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Few-body collisions in a quantum gas mixture of 40K and 87Rb atoms

Thesis directed by Deborah Jin

This thesis describes experiments on few-body interactions in a mixture of ultracold bosonic

87Rb and fermionic 40K atoms. Ultracold atoms are celebrated as a platform to explore fundamental

quantum physics because their internal states, external potentials, and interactions with each other

can be controlled by straightforward electrical and optical tools. In the case of Bose-Fermi mixtures,

control comes at the cost of stability when strong interactions give rise to inelastic collisions that

destroy the atomic samples. I present detailed measurements of the cross sections for these inelastic

processes and discuss how they fit into an emerging pattern of resonances that is leading to better

models of few-atom interactions. These phenomena have their roots in universal Efimov physics,

which is a paradigm of quantum three-body interactions that was originally inspired by exotic

nuclear states. I also discuss several methods to control the formation of KRb Feshbach molecules

within the finite lifetime of the interacting K and Rb atomic mixture.
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Chapter 1

Introduction

A prism disperses white light into a rainbow, but the light emitted by atoms splits into discrete

lines of color. These spectra inspired Niels Bohr to deduce the quantized structure of the atom [1].

One hundred years later, atoms are still helping us discover the quantum world. Techniques like

laser cooling and forced evaporation can bring a gas of atoms to ultra cold temperatures near

absolute zero [2, 3]. Here, atomic wave functions spread out to overlap each other and quantum

mechanics plays out on a macroscopic scale. This thesis is about measurements of the collisions

between a few atoms in such an ultra cold gas.

1.1 Bosons and Fermions near absolute zero

Most of the particles and excitations in the known universe are categorized as either Bosons

or Fermions. Fermions have half-integer spins and the Pauli exclusion principle forbids them from

occupying the same quantum state. Protons, neutrons, and electrons are all Fermions and Pauli

exclusion dictates the way these particles arrange themselves to create atoms and materials. On

the other hand, Bosons have integer spins and multiple Bosons can occupy the same quantum state.

The photon is a familiar example of a bosonic particle, and 4He is a composite Boson famous for

its superfluidity at low temperatures.

Bose and Fermi gases have distinctly different behaviors in the limit of zero temperature.

The relatively friendly Bosons pile together into the quantum state with lowest energy, forming

a Bose-Einstein Condensate (BEC) [4]. Atomic BECs have shown interesting quantum properties
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like matter wave interference [5] and superfluidity [6]. Identical Fermions spread across the low-

est available energy levels with one particle per quantum state, forming a Degenerate Fermi Gas

(DFG) [7]. The DFG is essential to the behavior of matter all around us – electrons in a metal

form a DFG, as do neutron stars.

Mixtures of Bosons and Fermions, which are the subject of this work, can add up to more than

the sum of their parts. The superfluid transition temperature in (bosonic) liquid 4He is raised by

the presence of (fermonic) 3He [8]. Conversely, bosonic lattice excitations mediate Cooper pairing

of electrons in solids, which leads to superconductivity [9]. As for cold atoms, Bose gases are often

used to sympathetically cool Fermi gases to lower temperatures. At these temperatures, strongly

interacting ultra cold Bose-Fermi mixtures are expected to host quantum phase transitions and

novel pairing phenomena [10].

1.2 Universality and ultra cold atoms

Gases of ultracold atoms have promising applications in communications, information pro-

cessing, and sensors, but I would argue that their most fascinating application is in the emulation

of other quantum systems. The collective dynamics of strongly interacting quantum particles is a

frontier for modern science that could unlock the secrets of superconductors, dense nuclear matter,

astrophysics, and more. Unfortunately, the behaviors of quantum systems are notoriously diffi-

cult to model1 . Feynman famously proposed that we circumvent this problem by using one well

controlled quantum system to simulate another quantum system’s behavior [11].

A remarkable level of control has already been demonstrated in ultra cold atom experiments,

thanks to a growing set of experimental tools [12]. For example, a magnetic Fano-Feshbach reso-

nance was used to control interactions between fermionic atoms to realize Cooper pairing and the

BCS-BEC crossover transition in a Fermi gas [13]. The optical lattice, formed by an interference

1 To simply write down the full quantum state of N interacting particles requires 2N numbers. The cost of
computing quickly gets out of control as particle number increases. If every one of the protons in the known universe
were used as memory in a giant classical computer, then it could only store the complete description of a few hundred
quantum particles.
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pattern in light, made it possible to explore the quantum phase transition from a Mott insulator

to a superfluid state in a Bose gas [14]. High-resolution optics were later used to manipulate and

detect these states one atom at a time [15]. In other experiments, inventive configurations of optical

and magnetic fields are being used to try to realize topologically non-trivial states of matter [16].

These tools are put to good use in ultra cold atoms because of a property called universality,

where very different quantum systems often exhibit very similar behavior. In spite of the length and

energy scales that appear to separate them, an ultra cold atomic Fermi gas near a Fano-Feshbach

resonance has much in common with a solid-state superconductor. Dilute gases of ultra cold atoms

can serve as a test bed for quantum models and concepts that apply to other universal systems

that are less easy to access experimentally [17].

1.3 Universal few-body interactions

The work in this thesis focuses on universal few-body interactions between ultra cold atoms.

The most straightforward system in this category consists of two atoms with contact interactions.

A Fano-Feshbach resonance occurs at specific magnetic fields where the energy of these two atoms

is the same as a molecular bound state that has a different magnetic moment [18]. The scattering

length, which parameterizes two-body interactions, diverges near Fano-Feshbach resonances. Ex-

perimenters can dial in magnetic field values near the resonance to achieve repulsive or attractive

interactions that vary by orders of magnitude. This magnetic tuning means that a single ultra cold

atom experiment has the flexibility to operate over a huge parameter range rather than relying on

scattering properties that were fine-tuned by Nature (which must be done in nuclear physics, for

example).

For each Fano-Feshbach resonance there is an associated bound state called a Feshbach

molecule, whose binding energy is also controlled by the magnetic field [19]. These molecules

are an important first step in the formation process of ultra cold dipolar molecules, which promise

to dramatically extend the range of quantum models that can be simulated in ultra cold atomic

gases [20]. Feshbach molecules also have interesting properties in their own right, for example their
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Figure 1.1: Feshbach molecules are quantum-mechanical bound states that can attain gigantic
spatial extent. The influenza virus (left) contains hundreds of millions of atoms yet it has a
comparable size to some of the diatomic 40K87Rb Feshbach molecules that are studied in this thesis
(right). The virus cartoon is reproduced from www.cdc.gov.

huge size as illustrated in Fig. 1.1.

After two-body interactions, the logical next step is to consider three-body interactions. The

quantum three-body problem has a universal solution in the limit of strong interactions, which is

called the Efimov effect [21]. This effect consists of an infinite series of three-body bound states

called Efimov trimers. Amazingly, the trimers follow a discrete scale invariance such that for each

bound state there exists one larger by a scaling factor that depends on the relative masses of the

constituent particles. Much like Feshbach molecules, their spatial extent can be gigantic. Although

Efimov’s theory was intended for the internal structure of exotic nuclei, the first clear observation

of these effects occurred in the collisions between ultra cold Cesium atoms [22]. Efimov states in

cold atoms occur near Fano-Feshbach resonances, where interactions are strong [23]. They give rise

to inelastic three-body collisions that eject atoms from the ultra cold gas. Measurements of these

atom loss rates have revealed an intricate series of resonances in several different atomic species,

confirming key predictions of Efimov’s work and related theories [24].

These phenomena are fascinating, but they also have an important practical side-effect: atom

loss rates limit the available time to perform other quantum physics experiments. A quantitative

understanding of few-body collisions is therefore essential to the design of experiments that rely on
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strong interactions in ultra cold atomic gases. For this reason, it was exciting to discover that the

locations of Efimov loss resonances in different single-species quantum gases followed a simple and

completely unexpected pattern [25, 26, 27]. This was an opportunity to refine and simplify existing

models of few-body interactions, and a promise that measurements in one atomic species could be

used to predict very specific details about the behavior of another. It remains to be seen how far

this success can be extended to systems containing multiple species of atoms or systems with strong

background interactions that effectively weaken the influence of Fano-Feshbach resonances.

1.4 Overview

This thesis explores few-body physics in a Bose-Fermi mixture of 87Rb and 40K atoms with

resonant interspecies interactions. To that end, Fig. 1.2 outlines the scattering processes that are

measured. The rates of these few-body scattering processes can reveal a lot about the way atoms

see each other. Whereas related phenomena are well-studied in single-species quantum gases, the

same level of detail has not yet been realized in quantum gas mixtures like 87Rb–40K.

The extra complexity of atomic mixture experiments has so far made them less popular than

their single-species counterparts. In the study of few-body collisions, however, the Bose-Fermi

mixture offers some advantages: the fermionic two-body Feshbach molecule has a longer lifetime

than similar molecules in Bose gases; the two types of atoms can also be measured independently to

gain more information about who participates in collisions; and Pauli exclusion prevents collisions

between identical 40K atoms so that there are fewer types of collisions to analyze. More broadly,

the mass-imbalanced Bose-Fermi mixture provides an opportunity to test the generality of theories

that were honed on experiments with only one type of atom.

The remainder of the work is organized as follows.

Chapter 2 is about tuning the interspecies scattering properties with DC magnetic fields. This

includes a brief overview of the physics of Fano-Feshbach resonances and the inelastic loss processes

that accompany them. Chapter 3 introduces a high-current electromagnet system that is used to

create these magnetic fields. Chapter 4 goes on to describe how samples of 40K and 87Rb atoms are
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b) three-body recombination:
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Figure 1.2: Scattering processes studied in this thesis. Energy for Feshbach molecule association
(a) is provided by time-dependent magnetic fields or RF photons. In either case, the association
process is coherent and the resulting ultra cold Feshbach molecules remain trapped. In contrast,
three-body recombination (b) is an inelastic collision that forms a molecule and releases an amount
of kinetic energy equal to its binding energy. This energy is usually sufficient to eject the resulting
molecule and atom from the trap. Feshbach molecules exist in a highly excited vibrational state
and they can relax to a more deeply bound state by colliding with 87Rb (c) or 40K (d). This releases
enough kinetic energy to eject atom and molecule from the trap. The rates of processes (b) and
(c) are modified by the Efimov effect due to the existence of 87Rb–87Rb–40K Efimov trimer states.
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prepared for experiments near absolute zero temperature, and how thermodynamic quantities like

number and temperature of the atoms are extracted from photographs using standard absorption

imaging techniques.

The next two Chapters describe the formation of ultracold fermionic 40K87Rb Feshbach

molecules in the atomic gas (see Fig. 1.2a). Chapter 5 shows our systematic exploration of the

rate and ultimate efficiency of molecule creation by magnetic-field sweeps near a Fano-Feshbach

resonance. Chapter 6 shows alternative methods that were employed to make Feshbach molecules.

These measurements combine to give a recipe for efficient molecule production, however they also

reveal a many-body suppression of pairing and an unexpected source of heating that prevent the

formation of a degenerate Fermi gas of molecules.

Chapter 7 reviews the three-body Efimov effect and the previous measurements from ultra

cold atom experiments around the world. Chapter 8 focuses on our own measurements of inelastic

collision rates in the atomic 40K and 87Rb mixture, as depicted in Fig. 1.2 (b-d). These results

pinpoint the Efimov state spectrum in the 87Rb–40K mixture for the first time, and the location

appears to deviate from the pattern established by measurements in single-species atomic gases.

Chapter 9 reviews the major results and concludes with a discussion of future experiments.



Chapter 2

Magnetically tuned interactions

A typical ultracold atomic gas is a million times less dense than air, and yet this ethereal sub-

stance is routinely made into a strongly interacting quantum system for physics experiments. Such

control is made possible by magnetic Fano-Feshbach resonances, which can be used to dynamically

tune the interaction strength between atoms by orders of magnitude. This phenomenon occurs

when a weakly bound molecular state’s energy is degenerate with two free atoms, and is reviewed

here in Section 2.1. Section 2.2 introduces the 40K-87Rb interspecies Fano-Feshbach resonance

that is central to the work in this thesis. Finally, Section 2.3 describes an important side-effect

to tunable interactions near Fano-Feshbach resonances. Specifically, as pairwise interactions be-

come stronger, few-body correlations are also enhanced and the rates of atom loss due to inelastic

collisions accelerate dramatically. Inelastic collisions pose a challenge to experiments that seek to

create stable, strongly interacting quantum gases. However, they also create an opportunity to

study universal few-body interactions, which is an interesting and surprisingly complex problem in

quantum physics.

2.1 Magnetic Fano-Feshbach resonances

The interaction strength between atoms varies by orders of magnitude as a function of mag-

netic field near a Fano-Feshbach resonance. Leveraging this effect to control two-body interactions,

ultra cold atom experiments can access a huge variety of few- and many-body phenomena. Mag-

netic Fano-Feshbach resonances are an important tool for atomic physics. As such, a number of
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Figure 2.1: Left: Schematic interaction potentials between pairs of ultracold atoms. Right: The
bound state and pair of free atoms have different magnetic moments. When their energies cross, a
Fano-Feshbach resonance occurs (red arrow).

great review articles already cover the subject in detail [12, 18, 19]. This section highlights a few

properties that are relevant to the observations discussed in the rest of the thesis.

A pair of ultra cold atoms can interact through a potential like the one shown in Figure

2.1 (left). For small internuclear separation, there is a hard core repulsion. At large separation,

interactions are dominated by a 1/r6 tail characterized by the van der Waals length, rvdW. Two

potentials are drawn in the figure, one in which we consider a pair of free atoms (the ‘entrance

channel’) and another with a bound state having similar energy (the ‘closed channel’). Consider

the free atoms, which are in a state with nonzero magnetic moment (right, Figure 2.1). As the

magnetic field is varied, their energy changes too. The bound state, formed by atoms in a different

Zeeman sub level, has a different magnetic moment. Coupling between the entrance and closed

channels mixes the two states as their energies approach each other. A magnetic Fano-Feshbach

resonance occurs when the energies are degenerate, and the strength of atom-atom interactions

diverges.

And what does this atom-atom interaction look like? In the limit of zero temperature,

kinetic energy vanishes. As a consequence, atoms cannot climb centrifugal barriers and collisions

with nonzero angular momentum are suppressed. Spherically symmetric s-wave collisions dominate.
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The interatomic scattering potential can then be renormalized as a hard sphere with radius a, such

that the elastic collision cross section is σel = 4πa2. The interspecies scattering length a near an

interspecies Fano-Feshbach resonance follows

a(B) = abg

(
1− ∆

B −B0

)
(2.1)

where B is the magnetic field, abg is the background scattering length, ∆ is the resonance width,

and B0 is the location of the Fano-Feshbach resonance [28]. Larger |a| means stronger interaction,

a < 0 is attractive, and a > 0 is repulsive. Although the work in this thesis is focused on Fano-

Feshbach resonances that enhance s-wave interactions, many resonances also exist for higher angular

momenta.

A two-body bound state called a Feshbach molecule is also associated with each resonance

[29, 19]. The Feshbach molecule’s binding energy, E, is determined by the scattering length, a,

near a resonance.

E =
~2

2µ(a− ā)2
(2.2)

where ~ is Planck’s constant divided by 2π, µ is the reduced mass of the atoms forming the molecule,

and ā = 0.96 rvdW is the average scattering length of the system. This bound state exists when

a > 0, with the binding energy approaching zero as a approaches infinity. Feshbach molecules

belong to a universal class of ‘halo states’, which are named for their enormous size that can exceed

the scale of inter-particle (or inter-atomic) forces [29]. Feshbach molecules play a key role in the

BCS-BEC crossover in gases of ultra cold Fermions [30], and also serve as a starting point for the

creation of ultra cold polar molecules [20].

Fano-Feshbach resonances are classified according to their strength [18]. For strong ‘entrance

channel dominated’ resonances, the universal formulae 2.1 and 2.2 dominate the scattering prop-

erties over a large range of a. Near weaker ‘closed-channel dominated’ resonances, a competes

with other interaction length scales like R∗ = ~2/(2µabgδµ∆). Here, δµ is the differential magnetic

moment between the entrance and closed channels. These ideas are summarized by the parameter

sres = ā/R∗, where sres � 1 belongs to an entrance channel dominated resonance and sres � 1
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belongs to a closed-channel dominated resonance. The former type usually has ∆ > 1 G, leading

them to be called ‘broad’ Fano-Feshbach resonances. These are the most useful resonances from

an experimental perspective, because the scattering length is less sensitive to magnetic-field noise.

Entrance channel dominated Fano-Feshbach resonances also provide the best access to universal

scattering phenomena.

A huge diversity of Fano-Feshbach resonances exists across the Alkali atoms, which impacts

the efficiency of evaporative cooling as well as the types of experiments available to each species [18].

For example, the Fermion 6Li has the unusual configuration of three strong overlapping Fano-

Feshbach resonances between the three lowest energy spin states, meaning that all possible pairwise

interactions are simultaneously enhanced. Although 40K’s strongest Fano-Feshbach resonance is

much weaker, this Fermion has better options for detection and spectroscopy thanks to the existence

of a nearby spin state that is unaffected by any resonance. The Boson 133Cs has a strong resonance

near zero magnetic field, meaning that the gas must be cooled at a higher field to prevent the

destructive inelastic collisions that accompany Fano-Feshbach resonances (see Section 2.3). This

inconvenience is more than offset by the existence of several extremely strong resonances at higher

magnetic fields [31]. In contrast, 87Rb is a particularly easy Boson to cool but it possesses no strong

Fano-Feshbach resonances at all.

2.2 The interspecies 40K-87Rb Fano-Feshbach resonance

Fortunately, there are several interspecies Fano-Feshbach resonances between the 40K atoms

and 87Rb atoms. The strongest of these resonances has sres = 1.9, and is located at B0 = 546.62

G with ∆ = 3.04 G and abg = −187 a0 as measured by Ref. [32], where a0 is the Bohr radius.

Figure 2.2 plots the scattering length as a function of magnetic field. This resonance is between the

|f,mf 〉 = |1, 1〉 and |9/2,−9/2〉 states of 87Rb and 40K, where f is the total angular momentum

and mf its projection on the magnetic-field axis. These are the lowest energy states in a magnetic

field, and so the mixture is protected against inelastic spin-changing two-body collisions.

These resonance parameters set requirements for the electromagnet systems and their cali-
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FIG. 5: Energy of the heteronuclear Feshbach molecules, rela-
tive to the Rb |1, 1⟩ + K |9/2, −9/2⟩ atomic threshold, plotted
as a function of magnetic field. The data (solid circles) agree
well with our calculation based on a full coupled-channel the-
ory (solid line). Near the Feshbach resonance one expects a
universal relationship between the s-wave scattering length
and the binding energy. The black, dashed line shows the
predicted binding energy using the universal prediction [31].
Inset: Same as the main plot but looking at the region close
to the Feshbach resonance. We fit the inset data to obtain a
width of the resonance.

