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Greer, Benjamin J. (Ph.D., Astrophysics)

Exploring the Dynamics of Near-Surface Solar Convection with Helioseismology

Thesis directed by Prof. Bradley Hindman

I present a new implementation of local helioseismology along with observations of near-surface solar

convection made with this method. The upper 5% of the solar radius (35 Mm) is known as the Near-Surface

Shear Layer (NSSL) and is characterized by strong rotational shear. While the physical origin of this layer

remains unknown, current theories point to convective motions playing an important role. In this thesis I

investigate the properties of convection in the NSSL using a newly-developed high-resolution ring-diagram

analysis. I present measurements of the speeds and spatial scales of near-surface flows and from these infer

that the degree of rotational constraint on convective flows varies significantly across this layer. In-depth

analysis of the convective patterns reveals the pervasive influence of coherent downflow plumes generated at

the photosphere. These structures link the convective pattern of supergranulation seen in surface observations

with the deeper motions found within the NSSL and further hint at the importance of rotation in this layer.

These observations of transient, small-scale convective motions are enabled by the use of improved

local helioseismic techniques. Local helioseismology relies on observations of the solar wavefield to produce

measurements of plasma flows beneath the surface. In general, this has the capability to map out the

subsurface convective flows in three-dimensions, but is often limited in accuracy, resolution, and depth

range by the specifics of the analysis procedure. Here, I focus on a particular implementation of local

helioseismology called ring-diagram analysis that involves analyzing small patches of the solar surface to

build up three-dimensional maps. I will present a new analysis scheme for ring-diagram helioseismology that

produces maps of the subsurface flow fields with higher fidelity and vastly higher resolution than previously

possible. This is achieved through a combination of novel tools including a robust nonlinear fitting procedure

and a highly efficient linear inversion technique. I present these new methods and demonstrate how they

enable a new class of high-resolution helioseismic observations. The scientific results made possible with

these methods display the power of the new techniques and aid our understanding of near-surface solar

dynamics.
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Chapter 1

Introduction

1.1 Overview of Solar Dynamics

The surface of the Sun displays a complex assortment of continually evolving structures arising from

highly turbulent magnetized convection. Images of the photosphere reveal a near-uniform covering of small

convection cells broken up by the occasional magnetic active region (Figure 1.1). This pattern of convection

is termed granulation and is reponsible for transporting thermal energy from the interior out into the tenuous

solar atmosphere. Granules have a typical size of 1 Mm and consist of broad, warm upflows surrounded by

narrow, cool downflow lanes. Individual granules do not live for much longer than a few minutes before

succumbing to violent restructuring by other cells within this near-surface convection. Coexisting with the

granulation are a collection of longer-lived structures including larger scales of convection (supergranules),

meandering zonal jets, and flows associated with the sporadic outbursts of magnetism. This collection of

ever-evolving patterns hints at the complexities hidden within the solar interior.

Despite the chaotic appearance, some aspects of the Sun are observed to be surprisingly ordered. The

surface rotation rate shows a smooth variation with latitude from a 27-day rotation period at the equator

to about a 35-day rotation period near the poles. Measurements of the interior rotation rate from global

helioseismology have revealed a set of distinct radial shells (Figure 1.2) (e.g., Brown et al. 1989; Thompson

et al. 1996). The radiative zone, from the center to 0.72R⊙, rotates as a solid body with a rotational period of

around 27 days and connects to the differentially rotating convection zone (r = 0.72R⊙ to 1.00R⊙) through

a narrow region of strong rotational shear known as the tachocline. The upper 5% of the Sun by radius
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Figure 1.1: Left: TiO image of granulation from Big Bear Solar Observatory. The field extends 19 Mm (1.6◦)
in each direction. The irradiance pattern is dominated by a characteristic scale of solar convection called
granulation. Right: Complex magnetic activity seen with the Swedish Solar Telescope. Strong magnetic fields
allow for stronger cooling at the solar surface, causing the regions of magnetic activity to look cooler/darker.

Figure 1.2: Left: Power spectrum of photospheric solar oscillations from SOHO/MDI. The ridges of power
seen in this ν-ℓ (frequency vs. harmonic degree) diagram are created by the resonant waves of the solar
interior. The lowest-frequency ridge corresponds to the surface gravity wave (the f -mode). Each higher
ridge corresponds to pressure waves of increasing radial order (p1, p2, etc.). Subtle variations in these ridges
are measured and used to infer subsurface properties. Right: Rotation rate (angular velocity Ω) of the
solar interior as a function of depth and latitude measured with global helioseismology (Howe 2009). These
measurements reveal a set of distinct radial shells in the solar interior differentiated by rotational properties.

(35 Mm) displays further rotational shear as the interior rotation rate drops by around 3%. This upper

boundary of the solar convection zone is known as the near-surface shear layer (NSSL). While the NSSL

is the most accessible region of the solar interior to subsurface seismic observations, much about this layer

remains a mystery.
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Solar magnetism and dynamo theory play prominent parts in our understanding of global solar dy-

namics. The sporadic appearance of magnetic activity on the surface of the Sun is modulated by the global

solar magnetic cycle. Active regions are spawned in belts of magnetic activity that evolve with the 11-year

solar magnetic cycle (Figure 1.3). These belts appear at mid-latitudes in each hemisphere and propagate

towards the equator over the course of the solar cycle, spawning outbursts of strong surface magnetic field

along the way. At the end of a cycle, the belts vanish, only to be replaced again with a new set at high

latitude for the next solar cycle.

Figure 1.3: A Magnetic Butterfly Diagram showing longitudinally averaged magnetic field obtained from
the Vector Spectromagnetograph (VSM) instrument at Kitt Peak and the Michelson Doppler Imager (MDI)
onboard the Solar and Heliospheric Observatory (SOHO). The colors indicate the polarity of surface line-
of-sight magnetic field. This demonstrates the nature of the solar cycle as well as some of the large-scale
magnetic patterns that exist within the solar cycle. Strong magnetic fields tend to appear within bands of
magnetic activity that migrate in latitude over the course of the 11-year solar cycle. Adapted from Hathaway
(2010)

The broad range of observed characteristics of the Sun are the result of a highly nonlinear magnetized

fluid system. Many of the chaotic actions of the Sun (such as convection) influence the large-scale steady

dynamics and vice versa. The patterns of convection seen at the surface likely operate in only the upper

reaches of the convection zone and are required to transport thermal energy outwards. Deeper convective

motions are likely much larger in size than the patterns seen at the surface and have comparably longer

evolution times. These large-scale motions feel the influence of the Sun’s rotation as they evolve and con-
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sequently provide anisotropic momentum and heat transport. The Reynolds stresses associated with these

rotationally influenced turbulent motions help maintain the global differential rotation and indirectly the

meridional circulation (Miesch 2005). Thus, there is an intimate connection between the transient convective

structures in the solar interior and the long-lived global-scale flows.

These subsurface convective patterns are hidden from view at the photosphere and can only be revealed

through helioseismic analysis. This has proven to be exceedingly difficult due to the complexities of the

observational procedure, but progress is being made. Lacking precise measurements of deep convection,

numerical simulations have provided a way of investigating the balance between convection and global-scale

flows. Figure 1.4 displays one such simulation that exhibits rotationally influenced convection interplaying

with the global differential rotation and meridional circulation. The benefit of using numerical simulations

to discern the interior dynamics of the Sun relies on having a set of precise observational constraints as

a guide. Measurements of the global differential rotation profile have for many years provided such a

constraint, allowing significant progress to be made on the theoretical front. Advancements in the techniques

of helioseismology are providing more extensive and precise measurements of the solar interior that can

further enhance our understanding of this highly complex system. To aid in the process of unraveling the

intertwined mysteries of rotation, convection, and magnetism, I will present new observations of convection

in the solar interior. These observations have direct implications for the dynamical balance that holds within

in the Sun and will further our understanding of solar convection.

1.2 Near-Surface Convection

Despite its proximity to observations of the solar surface, the NSSL remains one of the more perplexing

large-scale features of the solar interior. While numerical simulations of global solar dynamics have been able

to reproduce a wide range of observed properties of the Sun, none so far have been able to reliably produce

the strong rotational shear characteristic of the NSSL. A leading theory as to the origin of the NSSL involves

the interaction of near-surface convective flows and the global rotation rate. It has been suggested that the

distinction between this layer and the bulk of the convection zone comes from the rotational influence on

convection. The deep convective motions below the NSSL feel the influence of rotation, while the convective
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Figure 1.4: Results from a global simulation using the Anelastic Spherical Harmonic (ASH) code. Left: Panel
(a) shows the temporally-averaged angular velocity as a function of latitude and depth, and panel (b) shows
the average meridional circulation. This numerical simulation provided guidance on the global patterns of
differential rotation and meridional circulation that might be expected in the Sun. Right: Vertical velocity
at four different radii within the simulation. Dark colors indicate downflows and light colors indicate upflows.
Near the surface, the cell-like structure of convection is clear. At depth, the effects of rotation can be seen
with the vertical aligned convection cells (termed banana cells). Adapted from Miesch et al. (2008).

flows in the NSSL are fast enough to traverse the layer without signififant deflection due to the Coriolis

force (Gilman 1977; Hathaway 1982; Aurnou et al. 2007). The Coriolis deflection of convective motions

induces Reynolds stresses that drive the anisotropic transport of angular momentum necessary to maintain

the NSSL. While this theory may prove useful for understanding the origin of the NSSL, its confirmation

relies on observations of near-surface convection which have proven exceedingly difficult to make.

The observations presented in this thesis weigh on this subject in two ways. First, new measurements

of the convective speeds throughout the NSSL provide an estimate of the Rossby number, which is used to

describe the degree of rotational influence on flows (see Chapter 5). I find that the NSSL is a transition

region for the Rossby number, suggesting that the degree of rotational influence on convective flows does in

fact change between the top and bottom of the layer. Further, through the analysis of resolved convective

structures in the NSSL, I find that the radial travel time of convective motions in the NSSL roughly matches

the rotation rate of the Sun (see Chapter 6). This again suggests that the interaction between rotation and

convective motions plays a key role in the dynamics of the NSSL.



6

1.2.1 Supergranules

Figure 1.5: Northern hemisphere of direct Doppler imaging of supergranulation. The red and blue colors
indicate line-of-sight velocity towards and away from the observer. The image was made by averaging 30
minutes of consecutive HMI Dopplergrams and subtracting off a background map made with 24 hours of
consecutive Dopplergrams. The prominent spatial scale of 35 Mm (3◦) is due to supergranulation. Super-
granules have weak vertical flows compared to their horizontal flows, resulting in little observed signal near
disk center.

In studying the convective motions of the NSSL, we may begin by considering the largest scale of

convection seen in photospheric observations: supergranulation. Supergranulation refers to a particular

pattern of convective motions seen in photospheric observations that co-exists with granulation. Photo-

spheric Doppler velocity imaging has been a reliable tool for measuring this prominent scale of motion from

the discovery of supergranulation (Hart 1956; Leighton et al. 1962) through modern high-precision analysis

(Hathaway et al. 2000; 2002). This pattern consists of cell-like outflow sites surrounded by narrow downflow

lanes. Figure 1.5 demonstrates the horizontal flow pattern of supergranulation in direct Doppler images

averaged over 30 minutes. The horizontal size of a supergranule can range between 20 Mm and 60 Mm with

a typical size around 35 Mm (Hathaway et al. 2000; 2002; De Rosa and Toomre 2004; Del Moro et al. 2004;

Hirzberger et al. 2008; Rieutord et al. 2008). Like granulation, the pattern of supergranulation is constantly

evolving. While it is difficult to identify the exact start or end time of a particular supergranule, measure-

ments of their temporal coherency provide an estimate for their lifetime of around 1.7 days (e.g., Hirzberger
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et al. 2008). The flows associated with supergranulation are primarily horizontal, with Dopplergrams re-

vealing horizontal speeds of 300 m s−1 (Hathaway et al. 2002) and vertical speeds of 30 m s−1 (Hathaway

et al. 2002; Rieutord et al. 2010). A more extensive review of the observed properties of supergranules can

be found in Rieutord and Rincon (2015) and Gizon and Birch (2005).

Despite the wealth of information about the surface characteristics of supergranulation, the physical

origin of this prominent scale of convection is unknown. This is due in part to significant uncertainty in

the vertical profile of supergranules. The subsurface structure of supergranulation has been the subject of a

multitude of studies using local helioseismology and no agreement has been reached. A few of these studies

report a reversal in the horizontal divergence pattern, indicating a cell-like return flow (Duvall 1998; Zhao

and Kosovichev 2003). The depth of this return flow is highly disparate between studies, ranging from very

shallow (1 Mm, Rieutord et al. 2010) to rather deep (15 Mm, Zhao and Kosovichev 2003). The disagreement

on the depth of a return flow is caused by the difficulty of the measurement. Interpreting a reversal of the

flow pattern in depth must be done with care as many of the local helioseismic methods are susceptible to

contamination from leakage of the signal from surface flows into deductions about deeper layers (Braun et al.

2004). Due to the wide range of answers for the depth of supergranulation, the precise subsurface structure

of supergranulation is still unclear.

Further obscuring the source of supergranulation is the difficulty in identifying their origin and pre-

dicting their properties (particularly their distinct size) through theoretical means. Several models have been

proposed that select a single length scale amidst the highly turbulent convective background (see Rieutord

and Rincon 2015, for a review), but none so far have been supported by strong observational evidence. One

of the first theories on the origin of supergranulation is that He++ recombination in the upper convection

zone acts as a driver of this characteristic scale of convection (e.g., Simon and Leighton 1964). Schwarzschild

(1975) further supposed that supergranulation could be driven at depth by an opacity break, He+ recom-

bination, and H+ recombination. These theories share a common idea that supergranules are driven at

their deepest point by an excess of thermal energy. Competing theories claim that supergranulation can

be generated at the surface either by an instability of the upper boundary of the convection zone (Murphy

1977; Rincon and Rieutord 2003), the interaction and merger of downflow plumes from granulation (Rieutord
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and Zahn 1995; Rast 2003), or possibly by a characteristic scale set by the advection of magnetic field in

the photosphere (Crouch et al. 2007). Due to a lack of observational support, none of these theories have

been confirmed. The advancement of high performance supercomputers has led to increasingly sophisticated

numerical models of near-surface convection (e.g., Stein and Nordlund 1998; Rempel et al. 2009; Hotta et al.

2014), yet a simple and consistent explanation of supergranulation remains elusive. Despite the struggles of

observing the subsurface structure of supergranules, precise helioseismic measurements will likely play a key

role in unraveling the mysteries of this prominent scale of motion. The new observations presented in this

thesis reveal much about the structure of supergranulation and hint at a surface-driven origin. These results

will be presented in Chapter 6

1.2.2 Convective Amplitudes

Extending the measurements of near-surface convection into the deeper interior, the speed of convec-

tive flows throughout the NSSL has become a topic of interest. Using time-distance analysis, Hanasoge et al.

(2012) presented the first measurements of horizontal convective amplitudes at significant depth (30 Mm and

deeper). In this, the flows were found to be exceptionally weak compared to predictions made by essentially

all numerical convection simulations (Vögler et al. 2005; Miesch et al. 2008; Rempel et al. 2009; Trampedach

and Stein 2011; Hotta et al. 2014). The discrepancy between the observations of Hanasoge et al. (2012)

and theory is a difference of nearly two orders of magnitude. This has caused significant confusion in recent

years, as simulations typically rely on much faster convective amplitudes to generate the Reynolds stresses

needed to maintain the differential rotation profile which is constrained by global helioseismic observations.

However, in this thesis I will present new measurements using ring-diagram analysis of the convective am-

plitudes throughout the NSSL that generally agree with numerical simulations. Chapter 5 presents these

results along with a discussion of the discrepancy between the two sets of observations.

1.3 Observing the Solar Interior

Figures 1.6a and b show full-disk snapshots of the Sun in continuum intensity (a) and 304 Å (He++)

(b). These images were captured with the Helioseismic and Magnetic Imager (HMI) and the Atmospheric
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Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO) which has provided unprecedented

coverage of solar activity in recent years. Despite the wealth of information contained in these images,

there is a fundamental limit to how deep into the Sun one can make direct photometric or spectroscopic

observations. This limit is set by the transition from an optically thin atmosphere to an optically thick

atmosphere, and the radius at which this transition occurs varies with the wavelength with which one choses

to observe the Sun. These types of observations can provide invaluable information on the structure of

the corona and chromosphere, but these observations cannot penetrate the photosphere. Non-photometric

observations such as line-of-sight magnetic field strength (Figure 1.6c) and line-of-sight Doppler velocity

(Figure 1.6d) can be made to enhance our understanding of the solar surface, but these measurements are

also relegated to photospheric layers and higher. Without a method of directly observing the solar interior,

we must rely on more indirect measures.

Solar oscillations with a period of around 5 min (3 mHz) were first detected by Leighton et al. (1962)

using Doppler velocity measurements of the photosphere. These oscillations are the observable signal of

resonant acoustic waves trapped beneath the photosphere, and they are generated by near-surface turbulent

convection (Goldreich and Keeley 1977; Libbrecht et al. 1986; Goode et al. 1992). These acoustic waves are

a window to the solar interior, as they relay information about the structure of the interior out to the surface

of the Sun where we observe them. As seen in Figure 1.2, the Sun has a rich spectrum of resonant waves with

well-measured properties. Different wave modes sample different portions of the Sun, and the wavenumber

and frequency of a given wave mode determines the lower turning point of the wave (the maximum depth

to which the wave can propagate). Low wavenumber and high frequency waves penetrate deepest into the

Sun. As the waves travel through the interior, they can be modified by various effects such as thermal

variations and local flows. The alterations to these waves can be directly observed as they reflect from the

photosphere back into the interior. Helioseismology relies on observing the vast assortment of waves visible

in the photosphere, analyzing their properties to deduce how they have been modified, and then inferring

the subsurface structure of the Sun that caused the modifications. Measurements from many distinct wave

modes with different lower turning points can be combined to infer variations in the subsurface flow field

with depth.
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Figure 1.6: Four full-disk images captured by instruments onboard the Solar Dynamics Observatory (SDO)
on 31 August 2012. (a) Continuum intensity (artificially colored). (b) 304 Å wavelength band. (c) Line-
of-sight magnetogram, colors indicate regions of strong magnetic field (blue/green is positive, red/yellow is
negative). (d) Line-of-sight Dopplergram. The overall gradient in this image is due to the rotation of the
Sun. A region of strong magnetic activity (with a sunspot) can be seen in the continuum intensity as a dark
region, in the 304 Å band as a bright region, and in the magnetogram as a large complex region of mixed
polarity. The active region is less obvious in the Dopplergram image.

The ability to accurately infer the subsurface characteristics of the Sun relies on both careful modeling

of the acoustic wave field and precise numerical tools to measure small changes in the observations. The

fidelity of helioseismic results depends critically on the accuracy of these analysis components. Over time, a

wide variety of helioseismic techniques have been constructed to transform photospheric observations of the

solar wave field into inferences of subsurface structure. The specifics of these methods vary considerable but

can generally be grouped into two categories: global and local methods.

1.3.1 Global Helioseismology

Global helioseismology focuses on the largest and longest-lived wave modes of the Sun and is used to

estimate the properties of the solar interior as a function of radius and latitude (e.g., Deubner and Gough
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1984; Gough and Toomre 1991; Christensen-Dalsgaard 2002; Thompson et al. 2003). The observed full-

disk wavefield is analyzed with spherical-harmonic transforms and a variety of properties of the resonant

wave modes are measured from the power spectrum of the spherical harmonic coefficients. Global analysis

can measure the deepest-traveling modes and therefore allows measurements of the solar interior from the

photosphere to the nuclear-burning core. Perhaps the most notable result from global helioseismology is

the accurate determination of the Sun’s core temperature, which played a critical part in the discovery of

neutrino oscillations (for a review, see Christensen-Dalsgaard 2002). As mentioned in the previous section,

global helioseismology has also provided accurate measures of the internal rotation rate of the Sun as a

function of depth and latitude (Howe et al. 2000; Thompson et al. 2003). These results have revealed

the existence of the tachocline, solid body rotation of the radiative interior, and the shear in the NSSL.

Latitudinal variations in the rotation profile due to torsional oscillations have been studied with this method

as well (Woodard and Libbrecht 1993; Howe et al. 2000; Toomre et al. 2000). Originally detected in direct

Doppler imaging (Howard and Labonte 1980), torsional oscillations manifest as bands of fast zonal flow in

each hemisphere that migrate equatorward over the solar cycle.

The eigenfunctions of global modes, which determine the volume of the solar interior over which a

given measurement pertains, have an energy density which is longitudinally invariant and symmetric about

the equator. Thus, properties of the interior can only be measured as a function of depth and latitude

(symmetrized about the equator). Small-scale flow patterns, like that of convection, are averaged out in

global helioseismic analysis. Further, the meridional component of the subsurface flows do not significantly

influence the frequencies of the wave modes. Therefore, traditional global mode analyses which rely on

frequency measurements are only sensitive to the zonal component of the axisymmetric flow field.

1.3.2 Local Helioseismology

An alternative form of analysis is that of local helioseismology, which enables measurements of small-

scale flows that do not respect the axisymmetric and hemispherically-symmetric constraints of global anal-

ysis. With local helioseismology, transient convective flows can be mapped out in longitude, latitude, and

depth. While global helioseismology is able to measure properties of the solar interior at great depths, local
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helioseismology is typically restricted to the upper reaches of the Sun. However, the ability of local helio-

seismology to probe the structure of small-scale flows makes it an excellent tool for studying the dynamics

of the near-surface shear layer.

There are various implementations of local helioseismology that have been developed over the years.

All methods generally use the same source data of direct Doppler imaging of the Sun, but differ in how

the data is analyzed, what aspect of subsurface flows are considered, and what assumptions are made along

the way. While the choice of local-helioseismic method often depends on the scientific goals at hand, the

different methods have significant overlap in what they are capable of measuring. The two most common

types of local helioseismology are ring-diagram analysis (Hill 1988; Basu et al. 1999; Haber et al. 2002) and

time-distance analysis (Duvall et al. 1993; 1997). Both methods are able to map the horizontal components

of subsurface flows across the solar disk and through a range of depths. The exact depth range, horizontal

resolution, and overall uncertainty of these flow measurements depend on how the analysis is carried out and

is not pre-determined by the general method itself. The observations of near-surface convection presented

later in this thesis were produced with ring-diagram analysis, and so I will provide a brief overview of the

method in the next section.

Ring-diagram and time-distance analysis are far from the only possible methods of doing local helio-

seismology. Fourier-Hankel Decomposition considers wave motion into and out of localized points on the

solar surface and has been used to measure absorption, scattering, and mode mixing of acoustic power by

sunspots and plage (Braun et al. 1987; 1992; Braun 1995). Acoustic holography uses the observed wavefield

at the photosphere to measure subsurface flows and to isolate localized regions of acoustic emission (Lindsey

and Braun 1997). One of the most interesting applications of acoustic holography is far-side imaging, where

active regions on the far-side of the Sun can be detected using the near-side wavefield (Lindsey and Braun

2000; Braun and Lindsey 2001; Gonzalez-Hernandez et al. 2007).

1.3.2.1 Ring-Diagram Analysis

Ring-Diagram analysis infers subsurface horizontal flows in localized patches of the solar disk by mea-

suring the properties of three-dimensional (two spatial dimensions plus time) Fourier power spectra created
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from each patch (Hill 1988; Schou et al. 1998; Haber et al. 2002). This is similar to global helioseismology

where distinct wave modes are analyzed in the spherical-harmonic spectrum. Here, small regions of the solar

surface are extracted over some time span to create a local analysis region that can be treated as a local

Cartesian domain analyzed in Fourier space. The modal structure of the observed wave field can be seen in

cuts of a three-dimensional power spectrum at constant frequency. Figure 1.7 shows three such cuts for a

single power spectrum. The details of how this kind of power spectrum is generated are provided in Chapter

2. At a constant frequency, the different radial orders of solar wave modes appear as concentric rings (the

source of the name ring-diagram analysis). The outermost ring corresponds to the surface gravity mode

(f -mode) and each subsequent inner ring corresponds to pressure waves with increasing radial order (p1, p2,

etc.).
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Figure 1.7: Constant-frequency cuts from the power spectrum of a 16◦ analysis region. In each, power from
modes at each radial order show up as concentric rings. The outermost ring in each panel is the surface
gravity wave (f -mode). Darker colors indicate higher power on a logarithmic scale. The rings are shifted
slightly in the +kx direction due to a subsurface flow of around 20 m s−1.

Sub-surface flows underneath a ring-diagram analysis region induce Doppler shifts in the wave modes

captured in the power spectrum, as in Figure 1.7. Seen at a constant frequency, these mode rings become

elongated in the direction corresponding to the direction of subsurface flow. Measuring the shift of spectral

power for each mode individually provides information about the subsurface flows at different depths. Spatial

information about flows across the solar surface and below can be recovered by collecting such measurements

from analysis regions extracted from different disk positions.
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In this thesis, I use ring-diagram analysis to measure convective flows in the NSSL. One of the historic

limitations of ring-diagram analysis is a trade-off between depth and resolution. The size of the analysis

region used to create a power spectrum and frequency-shift measurements determines not only the amount

of spatial averaging affecting the measurement (and thus the horizontal resolution), but also the maximum

depth that can be measured reliably. Larger tiles provide more robust measurements of the low-wavenumber

modes that travel deepest into the solar interior, but do so with coarse horizontal resolution. A general rule

of thumb for this trade-off is that the size of the analysis region needed to reach a certain depth is around

6 times that depth. In the following chapters, I will discuss a new method for beating this trade-off and

producing high-resolution flow fields at depth.

1.3.3 Scientific Results from Local Helioseismology

Local helioseismology has played an important role in our understanding of solar dynamics by permit-

ting measurements of the structure of the interior. The tools of local helioseismology have been applied to a

vast range of topics; from small-scale convective dynamics to large-scale global flow patterns. To get an idea

of the range of topics that local helioseismology is capable of investigating, I will provide a brief overview

here of some key discoveries made possible with these methods. An in-depth look into the explorations of

local helioseismology can be found in Gizon and Birch (2005).

1.3.3.1 Large-Scale Flows

Local helioseismology has been regularly used to measure large-scale, axisymmetric flow patterns

by averaging measurements across longitude to reduce noise. The large-scale variations in the differential

rotation profile due to torsional oscillations can be seen using this method. Torsional oscillations have

been measured extensively with both time-distance analysis (Giles et al. 1998; Beck et al. 2002; Zhao and

Kosovichev 2004) and ring-diagram analysis (Basu et al. 1999; Basu and Antia 2000; Haber et al. 2000;

2002). Local helioseismic observations of these bands show that they are only a few m s−1 faster than the

normal differential rotation rate, have a width in latitude of around 10◦, and extend from the surface of the

Sun to a depth of around 50 Mm (Kosovichev and Duvall 1997; Howe et al. 2000; Toomre et al. 2000; Antia



15

Figure 1.8: Meridional flow mea-
sured with time-distance helioseismol-
ogy showing poleward motion near
the surface and reversals deeper down.
Positive velocity (yellow/red) is di-
rected northward and negative ve-
locity (cyan/blue) is directed south-
ward. Figure adapted from Zhao et al.
(2012).

and Basu 2000; Howe et al. 2006).

The surface meridional flow was first seen with direct Doppler imaging in Hathaway (1996). Using

time-distance analysis, Giles et al. (1997) extended this measurement below the photosphere and found

poleward flow throughout the upper 4% of the interior. Using mass conservation to extrapolate the flow

field to the bottom of the convection zone, it was found that a large, single-cell circulation of meridional flow

with a return flow near the bottom of the convection zone matched the observed data most simply. When

used in a flux transport dynamo model, the shape and speed of this circulation could help reproduce the

time-scale of the solar magnetic cycle (Dikpati and Charbonneau 1999). The basic reason that the observed

meridional flow provides such a pairing is that the time it takes to complete one full circulation through the

convection zone (based on the observations of Giles et al. 1997) roughly matches the timescale of the solar

cycle. The structure of the global meridional circulation has been a continual target of local helioseismology

(Basu et al. 1999; González Hernández et al. 1999; 2000; Haber et al. 2000; Zhao and Kosovichev 2004;

Duvall and Hanasoge 2009; Zhao et al. 2013). Recent measurements of the meridional flow have suggested

that there is in fact a reversal of the circulation well before the bottom of the convection zone (Hathaway

2011; Zhao et al. 2012; Rajaguru and Antia 2015). Figure 1.8 demonstrates the complicated multi-celled

structure of the meridional flow seen in Zhao et al. (2012) using time-distance analysis.
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Figure 1.9: Synoptic maps of subsurface flows at a depth of 0.9 Mm using ring-diagram analysis. Underlying
the flow vectors is a map of the surface magnetic field with polarities indicated in red and green. The flows
display large-scale, sweeping patterns as well as a significant amount of convergence towards the regions of
high magnetic activity. Figure adapted from Hindman et al. (2004).

1.3.3.2 Small-Scale Flows

The local environment around magnetic active regions has also been the topic of extensive studies

using local helioseismology. Figure 1.9 shows large-scale mapping of subsurface flows using ring-diagram

analysis (vectors) on top of a map of photospheric magnetic field strength (colors). In this, the global flow

pattern of meridional circulation and differential rotation are broken up by the presence of active regions.

Near-surface flows have been found to display a weak convergence towards active regions as far as 30◦ away

(Gizon et al. 2001; Haber et al. 2001) along with Coriolis-induced rotation (e.g., Hindman et al. 2009). The

subsurface structure of flows around active regions has been studied with both time-distance analysis (Zhao

and Kosovichev 2004) and ring-diagram analysis (Haber 2004). These same studies found that the horizontal

inflow surrounding active regions reverses direction past a depth of around 10 Mm.

Small-scale measurements made with local helioseismology are often plagued by high noise levels. This

problem can be mitigated by averaging over time and/or space, but this can be problematic when study-

ing the transient, small-scale flows of near-surface convection. The flows associated with supergranulation

can be directly observed in the upper megameter or so without significant averaging (see Chapter 6), but

deeper flows are commonly below the noise level, as the waves that propagate deeper are more difficult to

measure. Studies of supergranule flows often consider the structure of an ‘average supergranule’, where the
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flow patterns observed for different supergranules are averaged together relative to the observed cell center

at the photosphere (Duvall and Birch 2010; Švanda 2012; Duvall and Hanasoge 2013; Duvall et al. 2014;

DeGrave and Jackiewicz 2015; Langfellner et al. 2015b). This procedure has led to the possible discovery of

a supergranular return flow somewhere in the upper 15 Mm of the Sun.

1.4 Thesis Overview

This thesis presents significant contributions to the study of the dynamics of the solar interior. These

contributions can be classified into two broad categories: improvements to ring-diagram analysis and new

observations of near-surface convection. While the new observational methods have been designed to obtain

measurements of supergranulation in the NSSL, they can be applied to a broader range of scientific investi-

gations. Thus, the details of this new implementation of ring-diagram helioseismology is presented distinctly

from the resulting scientific observations.

Chapters 2 through 4 are dedicated to revamping the methods of ring-diagram analysis with an

emphasis on accuracy, depth sampling, and resolution. While any local helioseismic method incurs a tradeoff

between resolution and depth, I present new methods that push this boundary to a point where new scientific

discoveries can be made. This work focuses on resolving flows in the NSSL, but has the potential to be

extended much deeper and to higher resolution.

Chapter 2 provides an overview of the ring-diagram analysis steps. Chapter 3 presents a novel method

of measuring the frequency shifts from ring diagrams, and delves into both a comparative characterization

of the method and the implications for subsurface flow results. Chapter 4 provides a detailed description

of the inverse problem inherent in helioseismic analyses, along with a presentation of a new high-resolution

inversion procedure.

In Chapters 5 and 6, I use these new methods to answer scientific questions about solar dynamics

and present new observations of near-surface convection. In the view of solar dynamics, there are many

components that build up the full picture. A few of these components have been determined with enough

certainty to provide rigid constraints on models (rotation profile, magnetic bands, solar cycle). The char-

acteristics of subsurface convection are much less certain, and provide a key linkage between the dynamics
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and other aspects. In this thesis, I provide the first measurements of convective flows in the NSSL that have

the resolution to infer the scales responsible for convective transport. Analysis of these flows has lead to a

deeper understanding of the role the upper boundary of the convection zone plays in global solar dynamics.

Chapter 5 presents measurements of convective flow speeds throughout the NSSL along with a measure

of the degree of rotational influence at each depth. These measurements provide constraints on the bulk

characteristics of near-surface convection and are easily relatable to theoretical models of solar dynamics.

Chapter 6 presents evidence for the surface-driven nature of supergranulation as well as radially-coherent

downflow plumes that traverse the NSSL. The precise nature of the convection seen in the NSSL further

suggests a connection between the depth of the NSSL and the rotational influence felt by downflows.



Chapter 2

Helioseismic Ring-Diagram Methods

The scientific results presented later in this thesis were generated by the local-helioseismic technique

of ring-diagram analysis, which produces subsurface flow measurements from a set of Dopplergram obser-

vations of the solar surface. The processing steps involved in transforming the latter into the former can

be accomplished in a multitude of ways, and the details of the specific steps used must be understood to

properly interpret the final results. A primary goal of this thesis is to analyze each step of the ring-diagram

process with an eye for improvements and optimizations so that new scientific discoveries can be made.

In particular, the goal of measuring transient, small-scale convective flows throughout the NSSL provides

stringent requirements for the accuracy, resolution, and depth range of the analysis. The ability to measure

these patterns depends crucially on how well the ring-diagram procedure can produce spatially localized

estimates of the subsurface flow.

Inherent to the processing of ring-diagram analysis is the assumption of linearity in each step. In

short, we rely on the ability to express the final set of velocity observations w made with ring-diagram

analysis as a linear integral over the true subsurface flow field v:

w(x, z) =

∫ ∫

dx′ dz′ Q(x,x′, z, z′) v(x′, z′). (2.1)

The vector x contains the two horizontal directions (x,y), and the Cartesian coordinate directions êx, êy, êz

map locally to the longitudinal, latitudinal, and radial directions, respectively. Here, the function Q (called

the averaging kernel) is the weighting function that relates the measured flow field w with the true flow field

v. While the spatial integral is taken over the entire volume of the Sun, we will strive to make the function



20

Q as compact as possible. Our ability to interpret the flow field w as a representation of v depends on the

form of Q, which can only be derived by assuming each intermediate data product in ring-diagram analysis

is linearly related to the subsurface flow field. While the processing steps themselves may not be linear (as

with the ring-fitting code in Chapter 3), it is imperative to find a valid linear approximation.

This chapter will serve as both an overview of the steps carried out in ring-diagram analysis and a

detailed description of the first few steps. I will not present any scientific findings here, but I will justify the

modifications made to various processing steps with the scientific goals laid out in Chapter 1. To achieve the

goal of measuring convective flows in the NSSL, I have modified some of the standard processing steps (such

as the measurement grid shown in this chapter) and completely revamped others (such as the mode-fitting

method and linear inversion presented in the following chapters).

2.1 Overview of Standard Processing Steps

The entire processing pipeline of ring-diagram helioseismology has been constructed incrementally

since its inception and has become a standardized process (Bogart et al. 2011a). Figure 2.1 shows the

series of steps necessary to produce subsurface flow measurements using ring-diagram analysis. A telescope

observes the Sun and produces a set of Dopplergrams, which measure the line-of-sight velocity on the surface

at each point on the solar disk. A set of consecutive Dopplergram images constitute the entire data source

for a single analysis period. While we are free to choose the duration over which the Dopplergram set

is collected, the work in this thesis will treat a single analysis period as one spanning 25.6 hours of solar

observations. In the set of Dopplergrams, the surface of the Sun is split up into distinct sub-regions called

tiles that are independently analyzed. The characteristics of the solar wave modes within each region are

analyzed and measured with a non-linear fitting code operating on the power spectrum of the tile. While

many properties of the wave modes can be extracted, the measurement of interest is the amount by which

the frequency of the mode Doppler shifts relative to a central rest frequency. This data exhibits a large-scale

systematic bias that is removed before further processing. The frequency-shift measurements made in each

analysis region are then recombined in a linear inversion to produce a three-dimensional subsurface flow field

that spans a large portion of the solar surface and below. This process is repeated independently for each
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25.6-hour analysis period.

