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Moses, Steven A. (Ph.D., Physics)

A quantum gas of polar molecules in an optical lattice

Thesis directed by Prof. Jun Ye

Ultracold polar molecules, because of their long-range, spatially anisotropic interactions, are

a new quantum system in which to study novel many-body phenomena. In our lab, we have pro-

duced the first quantum gas of 40K87Rb polar molecules. These molecules were found to undergo

exothermic chemical reactions, and this led to interesting studies of chemistry near absolute zero.

By creating the molecules at individual sites of a 3D optical lattice, we completely suppress these

chemical reactions, and the polar molecule gas becomes stable and lives for tens of seconds. This

thesis documents our efforts to explore coherent, many-body phenomena resulting from long-range

dipolar interactions in the lattice. By encoding a spin-1/2 system in the rotational states of the

molecules, we were able to realize spin-exchange interactions based on a spin Hamiltonian, which is

one of the first steps in studying quantum magnetism with polar molecules. While this study was

the first realization of such coherent dipolar interactions with polar molecules in a lattice, its full

potential was limited by the low lattice filling fractions. Using our ability to exquisitely control the

initial atomic gas mixture, we loaded a Mott insulator of Rb and a band insulator of K into the

lattice. This quantum synthesis approach led to significantly higher molecular filling fractions and

represents the first fully connected system of polar molecules in an optical lattice. This low-entropy

quantum gas of polar molecules opens the door to interesting quantum simulations, which should

be attainable in the next generation of the experiment.

Note: This work was jointly supervised by Prof. Deborah Jin.
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Chapter 1

Introduction

One of the major thrusts of modern atomic, molecular, and optical (AMO) physics research

is to use systems of cold atoms or molecules to create novel quantum systems that don’t exist in

nature. The scientific insights gained from studying these systems are useful on their own, but

often can be applied to other areas of physics, such as condensed matter physics [1, 2]. AMO

systems can be probed and manipulated in a straightforward and clean way. The quantum control

of AMO systems has seen remarkable progress in the last few decades, and now experiments can

control nearly all degrees of freedom, both internal and external, of the particles. This makes

AMO systems ideal for simulating other quantum systems that are difficult to study otherwise

[3, 4], and for making very precise measurements [5, 6, 7, 8]. The immense progress in controlling

AMO systems really took off with the development of laser cooling [9, 10] and evaporative cooling

[11], which led to the first realization of degenerate gases of bosons [12, 13, 14] and fermions [15].

More recently, quantum gas microscopes for bosons [16, 17] and fermions [18, 19, 20, 21] have

been realized that can probe individual atoms in an optical lattice. Many other platforms, such

as trapped ions [22] and superconducting qubits [23], are quickly building up the infrastructure to

perform complex quantum simulations and computations.

Systems of cold neutral atoms are usually very dilute gases and normally weakly interacting.

The strongly interacting regime is highly nontrivial and relevant to many interesting phenomena

in condensed matter physics. There have been many recent experiments looking at the strongly

interacting regime [24, 25, 26, 27, 28]. For alkali atoms, the main tool used to control the interaction
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strength is the Fano-Feshbach resonance, which is reviewed nicely in Ref. [29]. Even with this tun-

ability, the particles are still effectively pointlike and interact via isotropic contact interactions that

are well parametrized by a quantity called the scattering length a. This doesn’t mean that neutral

atoms cannot be used to study interesting phenomena. For example, the Fermi-Hubbard model,

which is a leading candidate for the underlying mechanism of high-Tc superconductivity [30, 31],

can be realized with cold atoms in optical lattices [32, 33]; however, one of the main issues with

using cold atoms to study the Hubbard model is that the energy scales are weak and the timescales

for observing interesting dynamics are relatively long [34, 35, 36]. Systems with long-range inter-

actions open up the possibility of stronger interactions (and correspondingly faster timescales). In

addition, systems with long-range interactions could give insight into different physics questions,

such as how thermalization and localization work in an isolated quantum system with both disorder

and long-range interactions [37], and how correlations spread in a many-body system with long-

range interactions [38, 39] (which is relevant for understanding how quickly quantum information

can propagate through a system [40]).

There are many ways to realize long-range interactions in the laboratory. Some examples

include coupling to phonon modes in trapped ion systems [41], placing atoms in optical cavities [42],

using highly excited Rydberg atoms [43], or integrating cold atoms with nanophotonic structures

[44]. This thesis discusses long-range interactions that arise from dipole-dipole interactions, which

originate from interacting electric or magnetic dipoles. For typical electric and magnetic dipole

strengths, electric dipoles are stronger by a factor of ∼ 1/α2, where α is the fine-structure constant.

Highly magnetic atoms (such as Cr, Er, and Dy) are relatively easy to cool, and both degenerate

Bose and Fermi gases of highly magnetic atoms have been produced [45, 46, 47, 48, 49, 50]. In

contrast, polar molecules usually have stronger interactions but are more difficult to manipulate

and cool [51, 52, 53, 54, 55, 56, 57].

There has been a lot of experimental work trying to directly cool polar molecules. Some

common techniques for cooling molecules starting from room temperature include buffer gas cooling

[58], Stark deceleration [59, 60, 61], and making a magneto-optical trap (MOT) of polar molecules



3

[56, 57]. In the case of the MOT, only certain diatomic molecules can be cooled [62]. There are

some exotic techniques being employed to cool polyatomic molecules using Sisyphus cooling [63] or

a centrifuge decelerator [64]. An alternative approach, which is the method we employ, is to take

very cold atoms, in our case 40K and 87Rb, first create weakly bound molecules using a Feshbach

resonance [65, 66], and then optically transfer the weakly bound molecules to the rovibrational

ground state using Stimulated Raman Adiabatic Passage (STIRAP) [51]. This technique produces

molecules with a phase space density that is several orders of magnitude higher than the other

methods but restricts the possible molecules that can be produced to those molecules comprised of

atoms that can be easily laser cooled and for which Feshbach resonances exist [51, 52, 53, 54, 55].

Practically speaking, this usually means bialkali mixtures, although some groups are using an

alkaline earth atom in place of one of the alkalis. An alternative option to the Feshbach association

is to use STIRAP or photoassociation to first transfer pairs of atoms on individual sites of an

optical lattice into weakly bound molecules, and this has worked reasonably well in specific cases,

particularly Sr2 [67, 68]. However, for most of the physics that we want to study, the actual

atomic species involved are not so important, as our main requirement is that the molecules have

a sufficiently large dipole moment. Due mainly to our group’s work over the past ten years, a

common theme throughout this thesis is that most of the hard work is done in cooling the atoms,

and the molecule production is the final step that usually works quite well (there are some caveats,

which are discussed in Chapters 5 and 6).

After producing the molecules [51], it was found that KRb suffers from inelastic loss due to

chemical reactions [69, 70]. In the next few years, work focused on using optical lattices to suppress

this chemical loss [71, 72]. After stabilizing the gas in the 3D lattice, we embarked on a series of

experiments looking at coherent manifestations of the dipole-dipole interaction. There have been

many proposals for realizing lattice Hamiltonians with multiple rotational states [73, 74, 75, 76, 77,

78, 79, 80, 81, 82]. In particular, Ref. [83] predicted we should be able to see signatures of dipolar

interactions even at relatively high entropies and low lattice fillings. By mapping the two lowest

rotational states to a spin-1/2 system we realized an XY Hamiltonian, which is one of the first
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ingredients necessary for studying quantum magnetism with polar molecules [84, 85]. Models of

quantum magnetism, such as the XY model, are some of the simplest yet ubiquitous models that

are computationally hard to handle and are impossible to simulate on a classical computer even

for as few as 30 spins [38]. There are a host of other interesting phenomena that polar molecule

experiments could potentially study, such as Wigner crystallization [86], d-wave superfluidity in

optical lattices [87], and novel forms of spin-orbit coupling [88]. Open-shell polar molecules could

potentially be used to engineer topologically ordered states that could enable topologically protected

quantum memories [73, 89].

An important question is whether our experiments are actually doing quantum simulation.

After all, the results of our spin-exchange work [84, 85] could be simulated reasonably well using

a cluster expansion [85]. If our experiment could achieve better imaging resolution and we could

measure spin correlations between individual lattice sites, we should be in a position to measure

something that would be classically intractable to simulate. However, even to simulate the global

quench experiment, the theory had to be refined and improved in order to converge quickly enough

[85]. For our system of polar molecules, the theory and experiment build off of one another in a

symbiotic way. The validity of the improved theoretical methods is checked by comparison with

the experimental results. The theory can then be used to make further predictions. It is in this

sense that our experiment is pushing the field forward and hopefully leading to bigger and better

results. In general, most experiments claiming to be doing quantum simulations are still in the

benchmarking stage, but benchmarking the results of small systems with theory is very important

before attempting to study something really nontrivial.

1.1 Contents

In Chapter 2, I describe the apparatus and the upgrades and changes made since I’ve been at

JILA, as well as some relevant experimental techniques. In Chapter 3, I discuss chemical reactions

in KRb and how we are able to control them. As an application of the chemical reactions, we studied

the continuous Zeno mechanism in a rotational mixture [90]. In Chapters 4 and 5, I present the
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main results of this thesis. In Chapter 4, I discuss our work in realizing a spin-1/2 system with polar

molecules and then engineering one of the basic ingredients of quantum magnetism, spin exchange

interactions. We observed spin exchange between molecules pinned in a deep 3D optical lattice,

even though the lattice fillings were quite dilute. A systematic study was undertaken that studied

the density dependence, dependence on choice of excited state, and implementing more complex

pulse sequences that disentangled isolated pairs. In Chapter 5, I document a detailed study of the

molecular filling fractions we can obtain in the 3D optical lattice. By loading a Mott insulator

of bosons and a band insulator of fermions into the optical lattice, we optimized the number of

lattice sites that have one atom of each species. Combined with efficient magnetoassociation and

optical state transfer, this led to significantly higher molecular filling fractions. The achieved filling

fractions of ∼ 25% should enable future studies of transport and entanglement propagation in

a many-body system with long-range dipole-dipole interactions. In Chapter 6, I present some

additional studies related to the molecule association in the 3D lattice. In particular, we observed

tunneling dynamics that were strongly modified by strong attractive interspecies interactions, as

well as effects due to a d-wave Feshbach resonance that’s about 1 G above the s-wave resonance

usually used to make molecules. In Chapter 7, I conclude and give an outlook to future work.

The work described in this thesis is published in several papers, and I am an author on several

of them. In particular, Chapter 3 discusses work presented in Refs. [72, 90], Chapter 4 discusses

work presented in Refs. [84, 85, 91], Chapter 5 is based on Ref. [92], and Chapter 6 follows Ref. [93].



Chapter 2

Apparatus and techniques

This chapter describes the ultracold molecule apparatus, with a particular emphasis on the

components that were built or modified during my time at JILA. Most of my time here was spent

doing experiments with the first generation apparatus, which was started by Josh Zirbel and Kang-

Kuen Ni in 2003. Except for when we broke vacuum in 2012 to change the science cell in an attempt

to solve the electric-field charging problem, the vacuum chamber itself wasn’t really modified and

there were no significant vacuum issues. However, many other things on the experiment (laser

systems, electronics, etc.) have been modified. A few years ago we started thinking about building

a new generation of the experiment to address many technical limitations of the first generation

experiment. This effort was spearheaded by Jake Covey, and in October 2015, we switched to the

second generation apparatus.

2.1 The vacuum system

Similar to many of the other quantum gas machines at JILA, our vacuum chamber consists

of two parts separated by a gate valve: a higher pressure MOT chamber and a lower pressure

science chamber. The vacuum lifetimes are a few seconds in the MOT chamber and a few hundred

seconds in the science chamber, implying the pressure is about two orders of magnitude lower in

the science chamber. In contrast, many other experiments have a single chamber utilizing an oven

and an atomic beam fed from a Zeeman slower. In our experiment, atoms are transferred between

the two chambers via a cart with coils that provide a strong quadrupole field (these are the same
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coils that produce the quadrupole field for the MOT). There are two ion pumps, one for the MOT

chamber and another for the science chamber, and there is also a titanium sublimation pump near

the science cell. The gate valve between the two sides allows one to break vacuum on one side

without affecting the other side.

2.2 Laser systems

Many lasers are required to cool and trap two atomic species, and then create molecules. The

lasers can be divided into three categories: cooling lasers which we use for cooling and imaging K

and Rb, Raman lasers for the STIRAP transfer to the ground-state, and the optical trap/lattice

lasers.

2.2.1 MOT lasers

When I first came to the lab in 2010, the laser systems for trapping and cooling Rb and K

were less robust than we would desire. Many of the lasers were old and the beam height was about

6 inches, which meant that beams had to be realigned quite often. The trapping light was derived

from external cavity diode lasers (ECDLs), some of which weren’t AR coated, and a slave laser was

used for both K and Rb since the power of the master lasers wasn’t sufficient to inject a tapered

amplifier (TA). The K slave laser was actually a 780 nm diode that was cooled to -40◦C. Also, the

lasers were on the same table as the main experiment, so there were a lot of issues due to vibrations

from the cart and shutters.

To make the system more robust, I decided to rebuild the cooling diode lasers from scratch.

We decided to replace the ECDLs with distributed Bragg reflector (DBR) lasers from Photodigm.

The K laser diodes have a maximum power of 60 mW, while the Rb laser diodes have a maximum

power of 120 mW, so no slave lasers are required. Because the feedback is provided by a distributed

Bragg grating integrated on the diode, there is no external cavity, and the mode-hop-free tuning

range is significantly higher than that of an ECDL, typically > 50 GHz. The downside is that the

linewidth is about 1 MHz, which is larger than an ECDL but adequate for cooling alkali atoms.
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Because there is no external cavity, the laser is incredibly sensitive to optical feedback, and we need

two optical isolators to provide at least 60 dB of isolation. The beam height is roughly 2 inches

and the system rarely needs realignment.

The repump lasers for both K and Rb are locked to an absorption cell using frequency-

modulation (FM) spectroscopy. A beam of a few hundred µW is phase modulated at around 20

MHz with an electro-optic modulator (EOM), and then split into a strong pump beam and weak

probe beam. We then do standard saturated absorption spectroscopy. The error signal is obtained

from demodulating the probe beam transmission with a phase shifted copy of the same tone used

to drive the EOM. This technique is described in Ref. [94] and is similar to Pound-Drever-Hall

(PDH) locking, which will be discussed later.

The schematic of the Rb laser system is shown in Fig. 2.1. We lock the repump laser to the

F = 1 to F ′ = 1/2 crossover. This is a fairly weak transition, and we heat the Rb vapor cell to

get a better signal-to-noise ratio (SNR). For both K and Rb, the trap lasers are frequency locked

to the repump lasers using a frequency-to-voltage (F-V) converter. We chose this option because

of the large servo bandwidth that would be necessary to phase lock the DBR lasers to each other.

The frequency offset is controlled by an RF frequency derived from a voltage controlled oscillator

(VCO). The F-V converter is set up so that a frequency of around 30 MHz corresponds to 0 V (the

useful range of the device is about 0-70 MHz). We also find it useful to put a 50 MHz low pass

filter on the input to the F-V converter.

For K, we lock the repump laser to a 39K absorption line since the absorption cell contains

only the natural abundance of 40K, which is ∼ 0.01%, whereas it has about 93% 39K. Specifically,

we lock to the F = 2 to F ′ = all feature, since the hyperfine structure is not resolved in 39K. To shift

the laser to the right frequency for 40K, we use a 345 MHz acousto-optic modulator (AOM). In the

old experiment, we derived two additional beams from the repump laser, the high-field imaging light

and the |9/2,−5/2〉 blast light. The high-field imaging, which is on the |9/2,−9/2〉 → |11/2,−11/2〉

cycling transition, is about 770 MHz lower in frequency at 550 G than at zero magnetic field, so

it can be accessed from the repump laser. For the experiments described in Chapters 5 and 6, we
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Figure 2.1: Rb laser system. AOM 1 shifts the frequency for the repump light used during optical
pumping and high-field imaging, when it pumps atoms from the F = 1 manifold to the F = 2
manifold. AOM 2 undoes the frequency shift of AOM 1 and allows us to reduce the power of the
repump light going to the MOT, which is useful during the CMOT and molasses stages. AOM 3
gives the frequency shift and switches the light for the Rb probe light, optical pumping, fluorescence
pulse, and high-field imaging. To adjust the laser frequency for these different processes, the
beatnote frequency between the trap and repump lasers is changed. AOM 4 is used to servo the
total MOT intensity (which is mostly trap light). All beamsplitters are polarizing unless noted
otherwise. The AOM orders are listed next to the beams after the AOM. All focal lengths are
given in mm.
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wanted to be able to image K at any magnetic field within 10-15 G of the Feshbach resonance.

For this purpose, the original high-field imaging was insufficient since the frequency could only be

tuned by a few MHz without requiring realignment. To solve this problem, we implemented an

offset lock with a wider tuning range by switching to a VCO with larger bandwidth (part number

ZX95-1300-S+ from Mini Circuits, which has a range 400-1300 MHz). With this expanded range

for the offset lock, we were then able to derive the high-field imaging light from the trap laser.

At one point, we used 41K instead of 40K. For this, we offset locked both DBR lasers to a master

laser, which was an ECDL (this is the “third” laser in Fig. 2.2). In general this is the most flexible

approach, and even though it requires one more laser, fewer AOMs (just 2 as opposed to 4 or 6)

would be required.

2.2.2 Raman lasers and cavity

Stimulated Raman adiabatic passage (STIRAP) is used to transfer weakly bound Feshbach

molecules to the ground state [95]. It’s a Raman process, and the two colors we need (689 and 968

nm) are accessible with modern laser diode technology. The relevant energy levels are sketched in

Fig. 2.3a. We start in the Feshbach state |f〉 and couple through a lossy excited state |e〉 (with

decay rate γ) that has decent Franck-Condon factors with both the Feshbach state and the ground

state |g〉. We apply two laser fields: the up leg (with Rabi frequency Ωu), which couples |f〉 and

|e〉, and the down leg (with Rabi frequency Ωd), which couples |g〉 and |e〉. The goal of STIRAP

is to coherently maintain the dark state cos θ|f〉 + sin θ|g〉, where θ = tan−1
(

Ωu
Ωd

)
. There are two

relevant detunings, the single photon detuning ∆ and the two-photon detuning δ. We normally

operate with ∆ = δ = 0, but it’s more imperative that δ be zero for efficient transfer. If we choose

a pulse sequence where initially Ωd/Ωu � 1 and then adiabatically change the intensities so that

at the end Ωu/Ωd � 1 (Fig. 2.3b), we can transfer most of the population from |f〉 to |g〉 without

populating the lossy state |e〉. Experimentally, we define a pulse time τ as the time duration during

which the intensity ramping occurs. For more details about STIRAP, see the thesis of Kang-Kuen

Ni [96].
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Figure 2.2: A schematic of the K laser system. Similar to the Rb system, there is a trap and repump
laser, as well as a tapered amplifier. AOM 1 is at 345 MHz and is used to bridge the frequency
difference between the 39K and 40K transitions (we lock the laser to one of the 39K transitions).
AOM 2 is for the optical pumping repump. We also use this AOM to control the trap/repump
power ratio for the MOT light. AOM 3 is for the probe and optical pumping beam. AOM 4 is for
stabilizing the total power of the MOT. AOMs 5 and 6 provide the switch and frequency shift for the
K |9/2,−5/2〉 → |11/2,−5/2〉 blast light and the K high-field imaging |9/2,−9/2〉 → |11/2,−11/2〉.
All beamsplitters are polarizing unless noted otherwise. The third laser was an ECDL locked to
one of the 39K transitions, which we used as a reference when trapping and cooling 41K.
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Figure 2.3: (a) The energy levels relevant for STIRAP are the Feshbach molecules |f〉, the lossy
excited state |e〉 (with decay rate γ) and the ground state |g〉. Usually we set the single-photon
detuning ∆ = 0 and we scan the two-photon detuning δ by adjusting the up leg double-pass AOM,
driven at frequency fDP. (b) Timing diagram for STIRAP. Initially Ωd � Ωu. We then ramp
Ωd to 0 as we ramp Ωu to its maximum value. Here a linear ramp in field strength is shown. In
practice, we usually ramp the intensities linearly. The pulse time τ is the duration of the ramps.
To STIRAP back to Feshbach molecules, we reverse the order of the ramps (start with Ωd at zero,
Ωu at the maximum value, and then ramp Ωd to the maximum value and Ωu to zero).
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To maintain the dark state and transfer a significant fraction of the population, it’s necessary

for the two laser fields to be phase stable during the pulse time τ . More precisely, the transfer

efficiency scales as e−π
2γ/(Ω2

0τ)−ητ/2, where η is the relative linewidth, τ is the pulse time, and

Ω0 =
√

Ω2
u,max + Ω2

d,max [97]. For efficient STIRAP, we require ητ � 1 and γ/(Ω2
0τ)� 1. For us,

γ = 2π × 6.7 MHz [96], Ω0 is typically 2π × 6 MHz, and τ is usually 6-10 µs. Plugging these in,

the first factor is ∼ e−0.05 = 0.95, and the relative linewidth should be less than 1 kHz in order to

not be limited by the laser linewidth. In the work of Ref. [92], the one-way transfer efficiency was

routinely 0.9-0.95 for cold, small samples.

To get a sense of the optical powers required for STIRAP, it’s necessary to know both the

transition dipole moments and the sizes of the beams. The beams are focused to roughly the same

size as the optical trap beams (200 × 40µm in the radial and vertical directions, respectively) to

give roughly homogeneous coupling over the cloud while still getting a reasonably large intensity.

The transition dipole moments are 0.005(2) ea0 for the up leg and 0.012(3) ea0 for the down leg [96].

These are substantially weaker than typical cycling transitions in alkali atoms (∼ 1 ea0). We want

to achieve Rabi frequencies of a few MHz, which means we need powers in the range 20-100 mW. As

a result, the power from the master lasers is insufficient, so we need some additional amplification.

For the up leg, we use a laser diode operating at 968 nm. Currently, this is an Eagleyard AR-coated

980 nm laser diode in a Littrow configuration (see Fig. 2.4 for a discussion of how these lasers don’t

perform well in the Littman configuration) along with an Eagleyard 970 nm TA. For the down leg,

we use an AR-coated laser diode operating at 689 nm (again in the Littrow configuration), along

with a slave laser (HL6750MG), which is optically injected.

When I first came to the lab, we were stabilizing both of the Raman lasers to a Ti-sapphire

frequency comb [98]. While the comb is useful for the initial spectroscopy, it can be a bit cumber-

some on a daily basis. We stabilized both degrees of freedom of the comb, the repetition rate frep

and the carrier offset frequency fceo. To stabilize frep, we locked one comb tooth to Jan Hall’s 1064

nm stable laser, which was stabilized to an iodine cell. To stabilize fceo, we frequency doubled the

part of the comb around 1064 nm and beat it with the part of the comb at 532 nm. Thus, we needed
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Figure 2.4: We could never get the Eagleyard laser diodes to work well in the Littman configuration.
Here we compare the performance of an Eagleyard 980 nm AR-coated diode in the Littrow and
Littman configurations. The power in the Littman configuration is lower (which is to be expected),
but the wavelength tuning range is smaller and the peak wavelength is shorter, such that the laser
doesn’t work well at our desired wavelength of 968 nm.
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an octave spanning comb from 532 to 1064 nm and also required sufficient optical spectrum at 690

and 970 nm to obtain strong beatnotes for locking the Raman lasers. In principle, by phase locking

both lasers to the comb, the two lasers should be perfectly phase-locked to each other; however,

the comb itself had a linewidth of about 1 kHz. Furthermore, the comb was located in a different

room from the main experiment, with ∼ 25-meter fibers sending the light from the lasers to the

comb and similar length BNC cables transmitting the error signal back to our room. We weren’t

canceling the phase noise induced by acoustic vibrations in the fibers, which could broaden each of

the lasers, and the long cables meant a long time delay and correspondingly low servo bandwidth.

This may have led to a mediocre relative linewidth. We would definitely see fluctuations in the

transfer efficiency from day to day depending on how well the lasers were locked, and some days

we spent the entire day getting the comb and lasers locked.

To make the experiment more reliable, we decided to replace the comb with a high finesse

cavity. This system is much more robust and usually it takes less than 5 minutes every day to get the

lasers locked well. Most other groups making ultracold polar molecules have followed our example

and are using cavities for locking their Raman lasers. The cavity is comprised of a cylindrical piece

of Zerodur (a glass-ceramic with very small coefficient of thermal expansion) with a bore through

the center, and fused silica substrates optically contacted on the ends. One of the mirrors is flat and

the other has a 50 cm radius of curvature, which ensures the transverse modes are not degenerate.

A highly reflective coating at both 690 and 970 nm gives finesses of several 104, which are measured

via ringdown (Fig. 2.9). The coating was done by Advanced Thin Films, a company in Boulder.

The cavity is housed inside of an aluminum box and pumped down to about 10−6 torr (see Fig. 2.6).

We passively stabilize the temperature of this box to ∼ 10 mK, which gives day to day frequency

drifts of roughly 100 kHz (inferred from scanning the two-photon detuning of STIRAP), which is

less than the typical two-photon width of STIRAP of 500 kHz. We scan the STIRAP lineshape

roughly once a day and rarely see any degradation in the transfer throughout the day due to the

frequency shifting. When we moved the lab from JILA’s S-wing to the new X-wing at the end of

2012, there seemed to be a small leak in the cavity chamber. Upon pumping down again, the cavity
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seems to have slightly changed length or moved, since the resonant frequencies shifted by about 10

MHz.

We lock the lasers using standard PDH locking techniques [99, 100] to the TEM0,0 modes. In

both cases we fiber couple the lasers to the cavity platform to have a stable alignment and to get

better mode matching into the TEM0,0 modes. To achieve the highest possible servo bandwidth,

we minimize the length of the cables from the current controller to the laser and from the servo to

the current controller. We achieve servo bandwidths of 2-3 MHz for the down leg laser and 1.5-2

MHz for the up leg laser (the lower servo bandwidth in this case seems to arise from the laser

diode itself since we could achieve higher servo bandwidths with different 970 nm laser diodes).

This servo bandwidth is much larger than we achieved when locking the lasers to the comb and is

comparable to the Rabi frequencies Ωu,max and Ωd,max. For the down leg, we observed that the

STIRAP efficiency was very sensitive to the servo gain. To avoid deleterious effects of the relaxation

bumps of the laser (which occur at the servo bandwidth), we optically inject the 690 slave laser

with the transmitted light from the cavity. Good spatial mode matching between the transmitted

beam and the slave laser beam is important in order to be able to reliably inject the slave laser

with less than 200 µW. In order to use the transmitted beam, it’s very important to have an optical

isolator after the cavity. Otherwise, a small amount of light from the slave laser is coupled into the

cavity the wrong way and makes it all the way to the photodiode (PD 3 in Fig. 2.5). This light

interferes with the normal reflection off of the cavity and writes noise on the error signal. For the

up leg, we inject the TA with the unfiltered master light, as we didn’t observe a similar sensitivity

to the servo gain.

In general, there will be a frequency difference between the TEM0,0 cavity modes and the

transitions for STIRAP. The difference could be as large as νFSR/2, where the free spectral range

νFSR = c/2L is the spacing between longitudinal modes of the cavity (c is the speed of light and L

is the cavity length). We heat the chamber to stabilize the temperature, but since it’s ULE glass

we don’t get a large tuning range with temperature. To compensate for this frequency difference,

we use two AOMs for both lasers (see Fig. 2.7). For the up leg, the STIRAP transition is about 200



17

Figure 2.5: Layout for the Raman lasers. Both lasers are fiber coupled to the cavity platform.
The frequency difference between the up leg STIRAP transition and the cavity mode is bridged
by a double-pass AOM (AO2) and a single-pass AOM (AO1) of opposite orders, so that the total
difference is fSP +2fDP. For the down leg, two single-pass AOMs of opposite orders bridge the very
small (less than 10 MHz) frequency difference between the cavity mode and the STIRAP line. We
scan the two-photon detuning δ by changing fDP. PD1 is for the master-slave beatnote. PD2 is for
PDH locking for the up leg, and PD3 is for PDH locking for the down leg. On the cavity platform,
the two colors are combined/separated using dichroic mirrors. The 690 slave laser is injected by
sending the transmitted light from the cavity through the isolator the “wrong” way.
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Figure 2.6: The cavity spacer is a cylindrical piece of zerodur, which is supported on top of another
piece of ULE glass by four small oring pieces. This entire assembly sits inside of a vacuum chamber
that is pumped down to ∼ 10−6 torr and temperature stabilized to ∼ 10 mK. The picture in
the lower right shows how the chamber is currently installed in the lab. There are two layers of
temperature control and a lot of insulation. The drawings are courtesy of Hans Green and the
instrument shop.
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Figure 2.7: Left: Scheme for bridging the frequency difference between the cavity and up leg
STIRAP line. Increasing the frequency of the double-pass AOM fDP reduces the laser frequency.
In Fig. 2.5, AOM 1 is driven at fSP and AOM 2 is driven at fDP. Right: Similar diagram for the
down leg. The STIRAP transition is within 10 MHz of the cavity mode. AOM 3 is driven at f1

and AOM 4 is driven at f2.
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Figure 2.8: Position of many TEM0,0 modes, using our wavemeter to measure the frequency (to 8
digits). The measurements were taken on the same day to minimize any drifts of the wavemeter
calibration. Fitting lines, we extract νFSR, which is around 1.3 GHz.

