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Perturbative nonlinear optics consists of many powerful predictive theoretical methods, in-

cluding the perturbative series of observables related to the interaction of light with matter. The

light intensity limits of such series have been studied in the past for highly nonlinear processes

such as above threshold ionization and high harmonic generation. A more recent debate focuses on

the limits of applicability of perturbation theory for the nonlinear electrical susceptibility and the

nonlinear index of refraction of atoms, which are important parameters to study, for example, for

filamentation of laser pulses in nonlinear media.

In this thesis we analyze theoretical predictions for the electrical susceptibility of atoms for

the transition from the perturbative to the nonperturbative intensity regime. To this end, we apply

a numerical basis state method that allows us to perform respective calculations in the framework

of perturbation theory as well as using ab-initio methods. The results let us identify the intensity

at which the application of perturbation theory breaks down. Furthermore, we provide an analysis

of the nonlinear susceptibility as a function of time during the interaction with the laser pulse and

find that theoretical predictions are in good agreement with recent experimental data.
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Chapter 1

Introduction

Laser intensities have been increasing steadily since the first demonstration of the laser in

1960 [1]. The first observation of second harmonic generation soon after [2] started the field of

nonlinear optics, which has exploded in the years since, and is now one of the largest areas of active

research in physics. Second harmonic generation was described using perturbation theory, denoting

the electric field of the laser as a small correction to the Coulomb electric field within the atom.

As the laser intensities available to experimentalists increased, the successes of perturbation theory

made it a widely used model for describing nonlinear optical processes.

By the late 70’s however, the discovery of ‘above-threshold ionization’ – where many photons

are absorbed, bringing electrons above the threshold of the continuum, and creating a series of peaks

in the photoelectron spectrum spaced by the photon energy – had firmly marked the intensities

where perturbation theory no longer described the physics [3]. At 8× 1012 Wcm−2 and 1 µm, the

electric fields used in these experiments were still a hundred times lower than the field strength felt

by the electron in the ground state of hydrogen, yet even this small relative field had proven too

large for perturbation theory to account for.

Filamentation is an important nonlinear process that has been observed around this intensity,

making it an important nonlinear process to understand the transition between perturbative and

non-perturbative physics. Filamentation, the confinement and self-guiding of light propagating

through a medium due to nonlinear self-focusing, has been around almost as long as the laser

itself. The first observation of filamentation was in optically induced damage in glasses using a
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Q-switched ruby laser by Hercher in 1964 [4], barely four years after the first demonstration of a

laser by Maiman in 1960 [1]. This damage presented as a large pulverized spot, and then a “narrow

track emerging from the region of gross damage and pointing in the same direction as the incident

light” [4]. This narrow track was referred to as a filament in subsequent papers [5, 6], and thus the

field of filamentation was born.

Filamentation, as it relates to long (longer than picosecond scale - 1 ps = 10−12 s) pulse

lengths, is dominated by optical breakdown. Optical breakdown happens when the laser ionizes

enough of the atoms to cause a cascade effect: electrons are ionized and then accelerated by the

laser field and so collide with other atoms or its parent ion and ionize more electrons. The generated

plasma absorbs much of the energy of the long pulse, preventing long propagation distances. The

process of optical breakdown as the ultimate result of self-focusing and filamentation has been well

understood since the early 1970s [7]. However, more recently, it was observed that much shorter

pulses prevent the development of optical breakdown. In 1995, Braun et al. [8] observed that the

intensities of a femtosecond (1 fs = 10−15 s) light pulses were increasing with distance: at 10 meters

downfield, the intensity was strong enough to cause damage to the mirrors in the experiment, while

a mirror placed proximal to the output of the laser would show no damage. This self-focusing

and intensity increase was the first long range demonstration of filamentation, and the first of

this behavior in air. The long range propagation was soon increased, with 50 meter propagation

distance (1996) [9], hundreds of meters (1999) [10] and kilometer distances (2004) [11] following.

Beyond the aforementioned long propagation distances, femtosecond filamentation is a host

to a slew of interesting physics. Due to nonlinear self-steepening, where the back of the pulse speeds

up in relation to the front due to the smaller index of refraction brought on by ionization, a short

light pulse propagating through air will get shorter, as the intensity gradient at the end of the pulse

gets stronger [12]. Third harmonic generation, the shortening of the pulse from self-steepening, and

a chirping of the pulse from self-phase modulation, combine to broaden the spectra of the pulse,

leading to white light generation [13]. Coherent sub-terahertz light is generated transverse to the

propagation direction in a process that is not entirely well understood [14].
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Figure 1.1: The dynamic balance between self-focusing and ionization induced defocusing is shown
schematically. The filament is the area after the first initial focusing, while the beam is oscillating
between these two regimes. Plasma generation marks the end of the self-focusing regime and the
beginning of the defocusing regime. Figure from [15].

The physics of femtosecond filamentation (hereafter referred to as filamentation), is dom-

inated by three processes, schematically shown in Figure 1.1: a) self-focusing, where the beam

focuses due to the nonlinear changes in the index of refraction of the medium as the beam prop-

agates; b) ionization, where the beam reaches an intensity large enough to significantly ionize the

material that it is traveling through; and finally c) plasma induced defocusing, where the ionized

electrons produce a defocusing effect, causing the intensity to decrease until ionization becomes

negligible. These three effects interact in a dynamic balance, leading to the phenomenon of fila-

mentation in air and resulting in a long lasting plasma channel behind a so-called “light bullet” [15].

Because the light pulses are so short, absorption by the resultant plasma – the dominant power

loss mode of a filament – is limited, in contrast to early picosecond and longer filaments, where the

plasma absorption and subsequent optical breakdown lead to drastically shorter filaments.

This balance of self-focusing and ionization induced defocusing defines a maximum intensity

in the filament because the ionization prevents the intensity from getting too large, clamping the

intensity below some material dependent value. Typical measurements have put this clamping at



4

5× 1013 Wcm−2 for air [16]. This is above the intensity of certain strong laser field effects such as

above threshold ionization which was first measured for pulses at intensity of 8× 1012 Wcm−2 [3],

and high harmonic generation, first measured for infrared wavelengths in argon at 1013 Wcm−2 [17].