In this chapter, I will describe both the numerical procedure required to achieve the first few steps of

ring-diagram analysis (Figure 2.1a-c) as well as a rough outline of how the linear relationship in Equation 2.1

can be justified. While the details of the final two steps (Figure 2.1d-e) are covered in the next two chapters,

I will briefly discuss them here in the context of the desired linear relationship so that the function Q can be

examined later. In this chapter, I will follow the linear relationship up to the point of relating the measured

frequency shifts to the subsurface flow field. Relating the final measured frequency shifts to a subsurface

flow can be done by following the effect of a subsurface flow on each of the intermediate data products of

ring-diagram analysis incrementally. The full calculation to derive this particular part of the relationship is

presented by Birch et al. (2004) and Birch et al. (2007). I will not attempt to reproduce the full derivation

here, as it is lengthy and adds little to the current discussion of ring-diagram methods. Instead, I will discuss

the assumptions that allow such a connection to be made, as well as the main conclusions of the derivation.

The methods presented in this chapter are largely unchanged from what is considered standard ring-

diagram processing (Bogart et al. 2011a), while those presented in the next two chapters are novel methods

created for the purpose of achieving the scientific goals of this thesis. I will also discuss the benefit of greatly

increasing the number of measurements made over the solar disk in order to obtain the high-resolution flow

maps needed for measuring small-scale convective patterns.
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Figure 2.1: The steps involved in ring-diagram helioseismology. We can consider ring-diagram analysis as a sequence of processing steps that transform
one data product into another. Here, the data products are in boxes and the processes are arrows. The data with which we start the process is a
set of full-disk Dopplergrams (a). Dopplergram tiles (b) are created from this data set by tracking and projecting a mosaic of square regions. These
tiles are then Fourier transformed and made into three-dimensional power spectra (c). The power spectra are then measured with a non-linear fitting
code to produce frequency-shift measurements (d). Up to this point, each tracked and projected tile has been processed independently. The measured
frequency shifts exhibit large-scale systematics as a function of disk position which can be measured and removed (e). The final step combines all of
the frequency shifts in a single inversion to produce an estimate of the subsurface flow field (f). The colors of the boxes and arrows indicate the chapter
of this thesis in which the topic appears in.
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2.2 Photospheric Observations of the Solar Wavefield

2.2.1 Dopplergram Data

Full-disk Dopplergrams form the sole observable used in this implementation of ring-diagram analysis.

The Dopplergrams are measurements of the line-of-sight velocity made with the Helioseismic and Magnetic

Imager (HMI) onboard the Solar Dynamics Observatory (SDO). The HMI instrument captures full-disk im-

ages in 6 narrow pass-bands around the Fe I absorption line at 6173.3 Å. Line-of-sight Doppler measurements

at each pixel can be constructed through a linear combination of these pass-band images that are sensitive

to shifts in the Fe I line position (Couvidat et al. 2012). The precision of this Doppler shift measurement

at each pixel is 13 m s−1 and the dynamic range is ±6.5 km s−1. HMI records a 4096x4096 pixel full-disk

Dopplergram once every 45 seconds. This pixel count leads to a resolution of 500 km per pixel at disk center.

The height of formation of this absorption line is estimated to be around 200 km above the photosphere

(Fleck et al. 2011).

To simplify the mathematical analysis of the observed wavefield, the line-of-sight Doppler signal is

projected from the full-disk observations into local Cartesian coordinates. To construct a three-dimensional

data cube with coordinates (x, y, t), we first collect a sequence of consecutive full-disk Dopplergrams that

span the time of interest. In this thesis, I use 2048 sequential Dopplergrams to represent one analysis period.

With HMI’s 45-second cadence, this leads to a duration of 25.6 hours. Ring-diagram analysis implicitly

averages the subsurface flow over the analysis period, so it is important to keep in mind that any flows we

wish to accurately measure must persist for at least that long. Shorter-lived features will be diminished

proportional to the ratio of their lifetime to the analysis duration. Averaging over a shorter span of time

would reduce this effect, but also increase the noise in the solution. The specific analysis period used here

was chosen as a trade-off between noise and temporal averaging.

With a time assigned to each full-disk Dopplergram, the Cartesian data cube is then constructed

by extracting a square projected region from each Dopplergram. The region may be centered around any

chosen point on the disk and extends horizontally to a specified size. Each Dopplergram is projected using

an equidistant azimuthal (Postel) projection (with bicubic interpolation) centered around the square region’s
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center. This projection preserves both distances along great circles that intersect the center of the region as

well as the azimuthal angle of points relative to the center. Since we will be measuring plane waves traveling in

different directions within the region, this projection is appealing because it preserves propagation direction

and wavelength for waves near the center.

The size of the region is typically chosen somewhere between 2◦ (24 Mm) and 32◦ (388 Mm) in

heliographic angle. The size of the region determines the error statistics and depth to which flows may be

measured. We will find in later chapters that 16◦ tiles are able to measure flows down to a depth of around

30 Mm, which satisfies the goal of measuring flows throughout the NSSL. Larger tiles are able to measure

deeper into the Sun, but require more computational resources. Further, ring-diagram analysis relies on a

plane-wave approximation for the observed wavefield which assumes no significant sphericity. Larger tiles

(& 30◦) break this assumption and introduce systematic errors into the analysis. Initially, the horizontal

resolution of the flow measurements is limited by the size of the tile. We will find in later chapters that it is

possible to beat this resolution limit by clever inversion procedures.

2.2.2 Tile Tracking

Since each Dopplergram is projected independently into the final data cube associated with the chosen

tile, the projection centers are allowed to change with time. Shifting the region’s center linearly as a function

of time is a Galilean transform, and is useful for either introducing a known velocity into the region or

countering an existing known velocity. This shifting of central position with time is called tracking and plays

a part in ensuring the linear relationship between the ring-diagram measurements and subsurface flows.

The surface rotation rate of the Sun is well-known and not of any particular interest in many ring-diagram

studies. We thus track in longitude at the surface rotation rate to subtract out the large-scale advection of

waves by the Sun’s rotation. Globally, this rotation velocity is around 2 km s−1 and is called the Carrington

rotation rate. The Sun’s differential rotation introduces yet another large-scale velocity signal that can be

removed by using a tracking rate that depends on latitude. The latitudinal profile of differential rotation

has been measured fairly precisely (Snodgrass 1984, and many others) and can be used as a tracking rate.

The effects of tracking at the Carrington rate or one that accounts for differential rotation are considered
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in the following chapter. Tracking in latitude is also possible, but has fewer uses. While a region may pass

through a range of longitudes over the tracking duration, in practice it is assigned a central location equal

to the position of the tile center exactly half-way through the analysis duration.

The final Cartesian data cube consisting of tracked and projected Dopplergrams is called a tile. Figure

2.2 shows cuts through such a tile. The tile contains many different signals, some useful for our purposes

and some not. Figures 2.2a and 2.2d demonstrate that the direct Doppler field is a complicated pattern

that is hard to describe as a simple wavefield. When filtered in time, two distinct signals emerge. Figures

2.2b and 2.2e show the high-pass-filtered Doppler signal with a frequency cut-off of 1.5 mHz. In this, the

low-frequency components of the signal have been removed. As a function of time and space, this part of the

Doppler signal shows wave packets propagating short distances before disappearing. It is this wavefield we

are interested in measuring, as it contains information on the subsurface flows. Figures 2.2c and 2.2f show

the low-frequency contribution to the signal using the same cut-off frequency as before. In space, granules

can be seen as packed cells with compact upflow sites. This view of granulation is far less detailed than that

seen in Figure 1.1 due to the lower resolution of HMI. Here, there are thousands of individual granules in

the field of view, and each granule is only around 2-3 pixels across. In time and space, these granules can be

seen advecting and merging with each other. While the frequency filter used in Figure 2.2 seems to isolate

this signal from the wavefield fairly well, granules have a broad frequency spectrum and cannot be separated

so cleanly. When measuring the properties of the wavefield in the following chapter, I do not use filters such

as this and instead account for background granular power with a model.

2.2.3 Tile Apodization

The properties of the wave modes observed in a given tile will be measured from the Fourier power

spectrum of the tile. Before computing the three-dimensional Fourier transform of a tile, we apodize the tile

in both space and time. This is done to remove anisotropies in the power spectrum due to the square shape

of the tile, mitigate spectral ringing, and to control the inevitable spatial leakage.

In space, the apodization function is defined as a function of radial distance r from the geometric

center of the tile, resulting in a circular apodization shape. This function is equal to one at r = 0 and
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Figure 2.2: (Top row) Line-of-sight Dopplergram data as a function of position on the solar disk near disk
center. The left column shows raw Dopplergram data, while the middle and right columns show the same
data high-pass-filtered and low-pass filtered in time, respectively. (Bottom row) The same Dopplergram data
as in the top row, but shown as a function of position and time. Note the different ranges on the vertical
axis for each column. The high-pass-filtered data show the surface wavefield, while the low-pass filtered data
barely resolves the pattern of granulation evolving over time. Bright shades indicate a line-of-sight velocity
away from the observer, dark indicates towards.

remains unity out to r = 0.875 Rt, where Rt is the distance between the center of the tile and the edge of

the tile along one of the cardinal directions. Between r = 0.875 Rt and 0.9375 Rt, the apodization function
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tapers smoothly to zero with a quartic function of radius r. Past r = 0.9375 Rt, the apodization function

remains zero. Thus the tapering of the apodization function occurs over 0.0625 Rt, which for a 16◦ tile

is 0.5◦. The temporal apodization is similar in that it is equal to unity for most of the tile duration and

smoothly tapers to zero at the beginning and end of the temporal duration with the same quartic function.

The interval over which the temporal apodization is tapered is 0.03125 times the full duration, or 48 minutes

of time for the analysis durations used here.

2.2.4 Tile Sets

A single tile provides measurements of the subsurface flow field from the region below the tile, but

reconstructing a more complete picture of the solar interior requires measurements from many tiles. Spatial

information about the subsurface flows can be gained by extracting tiles from different locations on the solar

disk. A collection of tiles from the same set of Dopplergrams (the same analysis period) is called a tile set or

mosaic. It is most useful to have a tile set where the tile centers are positioned on a regular grid in longitude

and latitude. The extent of the grid in both directions determines the size of the analysis region, and the

grid spacing (separation between adjacent tile centers) influences the horizontal resolution with which one

can measure flows.

As mentioned earlier, the initial horizontal resolution of measurements made with ring-diagram tiles

is set by the tile size, but further mathematical analysis in the inversion step (Figure 2.1) allows one to push

past this limit. The specifics of how the inversion can create high-resolution results are covered in detail in

Chapter 4. The horizontal resolution in this case is limited by the spacing between adjacent tiles in the tile

set and also influenced by the error statistics of the mode measurements. The overlap between adjacent tiles

(however significant) is accounted for in the inversion.

While the scientific goal of measuring flows throughout the NSSL is achieved by using tiles of a large

enough size (for depth information), the goal of resolving supergranular flows can be achieved by using an

appropriate tiling scheme. In practice, the highest useful resolution at which the inversion is capable of

producing flow fields is roughly three times coarser than the grid spacing of the tile set. Thus in order for

the inversion to resolve supergranules (two data points across a typical diameter of 30 Mm), the tile set grid
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spacing must be at most 0.4◦ (5 Mm). In this thesis, I use a grid spacing that is slightly finer than this

(0.25◦, 3 Mm).

Figure 2.3 demonstrates the relative sizes of a tile, an analysis region, and the grid spacing between

tiles. In panel (a), a full-disk Dopplergram is shown with the size of a 90◦ square analysis region centered

on disk center (outer rectangle) and the size of a 16◦ circle. While the tiles are square, the data within each

tile is apodized with a circular function. Panel (b) shows an enlargement of panel (a), focusing on the 16◦

apodization circle and projected onto a flat plane. The grid of dots in panel (b) indicate the spacing between

adjacent tile centers in for the gridding scheme used in this thesis. It is important to note that with this

scheme, adjacent tiles overlap by a large fraction and therefore contain much of the same Dopplergram data.

This is in contrast to the standard practice in ring-diagram helioseismology where the grid spacing is set to

be half the tile size (Haber et al. 2000; Hindman et al. 2000). This type of grid is called a dense-pack grid

and is performed in the HMI Ring-Diagram Pipeline (Bogart et al. 2011a). Since the grid employed in this

thesis is much denser, it is called an ultra-dense pack.

Using a finer grid than absolutely necessary to measure supergranulation is done for two reasons. The

first reason is to simply provide more data points across the typical size of a supergranule. While two data

points per wavelength of a signal is enough to resolve it, supergranules are not simple sine waves. The higher

spatial resolution will allow a more precise mapping of supergranular flows. The second reason for erring

on the side of a finer tile–set grid is to reduce the effect of aliasing by small-scale flows. The photospheric

spectrum of convective velocities (Hathaway et al. 2002) contains a broad range of scales and peaks at the

scale of granulation (≈ 0.08◦, 1 Mm). Flows such as these that are not resolved on the tile–set grid become

aliased and are no longer separable from the resolved flows. The small-scale flows are largely uncorrelated

from the larger scales, so the aliased signal shows up as uncorrelated noise in the measurements. This

source of noise is not explicitly accounted for in any of the formal uncertainty analyses. The consequence

of under-resolving the dominant flows in the solar interior is a reduction in the effective signal-to-noise of

the inferred flow fields. This is why it is advantageous to use as fine a grid of tiles as possible. Without

knowledge of the true spectrum of convective flows at each depth, it is impossible to determine the exact

amount of aliased power as a function of grid spacing. However, using known parts of the near-surface
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Figure 2.3: (a) Example full-disk Dopplergram with lines indicating the full extent of an analysis region
(outer rectangle) and the size of a single 16◦ tile (inner circle). (b) A blow-up of the Dopplergram and tile
from (a) along with dots indicating the tile centers for a 0.25◦ grid spacing. The circle once again indicates
the size of a 16◦ tile. Filling the entire analysis region with tiles spaced by this amount results in 130321
total tiles.
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spectrum, I have estimated that the grid used in this thesis (0.25◦ spacing) introduces roughly ten times less

aliased power than the standard dense-pack grid (7.5◦ spacing). This estimate is made by considering the

observed high-resolution spectrum of flows and considering the effects of under-resolving the signal and thus

exchanging resolved signal for aliased power.

2.3 Representation in Spectral Space

The Doppler shifts of wave modes are most easily measured in Fourier space. Therefore to extract

this information, we compute the power of the Fourier transform of each tile in the mosaic. Despite the

spherical nature of the Sun, we forego the use of a spherical harmonic transform in favor of the simplicity

of the Fourier transform. The small spatial extent of the tiles compared to the radius of the Sun allows

us to treat each tile as a Cartesian box. The three-dimensional, Fourier power spectrum P (k, ω) created

from a given tile contains the information about subsurface flows we wish to extract. The vector k indicates

the two-dimensional wavenumber (kx, ky), and ω is the frequency. As seen in the previous chapter, cuts at

constant frequency of such a power spectrum reveal the modal structure of solar acoustic waves (Figure 1.7).

Analyzing the properties of these modes will provide measurements of the subsurface flows.

2.3.1 Flow-Induced Perturbation to the Wavefield

The first step in building up the linear relationship between ring-diagram results and the subsurface

flow field is to consider the effect a subsurface flow has on the observations of the solar wavefield captured

in a tile. The observed waves permeate the solar interior and have predictable frequencies and line widths

in the absence of subsurface flows. Assuming the waves themselves are not a significant contributor to the

large-scale dynamics of the solar interior, one can consider linear perturbations to these waves due to the

presence of a subsurface flow.

The full calculation to derive the perturbation of the observed wavefield in the presence of a subsur-

face flow is carried out in Birch et al. (2004). In this, acoustic-gravity waves traveling through an adiabatic

background state in hydrostatic equilibrium are considered. With the assumption that the region in ques-

tion is small compared to the radius of the Sun, sphericity is ignored and solutions are cast in Cartesian
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coordinates. As mentioned in the previous section, we have chosen to analyze tiles that are small enough to

justify this assumption.

The primary ingredients of this calculation are a description of the background stratification around

which to linearize the momentum and energy equations, a description of the wave modes being considered,

and a model of wave excitation. The background stratification is taken from model S (Christensen-Dalsgaard

et al. 1996), which provides the density, sound speed, and pressure as a function of depth. The frequencies

of the wave modes at each wavenumber and radial order are determined by these profiles, which are able to

reproduce the ridge structure seen in solar oscillation measurements. The damping rates of these waves (and

thus their line-widths in spectral space) have been modeled separately and also tuned to match observations

(Birch et al. 2004). The source of wave energy is modeled as stochastic excitation due to near-surface

convection (i.e., granulation). Each source is taken as a vertical momentum impulse at a depth of 100

km below the photosphere. The parameters of this source model were also tuned to match observations

of photospheric oscillations (Birch et al. 2004). The Green’s functions of the system are derived through

perturbation analysis and allow one to express the response of the observed wavefield to the source term.

The end result of this calculation is an expression of the modification of the observed wavefield caused

by subsurface flows. This is the first step in defining the relationship in Equation 2.1 that will linearly relate

the measured subsurface flow field to the true subsurface flow field. A key consequence of this calculation

is the fact that the observed wavefield within a single tile is predominantly affected by the subsurface flows

directly below the tile and contained within the horizontal reaches of the apodization circle. This is to say

that the sensitivity of the observed perturbation is localized to the apodization disk of the tile.

2.3.2 Perturbations to the Power Spectrum

Just as with the real-space representation of the photospheric wavefield observations, the three-

dimensional power spectrum can be related linearly to the subsurface flow field. This step of the calculation

can be found in Birch et al. (2007), which applies the preliminary results of Birch et al. (2004) to the spe-

cific case of ring-diagram analysis. In this, we find that the power spectrum can be related linearly to the
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subsurface flow field as such:

δP (k, ω) =

∫ ∫

dx′ dz′ G(k, ω,x′, z′) · v(x′, z′) (2.2)

Here, δP is the perturbation to the power spectrum relative to a model spectrum P0(k, ω) at a given

horizontal wavenumber vector k and frequency ω. The Green’s function G(k, ω,x′, z′) specifies how the

perturbed power at a given (k, ω) is influenced by each component of the subsurface velocity at any point

in space (x′, z′). The form of G(k, ω,x′, z′) is derived in Birch et al. (2007) and once again relies on the

assumptions and models used in the previous derivation. This relation between the perturbed power and

the subsurface flow field is similar to the expression for the final ring-diagram result (Equation 2.1). The

following steps of ring-diagram analysis that result in measurements of the subsurface flow can be seen as a

series of manipulations to G(k, ω,x′, z′) that result in a desired form of the averaging kernel Q(x,x′, z, z′).

By comparing a model of the unperturbed power P0(k, ω) to a power spectrum created from real data,

one could measure the perturbation to the power spectrum δP at a given (k, ω) fairly easily. Then, given

the function G(k, ω,x′, z′), one could use the measured power perturbation δP (k, ω) to infer the subsurface

velocity by inverting Equation 2.2. While this would be a straightforward way of measuring subsurface flows,

it is not standard practice. The variations in the power spectrum compared to a mean power spectrum are

not dominated by flow-induced perturbations, but instead by realization noise, i.e., the random fluctuations

in the observed wavefield produced by the stochastic wave source.

2.4 Measuring Shifts in Spectral Power

A simpler and more intuitive description of the influence of subsurface flows on the surface wavefield

is that the waves experience a Doppler shift as they pass through regions of flow. The modal structure of

the wavefield can be seen clearly in the power spectrum (Figure 2.4), indicating that it is more useful to

consider the distinct wave modes of the solar interior as opposed to the Fourier components of the surface

Dopplergrams. Wave propagation for a single mode is isotropic, creating the uniform rings of spectral power

seen in Figure 1.7. These waves travel through the solar interior and experience reflection just below the

photosphere, but tunnel sufficiently into the atmosphere where they are observed. The relative angle between
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the subsurface velocity through which they travel and the wave propagation vector determines how much a

particular wave will be Doppler shifted when observed at the surface. Waves travelling parallel to the flow

will be effected to the greatest extent, while waves travelling perpendicular to the flow will remain unaffected.

It is then more intuitive to measure the Doppler shift of a distinct wave mode of the Sun and relate that

measurement to a subsurface velocity.

The typical way in which this Doppler shift is measured from a power spectrum is with a non-

linear fitting code. A multi-parameter function that mimics the shape of the modal power and allows for a

directional Doppler shift is fit to different modes. The Doppler shift of the mode is parameterized in such a

way that the two horizontal components of an inferred velocity can be extracted from the fit. In the following

chapter, I will discuss non-linear ring-fitting codes in more detail.

Unfortunately, passing the power spectra through a non-linear process like this severely limits how

much further we can follow the mathematical analysis presented in this chapter. To get around this, we use

a linear approximation to the non-linear process that has been found by Birch et al. (2007) to closely match

the results obtained with a fitting code. The measured Doppler shift is taken as a weighted integral over the

perturbed power at a constant wavenumber:

ui =

∫ ω0+∆ωi

ωo−∆ωi

∫ 2π

0

Wi(ω)δP (ki, θ, ω)k̂ dθ dω, (2.3)

where k̂ is the unit vector pointing in the direction of the wavevector, i.e., in the θ direction. Here, the

weighting function W i is a function of wavenumber direction θ and frequency ω and is applied to the

perturbed power at a constant wavenumber ki = |k| appropriate for the wave mode. The angle θ is the angle

that the wavevector k makes with respect to the kx-axis. The index i specifies the distinct mode within the

power spectrum that is being measured and the frequency window specified by ∆ωi is chosen to isolate the

mode in question. The weighting function W i is defined as

Wi ∼
1

P0(ki, ω)2
∂P0(ki, ω)

∂ω
. (2.4)

In order to apply this linear measurement process to a power spectrum, the spectrum must be trans-

formed from Cartesian coordinates (kx,ky,ω) to polar coordinates (k,θ,ω). The linear measurement procedure
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acts on cuts of the polar-coordinate power spectrum at constant wavenumber k. This transformation is ap-

plied to each power spectrum as soon as it is generated. The number of pixels in the k direction is chosen to

match the number of distinct wavenumber magnitudes along a cardinal direction. For a 16◦ tile using HMI

data, this results in 192 k-bins. The resolution in θ is chosen to be a constant for all values of k for simplicity.

My choice of 64 pixels in θ results in low wavenumbers (k < 10) being oversampled and high wavenumbers

(k > 10) being undersampled. Higher θ resolution results in both higher precision measurements of flows

and higher computational cost. For the primary tile size considered in this thesis, the original Cartesian

dimensions are (nkx
= 384, nky

= 384, nω = 1024) and the final polar dimensions are (nk = 192, nθ = 64,

nω = 1024). The polar-coordinate power spectrum is often called the ‘unwrapped’ spectrum. The modal

structure of the power spectrum is obvious when displayed in an azimuthal average (Figure 2.4).

As opposed to using single-pixel measures of perturbed power as measurements of the subsurface

velocity, this method of measuring frequency shifts of modal power is conceptually straightforward. The

non-linear fitting codes are provided a model of how the spectral power from a given mode is expected

to change as a function of subsurface velocity. In this way, the fitting code can determine the value of

the subsurface velocity that best matches the power spectrum. How the linear power-spectrum weighting

mimics this kind of measurement is less clear. Figure 2.5a shows a cut at constant wavenumber of a 16◦

power spectrum showing a single wave mode that exhibits a frequency shift due to a subsurface velocity. The

direction of the frequency shift relative to the azimuthal direction within the power spectrum indicates a

flow in the positive x-direction. Figure 2.5b shows an unperturbed model of spectral power for a single wave

mode. Figure 2.5c shows the weighting function Wi for measuring the x-component of the frequency shift

shown in Figure 2.5a. A single scalar measurement of the x-component of the frequency shift is produced

by multiplying panels (a) and (c) in Figure 2.5 together at each pixel and then summing over all pixels. The

weighting function looks for power that is shifted either above or below the central frequency of the mode

depending on the direction θ. The weighting function for the y-component of the frequency shift is similar

to Figure 2.5c, but shifted in θ by π/2.

Producing frequency shift measurements with a linear weighting function applied to the power spec-

trum is a simple and robust way of measuring subsurface flows. However, this method has it’s drawbacks
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Figure 2.4: Azimuthal average of 16◦ power
spectrum. The full three-dimensional Carte-
sian power spectrum has been interpolated to
polar coordinates (k, θ, ν) and averaged along
the azimuthal direction θ. Darker colors indi-
cate higher power on a logarithmic scale. The
distinct ridges of power are the different wave
modes. The lowest frequency ridge is the sur-
face gravity wave mode (f -mode). The ridges
above this are the pressure-wave modes, with
p1 directly above the f -mode and p2, p3, etc.
continuing higher in frequency. The ridges at
very low wavenumber are spaced close enough
together to be indistiguishable given the tile
size and apodization.
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Figure 2.5: (a) Spectral power for a wave mode at
constant wavenumber (k = 0.8 Mm−1) mapped as a
function of azimuthal direction θ and frequency ω.
The mode shows a significant frequency shift as a
function of direction due to a subsurface flow in the
zonal (θ = 0) direction. (b) Model of unperturbed
spectral power for the mode shown in panel (a). In
(a) and (b), darker colors indicate higher spectral
power. (c) Linear weighting function Wi(θ, ω) for the
model in panel (b). Blue indicates positive weighting
and red indicated negative weighting.
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when dealing with real solar data. While the linear method is a good approximation for how the non-linear

fitting codes measure frequency shifts, it cannot account for variations in the power spectrum due to non-flow

related effects. The reliability of the linear measurement procedure relies on the applicability of the assumed

model to the real data in all situations.

The model of spectral power has been found to be reasonably accurate under ideal situations (Birch

et al. 2007), but there are a few effects seen in real data that can reduce the reliabiliy. One such effect is

that wave modes seen in the power spectrum can have significant overlap with neighboring modes. At high

horizontal phase speeds (ω/k), the modes become closely spaced compared to their observed line widths and

eventually appear as a single, inseparable mass of spectral power (see Figure 2.4). These high phase speed

modes travel deepest into the Sun and thus contain information about deep flows. A linear weighting function

is unable to separate the contributions from individual modes in these circumstances, limiting the depth to

which one can reliably measure flows. Another effect that complicates the use of a linear weighting function is

foreshortening of the analysis region as the tile center approaches the limb of the solar disk. A tile extracted

close to the limb has an effective spatial resolution that is anisotropic. In the direction towards or away from

the limb, the resolution is degraded due to foreshortening. In the perpendicular direction, the resolution

remains roughly the same. This effect is seen in the power spectrum as an anisotropic diminishing of power at

higher wavenumbers. While the power attenuation is symmetric about the point (kx = 0, ky = 0), it breaks

the assumption of the weighting function that the unperturbed (zero velocity) modal power is constant as a

function of azimuthal direction θ.

A remedy for these detrimental effects is to use a model of spectral power that can directly match

these qualities of the data. A non-linear fitting code with the appropriate model is capable of parameterizing

these effects and reducing their influence on the frequency-shift measurement. In the following chapter, I

will discuss the development of my own fitting code and demonstrate how it can account for these adverse

effects.



37

2.4.1 Sensitivity Kernels

Implicit in the goal of measuring subsurface solar convective flows is the ability to isolate estimates of

the subsurface velocity to localized positions in space. We have found that each frequency-shift measurement

encodes information about the subsurface flows, but we have yet to determine what the spatial distributions

of the flows are. Recovering spatially-isolated estimates of the subsurface flow requires precise knowledge

about how the direct measurements (frequency shifts) are connected to the true flow field. The size of the

tile used to create the power spectra implies a horizontal region that a particular frequency shift is sensitive

to, but the vertical extent has yet to be determined. To determine the exact three-dimensional volume over

which a particular frequency-shift measurement is sensitive, we compute a sensitivity kernel.

Equation 2.2 shows that a measurement of perturbed power is related to an integral over the subsurface

flow field. The weighting of this integral specifies the volume of the solar interior to which the measured

power is sensitive. In this sense, the function G(k, ω,x′, z′) is the sensitivity kernel for a measurement of

δP (k, ω). If one were to instead use the linear weighting function to measure frequency shifts (Equation 2.3),

a new sensitivity kernel could be derived that includes contributions from each δP included in the weighting.

As mentioned in the previous section, a non-linear measurement procedure is preferred to the linear weighting

to account for non-flow related effects seen in the data. In theory, the use of a non-linear measurement of

the power spectrum might preclude the possibility of computing a linear sensitivity kernel. However, it has

been estimated in Birch et al. (2007) that the linear weighting function (Equation 2.4) achieves a reasonable

approximation of a fully non-linear fitting method. Thus, for the purposes of computing sensitivity kernels,

I have assumed that the linear weighting function given in Equation 2.4 is sufficient.

The Green’s function to the perturbed power can be assumed to be isotropic and translationally

invariant (Birch et al. 2004). Combining Equations 2.2 and 2.3 and considering only a single horizontal flow

component, we find that the linear frequency-shift measurement is related to the true subsurface flow as

ui(x) =

∫ ∫

dx′ dz′ Ki(x
′ − x, z′) v(x′, z′), (2.5)

where the new sensitivity kernel is created from a weighted combination of the Green’s functions:

Ki(x
′ − x, z′) =

∫ ω0+∆ωi

ω0−∆ωi

∫ 2π

0

Wi(ω) k̂ · G(ki, θ, ω,x′, z′) dθ dω (2.6)
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This relation holds for a single directional component of the measured shift; the perpendicular direction is

computed similarly. A cross-term kernel can also be constructed by considering how the linear filter may

be sensitive to flows perpendicular to the intended direction. As noted in Birch et al. (2007), the overall

amplitudes of the cross-term kernels are generally small compared to the single-term kernels and thus they

can be safely ignored.

Figure 2.6 shows depth profiles and horizontal cuts for a selection of these three-dimensional sensitivity

kernels. These generally exhibit greatest sensitivity near the surface and oscillate as a function of depth.

In depth, the number of peaks of sensitivity corresponds to one plus the radial order of the mode n. The

horizontal cuts shown in the right panels of Figure 2.6 are taken from the depth of the final peak in sensitivity

for each kernel. The horizontal planform roughly matches the apodization circle (dashed circle), but varies

somewhat with the wavenumber of the mode. Kernels from high wavenumber modes have relatively sharp

edges that match the apodization circle, while kernels from low wavenumber modes show a smoother spatial

profile.

The broad horizontal extent and complex vertical structure of these sensitivity kernels severely limits

our ability to directly interpret the frequency-shift measurements as measures of the subsurface flow field.

Chapter 4 will discuss a method of combining large sets of frequency-shift measurements and their associated

sensitivity kernels to produce estimates of the flow field that are much easier to interpret.

For a more in-depth discussion on what these sensitivity kernels look like, see Featherstone (2011).

The set of sensitivity kernels used in this thesis are largely taken from Featherstone (2011), with a few

additions to account for a larger mode set.

2.5 High-Resolution Data Sets and Their Properties

The scientific results presented in the latter chapters of this thesis are based on measurements from

eleven different analysis periods. Each analysis period is created from a 25.6 hour sequence of HMI Dopp-

lergrams. The Carrington rotations (Carr. Rot.), central-meridian longitudes (CM Lon.), and International

Atomic Times (TAI) of the midpoint of each analysis period are listed in Table 2.1. The first seven periods

(A1-A7) are taken from consecutive timespans to allow near-continuous monitoring of convective patterns
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Figure 2.6: Left: Horizontally integrated sensitivity kernels plotted as a function of depth. The four panels
from top to bottom are different measured wave modes. The vertical lines indicate the depth of the final
peak of sensitivity in depth. Right: Cuts of each sensitivity kernel at the depth indicated by the vertical
lines in the left panel. The dashed circles indicate the size of the apodization circle for a 16◦ tile. The higher
wavenumber modes (a,b) tend to show a clearer edge near the apodization circle and often exhibit some
ringing. The lower wavenumber modes (c,d) have smoother sensitivity as a function of position.
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as they rotate across the solar disk. The final four periods (B1-B4) are spaced out by a few weeks from

each other and from the A group. These have been chosen because they contain completely independent

convective realizations from the first group of analysis periods. These are particularly useful for determining

the level of systematic errors. When describing the analysis period used for a particular scientific result in

later chapters, I will refer to the identifiers listed in this table.

Table 2.1: List of analysis periods used in this thesis.

Identifier Carr. Rot. CM Lon. Central Time

A1 2099 195 2010.07.25 20:51:42 TAI

A2 2099 180 2010.07.27 00:04:27 TAI

A3 2099 165 2010.07.28 03:17:20 TAI

A4 2099 150 2010.07.29 06:30:17 TAI

A5 2099 135 2010.07.30 09:43:15 TAI

A6 2099 120 2010.07.31 12:56:22 TAI

A7 2099 105 2010.08.01 16:09:32 TAI

B1 2100 210 2010.08.20 23:04:50 TAI

B2 2101 270 2010.09.12 16:08:56 TAI

B3 2102 180 2010.10.16 18:32:46 TAI

B4 2103 180 2010.11.13 01:44:38 TAI

A set of 16◦ tiles have been extracted from each analysis period spanning 90◦ in both longitude and

latitude with a spacing of 0.25◦ in-between. This results in 130,321 tiles for each region, and 1,433,531 tiles in

all. Each tile has been converted into an unwrapped power spectrum and fed independently to the ring-fitting

code that is detailed in the following chapter. The fitting code produces around 220 reliable frequency-shift

measurements per tile, resulting in a final data set of 315 million frequency shifts. Each analysis period

required around 150,000 cpu-hours to go from Dopplergrams to frequency-shift measurements, resulting in

1.7 million cpu-hours for the whole set of analysis periods. This computing was done on NASA’s Discover

supercomputer using a code I developed called ATLAS. ATLAS is a highly parallelized code intended for
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doing high-resolution ring-diagram analysis and can run on thousands of cpus simultaneously.

The final inversion step operates simultaneously on every frequency shift measurement from a chosen

analysis period. The end result of the inversion is one three-dimensional flow field realization for each of

the eleven analysis periods. These flow fields are the final data product of the high-resolution ring-diagram

analysis described in this chapter. The information contained in these flow fields form the basis of the

scientific discoveries presented in Chapters 5 and 6. These three-dimensional flow fields are the final result

of the entire high-resolution ring-diagram analysis. The scientific discoveries in Chapters 5 and 6 are based

solely on these results.



Chapter 3

Multi-Ridge Fitting

Inferences of subsurface flow velocities using ring-diagram helioseismology depend on measuring the

frequency shifts of oscillation modes seen in acoustic power spectra. Current methods for making these

measurements utilize maximum-likelihood fitting techniques to match a model of modal power to the observed

spectra (Basu et al. 1999; Haber et al. 2002). The model typically describes a single oscillation mode, and

each mode is fit independently from the others. We present a new method that produces measurements

with greater reliability and accuracy by fitting multiple modes simultaneously. We demonstrate how this

method permits measurements of subsurface flows deeper into the Sun while providing higher uniformity in

data coverage and velocity response. While the previous fitting method performs marginally better for some

low-phase-speed modes, we find this new method to be particularly useful for high-phase-speed modes that

penetrate most deeply below the photosphere.

This chapter is based on work previously published in Greer et al. (2014)1 and is largely a restatement

of that paper with some augmentations to be more relevant to the thesis as a whole. I was the primary

author on that paper and did both the code development and data analysis presented in the paper. My

co-authors provided valuable guidance as to the types of statistical tests that would be useful to a broad

audience.