MHz lower than the closest cavity mode, and this difference can easily be bridged by double-pass

and single-pass AOMs of opposite order. By scanning the RF frequency fDP of the double-pass

AOM, we scan the two-photon detuning δ. For the down leg, the difference between the cavity

mode and the STIRAP line is less than 10 MHz, so we use two single-pass AOMs of opposite order,

one that deflects the transmitted light from the cavity to the slave laser and the other that switches

the light to the main experiment.

To check the cavity is behaving as expected, I measured the FSR, the finesse, and the trans-

mission on resonance. To measure the FSR of the cavity, I locked the laser to many different cavity

modes and recorded the frequency using our wavemeter. Although our wavemeter is only accurate

to about 100 MHz and only reads to the 10 MHz place (8 digits), on a given day the relative

difference between two nearby frequencies should be known to ∼ 10 MHz. Fig. 2.8 shows these

measurements for both colors, and the resulting νFSR = 1.3 GHz implies the cavity length is 11.5

cm.

A typical way to measure the finesse F of the cavity is to do a ringdown measurement, in

which the incident light to the cavity is instantaneously shut off, which can be achieved by switching

off an AOM. The light from the cavity will leave, but not all at once, since photons make roughly

F roundtrips before exiting the cavity. The power leaving the cavity decays exponentially with a
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Figure 2.9: Ringdown measurements at 968 nm (a) and 689 nm (b). From the time constants we
extract finesses of 4.6 × 104 and 3.2 × 104 at 968 and 689 nm, respectively. (c) The transmission
of the up leg when it was locked to the comb. The FWHM κ can be used as an independent
measurement of the finesse, using F = νFSR

κ . The result is F = 4.5 × 104, which is slightly lower
than the finesse extracted from the ringdown measurement.

time constant given by

τ =
FL
πc
→ F = 2πτ νFSR. (2.1)

This is shown in Fig. 2.9a for the up leg and Fig. 2.9b for the down leg. Alternatively, when the

lasers were locked to the comb, I scanned the up leg across the cavity resonance (Fig. 2.9c). Then

by measuring the transmission spectrum, we can obtain the cavity linewidth κ through the equation

F = νFSR/κ. The two methods agree reasonably well, with the finesse extracted from the linewidth

measurement slightly lower than the finesse extracted from the ringdown measurement.

Since we want to optically inject the down leg slave laser with the transmitted light from the

cavity, we care about how much light is transmitted on resonance. I measured Pt/Pin ≈ 0.25 for

the down leg, which means we need to send more than 1 mW to the cavity in order to get enough

transmitted light to inject the slave laser. The transmission for the up leg is about 0.35.

Going back to the condition stated earlier that the relative linewidth should be less than 1

kHz for efficient STIRAP transfer, we’re interested in measuring the linewidth of our lasers. The

most direct way to do this is to build two ostensibly identical systems and then beat them against

each other. This is not really an option for us since we don’t have the resources to build another

complete cavity setup. A more indirect method is to use delayed self-heterodyne interferometry

[101, 102], in which the laser is separated into two parts, one of which has a long delay (achieved
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Figure 2.10: The average of 10 single sweeps on the spectrum analyzer with resolution bandwidth
30 Hz. Each time the beat frequency was subtracted. The fit is a Lorentzian.

by using a long optical fiber) and then creating a beatnote between the two paths. We only have

a 1 km fiber available, which is not really sufficient to reliably measure sub-kHz linewidths.

Conveniently, the down leg transition is within 100 GHz of the Sr red MOT transition. So

we decided to lock our laser to the nearest cavity mode to the Sr red MOT transition and beat our

laser against the 689 nm Sr laser in the neighboring lab, which should have a linewidth � 100 Hz.

Because the lasers are not referenced to each other, the beatnote frequency drifted over time, but

averaging 10 single sweeps on the RF spectrum analyzer, we measure a relative linewidth of around

200 Hz (see Fig. 2.10). Since our two Raman lasers are locked to the same cavity, their relative

linewidth should be at a similar level or even smaller, which is adequate for performing efficient

STIRAP.

2.2.3 Optical trap/lattice lasers

For most of the work described in this thesis, the optical trap (OT) and lattice lasers are

at 1064 nm. This is a convenient wavelength since high-power, low-noise lasers are commercially

available, and the molecules have a long lifetime when exposed to 1064 nm light (1064 nm photons

have a lower energy than necessary to excite to the bottom of the excited molecular potential [72]).
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We used several different types of 1064 nm lasers for the OT and lattice during my time at JILA,

including a Verdi-IR, an IPG fiber laser, and a Nufern fiber amplifier seeded by a Mephisto NPRO.

This latter combination was chosen because the Mephisto has a relatively narrow linewidth (∼ 1

kHz) and the Nufern fiber amplifier has low noise and a high gain (50 W for a 1-15 mW input).

Towards the end of the generation 1 apparatus, we were using the Verdi-IR for just one of the OT

beams. This is because the power of the Verdi-IR had deteriorated and so we couldn’t reliably get

all the power we needed for both OT beams, which is more than 1 W per beam at the beginning

of the OT evaporation.

At one point the Mephisto laser that seeded our Nufern fiber amplifier became multimode,

and this affected the lattice depths. We noticed this problem when we switched to using the Verdi

for the seed laser, and all of the lattice depths increased, even though the power and polarization

of the lattice beams didn’t change. When using the Mephisto, a large fraction of the light was at a

different frequency, and presumably the phase of the two lattices was different. Either way, there

was likely some kind of superlattice and a large fraction of the light was not interfering, leading to

a smaller lattice depth.

2.3 Electric fields

We want to apply large DC electric fields to polarize the molecules in the lab frame and

induce dipole-dipole interactions. As will be discussed in Chapter 4, applying a DC electric field

realizes Ising-type interactions between the two lowest rotational levels. We need to apply large

fields (more than 10 kV/cm) to begin to saturate the dipole moment (see Fig. 4.2). Ideally, we

want very flat fields without having to sacrifice optical access. To do this, we use electrodes with

transparent indium-tin-oxide (ITO) coatings.

2.3.1 Electric-field problems

There were several limitations with the electric-field control in the old experiment. The layout

and geometry of the electrodes was very similar to that described in the thesis of Kang-Kuen Ni
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[96]. In short, the plates are arranged in a boxlike structure, with plates usually only on the top

and bottom, similar to the setups depicted in Fig. 2.11a. In 2012, we were trying to use an electric-

field gradient to tilt the 2D traps formed from a vertically oriented 1D optical lattice. After doing

this for a while, we learned that there was a severe charging problem occurring in the glass walls

forming our cell, where an electric field opposite in direction to our applied field would build up

over time. We determined this charging field Ech was in the opposite direction of the applied field

by looking at the shift in the dark resonance with small applied electric fields of both polarities, and

determining which direction of applied field would bring the transition closer to the zero field value

(this was the same polarity used to get to the charged condition). The presence of Ech manifested

in two ways: (1) a shift in the two-photon detuning of STIRAP, and (2) a shift in the microwave

transition frequency between the two lowest rotational states.

Since the ground-state is a strong-field seeking state, if we don’t change the frequency of the

down leg laser, the presence of an electric field means that in order for the STIRAP transfer to

be on resonance, we have to adjust the two-photon detuning by decreasing the frequency of the

up leg laser (by increasing fDP). When we were looking for charging we always did STIRAP with

the applied field off, so the electric field present during STIRAP is the charging field Ech. We

observed that running the experiment even just a few times (where the electric field was on for

500 ms or less out of a ∼ 60 second total duration) would cause the STIRAP lineshape to shift by

more than the two-photon linewidth (Fig. 2.11b). The maximum shifts we observed were 1-2 MHz,

which imply Ech = 500− 1000 V/cm. The charging problem was much more pronounced at higher

applied fields. There was some hope that the field would be more stable at lower applied fields.

To test this, we drove a microwave transition between the N = 0 and N = 1 states at a modest

field of about 1 kV/cm. We saw that over a few hours, the frequency shifted, and the width of the

feature became broader (Fig. 2.11c), which implies some uncontrolled charging field even at these

low applied fields. From the magnitude of the shift, we inferred a shift of a few V/cm (out of 1

kV/cm) over the 1.5 hour experiment. We tried many things to get rid of this charging, such as

applying blue light and heating the cell, but these didn’t work. The charging on the cell would
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relax over the time scale of ∼ 5 hours (Fig. 2.11d).

2.4 Optical lattice techniques

Optical lattices have become a common tool in AMO physics. On a very näıve level, they’re

analogous to the lattice structure found in materials. One notable difference is that we don’t usually

have to worry about phonons in our system. The ability to tune the lattice strength and geometry

and the ability to add disorder are the main features that make optical lattices so useful for AMO

experiments, as most of these things cannot be controlled easily in solids. For us, optical lattices

serve a very practical purpose, which is to shield the molecules from chemical loss (see Chapter 3).

In this section, I briefly review the relevant aspects of lattice physics for our experiment.

2.4.1 Band structure and eigenfunctions

The eigenstates for particles in a periodic potential have the same periodicity as the lattice.

Instead of the free-particle quadratic dispersion, only certain energy bands are allowed, and atoms

occupy one of the allowed energy bands. The curvature of these bands determines the effective

mass of the particles in the lattice. The calculation of the band structure is presented in many

other places, including several theses [103, 104, 105]. Fig. 2.12a-c shows the dispersion for a few

lattice depths. The lattice depth U0 is expressed in units of the recoil energy ER = ~2k2
2m by a

dimensionless number s = U0/ER. In our case, we have a simple cubic lattice and k = 2π/λ = π/a,

where a is the lattice spacing.

The eigenstates, which are the Bloch wavefunctions φ
(n)
q (x), are given by

φ(n)
q (x) = eiqx/~u(n)

q (x), (2.2)

where q is the quasimomentum (restricted to −π/a to π/a for the first Brillouin zone), n is the

band index, and u
(n)
q (x) is a function with period a [103]. The Bloch functions are a convenient

basis for shallow lattices, since they are delocalized over the entire lattice, but in deep lattices the
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Figure 2.11: (a) Different configurations for applying electric-field gradients. A cross-section of
the glass cell is indicated by the blue rectangle. We tried a configuration where one of the plates
was tilted (left), and another configuration where the plates were flat but the electrical connection
between the two sides was broken to allow independent voltages on the two sides (right). (b)
The STIRAP lineshape would shift even though there was no applied field during STIRAP. After
running the experiment for 5 shots the transition shifted by more than the two-photon linewidth
(from the black curve to the red curve). (c) The microwave transition between the (molecular)
|0, 0〉 and |1, 0〉 states also shifted. (d) The charging would dissipate in several hours, which we
measured by periodically measuring the STIRAP resonance.
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(a) (b)

(c) (d)

Figure 2.12: Dispersion relations for lattices of depths 2ER (a), 8ER (b), and 20ER (c). (d) The
transition frequency between bands 0 and 2 (f0→2 = E0→2/h) at q = 0 vs. lattice depth. This
frequency is measured by parametric heating.
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Wannier functions are a more useful description. The Wannier function centered at site xj is [103]:

wn(x− xj) =
1√
N

∑
q

e−iqxj/~φ(n)
q (x), (2.3)

where q is summed over the first Brillouin zone, and N is a normalization factor. A decent ap-

proximation of the ground-band Wannier function in the limit of a deep lattice is a Gaussian of

rms width a/(πs1/4) [106]. Fig. 2.13 compares the densities of the Bloch functions and Wannier

functions.

There are several relevant energy scales for atoms in the lattice, the tunneling J , the on-site

interaction U when there are two atoms on the same site, and the bandgap ∆. We usually operate

in a regime where J, U � ∆ and the initial atomic temperatures are sufficiently low, so we usually

consider only the lowest band.

J and U can be calculated from the Wannier functions by the following equations [103]:

J =

∫
wn(x− xi)

(
− ~2

2m

∂2

∂x2
+ V (x)

)
wn(x− xi+1)dx, (2.4)

U =
4π~2a

m

∫
|wj(r)|4d3r. (2.5)

It was recently shown how dipole-dipole interactions modify these quantities [107].

J can be calculated directly from the band structure calculation, since J is 1/4 of the band-

width of the ground band. An approximate functional form is given in Ref. [104] as

J/ER = 1.39666 s1.051 e−2.12104
√
s. (2.6)

An approximate formula for U is given in Ref. [108] as

U/ER = 5.97(a/λ)s0.88, (2.7)

where a is the scattering length and λ is the lattice wavelength. Fig. 2.14 shows J for both Rb and

K and URb-Rb at 1064 nm.
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(a) (b)

Figure 2.13: (a) Density |φ(0)
q (x)|2 for Bloch functions in the lowest band, for q = 0 and q = 0.75~k

and a lattice depth of 8 ER. (b) Density |w(x)|2 and |w(x − a)|2 for different lattice depths. For
deeper lattices, the Wannier function is more confined to one particular lattice site and the overlap
with neighboring sites goes down, which leads to less tunneling.
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Figure 2.14: JRb, JK, and URb-Rb vs. the Rb lattice depth ERb
R , calculated for an isotropic 3D lattice

at 1064 nm, and using Eqs. 2.6 and 2.7. The tunneling for K takes into account that sK = 0.4sRb

at 1064 nm.
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2.4.2 Dependence on beam parameters

We have a Gaussian beam of power P and beam waists Wx and Wy that propagates along

the z direction. For simplicity, I assume that the retroreflection is the same size. To account for

the intensity imbalance between the incoming and retroreflected beams (due to reflections and loss

within optics), there is an attenuation factor f for the retroreflected beam intensity (f < 1), which

is a factor of
√
f in the electric field amplitude. The peak intensity of one beam is

I0 =
2P

πWxWy
. (2.8)

The corresponding trap depth is U0 = αI0, where α is the polarizability. The full dependence of U

is

U(x, y, z) = −U0|eikz +
√
fe−ikz|2 e−2x2/(W 2

x ) e−2y2/(W 2
y ) (2.9)

= −U0

(
1 + f +

√
f(e2ikz + e−2ikz)

)
e−2x2/(W 2

x ) e−2y2/(W 2
y ) (2.10)

= −U0

(
1 + f − 2

√
f + 2

√
f(1 + cos(2kz))

)
e−2x2/(W 2

x ) e−2y2/(W 2
y ) (2.11)

= −U0

(
(1−

√
f)2 + 4

√
f cos2(kz)

)
e−2x2/(W 2

x ) e−2y2/(W 2
y ). (2.12)

The trap frequencies are ωi =
√

1
m
∂2U
∂x2i
|x=y=z=0, and the results are that

ωx,y =

√
16U0(1 +

√
f)2

4mW 2
x,y

=
1 +
√
f

2

√
16U0

mW 2
x,y

, (2.13)

and

ωz =

√
8
√
fk2U0

m
= f1/4

√
8k2U0

m
. (2.14)

Finally, the lattice depth s = U0/ER is given by

s =
(mωz
~k2

)2
=

8m

~2k2
U0

√
f. (2.15)

A relevant issue is whether attenuation in the beam path leads to unwanted harmonic confinement

ωx,y from the running-wave component. Using Eqs. 2.13-2.15, it can be shown that ωr increases

by a factor of 1+
√
f

2f1/4
when increasing the power to get the same lattice depth as when f = 1. An
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example here clarifies this statement. If f were 1, we would have some lattice strength s0 with

harmonic confinement ω0. Using the same incident power, if f = 0.5, we would have lattice depth

s0/
√

2 and harmonic confinement
(

1
2 + 1

2
√

2

)
ω0 = 0.85ω0. If we increase the power by a factor

of
√

2, the lattice depth increases to s0, and the harmonic confinement becomes 1.015ω0. Thus

we see that even for this fairly large attenuation the additional harmonic confinement (1.5%) of

the running wave is almost negligible. In the experiment, f is usually 0.6-0.8, so we don’t have to

worry about this.

2.4.3 Avoiding superlattices

Another thing we worry about is unwanted reflected beams interfering with the primary lattice

beams and creating a superlattice. Fig. 2.15 shows the setup from the old chamber. There are

four reflected beams that can hurt us, two from the incoming beam and two from the retroreflected

beam. At normal incidence, each would be roughly 4% in intensity. This is problematic since the

interference scales as
√
IinIr, which means each of these 4% reflections would produce a lattice

that’s 0.2 times the strength of the initial lattice (if there were perfect overlap of the beams). This

suggests we can’t propagate the beam normal to the cell. In principle, the superlattice should be

stable if there’s no relative motion between the cell and the retroreflecting mirror, but there would

likely be a phase difference between the two lattices. This is bad, and we want to avoid it.

If we have beams with I0 and 0.04I0 with the same waist, and we want the four possible

reflections (Fig. 2.15) to give a lattice less than 0.01 times the strength of the regular lattice, the

beams would need to be separated by about 2.5 beam waists. We typically use a 250 µm beam for

the vertical lattice and the cell is 1 cm tall, so θ would need to be larger than about 4◦ to satisfy

the above condition. Most recently the lattice beams were a little larger, so we chose 6◦ to be safe.

2.4.4 Calibrating the lattice depths

We regularly use two different methods to measure the lattice depth, parametric heating and

Kapitza-Dirac scattering. Parametric heating, which consists of amplitude modulating the lattice
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Figure 2.15: We get reflections off of the cell surfaces. The ones that could hurt us by interfering
with the primary lattice beams are shown in light red (there are 4 total). For uncoated glass at
normal incidence, each of these would give ∼ 4% reflection. We tilt the beam at an angle θ with
respect to normal. The atoms sit at the center, and we require the separation between the reflected
beams and the desired lattice beams to be at least 2-3 beam waists to keep the superlattice depth
below 1% of the primary lattice depth.
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Species α1064/h (10−5 MHz/(W/cm2)) Relative lattice depth (EiR)

Rb 3.2 1
K 2.8 0.40
KRb 5.5 2.48

Table 2.1: Polarizabilities and lattice depths of K, Rb, and KRb at 1064 nm.

beams and driving transitions that change the band index by 2, is discussed at length in Ref. [105].

Starting with atoms in the ground band, we measure f0→2, corresponding to the energy difference

between the ground band and the second excited band (see Fig. 2.12d). In Kapitza-Dirac scattering,

the lattice is turned on for a short time τ , which is typically less than 10 µs (which is faster than

the lattice oscillation frequency). This diffracts the BEC into plane-wave components [109, 110].

Measuring the populations in the plane-wave components, one can extract the lattice depth. For

short, strong pulses, the motion of the atoms during the pulse duration can be neglected, and the

population in the ±2n~k component is approximately J2
n

(
sERτ

2~

)
, where Jn is the ordinary Bessel

function of order n [109]. This approximation is only valid for short times. We find it’s relatively

simple to find the shortest τ that minimizes the population of the 0~k component. This occurs

when the argument of J0 is about 2.405, which leads to the condition sτ ≈ 377µs for Rb (solving

the time-dependent Schrödinger equation exactly, this is true to within 2% for s ≥ 30). We find

that parametric heating and Kapitza-Dirac scattering give consistent answers for the lattice depth.

Unless otherwise noted, the uncertainty in the lattice depth calibration is about 5%.

We measure the lattice depth for Rb and use our knowledge of the different mass and polar-

izability of K at 1064 nm to calculate the lattice depth for K. At 1064 nm, αRb/αK = 1.15, which

implies ωK/ωRb = 1.37 [105]. The recoil energy is higher for K by a factor of mRb/mK. Putting

all of these factors together, sK = 0.4 sRb, so Rb can be well localized in the Mott insulating phase

while K is still mobile. We do the same procedure for ground-state molecules; there, the conversion

is sKRb/sRb = mKRbαKRb
mRbαRb

≈ 2.48. Note that it was by measuring parametric heating resonances

that we measured the polarizability of molecules in both the N = 0 and N = 1 states (see Fig. 4.5)

[91]. The results are summarized in Table 2.1.
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2.4.5 Band mapping

Due to both finite temperature and nonadiabaticity in loading the lattices, we can have

atoms and molecules populated in higher lattice bands. The standard way to detect particles in

higher bands is via band mapping, whereby the lattice intensity is ramped to zero (instead of being

instantaneously shut off) on a timescale fast compared to motion on a lattice site but slow enough

to be adiabatic with respect to the band separation. This technique is described well in other places

[98, 103, 105]. Here I only discuss a variant of the technique that we’ve recently implemented. We

use a refocusing technique [111], where the lattices are ramped down in the same way, but the

underlying harmonic trap is not turned off. Waiting a quarter trap period (of the harmonic trap),

there is a one-to-one correspondence between the position of the atoms, given by the distribution

function n(x, t), and the initial momentum, given by the distribution function Π(p, t):

n(x, T/4) = Π(p, 0), (2.16)

where p = mωx. Note that in this case we are making a measurement in position space, whereas

in normal band mapping, one makes a measurement in momentum space. In this case, the size of

the first Brillouin zone is 2~k/(mωhc), where ωhc is the harmonic trap frequency. Ordinary band

mapping requires a sufficiently long expansion such that the cloud is in momentum space, but the

refocusing technique requires a shorter expansion time, such that the cloud is smaller and the OD

and SNR are higher. When imaging from the top, we can fit the entire 2D distribution to the

following functional form (similar to that in Ref. [98]):
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(2.17)

which includes an imaging offset K and a contribution from the ground band and 4 additional

regions corresponding to higher bands in x and y (see Fig. 2.16a). Since the probability of being

excited along any given direction is small (usually < 0.1), multiply excited states will be ignored.

wx and wy take into account imaging resolution and momentum smearing from not being perfectly

adiabatic at the band edge (the momentum smearing seems to be the dominant effect). The center

of the distribution is (xc, yc) and the width of the Brillouin zone in x (y) is 2∆x (2∆y). Ideally,

these should be the same, but a different trap frequency along the two directions might cause slight

differences in ∆x and ∆y. We assume the higher-band population in z is the same as in x and y

and thus multiply the higher-band fraction measured for the x and y directions by 1.5 to account

for those atoms excited along z. Thus, the fraction of atoms in higher bands is 1.5 (B1+B2+C1+C2)
2A+B1+B2+C1+C2

.

2.4.6 Generating the lattice beams

The optical layout for the lattice beams changed since the original 3D lattice work [72].

Initially we were using the OT beams as the horizontal lattice beams. We would do the evaporation

in the OT, load the vertical lattice, ramp the OTs to 0, open shutters to unblock the retroreflections,

and then finally ramp on the horizontal lattices (see Fig. 2.17a). Eventually we wanted to be able

to ramp the lattices independently of the dipole trap, so we made the polarization of the lattice

beams orthogonal to the OT beams, sent in the lattice beams from the opposite side of the cell as
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Figure 2.16: (a) A “map” that defines the different regions for band mapping when imaging such
that excitations along two directions can be observed (see Eq. 2.17). (b) and (c) Typical images
of band-mapped K from the experiment, using the refocusing technique, with lower (b) and higher
(c) higher-band fraction. The OD is given by the color scale on the far right. These images come
from Ref. [93].
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Figure 2.17: (a) Timing diagram for the initial lattice loading scheme, as used in Ref. [72]. We
would ramp up the vertical lattice, ramp down the OTs, open the shutters, and then ramp up
the horizontal lattice beams. (b) The most recent setup for the horizontal lattice beams and OT
beams. The OT and lattice beams have orthogonal linear polarizations and the OT and lattice
incoming beam propagate in opposite directions.

the OT beams, and then used a polarizing beamsplitter on the far side (on the incoming side for

the OT) to separate the lattice beam from the optical trap (see Fig. 2.17b).

The typical OT beam size is 200 µm in the radial direction and 40 µm in the vertical direction.

At one point, we made them even more oblate to reduce the radial harmonic confinement. After

switching to separate horizontal lattice beams, the lattice beams were initially round (with a waist

of 125-250 µm), and then oblate, with sizes ∼ 500 × 100µm in the radial and vertical directions,

respectively. We wanted to make the horizontal lattice beams elliptical to better match the size of

the cloud and have a lower harmonic confinement along the radial direction. The vertical lattice

was round with a 200-300 µm waist, and most recently it was around 280 µm at the position of the

atoms.



Chapter 3

Chemical reactions and the Zeno effect

One of the first observations made with ultracold KRb molecules in a 3D harmonic trap was

that the molecules had a significantly shorter lifetime in the optical trap than the constituent K

and Rb atoms [69]. Furthermore, upon applying a DC electric field, which is the simplest way to

induce dipolar interactions between the molecules, the lifetime became much shorter [70]. This

is a problem because it correlated strong interactions with strong inelastic losses, which makes it

difficult to study dipolar interactions in a controlled way. Since the molecules were prepared in the

lowest internal energy state with the thermal energy less than all other energy scales, no other states

of the molecule were accessible. Therefore, it was concluded that exothermic chemical reactions

are responsible for the loss, as the energy of K2+Rb2 is about 10 cm−1 lower than the energy of 2

KRb, and the reaction 2KRb→K2+Rb2 is barrierless [112]. The observations of chemical reactions

in KRb signal a new epoch in the study of ultracold chemical reactions.

Fermionic 40K87Rb molecules prepared in the same internal quantum state collide in the

partial-wave channel with L = 1 (p wave), where ~L is the quantized relative angular momentum.

The projection of this angular momentum onto the quantization axis, mL, determines the orien-

tation in which the molecules collide: mL = 0 corresponds to an attractive head-to-tail collision,

while mL = ±1 corresponds to a repulsive side-by-side collision. Distinguishable molecules can

collide via s-wave collisions (L=0). In an applied DC electric field, the dipole-dipole interaction

mixes states with different L, so the L = 0 channel becomes the lowest-energy adiabatic channel

with even L, and the L = 1 channel becomes the lowest-energy adiabatic channel with odd L. This
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Figure 3.1: Cartoon illustrating the anisotropy of collisions in an applied DC electric field. The
p-wave centrifugal barrier increases for repulsive side-by-side collisions (red arrow) and decreases
for attractive head-to-tail collisions (blue arrow). Figure reproduced from Ref. [70].

odd-L adiabatic channel has a centrifugal barrier. A simple model for the chemical reactions is that

the molecules tunnel through the p-wave centrifugal barrier and then chemically react with unit

probability (if the molecules are not in the lowest hyperfine state, another possibility is hyperfine-

state changing collisions) [69]. In an electric field, the centrifugal barrier decreases for mL = 0

(head-to-tail) collisions but increases for mL = ±1 (side-by-side) collisions [70] (see Fig. 3.1). This

suggests a natural strategy to stabilize the molecular gas in a strong electric field, which is to pre-

vent the molecules from colliding head-to-tail. This can be accomplished by trapping the molecules

in a 1D optical lattice, with the electric field perpendicular to the quasi-2D traps. In this geometry,

the loss rate can be reduced by almost two orders of magnitude [71]. To completely shut off the

chemical reactions, we can create the molecules in a 3D lattice. In the full 3D lattice, the molecules

live for tens of seconds, independent of the electric field strength [72].

In the first part of this chapter, I briefly summarize the molecule production and chemical

reactions in the harmonic trap and in optical lattices. Since a lot of this has been covered in other

theses from our group, particularly those of Kang-Kuen Ni [96], Marcio de Miranda [98], and Brian

Neyenhuis [105], I focus on the most important aspects. In the second part of the chapter, I describe

our studies of the continuous Zeno effect. This occurs in a regime where the chemical reaction rate

is the largest energy scale in the lattice, which occurs for chemical reactions on a single lattice

site between distinguishable molecules in a rotational mixture (half in N = 0 and half in N = 1,
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where N is the molecule’s principal rotational quantum number). The result of the Zeno effect is

that, counterintuitively, the loss rate decreases as the chemical reaction rate increases. Much of

this chapter follows Refs. [72] and [90], of which I am a coauthor.

3.1 Brief summary of molecule production

The experiment starts with magneto-optical traps (MOTs) of both 87Rb and 40K. After

loading the MOTs for about 10 seconds, we do a compressed MOT stage, which gets the MOT to

the correct position for loading into a magnetic quadrupole trap. We then have a molasses stage

(where the magnetic field is completely shut off), which does sub-Doppler cooling. Finally, we use

optical pumping to put the atoms in the magnetically trappable stretched states |F,mF 〉 = |2, 2〉 for

Rb and |9/2, 9/2〉 for K. We then load the atoms into the quadrupole trap and transfer the atoms

to the science cell by a pair of moving coils. The evaporative cooling is done in a Ioffe-Pritchard

(IP) trap by using ∼ 6.8 GHz microwaves to transfer hot Rb atoms from the |2, 2〉 state to the

|1, 1〉 state, which are not trapped. The K gas is sympathetically cooled by the Rb and remains

thermalized with the Rb throughout the evaporation.