FIG. 6: Calculated molecule energies near the K |9/2, −9/2⟩
+ Rb |1, 1⟩ atomic threshold. All levels have total spin pro-
jection quantum number MF = −7/2. The level energies are
calculated using a full coupled-channel calculation and have
been scaled so that the zero in energy is the K |9/2, −9/2⟩
+ Rb |1, 1⟩ atomic threshold. The bold line is the adiabatic
level associated with the 546.7 G Feshbach resonance.

clear Feshbach molecules starting from an ultracold gas
of 40K and 87Rb atoms. This could provide a starting
point for future experimental efforts aimed at creating
polar molecules. Transfer of the Feshbach molecules to
more deeply bound states could proceed using light or
microwave fields. Therefore, it is useful to consider how
basic properties of the Feshbach molecules, such as their
typical size and their hyperfine character, depend on the
magnetic-field detuning from the resonance. We can es-
timate properties of the molecules from the measured
binding energy curve shown in Fig. 5.

VI. PROPERTIES OF THE FESHBACH
MOLECULE

The properties of the Feshbach molecule, including its
size, are determined by both the open channel and the
dominant closed channel. The bare states associated
with these channels have different magnetic moments,
and this is, of course, why the molecule’s binding energy
is magnetic-field tunable. The open and closed channel
contributions to the actual dressed-state molecule can
then be determined from the molecule’s magnetic mo-
ment relative to the open channel, which is simply the
numerical derivative, dE

dB , of the measured binding energy
shown in Fig. 5. Explicitly, we find the closed channel
fraction, fc, from the following equation: fc = 1

∆µ
dE
dB .

Here, ∆µ = 2.38 × µB is the difference of the atomic
magnetic moments of the bare closed and open channels
at a magnetic field near the Feshbach resonance and µB

is the Bohr magneton. The closed channel fraction as a
function of the magnetic field is shown in the inset of Fig.
7. For magnetic fields more than 2 G below the Feshbach
resonance, we find that fc > 0.5 indicating that molecule
is predominantly closed channel in character.

We can also estimate the molecule size as a function of
magnetic field, B. Near the resonance, where a is large,
the molecule size is rmol = a/2. However, far below
the resonance, the molecule becomes dominated by the
closed channel and the molecule size approaches that of
the closed channel molecule. To capture this behavior,
we use a simple estimate of the molecule size given by a
weighted average of the closed and open channel sizes, rc

and ro.

rmol = fcrc +
(
1 − fc

)
ro. (1)

rc and ro are calculated using a single-channel model
incorporating the correct long-range behavior of the in-
teratomic potential. Figure 7 shows our estimate of the
size, rmol, as a function of magnetic field near the Fesh-
bach resonance.

To estimate rc and ro, we numerically solve the
Schrödinger equation. Since the loosely bound vibra-
tional wavefunctions have large amplitudes at large in-
ternuclear separation, it is important that a model inter-
nuclear potential has the correct long-range form. The

Figure 2.2: Top: The 40K-87Rb interspecies scattering length a as a function of magnetic field
B near a magnetic Fano-Feshbach resonance, calculated using parameters measured by Ref. [32].
Bottom: The KRb Feshbach molecule energy, −E, as a function of B, adapted from [33]. The solid
line is a coupled-channel calculation of the molecule binding energy that includes non-universal con-
tributions from the closed-channel wave function. The dashed line indicates the universal formula
for molecule binding energy (Equation 2.2), which is accurate at high scattering lengths.
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bration. To access the large field B0 (within the spatial constraints of our experiment) requires

hundreds of Amps of current through coils of water-cooled hollow-core copper tubing. Chapter 3

describes the implementation of a new magnet system for this purpose. The resonance width ∆

is also relatively small, which makes the scattering length quite sensitive to magnetic-field fluctu-

ations. For example, formula 2.1 predicts a scattering length a = 2420 a0 when the magnets are

turned on to a field of 546.4 G near the Fano-Feshbach resonance. The lab’s ambient magnetic field

changes by about 5 mG when a nearby freight elevator changes floors; this increases the scattering

length to 2480 a0, which is a noticeable shift. To avoid additional noise, the electromagnet current

control is constructed to achieve better than 10 ppm fractional instability.

For our purposes, the most useful range near the Fano-Feshbach resonance is where the

interspecies scattering length aKRb dominates over all other length scales and interactions are

universal. This is bounded from below by the interspecies van der Waals length rvdW = 72 a0.

Figure 2.2 shows how the KRb molecule binding energy deviates from Eqn. 2.2 at low scattering

lengths. For three-body 87Rb–87Rb–40K interactions, the nearly magnetic-field independent 87Rb–

87Rb scattering length aRbRb = 100 a0 also plays a role. The useful range for aKRb is bounded from

above by either the thermal deBroglie wavelength λdB = h/
√

3µkBT or the mean inter-particle

spacing n1/3, whichever is smaller. Here, h is Planck’s constant, µ = 27.4 amu is the reduced mass

of 40K and 87Rb, kB is the Boltzmann constant, and T is the temperature. For a typical gas mixture

at T = 500 nK and mean density n = 5×1012 cm−3, we have λdB = 13000 a0 and n1/3 = 11000 a0.

2.3 Inelastic loss: the cost of tunable interactions

A gas of ultra cold neutral atoms is really in a metastable state, beneath which lies a zoo

of two-body bound states (Fig. 2.3). Inelastic scattering into one of these states converts binding

energy to kinetic energy, which can propel atoms out of the trap entirely. At least three atoms

are required for a collision to form a bound state while conserving energy and momentum. The

odds of such a few-body encounter are predicted to increase dramatically with the magnitude of

the interspecies scattering length, a (Table 2.1). Although gases with only one or two types of
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dominant spin component and by the vibrational quantum number n counting down
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the lowest level is v = N + n.
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Figure 2.3: A zoo of bound states in the 40K-87Rb mixture with binding energies 0 to 3 GHz (left)
and 0 to 30 GHz (right). Inelastic scattering into these bound states leads to atom loss, since a
typical optical trap for our experiments can only hold atoms with a kinetic energy of h×20 kHz
or less. The magnetic Feshbach resonance that we use in our experiments is at a magnetic field of
54.6 mT. Adapted from [34].
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Table 2.1: Three-body inelastic scattering processes in the 40K-87Rb mixture near an interspecies
Fano-Feshbach resonance and their universal scaling with interspecies scattering length [35]. In
these reactions, 40K87Rb denotes the Feshbach molecule state and (40K87Rb)’ denotes a more
deeply bound state like the ones in Figure 2.3. The processes are categorized by quantum statistics
where ‘B’ are identical 87Rb atoms (Bosons), ‘F’ are identical 40K atoms (Fermions), and ‘X’ are
distinguishable atoms in a third state. In practice, the role of ‘X’ can be played by a 40K atom in
a different spin state.

Process Type Predicted Scaling
87Rb+40K+40K → 40K87Rb+40K B+F+F Three-body recombination a6

40K+87Rb+87Rb → 40K87Rb+87Rb B+B+F Three-body recombination a4

40K87Rb+40K → (40K87Rb)’+40K F+BF Atom-molecule relaxation a−3.12

40K87Rb+87Rb → (40K87Rb)’+87Rb B+BF Atom-molecule relaxation a1

40K87Rb+X → (40K87Rb)’+X X+BF Atom-molecule relaxation a−1

Fermions are protected by the Pauli Exclusion principle, inelastic collisions and atom loss can

rapidly deplete strongly interacting Bose gases, Bose-Fermi mixtures, or Fermi mixtures with more

than two distinguishable states. The 40K-87Rb mixture’s most prevalent inelastic loss mechanisms

are three-body recombination and atom-molecule vibrational relaxation.

In three-body recombination, three atoms collide to produce a two-body bound state, with

a kinetic energy equal to the binding energy distributed between the molecule and third atom.

This process can form a deeply bound molecule at negative scattering lengths and either a deeply

bound molecule or a Feshbach molecule at positive scattering lengths. In either case, all three

atoms are typically propelled out of the sample. A Fano-Feshbach resonance amplifies three-

body recombination for any triplet of atoms where at least two pairwise interactions are strong.

In fact, the resonant loss of atoms as a function of magnetic field is one of the most common

signals used to search for Fano-Feshbach resonances in quantum gases [18]. In the case of the

40K-87Rb mixture, B+F+F recombination
(

K Rb KRb K K

)
is suppressed by the

Pauli exclusion principle and B+B+F recombination
(

KRb Rb KRb Rb

)
dominates

the inelastic loss.

Atom-molecule vibrational relaxation occurs in quantum gas mixtures of atoms and Fesh-



16

bach molecules. When an atom collides with a molecule, the molecule can relax to a more deeply

bound state like the ones in Fig. 2.3. This process releases the difference in the molecule’s bind-

ing energy as kinetic energy, invariably propelling atom and molecule out of the trap. As is the

case with three-body recombination, quantum statistics play a role in determining which molecule

relaxation collisions are enhanced near an interspecies Fano-Feshbach resonance. F+BF relax-

ation
(

Rb KRb K KK

)
is suppressed by the Pauli exclusion principle and B+BF

relaxation
(

Rb KRb Rb K Rb

)
dominates near the Fano-Feshbach resonance.

Three-body recombination and atom-molecule relaxation rates constrain the possible exper-

iments that can be performed at strong interactions. This is particularly true for three-body

recombination, which scales as a4 and quickly overwhelms thermalizing elastic collisions that only

scale as a2. This means that 40K-87Rb gases at high scattering lengths can be depleted by inelastic

loss before even reaching thermal equilibrium. Chapters 5 and 6 of this thesis will describe the

optimization of Feshbach molecule formation, which is another dynamical process that competes

against these inelastic loss timescales. A quantitative understanding of the loss rates is useful to

these experiments. On a more positive note, the rates of three-body recombination and atom-

molecule relaxation are sensitive probes of three-body correlations. Chapters 7 and 8 will explore

how the presence of three-body bound states modulates the scaling laws in Table 2.1, giving rise

to sequences of resonances that occur near most Fano-Feshbach resonances. Before I describe any

of these results, however, the next two Chapters will summarize how we prepare our quantum gas

mixtures for experiments.



Chapter 3

An improved electromagnet system for trapping and manipulating atoms

Electromagnets are essential to the work in this thesis. Large, homogeneous, and stable

magnetic fields enable tunable interactions near the interspecies 40K-87Rb Fano-Feshbach resonance

at 547 G. Magnetic traps are the workhorses of the cooling sequence, which collects atoms from a

hot vapor and creates a gas at less than one millionth of a degree above absolute zero temperature.

Reliable atom state preparation, spectroscopy, and imaging also depend on stable magnetic fields.

This Chapter introduces an electromagnet system that improves the magnetic trapping and control

capabilities of our apparatus. Optical access is also enhanced, which paves the way for new methods

to image and manipulate the atoms in future experiments. Section 3.1 describes the electromagnetic

coils and the fields they individually produce. Section 3.2 is about the high-current control system.

In Section 3.3, water cooling and thermal dissipation are discussed.

3.1 The magnetic coils

The idea to build a new magnetic trap was sparked when a worn piece of electrical insulation

suddenly caused bursts of electrical current to arc across an air gap into the grounded surface of the

old trap’s supporting structure. The failure occurred deep inside of the trap assembly, which had

to be painstakingly deconstructed and surgically repaired. Although the old trap was temporarily

revived, a safer and more robust mechanical structure was clearly needed. We took advantage of

the redesign to improve other aspects of the trap as well. The old copper support structure had

a large electrical inductance that limited the speed of the magnet system. We replaced it with a
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rigid Garolite G-10 phenolic support that has negligible electrical conductivity. The old system

only ran cooling water through the support structure. Now, the chilled water runs through the

hollow cores of the copper wires themselves, which provides more uniform thermal dissipation with

a smaller spatial footprint. To improve experiments near Fano-Feshbach resonances, the new design

also features a pair of Helmholtz coils that we can turn on independently of the other trap coils

to provide a homogeneous field while the atoms are confined in an optical trap. The design of

these new coils was detailed in Ty Cumby’s thesis [36]. Tracy Keep from the JILA instrument

shop precisely wound the coils and mounted them to their rigid frame. Here, I will describe their

testing and implementation. This section describes characterization of the fields produced by the

coils when they are conducting a few hundred Amps of electrical current, which is their normal

mode of operation during an experiment.

The new magnet system is arranged in a Ioffe-Pritchard configuration [37] as shown in Fig. 3.1.

It consists of three pairs of coils, and it is designed to trap the atoms at a magnetic-field minimum.

The tight trapping radial directions are labeled x and y, and the weak axial trapping direction

along the axis of the Pinch and Bias coils is labeled z. Near the center, the Pinch coil pair creates

a magnetic field whose z-component follows Bz = BP0 + 1
2γ(z2 − x2+y2

2 ). The field offset BP0 and

curvature γ are both proportional to the electrical current in the Pinch coils. A pair of Bias coils

in Helmholtz configuration contributes a homogenous Bz = −BB0 in the z direction, the strength

of which is likewise proportional to the current through the Bias coils. The dominant contribution

from the Ioffe coils is a linear quadrupole field in the radial directions, Bx = βx and By = −βy.

These fields combine to form a harmonic trap with potential U = 1
2mω

2
xx

2+ 1
2mω

2
yy

2+ 1
2mω

2
zz

2

in the region near the center. Following Pritchard [37], the trap frequencies are approximately

ωx = ωy =

√
µ

m

(
β2

B0
− γ

2

)
(3.1)

ωz =

√
µ

m
γ (3.2)

for a magnetic moment µ, mass m, and magnetic-field minimum B0 = BP0−BB0. In an experiment,

the 87Rb and 40K atoms are both trapped in states that have µ = µB, where µB is the Bohr
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magneton. For typical magnetic trap currents, the trap frequencies are ωx = ωy = 125 Hz and

ωz = 18 Hz.

To better understand the magnet system, we constructed a test setup to measure β, γ, BP0,

and BB0. One coil pair at a time was connected to a high-current power supply and a water

cooling line while an F.W. Bell Gauss/Tesla meter on a three-axis translation stage was used to

map out the field between the coils. Table 3.1 lists the results and Figure 3.2 shows some of the

measurements. We measured the Ioffe coil pair’s magnetic-field gradient to be 89.7(2) G/cm in the

radial y direction near the trap center, at a current of 90.0 A. The Pinch field was mapped out

in the x-z plane for near the center of the trap at a current of 100 A. A two-dimensional surface

fit to the equation Bz = BP0 + 1
2γ(z2 − x2/2) gave γ = 106(2) G/cm2 and BP0 = 334(1) G. At a

current of 160 A, the Bias coils made a field of 524(1) G. All of the measured values were close to

the predictions based on models of the coils [36].

The scattering properties of ultracold 40K and 87Rb atoms are particularly sensitive to mag-

netic fields during phases of the experiment where only the Bias coils are turned on. A good

calibration of this field is especially important. Figure 3.3 shows a map of the Bias field for

an electrical current of 163 A, near the interspecies Fano-Feshbach resonance, as measured by

spatially resolved RF spectroscopy on an elongated 40K cloud in an optical trap. We used the

|f,mf 〉 = |9/2,−9/2〉 → |9/2,−7/2〉 transition resonance to identify the magnetic-field values. The

dashed line indicates a 0.079(3) G/cm gradient along the axial z direction. The solid line indicates

a curvature of 3.2(6)×10−7 G/cm2, which corresponds to a confining trapping frequency of 0.01 Hz

for the 40K atoms in the |9/2,−9/2〉 state that we use for our experiments. Although the Bias coils

and leads were carefully designed [36] to generate no magnetic-field gradient, this value is just over

half of the stray gradient that existed with the previous Bias system. It is possible that the residual

gradient is caused by a magnetized object near the atoms. This could be tested by measuring the

gradient at a different Bias field to see if it is proportional to the Bias current. In any case, the

gradient is acceptably small for the applications in this thesis. External gradient-compensating

coils may be required in future work.
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Figure 3.2: Top: Measurements of the gradient from the Ioffe coils at 90 Amps (points) with linear
fits to extract the field gradient (lines). Bottom: Measured curvature from the pinch coils at 100
Amps. The lines show the result of a surface fit to the data. For both plots, the positions include
arbitrary offsets due to the initial positions of the micrometers.
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Table 3.1: Measured parameters of the fields from the new magnetic coil system. I denotes the
current through the relevant coil. Error bars are statistical.

Parameter Variable Model [36] Measured value Units

Ioffe radial gradient β/I 1.00 1.00(2) G/cm/A
Pinch axial curvature γ/I 1.06 1.06(2) G/cm2/A
Pinch axial field BP0/I 3.48 3.34(1) G/A
Bias axial field BB0/I 3.32 3.306(1) G/A
Bias axial gradient βB0/I 4.8(2)×10−4 G/cm/A
Bias axial curvature γB0/I 2.0(4)×10−9 G/cm2/A

RF spectroscopy is also the tool of choice for calibrating the field’s absolute value. A combi-

nation of measurements on the 87Rb |2, 2〉 → |1, 1〉 microwave transition and the 40K |9/2,−9/2〉 →

|9/2,−7/2〉 transition over a range of magnetic-field values gives the calibration, BB0 = 0.36(5)G +

I × 3.306(3)G/A where BB0 is the Bias coil field in units of G, I is the current in units of A, and

the error bars are statistical. The offset is presumably caused by the Earth’s magnetic field, which

is oriented along the axis of the Bias coils.

3.2 The high-current control system

The electrical currents are another key part of the magnet system. At various stages of the

experiment, the magnetic fields from different coils need to be ramped on and off in repeatable se-

quences. We accomplish this by placing an Insulated Gate Bipolar Transistor (IGBT) in series with

each current path as shown in Figure 3.4 and controlling the gate voltages with servo electronics.

The priorities for the new control electronics are low noise, low sensitivity to RF interference, and

reliability. This section describes the transistors, sensors, cabling, and servos that make it all work.

The magnet coils are wired in two parallel paths with the Bias coils in one path and the

Ioffe and Pinch coils in the other (Fig. 3.4). The entire high-current system is powered by one

Agilent 6690A power supply, which can provide up to 440 A at 15 V. The power supply provides

a constant voltage and the transistors control the currents through each path. There are two main

modes of operation. First, to form a magnetic trap, both current paths are turned on to about
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Figure 3.3: Using RF spectroscopy on a gas of 40K atoms, we measure the Bias magnetic field as a
function of axial position. A fit to the central linear region gives a field gradient of 0.079(3) G/cm
for an average magnetic field close to the interspecies 40K-87Rb Fano-Feshbach resonance (black
dashed line). A fit to the entire data set gives a field curvature of 3.2(6) × 10−7 G/cm2. Zero
position on the x axis represents the edge of the imaging camera.
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200 A. Second, most experiments are eventually performed in an optical trap with a homogenous

magnetic field close to the interspecies Fano-Feshbach resonance. This requires 160 A of current

through the Bias coils while the Ioffe and Pinch coils are turned completely off.

Previous high-current electromagnets in our group had pushed power transistors to their

limits such that a failure occurred every few months, one of which even started a small fire. To

handle high current loads it was also necessary to connect several transistors in parallel. Progress

in the power electronics industry has made these problems obsolete. There is now a variety of

high-power transistors to choose from that can individually handle the maximum output of our

power supply. For the same price point and physical size, Metal Oxide Semiconductor Field Effect

Transistors (MOSFETs) are typically faster and can handle the highest currents, but they are also

more easily damaged by transient voltage swings. Insulated Gate Bipolar Transistors (IGBTs) are

popular in arc welding applications because they can typically survive several thousand volts across

the conduction path. Since the inductive backlash of quickly turning off our electromagnets pushes

hundreds of Volts onto the transistors, and because the sizable inductance and capacitance of the

magnet coils prevents us from taking advantage of a MOSFET’s fast response, we use IGBTs.