1 Greer, B. J., Hindman, B. W., & Toomre, J. 2014, Multi-Ridge Fitting for Ring-Diagram Helioseismology, Solar Physics,

289, 2823
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3.1 Introduction

Helioseismology determines the structure and dynamics of the solar interior through analysis of seismic

waves observed at the surface. Ring-diagram helioseismology (Hill 1988; Basu et al. 1999; Haber et al. 2002)

investigates subsurface horizontal flows by measuring the direction-dependent frequency shift of oscillation

modes. The Doppler shift of the frequency of an oscillation mode due to a subsurface flow is expressed as

δωn(k) = k · ui, (3.1)

where k and n are the horizontal wavenumber and radial order of the oscillation mode (indexed by i), and

ui is the associated spatial average of the horizontal velocity within the Sun,

ui = 〈v(x, z)〉 =

∫ ∫

dx dz Ki(x, z) v(x, z). (3.2)

Here, v(x, z) is the true horizontal subsurface flow velocity at any point (x, z) in the Sun, and Ki(x, z) is

the weighting function—or sensitivity kernel—associated with each distinct mode (i), which describes the

spatial extent over which the true velocity is averaged to create a single frequency shift (Birch et al. 2007).

While the interpretation of the frequency shift is straightforward, the method of extracting it from

the data is not. Traditionally, a model of the spectral power is fit to those oscillation modes visible in power

spectra of the line-of-sight velocity observed in the photosphere. The model accounts for a frequency shift

of the modal power as a function of horizontal direction, and this shift is directly related to the velocity as

shown in Equation 3.1. The specifics of the fitting procedure determine how well the frequency shifts are

measured, as well as what other qualities of the power spectra are taken into account. There are currently two

commonly used fitting procedures in the Helioseismic and Magnetic Imager (HMI) Ring-Diagram Pipeline

(Bogart et al. 2011a). The first method considered in this chapter is one introduced by Haber et al. (2002),

which fits a frequency-shifted Lorentzian model to individual modes. Since this method analyzes single

ridges of modal power sequentially, we refer to it as the Single-Ridge Fitting method (SRF). The second

method used in the HMI Pipeline, which will not be considered here, also fits modes independently (Basu

et al. 1999), but uses a significantly different power model that includes asymmetries in modal power, two

background terms, and a host of other wavenumber- and direction-dependent modifications.
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In this chapter, we present a new fitting method that utilizes a model similar to that used in the SRF

method, but modified to permit multiple radial orders to be fit simultaneously. The development of this

Multi-Ridge Fitting (MRF) method is an attempt to improve upon the performance of the SRF method in

terms of reliability and accuracy of measured frequency shifts. We present a comparison of the frequency

shifts from a common data set processed with both fitting methods. We focus on the performance for

measurements of modes that reach deepest into the Sun and for measurements made near the solar limb. As

metrics of reliability and accuracy we consider the fit success rate, the typical estimated uncertainty in the

measurements, and how well each method recovers an introduced frequency shift from a known velocity.

Both fitting codes operate on the unwrapped three-dimensional power spectra described in the previous

chapter. For better comparison to previous studies, three different tile sizes have been analyzed (16◦, 4◦,

and 2◦). While the performance of the two fitting codes for smaller tiles sizes is instructive, the rest of this

thesis only relies on results made with 16◦ tiles. For the majority of this chapter, the standard dense-pack

tiling scheme has been used.

The MRF code uses these spectra as input, while the SRF code requires an additional processing

step. For the SRF method, the power is normalized by the average power computed at each wavenumber k

and azimuth angle θ (Haber et al. 2000). The purpose of this filtering is to eliminate large power variations

as a function of azimuth which arise from a variety of sources including camera astigmatism and power

foreshortening. The MRF method does not use filtered power spectra, as it allows for such variations of

power in the fitting procedure itself.

In Section 3.2 we describe the SRF and MRF fitting methods and how they differ in procedure. In

Section 3.3 we compare the performance of the two fitting methods using a common data set. In Section

3.4 we discuss the implications of the results in the context of improving accuracy and data coverage in

ring-diagram helioseismology.
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Figure 3.1: Sections at k = 0.8 Mm−1 of the power spectra for three different 16◦ tiles: (a) tile extracted
from disk center tracked at the Snodgrass (1984) rate, (b) tile from disk center tracked at 500 m s−1 relative
to the Snodgrass rate, and (c) tile from the central meridian and 75◦N latitude tracked at 130 m s−1. Red
dashed lines indicate approximate bounds for the frequency windows used for independent mode fitting
in the SRF method. Green dashed lines indicate the single frequency window used in the MRF method.
Velocity-induced frequency shifts are evident in (b) and (c), and significant power foreshortening is visible
in (c).

3.2 Fitting Methods

3.2.1 Single-Ridge Fitting (SRF)

In a cylindrical section at constant wavenumber [k], distinct modes can clearly be seen (Figure 3.1).

Each radial order intersects the surface of constant wavenumber to create a band of power with a central

frequency. Sub-surface flows cause each band to trace out a slight sinusoidal undulation in frequency (ν) as

a function of azimuth (θ). In order to separate each radial order seen in the data, the SRF method extracts

a small range of frequencies at a constant wavenumber centered around a specific mode. The bounds in

frequency are based on a guess table that provides the initial values of the parameters that will be fit to the

data. When a mode is framed both above and below in frequency by other modes, the bounds in frequency
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are taken as part-way between the central frequencies of the adjacent modes. For the highest and lowest

modes in frequency that do not have adjacent modes on both sides, the outer boundaries are taken as a few

linewidths away. SRF sequentially extracts frequency windows around each desired radial order and fits a

six-parameter model—Equation 3.3—to each window using a maximum-likelihood technique (Anderson et al.

1990; Haber et al. 2002). The SRF method represents the power in each mode as a symmetric Lorentzian

with an angle-dependent frequency:

P (ν, θ) = B +
AΓ/2

[ν − ν0 + (2π)−1k · u]2 + (Γ/2)2
, (3.3)

u = ux cosθ x̂ + uy sinθ ŷ. (3.4)

Here P (ν, θ) is the power as a function of frequency and azimuth; A is the amplitude; Γ is the line-width;

ν0 is the central frequency; k is the wavenumber; ux and uy are the frequency shift components; and B is a

constant background. Since the measured frequency shift is an average measure of the subsurface horizontal

velocity, it has two horizontal components and can itself be written as a vector quantity. There are six

parameters in this model (A, Γ, ν0, ux, uy, B), that need to be fit to each mode independently at every

wavenumber and radial order. By marching through each discrete wavenumber for a given tile size and

attempting to fit each mode listed in the guess table, the SRF method produces the optimal values of these

six parameters for every mode. A measurement of the random error of each frequency shift component

(ux and uy) is determined by the curvature of the maximum-likelihood function evaluated at the point

of optimization (Anderson et al. 1990). This provides an estimate of how much each parameter can vary

without significantly decreasing the quality of the fit. It is this that we identify as the estimated uncertainty

on each measurement that we will be making. Each measured frequency shift has an associated estimated

uncertainty that is measured from the same data.

There are a number of ways in which a fit can fail or be deemed invalid. The numerical optimization

procedure can fail to converge on a solution, causing no valid data to be produced for a single mode. If

there is a successful fit, the data can still be rejected if the parameters are outside of predetermined bounds.
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Figure 3.2: Azimuthal averages of a spectrum
generated from a single 16◦ tile extracted at
disk center. Each curve corresponds to a dif-
ferent horizontal wavenumber: k = 0.23 Mm−1

(red, top), k = 0.58 Mm−1 (green, middle),
and k = 1.42 Mm−1 (blue, bottom). Curves
are offset in power for clarity. Modes at
lower wavenumber and higher frequency are
spaced closer together, causing significant over-
lap. Ridges at high wavenumber look flattened
due to azimuthal averaging over a flow-induced
frequency shift.

These bounds are chosen to ensure that the parameters obtained through fitting are physically relevant.

At moderate wavenumbers (k ≥ 0.5 Mm−1) in larger tile sizes, individual modes are sufficiently

separated in frequency to justify this approach of independent fitting (Figure 3.2). However, at lower

wavenumbers, modes of neighboring radial order blend together to form a mound of spectral power without

prominent individual peaks. Smaller tile sizes also have more blending of modes at all wavenumbers due

to the smaller spatial apodization. In these situations, severe mode blending brings into question the idea

of fitting each mode independently with a single Lorentzian model with a constant background term. The

frequency window used around each mode also raises issues when a subsurface flow introduces a large

frequency shift. At k = 0.5 Mm−1, a 300 m s−1 flow is sufficient to shift significant mode power past the

frequency boundaries chosen to split up the data for fitting. Tiles produced in the standard HMI Ring-

Diagram Pipeline are tracked at the Carrington rate (Bogart et al. 2011a), which at extreme latitudes differs

from the local surface rotation rate by nearly 250 m s−1. Not only does mode power shift outside the fitting

window for a given mode, but power from neighboring modes that is not accounted for in the model enters

the window and potentially throws off the fitting (Routh et al. 2011).

3.2.2 Multi-Ridge Fitting (MRF)

To mitigate the issues that come with independent fitting of modes, we have developed the Multi-Ridge

Fitting (MRF) code. This new method fits multiple radial orders simultaneously at a given wavenumber over

a wider window in frequency. The function used to describe the collection of modes is a sum of symmetric
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Lorentzians, each similar to those used in the SRF method:

P (ν, θ) = B(ν, θ) +

N−1
∑

n=0

An(Γn/2)

[ν − νn + (2π)−1k · un]2 + (Γn/2)2
F (θ; fn, θn), (3.5)

F (θ; fn, θn) = 1 + fncos[2(θ − θn)], (3.6)

where An, Γn, νn, ux,n, and uy,n retain the same purpose as in the SRF method, and the sum is taken over

the number of modes specified in the guess table at a given wavenumber. The new factor [F (θ; fn, θn)] in

the numerator of each Lorentzian accounts for amplitude variation as a function of θ using the parameters

fn and θn. While the constant background term used in Equation 3.3 is roughly valid when considering the

narrow range of frequencies used in SRF, the background term is modified here to represent background

power over a wider range by using a modified Harvey law (Harvey 1985):

B(ν, θ) =
B0

1 + (ν/νbg)b
F (θ; fbg, θbg). (3.7)

Here, B0 is the amplitude; νbg is a roll-off frequency; and b is the power law index. Again, there is a power

anisotropy term (fbg, θbg) in the amplitude. The low-frequency end of the fitting window is taken as 0.3 mHz

at all wavenumbers to allow a large fraction of the background power to be utilized in constraining the model.

The top of the frequency window is taken as two linewidths above the highest central frequency listed in

the guess table at a given wavenumber. As a pre-conditioning step before performing the optimization of

every parameter in Equation 3.5, the MRF method performs a simple three-parameter fit (A, Γ, ν0) to each

mode listed in the guess table. This step is similar to the fit performed in the SRF method, but does not

take any variation along azimuth into account. This step provides an improved initial condition for the full

optimization for each mode. Improved initial parameters for the background term are also obtained prior to

the final optimization by fitting the parameters (B0, νbg, b) to the spectrum between 0.3 mHz and 1.5 mHz.

Uncertainty estimates are once again measured from the curvature of the maximum-likelihood function.

It is important to note the significant increase in the number of parameters from Equation 3.3 to

Equation 3.5. Typical nonlinear optimization algorithms scale in time as m2, where m is the number

of parameters being fit simultaneously. To fit all of the ridges at a single wavenumber, the SRF method

performs N sequential optimizations with m = 6. The MRF method fits the same set of ridges simultaneously
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with m = 7N + 5, leading to an expected optimization time ≈ 1.4N times slower for large N . Not only is

this new procedure more computationally demanding, it is much more susceptible to the numerical issue of

wandering through parameter space. To ensure a timely convergence, constraints are placed on some of the

model parameters:

• Amplitudes and widths must be positive.

• Central frequencies must not cross those of adjacent modes.

• Widths must be within an order of magnitude of lookup table values.

• Both zonal and meridional frequency shifts must be smaller than ± 1km s−1.

• Fractional anisotropy must be between 0 and 1.

These constraints are enforced during the optimization process to limit the available parameter space.

3.3 Comparison

Each fitting method requires a set of initial values for each parameter, often referred to as a guess

table. The guess table contains typical values of the central frequencies, widths, and amplitudes of each

mode that are fit. To have a fair comparison between the two methods, they have been supplied the same

guess table, and thus the same set of modes to attempt for each tile size (Figure 3.3).

While the MRF method accounts for power anisotropy in the model (Equation 3.5), the SRF method

depends on additional processing of the input power spectra to flatten power anisotropy. The unfiltered power

spectra are fit using both methods, while the filtered ones are only fit by the SRF method. We confirm that

the SRF method performs slightly better on the filtered spectra (Haber, personal communication, 2013), so

the analysis in this chapter compares unfiltered spectra fit with the MRF method to filtered spectra fit with

the SRF method.
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Figure 3.3: Guess-table frequencies for each tile size demonstrating which modes are attempted in both
fitting methods. The gray dashed lines are lines of constant phase-speed (ω/k). From left to right, the
values of phase-speed are 10, 20, 40, and 80 km s−1. The discrete ridges of modes indicate the individual
radial orders, with the f -mode at low frequency, followed by p1 through p9.

3.3.1 High Phase-Speed Modes

Each distinct mode that is fit has an associated kernel that specifies the spatial sensitivity to subsurface

flows (see Equation 3.2). While the horizontal profile of these kernels is largely determined by the tile

apodization (Hindman et al. 2005; Birch et al. 2007), the vertical profile changes significantly across the

mode set as it depends on the mode’s radial eigenfunction. The sensitivity for f -mode kernels has a single

peak in depth, and each successively higher radial order adds an additional peak. The final peak of sensitivity

for any mode occurs approximately where the horizontal phase-speed [ω/k] equals the local sound speed,

causing each mode within a single radial order but different horizontal wavenumber to have a slightly different

kernel. By matching phase-speeds to the sound speeds tabulated in solar Model S (Christensen-Dalsgaard

et al. 1996), we can use phase-speed as a proxy for the depth to which a mode reaches into the Sun.

Current results that utilize the SRF method can reach down to 20 Mm (0.97 R⊙), partway into the

near-surface shear layer (Haber et al. 2000). In order to extend modern ring-diagram analysis deeper into

the Sun, we must obtain frequency-shift measurements for higher phase-speed modes. An easy way to do

this is to increase the tile size or the tracking duration, with the result of increasing the signal-to-noise across
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the entire power spectrum of each tile. Increased tile sizes also suffer less blending and can sample lower

wavenumbers. However, if we wish to preserve horizontal and temporal resolution, we must consider how

improvements to the fitting method can produce reliable measurements for higher phase-speed modes of a

constant tile size.

The first aspect to consider is how reliable each method is for obtaining measurements of high phase-

speed modes. By dividing the number of successful measurements by the number attempted, we get a

measure for each mode of the success rate on a per-mode basis. There are two primary reasons that either

fitting method will fail to produce a successful measurement: poor data quality and poor choice of model. In

the first case, as the signal-to-noise ratio of a particular mode decreases, the estimated uncertainty on each

model parameter increases. At some point, the fitting methods will fail to locate the mode amongst the noise

and the fit will be deemed a failure. In the second case, if there is no way for the fitting method to adjust

the provided model in a way that appropriately matches the data, it will struggle to converge on an optimal

and unique solution. Both fitting methods will judge the attempt a failure if it does not converge within a

specified number of optimization iterations or converges to non-physical model parameters. Measurements

of the uncertainty on the model parameters for this case are not necessarily an accurate estimation due to

the irreparable disparity between model and data.

Plotted as a function of lower turning point depth, Figure 3.4 demonstrates how deep into the Sun

each fitting method is capable of measuring. To isolate the effects of phase-speed, the success rate illustrated

here was compiled using only tiles bounded within 30◦ of disk center. Since the spacing between adjacent tiles

in our mosaic depends on the tile size considered, there is a different number of tiles within this boundary for

each tile size (49 for 16◦ tiles, 805 for 4◦, and 3249 for 2◦). We average the success rate over ten independent

realizations of all tiles found within this boundary, resulting in 490 attempted frequency shift measurements

of each mode for 16◦ tiles, 8050 for 4◦ tiles, and 32,490 for 2◦ tiles. While the guess table has been tuned

to provide optimal results for the SRF method, the scatter seen in the SRF success rate is primarily caused

by imperfect guess parameters. The MRF method is in general less susceptible to this effect. A striking

difference between the two methods is how the success rate falls off with increasing depth. Both methods

are most successful for the shallowest depths sampled with a given tile size. The SRF method tends to have



52

a gradual decrease in the success rate as the depth increases, while the MRF method maintains a nearly

constant success rate through the entire mode set. As the tile size decreases, the MRF success rate again

stays largely constant while the SRF success rate decreases for all depths. The success rate for the SRF

method also has a slight dependence on wavenumber, causing the variation of success rate between each

radial order at every depth.

The measured uncertainty as determined by each fitting method also show a strong dependence on

phase-speed (Figure 3.5). As a function of lower turning-point depth for each mode, the average estimated

uncertainty is bounded from below by an envelope that exponentially increases with depth. Near-surface

flows in the upper few megameters of the Sun (typical flow speed ≈ 150 m s−1) can be determined with

sufficient precision using a single mosaic of tiles tracked through one day, while flows at the bottom of the

near surface shear layer (≈ 35 Mm, typical flow speed ≈ 50 m s−1: Schou et al. (1998)) require a significant

amount of averaging in time and space to achieve a reasonable signal-to-noise ratio. Despite the considerable

differences in success rate at extreme depths, there are only slight differences between the typical measured

uncertainties of each method. The average uncertainty obtained with the MRF method is slightly larger for

shallow modes than that obtained with the SRF method. For deeper penetrating modes and for smaller tile

sizes, the MRF uncertainties become smaller than the SRF uncertainties.

Through these two metrics (success rate, estimated uncertainty), we see that the MRF method per-

forms more consistently with depth while maintaining similar estimates of the average uncertainty.

3.3.2 Approaching the Solar Limb

The previous results regarding how each fitting method performs at high phase-speeds were compiled

using tiles near the center of the solar disk (r ≤ 30◦). Both methods perform optimally near disk center and

produce lower-quality results closer to the limb. The primary cause of this is foreshortening, which causes

the effective resolution in one direction to be considerably less than that in the perpendicular direction. In

the power spectra, this appears as a reduction of power along the direction of foreshortening. Since the

MRF method has additional terms to account for this type of power variation in both the mode power and

background power, it is expected that it will outperform the SRF method near the limb.
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Figure 3.4: Fit success rate as a function of lower turning point of each mode found in the guess table. Left
column is SRF results. Right column is MRF results. Rows correspond to the three tile sizes. To minimize
the effects of disk position, all tiles of a given size falling within 30◦ of disk center have been considered here.
The success rate is averaged over ten independent realizations of these tiles, covering ten days of tracking.
The MRF success rate is higher at nearly every depth for every tile size.
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Figure 3.5: Left: Average estimated uncertainty of the SRF method as a function of lower turning point
for each mode. Right: Ratio of MRF uncertainties to SRF uncertainties. Rows correspond to the three tile
sizes. To minimize the effects of disk position, all tiles of a given size falling within 30◦ of disk center have
been considered here. The success rate is averaged over ten independent realizations of these tiles, covering
ten days of tracking. The MRF method produces uncertainty estimates that are largely similar to those
from the SRF method, with some differences for modes that reach deepest.
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The ability to push closer to the limb has many benefits. Regions of strong magnetic activity are

continually evolving as they pass across the solar disk from the east limb to the west limb. To maximize

the amount of time that these regions are accessible with ring-diagram analysis, we must be able to measure

frequency shifts close to the solar limb. The consistency of measurements as a function of disk position is

important for studying the evolution of flows across the disk. The possibility of high-latitude meridional

counter-cells has been of great interest (Rightmire-Upton et al. 2012; Komm et al. 2013; González Hernández

et al. 2010), increasing the need for analysis methods that perform consistently between disk center and high

latitudes. Careful removal of large-scale systematics has a noticeable effect on the determination of subsurface

flows (Zhao et al. 2012; Greer et al. 2013; Zhao et al. 2013). The accurate measurement of these systematics

is also dependent on the spatial uniformity of the methods that obtain frequency shift measurements.

Once again, it is useful to first consider the success rate of each method as a function of disk position

(Figure 3.6). A single mosaic of tiles tracked through one day covering the entire solar disk was analyzed to

produce 223,750 attempted measurements for 16◦ tiles, 611,390 for 4◦ tiles, and 632,740 for 2◦ tiles. For the

SRF method, not only does the success rate at every disk position depend on the radial order of a mode,

but the success rate for each radial order also falls off at different distances from disk center. Each radial

order has a distance from disk center where the success rate transitions from a nearly constant value near

disk center (0◦) to a steep drop towards the limb. For 16◦-tile f -mode fits made with the SRF method, this

distance is around 75◦ in heliographic angle, but for each higher order the distance decreases. By p9, this

distance has dropped to only 45◦. With fewer high phase-speed measurements being made away from disk

center, the depth to which subsurface flows can be determined becomes position dependent. The smaller tile

sizes display a similar trend, only with a lower success rate for each order at all disk positions.

In contrast, the MRF method has a higher success rate in nearly all cases. For 16◦ tiles, the distances

at which each radial order begins to drop off are now nearly equal at around 75◦. This results in the MRF

method producing much more uniform results across the solar disk, both in spatial coverage and in depth.

Smaller tile sizes show a decrease in the success rate closer to disk center, but it is still roughly constant for

all modes.

The average uncertainty as a function of distance from disk center (Figure 3.7) shows similar trends
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Figure 3.6: Success rate for each radial order averaged over all wavenumbers as a function of distance from
disk center. The success rate as a function of distance from disk center for the SRF method is different for
each radial order, while the success rate for the MRF method is largely constant. The f -mode has roughly
the highest success rate, while each higher radial order has a successively lower success rate.
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for both fitting methods. Both have nearly constant estimated uncertainties from disk center out to around

60◦. Beyond this, the magnitude of the estimated uncertainties for all radial orders rise steeply in both

fitting methods. The primary difference between the two methods is how severe this rise in uncertainty is

near the limb. For 16◦ tiles fit with the SRF method, the average uncertainty for high-radial-order modes

quickly passes 1 km s−1 outside of 60◦ from disk center. The MRF method shows a slower rise in estimated

uncertainty for these modes, reaching 1 km s−1 only for the worst cases.

3.3.3 Frequency Shift Accuracy

As demonstrated in the previous sections, the MRF method produces a larger quantity of successful

frequency-shift measurements with estimated uncertainties comparable to those produced with the SRF

method. However, this does not guarantee that the flows determined by either method will be correct.

To ascertain the accuracy of each fitting method, we must compare the measurements to a known average

velocity. We accomplish this by introducing known frequency shifts into the data set through the tile tracking

rate. Usually every tile is tracked longitudinally at a rate close to the surface differential rotation rate in

order to minimize the effects of a large zonal flow. By altering the tracking rate for each tile such that it

slides east or west at some ∆v relative to the standard tracking rate, we introduce a known frequency shift

as a Galilean transformation. We track the same set of tiles from the same temporal sequence at a variety

of ∆v values and use both fitting procedures to gather frequency-shift measurements. By comparing the

difference in measured zonal frequency shift between a region tracked at ∆v = 0 and the same region tracked

at a non-zero ∆v, we determine how accurately each fitting method can reproduce the known frequency

shift. By considering only the differences in measured frequency shifts made at the same disk position, any

systematics that are independent of tracking rate are removed from the analysis.

A set of tiles covering the entire solar disk are tracked for a single day over a range of ∆v spanning

500 m s−1 in each direction. The zonal frequency shift measurements made at ∆v = 0 are subtracted from

those made at all other values of ∆v independently for each mode of each tile to remove physical flows

and systematics. The ideal velocity response is to have the measured frequency shift difference consistent

with the introduced velocity difference. By subtracting the known velocity difference from the measured
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Figure 3.7: Average estimated uncertainty as a function of distance from disk center for SRF on left, MRF
on right. The average uncertainty for both methods stay roughly constant near disk center and increase
dramatically outside 60◦. The f -mode has the lowest average uncertainty, while each higher radial order has
a successively higher average uncertainty.
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difference, we obtain the frequency shift deviation as a function of ∆v. At each disk position, we perform a

linear regression of these deviations against ∆v for a collection of modes of similar phase-speed,

[u(∆v) − u0] − ∆v = a0 + a1∆v, (3.8)

u0 ≡ u(0). (3.9)

Here, u(∆v) is the measured frequency shift of a single mode obtained with either fitting procedure for a

given tile tracked at ∆v relative to the default rate, and u0 is the measured frequency shift from the same

tile tracked at the default rate. The left side of Equation 3.8 represents the deviation of measured frequency

shift from the introduced velocity, while the right side expresses this deviation with a linear dependence on

the introduced velocity. We bin together measurements made from modes within a range of phase-speeds at

each disk position and fit the coefficients a0 and a1. We use the coefficient a1 as a diagnostic for how each

method responds to velocities where a1 = 0 is ideal. Mapped as a function of disk position (Figures 3.8,

3.9), this quantity shows the spatial uniformity of velocity response. The measured value of a0 is consistent

with zero in all cases, so it will not be discussed further. The mode set for each tile size is divided into two

subsets based on the lower turning-point depth of each mode. The depth at which each mode set is split is

dependent on tile size and is chosen to get roughly the same number of modes in each subset. Modes with

lower turning points in the upper 16 Mm for 16◦ tiles, 4 Mm for 4◦ tiles, and 2 Mm for 2◦ tiles are shown

in Figure 3.8, while modes with lower turning-point depths below this are shown in Figure 3.9.

The velocity response of modes with shallow lower turning points from 16◦ tiles is largely ideal across

the entire disk for both the SRF and MRF methods (Figure 3.8), but with a slight overestimation at high

latitudes. For smaller tile sizes, the SRF method produces position-dependent results, while the MRF method

begins to show a uniform underestimation of frequency shifts. For 4◦ tiles, the SRF method underestimates

frequency shifts far from the equator by around 10% and overestimates far from the central meridian by

the same amount. The SRF pattern for 2◦ tiles is much less clear due to scatter in the measurements and

lower success rate, but there is still a trend for overestimating in the east–west direction and underestimating

in the north–south direction. The MRF results exhibit a much more spatially uniform pattern while still
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Figure 3.8: Velocity response for modes with lower turning points in the upper 16 Mm for 16◦ tiles, 4 Mm
for 4◦ tiles, and 2 Mm for 2◦ tiles. The inner dashed circle is at 30◦ from disk center and the outer dashed
line is at 75◦. The SRF velocity response (left) has significantly higher spatial variability over the solar disk
than the MRF method (right).
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showing a consistent underestimation of 5% to 10%. For every tile size, the SRF results tend to be most

accurate within 30◦ of disk center (the inner dashed circles of Figures 3.8 and 3.9) while the MRF results

show a consistent underestimation that depends on tile size. From 30◦ out to 75◦ from disk center (the outer

dashed lines of Figures 3.8 and 3.9), the MRF results are more accurate and spatially consistent than the

SRF results. Beyond 75◦ for smaller tile sizes, the MRF results begin a consistent underestimation while

the SRF results maintain the spatially varying pattern seen inside 75◦. For modes sensitive to deeper flows

(Figure 3.9), spatial uniformity is less of an issue while both methods obtain underestimations (5% to 10%)

of the introduced velocity.

As tiles are tracked at large values of ∆v, they begin to average over the subsurface flows in a more

extended physical region than the same tiles tracked at ∆v = 0. Since this extra tracking distance is constant

for all tile sizes, it is the smallest tile sizes that are affected the most. Sub-surface flows that vary on a length

scale comparable to the tile size add to the scatter seen in Figures 3.8 and 3.9. Since the zonal component of

these small-scale flows averages to zero over large regions of the disk, there is no significant bias introduced

to the analysis. The small-scale pattern that emerges in the 2◦ map for MRF measurements (and 4◦ to a

lesser extent) is due to supergranular flows. While the SRF maps should display the same exact pattern, it

is interesting to note that the variance appears to obscure the pattern.

3.3.4 Post-Processing of Frequency Shift Measurements

As seen in the overview of ring-diagram processing in Figure 2.1, the next step in the helioseismic

pipeline is to combine a large set of frequency shift measurements in an inversion. This inversion creates

estimates of the subsurface flow at each point in space that are easier to interpret than the raw frequency

shifts. As we will find in the next chapter, the particular inversion method used in this thesis requires the

data coverage and estimated uncertainties of the frequency shifts to be spatially invariant. While a range

of tile sizes have been considered in this chapter, the inversion procedure uses only a single tile size (16◦).

The inversion requires that the tiles at every disk location produce the exact same mode set with the exact

same estimates uncertainties. The regions under consideration fall within 45◦ of disk center, which allows

us to use the mean uncertainty of any given mode as a representative value over the whole region (Figure
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Figure 3.9: Velocity response for modes with lower turning points between 16 and 48 Mm for 16◦ tiles,
between 4 and 12 Mm for 4◦, and between 2 and 6 Mm for 2◦. The inner dashed circle is at 30◦ from
disk center and the outer dashed line is at 75◦. Frequency shift measurements from deeper modes show less
spatial variability over the solar disk for both the SRF method (left) and the MRF method (right).
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3.5). Figure 3.4 shows the fit success rate for each mode of 16◦ tiles using the MRF method. The few modes

that have a success rate lower than 0.98 are removed from the data set altogether. The remaining modes

still need post-processing in order to be useful to the inversion, as no mode has a success rate of exactly 1.

Post-processing is done to fill any gaps in the data and is done on a mode-by-mode basis. Frequency

shift measurements made across the solar disk for the same mode are compared to each other in order to

determine the quality of the mode. Mapping the x-component of the frequency shift as a function of disk

position for a few modes, we can understand how reliable the fitting code really is. Figure 3.10 shows

measured frequency shifts for two modes that the MRF code can fit reliably. While previous results from

16◦ tiles were spaced out by half the tile size, these measurements have been immensly oversampled for the

benefit of the inversion procedure. Panel (a) shows a fairly smooth map of frequency shift measurements

with very little uncorrelated noise. Panel (b) has a small amount of noise, but this does not appear to be

pervasive over the whole region.

The post-processing applied to each mode individually has a few steps. First, separate Gaussian

profiles are fit to the distributions of frequency shifts and estimated uncertainties. These Gaussian fits

provide a robust measure of the mean and standard deviation of the two distributions. The mean of the

distribution for the estimated uncertainty is used later as the representative value for all measurements from

that mode. Second, bad data points within the set are located and flagged. A bad data point is identified by

either a point that is lacking any measurement or has a frequency shift value or estimated uncertainty more

than eight standard deviations away from the mean of the respective distributions. This criterion based

on the distribution selects measurements that are far outliers from the rest of the measurements. The bad

points are then given new values that are linearly interpolated from the nearest-neighbor locations. This

interpolation step is repeated a few times to account for small groups of neighboring bad pixels. The result is

a map of frequency shift measurements that has uniform coverage and lacks significant single-pixel outliers.

High resolution maps such as those in Figure 3.10 provide a plethora of data points and allow a robust

measure of the distributions.

Even if a mode has a high enough success rate and can be successfully post-processed to make a

spatially continuous map, it can still be deemed invalid. By checking each of the 250 or so modes by eye, we
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Figure 3.10: Measured frequency shifts as a function of disk location for two wave modes. For each day of
analysis, 220 maps such as these are included in the inversion. The typical estimated uncertainty on any
measurement in the left and right maps are 19 m s−1 and 64 m s−1, respectively. The data shown in panel
(a) appears smooth across the entire domain, while the data shown in panel (b) shows small-scale noise.
This noise appears as single-pixel deviations from the overall distribution. High-phase-speed modes such as
the one in panel (b) generally exhibit more noise, and are discarded if the noise level exceeds a set value.
The dashed circle indicates the size of the tile (16◦). It is important to note that the maps have prominent
structure on scales smaller than the tile size.

find that some modes show strange spatial jumps when mapped as a function of disk position. Figure 3.11

shows two such modes that display sharp jumps in the measured frequency shift as a function of position.

The frequency shift from any given tile is an average measure of the flow field below the tile, and thus we

would generally expect that measurements made on a grid with a resolution much smaller than the tile size

would appear smooth. Instead, preliminary analysis of these jumps in the data has shown that they are

likely due to a failure of the fitting code to measure the intended frequency shift. Since the fitting code

performs a non-linear optimization, it is possible for the fit to wander away from the appropriate frequency

shift and latch onto some other feature in the power spectrum. It would appear as through some small-scale

variation present in the Dopplergram data causes the fitting code to pick between different distributions of
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measurements.
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Figure 3.11: Measured frequency shifts for two high-phase-speed modes presented similarly to Figure 3.10.
The arrows highlight regions that demonstrate nonphysically sharp transitions between areas of smooth data.

It is worth noting that the frequency shift measurements for these problematic modes all lie within

the estimated uncertainties. Without the extreme oversampling done to create maps sush as those in Figure

3.11, there would be no reason to suspect these measurements. Since the cause of this effect is uncertain

and the validity of the frequency shift measurements is in question, any modes that show these strange

patterns are thrown away. This culling leaves 220 useable modes (Figure 3.12). Since most of these modes

are high-phase-speed modes, this reduces the depth to which we can measure subsurface flows. This high

resolution mapping has not been repeated for measurements made with the SRF code, and so it is unknown

whether the SRF code produces similar results.
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Figure 3.12: Comparison of the 16◦ tile guess table modeset (crosses) and the modeset after post-processing.
The loss of high-phase-speed modes is largely due to the non-physical patterns seen in Figure 3.11.

3.4 Discussion

Extracting frequency shifts that can be interpreted as subsurface velocities is done through fitting a

model of acoustic power to a three-dimensional power spectrum. By fitting a model that includes various

effects seen in the data to different segments of the three-dimensional spectrum, many unique fitting methods

can be created. I have presented two such fitting procedures that differ both in the model used and the

selection of data considered in a single optimization. These methods use identical expressions for the velocity-

induced frequency shift for each oscillation mode, yet produce significantly different results for the frequency-

shift measurements themselves.

3.4.1 Improvements in Depth for Inversions

The MRF method is able to obtain a greater number of frequency shift measurements for higher phase-

speed modes in a given tile size than the SRF method. The increase in the success rate is also prominent

for small tile sizes, suggesting that the treatment of mode blending plays an important role. Smaller tiles

exhibit more leakage of modal power across wavenumbers than larger tiles due to spatial apodization. The

spreading of power increases the effective width of modes at a single wavenumber. High-phase-speed modes
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are already spaced closer in wavenumber than other modes, enhancing the mode blending for their region of

each spectrum. The SRF model does not accommodate any overlap of power from neighboring modes when

fitting a single mode, causing a disparity between model and data that worsens at higher phase-speeds and

smaller tile sizes. The MRF method, in accounting for mode overlap, returns a higher number of successful

measurements for these cases that can be used for studying deep flows and high-horizontal-resolution flows.

The post-processing of the MRF results mentioned in Section 3.3.4 involves removing a subset of the

modes from the measurement set. Through high-resolution analysis, the frequency shift measurements from

certain modes have been found to display non-physical flow patterns. This analysis has not been repeated

for SRF frequency shift measurements, so it is impossible to compare the effective useful mode sets of the

two methods. A direct comparison of the depths to which each method provides measurements requires

knowing the exact mode sets.

3.4.2 Spatial Variability and General Implications

Anisotropy along the azimuthal direction of the power spectrum appears to be the primary cause of

fitting problems near the solar limb. The SRF method tackles this issue by operating on spectra that have

been “flattened” along azimuth. This step not only amplifies the modal power in certain directions in order

to eliminate anisotropy, but also amplifies the noise. By accounting for the natural variation of power along

each ridge as well as in the background power, the MRF method is able to push closer to the solar limb. As

seen in Figure 3.6, the mode set measureable by the SRF method is position-dependent. The higher-order

modes see a drop in success rate closer to disk center than lower-order modes. The depth to which one can

measure is then shallower near the limb. The MRF method, in contrast, allows for consistent determinations

of subsurface flows within 75◦ of disk center.