The s-wave Feshbach resonance that we use to create weakly bound Feshbach molecules

occurs at a field of 546.6 Gauss between K in the |9/2,−9/2〉 state and Rb in the |1, 1〉 state

[113]. These are both strong-field-seeking states so we can’t trap them in a magnetic trap. Instead,

we cool the atoms in the IP trap to about 1-2 µK and then load the atoms into a crossed-beam

optical dipole trap at 1064 nm, which can trap all spin states. At this point, we ramp on a roughly

homogeneous bias magnetic field to about 30 Gauss. About 300 ms after transferring into the

dipole trap, we use an adiabatic rapid passage (ARP) to transfer K from the |9/2, 9/2〉 state to the

|9/2,−9/2〉 state and use a microwave ARP at around 6.9 GHz to transfer Rb to the |1, 1〉 state.

We then do further evaporation by reducing the intensity of the dipole trap beam over several

seconds. After 3-4 seconds we produce a degenerate Fermi gas of K and a BEC of Rb. For optimal

molecule production in the harmonic trap, we usually work with cold thermal gases (T/Tc > 1 for

Rb) to maximize the phase-space overlap of the two species. For optimal molecule production in
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the lattice, we use very small BECs and large, degenerate Fermi gases (see Chapter 5).

We ramp the magnetic field across the Feshbach resonance from high field to low field to

adiabatically convert pairs of atoms to weakly bound Feshbach molecules (molecules in the least

bound vibrational state). In a harmonic trap this is not very efficient, as we can only convert 10-

20% of the minority species, but in the 3D lattice it is quite efficient (see Section 3.6 and Chapter

6). We use STIRAP to transfer the Feshbach molecules to the absolute ground state [51, 114].

When the molecules are in the ground state, we apply resonant light at 767 and 780 nm to remove

the K and Rb atoms that didn’t make molecules. This is necessary since the atoms can chemically

react with the molecules. To image the molecules, we use STIRAP to bring the molecules back

to the Feshbach molecule state and then dissociate the Feshbach molecules, either with light on

the K cycling transition or by sweeping the magnetic field above the resonance. Either way, we

then image K or Rb atoms on a cycling transition, but to image Rb we first have to do another

microwave ARP to put the atoms in the |2, 2〉 state.

3.2 Rotational states and driving rotational transitions

For 1Σ molecules such as KRb, the rotational degree of freedom is instrumental in get-

ting dipolar interactions, as successive rotational states have opposite parity. Transitions between

rotational states are electric dipole transitions. Furthermore, the rotationally excited states are

long-lived and we can easily couple to them using microwaves. As will be discussed in the next

chapter, we can encode spin in the rotational degree of freedom and realize an XY coupling between

molecules in the lattice. For studying chemical reactions, driving transitions to different rotational

states is useful because it allows us to control the distinguishability of the molecules and to create

molecules in the absolute hyperfine ground state. The energies of the excited rotational states are

EN = hBN(N+1), where B = 1.113950 GHz is the rotational contstant [96]; however, higher-order

terms break the degeneracy between different hyperfine states and different projections along the

quantization axis. This section summarizes how we drive rotational transitions in the molecules

and follows Ref. [115].



42

Although the ground-state molecules are a singlet (X1Σ+), there is still hyperfine structure

arising from the nuclear magnetic moments of the K and Rb atoms. With nuclear spin quantum

numbers IK = 4 and IRb = 3/2 for K and Rb, respectively, there are 36 hyperfine states for

each rotational state |N,mN 〉, where N is the principal rotational quantum number and mN is

its projection onto the quantization axis. Thus, the states can be labeled by |N,mN ,mK,mRb〉,

where mK is the nuclear spin projection for K, and mRb is the nuclear spin projection for Rb. mK

and mRb are good quantum numbers for magnetic fields larger than about 20 Gauss, where the

linear Zeeman energy shift for each of the nuclear spins is much larger than the mutual coupling of

the nuclear spins. At 550 Gauss, the splitting between states with ∆mRb = ±1 is about h × 760

kHz, while the splitting between states with ∆mK = ±1 is about h × 130 kHz. In addition,

there is a coupling between the nuclear electric quadrupole moments of the 40K and 87Rb nuclei

and the electric-field gradients created by the molecules’s electron cloud [115, 116]. This coupling

breaks the degeneracy of states with the same N but different mN , and mixes states in the N = 1

manifold that have a constant sum mN +mRb or mN +mK. This leads to eigenstates of the form

|1, 0,mK,mRb ± 1〉+ δ|1,±1,mK,mRb〉 or |1, 0,mK ± 1,mRb〉+ δ|1,±1,mK,mRb〉 and allows us to

drive transitions that ultimately put the molecules in the absolute ground state |0, 0,−4, 3/2〉.

From selection rules and spectroscopic resolution, STIRAP populates a single hyperfine state

of the ground rovibrational state, |0, 0,−4, 1/2〉 [96]. We then use a microwave signal to drive

transitions to states in the N = 1 manifold. The microwave horn we use doesn’t give us very much

control over the microwave polarization, and we find we get much better coupling for σ± transitions

than for π transitions. To transfer molecules to the hyperfine ground state, we drive two microwave

transitions, one of which changes mRb. Specifically, we drive |0, 0,−4, 1/2〉 → |1, 0,−4, 3/2〉 +

δ|1, 1 − 4, 1/2〉 → |0, 0,−4, 3/2〉 (note that these are σ+ and π transitions, respectively). For

this particular intermediate state, |δ|2 ≈ 0.1. Because |δ|2 < 1, for fixed microwave power, the

Rabi frequency for a hyperfine-state changing transition is less than for a transition that doesn’t

change hyperfine state. For the spin-exchange work described in the next chapter, we drive the

|0, 0,−4, 1/2〉 → |1, 0,−4, 1/2〉 and |0, 0,−4, 1/2〉 → |1,−1,−4, 1/2〉 transitions.
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3.3 Chemical reactions in 3D

Chemical reactions of ultracold KRb molecules in the 3D harmonic trap depend on which

state(s) the molecules are in, the temperature, and the applied electric field. There are three

relevant cases: (1) indistinguishable molecules (spin-polarized), (2) a hyperfine mixture with both

states in the N = 0 manifold, and (3) a hyperfine mixture with one state in the N = 0 manifold

and one state in the N = 1 manifold. In the first two cases, the temperature and electric-field

dependences were studied. The third case is relevant to the quantum Zeno work, where we have

an incoherent mixture of N = 0 and N = 1 molecules.

The chemical reactions cause the number density of trapped molecules, n, to decrease ac-

cording to

dn

dt
= −βn2 − αn, (3.1)

where β is the two-body loss coefficient and α reflects a decrease in the density due to an increase

in temperature [69]. Fig. 3.2a shows how β depends on temperature for cases 1 and 2. For spin-

polarized cases, the loss rate β ∝ T , which is expected from the Bethe-Wigner threshold laws

for p-wave collisions of indistinguishable fermions. For the hyperfine mixture, the molecules are

distinguishable, s-wave collisions are allowed, and the loss has no significant temperature depen-

dence. Another important conclusion from this data is that hyperfine changing collisions don’t

play a large role, since the loss rates are the same within experimental error for the |0, 0,−4, 1/2〉

state (for which hyperfine-state changing collisions are allowed in principle) and the |0, 0,−4, 3/2〉

state (for which there cannot be hyperfine-state changing collisions, as this is the hyperfine ground

state). Fig. 3.2b shows that β ∝ d6 (d is the induced dipole moment in the lab frame), consistent

with a quantum threshold model [70]. Fig. 3.3 shows the loss of molecules in a mixture of N = 0

and N = 1 states, from which we extract β = 9.0(4) × 10−10 cm3 s−1, which is almost 5 times

higher than for the N = 0 mixture [84]. To create an incoherent spin mixture, we applied a π/2

pulse on the |0, 0,−4, 1/2〉 → |1,−1,−4, 1/2〉 transition and waited 50 ms for any superpositions

to decohere.
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(a) (b)

Figure 3.2: Chemical reactions in the 3D harmonic trap. (a) Chemical reaction rates at zero electric
field for two different hyperfine states and a mixture. The loss rate β is proportional to temperature
for the spin-polarized case and is independent of temperature for the mixture. Figure reproduced
from Ref. [69]. (b) The loss rate vs. induced dipole moment for a spin-polarized sample. β ∝ d6,
which is consistent with a quantum threshold calculation [70]. Figure reproduced from Ref. [70].

Figure 3.3: Decay of an incoherent mixture of rotational states |0, 0,−4, 1/2〉 and |1,−1,−4, 1/2〉.
The extracted loss rate, 9.0(4) × 10−10 cm3 s−1, is almost 5 times higher than for the mixture of
two N = 0 hyperfine states (|0, 0,−4, 1/2〉 and |0, 0,−4, 3/2〉). Figure reproduced from Ref. [84].



45

In addition to reacting with themselves, the molecules can also react with the K and Rb

atoms (K is worse for molecules in the ground hyperfine state, but both are bad for molecules in

excited hyperfine states [96]). Thus, it’s very important to remove all remaining atoms after making

molecules, especially in cases where we convert a small fraction of one or both of the atomic species

(this will be important for K in Chapter 5).

3.4 Suppressing chemical reactions in a 1D lattice

Because of the asymmetry between head-to-tail and side-by-side collisions, a natural strategy

for stabilizing the gas against chemical reactions is to suppress the lossy head-to-tail collisions [71].

In particular, the lifetime should be enhanced in a 1D lattice geometry with the electric field oriented

perpendicular to the pancake-shaped lattice sites. Here, the molecules are created in a vertically

oriented lattice (z direction) and an electric field is also applied along the z direction. The lattice

has a strong optical confinement with trap frequency ωz. For the applied electric field strengths,

molecular temperatures, and harmonic confinements of Ref. [71], the experiments are performed in

quasi-2D, and the combination of sufficiently tight optical confinement and Fermi statistics makes

molecules preferentially collide in the side-by-side orientation. Chemical reactions are suppressed by

the repulsive dipole-dipole interactions. In the quasi-2D geometry, L is not a good quantum number

to describe how molecules approach each other for intermolecular separations � aho (aho =
√

~
mωz

is the harmonic oscillator length along z), and instead the relative motion is described by mL. A

quantum number ν labels which harmonic oscillator motional state (lattice band) a molecule is in.

This quantum number acts as a new internal degree of freedom for molecules as they approach each

other from long range. Fermionic molecules in the same internal state and same ν must collide

with odd mL (side-by-side), whereas fermions in the same internal state but different ν collide with

even mL (head-to-tail).

Again, there are three separate cases to consider (see Fig. 3.4a): (1) distinguishable molecules,

(2) indistinguishable molecules in different bands, and (3) indistinguishable molecules in the same

band. Similar to the 3D case, channel 1 leads to s-wave losses and should be avoided. Channel
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(a)

(b) (c)

Figure 3.4: Chemical reactions in the 1D lattice. (a) The barrier for collision channel 1 (green,
distinguishable molecules), 2 (red, indistinguishable molecules in different bands), and 3 (black,
indistinguishable molecules in the same band). Channel 3 is the most desirable since it corresponds
to repulsive side-by-side collisions. The arrows next to the curves indicate whether the barrier
increases or decreases as the electric field increases. (b) Loss rates for two different initial band
populations. The initial loss is faster when the initial higher band fraction is higher. (c) 2D decay
coefficients β2D for the three cases depicted in (a). Figures reproduced from Ref. [71].
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2 corresponds to head-to-tail collisions (mL = 0), which are also undesirable. Channel 3 is the

desirable scenario, and corresponds to mL = ±1 (side-by-side collisions). In an applied electric

field, dipole-dipole interactions cause the barrier for head-to-tail collisions to go down and the

barrier for side-by-side collisions to go up. To control the fraction of molecules in excited bands

and thus the relative importance of channels 2 and 3, parametric heating was used to promote

molecules to higher bands. Fig. 3.4b shows the loss for two different initial conditions: for colder

molecules, where about 75% of the molecules in the lowest band, and another case where parametric

heating was used to heat the molecules to the second excited band. Fig. 3.4c shows the loss rate

coefficient, β2D, vs. induced dipole moment for the three cases depicted in panel a and clearly

shows the loss rate is significantly less for channel 3. At an induced dipole moment of 0.174 D, the

suppression is about a factor of 60.

It’s worth noting that for very large applied electric fields and very strong optical confine-

ments, repulsive dipole-dipole interactions can suppress chemical reactions, regardless of quantum

statistics [71, 117, 118]. In this regime, the ratio of elastic to inelastic collisions should be favorable

for evaporatively cooling the molecules [119], similar to pioneering work in dipolar Fermi gases of

magnetic atoms [50]. However, Ref. [120] shows that for d > 0.3 D, the ratio of elastic to reactive

collisions only really starts to significantly increase (beyond 100) for ωz/(2π) > 100 kHz, which is

a significantly higher trap frequency than we have used so far.

3.5 Shutting off chemical reactions in a 3D lattice

The success in suppressing reactions in a 1D lattice motivated us to add lattices along the

horizontal directions (x and y) to create a 3D lattice [72]. Again, the strategy is to load the atoms

into the lattice and then make molecules. In the 3D lattice, the molecules enjoy a long lifetime,

as long as they are all in the lowest band, which for spin-polarized fermions trivially means there

can’t be more than one molecule per site. Furthermore, the lifetime is independent of electric field,

and is actually limited by single-photon scattering from the lattice beams (the 1064 nm light is

only about 30 nm detuned from the bottom of the excited molecular potential).
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Fig. 3.5 shows a typical decay of ground-state molecules in a deep 3D lattice. After a fast

initial loss, which could be due to collisions with dark molecules (those that didn’t make it to the

ground state), we observe a simple exponential decay of the molecules, with a 1/e lifetime of 16(2)

seconds. These dark molecules could be d-wave molecules produced during the magnetoassociation

in the lattice (see Chapter 6). The inset compares the lifetime at zero electric field with that

for polarized molecules with an induced dipole moment of 0.17D, and we see no difference within

experimental error.

To understand the loss mechanism, we first studied the crossover from vertically oriented

tubes to an isotropic 3D lattice. Fig. 3.6 shows how the lifetime depends on the lattice depth in

the vertical direction. For these experiments the horizontal lattices were 56 ER. For just vertically

oriented tubes (no lattice along z), the lifetime is about 1 second and decreases to about 0.1

seconds when the molecules are polarized to 0.17 D. Adding even a shallow lattice along z, the

lifetime increases significantly (5 seconds for sz = 12 and 20 seconds for sz = 20), and even at 5

ER the lifetime doesn’t significantly change in an applied electric field. Pauli blocking should lead

to a rapid suppression of loss as the lattice is increased along z, but would do so more rapidly than

we observe. This, combined with the insensitivity of the lifetime at 5 ER to the induced dipole

moment, suggest that an incoherent process is responsible for the loss in this regime of strong

horizontal and weak vertical lattices. A model that describes the loss well is that there is some

heating rate that promotes molecules to higher bands, and then these higher band molecules can

tunnel much faster and collide with other molecules at a rate much higher than the promotion rate.

A heating rate ∼ 1− 2ER/s matches the data well (red and blue curves in Fig. 3.6).

The lifetime reaches a maximum value of about 25(5) seconds for sz = 34 (point b in Fig. 3.6)

and then it starts to decrease. At large lattice depths, the lifetime becomes limited by off-resonant

scattering from the lattice laser. The rich internal structure of the molecules makes it likely that

upon absorbing a photon, the molecule won’t return to the ground state. The lifetime depends

on the total light intensity, which we verified by adding a running wave beam (points c and d in

Fig. 3.6). Measuring this scattering rate allows us to measure the imaginary part of the polariz-
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Figure 3.5: The lifetime of ground-state molecules in the 3D lattice, with sx = sy = 56 and sz = 70
(the uncertainty in the lattice depths is at most 10%). After a fast initial loss of some of the
molecules, the remaining molecules enjoy a long lifetime of 16.3±1.5 seconds. The inset shows that
the lifetime doesn’t depend on electric field (these measurements were performed in an isotropic 50
ER lattice). Figure reproduced from Ref. [72].

Figure 3.6: The lattice depth along the horizontal directions is fixed at 56 ER, and the lattice depth
along the vertical direction is gradually increased. This allows us to study the lifetime as we go
from a 2D lattice to tubes with a small corrugation along the third direction to a full 3D lattice.
For large z lattice depths the lifetime becomes limited by off-resonant scattering. We can vary the
intensity both by changing the z lattice strength and by adding an additional running wave beam
that increases the total intensity but doesn’t increase the lattice depth. Figure reproduced from
Ref. [72].
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ability at 1064 nm to be h× 2.052(9)× 10−12 MHz/(W/cm2).

The achieved lifetimes of ∼ 10− 20 seconds are sufficient to realize a stable dipolar gas. As

we will see in the next chapter, the exchange timescales for molecules in the lattice are as fast as

10 ms, so our lifetime provides ample opportunities to study interesting physics.

3.6 Long-lived Feshbach molecules and conversion of preformed pairs

Because Feshbach molecules are so weakly bound, it’s difficult to cleanly remove all of the

atoms that didn’t get converted. This is especially problematic for K, where the light that we

would use to remove the unpaired K atoms would kill the Feshbach molecules as well. Instead, we

just “hide” the K in the |9/2,−7/2〉 state so we don’t image them, but the atoms are still trapped.

Furthermore, we typically convert only 10-20% of the minority species to Feshbach molecules, so the

number of remaining atoms is significantly larger than the number of Feshbach molecules. These

atoms can then collide with the Feshbach molecules and limit their lifetime. To verify this, we can

use our ability to create ground-state molecules to more cleanly remove the unpaired atoms. If we

then STIRAP the ground-state molecules back to the Feshbach state, we observe lifetimes ∼ 150

ms in the dipole trap, significantly longer than the lifetime when “hiding” the atoms, which is less

than 10 ms [114].

If we do the same procedure in the lattice, we find that the Feshbach molecules can live for

up to 10 seconds (see Fig. 3.7). Varying the magnetic field after making molecules we can vary

the size and binding energy of the Feshbach molecules. Similar to the ground-state molecules, we

find that the lifetime is limited by off-resonant scattering. To explain the dependence on binding

energy, we approximate the Feshbach molecule wavefunction |f〉 as

|f〉 ≈
√
Z|C〉+

√
1− Z|O〉 (3.2)

where |C〉 is the closed-channel molecular wavefunction and |O〉 is the open-channel wave function

for free atoms. Z depends on the magnetic field and is 1 for B � B0 (deeply bound molecules)

and 0 for B � B0 (free atoms), where B0 is the location of the Feshbach resonance. The total
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scattering rate is ZΓmol + (1−Z)Γatoms, where Γmol and Γatoms can be extracted from the lifetimes

in the limiting cases, and Z can be computed from a simple coupled-channel theory [29, 121]. The

red fit curve in Fig. 3.7 has no free parameters and agrees well with the data.

By dissociating these long-lived Feshbach molecules to atoms, we can study the conversion

of preformed pairs (lattice sites that have one K and one Rb atom). This is important because it

allows us to understand how efficiently we can convert lattice sites with one K and one Rb atom

to a Feshbach molecule. To do this we prepare a clean lattice of Feshbach molecules in the same

way as described above. We then dissociate the Feshbach molecules by ramping the magnetic field

above the resonance. At this point, we should have a lattice consisting of only preformed pairs. By

then ramping B to below the resonance to recreate molecules we can study how well we can convert

these preformed pairs to Feshbach molecules. To measure the number of molecules, we apply an

RF pulse which transfers free K atoms in the |9/2,−9/2〉 state to the |9/2,−7/2〉 state, but leaves

Feshbach molecules unaffected. This renders the unpaired K atoms invisible during the subsequent

molecule detection. We then dissociate the Feshbach molecules once again by ramping B to above

the resonance, and measure the number of K atoms with spin-selective resonant absorption imaging.

We determine the conversion efficiency by dividing this molecule number by the total number of

K atoms measured when we do not apply the RF pulse. In Ref. [72], we found a conversion of

87 ± 13%. In Chapter 6, we investigate this issue in much further detail and confirm that in the

ideal case of deep lattices and fast magnetic-field sweeps the conversion is near unity [93].

3.7 Quantum Zeno effect

As we’ve seen in the previous sections, the chemical reaction rate can be tuned over several

orders of magnitude by changing the distinguishability of the molecular gas, the induced dipole

moment, and the temperature. The highest two-body loss rate we observed is for the rotational

mixture. In this case, the molecules are distinguishable, and there is no Pauli blocking and they

can occupy the same site and chemically react. This onsite loss rate is very large and can be made

to be larger than both the tunneling rate and the energy gap between different lattice bands. In



52

Figure 3.7: Using our ability to remove all unpaired atoms after making ground-state molecules, the
lifetime of Feshbach molecules can be long. The lifetime depends on magnetic field because of the
different admixture of open and closed channel contributions to the wave function, which depend
on magnetic field. Above the resonance we have confinement-induced molecules, which don’t exist
in the absence of the lattice. Figure reproduced from Ref. [72].
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this regime, tunneling onto an already occupied site is suppressed due to the continuous quantum

Zeno effect, and as a result, the effective loss rate of the entire system decreases as the onsite loss

rate increases. Some previous observations of the Zeno effect in AMO systems were reported in

Refs. [122, 123]. It’s worth noting here that the loss rates in the 3D lattice work [72], where we

prepared a spin-polarized sample, were not large enough to be in the Zeno regime (at least for

ground-band collisions). This section closely follows Ref. [90], of which I am an author.

Similar to the rotational mixture described above, we work with the |0, 0,−4, 1/2〉 and

|1,−1,−4, 1/2〉 states, which we map onto a spin-1/2 system (|0, 0〉 ≡ | ↓〉 and |1,−1〉 ≡ | ↑〉).

To see how the Zeno suppression comes about, consider just two lattice sites and take the initial

state to be | ↑, ↓〉 (one particle in each well). The states that lead to loss are |0, ↑↓〉 and | ↑↓, 0〉.

To account for the loss we add an imaginary term −i~Γ0/2 to the energies of |0, ↑↓〉 and | ↑↓, 0〉

(these two states also have a real energy shift ∆E, which we assume to be small compared to ~Γ0

[123, 124]). The system can be described by the following Hamiltonian, in the basis | ↑, ↓〉, | ↓, ↑〉,

|0, ↑↓〉, and | ↑↓, 0〉:

| ↑, ↓〉 | ↓, ↑〉 |0, ↑↓〉 | ↑↓, 0〉

H =



0 0 −J −J

0 0 J J

−J J ∆E − i~Γ0
2 0

−J J 0 ∆E − i~Γ0
2


. (3.3)

Using second-order perturbation theory, the states | ↑, ↓〉 and | ↓, ↑〉 acquire an imaginary part to

their energy, which in the limit that ~Γ0 � J,∆E, is proportional to J2

~Γ0
. This implies that the

states | ↑, ↓〉 and | ↓, ↑〉 decay at a rate proportional to J2

~2Γ0
.

A schematic of the experimental setup is shown in Fig. 3.8. We used our standard preparation

scheme to create ∼ 104 ground-state molecules in a deep 3D lattice (along all three directions).

Next, we applied a π/2 pulse on the |0, 0,−4, 1/2〉 → |1,−1,−4, 1/2〉 transition and waited 50 ms

to create an incoherent mixture. Then, we reduced the lattice depth along y within 1 ms to allow
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Figure 3.8: (a) Experimental setup for studying the continuous quantum Zeno effect. The molecules
are held in a 3D lattice, with strong lattices along x and z and a weak lattice along y. This realizes
a system of decoupled 1D tubes with a weak corrugation along the tubes. (b) The tunneling energy
along the tube direction is J and the onsite loss rate is Γ0. Figure reproduced from Ref. [90].

tunneling along that direction (at a rate J/h), which realizes a system of decoupled tubes with

weak corrugation along the tube. We held the molecules in the lattice for a variable hold time and

then measured the number of | ↓〉 molecules.

When an N = 0 and N = 1 molecule encounter each other, there is no Pauli suppression

preventing them from occupying the same site and their onsite loss rate due to chemical reactions

Γ0 is very large. In fact, we can have Γ0 > ω0 � J
~ , where ~ω0 is the band separation and J is the

tunneling energy along the y direction. The loss is this regime is governed by an effective loss rate

Γeff =
2J2

~2Γ0
. (3.4)

The loss is two-body and the equation for the loss of either spin state is

Ṅi(t) = −κNi(t)
2

Ni(0)
, (3.5)

where i = | ↑〉 or | ↓〉, Ni(0) is the initial number of molecules in state i, and κ = 4qΓeffg
(2)
↓↑ n↓(0) (the

master equation is needed to get the correct numerical prefactors). In the experiment we measure

the population of molecules in | ↓〉, and n↓(0) is the initial density, or filling fraction, of molecules in

the | ↓〉 state, so that the total initial filling fraction is 2n↓(0). q is the number of nearest neighbors,

and g
(2)
↓↑ =

〈n̂in̂j−4
−→
Si·
−→
Sj〉

〈n̂i
2〉 is the correlation function for the two spin states on neighboring sites i
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and j (n̂i is the number operator on site i and
−→
Si is the spin-1/2 vector operator). Since we have

an incoherent mixture, we assume g
(2)
↓↑ = 1, but if our system were correlated such that g

(2)
↓↑ 6= 1,

we should be able to tell this by looking at the loss and comparing to an uncorrelated case. One

goal of the experiment is to measure κ for different values of J and Γ0 and verify the expected

dependences from Eq. 3.4. Another goal is to get an idea of the filling fraction.

For our parameters, we likely occupy ∼ 1000 − 2000 tubes with ∼ 6 molecules/tube. Ul-

timately the small number of molecules per tube slows the loss down quite a bit for long hold

times, and to account for this we only fit the loss until we lose 25% of the initial number. The

typical transverse lattice strength is 40ER, while the lattice along the weak direction was varied

between 5 and 16 ER. We can adjust the lattice depths to tune over a wide range of Γ0 and J

values (see Fig. 3.9). To change J , we primarily adjust the lattice depth along the y direction.

However, decreasing J by reducing the lattice depth along y causes Γ0 to go down slightly since the

onsite wavefunction size becomes slightly larger. So to reduce J but keep Γ0 fixed, we reduce sy

and slightly increase sx and sz. To change Γ0 we need to change the size of the Wannier function,

which we accomplish by changing the transverse lattice depths. Considering only the lowest band,

Γ0 is given by

Γ0 = β(3D)

∫
|w(r)|4d3r, (3.6)

where w(r) is the (ground-band) Wannier function, and the rate coefficient β(3D) was measured in

the harmonic trap to be 9.0(4)× 10−10 cm3 s−1 (see Fig. 3.3).

Fig. 3.10a shows a typical loss curve. Here sy = 5 and sx = sz = 25. The fit is the solution

of Eq. 3.5. If we näıvely calculate the filling using Eq. 3.5, we get an answer that is much too high,

something in the range of 30%, whereas we know that the filling is more like 5-10%. This is because

we have neglected the effects of higher bands. Higher bands play a very important role because

Γ0 is on the same order of magnitude as the band gap. An admixture of higher bands causes

the molecules to be less localized (since the onsite density is much lower for molecules in higher
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(a) (b)

Figure 3.9: (a) Tunneling rate along the tube direction (J/~) vs. lattice depth Vy along the tube
direction. In the experiment Vy was varied between 5 and 16 ER. (b) Onsite loss rate Γ0 (considering
only the lowest band) vs. Vx,z (Vx = Vz) and Vy = 5ER, calculated using Eqs. 3.6 and 2.7.

Figure 3.10: (a) Typical loss curve, with a fit to the rate equation (Eq. 3.5). (b) and (c) Comparison
of the theory, considering both a single band (green) and multiple bands (blue). In both cases, the
rate equation was used. The only difference is that in the case of multiple bands a renormalized
Γ̃eff, which accounts for higher bands, is used. The multi-band theory fits the data with a much
lower filling fraction than a single-band theory. Figure reproduced from Ref. [90].
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bands) and hence the integral over W is lower, which causes Γ0 to be lower. This causes Γeff to

increase and reduces the filling fraction extracted from a measured value of κ. For our parameters,

properly accounting for higher bands can increase Γeff by about a factor of 5. Fig. 3.10b shows the

dependence of κ on Γ0, and clearly shows the Zeno suppression. Fig. 3.10c shows that κ depends

roughly quadratically on J/~. Panels b and c show that lattice fillings around 6% lead to the best

agreement with the experiment.

3.8 Conclusion

This chapter described our efforts to understand, control, and finally shut off chemical reac-

tions in KRb. It’s widely viewed that chemical reactions are a disadvantage for studying quantum

many-body physics with a system of molecules; however, we have shown that creating the molecules

in the lattice completely avoids this problem. Our studies of the quantum Zeno effect show an in-

teresting application of chemical reactions, which could be used to measure correlations between

particles without relying on amazing imaging resolution. These experiments also informed us that

the lattice fillings were quite low, less than 10%. Most of the rest of this thesis will focus on cases

where the molecules are created and confined in a deep 3D lattice, so the chemical reactions are

irrelevant and the lifetimes are long.