These processes are well known to be non-perturbative strong-field phenomena. Thus, we expect

that the intensity range that filamentation covers also contains the transition between perturbative

and non-perturbative effects. Consequently, the physics of filamentation is interesting because it

combines physics that we understand in a perturbative regime: harmonic generation, self-focusing,

self-phase modulation, etc.; with physics that one studies in a non-perturbative setting: multi-

photon ionization, high harmonic generation. Understanding better the crossover between these

two different regimes can give insights to improve models for filamentation. In this thesis, we are

focusing on examining this boundary.

To provide further insight into the relevance of the crossover between perturbative and non-

perturbative physics we discuss the physics of self-focusing and ionization in more detail.

1.1 Self-focusing

The self-focusing of a laser is caused by an intensity dependent index of refraction for any

beam profile that monotonically decreases in intensity from the center. For example:

n = n0 + f(I(r)) (1.1)

where f is some monotonically increasing function of the intensity I with a zero intercept, n0 is

the linear index of refraction and r is the cylindrical radius coordinate of the beam. The makes the

index of refraction larger in the center than the outside. This larger index of refraction causes the

center of the beam to move slower than the outside, changing the local Poynting vector towards

the area of greatest intensity, focusing the beam, and so causing a higher intensity.

Typically, this is modeled perturbatively: the function f is approximated by a power series

in I, assuming I is small (see Chapter 2 for more information):

n ≈ n0 + n2I(r) + n4I
2(r) + n6I

3(r) + . . . , (1.2)
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where n2 is known as the Kerr index. At the intensities where filamentation is in the focusing regime,

the series is approximated by the first nonlinear term. This approximation is well supported by

experiments (see e.g. [18]).

In order for self-focusing to dominate, and eventually cause ionization, it needs to overpower

the defocusing inherent to any light beam – diffraction. Diffraction is fundamentally a Fourier

uncertainty relation phenomenon: the transverse momentum of the beam cannot be exactly zero,

and thus a transversely localized beam will widen as it propagates in space. It can be shown

that the balance of these two phenomena, diffraction and self-focusing, will happen in any beam

profile that monotonically decreases in intensity from the center if the power is equal to the critical

power [19]:

Pcr = β
λ2

0

8πn0n2
, (1.3)

where β is a scalar determined by the beam profile, λ0 is the central wavelength of the laser in

vacuum. For Gaussian beams, β is roughly 3.77 [15]. For initial powers larger than Pcr, we get self-

focusing, while for initial powers less than Pcr, self-focusing will ultimately loose out to diffraction.

For argon, which has an n2 of approximately 1× 10−19 cm2/W at 1 atm [20], the critical power at

800 nm is roughly 1010 W.

1.2 Ionization

Self-focusing cannot lead to an intensity increase without limits. The ionization of the under-

lying medium of filamentation clamps the intensity that is possible in a filament. When the intensity

gets to a certain point – typically 1013 to 1014 Wcm−2 for air – the underlying medium gets ionized

significantly and the resultant plasma defocuses the beam, which decreases the intensity.

This clamping intensity is set by the process by which ionization happens. If the photon

energy is comparable to the binding energy of the underlying medium the beam is propagating

in, then ionization happens fast and the pulse quickly looses energy due to few photon absorption

processes before it can propagate very far. This corresponds to well understood perturbative ion-
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ization. Conversely, when the binding energy is much larger than the photon energy many photons

need to be simultaneously absorbed to overcome the ionization threshold and the corresponding

probability for multiphoton absorption is very low until the intensity is large enough to ionize the

material.

The intensity inside the filament is not easy to determine experimentally. One method

that has been used in the past by Lange et al. [21] to determine the intensity is to introduce a

filament, after propagation through air, into a cell containing argon. Inside this cell, the process

of high harmonic generation takes place, and the atoms emit harmonics at odd multiple of the

fundamental frequency. The largest harmonic n produced is linked to the intensity by the well

established relationship [22]:

~nω0 = Ui + 3.2Up, (1.4)

where Ui is the ionization energy of the underlying medium (in this case argon), and Up =

e2E2/4meω
2
0, where ω0 = c/2πλ0, is the ponderomotive energy of the electron in the laser field.

With this method Lange et al. found the peak intensity of a filament to be roughly 5×1013 Wcm−2,

in agreement with numerical simulations [21].

At a high enough intensity, the atom or molecule undergoing multiphoton absorption will not

absorb just enough photons to ionize, but will also have some probability of absorbing additional

photons, resulting in the so-called continuum to continuum transitions of the involved electrons.

This behavior is popularly known as above threshold ionization [3], and its observation marked the

breakdown of perturbation theory. The breakdown intensity of the lowest non-vanishing order of

perturbation theory occurs for near optical wavelengths at 5 × 1012 Wcm−2 [23]. This is the first

indication that the ionization in filamentation has to be considered as a non-perturbative process.

High-order harmonic generation itself is another well known non-perturbative phenomena. In

high harmonic generation, photons are absorbed by the electron well beyond the energy needed to

ionize the atom, and then the electron is recombined with the parent ion, releasing a photon with

energy equivalent to the number of photons absorbed by the electron during ionization. Rather than
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the perturbative behavior of low-order harmonic generation, where only a few photons are absorbed

(typically for a total energy below the ionization threshold), and the probability of absorbing more

photons exponentially decays with the number of photons absorbed, high-order harmonic generation

generates photons with energy nω0 and (n+ 1)ω0 with approximately the same probability.

The ionization of the underlying medium adds a defocusing term to the susceptibility. This

term is typically modeled as a negative correction to the index of refraction that is proportional to

the density of free electrons [15]:

∆n ≈ − ρ

2ρc
, (1.5)

where ρ is the electron density, and ρc ≡ ε0meω
2
0/e

2 is the critical plasma density – the density

above which it becomes opaque. This term causes a defocusing of the beam, leading to a decrease

in intensity. This decrease in intensity eventually halts the process of ionization, which restarts the

cycle, putting the beam back into the intensity regime that leads to self-focusing. The multiphoton

absorption and ionization of the pulse is the primary loss mechanism of a very short filamentation

pulse.

