of this thesis.

1.1 Strong-field single ionization and the Keldysh parameter

The strong-field single ionization of atoms and molecules can generally be divided into three

categories, i.e., multiphoton ionization, tunneling ionization, and above-barrier ionization, with

the help of the Keldysh parameter γ [4]. The strong-field ionization consists of a subtle relation

between photon energy and photon number (or field intensity). For a high photon energy and

relatively low field intensity, the ionization proceeds in a way that the electron absorbs one or a few
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energetic photons and the interaction with the laser field can be considered as perturbative. For

a low photon energy and high field intensity, in contrast, the ionization occurs in a manner that

the electron absorbs many photons and the interaction is nonperturbative. In the limiting case of

a large number of absorbed photons, the latter process can be considered as tunneling ionization,

which is illustrated in Fig. 1.1. The strong laser field suppresses the Coulomb field of the nucleus

at one side and results in a barrier, through which the bound electron may tunnel out, leading to

ionization.

Ip

x0

Figure 1.1. Illustration of the Keldysh theory [4].

To clearly understand the relation between the multiphoton and tunneling ionization, we

examine the time scale of the quasi-static tunneling ionization [4]. As shown in Fig. 1.1, the strong

laser field produces a tunneling exit x0 for the electron with bound energy Ip, thus (Hartree atomic

units, e = m = ~ = 1, are used throughout the thesis, unless stated otherwise)

− Ip = − Z
x0
− Ex0 ≈ −Ex0, (1.1)

where Z is the nucleus charge and E is the field amplitude. Thus

x0 ≈
Ip

E
. (1.2)

The velocity of the electron before tunneling can be estimated by

ve =
√

2Ee =
√

2Ip, (1.3)

where the kinetic energy of the electron Ee = Ip is a result of the virial theorem. Therefore, the
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tunneling time can be estimated as

τ =
x0

ve
≈ Ip

E

√
1

2Ip
=

1

2ω

√
Ip

2Up
, (1.4)

where

Up =

(
E

2ω

)2

(1.5)

is the ponderomotive energy of the electron (cycle-averaged quiver energy of the electron in a laser

field) and ω is the angular frequency of the laser field. On the other hand, one half period of the

oscillating field is T
2 ≈

1
2ω . If τ > T

2 , or
√

Ip
2Up

> 1, the field oscillation has already reversed its

direction before the electron can tunnel; while if τ < T
2 , or

√
Ip

2Up
< 1, the electron may tunnel out

through the barrier. Thus, we can define the Keldysh parameter [4]

γ =

√
Ip

2Up
(1.6)

as a criteria to categorize the strong-field ionization into multiphoton ionization when γ � 1 and

tunneling ionization when γ � 1. In cases when γ ≈ 1, the two mechanisms coexist. The above-

barrier ionization, on the other hand, is just an extreme case of the tunneling ionization, where the

laser field is so strong and suppresses the Coulomb potential so much that the energy level of the

initially bound electron is already above the tunneling barrier.

1.2 Strong-field double ionization

Single ionization in strong fields, as discussed above, can be categorized into multiphoton

ionization (γ � 1) and tunneling ionization (γ � 1). In this section, we introduce the different

mechanisms in strong-field double ionization, which can generally be divided into three categories [5,

6], i.e., sequential double ionization (SDI), nonsequential double ionization (NSDI), and recollision

excitation with subsequent field ionization (RESI). These mechanisms distinguish themselves, in

particular, in the role of the electron correlation.

In SDI, as the name implies, the two electrons are emitted one after the other via interaction

with the field, without much influence on the emission of each other. Thus, it can be simply
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regarded as two sequential single ionization processes. SDI can occur in both multiphoton and

tunneling regimes.

NSDI, on the other hand, is more complex, since the emission of the two electrons is correlated.

In the multiphoton regime, the photon energy can be regarded as being deposited to one of the

electrons initially, which interacts and exchanges energy with the other electron via their Coulomb

correlation and both electrons are emitted in the end. Two different mechanisms are possible here,

i.e., knockout [7, 8] and shakeoff [9]. The knockout mechanism applies to the case when the photon

has a relatively low energy and the first electron (primary electron) has a low kinetic energy after

ionization. On its path of emission from the system, however, this electron may knock out the

other electron from the system through their mutual interaction. The shakeoff mechanism, on the

other hand, applies to the cases when the photon has a high energy and the first electron is striped

from the system rapidly before the rest of the system, including the other electron, can adjust to

this change. Now this system needs to relax to the eigenstates of the new Hamiltonian with one

electron removed. Projecting the wave function onto the eigenstates of the new system, with some

probability the electron will be found in the continuum, leading to double ionization. The electron

correlation in the shakeoff process is reflected in the initial two-electron state, which prepares the

system in a highly correlated fashion. It is also the correlation in the initial state that keeps the

energy conserved for the emission of the second electron. The separation of these two mechanisms

for double photoionization of the helium atom is around an excess electron kinetic energy of 350

eV [10].

NSDI in the tunneling regime is equally interesting. After the first electron tunnels out and

gets accelerated first away from the parent ion, it may be driven back by the same laser field when

the field reverses its direction. During the so-called rescattering [11, 12], the electron may collide

with the parent ion and knock another electron out, resulting in double ionization.

RESI, at last, is similar to NSDI in the tunneling regime, but when the rescattered electron

collides with the parent ion, it does not knock another electron out, but promotes it to an excited

state, from which it can easily tunnel out in the laser field. RESI is considered as belonging to the
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third category since the electron correlation is necessary for the excitation of the second electron,

while the subsequent ionization of the second electron may not directly relate to the first electron.

We can summarize all these mechanisms as a diagram below, using the double ionization of

the helium atom as an example:

He



multiphoton−−−−−−−→



He+ + e−
multiphoton−−−−−−−→ He2+ + e− + e− (SDI)

He2+ + 2e− (NSDI)


Knockout

Shakeoff

tunneling−−−−−−→ He+ + e−



tunneling−−−−−−→ He2+ + e− + e− (SDI)

rescattering−−−−−−−→


He2+ + 2e− (NSDI)

He∗+ + e−
tunneling−−−−−−→ He2+ + e− + e− (RESI)

1.3 High-order harmonic generation

In NSDI in the tunneling regime, the rescattered electron collides with the parent ion and

knocks out another electron. However, instead of knocking out a second electron, the returning

electron may instead recombine to the ground state and emit a photon. This process is called the

high-order harmonic generation (HHG) [13–15] since one single energetic photon is emitted in this

recombination process after the electron absorbs many photons and gains a lot of energy from the

oscillating laser field.

The HHG process can be described by a three-step model (see Fig. 1.2) [12]: 1. Tunneling:

tunneling ionization of electron through the potential barrier suppressed by the intense laser field.

2. Acceleration: electron driven away from and then back to the ion core by the oscillating laser

field. 3. Recombination: returning electron collides with the ion core with some energy and emits

a photon. Or, in the language of wave mechanics, the returning wave packet, together with the

parent wave packet, form a rapidly changing dipole moment, and thus emit light radiation.

The tunneling probability of an electron through the suppressed potential barrier is exponen-
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Figure 1.2. The three step model of the HHG process and electron trajectories (image credit Ref.
[16]).

Figure 1.3. Generation of an attosecond pulse train (image credit Ref. [17]).
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tially proportional to the laser field magnitude. However, if an electron is released at exactly a local

maximum of the laser field, it returns to the ion core with zero energy, a temporally uniform field

granted. If it is released before the maxima, it will drift away, not being able to return at all. When

an electron is however released after the maxima, it will then return with some energy, collide with

the ion core, and free the energy in the form of a photon. If it is released at approximately 18◦

after the field extrema, the return energy reaches its maximum, at 3.17Up. Therefore, the cut-off

energy of the photon emitted is Emax = Ip + 3.17Up [12, 18].

For each photon energy lower than the cut-off energy, there must be two contributions to the

HHG spectrum, one for the electron release before 18◦ which results in the so-called long trajectory,

and another for the electron release after 18◦ which leads to the shorter trajectory, as illustrated in

Fig. 1.2. Since the photon energy spans broadly, from 0 to the cut-off energy, the pulses generated

by the superposition of a broad range of harmonics are very short, indeed of attosecond duration.

However, the three-step process can occur every half-cycle of the laser field, since the field

reaches a maximum every half-cycle (see Fig. 1.3). Therefore, for each half-cycle of the laser field,

there will be an attosecond pulse generated. That is why in a long driving pulse an attosecond pulse

train is generated much more easily than an isolated attosecond pulse. This half-cycle periodicity

also ensures that there is only odd-order harmonics in the HHG spectrum (if it is generated from

rare-gas atoms). Moreover, since the driving laser field changes in magnitude over time, the cut-off

energy for each half-cycle also changes, i.e., there are different cut-off energies for each half-cycle

of the laser field.

1.4 Generation of single isolated attosecond pulse

The attosecond pulse train, while suitable for a number of experiments, is not ideal for time-

resolved experiments since there is an ambiguity in time due to the interaction with multiple pulses

in the pulse train.

Proposed by Christov, Murnane, and Kapteyn in 1997 [19, 20] and experimentally imple-

mented by Krausz and coworkers in 2001 [21–24], the cut-off harmonics method is a straightforward
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way to retrieve a single isolated attosecond pulse. Although there are different cut-off energies for

each half-cycle of the laser field, the overall cut-off energy occurs only near the envelope peak of

the laser pulse, as is also shown in Fig. 1.3.

Figure 1.4. The cut-off harmonics method to retrieve a single isolated attosecond pulse (image
credit Ref. [25]).

As illustrated in Fig. 1.4, the idea is to reduce the femtosecond driving laser pulse width

to only about 5 cycles which results in the generation of only 3 attosecond bursts at significant

energy. There is however only one burst, which contributes to the overall cut-off energy. Using

a high pass filter (a thin metal film) to filter out the lower harmonics, one is left with the most

energetic attosecond burst.

The electric field of a pulse can be expressed as E(t) = E0(t) cos(ωt + ϕ), where E0(t) is

the pulse envelope and ϕ is the carrier-envelope phase (CEP). To generate stable single attosecond

pulses, it is necessary that the waveform of the driving laser field is stable from pulse to pulse, i.e.,

the CEP should be stable.

In fact, this method not only requires a stable CEP, but works optimally only for ϕ = 0

and fails for ϕ = ±π/2. As shown in Fig. 1.5, two attosecond pulses almost identical in energy
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Figure 1.5. The cut-off harmonics method fails for CEP=±π/2 (image credit Ref. [24]).

Figure 1.6. Fourier transform of cut-off pulses above cut-off energy (image credit Ref. [23]).
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are generated at ϕ = −π/2, while only one is generated at ϕ = 0. Filtering out components with

energy lower than the overall cut-off energy still retains two pulses at ϕ = ±π/2. This can also

be seen from the Fourier transform of the cut-off pulses in these two cases, as shown in Fig. 1.6.

No matter how the high pass filter is set, the spectrum left is still oscillating, which is still two

attosecond pulses when transformed back.

As outlined, the technique requires the generation of few-cycle laser pulses, which is techno-

logically still challenging. Another disadvantage of this method is that it has a low efficiency. The

energy remained after the filter is applied is only about 10−5 of the original energy [26].

Over the years, a number of methods have been proposed and implemented to generate

single isolated attosecond pulses, including the polarization gating method [27–31], the two-color

laser method [27, 32], the surface harmonic generation method [33–35], the spatial filtering method

[36, 37], and the phase-matching gating method [38–40].

1.5 Attosecond streak camera

With the attosecond XUV laser pulse available, the first question to ask is how to make

use of it to resolve attosecond electron dynamics. In the traditional femtosecond spectroscopy,

the pump-probe scheme is usually applied, where the pump femtosecond laser pulse initiates the

ultrafast dynamics and the probe femtosecond laser pulse measures the change in a physical variable

induced by the pump pulse. By varying the relative delay between the pump and probe pulses in a

controlled manner, the ultrafast femtosecond dynamics of processes in atoms, molecules, or solid-

state systems can be observed or even manipulated. Although attosecond XUV laser pulses are

currently available, the pump-probe experiments with these pulses are still difficult up to now due

to the low interaction cross section of matter with XUV laser pulses and the low repetition rate of

the attosecond XUV laser pulse at nanojoule pulse energies [41]. However, alternative techniques

like the attosecond streak camera [42] and the attoclock [43] have been used in observing and

controlling electronic motion with a temporal resolution of less than 100 as, e.g., the real-time

observation of tunneling ionization in atoms [43, 44], photoelectron emission from solids [45], and
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the tracing of electron dynamics in atoms and molecules [46, 47].

To understand how the attosecond streak camera technique works, we first introduce the

conventional streak camera [49, 50], as shown in Fig. 1.7(a). The conventional streak camera is

traditionally used to characterize the temporal profile of a short light pulse. Its basic principle is

first to convert the light signal into an electron signal, which temporal profile is mapped onto a

measurable spatial profile as follows. As shown in the figure, a metal (gray plate) is illuminated by

the short light pulse (cyan curve) with an unknown temporal profile, and electrons (purple dots) get

emitted from the metal surface due to the photoelectric effect. The stronger the light pulse is at a

certain moment the more electrons will be emitted. As a result, the light signal is converted into an

electron signal. Next, the electron signal passes through an external electric field linearly varying in

time, which deflects earlier arriving electrons differently from later arriving electrons. In this way,

the temporal profile of the electron signal is converted into the spatial profile when it is collected

on the fluorescent screen, leading to the characterization of the temporal profile of the incident

light pulse. The conventional streak camera can reach a temporal resolution of a few hundred

femtoseconds. For even faster phenomena, like electronic dynamics in atoms and molecules, the

conventional streak camera falls short, since increasing the gradient of the linear varying laser field

to improve the temporal resolution becomes increasingly difficult.

The attosecond streak camera [42], as shown in Fig. 1.7(b), shares similar ideas. Its basic

principle is first to convert the light signal into an electron signal, which is then converted into the

measurable momentum profile instead of a spatial profile. As shown in the figure, a gas jet (not

shown) of atoms (yellow dots) is illuminated by the ultrashort XUV light pulse (cyan curve), which

ionizes the atoms and produces free electrons. In this way, the temporal profile of the ultrashort

light pulse is converted into an electron signal. In contrast to the conventional streak camera in

which a linear varying electric field is applied, here an additional few-cycle NIR streaking laser

pulse (red curve), synchronized with the ionizing XUV laser pulse, is applied, which modulates the

asymptotic momentum of the ionized electrons according to its instant of transition into continuum.

By measuring the final momentum profile of the electrons collected at the detector, the electron
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(a) Scheme of the conventional streak camera

(b) Scheme of the attosecond streak camera

(c) Principle of the attosecond streak camera

Figure 1.7. (a) Scheme of the conventional streak camera (image credit Ref. [3]), (b) scheme of
the attosecond streak camera (image credit Ref. [48]), and (c) principle of the attosecond streak
camera (image credit Ref. [3]).
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signal, and in turn the temporal profile of the ultrashort XUV light pulse, can be characterized.

In this case, however, the ”deflection” occurs within half a period of the streaking pulse, which

provides the possibility for measurements in the attosecond regime.

Although the attosecond streak camera was originally introduced for the characterization of

ultrashort light pulses, it can also be used to time resolve ultrafast electron dynamics. As shown

in Fig. 1.7(c), electrons released at different instants t0 drift differently in the streaking laser field

and have a different shift in the final momentum according to their instant of release t0

pf ≈ p0 −A(t0)/c, (1.7)

where p0 is the asymptotic momentum of the electron in the absence of the streaking field, A(t0)

is the vector potential of the streaking field at the instant of release t0 of the electron, and c is the

vacuum speed of light. By scanning the relative delay τ between the ionizing XUV laser pulse and

the streaking NIR laser pulse, a streaking trace can be obtained which consists of the momentum

distributions of the electron as a function of the time delay τ . Fitting the streaking trace to the

vector potential of the streaking field, we can obtain the time information regarding the electron

release. Eqn. (1.7) is accurate as long as the dipole approximation is valid and there is no other

potential present. However, in the ionization of an atom, the Coulomb potential of the residual ion

is present, and the electron motion in the coupled fields of the Coulomb potential and the streaking

laser field induces an error to Eqn. (1.7). In Sec. 5.2, we will study this Coulomb-laser coupling

effect and account for the additional time delay induced to obtain the intrinsic time delay in the

photoionization process of atoms and molecules.

1.6 Outline of this thesis

Recent advances in a variety of light sources such as the ultrashort intense lasers [3, 15],

synchrotron radiations [51], and free-electron lasers [52–54], novel measurement techniques like the

cold-target recoil-ion momentum spectroscopy [55, 56], and theoretical approaches [57, 58] have

led to a profound understanding of the correlated emission of two electrons in light-induced double
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ionization of atoms and molecules [51, 59–73]. The role of electron correlation in double ionization,

as compared to the single-electron emission where only electron-nucleus interaction plays a role, is

however still less understood, especially regarding the recently observed energy exchange between

electrons over distances of several Angstroms [74]. This thesis is thus devoted to the theoretical

studies and numerical simulations of ultrafast correlated electron dynamics in single and double

photoionization of atoms and molecules, in an effort to better understand the highly correlated

few-body dynamics.

In Chapter 2, we introduce the numerical methods used in this thesis for an ab-initio solution

of the time-dependent Schrödinger equation (TDSE) in the grid representation with the finite-

difference method. The numerical methods to obtain the ground state of a system and to propagate

the initial state in a time-dependent potential, the absorbing boundaries, and the space-partitioning

method to obtain single and double ionization contributions are presented. Parallel computation,

which uses multiple concurrent threads for a speedup of the calculations, is also briefly discussed.

In Chapter 3, we first study the energy exchange via electron correlation upon photon ab-

sorption over large distances in the two-site double photoionization of the helium dimer, which is

found to be a two-step process in our time-dependent numerical simulations. The double ionization

probability is shown to be closely related to that of the photoemission of an electron from one of

the helium atoms along the internuclear axis. Together with an analysis of the temporal evolution

of the two-electron probability distribution, this provides direct evidence for the two-step knockout

mechanism by which the photon energy is shared between the electrons over distances of several

Angstroms in the dimer. In the first step, as shown, one electron (the primary electron) in one

of the atoms absorbs the photon and gets ionized. In the second step, this electron propagates

towards the neighboring atom and knocks out the other electron (the secondary electron). We then

introduce the Hamiltonian reduction method, which selectively removes certain interactions from

the full Hamiltonian, in order to further study the effects of different interactions in the single and

double photoionization of the helium dimer.

In Chapter 4, we first analyze the selection rules for the emission of two electrons from the
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helium atom following the absorption of a few photons in an intense laser field. The rules arise

due to the symmetries of the accessible final states in the two-electron continuum. In particular,

the back-to-back emission of the two electrons with equal energy sharing is either suppressed or

not depending on the number of photons absorbed from the field. We then further generalize the

selection rules to the helium dimer and general molecules and conclude that the rules apply as long

as the system, excluding the two active electrons, has the central symmetry respect to its center of

mass.

In Chapter 5, we study the time delay between the single and double photoionization pro-

cesses, namely the correlation time delay. To this end, we first propose a self-consistent-time

method to account for the Coulomb-laser coupling effect and obtain the intrinsic photoabsorption

time delay measured by the attosecond streak camera. We then proceed to time resolve the cor-

related emission of two electrons in the knockout process of the helium dimer with respect to the

first step of single ionization using the variable space-partitioning method as well as the attosecond

streaking technique, which is extended to many-electron systems. The streaked variable for the

single ionization is the momentum of the first electron, while the streaked variable for the double

ionization is the center-of-mass momentum of both electrons. The correlation time delays obtained

for different laser parameters are compared with classical estimates.

At last, a summary is given in Chapter 6.



Chapter 2

Numerical methods

Central to the analysis of time resolving the laser-matter interaction is solving the TDSE of

the system. For complex systems containing many charged particles, solving TDSE directly can be

extremely difficult. In this case, one can use standard chemical methods such as the time-dependent

Hartree–Fock method and the time-dependent density-functional theory. For simpler systems where

one or two electrons are involved in the interaction, we can solve the associated TDSE using ab-

initio methods, which are more accurate than the chemical methods and are capable of resolving

more details of the physics of a certain phenomenon.

In this chapter, we discuss the numerical methods to solve the TDSE in grid representations,

i.e., using the finite-difference method. The basic parameters to characterize a specific simulation

are the spatial step ∆x (and ∆y, ∆z, etc.), number of grid points Nx (and Ny, Nz, etc.), and the

time step ∆t.

2.1 The split-operator method

In this section, we describe the split-operator method, which reduces the time propagation

of the multidimensional electron wave function to different directions. To make the scheme trans-

parent, we illustrate the method with a system containing only one electron, the TDSE of which

reads

i
∂

∂t
ψ(r, t) = H(r, t)ψ(r, t), (2.1)
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where the Hamiltonian of the system is

H(r, t) =
[p−A(t)]2

2
+ V (r), (2.2)

in which A(t) is the vector potential of the laser pulse and V (r) is the Coulomb potential of the

residual ion. For small time steps ∆t, the evolution of the wave function can be approximated as

ψ(r, t+ ∆t) ≈ e−iH(r,t)∆tψ(r, t). (2.3)

In Cartesian coordinates, the Hamiltonian, by convenience, can be decomposed to different

directions as

H(r, t) = Hx(r, t) +Hy(r, t) +Hz(r, t), (2.4)

in which

Hx(r, t) =
[px −Ax(t)]2

2
+

1

3
V (r), (2.5)

Hy(r, t) =
[py −Ay(t)]2

2
+

1

3
V (r), (2.6)

Hz(r, t) =
[pz −Az(t)]2

2
+

1

3
V (r), (2.7)

where Hx, Hy, and Hz can be regarded as the Hamiltonian in the x, y, and z directions, respectively.