Large tile sizes tend to provide the most accurate velocity measurements for both fitting methods,

with a slight tendency for both to overestimate at high latitudes (Figure 3.8). Both methods exhibit spatial

variability in the velocity response for smaller tile sizes, but only for low-phase-speed modes. The MRF

response is radially symmetric with the least accurate velocity response occurring near disk center, while the

worst regions of the SRF response appear far from disk center and have opposite signs between the north–
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south and east–west direction. While the magnitude of this variability is relatively small, there are significant

implications when attempting to analyze small residual flows left over from the subtraction of large-scale

flows. Tiles at high latitudes tracked at the Carrington rate see an overall flow speed of nearly 200 m s−1 due

to differential rotation. The systematic underestimation seen in the SRF method introduces an anomalous

retrograde flow of around 20 m s−1, similar to the magnitude of the center-to-limb velocity systematic for

low-phase-speed modes (Greer et al. 2013). It is unclear what causes the systematic inaccuracy in either

fitting method, although the strong dependence on disk position suggests a possible coupling between velocity

measurements and power anisotropy.

As mentioned in Section 3.2.2, there is a significant increase in the computational cost when switching

from the SRF method to the MRF method. While processing a day’s worth of tiles with the SRF method is

typically one of the fastest steps in the HMI Pipeline, the MRF method brings the process of fitting more in

line with the time needed for tracking. It is important to consider when this additional computational burden

is justified. The SRF method produces high-quality results for low-phase-speed modes and for large tiles

near disk center. This leaves three distinct cases where the MRF method provides improvements: measuring

higher-phase-speed modes, pushing closer to the limb, and using small tiles. The implications of this new

procedure on determining subsurface flows follow these three technical improvements. For a given tile size,

we are able to extend our analysis deeper into the Sun while maintaining a constant horizontal and temporal

resolution. Analysis to these extended depths can be performed consistently across most of the solar disk,

providing uniform coverage over a larger fraction of the Sun. The increased reliability of small tile sizes

permits higher horizontal resolution analysis of subsurface flows.

In this chapter, I have shown how the MRF method is capable of measuring frequency shifts from

ring-diagram power spectra more reliably and accurately than the previously accepted method. The low

level of spatial variability is ideal for the methods of the next chapter, which assume complete translational

invariance of the frequency shift uncertainties and data coverage. For the remainder of this thesis (with

the exception of Appendix A), I will use the MRF method as the sole method of obtaining frequency shift

measurements from ring-diagram power spectra.



Chapter 4

Helioseismic Inversions

4.1 Introduction

The final step required to produce subsurface flow maps in ring-diagram helioseismology is the inver-

sion. This is a linear procedure that converts the highly-convolved frequency shift measurements from the

previous chapter into high-resolution flow maps that are localized to a single depth. In the context of the

linear relationships detailed in Chapter 2, this final step combines the sensitivity kernels from each frequency

shift measurement and determines the form of the averaging kernel function Q that relates the final inversion

solution w to the true subsurface floe field v:

w(x, z) =

∫ ∫

dx′ dz′ Q(x,x′, z, z′) v(x′, z′). (4.1)

This process relies critically on the structure of the sensitivity kernels associated with each frequency shift

measurement (see Chapter 2). The name “inversion” arises from the fact that we wish to solve a set of coupled

integral equations such as Equation 2.5 by creating an inverse operator. The fundamental complication

with the inversion problem is that it does not produce a single solution, but instead permits a range of

solutions dependent on user-defined criteria. Within the range of possible solutions, the resolution, estimated

uncertainty, and localization in depth can vary substantially. The scientific results that arise from the

inversion solutions depend critically on these quantities, and so it is necessary to understand the inner

workings of the inversion step.

Inversions play an important role in helioseismology, as the direct observations are linked to the

desired subsurface flows through integral equations. The results of global helioseismology (see Chapter 1)
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have relied on two-dimensional (latitude and depth) inversions to obtain isolated measures of the internal

rotation rate from surface observations (e.g., Schou et al. 1994). While the nature of local helioseismic

measurements lends itself to using three-dimensional inversions (due to the additional spatial information),

the high computational cost of three-dimensional inversions is often not justified. Instead, one-dimensional

inversions can be done independently at different locations on the solar disk with relative ease and patched

together after the fact to create a three-dimensional map (e.g., Haber et al. 2001; 2002). Compared to what

a three-dimensional inversion can accomplish, this scheme is severely limited in how well it can isolate flow

measurements horizontally. Few three-dimensional inversion procedures exist due to their complexity and

computational requirements. In recent years, separate three-dimensional inversions designed for ring-diagram

and time-distance analyses have seen use in measuring small-scale flows associated with supergranules and

active regions (Featherstone 2011; Jackiewicz et al. 2012).

As shown in Chapter 2, deriving the mathematical connection between observations and subsurface

flows requires knowledge of the observational process and of any subsequent steps to manipulate the data.

Thus, while each flavor of helioseismology utilizes inversions, the details for how this is carried out vary.

In particular, the collection of the sensitivity kernels used to perform an inversion determines how well the

inversion can isolate measurements of the flow.

The purpose of addressing the inversion step in great detail in this chapter is to enable subsurface flow

observations with unparalleled resolution and accuracy. A recent study from Švanda (2015) showed that the

analysis of near-surface convection is highly susceptible to small problems within the inversion technique and

that an improperly tuned inversion can completely change the scientific conclusions made about convection.

This result emphasizes that the details of the inversion procedure for local helioseismology should not be

taken lightly, as they can have significant and sometimes unintended effects on the results.

There is a fundamental trade-off between the depth to which a ring-diagram frequency shift measure-

ment is sensitive and the horizontal resolution of the measurement. Large tiles sample deeply but average

over a large horizontal area. Small tiles average over smaller horizontal regions of the Sun, but are limited

in depth. The Adaptive-Resolution Ring-Diagram Inversion (ARRDI) code (Featherstone 2011) is the first

three-dimensional ring-diagram inversion to be developed and is able to combine multiple tile sizes to produce



71

flow maps that have the highest possible resolution allowed by the trade-off at each individual depth. With

this method it has been possible to measure subsurface moat flows around sunspots among other subsurface

flow structures. Three-dimensional ring-diagram inversions hold the promise of allowing direct observations

of convective structures throughout the solar convection zone, but are limited by the depth-resolution trade-

off. In this chapter, I present a new inversion technique that utilizes highly-overlapping ring-diagram tiles

to defeat this tradeoff and allow observations of subsurface flows with unprecedented resolution.

The scientific results in the following chapters rely on this inversion procedure, and thus their inter-

pretation hinges on how the inversion acts. This chapter will serve to break down the details of the inversion

into manageable pieces such that the qualities of the inverted data are understandable, and a correct inter-

pretation is possible. This chapter also serves as a reference for the details of how the results in later chapters

were produced. The inversion procedure permits a wide range of mathematically valid solutions even though

only one solution may be needed. The specific choice of solution from the larger set of possibilities is impor-

tant, but the reasoning behind the choice is equally meaningful. In this chapter I will demonstrate how the

inversion solution may vary outside of the single solution that is chosen for scientific analysis.

In section 4.2, I will provide a mathematical description of the inverse problem at hand and discuss

multiple solution methods. In section 4.3, I will present a set of one-dimensional inversions that demonstrate

some of the basic features of a helioseismic depth inversion such as estimated uncertainty and vertical

resolution. These inversions use measurements that all have unique kernels. In section 4.4, I will use one-

dimensional inversions to demonstrate the horizontal deconvolution aspect of the full helioseismic inversion

and how it can be explained in Fourier space. These inversions use measurements that have translationally

invariant sensitivity kernels and rely on the significant overlap between adjacent measurements. In section

4.5, I will present the full procedure for high-resolution, three-dimensional, ring-diagram inversions and

explain the specifics of how it is used to obtain the results in the following chapters.
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4.2 Mathematical Background

4.2.1 Frequency Shift Measurements

The frequency shift measurement made in the previous chapter is related to the subsurface velocity

through a three-dimensional integral:

ui(X) =

∫

dx′

∫

dz′ Ki(X,x′, z′) v(x′, z′) (4.2)

where i denotes the distinct wave mode from which the frequency shift is measured. The set of modes

measured from the power spectra are ordered based on radial order and wavenumber into a one-dimensional

array. I will use vector notation (x) to denote two-dimensional horizontal vectors and z to indicate vertical

position. The vector X indicates the position on the solar disk that the measurement has been made from

(the tile center). The sensitivity kernel in this equation has been written to allow for a kernel that depends

on the location of the measurement on the disk, but here on forward I will assume translational invariance

such that Ki(X,x′, z) = Ki(x
′ − X, z).

The structure of the sensitivity kernel Ki can be derived through perturbation analysis of the relevant

wave equation (see Chapter 2). It is important to note that Equation 4.2 only describes a single directional

component of the frequency shift ui and subsurface flow v(x, z). This single component can be either the

zonal component (east–west) or meridional component (north–south). The integral equations for each of

the two horizontal velocity components are identical and thus can be treated as separate inversions. In this

chapter, I will present the inversion procedure as if I am solving for only one component.

Equation 4.2 demonstrates that while we may express the frequency shift measurements like a velocity,

they are in fact measurements of a convolved velocity field. However, the convolution being performed does

not always nullify the interpretation of frequency shifts as direct velocity measurements. Take for example the

sensitivity kernel for f -mode frequency shifts (Figure 2.6a). This kernel has sensitivity that peaks just below

the photosphere, has a simple circular planform in the horizontal directions, and most importantly, remains

positive definite at all points in space. Sub-surface flow fields that vary on scales much larger than this

kernel will not be altered significantly when convolved with this kernel, and so we can interpret the relevant

frequency shift measurements as (approximately) direct measurement of the flow field. This interpretation
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of frequency shifts as direct velocity measurements has been used extensively in helioseismology (Hindman

et al. 2006; Hirzberger et al. 2008; Hindman et al. 2009), but limited primarily to the upper megameter or

so of the solar interior. The difficulty in using this interpretation is knowing a priori that the flow field in

question has the appropriate structure to remain unperturbed by the convolution process.

Sensitivity kernels from modes that reach deeper into the Sun have more complex structure, and are

not always positive at all points in space (Figure 2.6d). The convolution of a flow field with a non-compact or

otherwise complicated kernel results in a non-intuitive representation of the flow that is difficult to interpret.

Frequency shift measurements of subsurface flows that do not respect the structure of the sensitivity kernels

require further processing before an interpretation can be made. As the goal of this processing is to produce a

flow field that is inferred from the frequency-shift measurements, we can call it a velocity field and interpret it

as such. The process required to disentangle the integral in Equation 4.2 and estimate this inferred velocity is

the focus of this chapter. Throughout this thesis, I will denote the true subsurface velocity inside the Sun as

v(x, z) (which has three components and is defined at all points in space), the frequency shift measurements

made using ring-diagram analysis as u(X) (which has two horizontal components for each measured wave

mode and disk location), and the final velocity estimate derived from frequency shifts as w(x, z) (which has

two horizontal components at any given target position in space).

4.2.2 Methods of Solution

Solving Equation 4.2 for v given a set of measurements ui and kernels Ki is a linear inverse problem.

The measurements contain information about v on all scales that the kernels sample, but in order to solve the

inverse problem we must first discretize the equations. Each frequency shift measurement has an associated

convolution relation as in Equation 4.2, giving us a set of integral equations. Accounting for the finite set of

frequency shift measurements and the discretization of the sensitivity kernels, we can rewrite Equation 4.2

as:

ui(Xj) =
∑

n

Ki(xn − Xj , zn) v(xn, zn) (4.3)

where Ki(xn − Xj , zn) is the value of the sensitivity kernel at each discretized point in space (xn, zn) for a

measurement of mode i made at disk position (Xj). The set of locations in three-dimensional space have
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been compacted into a single one-dimensional array that I will index with the letter n. Each value of n

provides a unique position in three-dimensional space (xn, zn). The set of measurements across all modes

i and disk locations Xj can also be indexed with a single number m, leading to a simplified notation for

Equation 4.3:

um =
∑

n

Kmnvn (4.4)

If we include many frequency measurements and their associated sensitivity kernels, we can create a

matrix problem containing the original set of integral equations:

u = Kv. (4.5)

Here we have expressed the set of sensitivity kernels that relate the true subsurface flow to the frequency

measurements as a matrix K. Each row of K contains the appropriate sensitivity kernel for the associated

frequency measurement in u with three-dimensional spatial information packed in the same way as the vector

v. K is thus a Nmeas×Nspace matrix, where Nmeas is the number of measurements and Nspace is the number

of discrete points in space being targeted for an inversion solution.

The goal of the inversion is to come up with some estimate w of the true velocity field v such that w

≈ v for some appropriate interpretation of ≈. Since we are performing a linear inversion, we will look for

solutions in the form of

w = Au. (4.6)

Here, the set of solution points w are related to the set of measurements through an inversion matrix A.

Before we specify how this inversion matrix is computed, we should consider how this type of linear solution

is related to the true subsurface velocity field. Each solution point in w can be related to the full set of

frequency shift measurements through a set of linear coefficients taken from the A matrix:

w(xt, zt) =
∑

i,j

Ai(Xj ,xt, zt) ui(Xj). (4.7)

Here, the position (xt, zt) is the target location within the solar interior that we want w to represent. It

is the goal of the inversion to find a set of inversion coefficients ai that achieve this goal. Translational

invariance dictates that only the relative and not absolute locations of the solution target and the frequency



75

shift measurements matter, allowing us to say

Ai(Xj ,xt, zt) = Ai(xt − Xj , zt). (4.8)

Combining the definition of the frequency shift measurements from Equation 4.2 with this form of the

inversion solution, we can relate the inversion solution at a single point to the subsurface flow field with:

w(xt, zt) =

∫

dx′

∫

dz′ Q(x′ − xt, z
′, zt) v(x′, z′), (4.9)

where the function Q(x′ − xt, z
′, zt) (the averaging kernel) is defined as

Q(x − xt, z, zt) =
∑

i

∑

j

Ai(xt − Xj , zt) Ki(x − Xj , z), (4.10)

or in discrete matrix form,

Q = AK (4.11)

Thus, the averaging kernels for each target position are constructed by a linear combination of sensitivity

kernels, where the linear weighting is determined by the specifics of the inversion procedure.

Just as the sensitivity kernel Ki(xn − Xj , zn) provides the relationship between a given frequency

shift measurement and the subsurface flow field, the averaging kernel function provides the same relationship

for the inversion solution. The averaging kernel allows us to characterize the region of the solar interior

corresponding to a solution point. Thus, the interpretation of the inversion solution as an estimate of the

subsurface flow at a single point depends critically on the structure of the concomitant averaging kernel.

To understand how a useful inversion solution in the form of Equation 4.7 comes about, it is useful to

investigate a few incorrect solutions first. A näıve solution derived from Equation 4.5 might look as follows:

w = K−1u, (4.12)

where all we need to do is compute the inverse kernel matrix and apply it to the measurements (A = K−1

in Equation 4.6). This can only be done when the number of measurements m is equal to the number of

solution points n (K is square), and when the kernel matrix is not singular. To avoid the issue of fine-tuning

the number of measurements based on the discretization of the kernels, we can choose a more robust method.
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Pre-multiplying both sides of Equation 4.5 by KT, we obtain

KTu = KTKw (4.13)

which can be solved for w without worrying about the relationship between n and m:

w = (KTK)−1KTu. (4.14)

This form of the solution is similar to that in Equation 4.12, but uses the pseudo-inverse of K instead of

the direct inverse. The use of the pseudo-inverse (KTK)−1KT allows us to form an answer even when we

have an over- or under-constrained system and the kernel matrix K is degenerate. This form of solution is

commonly used in linear least-squares applications.

4.2.2.1 Regularized Least Squares

Due to strong similarities between the various sensitivity kernels going into the kernel matrix, the

condition number of K is very high. A high condition number in this context implies that a small change in the

measurements can yield a very large change in the inversion result. Since the frequency shift measurements

are susceptible to noise, this creates a solution with greatly amplified scatter. While Equation 4.14 is a valid

method of solving the inverse problem, we may wish for more direct control over the solution. To achieve

this control, we define an optimization problem that results in a solution with a similar form to Equation

4.14.

The simplest way to construct the problem is to say we are finding a solution w that optimally matches

the observed flow field:

Ψ =
∑

i

∑

j

1

σ2
ij

∣

∣

∣
ui(Xj) −

∑

n

Ki(xn − Xj , zn) w(xn, zn)
∣

∣

∣

2

. (4.15)

In this, we seek to find values for the entire discretized solution field simultaneously. The weighting factor

σ2
ij is the uncertainty in the measurement ui(Xj). The inclusion of the weighting puts more emphasis on

low-uncertainty measurements. Therefore, the inversion tries to match the observations only to within the

observational uncertainties. This type of weighting ends up rescaling the measurement vector u and kernel

matrix K, and does not further change the form of the solution, i.e. ui/σij = ũi and Ki/σij = K̃i.
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Minimizing Ψ with respect to each element of w is equivalent to solving Equation 4.14. Written as a

minimization problem, it is easier to see that the inversion solution represents the flow that—when convolved

with the sensitivity kernels—matches the observed data. To get around the issue of noise amplification due

to high condition number, we add a weighted regularization term to Equation 4.15. We are free to pick any

form of regularization that depends on the inverted quantity w, but a common choice in this situation is to

regularize against the derivative of the solution:

Ψ =
∑

i

∑

j

1

σij

∣

∣

∣
ui(Xj) −

∑

n

Ki(xn − Xj , zn)w(xn, zn)
∣

∣

∣

2

+ λ
∑

n

∣

∣Dw(xn, zn)
∣

∣

2
. (4.16)

Here, D is the spatial derivative operator. Minimizing Ψ in this equation with respect to each element of w

produces the following matrix problem:

w = Aũ = (K̃TK̃ + λR)−1K̃Tũ, (4.17)

where each solution point has an associated averaging kernel given by

Q = AK̃ = (K̃TK̃ + λR)−1K̃TK̃ (4.18)

The regularization matrix R contains the derivative operator. Through tuning λ, solutions can be achieved

that are much smoother than before.

In helioseismology, this method of solving the inverse problem is called Regularized Least Squares

(RLS) for obvious reasons. The benefit of this method is that it results in smooth flow fields (enforced by

regularization) and the minimization quantity makes intuitive sense. While smooth flow fields make for an

attractive solution, the enforcement of such a criteria is not always justified. Further, the smoothness is

achieved by combining measurements made across the solar disk. This effect is best seen by studying the

resulting averaging kernels, which often lack compactness when using an RLS method. Spatial variations

in the measured frequency shifts will not always equate to spatial variations in the solution flow field, and

can instead result in averaging kernels that vary in shape across the disk. This creates a solution that is

extremely difficult to interpret, as each point in the flow field can represent the flow over a different shaped

and large volume of the Sun.
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4.2.2.2 Optimized Local Averaging

Proper interpretation of the inversion solution requires knowledge of the relevant averaging kernels.

However, this is not sufficient for having a useful solution. As opposed to the RLS inversion, where the

averaging kernel is allowed to take any form at any location, we wish to formulate an inversion that permits

us direct control over the averaging kernel.

The definition of the averaging kernel (Equation 4.1) tells us that the size and the shape of Q determine

how the solution relates to the true subsurface flows. Thus, the solution w is only as close to the truth v as

the averaging kernel Q allows. The optimal situation is then that the averaging kernel matrix Q is equal to

the identity matrix I, or equivalently that the averaging kernels are all delta functions. This would allow for

the easiest interpretation, where each solution point represents the subsurface flow at exactly one point in

space, and no significant averaging takes place. Due to the limited number of wave modes measured and the

finite spatial resolution of the observations, true delta function averaging kernels are impossible. Instead, we

can create an optimization problem that attempts to match the averaging kernels to a target function T :

Ψ =

∫

dx

∫

dz
∣

∣T (x − xt, z, zt) − Q(x, z)
∣

∣

2
. (4.19)

The choice of Ai(Xj − xt, zt) (see Equation 4.10) that minimizes Ψ in this case provides the closest match

of the averaging kernel to the target function. For the case of the target function being a delta function, this

averaging kernel also provides the most localized measure of the subsurface flow. This general formulation of

the inverse problem is called the Optimally Localized Averages (OLA) method (Christensen-Dalsgaard et al.

1990; Schou et al. 1998). The best choice for the target function T (x−xt, z, zt) is a delta function centered

on the point (xt, zt), but a narrow three-dimensional Gaussian function is sometimes used for numerical

reasons. The averaging kernel is a linear combination of sensitivity kernels (Equation 4.10), allowing us to

minimize Ψ with respect to the linear combination coefficients. In contrast to RLS, where an entire flow

field is solved for in one matrix problem, OLA seeks to find the flow at a single target location by finding the

set of inversion coefficients Ai(Xj) that provide a useful averaging kernel. A set of inversion solution points

is built up by running multiple inversions targeting different positions in the solar interior. Fortunately,

the inversion coefficients for one target location can often be applied to other locations (at the same target
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depth), reducing the need for many independent inversions. Further, the same set of inversion coefficients

used to combine the sensitivity kernels into the final averaging kernel are used to combine the frequency-shift

measurements into the final inversion velocity solution w. Thus, building up a three-dimensional inversion

flow field w(x, z) involves running a single OLA inversion for each target depth zt, then applying the inversion

coefficients Ai(Xj − xt, zt) to each target position xt.

As with the RLS inversion, we are free to introduce a regularization term into Equation 4.19. Since

the primary goal of introducing regularization before was to limit noise amplification, we add a regularization

term to Equation 4.19 proportional to the propagated uncertainty on the solution. Rewriting Equation 4.19

explicitly as a function of the inversion coefficients with regularization, we obtain

Ψ =

∫

dx′

∫

dz
∣

∣

∣
T (x′ − xt, z, zt) −

∑

i

∑

j

Ai(Xj − xt, zt)Ki(x
′ − Xj , z)

∣

∣

∣

2

+ λR (4.20)

R =
∑

i,l

∑

j,k

Ai(Xj − xt)Al(Xk − xt)Cil(Xj ,Xk). (4.21)

Here, Cil(Xj ,Xk) is the error covariance between measurements ui(Xj) and ul(Xk). In the case of un-

correlated measurements, Cil(Xj ,Xk) = δilδjkσ2
ij . Minimizing Ψ with respect to the inversion coefficients

Ai(Xj) for a given target function allows us to express the solution as yet another matrix problem:

A = (KTK + λC)−1KTT, (4.22)

Q = AK = (KTK + λC)−1KTTK, (4.23)

where a is the vector containing each inversion coefficient. The vector T contains the discretized target

function, packed using the same standard as the sensitivity kernels.

It is interesting to note the similarity between this solution and that of the RLS inversion (Equation

4.18). The benefits of using the OLA method over the RLS method are that it allows for more direct control

of the averaging kernel and does not make any assumptions about the characteristics of the velocity field.

The two formulations of the inversion procedure (RLS, OLA) have been compared against each other in

helioseismic applications and found to produce similar results (Basu et al. 1998).

One must pay careful attention to the normalization of the inversion solution, as it has not yet been

specified. It is most useful to have averaging kernels that integrate to unity, as they allow for the simplest
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interpretation. In an OLA inversion, an attempt can be made to produce properly normalized averaging

kernels by matching to a properly normalized target function. However, an OLA inversion does not (and

often cannot) produce an exact match to the target function. There are a few ways in which averaging kernel

normalization can be achieved. The first is to append a second regularization term to the OLA equation

that penalizes solutions that are not properly normalized. This creates the same problem as before, where

the solution will tend to be normalized, but there is no guarantee. Another way to enforce normalization

would be to remove a degree of freedom from the inversion. Instead of solving for m coefficients, one could

solve for m−1 of the set in the inversion and then set the final coefficient such that the sum of all coefficients

is unity. This will enforce normalization, but is a little cumbersome. The method I use for normalization is

to perform the inversion as-is and normalize the A-coefficients by their norm after the fact. This additional

step is easier to understand and allows one to see how far from proper normalization the inversion strayed

as a diagnostic tool. All of the inversion results presented in this chapter and others have been normalized

in such a way.

4.2.2.3 Inversion Tuning

The properties of the inversion solution and averaging kernels are functions of the mode set, data

uncertainty, data availability, and sensitivity kernel structure. The regularization parameter λ acts as a

trade-off parameter between optimally localized averaging kernels and low uncertainties. Free choice of λ

results in an infinite number of possible inversion solutions for a given set of measurements and sensitivity

kernels. Since there is no wrong choice for λ, there are in a sense no wrong inversion solutions (assuming

they have been computed properly). Changing λ changes both the inversion flow field and the relevant

averaging kernels in such a way that they always provide a mutually-consistent answer. In this sense, the

inversion solution is only as useful as the data provided to it and the averaging kernels that come out of

it. The previous chapter focused on making sure the frequency-shift measurements are accurate, and this

chapter focuses on making sure the inversion provides a useful interpretation.

In the following sections of this chapter, I will demonstrate a few of the most important qualities of

helioseismic OLA inversions. The full three-dimensional problem has many subtleties, so I will first present
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one-dimensional inversions that exhibit these qualities in idealized environments.

The three-dimensional inversion I use in this thesis to transform frequency measurements into sub-

surface flow fields is fairly complex. In depth, the full three-dimensional inversion uses measurements with

substantially different error statistics and sensitivity kernels that span different volumes of space. In the

two horizontal directions, the three-dimensional inversion uses measurements with identical error statistics

and translationally invariant sensitivity kernels. The full inversion has to include all three directions si-

multaneously, but we can build up an intuition for how it acts on the data by considering one-dimensional

inversions. In the following sections of this chapter, I will present one-dimensional inversions that mimic

how the full three-dimensional inversion acts either in depth or horizontally. By understanding the basics of

these idealized cases, the results of the full helioseismic inversion are easier to interpret.

4.3 One-Dimensional Depth Inversions

4.3.1 Two Box Kernels

First, let’s consider an inversion where we have only made two uncorrelated measurements. We’ll

use the same language as for the full three-dimensional ring-diagram inversion. The two frequency splitting

measurements are u1 and u2, with measured uncertainties σ1 and σ2, and their respective sensitivity kernels

are K1(z) and K2(z). For simplicity, we pick boxcar functions for the two kernels that start at the surface

z = 0 and end at different depths (z1 or z2 with z2 > z1). This mimics how the different wave modes used

in the real inversion have acoustic cavities that reach from the photosphere down to a depth where the local

sound speed equals the phase speed of the mode. The normalization of each kernel is picked such that the

integral over the domain is unity (Figure 4.1). These amplitudes are 1/z1 and 1/z2.

For a target function, we pick a delta function located at z0 which lies between z1 and z2. It is

not always necessary to use a delta function, as the main results that follow only depend on a sufficiently

narrow and compact target function such that the integral of either kernel times the target is either zero or

a constant, depending on the mode. Writing out the quantity to minimize in an OLA inversion (Equation
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Figure 4.1: One-dimensional boxcar sensitivity kernels for mode 1 (red) and mode 2 (blue). The dashed line
indicates the location of the target function.

4.20), we find it has a simple form:

Ψ =

∫

(δ(z − z0) − A1K1(z) − A2K2(z))2dz + λ
[

(σ1A1)
2 + (σ2A2)

2
]

, (4.24)

where the coefficients A1 and A2 are the quantities being solved for. Minimizing Ψ with respect to A1 and

A2 independently leads to the solution:

A1 = −
z1/z2

(λσ2
1z1 + 1)(λσ2

2z2 + 1) − z1/z2
,

A2 =
λσ2

1z1 + 1

(λσ2
1z1 + 1)(λσ2

2z2 + 1) − z1/z2
.

(4.25)

The solution velocity w, uncertainty estimate σw, and averaging kernel Q are constructed as in the previous

section. As mentioned in the previous section, the inversion coefficients have been normalized after the

inversion is computed.

Picking values for the kernel depths and uncertainties (z1 = 0.5, z2 = 1, σ1 = 1, σ2 = 2), we can look at

how the coefficients depend on regularization. The relative values for σ1 and σ2 are chosen to mimic how the

measured uncertainties on frequency shift measurements vary with the phase speed of the mode (Figure 3.5).

Since the uncertainties only appear next to λ in Equations 4.25a and b, their ratio influences the behavior

of the solution and their overall magnitude just scales the relevant values of regularization. Figure 4.2a

shows the two coefficients A1 and A2 as a function of regularization. For small values of regularization, the

coefficients converge to values that produce an averaging kernel that optimally matches the target function
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(given the constraints of the kernels). The shallow mode K1 is used to subtract off sensitivity from the deeper

mode in order to get an isolated measure of the velocity around the target depth. This results in a boxcar

averaging kernel spanning z ∈ (z1, z2). High values of regularization lead to just one mode contributing to

the final solution. In this case, isolation of the averaging kernel in depth has been abandoned in favor of

reducing the contributions from different measurements to reduce the final uncertainty.
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Figure 4.2: (a) Inversion coefficients A1 (red) and A2 (blue) as a function of the regularization coefficient λ.
(b) Uncertainty on the inversion solution σw as a function of λ. The colored vertical lines indicate values of
λ that are used in Figure 4.3.

Figure 4.2b shows the final uncertainty on the solution σw as a function of λ. Again, at high regular-

ization the solution tends towards one that minimizes the uncertainty. The solution shows an uncertainty

that converges to a constant at either extreme of regularization. For low values, the solution uncertainty is

amplified compared to the individual values of σ from each measurement (dashed lines).

Figure 4.3 shows the averaging kernel Q(z) for a few values of λ spanning the region of change in

Figure 4.2. Since there are no rules as to what value of λ to pick, we use this figure along with Figure 4.1b to

decide what solution allows the most useful interpretation. The lowest values of λ allow for the most isolated

averaging kernels, but amplify the final uncertainty. However, in order to claim that the inversion solution

represents the subsurface flow at the depth of the target function, we must sacrifice uncertainty for some

degree of isolation. Luckily, in the case of two boxcar modes, the final uncertainty converges to a constant

when the averaging kernel becomes most compact. In the next case, we will see that this is not always the
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Figure 4.3: Averaging kernels for one-dimensional boxcar inversion for a few values of λ. Low values (blue)
average over most of the domain, while high values (red) create a more isolated averaging kernel.

case.

In this idealized one-dimensional inversion, we find that it is the overlap between sensitivity kernels

that allows one to produce compact averaging kernels. The range of sensitivity kernels included in the

inversion increases the possibilities for creating isolated measurements at a variety of depths. Through

mapping out how both the final uncertainty and the averaging kernel respond to regularization, we are able

to pick a value for λ that provides a useful solution.

4.3.2 Solar Wave Mode Kernels

The solution to a one-dimensional inverse problem is highly dependent on the structure of the sensi-

tivity kernels. In the previous example, two boxcar functions were used to demonstrate how the inversion

solution depends on regularization and estimated uncertainty. To extend this simple example to something

closer to the full inverse problem in high-resolution ring-diagram analysis, we now look at a one-dimensional

inversion using realistic sensitivity kernels. These kernels are derived in Birch et al. (2007) for the purpose of

three-dimensional ring-diagram inversions (see Chapter 2). The one-dimensional sensitivity kernels for this

example problem (Figure 4.4) were generated by horizontally integrating the full three-dimensional kernels.

I use 220 modes with unique sensitivity kernels. A selection of sensitivity kernels spanning the domain of

interest are plotted in Figure 2.6.
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Figure 4.4: A sample of the 220 unique one-dimensional sensitivity kernels used in the solar wave mode
inversion. The different modes are denoted by their radial order n and their wavenumber k. The dashed
lines indicate the locations of the shallow (1 Mm), medium (5 Mm), and deep (20 Mm) targets.

Like the boxcar functions from the previous example, these kernels generally have sensitivity from the

surface down to some depth that depends on the mode in question; however their sensitivity over that range

is not uniform. This creates a similar situation where deeper penetrating modes will generally be weighted

differently than shallow modes. These kernels are more complicated not only because their amplitudes

oscillate in depth, but they are not always positive valued throughout the domain. For the estimated

uncertainty on each mode, we use the measurements from real 16◦ tiles (Figure 3.5). These estimates form

the diagonal of the covariance matrix, and the off-diagonal elements are assumed to be zero.

Again, we set up a minimization problem in the form of Equation 4.20. Unlike the problem with

only two modes, the solution to Equation 4.20 cannot be separated easily by mode. Instead, we solve the

corresponding matrix problem provided in Equation 4.22 as-is. While the form of the solution is not as

readily deconstructed as in the previous example, we find it is qualitatively similar to before. The target

function is projected on to the basis set of kernels, and the regularization acts to reduce the projection

coefficients in the event of an underconstrained problem.

Using a delta function in depth as the target function, we can solve the matrix problem above for

many values of regularization λ and target depth zt to see how the inversion coefficients relate. We pick

three characteristic values for the target depth: a shallow target depth (1 Mm) where every kernel has some
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overlap with the target function, a medium target depth (5 Mm) where only half of the kernels overlap the

target function, and a deep target depth (20 Mm) where very few kernels overlap the target function.
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Figure 4.5: One-dimensional averaging kernels for a solar-like depth inversion with a target depth of 1 Mm
(a), 5 Mm (b), and 20 Mm (c). The different colors show averaging kernels produces with different amounts
of regularization. As the regularization parameter λ increases, the vertical localization of the averaging
kernel suffers. For constant λ, the width of the averaging kernels gets larger for deeper target depths.

Figure 4.5 shows the averaging kernels for a each target depth at a few selected values of the regular-

ization parameter λ. The widths of the averaging kernels for all target depths get wider for larger values of

λ. This reduces the final uncertainty, as the inversion is allowed to average together a larger number of inde-

pendent measurements. It is interesting to note that for deeper target depths, the main peak of sensitivity

is not always symmetric about the target depth. This is due to the fact that measurements with shallow

acoustic cavities typically have lower uncertainties, and thus are preferred when creating an averaging kernel.

Due to the irregular nature of the sensitivity kernels, the averaging kernels consistently show positive and

negative sidelobes away from the primary peak of sensitivity. These sidelobes complicate the interpretation
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of the inversion solution, as they can bring in information from far-away depths. While sidelobes are largely

unavoidable, it is beneficial to look for averaging kernels with minimal sidelobes in depth.
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Figure 4.6: (a) Inversion coefficients for a shallow mode (red) and a deep mode (green) as a function of λ for
the shallow target (solid lines), medium target (dotted lines), and deep target (dashed lines). (b) Estimated
uncertainty on the inversion result as a function of λ for the three target depths. The horizontal dashed
lines indicate the minimum and maximum of the uncertainties on all modes individually. Note the range
with which the final uncertainty can be either amplified or reduced.

Figure 4.6 shows both a selection of inversion coefficients for each target depth (a) and the final

propagated uncertainty for each target depth (b) as a function of λ. In this, the solution for the shallow

target depth is shown with solid lines, that of the medium target depth with dotted lines, and that of the deep

target depth with dashed lines. The (a) panel simply demonstrates that the inversion coefficients are not

always monotonic functions of λ. As the regularization term lessens and higher-uncertainty measurements are

allowed to feed into the solution, lower-uncertainty measurements shift roles from being the sole contributors

to the solution and instead to compensate for the new contributions. In contrast to the boxcar kernel

example, Figure 4.6b shows that the final uncertainty does not converge as readily at low values of λ, and

instead rises continually over the range of regularization shown here. But as before, high values of λ allow

the final uncertainty to converge to a constant value. Due to the plethora of independent measurements, the

final uncertainty is allowed to dip below the minimum uncertainty for any one measurement. In these cases,

the inversion has essentially averaged many measurements together instead of playing them off of each other

to create a useful solution. The transition between these two regimes is slightly different for each target
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depth, suggesting the need to tune the value of λ independently for each depth.

Between Figure 4.5 and Figure 4.6, we can begin to pick a value of λ that is best suited for each

target depth. Once again, we can start with the criterion that the averaging kernel needs to allow a useful

interpretation. For each depth, values of λ less than 10−2 show reasonable isolation in depth and a peak

in sensitivity that matches the target depth. Values lower than 10−4 start to show significant sidelobes in

depth, which is to be avoided. While we are free to pick a different value of λ for each depth, we find that

there is little need in this scenario as a single value of around λ = 10−1 would likely work well at all depths.