As an alternative way to avoid chemical reactions in ultracold molecular gases, a number of

experiments are currently underway to produce gases of ultracold non-reactive molecules. However,

it’s not completely clear that other processes cannot occur in these “nonreactive” molecules that

would limit the lifetime. For example, there are predictions for a three-body loss process whereby

two nonreactive molecules form a transient complex which collides with a third molecule, leading

to the loss of all three [125]; however, in reactive molecules like KRb, the chemical reactions make

these loss processes unobservable [125].

Molecules in the lowest rotational state suffer from chemical reactions, and the situation only

gets worse as the dipole moment is increased. However, collisions between molecules in mixed

rotational states can be tuned via an applied electric field. In particular, Ref. [126] shows that the
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ratio of elastic to quenching (reactive plus inelastic) collisions can be tuned by several orders of

magnitude by using an electric field to make a second excited colliding channel cross the threshold

of the incident channel. The specific cases considered were |1̃, 0〉 + |1̃, 0〉 with either |0̃, 0〉 + |2̃, 0〉

or |0̃, 0〉+ |2̃,±1〉, where |Ñ ,mN 〉 is the dressed state which asymptotically approaches |N,mN 〉 in

the limit of zero electric field. These specific resonances occur around 12 kV/cm, which should be

accessible in the second generation of our experiment.



Chapter 4

Observation of spin exchange

From the point of view of pursuing many-body physics mediated by long-range interactions,

chemical reactions are a nuisance. Previous observations of effects caused by dipolar interactions in

ultracold molecules involved inelastic collisions or chemical reactions [69, 70, 71]. In this chapter,

I discuss a manifestation of coherent dipole-dipole interactions, where the molecules never actually

come in contact with each other. It was proposed in Refs. [74, 82] that the molecules can behave

as quantum magnets, and even at low lattice fillings, it should be possible to observe dipolar

interactions [83]. In this scheme, we encode a spin-1/2 degree of freedom in two rotational states

of the molecules, and the molecules can swap their spin orientation via a flip-flop process that can

occur in principle over arbitrary distances. More specifically, the N = 0 and N = 1 rotational states

have opposite parity, and by driving electric dipole transitions between them with microwaves, we

realize an XY coupling, as depicted in Fig. 4.1. We probe these spin-exchange interactions using

Ramsey spectroscopy [84]. This experiment can also be viewed as a global quench, as the initial

π/2 pulse in our Ramsey sequence instantaneously turns on the interactions.

Figure 4.1: Spin exchange between molecules in N = 0, denoted by ↓ and N = 1, denoted by
↑. To emphasize the role that long-range interactions play, the exchange depicted here is between
next-nearest neighbors.
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There has been a lot of interest recently in quantum magnetism based on effective spin-

1/2 systems. One of the appeals of quantum magnetic models is that although they appear very

simple, they are actually very hard to solve with classical computers [34, 38]. In addition, quantum

magnetic models are relevant to many classes of materials, including antiferromagnets, spin glasses,

spin nematics, and unconventional superconductors [34]. Any experimental system with spin-

spin couplings can engineer quantum magnetic models, including neutral atoms in optical lattices

[35, 36, 46, 127], trapped ions [38, 39], NV centers [128], and Rydberg atoms [129]. Much of the work

in this field was pioneered with neutral atoms in optical lattices. However, the contact interactions

in cold atoms require wavefunction overlap, and effective spin-spin interactions are usually mediated

by tunneling in a process called superexchange [130]. The resulting interactions are weak and limited

to nearest neighbors, and very low temperatures are required for the interactions to manifest.

Furthermore, the energy scale decreases exponentially as the lattice depth increases. In contrast,

dipolar interactions give rise to spin-spin interactions that don’t require tunneling, which enables

coherent spin dynamics to persist in systems with high entropies and low lattice filling fractions,

and in very deep lattices where the molecules are completely pinned. It’s also worth noting that the

dipolar interactions present in our system are different from the exchange interactions in electrons in

metals. There, an effective spin-spin interaction arises from the combination of the spin-independent

Coulomb interaction and the fermionic exchange symmetry of electrons, which is responsible for

lifting the degeneracy between the singlet and triplet states.

This chapter is organized as follows. First, I describe how the molecules acquire a dipole mo-

ment and then give the expression for the dipolar Hamiltonian. Next, I discuss how the anisotropic

polarizability of polar molecules affects the observation of dipole-dipole interactions. Then I de-

scribe how we used Ramsey spectroscopy (with a spin echo) to see dipolar effects in the lattice, and

describe the various pieces of evidence that support that the dynamics of our system is governed

by an XY Hamiltonian. Finally, I give an outlook of future experiments that could be done, which

motivates the next chapter on increasing the lattice filling fraction. The discussion in this chapter

closely follows Refs. [84] and [85], of which I am an author.
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4.1 Deriving the dipolar Hamiltonian

An electric dipole moment only exists between quantum states of opposite parity. For polar

molecules, the rotational states |N,mN 〉 are states of definite parity, and thus molecules in the

N = 0 state have no dipole moment in the lab frame at zero electric field. In an electric field,

the eigenstates become dressed states that are a superposition of many different rotational levels,

and this gives a nonzero dipole moment in the lab frame. However, it takes a very large DC field

to fully mix the rotational states and saturate the dipole moment. A field of more than 10 times

the critical field EC = B/d, where B is the rotational constant and d is the dipole moment, is

required to get to 80% of the saturated dipole moment (see Fig. 4.2). For KRb, EC ∼ 4 kV/cm.

Given the maximum DC field we could apply in the first generation of the experiment, as well

as the instabilities described in Chapter 2, applying a DC field to study coherent dipole-dipole

interactions is problematic. An alternative mechanism for getting dipolar interactions is to apply

an AC electric field, which directly couples, on-resonance, two opposite parity rotational states.

This is the technique discussed in this chapter for realizing strong dipole-dipole interactions in the

lattice.

The classical dipole-dipole interaction between two dipoles di and dj is

Vdd =
di · dj − 3(di · r̂ij)(dj · r̂ij)

r3
ij

, (4.1)

where rij is the distance between the dipoles and generally the dipoles are aligned along some

quantization axis. For the rest of this section, I consider the case of molecules in a 3D square

optical lattice with lattice spacing alat. The sites are labelled by i and j, and rij is in units of the

lattice spacing.

The exchange process depicted in Fig. 4.1 is described by the Hamiltonian

H =
1

2

∑
i 6=j

Vdd(ri − rj)

(
J⊥
2

(
Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j

))
, (4.2)

where Vdd(ri − rj) =
1−3 cos2 θij

r3ij
, Ŝ+

i and Ŝ−i are spin-1/2 raising and lowering operators on site i,

and J⊥ = kd2
↓↑/(4πε0a

3
lat) (k is a constant and d↓↑ is the transition dipole moment between the
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two states of our spin-1/2 system). In this section, I outline how to get Eq. 4.2 from Eq. 4.1. The

derivations closely follow Ref. [34].

To understand how the dipoles can behave like quantum magnets, we would like to find the

quantum analog of Eq. 4.1. To do this, it’s useful to understand that the dipolar interaction is

the result of the contraction of two rank-two tensors. One of these tensors acts on the molecules’

internal states via the dipole operators, and the other acts on the orbital motion of two molecules

(this is responsible for the angular dependence of Eq. 4.1) [34]. As a result, Eq. 4.1 can be expressed

as a sum of terms that allow q units of rotational angular momentum to be transferred to orbital

angular momentum [34]. Appendix A shows that an equivalent way to write Eq. 4.1 is:

Vdd = −
√

6

r3
ij

q=2∑
q=−2

(−1)qC2
−q(θ, φ)T 2

q (di,dj), (4.3)

where

Ckq (θ, φ) =

√
4π

2k + 1
Ykq(θ, φ), (4.4)

and the Ykq(θ, φ)’s are spherical harmonics [131]. The T ’s are irreducible tensor operators:

T 2
±2 = d̂±i d̂

±
j . (4.5)

T 2
±1 =

d̂0
i d̂
±
j + d̂±i d̂

0
j√

2
. (4.6)

T 2
0 =

d̂+
i d̂
−
j + d̂−i d̂

+
j + 2d̂0

i d̂
0
j√

6
. (4.7)

Only the q = 0 term is relevant for this chapter, since the other terms don’t conserve energy (see

section 4.6.2 for more details). The q = 0 term of Eq. 4.3 is

V q=0
dd =

1− 3 cos2 θij
r3
ij

(
d̂0
i d̂

0
j +

d̂+
i d̂
−
j + d̂−i d̂

+
j

2

)
(4.8)

= Vdd(ri − rj)

(
d̂0
i d̂

0
j +

d̂+
i d̂
−
j + d̂−i d̂

+
j

2

)
. (4.9)

The d̂’s are spin-1/2 operators (d̂± are analogous to the spin-1/2 raising and lowering operators,

and d̂0 is equivalent to d̂z). In the basis of rotational states |N,mN 〉, the matrix elements of the
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dipole operators d̂p, with p = 0 corresponding to d̂0, and p = ±1 corresponding to d̂± are

〈N,mN |d̂p|N ′,m′N 〉 = D
√

(2N + 1)(2N ′ + 1)(−1)mN

 N 1 N ′

−mN p m′N


 N 1 N ′

0 0 0

 .

(4.10)

Here, D is the full dipole matrix element (which is 0.574 D for KRb), and the terms in parentheses

are 3-j symbols.

The Hamiltonian for the rotational states |N,mN 〉 consists of the rotational energy and the

Stark effect.

〈N,mN |Ĥ|N ′,m′N 〉 = BN(N + 1)δN,N ′δmN ,mN′ − 〈N,mN |d · ε|N ′,m′N 〉, (4.11)

where B is the rotational constant and the coupling of the dipole with an external electric field ε

is −d · ε. We take the electric field, of magnitude ε, to be along the z direction; thus, the second

term of Eq. 4.11 involves the p = 0 component of Eq. 4.10.

〈N,mN |Ĥ|N ′,m′N 〉 = BN(N + 1)δN,N ′δmN ,mN′ − ε〈N,mN |d̂0|N ′,m′N 〉. (4.12)

The p = 0 term of Eq. 4.10 preserves the value of mN (if mN 6= mN ′ , then the first 3-j symbol is

zero). Thus, the eigenstates in an electric field can be expressed as |Ñ ,mN 〉, which are the states

which adiabatically connect to the states |N,mN 〉 at zero electric field.

|Ñ ,mN 〉 =
∑
N ′

cN ′ |N ′,mN 〉. (4.13)

By diagonalizing Eq. 4.12, we obtain the dressed state energies EÑ,mN
and the coefficients cN ′ .

The induced dipole moment of state |Ñ ,mN 〉 is then −
∂EÑ,mN

∂ε . Fig. 4.2 shows the induced dipole

moments for the |0̃, 0〉, |1̃, 0〉, and |1̃,±1〉 states vs. applied DC field.

For our mapping to a spin-1/2 system, we choose | ↓〉 ≡ |0̃, 0〉 and | ↑〉 ≡ |1̃, 0〉 or |↑̃〉 ≡ |1̃,±1〉

(following the notation of Ref. [34]). The induced dipole moments are:

d↓ ≡ 〈0̃, 0|d̂0|0̃, 0〉. (4.14)

d↑ ≡ 〈1̃, 0|d̂0|1̃, 0〉. (4.15)

d↑̃ ≡ 〈1̃,±1|d̂0|1̃,±1〉. (4.16)
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Figure 4.2: Induced dipole moments of the |0̃, 0〉 (blue), |1̃, 0〉 (orange), and |1̃,±1〉 states (green).
At a field of around 19 kV/cm, the dipole moment of the |1̃, 0〉 state changes sign. The lowest 20
rotational states were included in the calculation, which introduces an error of less than 1% in the
limit of infinite electric field. The first generation of the experiment could access electric fields up
to about 6 kV/cm.
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For completeness, let’s work out the expression for d↓. To do this, we use Eq. 4.13 to write

|0̃, 0〉 =
∑
N

cN |N, 0〉. (4.17)

Then

d↓ =

(∑
N ′

c∗N ′〈N ′, 0|
)
d̂0

(∑
N

cN |N, 0〉
)

=
∑
N,N ′

c∗N ′cN 〈N ′, 0|d̂0|N, 0〉. (4.18)

For states with mN = 0, the two 3-j symbols in Eq. 4.10 are the same, and N 1 N ′

0 0 0

 = (−1)NδN,N ′+1

√
N

(2N + 1)(2N ′ + 1)
+ (−1)N

′
δN,N ′−1

√
N ′

(2N + 1)(2N ′ + 1)
.

(4.19)

Then the sum in Eq. 4.18 becomes

d↓ = 2

∞∑
N=0

c∗N+1cN 〈N + 1, 0|d̂0|N, 0〉, (4.20)

which by Eqs. 4.10 and 4.19 becomes

d↓ = 2D
∞∑
N=0

c∗N+1cN
N + 1√

(2N + 1)(2N + 3)
. (4.21)

We are also interested in the transition dipole moments between | ↓〉 and | ↑〉 or |↑̃〉. Since

|0̃, 0〉 and |1̃, 0〉 are coupled by d̂0, we have

d↓↑ ≡ 〈1̃, 0|d̂0|0̃, 0〉 = 〈0̃, 0|d̂0|1̃, 0〉. (4.22)

Again, it’s useful to write out the full expression for this. If we let |0̃, 0〉 =
∑

N aN |N, 0〉 and

|1̃, 0〉 =
∑

N bN |N, 0〉, then

d↓↑ =

∞∑
N=0

(
a∗NbN+1〈N, 0|d̂0|N + 1, 0〉+ aN+1b

∗
N 〈N + 1, 0|d̂0|N, 0〉

)
(4.23)

= D
∞∑
N=0

(a∗NbN+1 + aN+1b
∗
N )

N + 1√
(2N + 1)(2N + 3)

. (4.24)

In contrast, |0̃, 0〉 and |1̃,±1〉 are coupled by d̂±.

d↓↑̃ ≡ 〈1̃,±1|d̂±|0̃, 0〉 = −〈0̃, 0|d̂∓|1̃,±1〉, (4.25)



66

where the minus sign in the last equality comes from the (−1)mN in Eq. 4.10.

With all of these definitions, we’re now ready to proceed with turning Eq. 4.8 into something

that looks like Eq. 4.2. First, let’s consider the {|0̃, 0〉, |1̃, 0〉} manifold. We project Eq. 4.8 onto the

basis {| ↑i↑j〉, | ↑i↓j〉, | ↓i↑j〉, | ↓i↓j〉} to get the Hamiltonian Ĥij for two molecules on sites i and j.

Since the dipole-dipole interaction is a pairwise interaction, we can then sum over all pairs i, j to

get the full Hamiltonian for the system.

Ĥij =
∑
α,β

Cαβ|α〉〈β|, (4.26)

where Cαβ = 〈α|V q=0
dd |β〉, and |α〉, |β〉 ∈ {| ↑i↑j〉, | ↑i↓j〉, | ↓i↑j〉, | ↓i↓j〉}. For example,

〈↑i↑j |V q=0
dd | ↑i↑j〉 = Vdd(ri − rj)〈↑i↑j |d̂0

i d̂
0
j | ↑i↑j〉 = Vdd(ri − rj)d

2
↑, (4.27)

since 〈↑i↑j |d̂0
i d̂

0
j | ↑i↑j〉 = 〈↑i |d̂0

i | ↑i〉〈↑j |d̂0
j | ↑j〉 = d2

↑. Note that only the d̂0 terms of Eq. 4.8

contribute. Similarly,

〈↑i↓j |V q=0
dd | ↓i↑j〉 = Vdd(ri − rj)〈↑i↓j |d̂0

i d̂
0
j | ↓i↑j〉 = Vdd(ri − rj)d

2
↓↑, (4.28)

since 〈↑i↓j |d̂0
i d̂

0
j | ↓i↑j〉 = 〈↑i |d̂0

i | ↓i〉〈↓j |d̂0
j | ↑j〉 = d2

↓↑ by Eq. 4.22. The result is a 4× 4 matrix:

| ↑↑〉 | ↑↓〉 | ↓↑〉 | ↓↓〉

Ĥij = Vdd(ri − rj)



d2
↑ 0 0 0

0 d↓d↑ d2
↓↑ 0

0 d2
↓↑ d↓d↑ 0

0 0 0 d2
↓


. (4.29)

For the {|0̃, 0〉, |1̃,±1〉} manifold, everything is the same except d↑ is replaced by d↑̃, and the

flip-flop matrix elements are different.

〈↑̃i ↓j |V
q=0
dd | ↓i ↑̃j〉 = Vdd(ri − rj)〈↑̃i ↓j |

 d̂+
i d̂
−
j + d̂−i d̂

+
j

2

 | ↓i ↑̃j〉 = −
Vdd(ri − rj)

2
d2
↓↑̃. (4.30)
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To understand the origin of the factor of −1/2, consider |↑̃〉 = |1̃, 1〉. Then we have

1

2
〈↑̃i ↓j |d̂+

i d̂
−
j + d̂−i d̂

+
j | ↓i ↑̃j〉 =

1

2
〈↑̃i ↓j |d̂+

i d̂
−
j | ↓i ↑̃j〉+

1

2
〈↑̃i ↓j |d̂−i d̂

+
j | ↓i ↑̃j〉 (4.31)

=
1

2
〈↑̃i|d̂+

i | ↓i〉〈↓j |d̂
−
j |↑̃i〉+

1

2
〈↑̃i|d̂−i | ↓i〉〈↓j |d̂

+
j |↑̃i〉 (4.32)

=
1

2
(d↓↑̃)(−d↓↑̃) + 0 (4.33)

=
−d2
↓↑̃

2
. (4.34)

The answer is the same for the |1̃,−1〉 state. In this case, the 4× 4 matrix is

Ĥij = Vdd(ri − rj)



d2
↑̃ 0 0 0

0 d↓d↑̃
−d2

↓↑̃
2 0

0
−d2

↓↑̃
2 d↓d↑̃ 0

0 0 0 d2
↓


. (4.35)

Now we want to write this in terms of spin operators Ŝzi,j , Ŝ
+
i,j , and Ŝ−i,j = (Ŝ+

i,j)
†. These

operators have the commutation relations [Ŝzi , Ŝ
±
j ] = ±δijŜ±i and can be represented as 4 × 4

matrices. A lot of algebra can be used to rewrite Eqs. 4.29 and 4.35 as

Ĥij = Vdd(ri − rj)

(
JzŜ

z
i Ŝ

z
j +

J⊥
2

(
Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j

)
+W (1iŜ

z
j + Ŝzi 1j) + V 1i1j

)
, (4.36)

where the 1’s are identity matrices, and the coupling constants are given in Table 4.1. The final

step is to replace the identity matrices with the molecule density (1k → n̂k, where n̂k = 1 if there is

a molecule on site k, and 0 if there’s not), and then sum over all lattice sites i and j. The simplest

way to do this is to sum over all i and j with i 6= j and then multiply by 1/2 to account for double

counting. Finally, this gives us

Ĥ =
1

2

∑
i 6=j

Vdd(ri − rj)

(
JzŜ

z
i Ŝ

z
j +

J⊥
2

(
Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j

)
+W (n̂iŜ

z
j + Ŝzi n̂j) + V n̂in̂j

)
. (4.37)

Note that to get the coupling constants in SI units requires dividing by 4πε0a
3
lat, where ε0 is the

vacuum permittivity.

The first term, proportional to Jz, is the Ising term, which comes about because parallel and

antiparallel spin configurations have different energies. At zero electric field, this term is zero since
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Parameter Coupling {|0̃, 0〉, |1̃, 0〉} Coupling {|0̃, 0〉, |1̃,±1〉}

Jz (d↑ − d↓)2 (d↑̃ − d↓)
2

J⊥ 2d2
↓↑ −d2

↓↑̃
W (d2

↑ − d2
↓)/2 (d2

↑̃ − d
2
↓)/2

V (d↑ + d↓)2/4 (d↑̃ + d↓)2/4

Table 4.1: Coupling constants of the dipolar Hamiltonian, Eq. 4.37. To get the values in SI units,
divide by 4πε0a

3
lat.

both induced dipole moments are zero. The second term, proportional to J⊥, can be rewritten as

J⊥(Ŝxi Ŝ
x
j + Ŝyi Ŝ

y
j ) and hence is referred to as the XY term. Physically, it gives rise to the flip-flop

process depicted in Fig. 4.1. Fig. 4.3 plots Jz and J⊥ vs. applied electric field (for KRb in a 532

nm lattice spacing), and shows that we actually get the largest interactions, corresponding to an

induced dipole moment of D/
√

3, at zero electric field with a pure XY coupling (Jz = 0, J⊥ 6= 0).

The XY term gets monotonically weaker as the electric field is increased. Second, any value of Jz/J⊥

can be obtained in principle by tuning the electric field; however, it’s not possible to independently

control the strength of the total coupling. Third, Jz has a maximum around 12 kV/cm.

The different signs for J⊥ for the {|0̃, 0〉, |1̃, 0〉} and {|0̃, 0〉, |1̃,±1〉} manifolds imply anti-

ferromagnetic and ferromagnetic interactions, respectively. The term proportional to W is the

density-spin interaction, and in the limit of unit filling, it’s a constant of motion and can be ig-

nored. The term proportional to V is the density-density interaction and is a constant for molecules

pinned in a deep lattice. The experiments described in this chapter are performed at zero electric

field, so Jz = W = V = 0, and the Hamiltonian simplifies to a long-range XY Hamiltonian:

H =
1

2

∑
i 6=j

Vdd(ri − rj)

(
J⊥
2

(
Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j

))
. (4.38)

One additional complication in our experiment is that there is a site-to-site differential energy shift

due to a residual inhomogeneous light shift arising from the molecules’ anisotropic polarizability.

This will be discussed more in the next section but it gives rise to an additional term in the
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Hamiltonian
∑

i hiŜ
z
i . These site-to-site energy shifts suppress the exchange when |hi − hj | >

J⊥Vdd(ri − rj). Thus, the Hamiltonian we will study in this chapter is:

H =
1

2

∑
i 6=j

Vdd(ri − rj)

(
J⊥
2

(
Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j

))
+
∑
i

hiŜ
z
i . (4.39)

Since we’re working at zero electric field all the tildes on the states will be dropped, and we will focus

our attention on spin-1/2 systems formed from the {|0, 0〉, |1,−1〉} and {|0, 0〉, |1, 0〉} manifolds.

The rate at which an isolated pair of molecules would swap from | ↑i↓j〉 to | ↓i↑j〉 (the

exchange rate), is J⊥
h Vdd(ri− rj). In the experiments of Refs. [84, 85], we measured the contrast of

a Ramsey fringe, which depends on 〈Sx〉 and 〈Sy〉. These expectation values oscillate at a frequency

of J⊥
2h Vdd(ri − rj) [132]. This is because the populations in a spin-1/2 system undergoing coherent

evolution (such as Rabi flopping) oscillate twice as fast as the wavefunction. For example, consider

Rabi flopping at frequency Ω. If the initial state is | ↓〉, then the state after a time t is

ψ(t) = cos

(
Ωt

2

)
| ↓〉+ sin

(
Ωt

2

)
| ↑〉. (4.40)

After a 2π pulse, ψ(2π/Ω) = −| ↓〉, and |〈↓ |ψ(2π/Ω)〉|2 = 1, so the state has a minus sign but the

population is the same. Thus, the population is periodic with a period of 2π but the state itself

(which is what 〈Sx〉 depends on) is periodic with a period of 4π.

The Vdd factor gives the dependence on the distance between molecules and their orientation

relative to the quantization axis, which for the experiments in this chapter is set by a magnetic field

in the horizontal plane (see Fig. 4.4a). The maximum value of J⊥2h Vdd(ri−rj) is about 52 Hz for the

{|0, 0〉, |1,−1〉} manifold [84] and 104 Hz for the {|0, 0〉, |1, 0〉} manifold [85] (assuming a 532 nm

lattice spacing). Hence, this is the dominant frequency component observed in the contrast decay.

Fig. 4.4b shows the calculated spectrum of the contrast decay for the {|0, 0〉, |1,−1〉} manifold,

which shows three pronounced oscillation frequencies on top of a broad, structured background [85].

Certain couplings are more pronounced: in particular, the head-to-tail orientation has strength -1

(with respect to the maximum possible coupling), and two couplings in the horizontal plane have

strengths of 1/2 and 1/
√

2.
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Figure 4.3: Magnitude of the coupling constants for the {|0̃, 0〉, |1̃, 0〉} manifold (solid) and
{|0̃, 0〉, |1̃,±1〉} manifolds (dashed), Jz/h (red) and J⊥/h (blue), for a 532 nm lattice spacing. For
these choices of states, we get the largest couplings at zero electric field. The lowest 20 rotational
states were included in the calculation.

(a) (b)

Figure 4.4: (a) Couplings between the molecule in green and its neighbors, normalized to the
strongest coupling, which occurs for nearest neighbors along ẑ. There are three relatively well-
pronounced couplings of magnitude 1, 1/

√
2, and 0.5. Figure reproduced from Ref. [84]. (b)

Calculated interaction spectrum for the {|0, 0〉, |1,−1〉} manifold. Pronounced interactions occur
around 52 Hz, 37 Hz, and 26 Hz, corresponding to the interactions of magnitude 1, 1/

√
2, and 0.5

in (a). Figure reproduced from from Ref. [85].
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4.2 Anisotropic polarizability and differential light shifts

As I discussed in the last section, it takes a very large DC electric field to substantially

polarize the molecules. Coupling the rotational states with an AC electric field is much more

selective than with a DC field. Furthermore, for our choice of spin-1/2 system, we actually get the

strongest interactions at zero electric field with just the spin-exchange terms. However, there were

several issues we needed to address before we could actually see the spin-exchange interactions in

the experiment. In particular, the anisotropic polarizability of the molecules creates a spread in

transition frequencies between | ↑〉 and | ↓〉 across the cloud and leads to a rapid dephasing when

probing the rotational coherence [91].

A well-established technique in precision spectroscopy is to match the shape of the trapping

potentials for the two states of interest. For neutral atoms, it’s usually possible to find some

wavelength of light for which the polarizabilities of the two states are equal. A well-known example is

the “magic wavelength” optical lattice for optical lattice clocks [133]. The polarizability of diatomic

polar molecules is more complicated than atoms because the molecules can be polarized about

different axes (in particular, parallel and perpendicular to the internuclear axis) [91]. For molecular

states where the electron distribution is not spherically symmetric, the polarizability parallel and

perpendicular to the molecular quantization axis can be significantly different. Although it would

be possible, in principle, to find a magic wavelength for molecules, the large number of rovibrational

states in the excited molecular potential make it difficult to find a suitable wavelength where the

rate of off-resonant light scattering is tolerable [91]. However, there exist magic values of the electric

field (for KRb this is about 12 kV/cm [134]), as well as magic angles [91], where the angle between

the light polarization and the quantization axis is tuned to match the polarizabilities.

Ultimately we chose to find the magic angle, since a magic angle should exist even at zero

electric field. Fig. 4.5 shows measurements of the real part of the polarizability at 1064 nm for

the |0, 0〉 state, as well as for the three N = 1 states [91]. For the experiments discussed in this

chapter, we use both the {|0, 0〉, |1, 0〉} manifolds and the {|0, 0〉, |1,−1〉} manifolds. The crossings
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Figure 4.5: Real part of the polarizability at 1064 nm for the |0, 0〉 (black), |1, 0〉 (blue), |1, 1〉
(red), and |1,−1〉 (green) states. This was measured in a 1D vertical lattice with peak intensity
of 2.3 kW/cm2, corresponding to a lattice depth of about 92 ER for the |0, 0〉 molecules. Magic
angles exist for the combinations {|0, 0〉, |1, 0〉} and {|0, 0〉, |1,−1〉}, and are indicated by the circles.
Figure reproduced from Ref. [91].
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for both states are indicated by the circles. Since the polarizabilities of the |0, 0〉 and |1, 1〉 states

never cross, we chose to not use the {|0, 0〉, |1, 1〉} manifold. In addition to depending on the angle

between the light polarization and the quantization axis, the polarizability also depends on light

intensity. The energies of the three N = 1 states can be found by diagonalizing the following 3× 3

Hamiltonian:

|1, 0〉 |1,−1〉 |1, 1〉

H =


−α11I + ε1 −α12I −α13I

−α12I −α22I + ε2 −α23I

−α13I −α23I −α33I + ε3

 . (4.41)

The coefficients αij depend on the polarizabilities parallel to (α‖) and perpendicular to (α⊥) the

quantization axis and on the angle θ between the quantization axis and the light polarization.

α11 =
α‖ + 4α⊥

5
sin2 θ +

3α‖ + 2α⊥
5

cos2 θ. (4.42)

α22 = α33 =
2α‖ + 3α⊥

5
sin2 θ +

α‖ + 4α⊥
5

cos2 θ. (4.43)

α12 = −α13 =
√

2
α‖ − α⊥

5
sin θ cos θ. (4.44)

α23 =
1

5
(α⊥ − α‖) sin2 θ. (4.45)

By doing a global fit to the data shown in Fig. 4.5, we extracted α‖/h = 10.0(3)×10−5 MHz/(W/cm2)

and α‖/h = 3.3(1)× 10−5 MHz/(W/cm2).