The time-propagation operator can now be approximated as

e−iH(r,t)∆t ≈ e−iHx(r,t)∆t/2e−iHy(r,t)∆t/2e−iHz(r,t)∆te−iHy(r,t)∆t/2e−iHx(r,t)∆t/2, (2.8)

which is accurate to the second order in time. This follows straightforward from

ex̂+ŷ = eŷ/2ex̂eŷ/2 +O3, (2.9)

which can be proven using the Baker–Campbell–Hausdorff formula

log(ex̂eŷ) = x̂+ ŷ +
1

2
[x̂, ŷ] +

1

12
[x̂, [x̂, ŷ]]− 1

12
[ŷ, [x̂, ŷ]] + · · · . (2.10)

Using the split-operator method, the propagation in arbitrary dimensions can be reduced

to the propagations in one direction at a time, which greatly improves the speed of numerical

computations. Thus, for clarity, we restrict our discussions of the numerical methods below to one

dimension.
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2.2 The Crank–Nicolson method

The Crank–Nicolson method [75] is a unitary, energy conservative, and unconditionally stable

method to solve the TDSE with an accuracy of second order in time and space. Here, the time

evolution operator can be written in the Cayley form as

e−iH(t)∆t ≈
1− iH(t)∆t

2

1 + iH(t)∆t
2

, (2.11)

which is an unitary transformation accurate to the second order in time. From this it follows(
1 + i

∆t

2
H

)
ψ(t+ ∆t) =

(
1− i∆t

2
H

)
ψ(t). (2.12)

With the split-operator method, the Hamiltonian in the x direction has the form

Hx = A(x, y)
∂2

∂x2
+B(x, y)

∂

∂x
+ V (x, y), (2.13)

where y stands for all other coordinates.

The Crank–Nicolson method for the coordinate x reads

ψn(t+ ∆t) + i
∆t

2

[
An(y)

ψn+1(t+ ∆t)− 2ψn(t+ ∆t) + ψn−1(t+ ∆t)

(∆x)2

+Bn(y)
ψn+1(t+ ∆t)− ψn−1(t+ ∆t)

2∆x
+ Vn(y)ψn(t+ ∆t)

]
=ψn(t)− i∆t

2

[
An(y)

ψn+1(t)− 2ψn(t) + ψn−1(t)

(∆x)2
+Bn(y)

ψn+1(t)− ψn−1(t)

2∆x
+ Vn(y)ψn(t)

]
,

(2.14)

where n represents the index of the respective grid point in the x direction. This leads to a system
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of linear equations with tridiagonal matrices

2X1 3X1 0 0 · · · 0 0 0

1X2 2X2 3X2 0 · · · 0 0 0

0 1X3 2X3 3X3 · · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · 1XN−1 2XN−1 3XN−1

0 0 0 0 · · · 0 1XN 2XN





ψ1(t+ ∆t)

ψ2(t+ ∆t)

ψ3(t+ ∆t)

...

ψN−1(t+ ∆t)

ψN (t+ ∆t)



=



2Y1 3Y1 0 0 · · · 0 0 0

1Y2 2Y2 3Y2 0 · · · 0 0 0

0 1Y3 2Y3 3Y3 · · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · 1YN−1 2YN−1 3YN−1

0 0 0 0 · · · 0 1YN 2YN





ψ1(t)

ψ2(t)

ψ3(t)

...

ψN−1(t)

ψN (t)


,

(2.15)

where N is the total number of grid points in the x direction and

1Xn =
i∆t

2(∆x)2
An(y)− i∆t

4∆x
Bn(y), (2.16)

2Xn = 1− i∆t

(∆x)2
An(y) +

i∆t

2
Vn(y), (2.17)

3Xn =
i∆t

2(∆x)2
An(y) +

i∆t

4∆x
Bn(y), (2.18)

1Yn = − i∆t

2(∆x)2
An(y) +

i∆t

4∆x
Bn(y), (2.19)

2Yn = 1 +
i∆t

(∆x)2
An(y)− i∆t

2
Vn(y), (2.20)

3Yn = − i∆t

2(∆x)2
An(y)− i∆t

4∆x
Bn(y). (2.21)

There are a number of algorithms to solve this system of equations, such as the forward and

backward substitution [76]. The matrix multiplication of the right-hand side can be carried out

straightforward. For the left-hand side, one gets that ψ1(t + ∆t) depends on ψ2(t + ∆t) from the

first line. After substitution to the second line, one gets that ψ2(t+ ∆t) depends on ψ3(t+ ∆t) and
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so on. Finally, in the last line, one obtains the value of ψN (t+ ∆t). Now one just inserts this value

into the (N − 1)th line and gets ψN−1(t + ∆t). One can continue this procedure until the whole

wave function is determined.

2.3 Boundary conditions

We must pay special attentions to the borders of the grid, especially when using symmetric

or antisymmetric wave functions (half of the grid in use), cylindrical coordinates, and spherical

coordinates.

If we use a symmetric wave function in x, which has the grid points defined in the positive x

direction from ∆x
2 through (N− 1

2)∆x, the other side in the negative x direction is just a symmetric

mirror of the positive side. Further considering ψ
(
−∆x

2

)
= ψ

(
+∆x

2

)
(or ψ0 = ψ1), we have

∂

∂x
ψ1 =

ψ2 − ψ0

2∆x
=
ψ2 − ψ1

2∆x
, (2.22)

∂2

∂x2
ψ1 =

ψ0 − 2ψ1 + ψ2

(∆x)2
=
ψ2 − ψ1

(∆x)2
. (2.23)

This leads to coefficients in Eqn. (2.21) as

2X1 = 1− i∆t

2(∆x)2
A1(y)− i∆t

4∆x
B1(y) +

i∆t

2
V1(y), (2.24)

2Y1 = 1 +
i∆t

2(∆x)2
A1(y) +

i∆t

4∆x
B1(y)− i∆t

2
V1(y). (2.25)

For an antisymmetric wave function (ψ0 = −ψ1), the respective equations are

∂

∂x
ψ1 =

ψ2 − ψ0

2∆x
=
ψ2 + ψ1

2∆x
, (2.26)

∂2

∂x2
ψ1 =

ψ0 − 2ψ1 + ψ2

(∆x)2
=
ψ2 − 3ψ1

(∆x)2
, (2.27)

2X1 = 1− 3i∆t

2(∆x)2
A1(y) +

i∆t

4∆x
B1(y) +

i∆t

2
V1(y), (2.28)

2Y1 = 1 +
3i∆t

2(∆x)2
A1(y)− i∆t

4∆x
B1(y)− i∆t

2
V1(y). (2.29)

For the radial coordinate in cylindrical and spherical coordinates one assumes ψ
(
−∆x

2

)
=

ψ
(
+∆x

2

)
and the above equations for the symmetric wave functions can be used.
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The angular coordinate in cylindrical coordinates leads to the boundary condition ψN = ψ1,

which can be achieved by padding the grid points with this periodic boundary condition in mind.

Similar treatment can be used for spherical coordinates.

2.4 The imaginary-time-propagation method

The imaginary-time-propagation method [77] is a way to obtain the eigenstates of the system

studied. Within the imaginary-time-propagation method, the eigenstates are calculated in the order

of their energies. That is to say, the ground state needs to be obtained first, then the first excited

state, and next the second excited state and so on. First, we start from an arbitrarily chosen initial

guess for the ground-state wave function of the system ψ, which can be expanded in terms of the

still-unknown eigenstates of the system

ψ(0) =
∑
n

cnψn(0), (2.30)

the time-evolved version of which is

ψ(∆t) =
∑
n

cnψn(∆t) =
∑
n

cnψn(0)e−iEn∆t, (2.31)

where cn is the expansion coefficient and En is the eigenenergy of the n-th eigenstate.

Instead of using the real time ∆t for the time propagation, we use an imaginary ∆t. Thus,

let us substitute ∆t = −i∆τ , where ∆τ is now a real time, we then have

ψ(∆t) =
∑
n

cnψn(0)e−En∆τ . (2.32)

Since the ground state has the lowest energy E0, the weight of the ground state in the full wave

function grows with time as compared to excited states.

By carrying out the imaginary time propagation multiple times and normalizing the full

wave function after each time step, one will finally obtain the ground state of the system when

convergence is reached. The criteria for convergence can be the energy of the state, i.e., when the

calculated energy of the previous time step is approximately equal to the energy of the current

step. In this thesis, we use an absolute error of 10−16 a.u. in all results presented.
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The first excited state can be obtained in the same way, but one needs to project out the

ground state from the full wave function (using Gram–Schmidt orthogonalization) at each time

step. Similarly, higher excited states can be obtained by projecting out all lower states.

2.5 The spectral method

The eigenenergies can be obtained very accurately using the imaginary-time-propagation

method since the convergence criteria based on the eigenenergy can be chosen very strict, and the

eigenstates are also reasonably accurate. However, if we propagate the eigenstates without external

field, we can often still see a very small portion of the probability coming out from the bound

eigenstates. This indicates that the eigenstates obtained using the imaginary-time-propagation

method are not extremely accurate. This may not be a problem when we study strong ionization,

in which the ionization signal overwhelms the error, it may however pose a risk to the cases of weak

ionization.

To solve this problem, we can propagate the eigenstates in the free field for a long time

until the fake ionization signals have gone out of the grid and normalize the eigenstates again.

Alternatively, we can use the spectral method [78] to improve the eigenstates, whose accuracy

depends on that of the eigenenergies here.

The spectral method is based on the spectral properties of the Hamiltonian. Using this

method, both eigenenergies and eigenstates can be obtained. Following is a brief review of the

spectral method [78] that we only present for the nondegenerate case here. To this end, we write

the solution to the TDSE as a superposition of eigenstates

ψ(r, t) =
∑
n

Anun(r) exp(−iEnt), (2.33)

where An is the coefficient, un(r) is the eigenstate, and En is the corresponding eigenenergy. Let

us define the correlation function J(t) as

J(t) = 〈ψ(r, 0)|ψ(r, t)〉 =
∑
n

|An|2 exp(−iEnt), (2.34)
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and its Fourier transform is

J(E) =
∑
n

|An|2δ(E − En). (2.35)

As it is obvious from the equation above, we can get the spectrum of the correlation func-

tion with infinitely sharp peaks corresponding to the eigenenergies of the system if we record the

correlation function J(t) for an infinitely long time. However, in reality this is of course impossi-

ble. Instead, we can only record J(t) up to a certain time T , and the resonances have the form

sin[(E−En)T/2]/(E−En), whose sidelobes might confuse the overall spectrum. To overcome this

problem, we can add a normalized Hanning window function w(t)/T to the correlation function

J(t) =
∑
n

|An|2
w(t)

T
exp(−iEnt), (2.36)

where

w(t) =


1− cos(2πt/T ), (0 6 t 6 T )

0, (t > T )

(2.37)

and thus

J(E) =
∑
n

|An|2L(E − En), (2.38)

where L(E − En) is a lineshape function corresponding to the Fourier transform of the window

function. Therefore, the eigenenergies of the system can be obtained all at once, from the spectrum

properties of the Hamiltonian corresponding to the system. Shown in Fig. 2.1 is the spectrum of

the hydrogen atom obtained with a cylindrical 2D model.

After the eigenenergies are known, the eigenstates corresponding to the eigenenergies can be

obtained. To this end, we multiply both sides of Eqn. (2.33) by w(t) exp(iEt)/T and integrate from

0 to T , which yields

ψ(r, E) =

∫ T

0
ψ(r, t)

w(t)

T
exp(iEt)dt =

∑
n

Anun(r)L(E − En). (2.39)

The eigenstate um(r) corresponding to the eigenenergy Em can be obtained by substituting Em to

the equation above, i.e.,

ψ(r, Em) = Amum(r)L(0) +
∑
n6=m

Anun(r)L(Em − En) ≈ Amum(r)L(0). (2.40)
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Figure 2.1. The spectrum of the Cylindrical 2D hydrogen atom. The peaks correspond to the
eigenenergies of the atom. Parameters are ∆ρ = ∆z = 0.1, Nρ = Nz = 1000, ∆t = 0.01, recording
time T = 10000.
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The advantage of the spectral method, as mentioned above, is that all the eigenenergies of

the system can be obtained at once, as long as the correlation function is recorded long enough so

that its Fourier transform shows sharp peaks corresponding to the eigenenergies. However, to get

an eigenenergy as accurate as the results from the imaginary-time-propagation method is very time

consuming. Thus, if we only need to obtain the ground state and a few excited states, we can use

the imaginary-time-propagation method, which yields very accurate eigenenergies and reasonably

accurate eigenstates, which can then be improved using the spectral method based on the accurate

eigenenergies corresponding to the eigenstates obtained. Otherwise, if we need to obtain highly

excited states, we can use the spectral method to obtain both eigenenergies and eigenstates.

2.6 Absorbing boundaries

The essence of the grid-based numerical method is to initially keep the entire wave function

on the grid. However, when ionization happens, the wave packet may reach the border of the grid.

In order to hold the outgoing parts of the wave function on the grid, the grid space needs to be

large, which is time and memory consuming for a numerical simulation.

Figure 2.2. The scheme of the absorbing-boundary method.

To overcome this difficulty, grids with absorbing boundaries are used. Without absorbing

boundaries, using a border would be equivalent to having an infinitely high wall, which would

induce strong reflections of the wave packet that easily obscure the relevant physics. On the other

hand, with absorbing boundaries, which introduces a smooth transition between the region of

interest and the border, minimal reflections occur. The scheme of the absorbing-boundary method
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is illustrated in Fig. 2.2.

There are two major types of absorbing boundaries used in the grid-based numerical simula-

tions, i.e., the mask-function method [79] and the exterior-complex-scaling method [80, 81].

2.6.1 The mask-function method

- 4 - 2 2 4

0.2

0.4

0.6

0.8

1.0

Figure 2.3. The typical shape of the mask function. The index γ is chosen to be 1/6 and the
absorber (shaded area) spans 10% of the grid size in each direction.

In the mask function method [79], the probability is multiplied by a function in each time

step, which introduces a smooth and gradual change of the probability to 0 at the border of the

grid. Usually, the form of the mask function is

f(x) =


cosγ

(
π
2
|x−x0|
L

)
, (|x| > |x0|)

1, (|x| 6 |x0|)
(2.41)

where x0 denotes the border of the absorber region and L is its width. The absorber is usually

chosen to span 10% of the grid size in each direction and common choices of the index γ are 1/6,

1/8, etc. Shown in Fig. 2.3 is the typical shape of the mask function.

The mask-function method is usually good enough to suppress the reflection of the probability

from the border. However, in case of a strong ionization (with an ionization yield larger than 10−2),

the reflections may become remarkable. In this case, we need to use alternative methods such as

the exterior-complex-scaling method.
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2.6.2 The exterior-complex-scaling method

The idea of the exterior-complex-scaling method [80, 81] is to rotate the coordinate of the

particle by an angle η (0 < η < π/2) into the complex plane when it is larger than a certain value

x0 (border of the absorber), x→ xeiη, or

x→



x, (|x| 6 |x0|)

|x0|+ (x− |x0|)eiη, (x > |x0|)

−|x0|+ (x+ |x0|)eiη. (x < −|x0|)

(2.42)

By means of this transformation, the wave function is kept unchanged when |x| 6 |x0| and

falls off exponentially when |x| > |x0| due to the decaying factor in the propagation operator present

in this transformation. A similar method with the same goal is the complex-absorbing-potential

method [82–84], in which an additional complex potential is added to the Coulomb potential for

|x| > |x0|

V (x)→


V (x), (|x| 6 |x0|)

V (x) + iηW (x). (|x| > |x0|)
(2.43)

The advantage of the exterior-complex-scaling method, in most cases, is that it leads to a

better absorption than the mask-function method. The advantage of the mask-function method, on

the other hand, is that different ionization yields, such as single and double-ionization yields, can

be obtained separately, when used together with the space-partitioning method presented below.

2.7 The space-partitioning method

The space-partitioning method [85] is a numerical method to separate single and double-

ionization contributions from the whole wave function. The essence of this method lies in the fact

that the bound state, the single-ionization wave packet, and the double-ionization wave packet are

separated in the two-particle space. Considering an atomic system for example, both electrons are

located near the nucleus in the bound states, one of the electrons remains located near the nucleus
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while the other is far from the nucleus in the event of single ionization, and both electrons are far

from the nucleus in the double ionization process. This observation enables us to spatially separate

the different contributions in the full wave function.
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Figure 2.4. The space partitioning for an atom with dsmall = 6 and dbig = 12.

Specifically, for an atomic system, the different contributions, i.e., the bound state (BD), the

single-ionization part (SI), and the double-ionization part (DI), can be identified as

(1) BD: r1 6 dbig ∩ r2 6 dbig;

(2) SI: (r1 6 dsmall ∩ r2 > dbig) ∪ (r2 6 dsmall ∩ r1 > dbig);

(3) DI: (r1 > dsmall ∩ r2 > dbig) ∪ (r2 > dsmall ∩ r1 > dbig),

where r1 = |x1| is the distance of the first electron to the nucleus, r2 = |x2| is that of the second

electron to the nucleus, and dsmall and dbig are the two bounds to distinguish different contributions

in the full wave function. Such an atomic partitioning for dsmall = 6 and dbig = 12 is illustrated in

Fig. 2.4.
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For a diatomic system (two-center system), the partitioning becomes complex, although the

basic principle remains simple, i.e., the two electrons are located near either nuclei but not near

the same nuclei for the bound state, one of the electrons is located near one of the nuclei while the

other is far from the other nucleus for the single ionization event, and both electrons are far from

the nuclei for double ionization.
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Figure 2.5. The space partitioning for a diatomic system (atomic nature) in the direction of the
molecular axis with R = 10, dsmall = 4 and dbig = 7.

Specifically, for such a diatomic system (of atomic nature), the different contributions, i.e.,

BD, SI, and DI, after assuming the middle of the two nuclei as the origin and defining r11 =

|x1 − R/2|, r12 = |x1 + R/2|, r21 = |x2 − R/2|, and r22 = |x2 + R/2| with R standing for the

internuclear distance, can be identified as

(1) BD: (r11 6 dbig ∩ r22 6 dbig) ∪ (r12 6 dbig ∩ r21 6 dbig);

(2) SI: ((r11 6 dsmall∩r22 > dbig)∪(r22 6 dsmall∩r11 > dbig)∪(r12 6 dsmall∩r21 > dbig)∪(r21 6

dsmall ∩ r12 > dbig)) ∩ (r11 > dbig ∪ r22 > dbig) ∩ (r12 > dbig ∪ r21 > dbig);
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(3) DI: ((r11 > dsmall ∩ r22 > dbig) ∪ (r22 > dsmall ∩ r11 > dbig)) ∩ ((r12 > dsmall ∩ r21 >

dbig) ∪ (r21 > dsmall ∩ r12 > dbig)),

and shown in Fig. 2.5 with R = 10, dsmall = 4 and dbig = 7.
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Figure 2.6. The space partitioning for a diatomic system (molecular nature) in the direction of
the molecular axis with R = 10, dsmall = 4 and dbig = 7.

If, however, we further identify the wave packet between the two nuclei as bound and one

of the electrons between the nuclei and the other far from the nuclei as single ionization, we can

instead identify the different contributions for such a diatomic system (of molecular nature) as

(1) BD: (r11 6 dbig ∩ r22 6 dbig) ∪ (r12 6 dbig ∩ r21 6 dbig) ∪ (r1 6 R/2 ∩ r2 6 R/2);

(2) SI: ((((r11 6 dsmall∩r22 > dbig)∪(r22 6 dsmall∩r11 > dbig)∪(r12 6 dsmall∩r21 > dbig)∪(r21 6

dsmall∩r12 > dbig))∩(r11 > dbig∪r22 > dbig)∩(r12 > dbig∪r21 > dbig))∪((r11 > dbig∪r22 >

dbig) ∩ (r12 > dbig ∪ r21 > dbig) ∩ (r1 6 R/2 ∪ r2 6 R/2))) ∩ (r1 > R/2 ∪ r2 > R/2);

(3) DI: ((r11 > dsmall ∩ r22 > dbig) ∪ (r22 > dsmall ∩ r11 > dbig)) ∩ ((r12 > dsmall ∩ r21 >

dbig) ∪ (r21 > dsmall ∩ r12 > dbig)) ∩ (r1 > R/2 ∩ r2 > R/2),
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which is exemplified in Fig. 2.6 with R = 10, dsmall = 4 and dbig = 7.

Figure 2.7. The schematic illustration of the way to choose the bounds in the space-partitioning
method.

The bounds dsmall and dbig are chosen such that the final single and double ionization yields

do not change significantly upon variation about their values. To this end, we first increase dbig

gradually starting from a small value, and for each dbig we propagate the initial state in the laser

field long after the end of the pulse until the single ionization yield converges. From the change in

the final single ionization yield as a function of dbig, we choose the smallest value of dbig such that

the yield does not change significantly for larger values. After choosing a value for dbig, we then

increase dsmall gradually starting from a small value, and for each dsmall we propagate the initial

state in the laser field until the double ionization yield converges. From the double ionization

yield as a function of dsmall, we choose a value for dsmall beyond which the yields does not change

significantly. After these procedures, both values of dsmall and dbig are fixed. Shown in Fig. 2.7 is

a schematic illustration of this method, in which b1 < b2 < b3 < b4 < b5, and the final ionization

yield is essentially converged at b3.
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2.8 Calculating single and double-ionization yields

The space-partitioning method, when used together with the mask-function method, provides

a way to calculate single and double-ionization yields by accumulating the probability absorbed by

the boundary. The single and double-ionization rate at a certain time t can be written as

RSI(t) =
1

∆t

∫
SI
|ψ(x, t)|2dx− 1

∆t

∫
SI
M(x)|ψ(x, t)|2dx, (2.44)

RDI(t) =
1

∆t

∫
DI
|ψ(x, t)|2dx− 1

∆t

∫
DI
M(x)|ψ(x, t)|2dx, (2.45)

where M(x) is the mask function, and the integrations are carried over the respective ionization

regions identified by the space-partitioning method. The corresponding ionization yields are

PSI(T ) =

∫ T

0
RSI(t)dt, (2.46)

PDI(T ) =

∫ T

0
RDI(t)dt, (2.47)

where the integration time T needs to be large enough so that all the ionized wave packet reaches

the boundary.

When ionization time matters, i.e., when we need to find out when the ionized wave packet

comes out from the system, the wave packet can be considered as single ionization immediately

after it enters the single-ionization region, and the wave packet can be regarded as double ionization

immediately after it enters the double-ionization region, as opposed to the previous case where it

is considered as ionization only when the probability gets absorbed by the boundary. In this case,

the ionization yields can be written as

P ′SI(T ) =

∫ T−∆t

0
RSI(t)dt+

∫
SI
|ψ(x, T )|2dx, (2.48)

P ′DI(T ) =

∫ T−∆t

0
RDI(t)dt+

∫
DI
|ψ(x, T )|2dx. (2.49)

The first method, i.e., collecting the electrons at the boundary, is used to calculate the single

and double-ionization yields in this thesis, unless stated otherwise. The second method is only

used when we need to obtain the ionization time directly from the spatial distribution of the wave

function (refer to Sec. 5.3.2.2).
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2.9 Parallel computation

Studies of correlated electron dynamics, where two or more electrons are involved, require

higher dimensional calculations and parallelization of the code. There are two methods for code

parallelization, namely shared-memory parallelization and distributed-memory parallelization.