The final uncertainties for this range of λ generally show an amplification of uncertainty relative to the

original measurements. This is to be expected, as the inversion has produced estimates of the subsurface

flow field that average over a smaller volume of space than any of the original measurements.

4.3.3 Summary of Depth Inversion Behavior

The full three-dimensional helioseismic inversion is able to create estimates of the subsurface velocity

at isolated locations. In depth, this isolation is possible through the use of measurements from different wave

modes that have different acoustic cavities within the Sun. These one-dimensional inversions demonstrate

that it is possible to achieve varying degrees of vertical compactness, allowing for a tradeoff with the final

propagated uncertainty.

The regularization parameter λ is the mediator between compact averaging kernels and low uncer-

tainty. Tuning an appropriate value for λ involves mapping out how both the averaging kernels and the

final uncertainty react, then picking a value that allows for a useful inversion solution while minimizing the

uncertainty. While this process needs to be performed for each target depth, the same values for λ can be

used on different data sets as long as the measurement uncertainties do not change significantly.

4.4 Horizontal Inversions with Spatial Invariance

The measurements and sensitivity kernels used in the full three-dimensional inversion have vastly

different properties when analyzed in depth or as a function of disk position. In the previous section, we find

that the depth-dependence of the measurement uncertainties and sensitivity kernels produce complicated,



89

asymmetric averaging kernels. In this section, I will consider the horizontal directions of the full inversion by

once again using a simplified one-dimensional example. Near disk center, the data coverage and measured

uncertainties are essentially constant (Figure 3.6 and Figure 3.7). Thus, the ability for the three-dimensional

inversion to create isolated averaging kernels in depth is constant as a function of horizontal position. From

this, we can construct a new inversion that assumes a translationally invariant sensitivity kernel and uniform

measurement uncertainty. The translational invariance permits simple analysis of the inversion process in

spectral space.

We begin by defining the frequency shift measurement made at a location x as:

u(x) =

∫

K(x′ − x)v(x′)dx′ (4.26)

For now, we will assume the measurements have been made continuously in space, and later we can consider

finite sampling effects. Equation 4.26 is a straight-forward convolution. It is thus the goal of the one-

dimensional horizontal inversion to perform a deconvolution on the measurements. We can further mimic

the horizontal component of the full three-dimensional inversion by using a rounded boxcar sensitivity kernel

(Figure 4.7). The exact horizontal planforms of the sensitivity kernels used in the full inversion vary slightly

between each other, but generally have this shape.
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Figure 4.7: (a) Sensitivity kernel for spatially invariant one-dimensional inversion. The kernel extends one
unit of distance and is tapered by a cubic spline at each end. Measurements made at different positions
along the domain have identical kernels, and the measurement position determines the central position of
the kernel. (b) Fourier power spectrum of the sensitivity kernel in (a). The horizontal axis is scaled by the
wavenumber associated with the size of the sensitivity kernel in real space. The zeroes in the power spectrum
are due to the fact that the kernel is compact and occur roughly at integer multiples of this characteristic
scale.
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4.4.1 Solution in Spectral Space

Writing the OLA minimization equation to include translational symmetry:

Ψ =

∫

∣

∣T (x) − Q(x)
∣

∣

2
dx + λ

∫

dx

∫

dx′ A(x) A(x′) C(x, x′)dx, (4.27)

Q(x) =

∫

A(x′) K(x − x′)dx′. (4.28)

The goal is then to find a function for A(x) that minimizes Ψ. If we were to discretize the problem at this

point, we would construct yet another matrix problem that solves for a set of inversion coefficients A(xj).

Fortunately, we can instead take advantage of the spatial invariance of the problem at hand and find an

analytic solution. Using Parseval’s theorem and the convolution theorem to express the two terms on the

right-hand-side of Equation 4.27 in Fourier space, we obtain the following minimization equation:

Ψ =

∫

∣

∣T (k) − A(k)K(k)
∣

∣

2
dk + λσ

∫

|A(k)|2dk. (4.29)

In this, I have ignored the off-diagonal components of the covariance for simplicity. The definition of the

averaging kernel is simplified to

Q(k) = A(k)K(k). (4.30)

Here, we denote the Fourier transform of a function f(x) by replacing the variable with its Fourier pair f(k).

By expressing the OLA minimization equation in Fourier space, we can solve for each Fourier component

independently. This removes the need to construct a matrix problem to solve for each inversion coefficient

simultaneously, simplifying the inversion tremendously. Setting λ to zero reveals a simple solution,

A(k) = T (k)/K(k). (4.31)

In the case of a delta function target, the Fourier transformed inversion coefficient function as simply the

reciprocal of the Fourier transformed sensitivity kernel, A = K−1.

The need for regularization becomes apparent when considering the power spectrum of the sensitivity

kernel (Figure 4.7b), which has zeroes at periodic scales. Using Equation 4.31 to solve the inversion for

zero regularization causes a significant amplification of power at these scales, which tends to amplify noise.
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Regularization is used to mitigate the effect of having significant dips in the denominator of Equation 4.31.

Including regularization, the function for a(k) that minimizes Equation 4.29 becomes

A(k) =
K(k)T (k)

|K(k)|2 + λσ2
. (4.32)

The regularization term used to create this solution assumes that the frequency shift measurements are

all statistically independent so that the off-diagonal terms of the covariance matrix can be ignored. This

assumption was justified for the depth inversions, as the measurements came from disparate wave modes.

For measurements made of the same wave modes, this is not necessarily true. The covariance between

measurements made from adjacent overlapping tiles is approximately proportional to the tile overlap fraction

squared:

C(x, x′) = σ2

(
∫

K(x)K(x − x′)dx
∫

K(x)2dx

)2

. (4.33)

Through use of Parseval’s theorem and the convolution theorem, the solution in Fourier space ends up having

a |K(k)|2 included in the regularization term. There is an additional constant due to the normalization of

Equation 4.33 that can be wrapped up into the parameter λ. The solution when a full covariance is included

has the same form of Equation 4.31 with a multiplicative factor that depends on λ:

A(k) =
K(k)T (k)

|K(k)|2 + λ|K(k)|2
=

K(k)T (k)

|K(k)|2(1 + λ)
. (4.34)

Once the solution is normalized properly, this constant is removed, leaving a solution that once again does

not depend on λ. It is interesting that when this form of the covariance is included, the inversion has no

option but to create a solution that is effectively zero regularization. This result is a consequence of the

covariance depending on the overlap of the kernels. This effect will be used later in the full three-dimensional

inversion to create a regularization term that treats the horizontal and vertical components differently.

Since the inclusion of the full covariance between measurements creates a degenerate solution that does

not depend on λ, I have chosen to use only the diagonal component of the covariance for the regularization

of the present example inversion. However, In order to accurately represent the final solution the propagated

uncertainty does use the full covariance matrix. Thus the inversion no longer uses the true uncertainty on

the solution for regularization, but instead just a weighting against each inversion coefficient.
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4.4.2 Regularization Tuning

Figure 4.8 shows averaging kernels for a few values of λ along with the original sensitivity kernel

(dashed line) for comparison. As the regularization parameter λ is decreased, the averaging kernel becomes

dramatically narrower. There is notable ringing in the averaging kernel that appears at fixed intervals. This

ringing is inherent to the inversion procedure and is caused by the finite extent of the sensitivity kernel.

This effect can also be seen in the power spectrum (Figure 4.8b) as severe dips in the spectral sensitivity.

Measuring subsurface flows with a kernel like the one used here creates a measurement set that is insensitive

to certain wavenumbers. Actual frequency shift measurements do not show as strong of dips in the power

spectrum, as these wavenumbers have likely been filled in with random noise. The subsurface flow information

at these wavenumbers is lost, so it is the role of regularization to make sure the inversion does not attempt to

amplify them too much. The missing information could be brought back by using two or more tile sizes that

have zeroes in the power spectrum at disparate wavenumbers. In practice, the spatial and spectral ringing

cannot be completely removed, but their effects can be mitigated with the significant computational cost of

using multiple tile sizes.

The purpose of tuning the regularization for the one-dimensional depth inversion was to find a useful

tradeoff between solution uncertainty and localization of the averaging kernel. The tradeoff in this hori-

zontal inversion is largely the same, but the localization of the averaging kernel can be analyzed in a more

straightforward way. Figure 4.9 shows the averaging kernel FWHM (a) and the final solution uncertainty

(b) as a function of regularization parameter λ. The dashed lines in Figure 4.9a indicate the spatial extent

of the sensitivity kernel (upper) and the grid spacing between adjacent frequency measurements on the solar

disk (lower). This grid spacing is also the resolution at which the sensitivity kernels have been discretized,

but is not necessarily the final effective resolution of the inversion. The ratio between these values has been

chosen to mimic that in the full three-dimensional inversion. As seen with the averaging kernels themselves

in Figure 4.8, the FWHM of the averaging kernel gets smaller as λ is decreased. In general, these show a

similar trend as in the one-dimensional depth inversion, where lower regularization leads to a more localized

solution at the cost of increased uncertainty.
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Figure 4.8: (a) Averaging kernels for the spatially-invariant one-dimensional inversion for a few values of the
regularization parameter λ. The dashed line indicates the shape and size of the original sensitivity kernel.
As λ decreases, the averaging kernels become more spatially localized. Ringing occurs for every value of λ
that creates an averaging kernel with a FWHM narrower than the sensitivity kernel. The spacing of the
ringing is determined by the size of the sensitivity kernel. (b) Power spectrum of the averaging kernels shown
in panel (a) as a function of normalized wavenumber. A wavenumber of one indicates the spatial scale of the
sensitivity kernel. The dashed line is the power spectrum of the sensitivity kernel, and the dotted line is the
power spectrum of the target function. The effects of Equation 4.32 can be seen here, where the inversion
acts to amplify power until it matches the target function.

The choice of regularization parameter λ once again comes down to localization versus uncertainty.

Unlike the depth inversion from the previous section, a lack of spatial localization in this case does not al-

ways mean the solution cannot be easily interpreted. In depth, an improperly tuned inversion can create an

asymmetric averaging kernel that can preferentially bring in near-surface contributions. For the translation-

ally invariant case presented here, a low-λ inversion simply creates a broader averaging kernel that remains

centered on the appropriate point in space. Tuning λ for spatial localization in this case is a straightforward
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Figure 4.9: (a) The full width at half maximum (FWHM) of the averaging kernel as a function of λ. The
upper dashed line indicates the horizontal size of the sensitivity kernel, and the lower dashed line is the
separation between adjacent measurements. The measurement spacing is the theoretical limit of inversion
resolution and is only achievable for very low values of λ. (b) Estimated uncertainty as a function of λ. The
solid line is the uncertainty calculated with the proper covariance between measurements built in, and the
dotted line is the uncertainty with no covariance between different measurements. The inversion regularizes
against the latter, but the proper covariance is necessary to obtain a realistic estimate of solution uncertainty.

issue of resolution. The particular value of λ that is chosen for an inversion will depend on the quality of

the data and the scientific questions that need to be answered.

4.5 Three-Dimensional Helioseismic Inversions with MORDI

The previous sections of this chapter have built up the framework around which we can construct

a full three-dimensional inversion for ring-diagram frequency shift measurements. The set of distinct wave

modes measured at each location on the disk determines how well one can create estimates of subsurface

flows at an isolated depth, and the spacing between adjacent measurements on the disk influence the final

horizontal resolution of the solution. Using the OLA inversion method, estimates of the subsurface flow can

be made at highly localized points in space both horizontally and vertically. The three-dimensional OLA

equation that is solved is

Ψ =

∫

dx′

∫

dz′
∣

∣T (x′, z′) − Q(x′, z′)
∣

∣

2
+ λR1 + µR2 (4.35)

R1 =
∑

i

∑

j,k

Ai(Xj) Ai(Xk) C(Xj ,Xk) (4.36)



95

R2 =
∑

i

∑

j

|σiAi(Xj)|
2 (4.37)

where the averaging kernel is given by

Q(x, z) =
∑

i

∑

j

Ai(Xj) Ki(x − Xj , z). (4.38)

In these, the subscripts j and k refer to the locations of tiles on the solar disk. Further, I again assume that

the covariance between two measurements is zero for disparate wave modes and proportional to the overlap

fraction of the apodization function f(x) for identical wave modes:

C(Xj ,Xk) = C(Xj − Xk) =

∣

∣

∣

∣

∫

dx f(x − Xj)f(x − Xk)
∫

dx f(x)2

∣

∣

∣

∣

2

. (4.39)

Here, we use a fully three-dimensional target function and set of sensitivity kernels. The inversion

coefficients are expressed as two-dimensional maps ai(X) where i indicated the wave mode measured from

the ring-diagram power spectra. For numerical stability, the target function is chosen as a Gaussian function

with widths in each direction slightly smaller than the grid spacing. The reason behind the two different

regularization terms will be explained in detail later in this section.

Thanks to the translational invariance of the frequency shift uncertainties and sensitivity kernels,

we can once again take advantage of minimizing the OLA equation in Fourier space. Just as in Section

4.4, this decouples the problem into an independent equation to be solved at each wavenumber vector k.

However, in the one-dimensional horizontal inversion, this resulted in a simple algebraic expression for the

inversion coefficients at each wavenumber. In this three-dimensional problem, we are left with solving for

the inversion coefficients of each distinct wave mode simultaneously at each wavenumber vector. This is very

similar to performing a set of one-dimensional depth inversions at each horizontal grid point in real space

independently, except in this case the inversion operates on each wavenumber component of the coefficients,

kernels, and target function independently. Computationally, the two scenarios are nearly identical. Solving

a three-dimensional helioseismic inversion by representing only the horizontal directions in Fourier space

has been done in Jackiewicz et al. (2012) and has been called a Multi-Channel Deconvolution. This is an

extremely efficient method of performing large three-dimensional inversions of helioseismic data, as it allows

one to increase the number of horizontal solution points with ease. In this thesis, I have applied this method

to high-resolution data sets in order to obtain measurements of small-scale convection in the NSSL.
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The number of inversion coefficients that must be solved for simultaneously determine the size of the

matrix problem that is created (Section 4.2). For the mode set and grid sizes considered in this thesis,

solving a full three-dimensional inversion in real space requires inverting a 3 · 107 × 3 · 107 element matrix

and requires approximately 6.5 petabytes of memory. This size of problem is not tractable on even modern

supercomputers, and in the end only offers a single analysis period of inverted flow fields. The ability

to deconstruct the horizontal domain into independent inversions significantly reduces the computational

burden, as each wavenumber can be solved for serially instead of simultaneously. The inversion at each

wavenumber essentially becomes a one-dimensional depth inversion with around 220 modes. This opens up

the possibility for vast amounts of parallelism in the inversion code, limited only by the number of grid

points present in the horizontal directions.

The Massively-Overlapped Ring-Diagram Inversion (MORDI) code performs three-dimensional, ring-

diagram, OLA inversions following this procedure. I have developed this code to take advantage of the

high-quality frequency shift measurements made possible by the advances detailed in the previous chapter.

MORDI takes as input a set of frequency shift measurements from various modes spanning some rectangular

region in longitude and latitude on the solar surface, a set of three-dimensional sensitivity kernels that

match the frequency-shift mode set, and a set of control parameters for quantities like the regularization

and target depth. The maps of measured frequency shifts and the associated sensitivity kernels are Fourier

transformed horizontally and left in real space vertically. As seen in Section 4.4, this drastically reduces the

computational burden of finding the optimal solution to the OLA equation. The solution to the inversion is

computed independently and in parallel at each horizontal wavenumber. MORDI reconstructs and outputs a

real-space two-dimensional flow field for every target depth specified and can optionally output the full three-

dimensional averaging kernel for the associated target depth. The purpose of this section is to demonstrate

how the full three-dimensional inversion can be treated like the simplified inversions in terms of regularization

tuning and averaging kernel localization.

Since the inversion relies on Fourier transforms to solve the optimization equation, we must ensure

that the frequency shift maps and sensitivity kernels respect the assumptions of the transform. The frequency

shift measurements are made for a variety of wave modes over a rectangular grid of points in longitude and
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latitude. A single wave mode defines a map of frequency-shift measurements that is Fourier transformed in

both directions (longitude and latitude) during the inversion. Each of these maps must be apodized and

zero-padded to prevent ringing in Fourier space. Hard edges at the ends of the maps can produce ‘echos’ in

the final inversion solution throughout the domain. Smoothly tapering the edges of the frequency-shift maps

to zero significantly reduces this effect. In practice, I have found that the inversion produces cleanest results

when each map is padded by at least two tile sizes on all ends and the data is tapered to zero over the extent

of at least one tile size. While it is always safer to add more padding than the bare minimum, this increases

the computational burden of running the inversion. For the 90◦ square regions used in this thesis made with

16◦ tiles, this results in an inversion grid that is 154◦ on a side (617 pixels). Since the apodization reduces

the usable area of the inversion, the final solution will not have the same extent as the frequency-shift maps.

For the current inversions, the final usable area of the inversion is around 58◦ on a side.

4.5.1 Multi-Dimensional Localization

To allow more independent control over the horizontal and vertical aspects of the inversion, I have

included two regularization terms. The first regularization term R1 (controlled by the parameter λ) is

the standard regularization that is proportional to the final propagated uncertainty and includes the full

covariance matrix. The second regularization term R2 (controlled by the parameter µ) is equal to the final

propagated uncertainty in the case of no off-diagonal components of the covariance matrix. As found in the

previous section on inversions with translational invariance, using this first form of regularization by itself

leads to solutions that are identical to those made with no regularization. This is due to the fact that the

covariance matrix had the same form as the kernel overlap matrix.

In the three-dimensional inversion, this degeneracy is not exact. As seen in Figure 2.6, the horizontal

planforms of the sensitivity kernels are similar to the apodization circle but not exactly the same and the

difference grows with depth. Had they been identical, the parameter λ would only effect the balance of un-

cetrainty to vertical localization of the averaging kernels and by itself would leave the horizontal localization

as high as possible, regardless of final uncertainty. In this case, it would be the role of µ to control the

tradeoff between uncertainty and the overall localization in all dimensions. In this way, the two regulariza-
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tion parameters can be used to adjust the horizontal and vertical aspects of the averaging kernels almost

independently.

4.5.2 Regularization Tuning

Since the horizontal overlap between sensitivity kernels is not exactly proportional to the tile overlap,

this separation between the two regularization terms is not as clean. Still, they are capable of influencing the

vertical and horizontal localization to different degrees. The inclusion of an extra regularization term results

in a two-dimensional parameter space of regularization (λ, µ) that needs to be explored in order to find a

useful inversion solution. Since very little changes between inversions computed with different regularization

values, the MORDI code can be told to loop over a range of both λ and µ while everything is held in memory.

This significantly reduces the computational cost of running multiple independent inversions and provides

an easy way of searching through the λ-µ parameter space to select appropriate values.

There are two categories of diagnostics used for tuning the three-dimensional, ring-diagram inversion.

The first category is about interpretation and includes diagnostics like the averaging kernel localization

and the final propagated uncertainty. The second category is about the actual flow field solution and

its characteristics. The following few figures show these diagnostic quantities as a function of the two

regularization parameters for two different target depths (1 Mm, 20 Mm). Instead of presenting the horizontal

forms of the myriad of averaging kernels, I will use the horizontal FWHM as a simpler measure just as in

Section 4.4.

Figure 4.10 shows the vertical structure of the averaging kernels for the 1 Mm depth inversion for

different values of λ (different colors) and µ (different sub-figures). While all of the averaging kernels resulting

from this set of inversions seem to create an averaging kernel centered on the target depth, there is significant

variance as to how well the inversion has isolated the sensitivity to this depth. As expected from the previous

arguments about multi-dimensional localization, the two regularization parameters λ and µ seem to influence

the vertical localization of the solution equally.

The various panels of Figure 4.11 show diagnostic quantities for a target depth of 1 Mm as a function of

µ and for different values of λ (line colors). Panel (a) shows the horizontal FWHM of the resulting averaging
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Figure 4.10: Horizontally-integrated sensitivity for
averaging kernels with a target depth of 1 Mm
(dashed line). The different panels show averaging
kernels for different values of µ and the colored lines
in each panel indicate different values of λ. Both λ
and µ effect the vertical localization of the averag-
ing kernel. Low regularization values result in more
localized averaging kernels, but also increase the am-
plitude of sidelobes.
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kernels. Just as in Figure 4.9a from the previous section on translationally invariant inversions, the dashed

lines indicate the tile size (upper) and the measurement grid spacing (lower). As expected, the horizontal

localization is not significantly modified by λ due to the similarities between the sensitivity kernel overlap

and the covariance matrix. Panel (b) shows the final propagated uncertainty (accounting for measurement

covariance). As in Figures 4.6b and 4.9b, the dashed lines indicate the minimum and maximum values of

estimated frequency-shift uncertainty used in the inversion. Panel (c) shows the rms zonal velocity of the

flow field produced by the inversion. In general, this quantity cannot be used to reliably tune the inversion

as the correct value is unknown. For this particular target depth, we may use this value to compare to

other measures of photospheric convective velocities to make sure the inversion solution makes sense (see

Chapter 5). Panel (d) shows the rms-to-error ratio, computed as simply the value in panel (c) divided by

the value in panel (d) for each value of λ and µ. This gives a useful estimate of how significant any one point

in the solution is. Values greater than one allow a straightforward interpretation of the flow field without

any post-inversion averaging. The cross in each panel indicates the value of λ and µ used for later inversion

results. In all, these diagnostics to not appear to depend strongly on λ. This is because a target depth of

1 Mm does not require much vertical localization, which the parameter λ has almost independent control

over.

Figure 4.12 shows power spectra of the zonal velocity map obtained for different regularization values.

These power spectra are originally computed as a function of two-dimensional wavenumber (k) and have

been integrated at each wavenumber magnitude (k = |k|). While the rms zonal velocity (Figure 4.11c) can

be useful for making sure the choice of regularization provides a reasonable answer, the power spectra allow

one to consider which spatial scales are present in the solution and contribute to the rms value. The largest

effect that regularization has on the power spectra is the amplification of high-wavenumber power. This

is expected, as the goal of the inversion is to produce high-resolution maps which necessarily have more

power at high wavenumbers. These power spectra are similar to the power spectra of the averaging kernel in

Figure 4.8b. While the lower-wavenumber power on scales comparable to or larger than the tile size remains

constant for most values of λ and µ, it is possible to amplify this power when both regularization terms are

set very low. At this depth, the spectral signature of supergranulation (ℓ = 120) can be seen in a few of the
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Figure 4.11: Diagnostic plots for full 3D inversion targeting a depth of 1 Mm. The colored lines in each
sub-figure show data for different values of λ. The crosses indicate the values of λ and µ used in later
chapters. (a) Horizontal FWHM of the averaging kernel as a function of µ. The dashed lines in (a) are the
original tile size (16◦) and the tiling scheme resolution (0◦.25). (b) Final propagated uncertainty (including
covariance) of the inversion solution. The dashed lines in (b) are the minimum and maximum uncertainties
of the frequency-shift measurements. (c) rms zonal velocity, showing a general increase for lower values of
regularization. (d) Ratio of rms to uncertainty as a proxy for the signal-to-noise ratio.

curves, particularly for µ = 10−3.

To see visually what the flow fields look like for different values of λ and µ, Figure 4.13 shows maps

of the horizontal divergence for the 1 Mm target depth for four different values of λ (bottom to top) and

µ (left to right). The color table of each map has been normalized to two times the rms value of the map.

The most obvious effect seen in this figure is that of horizontal resolution changing with regularization. As

seen in the power spectra of these maps in Figure 4.12, the large-scale features are present in all cases and

it is the presence of the small-scale features that changes with λ and µ. Despite this persistence of large-

scale patterns, when scaled against the entire signal, the large-scale patterns seem to disappear behind the
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Figure 4.12: Power spectra of the zonal velocity at 1 Mm depth for various values of µ (the different sub-
figures) and λ (colored lines). The values of λ corresponding to each of the colors are indicated in the
previous two figures.

stronger small-scale flows.

Figure 4.14 shows the vertical profile of a range of averaging kernels for the inversion targeted at 20

Mm depth. These averaging kernels have much greater variance over the displayed range of regularization

values than the 1 Mm depth inversion due to the greater number of wave modes that are used to isolate

sensitivity deeper into the Sun. Once again, we find that the two regularization parameters have roughly

equal influence over the degree of isolation in depth. Unlike the 1 Mm target depth, we find here that

improperly tuned inversions can create averaging kernels that are not at all useful for creating flow fields at

isolated depths. The averaging kernels for high values of λ and µ not only have sensitivity that spans nearly

the entire domain in depth, but contain significant oscillations in sensitivity that hinder the interpretation

of the solution. For inversions like this one, tuning the regularization often involves finding the maximum

values of λ and µ that permit a useful interpretation of the solution.

Figures 4.15, 4.16, and 4.17 respectively show inversion diagnostics, solution power spectra, and

divergence maps for a target depth of 20 Mm. These figues show that the inversion acts largely the same

way as it does for the shallow target depth, but is influenced to a larger degree by the regularization parameter

λ. Since λ has little effect on the horizontal localization, it is the primary controller of vertical localization.

Unlike the shallow target depth of 1 Mm, this target depth allows the inversion to utilize every measured

wave mode to create an averaging kernel with isolated sensitivity at depth. It is interesting to note that
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Figure 4.13: Maps of the inversion solution horizontal divergence for the shallow (1 Mm) target depth for
various values of λ (bottom to top) and µ (left to right). Each panel covers the same 50◦ by 50◦ area on the
solar disk and the color table has been scaled by the standard deviation of the map. Red indicates positive
horizontal divergence and blue indicates negative. Comparing these maps with one another, it becomes clear
how regularization affects the spatial resolution of the inversion solution. The asterisk indicates the solution
that uses the regularization values indicated in Figure 4.11 by the cross.

the divergence patterns seen in the high-regularization solutions at 20 Mm (Figure 4.17) look similar to

the high-regularization solutions at the surface (Figure 4.13). This is due to the fact that the averaging

kernels in these cases span a large range of depths and therefore have significant overlap. Despite having

different target depths, the solutions will show nearly the same patterns as they represent averages over
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Figure 4.14: Horizontally-integrated sensitivity for
averaging kernels with a target depth of 20 Mm
(dashed line). The different panels show averaging
kernels for different values of µ and the colored lines
in each panel indicate different values of λ. Both
λ and µ effect the vertical localization of the av-
eraging kernel. High regularization values result in
averaging kernels that show little localization near
the target depth. Low regularization values result in
more localized averaging kernels, but also increase
the amplitude of sidelobes.
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Figure 4.15: Diagnostic plots for full 3D inversion targeting a depth of 20 Mm. The colored lines in each
sub-figure show data for different values of λ. The crosses indicate the values of λ and µ used in later
chapters. (a) Horizontal FWHM of the averaging kernel as a function of µ. The dashed lines in (a) are the
original tile size (16◦) and the tiling scheme resolution (0◦.25). (b) Final propagated uncertainty (including
covariance) of the inversion solution. The dashed lines in (b) are the minimum and maximum uncertainties
of the frequency shift measurements. (c) rms zonal velocity, showing a general increase for lower values of
regularization. (d) Ratio of rms to uncertainty as a proxy for the signal-to-noise ratio.

To tune the regularization parameters for the full three-dimensional inversion, figures such as these

have been created at each depth and studied to determine what values provide the most useful solutions.

While one could pick new values for λ and µ at each depth, it seems more reasonable to either pick a single

value for each to cover every depth or set each to be a smooth function of depth. In practice, a power law

function works well for the data sets considered here:

λ(z) = 10az+b. (4.40)

Here, a and b are coefficients that determine how the regularization parameter changes with depth. A similar
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Figure 4.16: Power spectra of the zonal velocity at 20 Mm depth for various values of µ (the different
sub-figures) and λ (colored lines) as in Figure 4.12.

relation can be made for µ. The variation with depth (given by a) is often small compared to the value of b.

The crosses in Figures 4.11 and 4.15 indicate the rough values of λ and µ used in later chapters. While

some inversions have been tuned slightly differently, these values are approximately λ = µ = 10−3 at all

depths (no depth variation). While one is free to choose the regularization values based on any combination

of the diagnostics, I have chosen them such that the rms-to-error ratio is approximately two at all depths.

Other diagnostic quantities (like the averaging kernel profiles) have been considered as well, but only to

ensure that the inversion solution can be interpreted easily.

4.5.3 Selected Averaging Kernels

With the values for the regularization parameters λ and µ from the previous section, a set of averaging

kernels have been computed for target depths spanning 0 to 30 Mm depth in 1 Mm increments. Many of these

averaging kernels show nearly identical qualities as those computed for adjacent target depths. A selection

of four characteristic averaging kernels are shown in Figure 4.18 and a more complete set of averaging

kernels are shown in more detail in Appendix B. The dashed circles in the right panels indicate the size

of the apodization circle for a 16◦ tile. Horizontally, the averaging kernels show a much greater amount of

localization that the original sensitivity kernels. The spatial ringing shown in the translationally invariant

one-dimensional example is present in these averaging kernels but is less apparent.

A primary consequence of the inversion is obtaining localized sensitivity at the given target depth.
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Figure 4.17: Maps of the horizontal divergence for the deep (20 Mm) target depth three-dimensional inversion
for various values of λ (bottom to top) and µ (left to right). Each panel covers the same 50◦ by 50◦ area
on the solar disk and the color table has been scaled by the standard deviation of the map. Red indicates
positive horizontal divergence and blue indicates negative. Comparing these maps with one another, it
becomes clear how regularization affects the spatial resolution of the inversion solution. The star indicates
the solution that uses the regularization values also indicated in Figure 4.15.

The panels on the left side of Figure 4.18 show the horizontally integrated sensitivity of the various averaging

kernels as a function of depth. The width of the primary peak of sensitivity increases monotonically as a

function of target depth and has a measured FWHM of around one third the target depth. At shallower

depths than the target depth, the averaging kernels tend to show ringing with a nearly equal amount
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of positive and negative sensitivity. At deeper depths, the ringing persists but has a significantly lower

amplitude.

From the averaging kernels presented in Figure 4.18, I find it appropriate to interpret the inversion

solution for a given target depth as the subsurface flow field at that depth. The primary peak of sensitivity

sits almost exactly at the target depth and the ringing in both the horizontal and vertical directions is

minimal. The effective resolution of the inversion solution is characterized by the vertical and horizontal

extent of the averaging kernels and thus must be taken into account when interpreting the flow fields.

4.5.4 Conclusions

The inversion technique presented in this chapter is capable of turning highly-overlapped, ring-

diagram, frequency-shift measurements into three-dimensional maps of subsurface flows. The characteristics

of the data and associated averaging kernels allow a better understanding of how the inversion works through

analyzing one-dimensional inversions. Inversions in depth show us that localization in depth depends highly

on the set of wave modes measured during ring fitting. Horizontal inversions with translational invariance

show us that flows smaller than the analysis region can be resolved through highly overlapped measurements.

Both types of inversions permit straightforward tuning of the regularization parameters in order to obtain

useful results.

The full three-dimensional inversion demonstrates many of the aspects of the simplified one-dimensional

inversions. The process of picking appropriate regularization parameters is inherent to the inversion proce-

dure and necessary for obtaining scientifically useful results. The ability to create finely-tuned high-resolution

flow maps has enabled a new class of observations of solar convection. The following chapters rely on obser-

vations of subsurface flows made with MORDI.
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Figure 4.18: Left: Horizontally integrated averaging kernels plotted as a function of depth. The four
panels from top to bottom show averaging kernels targeting different depths. The vertical lines indicate the
approximate depth of maximal sensitivity. Right: Cuts of each averaging kernel at the depth indicated by
the vertical lines in the left panel. The dashed circles indicate the size of the apodization circle for a 16◦

tile. This figure has been formatted the same as Figure 2.6 for easy comparison.



Chapter 5

Convective Amplitudes and Rotational Influence

The interaction of convection with rotation establishes Reynolds stresses that are a crucial ingredient

in the dynamics of the Sun’s convection zone. The degree of rotational influence on convective flows is

often characterized by a nondimensional measure called the Rossby number (Ro). The Rossby number is

usually defined as the ratio of a typical convective time scale to the rotational period. In order to assay

the Rossby number, and therefore the degree of rotational constraint, one must measure the speed of the

convective flows with sufficient resolution to sample those scales of motion responsible for Reynolds stresses.

Such measurements are now possible within the near-surface shear layer due to the introduction of high-

resolution ring-diagram analysis described in Chapters 2 through 4. Using this new implementation of

ring-diagram helioseismology to measure previously unresolved scales, we ascertain the strength and spatial

scale of convective flows throughout the near-surface shear layer (NSSL). In this chapter, I present a robust

analysis of these convective flows and the concomitant Rossby number.

The ring-diagram technique employs highly overlapped analysis regions and an efficient method of

three-dimensional inversion to measure convective motions with a resolution that ranges from 10 Mm at the

surface to 70 Mm at the NSSL at a depth of 30 Mm. We find the rms horizontal flow speed to peak at

427 m s−1 at the photosphere and fall to a minimum of 124 m s−1 between 20 Mm and 30 Mm. We also

find that just below the photosphere, the convective flows do not feel the influence of rotation (Ro > 1),

while flows beyond a depth of 10 Mm are strongly influenced (Ro < 1). These results indicate that the

near-surface shear layer is a transition region for the Rossby number and the degree of rotational impact on

convective motions.
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This chapter is based on work previously published in Greer et al. (2015)1 with additional analysis

and interpretation focusing on the Rossby number. I was the primary author on that paper and performed

the data collection, helioseismic inversions, and subsequent data analysis presented in the paper. My co-

authors provided valuable guidance on the language and style of the paper. While the work presented in

Greer et al. (2015) uses the same analysis procedure detailed in the previous chapters, the results were based

on a small subset of the full data set currently available (see Table 2.1 for a full listing). Since the additional

analysis pertaining to the Rossby number was performed after the full data set became available, it is based

on the full set. When appropriate, I will indicate the portion of the full data set from which a particular

result was created.

5.1 Introduction

The Sun’s differential rotation and meridional circulation are maintained by turbulent transport of

angular momentum through the action of Reynolds stresses. The spatial and temporal correlations between

flow components that generate such stresses are thought to be imposed through Coriolis deflection of convec-

tive motions. Due to this deep connection between convection and rotation, the helioseismic measurement

of the rotation rate as a function of latitude and depth (e.g., Howe et al. 2000; Thompson et al. 2003) has

provided an inflexible constraint on numerical simulations of the convection zone. An even more stringent

constraint would be imposed by direct helioseismic determination of the convective flow velocities.

As the first significant step in this direction, Hanasoge et al. (2012), hereafter HDS12, have used

time-distance helioseismology to infer the subsurface convective flow amplitude. Specifically, they found

an exceptionally low rms velocity which had an upper limit of 1 m s−1 at a depth of 30 Mm. Such low

speeds are in conflict with numerical simulations, which generate speeds that are several orders of magnitude

larger (Vögler et al. 2005; Miesch et al. 2008; Rempel et al. 2009; Trampedach and Stein 2011; Weber

et al. 2011; Hotta et al. 2014). This discrepancy has cast doubt in both directions, implying that either

the dynamical balance achieved in many simulations is far from the one that holds in the Sun, or that

helioseismic methods (unknowingly) underestimate velocities below the first few megameters in depth. In

1 Greer, B. J., Hindman, B. W., Featherstone, N. A., & Toomre, J. 2015, ApJ, 803, L17
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this context, we attempt to provide another source of comparison using a new implementation of ring-diagram

helioseismology to directly image convective flows throughout the upper 30 Mm. With this technique we

find convective amplitudes much larger than those deduced by HDS12, and quite similar to the amplitudes

predicted by numerical simulations.

These measurements also allow us to investigate the role of rotation on the observed convective

motions. The upper boundary layer of the solar convection zone is a region of strong rotational shear

known as the near-surface shear layer. The region spans the upper 0.05 R⊙ (35 Mm) and exhibits a 3%

decrease in the global rotation rate compared to the interior. While global helioseismology has provided

precise measurements of the rotation rate in this region (Howe et al. 2000; Thompson et al. 2003), the

physical origin of the layer is unknown. It has been proposed that the distinction between this layer and

the bulk of the convection zone is that convective flows in the upper 35 Mm are fast enough to traverse

the layer without considerable deflection by Coriolis forces (Gilman 1977; Hathaway 1982; Aurnou et al.