Specifically, the SKM400GA-12V IGBT model by Semikron is used for IGBTs 1 and 2 in

Figure 3.4. They each have three terminals: Gate (G), Emitter (E), and Collector (C). A positive

G-E voltage turns the device on, allowing current to flow from C to E. A 30 Ohm resistor is attached

to each gate to smooth out the turn-on behavior of the circuit. The transistor is rated for VCE

up to 1.2 kV, so no additional protection circuitry is needed for the high-current path. Like a

MOSFET, however, the IGBT is easily damaged by transient gate voltages so a 20 V back-to-back

TVS diode is placed between terminals G and E. These IGBTs enter a linear mode of operation

that is well-controlled by a servo when VCE > 2 V, and so we choose the output voltage of the

high-current supply such that VCE is at least 3 V on each IGBT. Since the magnetic trap operates

with 200 A of current through each current path, each transistor dissipates 600 W of power. To

protect the IGBTs from thermal overload, we mount them to a water-cooled plate as discussed in

Section 3.3.
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Figure 3.4: Electrical schematic for the new magnet system. Solid lines indicate the high-current
path. The current through each path is controlled by a SKM400GA-12V transistor (IGBTs 1 and 2).
A feedback loop consisting of a Hall effect current sensor (Danfysik IT-600s) and a servo controls
the Gate-Emitter voltage of each IGBT to achieve the desired current. A LabVIEW program
controls the NI PXI-6733 DAC, which in turn outputs analog voltages to control the power supply
voltage and the current through each path. We use out-of-loop ‘monitor’ hall probes, which are
identical to the in-loop ‘servo’ hall probes, to measure the current without making any connection
to the ground of the control system.
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Figure 3.5: Diagram of the feedback electronics (‘Servo 1’ and ‘Servo 2’ in Figure 3.4) used to control
the magnetic trap currents. The circuit was designed by Terry Brown and James Thompson, and
a complete schematic can be found under the reference number ‘QQ116A3’ in the JILA electronics
shop.

The Gate-Emitter voltage of each IGBT is controlled by a QQ116A3 coil driver servo from

the JILA electronics shop, which we configure for unipolar operation. Figure 3.5 shows a simplified

schematic. There are two differential voltage inputs to the servo: a sense voltage, Vsense, that is

proportional to the measured electrical current; and a control voltage, Vctrl, which is generated by

a National Instruments PXI-6733 DAC installed in our main experiment control computer. Each

of these voltages goes through a buffer as soon as it enters the servo. The sense buffer has gain of

10 and the control buffer has gain of 1. The buffered signals are added to each other to generate

an error signal, which is fed into a Proportional-Integral-Differential (PID) filter. The PID output

is then fed to an output buffer stage. This two-terminal output connects to the IGBT’s Gate and

Emitter with a twisted pair of wires. Because the servo’s Emitter connection is isolated from the

servo ground, the high-power and low-noise paths are also isolated from each other. A secondary

output, Vmonitor, samples and buffers the sensor input so that we can monitor the current.

We measure the current in each path using a Hall effect current sensor1 . A precision 2.5

Ohm resistor measures the sense current, and the resulting sense voltage is connected by a twisted

1 Each current sensor is a IT 600-s ULTRASTAB probe, which produces a sense current equal to 1/1500 of the
measured current. Although this probe is rated to a much higher current than we require, it was chosen for its
superior resistance to thermal drift.
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Figure 3.6: Connections between a servo, IGBT, and Hall effect current sensor. Green dashed lines
show grounded shielding around each cable.

shielded cable to the servo’s sense input. Since the servo’s sense buffer amplifies the signal by a

factor of ten, the control voltage into the servo commands a current of 30 A/V. Hall effect current

sensors are useful for measuring high currents because they can be electrically isolated from the

circuit being measured. One downside is that they can consume significant power when sensing

larger currents. The original design placed the sense resistor to measure the Hall current sensor

output inside of the servo, but we found that the heat dissipated in the resistor caused drifts in the

servo electronics. Instead, the sense resistor should ideally be placed on a heatsink near the probe.

Similarly, the power supply for the Hall probe, which had previously been connected through the

servos, was rerouted through a separate box to avoid thermal drifts.

Nearly all of our experiments use pulses of radio and microwave radiation to manipulate or

detect the atoms’ states. These signals can interfere with sensitive laboratory equipment, which

pick up the radiation and rectify it into DC drifts. RF rectification is a particularly tricky problem

for magnetic-field servos, where a small DC drift in Vsense or Vctrl changes the magnetic field at the

atoms. This can noticeably alter the atoms’ interactions with each other or entirely disrupt the

radiation’s interaction with the atoms by shifting the Zeeman resonance. The new control system

attacks RF rectification in four ways. First, each servo is constructed in its own well-shielded
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aluminum NIM module. We sandblast the anodization on the backside of the front panel to ensure

a good electrical connection to the rest of the module as well as to the grounded rack. The NIM

rack itself is mounted away from RF amplifiers and synthesizers. Second, we use a dedicated power

supply for the servos and Hall probes to minimize the paths by which RF can enter the system.

Third, signal paths outside of the servo are transmitted by twisted pairs of wires with grounded

shielding (Figure 3.6). The one exception is the control voltage signal, which is transmitted over a

coaxial BNC cable. All cables are kept as short as possible. Fourth, RF choke filters are installed

wherever any signal or power supply connects to the servo. The filters, which are similar to Π

filters, are screwed directly into the grounded case of the servo (complete diagrams are included in

the servo’s schematic in the JILA electronics shop, under reference QQ116A3). These strategies

appear to be successful. We measure RF rectification from a relatively high power square pulse on

the 40K |9/2,−9/2〉 → |9/2,−7/2〉 transition near 80 MHz (Rabi frequency Ω = 2π× 15 kHz), and

find that the radiation shifts the measured magnetic field by less than 10ppm as measured by the

atoms.

3.3 Power dissipation and water cooling

Under magnetic trap operating conditions, the high-current power supply outputs 400 A at

8V. With this much power dissipated in the magnetic trap system and servo electronics, heat-

ing is a serious concern. Runaway heating can occur because copper’s resistance increases with

temperature. The new electromagnet system is designed for ‘walk-away safe’ steady-state power

dissipation: under normal conditions the system can be turned on for an arbitrary amount of time,

and if an anomalous temperature or cooling water flow rate is detected then the system turns itself

off. This gives experiments maximum flexibility in terms of duty cycle, plus the magnet system

is protected from programming errors, cooling failures, or other accidents. A combination of coil

design, water cooling, low-resistance cabling, choice of control electronics, and safety interlocks are

used to accomplish this.

Power dissipation in the magnetic coils themselves is particularly important because they
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Figure 3.7: Schematic of the electromagnet water-cooling circuit. Water is split into four parallel
paths to improve the efficiency of cooling. The heated water from the coils is recycled through a
water cooling plate and used to cool the IGBTs. A Proteus 800-series flow rate monitor is connected
to a safety interlock so that the high-current power supply is turned off in the event of a water
cooling failure. All water connections through non-conducting paths are made with flexible poly-flo
tubing and push-to-connect plumbing fittings.



30

are the most time-consuming parts to replace if something goes wrong. Each coil is wound from

copper tubing with a square cross section that is 1/8 inch per side [36]. Water flows through the

center of the tubing in a round channel to carry away heat. Previous designs of similar magnet

coils at JILA involved 3/16 inch tubing, however the smaller 1/8 inch cross section was chosen to

make the coils as small and close to the atoms as possible. This choice has paid off in terms field

strength for a given operating current. For example, to reach the Fano-Feshbach resonance with

the new Bias coils requires less than half of the current that was needed with the previous larger

‘Helmholtz’ coils. To simultaneously connect electricity and water, leads at the end of each coil are

soldered to 1/4” round copper tubing, which passes through a copper block to which high-current

wires are bolted. This configuration has the nice side effect of water-cooling the ends of the high

current cabling as well.

Process cooling water flows through the coils in four parallel paths as shown in Figure 3.7.

This scheme ensures that cold water is delivered to each coil. At room temperature each Bias coil

has a measured electrical resistance of 9.3 mΩ, whereas each Pinch coil has 6.1 mΩ and each Ioffe

coil only has 1.5 mΩ. We measure these resistances between points near the junctions between

square and round copper tubing at the ends of the coils. Since each coil is wound from the same

tubing, and each water cooling path has a similar electrical resistance and electrical current, the

parallel water paths also have similar steady-state power dissipation and resistance to water flow.

However, the Bias coils have the highest resistance and operating temperature, so we use them to

characterize the water cooling system.

Figure 3.8 shows the steady-state operating temperatures of the Bias coils for the range

of electrical currents that can be produced by the Agilent 6690A power supply. We take these

measurements under typical laboratory conditions, where the process cooling water is supplied

with 65 psi of pressure and a temperature of 13 C. We measure the temperatures at the hottest

points on the coils, which are at the ends of the copper tubing where water flows out of each coil.

The electromagnet system has two modes of operation. In trap mode, it draws a total of 400 A,

where 200 A flows through each of the parallel paths shown in Figure 3.4. When the Bias coils
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are turned on alone to manipulate optically trapped atoms near the interspecies Fano-Feshbach

resonance, they draw 160 A. Under both conditions, we can see that the coils’ temperatures heat

to near room temperature.

In addition to the coils, about 2 kW of power is also dissipated in the servo IGBTs and

high-current wiring in the steady-state magnetic trap. We mount the control IGBTs together on

a single water-cooling plate. We were unable to destroy any transistors in testing steady-state

dissipation of up to 1 kW per (water-cooled) transistor, and neither of the IGBTs has failed after

a year of regular use in the experiment. At this point, it seems safe to conclude that the power

is adequately dissipated at the IGBTs. Somewhat unsurprisingly, the hottest parts of the high-

current systems are those without any water cooling, namely the leads. Current is delivered from

the power supply to the coils by flexible braided copper 4/0 welding cables and copper bus bars.

The wires themselves have a resistance of 49 µΩ/ft at room temperature. As measured on our

installed cabling at room temperature, a crimp joint that attaches a copper lug to the end of a

4/0 welding cable has an average resistance of 50 µΩ. The Y-connections where the power supply

cables are split into the two current paths (see Figure 3.4) contain three such crimps in close

proximity, plus additional resistance where the lugs are bolted together. This concentration of

higher resistances leads to localized heating which, in turn, increases the resistance and therefore

leads to more heating. Although we did not observe any effect on the stability of the current, the

steady-state temperatures of these joints make them painful to the touch. Therefore, for safety,

we heat sunk the junctions to small cooling blocks connected to the exhaust of the process cooling

water (Figure 3.7).

Due to the high currents flowing through the system, a water cooling failure can quickly

damage the coils and IGBTs or even start a fire. We implemented a safety interlock to turn the

power supply off in the event of such a problem. The most common cooling failures are building-

wide pressure drops in the chilled water supply. A Proteus 800 series flow meter trips the interlock

when the water flow rate falls below a safe value. Other types of failures, like clogs in certain tubes,

programming errors, or loosened connections, don’t effect the overall flow rate but have caused
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Figure 3.8: Top: Temperatures of the Bias coils vs. time for a variety of currents flowing through
the Bias coil pair. A steady-state temperature is achieved after about 45 seconds, which is similar
to duration of the magnetic trap stage of a typical experiment. Open symbols show one coil’s
temperature, closed symbols show the other. The temperature difference between the two coils
could be caused by a small kink or burr that impedes the flow of cooling water, or it could simply
be a calibration difference between the two sensors. Bottom: Steady-state Bias coil temperature
vs. current follows the quadratic dependence predicted in Ty Cumby’s thesis [36].
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catastrophic overheating in previous systems within our group. A series of Sensata/Airpax 67L050

airfoil temperature sensors are attached to each coil and the high-current leads near each transistor.

If any measured temperature rises above 50 C, then the safety interlock is triggered. We chose this

cutoff because it is significantly higher than the normal operating temperatures – it is not clear

that any damage would actually occur to the system at 50 degrees.



Chapter 4

Procedure: from room temperature to ultra cold

Our quantum gas machine has been in operation for more than a decade since it was originally

constructed by Jon Goldwin [38]. The design incorporates popular techniques from experiments

with Bose-Einstein condensates, including a vapor-cell Magneto-Optical Trap [39, 3, 40], sympa-

thetic cooling in a magnetic trap [41, 42], and a far-detuned optical trap [43] that sets the stage

for our measurements. The apparatus is constantly being updated, with changes catalogued in

graduate student theses [44, 36]. For my part, updates to the apparatus include the magnet system

from the previous Chapter as well as improved laser systems, microwave delivery, optical trapping,

and imaging. For completeness and to define experimental parameters relevant to our data, I will

describe these updates while reviewing our typical sequence for preparing and measuring a quantum

gas.

To that end, Section 4.1 introduces the main characters: the Boson 87Rb and the Fermion 40K.

These atoms are first collected from a dilute room-temperature vapor inside of a vacuum chamber

and then cooled to a temperature of 1 microKelvin by the four-stage process that is described in

Section 4.2. This ultracold gas is subsequently transferred into the focus of an intense infrared

laser beam in Section 4.3. Within this optical trap, we further cool the atoms to a few hundred

nanoKelvin. Experiments are performed on the atoms at a magnetic field near the interspecies

Fano-Feshbach resonance at 547 G. Finally, the optical trap is snapped off and the atoms drift

outwards into the vacuum. Resonant light illuminates the gas, which casts a shadow onto a CCD

camera, which transfers the data to a computer for analysis (Section 4.4). Because the measurement
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process scatters atoms to the outer reaches of the vacuum chamber, we create a new sample for

every data point.

4.1 40K and 87Rb atoms

40K and 87Rb are an all-star team in the world of quantum gases. 87Rb atoms formed the first

Bose-Einstein condensate [4] and 40K was the first atomic degenerate Fermi gas [7]. In the ultra cold

regime, the interactions between different 40K atoms or between 40K and 87Rb atoms can be tuned

by magnetic Fano-Feshbach resonances, which yields a rich phase diagram that includes interaction-

driven BEC collapse and phase separation [45, 46]. More recently, 40K-87Rb interactions in optical

lattices were used to shift the superfluid to Mott insulator quantum phase transition temperature

in 87Rb atoms [47]. 40K-87Rb Feshbach molecules were the also first ultra cold Fermionic molecules

to be created in the lab [48]. This development led to the association of ultra cold ground-state

polar 40K-87Rb molecules [20], which promise to bring controlled quantum chemistry and stable

long-ranged interactions to the world of quantum gases.

Both 40K and 87Rb are Alkali metals, which means that they each have a single unpaired

valence electron with an energy level structure similar to an oversized Hydrogen atom. Figure 4.1

outlines the states relevant to our work. The D2 lines for these atoms are located at 767 nm

and 780 nm respectively. We use laser light that is resonant with these transitions to manipulate

and measure each species. Figure 4.2 shows schematics of these laser systems for 40K and 87Rb.

Beam shaping optics, wave plates, polarizers, optical isolators, shutters, and mirrors are omitted

for clarity. The 40K lasers are locked to the F = 2 → F ′ line in the 39K saturated absorption

spectrum, and the 87Rb lasers are locked to the F = 1 to F ′ = 1, 2 crossover peak in the 87Rb

saturated absorption spectrum. Although the laser systems are drawn separately for each species,

we combine the laser beams into a smaller number of paths before they hit the atoms: the K ‘MOT’

beam and Rb ‘MOT trap’ beam are coupled into the same optical fiber before they are used to trap

and cool the atoms; the ‘OP Zeeman’ and ‘OP Repump’ beams for both species are combined into

a single path used for optical pumping after the MOT stage; and the ‘Low B’ and ‘High B’ imaging
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Figure 4.1: The D2 lines for 40K (left) and 87Rb (right). Thick vertical red arrows indicate the
primary transitions that we use for trap, cool, optically pump, and image the atoms. The thin
vertical red arrows show the repump transitions, and dashed lines show spontaneous decay paths
to the other groundstate. Hyperfine splittings for both species are indicated at zero external
magnetic field and are not to scale [49, 50]. 40K has nuclear spin I = 4 and 87Rb has I = 3/2.
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beams for both species are also combined into a single imaging beam path. Before the beams are

combined, we use shutters and Acousto-Optic (AO) modulators to independently switch different

beams on and off.

Recent years have seen a few improvements to our lasers. The saturated absorption locks for

both atoms’ repump lasers now generate an error signal by modulating the laser phase at 10 MHz

with electro-optic modulators, which provides more bandwidth and stability than the previous

method of modulating the laser current at 300 kHz. We also replaced the 87Rb repump laser,

which was previously a commercial ECDL, with a DBR from Photodigm. The DBR puts out

enough power that the Rb repump light can now be sent directly to the atoms in the MOT, which

bypasses the tapered amplifier and shortens the optical path. New beam-shaping and polarization

optics have also been employed to improve the imaging beams, which are described in more detail

in Section 4.4.

As for the atoms themselves, the entire preparation and measurement of the quantum gas

occurs in an ultra-high vacuum environment. The vacuum system contains two glass chambers, the

(relatively) high-pressure collection cell and the lower-pressure science cell (see Figure 4.3). These

two cells are separated by a long tube to maintain differential pressure between the two chambers.

Each experiment begins with a dilute vapor of K and Rb atoms in the collection cell. Rb atoms

are dispensed by a commercial getter source from SAES. K atoms come from a similar home-built

dispenser [51]. Since the natural abundance of 40K is only 0.012 percent, our K source uses enriched

material that contains 5 percent 40K [44]. Whereas the atom dispensers were originally pulsed every

morning to fill the collection cell with alkali atoms, we now run them at a lower constant current

to get more consistent day-to-day atom numbers.

4.2 Initial cooling stages

To transform the warm vapor into an ultra cold quantum gas, we subject the 40K and 87Rb

to multiple stages of cooling. Although the apparatus can produce a quantum-degenerate mixture

of a Bose-Einstein Condensate and a Degenerate Fermi Gas, the experiments in this thesis cut the
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is monitored on a scanning Fabry-Perot (FP) cavity. To repump laser phase is dithered at 10
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experiments take place (right).
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evaporative cooling short just before the onset of quantum degeneracy. This maximizes the spatial

and momentum overlap between the 40K and 87Rb clouds and simplifies our analysis of data on the

interactions between the two species. A huge variety of experiments are possible once the quantum

gas mixture is prepared. The preparation and cooling of the gas is a repeatable sequence that is

more or less the same for every data point.

The 40K and 87Rb atoms are initially captured by a three dimensional dual-species vapor-

cell MOT in the vacuum chamber’s collection cell. Next, we spatially compress the 87Rb MOT

by reducing the repump power and detuning the trap light to reduce the photon scattering rate.

At the same time, we jump the 40K trap light towards resonance for improved Doppler cooling.

Next, we zero the magnetic field using several shim coils and the 87Rb atoms are further cooled by

polarization gradient cooling. A quantization field is then applied along with a pulse of circularly

polarized optical pumping light (the ‘OP Zeeman’ and ‘OP Repump’ beams in Figure 4.2) to bring

40K and 87Rb into the low-field-seeking |f,mf 〉 = |9/2, 9/2〉 and |2, 2〉 states respectively. At this

point, we load the atoms into a quadrupole magnetic trap (Qtrap), which is generated by a pair of

high-current electromagnet coils. The Qtrap coils are mechanically translated 81 cm to the other

end of the vacuum chamber to deliver the atoms to the science cell. At this point, we typically have

a few million 40K atoms and a few times 108 87Rb atoms at a temperature near 400 microKelvin.