Shared-memory parallelization means that all working threads share the same common mem-

ory that resides in the same (physical or virtual) compute node. OpenMP is typically used to im-

plement shared-memory parallelization. The advantage of this method is that the memory is shared

between different working threads and thus minimum communication between different threads is

needed, which makes this method fast and effective. The disadvantage, on the other hand, is that

the maximum number of threads in a single compute node where the common memory resides

is limited and thus the parallelization is restricted to a few threads, typically 12 or 16 currently,

depending on how many cores or threads the compute node has.

Distributed-memory parallelization means that all working threads carry their own private

memories that do not necessarily locate in the same compute node. MPI is typically used to

implement distributed-memory parallelization. The advantage of this method is that the number of

available working threads is not limited to the number of cores or threads in a single compute node,

and its number can reach the maximum available threads within a whole cluster. The disadvantage,

on the other hand, is that the memory is distributed between different working threads, and if the

different threads work together to calculate the same physical quantity, heavy communications

between threads can be induced. While the communication within the same compute node is fast,

that between different nodes can be very slow depending on the speed of ethernet and the amount

of messages to be passed across compute nodes.

In our case, where we study correlated electron dynamics, different parts of the full wave

function are highly correlated. If we use distributed-memory parallelization, heavy communica-

tions are needed which would become a bottleneck in scaling up the performance. So we choose

the shared-memory parallelization for our code. We have also estimated that using distributed-
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memory parallelization, a minimum performance boost, if any, would be achieved as compared to

using shared-memory parallelization, even if we use a lot more compute nodes. Cost-effectively,

we thus stick to the shared-memory parallelization, i.e., using OpenMP, for the purpose of code

parallelization.

Using OpenMP is very easy, straightforward, and induces minimum changes to the single-

threaded code. The minimum working example below shows the comparison between the single-

threaded code (left column) and OpenMP parallelized multiple-threaded code (right column), where

the number of threads to use can be determined by the environmental variable OMP_NUM_THREADS.

1 int i;

2
3 for(i=0; i<N; i++)

4 {

5 // code here

6 }

1 int i;

2 #pragma omp parallel for private(i)

3 for(i=0; i<N; i++)

4 {

5 // code here

6 }

As we can see, only one line starting with the #pragma compiler directive is added which

tells the compiler to compile with OpenMP (if, say, the argument -fopenmp is passed to the g++

compiler). The variables inside the parenthesis of the private keyword are the private variables

of each working thread that are not to be shared between different threads. If operators like

accumulation are used, the reduction method is necessary to avoid the case when different threads

add to the same variable simultaneously and the variable loses track of some additions. A minimum

example is given as follows. In this case, each thread keeps a private copy of the variable sum and

performs the addition of sum from each thread at the end.

1 int i;

2 int sum=0;

3 #pragma omp parallel for private(i) reduction (+:sum)

4 for(i=0; i<N; i++)

5 {

6 // code here

7 sum += i;

8 }

If, by any means, we have to disable parallelization, we only need to set the environmental
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variable OMP_NUM_THREADS to 1, or, at compile time, omit the argument -fopenmp of the g++

compiler. Hence, adding such compiler directive as #pragma does not add much to the working

load and does not induce any harm to the computation since we can turn it off at any time.

Therefore, we strongly suggest to always parallelize the code using OpenMP even if we do not use

it later on.

To reach the maximum performance, we need to use parallelization whenever possible. If

we parallelize the code everywhere else but leave one segment single-threaded, then this segment

may become the bottleneck. Furthermore, to reduce the parallelization initialization and collection

overhead, we usually parallelize the outermost loop if there are more than one loops. At the same

time, the sequence of the loops needs to be arranged in such a way that the rule of strided memory

access is obeyed, i.e., the memory needs to be accessed in a continuous flow, in order to maximize

the performance.



Chapter 3

Single and double photoionization of the helium dimer1

In this chapter, we study the energy exchange via electron correlation upon photon absorption

over large distances in double photoionization of the helium dimer. Results of numerical simulations

of the interaction of a planar 4D helium dimer model with a short light pulse are found to be in

good agreement with recent experimental data for the angular distribution of the emitted electron.

The double ionization probability is closely related to that of the photoemission of an electron from

one of the helium atoms along the internuclear axis. Together with an analysis of the temporal

evolution of the two-electron probability distribution, this provides direct evidence for the knockout

mechanism by which the photon energy is shared between the electrons over distances of several

Angstroms in the dimer.

Based on the results of numerical simulations, we further study the scattering effects in single

and double photoionization of the helium dimer. To this end, we use abridged Hamiltonians in which

different interactions between the electrons and the laser field and/or between the charged particles

are removed from the full Hamiltonian. By comparing photoelectron angular distributions obtained

in respective numerical simulations, we are able to identify the role of the Coulomb interactions

between the electrons and between the electrons and the nuclei for the primary as well as the

knockout electron in the processes.

1 The results of this chapter are in part based on “H. Ni, C. Ruiz, R. Dörner, and A. Becker, Phys. Rev. A 88,
013407 (2013)” [86] and “H. Ni and A. Becker, Phys. Rev. A 89, 033402 (2014)” [87].
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3.1 Introduction

Despite recent studies on correlated electron dynamics [51, 59–74], the role of electron corre-

lation in double photoionization of a molecule, in particular, regarding the recently observed energy

exchange between electrons over distances of several Angstroms [74], is still less understood than

in the atomic case. In this respect rare gas dimers, which are formed via the attractive van der

Waals interaction by two atoms at larger equilibrium distances than those in a typical diatomic

molecule, are interesting targets. Among them, the helium dimer is by far the most extended.

Here, interatomic Coulombic decay (ICD) [88], as well as double photoionization [89], which are

both mediated by electron-correlation effects, have been observed recently.

In double photoionization, the energy of a single photon absorbed from the light field is shared

between two electrons, leading to the correlated emission of both electrons from the target. In a

rare gas dimer, the two emitted electrons can either originate from the same atom or from different

atoms. Due to the strong localization of electrons in the dimer, the minimum energy required

for the emission of two electrons from different atoms in the dimer is about twice the energy for

single ionization of the rare gas atom. For He2, this minimum energy is about 49.2 eV, which is

considerably smaller than the energy of about 79 eV needed for emission of both electrons from the

same helium atom in the dimer. The threshold for ionization plus excitation (to the n = 2 state)

in He is 65.4 eV. Below this threshold ICD as a double ionization channel is closed. By selecting a

photon energy of 49.2 eV < ~ω < 65.4 eV, one can therefore study electron correlation effects in

double photoionization of the helium dimers over a bond length of more than 5 a.u., which are not

ICD related.

Recent experimental data suggest that the emission of the two electrons in this case proceeds

as follows [89]: A primary electron localized at one atom in the helium dimer absorbs the photon

energy from the field, then propagates along the internuclear axis and transfers its energy to a

second electron in the neighboring helium atom. This process is called knockout in view of the

close analogy to a similar mechanism known in double photoionization of atoms [7]. Since the atoms
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in the helium dimer are well separated it was further argued [89] that in this case the knockout

process can be considered as the photoionization of a helium atom followed by a subsequent electron-

impact ionization at the other helium atom in the dimer. This interpretation was supported by a

comparison of the experimental data with theoretical results for electron-impact ionization of the

helium atom. In this chapter, we analyze the experimental data and the underlying mechanism for

double photoionization of the helium dimer via time-dependent ab-initio numerical simulations.

However, the role of the interaction between each pair of charged particles during the single

and double photoionization processes is still difficult to analyze. In a numerical simulation, in

principle, it is possible to remove interactions between certain pairs of particles in the Hamiltonian

and compare the results to those obtained with the full Hamiltonian. However, using this technique

in an atomic or typical molecular system, the initial state inevitably changes as compared to the

full simulation. Consequently, it is difficult to distinguish between the influence of the initial state

and dynamic effects when analyzing the role of the removed interactions. In contrast, this method

is applicable to rare gas dimers, since they have much larger equilibrium distances than those of

typical diatomic molecules. Due to the large internuclear separation and almost negligible overlap

between the orbitals of the two atoms, changes in the initial state are small when certain interactions

are removed.

As we will further show in this chapter, in the helium dimer it is possible to study the

role of individual Coulomb interactions during the single and double photoionization in ab-initio

numerical simulations. To this end, we consider abridged Hamiltonians, in which certain Coulomb

interactions are removed without noticeable change in the initial state. We then compare the

angular distributions obtained using the abridged Hamiltonian to those obtained with the full

Hamiltonian. In this way we are able to identify the role of each Coulomb interaction during the

process. Moreover, we are also able to distinguish and compare the angular distributions of the

primary electron and the knockout electron by removing the coupling between one electron and the

laser field from the full Hamiltonian.

The remainder of the chapter is organized as follows. We first briefly outline the planar two-
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active-electron model of the helium dimer used in the simulations. Then, we analyze the projection

to different final states in the calculations to obtain the photoelectron angular distributions and

present comparisons with recent experimental data [89]. Based on the good agreement between ex-

perimental and theoretical data we proceed to provide evidences towards the knockout mechanism,

based on predictions for the dependence of the ionization signals on the orientation of the dimer

axis and the separation of the atoms in the dimer, and a real-time visualization of the knockout

mechanism behind the long-range electron correlation. Afterwards, we introduce and discuss differ-

ent abridged Hamiltonians in which certain interactions are removed from the full Hamiltonian. A

comparison between the ground states of the full and the abridged Hamiltonians will be given and

discussed. We then apply the different Hamiltonians in numerical simulations to study the effects

of different interactions in single and double photoionization.

3.2 Numerical simulations

In this section we present the numerical model for the helium dimer used in the simulations,

in which one electron at each atom in the dimer is considered as active. We further outline the

methods used in the numerical simulations and then present the predictions for the lowest energy

eigenstates based on this numerical model.

3.2.1 The planar 4D model of the helium dimer

A solution of the TDSE including the dynamics of all six charged particles and the interaction

of all four electrons with the external light field is currently not conceivable. We therefore propose a

planar two-active electron model of the helium dimer, in which the electrons are located at different

atoms in the dimer and their dynamics is constrained to the same plane, as shown schematically

in Fig. 3.1. Such a model excludes ICD but it is well suited to treat the knockout mechanism. The

orientation of the dimer axis is chosen to be at an angle θ to the axis of linear polarization of the

light field (here, the z-axis). It is further assumed that the correlated emission of the two electrons

proceeds fast enough (a few tens of attoseconds, 1 as = 10−18 s) to hold the internuclear distance
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Figure 3.1. Scheme of the numerical model for the helium dimer. One electron at each atom is
considered active and restricted to the same plane, with coordinates (x1, z1) and (x2, z2), respec-
tively. The internuclear distance R and dimer orientation θ with respect to the laser polarization
direction ε (z-axis) are fixed during the simulations.
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between the atoms as well as the orientation of the dimer axis fixed in space during the simulation.

The corresponding four-dimensional (two spatial dimensions for each electron) model Hamiltonian

is then given by

H =
p2
x1 + p2

z1

2
+
p2
x2 + p2

z2

2
+ E(t) (z1 + z2)

+ VSAE(r11) + VSAE(r12) + VSAE(r21) + VSAE(r22)

+
1√

(x1 − x2)2 + (z1 − z2)2 + b2
+

1

R
,

(3.1)

where pi = (pxi , pzi) and ri = (xi, zi) (with i = 1, 2) are the momentum operators and spatial

coordinates of the two active electrons and E(t) is the laser field, which is assumed to be linearly

polarized in z-direction. R is the internuclear distance that can have different orientations θ with

respect to the polarization direction and

rij =

√[
xi + (−1)j

R

2
sin θ

]2

+

[
zi + (−1)j

R

2
cos θ

]2

+ a2 (3.2)

corresponds to the distance between ith electron and jth nucleus (i, j = 1, 2) with a2 = 0.201

and b2 = 0.01 denoting soft-core parameters to smooth the Coulomb singularity in the practical

computations. The linearly polarized laser field is given in the form of

E(t) = cos2

(
ωt

2N

)
cos (ωt+ φ) , (3.3)

where ω is the central frequency, N is the number of cycles, and φ is the carrier-envelope phase of

the laser pulse, which is set to −π/2 in the present simulations.

VSAE(r) = −Zc + a1e−a2r + a3re
−a4r + a5e−a6r

r
(3.4)

is a single active electron (SAE) potential for the helium atom with Zc = 1.0, a1 = 1.231, a2 = 0.662,

a3 = −1.325, a4 = 1.236, a5 = −0.231, and a6 = 0.480 [90], which we adopt here for the planar case.

The TDSE of this 4D model is solved numerically using the Crank–Nicolson method on a grid with

Nx1 = Nx2 = 200 and Nz1 = Nz2 = 300 grid points, a grid step of ∆x1 = ∆x2 = ∆z1 = ∆z2 = 0.3,

and a time step of ∆t = 0.05.
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In our simulations we considered double photoionization due to the interaction of the model

helium dimer with a 4-cycle XUV light pulse at a central wavelength of 20 nm (corresponding to

a photon energy of 62 eV and a bandwidth of ±15.5 eV) and a peak intensity of 1× 1014 W/cm2.

At this bandwidth in a real four-electron system, the ICD channel would be open for the high-

energy tail of the pulse. In our two-electron calculations, ICD is however excluded and hence does

not obscure our findings. We employed absorbing boundaries of the form cos1/6
(
π
2
|x−x0|
L

)
with

|x| > |x0|, where x0 denotes the border of the boundary region and L its width. The boundary was

chosen to span 10% of the grid size in each direction. In order to calculate the total probabilities

and electron angular distributions, we stopped the simulation before the respective part of the wave

function reached the boundaries.

In order to analyze the correlated electron emission from the helium dimer and to compare

with the experimental data on the photoelectron angular distributions, the contributions to single

and double photoionization of the helium dimer were obtained by partitioning the spatial four-

dimensional grid as illustrated in Sec. 2.7 for a diatomic system of molecular nature with dsmall = 4

a.u. and dbig = 7 a.u.

3.2.2 Initial states

The lowest energy eigenstates of the model, which we used as initial states for our numerical

simulations, are obtained via imaginary time propagation. The initial guess state for the imaginary

time propagation was chosen to be a 4D Gaussian wave function. For an internuclear separation

of 5.6 a.u., which corresponds to the minimum of the helium dimer potential [91], and orientation

of the dimer along the z-axis, spatial distributions of the two lowest energy eigenstates are shown

in Fig. 3.2 as functions of z1 and z2 (upper row) and z = z1 − z2 (lower row), respectively. The

distributions are integrated over the other coordinates. Due to the large internuclear distance the

states are, as expected, very close in energy (−1.80740 a.u. and −1.80726 a.u., respectively), with

values close to other theoretical calculations [92]. Note that the emergence of these two separate

states is due to our two-active electron model that selects two electrons out of a total of four. The
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Figure 3.2. Spatial distributions (on a logarithmic scale) of the ground state [panels (a) and (c)]
and first excited state [panels (b) and (d)] of the planar model helium dimer. The distributions in
the upper row are integrated over x1 and x2 and shown as a function of z1 and z2. The distributions
in the lower row are integrated over x1, x2, and Z = z1+z2

2 and shown as a function of z = z1 − z2.
Note the node (minimum) at z1 = z2 or z = 0 in the distributions of the first excited state.
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ground state is a spin-singlet state which has a multiplicity of 1 while the first excited state is a

spin-triplet state with a multiplicity of 3. We performed separate simulations for both states as the

initial state and present below, if not mentioned differently, the sum of the contributions by taking

account of the multiplicity of each state.

3.3 Photoelectron angular distributions

The final state of double photoionization of the dimer represents a state with two electrons in

the continuum of a doubly charged two-center potential. In order to obtain photoelectron angular

distributions, we intend to project the respective spatial part of the wave function at the end

of the simulation onto an approximate final-state wave function. Since an analytical solution of

this four-body problem is not known in Cartesian coordinates, we have tested several two-electron

wave functions, in which different parts of the full Coulomb interactions between the charged

particles have been taken into account. To this end, we express the Coulomb potential between the

electrons and the residual ions as well as between the two electrons in the center-of-mass (COM,

X = (x1 + x2)/2 and Z = (z1 + z2)/2) and relative coordinates (x = x1 − x2 and z = z1 − z2) of

the two electrons as

V (x, z;X,Z) =
1√

x2 + z2

+
2∑

i,j=1

VSAE

√[X − (−1)i
x

2
+ (−1)j

R

2
sin θ

]2

+

[
Z − (−1)i

z

2
+ (−1)j

R

2
cos θ

]2
 .

(3.5)

For |X|, |Z|, R� |x|, |z|, V reduces to

V (x, z;X,Z) ≈ Vee(x, z) =
1√

x2 + z2
, (3.6)

which suggests to approximate the final state as a product of a Coulomb wave in the relative and

a plane wave in the COM coordinates, which we denote as ψee. Thus, in this approximation the

Coulomb interaction between the two electrons is retained while the Coulomb interactions between

the electrons and the nuclei are neglected. In order to approximately test the relative importance

of the Coulomb interactions in the final state, we have further considered the case in which the
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interaction between the electrons is neglected. As a further approximation we then assumed that

the total charge of the nuclei is concentrated at the center of the coordinate system. In this

approximation the full potential reduces to

V (x, z;X,Z) ≈ VeN(X,Z) = − 4√
X2 + Z2

, (3.7)

and the final state ψeN is approximated by a product of a plane wave in the relative and a Coulomb

wave in the COM coordinates of the electrons for a monomer with twice the residual charge. As a

third option, we also considered a simple product of two plane wave functions to describe the final

state wave function of the two electrons, which we denote as ψplane.

Since our model is planar, we used a two-dimensional scattering wave function [93, 94] for

the Coulomb wave,

ψ(k, r) =
∞∑

l=−∞

e−πη/2√
π

∣∣∣∣Γ(|l|+ 1

2
+ iη

)∣∣∣∣ (−2iρ)|l|

(2|l|)!
eiρeiσ|l|

× 1F1

(
|l|+ 1

2
+ iη, 2|l|+ 1,−2iρ

)
eil(φr−φk)

2π
,

(3.8)

where 1F1 is the confluent hypergeometric function. Here, k and r represent either the relative or

COM momentum and displacement of two charged particles in two dimensions with k, r, φk, and φr

being their magnitudes and phases, respectively. η = µZ1Z2/k, where µ is the reduced mass of the

two particles (1/2 in the case of Vee and 2 in the case of VeN) and Z1 and Z2 are their charges (−1

and −1 in the case of Vee and −2 and 2 in the case of VeN), ρ = kr, and σ|l| = arg Γ(|l|+ 1
2 +iη) is the

two-dimensional Coulomb phase. Alternatively, we also expressed the two-dimensional scattering

wave function in terms of the three-dimensional Coulomb wave function Fl,

ψ(k, r) =

∞∑
l=−∞

√
2

πρ
(−i)|l|eiσ|l|F|l|− 1

2
(η, ρ)

eil(φr−φk)

2π
, (3.9)

which enables us to use available packages like GNU Scientific Library (GSL) for the calculation.

In the practical computations we truncated the sum over l to lmax = 12 for ψee and lmax = 16

for ψeN. While we found that the results for the angular momentum distributions presented below

are converged for projection to ψee, the momentum-space wave function for projection onto ψeN
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Table 3.1. Double ionization probabilities for the different momentum-space wave functions

R 5.6 10

ψplane 3.5520× 10−5 1.9182× 10−5

ψee 3.4636× 10−5 1.7428× 10−5

ψeN 1.0908× 10−5 6.8121× 10−6

was not fully converged. However, we checked that our qualitative conclusions below are correct.

We attribute the difficulty in the convergence to the fact that we used a monomer Coulomb wave

function for a two-center problem in ψeN and that the residual potential is not purely 1/r. The

degree of convergence can indeed be estimated by comparing the double ionization probabilities

obtained for the corresponding momentum-space wave function in each case, given in Tab. 3.1.

Evidently, the probabilities of the momentum-space wave functions obtained by projection onto

ψplane and onto ψee agree rather well with each other, while the result for the projection onto ψeN

indicates the lack of convergence with respect to lmax.

In Fig. 3.3 we compare results for the molecular-frame angular distributions of one of the

two electrons in the double photoionization after projections onto ψplane [panels (a) and (b)], onto

ψee [panels (c) and (d)], and onto ψeN [panels (e) and (f)]. The distributions are integrated over

the emission angle of the other electron and the energies of the electrons. The theoretical data are

shown in each set as a function of the emission angle of the electron. In order to compare with

recently obtained experimental data [89], the theoretical results are averaged over the orientation

of the dimer axis and weighted with respect to singlet and triplet state contributions according to

the multiplicities of the states. Furthermore, due to the short duration of the pulse used in the

simulations, the calculated distributions show a slight left-right asymmetry along the polarization

direction. We have removed this asymmetry by taking the mean of the original result and its mirror

image with respect the plane perpendicular to the polarization axis through the center of mass of

the two nuclei. Finally, the theoretical results are matched to coincide with the experimental

data at the maximum of the distributions. Note that the experimental results are integrated over

R = 5.1 ∼ 6.8 a.u. in panels (a), (c), and (e), and R = 9.4 ∼ 10.9 a.u. in panels (b), (d),
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Figure 3.3. Molecular-frame angular distributions of one of the two electrons following double
photoionization of the helium dimer, obtained by projection of the respective part of the wave
function onto different approximate final two-electron states at R = 5.6 a.u. (left column) and
R = 10 a.u. (right column). Shown is a comparison between the theoretical results (solid lines)
and the experimental data (solid circles). For the theoretical results in panels (a) and (b), ψplane

is used as the approximate final two-electron state, while for the results in panels (c) and (d), ψee,
and for those in panels (e) and (f), ψeN is used.
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Figure 3.4. Molecular-frame angular distributions of one of the two electrons following double
photoionization of the helium dimer, obtained by projection of the respective part of the wave
function onto ψee at R = 5.6 a.u. (left column) and R = 10 a.u. (right column). Shown is a
comparison between the theoretical results (solid lines) and the experimental data (solid circles).
For the theoretical results in panels (a) and (b), full results are shown, while for the results in
panels (c) and (d), singlet contributions, and for those in panels (e) and (f), triplet contributions
are shown.
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and (f) (subset of data shown in Fig. 3(b) of Ref. [89]). The comparison shows that within the

present model the approximation of the final-state wave function as product of a plane wave in

the COM coordinates and a Coulomb wave in the relative coordinates qualitatively appears to be

the most appropriate one of the three considered options. We therefore use ψee to obtain angular

distributions for the remainder of our studies. In order to show the individual contributions from

singlet and triplet initial states, we further show in Fig. 3.4 the same angular distributions obtained

by projection onto ψee but from singlet and triplet states separately.