2007; Augustson et al. 2011), unlike the flows that exist deeper in the Sun. Hence, the flows within this

layer are only weakly organized by rotation and the Reynolds stresses resulting from that organization are

reduced. Since Reynolds stresses are a key component in the balance of torques in the Sun, the bulk rotation

rate in the NSSL decreases in order to maintain equilibrium. While this theory may play a key part in

understanding the physical origin of the NSSL, it currently lacks observational support.

The degree of rotational influence on convective flows is typically characterized by a nondimensional

measure called the Rossby number, Ro, which is meant to to express the ratio of advection to Coriolis forces

in the momentum equation for the fluid. The Rossby number is usually defined such that it depends only

on the rotation rate Ω and on a typical velocity U and length scale L:

Ro ≡
U

Ω L
∼

|v · ∇v|

|2Ω × v|
. (5.1)

A Rossby number greater than unity (Ro > 1) is meant to indicate that the flows do not feel a significant in-

fluence from rotation, while a Rossby number less than unity (Ro < 1) indicates strong rotational constraint.

Practical use of the Rossby number defined this way is dependent on picking a single representative velocity

scale U and length scale L from the flow field. While the rms velocity is commonly used for the velocity
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amplitude U , the rms value depends on the motions occuring over the entire range of physical scales. This is

problematic, as the convective spectrum at both the photosphere (see Hathaway et al. 2000) and at depth

(Hanasoge et al. 2012; Greer et al. 2015) has significant power over a broad range of spatial scales. Further,

the rms velocity obtained by any measurement scheme is resolution dependent. Since small-scale motions in

the Sun generally have faster amplitudes that large-scale motions, the dominant visual scale seen in a map

of the flow is often the resolution cut-off. Thus, different measurement procedures with different resolutions

produce different Rossby number estimates.

In this paper I develop an alternate definition of the Rossby number that is (a) more representative of

the ratio of forces presented in Equation 5.1 and (b) is a spectral representation that allows direct comparison

of the contributions from each resolved spatial scale. Integrated over a band of length scales, this Rossby

number serves the same function as the traditional definition and provides an easily interpreted measure

of rotational influence for convective motions. Using the helioseismic analysis of HMI data, we measure

horizontal flows throughout the NSSL and calculate the Rossby number associated with those flows as a

function of depth. I find that the NSSL is a zone of transition for rotational influence. Immediately below

the surface, the flows are fast, the Rossby number is large, and the flows lack rotational constraint. At the

bottom of the NSSL, the flows have become sufficiently slow and large scale that the Rossby number is small

and rotation has a strong influence on the dynamics.

In Section 5.2, I provide a synopsis of the analysis methods discussed in detail in Chapters 2 through

4. In Section 5.3, I present measurements of the horizontal flow in the near-surface solar interior in the

context of convective amplitudes and horizontal scales of motion. In Section 5.4, I cast these measurements

as an estimate of the Rossby number to infer the degree of rotational constraint on the observed convective

motions. Finally, in Section 5.5 I compare these findings to both observations and simulations and discuss

the implications for rotational constraint in the NSSL.
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5.2 Methods

5.2.1 Measurement Procedure

Ring-diagram helioseismology deduces subsurface flows within the Sun through the measurement of

Doppler shifts of the Sun’s acoustic wave modes. Here, we observe these waves using full-disk, line-of-

sight Dopplergrams produced by the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics

Observatory (SDO). We analyze 2048 consecutive Dopplergrams with a cadence of 45 seconds for each

analysis period and collect eleven such analysis periods in all (see Table 2.1). Each analysis period has a

duration of 25.6 hrs. Portions of each full-disk Dopplergram are projected onto a mosaic of smaller analysis

regions called tiles. Each square tile is 194 Mm in longitude and latitude (16◦ in heliographic angle) and

the separation between tile centers in the mosaic is 3 Mm (0.25◦) in latitude and longitude. All together,

each mosaic spans 90◦ in longitude and latitude and is comprised of 130,321 individual tiles. From image

to image in the time series, the central longitude of the projection for each tile is shifted with time at the

latitudinally-dependent surface differential rotation rate as measured by Snodgrass (1984). This tracking

removes the large-scale velocity signal of solar differential rotation.

Any analysis of velocity measurements is limited in depth by the tile size (larger tiles sample deeper

flows) and limited in horizontal resolution by the spacing between adjacent tiles. In previous studies the

mosaic of tiles has typically had a much sparser spacing, with tile centers separated by half the tile size. Thus,

standard ring-diagram techniques have achieved only coarse resolution (e.g., 100 Mm). Here we decrease the

spacing between adjacent tiles while keeping the tile size constant. Consequently, we are able to substantially

refine the resolution through deconvolution without sacrificing depth information.

The work originally published in Greer et al. (2015) relied on the central portion of a single analysis

period, since that was the only data set available at the time. This original analysis region is the central 60◦

in each direction of one of the full analysis periods described in Table 2.1. While the measurements of the

convective amplitudes presented here (and in Greer et al. 2015) are based on this small region, the results

pertaining to the Rossby number use results from the full spatial extent of all the listed analysis periods.

After tracking each tile independently through the entire sequence of Dopplergrams, we apply a circular
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apodization function and create a three-dimensional power spectrum (two horizontal spatial wavenumbers

and temporal frequency). For each wave mode in the Sun, a subsurface horizontal flow induces a Doppler

shift that is measurable in the spectrum as a frequency splitting. We use the Multi-Ridge Fitting (MRF)

code (Greer et al. 2014, Chapter 3) to measure both the Doppler shift and its associated uncertainty for

typically 220 unique modes of different radial order n and horizontal wavenumber k. The measured Doppler

shifts exhibit a large-scale systematic bias of currently-unknown origin that depends on disk position and

wave mode (Zhao et al. 2012; Greer et al. 2013; Kholikov et al. 2014). This systematic error has an amplitude

of 10 to 20 m s−1 and contributes only to global scale flows (ℓ < 10). Results relying on the full set of analysis

regions have been corrected for this effect by subtracting the mean measured frequency shift (as measured

over the eleven anlaysis periods) from each wave mode at each disk position. The results originally published

in Greer et al. (2015) could not rely on such an average, and so relied on a different method of systematic

removal. We have measured the frequency shift systematic using a large set of ring fits spanning 80 days

and removed it using the procedure detailed in Greer et al. (2013) and Appendix A. This large set of ring

fits was obtained using low-resolution ring-diagram analysis and interpolated on to the high-resolution data

set. The longitudinal mean of each flow component is removed after this step. In each figure, I will state

which data set was used so that the method of systematic removal can be inferred.

5.2.2 Inversions

The Doppler shifts measured by the MRF method are generated by horizontal flows in the solar

interior, and adjacent measurements are highly correlated due to our dense tiling scheme. Each measured

shift is a weighted average over the velocity field within a three-dimensional region. The weighting function

for this average is called the sensitivity kernel and has a structure that depends on the wave mode used

to obtain the Doppler shift (Birch et al. 2007). The broad horizontal and vertical extent of the sensitivity

kernels complicate the interpretation of the Doppler shifts as a direct measure of subsurface flows, since most

of the convective structures under consideration are smaller than the kernels. However, high-resolution can

still be achieved by deconvolving the measurements while accounting for the high degree of correlation. We

use the Massively-Overlapped Ring-Diagram Inversion (MORDI) procedure from Chapter 4 to achieve high
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horizontal resolution and produce estimates of the horizontal velocity field at strongly localized points in

3-D space. This method combines every mode from all 130,321 tiles in a given analysis period and finds

a balance between producing spatially isolated flow estimates and the final propagated uncertainty. The

balance is tuned with regularization parameters, which we tune such that the signal-to-noise of our results is

roughly constant at all depths (see Chapter 4). The covariance between any two measurements is assumed

to be the product of the uncertainty measured with the MRF method for each mode times the fractional

overlap area of the tiles from which the measurements are obtained.

Just as each Doppler shift measurement is related to the velocity field inside the Sun through a

sensitivity kernel, each solution point in the inversion is related to the true velocity field through an averaging

kernel. The purpose of the inversion is to produce averaging kernels that are much smaller and spatially

localized than the sensitivity kernels. For every solution point, we compute the full 3-D averaging kernel in

order to properly interpret our results. The horizontal size of the averaging kernel for a particular depth

demonstrates the effective resolution of the inversion solution at that depth. The vertical structure of the

averaging kernel provides an estimate of not only the vertical resolution, but the actual depth achieved for

a given set of modes.

In Figure 5.1, we show cuts of three averaging kernels computed as part of the inversion. The three

averaging kernels are for depths of 0.25 Mm, 5 Mm, and 30 Mm, spanning the depth range of our results. As

shown in Figure 5.1a, the averaging kernels increase in horizontal size as the depth increases. Immediately

below the surface, the inversion achieves a horizontal resolution of 10 Mm. The resolution scale increases

with depth, degrading to 70 Mm at a depth of 30 Mm. The loss of horizontal resolution with depth is due

to increasing uncertainty for Doppler shift measurements that reach deeply coupled with a dearth of such

modes. At all depths, the averaging kernels demonstrate the ability for the procedure presented here to

resolve flows much smaller than the tile size. Figure 5.1b shows the vertical structure of the same three

kernels. These give a sense of how much each depth in the solution is correlated with any other depth. The

averaging kernels for all other depths presented in this paper show a steady progression of the vertical and

horizontal extents as a function of depth. A larger selection of averaging kernels can be found in Appendix

B.
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Figure 5.1: (a) Longitudinal cut through the
peak of three different averaging kernels in
the inversion, each targeting a different depth
(Solid = 0.25 Mm, Dotted = 5 Mm, Dashed
= 30 Mm). (b) Cuts in depth of the same av-
eraging kernels. Both the horizontal and ver-
tical extent of the averaging kernels increase
monotonically as a function of depth.
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5.3 Convective Amplitudes

Figure 5.2a shows a small region of the inversion solution at a depth of 0.25 Mm, and compares our

helioseismically determined flow field to a map of the temporal average of the absolute, line-of-sight, magnetic

field strength as measured by HMI over the same region. Magnetic field elements seen in photospheric

observations are advected by the horizontal flows inside the Sun and tend to gather in the boundaries

between neighboring convection cells. Averaged over the course of a day, the magnetic field map traces out

the locations of supergranules, which persist for a comparable amount of time. Since the magnetic field map

is an independent measure of the size and locations of supergranules, it serves as a useful comparison to our

horizontal flow field. Figure 5.2a shows excellent agreement between the two, with collections of magnetic

field sitting in the regions of converging flow. Figure 5.2b shows a larger portion of the inversion result at a

depth of 10 Mm.

In Figure 5.3, we present the velocity spectrum of the inversion results at four depths (0.25 Mm,

5 Mm, 15 Mm, 30 Mm) as a function of spherical harmonic degree, and show the spectrum of the averaging

kernels at each of these depths. Since the inversion flow field at a given depth is a horizontal convolution of

the true flow field in the Sun with the averaging kernel at that depth (Equation 4.1), the spectrum of the

averaging kernel provides the linear sensitivity of our procedure to solar flows at each harmonic degree. By

construction, the averaging kernels integrate to unity, so the spectral sensitivity peaks at ℓ = 0 at a value of

1. The sensitivity remains constant up to some value of ℓ, then drops steadily thereafter. The location in

spectral space at which this transition occurs is determined by the width of the averaging kernels (smaller

width, larger ℓ). We can therefore interpret the velocity spectrum at each depth as being reliable where the

averaging kernel spectrum is flat, and artificially diminished for higher ℓ.

At a depth of 0.25 Mm, the velocity spectrum in Figure 5.3 shows a prominent bump between ℓ = 50

and ℓ = 200, consistent with the prominent supergranulation seen in Figure 5.2a. The location and amplitude

of this feature is also consistent with measurements using other methods (e.g., Hathaway et al. 2000; Roudier

et al. 2012). The averaging kernel spectrum at this depth confirms that we are able to resolve these scales,

and that the steady drop in power above ℓ = 200 is due to limitations in resolution as opposed to an intrinsic
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Figure 5.2: (a) Vector field for a subsection of the horizontal flow map at a depth of 0.25 Mm. This map is
extracted from the center of analysis period A2 (see Table 2.1) and is overlaid on a map of magnetic field
strength. Darker colors indicate stronger magnetic field, and the color table saturates at 25 Gauss. The
vectors have been subsampled to a resolution of 0.5◦ (6 Mm) to roughly match the width of the averaging
kernel for this depth. The magnetic field map shown is an average of the magnetic field strength (absolute
value) as measured by HMI over the same time period that is averaged over in the velocity fields. We see a
strong correspondence between the horizontal flow found through our analysis and the advection of magnetic
field at the photosphere. (b) Vector field for a larger subsection of the inversion solution taken at a depth
of 10 Mm and subsampled to a resolution of 2◦ (24 Mm) to match the averaging kernel at this depth. The
gray box in panel (b) indicates the position and spatial extent of the map in panel (a).

drop in velocity at smaller scales. Deeper in the Sun, we lose the ability to sample supergranular scales

as the horizontal resolution degrades. At a depth of 30 Mm, we are capable of resolving only the lowest

harmonic degrees (ℓ < 40).

Figure 5.4 shows the root-mean-square (rms) horizontal velocity plotted as a function of averaging-

kernel depth along with both the error on an individual solution point (shading) and the propagated error

on the rms (error bars). The rms velocity peaks at 427 m s−1 near the surface and diminishes rapidly with

depth. Within the first 10 Mm below the photosphere, the velocity drops to around 200 m s−1 and continues

a steady but slow decline until a depth of 30 Mm. The small perturbations that appear within these deeper

layers are within the error bounds and are a consequence of the specific realization of convective flows that

we sample.



120

10 100 1000
Harmonic Degree

0.01

0.10

1.00

10.00

100.00

V
el

oc
ity

 (
m

/s
)

20 30 40 200 300 400

0.25 Mm
5 Mm
15 Mm
30 Mm

Figure 5.3: Spectrum of inversion results at a few depths as a function of harmonic degree. These results
are from the central portion of analysis period A2 (see Table 2.1). Solid lines are the azimuthally integrated
spectra of the horizontal velocity field, and color differentiates the central depth of the averaging kernel.
Vertical error bars on the black and red curves indicate the 95% confidence interval, and those for the blue
and green curves show similar trends. The dashed lines are the upper envelope of the averaging kernels
for each depth and demonstrate the relative sensitivity of our inversion result to the true flows in the Sun.
The sensitivity for every averaging kernel is unity at ℓ = 0 by definition, but the dashed lines have been
normalized to arbitrary values for visual clarity.

5.4 Rossby Number

Next, we consider the degree of rotational influence on the observed flow fields at each depth inde-

pendently. We estimate this effect through the use of the Rossby number, which describes the balance of

advection forces to Coriolis forces. The typical definition of the Rossby number U/ΩL requires one to select

a single velocity scale U and length scale L representative of the flow field. Due to the nature of the present

observations, selecting a single length scale is problematic.

At any given depth, the inversion result has a critical spatial scale. Scales larger than this critical

value are well-resolved. Small scales beyond this critical value are artificially reduced in amplitude due to

smoothing. The scale at which this transition occurs depends on depth, and the power spectrum of the

averaging kernel for a given depth (Figure 5.3) provides a simple way of determining the critical scale. This

resolution effect introduces a characteristic length scale into our results that has little to do with the true

flows inside the Sun. Instead, this scale is largely determined by the error statistics of the frequency-shift
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Figure 5.4: Root-mean-square horizontal ve-
locity as a function of depth. The shaded re-
gion indicates the uncertainty on a single so-
lution point while the vertical error bars in-
dicate the 3-sigma values for the propagated
uncertainty on the rms value. These results
are from the central portion of analysis period
A2 (see Table 2.1).

measurements and how we tune the inversion to prevent noise amplification. This creates a problem when

using the standard definition of the Rossby number U/ΩL, where it is common to pick a single length scale

that is relevant to the flow field.

To avoid the issue of picking a single length scale (or a single velocity scale), we define a Rossby

number that better represents the balance of forces in Equation 5.1 and is an integral measure over all

resolved spatial scales:

Ro2(z) ≡
1

A

∫ ∫

k dk dθ
|ŵx(k, z)|2 + |ŵy(k, z)|2

Ω2
k2. (5.2)

Here, ŵx(k, z) and ŵy(k, z) are the two-dimensional Fourier transforms of the east–west and north–south

components (respectively) of the inversion solution at each depth z. The constant A represents the area of

the Sun over which the Rossby number is computed and the area element in Fourier space that is integrated

over is written in polar coordinates k, dk, dθ. This definition of the Rossby number scales with velocity and

length scale in the same way as the original definiton in Equation 5.1. We have defined the square of the

Rossby number so that it can be viewed as a spectral density:

Ro2(z) =

∫

dk R2(k, z) (5.3)

R2(k, z) ≡
1

A

∫

dθ
|ŵx(k, z)|2 + |ŵy(k, z)|2

Ω2
k3. (5.4)

This provides a simple way of understanding what spatial scales at each depth contribute to the Rossby

number, which is computed as an integral of the Rossby integrand R over a range of spatial scales.

Figure 5.5 shows the Rossby integrand R(k, z) as a function of harmonic degree ℓ = kR⊙ for a few
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depths. These results were computed by independently calculating the Rossby integrand using the full spatial

extent of all of the eleven available analysis periods, then averaging the result over all periods. Near the

surface, the spectrum peaks near ℓ = 100 just as in Figure 5.3, indicating that the scales associated with

supergranulation offer a significant contribution to the integrated Rossby number. Deeper into the Sun, we

see that the dominant scales that contribute to the Rossby number tend to be lower ℓ than this (∼ 30). The

ringing seen in these curves is due to the compact nature of the inversion sensitivity kernels (see Chapter

4). It is more apparent here than in the previous spectra (Figure 5.3) due to the larger analysis region used

and therefore the higher wavenumber resolution.

A useful feature of expressing the Rossby number as an integral over harmonic degree is that it

becomes directly comparable to the spectrum of the inversion averaging kernel. The horizontal spectrum

of the inversion averaging kernel for a given depth tells us which spatial scales are well-resolved and which

suffer an artificial degradation of power. The averaging kernel spectra originally shown in Figure 5.3 are

reproduced in Figure 5.5 to once again demonstrate which spatial scales are well-resolved in the inversion

solution. Here, the full spectrum is shown as opposed to the upper envelope in Figure 5.3. Since the Rossby

integrand depends linearly on the flow velocity, the averaging kernel spectrum reveals the degree to which

the integrand is artificially diminished due to resolution effects. The total Rossby number that we infer

primarily contains contributions from scales larger than these cut-offs at each depth (smaller values of ℓ).

The Rossby number Ro is computed as an integral of the Rossby integrand R over a chosen range of

spatial scales. Figure 5.6 shows the Rossby number as defined in Equation 5.4 as a function of depth for

two different ranges of spatial scales. The black curve represents an integral over all available spatial scales,

ignoring the effects of the variable effective resolution with depth. This curve shows a value of around 3 at

the surface, indicating flow structures that are not strongly influenced by the rotation of the Sun. Directly

below the photosphere, the Rossby number integrated over all scales drops monotonically until reaching a

value of 0.1 by a depth of 10 Mm. Below this depth, the Rossby number stays relatively constant until the

bottom of our analysis range at 30 Mm. Since spatial resolution plays an important role in both the inversion

procedure and in computing the Rossby number, Figure 5.6 also includes the Rossby number as a function of

depth using only length scales ℓ < 20, which are resolved uniformly at all depths (blue curve). This provides
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Figure 5.5: Rossby integrand (Equation 5.4, solid lines) as a function of harmonic degree for various depths.
The dashed lines indicate the power spectrum of the inversion averaging kernel. These are equal to unity
at ℓ = 0 by construction, but have been shifted vertically for clarity. In Figure 5.3, the upper envelope of
the averaging kernel spectra were presented. Here, I show the full structure of the averaging kernel spectra,
which exhibit strong ringing due to the compact nature of the inversion sensitivity kernels. The Rossby
integrand shows similar oscillations in power for the same reason. These results are computed using all
available analysis periods (see Table 2.1).

an estimate of the effective Rossby number relevant to large-scale convective motions. Not only does this

demonstrate that the largest scales of motion are rotationally influenced at all depths, but that it is the

small-scale motions (ℓ > 20) near the surface that cause the overall Rossby number to be greater than one.

5.5 Discussion

5.5.1 Comparison of Convective Amplitudes

The results presented here show the spectrum of convective amplitudes throughout the NSSL along

with an estimate of the degree of rotational constraint on these flows. A primary finding is that the speed of

solar convective flows exceeds 120 m s−1 throughout the NSSL. This finding is in stark contradiction with

the previous helioseismic study of HDS12, which presented anomalously slow velocities. Figure 5.7 compares
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Figure 5.6: Rossby number as a function of depth below the photosphere obtained by integrating over all
observed spatial scales (black curve) and over only the largest scales (ℓ < 20, blue curve). At each depth,
the value of the Rossby number squared has been computed independently for each of the eleven analysis
periods and then averaged together. The plotted Rossby number is the square root of this average. The
error bars represent the standard deviation of the Rossby number over these independent analysis periods.

the velocity spectra from Figure 5.3 for low harmonic degree (red) with the time-distance helioseismic

result of HDS12 (orange). The velocity spectrum for the numerical simulation of global convection used

for comparison in HDS12 is shown in green (Miesch et al. 2008). Further, the spectrum of motions from a

more recent numerical simulation of the global convection zone (Featherstone and Miesch 2015) is indicated

(purple). This particular simulation evinces convective motion capable of sustaining a solar-like differential

rotation, possessing a pole-to-equator contrast of ∆Ω/Ω ≈ 15%. This model was computed by solving the

anelastic equations in a rotating spherical shell using the numerical algorithms described in Clune et al.

(1999) and a prescription for boundary conditions and radiative heating as described in Featherstone and

Miesch (2015). The simulation domain spans from the base of the convection zone at 0.72R⊙ to a height of

0.97R⊙ with a resolution of 128 × 384 × 768 (nr × nθ × nφ). The two helioseismic spectra and the newer

simulation spectrum are taken at a depth of approximately 30 Mm (0.96 R⊙), and the spectrum from Miesch

et al. (2008) is taken at a depth of 14 Mm (0.98 R⊙).

Note, the time-distance study of HDS12 does not claim to have directly detected the convective flow

signal. Instead, the indicated spectrum is an upper limit that depends on a specific noise model. The drastic
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Figure 5.7: Comparison of horizontal veloc-
ity spectra as a function of harmonic degree.
The red curve indicates the inverted flow field
(same as Figure 5.3), and error bars indi-
cate the 95% confidence interval at each value
of harmonic degree. These results are from
the central portion of analysis period A2 (see
Table 2.1). The orange curve is the upper
limit on convective amplitudes as appears in
HDS12. The purple curve is from the numer-
ical hydrodynamic simulation in Featherstone
and Miesch (2015) and is described in Sec-
tion 3.4. These three spectra are taken at
a depth of approximately 30 Mm (0.96 R⊙).
The green curve is from the numerical simu-
lation in Miesch et al. (2008) at a depth of
14 Mm (0.98 R⊙).
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difference between the two helioseismically determined spectra is particularly interesting, since each set of

results use full-disk Dopplergrams from the same instrument. Research comparing results from time-distance

analysis to those from ring-diagram analysis have generally shown good agreement (Kosovichev et al. 2011;

Hindman et al. 2003; 2004), and differences seen between the two techniques are usually far less substantial

than what is shown in Figure 5.7.

One of the key steps to the analysis in HDS12 is the attempted removal of uncorrelated noise in the

variance of the velocity measurements. This is accomplished based on the assumption that the relevant flows

produce a constant signal as the time duration of the analysis increases, while simultaneously the level of

uncorrelated noise decreases. If we were to assume that the discrepancy between the red and orange curves

in Figure 5.7 is simply due to the presence of noise in our data (which we have made no attempt to remove),

the signal-to-noise ratio for the results presented would be at most 0.01. However, by propagating the

uncertainty measured directly from each power spectrum through the inversion procedure, we find our final

signal-to-noise ratio to be around 2 (Figure 5.4). Perhaps, a more likely option is that the flow structures seen

in this study evolve with time in such a way that they are removed during the noise-subtraction procedure

of HDS12.

5.5.2 Rotational Influence on Convective Motions

Just as global helioseismic measurements of the subsurface differential rotation have guided numerical

models of solar convection, our measurements of the convective amplitude provide useful observational

constraints in the near-surface shear layer. The convective amplitude in the deepest layers that we sample

(30 Mm) are particularly instructive, as these results are beginning to sample the deep flow structures

responsible for the Sun’s differential rotation and global meridional circulation. Such organized, large-scale

motions are the result of Reynolds stresses induced by Coriolis deflection of the convective motions. The

level of rotational influence felt by the convection, characterized by the Rossby number Ro, is thus a crucial

ingredient in simulations of the solar convection zone. Values of Ro greater than unity are characteristic

of convection that only weakly senses the rotation, whereas values less than unity indicate rotationally

constrained convection.
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From the measurements presented here of the horizontal flow velocities below the surface of the Sun,

we see a transition from rotationally unconstrained flows at the surface to flows that feel the influence of

rotation deeper down. It is interesting that this transition not only occurs within the NSSL, but actually

exhibits most of the change in the upper 10 Mm. Our measurements indicate that the depth at which

advective forces roughly match Coriolis forces is at around 5 Mm.

The fact that the Rossby number at the surface is greater than unity is not surprising. Existing

measurements of near-surface flows have also revealed velocities and length scales consistent with a Rossby

number greater than one (300 m s−1, 35 Mm; Hathaway et al. 2002). Further, the characteristic lifetimes of

surface convective features (10 minutes for granules, 30 hours for supergranules) are so much shorter than the

solar rotation period of 27 days that we wouldn’t expect rotation to play a significant role in their evolution.

Global convection models tuned to simulate solar conditions often demonstrate rotationally influenced

convective structures throughout the convection zone (e.g., Miesch et al. 2008). Paired with observations

of near-surface convection, we would expect to find a transition of the Rossby number from greater than

one to less than one somewhere in the convection zone. The measurements presented here suggest that this

transition occurs within the NSSL, which has long been a region of interest due to its implications with

angular momentum balance. This discovery of a transition from a Rossby number greater than one near

the surface to less than one by the bottom of the NSSL may prove useful in understanding the origin and

dynamics of the layer.

The Rossby number is a simple metric for determining the degree of rotational influence in a complex

fluid system, but in a sense is a prediction of this influence and not a direct observation. A rotationally-

constrained convective flow (like the deeper layers of the NSSL and the bulk of the convection zone) should

exhibit correlations between the flow components due to deflections mediated by the Coriolis force. Directly

measuring the Reynolds stresses for the full three-dimensional flow field in the NSSL would allow a more

direct confirmation of the rotational influence on near-surface convection. The number of independent

convective realizations necessary to make such a measurement is much greater than the number presented

in this study, and will be the focus of future efforts.

The analysis presented here provides not only a robust measure of the horizontal convective velocities
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in the solar near-surface shear layer, but also a proof-of-concept for further work in high-resolution ring-

diagram helioseismology. While the computational burden of producing highly-overlapped tiles is significant,

the ability to recover fine structures without sacrificing depth is of great importance. With larger tiles, it

may be possible to extend this type of analysis deeper into the Sun to sample the largest scales of convection

with adequate resolution.



Chapter 6

Imaging Supergranular Flows in the Near-Surface Shear Layer

6.1 Introduction

A primary goal of this thesis is to present new methods for ring-diagram helioseismology that enable

a new class of observations of the solar interior. These new observations are higher resolution, lower noise,

and most importantly, easier to interpret than the observations gernered with previous methods. The first

scientific results from these observations are presented in the previous chapter (Chapter 5). There, I provide

a set of horizontal flow fields in the context of convective amplitudes and global solar dynamics. These

results span the upper 30 Mm of the solar convection zone.

The use of velocity spectra and bulk characterizations like the Rossby number strip the observed flow

field of phase information. That kind of analysis is easy to compare to both observations and simulations,

as it does not depend on the particular convective realization being measured. However, if these flows are

truly representative of the convective motions inside the Sun, the phase information carries the proof. A

focus of this chapter is to analyze the observed flow fields in a way that emphasizes the convective nature of

the observed subsurface flows.

6.1.1 Supergranulation

Supergranulation is the term assigned to a consistent pattern of horizontal flow seen in the photosphere.

In Hart (1956), fluctuations in the photospheric velocity field were found to have a characteristic horizontal

scale of around 26 Mm and with the publication of the first Doppler images of the Sun (Leighton et al. 1962)

supergranulation was found to cover the entire solar disk. These velocity fluctuations form a cell-like pattern
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Figure 6.1: Supergranulation as seen in direct
Doppler imaging. The 32◦ by 32◦ region has
been tracked over 25.6 hours of HMI Dopp-
lergram images and then averaged in time at
each projected location. See Chapter 2 for a
description of the tracking process. The re-
gion shown is centered 45◦ from the center
of the disk, causing the apparent alignment
of supergranular structures. The line-of-sight
Dopplergrams measure a mixture of horizontal
and vertical velocity here, but supergranules
have a dominant signal in the horizontal com-
ponent. Red indicates a velocity towards the
observer and blue indicates away. The color
table saturates at ±300 m s−1

that repeats across the solar disk, with broad areas of horizontal divergence separated by narrow lanes of

convergence. This pattern is indicative of a characteristic scale of convection, and has been treated as such

in most studies. Much is still unknown about supergranules six decades after their discovery, such as what

sets their size, what their three-dimensional structure looks like, and how they interact with other scales of

turbulent convection.

The unanswered questions regarding supergranules have been tackled by observational studies, analytic

theory, and numerical simulations. The three key methods for observing supergranules are direct Doppler,

photospheric tracking, and local helioseismology. Direct Doppler observations involve using the full-disk

line-of-sight Dopplergrams to directly measure the photospheric flows associated with supergranules (Figure

6.1). Measurements from this technique are limited to the height of formation of the Dopplergram image,

which is typically within a few hundred kilometers of the photosphere. Tracking (either with distinct features

or with local correlations) involves measuring the advection of features (often granules or magnetic elements)

seen in photospheric images. While advection seen in the photosphere may be influenced by subsurface flows,

feature tracking does not allow one to separate out the influence of different depths within the Sun. Local

helioseismology (the focus of this thesis) is the only method that permits measurements of horizontal flows

at isolated depths below the photosphere.

Surface observations have provided robust measures of the horizontal scale, temporal lifetime, and

velocity amplitude of supergranules. While the list of studies measuring any of these three quantities is long,
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I will provide a brief summary of these numbers just to have the relevant scales in mind. A more exhaustive

list can be found in Rieutord and Rincon (2015).

The horizontal size of a supergranule can range between 20 Mm and 60 Mm, with a typical size

around 35 Mm (Hathaway et al. 2000; 2002; De Rosa and Toomre 2004; Del Moro et al. 2004; Hirzberger

et al. 2008; Rieutord et al. 2008). The photospheric pattern of supergranulation is constantly evolving, with

a coherence timescale of around 1.7 days (Hirzberger et al. 2008). As shown in De Rosa and Toomre (2004),

some supergranules are recognizable even after 4 to 5 days. Under the simplifying assumption that these

convective structures maintain their individual identity between being created and destroyed at discrete

times, this coherence time can be treated as a supergranule lifetime. Recent measurements of supergranular

velocities show typical horizontal velocities of ∼ 300 m s−1 (Hathaway et al. 2002) and vertical velocities of

∼ 30 m s−1 (Hathaway et al. 2002; Rieutord et al. 2010).

While these observations have provided useful measurements of the photospheric structure of super-

granules, the subsurface structure remains less certain. Numerous studies have reported on the vertical

extent of supergranulation using helioseismology to measure subsurface flows. These have reported depths

between 1 Mm and 15 Mm, with most of them agreeing on a depth of around 7 Mm (Duvall 1998; Zhao and

Kosovichev 2003; Woodard 2007; Sekii et al. 2007; Duvall et al. 2014). In these studies, the photospheric

characteristics of identifiable supergranules are compared to subsurface flows to determine how far in depth

the supergranules remain correlated. While some studies take the depth at which they cease to detect a

supergranule-like pattern as the end-point of supergranules (Woodard 2007; Sekii et al. 2007), other studies

detect a reversal of the supergranular flow that is interpreted as the return flow of a cell-like convective

structure (Duvall 1998; Zhao and Kosovichev 2003).

The analysis of a possible return flow at the bottom of supergranulation implies a three-dimensional

structure that contains a well-defined bottom surface. In a Rayleigh-Bénard convection, the vertical extent

of convection cells is set by the presence of physical boundaries that enfore zero vertical velocity above

and below. Applying this rationale to supergranulation is difficult, as there is no clear reason behind what

sets their depth. Simon and Leighton (1964) suggested that He++ recombination could act as a driver of

supergranular scales at depth, but this theory has not found support in numerical simulations. Granular-
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scale simulations such as those in Stein and Nordlund (1989; 1998) have revealed an alternate picture of

how the surface patterns of convection may connect to deeper motions. The intense density stratification

and rapid cooling near the photosphere sets up a large entropy contrast between warm upflows and cool

downflows. The downflow network seen at the surface is the source of narrow, filamentary downflow plumes

that penetrate the background of broad, warm upflows. These simulations tend to show downflow plumes

that merge together as they travel to form larger horizontal scales. In this picture of solar convection, we

might expect that supergranules do not possess coherent return flows at a constant depth, but instead initiate

a charasteristic horizontal scale of downflows that morph as they permeate the convection zone.

There is an additional complication to this interpretation when comparing the lifetime of supergran-

ulation to an estimate of the convective turnover time. One might expect that a coherent cell-like structure

can only exist if the turnover time is comparable to or shorter than the lifetime of the cell. Using a 30 m s−1

vertical velocity and a vertical round-trip distance of 14 Mm, the estimated turnover time is around 5.5 days.

This is considerably longer than the observed lifetime of 1.7 days. This mismatch of timescales is problem-

atic. How supergranular cells can maintain a coherent return flow with a surface pattern that evolves much

faster than the vertical equilibration time is a mystery.

On the theoretical side, it has been difficult to find a mechanism that can create such a distinct

scale of convection amidst the high degree of turbulence expected in the solar interior. Analytic models of

convection—such as Mixing Length Theory (Böhm-Vitense 1958)—predict scales of convective motion pro-

portional to the local scale height. Since the thermodynamic properties of the solar interior vary smoothly

with depth, it is difficult to create a single prominent scale of convection that stands out against the back-

ground turbulence. The highly nonlinear nature of solar magneto-convection makes numerical simulation

difficult. The advancement of high-performance supercomputers has led to increasingly sophisticated numer-

ical models (e.g., Stein et al. 2009; Ustyugov 2010; Lord et al. 2014), but a simple and consistent explanation

of supergranulation remains elusive.

With measurements of subsurface flows, we may attempt to further probe the character of supergran-

ules in this context. The technique of high-resolution helioseismology employed in this thesis is capable of

resolving supergranular flows near the surface (see Chapter 5) and can produce flow fields at isolated depths
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from the photosphere to a depth of 30 Mm. Applying our helioseismic procedure to successive analysis

periods allows us to consider both the spatial and temporal evolution of these structures. In this chapter, I

present results that link the photospheric pattern of supergranulation to convective motions throughout the

upper 30 Mm and suggest a model of surface-driven convection.