Once the atoms are in the science cell, we briefly reduce the quadrupole field so that any

residual 87Rb atoms in the |2, 1〉 state fall out of the trap. Next, we load the purified gas into the

Ioffe-Pritchard (IP) magnetic trap that was described in Chapter 3, and the Qtrap coils return

to their home at the collection cell on the other end of the chamber. This trap is approximately

harmonic in all three directions, with trap frequencies ωx = ωy = 125 Hz and ωz = 18 Hz. The

atoms are trapped at the minimum of the magnetic field. In the IP trap, we cool the gas by

forced evaporation on the 87Rb atoms, which sympathetically cools the 40K atoms through elastic

collisions between the two atom species [38, 42]. We apply an RF field, which is resonant with

|f,mf 〉 = |2, 2〉 → |2, 1〉 and |2, 1〉 → |2, 0〉 transitions at the edge of the atom cloud, to remove the

“hot” 87Rb atoms. The |2, 0〉 atoms have no magnetic moment and so they fall out of the magnetic
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trap. The atom cloud shrinks as it cools and we sweep the RF frequency downwards to remove

atoms closer and closer to the center of the magnetic potential. After evaporation in the magnetic

trap we typically have about one million 40K atoms and two million 87Rb atoms at a temperature

near 1 microKelvin.

4.3 The optically trapped mixture

After an ultra cold mixture is produced in the magnetic IP trap, we transfer the atoms

into a far-detuned Optical Trap (OT) formed by light from a 10 W multimode fiber laser with a

wavelength of 1090 nm. This wavelength is red-detuned from the strong D1 and D2 lines, so that

the 40K and 87Rb atoms both feel an attractive potential that is proportional to the intensity of the

light. The OT potential is independent of hyperfine or Zeeman states, which opens the possibility of

experiments with different spin mixtures. This trap also enables access to tunable interactions near

Fano-Feshbach resonances at high magnetic fields, which are the crucial to the work in Chapters 5,

6, 7, and 8.

Following Grimm et al. [43], the potential U for OT light with intensity I is given by

U = −3πc2Γ

2ω3
0

(
1

ω0 − ω
+

1

ω0 + ω

)
I (4.1)

where Γ is the transition line width, c is the speed of light, ω0 is the resonant frequency, and

ω = 2πc
1090 nm is the frequency of the light. In the limit of large detuning, the D1 and D2 lines

in alkali atoms can be combined into a single effective ‘D’ line whose resonant frequency is the

average of the frequencies for the D1 and D2 lines. Using parameters from [49], the 87Rb D

transition has ω0 = 2πc
787.6 nm and Γ = 2π× 5.9 MHz. Similarly, the 40K transition has ω0 = 2πc

768.4 nm

and Γ = 2π × 6.0 MHz [50]. Plugging these numbers into Eq. 4.1, we can see that the ratio of the

optical potentials is UK/URb = 0.88. In practice, gravity pulls the atoms down away from the OT

center. The heavier 87Rb atoms sag further and so they sit in a slightly different part of the beam

intensity profile.

Figure 4.4 shows the geometry for an experiment in the optical trap. The horizontal OT
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beam has a 1/e2 radius of 19 µm. Alone, it forms an elongated trap with an aspect ratio of 100

that is used in the majority of experiments. The vertical OT beam has a 1/e2 radius of 200 µm.

The trap formed by the combination of horizontal and vertical beams has an aspect ratio of about

20, which is useful if a spatially compressed cloud is desired. The Bias magnetic field is oriented

along the axis of the horizontal optical trap beam. This field is actually the sum of two Helmholtz

pairs: the strong Bias coils (which are also part of the IP trap) and the lower-inductance FastB

coils.

The 40K and 87Rb atoms are initially loaded into the optical trap in the low-field-seeking

|9/2, 9/2〉 and |2, 2〉 states. To prepare the atoms for experiments near the interspecies Fano-

Feshbach resonance, we transfer the to the high-field-seeking |9/2,−9/2〉 and |1, 1〉 states. During

these transfers, the Bias coils provide a quantization axis with a 28 G magnetic field. For the

40K atoms, an RF pulse with a linear chirp from 9.7 MHz to 8.0 MHz drives an Adiabatic Rapid

Passage (ARP) across the mf = 9/2 → 7/2 → 5/2 → 3/2 → 1/2 → −1/2 → −3/2 → −5/2 →

−7/2→ −9/2 states [52]. The 40K atoms are transferred into the |9/2,−9/2〉 state with about 90

percent efficiency. For the 87Rb atoms, a microwave pulse with a linear chirp between 6.893 GHz

and 6.896 GHz drives an ARP from |2, 2〉 to |1, 1〉 with about 98 percent efficiency.

With the installation of the new electromagnet system (Chapter 3), the radio and microwave

antennae which were attached to the old magnet system needed to be replaced. Of these, the 87Rb

microwave antenna was the most challenging since it needed to have dual resonant frequencies at

6.9 GHz and 8.0 GHz. These frequencies of interest are resonant with the |2, 2〉 → |1, 1〉 transition

at magnetic fields of 28 G and 545 G respectively. Figure 4.5 shows the antenna at an early stage of

construction and its final measured reflection coefficient. The antenna, which was designed by Carl

Sauer in the electronics shop, consists of copper traces on both sides of a thin phenolic substrate. It

is mounted between the magnetic bias coils near the science cell, about 6 mm above the position of

the atoms. The emitted microwave radiation is centered on the circular aperture, which is aligned

above the atoms. Two small pieces of copper tape (not shown) are soldered to the long straight

section of the lead on the top side. We adjusted their positions and orientations to stub tune the
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resonant frequencies.

Once the atoms are prepared in their high-field seeking states in the optical trap, the Bias

coils ramp the field up to 550 G. The power in the horizontal OT beam is gradually lowered so

that the most energetic atoms fall out and the sample is evaporatively cooled. Next, we ramp the

OT power back up by a factor of two or so to ensure that the atoms are confined in the harmonic

region at the center of the trap. At this point, the quantum gas is fully prepared for the sorts

of experiments that are described in the next four Chapters. Most of these take the form of DC

magnetic field sequences to manipulate atomic interactions, radio / microwave pulses to control

and measure the atoms’ states, or deformations of the optical potential, which help us to learn

about the scattering properties of the atoms under different conditions.

4.4 Imaging

All of the data in this thesis comes from pictures of quantum gas mixtures. From these images

we extract the number (N), temperature (T ), and density (n) of each atom species selectively. We

track the evolution of these quantities to extract the scattering rates in Chapter 8. In the next

Chapter, we apply these techniques to image 40K87Rb Feshbach molecules. They are also used to

diagnose and optimize the preparation or manipulation of the atoms. For any of these applications,

we initiate the imaging sequence by quickly snapping the optical trap off. After the clouds have

expanded into the chamber for a few milliseconds, we perform destructive absorption imaging with

pulses of resonant light [53]. This method measures the optical depth of a shadow cast by the

atoms, which is imaged using the optics depicted in Figure 4.6.

The resulting pictures reveal the 2D column density profile n(x, y) in the strong radial y

direction and weak axial x direction of the optical trap. We fit these to a Gaussian surface:

n(x, y) =
N

2πσxσy
e
− x2

2σ2x
− y2

2σ2y . (4.2)

Based on the cylindrical symmetry of the trap, we assume that the shape of the density distribution

along the imaging axis is the same as it is in the measured radial y direction. Formula 4.2 is valid
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Figure 4.5: A dual-resonant antenna for 87Rb. Left: the magnitude of the power reflection coef-
ficient S11 as measured by a network analyzer. A lower reflection coefficient presumably implies
more efficient transmission of radiation to the atoms, since there are no dissipative elements in
the system. Right: Photographs of the top and bottom sides of antennae before stub tuning. An
edge-mounted SMA jack is soldered to the lower end of the antenna (as oriented in the picture).
The center SMA pin is connected to the copper trace on the top side and the ground pins are
soldered to the ground plane on the bottom side.
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for a harmonically confined thermal gas in the Maxwell-Boltzmann limit. For an ideal gas in

this limit, the in-trap RMS cloud sizes are given by σ2
x,0 = kBT

mω2
x

and σ2
y,0 = kBT

mω2
y

where kB is

the Boltzmann constant and the trap frequencies are defined such that the trap potential has the

form U = 1
2mω

2
xx

2 + 1
2mω

2
yy

2 + 1
2mω

2
zz

2. When the trap is switched off at time t = 0, a thermal

noninteracting gas will undergo ballistic expansion such that

σ(t) =

√
σ2

0 +
kBT

m
t2. (4.3)

in each direction. We use this formula to extract the temperature from the measured sizes of the

expanded clouds. In some of our data the 40K gas is quantum degenerate, with T/TF as low as

0.2. For this degeneracy, a Gaussian fit to the density profile can measure the number of atoms

but not its temperature [54]. Since the Fermi gas is in thermal equilibrium with a 87Rb Bose gas

that still follows a Maxwell-Boltzmann distribution, we use the 87Rb cloud size as a measurement

of temperature for both atom species in these situations. For T/TF > 0.6, we find that the

temperatures measured from the expanded 87Rb and 40K clouds agree with each other.

For all data points, we image the 87Rb atoms with light tuned to the cycling f = 2→ f ′ = 3

transition, and we image the 40K with light tuned to the cycling f = 9/2 → f ′ = 11/2 transition.

However, there are a few differences in the imaging procedure depending on the specific experiment.

For diagnostic images of early experiment stages, the magnetic-field quantization axis is provided

by an auxiliary coil that points along the imaging axis. In this case, the probe light is circularly

polarized. For imaging the atoms at high magnetic fields, the Bias field sets the quantization axis,

and is perpendicular to the imaging axis. The probe light in this case is linearly polarized and the

atoms’ measured OD is consequently reduced by a factor of two. Furthermore, experiments at low

magnetic fields are insensitive to the Zeeman state whereas high field imaging selectively images

40K atoms in the |9/2,−9/2〉 state and 87Rb atoms in the |2, 2〉 state. Finally, since high-field

experiments are performed on 87Rb atoms in the |1, 1〉 state, a microwave ARP transfers 87Rb

atoms into the |2, 2〉 state immediately before imaging.
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Figure 4.6: A cartoon of the low-magnification imaging system. Resonant laser light propagates
along the magnetic transport axis of the vacuum system. The atoms’ shadow is imaged on a CCD
camera with a magnification of three. A sample OD image of 40K atoms is shown with false color
indicating the optical depth.



Chapter 5

Efficient magnetoassociation of KRb Feshbach molecules

Magnetic Fano-Feshbach resonances can be used to convert an ultra cold gas of atoms into

an ultra cold gas of molecules. These weakly bound Feshbach molecules act as a starting point

for experiments from superfluidity to quantum chemistry, and so the physics of how these pairs

form has been an active topic of research [19, 18]. Previous work has mostly focused on bosonic

Feshbach molecules formed out of two fermionic or two bosonic atoms, whereas less is known

about the association of fermionic Feshbach molecules from one Boson and one Fermion. This

Chapter presents our detailed measurements of fermionic 40K87Rb in the atomic gas mixture of

40K and 87Rb. Section 5.1 describes how Feshbach molecules are created when a magnetic field

sweeps through the Fano-Feshbach resonance. Section 5.2 reviews our tools for detecting and

imaging the molecules. In Section 5.3, a quantitative model based on the Landau-Zener paradigm

accurately predicts the rates of molecule formation in the limit of small molecule numbers. When

the atomic sample is substantially depleted, molecule production saturates. Section 5.4 shows how

the maximum number of 40K87Rb molecules falls short of a theoretical prediction for experiments

that begin with a degenerate Fermi gas of 40K atoms.

The bulk of the material in this Chapter is published in Reference [55]. In particular, Sections

5.3 and 5.4 are published nearly verbatim in that work. Sections 5.1 and 5.2 also contain material

from the paper, but they are expanded to include more detail and background information.
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5.1 How magnetoassociation works

One way to make Feshbach molecules in an atomic gas is to sweep the magnetic field across

a Fano-Feshbach resonance. This process, called magnetoassociation, has proven to be one of the

most robust methods of Feshbach molecule formation and is effective for both wide and narrow

Fano-Feshbach resonances as well as for gases of fermionic atoms, bosonic atoms, or mixtures of two

atomic species [19, 18]. Figure 5.1 illustrates the two-body energy spectrum for Feshbach molecules

in a gas of 40K and 87Rb atoms. In the limit where the atoms’ kinetic energy is much greater

than the harmonic oscillator level spacing in the trap, there is a continuum of free-particle states

on both sides of the Fano-Feshbach resonance. The two-body Feshbach molecule state has zero

binding energy at the resonance, and increasing binding energy as the field is lowered. For these

experiments, we use the broadest 40K–87Rb Fano-Feshbach resonance at B0 = 546.618 G.

To transfer free atoms into the Feshbach molecule state, we ramp the magnetic field down-

wards from 550 G through the resonance to 545.7 G, which is from right to left in Figure 5.1. The

ramp rate Ḃ is key to the magnetoassociation process as shown in Figure 5.2. Let f be defined as

the number of molecules divided by the lesser of the initial numbers of atoms of 40K and 87Rb, N<.

If Ḃ is fast compared to the timescales of two-body adiabaticity, then f is small. In this fast sweep

limit, molecule association is essentially the independent sum of many two-body pairing processes

between nearby atoms. Section 5.3 characterizes this regime. As the field sweeps get slower and

more adiabatic, f increases and saturates. Notice that f saturates well below unity, which is ex-

plored in Section 5.4. In order to extract information about the fast-sweep and saturated regimes

independently, we fit the molecule conversion efficiency as a function of the magnetic-sweep rate

|Ḃ| to the following formula:

f = f0

(
1− e−Γ/(f0|Ḃ|)

)
. (5.1)

Here, f0 is the saturated molecule conversion fraction and f = Γ/|Ḃ| in the fast-sweep limit. Before

moving on to the measurements of these quantities, I will first describe how we detect and image

the Feshbach molecules.
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Figure 5.1: Schematic two-body energy diagram for 40K and 87Rb as a function of magnetic field
near an interspecies Fano-Feshbach resonance. Zero on the vertical axis represents the threshold
for a continuum of free two-body states. The Feshbach molecule state (dashed line) exists at fields
below the Fano-Feshbach resonance. In magnetoassociation, we sweep the field from right to left
on these axes.
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Figure 5.2: The fraction of the minority atom species converted to molecules, f , vs the inverse
magnetic-sweep rate, 1/|Ḃ|, across the Fano-Feshbach resonance. The dashed line shows a fit to
Eq. (5.1), which gives Γ = 6.5(5) G/ms and f0 = 14(2)%, or 3.8(5)× 104 molecules, for this data.
The initial gas consisted of 2.6×105 40K atoms and 3.4×105 87Rb atoms at T= 490 nK. This data
was published in Reference [55].
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Figure 5.3: Schematic timing sequences for creating and imaging molecules. The colored bars along
the bottom label the various stages of the sequence. Left: Imaging dissociated molecules. Right:
Direct molecule imaging.

5.2 Counting the molecules

Much like atoms, 40K87Rb Feshbach molecules are probed by resonant absorption imaging

after a brief expansion from the optical dipole trap. Figure 5.3 describes two different methods to

make the molecules visible on the atomic transitions. In both cases, we prepare the atoms at a

field of 549.9 G, which is above the 546.62 G interspecies Fano-Feshbach resonance. We sweep the

magnetic field down through the resonance to 545.7 G to form molecules. A typical speed for this

adiabatic magnetoassociation is 3 G/ms. To clean out the unpaired 40K atoms, we ramp the field

in 50 µs down to 544.7 G and then transfer unpaired 40K atoms from the |9/2,−9/2〉 state to the

|9/2,−7/2〉 state using RF Adiabatic Rapid Passage (ARP). The binding energy of the molecules

here is h×3 MHz [33] and the ARP for atoms does not affect the molecules. The atoms become

invisible to probe light once they are in the |9/2,−7/2〉 state.

At this point, we have two options. The most straightforward of these is to ramp the field back

through the Fano-Feshbach resonance to dissociate the molecules. Since all unpaired 40K atoms

were rendered invisible by the ARP, the usual imaging of 40K atoms only counts the atoms that were

previously part of molecules. Unfortunately, images of dissociated molecules are potentially prone
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to systematic errors from heating as the field is ramped back through the strong interactions at the

resonance. An alternative strategy, which was employed for the data discussed in the remainder of

this Chapter, is to image the molecules directly. By ramping the magnetic field back up to 546.0 G,

we reduce the binding energy of the molecules so that they become resonant with the 40K imaging

transition. The molecule number measured with this technique is 85±5% of the number measured

after dissociating the molecules and imaging the resulting atoms. Therefore, when imaging the

molecules below the Fano-Feshbach resonance, a multiplicative factor is applied to correct the

number for this measurement inefficiency.

To minimize the loss of molecules due to inelastic collisions, we can release the gas from

the optical trap immediately after the molecules are formed. The sudden turn-off of the optical

trap initiates an expansion of the gas that rapidly lowers the densities and switches off inelastic

collisions. Figure 5.4 shows the measured molecule number and kinetic energy as a function of

the time that the optical trap is turned off, trelease. Here, trelease = 0 is defined as the time when

the magnetic field crosses the Fano-Feshbach resonance. For trelease > 0 we observe a heating and

decrease in the molecule number with increasing trelease. We attribute this to inelastic collisions

as the molecules spend more time in a relatively high density atom-molecule gas mixture in the

trap. For trelease < 0, the magnetic field crosses the Fano-Feshbach resonance after the gas starts

expanding. For short expansion times, where −0.3 < trelease < 0, the measured number and energy

of the molecules is constant within the measurement uncertainty. For longer expansion times,

corresponding to trelease < −0.3, the rapidly dropping atom gas density reduces the efficiency of

magnetoassociation according to the model in Section 5.3. Thus, we find that trelease = 0 gives the

most accurate measurement of the number and temperature of molecules that are created. While

this Chapter focuses on the number of molecules created, the kinetic energy of the molecules will

be the topic of Section 6.3 in the next Chapter.

Another issue with quantifying the molecule formation process is that inelastic collisions can

cause loss and heating of the atoms even before molecules are formed. In particular, three-body

recombination is an inelastic collision process for three atoms that produces a molecule plus an atom,
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Figure 5.4: Top: A typical magnetic-field sweep sequence for molecule association. Here, t = 0
is defined as the time when B crosses the Fano-Feshbach resonance. Middle: measured molecule
kinetic energy, from the RMS cloud size after time-of-flight expansion between 2.5 ms and 3.5 ms,
vs the time, trelease, at which the optical trap is suddenly turned off to release the gas. The red
dotted line shows the initial atom temperature, T = 380 µK. Bottom: Measured molecule number
vs trelease. For comparison, the dashed line shows an exponential decay with a time constant of 2.7
ms. This data was published in Reference [55].
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both with excess kinetic energy. The rate for three-body recombination increases dramatically near

the Fano-Feshbach resonance, which I will explore in much more detail in Chapters 7 and 8. For

a Bose–Fermi mixture, the dominant three-body recombination process removes two bosons and

one fermion from the trap. Characterizing the initial atom conditions by the peak 87Rb density

squared times the peak 40K density, we estimate the fractional atom loss to be below 10 percent

as long as this density product remains lower than 2×(1013 cm−3)3. To isolate our measurements

from inelastic loss, the initial atom conditions for data in Sections 5.3 and 5.4 are chosen to satisfy

this condition. However, it is worth noting that our largest molecule clouds are produced from

higher atom densities even though inelastic loss complicates the formation process. For example,

7× 104 40K87Rb molecules were measured in a mixture whose density product n2
RbnK was initially

3× (1013 cm−3)3. The atom gas in this case was prepared at 560 nK, with 6.5× 105 40K atoms at

T/TF = 0.51 and 2.1× 105 87Rb atoms at T/Tc = 2.0.