1.3 Higher order Kerr effect (HOKE)

Femtosecond filamentation has been around long enough that much of the basic physics has

been thought to be explored. However, in 2009, Loriot et al. challenged the traditional picture of

filamentation as ionization arrested self-focusing [24]. Instead they proposed that the higher order

– greater than two – Kerr terms had a negative value, leading to defocusing due to the saturation

and inversion of the Kerr effect as a dominant effect, rather than ionization [25]. They did so

by extracting the higher order Kerr terms from the observation of the index of refraction using a

cross polarization measurement that they claimed to be insensitive to the plasma contributions.

As seen in Table 1.1, from their analysis they found that the higher order terms had alternating

signs: n4 was negative, n6 was positive again, n8 negative, and n10 positive. This led them to

propose that one could describe filamentation without ionization and plasma defocusing. Bejot
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Table 2. Measured coefficients of the nonlinear refractive index expansion of nitrogen, oxygen, ar-
gon, and air with Iinv the intensity leading to nKerrk = 0. The uncertainty corresponds to two standard
deviations of the fitted values over a set of experimental records.

Gas N2 O2 Ar Air

n2 (10�7cm2/TW) 2.2 ± 0.4 3.2 ± 0.7 2.01 ± 0.19 2.4 ± 0.6
n4 (10�8cm4/TW2) -0.16 ± 0.08 -1.55 ± 0.16 -0.11 ± 0.31 - 0.45 ± 0.9
n6 (10�9cm6/TW3) 0.56 ± 0.06 1.9 ± 0.2 1.6 ± 0.2 0.84 ± 0.09
n8 (10�11cm8/TW4) -2.2 ± 0.2 -10.5 ± 0.7 -8.6 ± 0.5 -4.0 ± 0.3

n10 (10�13cm10/TW5) - - 5.3 ± 0.3 -

Iinv (TW/cm2) 33 19 26 26

-30x10-6
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-20
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-10
-5
0
5

Ke
rr |
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403020100
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 N2
 O2
 Ar
 Air

Fig. 3. Nonlinear refractive index variation of air constituents versus intensity at room temperature
and 1 atm. (a) N2, (b) O2, (c) Ar, and (d) air.

bound excited electrons. The high-order terms of the Kerr effect have to be taken into account
when modelling the light propagation in air. We recall that the filamentation process in gas is
usually defined by the balancing between Kerr focusing and ionization defocusing. The present
work suggests that the Kerr effect contributes to the defocusing mechanism. For some gases, the
filamentation can be governed by the instantaneous effect, while the ionization plays a minor
role [15, 16]. In general, it will strongly depends on the gas and experimental conditions.

4. Conclusion

New experimental determination of the nonlinear Kerr index of refraction of N2, O2, and Ar
constituents have been performed. The time resolved birefringence method allows to measure
the Kerr coefficients calibrated with the postpulse molecular alignment without the detrimental
plasma contribution. At high intensity, the saturation of the electronic Kerr effect is observed,
followed by a sign inversion above an intensity of few tens of TW/cm2 for the three gaseous
components. This work reports, to our knowledge, the first experimental evidence of the sign
inversion of Kerr terms at high intensity. The present result is expected to play a dominant role
in the self guiding of ultrashort laser pulses. In particular, the usual description of a filament
with the plasma as main defocusing contribution becomes questionable in consideration of the
high-order Kerr terms revealed in the present work. An illustration of their influence reported
in [15] demonstrates the possibility of plasma-free filamentation.
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Table 1.1: The higher order Kerr effect values from [24] for various air components and argon.

et al. then performed a simulation of femtosecond pulse propagation that showed that one could

get defocusing, and filamentation, without ionization using the above mentioned higher order Kerr

effect values [25].

This new model of filamentation generated a significant amount of discussion. Béjot et al.

and others did further theoretical studies of the consequences of higher order Kerr terms [25–28].

Others tried to extract the nonlinear susceptibilities from full ab-initio time dependent Schrödinger

equation solutions on a grid [29, 30], or to calculate the nonlinear indices using the strong-field

approximation [31, 32]. Kolesik et al. took a different path, and simulated the third and fifth

harmonic yield assuming only a third order susceptibility or the whole series of higher order Kerr

terms [33], this led them to propose a benchmark measurement for the differences between the yields

of the third and fifth harmonics. This benchmark was tested, but inconclusive results are reported

in [34, 35]. Therefore the result by Loriot et al. remained controversial because it challenged

our understanding of the filamentation process, and asked questions about the validity of the

perturbative series expansion at intensities that are present in filamentation.

Basic calculations for the values of the various terms of the perturbative series raise questions

about the convergence of the index of refraction series extracted in these experiments. Using the

values from the paper by Loriot et al. [24], for typical intensities of filamentation (10 TWcm−2 to

100 TWcm−2), we can examine the series as:

nAr(I = 10TWcm−2) ≈ 1 + 2× 10−6 − 0.11× 10−6 + 1.6× 10−6 − 8.6× 10−7 + 5.3× 10−8, (1.6)

nAr(I = 100TWcm−2) ≈ 1 + 2× 10−5 − 0.11× 10−4 + 1.6× 10−3 − 8.6× 10−3 + 5.3× 10−3, (1.7)
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and from the increasing values we see that this perturbative series may fail to converge at intensities

relevant to filamentation. This raises the question: is the physics of filamentation accurately

described by the perturbative higher order Kerr effect?

1.4 Thesis Outline

In Chapter 2, we present a brief overview of perturbative nonlinear optics, focusing on the

areas relevant to our study of the degenerate susceptibilities for comparison with our nonperturba-

tive calculations. We start with a discussion of the principles of perturbation theory, and then from

there extract out the response functions and the susceptibilities, being careful to ascribe physical

meaning to the different terms where appropriate. Finally, we discuss our direct calculation of the

susceptibilities, and how these susceptibilities relate to the indexes of refraction used in the higher

order Kerr effect terms.

In Chapter 3, we introduce the numerical methods we use for the remainder of this thesis.

We discuss our method for directly solving the time dependent Schrödinger equation, using a

field-free basis set for an atom in an intense laser field. These methods allow us to capture the

nonpertubative physics inherent in this situation. We are specifically interested in how our method

allows for comparisons with perturbative physics by using the same basis set for both perturbative

and nonperturbative calculations.