A difference in polarizability between the two states also leads to a difference in the transition

frequency compared to the bare transition frequency at zero light intensity. This differential light

shift is plotted in Fig. 4.6a for light polarizations of {45◦,−45◦, 45◦} with respect to the magnetic

field B̂ (the quantization axis) along the x̂, ŷ, and ẑ directions (coordinate system defined in

Fig. 4.4a). This is a convenient choice given that the horizontal lattice beams intersect the cell at

roughly 45◦, so if they’re horizontally polarized then the polarizations already make an angle of 45◦

with respect to the magnetic field. A global differential light shift does not really cause a problem,
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since a global uniform shift could be accounted for by simply shifting the microwave frequency.

Instead, the problem arises because the lattice is formed from Gaussian laser beams, such that the

molecules have a spread of positions, leading to a spread of differential light shifts.

We see that the differential light shift is quite small for the {|0, 0〉, |1,−1〉} manifold for lattice

depths below 40 ER; thus, we chose to do the initial experiments with this state. When using the

|1, 0〉 state, we had to put half waveplates before and after the cell for the horizontal lattices to get

the linear polarizations correct (since for the |1, 0〉 state, the magic angle is at about 52◦ [91]).

Another consequence of this inhomogeneous light shift is that it gives a site-to-site energy

shift. In Ref. [84], we estimated the average site-to-site shift to be about 6 Hz (for nearest neighbors)

by finding the standard deviation of differential light shifts across the cloud and dividing it by the

characteristic size of the cloud. This means that the exchange interaction is suppressed over a few

sites (see Fig. 4.7).

4.3 Simple Ramsey sequence and some technical issues

Ramsey spectroscopy is a powerful tool for studying decoherence in quantum systems. We’re

interested in using it to probe dipolar interactions in our experiment. In its simplest implemen-

tation, Ramsey spectroscopy consists of two π/2 pulses separated by some free evolution time T ,

as shown in Fig. 4.8a. We typically use microwave pulses that are resonant with the rotational

transition. The experiment begins with all of the molecules in | ↓〉, which is the south pole of the

Bloch sphere. The first π/2 pulse rotates the Bloch vector about the ŷ axis from the south pole to

the equator, which puts every molecule in a coherent superposition (| ↑〉 + | ↓〉)/
√

2. After a free

evolution time T , we apply another π/2 pulse with a phase φ relative to the first pulse, which rotates

the Bloch vector about the axis n̂ = cosφ ŷ+ sinφ x̂. We then measure the number of molecules in

| ↓〉 by doing STIRAP from the ground-state back to weakly bound Feshbach molecules, followed

by our normal imaging of Feshbach molecules. By scanning φ at a fixed T , we obtain a fringe as

shown in Fig. 4.8c. We fit the fringe to Ntot
2

(
1 + C cos(φ+ φ0)

)
, where Ntot is the total number of

molecules and C is the contrast (0 ≤ C ≤ 1). φ0 should be equal to π if the microwave frequency
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(a) (b)

Figure 4.6: (a) The differential light shift for the three N = 1 states relative to the N = 0 state,
for lattice polarizations of {45◦,−45◦, 45◦} with respect to the magnetic field B̂ along the x̂, ŷ, and
ẑ directions. For this beam configuration, the |1,−1〉 has the smallest differential light shift. This
motivated us to use the {|0, 0〉, |1,−1〉} manifold as our spin-1/2 system for the initial experiments
in Ref. [84]. Note that the lattice depth is expressed in units of the recoil energy for the |0, 0〉 state.
Figure reproduced from Ref. [84]. (b) Measured frequency shifts vs. lattice strength for different
polarizations of the vertical lattice for the |0, 0〉 → |1, 0〉 transition. The angle of a half-waveplate
before the cell was scanned, so the total range here corresponds to scanning the polarization by 16◦.
Here we could achieve even smaller differential light shifts, which led to longer Ramsey coherence
times (see Fig. 4.11b).
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Figure 4.7: Because of the site-to-site energy offset, the exchange interaction is suppressed for
molecules separated by more than one lattice site. Similar to off-resonant Rabi flopping, if the bare
exchange rate is J and the detuning is δ, then the amplitude of the actual exchange is J2

J2+δ2
. The

plot shows this amplitude vs. distance between molecules, assuming J = Jmax/|∆r|3 and δ = k|∆r|,
where k is the shift per site, and ∆r is the distance between two molecules (in lattice sites). Two
cases are plotted: Jmax = 52 Hz and δ = 6 Hz/site (blue), relevant for the work in Ref. [84] and
Jmax = 104 Hz and δ = 2 Hz/site (orange), relevant for the work in Ref. [85], where we used the
{|0, 0〉, |1, 0〉} manifold. The 2 Hz is an estimate based on the fact that the coherence times could
be ∼ 3 times longer for the {|0, 0〉, |1, 0〉} manifold.

(a)

(b)

(c)

Figure 4.8: Timing diagrams and Bloch vector representation for a simple Ramsey sequence (a)
and a spin echo sequence (b). Figure reproduced from Ref. [84]. (c) Typical Ramsey fringe using
the DDS to program the phase offset of the final pulse. After the initial π/2 pulse, we wait a time
T . We then apply a phase-shifted π/2 pulse and measure the number of molecules in | ↓〉 ≡ |0, 0〉
vs. the phase of the final pulse.
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is exactly on resonance. Measuring the contrast of this fringe then determines the amount of spin

coherence left in the system after time T . The contrast can be less than 1 for a variety of reasons,

including single-particle dephasing and interaction effects.

Before getting to the experimental results, it’s useful to discuss a few technical issues. First,

we would like to understand the role of the inhomogeneous light shift described in the previous

section. This will lead us to constraints on the pulse strengths that we should use. A quick

calculation using the expected inhomogeneous light shifts tells us the coherence times we should

expect for the simple two-pulse Ramsey sequence. Finally, I discuss the system we use to generate

microwave pulses with programmable phase delay and discuss the prospects for imaging both spin

states.

4.3.1 Effect of the inhomogeneous light shift

Several constraints determine the Rabi frequency Ω we should use (the time for a π pulse is

π
Ω). For these experiments, we used square pulses, but it’s worth noting that many groups use pulse

shaping to mitigate some of the following issues. First, there is a finite energy splitting between

the three different N = 1 substates, and we want to isolate one of them as our | ↑〉 of a spin-1/2

system. Let’s call the smallest splitting ∆. Clearly Ω must be less than ∆ so we avoid populating

other states. However, we need the π pulse to be broad enough spectrally in order to overcome any

differential light shifts in the sample, which cause an energy spread σ and set a lower limit on the

Rabi frequency.

The relationship between the energy spread σ and the Ramsey coherence time τc depends

on the shape of the distribution of frequency deviations δ, f(δ). Let’s assume that the frequency

deviations have a Gaussian distribution, so f(δ) = e−δ
2/(2σ2). Then taking the Fourier transform,

F (t) = σe−σ
2t2/2 = σe−t

2/(2τ2c ), with the Ramsey coherence time τc = 1
σ . Another way to get the

relationship between σ and τc is to actually calculate the Ramsey fringe as a function of time. To

do this, all we need to do is to calculate the probability that each particle is in | ↓〉 or | ↑〉 at the

end of the sequence as a function of the dark time T and the phase φ of the final pulse, and then
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average over all of the particles. The Rabi frequency is Ω. For a particle with frequency deviation

δi, there is an effective Rabi frequency Ωeff,i =
√

Ω2 + δ2
i , and thus the pulses are not exactly π/2

pulses. As a function of the phase φ of the final pulse,

P (T, φ) =
Ω2

Ω2
eff,i

sin2

(
π

4

Ωeff,i

Ω

)(
1 + cos(δiT + φ)

)
, (4.46)

where P = 0(1) corresponds to | ↓〉(| ↑〉) and the first two factors account for the tipping angle not

being exactly π/2. The contrast is the amplitude of the average of all of these oscillations, which is

C(T, φ) =

〈
Ω2

Ω2
eff,i

sin2

(
π

4

Ωeff,i

Ω

)(
1 + cos(δiT + φ)

)〉
. (4.47)

Going through this prescription, one finds that the contrast has a Gaussian decay with τc ≈ 1
σ

(assuming Ω� σ). If f(δ) were Lorentzian, then the decay would be approximately exponential.

Thus, we require

1

τc
� Ω� ∆, (4.48)

where all frequencies are angular frequencies. This tells us there’s some minimum tolerable Ramsey

coherence time; otherwise, we wouldn’t be able to satisfy both inequalities in Eq. 4.48. For the

|1,−1〉 state, ∆ ≈ 2π × 60 kHz, and the typical energy spreads are a few hundred Hz, calculated

by converting the size of the cloud to a distribution of intensities, and then to a distribution of

frequencies. This leads to Ramsey coherence times a little less than 1 ms. In practice, Rabi

frequencies around a few kHz work well and allow us to achieve π pulse fidelities > 99%. For most

of the work in Ref. [84], we use π pulses of ∼ 180µs duration, corresponding to a Rabi frequency

of ∼ 2π × 2.6 kHz. Experimentally, we examined the robustness of the experiment to having a

larger inhomogeneous light shift (which corresponds to having a shorter Ramsey coherence time)

and to imperfect pulses, and we found the dynamics to be rather insensitive to such imperfections

(Section 4.4.2).

4.3.2 Imaging both spin states

To read out the spin evolution after the Ramsey sequence, we need the excitation fraction,

N↑/Ntot or N↓/Ntot, where Ntot = N↑+N↓ is the total number. Normally, we measure the number
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of | ↓〉molecules, N↓, at the end of the sequence. Assuming that the total molecule number is stable,

this gives a measurement of the excitation fraction. Normalization via the measurement of the total

molecule number would allow us to remove technical noise, but requires that we image both spin

states. To achieve this, we STIRAP back the N = 0 molecules, image the resulting atoms, do a π

pulse to transfer the N = 1 molecules to N = 0, and then repeat STIRAP back and imaging. The

only problem with this is that during the first STIRAP pulse, the down leg laser is on for about

5 µs, and this is enough to kill about 20-25% of the molecules in the N = 1 state (see Fig. 4.9),

presumably by exciting molecules in the N = 1 state to an excited electronic and rotational state.

The fraction η of N = 1 molecules that remain can be calibrated, as shown in Fig. 4.9b. However,

we never consistently saw a significant improvement in the SNR of the Ramsey fringes using this

technique and thus we ended up not using it. This could be because the calibration itself requires

many shots to get a small uncertainty and any drifts in laser power could change η. In the future,

we may be able to use a more spectrally selective STIRAP transfer (with improved coherence) to

achieve this goal.

4.3.3 Creating phase stable microwaves

It’s desirable to have precise and fast control of the microwave phase, especially for more

complex pulse sequences. For the simple Ramsey and spin echo sequences, we only need two

phases, since all we care about is the phase of the final pulse relative to the initial pulse(s). To

accomplish this, we initially used two Agilent signal generators (which were both referenced to the

same 10 MHz oscillator), and changed the phase of one of them by hand. In this scheme, one of

the generators was used for the first pulse(s) and the other was used for the final pulse. There may

have been a more efficient way to do this, but ultimately we decided to pursue other options. To do

more complicated sequences such as the WAHUHA sequence (section 4.4.1), we need four distinct

phases and we need to be able to switch between them relatively quickly (less than 1 ms).

Initially we tried an analog solution, which was an analog phase shifter from Mini Circuits

(part JSPHS-2484+). A control voltage shifts the phase, but also affects the amplitude. To account
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(a) (b)

Figure 4.9: Imaging both spin states. We first do STIRAP back and image the molecules that were
in | ↓〉 = |0, 0〉. Next, we apply a π pulse, which transfers | ↑〉 to | ↓〉. Then we STIRAP back and
image a second time. The only problem with this is that there’s some loss of the N = 1 molecules
during the imaging of the N = 0 molecules. (a) The loss of | ↑〉 = |1,−1〉 molecules vs. pulse time
of the down leg laser. (b) Starting with all molecules in |0, 0〉, we perform a Rabi experiment. This
allows us to normalize this loss by fitting both components to sine functions. For this dataset, the
fraction of |1,−1〉 molecules lost is 21(8)%. More data would be required to reduce the error.

Figure 4.10: System used to generate microwaves with arbitrary phase control. An Agilent E8257D
signal generator, which is referenced to a 10 MHz Wenzel oscillator, provides a 2 GHz tone. Half
of the 2 GHz signal is sent to the DDS, where it is frequency divided by 2 and then used as the
DDS clock; the other half is used as the local oscillator for the mixer. We program an AD9858
to put out an RF frequency of around 228 MHz. This goes to the IF port of the mixer. The
output is ∼ 2.228 GHz, and we send this through a bandpass filter to get rid of the carrier and
other unwanted frequency components before amplifying the signal and sending it to the horn. The
mixing process maps the phase of the IF (which we can control with 14 bits of resolution) directly
onto the phase of the microwave signal.
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Figure 4.11: Typical Ramsey contrast decay for |0, 0〉 → |1,−1〉 (a) and |0, 0〉 → |1, 0〉 transitions
(b). We could achieve smaller inhomogeneous light shifts for the |0, 0〉 → |1, 0〉 transition, resulting
in a longer Ramsey coherence time. The fitting function is e−t

2/(2τ2), which is the expected form if
the energy spread has a Gaussian distribution.

for the amplitude variation as the phase changed, we used different pulse times depending on the

phase we wanted. Ultimately, this was not flexible and efficient, so we decided a digital solution was

better. Since it’s hard to find an inexpensive DDS operating at 2.3 GHz (for this the clock would

need to be more than 4.5 GHz), we decided to use a lower frequency DDS (at around 230 MHz)

and mix it with a 2 GHz local oscillator to get the required frequency. We use an AD9858 from

Analog devices, which has a maximum clock frequency of 2 GHz. The device can be programmed

with four phase-frequency profiles, and it’s feasible to switch between these profiles in� 1µs using

two digital inputs. We use a 2 GHz signal from an Agilent synthesizer (E8257D) as both the local

oscillator and also to clock the DDS (it’s divided by 2 in the DDS so we end up with a 1 GHz

clock). The mixer maps the phase of the RF directly onto the phase of the microwaves. After the

mixer, we use a bandpass filter to filter out unwanted frequency components. A splitter, amplifier,

and horn complete the setup, which is shown schematically in Fig. 4.10.
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4.3.4 Experimentally measured Ramsey decays

Experimentally measured Ramsey decay curves are shown in Fig. 4.11. The data for the

|0, 0〉 → |1,−1〉 transition (a) was taken in a 40 ER deep lattice with the same lattice polarization

configuration as in Fig. 4.6a. We find a Ramsey coherence time of around 700 µs. For the |0, 0〉 →

|1, 0〉 transition (b), we can achieve a smaller differential AC Stark shift (Fig. 4.6b), and as a result

the coherence time is longer (more than 2 ms). For these experiments the lattice depth was typically

20 ER, although we could also achieve similar coherence times in deeper lattices. However, all of

these coherence times are far too short to observe dipolar interactions, and we need to incorporate

a spin echo to mitigate the single-particle dephasing.

4.4 Initial experiments in the {|0, 0〉, |1,−1〉} manifold

For the |0, 0〉 → |1,−1〉 transition, the transition dipole moment d↓↑ is 0.98×D/
√

3, where the

factor of 0.98 reflects an estimated 2% admixture of another hyperfine state. This gives |J⊥/(2h)| =

52 Hz, which implies that the dynamics occur on the tens of ms timescale. As we saw in the previous

section, the Ramsey coherence time is limited by the inhomogenous light shift to less than 1 ms.

This inhomogeneous light shift causes the Bloch vector for each molecule to precess at a slightly

different rate. However, this rate is determined only by where the molecule sits and in principle

it doesn’t change throughout the experiment. By applying a spin echo pulse halfway through the

free evolution (Fig. 4.8b) we can reverse this precession so that after a total time T , every molecule

has no net precession from the inhomogeneous light shift. However, the spin echo has no impact

on the dipolar interactions, and ideally any remaining dephasing should be due to interactions.

Typical contrast decay curves with the spin echo pulse are shown in Fig. 4.12. One of the

most striking features of these curves is the oscillations on top of an overall decay. We attribute

both the decay and the oscillations to dipolar interactions. We fit the contrast decay curves to an

empirical function

C(T ) = Ae−T/τ +B cos2(πfT ) (4.49)
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to extract both a coherence time τ and oscillation frequency f . Low lattice fillings and the long-

range interactions in the lattice both give rise to a spread of interaction energies, which lead

to dephasing and loss of contrast. At very dilute fillings, the interaction energy spectrum can

have a strong contribution from the strongest nearest-neighbor interaction (the vertically oriented

interaction in Fig. 4.4). The oscillations can then arise from the beating of this particular frequency

with the contribution from molecules with much smaller energy shifts.

One of the signatures of an interaction effect is the dependence on density. We reduce the

density without changing the overall shape of the molecular distribution by holding the molecules

in the lattice for a few seconds to allow molecules to be removed by single-particle loss [72]. The

reduced density is proportional to the number of molecules remaining. The two curves shown in

Fig. 4.12a show that the oscillation frequency is basically the same for different densities (also see

Fig. 4.12c), but the coherence time becomes shorter for higher densities. We expect τ ∝ 1/N

because

τ ∝ 1

〈Eint〉
∝ R̄3

J⊥
∝ 1

J⊥N
, (4.50)

where R̄ is the average interparticle spacing and the density ρ = R̄−3 ∝ N , given the way we reduce

the density. Fig. 4.12b shows the coherence time vs. N for many datasets and clearly shows a 1/N

dependence.

4.4.1 WAHUHA pulse sequence

The spin-echo sequence, as well as more complicated pulse sequences, can be used for dy-

namical decoupling, which can remove dephasing and extend coherence times [135, 136, 137, 138].

One particular pulse sequence, named WAHUHA after its inventors, disentangles the dipole-dipole

interactions of two particles [139]. The timing diagram is shown in Fig. 4.13a. The WAHUHA

sequence swaps between eigenstates of the dipolar Hamiltonian, allowing for subsequent rephasing

after a total dark time T . When we apply the multi-pulse sequence, the oscillations in the contrast

are suppressed and the data fits well to a simple exponential decay (Fig. 4.13b). The inset shows

the difference between the black points (WAHUHA sequence) and red points (spin echo), which
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(a) (b)

(c)

Figure 4.12: (a) Two contrast decay curves corresponding to different initial densities. The fit curves
are Eq. 4.49. (b) All of the experimentally measured coherence times for a spin echo experiment
on the |0, 0〉 → |1,−1〉 transition. The fit is C + A/N , with A and C fit parameters. Figures
reproduced from Ref. [84]. (c) Looking at typical datasets corresponding to different densities, we
see the frequency obtained from fitting to Eq. 4.49 doesn’t significantly change with density.
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clearly shows that the oscillations are suppressed with the multi-pulse sequence.

Figure 4.13: WAHUHA sequence: (a) The pulse sequence used for WAHUHA. The pulses about
±x̂ have a relative phase of ±90◦ with respect to the initial pulse. (b) The contrast decay for a
two-pulse Ramsey sequence (purple, same data as in Fig. 4.11a), spin echo (red), and WAHUHA
(black). The inset (green points and curve) shows the difference between the red and black curves
and highlights that the multi-pulse sequence largely suppresses the oscillations in the red data.
(c) Number of nearest neighbors in the lattice vs. filling fraction. For fillings < 0.05, most of the
molecules have 0 or 1 nearest neighbors. Figure reproduced from Ref. [84].

To understand how WAHUHA works, we examine the wavefunction for two molecules after

each of the pulses. Initially, both molecules are in | ↓〉. The π/2 pulse puts each of them in a

superposition of | ↑〉 and | ↓〉.

ψ(0) =
1√
2

(| ↑〉+ | ↓〉)⊗ 1√
2

(| ↑〉+ | ↓〉) =
1

2
(| ↑↑〉+ | ↓↓〉+ | ↑↓〉+ | ↓↑〉). (4.51)

The states | ↑↑〉 and | ↓↓〉 don’t interact via the XY Hamiltonian, while | ↑↓〉 and | ↓↑〉 do. The

three triplet states | ↑↑〉, | ↓↓〉, and 1√
2
(| ↑↓〉 + | ↓↑〉) are eigenstates with energy 0, 0, and J⊥/2

respectively. A (π/2)x pulse converts between |N〉 = 1√
2
(| ↑↑〉+ | ↓↓〉) and |I〉 = 1√

2
(| ↑↓〉+ | ↓↑〉), so

it basically acts as an echo between the noninteracting and interacting states. Thus we can rewrite

Eq. 4.51 as

ψ(0) =
1√
2

(|N〉+ |I〉). (4.52)

After the first T/8 free evolution, |N〉 acquires no phase, while |I〉 acquires a phase e−iJ⊥T/(16~).
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The first −(π/2)x pulse swaps this phase to |N〉 (there’s also an additional factor of −i). Thus,

the state after the second pulse is

ψ

(
T

8

+)
=
−i√

2

(
e−iJ⊥T/(16~)|N〉+ |I〉

)
. (4.53)

Immediately before the third pulse, the state is

ψ

(
3T

8

−)
=
−i√

2

(
e−iJ⊥T/(16~)|N〉+ |I〉e−iJ⊥T/(8~)

)
. (4.54)

The (π/2)x swaps the phases again so

ψ

(
3T

8

+)
=

1√
2

(
e−iJ⊥T/(8~)|N〉+ e−iJ⊥T/(16~)|I〉

)
. (4.55)

Finally in the evolution from 3T/8 to T/2, |I〉 picks up another phase e−iJ⊥T/(16~). This means

that the state after T/2 is

ψ

(
T

2

)
=

1√
2
e−iJ⊥T/(8~)(|I〉+ |N〉) = e−iJ⊥T/(8~)ψ(0). (4.56)

Thus apart from an overall phase, the state after half of the sequence is identical to the initial

state. The pulses about x̂ in the second half have the same effect, and the center π pulse is still

necessary for mitigating single-particle dephasing. It’s worth noting that the WAHUHA sequence

has no effect on dipole-dipole interactions beyond those that come from isolated pairs. As shown in

Fig. 4.13c, for very dilute lattice fillings (< 5%), most of the molecules have at most one neighbor;

as a result, the multi-pulse sequence can have a large effect.

It’s quite important that the echo pulse is a rotation about x̂. Fig. 4.14 shows what happens

when the echo pulse is about ŷ instead of x̂. In this case, the entanglement doesn’t reverse at the end

of the sequence, and the contrast decay is qualitatively very different from that in Fig. 4.13b. With

the echo pulse about x̂, the state immediately before the readout pulse is −e−iJ⊥T/(4~)ψ(0); however,

when the echo pulse is about ŷ it would be e−iJ⊥T/(4~)
(
|N〉−|I〉√

2

)
, which cannot be expressed as a

trivial multiple of the initial state.
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Figure 4.14: Same as WAHUHA, except the echo pulse in the middle is about ŷ instead of x̂. The
contrast decay is qualitatively very different from that in Fig. 4.13b, as it decreases sharply at short
times and then decays on a longer timescale.

(a) (b)

Figure 4.15: (a) Varying the duration of the echo pulse by up to 6% (so that it’s 0.94-1.06 π),
we see no significant effect on the coherence time or oscillation frequency. (b) Contrast decay for
different lattice depths, which varies the spread of energies across the cloud. We don’t observe any
significant differences over the range 20-40 ER. Figure reproduced from Ref. [84].
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4.4.2 Robustness to imperfections

One natural question is how sensitive we are to various imperfections in the experiment.

Earlier I stressed that we could achieve > 99%π-pulse fidelities. But is this actually necessary?

To answer this question, we introduced pulse errors of up to 6%. As shown in Fig. 4.15a, we don’t

see any significant change in the contrast decay when the echo pulses aren’t perfect. However, if

we were to use a different initial tipping angle (other than π/2) then these pulse errors are more

of an issue. We also looked at the effect of doing the experiment at different lattice depths (again

using the same lattice polarizations as in Fig. 4.6a). This changes the magicness of the trap and

the Ramsey coherence time. Fig. 4.15b shows that the oscillation frequency and coherence time

are very similar over the range 20-40 ER.

4.5 Second set of experiments

As was discussed in Section 4.1, J⊥ is twice as large for the {|0, 0〉, |1, 0〉} manifold. This

gives us an easy way to change the strength of the interactions. In particular, the faster dynamics

were useful to see that there were multiple frequency components present in the contrast decay.

In addition, the observed dynamics for the faster interactions are basically identical to the slower

interactions (except that time is rescaled), and this strongly suggests that processes other than

interaction effects are negligible in the system’s dynamics. Furthermore, the theoretical tools to

describe the experiment had to be improved in order to explain our data, which exemplifies how

the theory and experiment build off of one another in our system. The discussion in this section

closely follows Ref. [85], of which I am an author.

4.5.1 Contrast decay for the |0, 0〉 → |1, 0〉 transition

The main experimental change when working with the |1, 0〉 state is that we needed to add

some additional waveplates to the horizontal lattice beams to get close to the magic angle (around

52 degrees for each beam). After doing this, we were able to achieve Ramsey coherence times longer
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than 2 ms (Fig. 4.11b). We repeated the spin echo experiments following the same protocol outlined

earlier. Typical contrast decay curves for ∼ 104 molecules for both choices of | ↑〉 are shown in

Fig. 4.16a. Larger couplings are observed for | ↑〉 = |1, 0〉 and the faster spin dynamics makes the

experiment less sensitive to technical limitations. Fig. 4.16b compares the contrast decay for the

two choices of | ↑〉 when time is rescaled by a factor of two for the |1,−1〉 data. This highlights that

the dipole-dipole interactions are responsible for the observed dynamics and that other possible

contributions play a negligible role in the decay.

4.5.2 Fitting to multiple frequencies

For the |1,−1〉 data, we fit to the sum of a single frequency oscillation and an exponential

decay (Eq. 4.49). The low sampling rate makes it difficult to fit to more frequencies. Furthermore,

as shown in Fig. 4.7, for the |1,−1〉 state the exchange is suppressed even at molecular spacings of

1.5-2 alat, which could suppress some of the strong couplings on the diagonal. However, looking at

Fig. 4.4, there should be other pronounced frequency components in the data. Since the timescales

are faster for the |1, 0〉 state, we tried fitting the contrast decay to three frequencies, with the

functional form

C(T ) = Ae−T/τ +B1 cos2(πfT ) +B2 cos2(πfT/
√

2) +B3 cos2(πfT/2). (4.57)

These three frequencies are the three dominant interactions as shown in Fig. 4.4a, and are predicted

to give rise to observable frequency components in the contrast decay. The spacing between the

couplings gets increasingly smaller at lower frequencies, and this is responsible for the overall decay.

We see better agreement with the three frequency fit (Fig. 4.17). We see that the reduced χ2 is

closer to 1 with the three frequency fit, with the lowest χ2 occurring for a frequency around 108

Hz, which is close to the expected value of 104 Hz from J⊥.
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(a) (b)

Figure 4.16: (a) Typical contrast decay curves for | ↑〉 = |1,−1〉 (top) and | ↑〉 = |1, 0〉 (bottom)
for roughly the same density (∼ 1.2× 104 molecules). The coherence time is clearly shorter for the
|1, 0〉 data, which is expected due to the stronger interactions. (b) Taking the two datasets from
(a) and scaling the time axis for the |1,−1〉 data by a factor of two, we see that the curves collapse
onto each other reasonably well, which highlights that dipolar interactions are responsible for the
observed dynamics. Figures reproduced from Ref. [85].

Figure 4.17: (a) Fitting a |1, 0〉 contrast decay curve to Eq. 4.49 (1 frequency, dashed green) and
Eq. 4.57 (3 frequencies, solid blue). (b) For this dataset, fitting to 3 frequencies yields a reduced
χ2 closer to 1. For the 3 frequency fit, the best fit occurs for a frequency around 108 Hz, in good
agreement with the expected value from J⊥. Figure reproduced from Ref. [85].
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4.5.3 Theory comparison

Our simple fitting functions, Eqs. 4.49 and 4.57, do a good job at extracting the coherence

time and telling us about the dominant energies in the interaction spectrum. However, our theory

colleagues can fit the data to a more sophisticated model. The basic idea, illustrated in Fig. 4.18a, is

to use a cluster expansion, whereby the system of ∼ 104 molecules is broken up into small clusters

of ∼ 10 molecules, and the dynamics within the clusters is computed exactly. The theoretical

advance in Ref. [85] was to develop a “moving-average cluster expansion” (MACE), which is able

to converge much faster than a discrete cluster expansion. The MACE builds an optimal cluster for

each molecule i by finding the set of largest couplings Vij to it. The expectation values 〈Sxi 〉 and 〈Syi 〉

are computed exactly for each cluster, and the global Ramsey fringe contrast C = 2
√
〈Sxi 〉2 + 〈Syi 〉2

is calculated by summing these expectation values over all molecules. Details of the convergence of

the algorithm are given in Ref. [85].