5.3 Dependence on the magnetic-field sweep rate

This section focuses on the fast-sweep regime of molecule creation, where a simple extension of

a two-body picture predicts that the molecule number increases linearly with the sweep duration [56,

19]. Here, the molecule number follows a Landau–Zener-like behavior [57, 19] with the transition

probability into the molecular state given by P = 1 − e−2πδLZ ≈ 2πδLZ. For two particles in a

box with volume V, the Landau–Zener parameter δLZ depends on the Fano-Feshbach resonance

parameters and is given by [56]

δLZ =
1

V
2π~
µ

∣∣∣∣
abg∆

Ḃ

∣∣∣∣ (5.2)

where ~ = h/2π and µ is the two-body reduced mass. Interestingly, this result applies for thermal

atoms (fermions or bosons) as well as for atoms in the motional ground-state, such as atoms in a

Bose–Einstein condensate or optical lattice [56]. Using classical probability theory, Eq. (5.2) can

be generalized to multiple particles simply by multiplying P by the total number of available atom

pairs to get the number of molecules [56]. Using a local density approximation, the molecule density
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at position r is then given by

nmol(r) = n1(r)n2(r)2π
2π~
µ

∣∣∣∣
abg∆

Ḃ

∣∣∣∣ . (5.3)

Integrating Eq. (5.3) over the trapped atom gas distribution, and dividing by N<, gives

f ≈ 〈n>〉2π
2π~
µ

∣∣∣∣
abg∆

Ḃ

∣∣∣∣ =
Γ

|Ḃ|
(5.4)

where 〈n>〉 = 1
N<

∫
n1(r)n2(r)d3r describes the density overlap of the two atom clouds.

Plugging the relevant Fano-Feshbach resonance parameters into Eq. (5.3) yields

Γ/〈n>〉 = (2.8± 0.1)× 10−12 cm3 G/ms. (5.5)

This prediction for Γ, which is shown as a solid line in Fig. 5.5, agrees well with our measurements of

Γ as a function of the density overlap of the initial atom gas, 〈n>〉. From this it seems reasonable to

conclude that magnetoassociation in the perturbative regime of fast magnetic-field sweeps behaves

as expected in our Bose–Fermi mixture. Systematic errors in the measured atom number or molecule

number would also change the measured value of Γ. The agreement between data and model

in Figure 5.5 suggests that our imaging process accurately counts the number of molecules. To

accomplish this agreement, it is crucial for the model to include a maximum molecule fraction

f0 which is below unity. In the next section we turn our attention to this saturation, which is

important for experiments where one would like to create larger numbers of fermionic Feshbach

molecules.

5.4 Saturated molecule number

Feshbach molecule conversion efficiencies as high as 90 percent have been observed in homonu-

clear Fermi gases [58]. In these experiments, it was found that the adiabatic molecule fraction f0

is determined by the phase-space density in the parent gas of atoms [58]. Monte-Carlo simulations

that select atom pairs within a phase-space distance criterion γ accurately predict f0 over a broad

range of initial gas conditions. The phenomenological criterion γ was determined by a fit to the
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Figure 5.5: The initial molecule conversion efficiency divided by the magnetic-field sweep rate, Γ, vs
the density overlap of the two atom clouds.The prediction for Γ using the 40K–87Rb Fano-Feshbach
resonance parameters (Eq. (5.5)) is shown as a solid line. Here, the atomic densities are varied
by associating molecules at different times during expansion from the optical trap (up to 1.2 ms),
as well as by adjusting the evaporation trajectory and optical trap frequencies. This data was
published in Reference [55].
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data. The same pairing criterion also accurately predicted the saturated molecule number in ther-

mal and degenerate Bose gases [58] and for heteronuclear molecules in a Bose-Bose mixture of 87Rb

and 85Rb [59] as well as a Fermi-Fermi mixture of 6Li and 40K [60]. Intuitively, this Stochastic

Phase Space Sampling (SPSS) calculation predicts a sharp increase in the molecule fraction as

the atoms are brought into the quantum degenerate regime, approaching nearly unit conversion

efficiency at zero temperature.

In contrast, the efficiency of molecule creation has been quite low in Bose–Fermi mixtures like

40K–87Rb. The problem of pairing in a strongly interacting Bose–Fermi mixture has been a topic

of theoretical interest [10, 61, 62, 63]. On a more practical note, fermionic Feshbach molecules are

also an essential step in creating a gas of ultracold polar 40K87Rb molecules. With the long-range

anisotropic interactions of polar molecules, physicists could access novel quantum phases of matter

and pave the way for many new experiments. However, the inefficiency of Feshbach molecule

production limits the initial phase space density of the polar molecular gas. As a consequence,

no experiment has yet managed to create a quantum-degenerate Fermi gas of polar molecules in

the six years since Feshbach molecules were first adiabatically transferred into the rovibrational

ground state [20]. In addition to 40K–87Rb, fermionic Feshbach molecules have also been created

in 23Na–40K and 6Li–23Na mixtures [64, 65], and these molecules could conceivably be transferred

into their ground state as well. In all of these experiments, the fraction of minority atoms converted

to molecules was less than 30 percent.

With a phase-space density criterion for pairing, it is not hard to see why a Bose–Fermi

mixture has fewer eligible atom pairs for creating molecules. At zero temperature all of the bosons

condense into the ground state of the trap whereas the (spin-polarized) fermions must each occupy

different trap states as shown in Figure 5.6. At high temperatures both species are spread out

across a broad distribution of momenta and positions. In either limit, most of the fermions and

bosons are too far apart in phase space to pair. It is the regime between these limits, where the

Fermi gas is quasi-degenerate but the Bose gas has a temperature above the BEC transition, that

the highest molecule conversion efficiencies are predicted by the phase-space density pairing (SPSS)
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Bosons Fermions

Figure 5.6: Schematic distribution of atoms in an optical trap at low temperatures. The fun-
damental challenge of pairing bosons with fermions lies in their low-temperature behavior. The
bosons condense into the trap’s ground state whereas the fermions must each occupy different trap
states. Fermi-Fermi and Bose-Bose pairs, on the other hand, see improved phase-space overlap at
low temperatures and so more pairs are formed.
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model. Although previous measurements of molecule creation in the 40K–87Rb mixture followed

the predictions of the SPSS calculation, these were limited to a regime of relatively high T/TF and

low number of the fermionic atoms. The measurements in this section pursue the initial conditions

for which the greater conversion efficiency was predicted.

Another challenge for heteronuclear Feshbach molecules is that differences in the masses,

polarizabilities, and/or magnetic moments of the initial atoms can cause the two atom clouds to

have different equilibrium positions in the trap. To measure the significance of this effect on the

molecule conversion efficiency, we intentionally separated the 40K and 87Rb clouds along the weak

axial direction of the optical trap by applying a magnetic-field gradient before molecule formation.

The results of this measurement are shown in Fig. 5.7, where we plot the saturated molecule

conversion efficiency against the spatial offset of the two atom clouds. The conversion efficiency

drops when the spatial separation is significant compared to the root-mean-squared (RMS) size of

the 87Rb gas in the trap, σRb. For the data in this Chapter, the spatial offset of the atom clouds

in the axial direction is less than 1.2 σRb and the calculated offset in the vertical direction due to

differential gravitational sag is less than 0.3 σRb. These relative displacements of the atom clouds

were accounted for in all modeling of the pairing process.

The top panel of Figure 5.8 shows our measurements of the molecule creation efficiency f0

as a function of T/TF for the initial 40K atom gas. Here, we varied the magnetic-field sweep rate,

using the findings of Sec. 5.3 to ensure that the sweeps were sufficiently slow that the molecule

number was in the saturated regime. For this data, the number of 40K atoms is larger than the

number of 87Rb atoms by a factor between 1.6 and 7. Rb radial (axial) trap frequencies range from

360 to 550 Hz (4 to 6 Hz), and initial atom temperatures are between 250 nK and 770 nK. This

broad range of initial conditions is used to provide a stronger test for the SPSS calculation and also

to make sure that the 87Rb gas is above the BEC transition temperature for all measurements even

when T/TF is low. The absence of a condensate improves phase-space overlap between the two

species and minimizes the inelastic loss processes that increase with 87Rb density. As was observed

for homonuclear molecules, the conversion efficiency increases for higher initial atomic phase-space
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Figure 5.7: Molecule conversion efficiency, f , as a function of the separation between the 40K and
87Rb clouds in units of the width, σRb, of the 87Rb cloud, which is the smaller of the two atom
clouds. The solid curve shows an empirical fit to a Gaussian with an RMS width of 1.8(1) σRb.
For this data, molecules are created from 2.8 × 105 87Rb atoms and 2.1 × 105 40K atoms at T =
490 nK and T/Tc=1.6. This data was published in Reference [55].
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densities.

In the bottom panel of Figure 5.8, we compare these results against the Stochastic Phase-

Space Sampling (SPSS) calculation developed by Hodby et al. [58]. This semi-classical model is

based on the idea that two atoms are able to pair if they lie within a volume of relative phase-space

set by an adjustable parameter γ:

µ |vrel| |rrel| <
h

2
γ (5.6)

where vrel is the relative speed of the two atoms and rrel is their separation. Another property of

the calculation is that atoms are only allowed to pair once (i.e., paired atoms are removed from

further consideration). To determine the parameter γ in our system, we fit the molecule creation

efficiency data from Fig. 5.8 to the SPSS calculation. First, a Monte-Carlo calculation generates

atom distributions matching the initial conditions for each measurement. These atoms are then

randomly paired according to the criterion in Eq. (5.6) to determine the molecule creation efficiency,

as described in [36]. A fit to the data with initial T/TF > 0.55 returns a value of γBF = 0.38(3).

The error bar is dominated by a 10 percent systematic uncertainty in the measured conversion

fraction. This measured γBF for 40K–87Rb is consistent with the values γF = 0.38(4) found in 40K

and γB = 0.44(3) measured in 85Rb [58]. Thus, Feshbach molecule formation appears to operate in

much the same way for bosons, fermions, and Bose–Fermi mixtures as long as the parent atoms’

distributions are well overlapped in the case of the two-species mixture.

As T/TF is lowered, the bosonic 87Rb gas continues to shrink while Pauli pressure forces the

40K atoms into a relatively broad distribution of momenta and positions. The SPSS simulation

fully takes into account the differences between Bose and Fermi-Dirac distributions in this regime.

Even so, the bottom panel of Fig. 5.8 shows that the SPSS calculation with γBF = 0.38 significantly

overestimates the conversion efficiency for atom clouds with low T/TF. No single value of the pairing

criterion γ fits the entire temperature range of our data. In contrast, previous measurements for

homonuclear Feshbach molecules in 40K agreed with SPSS predictions for T/TF as low as 0.05 [58].

The failure of the SPSS model to describe our measurements in the quantum-degenerate regime
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Figure 5.8: Top: Measured conversion efficiency, f , vs the initial T/TF of the 40K atoms. The
atom number ratio ranges from 1.6 ≤ NK/NRb ≤ 2 (squares), 2 ≤ NK/NRb ≤ 4 (circles), or
4 ≤ NK/NRb ≤ 7 (triangles). Molecule conversion efficiency increases for higher atomic phase-
space density (lower T/TF). Bottom: The difference between the SPSS calculation and the data,
f − fSPSS, vs the initial T/TF of the 40K atoms. This data was published in Reference [55].



64

suggests that this model is inadequate for describing the production of fermionic molecules from

quantum-degenerate atom gas mixtures.

The phenomenological SPSS model is popular because of its intuitive simplicity and (until

now) successful track record. Nevertheless, the pairing criterion γ is not derived but instead is

extracted from experiments. This has motivated the development of other, possibly more rigor-

ous, theoretical models. One theory, based on the assumption that chemical equilibrium is main-

tained through the entire magnetic field ramp, has successfully duplicated the SPSS results with no

free parameters for Bose-Bose and Fermi-Fermi pairing in both thermal and quantum-degenerate

gases [66]. This model was later extended to include heteronuclear molecules with all combina-

tions of quantum statistics [67]. A more recent theoretical paper compared various incarnations

of the SPSS model against this chemical equilibrium theory for all possible combinations of quan-

tum statistics, revealing that the models differ for fermionic molecules in a way that depends on

the ratio of the number of atoms from each species [68]. Since the chemical equilibrium models

automatically include the quantum statistics of the molecules, it would be interesting to compare

these theories against the data of Figure 5.8. Another possibility is that heteronuclear molecule

formation involves higher partial waves due to the mismatch in the trap energy levels between the

two atom species [69]. A different theoretical approach includes few-body interactions and their

influence on the Bose–Fermi pairing process [70], predicting a suppression of pairing that could be

related to our observations. Chapters 7 and 8 of this thesis will explore few-body interactions in

the 40K–87Rb mixture specifically.



Chapter 6

More KRb molecule results

This Chapter will dive deeper into the world of fermionic Feshbach molecules. Magnetoassoci-

ation, which was studied in the previous Chapter, is only one of several ways to generate molecules.

Section 6.1 highlights the competing timescales of inelastic collisions that can both produce and

destroy Feshbach molecules in a gas of atoms. Just by holding at a magnetic field below the

Fano-Feshbach resonance, in some cases we can create as many molecules in the gas as we do by

magnetoassociation. In Section 6.2, we use radio frequency photons to directly transfer the atoms

into the Feshbach molecule state. Finally, Section 6.3 reports measurements of the temperature

of the molecules using time-of-flight expansion after the optical trap is switched off. These exper-

iments reveal a surprising excess of molecular kinetic energy, which is independent of the method

by which the molecules are produced.

6.1 Molecules formed by three-body recombination

Inelastic collisions are notorious enemies of ultra cold atom experiments: they release heat

and eject atoms from traps, which diminishes the effectiveness of evaporative cooling and can make

it essentially impossible for many strongly interacting gases to be studied in equilibrium. This

section casts inelastic collisions in a slightly more positive light: at large interspecies scattering

lengths, inelastic collisions in the 40K–87Rb mixture actually produce trappable 40K87Rb Feshbach

molecules. Recall that three-body recombination results in a diatomic molecule, with kinetic energy

equal to the binding energy shared between the molecule and a third atom. When this binding



66

energy is sufficiently small, as is the case with Feshbach molecules at a high scattering length, the

reaction products remain trapped and molecules accumulate in the gas.

Figure 6.1 shows a magnetic-field sequence designed to explore these dynamics by imaging

the molecules themselves. As with the data in the previous Chapter, we initially prepare a gas of

40K and 87Rb atoms in the |f,mf 〉 = |9/2,−9/2〉 and |1, 1〉 states. The molecules are dissociated

and imaged above the Fano-Feshbach resonance, similar to the timing in the left part of Figure

5.3. A small imaging background, typically about 104 atoms, is left over by an imperfect transfer

of unpaired K atoms into the invisible |9/2,−7/2〉 state during the ‘clean’ stage of the imaging

sequence. We measure the size of this effect by preparing a spin-polarized sample of 40K atoms

only with no 87Rb present. Since no Feshbach molecules can be made in this mixture, all 40K

atoms that can be imaged after the cleaning sequence are attributed to the imaging background.

We subtract this background1 from our measurements of molecule number.

Figure 6.2 shows the molecule number vs thold measured at a few different scattering lengths

near the Fano-Feshbach resonance. For all of these scattering lengths, the Feshbach molecule

binding energy is less than 1.2 microKelvin. At short hold times near the resonance, a fast rate of

three-body recombination leads to an accumulation of molecules. At longer times, the molecules

decay by vibrational relaxation. The single-beam optical trap for these experiments has a period

of 160 ms in the weak axial direction and 1.7 ms in the tight radial direction for the 87Rb atoms.

There are initially 5 × 105 40K atoms with an average density of 8 × 1012/cm3 and 6 × 105 87Rb

atoms with an average density of 1.4 × 1013/cm3. The two species are prepared at a temperature

of 700 nanoKelvin, which is 1.5 times the BEC transition temperature of the 87Rb atoms and 0.6

times the Fermi temperature of the 40K atoms.

Two types of three-body recombination events occur during these experiments. The first

type creates a molecule with large binding energy, and it therefore imparts a large kinetic energy

to the resulting molecule and atom. Two 87Rb atoms and one 40K atom are lost from the trap for

1 Since our method of preparing a 40K gas without 87Rb atoms results in a gas with as many as 50% more 40K
atoms, we could be overestimating the imaging background.
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Figure 6.1: Timing sequence for measurements of Feshbach molecules formed by three-body re-
combination. The 40K and 87Rb atoms are prepared at a weakly interacting scattering length far
below the interspecies magnetic Fano-Feshbach resonance. We quickly ramp the field to a strongly
interacting value where three-body recombination produces trapped Feshbach molecules. After a
variable hold time, thold, we switch the optical trap off. At this point we also ramp the magnetic
field away from the Fano-Feshbach resonance so that a resonant RF pulse can drive the unpaired
40K atoms into the invisible |9/2,−7/2〉 state. Finally, we ramp the magnetic field across the Fano-
Feshbach resonance, which dissociates the Feshbach molecules. The 40K atoms that were previously
part of Feshbach molecules are imaged on the cycling |9/2,−9/2〉 → |11/2,−11/2〉 transition.
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Figure 6.2: The dynamic population of fermionic Feshbach molecules in 40K–87Rb mixtures. The
interspecies scattering length is 5100 a0 for (a), 3400 a0 for (b), 2500 a0 for (c), and 1700 a0 for
subplot (d). The lines show fits to Equation 6.4, where the only free parameter is the fraction of
three-body recombination events that produce Feshbach molecules, F .
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each event. The second type creates a Feshbach molecule, which is trapped for the combinations

of optical trap strength and magnetic field that we study here. After a recombination event,

one 87Rb atom and one 40K atom are converted into one 40K87Rb Feshbach molecule, but all

participants in the reaction remain trapped. The total rate of three-body recombination events is

characterized by the rate coefficient α, which is defined by Equation 7.1 and measured in Figure

8.5. At a given magnetic field, a fraction F of these recombination events make Feshbach molecules

and the remaining fraction (1 − F ) produce deeply bound molecules. In addition to three-body

recombination, the molecule population is also affected by inelastic collisions with 87Rb atoms (our

measurements in Figure 8.2 show that the rates of inelastic molecule collisions with 40K atoms are

much smaller than they are with 87Rb atoms, so we will leave 40K collisions out of this discussion

for simplicity). Each of these collisions removes a 40K87Rb molecule and a 87Rb atom from the

trap. They are characterized by the loss rate coefficient β, which is defined by Equation 8.1 and

measured in Figure 8.2.