6.1.2 Near-Surface Shear Layer

The upper boundary layer of the solar convection zone is a region of strong rotational shear known

as the near-surface shear layer (NSSL). The region spans the upper 0.05 R⊙ (35 Mm) and exhibits a 3%

decrease in the global rotation rate compared to the interior. While global helioseismology has provided

precise measurements of the rotation rate in this region (Howe et al. 2000; Thompson et al. 2003), the

physical origin of the layer is unknown. It has been proposed that the distinction between this layer and

the bulk of the convection zone is that convective flows in the upper 35 Mm are fast enough to traverse the

layer without considerable deflection by Coriolis forces (Gilman 1977; Hathaway 1982; Aurnou et al. 2007),

unlike flows that exist deeper in the Sun. While this theory may play a part in understanding the physical

origin of the NSSL, it currently lacks observational support.

The data set presented here spans the upper 30 Mm of the convection zone, allowing us to consider the

structure of convection through the majority of the NSSL. In the previous chapter, I characterized the degree

of rotational influence on convective motions through the Rossby number. Using only the bulk horizontal

convective velocities and characteristic length scales, I determined that the NSSL is a transition region for

the Rossby number. This suggests that the interplay between convection and rotation may be an important

ingredient in maintaining the NSSL. However, using a Rossby number computed independently at each depth

ignores the possibility of rotational influence on larger-scale convective structures that span multiple depths.

The use of multiple consecutive analysis periods permits us to consider the evolution timescale of convective

flows compared to the rotation rate. This allows a more direct measure of the degree of rotational influence

on convection.

The vertical flows themselves likely play a key role in the influence of rotation on convective flows

and the transport of angular momentum in the NSSL. The spatial scales at which these flows operate, along
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with their radial speed, can help constrain global dynamics models and lead to a greater understanding of

the NSSL. Traditionally, local helioseismology is insensitive to the vertical component of subsurface flows.

While there are modifications that can be made to isolate the vertical component from observations, these

do not produce results with the same fidelity as horizontal flows. Alternatively, the anelastic approximation

can be applied to the observed horizontal flows to create an inferred vertical velocity field, but the validity

of these flows relies heavily on the quality of the observations. In this chapter, I will present inferred vertical

flows derived from the observations made possible with this new implementation of ring-diagram analysis.

In Section 6.2, I demonstrate how some aspects of the measured flow field match our assumptions

about magnetic fields and bulk rotation, and thus lend credence to the observations. In Section 6.3, I show

how the pattern of convection at any depth within the observed domain can be traced backward in time to

the surface pattern of supergranulation. This is a new discovery made possible with the methods presented in

this thesis. In Section 6.4, I will discuss the implications of this finding for both theories of solar convection

and other helioseismic observations.

6.2 Matching to Independent Observations

Figure 6.2 shows vector maps of the horizontal velocity recovered from the inversions. The colors

underlying the vector field indicate the value of the horizontal divergence. The vectors have been subsam-

pled to the resolution of the averaging kernel at each depth, so each vector is nearly independent of its

neighbors. These independent points reveal maps at all depths that contain spatially coherent structures.

The vector field near the surface seems to be comprised of cell-like structures with sizes comparable to those

of supergranules, lending some authority to the pattern. However, the flows recovered deeper into the Sun

cannot be independently confirmed as easily.

The lack of independent observations for deeper flows (5 − 30 Mm depth) is due to two issues. The

first is that non-helioseismic observations of the Sun are relegated to the photosphere and above. While some

well-known surface phenomena are thought to be rooted in the deep solar interior (i.e., sunspots), there are

currently no observations that extend our knowledge of these features any deeper than the photosphere.

The second issue is that the methods used in this thesis are in practice able to measure flows with much



135
Depth = 1 Mm

-20 -10 0 10 20

-20

-10

0

10

20

La
tit

ud
e 

(d
eg

re
es

)

Depth = 5 Mm

-20 -10 0 10 20

-20

-10

0

10

20

Depth = 10 Mm

-20 -10 0 10 20

-20

-10

0

10

20

La
tit

ud
e 

(d
eg

re
es

)

Depth = 15 Mm

-20 -10 0 10 20

-20

-10

0

10

20

Depth = 20 Mm

-30 -20 -10 0 10 20 30
Longitude (degrees)

-30

-20

-10

0

10

20

30

La
tit

ud
e 

(d
eg

re
es

)

Depth = 25 Mm

-30 -20 -10 0 10 20 30
Longitude (degrees)

-30

-20

-10

0

10

20

30

-4 -2 0 2 4
Normalized Divergence

 
 

Figure 6.2: Horizontal flow field and horizontal divergence maps for a few depths of analysis period A4 (see
Table 2.1). The vector field at each depth has been sub-sampled to the horizontal resolution of the averaging
kernels. For the divergence map, red indicates positive divergence, blue is negative, and white is zero. The
color map has been scaled individually at each depth.
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higher horizontal resolution than most other helioseismic procedures. While other helioseismic methods are

able to measure flows throughout the entire convection zone, few have the horizontal resolution to see the

scales relevant for convection. The observations of deeper flows presented here are currently lacking any

possibility for independent confirmation; therefore, the best chance for verifying deeper flows is to look for

self-consistency between the flows at every depth.

Proper interpretation of these observations and comparison to other observations depends on under-

standing the resolution with which they are made. Since I have used a fully three-dimensional inversion

procedure to produce the flow fields, both the horizontal and vertical resolutions are of interest. As seen

previously, the resolution of the flows at any given depth are determined by the size of the inversion averaging

kernel (see Appendix B for a broad selection of averaging kernels). Figure 6.3a shows the horizontal FWHM

of the inversion averaging kernels as a function of target depth. The horizontal resolution begins at around

1◦ (10 Mm) at the surface and degrades steadily with depth. By a depth of 30 Mm, the horizontal resolution

has dropped to around 5.5◦ (70 Mm). Figure 6.3b demonstrates that the vertical resolution (as measured

with the vertical FWHM) degrades nearly linearly with depth. At any given depth, the averaging kernel has

considerable sensitivity to ±1/3 of the central depth.
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Figure 6.3: (a) Horizontal FWHM of the inversion averaging kernels as a function of depth. (b) Vertical
FWHM of the same averaging kernels as a function of depth.

The analysis periods used in the analysis of this chapter are listed in Table 2.1. A key attribute of

these regions is that they each span a 90◦ by 90◦ square centered on disk center. The Sun’s differential

rotation will cause convective patterns to rotate at different rates depending on latitude. As opposed to
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striving to map convective flows across the entire solar disk, limiting the latitudinal span of the regions

to ±45◦ reduces the influence of differential rotation and allows for easier analysis across multiple analysis

periods. Further, each analysis period is taken from a time of relatively low magnetic activity. This is done

both to minimize any systematic effects in the frequency measurements having to do with magnetic field

(Hindman et al. 2000; Howe et al. 2005; Featherstone 2011) and to avoid the effects that strong localized

magnetic fields may have on the flows themselves (Hindman et al. 2009; Featherstone 2011).

6.2.1 Direct Doppler Imaging

The flows observed near the photosphere can be compared to the line-of-sight, Doppler-velocity field

measured by HMI. Figure 6.4 shows the photospheric line-of-sight velocity using (a) direct Doppler imaging

and (b) ring-diagram analysis for the same region of the solar disk. The Doppler image has been integrated

in time over the same analysis period used for the helioseisic flow map and convolved with the inversion

averaging kernel to approximate the lower horizontal resolution. The helioseismic vector field has been

projected onto the line-of-sight vector to mimic the signal seen in the Dopplergrams. The two maps show

very similar flows structures despite the vast differences in observational methods. Direct Doppler imaging of

solar flows is limited in depth and projected velocity component, but is an extremely robust method. Some

of the subtle differences between the two flow maps could be due to the unmeasured vertical flows, which are

roughly an order of magnitude weaker than the horizontal flows (Hathaway et al. 2002). In all, the strong

similarity between the observed flows using the two methods allows us to put faith in the inversion results

for near-surface flows.

6.2.2 Advection of Magnetic Field

One of the more obvious non-helioseismic measures of near-surface convection is the horizontal advec-

tion of magnetic field. Line-of-sight magnetograms provide a measure of the magnetic field strength at each

point on the surface of the Sun. Just like with Dopplergrams, HMI captures full-disk magnetograms with a

cadence of 45 seconds. In these, small magnetic elements are observed to be advected by horizontal flows;

particularly those of supergranules (Parker 1963; Galloway et al. 1977; Galloway and Weiss 1981). Tracking
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Figure 6.4: (a) Line-of-sight photospheric Doppler velocity as seen with the HMI instrument averaged over
the same time as analysis period A2 (Table 2.1). The result has been blurred to approximate the surface
resolution of the helioseismic observations presented in this chapter. The dominant velocity signal is from
the horizontal flows of supergranulation. Supergranules have weak vertical flows, so the line-of-sight velocity
diminishes near disk center. Due to a B-angle of around 5◦ during this analysis period, disk center falls to
the north side of the equator. (b) Line-of-sight projection of photopheric horizontal flows obtained using
high-resolution ring-diagram analysis. The two maps show supergranular flows and are strikingly similar
(correlation coefficient of 0.73) to each other despite the vast difference in analysis procedure.

individual magnetic elements can be done to infer a horizontal velocity, as in Simon et al. (1988); Wang et al.

(1995); Jafarzadeh et al. (2014). Due to the cell-like pattern of supergranulation, these magnetic elements

are swept away from cell centers and converge into downflow lanes. The interstices of these lanes often show

the highest concentration of advected magnetic elements. Thus, the average magnetic field strength as a

function of disk position provides a rough measure of where the horizontal flow field has negative diver-

gence. Comparing average magnetic field strength to horizontal flow fields has been done successfully for

near-surface convection using helioseismology (e.g., Langfellner et al. 2015a) and feature tracking (Orozco

Suárez et al. 2012).

Figure 6.5a shows the photospheric horizontal divergence map beneath a contour map of the average

magnetic field strength over the same area. The average magnetic field at each location has been computed

by averaging the absolute magnitude of the line-of-sight magnetic field observed with HMI. The average

is compiled over the same 25.6 hours of observations over which the helioseismic flows were collected, and

the region has been tracked in longitude as a function of time in the same manner as well (see Chapter
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2 for a discussion on tracking). Generally, the regions of strong magnetic field tend to lie in regions of

negative divergence (colored blue). This is not an exact correspondence, as the continual production of

surface magnetic field (generated at the surface or advected from below) and the formation and death of

supergranules precludes a steady-state pattern. Figure 6.5b shows the scatter plot density of the average

magnetic field strength versus the horizontal divergence for each area element shown in Figure 6.5a. While

the presence of low-level magnetic fields is nearly independent of the horizontal divergence, regions of strong

magnetic field tend to coincide with regions of negative divergence. The rough correlation between magnetic

field strength and horizontal divergence verifies the assertion that the observed flow fields (near the surface)

are representative of convective flows.

6.2.3 Rotation Rate

The rotation rate of the solar interior has been measured with high precision using global helioseis-

mology. The rotation rate within the NSSL varies smoothly with latitude and depth, but only varies by

about 3% of the global rotation rate. We therefore expect that convective patterns near the bottom of the

NSSL should rotate by nearly the same rate by which the surface patterns rotate. Simulations have shown

the possibility for deep convective patterns that “swim” prograde (Miesch et al. 2000; 2008), but this is a

small effect when compared to the overall rotation rate.

The separate analysis periods are spaced in time such that a feature rotating at exactly the Carrington

rate (424.3 nHz) will over the period move 15◦ in longitude relative to disk center. This can be confirmed

by correlating divergence maps measured one day apart, which are observed over the same region relative to

disk center. The divergence map is used because it combines both flow components into a single scalar value

that is easy to manipulate. Figure 6.6a shows the correlation coefficient as a function of relative longitudinal

shift for divergence maps separated by one analysis period. The correlation is computed for maps created

at the same depth, and curves are shown for a few different depths. In general, we compute the correlation

coefficient for two signals as such:

rxy =
1

N

N
∑

i

(xi − x̄)(yi − ȳ)

σxσy

, (6.1)

where x̄ and ȳ are the means of the sets xi and yi respectively, σx and σy are the rms values of the signals,
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Figure 6.5: (a) Contours of average line-of-sight magnetic field strength overlaid on a map of helioseismically
determined horizontal divergence at a depth of 1 Mm. The contour lines are set at 10, 20, and 30 Gauss.
On the divergence map, red indicates positive horizontal divergence and blue indicated negative. (b) Scatter
plot density of average line-of-sight magnetic field strength versus horizontal divergence shown in panel (a).
The value of the horizontal divergence has been normalized by the rms value over the region considered.
The horizontal advection of magnetic fields causes larger amounts of field strength to accumulate in areas of
negative divergence.



141

and the sum is taken over all N points that the two signals have in common.
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Figure 6.6: (a) Correlation coefficient between divergence maps recorded on consecutive analysis periods as
a function of longitudinal shift. A shift of 0◦ corresponds to correlating maps in disk-center coordinates,
where the disk centers of each map are aligned. Since the separation of consecutive analysis periods is exactly
27.2753 hours, a longitudinal shift of 15◦ corresponds to the Carrington rotation rate. The colors indicate
the depth of the divergence maps used. (b) Mean and standard deviation of correlation peak amplitude
(vertical error bars) and peak longitudinal shift (horizontal error bars). This has been computed by splitting
the domain into latitudinal bands and computing the correlation coefficient as a function of longitudinal
shift for each independently. The peaks are located for each band at each depth, and the distributions of
peak locations are represented by the vertical and horizontal error bars.

The curves in Figure 6.6a showing the correlation at different depths all show a peak in correlation

somewhere near 15◦. To understand the significance of the deviations from exactly 15◦ (as in the curve

for 30 Mm), the correlations versus longitudinal shift have been computed over restricted latitudinal bands

spanning the analysis region. Each band extends 10◦ in latitude and is used to create its own correlation

plot as in Figure 6.6a. This creates a distribution of peak locations (longitudinal shift) and peak correlation

values at each depth. Figure 6.6a is the correlation averaged across all bands, while Figure 6.6b shows the

mean and standard deviations of the peak locations and correlation values from each of the different bands

computed independently. This provides an estimate of the significance of the deviations away from exactly

15◦ shifts, as each latitudinal band is an independent realization. The prograde correlation at a depth of 1

Mm is the only correlation with significance, as even the peak correlation for a depth of 30 Mm is consistent

with a shift of 15◦. The value of the longitudinal shift that causes maximum correlation (0◦.4) corresponds
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to a steady advection 50 m s−1 faster than the Carrington rotation rate. This is consistent with Duvall

(1980), which presents a supergranule rotation rate 3% faster than the global rotation rate.

The center-to-limb systematic detailed in Appendix A (which manifests as an additive bias to the

frequency-shift measurements) affects both horizontal velocity components and shows up as a large-scale

divergence pattern. This pattern, if not removed, would create a positive correlation between the various

divergence maps for a longitudinal shift of 0◦. The act of removing the 11-day mean frequency shifts from

each mode at each disk location (see Chapter 5) reduces this effect, but introduces a slight negative correlation

at a shift of 0◦. This is due to the fact that each measurement has a slight negative contribution from the

measurements made at the same disk location in each other analysis period. With more averaging in the

systematic removal, this slight negative correlation will decrease in amplitude.

The clarity of the correlation peaks in Figure 6.6 allows us to move forward with the analysis of these

flows. The fact that flows observed at a depth of 30 Mm are seen to rotate is in and of itself an important

verification. The flow maps fit the assumption that convective patterns rotate with the rest of the Sun at

a rate close to the Carrington rate. With more data, it may be possible to further constrain the rate of

pattern rotation as a function of depth. Since the peak at each depth for this data set is consistent with the

Carrington rate to within the horizontal resolution, further correlation analysis in this chapter will assume

that value for all depths in order to align different analysis periods.

6.3 Propagation of Convective Patterns

Thus far, the observed flow field near the surface has been matched against an independent measure

of convective flows (Figures 6.4 and 6.5), and the deeper flow fields have been matched against themselves

to confirm the assumption that the patterns persist over time and rotate with the Sun (Figure 6.6). As

mentioned before, there are currently no independent measures of deep convection (that retain phase infor-

mation) with which to compare, so we must look for self-consistency within the observed domain to fully

justify these new observations. The fact that we are looking at a convecting system implies that there is

a causal relationship between different depths. Convection dictates that some plasma must travel radially

inward or outward through the Sun, transfering entropy through different depths. The vertical flows asso-
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ciated with this transport imprint themselves in the horizontal divergence pattern at a given depth as the

surrounding medium is either pushed aside or entrained along with them.

Near the surface, we can use the observed horizontal divergence to estimate the magnitude of the

vertical velocities that carry this information. Assuming the velocities remain much slower than the speed

of sound, we can use the anelastic approximation to relate the two:

∂

∂z

(

ρvz

)

= −ρ∇h · vh. (6.2)

Here, the subscript h indicates a vector or operator containing only the horizontal components. The use

of this approximation assumes we have captured the relevant horizontal scales that set up the dominant

vertical velocities. The majority of the divergence signal near the surface is due to supergranulation, which

is the predominant convective pattern observed here. The profile for ρ as a function of depth is taken from

model S (Christensen-Dalsgaard et al. 1996). Using an upper boundary condition of vz = 0, we can integrate

Equation 6.2 through the extent of the NSSL to get an estimate of the vertical velocity field

Through this, we find that the vertical velocities in the upper few megameters have a roughly Gaussian

distribution with an rms of 30 m s−1 (Figure 6.8). This is consistent with estimates of the photospheric

vertical velocity using direct Doppler measurements (Hathaway et al. 2002). If we assume that the vertical

flows responsible for convective transport of energy have this characteristic speed, we find that they can

only propagate 3 Mm vertically over the duration of the analysis period. Under this assumption, we would

not expect a single analysis period to show coherent structures throughout the entire 30 Mm depth domain.

Instead, we should find convective patterns that have limited vertical coherence within a single period

with a coherence length set by the vertical velocities. Since we have found that the pattern of horizontal

divergence at each depth individually persist across analysis periods, we should also expect that the vertically-

propagating signals should imprint themselves across different days as they travel through the NSSL.

While the patterns seen in the vertical velocity field are enticing, the inferred vertical velocity is not the

optimal choice when looking for correlations between different depths. Through the anelastic approximation,

the vertical velocity field at any given depth contains contributions from each shallower depth. While the

physical assumption behind the use of the anelastic approximation is justified, it does not account for
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Figure 6.7: (a,b,c) Cuts of the inferred vertical velocity field at the three depths 1 Mm, 15 Mm, and 30 Mm.
Each cut has been normalized by the rms vertical velocity at each respective depth. These rms values are 16
m s−1 (a), 6 m s−1 (b), and 5 m s−1 (c). (d) Cut in the longitude-depth plane of the vertical velocity. Just
as in (a,b,c), the velocities at each depth have been normalized by the rms vertical velocity at that depth.
The dashed lines in (a,b,c) indicate the latitude (0◦) of the cut in (d).

uncertainty in the measurements. Any features in the observed flow field that are not strictly due to true

subsurface flows (such as random errors) will imprint themselves over many depths. As such, I will use the

horizontal divergence when correlating measurements made at different depths. Not only does this allow for

easier comparison to the previous results looking at correlations as a function of longitudinal shift, but the

divergence maps made at different depths are as independent as their averaging kernels allow. The inversion

has been tuned to create isolated measures of the horizontal velocity at each depth, so this is the best choice

given the data at hand.

To look for coherent patterns introduced by vertically-propagating flows, I have computed the corre-
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Figure 6.8: Distribution of vertical velocities inferred through the anelastic approximation for a few depths.
Generally, the distributions do not show a significant bias towards positive or negative, and are roughly
Gaussian in shape.

lation of the horizontal divergence as a function of both depth and time. The divergence map at a selected

target depth is correlated with the divergence maps within the same analysis period (with no longitudinal

shift) and with the divergence maps of other distinct analysis periods (with a longitudinal shift of 15◦ per

day of time lag). The computed correlation is then averaged over each possible realization pair. The top row

of Figure 6.9 shows this correlation for four selected target depths. The maximum time lag shown is deter-

mined by the longitudinal span of the regions (58◦ post-inversion) and the longitudinal shift per day (15◦).

Analysis periods separated by more than three days have no common longitudes over which to compute the

correlation, as this corresponds to a 60◦ relative shift between analysis regions.

The plots in Figure 6.9 provide an abundance of information about the horizontal divergence patterns,

so it is useful to first pick out simple features. For a target depth of 1 Mm (top left panel), we can consider

the value of the correlation near the surface simply as a function of time lag (Figure 6.10a). Knowing

that the surface divergence pattern is dominated by supergranules, this cut provides the time over which

supergranules are coherent at the surface. Figure 6.9 shows that this correlation lasts around 2 days, which

is consistent with previous studies of supergranule lifetimes (Hirzberger et al. 2008; De Rosa and Toomre

2004). Outside of this 2-day coherence, we see a divergence pattern that is slightly anti-correlated. This is

consistent with the idea that the surface pattern of supergranulation evolves through new downflow lanes
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Figure 6.9: (a) Correlation coefficient between divergence maps as a function of time lag and depth. For each
target depth in the four panels, this shows the correlation coefficient when the target depth is correlated
with each other depth over a span of time lags. The correlation shows a downward propagation of the
divergence pattern around each target depth. Since the maximum time lag is limited to 3 days, the target
depth is shifted deeper in order to capture the full correlation result. A longitudinal shift of 15◦ per day
separation has been included at all depths. (b) Similar to (a), but using a structure correlation as defined
in Equation 6.3. This shows a slightly clearer correlation band. The crosses indicate the mean depth of
positive correlation (≥ 0.05) at each time lag value. No cross is drawn if there is no positive correlation at
any depth for a given time lag.

being established that cleave existing upflow basins (De Rosa and Toomre 2004). This process tends to

replace positive divergence with negative divergence, thus creating an anti-correlation at larger time lags.

Taking the value of the correlation from a target depth of 1 Mm as a function of depth with no time

lag, we see coherence from the surface down to a depth of around 7 Mm (Figure 6.10b). In this figure,

we can see how the vertical extent of the averaging kernels (shown as horizontal error bars) influences the
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Figure 6.10: One-dimensional cuts of the 1 Mm target depth correlation in Figure 6.9a. (a) Divergence
correlation for a depth of 1 Mm as a function of time separation. The pattern of supergranulation observed
at the surface has a lifetime of around 2 days (b) Divergence correlation for a target depth of 1 Mm at zero
time lag as a function of depth. The horizontal error bars indicate the FWHM of the averaging kernels at
the depths shown. The supergranular signal persists to a depth of around 7 Mm in this cut.

result. Measurements made in different analysis periods are completely independent from one another, but

measurements made at different depths within the same period may not be fully independent. The inversion

averaging kernels can be used to determine which depths are correlated with each other by looking at the

vertical extent at each depth (Figure 6.3b). The vertical extents of the averaging kernels at these depths are

small (about half the central depth); thus the divergence maps at 1 Mm and 7 Mm are largely independent

observations. This measure of the direct vertical extent of the supergranulation signal is consistent with

those of Duvall (1998); Duvall et al. (2014), which also look at the pattern within a single analysis period.

The benefit of looking at the divergence correlation as a function of both time and space simultaneously

is that one can look for patterns that propagate. For a target depth of 1 Mm we find that for positive time

lags the correlation is maximized at a depth greater than for zero time lag. After a time lag of two analysis

periods, the divergence pattern from a depth of 1 Mm correlates best at a depth of 8 Mm, and, in fact,

shows a negative correlation closer to the surface. This indicates a downward propagation of the divergence

pattern. When considering only a single analysis period for the correlations (zero time lag), we find that the

patterns below 7 Mm do not appear to be coherent with the surface pattern of supergranulation. However,
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when we allow for a finite propagation time, we find that these deeper patterns are in fact coherent to some

degree with the surface supergranulation pattern from the target analysis period. It is interesting to note

that no upward-propagating signal is apparent in this set of measurements.

Due to the limitations of the analysis domain, the divergence pattern from any target depth can only

be correlated to ± 3 analysis periods. With this limitation, we are unable to trace the correlation of a single

target depth out until the positive correlation band disappears. Thus we cannot determine the exact vertical

extent of the correlation induced by photospheric motions. However, we can continue tracking the downward-

propagating signal by reseting the target depth to deeper in the NSSL. In this way, we consider the convective

structures that correlate weakly with the original pattern at 1 Mm and how they correlate with structures

deeper down. The right three panels of the top row of Figure 6.9 show the same measure of divergence

correlation for three deeper target depths. In each, we find the same trend of downward-propagating signals.

Each target depth reveals a range of other depths that are positively correlated within the 6-day

span of time lags. Across the four chosen target depths, we can trace a seamless connection between the

patterns seen at the photosphere and the patterns seen at the bottom of the NSSL through the downward-

propagating correlation band. While we cannot claim that the divergence signal at the photosphere has a

direct correlation with the pattern at 30 Mm, we can infer a directed causal relationship between the two.

The flows at every depth are influenced by flows above them and influence the flows below them.

6.3.1 Structure Similarity

Tracing the correlation of the divergence through time and depth is informative, but it begs the

question of what part of the flow field is actually carrying the correlation to deeper depths as time goes

forward. We find that while divergence amplitudes may change from one day to the next, the sizes and

locations of divergence features tend to remain constant. Thus, we use a modified measure of correlation

that emphasizes the spatial patterns seen in the data, as opposed to the direct amplitudes at each point.

The correlation coefficient from Equation 6.1 describes the degree of linear dependence between the two

divergence patterns being considered. This quantity includes all points in the inversion solution regardless

of their amplitude. At each depth in the inversion solution, the estimated uncertainty has a value that is
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generally half the rms value of the flow field velocity. This implies that features in the divergence pattern

that have an amplitude less than half the rms amplitude might not be believable. To make the correlation

measure between divergence maps more robust to uncertainty, I define the modified correlation coefficient:

r′xy =
1

N

N
∑

i

x′

iy
′

i, (6.3)

where the modified divergence signal x′ is defined as

x′

i =







































1 for xi − x̄ ≥ σx

−1 for xi − x̄ ≤ −σx

0 otherwise.

(6.4)

As this quantity acts like a standard correlation but describes the similarity between structures, I call it the

structure similarity coefficient.
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Figure 6.11: (a) Horizontal divergence at a depth of 1 Mm from an inversion solution. Blue indicates
positive divergence, red is negative. (b) Horizontal divergence from the same depth and same region of
the Sun observed one analysis period later than (a). Positive and negative thresholds have been applied to
each map at a magnitude equal to the rms of the original maps. (c) Multiplication of (a) and (b) showing
correlations (green), anticorrelations (orange), and no correlation (white). The strongest divergence features
tend to show either a positive correlation or no correlation day-to-day, and rarely show an anti-correlation.

Figure 6.11 shows an example of the structure similarity for two near-surface divergence maps. Panels

(a) and (b) show the structure maps, where a threshold has been applied to each divergence field based

on the standard deviation. Panel (c) shows the multiplication of these two co-aligned maps. The obvious

preference for positive structure similarity (green) over negative similarity (orange) indicates that these two
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divergence maps contain many similar features. While it is no surprise that the divergence pattern at 1 Mm

correlates well day-to-day, Figure 6.12 shows a similar degree of structure correlation for inversion results

separated by two days and 6 Mm in depth.

Returning to Figure 6.9, the bottom row shows the structure similarity coefficient mapped in the same

way as the standard correlation in the upper row. These panels show much the same patterns as the upper

row, but the value of the modified correlation is higher, leading to a cleaner measurement. This is to be

expected, as the structure similarity coefficient is more robust to random errors. The data once again shows

a clear downward propagation of patterns from the surface through the NSSL.
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Figure 6.12: (a) Horizontal divergence at a depth of 7 Mm from the inversion solution of analysis period
A1. Blue indicates positive divergence, red is negative. (b) Horizontal divergence at a depth of 13 Mm from
analysis period A3 (two days later than the map shown in (a) ). The longitudinal span of (a) and (b) have
been picked to show the region of the Sun that is common between the two analysis periods. Just as in
Figure 6.11, positive and negative thresholds have been applied to each map at a magnitude equal to the
rms of the original maps. (c) Multiplication of (a) and (b) showing correlations, anticorrelations, and no
correlation with the same color coding as in Figure 6.11. The strongest divergence features tend to show
either a positive correlation or no correlation day-to-day, and rarely show an anti-correlation.

6.3.2 Inferred Vertical Velocities

Since the correlation band in Figure 6.9 clearly indicates a downward propagation of information, we

now wish to measure the speed of this propagation. Allowing the speed to change with depth, we define it

as vc(r) (the correlation velocity). The crosses in the bottom row of Figure 6.9 are a measure of the central

depth of correlation for a given time lag. The depth of each cross is computed by taking the correlation-
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weighted mean depth at each time lag, ignoring correlation values less than 0.05. This provides a reasonable

estimate of the depth at which the correlation is maximized.

For each target depth, we fit a line with an unknown slope (change in depth per time lag) and offset

to the crosses. To each cross, we assign an uncertainty equal to the vertical extent of the averaging kernel at

that depth. This allows us to estimate both the correlation velocity vc and its uncertainty. Repeating this

analysis for each target depth between the photosphere and 30 Mm, we can measure the correlation velocity

as a function of depth.

Figure 6.13 shows the measured correlation velocity (black line) as well as a few guides for the vertical

velocity inferred using the anelastic approximation. Since the anelastic approximation provides a distribution

of vertical velocities instead of a single characteristic velocity, the colored lines in Figure 6.13a are the bounds

of the distribution that contain 50%, 85%, and 99% of the velocities. As we are interested in downward-

propagating information, the negative bounds are plotted.
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Figure 6.13: Vertical velocities as determined by the anelastic approximation (colored lines) and the diver-
gence correlation in Figure 6.9 (black line). The anelastic approximation provides a distribution of velocities
that are both positive and negative (see Figure 6.8), whereas the inferred velocity from correlation is negative.
Thus, the colored lines indicate the negative bounds of the anelastic velocity distribution that contain 50%,
85%, and 99% of the distribution. The correlation velocity is measured by fitting a straight line through the
crosses in Figure 6.9b at each target depth. The error bars on the crosses are assumed to be the vertical
FWHM of the averaging kernel at each depth, and the error bars in this figure are a consequence of those.

It is important to note that these two methods of estimating the vertical velocities are nearly indepen-



152

dent. The magnitude of the vertical velocities inferred from the anelastic approximation are entirely set by

the horizontal convective speeds observed within a single analysis period. On the other hand, the correlation

velocity is set by the similarity in convective structure between completely independent analysis periods. An

arbitrary scaling of the horizontal velocities results in a linear response for the anelastic velocities, but no

change in the correlation (since the divergence is normalized before correlation).

Both methods of estimating the vertical velocities show an increase in speed over the first few mega-

meters beneath the photosphere. After reaching a peak downflow speed of 35 m s−1 at a depth of 3 or 4

Mm, the downflow speed decreases steadily as a function of depth. By a depth of 15 Mm, the downflow

speed has decelerated to around 10 m s−1 and stays roughly constant until the bottom of the observational

domain.

6.4 Discussion

6.4.1 Self-Consistent Flow Fields

Relatively little is known observationally about the convective dynamics of the solar interior compared

to what can be seen in the photosphere. Comparing new observations to well-established observations is

difficult, and we are often left comparing to only the most basic traits of the convection zone, alongside global

measures of subsurface flows like the internal rotation rate. Despite the lack of independent observations of

convection, these more global traits can still provide consistency checks. Matching the observed photospheric

flow pattern to the direct Doppler measurements as in Figure 6.4 and the advection of magnetic fields as in

Figure 6.3 provide sanity checks for the flows observed at the surface. The line-of-sight magnetic field is a

robust measure of photospheric advection and allows us to put faith in the helioseismically determined flow

pattern at the top of the observational domain.

Below the photosphere, there are no other methods that can provide an independent measure of

convective flows. Thus, we must rely on self-consistency within the observed data set. Each analysis region

is centered on disk center, and we expect flow structures to rotate around the Sun by ∼ 15◦ per analysis

period. Thus, assuming the observed flow patterns retain some degree of coherence between subsequent
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analysis periods, we expect to see the same convective pattern shifted by around 15◦ between two analysis

periods. As seen in Figure 6.6, the dominant pattern observed in consecutive analysis periods is not only

one that shifts in longitude at a rate consistent with the global rotation rate, but has a lifetime long enough

to be observed coherently across these periods. Global helioseismic measurements of the bulk rotation rate

suggest that the structures at the bottom of the NSSL may rotate around 3% faster than the surface rate.

This corresponds to around 0.5◦ of longitudinal shift relative to the surface rotation rate, which is below the

precision of the current measurements.

One further self-consistency check could be the use of estimated uncertainties on the inverted flow field.

The non-linear ring-fitting method that measures frequency shifts produces estimates of the uncertainties

in each measurement. These uncertainties are propagated through the linear inversion and apply to each

location in the flow field. Formally, the signal-to-noise in each pixel of the inverted flow fields is around two

(at all depths, see Chapter 4). While this allows us to generally believe any of the stronger features seen

in maps such as those in Figure 6.2, it requires faith in the original uncertainty estimates. As mentioned

in Chapter 3, the uncertainty estimates from the fitting code are likely influenced by the choice of fitting

model. This reduces the confidence that the final propagated uncertainties on the inversion solution are

truly representative of the random error on a given velocity estimate. Thus, I have decided to forego the use

of formal uncertainty estimates in favor of independent observations and internal consistency checks.

6.4.2 Supergranular Flows and Surface-Driven Convection

Through correlating the divergence patterns observed at different depths in the NSSL in time, I have

discovered a preferred direction of influence for convection in the upper 30 Mm of the solar interior. The

convective motions observed at any given depth feel the influence of convective motions from above and exert

their influence on the convective motions below. While the limitations of the analysis procedure prevent

me from exploring how deep into the Sun this chain of influence extends, I find that it begins near the

photosphere where supergranules dominate the convective pattern. Thus, the convective dynamics of the

NSSL are intimately linked to the structure and evolution of supergranules.

Despite the wealth of information about supergranular flows seen in the photosphere, the subsurface
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structure of supergranulation has remained a mystery for decades. Existing helioseismic studies of the

subsurface structure have largely been concerned with the vertical extent of supergranulation (Duvall 1998;

Zhao and Kosovichev 2003; Rieutord et al. 2010; Duvall and Hanasoge 2013), but have not included the

possibility of the temporal evolution of convective flows in the analysis. The results presented here reveal

the importance of the temporal evolution of supergranular flows as they permeate the interior. The present

discovery that the influence of supergranular flows can be traced throughout the NSSL relies on the repeated

analysis of convective motions through time and reveals that supergranulation plays a critical role in the

convective dynamics of the NSSL.

The pattern of supergranulation observed near the photosphere can be linked to the patterns seen

deeper in the NSSL, allowing for a finite propagation time between the depths. One conclusion that can

be made about supergranulation from Figure 6.9 is that there is no identifiable bottom of supergranules

or return flow that is observed within the upper 30 Mm. Instead, we find a convective pattern that is

generated at the photosphere with no observed influence from other structures and propagates downward

with time. Due to the limited range of time lags available in the correlation maps, we cannot determine

whether the surface pattern itself has a direct influence at a depth of 30 Mm. The divergence pattern at

any given depth is strongly influenced by the signal propagating from above, but this signal likely changes

slowly as it propagates. Thus the patterns found deep in the NSSL are causally dependent on the pattern

of supergranulation at the surface even if they do not look similar or are significantly correlated.

An upward propagating supergranule return flow would appear in Figure 6.9 with the opposite slope of

the correlation branch seen. While upflows must exist alongside the observed downflows, their absence from

the correlation maps implies that they do not have significant influence on the convective patterns observed.

The results presented here suggest that the upflows and downflows play different roles in the overall structure

of near-surface convection. The lack of an upward propagating signal indicates that the downflows are the

important driver of convective patterns in the upper 30 Mm. Supergranules form at the surface with no

apparent influences and produce strong downflows that impact the layers below. This supports the theory

of surface-driven convection, where the structure of solar convection is dominated by narrow, fast downflows

that remain coherent over many scale heights (neglecting the possible influence of rotation), while the broad,
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slow upflows merely fill the space between.