The theory was able to estimate the filling fraction by matching to the data in Fig. 4.16, and

the result is that the filling is about 5% for that data. The molecular distribution was assumed

to be a shell, given our expectation that the initial Rb density is high in the center and there

will be many multiply occupied sites that do not produce molecules (this will be discussed more

in depth in the next chapter). However, the theoretical decay curves are largely independent of

the exact geometry in which the molecules are created. Another issue that the theory-experiment

comparison can address is the role of long-range interactions in the experiment. In particular, it’s

interesting to see if the experimental data can be described accurately by only considering nearest

neighbor interactions (or nearest and next-nearest neighbor interactions). As shown in Fig. 4.18b,c,

the curves that only consider short-range interactions don’t agree well with the experimental data,

which says that long-range interactions are needed to explain the dynamics of our system.
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(a)

(b) (c)

Figure 4.18: (a) Schematics of the discrete cluster expansion (DCE) and the moving-average cluster
expansion (MACE). (b) and (c) Theoretically calculated contrast decay truncating the interactions
at nearest-neighbor (b) and nearest and next-nearest neighbor (c). In both cases, the black points
and dashed curve are the data and theory shown in Fig. 4.16 for | ↑〉 = |1, 0〉, and the purple
and light blue solid curves are the predicted contrast decay curves for different filling fractions and
truncated interactions. The disagreement of the short-ranged calculations with the data supports
the claim that long-range interactions are present in the experiment. Figures reproduced from
Ref. [85].
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4.6 Future ideas

Our initial observations of spin-exchange are just the first step in studying quantum mag-

netism with polar molecules. The results of the theory comparison tell us that although we can see

effects of long-range interactions in the experiment, the lattice fillings are low (less than 10% even

for the highest densities). This is consistent with other methods for determining the filling, such as

the losses in tubes [90] and direct imaging [84]. We would really like to increase the lattice filling so

that we can study more complex dynamics, such as the buildup of entanglement and correlations,

and the propagation of spin excitations. In the next chapter, we show that by tailoring the initial

atomic distributions, we can achieve much higher lattice fillings.

4.6.1 Simple simulation of spin transport

To motivate why higher lattice fillings are important, it’s useful to think about future exper-

iments we would like to do. One example is to study spin transport. Here, the idea would be to

create a small number of | ↑〉 molecules in a sea of | ↓〉 molecules. The molecules are pinned in the

lattice and don’t move, but the rotational excitations can move from site to site. Experimentally,

we would want to see how these excitations propagate at different lattice fillings and electric fields,

as well as in the presence of disorder, both from the finite filling fraction and from intentionally

created disorder in the potential that the spin excitations see. This is intimately linked to the

idea of many-body localization, where strong disorder could potentially localize these excitations

[37]. This closely parallels work in trapped ions looking at the speed limit of the propagation of

correlations in 1D chains of trapped ions [38, 39]. In our system, we could study these effects in 2

or 3 dimensions.

A näıve expectation is that the excitations will propagate faster for higher lattice fillings. To

test this, I did a simple 2D simulation on a 15× 15 grid. The center molecule is always | ↑〉 and the

rest are | ↓〉, distributed randomly with filling f . I then compute the coupling matrix, calculate the

wavefunction after some time T , and compute how far on average the excitation has moved. Note
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Figure 4.19: Simulation of spin transport. Dynamics in a single 2D plane (for example, the xy
plane of Fig. 4.4a) is considered for the coupling strengths for the {|0, 0〉, |1,−1〉} manifold. (a)
Initial distribution with f = 0.3. The colorbar represents excitation: 0 is an empty site, 1 is | ↓〉,
and 2 is | ↑〉. (b) Distribution after evolving for 50 ms. Note the change in colorbar. There is a
finite probability of finding the excitation on any site. (c) Distance the excitation moves (in lattice
sites), R̄ (Eq. 4.58), vs. evolution time T for f = 1 (blue), f = 0.5 (red), f = 0.3 (green), f = 0.15
(magenta), and f = 0.05 (black). The open circles are averages of 50 realizations (except for f = 1
where the dynamics is always the same), and the solid red curve is a fit to the f = 0.5 data,
assuming diffusive transport (R̄ ∝

√
T ). (d) Same as (c) except there is a site-to-site energy shift

3 Hz × ((i− 8)2 + (j − 8)2) (i and j label the lattice sites along the two directions). (e) Histogram
of R̄ after 50 ms for f = 0.05. The simulation was repeated 500 times. (f) Same as (e) but for
f = 0.5. Here there is a clear displacement from the center.
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that since this is the one excitation subspace, this requires diagonalizing at most a 152×152 matrix,

which is computationally easy. Fig. 4.19a shows a typical initial distribution for a 30% filling, while

panel b shows the distribution after 50 ms. After 50 ms, the excitation has some probability to be

on any site. The expected distance R̄ (in lattice sites) is given by

R̄ =
∑
i

piri, (4.58)

where pi is the probability that the particle is on site i and ri is the distance from the center site

(in lattice sites). Panel c shows R̄ vs. T for different filling fractions, and panel d is the same

but adding a site-to-site energy shift. Higher lattice fillings clearly lead to faster propagation. For

fillings less than unity, the transport is not exactly diffusive (the red solid curve in panel c shows a

fit of the red data to R̄ ∝
√
T ) and there appears to be a saturation at longer times, which could

be due to the finite system size. In the new experiment, we plan to have an imaging resolution of

around 1 µm, which is about 2 lattice sites. We would want the excitation to propagate at least

this far in order to detect that it moved.

For very dilute fillings the actual distribution is very different from one realization to the next,

with some realizations having two particles close to each other (which will exchange quickly) and

other realizations having only very small couplings. In the simulation this manifests as a very large

standard deviation of the expected distance the excitation moved, which suggests that it would

be difficult to get good statistics in the experiment for small lattice fillings. This is highlighted in

panels e and f, which show histograms of the expected distance after 50 ms for both f = 0.05 (e)

and f = 0.5 (f).

4.6.2 Realizing additional terms in the Hamiltonian

In addition to achieving higher lattice fillings, it would also be interesting to realize additional

terms in the dipolar Hamiltonian (Eq. 4.3). As was shown earlier, the full dipolar Hamiltonian has

more terms than just those in Eq. 4.8. In this chapter, I have so far focused on the q = 0 term.

The q = ±2 terms are particularly interesting because they can be used to realize a novel form of
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spin-orbit coupling [88]. Most realizations of spin-orbit coupling in cold atoms can be understood as

a single-particle effect, with the coupling usually arising from Raman beams that couple hyperfine

states, which generally means that spontaneous emission and heating are problematic. In contrast,

the spin-orbit coupling described in Ref. [88] arises from interactions between the molecules and in

principle shouldn’t have any issues with spontaneous emission or heating.

The q = ±2 terms look like

V q=±2
dd =

−3

2r3
ij

(
d̂+
i d̂

+
j e
−2iφij + d̂−i d̂

−
j e

2iφij
)

sin2 θij , (4.59)

and correspond to processes that transfer between rotational angular momentum and orbital angu-

lar momentum. This method of coupling the spin degree of freedom to the particles’ orbital motion

is similar to recent experiments in magnetic atoms [140, 141]. Because of the sin2 θ term, Ref. [88]

proposes to do the experiment in a single 2D layer, with θ = π/2. The interactions occur with

three states of the molecules and can drive the following process:

|1,−1〉+ |0, 0〉 → |0, 0〉+ |1, 1〉. (4.60)

As shown in Ref. [88], the strength of the coupling is 3J⊥, so in order for this to work, the energy

difference between the |1, 1〉 and |1,−1〉 states must be less than this. The easiest way to bring

these states to degeneracy is to apply a large magnetic field of about 1260 G [88]. The second

generation experiment will have the capability of reaching such large magnetic fields.



Chapter 5

Increasing the filling fraction

The last chapter described our observation of spin-exchange interactions for molecules pinned

in a deep lattice; however, the lattice filling was quite dilute (less than 10%). This is consistent

with the filling extracted from the measured loss rate of molecules confined in tubes and from direct

imaging of the spatial extent of the cloud [84, 90]. The reason we could observe spin exchange at

such low fillings is that there is a strong decoupling between spin and motion that makes the spin

entropy the relevant quantity [83, 85]. Since we can easily initialize all of the molecules in the same

quantum state, the spin entropy can be very low. This chapter addresses the question of why the

filling was so low and presents a strategy that directly leads to a much higher lattice filling in our

experiment.

Experimental imperfections, such as finite temperature, limit the filling fraction of cold atomic

gases when they are loaded into optical lattices. Atomic Fermi gas experiments achieve fillings

close to, but not exactly, unity [21, 142]. Exactly what filling fraction is required for polar molecule

experiments depends on the experiment one wants to do. As shown in the simulations at the end

of the previous chapter, the propagation of rotational excitations can occur at any density, but

occurs much faster for higher fillings. Many other interesting proposals don’t require unit filling.

Fillings in the range 0.25-0.5 are sufficient for studying many-body localization [37], and the spin-

orbit coupling discussed in the previous chapter can work even at fillings of ∼ 0.1 [88]. However,

even when an experiment is possible at low fillings, the SNR will almost surely be better at higher

fillings.
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One notion of sufficiently high filling is that the system is well connected, which means there

is a reasonably efficient way to propagate information between any two parts of the system. Another

way of saying this is that there has been a percolation in the system, which is defined as the filling

at which an infinite cluster develops in an infinite system [143]. For an infinite 3D cubic lattice

with nearest neighbor interactions, the percolation threshold occurs at a filling of around 0.3 [143],

so this gives us a rough target. In our system, the exact critical filling will be different, and likely

less than this, since we have long-range interactions and a finite system size.

There are two main approaches one might adopt to achieve higher fillings. The first is to try

to directly cool the molecules and then load them adiabatically into the lattice, while the second

is to start with two species of cold atom gases, optimize their loading into the lattice, and then

make molecules, as proposed in Refs. [144, 145]. This second option has been demonstrated for

Rb2 Feshbach molecules, where the molecules were created out of a Mott insulator with two atoms

per site [146].

The first option doesn’t work very well for KRb because it’s very difficult to cool the molecules

in the presence of chemical reactions. There are proposals to evaporatively cool reactive polar

molecules by using an electric-field gradient to remove hot molecules and the dipolar interactions to

rethermalize [119]. Using universal dipolar scattering to evaporatively cool spin-polarized fermions

was demonstrated beautifully for magnetic atoms, but there the ratio of good to bad collisions

was very favorable [50]. For KRb, very large electric fields and harmonic confinements would be

necessary in order to reach a favorable regime of good to bad collisions [119, 120]. In addition, we’ve

also seen evidence that the molecular gas is heated a lot when loading and unloading the lattice.

Doing the same experiment for K, we saw almost no heating (Fig. 5.1). This suggests problems in

trying to adiabatically load molecules into the lattice. More experimental work would be required

to determine the origin of this problem. In 2011-2012, we spent a lot of time trying to create colder

molecules in the harmonic trap by using a species selective dipole trap around 790 nm, which

affected K but not Rb and was useful for optimizing the overlap between the two species. However,

ultimately the poor fractional conversion of the atom gases into Feshbach molecules limited the
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temperature of the molecular gas to T/TF ∼ 1.

The second option benefits from the high conversion of preformed atomic pairs to Feshbach

molecules, and the subsequent efficient optical transfer to the ground state. As shown in Ref. [72],

the conversion of sites with one K and one Rb atom to molecules is nearly unity (87± 13%). This

issue will be addressed further in Chapter 6, where we show that in the case of deep lattices and fast

magnetic-field ramps, the conversion efficiency seems to be exactly 100%. Previous measurements

of inelastic loss rates of Feshbach molecules with K and Rb atoms suggest that having multiple Rb

atoms on a lattice site is detrimental to molecule production on that site [65, 69]. This motivated

us to maximize the number of lattice sites that have one K and one Rb atom. The ideal states of

the initial atomic gases are a bosonic Mott insulator (MI) with one atom per site and a fermionic

band-insulator where the filling approaches unity at the center. If the temperature of the K gas

is not sufficiently low, the number of K atoms will need to be much larger than the number of

Rb atoms, so that we avoid multiple occupancies of Rb and so that the K density approaches one

particle per site in the center of the lattice. Even in the harmonic trap, we see that if the Rb

density is too high, this negatively affects the molecule production (Fig. 5.2).

Many of our previous attempts to increase the molecule filling looked at the final result as

a function of many parameters (atom number, interspecies interactions, lattice depth, harmonic

confinement, etc.) without seeing a significant dependence on these parameters. Since the molecule

production involves several steps, we decided to systematically study each step individually before

putting them all together. This ultimately led to a better understanding of the dependence of the

molecular density on the parameters listed above and motivated a strategy to increase the density

of molecules.

In Section 1, I give a brief theoretical discussion of the bosonic Mott insulator and fermionic

band insulator, and then discuss the challenges of creating a dual insulator. In Section 2, I describe

changes to the imaging system that were instrumental to the success of this study. In Section 3,

I present measurements of the fillings of the individual atomic gases. In Section 4, I describe the

effect of the insulators on each other and show it’s optimal to turn off the interspecies interactions
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Figure 5.1: (a) Ramping up and down the vertical lattice in 200 ms and holding for 50 ms (total
time 450 ms), the K gas is not significantly heated. We measure the temperature T by fitting the

radial size during a TOF expansion to σr =
√
σ2

0 + kBT
m t2, where σ0 is the in situ size and m is

the particle mass. (b) Repeating the same experiment for ground-state molecules, we see a lot of
heating, which could mean we didn’t load the lattice adiabatically. The exact origin of this problem
is not very well understood.

Figure 5.2: We see a hole in the center of the Feshbach molecule distribution when the Rb density
is too high. This image was taken in the optical dipole trap.
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Figure 5.3: Quantum synthesis for realizing high molecule fillings in the lattice. Left: We load K
(blue) and Rb (red) atoms into a 3D optical lattice, with many more K atoms. In the center of the
lattice, we have a MI of Rb and band-insulator of K, each with a filling near unity. Right: Sites
with one Rb and one K produce molecules with high probability, whereas sites with multiple Rb
atoms or only a single atomic species don’t produce molecules. Figure reproduced from Ref. [92].

by loading the lattice at aKRb = 0. In Section 5, I describe experiments that studied the conversion

efficiency of Feshbach molecules vs. Rb number and show the final results of the improvement of

the molecule filling fraction. In the best case, we achieve molecule fillings > 25%. In Section 6,

I conclude and give an outlook for future work. Most of the discussion of this chapter follows

Ref. [92], of which I am the lead author.

5.1 Target distributions: Rb Mott insulator and K band insulator

Our strategy for realizing higher molecule fillings in the lattice relies on the precise experi-

mental control that’s available for manipulating the initial atomic quantum gas mixture in the 3D

lattice. Specifically, we need to prepare low entropy states of both species and combine this with

efficient molecule production at individual lattice sites. The combination of efficient magnetoassoci-

ation of preformed pairs [72] and efficient optical state transfer via STIRAP means the second step

should work well; however, creating a low entropy state of both species with the optimal density of

one particle per site is very challenging.

The basic scheme is illustrated in Fig. 5.3. By loading a nearly pure Rb BEC into a deep

3D lattice, we achieve a MI, where repulsive interactions between the Rb atoms drive a transition
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to a state that has an integer number of particles per site. The initial BEC density should be

sufficiently low that we end up with one atom per site. For spin-polarized K atoms, Pauli blocking

prevents any site from having more than one K atom, assuming that all atoms are loaded into the

lowest band. The initial K gas needs to be cold in order to load most of the atoms into the lowest

band. The optimum case is a spin-polarized K band insulator with a filling ∼ 1 atom per site in

the center, which given our relatively high initial temperature, requires starting with a relatively

large number of K atoms. In addition, we require that the Rb MI is well spatially overlapped with

the center of the much larger K distribution and that the high filling of each species is preserved

in the presence of the other.

5.1.1 Rb Mott insulator

Ultracold bosons in an optical lattice are well described by the Bose-Hubbard Hamiltonian

[32, 103]:

H = −J
∑
〈i,j〉

âi
†âj +

∑
i

U

2
n̂i(n̂i − 1) +

∑
i

(V (ri)− µ)n̂i, (5.1)

where âi
† and âi are bosonic creation and annihilation operators, and n̂i is the number operator

for site i. The first term represents tunneling at a rate J between adjacent lattice sites (the sum is

over neighboring sites i and j), the second term is the onsite interaction energy (which is repulsive

for Rb), and the third term represents the external harmonic confinement. The chemical potential

µ sets the particle number.

In shallow lattices (U/J � 1), the atoms are delocalized over the entire lattice and there is a

well-defined phase on each lattice site [147]. In this superfluid phase, the number of atoms on any

site is uncertain and is given by a Poisson distribution. In momentum space, the superfluid displays

an interference pattern with well-resolved peaks spaced by twice the lattice recoil momentum 2~k

(Fig. 5.4). For deep lattices (U/J � 1), the energy cost U of having multiple occupancies suppresses

number fluctuations. The result is a MI with Fock states on each lattice site. In the MI, the

macroscopic phase on each lattice site has a maximum uncertainty and the interference pattern in
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Figure 5.4: The superfluid-to-Mott insulator transition. The lattice depth is 12, 17, and 22 ER
from left to right. The white bar shows twice the lattice recoil energy. The optical depth (OD) is
displayed by the color scale. Figure reproduced from Ref. [92].

momentum space disappears (Fig. 5.4). The superfluid-Mott insulator transition was first observed

in 2002 [147], and seen under a quantum gas microscope in 2010 [148, 149].

To gain an intuitive understanding, it’s useful to consider the case of zero temperature and

zero tunneling. In this case, the density of the MI depends on the ratio of the chemical potential

to the interaction energy, µ/U . Because of the additional harmonic confinement V (r), the local

chemical potential µ− V (r) determines the occupancy of a lattice site. Specifically, the occupancy

of site (i, j, k) is α if

(α− 1) <
µ− V (i, j, k)

U
≤ α. (5.2)

This condition allows for a self-consistent computation of the number of atoms for a given chemical

potential, N(µ) [150]. In the thermodynamic limit, µ has a form very similar to the Thomas-Fermi

(TF) result for a harmonic trap. It’s useful to calculate this limit in order to understand how

µ depends on N and the harmonic trapping frequency. The calculation is outlined in Ref. [103].

Assuming a spherically symmetric distribution, the density n(r) (in particles per lattice site) is

given by

n(r) =
µ− 1

2mω
2r2

U
, (5.3)

where ω is the underlying harmonic confinement of the lattice beams. The extent of the cloud,
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Rmax, occurs when µ− 1
2mω

2R2
max = 0, which gives Rmax =

√
2µ
mω2 (to get this in number of lattice

sites, divide by alat). Then N is fixed by

N =

∫ Rmax/alat

0
n(r)d3r =

∫ Rmax/alat

0

µ− 1
2mω

2r2

U
4πr2dr. (5.4)

Doing the integral and solving for µ we obtain

µ =

(
15U a3

latm
3/2

29/2π

)2/5

N2/5ω6/5. (5.5)

For different harmonic confinements along the three lattice directions, like we have in our experi-

ment, ω is replaced by the geometric mean harmonic confinement ω̄. What’s important about this

expression is how µ scales with N and ω̄: µ ∝ N2/5ω̄6/5. To have at most one atom per site, we

require µ ≤ U . As shown in Fig. 2.14, a typical value of U is h × 1 kHz (for Rb in a 1064 nm

lattice). For the harmonic confinements needed to overlap the species and achieve the required

densities, the maximum N we can have and still satisfy µ ≤ U is a few thousand. But in general,

we want to have as small of a harmonic confinement as possible in order to maximize the number

of atoms N in the n = 1 MI.

5.1.2 K band insulator

The fermionic analog to the bosonic superfluid and MI is the metal and fermionic MI, re-

spectively. In the fermionic MI, strong repulsive interactions (onsite interaction U) between two

spin components lead to a state with one particle per site. The fermionic nature of the particles

combined with repulsive onsite interactions provides an ideal experimental setting to study fun-

damental questions related to strongly correlated electron systems [151]. The fermionic MI was

first observed in 2008, with experimental signatures including a suppression of doubly occupied

sites, a reduction of the compressibility, and the appearance of a gap in the excitation spectrum

[151]. More recently, the fermionic Mott insulator was observed with imaging at the single-particle

level [142]. If the chemical potential increases further (µ > U), the state transitions to a band

insulator, where there is one particle of each spin state per site [21, 152]. In our experiment, we
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use spin-polarized fermionic 40K atoms in the |9/2,−9/2〉 state, so if the atoms are in the lowest

band, there can be at most one atom per site. In this case, the state with one atom per site is a

spin-polarized band-insulator.

The filling of fermions in optical lattices is more complicated to calculate than for bosons, and

depends on an interplay between temperature, tunneling, and harmonic confinement. In contrast

to the case of bosons, low temperature alone is not sufficient to guarantee unit filling, but we do

require sufficiently low T/TF . A few rough arguments tell us that large particle numbers and strong

harmonic traps are going to be necessary to achieve a density ∼ 1 particle per lattice site. Ref. [152]

gives the following condition for a band insulator:

mω̄2λ2

8

(
3N

4π

)2/3

� 12J, (5.6)

where J is the tunneling energy, λ is the lattice wavelength, and ω̄ = (ω2
rωz)

1/3 is the geometric

mean harmonic confinement. The left hand side of Eq. 5.6 is the Fermi energy for noninteracting

fermions in a deep 3D lattice [153], while the right side is the total tunneling bandwidth. Examining

this condition at 10EK
R tells us that N2/3(ωr/(2π))2 � 106 Hz2, which we roughly satisfy for

ωr = 2π × 50 Hz and 105 atoms.

Another simple way to think about this is to calculate the partition function on each lattice

site, assuming no tunneling. This calculation is outlined in Ref. [151] for a two-component gas.

Although tunneling definitely plays a role in our experiment, the conclusions of this simple model

give intuition that is useful for optimizing the K conditions. Each lattice site can have at most one

particle, so the partition function for each site is

Zi = 1 + Ze−βεi . (5.7)

The energy offset εi is due to the harmonic confinement (ε = 0 at the center of the lattice),

β = 1/(kBT ) is the inverse temperature, and the fugacity is Z = eβµ. µ is the chemical potential,

which sets the number of particles. The probability that a site is occupied is Ze−βεi/Zi, so the

peak filling is the probability that the central site is occupied, which is Z
Z+1 . To find µ, we require
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that the total number of particles is N :

N =
∑
i

Ze−βεi
Zi

. (5.8)

Fig. 5.5 shows results for small systems. We see that keeping the particle number fixed,

the peak filling fraction increases when we reduce the temperature or increase the harmonic con-

finement. Increasing the number of atoms at fixed temperature and harmonic confinement also

increases the peak filling.

5.1.3 Challenges of making a dual insulator

One of the main challenges of producing a dual Bose-Fermi insulator with one atom of each

species per site is that there is generally a large mismatch in the size and spatial overlap of the

two species, which comes from the different masses, polarizabilities, and quantum statistics. In

this section we show that we need large harmonic confinement frequencies to support both species

against gravity with a small differential sag and to achieve sufficiently high densities for K. We also

briefly discuss challenges of evaporatively cooling the mixture to very cold temperatures. For the

experiments described in this chapter, all optical potentials are at λ=1064 nm.

A lot of intuition about the constraints on the K and Rb distributions can be obtained from

considering the densities in the optical trap. The distributions will change when loading the latices;

however, in order to achieve a density of ∼ 1 particle per lattice site (6.6×1012 cm−3), we require a

comparable density in the optical trap. The distribution of a sufficiently large BEC in a harmonic

trap is given by a TF function, where the density has an inverted parabolic distribution and the

cloud radius along an axis with harmonic confinement ωi is

Ri = a
4/5
ho (15NaRb,Rb)1/5, (5.9)

where aho =
√

~
mωi

is the harmonic oscillator length and aRb,Rb = 100 a0 is the background scat-

tering length [154]. For our typical trap frequencies for Rb of ωr (ωz) = 2π × 25 (180) Hz and 105

atoms, Rx = Ry ≈ 17 µm, and Rz ≈ 2.3 µm, which are quite small. For a degenerate Fermi gas,
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Figure 5.5: Calculating the density of spin-polarized fermions in the lattice in the zero tunneling
limit for different temperatures and harmonic confinements. Here the trap is spherically symmetric
and only a radial cut is shown. Comparing (a) and (b) we see that higher harmonic confinements
give higher peak fillings. Comparing (a) and (c) we see that lower temperatures give higher peak
fillings. Comparing (a) and (d) we see that more atoms give higher peak fillings.
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the density is given by the Fermi-Dirac distribution:

n(ρ) = −
(
kBmT

2π~2

)3/2

Li3/2(−Z exp(−mω2
rρ

2/(2kBT ))), (5.10)

where Li3/2 is a polylog function, Z is the fugacity, and ρ2 = x2 + y2 +λ2z2 is a scaled coordinate,

where λ = ωz/ωr characterizes the asymmetry of the trap [155]. The fugacity is related to T/TF

by Li3(−Z) = −1
6(T/TF )3

[155]. Fig. 5.6a compares the density distributions of a pure BEC and

a Fermi gas at T/TF = 0.25 (each with 105 atoms), and shows that the size of the Fermi gas is

significantly larger. When optimizing the lattice loading to get one atom of each species per site,

we would need to use a much smaller number of Rb atoms and the Rb cloud would be even smaller.

Fig. 5.6b shows the peak density of K in the harmonic trap for different harmonic confinements,

atom numbers, and temperatures. Like the simple model in the last section, there are several ways

we can achieve high densities of K: increase the number of atoms, increase the trap frequencies,

and use colder gases. Since we can only increase the number so much (perhaps to 3× 105), and the

scaling of density with harmonic confinement is much stronger, we choose to use relatively large

harmonic confinement frequencies. For Rb, we’re fighting the opposite battle. The typical BEC

densities are very high, and as such, we have to go to small atom numbers.

We next briefly discuss the vertical overlap. Since the size of the K cloud is much larger

than the BEC, we can tolerate a vertical offset of a few µm. K and Rb have different masses and

polarizabilities at 1064 nm (see Table 2.1), so the two species have different trap frequencies (ωK =

1.37ωRb). Consequently, there will be a differential gravitational sag ∆z = g

(
1

ω2
z,Rb
− 1

ω2
z,K

)
≈

0.27 g
ω2
z,Rb

, where ωz is the vertical trap frequency. Clearly, ∆z becomes smaller as the vertical trap

frequencies increase. For our normal optical trap frequencies of ωr (ωz) = 2π × (25) 180 Hz for Rb,

the differential sag is about 2 µm, which is sufficiently small.

We want both gases to be as cold as possible. For Rb, this means a nearly pure BEC and for

K it means a deeply degenerate Fermi gas. However, the way we do the evaporative cooling limits

the temperature of K. In the optical trap, we evaporate the gases by lowering the intensity of the

OT beams. However, Rb is heavier and has a smaller trap frequency, so it falls out of the trap first.
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(a) (b)

Figure 5.6: Comparing the densities of degenerate Bose and Fermi gases in a harmonic trap. (a)
Comparison of a density cut along the radial direction for 105 atoms for a K gas at T/TF = 0.25
(blue) and a Rb BEC (orange) with a harmonic confinement ωr (ωz) = 2π× 51 (290) Hz for K (the
frequencies for Rb are 1.37 times less). This is the expected harmonic confinement of the optical
trap plus lattice beams in the experiments of Ref. [92]. The density of each species is normalized
to its peak density ρ0. (b) Density of Fermi gases of T = 0.25TF (blue) and T = 0.5TF (red) in
a 3D harmonic trap vs. atom number. The harmonic confinement is ωr(ωz) = 2π × 51(290) Hz
(solid) and 2π × 32(180) Hz (dashed). The density corresponding to one particle per lattice site is
denoted by the dashed black line.
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This means we do most of the cutting on Rb and we lose very few K atoms. We rely on collisions

between K and Rb to thermalize the K. Once Rb condenses the K is no longer efficiently cooled

since the BEC is much smaller than the Fermi gas. As a result, we observe that as the temperature

drops, the K and Rb clouds are not in thermal equilibrium, with the K hotter. Experimentally we

see that we can only reach temperatures of T/TF ≈ 0.3 (see Fig. 5.13).

To summarize, there is a huge compromise between the harmonic confinement and the den-

sities of the atomic species. If we use a weak harmonic trap, the n = 1 MI will be larger but the

K filling will be lower. If we use a much stronger trap, the size of the n = 1 MI will be very small

but the density of K will be high. Ultimately we choose a harmonic confinement such that the K

filling fraction saturates around 105 atoms (see Section 5.3), and we have to live with the small Rb

MIs (less than 5000 atoms).