Putting all of these pieces together, we get a set of coupled differential equations to model

the population of atoms and molecules in the trap as a function of the hold time, t at a magnetic

field near the Fano-Feshbach resonance:

ṄKRb(t) =

∫
d3r

[
F α n2

Rb(r, t) nK(r, t) − β nKRb(r, t) nRb(r, t)
]

(6.1)

ṄRb(t) =

∫
d3r

[
(F − 2) α n2

Rb(r, t) nK(r, t) − β nKRb(r, t) nRb(r, t)
]

(6.2)

ṄK(t) =

∫
d3r α n2

Rb(r, t) nK(r, t) (6.3)

Here, nRb(r, t) and nK(r, t) are the atom number densities and nKRb(r, t) is the number density of

the molecules as a function of position and hold time.

To gain intuition about the evolution of the molecule population, let’s simplify these equations

with a few approximations. First, we approximate the atom clouds as sharing the same gaussian

cloud sizes σx, σy, and σz. The equilibrium ratio of 40K cloud size to 87Rb cloud size is 1.07 in

our optical trap, which means that the error from this approximation should be small. Second, we

neglect the depletion of the majority population of 87Rb atoms. With these approximations, plus
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an initial condition with NK0
40K atoms and zero 40K87Rb molecules, the approximate solutions

to Equations 6.1 - 6.3 are,

NKRb(t) =
A0

A0 −B0
FNK0

(
e−B0t − e−A0t

)
(6.4)

NRb(t) = NRb0 (6.5)

NK(t) = NK0 e
−A0t (6.6)

where the constant A0 is equal to α 〈n2
Rb〉n and the constant B0 is equal to β 〈nRb〉n, and the

quantities in angle brackets are density-weighted averages. Equation 6.4 highlights the competition

between two timescales: one is set by the rate of loss due to atom-molecule collisions (B0) and the

other by the rate of molecule production due to three-body recombination (A0). The quantity FNK0

is the maximum possible number of molecules that can be created by three-body recombination

when 40K is the minority species.

We fit the data in Figure 6.2 the Equations 6.4–6.6, where F is the only free parameter. The

results are F = 0.12(2), F = 0.19(1), F = 0.31(2), and F = 0.38(4) for subfigures (a), (b), (c),

and (d) respectively. To calculate the rate constants A0 and B0, we use our own measurements

of atom and molecule loss rates from Chapter 8. Unfortunately, it is clear from the disagreement

between the fits and the data in Figure 6.2 that the approximations behind Equations 6.4 were not

justified for higher scattering lengths. The depletion and heating of the 87Rb atom population by

three-body recombination appears to lengthen the lifetime of the molecules. For a more accurate

model, we could solve Equations 6.1–6.3 numerically. In any case, the peak molecule numbers in

Figure 6.2 are similar to those from magnetoassociation (see Chapter 5). This is possible because

the timescales for three-body recombination are so much faster than those for atom-molecule loss in

the 40K–87Rb mixture at high scattering lengths. However, since this method of molecule formation

adds kinetic energy to the molecules and is particularly sensitive to fluctuations in the magnetic

field or atom density, we do not routinely use it as a starting point for other experiments with

molecules.
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6.2 Radiofrequency photoassociation

Photoassociation with Radio Frequency (RF) photons is another option for creating Feshbach

molecules in a gas of atoms. RF association has been well studied in the 40K–87Rb system, with

early measurements of 40K87Rb molecule creation efficiency [33] and lifetime [71] as well as a

characterization of the interspecies scattering length via the molecules’ binding energy [32]. In this

section, we revisit RF photoassociation because it avoids complications associated with crossing the

magnetic Fano-Feshbach resonance. In Section 6.3, we investigate the temperature of molecules

formed by magnetoassociation and by RF association, and find larger than expected expansion

energies in both cases. In this section, we describe our procedure for RF association.

First, we prepare a quantum gas mixture of 40K atoms in the |9/2,−7/2〉 state and 87Rb atoms

in the |1, 1〉 state at a magnetic field of 540 G. Since the |9/2,−7/2〉 state does not participate in

the Fano-Feshbach resonance at B0 = 546.618 G, the 40K and 87Rb atoms only interact weakly,

with the background interspecies scattering length of -187 a0. To associate molecules, we follow

the timing diagram in Figure 6.3. We sweep the magnetic field to 546.1 G in 0.3 ms. We use a

Toptica VFG-150 synthesizer to generate a pulse of RF with frequency ν. The RF power has a

Gaussian envelope with a 1/e full width of 400 microseconds. This pulse is subsequently amplified

by a Minicircuits ZHL-5W-1 amplifier and broadcast to the atoms using a resonant antenna.

Figure 6.4 shows the resulting RF spectrum. The leftmost peak is due to the bare |9/2,−7/2〉 →

|9/2,−9/2〉 transition at ν0 = 80.0392(4) MHz for the 40K atoms. The resonant frequency ν0 cor-

responds to a magnetic field of 546.13 G, where the interspecies scattering length is 980 a0. The

shorter asymmetric peak on the right side is from the photoassociation of Feshbach molecules, with

a peak value of NKRb ≈ 30, 000 molecules. The distance between these peaks corresponds to the

binding energy of the KRb Feshbach molecule state. Equation 2.2 predicts a molecule binding

energy of 80 kHz at this magnetic field, which would correspond to a resonant frequency of 80.12

MHz on the x axis of Figure 6.4.
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Figure 6.3: Timing diagram for RF photoassociation of fermionic Feshbach molecules. The 40K
and 87Rb atoms are prepared in the |9/2,−7/2〉 and |1, 1〉 states. We ramp the magnetic field to
a value within 1 Gauss of the Fano-Feshbach resonance and hold for a few milliseconds to allow
small magnetic-field transients to damp out. A gaussian RF pulse, blue-detuned from the 40K
|9/2,−7/2〉 → |9/2,−9/2〉 transition, then drives 40K atoms into the 40K87Rb Feshbach molecule
state. Next, the optical trap is switched off and the gas of atoms and molecules expands. Finally,
the molecules are imaged directly using the |9/2,−9/2〉 → |11/2,−11/2〉 optical transition.
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Figure 6.4: RF spectrum for 40K atoms prepared in the |9/2,−7/2〉 state, in a mixture with 87Rb
atoms in the |1, 1〉 state. The bare 40K |9/2,−7/2〉 → |9/2,−9/2〉 transition is measured with a 40
µs Gaussian RF pulse (left peak, hollow triangles) and the 40K87Rb photoassociation transition is
measured with a 400 µs Gaussian RF pulse (right peak, filled diamonds). The inset shows schematic
energy levels for the experiment.
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6.3 Excess molecule kinetic energy

Up to this point, we have focused on the number of fermionic pairs in the 40K–87Rb mixture.

Since many experiments seek to create degenerate gases of Feshbach molecules, the temperature

of these pairs is also an essential quantity. One previous experiment created fermionic 40K87Rb

molecules and measured their temperature to be 300 nK, whereas the temperature of the atom

gas was initially 150 nK [33]. Later, a different group created fermionic 23Na40K molecules with a

temperature of 500 nK, even though the temperature of the atoms was initially only 220 nK [64].

In contrast, an experiment with bosonic 6Li40K molecules found that the molecules had the same

temperature as the gas of atoms that they were created from [60].

Since conservation of momentum should cause a Feshbach molecule to inherit the center-

of-mass momentum of its parent atoms, it is surprising that the fermionic molecules do not also

appear to inherit the temperature of the atom gas. In this Section, our measurements show that

the temperature of the 40K87Rb molecules is consistently higher than that of the atoms, over a

broad range of initial densities and temperatures, and that this behavior is consistent regardless

of whether molecules are formed by magnetoassociation or by RF photoassociation. We measure

the temperature of the molecules from their kinetic energy during time-of-flight expansion in one

radial trap direction, which is shown in Figure 6.5. Using the 87Rb atoms as a thermometer, we

predict the expansion velocities of the 40K atoms as well as the 40K87Rb molecules. Whereas the

40K atoms match the expected velocity quite well, the molecules in this measurement expand faster

than our prediction by a factor of 1.2.

Figure 6.6 summarizes the molecule expansion energy along one direction, E = 1
2m〈v2

KRb〉,

from measurements similar to Figure 6.5 over a broad range of initial atom conditions. At T/TF <

0.5, where the 40K atoms have extra average kinetic energy compared to the Maxwell-Boltzmann

distribution, we modify our calculation of the expected molecule expansion energy (grey solid line).

First, we calculate the kinetic energy of the 40K atoms numerically from the thermal distribution of

an ideal non-interacting degenerate Fermi gas following [54] (blue dashed line), at the temperature
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Figure 6.5: Measured RMS cloud widths σ for 87Rb atoms (red circles), 40K atoms (blue triangles),
and 40K87Rb molecules (black diamonds). The 87Rb expansion data fit to a line through the origin
with slope vRb = 8.71(7)µm/ms (red dash-dotted line), which corresponds to T = 800 nK. The
blue dashed line shows the predicted expansion velocity for 40K atoms at the same temperature,
vK = vRb

√
mRb/mK , which fits the data quite well. In contrast, the measured expansion velocity

for the molecules is higher than the predicted vKRb = vRb
√
mRb/mKRb (grey solid line). For this

experiment, the molecules are created following the timing diagram in figure 5.4 with trelease = 0.
The initial average in-trap densities are 5 × 1012 / cm3 for the 40K atoms and 7 × 1012 / cm3 for
the 87Rb atoms. The optical trap has a weak axial trapping frequency f = 7 Hz and two tight
radial trapping frequencies of 600 Hz for the 87Rb atoms. For these conditions, the 40K atoms are
at T/TF = 0.7.
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measured from the expansion energy of the 87Rb gas. Next, we use this calculation to predict the

distribution of 40K87Rb molecule energies. Center-of-mass momentum is conserved by the molecule

formation process, so that mKRb~vKRb = mK~vK +mRb~vRb where the mx refers to mass and ~vx refers

to velocity for each species x. Solving for the root-mean-squared molecule velocity of the molecules,

we get

〈v2
KRb〉 =

m2
K〈v2

K〉+m2
Rb〈v2

Rb〉
m2
KRb

(6.7)

where the average of the dot product between the 87Rb and 40K velocities is presumed to be

zero. Equation 6.7 combines the numerically calculated value for 〈v2
K〉 with the Maxwell-Bolzmann

formula, 〈v2
Rb〉 = 3kBT/mRb, to predict the average kinetic energy of the molecules, which is plotted

as a thick grey line in Figure 6.6.

On average, the measured energy for the molecules in Figure 6.6 is 1.6(2) times the simple

prediction in Formula 6.7. Figure 6.6 clearly shows that the extra 40K87Rb molecule energy in

our measurements is present regardless of the initial degeneracy of the 40K gas, or the density

of 87Rb atoms that can undergo collisions with the molecules. Furthermore, the fact that the

RF photoassociated and magnetoassociated 40K87Rb molecules have the same measured expansion

energy rules out any heating that might have occurred as the magnetic field crossed the Fano-

Feshbach resonance. Another difference between these two methods is that the unpaired 40K atoms

remain in the resonantly interacting |9/2,−9/2〉 state after magnetoassociation whereas they are

in the non-resonant |9/2,−7/2〉 state after RF photoassociation. Therefore we can also rule out

interactions with unpaired resonant 40K atoms as the cause of the mysterious extra energy.

To further exclude 87Rb atoms as culprits, we measured the expansion of 40K87Rb molecules

from the trap after the unpaired 87Rb atoms were removed from the trap. Figure 6.7 shows the ex-

pansion of molecule clouds with and without the 87Rb removal sequence, which combines Adiabatic

Rapid Passage to the |2, 2〉 state with resonant light on the cycling |2, 2〉 → |3, 3〉 transition. Since

the experiment is performed in a crossed dipole trap, we monitor the expansion in the tight radial

direction as well as the weak axial direction. In both directions, there is a negligible difference in
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Figure 6.6: The measured kinetic energies for molecules formed by magnetoassociation (black
diamonds) and RF photoassociation (purple squares). Top: For different intial T/TF of the 40K
atoms. The expansion energy of the 87Rb atoms is used to measure the temperature (red dash-
dotted line), from which we predict the expansion energy of the 40K atoms (blue dashed line) and
40K87Rb molecules (grey solid line). Bottom: The same data are plotted against the initial average
density of 87Rb atoms. Because the temperature appears to be independent of the density of 87Rb
atoms, we conclude that inelastic collisions with these atoms cannot account for all of the increased
temperature of the molecules.
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the expansion rates for molecules with and without the 87Rb atoms. This result implies that the

extra expansion energy is not being caused by interactions between the unpaired atoms and the

molecules during expansion. In addition, the measured expansion velocities are 6.2(3) µm/ms in

the axial direction and 6.6(1) µm/ms in the radial direction, which are consistent with each other.

This rules out the possibility that the fast radial expansion in Figure 6.6 could be a signature of

hydrodynamic expansion in the strongly interacting gas, where one would have slower expansion

in the axial direction.

At the time of this writing, the temperature of the KRb molecules remains difficult to explain.

In the remaining Chapters of this thesis, I will present measurements of three-body effects that

indicate a strong interaction between KRb molecules and Rb atoms. It is possible that these

interactions are affecting the physics of molecule formation in the 40K–87Rb gas mixture. Another

possibility is that the Fermi statistics of the molecules somehow plays a role.
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Figure 6.7: Expansion of 40K87Rb molecules from a crossed dipole trap. Squares (larger cloud
sizes) indicate the measured axial cloud sizes and diamonds (smaller cloud sizes) indicate the mea-
sured radial cloud sizes. The solid black points show the expansion of molecules in the presences of
unpaired 87Rb atoms whereas the pink points show the expansion of the molecules after unpaired
87Rb atoms have been removed from the trap. The grey bands show the expected molecule ex-
pansion velocities based on Equation 6.7 including the distribution of the quantum-degenerate 40K
atoms with initial T/TF = 0.3. The range of the bands reflects the difference between the 87Rb
temperature measured before and after molecule formation.



Chapter 7

The Efimov Effect

This Chapter lays the ground work for our measurements of three-body collisions, which are

presented in Chapter 8. First, Section 7.1 reviews the Efimov effect, which is becoming a standard

framework for understanding few-body physics in quantum systems. The Efimov effect is based on

a fascinating solution to the problem of three strongly interacting quantum particles: an infinite

series of three-body bound states that obey a discrete scale invariance. Although the Efimov effect

was originally proposed in the context of nuclear theory, gases of ultra cold atoms are a nearly ideal

platform to explore this effect because the interactions can be controlled by magnetic fields near

Fano-Feshbach resonances. The Efimov states in these gases mediate resonant inelastic collisions,

which is a major source of data on few-body interactions as described in Section 7.2. Finally,

Section 7.3 discusses emerging patterns in the measured spectra of Efimov states across different

atomic species as well as predictions of how the 40K–87Rb mixture might fit in.

7.1 Echoes of nuclear physics in quantum gases

The three-body problem is generically difficult; even the classical orbits of three planets

with gravitational interaction need to be solved numerically, and, in many cases, the system is

chaotic [72, 73]. In 1970, Vitaly Efimov insightfully observed that the problem of three resonantly

interacting quantum particles can be reduced to an effective 1/R2 potential, and derived analytic

solutions for the three-body bound states [74]. Figure 7.1 sketches the energies of Efimov’s states.

This solution has become an important paradigm in the study of few-body interactions (review
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Figure 7.1: A cartoon of the energy spectrum for three atoms with resonant interactions. The two-
body scattering length a diverges at the Fano-Feshbach resonance at the origin. E = 0 represents
the threshold for a continuum of free three-atom states. A two-body Feshbach molecule state exists
at positive scattering lengths (black dashed line). An infinite series of universal three-body Efimov
states (red lines) is present when the interaction strength diverges. The Efimov states become
degenerate with the threshold of free atom energies at negative scattering lengths λna− where
n =∈ {0, 1, 2, ...}. At positive scattering lengths λna∗, the Efimov states are degenerate with the
threshold of energies for a Feshbach molecule plus a free atom.
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articles include References [23, 75, 24, 76]). More broadly, the Efimov states set a length scale

when others diverge at the Fano-Feshbach resonance. In addition, the Efimov states potentially

impact many-body physics in unitary quantum gases [77, 78].

The Efimov three-body bound states have intriguing properties. Where the scattering length

a diverges, they obey a discrete scale invariance: for each state there exists one even larger by

a factor of λ [74]. They can even exist when the two-body potential doesn’t support a bound

state, which has drawn comparisons between Efimov states and Borromean rings (Figure 7.2). Like

Feshbach molecules, the Efimov states reach a spatial extent that spans far beyond the scale of

inter-particle forces [29]. One recent paper observed evidence of a three-atom Efimov state on the

order of 1 µm in size [79]. The states are also universal, in that their properties are determined solely

by the two-body scattering lengths and a three-body parameter κ∗ that determines the location

of the first Efimov state. This independence from microscopic detail means that Efimov’s solution

can be applied to both nuclear structure and interactions between ultra cold atoms in spite of the

vast difference between their energy scales [76].

The scaling factor λ = eπ/s0 is determined by a transcendental equation that only depends on

the number of resonant pairwise interactions between the constituent particles and the ratio between

the masses of these particles [80]. When only one of three pairwise interactions is resonant, there

is no Efimov effect all. For three equal-mass particles where all three pairwise interactions are

resonant, we have λ = 22.7. This is comparable to the tuning range over which a is the dominant

length scale in most quantum gas experiments near Fano-Feshbach resonances. When only two

pairwise interactions are resonant in three-body systems of equal-mass particles, the density of

Efimov states drops to λ = 1986 [81]. The mass ratio can have a huge impact on λ. For heavy-

light-light combinations with resonant interspecies interactions the value of λ increases sharply,

making the observation of an Efimov state extremely unlikely. On the other hand, heavy-heavy-

light combinations see an enhanced density of Efimov states. Our 40K–87Rb mixture has λ = 123.

The recently achieved 133Cs-133Cs-6Li quantum gas mixture has λ = 5.5, making it possible to see

the Efimov state sequence repeat itself three consecutive times [82, 83]. Figure 7.3 illustrates the
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Figure 7.2: A topological analogy to the Efimov bound states. The triplet on the left is in a
‘Borromean’ configuration such that no single pair of rings is linked. Similarly, Efimov states
remain bound at negative scattering lengths where there is no two-body Feshbach bound state.
The triplet on the right is in a ‘tango’ configuration, where each pair of rings is linked. This
matches the situation at positive scattering lengths where both two-body Feshbach and three-body
Efimov bound states exist.
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wide variety of λ values in three-body systems.

Another requirement for the Efimov effect to occur is that the resonant pairwise interactions

overwhelm other energy scales. Since the long-ranged Coulomb repulsion between charged particles

overwhelms the Efimov 1/R2 potential, nuclear Efimov states are most likely to exist in the so-

called ‘halo nuclei’ where a neutral core is orbited by two loosely bound neutrons, such as 11Li or

20C [84, 29]. Though no definitive sign of a nuclear Efimov state has been observed at the time

of this writing, the prospect of observing them in halo nuclei continues to drive experimental and

theoretical research [85, 86]. The extreme mass ratio in these nuclei unfortunately leads to an

unfavorable density of Efimov states. The 11Li (9Li−n− n) nucleus has λ = 3× 1018, for example.