3.4 The knockout mechanism

On the basis of the comparison presented in Figs. 3.3 and 3.4, we proceed to obtain in-

sights into the mechanism of the correlated electron emission from the helium dimer. As mentioned

above, it was argued based on the experimental data and a comparison with theoretical results from

electron-impact ionization that the double photoionization proceeds via a knockout-type mecha-

nism. According to this mechanism the double ionization probability should be closely related

to the probability that the primary photoelectron, launched at one helium atom, “hits” the sec-

ond electron which is localized at the neighboring atom. The results in Figs. 3.5 and 3.6 confirm

this close relation based on our theoretical data, which provides strong evidences for the knockout

mechanism.

First, we compare in Fig. 3.5(b) the probability of double photoionization as a function of

the orientation of the dimer axis with respect to the polarization direction of the field (solid line)

with the experimental data (solid circles [89]) and a cos2 δ-distribution (dash-dotted line). The

comparison shows not only an excellent agreement between theoretical predictions and experimental

data but moreover indicates a close relation between the double ionization probability and the

direction of the primary photoelectron momentum. The latter is close to the expected p-wave (or

cos2-) distribution as can be seen from the theoretical results in panel (a) for orientation of dimer

axis parallel (red solid line) as well as perpendicular (blue dashed line) to the polarization direction

of the field. The small deviation from the cos2-distribution in the case of parallel orientation



50

Figure 3.5. Comparison of the lab-frame dipole-transition angular distribution cos2 δ (dashed-
dotted line) with (a) the theoretical photoelectron angular distributions (AD) for single ionization
(SI) of the dimer oriented either parallel (red solid line) or perpendicular (blue dashed line) to
the polarization axis and (b) the probability of double photoionization (DI) as a function of the
orientation of the dimer axis (theoretical prediction: red solid line, experimental data: solid circles,
integrated over R = 4.5 ∼ 6.8 a.u. (subset of data shown in Fig. 3(a) of Ref. [89])). The polarization
direction of the field is along the horizontal axis in both panels. The internuclear distance was chosen
to be R = 5.6 a.u. and the parameters of the XUV field are the same as in Fig. 3.4.
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Figure 3.6. Double photoionization probability (open circles) as a function of internuclear distance
R for orientation of the dimer axis parallel to the polarization direction of the field. It scales as 1/R
with the internuclear distance. The fitting parameters are a = 2.88× 10−5 and b = −4.56× 10−7.
The parameters of the XUV field are the same as in Fig. 3.4.
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indicates the effect of elastic scattering of the photoelectron at the second atom in the single

ionization data, in agreement with similar observations for the neon dimer [95].

Further evidence for the knockout mechanism is given by the dependence of the double pho-

toionization probability on the internuclear distance R. For the knockout mechanism, the proba-

bility of the primary photoelectron “hitting” the second electron that produces double ionization

is expected to decrease with an increase of R, since the wavepacket representing the primary pho-

toelectron expands in space. Our theoretical results for the double photoionization probability,

shown in Fig. 3.6, indeed follow closely the expected 1/R trend for the case of parallel orientation

of the dimer axis in our planar model. We may emphasize that in the real 3D helium dimer we

expect an even stronger 1/R2 decrease. We may further note that the double-to-single ionization

ratio follows the same trend as the double photoionization probability.

Moreover, our time-dependent simulations provide a “movie” of the scattering process as a

function of time. During the knockout process, it is expected that one of the electrons approaches

the other after the initial absorption of the photon. This can be visualized via the temporal evolution

of the two-electron probability distribution as a function of the relative coordinate z = z1−z2 along

the polarization direction. The respective results of our numerical simulations for an internuclear

distance of 15 a.u. are shown in Fig. 3.7. The initial state probability distribution, localized at

the two nuclei, has been subtracted in order to enhance the visibility of the small contributions

leading to single and double ionization. The results for the temporal evolution starting from the

ground state (singlet, panel (a)), and the first excited state (triplet, panel (b)) confirm our previous

conclusions regarding the knockout mechanism. The exchange-asymmetry in the wave function of

the triplet state illustrates itself as a minimum at z = 0, which is particularly apparent when the

two electrons are close to each other. Due to the integration over x1 and x2, we observe a minimum

in the distributions instead of a node, which would show up at fixed transverse distances.
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Figure 3.7. Temporal evolution of the two-electron probability distribution of the helium dimer
in z = z1 − z2 starting from the ground state [singlet, panel (a)] and the first excited state [triplet,
panel (b)], which exhibit the differences between singlet and triplet scattering. In the simulation,
the dimer axis is oriented parallel to the polarization axis.
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3.5 The Hamiltonian reduction method

In this section, we consider abridged Hamiltonians and study the Coulomb interactions be-

tween the electrons and the nuclei in the helium dimer by comparing the angular distributions

obtained using the abridged Hamiltonian to those obtained with the full Hamiltonian. To this end,

we first briefly discuss the numerical model used, which just restricts the orientation of the dimer

in the planar 4D model in Sec. 3.2 to be parallel to the laser field, since the scattering effects in

single and double photoionization are strongest in the parallel orientation case. We then introduce

and discuss different abridged Hamiltonians in which certain interactions are removed from the full

Hamiltonian. A comparison between the ground states of the full and the abridged Hamiltonians

will be given and discussed. Next, we apply the different Hamiltonians in numerical simulations

to study scattering effects of the photoelectron in single photoionization. Afterwards, we compare

angular distributions of the primary and knockout electron as well as to study the role of Coulomb

interactions in the double photoionization process.

3.5.1 Theory

In this section we outline the four-dimensional model Hamiltonian used for the helium dimer

in the simulations, which is a restriction of the planar 4D model of the helium dimer in Sec. 3.2

to the z direction. We then present options to restrict the full model Hamiltonian in numerical

simulations in order to label the electrons and analyze the effect of certain interactions on the single

and double photoionization processes.

As shown in Fig. 3.8, we use the planar 4D model of the helium dimer in Sec. 3.2 but restrict

the orientation of the dimer axis to be parallel to the laser polarization direction, or the z direction,

unless explicitly stated otherwise. In this scheme, nucleus 1 (N1) is located at the right side and

nucleus 2 (N2) is located at the left side. Here we restrict the orientation of the dimer axis to

be parallel to the laser field since the scattering effects in single and double photoionization are
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strongest in this case. The full Hamiltonian of the system is given by

H =
p2
x1 + p2

z1

2
+
p2
x2 + p2

z2

2
+ E(t) (z1 + z2)

+ VSAE(r11) + VSAE(r12) + VSAE(r21) + VSAE(r22)

+
1√

(x1 − x2)2 + (z1 − z2)2 + b2
+

1

R
,

(3.10)

where

rij =

√
x2
i +

[
zi + (−1)j

R

2

]2

+ a2. (3.11)

Figure 3.8. Scheme of the numerical model for the helium dimer in the case of parallel orienta-
tion. One electron at each atom is considered to be active and restricted to the same plane, with
coordinates (x1, z1) and (x2, z2), respectively. The internuclear distance R and the dimer axis are
fixed in space. The dimer axis is chosen parallel to the laser polarization direction ε during the
simulations, unless explicitly stated otherwise.

For further analysis we used abridged Hamiltonians in test simulations, in which certain

interaction terms are removed from the full model Hamiltonian, Eqn. (3.10). One goal to use these

reductions was to distinguish the primary electron, which first interacts with the light field, from

the secondary electron by labeling the two electrons. This can be done by removing the term E(t)z2

from the full Hamiltonian, which gives

HE1 =
p2
x1 + p2

z1

2
+
p2
x2 + p2

z2

2
+ E(t)z1

+ VSAE(r11) + VSAE(r12) + VSAE(r21) + VSAE(r22)

+
1√

(x1 − x2)2 + (z1 − z2)2 + b2
+

1

R
.

(3.12)
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In the corresponding test simulations we can then identify electron 1 as the primary and electron

2 as the secondary or knockout electron in double photoionization and, thus, compare the angular

distributions for these electrons.

The present model of the helium dimer further facilitates the analysis of dynamical effects

due to the interactions between electrons and nuclei. As mentioned above, the two electrons are

initially predominantly located at different atoms in the dimer. This can be also seen from the

spatial distributions of the lowest energy eigenstates of the planar helium dimer model, which are

shown in Fig. 3.9 for an internuclear separation of R = 5.6 a.u. corresponding to the minimum

of the helium dimer potential [91]. These energy eigenstates were obtained via imaginary time

propagation. The spatial distributions are shown as functions of z1 and z2 and are integrated over

the other coordinates. The ground state [panel (a)] is a singlet state, while the first excited state

[panel (b)] is a triplet state.

Due to the large internuclear distance, the interaction of each electron with the distant nucleus

in the initial dimer state is rather small. Hence, in two further abridged Hamiltonians, we neglected

first the interaction of electron 2 with nucleus 1, VSAE(r21), to get

HE1,local1 =
p2
x1 + p2

z1

2
+
p2
x2 + p2

z2

2
+ E(t)z1

+ VSAE(r11) + VSAE(r12) + VSAE(r22)

+
1√

(x1 − x2)2 + (z1 − z2)2 + b2
+

1

R
,

(3.13)

and then VSAE(r21) as well as VSAE(r12) to get

HE1,local2 =
p2
x1 + p2

z1

2
+
p2
x2 + p2

z2

2
+ E(t)z1

+ VSAE(r11) + VSAE(r22)

+
1√

(x1 − x2)2 + (z1 − z2)2 + b2
+

1

R
.

(3.14)

In the first of the two Hamiltonians, HE1,local1, the symmetry of the electron-nucleus interactions

is removed and, therefore, the electrons are localized at one of the two nuclei, i.e., electron 1 at

nucleus 1 and electron 2 at nucleus 2, as can be seen from the ground state distribution shown
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Figure 3.9. Spatial distributions (on a logarithmic scale) of the ground state [panel (a)] and
first excited state [panel (b)] of the planar model helium dimer with full model Hamiltonian and
that of the ground states of the planar model helium dimer with abridged Hamiltonians, HE1,local1

[Eqn. (3.13), panel (c)] and HE1,local2 [Eqn. (3.14), panel (d)]. The distributions are integrated over
x1 and x2 and shown as functions of z1 and z2.
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in Fig. 3.2(c). We note that in this Hamiltonian all the interactions of the primary electron, i.e.,

electron 1, which interacts with the light field, are retained. On the other hand, in HE1,local2 the

interaction of the primary electron with the second nucleus (nucleus 2) is removed as well and the

corresponding initial state is represented in Fig. 3.2(d). As we will show below, comparison of the

results from the simulations with the different Hamiltonians enables us to study, e.g., the scattering

of the primary electron at the second nucleus (nucleus 2) in the photoelectron angular distributions.

We note that due to the localization of the electrons at either one of the nuclei, the corre-

sponding ground states are no longer symmetric regarding to the exchange of electrons and the

terminology of singlet and triplet states does not apply to the states of the two abridged Hamilto-

nians. The difference between the ground states of the full and the two abridged Hamiltonians can

be quantified via their overlaps as:

|〈ψE1,local1|ψsinglet
full 〉|2 = 0.499562; (3.15)

|〈ψE1,local1|ψtriplet
full 〉|2 = 0.499251; (3.16)

|〈ψE1,local2|ψsinglet
full 〉|2 = 0.498898; (3.17)

|〈ψE1,local2|ψtriplet
full 〉|2 = 0.498805. (3.18)

All overlaps are close to 0.5, indicating the small effect of the interaction between an electron,

localized at one atom in the dimer, and the distant nucleus in the initial state. The value of 0.5

instead of 1.0 arises due to the localization of each electron at one of the two nuclei in the abridged

Hamiltonians.

3.5.2 Single ionization

In this section, we use the model Hamiltonians to study scattering effects in single photoion-

ization of the dimer, or more precisely, the dynamical effects of the photoelectron that is emitted

at one of the atoms and then scattered at the other atom in the dimer. To this end, we obtained

the photoelectron angular distributions by taking a Fourier transform of the contributions to the

wave function that were identified as single ionization in the numerical simulations. From the re-
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Figure 3.10. Comparison of photoelectron angular distributions in single ionization of the helium
dimer using the full [panel (a)] and abridged Hamiltonians, HE1,local1 [Eqn. (3.13), panel (b)] and
HE1,local2 [Eqn. (3.14), panel (c)]. Results represented by solid lines are obtained for parallel
orientation of the dimer axis with respect to the polarization direction of the field, which is chosen
along the horizontal axis. For the full simulations [panel (a)] also shown is the distribution obtained
for perpendicular orientation (θ = 90◦, blue dashed line) of the dimer axis and for all simulations
the distributions are compared to the expected cos2-distribution (dash-dotted lines). For the sake
of comparison, the distributions in panel (a) are scaled such that their areas match, while in panels
(b) and (c) the distributions are matched at one point. In all simulations a 4-cycle 20 nm XUV
laser pulse with a peak intensity of 1× 1014 W/cm2 has been used.
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sults for the full model Hamiltonian, shown in Fig. 3.10(a), we see, as pointed out earlier, that the

photoelectron angular distributions depend on the orientation of the dimer axis with respect to the

polarization direction of the laser. For an orientation perpendicular to the polarization axis, the

distribution (dashed line) is close to the expected p-wave distribution (cos2, dash-dotted line) for

single-photon absorption from a s-state. On the other hand, for parallel orientation we observe a

deviation from the cos2-distribution, and the angular distribution appears to be narrower around

the polarization direction with two small wings in the region between 30◦ and 60◦ with respect

to the polarization axis. These deviations in the distributions were previously interpreted as an

indication for the scattering of the photoelectron at the other atom in the dimer.

To shed further light on this interpretation, we present in the other panels of Fig. 3.10

results obtained with the abridged Hamiltonians, HE1,local1 [Eqn. (3.13), panel (b)] and HE1,local2

[Eqn. (3.14), panel (c)], for orientation of the dimer parallel to the polarization direction. In both

set of simulations only one of the two electrons, namely electron 1, interacted with the field and,

moreover, this active electron 1 was located at nucleus 1, which is the nucleus located on the right

in the present figures. In this configuration we can compare photoemission with (emission to the

left) and without (emission to the right) scattering at the second atom, which is located to the

left of the initial position of the active electron. The result in panel (b), in which all Coulomb

interactions of the active electron with the other electron and the nuclei are taken into account,

confirm that the nonscattered angular distribution is close to the cos2-distribution (dash-dotted

line), while the scattered angular distribution shows the deviation observed in the full simulations.

This demonstrates the effect of scattering on the photoelectron angular distribution. We note that

the small deviations between the numerical results and the cos2-distributions in the right part of

the lobe, most notably in the kink along the polarization direction in Fig. 3(c), reflect the numerical

errors in the present calculations.

We can even further distinguish between the effect of electron-electron and electron-ion scat-

tering. This can be done by comparing the results in panels (b) and (c) of Fig. 3.10. In the latter

simulations we deliberately neglected the interaction between the active electron and the second
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nucleus, i.e., the nucleus on the left. The comparison shows that the angular distribution for the

scattered photoelectron changes. Emission of the electron along the polarization direction is now

strongly suppressed, while there are two maxima at an angle of about 40◦ with respect to the

polarization axis. Thus, we can conclude that it is the electron-electron scattering which gives rise

to the two wings in the full distribution. On the other hand, the electron-nucleus (or electron-ion)

scattering causes, due to the attractive nature of the interaction, a narrowing (or focusing) to the

angular distribution along the polarization direction.

3.5.3 Double ionization

In this section we analyze the results of simulations using the full and abridged Hamiltonians

to study the correlated electron emission from the model dimer. To this end, we first investigate

the projection onto different approximate two-electron wave functions to obtain the photoelectron

angular distributions. We then proceed to compare the angular distributions of the primary and

the knockout electrons.

In previous studies it has been found [89] that the double photoionization of the helium

dimer proceeds via the so-called knockout mechanism for low photon energies. According to this

mechanism, first the primary electron gets ionized after interaction with the field and then shares

its energy via collisional impact ionization with the second knockout electron. As mentioned above

we can distinguish between the two electrons by restricting the electron-field interaction to one of

the two electrons and locating the electrons at one of the atoms in the dimer.

In Fig. 3.11 we present results of simulations with the different abridged model Hamiltonians,

Eqns. (3.13) and (3.14). In the panels in the left column the angular distributions of the primary

electron, i.e., the electron interacting with the field, are presented, while in the right column those

of the knockout electron are shown. In all cases the dimer was oriented along the polarization axis,

which is the horizontal axis in each of the panels. We have integrated the distributions over the

emission angle of the other electron and the energies of the two electrons.

Due to the location of the electrons in our models we can study the emission direction of the
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Figure 3.11. Angular distributions of the primary (left column) and knockout electron (right
column) in double photoionization of the helium dimer. Results from simulation with different
abridged Hamiltonians are compared: panels (a) and (b) correspond to HE1,local1 [Eqn. (3.13)] and
panels (c) and (d) correspond to HE1,local2 [Eqn. (3.14)]. In each of the simulations, a 4-cycle 20
nm XUV laser pulse with a peak intensity of 1× 1014 W/cm2 and parallel orientation of the dimer
axis with respect to the polarization direction of the field (along the horizontal axis of the figure)
was considered.
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electrons with respect to their initial location in the dimer as well as the role of electron-nucleus

and electron-electron interaction during the impact ionization. The result in Fig. 3.11(a), obtained

using HE1,local1 [Eqn. (3.13)], in which all interactions of the primary electron are retained, shows

that the primary electron is scattered both in forward and backward direction with respect to

the propagation direction (from right to left in the figure) after absorption of the photon. Further

restriction by suppression of the electron-nucleus scattering in the energy transfer process, HE1,local2

[Eqn. (3.14)], reveals that the electron-electron scattering favors backward scattering of the primary

electron, as expected in a head-on collision from a repulsive center [Fig. 3.11(c)].

On the other hand the knockout electron is predominantly ionized along the momentum di-

rection of the incoming primary electron in the impact ionization process, c.f., Fig. 3.11(b) and

Fig. 3.11(d). The contribution from the electron-electron interaction leads to a rather broad an-

gular distribution with respect to the molecular axis [Fig. 3.11(d)], in agreement with a similar

distribution of the primary electron in the opposite direction [Fig. 3.11(c)]. The inclusion of the

electron-nuclear contribution leads to a distribution which is more aligned along the polarization

direction [Fig. 3.11(b)].

Finally, we obtained the angular distributions of the knockout electron when the primary

electron is fixed along certain emission directions. For the results presented in Fig. 3.12, we con-

sidered emission of the primary electron either in backward (with respect to the impact direction,

panels on the left) or forward direction (panels on the right), using abridged Hamiltonians HE1,local1

[Eqn. (3.13), panels (a) and (b)] and HE1,local2 [Eqn. (3.14), panels (c) and (d)]. The distributions

show that the two electrons are predominantly emitted back-to-back in particular for backward

scattering of the primary electron. As can be seen in the distributions, we observe for backward

scattering that inclusion of electron-nucleus interaction leads to a stronger alignment of the distri-

bution along the direction of electron impact [c.f., Fig. 3.12(a) and Fig. 3.12(c)]. On the other hand,

for forward direction we see pronounced wings in the angular distributions of the knockout electron

when HE1,local1 is used where all interactions of the primary electrons are included [Fig. 3.12(b)].

Similar conclusions hold for other emission angles of the primary electron with respect to
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Figure 3.12. Angular distributions of the knockout electron in double photoionization obtained
using HE1,local1 [Eqn. (3.13), panels (a) and (b)] and HE1,local2 [Eqn. (3.14), panels (c) and (d)].
The emission of the primary electron is fixed along the direction indicated by the arrow. The field
parameters were the same as in Fig. 3.11.
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Figure 3.13. Same as Fig. 3.12, but for different emission direction of the primary electron.
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the molecular axis and the polarization direction as well, as can be seen from the results presented

in Fig. 3.13. In general, we observe that the electrons are predominantly emitted in opposite half

planes to the polarization direction. For backward scattering of the primary electron, inclusion of

the electron-nucleus interaction leads to a narrower angular distribution of the knockout electron.

3.5.4 Exchange ionization

Using abridged Hamiltonians, we can further study interesting phenomena like the exchange

ionization under electron impact. To this end, we use the abridged Hamiltonian HE1 [Eqn. (3.12)],

in which only electron 1 interacts with the XUV laser pulse. In this scenario, electron 1 is the

primary electron during the knockout double photoionization process. In the second step of this

process, electron 1 knocks out electron 2 from the other atom. However, it is also possible that

electron 1 gets captured by the residual ion from which electron 2 is emitted, a process we denote

as exchange ionization.

Figure 3.14. Exchange ionization under electron impact for (a) singlet and (b) triplet scattering
using the abridged Hamiltonian HE1 [Eqn. (3.12)].

The exchange ionization can be clearly seen in Fig. 3.14, which shows a snapshot of the

probability density distribution as a function of z1 and z2 (integrated over x1 and x2) of the helium

dimer at t = 12 a.u. after interacting with a 4-cycle XUV laser pulse with central wavelength of 20
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nm and peak intensity of 1× 1014 W/cm2 starting from the (a) singlet and (b) triplet state using

the abridged Hamiltonian HE1 [Eqn. (3.12)]. As can be seen in the figure, the two intense stripes

near z2 = 0 represent the single ionization of electron 1 (primary electron), and the two weaker

stripes near z1 = 0 stand for the single ionization of electron 2 (secondary electron). Since only

electron 1 interacts with the laser pulse, only it can be ionized in the first step. Thus electron 2

must be knocked out by electron 1 under its impact in the second step, and electron 1 gets captured

at the same time since the vertical stripes near z1 = 0 represent single ionization instead of double

ionization.