Chapter 4 presents the comparison of the perturbative and nonperturbative calculations for

a few model systems. We show that it is unlikely that the higher order perturbative series is

responsible for the saturation and defocusing seen in filamentation. We further examine the third

and fifth harmonic perturbative series, in response to Kolesik et al. [33], examining where the

ab-initio calculation diverges from the perturbative calculation.

Chapter 5 discusses results from our time dependent susceptibility calculations. We are

interested in examining the susceptibility of an atom interacting with a laser field, as a function

of time within that laser field. This is applicable to filamentation studies, and high harmonic

generation phase matching. We examine the susceptibility of helium at the intensity regime where



10

we previously found the divergence between the ab-initio calculations and the perturbative series

calculations, with a focus on the features that arise as we reach the threshold of this divergence.

Finally, we will conclude with a summary of the work performed, and a brief outlook towards

future work.



Chapter 2

Theory

The higher order Kerr effect (HOKE) relies on the perturbative expansion of the refractive

index in a power series, describing the self-interaction of light at a given frequency. Here, we

examine the electric susceptibility as a proxy for the index of refraction in general, and HOKE

specifically. The information in this Chapter has been discussed in many books and articles; for a

good phenomenological overview, see Boyd [18], and for a strong theoretical grounding, see Butcher

and Cotter [36].

2.1 Index of refraction

The index of refraction is a macroscopic quantity relating the phase velocity v of an electric

field in a medium to that of light in a vacuum, c:

n =
v

c
, (2.1)

For all media, the index of refraction is dependent on the frequency of the electric field of interest.

This frequency dependence arises from resonances at high frequency (typically visible light), and

vibrations, rotations, ionic polarization, etc. for low frequencies (infrared, microwave and radio-

frequency wavelengths).

Changes in the index of refraction that are not parallel to the direction of propagation lead

to a modification of the direction of the propagating wave. This is best known as Snell’s law for an
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abrupt change in the index of refraction. At the boundary of the alteration, Snell’s law gives:

nα sin(θα) = nβ sin(θβ), (2.2)

where nα (nβ) is the index of refraction in the first (second) medium, and θα (θβ) is the angle of

the direction of propagation with respect to the normal of the interface between the two media.

The ray within the medium with the larger index will have the smaller angle. In a regime with a

continuously varying index of refraction this makes rays of light bend towards regions with a high

index of refraction, a property that is useful in gradient index lenses and is also responsible for the

self-focusing in filamentation.

For large electric field strengths, the index of refraction is no longer independent of the field

strength. The optical Kerr effect is due to an intensity dependent index of refraction. In the

literature, the Kerr effect is frequently limited to the first nonlinear term of the perturbation series

in intensity, however the recently discussed [24] higher order Kerr effect refers to the expansion to

all higher order perturbative terms:

n(ω) = n0(ω) + n2(ω)I(ω) + n4(ω)I2(ω) + n6(ω)I3(ω) + . . . , (2.3)

where n is the total index of refraction, n0 is the linear index of refraction, n2(ω) is the first order

term of the Kerr effect (typically referred to as the Kerr effect in the literature), n4 and above are

the higher order Kerr effect, and I is the intensity.

The nonlinear index, for a positive coefficient of the dominant term, will lead to self-focusing

(where Snell’s law directs the local light rays towards the axis of propagation), while for a negative

coefficient of the dominant term, de-focusing (where Snell’s law directs the local light rays away

from the axis of propagation) of the beam will occur. Thus, a negative n4 and n8 such as those

extracted by Loriot et al. [24] (along with a positive n2) and discussed in Section 1.3, would lead to

a saturation of the index of refraction, as the terms with negative coefficients reach the same value

as the terms with positive coefficients at a certain field strength. As the strength of the negative

terms rises faster with intensity, this would eventually lead to an intensity regime with a negative
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slope for the index of refraction as a function of intensity and ultimately to a defocusing of the

beam.

The index of refraction is related to the single atom susceptibility through the relation:

n2(ω) = 1 +Nχ(ω), (2.4)

where χ is the single atom susceptibility of the material and is parameterized by frequency ω. N is

the number density of atoms in the material, and n is the total index of refraction for the material

at frequency ω. As shown below, the single atom susceptibility is related to the dipole moment and

hence the time-dependent wavefunction of the system. It is therefore a quantity that is theoretically

accessible from first principles. On the other hand the index of refraction is a macroscopic quantity

that describes the interaction of light with an ensemble of atoms. Note that for the remainder of

this thesis, we are concerned with the single atom susceptibility – where the number density of the

material has been divided out. This is in contrast to some nonlinear optics textbooks, which are

concerned with the macroscopic susceptibility.

Transitioning between the terms of the nonlinear index of refraction and the terms of the

nonlinear susceptibility is not particularly difficult. We can expand the total susceptibility and

total index of refraction in Equation (2.4) into their respective perturbative power series:

(n0+n2 |E|2+n4 |E|4+n6 |E|6+. . . )2 = 1+Nχ(1)+3Nχ(3) |E|2+10Nχ(5) |E|4+35Nχ(7) |E|6+. . . ,

(2.5)

where the prefactors stand for the degeneracy that we will discuss later in this Chapter. Note, for

the rest of this thesis, that the superscript in parentheticals ((n)) denotes the nth order term in

the perturbation series of a certain frequency. The electric field is related to the intensity via:

|E|2 =
I

2n0ε0c
, (2.6)

where n0 is the linear part of the index of refraction, and ε0 is the electrical permittivity of vacuum.

The power series can be formulated in either powers of |E|2 or powers of I, Equation (2.3) is given

in terms of I. Collecting terms with the same dependence on |E|2 gives us the first few terms of
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the index of refraction in terms of these susceptibilities:

n0 =

√
1 +Nχ(1), (2.7a)

n2 =
3Nχ(3)

4n0
, (2.7b)

n4 =
10Nχ(5) − 4n2

2

8n0
, (2.7c)

n6 =
35Nχ(7) − 16n2n4

12n0
. (2.7d)

We are primarily interested in the role of the higher order terms, in particular how the terms

of the series in Equation (2.3) behave as the intensity increases. Our analysis shows that the

susceptibility series and the index of refraction series are closely related, allowing us to use the

expansion for the susceptibility as an appropriate proxy for the behavior of the index of refraction.