Whereas extraordinary fine tuning is required on Nature’s part to realize a nuclear Efimov states,

the scattering parameters in cold atoms can be easily tuned by physicists thanks to Fano-Feshbach

resonances. Dozens of Efimov states have been catalogued from observations in ultracold atomic

gases since their initial observation in a gas of neutral Cesium [22]. For these experiments, Efimov

physics can be explored over scattering lengths that are between the finite range of the two-body

potential (set by the van der Waals length for wide Fano-Feshbach resonances) and the smallest of

either the thermal deBroglie wavelength or the inter-particle spacing. In practice this means that

the atoms must be in the ultra cold regime to observe Efimov effects, and that it is possible to

explore a broader range of interaction strengths by reducing the temperature and density of the

atomic gas [87, 79].

7.2 Inelastic collisions as a signature of Efimov states

All of the Efimov states to be identified so far in ultra cold atomic gases have been too short-

lived for direct observation. Instead, experimentalists typically rely on measurements of scattering

rates to point the way to the Efimov spectrum1 . When an Efimov state becomes degenerate with

the free atom threshold at negative scattering length a−, strong three-body correlations mediate a

resonant increase in the rate of three-body recombination. Similarly, at positive scattering length a∗

1 Another less common method is to photo associate the three-body states directly [88, 89, 90].
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Figure 7.3: The length scaling factor λ = eπ/s0 for a few systems of interest. Heavy-Heavy-Light
mass systems have a high density of Efimov states, whereas Heavy-Light-Light mass systems have
extremely sparse Efimov states.

where the Efimov state’s energy intersects the threshold for an atom and a Feshbach molecule, there

is a resonant increase in the rate of inelastic atom-molecule collisions. These scattering lengths are

marked in Figure 7.1. There is also an interference minimum located at positive scattering length

a+, where the three-body recombination rate is reduced. These three Efimov features at a−, a∗,

and a+ form a universal sequence that repeats itself every time the scattering length is changed by

a factor of λ. The details of the universal functions for scattering rates near Efimov resonances are

covered in [23] and extended to heteronuclear mixtures in [81].

The first observation of an Efimov state was performed by cataloguing the three-body recom-

bination rate in an ultra cold gas of identical 133Cs atoms [22], a method that remains widely used

today. In three-body recombination, three atoms collide to form a diatomic molecule. An amount

of kinetic energy equal to this binding energy is then shared between the resulting molecule and

a third atom. This energy is usually sufficient to eject the atom and molecule from the trap. For

the 40K–87Rb system with resonant interspecies interactions, two channels exist for interspecies

three-body recombination; however, only 87Rb+87Rb+40K supports Efimov resonances [23], while

87Rb+40K+40K loss is suppressed by Fermi statistics. Therefore we are most interested in the for-

mer process, which involves two bosons and one fermion. In order to compare measurements taken

under different experiment conditions, we define the density-independent three-body recombination
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rate coefficient α by

ṄRb(t) = 2ṄK(t) = −2α

∫
d3r nK(r, t) n2

Rb(r, t), (7.1)

where nRb(r, t) and nK(r, t) are the densities of 87Rb and 40K, respectively.

The recombination rate increases dramatically near Fano-Feshbach resonances, where α scales

as a4 [91]. The Efimov states modulate this overall dependence, leading to a universal pattern of

peaks and valleys that has been observed in a variety of cold atom experiments [24]. For a < 0 in

the 40K–87Rb–87Rb system [81], we have

α(a < 0) =
Cα
2

coth(πs0)sinh(2η∗)

sin2[s0 ln(a/a−)] + sinh2(η∗)

~a4

mK
, (7.2)

whereas for positive a,

α(a > 0) = Cα

(
sin2[s0 ln(a/a+)] + sinh2η∗

sinh2(πs0 + η∗) + cos2[s0 ln(a/a+)]
(7.3)

+
coth(πs0)cosh(η∗)sinh(η∗)

sinh2(πs0 + η∗) + cos2[s0 ln(a/a+)]

)
~a4

mK
.

Here, mK is the mass of 40K (or, more generally, the lighter atom). The coefficients Cα and s0

are determined by the mass ratio and the number of resonant interactions. For 40K–87Rb–87Rb,

Reference [81] calculates Cα = 354 and s0 = 0.6536. The decay factor η∗ accounts for the finite

lifetime of the Efimov states, and can be different for different atomic systems. The equation for

a > 0 contains two terms because there are two recombination channels: the first term is for

recombination that forms a Feshbach molecule state, and the second term is for recombination that

forms a deeply bound molecule.

The predicted loss resonances at at a− and a+ are quite dramatic, with a wide base and a

typical height spanning orders of magnitude in α. Figure 7.4 plots Equations 7.2 and 7.3 for the

40K–87Rb–87Rb system. Here, we choose the resonance locations based on previous measurements

in the 41K–87Rb–87Rb system [92] as described in the next Section. The different colored solid lines

show a typical range of values for η∗ across cold atom experiments. As η∗ increases, the resonances

become broader. The overall value of α also increases with η∗ at negative scattering lengths, even
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Figure 7.4: Theoretical α vs. a for 40K–87Rb–87Rb three-body recombination from Equations 7.2
and 7.3. Top: loss peaks at negative scattering lengths λna−. Our measurements in Chapter
8 access the ranges within the dashed lines. Bottom: interference minima at positive scattering
lengths λna+.
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in the regions between Efimov resonances. Notice the periodicity of the resonances, which repeat

each time the scattering lengths change by λ = 122.7.

Our experiments, described in Chapter 8, can measure the region inside of the dashed lines

in Figure 7.4, which spans about half of the period of the Efimov spectrum. Recall that the Efimov

model is valid when the scattering length overwhelms the other length scales of the system. This

region is bounded at low scattering lengths by the van der Waals length, rvdW = 72 a0, and at

high scattering lengths by the thermal wave vector 1/k ≈ 3000 a0. The trap lifetime for the

atoms is about 45 seconds, which, for typical densities, makes it difficult to measure values of α

lower than 10−28 cm6/s. The upper bound for α is set by the unitarity limit which is αsat =

~192π2/(2µK-Rb-Rbk
4) ≈ 10−21 cm6/s [87]. The maximum values for a and α both increase for

colder temperatures, however we are limited to temperatures above 200 nanoKelvin in order to

maintain a good overlap between the 40K and 87Rb clouds.

Another type of Efimov resonance occurs in the atom-molecule scattering rate when an Efimov

state becomes degenerate with the energy threshold for a free atom and a Feshbach molecule [93, 23].

These resonances are less well-understood than their three-body recombination counterparts, due

in part to the relatively high difficulty of preparing and measuring a gas of Feshbach molecules. In

our quantum gas mixture, the Efimov states have two 87Rb atoms and one 40K atom. Therefore

the Efimov resonance occurs in collisions between 87Rb atoms and 40K87Rb Feshbach molecules.

This atom-molecule inelastic loss rate is characterized by a coefficient β, defined such that [81]

ṄKRb(t) = ṄRb(t) = −β
∫
d3r nKRb(r, t) nRb(r, t), (7.4)

where nKRb(r, t) is the number density of the Feshbach molecules and nRb(r, t) is the number

density of the atoms.

For collisions between 87Rb atoms and 40K87Rb Feshbach molecules, universal theory predicts

that β should increase with a modest scaling of a1 near the Fano-Feshbach resonance [35]. As

with three-body recombination, this dependence is modulated by a universal sequence of Efimov
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resonances [23]:

β(a) = Cβ
sinh(2η∗)

sin2[s0 ln(a/a∗)] + sinh2(η∗)

~a
mK

. (7.5)

In the 40K–87Rb mixture, Reference [81] calculates s0=0.6536 and Cβ = 10.1.

Figure 7.5 plots Equation 7.5 for the same range of η∗ values that were used in Figure 7.4.

Once again, the Efimov peaks are both broad and tall, and become broader as the decay parameter

η∗ increases. The dashed lines indicate the range accessible to our experiments. As with the three-

body recombination measurements, the Efimov theory applies when 72 a0 < a < 3000 a0. The lower

bound for β is set by the measured lifetime of molecules in a gas where all unpaired atoms have

been removed. The unitarity limit sets the upper bound on β at βsat = ~π/(µRb-KRbk) ≈ 5× 10−10

cm3/s for typical temperatures of 300 nanoKelvin [94]. Observe that the Efimov resonances in

this case are likely to be saturated at their peaks, leading to a distorted shape. In Chapter 8, we

will account for this effect rather crudely by fitting a multiplicative factor to the amplitude of the

universal curve.

7.3 How predictable are three-atom interactions?

Looking at the predicted loss rates in Figures 7.4 and 7.5, it is clear that the locations

of Efimov resonances can have a big impact on experiments that seek to leverage tunable inter-

actions near Fano-Feshbach resonances. Fortunately, these locations turn out to be surprisingly

predictable. This Section summarizes recent measurements of the relationships between Efimov

resonance locations at different scattering lengths and even across different atomic species [95, 96,

97, 98, 25, 26, 99], which has driven the development of improved models for few-body interactions

between atoms [100, 27, 101, 102, 103]. Since most of the work to date has been performed with

homonuclear atomic gases, our measurements in Chapter 8 are motivated by the desire to extend

this understanding to mixed-species systems.

Universal theory based on the Efimov effect predicts relationships between the locations of the

resonances at a−, a+, and a∗ [23, 81]. In principle, the measurement of a single Efimov resonance
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Figure 7.5: Theoretical β vs. a for 40K87Rb + 87Rb molecule vibrational relaxation collisions from
Equation 7.5. Our measurements in Chapter 8 access the range within the dashed lines.
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pins down the locations for the entire Efimov spectrum in a given system. For homonuclear systems,

the theoretical relationships between Efimov resonances associated with the same three-body bound

state are [23]:

|a−|
a+

= 4.9 (7.6)

a+

a∗
= 4.46

|a−|
a∗

= 21.9

The first relation, between a− and a+, has been confirmed by a number of experiments [22, 97, 104].

In contrast, the values for a∗ reported thus far [105, 106, 107] have not followed the predicted

locations relative to a+ and a−. This suggests that models of the atom-molecule loss resonances in

cold atoms may require additional input beyond the Efimov effect [103].

More generally, the Efimov relationships between resonance locations are a function of the

mass ratio and the number of resonant interactions. For our heteronuclear mixture of 40K and 87Rb

atoms, they are [81]:

|a−|
a+

= 11.1 (7.7)

a+

a∗
= 21.7

|a−|
a∗

=
122.7

0.51
= 240.6

These relationships have been imposed between the resonances in Figures 7.4 and 7.5.

Whereas Efimov theory predicts a relationship between resonance locations, the so-called

‘three-body parameter’ that sets the absolute resonance locations was initially understood to be a

non-universal quantity subject to each system’s unique interaction potential at short range [108,

23, 109]. However, as measurements of Efimov resonances accumulated in single-species cold atom

experiments, an unexpected pattern emerged: Efimov loss resonances were consistently measured

at

a−,universal = −9.1 rvdW (7.8)
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for different nuclear spin states [25], different Fano-Feshbach resonances [26], and even different

atomic species [95, 96, 97, 98, 25, 26, 99].

Figure 7.6 collects worldwide measurements of Efimov resonance locations in single-species

cold atom experiments2 , where each point represents a measured Efimov resonance, following the

format of Reference [26]. Each vertical axis compares the measured Efimov resonance location to a

‘universal value’ by combining Equation 7.8 with the universal relationships in Equations 7.6. For

each plot, the full span of the vertical axis represents a period of the Efimov spectrum, where a

varies by λ = 22.7.

If the three-body parameter were determined by a detailed interplay between non-universal

short-ranged potentials, as was originally expected from the Efimov theory, then the points in Figure

7.6 would be scattered over the whole vertical range of the plots. Instead, the points in subfigures

(a) and (b) tightly cluster around a simple prediction based on only the van der Waals length

(Equation 7.8, dashed horizontal line), which implies that the three-body parameter is universal.

The points in subfigure (c), on the other hand, appear to depart from that pattern. The pink circle

points are measured by the types of atom-molecule loss resonances shown in Equation 7.5 and

Figure 7.5. Since they are measured in the same systems where a− follows the universal three-body

parameter, it seems likely that Equation 7.6 misses some important aspect of the way atoms and

molecules collide. The blue diamond points represent ‘avalanche peaks,’ which are small atom loss

resonances that appear near the universal a∗ location in several experiments [97, 98, 112]. The

mechanism by which atom loss occurs near a∗ in a gas of pure atoms remains poorly understood

at the time of this writing [113].

The unexpected pattern shown in Figure 7.6(a) stimulated theoretical research, which has

since shown that the van der Waals potentials of cold atoms screen out the details of the non-

universal short-ranged potentials [114, 100, 27, 101, 102]. This leads to the universal three-body

parameter in ultra cold atoms. Measurements in the three-body recombination rate for ultra cold

2 One data point measuring a non-universal value of a− for 39K in Ref. [97] is deliberately excluded because a
later publication by the same group [110] claimed that the measurement was not repeatable.
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Figure 7.6: Measurements of the three-body parameter in homonuclear systems by three-body
recombination (blue diamonds) and atom-molecule loss (pink circles). Each subplot corresponds to
a different type of Efimov resonance: subplot (a) shows measurements of a− [111, 98, 104, 25, 97,
99, 22, 26, 79, 110]; subplot (b) shows measurements of a+ [104, 25, 97, 22]; and subplot (c) shows
measurements of a∗ [105, 97, 98, 106, 112]. The horizontal dashed lines show a prediction based on
a three-body parameter that is universally determined by the van der Waals length.



94

4He∗ have also been consistent with the same universal three-body parameter [115]. More recently,

a different universal model based on the van der Waals potential [103] was able to explain the

locations of both a− and a∗ for 133Cs, including the deviation of their relationship from the simple

Efimov rules in Equation 7.6.

For homonuclear cold atom systems, a combination of universal models based on Efimov

physics and a large number of experimental measurements have driven the development of a detailed

quantitative understudying of three-body interactions. In contrast, only a handful of measurements

exist for mixed-species systems. The first was performed by the LENS group in a Bose–Bose mixture

of 41K and 87Rb atoms with resonant interspecies interactions [92]. They identified loss resonances

corresponding to a− = −246 a0 and a tentatively labelled avalanche peak at a∗ = 667 a0 in the 41K–

87Rb–87Rb system. One theory has predicted a universal three-body parameter for heteronuclear

mixtures, which would imply that LENS’s 41K–87Rb–87Rb system and our 40K–87Rb–87Rb system

have nearly identical Efimov resonance locations [116]. The resonance locations in Figures 7.4 and

7.5 are based on LENS’s measurement of a−. These figures show that multiple Efimov features

would appear within our experimental window, if the two K–Rb mixtures had identical three-

body parameters. Our measurements presented in Chapter 8 investigate this possibility. After

our measurements were published, two independent groups measured Efimov loss resonances in

mixtures of 6Li and 133Cs atoms [82, 83]. They demonstrated a high density of Efimov states

consistent with the predicted value of λ = 4.9, which made it possible to observe three consecutive

Efimov states for the first time in any experiment. This illustrates the rich behavior of few-body

interactions in quantum gas mixtures.



Chapter 8

K-Rb-Rb collisions

In this Chapter, I describe our measurements of inelastic collision rates as a function of the

interspecies scattering length, and then discuss our results in the context of the universal Efimov

effect. Similar measurements for atoms with the same mass have uncovered a wealth of insights into

few-body interactions. Extending this understanding to include mixtures of different atomic species

is important to build a more general picture. To that end, we search for evidence of 40K–87Rb–

87Rb three-body states and compare our findings with theoretical predictions [116] as well as with

past measurements of the isotopically different 41K–87Rb–87Rb mixture by the LENS group [92].

Section 8.1 presents our measurement of an Efimov resonance in the collisions between 40K87Rb

Feshbach molecules and 87Rb atoms. In Section 8.2, we present measurements of the three-body

recombination rate coefficient α over the entire range of interspecies scattering lengths available

to our experiments, and find that the data exclude the presence of Efimov resonances in that

range. Finally, in Section 8.3 we analyze these findings in terms of a predicted universality of the

three-body parameter that sets the Efimov resonance locations.

The bulk of the material in this Chapter is published in Reference [117]. In particular,

Sections 8.2 and 8.1 are published nearly verbatim in that work. Section 8.3 also contains material

from the paper, but it is expanded to include comparisons against newer results from other groups.
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8.1 Atom-molecule loss

I’ll begin by considering inelastic atom-molecule collisions, which eject the participating atom

and Feshbach molecule from the trap. The inelastic collision rate is enhanced when a is tuned to a

value, denoted a∗, where an Efimov trimer state is degenerate with the atom-molecule threshold [93,

23]. Such Efimov resonances have been observed as broad loss features for 133Cs [105] and 6Li

dimers [106, 107] (see Figure 7.5 and the accompanying discussion in Section 7.2 for more on these

resonances). Part of our motivation to study atom-molecule collisions in the 40K–87Rb mixture came

from previous measurements of the same mixture that were made by our group in 2008 [71]. They

found that collisions between 87Rb atoms and 40K87Rb molecules intensified as they reduced the

scattering length, which ran opposite to the expected trend [35]. Helfrich et al. later suggested that

these experiments had encountered one side of an Efimov resonance [81]. Our new measurements,

which are the topic of this Section, extend these data to lower values of a where we do in fact observe

an atom-molecule resonance, which is the first one to be measured in a heteronuclear mixture.

We map out the molecule loss rates for three different collision partners: 87Rb atoms in the

|1, 1〉 state, 40K atoms in the |9/2,−9/2〉 state, and 40K atoms in the |9/2,−7/2〉 state. Efimov

resonances are only possible for the first case, and, in the last case, the collision partner does not

participate in the Fano-Feshbach resonance. For these measurements, the atom gas mixture was

typically prepared at a = −300 a0 and T = 300 nK. We measured 87Rb–40K87Rb collisions in the

single-beam optical dipole trap, whereas 40K–40K87Rb collisions were measured with an additional

confining laser beam that increases the 40K axial trap frequency. For data in this Chapter, the 40K

atoms are at T/TF > 0.2 and the 87Rb are at T/Tc > 1.1.

Figure 8.1 shows a timing diagram and an example of raw data from a 87Rb–40K87Rb loss

measurement. First, the magnetic field is slowly swept across the Fano-Feshbach resonance at a rate

of 3 G/ms to form 40K87Rb Feshbach molecules by magnetoassociation, following the procedures

discussed in Chapter 5. To prepare a pure sample of molecules and one particular atom species,

we then hold the magnetic field at 545 G while we use a combination of resonant light and RF
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Figure 8.1: Top: Magnetic-field sequence for molecule production and loss measurements (green
solid line). The red dashed line marks the interspecies Fano-Feshbach resonance. Bottom: Loss in
a gas of 87Rb atoms and 40K87Rb molecules. Blue triangles show the number of 40K atoms which
were bound as 40K87Rb molecules during thold. Purple squares show 87Rb atoms, including those
that were free and those that were bound into 40K87Rb molecules.
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pulses to selectively remove unpaired atoms from the trap. When measuring collisions with 40K

atoms in the |9/2,−7/2〉 state, we use RF transfer the unpaired 40K atoms into the |9/2,−7/2〉

hyperfine state at this point. After preparing the atom-molecule sample, we ramp the field up to

the the value desired for the loss measurement, wait a variable hold time thold, turn off the optical

trap, and then jump the magnetic field back across the Fano-Feshbach resonance to dissociate the

molecules. We extract the number of molecules, the number of free atoms, and the in-trap cloud

sizes from images of the resulting atom clouds after a few milliseconds of expansion from the trap.