3.6 Summary

In conclusion, we have proposed a planar two-active electron model to analyze the recently

observed correlation effects in double photoionization of the helium dimer. Results of numerical

simulations for the angular distribution of the electron are found to be in good agreement with

the experimental data. Furthermore, theoretical predictions for the double ionization probability

as functions of the orientation of the dimer axis as well as the distance of the atoms in the dimer

reveal direct evidence for the knockout mechanism, in which the photon energy is transferred over

distances of several Angstroms in the dimer to be shared between the electrons. Our conclusions

are further supported by an analysis of the temporal evolution of the two-electron probability

distribution. An analogue situation to the one discussed here for the helium dimer is encountered

in the creation of two-site double core holes of molecules [96, 97] discovered recently. Here the

photon is absorbed at one K-shell, e.g., in the C2H2 molecule [97]. The two K-shells have almost

negligible overlap and their spatial separation is much bigger than the extension of the individual

K-shell itself. Hence we expect that the conclusions drawn from our calculations are also valid for

the case of single-photon-induced two-site double core hole production.

We have also shown how scattering effects in single and double photoionization of the helium

dimer can be studied in ab-initio numerical simulations. Due to the large internuclear separation in

the dimer, the interaction between the electrons and between each electron and the distant nucleus
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in the ground state of the dimer is small. This has enabled us to consider abridged Hamiltoni-

ans for the dimer model, in which these interactions are neglected without changing the initial

state significantly. Based on the comparison of angular distributions of the primary photoelectron

and the secondary knockout electron obtained with different abridged Hamiltonians in numerical

simulations, we were able to identify the role of the different Coulomb interactions. For single

photoionization our results show that the electron correlation interaction leads to scattering of the

photoelectron off the dimer axis, when the latter is oriented along the polarization direction of the

field. On the hand the electron-nucleus interaction tends to focus the electron along the polariza-

tion direction. In double photoionization the primary photoelectron is scattered both in forward

as well as backward direction with respect to its initial momentum direction obtained upon photon

absorption. Keeping the direction of the primary electron fixed we then further found that the two

electrons are primarily emitted back-to-back in the double photoionization process.



Chapter 4

Selection rules in the few-photon double ionization process1

In this chapter, we analyze the selection rules for the emission of two electrons from the

helium atom and the helium dimer following the absorption of a few photons in an intense laser

field. The rules arise, as generalization of the well-studied one-photon case, due to the symmetries of

the accessible final states in the two-electron continuum. We show, in particular, that an increase of

the number of absorbed photons leads to alternating suppression and non-suppression of the back-

to-back emission of the two electrons with equal energy sharing. Results of numerical simulations

using models of the helium atom and the helium dimer are in agreement with the theoretical

predictions. We further generalize the selection rules and find that they apply whenever the system

has central symmetry with respect to its center of mass.

4.1 Introduction

The evolution of three or more Coulomb-interacting particles in the continuum after the

break-up of the atomic or molecular system has been a topic of recurring interest over many years.

Despite the complex dynamics of an interacting few-body system, the final-state distributions of the

particles often show some general structures. In particular, prominent nodes in the distributions

represent restrictions for the correlated momenta of the outgoing particles. These restrictions

arise either due to the Coulomb repulsion between the charged particles or due to symmetries

(spin, angular momentum, parity, etc.) of the final state of the few-body process. In this respect,

1 The results of this chapter are in part based on “H. Ni, S. Chen, C. Ruiz, and A. Becker, J. Phys. B 44, 175601
(2011)” [98].
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the break-up of an atomic or molecular system following absorption of a single photon has been

studied in detail. Selection rules for the correlated electron momenta arising from the symmetry

of the final state have been established for single-photon double ionization of the helium atom [99]

and the hydrogen molecule [100], as well as the general case of a N -electron break-up following

photoionization of the helium atom [101]. In contrast, the selection rules after absorbing multiple

photons have not been studied yet. However, we may expect that the final two-electron states

in few-photon double ionization possess a few definite symmetries and that the well-established

selection rules in the single-photon case can be applied to the few-photon interactions as well.

In this chapter we study the restrictions to the position and momentum distributions of the

emitted electrons in the continuum following the few-photon double ionization of the helium atom

and the helium dimer from the ground state. To this end, we first briefly discuss the application of

the final-state selection rules, derived by Briggs and co-workers [99–101], to the few-photon double

ionization. The selection rules based on the symmetry consideration and the correlated Keldysh–

Faisal–Reiss (KFR) theory are discussed as well. We then make use of a model for the interaction

of the helium atom [63] and the helium dimer [86] with a laser field to test our expectations in

numerical simulations. In our simulations we will, in particular, analyze double ionization pathways

in which up to four photons are absorbed simultaneously by the two electrons to overcome the double

ionization threshold. Based on these studies, we further generalize the selection rules to arbitrary

molecules.

4.2 Selection rules for transitions to two-electron continuum states

The symmetries of a state in the two-electron continuum can lead to nodes in the correspond-

ing configuration space wave function and the correlated momentum distribution [99]. Preparation

of a system in an initial state of a given symmetry (e.g., the ground state) as well as the symmetry

of the transition operator (e.g., photon absorption) limit the symmetries of the final states that can

be accessed in a specific process [100]. If in a transition all accessible final states share one or more

symmetries or final states of different symmetries lead to the same nodes, there are zeros in the
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differential cross sections of the corresponding process. These selection rules have been accurately

studied in the theory of single-photon double ionization of atoms and molecules and reproduced in

experiments (for a review, see [51]).

4.2.1 Selection rules based on general studies of the two-electron continuum

In order to identify and apply selection rules for double ionization of the helium atom and

the helium dimer by absorption of a few photons, we first briefly review the relevant symmetries

of the final states in the two-electron continuum, as discussed by Briggs and co-workers (see Ref.

[99, 100] and references therein). For the specification of the nodes in the configuration space wave

function and the correlated electron momentum distributions we employ the position vectors r1

and r2 and the momentum vectors k1 and k2 of the two electrons as well as the Jacobi coordinates

r− = r1 − r2 (relative coordinate) and r+ = (r1 + r2)/2 (center-of-mass coordinate) and the

corresponding momentum vectors k− = (k1 − k2)/2 and k+ = k1 + k2. We will consider double

ionization from the ground state of the helium atom and the helium dimer in a linearly polarized

laser field with polarization axis aligned along the quantization axis of the system, which is chosen

to be the z-axis. Furthermore, energies of the photons will be small enough such that the photon

absorption can be described by an electric dipole transition. Thus, the quantum numbers M = 0

(projection of the total angular momentum to the quantization axis) and S = 0 (total spin) do not

change in the cases considered here.

For single-photon double ionization from the ground state of the helium atom and the helium

dimer, which is of 1Seven symmetry, the transition into the two-electron continuum leads to exclusive

population of the 1Podd state. In this case and for linear polarization three selection rules have been

identified leading to nodes in the correlated wave function and momentum distribution [99, 100].

We analyze each of these selection rules in view of their application to the absorption of more than

one photon by the atom:

(1) There is a node in the two-electron wave function and a corresponding vanishing contribu-

tion to the correlated momentum distributions for both r1 and r2 (k1 and k2) perpendicular
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to the quantization axis of the system (here, the polarization axis of the field) if the final

state is of odd parity. Since in dipole transitions the parity of the state changes, this selec-

tion rules applies for absorption of either an even or an odd number of photons from the

field depending on the parity of the initial state of the system. Thus, in the case of double

ionization from the ground state of helium atom we expect the corresponding node to show

up for odd-photon processes.

(2) For final states with even S and odd parity (or odd S and even parity) there appears a

node in the configuration space wave function (or momentum distribution) for r1 = −r2

(or k1 = −k2), which is equivalent to r+ = 0 (or k+ = 0). Since the total spin quantum

number S does not change, while the parity of the state does change in an electric dipole

transition, the selection rules applies again either for an even-photon or an odd-photon

process depending here on the total spin and the parity of the initial state. For few-photon

double ionization from the ground state, the node appears, as in the case of selection rule

(1), if the number of absorbed photons is odd.

(3) Another node exists for r1 = r2 (k1 = k2) and θ1 = π− θ2 for final states with even S, odd

L, and odd parity (or odd S, even L, and even parity). Concerning the total spin quantum

number and the parity the same considerations as in the case of selection rule (2) apply.

Thus, for double ionization from the ground state (even S, even parity and even L) the

node is expected to be present for absorption of an odd number of photons.

In summary, these selection rules should lead to alternating suppression and non-suppression

of electron emission for certain configurations in the two-electron continuum wave function and

momentum distribution as the number of absorbed photons increases beyond one. Our analysis is

based on the assumption that the electron-field coupling is perturbative, which is justified for the

parameter regime considered in the numerical simulations below [102]. We may however note that

similar conclusions have been drawn based on a S-matrix analysis of double ionization of helium

atom by simultaneous multiphoton absorption in the nonperturbative intensity and wavelength
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regime [103, 104], which will be discussed below. Please note that we have restricted our discussion

above to those selection rules, which are relevant for the most significant case of double ionization of

helium atom from the ground state in a linearly polarized laser pulse. This case will be considered in

the numerical simulations below as well. For an initial state with different symmetry or a different

choice of the field polarization, other or further symmetry rules may have to be considered.

4.2.2 Selection rules based on the symmetry of the transition matrix

In the previous section, we outline the selection rules based on the general studies of the

two-electron continuum by Briggs and co-workers [99, 100]. Indeed, the selection rules can be well

reproduced by studying the symmetry in the transition matrix, which determines the symmetry in

the two-electron continuum based on the symmetry in the initial state and the transition matrix

itself.

The transition matrix for a one-photon process here can be written as

T1 = 〈ψf|E · (r1 + r2)|ψi〉, (4.1)

where ψi is the initial state, ψf is the final state, r1 and r2 are the position vector of the two

electrons respectively, and E is the electric field of the laser pulse. If the laser pulse is linearly

polarized in the z direction, then the transition matrix for the one-photon process reduces to

T1 = 〈ψf|E(z1 + z2)|ψi〉 = 2E〈ψf|Z|ψi〉, (4.2)

where Z = (z1 +z2)/2 is the center of mass of the two electrons in the z direction. From the expres-

sion for the transition matrix, it is obvious that the final-state wave function needs to be opposite

in Z-symmetry to the initial-state wave function to make the transition matrix T1 nonzero. If the

initial state is the ground state that is symmetric in Z, then the final state must be antisymmetric

in Z, i.e., there will be a node in the configuration space wave function at Z = 0, or a node in the

correlated momentum distribution at pZ = 0.
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In contrast, the transition matrix for a two-photon process would be

T2 =
∑
ψ̃

〈ψf|E · (r1 + r2)|ψ̃〉〈ψ̃|E · (r1 + r2)|ψi〉 = 4E2〈ψf|Z2|ψi〉, (4.3)

where ψ̃ is the intermediate state. Here, it is evident that the final-state wave function needs to

have the same Z-symmetry as the initial-state wave function to make the transition matrix T2

nonzero. If the initial state is symmetric in Z, then the final state must be symmetric in Z as well,

i.e., there is not necessarily a node in the configuration space wave function at Z = 0 (or pZ = 0 in

the correlated momentum distribution).

For higher-photon processes, the pattern goes on in an alternating manner. An increase of

the number of absorbed photons leads to alternating nodes and antinodes of the two-electron wave

function at Z = 0. If the initial state is symmetric in Z, then odd-photon double ionization leads

to a node at Z = 0, and even-photon double ionization results in an antinode at Z = 0.

Note that the initial-state wave function needs to have a definite Z-symmetry for the selection

rules to apply. In a system whose Hamiltonian is symmetric in Z, it can be approved that the

eigenstates of this system should have a definite symmetry in Z. Therefore, the selection rules

apply to the systems whose Hamiltonian is symmetric in Z. For the Hamiltonian of a two-electron

system, this Z-symmetry indeed only exists when X = (x1 + x2)/2 = 0 and Y = (y1 + y2)/2 = 0.

As a result, the restriction in the correlated emission of the two electrons in the configuration

space wave function is indeed at X = Y = Z = 0, which is equivalent to r1 = −r2 in selection

rule (2) above. As a result, an increase of the number of absorbed photons leads to an alternating

suppression and non-suppression of the back-to-back emission of the two electrons with equal energy

sharing.

4.2.3 Selection rules based on the correlated Keldysh–Faisal–Reiss theory

The KFR theory [4, 105, 106] is a S-matrix [107] treatment of the above-threshold-ionization

process [108–110], and the same selection rules can be concluded from the correlated version of the

KFR theory [103, 104]. The fully differential cross section for a N -photon process in this theory
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can be written as

d3σ(N)

dΩ1dΩ2dE2
∝ J2

N (α0,k1,k2) , (4.4)

where α0 is the quiver radius, and

JN (α0,k1,k2) =
∞∑

m=−∞
JN+2m (α0 · (k1 + k2)) Jm

(
Up

ω

)
, (4.5)

where Up is the ponderomotive potential, ω is the frequency of the laser field, and J is the Bessel

function. In a linearly polarized laser pulse, the quiver radius is along the polarization direction,

or the z direction in the present case. Here, JN reduces to

JN (α0,k1,k2) =

∞∑
m=−∞

JN+2m(α0pZ)Jm

(
Up

ω

)
, (4.6)

which further reduces to

JN (α0,k1,k2) =
∞∑

m=−∞
JN+2m(0)Jm

(
Up

ω

)
, (4.7)

at pZ = 0. Note that the Bessel function Jn(0) is non-zero only when n = 0, and that N and m

are integers, we therefore have (at pZ = 0)

JN (α0,k1,k2) =


J−N/2

(
Up

ω

)
, (even N)

0. (odd N)

(4.8)

As a result, the same selection rules as discussed above can be found from the correlated KFR

theory, namely there is a suppression of back-to-back emission of the two electrons with equal

energy sharing when odd number of photons are absorbed, while there is no such a suppression for

even number of photons absorbed.

4.3 Selection rules in the helium atom

The general selection rules above apply for the helium atom, the helium dimer, and homoge-

neous diatomic molecules. To study them more thoroughly, we apply numerical model simulations

to the helium atom and the helium dimer for more details. In this section, we focus on the selection

rules in the helium atom. To this end, we first introduce a restricted 3D model of the helium atom

and then numerically study the selection rules in this model.
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4.3.1 The restricted 3D model of the helium atom

Following earlier achievements towards the solution of the full TDSE for the helium atom

interacting with an intense laser pulse in view of an analysis of nonsequential double ionization at

optical and near-infrared laser wavelengths (see [111] and references therein), in recent years much

theoretical interest has been devoted to the double ionization of atoms by absorption of two photons

(see [112–116] for most recent studies and references therein). In the case of the two-photon process,

results for the total cross sections as well as for momentum distributions have been reported. In

particular, the passage from a simultaneous absorption of the photons (and simultaneous ejection

of the electrons) to sequential double ionization, in which absorption of the first photon generates

a singly charged ion before absorption of the second photon leads to the removal of the second

electron, has been studied.

We are interested in analyzing the occurrence of nodes for particular configurations of the

position and momentum vectors in the probability density and the momentum distributions in

numerical simulations. To this end, we may make use of any (lower-dimensional) model, which

exhibits all or some of the above selection rules. Here, we employ of a model for the helium atom

in which the center-of-mass motion of the two electrons is restricted to the polarization axis of

the linearly polarized external laser field. The Hamiltonian of this two-electron model (in Jacobi

coordinates) is given by [63]

H(ρ, z, Z; t) =p2
ρ + p2

z +
p2
Z

4
− pZAZ(t)

c
+

1√
ρ2 + z2

− 2√
ρ2/4 + (Z + z/2)2 + a2

− 2√
ρ2/4 + (Z − z/2)2 + a2

,

(4.9)

where a2 is a soft-core parameter to smooth the Coulomb singularity.

Our model, as shown in Fig. 4.1, restricts the center-of-mass motion of the two electrons along

the polarization direction, but does not restrict the symmetry of the dipole transition operator.

Since a linearly polarized laser field interacts with the center-of-mass of the two electrons along the

polarization axis, the symmetry of the dipole transition operator is present in the model. Thus,

the considerations regarding the symmetries of the accessible final states discussed above apply in
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Figure 4.1. The restricted 3D model of the helium atom. The blue dot represents the helium
nucleus, and the two green dots stand for the two electrons in the helium atom, the center of mass
of which is fixed along the polarization direction ε (the z direction) of the laser field.

this model as well. In general, in our model the momentum components of the individual electron

along the polarization direction differ and therefore both equal and unequal energy sharings occur.

However, along Z = 0 and pZ = 0 only equal energy sharing is present in the model. This coincides

with the kinematics for the nodes according to selection rules (2) and (3), which are predicted to

occur for equal energy sharing. Thus, for these two selection rules the model captures the relevant

dynamics. Selection rule (1) can occur for special cases of unequal momentum components in the

transverse direction as well, which is not captured by the present model and is a restriction in view

of the present analysis. Moreover, in our model the node arising due to selection rule (3) coincides

with that due to selection rule (2). Thus, in the remainder of the article, we will mainly discuss

our results in view of selection rule (2).

In the actual computations the TDSE of the two-electron model is solved using the Crank–

Nicolson method. The initial ground state wave function ψ(ρ, z, Z; t = 0) is computed through

imaginary time propagation using a grid size of ∆ρ = ∆z = ∆Z = 0.3, and a2 = 0.135. The

field-free ground state energies of helium atom and helium ion are found to be −2.937 and −1.985

respectively, which are both close to the real values of −2.904 and −2. The propagation of the wave

function in the field is conducted using a box size with Nρ = 300, Nz = 600, and NZ = 300 points

in the respective directions. An absorbing boundary of the form cos1/6
(
π
2
|x−x0|
L

)
with |x| > |x0|,

spanning 10% of the box size in a certain direction, is used, where x0 denotes the border of the
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boundary region and L is its width.

In this following sections, we present the results of a series of numerical simulations based

on the model presented above. In our calculations we change the wavelength and peak intensity

of the laser pulse such that the double ionization process can proceed via simultaneous absorption

of one up to four photons. The wavelengths are chosen such that the probability for sequential

double ionization is small (or negligible) in each of the cases considered, as shown schematically in

Fig. 4.2. In each of the computations we use a sin2-pulse with a total length of six cycles.

He(1s 2)

He 2+

He* +(2s)

He +(1s)

ν 2h

ν 2h

ν 3h

ν 3h

ν 3h

h 1ν

0

−0.448

−1.985

−2.937

Continuum

Figure 4.2. The photoabsorption scheme in the restricted 3D model of the helium atom. In the
scheme, hν1, hν2, and hν3 correspond to one-, two-, three-photon double ionization, respectively.
The wavelengths used in these three cases are λ1 = 14.32 nm, λ2 = 28.64 nm, and λ3 = 42.96 nm,
respectively.

4.3.2 One-photon double ionization

First, we consider a central laser wavelength of 14.32 nm and a peak intensity of I0 = 1×1014

W/cm2. At this wavelength the photon energy of 3.182 a.u. exceeds the double ionization threshold

of our model He atom and the two electrons can be emitted after absorption of a single photon.

Fig. 4.3 shows snapshots of the probability density distribution |ψ(ρ, z, Z; t)|2 integrated over ρ (left
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Figure 4.3. Probability density distribution (on a logarithmic scale) as a function of z and Z
(integrated over ρ, left hand column) and as a function of ρ and Z (integrated over z, right hand
column) following single-photon double ionization. In the results, presented in the panels in the
lower row, the ground state wave function was removed before calculating the probability density
distribution. The snapshots are taken at t = 10 a.u. after the end of the laser pulses. Laser
parameters: wavelength λ = 14.32 nm, peak intensity I0 = 1× 1014 W/cm2, and total pulse length
6 cycles.
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Figure 4.4. Same as Fig. 4.3 but at times t = 20 a.u. (upper row) and t = 30 a.u. (lower row)
after the end of the laser pulses. Shown are the probability density distributions after removal of
the He ground state from the full wave function.
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hand panels) or z (right hand panels) at time t = 10 a.u. after the end of the pulse. Plots in the

column on the left show distributions in the Z−z plane (integrated over the ρ-coordinate). In these

plots the contributions at the center (z ≈ Z ≈ 0) mainly correspond to the remaining population in

the neutral helium atom after the interaction. This can be clearly seen from the comparison of the

plots in the upper and lower panel in the left hand column, since the He ground state contribution

is removed in the results in the lower panel. The single ionized population is displayed along the

diagonals, while the contributions to double ionization can be found in the regions in between

the diagonals. We clearly see a node along Z = 0 in the distribution, as predicted by selection

rule (2) and shown by Briggs and co-workers before [99]. In previous analysis of single-photon

double ionization, usually asymptotic final states (in time-independent S-matrix calculations) were

considered, the present results offer a time-dependent view. It is seen from the results in Figs. 4.3

and 4.4 (the latter shows the distributions at two later time instants) that the node is present as

soon as the pulse is over.

The plots in the right hand columns of Figs. 4.3 and 4.4 offer the complementary view of

the Z − ρ distributions, integrated over z. While the distributions at small ρ are mainly due to

contributions from the neutral He atom and the He+ ion, the population at large ρ indicates a

highly correlated process, i.e., the double ionization. Again, in all of the plots we see a node at

Z = 0 for the contribution belonging to double ionization, as expected from the selection rule (2)

and the earlier work on single-photon double ionization [99].

4.3.3 Two-photon double ionization

Next, we consider two-photon double ionization, for which we expect that the node at Z = 0

is not present according to the selection rules. Simultaneous absorption of two photons does occur

either as a second above-threshold double ionization peak (ATDI) [103, 104] at higher intensities

in the wavelength regime considered above, or at longer wavelengths at which the photon energy

is smaller than the double ionization threshold. In our simulations we have analyzed both cases.

First, we present in Fig. 4.5 results at the same wavelength as above but at a higher peak
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Figure 4.5. Probability density distribution (on a logarithmic scale) as a function of z and Z
(integrated over ρ, left hand column) and as a function of ρ and Z (integrated over z, right hand
column). The ground state wave function was removed before calculating the probability density
distribution. The snapshots are taken at the end of the pulse (upper row) and t = 10 a.u. after
the pulse (lower row). Laser parameters: wavelength λ = 14.32 nm, peak intensity I0 = 1 × 1016

W/cm2, and total pulse length 6 cycles.
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intensity of I0 = 1 × 1016 W/cm2. While in the z − Z distribution taken at the end of the pulse

(panel in upper left corner) the evolving population in the double ionization region does not show

a clear structure, we can distinguish the contributions from single-photon and two-photon double

ionization at some later time after the end of the pulse (t = 10 a.u., panel in lower left corner). Please

note that due to the difference in total kinetic energy the single-photon contribution propagates at

a smaller velocity than the two-photon contribution. Consequently, we find the latter contribution

at larger distances from the center of the z−Z distribution (i.e., the nucleus) than the one-photon

distribution. Our expectations for the contribution along Z = 0 are obviously realized in the

numerical results for the z − Z distribution (lower panel in left hand column): The absorption of

two photons results in a maximum in the corresponding part of the distribution, while the node

in the single-photon contribution is still present. In the Z − ρ distributions (panels in right hand

column) there is no clear separation of the two processes possible and, hence, we observe a small

population along Z = 0 due to the two-photon process.