We also note that any calculation of the perturbative index of refraction terms must be done through

the susceptibilities, which makes the latter a more natural quantity for a theoretical analysis.

2.2 General properties of the electrical susceptibility

The electrical susceptibilities are used to describe the frequency dependent response – in

the form of the dipole moment – of an atom (or other form of matter) to a driving electric field.

In the simplest case, for a linear system, the susceptibility is the frequency dependent factor of

proportionality between the electric field strength and the dipole moment:

p(ω) = 〈µ̂〉 = χ(ω)E(ω) (2.8)

with the driven dipole moment having an amplitude of 2 |χ(ω)| |E(ω)|, and a phase angle of

arg(χ(ω)) + arg(E(ω)).

More generally, for a susceptibility that is not confined to be linear, and an electric field E(t),

with Fourier components Ej(ω), that is not confined to be a continuous wave, a total susceptibility

is related to the polarization by:

Pi(ω) = Npi(ω) = Nχij(ω; E(t))Ej(ω), (2.9)
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where Einstein summation notation is used, and χij(ω;E(t)) is the total single atom susceptibility

tensor acting on the jth component of the electric field, giving rise to the ith component of the

dipole moment and polarization. We have denoted Pi as the macroscopic polarization component

in the ith direction, and pi as the dipole moment of a single atom in the ith direction. The implicit

dependence of the susceptibility on the total time dependent form of the electric field is present

in the total non-perturbative susceptibility, but becomes an explicit dependence on the frequency

dependent components of the electric field in the perturbative susceptibility terms. For simplicity,

we consider here only with the interaction of the electric field in one, say the z, direction and the

polarization induced in the same direction, which removes the tensor indices in the above equation.

The total susceptibility χ(ω; E(t)) in Equation (2.9) can be expanded in a perturbative series

about the small quantity E(ω) as:

χ(ω; E(t))E(ω1) = χ(1)(ω;ω1)E(ω1) + χ(2)(ω;ω1, ω2)E(ω1)E(ω2)+ (2.10)

χ(3)(ω;ω1, ω2, ω3)E(ω1)E(ω2)E(ω3) + . . . ,

where each susceptibility term χ(n) is parameterized in terms of the frequency ω of the dipole

moment it drives and the electric field frequencies ωj that contribute to that term, where ω =
∑

j ωj .

Using Equation (2.10), and Equation (2.9), we can write down the perturbative terms for the

expectation value of the dipole moment for some frequency ω as a sum of the contributions due to

electric field components at different frequencies:

〈µ̂(n)(ω)〉 =
∑

ω1...ωn
ω=ω1+···+ωn

χ(n)(ω =

n∑

i=1

ωi;ω1, . . . , ωn)E(ω1) · · ·E(ωn), (2.11)

where µ̂(n) is the nth order term in the perturbative expansion of the dipole moment. This gives

us a way to obtain the susceptibility terms, given the Fourier decomposition of the perturbative

dipole moment terms, by collecting terms.

The perturbative expansion of the dipole moment, via the expansion of the susceptibilities,

is not always desired. Alternatively, the total susceptibility can be found from ab-initio calcula-

tions for a given dipole moment and a given electric field as a function of time. By rearranging
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Equation (2.9) we get

χ(ω;E(t)) =
p(ω)

E(ω)
=
F [〈p(t)〉] (ω)

F [E(t)] (ω)
, (2.12)

where we make explicit that this susceptibility depends on the time-dependent electric field, and

F denotes the Fourier transform of its argument, allowing us to convert from an arbitrary time

dependent dipole moment to the frequency dependent susceptibility. This is how we extract out

the susceptibility from our ab-initio calculations.

2.3 Perturbation Theory

2.3.1 Brief review of perturbation theory

We derive the perturbative susceptibilities via the Fourier transform of the time dependent

terms of the perturbative dipole moment, i.e. the susceptibility is extracted from Equation (2.11).

The perturbative dipole moment terms are found using the time-dependent interaction with the

electric field (HI(t)) as a small perturbation to the field-free Hamiltonian H0. For the expansion

we write the corresponding Schrödinger equation as:

(H0 + λHI(t))Ψ = −i∂tΨ, (2.13)

where Ψ represents the wavefunction, λ is a parameter that will be used to denote the orders in

the perturbation series, and will be set to 1 at the end of the calculation. If Ψ is expanded into a

power series in λ:

Ψ = ψ(0) + λψ(1) + λ2ψ(2) + . . . , (2.14)

where ψ(n) is the nth order term in the expansion of the wavefunction Ψ, an application of Equation

(2.14) along with Equation (2.13) allows for the collection of terms in powers of λ and the derivation

of the recurrence relation (after setting λ to 1) :

H0ψ
(0) = −i∂tψ(0) (2.15)

H0ψ
(n) +HIψ

(n−1) = −i∂tψ(n). (2.16)
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By decomposing the perturbative terms of the wavefunction in terms of the eigenstates φm

of H0, where ωm = ~Em is the frequency associated with that eigenstate:

ψ(n) =
∑

m

c(n)
m (t)φme

−iωmt (2.17)

we obtain a series of recurrent differential equations:

ċ(0)
m (t) = 0 (2.18a)

ċ(n)
m (t) = (i~)−1

∑

k

c
(n−1)
k (t) 〈φm|HI(t) |φk〉 eiωmkt for n ≥ 0, (2.18b)

which can be recast into integral form as:

c(n)
m (t) = (i~)−1

∫ t

−∞
dτ
∑

k

〈φm|HI(τ) |φk〉 c(n−1)
k (τ)eiωmkτ (2.19)

with c
(0)
m is the time independent coefficient that defines the initial conditions of the problem.

2.3.2 Dipole moment and single atom response functions

Up until now, the form of the time-dependent perturbation HI(t) has not been made explicit.

We are concerned with the interaction of an atom with an oscillating electric field in this thesis,

so we proceed to write the time-dependent dipole moment of the system as the response of the

field-free system to an electric field.