In-trap radial sizes are calculated from the measured axial size and the trap aspect ratio.

From the Rb+KRb data, we extract the loss-rate coefficient β by fitting the measured loss

of atoms and molecules to numerical solutions of Eqs. (8.1), which are reproduced here:

ṄKRb(t) = ṄA(t) = −β
∫
d3r nKRb(r, t) nA(r, t), (8.1)

where nKRb(r, t) is the number density of the Feshbach molecules and nA(r, t) is the number density

of the atoms. We account for heating by including the measured cloud sizes at each point in time.

The estimated systematic uncertainty in β, which is dominated by the uncertainty in the in-trap

densities, is ±20%. For our measurements of collisions between 40K atoms and 40K87Rb molecules,

the depletion and heating of the much larger atom cloud are negligible during the loss measurement

and Eq. (8.1) has the analytic solution NKRb(t) = NKRb(0)e−t/τ where 1/τ = 〈nK〉β, and 〈nK〉 is

the density-weighted atom density. The loss rate coefficient β for K–KRb collisions is extracted

by fitting the molecule number to an exponential decay as a function of time, with τ and the

initial molecule number as free parameters. This method give results that are consistent with more

detailed calculations like the ones we use for Rb+KRb collisions.

Figure 8.2 plots the measured β vs. a. The rate of molecule collisions with 40K in either

hyperfine state decreases smoothly with increasing a, as was seen previously [71]. In contrast, for

collisions between 40K87Rb molecules and 87Rb atoms, we observe a prominent resonance whose

location lies beyond the range of previous data [71] and is consistent with the suggestion of a∗ =

200(50) a0 made by Ref. [81]. The solid line in Fig. 8.2 shows a fit to the universal formula for
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Figure 8.2: Measured β vs. a for collisions of 40K87Rb molecules with 40K atoms in the |9/2,−7/2〉
state (triangles), with 40K atoms in the |9/2,−9/2〉 state (squares), and with 87Rb atoms in the
|1, 1〉 state (solid diamonds). Vertical error bars indicate one standard deviation of statistical error,
and horizontal error bars correspond to an upper bound of ±0.02 G variation in B across the
cloud. A broad resonance is evident in the 87Rb+40K87Rb loss and the solid curve shows a fit to
the universal T = 0 shape for an Efimov resonance Eq. (7.5). The horizontal dashed line indicates
the estimated unitarity-limited β for the collisions between 87Rb atoms and 40K87Rb molecules.
This data was published in Reference [117].
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an Efimov resonance, Equation 7.5, which gives a resonance location a∗ = 230(10) a0, a resonance

width set by η∗ = 0.26(3), and a resonance amplitude Cβ = 3.2(2). Here, we exclude data at

a < 2rvdW = 144 a0 from the fit because the non-universal short ranged interaction potential

between the atoms has a strong influence in this range [18]. Whereas the values of a∗ and η∗ are

functions of the particular interaction potentials of 40K and 87Rb atoms, the value of Cβ has been

predicted to equal 10.1 based on universal theory [81]. The discrepancy between theory and our

measured value of Cβ could be due to saturation at finite temperature: the horizontal dashed line

indicates the unitarity-limited value for β, which is βsat = ~π/(µRb-KRbk) ≈ 5 × 10−10 cm3/s at

300 nanoKelvin [94]. This value is close to much of our data near the resonance center. It would

be interesting to calculate the saturation effect more accurately by averaging over the thermal

distribution of collision energies [87], or to repeat these measurements on a gas at an even lower

temperature. However, recent measurements of similar resonances in 133Cs also find a non-universal

value for the amplitude Cβ, which suggests that a more detailed theoretical approach is generally

required for atom-molecule Efimov resonances [118].

8.2 Three-body recombination

Now we turn our attention to three-body recombination, which is widely used to reveal

Efimov physics in cold atoms. Three atoms can collide inelastically and form a diatomic molecule,

which typically releases enough energy to eject all three atoms from the trap. This process is

resonantly enhanced when an Efimov trimer state approaches zero binding energy at a negative

a denoted a−. On the other side of the Fano-Feshbach resonance, interference effects lead to

minima in the three-body rate coefficient α at a positive a denoted a+. These features modulate an

overall a4 dependence of α that results in a large increase of atom loss rates near a Fano-Feshbach

resonance [119, 23]. Figure 7.4 and the accompanying discussion in Section 7.2 give more details

on these resonances.

In the only previous observation of heteronuclear Efimov resonances, enhanced loss for 41K–

87Rb–87Rb was observed at a− = −246(14)a0 [92]. An additional narrow loss feature at 667(1) a0
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Reference [120].
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indicated a possible atom-molecule resonance. We were interested in testing whether matching

features existed in our 40K–87Rb–87Rb system. After the three-body parameter that sets Efimov

resonance locations was found to be universal in homonuclear systems, Wang et al. predicted a

similar pattern for heteronuclear systems [116]. Since the two K–Rb mixtures have the same inter-

species van der Waals length and non-resonant Rb-Rb scattering length, as well as nearly identical

mass ratios, a universal three-body parameter would result in Efimov resonances at the same in-

terspecies scattering lengths. Previous measurements of α for a 40K–87Rb mixture saw no features

beyond a4 scaling; however, the data were relatively sparse [71] and it had been hypothesized that

an Efimov resonance could have fit between the points [81]. This Section presents additional, more

detailed, measurements of α for 40K–87Rb that cover values of a where the 41K–87Rb features were

seen.

For these measurements, the atom gas mixture is prepared by evaporating at a field where

|a| ≈ 300 a0 on the same side of the Fano-Feshbach resonance as the field for the loss measurement,

B. Figure 8.3 shows a timing diagram and an example of raw atom loss data. Once the gas is

prepared, the field is then swept to B in a short time compared to the loss, and held for a variable

time thold. Finally, the optical trap is turned off and the field is swept back to the evaporation

value where the atoms are imaged. From our measured cloud sizes and atom numbers, we obtain

α which is defined by

ṄRb(t) = 2ṄK(t) = −2α

∫
d3r nK(r, t) n2

Rb(r, t). (8.2)

We employ an analysis similar to that described in Ref. [120], which uses the measured atom

densities at each time to account for heating of the gas. Whereas Ref. [120] used quantum degenerate

gases, we adapt the analysis to the Maxwell-Boltzmann density distributions that describe our atom

clouds. As a check of this analysis, we compare the results against a brute-force numerical solution

of the differential equations, which calculates heating rates from anti-evaporation of Rb atoms

rather than taking measured cloud sizes as a given input. We find the results to be consistent for

both methods, although the former method involves less computational overhead. Based on our
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ability to accurately extract the in-trap density of the atoms from expanded images, we estimate

the systematic uncertainty in α to be ±20%.

Figure 8.4 shows the measured α vs. B. We measure an increase of α by over four orders of

magnitude near the s-wave resonance at B0 = 546.618 G. A second peak, on the order of 0.1 G wide,

is evident near 547.4 G. As illustrated in the inset to Fig. 8.4, this feature is not consistent with the

expected shape of an Efimov resonance, and we identify it as a two-body d-wave Fano-Feshbach

resonance [46, 121]. Because it is technically challenging to control a near a narrow resonance, we

exclude the data for B between 547.25 G and 547.50 G from further analysis and calculate a using

Equation 2.1 for the s-wave resonance alone. Namely, we set a = −187a0(1+3.04G/(B−546.618G))

following Reference [122].

Figure 8.5 shows the measured α vs. a, using the same data presented in Figure 8.4. These

data are consistent with the more sparse measurements of Ref. [71]. For comparison, we also

plot the universal form for α as a function of a [81] with Efimov resonances corresponding to the

measurement of a− by the LENS group [92]. These functions are given in Equations 7.2 and 7.3,

and the location for the interference minimum at a+ is extrapolated from the value of a− using

Equation 7.7. We use η∗ = 0.02 for the plotted curves, which gives the best agreement to the

measured magnitude of α. The calculated shapes for Efimov features at this value of η∗ (orange

solid lines) are extremely large compared to any gaps or uncertainty in our data over the measured

range. We conclude that there are no Efimov features in α at negative a between -200 a0 and

-3000 a0 or at positive a between 200 a0 and 3000 a0.

We also used these data sets to measure the ratio of 87Rb loss to 40K loss. Within the

uncertainties, this ratio does not show a dependence on a and the average value is 2.1(1), which

is consistent with 87Rb+87Rb+40K three-body recombination being the dominant loss process. A

resonance feature with a different multistage process has also been proposed, in which three-body

recombination generates an energetic 40K87Rb Feshbach molecule that undergoes subsequent reso-

nant elastic collisions with 87Rb atoms, eventually ejecting multiple 87Rb atoms from the trap. This

so-called ‘avalanche mechanism’ loss has been hypothesized to exist near atom-molecule Efimov res-
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Figure 8.4: α vs B. There are two clear peaks near 546.6 G and 547.4 G: The first is the s-wave
Fano-Feshbach resonance that we use to control a, and the second, much narrower feature we
attribute to a d-wave interspecies Fano-Feshbach resonance. Vertical error bars show the statistical
uncertainty in α, and horizontal error bars show an upper bound of ±0.03 G for the variation in
B during the measurement. Inset: α vs. B near the feature at 547.4 G. The solid, dotted, and
dashed lines show the universal shape of an Efimov resonance, Eqs. (7.2) and (7.3), for η∗ = 0.1,
η∗ = 0.02, and η∗ = 0.004. This data was published in Reference [117].
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which is indicated by the shaded region on the upper plot. This data was published in Reference
[117].
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Table 8.1: Comparison of K–Rb–Rb Efimov resonances to universal theory. The ‘Three-body
parameter’ column lists measurements or predictions of Efimov resonance locations. The a−/a0,
a+/a0, and a∗/a0 columns use Equation 7.7 to calculate the universal locations of 40K–87Rb–87Rb
Efimov resonances corresponding to the same Efimov bound state described in the first column.
In order to show potential resonances associated with other Efimov bound states, some rows are
scaled by factors of λ = eπ/s0 .

Three-body parameter Source a−/a0 a+/a0 a∗/a0

a∗ = 230 a0
40K+87Rb Experiment [117] -55000 5100 230

a∗ = 230 a0/λ
40K+87Rb Experiment [117] -450 41 1.9

a+ = 2800 a0 Universal 3BP Theory [116] -30000 2800 130
a+ = 2800 a0/λ Universal 3BP Theory [116] -250 23 1.1
a− = −246 a0

41K+87Rb Experiment [92] -246 22 1.0
a− = −λ× 246a0

41K+87Rb Experiment [92] -30000 2700 130
a∗ = 667 a0

41K+87Rb Experiment [92] -160000 14000 667
a∗ = 667 a0/λ

41K+87Rb Experiment [92] -1300 120 5.4

onances like ours in Figure 8.2, where elastic atom-molecule collisions are also enhanced [97]. Such

a peak was tentatively identified by the LENS data in the 41K–87Rb–87Rb system [92]. However,

our data show no sign of such a narrow loss resonance or of any increase in the ratio of lost 87Rb

atoms to lost 40K atoms near a∗ = 230 a0. We have since made more detailed followup measure-

ments to search for even narrower resonances, but we still find no evidence for avalanche collisions

in either the atom loss rate or the ratio of lost 87Rb atoms to lost 40K atoms [123].

8.3 Comparison to other experiments

Armed with the measurements in Figures 8.2 and 8.5, what can we now conclude? In this

Section we examine the data in the context of universal Efimov theory as well as predictions based

on the universality of the three-body parameter. Table 8.1 lists measurements and predictions

of K-Rb-Rb Efimov resonance locations. The relationships between different resonance locations

from universal Efimov theory, which are listed in Equation 7.7, are used to calculate corresponding

values of a−/a0, a+/a0, and a∗/a0 where resonances would hypothetically be observable in our

data. Due to the large scaling factor, λ = 122.7, many of these predicted resonances are outside of

our measurement range and therefore not testable in our current experiments.
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First, we check the self-consistency of our own measurements. Given our observed resonance

at a∗ = 230(30) a0 (Figure 8.2), universal relations predict a+ = 5100 a0 and a− = −55, 000 a0

which are outside of our measurement range. The absence of an Efimov resonance in Figure 8.5

is therefore consistent with universal theory. However, if there were to exist a more deeply bound

Efimov state, then scaling by λ = 122.7 would give a+ = 41 a0 and a− = −450 a0. The latter

feature in α is clearly excluded by our measurements. This suggests that the observed resonance

at a∗ = 230 a0 belongs to the most deeply bound Efimov state in our system. However, it is worth

noting that the ratio of |a−| and a∗ measurements have not always agreed with universal Efimov

theory [105, 111, 106, 26].

Next, we compare our results for 40K–87Rb to the previous measurements for 41K–87Rb. The

two mixtures share the same isotope of Rb, they both have resonant interspecies interactions with

rvdW = 72 a0 [18, 124], and their mass ratios differ by only a few percent. If the three-body

parameter is universally determined by the two-body potential, one would expect 41K–87Rb and

40K–87Rb mixtures to have the same Efimov resonance locations [116]. However, our measurements

exclude a− near -246 a0, where the 41K–87Rb–87Rb Efimov resonance was observed. The 41K–87Rb

work also identified a feature in α at 667(1) a0 as a possible atom-molecule resonance [92]. For the

40K–87Rb mixture, we find a∗ = 230(30) a0 with direct measurements of atom-molecule loss and

we do not observe a corresponding feature in α.

Wang et al. predict a universal three-body parameter for heteronuclear mixtures, and specifi-

cally predict the locations of K–Rb–Rb Efimov resonances to be a+ = 2800 a0 and a− < −30000 a0

[116]. The corresponding atom-molecule loss feature would be at a∗ = 130 a0. Our measurements

of α exclude a+ = 2800 a0 and we find a∗ = 230(30) a0 from atom-molecule loss; both results

suggest that the value of a+ is slightly higher than the prediction. Intriguingly, the LENS group’s

measurement of a− = −246 a0 in the 41K–87Rb mixture is consistent with the presence of a more

deeply bound Efimov state whose location is related to Wang et al.’s predictions by the universal

scaling factor λ. Furthermore, recent measurements of Efimov resonances in 6Li-133Cs mixtures by

two different groups have also been similar to the predictions by Wang et al. [82, 83]. In these mea-
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Figure 8.6: Measured three-body parameters in heteronuclear mixtures (points) compared against a
theoretical universal three-body parameter for heteronuclear systems (dashed line) [116]. Individual
measurements have been rescaled by multiples of λ = eπ/s0 to facilitate a comparison of multiple
Efimov states. Solid blue diamonds show measurements of a− via three-body recombination [92,
82, 83], the solid pink circle shows a value of a− that would correspond to our measurement of
a∗ from Figure 8.2, and the empty blue diamond shows a tentative assignment of a− that would
correspond to an ‘avalanche’ atom loss feature [92].
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surements, the Efimov series also included a state that was more deeply bound than the theoretical

prediction. Figure 8.6 summarizes these comparisons.

Overall, we do not find clear evidence for a universal three-body parameter. However, given

the large Efimov scaling factor (122.7), the observed differences are relatively small. In addition,

the clearest features seen for both K–Rb mixtures occur at scattering lengths that are only a few

times larger than rvdW, where non-universal finite-range effects can play a role [125, 126, 127]. This

role may be greater for 40K–87Rb, where the Fano-Feshbach resonance has an intermediate strength

parameterized by sres = 2.0, compared to the strong 41K–87Rb resonance with sres = 26 [18]. On

the other hand, a universal three-body parameter has been observed in homonuclear 7Li atoms [25]

at Fano-Feshbach resonances with sres = 0.9 and in 39K atoms with sres as low as 0.1 [110]. An

interesting question is whether the strength of the Fano-Feshbach resonance has more influence on

the locations of Efimov features in heteronuclear systems.



Chapter 9

Concluding remarks

9.1 Summary

In this Thesis, I explored few-body interactions in an ultra cold mixture of 87Rb and 40K

atoms. I began by demonstrating a magnetic trapping system for the atoms that can also provide a

stable, uniform magnetic field to improve our control over the atoms’ interactions near a magnetic

Fano-Feshbach resonance. Our experiments rely on this resonance to access universal phenomena

where the interspecies interactions are strong.

Chapter 5 studied the conversion of atoms to fermionic Feshbach molecules using magnetic

sweeps. By combining a degenerate Fermi gas of 40K atoms with a thermal Bose gas of minority

87Rb atoms, we are able to pair as much as 45 percent of the 87Rb atoms into 40K87Rb molecules.

However, we still measure significantly fewer molecules than would be expected from a model

that has successfully described bosonic molecule formation in Bose or Fermi gases. Based on this

discrepancy, it seems likely that the Fermi statistics of the 40K–87Rb molecules exerts a strong

influence on the pairing process. In Chapter 6 we found that the kinetic energy of these molecules

corresponds to a temperature that is about 1.5 times larger than that of the atoms. Together,

the surprisingly low number and high temperature of the molecules prevent the formation of a

degenerate Fermi gas of Feshbach molecules in our experiments.

In Chapters 7 and 8, we measured the rates of three-body collisions in the 40K–87Rb gas

mixture as a function of the interspecies scattering length. These measurements reveal a resonance

in the collisions between 87Rb atoms and 40K87Rb molecules that is connected to the universal
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Efimov series of three-body bound states. We also measure a notable absence of features in the

atom loss rate, in defiance of some theoretical predictions. In combination with a growing number

of measurements in diverse heteronuclear systems, these results will hopefully lead to a more quan-

titative understanding of three-body collisions between cold atoms. In the meantime, three-body

interactions are now more thoroughly characterized in the popular 40K–87Rb mixture.

9.2 Looking forward

The range of useful scattering lengths for our experiments is presently limited by the density

and temperature of the atom samples. In part, the minimum temperature and density are limited

by the fact that our method of supporting the atoms against the pull of gravity also has the effect

of compressing the gas. It would be possible to achieve lower atom temperatures and densities

on an apparatus in low-Earth orbit, which would open the door to quantum physics experiments

at extremely high scattering lengths. The Cold Atom Laboratory project at the Jet Propulsion

Laboratory is scheduled to launch an experimental apparatus that creates ultra cold samples of 40K

and 87Rb atoms on the International Space Station in 2016. This will be an exciting development

for our field.

For those of us who are trapped down here on Earth, there are still plenty of experiments

within reach of terrestrial 40K–87Rb experiments. In terms of few-body physics, there is another

Fano-Feshbach resonance that overlaps the one that we used for the experiments in this thesis, and

couples to the same K Zeeman state but to a different Rb Zeeman state [124]. A spin mixture

of 87Rb atoms with a polarized gas of 40K atoms could have two different resonantly enhanced

interspecies scattering lengths, which is a situation where interesting few-body phenomena have

been predicted [109]. On the other hand, we could push our experiments to colder temperatures

and study many-body effects in fully quantum-degenerate gases. One particularly exciting new

development in our lab has been the implementation of a so-called ‘painted’ optical potential,

which rapidly modulates the position of an optical trap beam to create a time-averaged potential.

This can create a larger, more harmonic, potential than the optical traps that were used in this



112

thesis. This flexible potential, whose shape can be changed dynamically during an experiment, sets

the stage for a variety of exciting measurements of many-body physics.
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