Figure 4.6. Same as Fig. 4.5, but at I0 = 1 × 1017 W/cm2 and t = 7.5 a.u. after the end of the
pulse.

Similar conclusions hold for the results at an even higher intensity of I0 = 1× 1017 W/cm2,

shown in Fig. 4.6. Here the contribution from the two-photon absorption (2nd ATDI peak) with
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Figure 4.7. Probability density distribution (on a logarithmic scale) as a function of z and Z
(integrated over ρ, left hand column) and as a function of ρ and Z (integrated over z, right hand
column). The snapshots are taken t = 30 a.u. after the pulse. Laser parameters: wavelength
λ = 28.64 nm, peak intensity I0 = 1× 1014 W/cm2, and total pulse length 6 cycles.
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a maximum along Z = 0 in the Z − z distribution is much stronger, as expected due to the

nonlinearity of the process. A clear separation of the single-photon process from the two-photon

process is however not longer possible on the grid size used in the present simulations.

Next, we double the central wavelength of the laser field to λ = 28.64 nm (photon energy of

1.591 a.u.). At this wavelength the (simultaneous) absorption of two photons is needed to overcome

the double ionization threshold. Please note that the photon energy has been chosen such that a

competing sequential double ionization process requires the absorption of at least three photons

and, hence, the corresponding contribution to the two-electron configuration space wave function is

strongly suppressed. The results in Fig. 4.7 do not show a node along Z = 0 either in the Z − z or

in the Z−ρ distribution, in agreement with the selection rule (2) for a two-photon process from the

He ground state. Instead, we observe as in the previous results in Figs. 4.5 and 4.6 a maximum in

the contributions from double ionization along this axis in the Z − z distribution. Please note that

the maximum indicates a preferential back-to-back emission of the two electrons at the present laser

parameters, in agreement with recent observations in experiments on two-photon double ionization

of He [117] and Ne [118], as well as recent theoretical predictions [119].

4.3.4 Three- and four-photon double ionization

Finally, we consider double ionization processes via the simultaneous absorption of more than

two photons in order to verify (or, disprove) the alternating appearance of suppression and non-

suppression of electron emission along the Z = 0 axis in the configuration space wave function for

double ionization as the number of absorbed photons increases. We found that at longer wavelengths

the contributions of competing processes such as sequential double ionization are usually of similar

(or even larger) strengths than the probability for the ejection of two electrons via simultaneous

absorption of photons. However, at specific wavelengths (and peak intensities), here 42.96 nm and

57.28 nm, we observe double ionization which arises from simultaneous three- and four-photon

absorption. The results of the numerical simulations (see Fig. 4.8) clearly exhibit the suppression

(for the odd-number-photon process) and the non-suppression (for the even-number-photon process)
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Figure 4.8. Probability density distribution (on a logarithmic scale) as a function of z and Z
(integrated over ρ). The snapshots are taken t = 12.25 a.u. after the pulse. Laser parameters:
wavelength λ = 42.96 nm (left hand column) and 57.28 nm (right hand column), peak intensity
I0 = 5× 1014 W/cm2, and total pulse length 6 cycles.
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of electron emission along the Z = 0 axis in the Z − z distributions, as expected from the selection

rule (2).

4.3.5 Momentum distributions

As of now, we have demonstrated the selection rules in the configuration space of the two

electrons. At the same time, the selection rules also apply to the momentum space distributions. As

discussed above: When there is a node in the configuration space, there should be a corresponding

node in the momentum space; and when there is an antinode in the configuration space, there should

also be a corresponding antinode in the momentum space. Due to the lower dimensionality of our

numerical model we cannot provide quantitative predictions for the full momentum distributions

but test certain aspects, here the existence of nodes.

Fig. 4.9 shows correlated momentum distributions for the two electrons in the pZ − pz plane

(upper row, integrated over pρ direction) and along the pZ axis (lower row, integrated over both pz

and pρ). The momentum distributions are obtained by first separating the doubly ionized part of

the configuration space wave function from the rest. To this end, we partition the coordinate space

(refer to Sec. 2.7) as [63]

r1 6 12 ∩ r2 6 12 : He atom

(r1 6 6 ∩ r2 > 12) ∪ (r1 > 12 ∩ r2 6 6) : He+ ion

complementary space : He2+ ion,

(4.10)

where r1,2 =
√
ρ2/4 + (Z ± z/2)2. Then, we project the doubly ionized part onto the final-state

wave function, which we approximate by a product state of a Coulomb wave in the relative coor-

dinates ρ and z and a plane wave in the center-of-mass coordinate Z.

The momentum distributions displayed in the three columns correspond to the probability

density distributions

(a) in the lower row of Fig. 4.4, in which the single-photon process dominates,
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Figure 4.9. Correlated momentum distribution of pz and pZ (upper row) and momentum distri-
bution in pZ (lower row, integrated from upper row over pz) by projection onto the approximate
final-state wave function of a Coulomb wave in the relative coordinates ρ and z and a plane wave in
the center-of-mass coordinate Z. Laser parameters: wavelength λ = 14.32 nm [column (a) and (b)]
and 28.64 nm [column (c)], peak intensity I0 = 1× 1014 W/cm2 [column (a) and (c)] and 1× 1016

W/cm2 [column (b)], and total pulse length 6 cycles.
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(b) in the lower row of in Fig. 4.5, in which both one- and two-photon processes are present,

and

(c) in Fig. 4.7, in which the two-photon process is prominent.

It is obvious from the comparison of the results in Fig. 4.9 with the corresponding spatial distribu-

tions that both show the same nodes and antinodes. In particular, the nodes for the odd-number

photon processes along pZ = 0 in the pZ − pz distributions (upper row of Fig. 4.9) can be clearly

seen. We have found that the appearance of the nodes is insensitive to the method by which we

extract the ionized population from the full wave function. It is also independent of how long the

wave function is propagated after the end of the pulse and of the choice of the basis set for the

two-electron continuum wave functions.
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Figure 4.10. Ratio of the probability at pZ = 0 to the maximum probability in the pZ distributions
as a function of intensity at a wavelength of 14.32 nm.

Comparing the momentum distributions in columns (a) and (b) we find that the contribu-

tion of the two-photon process increases with intensity at the wavelength of 14.32 nm. This can

be quantified by the ratio of the probability at pZ = 0 to the maximum probability in the pZ

distributions (lower row in Fig. 4.9), as shown in Fig. 4.10. One can see that the ratio increases



89

almost linearly as a function of intensity. This is expected since the ratio basically represents the

ratio between the probabilities for one- to two-photon absorption, which should follow the power

law I2/I1 = I1.

Instead of using the approximate final-state wave function of a Coulomb wave in the relative

coordinates ρ and z and a plane wave in the center-of-mass coordinate Z to get the momentum

distributions, we can also use the approximate final-state wave function of a plane wave, which is

equivalent to carrying out a Fourier transform to the respective spatial wave function to obtain

the momentum distributions. Shown in Fig. 4.11 is the same plot as in Fig. 4.9 but is obtained by

projection onto a plane wave (Fourier transform).

The difference between these two methods, i.e., projection onto the approximate final-state

wave function of a Coulomb wave in the relative coordinates ρ and z and a plane wave in the center-

of-mass coordinate Z (Fig. 4.9) and projection onto the approximate final-state wave function of

a plane wave (Fig. 4.11), is that electron-electron correlation is taken into consideration in the

former case, and it is not accounted for in the latter case. The electron-electron correlation, or

electron-electron repulsion, will cause the two electrons to stay away from each other, which would

result in a node at ρ = z = 0 (and pρ = pz = 0). This can be clearly seen in Fig. 4.12, in which

the first row is the cut of Fig. 4.9 and the second row is the cut of Fig. 4.11 at pρ = 0. A node at

pz = 0 is evident in the first row, in which electron-electron correlation is taken into account, and

it is missing in the second row, where electron-electron repulsion is absent.

4.4 Selection rules in the helium atom within the planar 4D model

In the last section, we studied the selection rules in the helium atom using the restricted 3D

model. To illustrate that the selection rules do not depend on the specific model, we introduce a

planar 4D model of the helium atom and then study part of the selection rules within this model.
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Figure 4.11. Correlated momentum distribution of pz and pZ (upper row) and momentum dis-
tribution in pZ (lower row, integrated from upper row over pz) by projection onto the approximate
final-state wave function of a plane wave (Fourier transform). Same laser parameters are used as
in Fig. 4.9.
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Figure 4.12. Correlated momentum distribution of pz and pZ cut at pρ = 0 by projection onto the
approximate final-state wave function of a Coulomb wave in the relative coordinates ρ and z and a
plane wave in the center-of-mass coordinate Z (upper row) and by projection onto the approximate
final-state wave function of a plane wave (Fourier transform, lower row). Same laser parameters
are used as in Figs. 4.9 and 4.11.
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4.4.1 The planar 4D model of the helium atom

The planar 4D model of the helium atom removes the restriction of the center of mass of the

two electrons to the polarization direction of the laser field in the restricted 3D model of the atom,

but restrains the two electrons and the helium nucleus to the same plane. After this change, each

electron has two spatial dimensions and the corresponding four-dimensional model Hamiltonian is

then given by

H(x1, x2, z1, z2; t) =
p2
x1 + p2

z1

2
+
p2
x2 + p2

z2

2
+ E(t)(z1 + z2)

− 2√
x2

1 + z2
1 + a2

− 2√
x2

2 + z2
2 + a2

+
1√

(x1 − x2)2 + (z1 − z2)2 + b2
,

(4.11)

where pi = (pxi , pzi) and ri = (xi, zi) (with i = 1, 2) are the momentum operators and spatial

coordinates of the two electrons and a2 and b2 are the soft-core parameters to smooth the Coulomb

singularity. The linearly polarized laser field is given in the form of

E(t) = cos2

(
ωt

2N

)
cos(ωt+ φ), (4.12)

where ω is the central frequency, N is the number of cycles, and φ is the carrier-envelope phase of

the laser pulse, which is set to −π/2 is the present simulations.

In the actual computations the TDSE of the two-electron model is solved using the Crank–

Nicolson method. The initial ground state wave function ψ(x1, x2, z1, z2; t = 0) is computed through

imaginary time propagation using a grid size of ∆x1 = ∆x2 = ∆z1 = ∆z2 = 0.3, a2 = 0.164, and

b2 = 0.068, which is found to have an energy of −2.9034. The propagation of the wave function

in the field is conducted using a box with Nx1 = Nx2 = 200 and Nz1 = Nz2 = 300 points in

the respective directions. An absorbing boundary of the form cos1/6
(
π
2
|x−x0|
L

)
with |x| > |x0|,

spanning 10% of the box size in a certain direction, is used, where x0 denotes the border of the

boundary region and L is its width. The double ionization contributions are obtained with the

space-partitioning method in Sec. 2.7 for an atomic system with dsmall = 7 and dbig = 11.
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4.4.2 One-photon double ionization

First, we consider a central laser wavelength of 13 nm and a peak intensity of I0 = 1 ×

1014 W/cm2. At this wavelength the photon energy of 3.507 a.u. exceeds the double ionization

threshold of our model helium atom and the two electrons can be emitted after absorption of a single

photon. Fig. 4.13(a) shows the snapshot of the probability density distribution |ψ(x1, x2, z1, z2; t)|2

integrated over x1 and x2 at time t = 4 a.u. after the end of the pulse. However, no node is visible

along z1 + z2 = 0, or Z = 0. This can indeed be easily understood as due to the symmetry of the

Hamiltonian, which determines the symmetry of the initial state. To see this clearly, we express

the Hamiltonian in the center-of-mass (X and Z) and relative coordinates (x and z) of the two

electrons

H(x,X, z, Z; 0) =p2
x + p2

z +
p2
X + p2

Z

4
+

1√
x2 + z2 + b2

− 2√
(X + x

2 )2 + (Z + z
2)2 + a2

− 2√
(X − x

2 )2 + (Z − z
2)2 + a2

,

(4.13)

where X = (x1 +x2)/2, Z = (z1 + z2)/2, x = x1−x2, and z = z1− z2. Obviously, the Hamiltonian

is not symmetric in Z, since it changes if we let Z → −Z. This means that there is no symmetry

with respect to Z for the initial state either, which thus, according to the arguments in Sec. 4.2.2,

tells us that there should not be a node at Z = 0 for the final state either. However, the node can

be retrieved if we consider the probability distribution at X = 0, x = 0, or z = 0. In the first case,

this leads to the following Hamiltonian

H(x,X, z, Z; 0) =p2
x + p2

z +
p2
X + p2

Z

4
+

1√
x2 + z2 + b2

− 2√
(x2 )2 + (Z + z

2)2 + a2
− 2√

(x2 )2 + (Z − z
2)2 + a2

,

(4.14)

which is symmetric in Z. The respective probability density distribution is shown in Fig. 4.13(b),

which clearly has a node at Z = 0. In the restricted 3D model this restriction is always imposed,

as discussed before.
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Figure 4.13. Probability density distribution (on a logarithmic scale) as a function of z1 and z2

(integrated over x1 and x2) following single-photon double ionization. The distribution in panel
(b) represents a cut at X = 0. The snapshots are taken at t = 4 a.u. after the end of the laser
pulse. Laser parameters: wavelength λ = 13 nm, peak intensity I0 = 1 × 1014 W/cm2, and total
pulse length 12 cycles.

Figure 4.14. Probability density distribution (on a logarithmic scale) as a function of z1 and z2

(integrated over x1 and x2) following two-photon double ionization. The distribution in panel (b)
represents a cut at X = 0. The snapshots are taken at t = 4 a.u. after the end of the laser pulse.
Laser parameters: wavelength λ = 26 nm, peak intensity I0 = 1 × 1014 W/cm2, and total pulse
length 6 cycles.
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4.4.3 Two-photon double ionization

Next, we consider two-photon double ionization, for which we expect that the node at Z = 0

is not present according to the selection rules. Here, we only consider the case when the photon

energy is smaller than the double ionization threshold and a simultaneous absorption of two photons

is necessary to produce double ionization. To this end, we double the central wavelength of the

laser field to λ = 26 nm (photon energy of 1.753 a.u.). Indeed, the results in Fig. 4.14 do not show

a node along Z = 0 either in the probability distribution integrated over x1 and x2 or in that which

is further restricted to X = 0, in agreement with the selection rule (2) for a two-photon process

from the helium ground state.

4.4.4 Momentum distributions

The selection rules, just as in the restricted 3D model, also apply to the momentum-space

distributions. When there is a node in the configuration space, there should be a corresponding

node in the momentum space, and when there is an antinode in the configuration space, there

should also be a corresponding antinode in the momentum space.

Fig. 4.15 shows correlated momentum distributions for the two electrons in the pz1 − pz2

plane for the single-photon process (upper row) and for the two-photon process (lower row). The

momentum distributions are obtained by projecting the doubly ionized part onto the final-state

wave function, which we approximate by a product state of a Coulomb wave in the relative coordi-

nates x and z and a plane wave in the center-of-mass coordinates X and Z. Then an integration

over px1 and px2 results in the momentum-space distribution in the pz1 − pz2 plane. Note that the

distributions in the right column further restrict the distributions to pX = 0, just like we restricted

to X = 0 in the spatial distributions in order to retrieve the node in odd-photon double ionization.

Obviously, there is a node present at pZ = 0 for the single-photon process when the pX = 0 condi-

tion is enforced, while the node is missing for the two-photon process even when the cut at pX = 0

is done.
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Figure 4.15. Correlated momentum distribution of pz1 and pz2 for the single-photon double ioniza-
tion (upper row) and two-photon double ionization (lower row) by projection onto the approximate
final-state wave function of a Coulomb wave in the relative coordinates x and z and a plane wave
in the center-of-mass coordinates X and Z. The distributions in the right column represent a cut
at pX = 0. Laser parameters: wavelength λ = 13 nm (upper row) and 26 nm (lower row), peak
intensity I0 = 1 × 1014 W/cm2, and total pulse length 12 cycles (upper row) and 6 cycles (lower
row).
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Figure 4.16. Momentum distributions of electron 2 for the single-photon double ionization process
when electron 1 is fixed to be emitted along the +z direction. In panels (b), (c), and (d), the
magnitude of the momentum of electron 1 is further restricted to certain values, i.e., 0.4, 0.8, and
1.2, respectively. Laser parameters: wavelength λ = 13 nm, peak intensity I0 = 1 × 1014 W/cm2,
and total pulse length 12 cycles.
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The momentum-space wave function further provides the opportunity to reveal the selection

rules in a more straightforward way, i.e., by fixing the momentum of one electron and observing the

momentum distribution of the other electron. Shown in Fig. 4.16(a) is the probability distribution

of electron 2 when the emission of electron 1 is fixed along the +z direction, which is marked as an

arrow, for the single-photon double ionization process. There is no node in the opposite direction

of the momentum of electron 1. If we however further select the magnitude of the momentum of

electron 1, as it has been done for the results presented in the other panels of Fig. 4.16, we find

that, electron 2 cannot be emitted back-to-back to electron 1 for equal energy sharing.

Thus, the selection rules in the few-photon double ionization of the helium atom do not

depend on the specific numerical model we are using, and the selection rules apply in both

configuration-space and momentum-space wave functions. Generally, the two electrons cannot

be emitted back-to-back with equal energy sharing in an odd-photon process, but that is allowed

in an even-photon process.

4.5 Selection rules in the helium dimer

In the last sections, we studied the selection rules in the helium atom. In this section, we

focus on the selection rules in the helium dimer using the planar 4D model introduced in Sec. 3.2.

4.5.1 One-photon double ionization

First, we consider a central laser wavelength of 20 nm and a peak intensity of I0 = 1 ×

1014 W/cm2. At this wavelength the photon energy of 2.279 a.u. exceeds the double ionization

threshold of our model helium dimer and the two electrons can be emitted after absorption of a

single photon. Fig. 4.17(a) and Fig. 4.17(c) shows snapshots of the probability density distribution

|ψ(x1, x2, z1, z2; t)|2 integrated over x1 and x2 at time t = 4 a.u. after the end of the pulse. Again,

no node is visible along z1 +z2 = 0, or Z = 0. Similarly, this can indeed be easily understood as due

to the symmetry of the Hamiltonian, which determines the symmetry of the initial state. To see

this clearly, we express the Hamiltonian in the center-of-mass (X and Z) and relative coordinates
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Figure 4.17. Probability density distribution (on a logarithmic scale) as a function of z1 and
z2 (integrated over x1 and x2) following single-photon double ionization starting from the singlet
(upper row) and triplet (lower row) states. The distributions in the right column represent a cut
at X = 0. The snapshots are taken at t = 4 a.u. after the end of the laser pulse. Laser parameters:
wavelength λ = 20 nm, peak intensity I0 = 1× 1014 W/cm2, and total pulse length 12 cycles.
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(x and z) of the two electrons
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(4.15)

where X = (x1 +x2)/2, Z = (z1 +z2)/2, x = x1−x2, and z = z1−z2. As in the planar He case, the

Hamiltonian is not symmetric in Z, since it changes if we let Z → −Z. This means that there is no

symmetry with respect to Z for the initial state and therefore no node at Z = 0 for the final state

either. However, as before the node can be retrieved if we consider the probability distribution at

X = 0, x = 0, or z = 0. For example, for X = 0, the Hamiltonian becomes
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(4.16)

which is symmetric in Z. The respective probability density distribution is shown in Fig. 4.17(b)

and Fig. 4.17(d), the former of which clearly has a node at Z = 0. Note that the node (minimum)

at z = 0 is due to the exchange asymmetry in the two-electron wave function.
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4.5.2 Two-photon double ionization

Next, we consider two-photon double ionization, for which we expect that the node at Z = 0

is not present according to the selection rules. As before, we consider only the case when the energy

of the photon is smaller than the double ionization threshold and a simultaneous absorption of two

photons is necessary to produce double ionization. To this end, we double the central wavelength

of the laser field to λ = 40 nm (photon energy of 1.140 a.u.). The results in Fig. 4.18 do not show a

node along Z = 0 either in the probability distribution integrated over x1 and x2 or in that which

is restricted to X = 0, in agreement with the selection rule (2) for a two-photon process from the

dimer ground state.

4.5.3 Momentum distributions

The selection rules, just as in the case of the helium atom, also apply to the momentum-

space distributions. Fig. 4.19 shows correlated momentum distributions for the two electrons in the

pz1 − pz2 plane for single-photon double ionization. The momentum distributions are obtained by

projecting the doubly ionized part onto the final-state wave function, which we approximate by a

product state of a Coulomb wave in the relative coordinates x and z and a plane wave in the center-

of-mass coordinates X and Z. Then an integration over px1 and px2 results in the momentum-space

distribution in the pz1 − pz2 plane. Note that for the distributions in the right column, we have

further restricted the distributions to pX = 0. Again, there is a node present at pZ = 0 for the

single-photon double ionization process when the pX = 0 condition is enforced.

Fig. 4.20, in contrast, shows correlated momentum distributions for the two electrons in the

pz1 − pz2 plane for the two-photon double ionization and there is, as expected, no node present at

pZ = 0 for the two-photon double ionization process even when the pX = 0 condition is enforced.
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Figure 4.18. Probability density distribution (on a logarithmic scale) as a function of z1 and z2

(integrated over x1 and x2) following two-photon double ionization starting from the singlet (upper
row) and triplet (lower row) states. The distributions in the right column represent a cut at X = 0.
The snapshots are taken at t = 4 a.u. after the end of the laser pulse. Laser parameters: wavelength
λ = 40 nm, peak intensity I0 = 1× 1014 W/cm2, and total pulse length 6 cycles.
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Figure 4.19. Correlated momentum distribution of pz1 and pz2 for the single-photon double
ionization double ionization by projection onto the approximate final-state wave function of a
Coulomb wave in the relative coordinates x and z and a plane wave in the center-of-mass coordinates
X and Z starting from the singlet (upper row) and triplet (lower row) states. The distributions
in the right column represent a cut at pX = 0. Laser parameters: wavelength λ = 20 nm, peak
intensity I0 = 1× 1014 W/cm2, and total pulse length 12 cycles.
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Figure 4.20. Correlated momentum distribution of pz1 and pz2 for the two-photon double ioniza-
tion double ionization by projection onto the approximate final-state wave function of a Coulomb
wave in the relative coordinates x and z and a plane wave in the center-of-mass coordinates X and
Z starting from the singlet (upper row) and triplet (lower row) states. The distributions in the
right column represent a cut at pX = 0. Laser parameters: wavelength λ = 40 nm, peak intensity
I0 = 1× 1014 W/cm2, and total pulse length 6 cycles.
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4.6 General molecules

In previous sections, we focused on one- and two-center systems. In this section, we discuss the

symmetry and selection rules in general multicenter systems during few-photon double ionization.