5.2 Top imaging

Normally we would image the atoms from the side, using a probe beam that propagated

through the entire chamber. This imaging direction is at 45◦ with respect to the principal axes

defined by the OT and horizontal lattice beams. As a result, we were able to measure one radial size

(σr) and the vertical size (σz). However, the imaging resolution was about 5 µm (Airy disk radius),

which was sufficient for imaging in time-of-flight (TOF), but caused problems for imaging in situ,

especially for very small clouds. As discussed in the previous section, the typical cloud radius of a

BEC in the vertical direction is only a few µm, which is less than the imaging resolution. Measuring

the filling of the atomic gases requires knowing the size along all three directions. Since σz is less

than the imaging resolution, we get no information about that direction. Thus, we were extracting

all of the information from σr. Since the filling fraction scales like 1/σ3
r , any uncertainty in σr

contributes a larger fractional uncertainty to the measured filling fraction.

The bigger problem was that the system was unstable. The filling of the MI would change

over time (over the course of a few hours) even if the lattice alignment didn’t seem to change.

Looking at the in situ distribution, we would sometimes see the cloud split into two parts (see
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Figure 5.7: An image showing how the vertical lattice would split the cloud in two.

Fig. 5.7). To better understand the origin of this problem, and to see the cloud size along both

radial directions, we decided to image the gas along the vertical direction. Once we set up the

vertical imaging, we quickly understood the origin of these problems. It turns out that the ITO

plates were probably vibrating when we ramped to high magnetic field. Because the plates were

mechanically coupled to the coil assembly, this could have been due to mechanical forces arising

from the changing current in the coils. This manifested as terrible fringes in the images caused by

a relative motion of the probe beam between the shadow and light frames, which were separated by

∼ 500 ms (see Fig. 5.8a). We determined that the magnetic-field ramps were problematic because

if we waited at high field for a few seconds before imaging, the amplitude of the fringes was lower.

The vibrations would also affect the vertical lattice, since the lattice beam also propagated through

the ITO plates. This was likely what caused the cloud to sometimes split in half. Since we didn’t

need to apply electric fields, we decided to remove the ITO-coated glass from the region that the

beams propagated through (we couldn’t remove the whole plate since it was necessary to hold the

microwave coil assembly together). This made the OD images much better (Fig. 5.8b) and the

filling fraction of the atomic gases became much more robust, at least as far as we could tell from

our detection. This also improved the stability of the vertical lattice.

A schematic of the top imaging setup can be seen in Fig. 5.9. For the objective, we used a

single achromatic doublet from Edmund optics, with a focal length of 125 mm. In a test setup,

we used this objective to image a 500 nm pinhole, which acts as a point source. This allowed us
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Figure 5.8: (a) OD image before we removed the ITO. The fringes between the shadow and light
frames have an amplitude of about 1 OD. (b) Similar OD cloud after we removed the ITO plates.
Removing the ITO made a huge difference, since the two clouds have a similar OD, and the SNR
is much higher in (b).
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to measure the imaging resolution to be 6.0(3) µm, which translates into a Gaussian rms width

of 2.5(1) µm, or 4.7(2) lattice sites. The objective lens is not particularly well AR-coated (the

reflection is 1-2% at 1064 nm). To avoid reflections that could create a superlattice, we decided to

have separate beam paths for the lattice and probe beams. The probe beam propagates roughly

vertically, while the lattice beam propagates at roughly 6◦ from vertical. The vertical lattice is not

focused at the position of the atoms but rather at the retroreflecting mirror, which is a half mirror

that sits above the objective lens without obstructing it.

5.2.1 Calibrating the saturation intensity

For reliably measuring the filling fractions of the atomic gases, it’s necessary to be able to

accurately measure the OD. In the past, we usually imaged dilute gases after a TOF expansion.

For studying the filling fraction of the atomic insulators, we needed to image dense gases in situ.

This introduces several systematic effects in the absorption imaging that need to be understood

and characterized. Here I discuss the relevant aspects for our experiment, following the discussion

from Rob Wild’s PhD thesis [156].

We take three images, a shadow frame with the atoms, a light frame with the probe beam

but no atoms, and a dark frame with no probe beam. These images are 2D arrays of “counts” on

the CCD camera that we call Ishadow, Ilight, and Idark, respectively. The measured optical depth

(OD) is then

ODmeas = ln

(
Ilight − Idark

Ishadow − Idark

)
. (5.11)

There are two main effects that give corrections to Eq. 5.11. The first is that there is a maximum

OD we can measure (ODsat) due to “bad” light, which can have the wrong polarization or frequency

to be absorbed or could be light that scatters around the atoms. This “bad” light isn’t absorbed

and limits the contrast between the shadow and light frames. Ultimately, the dynamical range of

the digital CCD camera also limits the maximum OD one can measure (a camera with N bits can

measure an OD up to ln(2N )) [156]. Applying the correction from ODsat gives a modified OD given
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Figure 5.9: New setup for top imaging. The lattice beam is focused at a half mirror, which
retroreflects the beam. The lens for the imaging beam sits below the half mirror. A PBS on the
probe beam after the final mirror before the cell allows us to align the light polarization with the
quantization axis, which is important for achieving a large ODsat. The position of the ITO plates
is denoted by the black dashed lines above and below the glass cell. The region of glass on the ITO
plates around where the probe beam and lattice beam go through was removed.
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by [156]:

ODmod = ln

(
1− e−ODsat

e−ODmeas − e−ODsat

)
. (5.12)

There is also a correction due to imaging at finite intensity, which is a result of the probe beam

saturating the transition. This gives the actual OD [156].

ODact = ODmod + (1− e−ODmod)
I

Isat
. (5.13)

Especially when doing absorption imaging of small clouds, we need to use short probe pulse dura-

tions so the atoms don’t move significantly during the probe pulse. We find ∼ 10µs is sufficiently

short for our purposes. However, these short probe pulses are usually done at relatively high in-

tensities. We can measure ODsat by directly measuring very dense clouds, and we usually find

ODsat ∼ 3.5− 4. To calibrate the intensity of our probe beam, we follow the procedure outlined in

Ref. [156], where we image the same thermal cloud at different intensities and then fit to Eq. 5.13

(see Fig. 5.10).

5.2.2 Fitting the atomic distributions

When imaging from the top, we measure the two radial sides and compute the vertical

size according to σz = σr/A, where A is the aspect ratio. Using the side imaging, we measured

A = 6.4(1) for large thermal clouds in the combined potential of the OT and a 24 ER 3D lattice.

We assume that A is the same for small clouds in the lattice.

We fit the absorption images (after correcting the OD pixel by pixel) to obtain σx and σy

(σr =
√
σxσy) and then fit to either a 2D Gaussian surface or a 2D TF surface to extract the peak

density ρ0. The Gaussian is

nGauss(x, y) =
√

2πσzρ0e
−x2/(2σ2

x)e−y
2/(2σ2

y). (5.14)

and the peak filling is

fGauss =
N(λ/2)3

(2π)3/2σxσyσz
=

NA(λ/2)3

(2πσxσy)3/2
. (5.15)
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Figure 5.10: Typical calibration of I/Isat, following the procedure outlined in Ref. [156]. We image
the same cloud with different intensities. The actual OD is the intersection of the curve with the x
axis, while the steepness of the curves tells us Isat in counts/pixel/µs. As a measure of the intensity,
we average the number of counts in the light frame around the location of the center of the atom
cloud.
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The 3D TF distribution is

n3D
TF(x, y, z) = ρ0

(
1−

(
x

Rx

)2

−
(
y

Ry

)2

−
(
z

Rz

)2
)
. (5.16)

Then integrating along z,

n2D
TF(x, y) = ρ0

∫ zmax

−zmax

(
1−

(
x

Rx

)2

−
(
y

Ry

)2

−
(
z

Rz

)2
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dz, (5.17)

where zmax = Rz

√
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)2
. Doing the integral yields
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)
. (5.18)

Integrating along x and y gives

N =

∫∫
n2D

TF(x, y) dx dy =
8π

15
ρ0RxRyRz, (5.19)

which can be inverted to give

fTF =
15N(λ/2)3

8πRxRyRz
=

15NA(λ/2)3

8π(RxRy)3/2
. (5.20)

In both cases I used the fact that ρ0 = f
(λ/2)3

(λ is the lattice wavelength), and f represents the

peak filling.

5.3 Measuring the filling of the individual atomic gases

In this section, we characterize the density of the individual atomic gases. This is an impor-

tant step as fillings of ∼ 1 particle per lattice site are necessary for our quantum synthesis scheme

to be successful. We find good agreement with the conclusions from Section 1, namely that we need

small number Rb clouds and large number K clouds to achieve densities ∼ 1 particle per lattice

site for each species at the trap center.

5.3.1 Measuring the filling of the Rb Mott insulator

Looking back at Eq. 5.5, we see that for our typical trap frequencies, the number of atoms in

an n = 1 MI will be less than 5000. Given the aspect ratio of our trap, this implies a radial size of
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about 10 µm, which is slightly less than twice the imaging resolution. For these small clouds, we

begin to worry about the effect of the imaging resolution on the determination of the size of the

cloud, and consequently on the determination of the filling fraction. Normally what one would do

is to measure the point spread function of the imaging system and then deconvolve the images with

this function. In our case, it’s difficult for us to make such a small object (since a BEC of 5000

atoms is already very small and the size scales weakly with number), and also the magnification

of the imaging system is such that the pixel size is not so different from the imaging resolution

(this was chosen mainly due to space constraints). Instead, our approach is to model what we

would expect the n = 1 MI to look like, given the finite imaging resolution and pixelation. We

then fit the expected distribution the same way as we would fit the experimental data to obtain

the filling fraction vs. number. We then compare the model’s predicted filling fractions with the

filling fractions measured in the experiment. Even though they’re not useful for making molecules,

we can also produce large MIs in the experiment, which should be much less sensitive to the effects

of imaging resolution and pixelation, and we can benchmark the model by its agreement with these

large clouds.

To be more specific, we calculate the expected distribution at T = 0 with no tunneling based

on Ref. [150], using the expected trap frequencies for the combined OT and 3D lattice potential.

The simulation begins by choosing a value of µ/U and then distributing the particles according to

Eq. 5.2. Summing over the occupation of each site allows us to numerically find the relationship

between µ and N . To compare with the experiment, we sum the number of atoms along the z

direction (following the experimental geometry where the probe beam integrates along z), and

convolve the resulting 2D distribution with a Gaussian filter of rms width 4.5(5) lattice sites to

account for the finite imaging resolution. To account for pixelation, every 6 × 6 group of lattice

sites is mapped to one pixel (in the experiment, the pixel size is 3.2 µm ≈ 6alat). In the limit of

large µ/U , the density approaches a TF distribution; thus we fit both the experimental data and

the distributions from the model to a TF distribution.

The distribution of a perfect MI of roughly 2.5 × 103 atoms with ωr = 2π × 38 Hz and



119
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Figure 5.11: (a) 2D distribution of a perfect MI of ∼ 2.5 × 103 atoms after integrating along the
z direction. The colorbar represents the number of atoms. (b) Same distribution after convolving
with a Gaussian filter of rms width 4 lattice sites. (c) Same distribution after binning every 6× 6
sites into one pixel. This is what we would expect to see in the experimental images.
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A = 6.4 is shown in Fig. 5.11a. Applying the Gaussian filter gives the distribution shown in panel

b, and binning the distribution into pixels finally leads to the distribution shown in panel c. This

is our best estimate of what the experimental distribution should look like. We then fit the model

distribution to a 2D TF surface (Eq. 5.18) and extract fTF according to Eq. 5.20, which is shown

by the orange band in Fig. 5.12. The band reflects the experimental uncertainties in the trap

frequencies (ωr = 2π× (38± 2) Hz for Rb and ωz = (6.4± 0.1)ωr) and imaging resolution. For the

number of atoms, we use the number extracted from the fit, not the sum of the array (although

these agree to within a few percent). Note that we do not subtract off the imaging resolution in

any way. This leads to predicted fillings less than 1 for very small MIs. From the model, we can

also compute the peak occupancy in the lattice, which is just µ/U promoted to the next largest

integer. This is shown by the green curves in Fig. 5.12.

Experimentally, we fit the in situ images to a TF distribution and calculate fTF according to

Eq. 5.20. Fig. 5.12 shows the measured fillings over a range of Rb numbers of 2× 103 to ∼ 105. We

find excellent agreement with the T = 0 model for large clouds, as expected because the imaging

resolution and pixelation play less of a role; additionally, the production of larger BECs is much

more robust. For smaller clouds, the agreement is also quite good, and we verify that the n = 1

MI occurs for small Rb numbers, less than about 5000 atoms.

5.3.2 Measuring the filling of the K band insulator

Fig. 5.13 shows the filling fraction for K measured for a 23ERb
R lattice (which is only 9EK

R ),

extracted from a Gaussian fit to the in situ distribution. Note that the distribution of cold fermions

in the lattice is not necessarily given by Eq. 5.10. We choose a Gaussian distribution since it matches

the observed density distribution well. We observe that the filling saturates to around 0.8 for K

numbers > 105. At this point, the gas appears to be incompressible, since the peak filling no longer

increases as we increase the number, which is indicative of the formation of a band insulator in the

center of the lattice. We also see that the atoms nicely fill up the lowest Brillouin zone (Fig. 5.14),

which we verify by taking band mapping images. We attribute the filling being less than 1 to finite



121

1 2 5 10 20 50 100
0

1

2

3

4

5

Rb number (103)

Pe
ak

fil
lin

g

Figure 5.12: Peak filling of the Rb Mott insulator. For more than 5 × 103 atoms, the agreement
with the T = 0 model is quite good. The orange band is a calculation of the filling extracted from
T = 0 model, and the width reflects the uncertainty in the trap parameters. The green is the
peak occupancy (restricted to be an integer) for the same distributions. Figure reproduced from
Ref. [92].
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Figure 5.13: Peak filling of K vs. K number (blue points). For NK > 105, the filling no longer
significantly changes as we increase the number of atoms, which suggests the formation of an
incompressible band insulator. The filling is less than 1, which we attribute to finite temperature.
The red points show the measured T/TF of the K gas prior to loading the lattice. TF is calculated
from the number of atoms and trap frequencies and T is measured by measuring the temperature
of a Rb thermal gas that’s equilibrated with the K. Figure reproduced from Ref. [92].
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Figure 5.14: Left: Image of the K gas after 11.5 ms TOF, where the lattices were ramped off slowly
to do band mapping. The colorbar shows the optical depth (OD). Right: A cut along the white
line showing the distribution vs. quasimomentum (averaged along the other direction). This shows
that most of the atoms are in the lowest band. Figure reproduced from Ref. [92].

temperature and tunneling, but experimental errors in the imaging procedure could also play a role.

As discussed earlier, the temperature of the K gas is limited to T/TF ≈ 0.3 by the poor efficiency

of the evaporative cooling once Rb condenses (see the red points in Fig. 5.13).

5.3.3 Using inelastic loss to measure the K filling

We can also measure the K filling fraction using an inelastic loss process. This work is

described in Ref. [93]. The states normally used for making molecules are the |1, 1〉 state for Rb

and the |9/2,−9/2〉 state for K. These are the lowest energy states for both species and the mixture

is stable. If we transfer Rb to the |2, 2〉 state (which is ∼ 8 GHz higher in energy at 550 G), the

mixture is no longer stable and undergoes spin-changing collisions, which leads to loss of both

species. At a collision energy of 1 µK, the calculated inelastic collision rate is β = 6× 1012 cm3/s

[121], which corresponds to a loss timescale of ∼ 2 ms in a 25 ERb
R lattice. Fig. 5.15 shows an in

situ image of the K gas after transferring Rb to the |2, 2〉 state. The hole in the center occurs where

the K and Rb overlap and shows that the species are well overlapped.

Fig. 5.16a and b show typical loss curves for Rb after a 2.1 ms RF sweep that transfers Rb

to the |2, 2〉 state. The data show loss on two different timescales: a fast loss in a few ms, which we
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Figure 5.15: After transferring Rb to the |2, 2〉 state, K and Rb undergo inelastic spin-changing
collisions, leading to the loss of both species. This creates a hole in the center of the K distribution.
Figure reproduced from Ref. [92].

attribute to loss on sites that initially have a K and Rb atom, followed by a slower decay, which we

attribute to tunneling of atoms followed by inelastic loss once they get on the same site. The dashed

lines are a fit to the sum of two exponential decays with different time constants. We can extract

the fraction of Rb that is lost on the shorter timescale from these fits. Fig. 5.16c plots this fraction

lost on the shorter timescale vs. Rb number. The solid curve shows the expected loss for a MI with

temperature T/JRb = 15 and total radial harmonic confinement ωr = 2π × 33 Hz. The shaded

band reflects a 10% uncertainty in the trap frequency and 30% uncertainty in the temperature. For

small Rb numbers, we expect to have only one Rb per site, and the fraction lost should be equal

to the K filling fraction (assuming no double occupancy of K). From the fit, we extract a K filling

fraction of 77(2)%, which is in good agreement with the direct measurements shown in Fig. 5.13.

For higher Rb numbers, multiple occupancies cause a reduction of the fractional loss, assuming

that one Rb and one K are lost per inelastic collision.

5.4 Studying the dual insulator

In the last section, we showed that both atomic species can have fillings near unity. However,

the optimal atom number for the two species is very different: less than 5 × 103 for Rb but more

than 105 for K. A natural concern is that the K will act as a heat bath and melt the Rb MI. There

have been a few recent experiments looking at the effect of a bath of fermions on the superfluid-
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Figure 5.16: An alternative way to measure the filling fraction of K is to look at the loss of Rb
induced by spin-changing collisions, in the limit of a small number of Rb atoms. The fits in (a) and
(b) are double exponential fits, and the points in (c) are either the ratio of the coefficients of these
two exponential fits (blue diamonds) or the fraction of atoms remaining after 8 ms (red circles).
Figure reproduced from Ref. [93].
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Mott insulator transition [157, 158]; however, these experiments focused on the visibility of the

interference pattern, the lattice depth at which the coherence disappears, and the sharpness of the

transition. We’re more interested in the filling fraction of the Rb MI in the presence of a large bath

of K.

When loading the dual insulator at low temperatures, one might expect that attractive in-

teractions will enhance the overlap of the two species [145, 159]. However, for the relatively hot K

temperatures in our system, we see that nonzero interspecies interactions detrimentally affect the

Rb filling fraction (Fig. 5.17). However, at aKRb = 0, fRb is unaffected by the presence of K. We

attribute the degradation in the filling when aKRb 6= 0 to the fact that the BEC fraction is signifi-

cantly less than 1. To directly verify that heating from the K is playing a large role, we measured

the dependence of filling on interaction strength for two K temperatures. The fRb dependence on

aKRb is more sensitive when the K gas is hotter (Fig. 5.18). However, at aKRb = 0, fRb is the same

for the two cases. This highlights that the K and Rb distributions are basically independent at

aKRb = 0.

5.5 Putting all of the ingredients together

The first step of molecule production is magnetoassociation, where we adiabatically sweep

the magnetic field across the Feshbach resonance at B0 = 546.6 G from high to low field. As

shown in the previous section, we want to load the lattice at aKRb = 0 to preserve the filling of

the MI. Loading the lattice at aKRb = 0, we would then first need to jump the magnetic field

above the resonance so that we can initiate the magnetoassociation process. This jump should be

diabatic to avoid promoting atoms to higher bands [160]. This effect will be discussed further in

the next chapter. The high atomic densities on isolated lattice sites make it difficult to sweep the

field fast enough. To circumvent this issue, we use an RF pulse to transfer K to the |9/2,−7/2〉

state, which doesn’t experience the 546.6 G resonance. After ramping B to 563 G, we transfer

the K back to the |9/2,−9/2〉 state and then proceed with the magnetoassociation. The final

sweep goes from 563 G to 545.6 G in 5 ms. We use STIRAP to transfer the Feshbach molecules
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Figure 5.17: Top: fRb vs. aKRb. The filling is normalized to fRb with Rb alone. For points below
the resonance, the scattering length was ramped from around −120 a0 to the final value between
140 ms and 40 ms prior to loading the lattices. For points above the resonance, the evaporation
was done above the resonance and the scattering length was ramped from around −220 a0 to the
final value with the same timing. Away from aKRb = 0, the filling degrades. Bottom: Initial BEC
fraction vs. aKRb, measured after holding in the OT for 150 ms. Away from aKRb = 0, the BEC
fraction is lower, likely from equilibrating with the hot K gas. The BEC fraction with Rb alone is
denoted by the red shaded region. Figure reproduced from Ref. [92].
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Figure 5.18: We looked at how the filling of Rb vs. interspecies interactions depends on the temper-
ature of K. Here, the hot condition corresponds to T/TF ≈ 0.7 while the cold condition corresponds
to T/TF ≈ 0.3 − 0.4. In the hotter case, fRb more strongly depends on aKRb, but at aKRb = 0
the filling is the same for both cases, which highlights that the densities of the two species are
independent at aKRb = 0. Only data with (6− 10)× 103 Rb atoms are shown.
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to the rovibrational ground-state. For these experiments, the typical one-way STIRAP efficiency

is 89 ± 4%. Once the molecules are in the ground state, we remove the unpaired K atoms with

resonant light on the |9/2,−9/2〉 → |11/2,−11/2〉 cycling transition and we remove the Rb atoms

with a series of adiabatic rapid passages to the |2, 2〉 state followed by pulses of resonant light on

the |2, 2〉 → |3, 3〉 cycling transition. To detect the ground-state molecules, we STIRAP them back

to Feshbach molecules, dissociate the Feshbach molecules by ramping B back to 563 G in 1 ms, and

finally image the resulting K atoms. We can also image the molecules by measuring the number of

dissociated Rb, and the numbers agree within experimental uncertainty.

Since Rb is by far the minority species, we first looked at the number of Feshbach molecules

produced vs. Rb number, since the best we can do is to convert all of the Rb to molecules. This

is shown in Fig. 5.19a. Note that we only convert a very small fraction of the K to molecules (less

than 5%). This makes the measurement challenging, since we can’t completely remove the unpaired

K atoms without also killing the Feshbach molecules. Rather, we just hide them in the |9/2,−7/2〉

state by using an RF pulse that can discriminate atoms from Feshbach molecules. The atoms in

the |9/2,−7/2〉 state are invisible to the imaging (since the imaging light is 80 MHz detuned).

Since we typically operate in lattices ∼ 10EK
R , the K atoms are still mobile and can collide with

the Feshbach molecules. Also, the RF pulse is only ∼ 99% efficient, and the small background of

K atoms in the |9/2,−9/2〉 state is not so much less than the number of molecules we create.

To directly see a positive effect of the spin flips, we did two experiments. In the first, we

loaded the lattice at aKRb = 0 and compared the final filling of ground-state molecules with and

without doing the spin flips. We observe that the filling is about 60% higher when we do the

spin flips. In the second experiment, we compared the case of loading the lattice at aKRb = 0

and then doing the spin flips against a case where we loaded the lattice above the resonance (at

around aKRb = −220 a0). This comparison is shown in Fig. 5.20 (note that the filling fraction of

the ground-state molecules is plotted), where we see that for small Rb numbers there is a clear win

to loading the lattice at aKRb = 0 and doing the spin flips.

We then imaged the ground-state molecules in situ, after holding in a 25ERb
R lattice for 40
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(a) (b)

(c)

Figure 5.19: (a) Conversion efficiency of making Feshbach molecules vs. Rb number (Rb is the
minority species). In the limit of small Rb number, the conversion is around 50%. The shaded
band shows the predicted conversion, which is the product of the measured K filling fraction
(0.80±0.05), the calculated fraction of Rb atoms on singly occupied sites (from our simple model),
and the conversion efficiency of preformed pairs reported in Ref. [72] (0.87± 0.13). (b) and (c) In
situ images of the ground-state molecules after holding in the lattice for 40 ms, for high conversion
(b, average of three images) and low conversion (c, average of seven images). The high conversion
case corresponds to a filling of around 25% (see text for details). The scale bar is 40 µm. Figure
reproduced from Ref. [92].
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Figure 5.20: Filling of ground-state molecules vs. Rb number for two different lattice loading
schemes. For small Rb numbers, loading the lattice at aKRb = 0 definitely leads to higher ground-
state molecule fillings.
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ms (Fig. 5.19b and c). Since the molecules are created within the confines of the Rb MI, we fit

the images to a TF distribution. For the case of low conversion (c), the filling fraction is very low

and there is a hole in the center of the molecular distribution. This is consistent with the central

lattice sites containing multiple Rb atoms and not making molecules. This condition corresponds

to starting with about 2.5 × 104 Rb atoms. When starting with about 2500 Rb atoms (b), we

observe a much denser molecular sample. A TF fit yields 7.9(5)× 102 molecules with a TF radius

of 12.0(2)µm.

There are two ways we can extract the filling. One is to compute the filling directly from

the TF fit. Doing this gives fmol = 0.27(2). The other is to determine the filling by comparing

the TF width of the molecular cloud to that of our simulated T = 0 Rb distribution and assume a

uniform conversion of Rb into molecules. The molecules are best described by a distribution that

corresponds to an initial Rb number of 3.2(4) × 103. Taking the ratio of the measured number of

molecules to this number, we extract fmol = 0.25(4), which is consistent with the result from direct

fitting. From the product of the measured fRb, NKRb*/NRb, and the STIRAP efficiency, one might

expect fmol = 0.35. One possible explanation for the lower measured filling is molecular loss caused

by the K atom removal.

As shown in Table 2.1, the different polarizability and mass of KRb means that a 25ERb
R

lattice corresponds to 62EKRb
R . In such a deep lattice, the molecule tunneling rate is negligible. In

this case, we can estimate the entropy per molecule from the filling fraction, with some assumption

about the shape of the distribution. As shown in Ref. [161], the entropy per particle in a uniform

lattice with average filling f is

S

N
=
−kB
f

(
f ln(f) + (1− f) ln(1− f)

)
. (5.21)

Our quantum synthesis approach likely leads to a molecular distribution that is much more homo-

geneous than if we were to adiabatically load a Fermi gas of molecules into the lattice. The K Fermi

gas is roughly homogeneous within the confines of the Rb MI, and the entropy per particle in this

region is roughly that of a uniformly filled lattice with f = 80%, which is about 0.6 kB. Applying
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the same argument to the molecules with fmol = 25%, we find the entropy per molecule is about

2.2 kB. For comparision, the entropy associated with the lowest temperatures we have achieved in

the harmonic trap (T/TF ≈ 1) is about 6 kB per molecule.

5.6 Conclusion and outlook

This chapter presented a detailed investigation of the molecule production in the 3D optical

lattice. It was very important to diagnose each step in the molecule creation process in order

to realize a significant increase in the final molecule filling fraction. In particular, it was very

important to have a clear understanding of the appropriate sizes the Bose and Fermi gases should

have in order to have roughly unit filling in the center of the lattice. Turning off the Bose-Fermi

interactions when loading the lattice was also important. Finally, flipping K to a noninteracting

spin state when crossing the resonance the wrong way was also a crucial step in maximizing the

filling.

At the achieved filling fractions of ∼ 25% the system should be reasonably well-connected,

given our simple argument based on percolation theory. Additionally, given the results of the

simulation in Section 4.6, the propagation of excitations at 25% filling should be reasonably fast.

The number of molecules created at higher fillings is quite low, but is appropriately sized for

quantum gas microscopy [16, 17]. There is no fundamental limit to our dual insulator approach,

and I foresee filling fractions > 50% should be attainable in the new experiment. Two of the biggest

issues that will likely need to be addressed in order to increase the filling further are that the K is

too hot and the n = 1 MIs are small.

Colder K will help in many ways. We already see direct evidence of the K temperature on

the Rb filling in the data of Fig. 5.18. Reducing the temperature at constant atom number and

harmonic confinement leads to higher filling fractions. Having colder K should allow us to reduce

the harmonic confinement and achieve larger n = 1 MIs. The temperatures we achieved in Ref. [92]

seem to be limited by the evaporative cooling, and to get K colder while still having pure BECs,

the evaporation strategy may need to be modified. One idea would be to transfer some of the K
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to the |9/2,−7/2〉 state towards the end of the evaporation and allow the two spin components

to thermalize with each other instead of with Rb (however, only one of the spin components is

actually useful for making molecules).

In principle, there’s not a huge problem with having to use such small Rb clouds, but pro-

ducing them reliably in the presence of a huge K cloud is challenging. One way to make the Rb

MI bigger is to have less harmonic confinement; however, to keep the K filling constant we would

require colder K. Another option is to use a shorter wavelength lattice. The onsite interaction

energy U is proportional to 1/λ3
L, where λL is the lattice wavelength (the dipolar interactions also

get stronger by 1/λ3
L). This means that the chemical potential µ can be larger while still satisfying

µ/U < 1. The challenge is to find a wavelength that’s favorable for K, Rb, and the ground-state

molecules. For example, 532 nm would be nice, since high-power lasers are readily available, but

we measured the lifetime of ground-state molecules to be quite short at that wavelength. Another

choice we considered is 755 nm. At that wavelength, the size of the n = 1 MI can be more than

an order of magnitude larger than at 1064 nm, and K and Rb feel the same lattice depth in units

of their respective recoil energies. Experimentally, we observed that the lifetime of ground-state

molecules is quite long at this wavelength; however, the real part of the polarizability is small and

opposite in sign to the Rb and K (so the beam would be red-detuned for the molecules while being

blue-detuned for both K and Rb), which is not so ideal. More work will be required in the future

to determine whether shorter wavelength lattices offer advantages in molecule production.