For simplicity, we make three assumptions here, which we will discuss in more depth in Sec-

tion 3.1, as they are of significant importance when solving the ab-initio time-dependent Schrödinger

equation. First, we choose linear polarization along the ẑ direction for the electric field interac-

tion. This reduces the complexity of the following equations, without losing any relevant meaning

towards our discussion, and matches the scenarios considered in the ab-initio calculations. Sec-

ond, we assume a single active electron potential, which are used in the ab-initio calculations, for

obtaining the basis functions (see Section 3.1.1 for more information on the single active electron

models). Finally, we use the length gauge for the interaction with the electric field. This simplifies

the relationship between the dipole moment and the interaction Hamiltonian, and again matches
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the ab-initio calculations performed in this thesis. The interaction Hamiltonian is thus given by:

HI = −µ ·E(t) = −µE(t) (2.20)

and the perturbative expansion of the time dependent dipole moment yields:

〈µ̂〉 = 〈Ψ(t)| µ̂ |Ψ(t)〉 (2.21)

=

〈µ̂(0)〉︷ ︸︸ ︷
〈ψ(0)| µ̂ |ψ(0)〉+

〈µ̂(1)〉︷ ︸︸ ︷
〈ψ(1)| µ̂ |ψ(0)〉+ 〈ψ(0)| µ̂ |ψ(1)〉+

〈µ̂(2)〉︷ ︸︸ ︷
〈ψ(2)| µ̂ |ψ(0)〉+ 〈ψ(1)| µ̂ |ψ(1)〉+ 〈ψ(0)| µ̂ |ψ(2)〉+ . . .

The zeroth order term 〈µ̂(0)〉 is the permanent electric dipole moment, which is zero for all cen-

trosymmetric systems including the atomic systems we are studying. The first order correction

〈µ̂(1)〉 is the non-zero linear response of the system to the applied electric field. Application of

the recurrent relations in Equation (2.19), and the assumption that the system we are studying is

prepared in the eigenstate |g〉, i.e. ψ(0) = c
(0)
g φge

−iωgt with c
(0)
g = 1 and c

(0)
m 6=g = 0, gives the linear

term of the dipole moment:

〈µ(1)(t)〉 =

∫ t

−∞
dτ

R(1)(t−τ)
︷ ︸︸ ︷
1
i~

∑

m 6=g
µ̂gmµ̂mge

−iωmg(t−τ)E(τ) + c.c., (2.22)

where µ̂ij = 〈φi| µ̂ |φj〉 is the matrix element of the dipole moment operator corresponding to the

states denoted by the labels i and j, and ωij = ωi − ωj is the energy difference between these

states. Equation (2.22) is the time-dependent convolution of the electric-field response of the atom

with the electric field itself. The integration limits ensure that R(1)(t − τ) is never evaluated for

negative arguments and hence causality is guaranteed. Further, the response is constrained to be

a function of the difference in time between the current time t and the time τ of the interaction

with the electric field, so that the polarization is invariant with respect to a global time offset. The

response is a weighted sum of the phase factors of the various eigenstates of the system.
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Using

E(t) =

∞∑

ωj=−∞
E(ωj)e

−iωjt, (2.23)

we can evaluate the integrals by substituting Equation (2.23) in Equation (2.22):

〈µ(1)(t)〉 =
∑

ω1

χ(1)(ω1)︷ ︸︸ ︷
∑

m6=g

|µ̂gm|2
ωmg − ω1

E0e
−iω1t. (2.24)

The term is proportional to E(t), as is expected for linear polarization. Note, there is a simple

pole at ω0 = ωmg, related to resonance behavior, when the driving field has the same frequency as

the atomic transition. However, Equation (2.24) neglects the lifetimes of the atomic states. When

taken into account, the lifetime of a state will broaden the transition and remove the singularity.

This effect is frequently approximated by replacing a real ωmg by ω̃mg = ωmg + iΓmg, where Γmg

represents the spontaneous decay of the population of the state back to the ground state. This

shifts the pole into the complex plane, and therefore removes the singularity. Here, we are only

concerned with transitions far from resonance so we do not have to consider this case. Further

details on this transformation can be found in [18, 23, 36].

Examining the second order contribution to the polarization, via application of the recurrence

relation in Equation (2.19), one can start to see some patterns and the corresponding physical

meaning of these terms. Keeping the initial condition the same one gets

〈µ(2)(t)〉 =
[
〈ψ(2)(t)| µ̂ |ψ(0)(t)〉+ c.c.

]
+ 〈ψ(1)(t)| µ̂ |ψ(1)(t)〉 (2.25a)

= (i~)−2
∑

m 6=g
l 6=g

µ̂glµ̂lmµ̂mg

[(∫ t

−∞
dτ

∫ τ

−∞
dτ ′e−iωlg(τ ′−t)e−iωml(τ−t)E∗(τ)E∗(τ ′) + c.c.

)

−
∫ t

−∞
E∗(τ)e−iωlg(τ−t) dτ

∫ t

−∞
eiωmg(τ ′−t)E(τ ′) dτ ′

]
.

(2.25b)

Note that the response is symmetric with respect to an interchange of the time variables. In par-

ticular, in the case of an electric field of linear polarization, as considered here, such an interchange

cannot change the physics of the situation. This property is known as the intrisic permutation

symmetry.
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The 〈µ(2)〉 term consists of an odd number of dipole transition matrix elements. Therefore,

the term is zero for centrosymmetric systems because the dipole selection rules for atoms require l to

change by ±1. Thus, an even number of dipole transitions is necessary to result in a non-zero term.

Nonetheless, an examination of the form of this dipole term provides us with an understanding for

the higher order responses.

The first integral in Equation (2.25b) can be related to two photon sum and difference pro-

cesses such as second harmonic generation and sum frequency generation. Physically, the integra-

tion over τ ′ establishes a phase difference between the populations in the l state and the g state that

evolves with time. The second interaction with the field, which is represented by the integration

over τ , modifies this phase difference as the field again interacts with the states. This transition is

enhanced if there is an intermediate state m that is close to a frequency of the laser field. Note that

this is a property of the second order perturbative wavefunction, which means that this behavior

– the sum of two photons – shows up as well in third order and higher order dipole moment terms

as an intermediate process. The second integral represents two different states being excited in

single-photon processes.