To this end, we illustrate the procedure for a homogeneous N -center system. The corresponding

Hamiltonian, using center of mass and relative coordinates of the two electrons, can be written as
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(4.17)

When we change Z to −Z, the Hamiltonian becomes
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(4.18)

Clearly, there is no Z symmetry in this Hamiltonian since it changes after Z → −Z. However,

if we set X = 0, x = 0, or z = 0, and at the same time enforce an central symmetry of the system

with respect to the origin (i.e., the center of mass), then there is Z symmetry in the Hamiltonian.

We illustrate for a four-center system why this central symmetry is necessary. The corresponding
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Hamiltonian for X = 0 is
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(4.19)



107

which, after we change Z to −Z, becomes
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(4.20)

The Hamiltonian remains unchanged if any of the following conditions is satisfied:

r1 = −r2, r3 = −r4; (4.21)

r1 = −r3, r2 = −r4; (4.22)

r1 = −r4, r2 = −r3. (4.23)

That is to say, the system has to have central symmetry relative to the origin (center of mass).

For systems consisting of an odd number of centers, such pairs as shown above do not exist.

In this case, one atom has to be located at the origin. In a three-center system, for example, any
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of the following conditions has to be satisfied:

r1 = 0, r2 = −r3; (4.24)

r2 = 0, r1 = −r3; (4.25)

r3 = 0, r1 = −r2. (4.26)

Then, the central symmetry is still necessary.

Indeed, the system does not have to be homogeneous as discussed above. For example, in

the four-center system above, when the first condition, i.e.,

r1 = −r2, r3 = −r4 (4.27)

satisfies, we only need to require nucleus 1 and 2 to be the same and nucleus 3 and 4 to be the

same separately. Here, again, the central symmetry is still valid.

Furthermore, our analysis above relies on a two-dimensional model for each of the electrons.

However, it can be easily shown that our conclusions do not depend on this 2D analysis and are

valid for real 3D cases as well. Molecules, such as C60, have central symmetry. Therefore, the

few-photon double ionization of C60 should also follow the same selection rules as in the case of

simple atoms.

Note that the central symmetry is needed when the two active electrons are included as well

as excluded, since both definite symmetries in the initial-state and the final-state Hamiltonians are

necessary so that both initial-state and final-state wave functions possess definite symmetries. For

molecules like C6H6 or C60, the p electrons are delocalized, thus the selection rules apply when

two p electrons are ionized if the remaining p electrons redistribute faster than the duration of

the ionizing laser pulse. If the p electrons redistribute slower than the duration of the ionizing

laser pulse, then the selection rules do not apply. In this sense, we may be able to map out the

redistribution time of the p electrons by controlling the duration of the ionizing laser pulse. In

contrast, if two s electrons are ionized from C6H6 or C60, then the selection rules do not apply

since the s electrons are localized.
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Other interesting applications of the selection rules include determining the ionizing orbitals

of the electrons in molecules like CO2. If the two electrons are ionized from the different π bonds in

the molecule, then the selection rules apply; while the selection rules do not apply in other cases,

e.g., when they are ionized from the same π bond or when any of them is ionized from the σ bonds

or any inner s orbital of the individual atoms in the molecule.

4.7 Summary

In summary, we showed that the well-known selection rules for single-photon double ionization

can be generalized to the emission of two electrons following the simultaneous absorption of a few

photons from an intense laser pulse. These selection rules, which arise due to the symmetries of the

accessible final states in the two-electron continuum, correspond to nodes in the configuration space

wave function and the correlated momentum distributions. In particular, the back-to-back emission

of the two electrons with equal energy sharing is alternating either suppressed (forbidden) or non-

suppressed as the number of absorbed photons increases. The theoretical predictions are tested

well in numerical simulations. The numerical results for one- to four-photon double ionization of

the helium atom clearly show the presence of the node in the back-to-back emission in the case of

odd-number photon processes. Moreover, we showed that the presence of the selection rules does

not depend on the numerical model. Furthermore, we have also shown that the same selection rules

exist in the helium dimer, which is a diatomic molecule. Based on the studies of the homogeneous

two-center molecules like the helium dimer, we further studied multicenter molecules in general,

and found that the selection rules apply whenever the molecule has the central symmetry.



Chapter 5

Photoabsorption and correlation time delay

In this chapter, we propose a self-consistent-time method to account for the Coulomb-laser

coupling effect and obtain the intrinsic photoabsorption time delay measured by the attosecond

streak camera. We illustrate this method with a one dimensional numerical model of the hydrogen

atom. The concept of the method is based on an iteration to obtain the photoabsorption time

delay. Starting from an initial guess for this time delay, we iteratively obtain an improved time

delay by using the classical trajectory calculations and comparison with the vector potential of

the streaking pulse. We demonstrate the convergence and robustness of the self-consistent-time

method, investigate the photoemission at different positions, and study the resonant two-photon

ionization time delay.

Furthermore, we resolve the correlation time delay, defined as the delay between the absorp-

tion of the photon by the first electron (single ionization) and the transfer of the second electron

into the continuum (double ionization) in a single-photon double-ionization process of the helium

dimer via the variable space-partitioning method as well as the attosecond streaking technique,

which is extended to many-electron systems. The streaked variable for the single ionization is

the momentum of the first electron, while the streaked variable for the double ionization is the

center-of-mass momentum of both electrons. The correlation time delays obtained for different

laser parameters are compared with classical estimates.
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5.1 Introduction

A recent report [120] on the photoemission time delay of 21 as from the 2s and 2p shells of

the neon atom using the attosecond streak camera induced a vigorous debate among theoreticians

about the origin of the time delay [121–140]. A large part of them was focused on the discussion

concerning the role of the Wigner-Smith (WS) time delay [141, 142] in the photoionization, which

itself diverges for long-range potentials like the Coulomb potential. Among others, our previous

works [138–140] addressed the concern regarding the divergence of the observed time delays by

showing that it can be written as a piecewise field-free time delays weighted by the ratio of the

instantaneous streaking field strength relative to its strength at the instant of transition of the

electron into continuum. The theoretical analysis was based on the agreement between results

of ab-initio quantum-mechanical and classical-mechanical simulations of the propagation of the

electron in the combined field of the Coulomb potential of the residual ion and the streaking laser

field for the streaking time delay. This led to the interpretation of the measured time delay as due

to the Coulomb-laser coupling effect, i.e., the coupled dynamics of the electron in the fields of the

Coulomb potential and the streaking laser pulse.

In this chapter, we propose an alternative self-consistent-time (SCT) method to account for

the Coulomb-laser coupling effect and obtain the intrinsic photoabsorption time delay measured

by the attosecond streak camera. We illustrate this method using a one dimensional numerical

model of the hydrogen atom. The concept of the method is based on an iteration to obtain the

photoabsorption time delay. The convergence and robustness of the method is also demonstrated.

Further, the photoemission at different positions and the resonant two-photon ionization time delay

is studied as well.

Beyond the temporal resolution of single-electron processes, one next challenge in attosecond

science is the real-time observation of energy exchange between electrons via their mutual corre-

lation. The basic process to study energy exchange between electrons is the single-photon double

ionization. At low photon energy, one electron (primary electron) absorbs the photon before its
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energy is shared with the other electron via the Coulomb interaction VC (refer to Sec. 3.4), and

finally both electrons emit from the target together [see Fig. 5.6(a)]. The correlation time, over

which the energy is exchanged, can be defined as the delay between the absorption of photon en-

ergy by the primary electron and the emission of both electrons, or equivalently, the time delay

between single and double ionization. In this chapter, we further study the correlation time delay

in the helium dimer via the variable space-partitioning method as well as the attosecond streaking

technique. The correlation time delays obtained for different laser parameters are compared with

classical estimates.

5.2 Photoabsorption time delay

In this section, we describe the one dimensional numerical model of the hydrogen atom used

in the simulations and develop the SCT method.

5.2.1 Numerical model

To make the SCT scheme transparent, we use a one dimensional numerical model of the

hydrogen atom with Hamiltonian

H =
p2

2
+ [EXUV(t) + Es(t)]x+ V (x), (5.1)

where

V (x) = − Z√
x2 + a2

(5.2)

is the Coulomb potential for the hydrogen atom with effective charge Z = 1 and soft-core parameter

a2 = 2, and EXUV and Es are the ionizing XUV laser field and streaking IR laser field, respectively,

both of which are given in the form of

E(t) = cos2

(
ωt

2N

)
cos(ωt+ φ), (5.3)

where ω is the central frequency, N is the number of cycles, and φ is the carrier-envelope phase of

the laser pulse, which is set to −π/2 in the present simulations.
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The TDSE is numerically solved using the Crank–Nicolson method on a grid with N = 200000

points, a grid step of ∆x = 0.05, and a time step of ∆t = 0.01. The ground state energy of the

model hydrogen atom is found to be ε0 = −0.500009 under current conditions. In the simulations,

the interaction with a 16-cycle XUV laser pulse at a central wavelength of 30 nm and a peak

intensity of 5× 1014 W/cm2 and a 3-cycle IR laser pulse at a central wavelength of 2400 nm and a

peak intensity of 1× 1011 W/cm2 is used. A streaking pulse of 2400 nm instead of 800 nm is used

because we want to keep the XUV pulse shorter than one half period of the streaking pulse. We

employ absorbing boundaries of the form cos1/6
(
π
2
|x−x0|
L

)
with |x| > |x0|, where x0 denotes the

border of the boundary region and L is its width. The boundary was chosen to span 10% of the

grid size in each direction.

To obtain the streaking trace, we propagate the ionizing wave packet over long times and

large distances until both laser fields cease and before the respective ionizing wave packet reaches

the boundary. The momentum spectrum is obtained by applying the Fourier transform to the

corresponding ionizing wave packet, which is well separated from the remaining bound state. We

verified that the error due to the finite grid step and projection onto the plane wave is negligible.

5.2.2 The self-consistent-time method1

In this section, we present the framework of the SCT method. First, we detail the SCT scheme

and illustrate it with a flowchart. Second, we show the convergence properties and robustness of

the SCT method. Third, we study the cases where photoemission takes places at different positions

other than the center of the hydrogen atom. Last, we study the resonant photoionization process,

where an intrinsic photoabsorption time delay exists.

5.2.2.1 Scheme of the self-consistent-time method

To extract the final intrinsic photoabsorption time delay, we first obtain the streaking trace

from the quantum-mechanical simulations. To this end, we scan the delay τ between the ionizing

1 The results presented in this section are currently prepared for publication (H. Ni, J. Su, A. Becker, and A.
Jaroń-Becker).
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XUV laser pulse and the streaking IR laser pulse, and for each τ we obtain the momentum distri-

bution of the ionizing wave packet after it has been propagated far away from the remaining bound

state. Afterwards, the expectation value of the momentum distribution is obtained for each τ , which

constitutes the quantum streaking trace p0(τ). To minimize the error caused by finite propagation

distances, we correct the quantum streaking trace p0(τ) by calculating the asymptotic momentum

via energy conservation based on the expectation value of the position of the corresponding ionizing

wave packet.

Next we obtain the quantum time delay ∆t0 based on the quantum streaking trace p0(τ)

by fitting it to the vector potential As of the streaking laser field with fitting parameter α and

temporal offset ∆ts,

piter(τ) = p0 − αAs(τ + ∆titer)/c, (5.4)

where p0 is the asymptotic momentum of the electron in the absence of the streaking laser field

and c is the vacuum speed of light. This apparent measured quantum time delay ∆t0 can well

be used as the initial guess for the intrinsic photoabsorption time delay, although it may include

other contributions. At this moment, the Coulomb-laser coupling effect has not been taken into

account from the apparent measured photoabsorption time delay and no SCT iteration has been

implemented yet, and thus the superscript iter = 0, which tracks the number of iterations done, is

used in notations p0(τ) and ∆t0.

To obtain the momentum shift in the quantum streaking trace induced by the Coulomb-laser

coupling effect, we classically propagate the electron in the combined Coulomb-laser fields using

the Runge–Kutta method. To this end, we assume the photoemission takes place at the center of

the hydrogen atom (xi = 0) with initial momentum

pi = sgn(p0)
√
p2

0 − 2V (xi) = sgn(p0)
√
p2

0 − 2V (0), (5.5)

where p0 is the asymptotic momentum of the electron in the absence of the streaking laser field, as

mentioned before.

We propagate the electron classically in the combined field of the Coulomb potential of the
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residual ion and the laser pulses, starting at instant

titer
i (τ) = τ + ∆titer (5.6)

and end the calculation at the same time instant tf as the quantum-mechanical calculation. After

this we note the final position xiter
f (τ) and final momentum piter

f (τ) of the electron. The parametric

dependence of ti on the XUV-IR delay τ implies that we need to repeat this calculation for each τ .

Now we repeat the classical propagation of the electron first in the case where there is only the

streaking laser field during the same time span from titer
i (τ) to tf, and then in the case where there

is only the Coulomb potential within the same spatial extension from xi to xiter
f (τ), separately, after

which the momentum shift in the quantum streaking trace induced by the Coulomb-laser coupling

effect can be obtained by

∆piter
coupling(τ) =

[
piter

f,IR+Coulomb(τ)− pi

]
−
[
piter

f,IR(τ)− pi

]
−
[
piter

f,Coulomb(τ)− pi

]
, (5.7)

or equivalently,

∆piter
coupling(τ) = piter

f,IR+Coulomb(τ) +A[titer
i (τ)]− sgn(p0)

√
p2

0 − 2V [xiter
f (τ)], (5.8)

by taking advantage of the conservation of energy and canonical momentum and the fact that

A(tf) = 0 since we end our propagations well after the end of the streaking pulse.

The improved streaking trace, where the Coulomb-laser coupling effect has been accounted

for, can then be obtained as

piter+1(τ) = p0(τ)−∆piter
coupling(τ). (5.9)

Fitting this improved streaking trace to the vector potential of the streaking field again, an improved

photoabsorption time delay ∆titer+1 results, which can be used as the next guessed photoabsorption

time delay.

We repeat the iteration until ∆titer+1 and ∆titer are approximately equal, the condition of

which in the present simulations is

∣∣∆titer+1 −∆titer
∣∣ 6 1× 10−6. (5.10)
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Start

Quantum streaking trace p0(τ) (iter=0)

Quantum apparent time delay ∆t0 (iter=0)

Begin SCT calculation from titer
i (τ) [Eqn. (5.6)]

Coupling-induced shift ∆piter
coupling(τ) [Eqn. (5.8)]

Improved streaking trace piter+1(τ) [Eqn. (5.9)]

Improved photoabsorption time delay ∆titer+1

∆titer+1 ≈ ∆titer? iter + +

Stop

Yes

No

Figure 5.1. Flowchart of the self-consistent-time (SCT) method.
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As soon as this condition is fulfilled, convergence within the chosen error bound is reached, and the

final intrinsic photoabsorption time delay is achieved. We summarize the iteration procedure as a

flowchart in Fig. 5.1.

5.2.2.2 Properties of the self-consistent-time method

We illustrate the iteration process by showing the streaking traces for the case of the one

dimensional model hydrogen atom during the iteration. Shown in Fig. 5.2 are the streaking traces

of the model hydrogen atom when exposed to a 16-cycle 30 nm XUV pulse with a peak intensity of

5×1014 W/cm2 and a 3-cycle 2400 nm IR streaking pulse with a peak intensity of 1×1011 W/cm2.

The (blue) open circles are the expectation values of the momentum at different XUV-IR delay τ

and the solid (red) lines are their fits to the vector potential of the streaking field. Small insets

in the figures show the enlargements of the central part of the corresponding streaking trace from

τ = −20 to 20. Shown in panel (a) is the streaking trace before the SCT process, shown in panel

(b) is the streaking trace after the first SCT iteration, and shown in panel (c) is the streaking trace

after the last SCT iteration.

As can be seen in the insets of the figures, there is an apparent measured photoabsorption

time delay for iter = 0, when no Coulomb-laser coupling effect has been taken into account, since

the central part of the trace tilts towards one side. After one self-consistent iteration, this apparent

time delay is already much reduced and hard to see, since the central trace is almost balanced on

both sides. For the next three iterations, the apparent time delay reduces slightly to finally reach

convergence within the present error bound for iter = 4.

Now, we illustrate the convergence process of the self-consistent iterations by extracting the

time delay through fitting the streaking traces in Fig. 5.2 to the vector potential of the streaking

laser field according to Eqn. (5.4). Shown in Fig. 5.3 are the fitted photoabsorption time delays for

each iteration. The solid (red) line with open circles stands for the fitted time delay for emission

to the positive direction, and the dashed (blue) line with open squares denotes that for emission

to the negative direction. As it is obvious from the figure, the convergence is rapidly reached after
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Figure 5.2. Iterations of the streaking trace of the one dimensional model hydrogen atom when
exposed to a 16-cycle 30 nm XUV pulse with a peak intensity of 5×1014 W/cm2 and a 3-cycle 2400
nm IR streaking pulse with a peak intensity of 1 × 1011 W/cm2. The (blue) open circles are the
expectation values of the momentum at different XUV-IR delay τ and the solid (red) lines are their
fits to the vector potential of the streaking field. Small boxes in the figures are the enlargements
of the central part of the corresponding streaking trace from τ = −20 to 20. Shown in panel (a)
is the streaking trace before any SCT iteration, shown in panel (b) is the streaking trace after the
first SCT iteration, and shown in panel (c) is the streaking trace after the last SCT iteration.
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Figure 5.3. Convergence of the self-consistent iterations of the photoabsorption time delay of the
one dimensional model hydrogen atom when exposed to a 16-cycle 30 nm XUV pulse with peak
intensity of 5 × 1014 W/cm2 and a 3-cycle 2400 nm IR streaking pulse with a peak intensity of
1× 1011 W/cm2. The solid (red) line with open circles stands for the fitted time delay for emission
to the positive direction, and the dashed (blue) line with open squares denotes that for emission
to the negative direction. The inset shows the extracted time delays for iterations 1 through 4 on
a different scale.
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Figure 5.4. Robustness of the self-consistent-time (SCT) method of the photoabsorption time
delay of the one dimensional model hydrogen atom when exposed to a 16-cycle 30 nm XUV pulse
with 5×1014 W/cm2 peak intensity and a 3-cycle 2400 nm IR streaking pulse with 1×1011 W/cm2

peak intensity. The solid (red) line with open circles stands for the fitted time delay for emission
to the positive direction, and the dashed (blue) line with open squares denotes that for emission to
the negative direction.
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only 4 iterations.

Next, we illustrate the robustness of the SCT method by deliberately using an obviously

wrong initial time delay. Thus, instead of using the fitted photoabsorption time delay from the

quantum streaking trace p0(τ) as the initial guess for the time delay, we use a largely exaggerated

wrong time delay as initial guess, and observe whether and how the convergence of the SCT method

takes place. Shown in Fig. 5.4 are the fitted photoabsorption time delay for each iteration when an

initial guess of 100 a.u. is taken. The solid (red) line with open circles stands for the fitted time

delay for emission to the positive direction, and the dashed (blue) line with open squares denotes

that for emission to the negative direction. Obviously, the iteration still rapidly converges to the

correct intrinsic photoabsorption time delay despite of the large deviation of the initial guess from

the correct value.

5.2.2.3 Different photoemission positions

Up to now, we have only considered the case when the photoemission takes place at the

center of the atom, i.e., xi = 0. In this section, we remove this restriction by assuming different

photoemission positions of the electron in the atom and repeat the SCT iterations for these different

initial positions.

Shown in Fig. 5.5 are the converged photoabsorption time delays of the one dimensional

model hydrogen atom when exposed to a 16-cycle 30 nm XUV pulse with 5 × 1014 W/cm2 peak

intensity and a 3-cycle 2400 nm IR streaking pulse with 1× 1011 W/cm2 peak intensity when the

photoemission takes places at different positions xi. The solid (red) line stands for the fitted time

delay for emission to the positive direction, and the dashed (blue) line denotes that for emission

to the negative direction. As obvious from the figure, there is no unique solution for the photoe-

mission position and photoabsorption time. For each assumed photoemission position xi, there is

a corresponding photoabsorption time ti = τ + ∆t that fulfills all the requirements.

However, if we demand that photoionization for emission to positive and negative directions

has to occur at the same position due to the symmetry of the initial state, i.e., xpos
i = xneg

i , we find
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Figure 5.5. Converged photoabsorption time delays of the one dimensional model hydrogen atom
when exposed to a 16-cycle 30 nm XUV pulse with 5 × 1014 W/cm2 peak intensity and a 3-cycle
2400 nm IR streaking pulse with 1 × 1011 W/cm2 peak intensity when the photoemission takes
places at different positions xi. The solid (red) line stands for the fitted time delay for emission to
the positive direction, and the dashed (blue) line denotes that for emission to the negative direction.
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that there is an unique solution, namely ∆t = −0.00291755 ≈ 0. On the other hand, if we demand

that the photoionization for emission to positive and negative directions has the same time delay,

i.e., ∆tpos = ∆tneg, we find that there is also an unique solution, namely xi = 0.000706299 ≈ 0.

While it is impossible to distinguish between all these non-unique solutions, it is straightforward

from the physical sense that, xi ≈ 0 and ∆t ≈ 0 is the most probable solution.

That said, we can still seek to do an ensemble average over the initial spatial distribution

of the ground state of the hydrogen atom to take into account the possibility of photoemission at

different positions. To this end, we associate a weight for the converged photoabsorption time delay

at each xi according to the probability of the initial state at that point. For the ground state of our

1D model, the averaged photoabsorption time delay can be shown to be ∆tpos
ave = −0.0029164 for

emission to the positive direction and ∆tneg
ave = −0.0031470 for emission to the negative direction.

If we further average over the emission to both directions, we have ∆tave = −0.0030317.