This picture of near-surface convection explains why investigations into the depth of supergranules

have returned such varied results. Studies that have claimed to see the bottom of supergranulation based

on the disappearance of patterns that correlates with the surface (Woodard 2007; Sekii et al. 2007) do not

consider the temporal evolution of these flows. As seen in Figure 6.9, a single snapshot of convection will

reveal a pattern of supergranulation that only persists a few megameters below the surface. This is due to

the finite propagation velocity of the supergranular downflows, which take time to reach the deeper layers.

Studying the subsurface properties of supergranules requires measurements of not only the three-dimensional

structure of flows within the Sun, but also the temporal evolution.

The cell-like nature of supergranulation is only apparent at the photosphere, where the upflows turn

over against a boundary and push against each other horizontally. The three-dimensional structure is

likely one with tendrils of cool plasma forming a meandering and morphing network of downflows that

permeate the NSSL. The extended reach of convective plumes also indicates a convective system that has

more nonlocal influence than an ergodic turbulent convection model. What sets the horizontal scale and

lifetime of supergranules is still unknown, but the process that creates them must operate in the upper few

megameters of the Sun.

6.4.3 Rotational Influence on Convection in the NSSL

In the previous chapter, I ascertained the degree of rotational constraint on the convective flows

observed within the NSSL. This estimate was made through the Rossby number, which uses the speed and

spatial scales of the observed velocity field to estimate the influence of the Coriolis force on the flow structures.

With this, I found that the flows near the photosphere are unlikely to be influenced significantly by rotation,

while deeper flows past 10 Mm in depth probably are. While this result is intriguing, it relies on a simplified

view of rotational influence. The use of the Rossby number provides a rough guideline for determining the

degree to which rotation impacts convective motions, but ignores the role of large-scale, coherent structures.

As seen in the results presented here, the downflow plumes generated near the photosphere create long-lived

and large-scale nonlocal correlations in the NSSL that are not well-described by a single velocity or length
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Figure 6.14: Propagation time from the pho-
tosphere to any depth in the NSSL using the
vertical velocities in Figure 6.13. Assuming a
fluid element starts at a depth of 0 Mm and
travels downward into the Sun at a rate speci-
fied by the correlation velocity, this shows how
long it takes to get to any given depth. The
dashed line indicates the global rotation pe-
riod of the Sun. The time taken for a parcel
of fluid to traverse the depth of the NSSL is
nearly equal to the time it takes for the Sun to
effect one full rotation. This suggests a con-
nection between the depth of the NSSL and
the balance between convective motions and
global rotation.

scale. The influence of rotation on these downflow plumes must be considered separately from the bulk

motions previously studied.

The results presented in this chapter show evidence for downflows that penetrate the vertical extent

of the NSSL. These extended structures take a few days to traverse the NSSL, and their typical vertical

velocity has been measured as a function of depth (Figure 6.13). This measurement enables one to estimate

the time it takes for a downflow plume to travel from the photosphere to a depth of 30 Mm. Comparing

this time to the global rotation period of the Sun, we can get an idea of whether these downflows feel the

influence of rotation. A coherent downflow plume will be deflected due to the Coriolis force over a timescale

comparable to the rotation rate. Thus, the lifetime of a downflow plume provides an estimate of how strongly

rotation may influence the trajectory of the plume. The distance that the downflow travels over this timespan

indicates the depth at which rotation may play an important role in convective dynamics.

Figure 6.14 compares the average global solar rotation period of 27.28 days to the time it takes for

the influence of a downflow plume initiated at the photosphere to reach any given depth. We find that these

downflow plumes are able to reach a depth of 30 Mm in just a little longer than a solar rotation period.

Within the upper ten or so megameters of the convection zone, we may say that the downflows do not feel

a significant influence from the Coriolis force, as they are able to traverse this distance in a time far shorter

than the rotation period. However, by the time they have reached the bottom of the NSSL, they have

persisted long enough to feel this effect and become deflected. The intersection of these two timescales at a
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depth comparable to the depth of the NSSL suggests that there is a fundamental difference in the degree of

rotational influence for flows near the photosphere and flows crossing the bottom of the NSSL.

This comparison of timescales lends credence to theories of the origin of the NSSL that propose the

degree of rotational influence on convective flows distinguishes the layer from the bulk of the convection zone

(see Section 6.1.2). The downflow plumes generated near the photosphere penetrate a large fraction of the

NSSL in just a few days, much too fast to feel any significant deflection. By the time a downflow plume

has reached a depth of 30 Mm, the Coriolis force has had time to deflect the plume and introduce Reynolds

stresses that play into the global balance of angular momentum in the NSSL. The results presented here

are not sufficient to explain the full dynamics of the NSSL, but they do suggest a distinct difference in the

degree of rotational influence on convective flows within this layer and those below it.

The results presented here reveal the dynamics of supergranular flows as they permeate the NSSL.

The downflows associated with this characteristic scale of convection traverse the layer unimpeded and

create a linkage between photospheric convection and deeper motions. This strong observed association

between supergranules and downflow structures impacts our understanding of the physical origin of both

supergranules and the rotational shear of the NSSL.



Chapter 7

Conclusions and Future Directions

7.1 Thesis Conclusions

7.1.1 Improvements to Ring-Diagram Helioseismology

The scientific discoveries presented in this thesis were made possible with the advent of a new im-

plementation of high-resolution ring-diagram helioseismology. The key aspects of this new procedure can

be classified into three main components. First, using a grid of large analysis tiles with exceedingly small

displacements (thanks to the suggestion of Douglas Gough) permits the analysis of deep flows without the

loss of horizontal resolution. Second, the use of the Multi-Ridge Fitting (MRF) procedure to measure fre-

quency shifts of wave modes significantly increases the reliability and consistency of the subsurface flow

measurements. Third, the use of an efficient three-dimensional inverison procedure (MORDI) that can take

full advantage of the previous two improvements unlocks the full potential of high-resolution ring-diagram

analysis.

The novel methods of ring-diagram helioseismology that I have presented in this thesis enable a new

class of observations of subsurface flows with measurable improvements over previous results. The use of a

high-efficiency combined tracking, projecting, and ring-fitting code (ATLAS) has resulted in a considerable

increase in the number of independent, large tiles available for analysis. This increase in computational

efficiency has been used to increase the horizontal grid spacing of frequency-shift measurements on the solar

surface by a factor of 30 in both the east–west and north–south directions. The use of my MRF procedure

has led to a significant increase in the accuracy and reliability of the frequency shifts measured from each tile.
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While the previous ring-fitting method suffered from a high failure rate and systematic bias of the frequency

shift measurements that varied over the disk, this new method has increased the fitting success rate over most

of the measured wave modes to over 95% and decreased the systematic bias of frequency shift measurements to

below 5%. This increase in reliability across the mode set has allowed consistent measurements of subsurface

flows to twice the depth of the previous method. The three-dimensional inversion procedure takes full

advantage of these improvements to produce high-resolution maps of the subsurface flows throughout the

NSSL. The regularization scheme implemented in MORDI allows finer control of the averaging kernels than

previously possible, resulting in inversion averaging kernels that are much more compact and inversion results

that are easier to interpret.

The tools developed to achieve these improvements are publicly available with accompanying docu-

mentation. Each of the key tools used in this thesis are listed in Appendix C. Accompanying each entry is

a brief description of how the code works as well as a URL where the code and associated documentation

can be found.

7.1.2 Properties of Near-Surface Solar Convection

Using this improved, high-resolution implementation of ring-diagram helioseismology, I have measured

the characteristics of convective flows throughout the upper 30 Mm of the solar interior. These observations

permit a wide range of analyses from bulk motion properties to the detailed analysis of transient convective

patterns. The speed of these convective flows are found to be significantly faster than previous estimates from

local helioseismic observations that placed an upper limit of 1 m s−1 on the convective motions at a depth

of 30 Mm. Here, I have presented convective velocities that exceed 100 m s−1 throughout the upper 30 Mm

of the solar interior and are in general agreement to the flow speeds generated in numerical simulations of

global solar convection. These measurements of fast convective flows in the NSSL along with their observed

spatial scales provide constraints for models of solar convection and large-scale dynamics.

To confirm that the observed flow fields are representative of the true subsurface flow field, I have

compared the measured flows to independent observations, such as direct Doppler imaging and the advection

of surface magnetic field. These comparisons are enabled by the high resolution of the observationsl proce-
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dure, as both of the independent measures predominantly reveal small-scale convective motions like those

of supergranules. I have confirmed that the flow patterns found deeper in the Sun (which lack independent

observations) rotate roughly at the solar rotation rate, further confirming the validity of the observations.

I have analyzed the nature of supergranular flows seen near the photosphere of the observation set

and found them to be a driving influence for convective patterns throughout the entire NSSL. While the

spatial extent and lifetime of supergranulation observed at the photosphere is consistent with previous

studies, the depth profile is found to be significantly more complicated than previously assumed. Instead of

a simple cell-like profile in depth, I have found that supergranules exhibit characteristics of surface-driven

convection, where downflow plumes generated at the surface and with the particular spatial scale associated

with supergranulation penetrate the NSSL and impart their pattern on each depth. These downflow plumes

are found to initiate near the photosphere and continually evolve as they propagate downward with time.

By correlating the observed divergence patterns across time lags of up to three days, I have found that the

downflow plumes travel 10 to 30 m s−1 through the NSSL. The upflows associated with supergranulation

are not found to contribute significantly to the observed propagation of convective patterns. This picture of

supergranulation as a surface-driven phenomena along with the properties of the associated flow structures

deeper down will enable further understanding as to the origin of supergranulation and its impact on large-

scale dynamics.

7.1.3 Influence of Rotation on Convection

Through two different methods, I have inferred the degree of rotational influence on convective motions

in the NSSL. The first method relies on estimates of the Rossby number, which describes the balance between

advective and Coriolis forces on convection. Using the observed flow field at each depth, I have determined

that the NSSL is a transition region for the influence of rotation; flows near the surface are fast and small

and therefore are not influenced by rotation, while the deeper, slow flows at the bottom of the NSSL likely

are. The use of a spectral Rossby number has allowed us to consider the contributions of different spatial

scales to the total Rossby number independently at any given depth as well as account for the finite and

variable horizontal resolution of the measurement procedure.
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The second method of inferring the inluence of rotation is through the detection of long-lived downflow

plumes that traverse the upper 30 Mm of the solar interior. Through detailed analysis of the propagation

of convective patterns in time and space, I have measured the vertical propagation velocity and resulting

travel time of convective patterns across the NSSL. I have found that the time it takes for surface-driven

convective downflow plumes to reach the bottom of the NSSL is comparable to the rotation rate of the Sun.

This measured travel-time reveals that these newly-observed downflow plumes live long enough to feel the

influence of rotation and therefore may experience Coriolis deflection around a depth of 30 Mm. Both the

bulk convective speeds observed throughout the NSSL as well as the propagation of downflow plumes suggest

that the NSSL is a region of transition for the influence of rotation on convection. These results will play an

important role in our understanding of the physical origin and dynamics of the NSSL.

7.2 Future Directions in High-Resolution Ring-Diagram Analysis

7.2.1 Spatial Extent of Analysis Regions

The pattern propagation shown in Figure 6.11 connects the divergence pattern seen at the photosphere

to the patterns seen at 30 Mm. It would be very interesting to see how much farther into the convection

zone this pattern can be traced. If the idea that some of the the structure of solar convection is determined

by compact downflow plumes, with enough data it may be possible to trace these patterns deeper into the

convection zone to see how they interact with larger global convection scales. The choice of using 16◦ tiles

for the analysis procedure limits the depth to which we can observe flows to 30 Mm. Larger tile sizes provide

frequency-shift measurements for lower wavenumber modes which penetrate deeper into the Sun. Repeating

the entire analysis procedure for a tile size twice as big will likely increase the depth limit by a factor of two.

This comes at a significant computational cost, as many of the analysis steps scale in time as the linear size

of the tiles squared. Thus a factor of two in depth will likely require four times as much computing time to

achieve.

Increasing the horizontal size of the analysis regions not only provides a larger swath of convective

motions to analyze, but also allows tracking individual convective features for longer as they rotate across
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the disk. The longitudinal extent of the analysis regions can be extended fairly easily, as the fitting procedure

presented in Chapter 3 produces reliable frequency-shift measurements out to ∼ 70◦ from disk center. This

limit is largely due to foreshortening of the Dopplergram data as one approaches the solar limb. While the

fitting procedure does this in both the longitudinal and latitudinal directions, increasing the latitudinal extent

of the analysis regions has an additional complication. The latitudinal extent of the analysis regions (±45◦)

has been chosen to limit the effects of sphericity on the inversion. The three-dimensional inversion procedure

assumes translational invariance of both the sensitivity kernels and the estimated uncertainties for frequency-

shift measurements of each wave mode. Implicit in this assumption is the fact that adjacent measurements

must have the same covariance regardless of their position on the disk. Since longitude lines converge towards

the poles, measurements at adjacent longitudes have increased covariance away from the equator due to the

higher overlap of their respective tiles. Accounting for this effect would break the assumptions that allow

the inversion to scale to such large and high-resolution data sets. Thus, it is most advantageous to maintain

the current latitidunal extent of the analysis regions and instead focus on increasing the longitudinal extent.

7.2.2 Horizontal Resolution

Currently, the inversion solution has just enough horizontal resolution to see the effects of supergranu-

lation near the photosphere. Deeper into the NSSL, the horizontal resolution degrades significantly, limiting

the range of scales available for analysis. Increasing the horizontal resolution of the results may reveal more

about supergranulation and the NSSL, but the road to a higher-resolution inversion solution is less clear.

Currently, the horizontal resolution of the solution is limited by the magnitude of the estimated uncertainties.

The inversion is tuned to achieve an optimal trade-off between resolution and uncertainty (see Chapter 4 for

details). As such, a decrease in the frequency-shift uncertainties used in the inversion could be traded for an

increase in horizontal resolution at every depth. A decrease in the uncertainty of frequency-shift measure-

ments for a constant tile size would have to result from improvements to the ring-fitting method, and is likely

a difficult task. An easier solution is to use larger tile sizes, which generally provide lower-uncertainty mea-

surements for the same wave modes measured in smaller tiles (see Chapter 3, in particular Figure 3.5). While

counterintuitive, using larger ring-diagram tiles will likely allow higher-resolution observations of subsurface



163

flows.

While the current limit of horizontal resolution is set by the estimated uncertainties on the frequency-

shift measurements, it is useful to consider other limits that may become important in the future. The first

potential limit is the ability to decrease the marginal shift between adjacent ring-diagram tiles. Currently,

this is set to 0.25◦ (3 Mm), which is around six times the pixel resolution of HMI Dopplergrams near disk

center (∼ 500 km). This resolution decreases towards the limb of the disk, so a full factor of six in the

horizontal resolution is likely not achievable. Allowing for a significant increase in the computational cost

of producing such a tile set, one could take advantage of the full resolution of the HMI Dopplergrams and

enable higher resolution results.

This new high-resolution implementation of ring-diagram helioseismology has shown to be capable

of directly imaging convective flows in the solar interior with unprecedented results. The resolution, depth

extent, and temporal range of the data set presented here have been chosen as a trade-off between scientific

usefulness and computational cost. I believe that the results presented in this chapter justify an increase in

these critical quantities in order to improve upon and extend these scientific discoveries. While this thesis

presents an unprecedented look at near-surface convection, it can be viewed as a collection of preliminary

results in using observational means to unravel some of the mysteries of solar dynamics. The path forward

will involve utilizing this new machinery and applying it to the vast number of unanswered questions in solar

dynamics.
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Three-Dimensional SOLA Inversion for Local Helioseismology. Solar Phys., 276:19–33, February 2012.
doi: 10.1007/s11207-011-9873-8.

S. Jafarzadeh, R. H. Cameron, S. K. Solanki, A. Pietarila, A. Feller, A. Lagg, and A. Gandorfer. Migration of
Ca II H bright points in the internetwork. Astron. Astrophys., 563:A101, March 2014. doi: 10.1051/0004-
6361/201323011.

S. Kholikov, A. Serebryanskiy, and J. Jackiewicz. Meridional Flow in the Solar Convection Zone. I. Mea-
surements from GONG Data. Astrophys. J., 784:145, April 2014. doi: 10.1088/0004-637X/784/2/145.
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D. Orozco Suárez, Y. Katsukawa, and L. R. Bellot Rubio. The Connection between Internetwork Magnetic
Elements and Supergranular Flows. Astrophys. J. Lett., 758:L38, October 2012. doi: 10.1088/2041-
8205/758/2/L38.

E. N. Parker. Kinematical Hydromagnetic Theory and its Application to the Low Solar Photosphere.
Astrophys. J., 138:552, August 1963. doi: 10.1086/147663.

S. P. Rajaguru and H. M. Antia. Meridional circulation in the solar convection zone: time-distance helio-
seismic inferences from four years of HMI/SDO observations. ArXiv e-prints, October 2015.

M. P. Rast. The Scales of Granulation, Mesogranulation, and Supergranulation. Astrophys. J., 597:1200–
1210, November 2003. doi: 10.1086/381221.

M. Rempel, M. Schüssler, and M. Knölker. Radiative Magnetohydrodynamic Simulation of Sunspot Struc-
ture. Astrophys. J., 691:640–649, January 2009. doi: 10.1088/0004-637X/691/1/640.

M. Rieutord and F. Rincon. The suns supergranulation, 2015. URL
http://www.livingreviews.org/lrsp-2010-2. [Online Article]: cited 13-August-2015.

M. Rieutord and J.-P. Zahn. Turbulent plumes in stellar convective envelopes. Astron. Astrophys., 296:127,
April 1995.

M. Rieutord, N. Meunier, T. Roudier, S. Rondi, F. Beigbeder, and L. Parès. Solar supergranulation revealed
by granule tracking. Astron. Astrophys., 479:L17–L20, February 2008. doi: 10.1051/0004-6361:20079077.

M. Rieutord, T. Roudier, F. Rincon, J.-M. Malherbe, N. Meunier, T. Berger, and Z. Frank. On the
power spectrum of solar surface flows. Astron. Astrophys., 512:A4, March 2010. doi: 10.1051/0004-
6361/200913303.

L. Rightmire-Upton, D. H. Hathaway, and K. Kosak. Measurements of the sun’s high-latitude meridional
circulation. Astrophys. J. Lett., 761:L14, December 2012. doi: 10.1088/2041-8205/761/1/L14.

F. Rincon and M. Rieutord. Stability of a compressible fluid layer in a magnetic field: a simple model for
supergranulation. In F. Combes, D. Barret, T. Contini, and L. Pagani, editors, SF2A-2003: Semaine de
l’Astrophysique Francaise, page 103, 2003.

T. Roudier, M. Rieutord, J. M. Malherbe, N. Renon, T. Berger, Z. Frank, V. Prat, L. Gizon, and M. Švanda.
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A. Vögler, S. Shelyag, M. Schüssler, F. Cattaneo, T. Emonet, and T. Linde. Simulations of
magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code.
Astron. Astrophys., 429:335–351, January 2005. doi: 10.1051/0004-6361:20041507.

Y. Wang, R. W. Noyes, T. D. Tarbell, and A. M. Title. Vorticity and Divergence in the Solar Photosphere.
Astrophys. J., 447:419, July 1995. doi: 10.1086/175886.

M. A. Weber, Y. Fan, and M. S. Miesch. The Rise of Active Region Flux Tubes in the Turbulent Solar
Convective Envelope. Astrophys. J., 741:11, November 2011. doi: 10.1088/0004-637X/741/1/11.

M. F. Woodard. Probing Supergranular Flow in the Solar Interior. Astrophys. J., 668:1189–1195, October
2007. doi: 10.1086/521391.

M. F. Woodard and K. G. Libbrecht. Observations of time variation in the sun’s rotation. Science, 260:
1778–1781, June 1993. doi: 10.1126/science.260.5115.1778.

J. Zhao and A. G. Kosovichev. On the inference of supergranular flows by time-distance helioseismology.
In H. Sawaya-Lacoste, editor, GONG+ 2002. Local and Global Helioseismology: the Present and Future,
volume 517 of ESA Special Publication, pages 417–420, February 2003.

J. Zhao and A. G. Kosovichev. Torsional Oscillation, Meridional Flows, and Vorticity Inferred in the Upper
Convection Zone of the Sun by Time-Distance Helioseismology. Astrophys. J., 603:776–784, March 2004.
doi: 10.1086/381489.

J. Zhao, K. Nagashima, R. S. Bogart, A. G. Kosovichev, and T. L. Duvall, Jr. Systematic center-to-limb
variation in measured helioseismic travel times and its effect on inferences of solar interior meridional
flows. Astrophys. J. Lett., 749:L5, April 2012. doi: 10.1088/2041-8205/749/1/L5.

J. Zhao, R. S. Bogart, A. G. Kosovichev, T. L. Duvall, Jr., and T. Hartlep. Detection of Equatorward
Meridional Flow and Evidence of Double-cell Meridional Circulation inside the Sun. Astrophys. J. Lett.,
774:L29, September 2013. doi: 10.1088/2041-8205/774/2/L29.



Appendix A

Center-to-Limb Velocity Systematic

This appendix is based on work previously published in Greer et al. (2013) and is largely a restatement

of that paper with some modifications to the language to make it more consistent with the rest of this thesis.

This work is referenced in Chapter 5 when considering the processing of frequency shift measurements prior

to inversion. While the process detailed here was designed with the measurement of global-scale flows in

mind, it also is useful when considering convective flows over a broad range of scales.

We use HMI Ring-Diagram Pipeline data to measure a center-to-limb systematic effect seen in fre-

quency shift measurements. To separate this signal from persistent flow patterns of physical origin, we

perform a least-squares fit to the data for each wave mode. We fit to a model that includes both the radially

symmetric systematic as well as global zonal and meridional flow components. The resulting measurements

of the systematic error reveal a smooth trend as both a function of mode frequency and phase speed. The

systematic error at 45◦ from disk center ranges from 20 m s−1 radially inward to 50 m s−1 radially outward.

The implications for determining global scale meridional flows is discussed.

A.1 Introduction

Since the introduction of local helioseismology, the character and strength of the meridional flow

has been of keen interest. Measurements of the circulation strength have both constrained global-scale

numerical models as well as informed flux transport dynamo models. Both ring-diagram and time-distance

helioseismology have been able to reliably provide these measurements for the upper few percent in radius

of the solar interior.
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Comparison between time-distance helioseismology and ring-diagram analysis has shown good agree-

ment, but only after removing the large-scale systematics through subtraction of time-averaged velocities

(Hindman et al. 2004). While the residuals of the two procedures are highly correlated with each other,

it is unclear whether the observed center-to-limb velocity systematic is identical between the two methods.

Recent time-distance work has made progress in accounting for this effect by using east-west travel-time dif-

ferences to correct north-south measurements of deep meridional flows (Zhao et al. 2012). This correction is

made assuming the effect is a position-dependent phase shift in the helioseismic Dopplergram measurements,

which translates to a frequency shift and therefore subsurface velocity in ring-diagram analysis. There has

been comparatively little progress in ring-diagram analysis in accounting for this effect.

In this appendix, we expand on these measurements of the center-to-limb frequency shift systematic in

ring-diagram analysis and provide a method of separating the systematic signal from various real global-scale

flows. Analysis of the anomalous frequency shifts introduced by this systematic error shows an inconvenient

trend with phase speed that can easily be confused with subsurface flows.

A.2 Temporally-Averaged Frequency Shift Data

The data for this analysis is from the standard HMI Ring-Diagram Pipeline products (Bogart et al.

2011a;b). We use the ring-diagram frequency shift measurements from two tile sizes (15◦, 30◦) arranged in

mosaics covering a large fraction of the solar disk. Temporal averages at each disk position for each mode

are performed over three Carrington rotations for 15◦ tiles and over nine rotations for 30◦ tiles.

The resulting frequency shift maps over the solar disk reveal a problematic center-to-limb variation

that must arise from an unidentified systematic error. The radial symmetry of the systematic error is more

apparent if the longitudinal average of the zonal flow is first removed (Figure A.1). Modes of low frequency

tend to have an erroneous outflow from disk center (Figure A.1a) while high frequency modes have an inflow

(Figure A.1b).

The measured frequency shifts can be broken into four distinct components to aid in separating the

systematic error from known real flows in the Sun. The first component is due to the random convective flow,

which we assume is uncorrelated at a given disk position as the Sun rotates by. We treat this component
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Figure A.1: (a) Residual f -mode frequency shift measurements at ν ≈ 3.2 mHz after subtraction of differ-
ential rotation. (b) Similar residual for p4 frequency shift measurements at ν ≈ 4.8 mHz.

as random noise, and assume that in a long time average it disappears. The second component is due to

the large-scale zonal flow that includes both the signature of differential rotation as well as a monotonically

increasing prograde flow in depth corresponding to the near-surface shear layer. The third component is due

to the large-scale meridional flow that is expected to be primarily poleward in each hemisphere. The final

component is the systematic radial flow pattern that persists in a long time average along with the zonal

and meridional flows (Zhao et al. 2012).

In order to isolate and measure this anomalous signal, we must first make some assumptions about

it. The first is that this effect is linear and of small enough amplitude that we can treat the systematic

frequency shift as an additive effect. The second assumption is that the added anomalous frequency shift is

directed radially inward or outward from disk center, and that the amplitude is purely a function of distance

from disk center. Figure A.1 demonstrates a primarily radial frequency shift systematic, but also shows a

slight radial asymmetry for the higher frequency mode. For the purposes of this paper we utilize a simple

model that ignores any radial asymmetry.

A.3 Fitting Procedure

A time average of measured frequency shifts will not only demonstrate the radial systematic, but

also the longitudinally invariant zonal and meridional flows of physical origin. It is for this reason that we
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cannot simply subtract an average frequency shift map from our measurements, as this would remove any

persistent large-scale flows of interest. One possibility for isolating the radial systematic is to consider east-

west asymmetry in the zonal flow as in Zhao et al. (2012). A long time average of the subsurface zonal flows

should not show any significant variation with longitude, so any large-scale pattern along this direction can

be attributed to a systematic error. Since we assume the effect to be a function of distance from disk center,

this method can only be used near the equator. This method provides a simple measure of the center-to-limb

systematic error, but discards useful data from most of the solar disk. Instead, we use our assumption that

it is a radially symmetric effect to perform a whole-disk least squares fit to both the zonal and meridional

frequency shift components simultaneously.

In order to successfully isolate the radial systematic from the large-scale flows in each frequency shift

component, we fit polynomials to the mean zonal and meridional components at the same time that we are

fitting the radial component. The complete function used is then a sum of these three components:

u(k,n)(φ, λ) = u(k,n)
r (r)r̂ + u(k,n)

m (φ)φ̂ + u(k,n)
z (φ)λ̂, (A.1)

u(k,n)
m (φ) = a

(k,n)
0 +

4
∑

j=1

a
(k,n)
j sin(jφ), (A.2)

u(k,n)
z (φ) =

2
∑

j=0

b
(k,n)
j φ2j , (A.3)

u(k,n)
r (r) =

4
∑

j=1

c
(k,n)
j rj . (A.4)

Here, λ is longitude, φ is latitude, r is the great-circle distance from disk center (not from 0◦ latitude due

to the nonzero solar B-angle), k is the mode wavenumber, n is the mode order, and ur, um, and uz are

the radial, meridional, and zonal frequency shift components, respectively. We anticipate that both the

meridional and zonal flows change as a function of depth in the Sun, so the fit is performed independently

on every mode (k, n) since each mode samples different depths. We restrict the mode set to frequencies

below the acoustic cutoff frequency (5 mHz), since only these modes enter into helioseismic inversions. The
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Figure A.2: Examples of successful fits for various modes, wavenumbers are in units of Mm−1. Solid lines
are obtained from 30◦ tiles, dashed are from 15◦.

mode set is different for each tile size, and the systematic error might be sensitive to the size of the analysis

domain. Therefore, we perform the fit independently for both sizes. The final result is a characterization of

the radial systematic that is comprised of four polynomial coefficients c
(k,n)
j for each mode and for each tile

size.

A.4 Results & Analysis

Fits for four example modes of both tile sizes are shown in Figure A.2. The radial profiles demonstrate

a smooth transition between two typical types of radial systematic seen. For low frequencies, it is a positive

(radially outward) frequency shift that peaks in amplitude around 40◦ from disk center, while at higher

frequencies it is a negative (radially inward) frequency shift that increases in amplitude with increasing

distance from disk center. The meridional profiles for these modes show poleward flows of around 15 m s−1

that are roughly constant out to ±60◦. Since the HMI Ring-Diagram Pipeline data is tracked at the

Carrington rate which ignores surface differential rotation, the zonal flow profiles have picked up the ∼

180 m s−1 shear between disk center and ±60◦ latitude. The higher radial order modes sample deeper into

the Sun, causing the slight increase in zonal frequency shift with increasing order due to the near surface

shear layer. Finally, we see that these frequency shift profiles are consistent between the two tile sizes

considered here.
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To look for trends in the amplitude of the measured systematic, we now switch to measurements made

using 30◦ tiles. These larger analysis regions provide us with better measurements of the systematic, with

both smaller errors and a significantly expanded mode set. The value of the radial profile for each mode at

a distance from disk center of 45◦ is shown in Figure A.3.

The systematic error is positive (radially outward) for frequencies below 4 mHz and begins to trend

negative (radially inward) as the frequency increases above this (Figure A.3a). The magnitude follows a

smooth curve for each radial order, and the zero-crossing happens at slightly different frequencies for each.

As a function of phase speed (Figure A.3b), the different radial orders collapse onto a common curve for low

frequencies, creating a nearly linear increase in magnitude. At higher frequencies, each mode ridge diverges

from the common curve.

A.5 Discussion & Conclusions

The two distinct regimes of the radial systematic (high and low frequency) present an interesting

challenge for interpreting helioseismic results. Of particular interest is the determination of the meridional

flows throughout the bulk of the convection zone. The high-frequency modes introduce a radially inward

frequency shift that is strongest near the limb. This has the possibility for creating the appearance of

high-latitude counter cells of equatorward flow. Low-frequency modes instead have a radially outward

systematic that increases steadily as a function of phase speed (often used as a proxy for depth). This can

significantly alter measurements of the magnitude and direction of the meridional flows even at mid-latitudes.

Helioseismic measurements estimate the meridional flow to be around 15-20 m s−1 poleward for most depths

and latitudes (Giles et al. 1997; Haber et al. 2002; Zhao and Kosovichev 2004). With an unaccounted-for

systematic frequency shift of around 5-10 m s−1 poleward in the upper 20 Mm, these measurements are

likely to be overestimates of the true meridional speed. Below 50 Mm, the systematic may be the dominant

signal in any determination of meridional flows.

It is more difficult to say what pattern the systematic will imprint in an inversion. While using phase

speed is not a precise method of determining the depth of a measurement, Figure A.3b still demonstrates

that there will be contradictory frequency shifts introduced at some depths. Velocity measurements made
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near 3 mHz typically have smaller errors than those made at higher frequencies, so a standard inversion

technique will put more weight in the low-frequency trend.

The radial dependence of this effect lends credence to the idea that it is rooted in a phase shift of

the observed waves as a function of height in the atmosphere. As the height of observation changes from

disk center to the limb, the phase shift of a wave mode as a function of height becomes a phase shift as a

function of disk position. A first order linear approximation of the phase shift across an analysis tile will

cause an additive frequency shift that is identical in form to any existing subsurface flow. While this basic

mechanism seems likely, it is still uncertain what the origin of the phase shift is. Baldner and Schou (2012)

suggest asymmetric flows as a possible origin.

We can clearly see the radial systematic error present in data, and we are able to reliably measure

the amplitude of it for each wave mode. Considering the magnitudes presented, it is crucial to consider this

effect when measuring subsurface flows, particularly global meridional flows. While it would be beneficial to

have a theoretical understanding of the cause, we feel it is sufficient to use the radial profile obtained from

our fitting procedure as a correction to ring-diagram frequency shift measurements.



Appendix B

Averaging Kernels for Three-Dimensional OLA Inversion

The following figures show the averaging kernels for the full three-dimensional ring-diagram inversion

detailed in Chapter 4. Each figure demonstrates a few qualities of a distinct averaging kernel, and the format

of each figure is the same. Each averaging kernel was created with a different target depth, indicated by the

arrow in the left-most panel (a). This panel shows the horizontally-integrated sensitivity of the averaging

kernel, normalized by the peak value. The panel to the right of this (b) shows the averaging kernel integrated

in latitude and shown as a function of depth and longitude. Red indicates positive sensitivity, blue indicates

negative. Panel (c) shows a longitudinal cut of the averaging kernel at the depth of peak sensitivity in panel

(a). Panel (d) is a cut at the same depth shown as a function of both longitude and latitude. The text in

each figure indicates the target depth of the averaging kernel, the FWHM in depth of the peak in panel (a),

and the FWHM in longitude of the peak in panel (c).
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Appendix C

Code Listing

CODE NAME: FRACK

LANGUAGE: FORTRAN, 1300 lines

URL: http://lcd.colorado.edu/bgreer/codes/FRACK

PURPOSE: This code performs the Dopplergram projecting and tracking necessary to create ring-diagram

tiles (see Chapter 2). The code reads in full-disk Dopplergram images and outputs a set of three-dimensional

data cubes corresponding to each tile. The size of the tiles and locations on the disk for each tile are provided

to the code through command-line options. The code relies on distributed-memory (MPI) parallelism in order

to track multiple tiles from the same set of Dopplergrams simultaneously.

CODE NAME: PSPEC

LANGUAGE: FORTRAN, 350 lines

URL: http://lcd.colorado.edu/bgreer/codes/PSPEC

PURPOSE: This code takes a single tracked ring-diagram tile and produces a power spectrum from the

three-dimensional Fourier transform. This code is based closely on a similar code found in the HMI Ring-

Diagram Pipeline (Bogart et al. 2011a). The input tile is multiplied by a pre-determined apodization function,

Fourier transformed, and then the power is computed. The power spectrum is then interpolated on to polar

coordinates (k, θ, ω) and sub-sampled in θ. The code relies on shared-memory (OpenMP) parallelism to

speed up various steps of the process and has been found to scale efficiently up to around 10 processors.
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CODE NAME: Multi-Ridge Fitting Code (MRF)

LANGUAGE: C, 3500 lines

URL: http://lcd.colorado.edu/bgreer/codes/MRF

PURPOSE: This code performs the non-linear ring-fitting algorithm described in Chapter 3 on power spectra

produced by the PSPEC code. There is no parallelism built into this code, as the typical usage is to run

many instances of the code in parallel on different power spectra.

CODE NAME: ATLAS

LANGUAGE: FORTRAN / C, 4000 lines

URL: http://lcd.colorado.edu/bgreer/codes/ATLAS

PURPOSE: This code performs all of the tracking, projecting, power-spectrum-making, and ring-fitting

needed to turn a set of Dopplergram images into a set of frequency shift measurements. The details of these

steps are covered between Chapters 2 and 3, and this code is essentially a combination of the previous three

codes (FRACK, PSPEC, MRF). The code reads in a list of longitude/latitude coordinates corresponding to

the desired tile centers and a set of full-disk Dopplergram images and outputs frequency shift measurements

from each wave mode of each tile. The code relies on both distributed-memory (MPI) and shared-memory

(OpenMP) parallelism to scale up to around 1000 processes. Due to the immense volume of data produced

by the tracking and projecting steps, the intermediate data products (tiles, power spectra) are never written

out.

CODE NAME: Massively-Overlapped Ring-Diagram Inversion (MORDI)

LANGUAGE: C++, 2000 lines

URL: http://lcd.colorado.edu/bgreer/codes/MORDI
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PURPOSE: This code performs three-dimensional ring-diagram inversions, as explained in Chapter 4.

The code reads in frequency shift measurements and their associated sensitivity kernels and outputs two-

dimensional slices of the subsurface flow field at a constant depth and (optionally) the associated averaging

kernels. It relies on both distributed-memory (MPI) and shared-memory (OpenMP) parallelism to scale

efficiently up to a few thousand processors, but can also run reasonably well on small machines (1-4 cpus).

The actions of the code are modified by command-line parameters, which enable a significant amount of

flexibility when setting up an inversion.