We can evaluate the integrals by substituting Equation (2.23) in Equation (2.25b):

〈µ(2)(t)〉 =
∑

ω1ω2

∑

lm

(
µ̂glµ̂lmµ̂mg

(ωlg − ω1 − ω2)(ωmg − ω1)
E(ω1)e−iω1tE(ω2)e−iω2t

− µ̂glµ̂lmµ̂mg
(ωlg + ω2)(ωmg − ω1)

E(ω1)e−iω1tE∗(ω2)eiω2t

+
µ̂glµ̂lmµ̂mg

(ωlg + ω2)(ωmg + ω2 + ω1)
E∗(ω1)eiω1tE∗(ω2)eiω2t

)
. (2.26)

The two photon sum process is shown in the first and last terms. The complex exponentials describe

a wave with frequency ω1 + ω2, while the coefficient is singular for states with frequency ω1 + ω2,

denoting a maximal transition amplitude. This behavior is enhanced if either ω1 or ω2 is resonant

with an intermediate state. As mentioned before, due to the lack of modeling of the lifetime of the

state, electric field components at on-resonant frequencies will produce unphysical dipole moment

terms. The second term describes the difference frequency contribution, where the polarization is
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at the difference frequency of the two electric field terms. Together, for a two color electric field,

the dipole moment will have terms proportional to four different frequency components:

− ω1 + ω2 ω1 − ω2 ω1 + ω2 − ω1 − ω2, (2.27)

leading to real polarizations with two frequencies: ω1 + ω2 and ω1 − ω2. When ω1 = ω2 a DC

contribution and a second harmonic contribution are produced.

Real electric fields have real Fourier coefficients E(ωj) such that E(ωj) = E∗(−ωj). This

permits positive and negative frequencies to be swapped without changing the total sum. This

freedom allows the electric field and exponential time dependence of Equation (2.26) to be extracted

from the sum over the dipole terms:

〈µ(2)(t)〉 =
∑

ω1ω2

PI
[∑

lm

µ̂glµ̂lmµ̂mg
(ωlg − ω1 − ω2)(ωmg − ω1)

+
µ̂glµ̂lmµ̂mg

(ωlg + ω2)(ωmg − ω1)

+
µ̂glµ̂lmµ̂mg

(ωlg + ω2)(ωmg + ω2 + ω1)

]
E(ω1)E(ω2)e−i(ω1+ω2)t, (2.28)

where the part in square brackets is the susceptibility χ(2)(ω3 = ω1 + ω2), which can be seen in

Equation (2.11). Note that due to intrinsic permutation symmetry, the order of the electric field

terms E(ω1)E(ω2) does not matter. The symmetry requires that we average over interchange of

ω1 and ω2, which is represented by the operator PI . This susceptibility tensor is thus an 2nd order

symmetric tensor with a term for every ω1 and ω2.

A comparison between the first and second order terms of the dipole polarization shows

how the pattern of the third and higher order perturbative terms evolves. The nth term in the

perturbative series will have n+ 1 terms in the sum:

〈µ(n)(t)〉 =
n∑

m=0

〈ψ(m)| µ̂ |ψ(n−m)〉 . (2.29)

The perturbative wavefunction of nth order will contribute an n photon process to the series, along

with all intermediate state processes (processes involving 1 . . . n− 1 photons):

|ψ(n)〉 = (i~)−n
∑

jn 6=j0

· · ·
∑

j1 6=j0

n∏

m=1

µjmjm−1E(ωm)e−iωmt

ωjmj0 −
∑n

i=m ωi
|ψj0〉 , (2.30)
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where jm denotes a field-free eigenstate with j0 denoting the ground (or initial) state.

The nth order perturbative susceptibility term can be found via the same method used for

χ(2) above. This includes an interchange of ωi with −ωi where appropriate to consolidate the

electric field terms, and then an extraction of the specific susceptibilities desired.

2.4 Summary

Here we have given an overview of perturbation theory as it applies to the dipole moment

and the susceptibility. Since we are interested in adding to the ongoing discussion of the higher

order Kerr effect, which was presented as a function of the index of refraction, we discussed the use

and relevance of the perturbative susceptibility as a more theoretically accessible quantity.

For the discussion of the relevance of the perturbative approach we derived the first few

terms of the dipole moment under a set of certain assumptions – such as a single active electron

potential, linear polarization, etc – that we will use throughout this thesis. Each term was discussed

with respect to its physical significance. Finally, we discussed the method that we will use in

our calculation and analysis of the susceptibilities. Results of this analysis will be presented in

Chapter 4.



Chapter 3

Numerical Methods

Solving the time dependent Schrödinger equation (TDSE) for atoms in strong electric fields

is challenging, since strong-field ionization and other effects are complex highly nonlinear processes.

An electron interacting with a powerful enough laser can simultaneously cause a number of related

phenomena including: over the barrier ionization, bound-bound excitation, high harmonic genera-

tion, above threshold ionization, dispersion of the ionized electron wavepacket and others. These

phenomena interact in unexpected ways, leading to incredibly rich and complex physics. This is

part of the excitement of working in this field.

These complex interactions are also what makes it difficult to perform calculations. The

wavefunction of an electron interacting with a strong electric field is spread out over a much

greater volume than a typical atom in the ground state. This volume must be represented in any

calculation that aims to accurately model this interaction.

Furthermore, the Schrödinger equation of an atom in a time dependent strong electric field

does not have an exact analytical solution, and the large number of coupled dimensions – three for

each electron – combined with the large interaction volume, requires far too much information for

a complete computational solution using current computers. Due to the difficulty of the problem,

any realistic solution is a balance between three competing factors:

• Numerical and physical accuracy of the method. When dealing with differential equations

without known analytical solutions, we can use computers to find a numerical approxima-

tion to the exact solution to that differential equation. How closely these approximations
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are to the exact solution is the numerical accuracy of the method. More accurate methods

can be more difficult to calculate, either requiring much more memory or computational

power. How accurate the numerical results are must be balanced against the accuracy of

the physical model with which one is trying to solve the problem. The accuracy required

by the physics that we want to study determines the physical model that we use and the

numerical accuracy we require.