5.2.2.4 Resonant two-photon ionization time delay

In the previous sections, we have considered direct photoionization of the hydrogen atom

where no intermediate state plays a role. Here, photoabsorption occurs instantaneously, and no

intrinsic photoabsorption time delay is present. However, one may consider the case when an

intermediate state plays a role, e.g., the resonant two-photon ionization, in which the absorption of

the first photon promotes the electron to an excited state, and the absorption of the other photon

ionizes the electron. If the electron absorbs the two photons in sequence, there might be a time

delay between these steps [143].

In this section, we consider the resonant two-photon ionization of the Li2+ ion [143]. The

reason to choose this ion is that it has larger energy gaps than the hydrogen atom and we can

ensure that only one excited state participates in this process. For comparison, we also consider

the case of nonresonant two-photon ionization of the same ion.

To this end, we use the same Coulomb potential as in Eqn. (5.2), but with an effective charge

Z = 3 and soft-core parameter a2 = 0.15. The ground-state energy, the first-excited-state energy,
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Table 5.1. Two-photon ionization time delay for Li2+

Case ∆tnon-SCT ∆tSCT

Nonresonant 0.0050 −0.000059
Resonant 9.203688 9.135658

and the second-excited-state energy of the model ion are found to be ε0 = −5.31689, ε1 = −2.31053,

and ε2 = −1.29547, respectively, using the same grid parameters. In the simulations, the interaction

with a 40-cycle XUV laser pulse at a central frequency of 3.51403 for the nonresonant case and

a central frequency of 3.00636 for the resonant case (resonant with the first excited state starting

from the ground state) and a peak intensity of 1 × 1013 W/cm2 and a 3-cycle IR laser pulse at a

central wavelength of 4800 nm and a peak intensity of 1× 1011 W/cm2 is used.

Listed in Tab. 5.1 are the two-photon ionization time delays in both cases of nonresonant and

resonant two-photon ionization. The values are averaged over emissions to two directions. Shown

are the time delays obtained from both the previous non-SCT method [138–140] and the SCT

method. As can be seen from the table and it has been concluded by us recently [138–140], there

is no intrinsic photoabsorption time delay if it is a nonresonant two-photon ionization process, in

which no intermediate states are involved. On the other hand, if the XUV pulse is tuned to be in

resonance with the first excited state of the model ion, there is an intrinsic time delay of about 9

a.u. This suggests that there might be a time delay between the absorption of the first and the

second photon, i.e., the electron may stay at the first excited state for a while before absorbing

another photon.

As for the accuracy of these two methods, the SCT method can be deemed as more accurate

as it can be seen from the obtained time delay in nonresonant two-photon ionization. If we assume

the accurate value of this time delay is 0, then the SCT method has an error of almost two orders

lower than the previous non-SCT method. In the case of resonant two-photon ionization, the non-

SCT method then has a relative error of 0.74%. Although it is not as accurate as the SCT method,

the non-SCT method is still quite accurate considering this small error. For the detailed studies of



124

the resonant two-photon ionization time delay, interested readers are referred to Ref. [143].

5.3 Correlation time delay

In this section, we study the correlation time delay, which is the time delay for the two

electrons to interact and exchange energy and be transferred to the continuum relative to the

single ionization process, which is the first step of the knockout double photoionization process.

To this end, we first discuss the method that employs the attosecond streak camera to streak the

momentum of the primary electron in the first step, and streak the center-of-mass momentum of

the two electrons in the second step, then we show the results of the correlation time delay.

5.3.1 Correlation time delay in the helium dimer

To time-resolve correlated electronic dynamics, it has been recently proposed [144] to extend

the attosecond streak camera technique [42]. In the case of single ionization, the asymptotic

momentum p0 of the electron freed at time instance ts is shifted by a value proportional to the

vector potential A of the infrared pulse at the release time ts

pf = p0 −A(ts)/c. (5.11)

By varying the time delay between the triggering attosecond XUV pulse and the streaking infrared

pulse, the time of ionization of the electron is mapped onto its final momentum distribution. We

apply the attosecond streak camera technique to many-electron dynamics by noting that it is the

center-of-mass electron momentum that couples to the external field [63, 145]. Thus, Eqn. (5.11)

can be readily extended to many-electron dynamics by replacing the single-electron momentum by

the center-of-mass momentum of the many-electron system:

Pf = P0 − ZA(tc)/c, (5.12)

where tc denotes the time of correlated emission of two or more electrons from the atom or molecule,

and Z stands for the number of electrons in the many-electron ionization process. We may further
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note that the center-of-mass electron momentum is often observed in experiments using the so-called

COLTRIMS technique via the momentum of the recoil ion [55, 56].

Figure 5.6. Scheme of the correlation time delay τ . Vc is the Coulomb correlation between the
two electrons.

Theoretical time-delay analysis for correlated electron emission using the streaking technique

have been previously done for the helium atom. Schemes based on measurements of the angle

between the two escaping electrons [144] or the absolute quantum phase [146] have been analyzed.

However, according to our analysis [147] the time delay between single and double ionization for

two electrons in the ground state of helium atom is very small and hence difficult to resolve by

the attosecond streak camera technique. Alternative scenarios, e.g., the correlated dynamics in the

excited helium atom, which has been considered as well [144], are experimentally more difficult

to realize since those are easily being ionized by the streaking pulse itself. Here, we propose an

alternative to study the time delay of correlated electron emission in the helium dimer instead.

Due to the large separation between the atoms, dimers are ideal systems to study electron

correlation over long distances [86, 89]. At low photon energies, double photoionization of the dimer

proceeds by energy sharing over distances of approximately the internuclear distance of the dimer

via the knockout mechanism [86, 89] [cf. Fig. 5.6(b)]. We therefore expect that in the dimer the

time delay between photon absorption by the primary electron and transfer of part of the energy

to the other electron is much larger than in the helium atom.
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5.3.2 Correlation time delay in the planar 4D helium dimer

In order to study this problem, we employ the 4D planar model of the helium dimer with

two active electrons located at separate atoms in the dimer (see Sec. 3.2).

5.3.2.1 Correlation time delay using attosecond streak camera

We employ the attosecond streaking camera technique to resolve the time delay within the

double photoionization process. As mentioned above, we identify this delay as the temporal dif-

ference between the time instants of single and double ionization of the dimer. The time instants

can be identified by streaking the single electron and the center-of-mass momenta of the electrons

along the polarization direction of the streaking pulse, respectively [see Eqns. (5.11) and (5.12)].

The corresponding streaking signals are obtained by varying the time delay between the ionizing

XUV pulse with respect to a 800 nm infrared streaking pulse (peak intensity of 5× 1012 W/cm2, a

sin2-shaped envelope, and a total of 3 cycles) and are shown in Fig. 5.7. To save computation time,

only a scan of the time delay between the two pulses at the central streaking cycle is done. The

white solid lines passing through the middle of the streaking signals correspond to the expectation

values of the respective streaked momentum, which are fitted to the shape of the vector potential

of the infrared streaking pulse as p(t) = a + bAIR(t + τstreak), where a, b, and τstreak are fitting

parameters. One clearly sees a small, but observable shift between these two traces, which is the

apparent measured time delay

τstreak = τDI
streak − τSI

streak. (5.13)

Note that the multiple peaks in the pZ momentum distributions is due to the two-center inter-

ferences [64, 148–150] in the helium dimer, which may result in an inaccuracy in the obtained

expectation value of the momentum.

As discussed above, this apparent time delay consists of two parts. The first part is the

inherent (or intrinsic) time delay to the single and double ionization process, and the other part is

the propagation time delay due to the Coulomb-laser-coupling effect because of the presence of the
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Figure 5.7. Central-cycle streaking signals for single and double ionization contributions of the
parallel oriented helium dimer starting from the singlet ground state at R = 5.6 with a XUV laser
pulse at a central wavelength of λXUV = 20 nm and a peak intensity of 1× 1014 W/cm2.
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Table 5.2. Correlation time delay for different R and λXUV

R (a.u.) λXUV (nm) τclassical (as) τevolution (as) τstreak (as) τextrapolate (as)

5.6 20 81.5 96.8 78.9 99.9
5.6 18 75.0 90.3 60.0 86.5
10.0 20 146 172 82.2 147

streaking laser field itself. This Coulomb-laser coupling effect is difficult to quantify in a two-center

system and we may therefore, for now, assume that the coupling leads to similar propagation time

delays for single and double ionization. Under this assumption, the effect would play a small role

only in the difference

τcorrelation = τDI
correlation − τSI

correlation = (τDI
streak − τDI

coupling)− (τSI
streak − τSI

coupling)

= τstreak − (τDI
coupling − τSI

coupling),

(5.14)

and we get

τcorrelation ≈ τstreak. (5.15)

Shown in Tab. 5.2 is the correlation time delay as a function of the wavelength of the XUV

laser pulse and the internuclear distance of the dimer as compared to the classical time delay

estimated by

τclassical ≈
R√

2(ωXUV − I+
p )
, (5.16)

where the denominator is just the classical velocity of the primary electron after its ionization, and

another estimation τevolution of the correlation time delay by observing the temporal evolution of the

two-electron wave function as shown in Fig. 3.7. In this table, the streaking results are obtained

by collecting the electrons emitted in every direction in space since the primary electron may

get scattered to different directions from the neighboring atom and the center-of-mass momenta

of the two electrons in the double ionization contribution can also be in different directions. The

streaking results are averaged over the emission in +z and −z directions and we have also taken into

account contributions from the singlet and triplet states by averaging according to their respective

multiplicities.



129

As it is obvious from the table, the result for the configuration with R = 10 has a quite large

discrepancy with the estimates, in part due to the difficulty in obtaining an accurate expectation

values of pZ and in part due to the difficulty in accounting for the Coulomb-laser-coupling induced

propagation time delay in the continuum for this two-center system.

5.3.2.2 Correlation time delay using the variable space-partitioning method

Since it has been difficult to obtain the intrinsic correlation time delay from the attosecond

streaking technique, here we instead use a more direct method to obtain the correlation time delay

that we denote as the variable space-partitioning method, which is similar to the space-partitioning

method that is used to obtain the single and double ionization contributions to the full wave

function.

In this method the configuration space is partitioned into different regions like for the space-

partitioning method in Sec. 2.7, and the probability entering the single ionization region is imme-

diately regarded as single ionization, and the probability entering the double ionization region is

immediately regarded as double ionization, as discussed in the second method in Sec. 2.8. With

a pair of bounds dsmall and dbig to partition the different regions, the single and double ionization

yields are obtained as a function of propagation time according to the second method in Sec. 2.8.

The ionization yields are differentiated with respect to the propagation time which yields ioniza-

tion rates. The single and double ionization times are then defined as the maxima of the respective

ionization rates.

In order to account for the variation due to the choice of the boundaries, we vary the pair of

bounds dsmall and dbig and extrapolate the respective ionization times to dsmall = 0 and dbig = 0.

To this end, we start from the base pair of bounds dsmall = 4 and dbig = 7, and either increase

dbig when dsmall is fixed or increase dsmall when dbig is fixed. In the first case, we increase dbig

from 7 to 12 with step 1 when dsmall is fixed at 4. Then we plot the single ionization yield and

the corresponding ionization rate for each pair of bounds. Shown in Fig. 5.8 are the (a) single

ionization yield and (b) single ionization rate, as a function of propagation time for different dbig,
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Figure 5.8. The (a) single ionization yield and (b) single ionization rate, as a function of propaga-
tion time for different dbig, of the parallel oriented singlet helium dimer at an internuclear distance
of R = 5.6 when it is exposed to a linearly-polarized (in the direction of the dimer axis) 4-cycle
XUV laser pulse with a central wavelength of 20 nm and a peak intensity of 1× 1014 W/cm2. Note
that time 0 is defined as the beginning of the laser pulse here.
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of the parallel oriented singlet helium dimer at an internuclear distance of R = 5.6 when it is

exposed to a linearly-polarized (in the direction of the dimer axis) 4-cycle XUV laser pulse with a

central wavelength of 20 nm and a peak intensity of 1×1014 W/cm2. It can be clearly seen from the

figure that, as dbig gets bigger, the ionization yield curve shifts to later times, and the corresponding

peak of the ionization rate also shifts to later times. We can define the peak of the ionization rate

as the respective ionization time and extrapolate to dbig = 0. Similarly, in the second case, we

increase dsmall from 4.5 to 7 with step 0.5 when dbig is fixed at 7, and the corresponding double

ionization yield and rate can be obtained. Again, we identify the peak of the double ionization rate

as the double ionization time and extrapolate to dsmall = 0.

Shown in Fig. 5.9 is the single and double ionization time as a function of the partitioning

bounds dbig and dsmall. The values of tSI and tDI are obtained by using a linear fit to the data points

and extrapolation to dbig = 0 and dsmall = 0 respectively. In each panel, both singlet and triplet

states are considered by obtaining the ionization time via averaging the ionization yield according

to the multiplicities of the singlet and triplet states. The single ionization time as a function of

dbig is shown in the left column and the double ionization time as a function of dsmall is shown in

the right column. Shown in the first row are the results for application of a 20 nm XUV laser pulse

to a helium dimer at an internuclear distance of R = 5.6, shown in the second row are those for a

18 nm XUV laser pulse and a helium dimer at R = 5.6, and shown in the third row are those for a

20 nm XUV laser pulse and a helium dimer at R = 10. Other laser parameters are the same as in

Fig. 5.8.

Note that no streaking laser field is used, and thus there is no Coulomb-laser-coupling-

induced time delay here. Therefore, the values of tSI and tDI shown in the figure correspond to the

intrinsic photoabsorption time. In Tab. 5.2 we list the correlation time delay, defined as the time

delay between single and double ionization, obtained from extrapolation using the variable space-

partitioning method τextrapolate and the time delay obtained from other methods. The results agree

quite well, except those from the streaking method, in strong support of the knockout mechanism,

for different internuclear distances R and XUV wavelengths λXUV. In particular, the time delay
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Figure 5.9. The single and double ionization time as a function of the partitioning bounds dbig

and dsmall. The values of tSI and tDI are obtained by using a linear fit to the data points and
extrapolate to dbig = 0 and dsmall = 0 respectively. In each panel, both singlet and triplet states
are considered by obtaining the ionization time via averaging the ionization yield according to the
multiplicities of the singlet and triplet states. The single ionization time as a function of dbig is
shown in the left column and the double ionization time as a function of dsmall is shown in the right
column. Shown in the first row are the results for application of a 20 nm XUV laser pulse to a
helium dimer at an internuclear distance of R = 5.6, shown in the second row are those for a 18
nm XUV laser pulse and a helium dimer at R = 5.6, and shown in the third row are those for a
20 nm XUV laser pulse and a helium dimer at R = 10. Other laser parameters are the same as in
Fig. 5.8. Note that time 0 is defined as the beginning of the laser pulse here.
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increases with either increase of the XUV wavelength or the internuclear distance R, consistent

with the classical knockout mechanism.

5.4 Summary

As a summary, we propose a SCT method to account for the Coulomb-laser coupling effect

and obtain the intrinsic photoionization time delay measured by the attosecond streak camera.

This method is based on an iteration method. Convergence is reached when the time delay remains

unchanged (within a given error bound) from one iteration to the next. We illustrated this method

using a one dimensional numerical model for the hydrogen atom and the Li2+ ion. This SCT

method features a rapid convergence, a robustness regarding initial guesses, and a better accuracy

than the previous non-SCT method.

Furthermore, we studied the correlation time delay, which is the time delay for the two

electrons to interact and exchange energy and is defined as the delay between the absorption of

the photon (single ionization) and the emission of both electrons (double ionization), during single-

photon double-ionization of the helium dimer using the attosecond streaking technique, which is

extended to many-electron systems. The streaked variable for the single ionization is the momentum

of the first electron, while the streaked variable for the double ionization is the center-of-mass

momentum of both electrons. The correlation time delays obtained for different laser parameters

are compared with classical estimates and the estimates from the temporal evolution of the two

electrons. However, rather poor agreement between the results using the attosecond streak camera

and the estimates was reached, due to the difficulty in accounting for the propagation time delay

induced by the Coulomb-laser coupling effect in the two-center system. To circumvent this problem,

we then used a more direct variable space-partitioning method to obtain the correlation time delay,

from which a good agreement with the estimates was reached.



Chapter 6

Summary and perspective

This thesis is devoted to the theoretical studies and numerical simulations of ultrafast cor-

related electron dynamics in single and double photoionization of atoms and molecules. To this

end, in Chapter 1, we gave a brief introduction to the background and some basic concepts of

attosecond and strong-field physics, including the strong-field single and double ionization, HHG,

and the attosecond streak camera technique. Next, in Chapter 2, we introduced the numerical

methods used in this thesis to solve the TDSE in the grid representation. The numerical methods

to obtain the ground state of a system and to propagate the initial state in a time-dependent po-

tential, the absorbing boundaries, and the space-partitioning method that can be used to obtain

single and double ionization contributions were presented. Strategies for parallel computation were

also briefly discussed.

In Chapter 3, we studied the double photoionization of the helium dimer using the planar

4D model, in which the electron interacts and exchanges energy via their Coulomb correlation

upon photon absorption over large distances. We first studied the different methods to obtain

the photoelectron angular distribution and found that the theoretical results agree well with the

experimental data if the momentum distribution is obtained by projection of the respective spatial

wave function onto an approximate two-electron wave function that is a product of a Coulomb

wave in their relative coordinates and a plane wave in their center-of-mass coordinates. We then

studied the orientation and internuclear-distance dependence of the double-ionization probability

and revealed that the mechanism of the low-photon-energy two-site double photoionization of the
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helium dimer is the two-step knockout process. The knockout process was also evident from an

analysis of the temporal evolution of the two-electron probability distribution.

We then introduced the Hamiltonian-reduction method to further study the effects of different

interactions in the single and double photoionization of the helium dimer. First, we removed the

interaction of the laser field with one electron. In this way, we were able to distinguish the primary

and secondary electron in the knockout process. Next we studied the scattering of the primary

electron by the neighboring atom by removing the interaction between the secondary electron and

a nucleus and locating the two electrons at certain nuclei. We further found that the electron-

nucleus interaction tends to focus the angular distribution to the direction of the dimer axis while

the electron-electron interaction tends to diverge the distribution. Exchange ionization, in which

the primary electron knocks out the other electron but gets captured itself, was also observed by

removing the interaction of the laser field with one electron.

In Chapter 4, we analyzed the selection rules for the the emission of two electrons from the

helium atom, the helium dimer, and general molecules following the absorption of a few photons

in an intense laser field. We first examined the selection rules starting from the general studies

of the two-electron continuum, the symmetry of the transition matrix, and the correlated KFR

theory. Then, we introduced the restricted 3D model of the helium atom, and numerically studied

the apparent nodes in the configuration and momentum space probability distributions and found

that, in particular, the back-to-back emission of the two electrons for equal energy sharing is either

suppressed or not depending on the number of photons absorbed from the laser field. In addition,

we switched to a different planar 4D model of the helium atom and numerically studied part of the

selection rules again and concluded that the presence of the selection rules do not depend on the

specific numerical model used. Furthermore, we studied the selection rules in the helium dimer and

revealed that the same selection rules applied to the helium dimer as well. As a step forward, we

generalized the selection rules to general multicenter molecules and showed that the rules apply as

long as the molecule has an central symmetry with respect to its center of mass.

In Chapter 5, we studied the photoabsorption time delay in the photoionization within a
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model hydrogen atom and the correlation time delay in the double photoionization of the helium

dimer. A SCT method was proposed to account for the Coulomb-laser coupling effect and obtain

the intrinsic photoabsorption time delay measured by the attosecond streak camera. The SCT

method started from an initial guess of the time delay, from which a streaking trace resulted, and

a new iterated time delay can in turn be obtained. This process was continued until convergence

was reached and the time delay intrinsic to the photoabsorption process was retrieved. The SCT

method was demonstrated to be fast and robust in convergence. This method was also shown to

work in the case of two-photon resonant photoionization process.

Finally, we attempted to resolve the correlation time delay in the double photoionization

process of the helium dimer using a planar 4D model. The attosecond streaking technique was

used for this purpose, which was extended to many-electron systems. However, the agreement of

the time delay to classical estimates and the estimates from the temporal evolution of the two-

electron wave function was insufficient due to the difficulty in accounting for the Coulomb-laser

coupling effect and obtaining the intrinsic correlation time delay in this two-center system. As

an alternative, we used a variable space-partitioning method, which directly monitors the ionizing

wave packet, and were able to obtain a correlation time delay that was close to the estimates.
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[60] O. Schwarzkopf, B. Krässig, J. Elmiger, and V. Schmidt, Physical Review Letters 70, 3008
(1993).

[61] F. Maulbetsch and J. S. Briggs, Journal of Physics B: Atomic, Molecular and Optical Physics
26, 1679 (1993).

[62] A. S. Kheifets and I. Bray, Journal of Physics B: Atomic, Molecular and Optical Physics 31,
L447 (1998).

[63] C. Ruiz, L. Plaja, L. Roso, and A. Becker, Physical Review Letters 96, 053001 (2006).

[64] D. Akoury, K. Kreidi, T. Jahnke, T. Weber, A. Staudte, M. Schoffler, N. Neumann, J. Titze,
L. P. H. Schmidt, A. Czasch, O. Jagutzki, R. A. C. Fraga, R. E. Grisenti, R. D. Muino,
N. A. Cherepkov, S. K. Semenov, P. Ranitovic, C. L. Cocke, T. Osipov, H. Adaniya, J. C.
Thompson, M. H. Prior, A. Belkacem, A. L. Landers, H. Schmidt-Bocking, and R. Dorner,
Science 318, 949 (2007).
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A. Staudte, O. Jagutzki, L. P. H. Schmidt, S. K. Semenov, N. A. Cherepkov, H. Schmidt-
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[103] A. Becker and F. H. M. Faisal, Physical Review A 50, 3256 (1994).

[104] A. Becker and F. H. M. Faisal, Physical Review A 51, 3390 (1995).

[105] F. H. M. Faisal, Journal of Physics B: Atomic and Molecular Physics 6, L89 (1973).

[106] H. R. Reiss, Physical Review A 22, 1786 (1980).

[107] A. Becker and F. H. M. Faisal, Journal of Physics B: Atomic, Molecular and Optical Physics
38, R1 (2005).



143

[108] P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, Physical Review Letters
42, 1127 (1979).

[109] J. H. Eberly, J. Javanainen, and K. Rzażewski, Physics Reports 204, 331 (1991).
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