Chapter 6

Studying doublons in the lattice

In the previous chapter, we devised a strategy to optimize the loading of the initial quantum

gas mixture in the lattice. This led to a significant increase in the molecule filling fraction; however,

the actual molecule production from preformed pairs was not examined that closely. In this chapter,

we investigate the molecule production more thoroughly, to try to understand any effects that might

limit molecule production. In particular, we want to isolate any effects that would cause preformed

pairs to not make molecules. To do this, we leverage our capabilities in producing ground-state

molecules and prepare a distribution where lattice sites are either empty or occupied by a doublon

composed of an interacting K and Rb atom. This well-defined initial state allows us to address

limitations in the molecule production process by measuring the efficiency at which these doublons

are converted back to molecules, after varying the atomic tunneling rates, interspecies interactions,

and adiabaticity of magnetic-field sweeps through a higher partial-wave Feshbach resonance.

There are two main ways that the doublons can fail to make molecules: the doublon makes

something other than an s-wave molecule, or one of the atoms (especially the lighter K atom)

tunnels off of the site before making a molecule. A d-wave resonance about 1 Gauss above the s-

wave resonance can play a detrimental role in molecule production in the lattice. If we ramp across

the d-wave resonance too slowly, it’s very likely that we will make d-wave molecules (when sweeping

from high to low field) or atoms with an excitation in the relative coordinate (when sweeping from

low to high field). Because of the high onsite density in the lattice, the magnetic-field sweep rate

necessary to be diabatic with respect to the d-wave resonance is not so different than our typical
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sweep rate for making molecules. We show that in the limit of deep lattices and fast magnetic-field

sweeps, we get near unity conversion of preformed pairs. We see that strong Bose-Fermi interactions

hold the doublons together, even for weak lattices where the K would otherwise be very mobile; for

weaker onsite interactions, we see evidence for K tunneling.

In Section 1, I discuss the preparation and measurement of doublons in the lattice. In Section

2, I describe our investigation of the role of the d-wave resonance on molecule production in the

lattice. In Section 3, I discuss the interplay between tunneling and interactions. This chapter is

based on Ref. [93], of which I am a coauthor.

6.1 Experimental setup

The experimental scheme for creating and studying a lattice of doublons is shown in Fig. 6.1.

After making ground-state molecules in the lattice, we can cleanly remove the unpaired atoms,

STIRAP back to Feshbach molecules, and then dissociate the Feshbach molecules by ramping the

magnetic field above the resonance to a field Bhold. This realizes a lattice where each site is either

empty or occupied by a doublon comprised of a K and Rb atom. We then let the system evolve

for some time τ . To measure the doublon fraction after the evolution, we measure the conversion

of preformed pairs to molecules, following the same protocol described in Section 3.6.

6.2 Effect of the d-wave resonance

In our normal magnetoassociation protocol, we start far above the resonance (by usually

more than 10 Gauss), and then ramp below the s-wave resonance in a few ms. In doing this, we

cross a narrow d-wave resonance that is located about 1 G above the 3 G-wide s-wave resonance.

A schematic of the two resonances is shown in Fig. 6.2a. Normally, the d-wave resonance wouldn’t

play a role in the molecule production because it’s so narrow; however, in the lattice, it can play

a larger role since the onsite density is orders of magnitude higher than in a regular optical trap.

Crossing the d-wave resonance too slowly from high to low B field will produce d-wave molecules

(Fig. 6.2b), which are not coupled to the ground state by the subsequent STIRAP pulses. Crossing
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Figure 6.1: We start with a mixture of K (blue balls), Rb (red balls) and doublons (pair grouped
with gray background) in a 3D lattice. We sweep the magnetic field across the s-wave Feshbach
resonance at 546.6 G to create Feshbach molecules. These molecules are then transferred to the
ro-vibrational ground state via STIRAP. We then remove the unpaired atoms with resonant light,
reverse the STIRAP process to recreate Feshbach molecules, and then sweep the magnetic field
above the resonance to dissociate the molecules and create a lattice of doublons. After holding for
a time τ , we measure the remaining doublon fraction by converting to Feshbach molecules again.
To discriminate between Feshbach molecules and free K atoms, we use an RF pulse to transfer
unpaired K atoms to the dark |9/2,−7/2〉 state (blue ball with dashed black edge). The bottom
panel shows the possible dynamics during the hold time. Doublons have an energy shift due to the
onsite interaction energy U0

K-Rb. The K tunneling rates in the ground and first excited band are J0
K

and J1
K, respectively. Since Rb experiences a deeper lattice, the Rb tunneling rate is much slower

and is irrelevant for the experiments discussed in this chapter. Figure reproduced from Ref. [93].
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the d-wave resonance diabatically has no impact and is the desirable scenario. We seek to determine

how fast we need to ramp the magnetic field across the d-wave resonance in order to be diabatic.

First, it is useful to understand the possible states we can have in the lattice system. These

are shown in Fig. 6.2b. For simplicity, the states are illustrated for a harmonic potential where both

species have the same trap frequency ω. There are five relevant states: s-wave molecules 1©, atoms

in the ground band above both resonances 2©, atoms with an excitation in the relative coordinate

3©, free atoms below the resonance 4©, and d-wave molecules 5©. The ideal trajectory for making

s-wave molecules is to follow the lower solid arrow from 2© to 1©. Being adiabatic with respect to

the d-wave resonance would correspond to going from 1© to 3© (if ramping from low to high field)

or 2© to 5© (if ramping from high to low field).

We investigate the d-wave resonance by varying the rate of the sweep, Ḃ, that creates dou-

blons, as well as Bhold. For these experiments, the lattice depth is 30 − 35ER (unless otherwise

noted, the lattice depths are in units of the Rb recoil energy). We then measure the molecule

conversion after τ = 1 ms using a 16.8 G/ms sweep for the final association. Fig. 6.2c shows the

measured conversion vs. Ḃ after sweeping from 545.6 G to 562.4 G. For the largest Ḃ, the conver-

sion is near unity. This high conversion fraction is crucial for creating molecules in the lattice at

high filling.

Using a Landau-Zener formalism [162], we can fit this data to extract the width of the d-

wave resonance. The probability to cross the resonance diabatically (and proceed to create s-wave

Feshbach molecules) is Pdia = exp(−A/|Ḃ|), where A depends on the on-site densities and on the

parameters of the Feshbach resonance. We approximate the sites of the deep optical lattice as

harmonic oscillators [162], so

A =
4
√

3ωHO|abg∆d|
LHO

, (6.1)

where ωHO is the harmonic trap frequency for the two atoms’ relative motion, LHO =
√
~/(µωHO)

is the corresponding harmonic oscillator length, µ is the reduced mass, ∆d is the width of the

d-wave resonance, and abg is the background scattering length. We ignore the coupling between
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Figure 6.2: (a) The s-wave Feshbach resonance is used to create molecules. About 1 Gauss above
the s-wave resonance there is a narrow d-wave resonance. (b) Pair states for K and Rb in a 1D
lattice (we treat the 3D lattice as separable along the three directions). See the text for details.
(c) Measurement of molecule conversion efficiency at 35 ER (circles) and 30 ER (diamonds), after
ramping from 545.6 G to 562.4 G and varying Ḃ. The data for 30 ER is exponentiated by (35/30)3/4

to account for the expected dependence of Pdia on lattice depth. The solid curve shows a fit to a
Landau-Zener avoided crossing, which yields |∆d| = 9.3(7) mG. (d) The magnetic field at which
the resonance occurs is determined by sweeping upwards to various fields at 1.8 G/ms and then
downwards at 18 G/ms. By fitting to an error function, we determine the resonance is at 547.47(1)
G in a 35 ER lattice. Figure adapted from Ref. [93].
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the center of mass and relative coordinates and take ωHO =
√

(mRbω
2
K +mKω2

Rb)/(mRb +mK).

The scattering length depends on B in the following way:

a(B) = abg

(
1− ∆s

B −Bres
s

− ∆d

B −Bres
d

)
. (6.2)

Since ∆d � ∆s, this can be simplified near the d-wave resonance to

a(B) = abg

(
1− ∆s

Bres
d −Bres

s

− ∆d

B −Bres
d

)
, (6.3)

which can be approximated as

a(B) ≈ a′bg

(
1−

∆′d
B −Bres

d

)
, (6.4)

where a′bg = abg

(
1− ∆s

Bres
d −Bres

s

)
and ∆′d = ∆d

1−∆s/(Bres
d −Bres

s ) . We fit the data from Fig. 6.2c to

exp(−A/|Ḃ|), extract A = 1.10(7) G/ms, and then get ∆d = a′bg∆′d/abg. The results are ∆′d =

−2.0(2) mG and ∆d = −9.3(7) mG. For the s-wave resonance, A is about 300 times larger. The

probability to be adiabatic with respect to both resonances is shown in Fig. 6.3.

Fig. 6.2d shows the measured conversion vs. Bhold for a slow 1.8 G/ms sweep. From Fig. 6.2c,

we see that this sweep rate corresponds to about a 50% probability to be diabatic. For Bhold below

the d-wave resonance, we observe conversions near unity, but for Bhold above the d-wave resonance,

we observe conversions ∼ 50%. By fitting the data to an error function, we extract the position of

the resonance to be 547.47(1) G, in agreement with previous experiments that looked at atom loss

[163, 164].

The precise determination of the width of the d-wave resonance enables us to determine its

significance in molecule creation. In the work described in the previous chapter, we used Ḃ = 3.5

G/ms for the molecule association, which gives a ∼ 70% probability to be diabatic with respect to

the d-wave resonance. This suggests we may have created a significant fraction of d-wave molecules

that are dark to our detection, which may have limited the filling fractions we achieved. Future

work will be necessary to confirm this hypothesis.
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Figure 6.3: Probability to be adiabatic with respect to the s-wave (dashed blue) and d-wave (solid
red) resonances in the lattice, using Eq. 6.1 with ωHO = 2π × 30.4 kHz (which corresponds to 35
ER). For any experimentally accessible Ḃ, we are adiabatic with respect to the s-wave resonance.
For Ḃ > 20 G/ms, the effect of the d-wave resonance is negligible. The timescales are different by
about a factor of 300 between the two resonances.
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6.3 Detrimental effects due to tunneling

In order to acheive high lattice fillings, we require not only a large fraction of sites that contain

doublons, but also that these doublons are not lost due to tunneling or collisions before converting

to molecules. By varying both the lattice depth and Bhold, we can explore the interplay between

tunneling and interactions. In our system, sK = 0.4 sRb (recall s = Ulat/ER), so K tunnels faster

than Rb. Fig. 6.4 shows the measured doublon fraction vs. lattice depth for different interaction

strengths (τ = 1 ms). For these experiments, the ramp time was fixed, so Ḃ depends on Bhold and

ranges from 5 to 19 G/ms. The data are multiplied by a factor to account for these ramps not

being perfectly diabatic with respect to the d-wave resonance.

We see that for deep lattices, the conversion is near unity for all interaction strengths, which

is just trivial localization of the doublons (even resonant tunneling would be slow). For shallower

lattices, the conversion is still high for very strong interactions (aKRb = −1900 a0), because the

strong onsite interaction U0
K-Rb suppresses tunneling to empty sites, which are very far off-resonant.

This modification of tunneling from interactions has been seen in other experiments, which studied

the stability of repulsively interacting atom pairs [165] and the modification of tunneling of fermions

due to interactions with bosons [166]. In our case, the interactions are attractive, but the sign

doesn’t really matter, as tunneling is off-resonant for either sign of the onsite interactions. For

weaker interactions, the conversion decreases for shallower lattices, since the interactions are not

strong enough to hold the doublons together.

The solid curves in Fig. 6.4 show the expected evolution of a single doublon in the lattice,

which generally describes the data well. Here, only K tunneling is considered. For small doublon

fractions, the solid curves start to disagree with the data, because there is a finite probability that

the K will find another Rb partner. The dashed lines account for this by simulating the dynamics

with a peak filling of 10%.

The relevance of this effect to molecule production is a little misleading, since this data was

taken with a relatively dilute lattice (typically around 10% of the sites are initially occupied by
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Figure 6.4: The remaining doublon fraction after a 1 ms hold in the lattice vs. lattice depth for
different interaction strengths. For strong attractive interactions the conversion is high for any
lattice depth, which is due to the doublons being held together by the strong onsite interactions.
For weaker interactions, the conversion decreases for shallower lattices, which we attribute to the
lighter K atoms tunneling. The solid curves show the expected evolution of a single doublon,
while the dashed curves simulate the dynamics with a peak filling of 10%, which accounts for the
possibility that the K will find another Rb atom after it tunnels. Figure reproduced from Ref. [93].
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a doublon), and so the K have many sites to which they can tunnel. When we actually make

molecules, the fillings of the atomic gases are much higher, and the K atoms have many fewer sites

to which they can tunnel. However, the most important result of this study is that the conversion

of preformed pairs is near unity, in the limit of fast magnetic-field sweeps and deep lattices.

6.4 Conclusions

In this chapter, we showed the important roles that tunneling, interspecies interactions, and

magnetic-field sweep rates play in the conversion of doublons to molecules via magnetoassociation.

Most importantly, we verified that we can get near unity conversion of preformed pairs, assuming

we use sufficiently deep optical lattices and sufficiently fast magnetic-field sweeps. While we focused

specifically on the 40K87Rb mixture, our conclusions should be applicable to other heteronuclear

systems, where narrow Feshbach resonances might exist in the vicinity of wider ones used for

producing Feshbach molecules, and where the two species might have different mobilities in the

lattice.



Chapter 7

Conclusions and future work

Over the last six years, the field of ultracold polar molecules has made immense strides.

Our group has learned how to control and shut off the chemical reactions that make the bulk gas

unstable, and that were initially viewed as a huge obstacle to studying quantum many-body physics

with long-range dipolar interactions. With the chemical reactions under control, we learned how

to induce and probe coherent long-range interactions between the molecules, which should lead

to many interesting future experiments using polar molecules to study quantum magnetic models.

More recently, our work in increasing the filling fraction shows that it’s possible to use many of

the tools of modern AMO physics to assemble heteronuclear molecules from the ground up. Other

groups around the world have also succeeding in producing ground-state molecules [52, 53, 54, 55],

and this will hopefully enable the field to progress even faster.

However, despite all of the successes of our experiment, there is much room for improvement.

For example, our quantum synthesis scheme was able to produce molecules at ∼ 25% filling, but

future improvements based on the considerations discussed in Chapter 5 will be needed to increase

the filling further and make the production of such dense samples more robust. The dream is that

making dense samples of ultracold molecules in optical lattices would become routine, much like

how the production of BECs of alkali atoms has become much more robust over the last 20 years.

To do this, the importance of improving the technical capabilities of the experiments cannot be

stressed enough. The dense molecular clouds described in Chapter 5 are very small, and better

imaging resolution will be required to probe and manipulate them more precisely. Being able to
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apply large, stable electric fields will make even richer physics accessible.

To this end, we recently installed a second generation KRb apparatus. The salient features

are outlined in Fig. 7.1. The two main technical improvements are better electric field control and

better imaging resolution. The glass cell has much more optical access and every window is nicely

AR coated. The electric-field plates are now inside the vacuum chamber, with a combined ITO-AR

coating such that there is no dielectric between the electrodes and the molecules. The plates will

allow us to apply flat DC fields, while the four rods will enable us to apply field gradients both

vertically and radially. A high numerical aperture (NA) objective will give us resolution around

∼ 1µm, which is about 5 times better than in the first generation machine, and in principle we

could get to ∼ 700 nm with a higher NA objective. The ultimate goal would be to create a quantum

gas microscope that can observe the dynamics of polar molecules at the single lattice site level.

Most likely, the first set of experiments in the new apparatus will highlight its improved

technical capabilities. By applying a vertical electric-field gradient, it should be possible to perform

manipulations of a single 2D layer of the lattice. This is because the molecules in each layer would

experience a different electric field and hence different Stark shift, so the N = 0→ N = 1 transition

would be different in frequency in each layer and we could use microwaves to spectroscopically

manipulate only molecules in a desired layer. This could be useful as a simple implementation of

the excitation propagation experiment outlined in Section 4.6. If we can flip just a single layer

to | ↑〉, then we could study the propagation of these spin excitations to other layers. The same

manipulation that created the initial distribution could be used to read out the final distribution.

We would either look for fewer | ↑〉 molecules in the starting layer or shift the microwave frequency

to detect | ↑〉 molecules in other layers.

With the improved imaging capabilities, the experiments should be able to more precisely

measure the spin dynamics. I think the trend of the experiment and theory building off of one

another will continue. Similar to the work in Ref. [85] where the cluster expansion was greatly

improved, as the experiment provides us means for more precisely probing and manipulating the

molecules, we should be in a position to help validate other theoretical tools and methods. The
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Figure 7.1: (a) A picture of the new science cell. There are two flat plates for applying DC fields
and four rods for applying gradients. The entire structure is inside of a glass cell made by Precision
Glassblowing and is held together by macor pieces. (b) Sketch of the science cell with the high-NA
objective below it. (c) Sketch of the entire chamber. Similar to the first generation experiment,
the MOT cell and science cell are separated by ∼ 1 m, with a gate valve in between. The main
difference is that in the new chamber there is another cell before the science cell. The evaporative
cooling will be done in this cell in a plugged quadrupole trap and then the atoms will be optically
transported to the science cell. (d) Sketch of the electrode structure. (e) In-vacuum inductors and
capacitors separate AC and DC on the rods and should enable us to couple microwaves onto the
rods to drive rotational transitions.
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future of polar molecule experiments looks bright, and I’m confident that the field will continue to

progress in understanding and manipulating these interesting quantum many-body systems.
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O. Dulieu, and D. Wang. Creation of a strongly dipolar gas of ultracold ground-state 23Na87Rb
molecules. arXiv:1602.03947, February 2016.

[56] J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille. Magneto-
optical trapping of a diatomic molecule. Nature, 512(7514):286–289, 08 2014.

[57] Matthew T. Hummon, Mark Yeo, Benjamin K. Stuhl, Alejandra L. Collopy, Yong Xia, and
Jun Ye. 2D Magneto-Optical Trapping of Diatomic Molecules. Phys. Rev. Lett., 110:143001,
Apr 2013.

[58] Nicholas R. Hutzler, Hsin-I Lu, and John M. Doyle. The Buffer Gas Beam: An Intense, Cold,
and Slow Source for Atoms and Molecules. Chemical Reviews, 112(9):4803–4827, 2012.

[59] Sebastiaan Y. T. van de Meerakker, Paul H. M. Smeets, Nicolas Vanhaecke, Rienk T. Jongma,
and Gerard Meijer. Deceleration and Electrostatic Trapping of OH Radicals. Phys. Rev. Lett.,
94:023004, Jan 2005.

[60] Brian C. Sawyer, Benjamin L. Lev, Eric R. Hudson, Benjamin K. Stuhl, Manuel Lara, John L.
Bohn, and Jun Ye. Magnetoelectrostatic Trapping of Ground State OH Molecules. Phys.
Rev. Lett., 98:253002, Jun 2007.

[61] Sebastiaan Y. T. van de Meerakker, Hendrick L. Bethlem, and Gerard Meijer. Taming
molecular beams. Nat Phys, 4(8):595–602, 08 2008.

[62] Benjamin K. Stuhl, Brian C. Sawyer, Dajun Wang, and Jun Ye. Magneto-optical Trap for
Polar Molecules. Phys. Rev. Lett., 101:243002, Dec 2008.

[63] Martin Zeppenfeld, Barbara G. U. Englert, Rosa Glockner, Alexander Prehn, Manuel Mielenz,
Christian Sommer, Laurens D. van Buuren, Michael Motsch, and Gerhard Rempe. Sisyphus
cooling of electrically trapped polyatomic molecules. Nature, 491(7425):570–573, 11 2012.

[64] S. Chervenkov, X. Wu, J. Bayerl, A. Rohlfes, T. Gantner, M. Zeppenfeld, and G. Rempe.
Continuous Centrifuge Decelerator for Polar Molecules. Phys. Rev. Lett., 112:013001, Jan
2014.

[65] J. J. Zirbel, K.-K. Ni, S. Ospelkaus, J. P. D’Incao, C. E. Wieman, J. Ye, and D. S. Jin.
Collisional Stability of Fermionic Feshbach Molecules. Phys. Rev. Lett., 100:143201, Apr
2008.

[66] C. Ospelkaus, S. Ospelkaus, L. Humbert, P. Ernst, K. Sengstock, and K. Bongs. Ultracold
Heteronuclear Molecules in a 3D Optical Lattice. Phys. Rev. Lett., 97:120402, Sep 2006.

[67] Simon Stellmer, Benjamin Pasquiou, Rudolf Grimm, and Florian Schreck. Creation of Ul-
tracold Sr2 Molecules in the Electronic Ground State. Phys. Rev. Lett., 109:115302, Sep
2012.

[68] G. Reinaudi, C. B. Osborn, M. McDonald, S. Kotochigova, and T. Zelevinsky. Optical
Production of Stable Ultracold 88Sr2 Molecules. Phys. Rev. Lett., 109:115303, Sep 2012.

[69] S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quéméner, P. S.
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[93] J. P. Covey, S. A. Moses, M. Gärttner, A. Safavi-Naini, M. T. Miecnikowski, Z. Fu,
J. Schachenmayer, P. S. Julienne, A. M. Rey, D. S. Jin, and J. Ye. Doublon dynamics
and polar molecule production in an optical lattice. arXiv:1511.02225, November 2015.

[94] Gary C. Bjorklund. Frequency-modulation spectroscopy: a new method for measuring weak
absorptions and dispersions. Opt. Lett., 5(1):15–17, Jan 1980.

[95] K. Bergmann, H. Theuer, and B. W. Shore. Coherent population transfer among quantum
states of atoms and molecules. Rev. Mod. Phys., 70:1003–1025, Jul 1998.

[96] Kang-Kuen Ni. A Quantum Gas of Polar Molecules. PhD thesis, University of Colorado,
Boulder, October 2009.

[97] K Aikawa, D Akamatsu, J Kobayashi, M Ueda, T Kishimoto, and S Inouye. Toward the
production of quantum degenerate bosonic polar molecules, 41K87Rb. New Journal of Physics,
11(5):055035, 2009.



154

[98] Marcio H. G. de Miranda. Control of dipolar collisions in the quantum regime. PhD thesis,
University of Colorado, Boulder, November 2010.

[99] R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, and H. Ward.
Laser phase and frequency stabilization using an optical resonator. Applied Physics B,
31(2):97–105, 1983.

[100] Eric D. Black. An introduction to Pound-Drever-Hall laser frequency stabilization. American
Journal of Physics, 69(1):79–87, 2001.

[101] T. Okoshi, K. Kikuchi, and A. Nakayama. Novel method for high resolution measurement of
laser output spectrum. Electronics Letters, 16(16):630–631, July 1980.

[102] L. Richter, H.I. Mandelberg, M. Kruger, and P. McGrath. Linewidth determination from
self-heterodyne measurements with subcoherence delay times. IEEE Journal of Quantum
Electronics, 22(11):2070–2074, Nov 1986.

[103] Markus Greiner. Ultracold quantum gases in three-dimension optical lattice potentials. PhD
thesis, Ludwig-Maximilians-Universität München, January 2003.

[104] Ana Maria Rey. Ultracold bosonic atoms in optical lattices. PhD thesis, University of Mary-
land, College Park, 2004.

[105] Brian Neyenhuis. Ultracold Polar KRb Molecules in Optical Lattices. PhD thesis, University
of Colorado, Boulder, 2012.

[106] P. Pedri, L. Pitaevskii, S. Stringari, C. Fort, S. Burger, F. S. Cataliotti, P. Maddaloni,
F. Minardi, and M. Inguscio. Expansion of a Coherent Array of Bose-Einstein Condensates.
Phys. Rev. Lett., 87:220401, Nov 2001.

[107] S. Baier, M. J. Mark, D. Petter, K. Aikawa, L. Chomaz, Z. Cai, M. Baranov, P. Zoller,
and F. Ferlaino. Extended Bose-Hubbard Models with Ultracold Magnetic Atoms.
arXiv:1507.03500, July 2015.
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Appendix A

Deriving the dipolar Hamiltonian

Here I show how to connect the classical and quantum expressions for the dipole operator,

which are useful in understanding the Hamiltonian presented in Chapter 4. The derivations in this

section come mainly from Refs. [34, 167].

Recall the classical dipole-dipole interaction

Vdd =
d1 · d2 − 3(d1 · r̂12)(d2 · r̂12)

r3
12

. (A.1)

To get the quantum analog of this expression, we need to replace the classical dipole d with an

operator d̂. It turns out that the familiar angular dependence (1− 3 cos2 θ) from Eq. 4.1 represents

just one term in the full expression for the dipole-dipole interaction, and to get the full angular

dependence it is necessary to decompose the dipole operator into irreducible tensor components.

This decomposition yields a sum of terms corresponding to q units of angular momentum being

exchanged between rotational and orbital angular momentum [34].

The result is that

Vdd = −
√

6

r3
12

q=2∑
q=−2

(−1)qC2
−q(θ, φ)T 2

q (d1,d2), (A.2)

where

Ckq (θ, φ) =

√
4π

2k + 1
Ykq(θ, φ) (A.3)

and Ykq(θ, φ) is a normal spherical harmonic. The T ’s are irreducible tensor operators [131]:

T 2
±2 = d̂±1 d̂

±
2 , (A.4)
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T 2
±1 =

d̂0
1d̂
±
2 + d̂±1 d̂

0
2√

2
, (A.5)

T 2
0 =

d̂+
1 d̂
−
2 + d̂−1 d̂

+
2 + 2d̂0

1d̂
0
2√

6
. (A.6)

From now on, I will omit the hats to denote operators since every d will be understood to be an

operator. We will also need the following relationships between the Cartesian and tensor forms:

d± = ∓dx ± idy√
2

, (A.7)

d0 = dz. (A.8)

To make things simple, we’ll put one dipole at the origin and the other at the point (x, y, z),

with the electric field in the z direction. Then r12 = r, and the polar angle θ and azimuthal

angle φ are defined in the usual way (z = r cos θ, x = r sin θ cosφ, and y = r sin θ sinφ, where

r =
√
x2 + y2 + z2).

For completeness, the C’s are given by

C2
±2 =

√
6

4
sin2 θe±2iφ, (A.9)

C2
±1 = ∓

√
6

2
sin θ cos θe±iφ, (A.10)

C2
0 =

1

2
(3 cos2 θ − 1). (A.11)

Then Eq. A.2 becomes

Vdd = −
√

6

r3

(√
6

4
sin2 θ(e2iφd+

1 d
+
2 +e−2iφd−1 d

−
2 )+

sin θ cos θ

2
√

2
(eiφ(d0

1d
−
2 +d−1 d

0
2)−e−iφ(d0

1d
+
2 +d+

1 d
0
2))+

3 cos2 θ − 1

12
(d+

1 d
−
2 + d−1 d

+
2 + 2d0

1d
0
2)

)
. (A.12)

After using Eqs. A.7 and A.8 and simplifying, we obtain

Vdd = − 6

r3

(
1

4
sin2 θ

(
(d1xd2x − d1yd2y) cos(2φ) + (d1yd2x + d1xd2y) sin(2φ)

)
+

sin θ cos θ

2

(
(d1zd2x+d1xd2z) cosφ+(d1zd2y+d1yd2z) sinφ

)
+

3 cos2 θ − 1

12

(
2d1zd2z−d1xd2x−d1yd2y

))
.

(A.13)
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Substituting sinφ = y√
x2+y2

, cosφ = x√
x2+y2

, sin(2φ) = 2xy
x2+y2

, and cos(2φ) = x2−y2
x2+y2

we get

Vdd = − 6

r3

(
x2 − y2

4r2
(d1xd2x − d1yd2y) +

xy

2r2
(d1yd2x + d1xd2y) +

xz

2r2
(d1zd2x + d1xd2z)

+
yz

2r2
(d1zd2y + d1xd2y) +

3 cos2 θ − 1

12
(2d1zd2z − d1xd2x − d1yd2y)

)
. (A.14)

Vdd =
1

r3

(
d1xd2x(1− 3x2

r2
) + d1yd2y(1−

3y2

r2
) + d1zd2z(1−

3z2

r2
)− 3xy

r2
(d1yd2x + d1xd2y)

− 3xz

r2
(d1zd2x + d1xd2z)−

3yz

r2
(d1zd2y + d1xd2y)

)
. (A.15)

Vdd =
1

r3

(
d1xd2x + d1yd2y + d1zd2z

)
− 3

r5

(
d1xd2xx

2 + d1yd2yy
2 + d1zd2zz

2 + xy(d1yd2x + d1xd2y)

+ xz(d1zd2x + d1xd2z) + yz(d1zd2y + d1xd2y)

)
. (A.16)

Vdd =
d1 · d2

r3
− 3

(d1 · r̂)(d2 · r̂)

r3
. (A.17)