• Information extracted from the method, such as physical observables, or quantum mechan-

ical properties we wish to examine. Certain observables are easier to calculate in some

methods than in others.

• Time to calculate.

These limitations have become significantly less severe as computational power and algorith-

mic advances have developed over the last few decades. These advances have allowed theorists to

continually push the boundaries of accuracy, and allowed us to examine larger systems or more

subtle observables.

In our case, we examine the perturbative and the ab-initio solutions to the time dependent

Schrödinger equation for an atom in a time dependent electric field. In order to study the limits

of the perturbative approach by comparing the respective results to those of ab-initio solutions,

we aim to perform both calculations within the same theoretical framework. To this end, we

have chosen the representation of the wavefunction in terms of the field-free basis states. Since

we are specifically interested in establishing the limits of the perturbative HOKE expansion, this

determines the susceptibility as the observable we need to evaluate. The susceptibility is determined

via the dipole moment (see section 2.2), which can be well calculated using the basis states. In this

Chapter we will present the numerical basis state method used to perform the perturbative and

ab-initio calculations of the atomic susceptibilities for the comparison.
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3.1 Overview of the method

The Schrödinger equation for a single atom in an oscillating electric field within the dipole

approximation and using the length gauge can be written as (in atomic units):



N∑

i=1

(
p2
i

2
− 1

ri
+ ri ·E(t)

)
+
∑

i 6=j

1

|ri − rj |


Ψ(r1, . . . , rN , t) = −i∂tΨ(r1, . . . , rN , t), (3.1)

where pi = −i∇i is the usual momentum operator for electron i, with position coordinate ri,

interacting with a time dependent electric field vector E(t) and Ψ(r1, . . . , rN , t) is the wavefunction.

The solution of the general Schrödinger equation for atoms with more than two electrons is

too computationally intensive for strong-field calculations, and must be reduced before it can be

solved in a reasonable amount of time. We make a number of approximations to the multi-electron

Schrödinger equation in order to restrict the calculation time and to make efficient the calculations

that we are interested in performing.

The approximation with the largest effect on computation time is the single active electron

approximation. For hydrogenic systems, this is an excellent approximation: the outer electron is

more weakly bound and will thus react to the external electric field more freely than the inner

electrons. A good example is Lithium, with two electrons in the inner s-orbital, and a single

electron in the outer s-orbital. The outer s-orbital electron exhibits a much weaker (approximately

11 eV less tightly bound) binding energy than the inner electrons. However, even for atoms with

more than one electron in the valence shell, such as the noble gas atoms, the single active electron

model has been proven reasonably accurate in the past in the case of studies in strong fields. For

example, published comparisons between theoretical and experimental studies of the multiphoton

ionization of xeon and ATI spectra of argon have shown good agreement using single active electron

models [37, 38]. This will be covered in more depth in subsection 3.1.1.

Next, we consider only spherically symmetric potentials in order to work within the separable

spherical coordinate system. Spherically symmetric potentials include those atoms with a complete

outer electron shell such as noble gases – which are popular for experimental studies of strong

field processes – and atoms with an outer s orbital shell, such as alkali atoms and helium. Using



26

spherically symmetric potentials allows us to separate the angular part of the field-free Hamiltonian

– with the well known spherical harmonics as solutions – from the radial part. This requirement does

limit us from being able to model atoms with incomplete valence p-orbitals or those with higher

orbital angular momentum due to the symmetry breaking the corresponding potentials exhibit

under the influence of an external electric field. Such potentials have coupled terms between their

radial and angular parts, which significantly increases the complexity of the field-free Hamiltonian.

We select a linear polarization direction for the interacting electric field (denoting it ẑ). This

reduces the quantum numbers (and thus the dimensionality) that change during the interaction of

the atom with the field via the dipole selection rules to the principal quantum number n and the

orbital angular momentum quantum number l. The angular momentum quantum number in the z

direction (denoted by m) is fixed by the choice of the initial state (typically we set m = 0).

Finally, since we will represent the radial part of the wavefunction on a grid, we need to

restrict its size. To this end, we use an infinite spherical well with radius R max , beyond which the

potential is infinite. In practice, we denote this by adding a BC(r) term in the Hamiltonian which

fixes the value of the wavefunction at Rmax to zero, enforcing the boundary condition.

These approximations give us the following form of the TDSE:

[
p2

2
+ Ṽ (r) + zE(t)

]
Ψ(r, θ, t) = i∂tΨ(r, θ, t), (3.2)

where now Ṽ (r) = V (r) + BC(r) is the spherically symmetric single active electron potential

plus boundary conditions, zE(t) is the electric field interaction term that is now limited to a

linear polarization with z = r cos θ, and Ψ(r, θ, t) is the wavefunction parameterized in the three

independent coordinates.

3.1.1 Single active electron models

The single active electron (SAE) approximation consists of two parts: the wavefunction of the

single propagated (active) electron, and the potential in which it is propagated. Because the SAE

approximation assumes that all electrons other than the active electron are frozen in their ground
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Target Zc a1 c1 a2 c2 a3 c3

He 1.0 1.231 0.662 -1.325 1.236 -0.231 0.480

Table 3.1: The parameters from [43] for the helium atom.

state configuration, the potential in which the active electron is propagated includes contributions

from both the bare nuclear charge as well as the frozen electrons.

A SAE potential can be determined by finding the full multi-electron ground state for the

atom using a method such as Hartree-Fock [39], or density functional theory [40, 41], and then

removing the active electron. The resulting multi-electron wavefunction describes the inactive

electrons. The complete potential in which the active electron is propagated results from the

electrostatic repulsion of the inactive electrons together with the electrostatic attraction of the core

nucleus.

For spherically symmetric potentials, potential energy surfaces found in this way are typi-

cally [42, 43] fit to a series of radial Yukawa potentials:

V (r) = −Zbare

r
+
∑

n

ane
−cnr

r
, (3.3)

where Zbare is the asymptotic bare charge that the electron will see, and an and cn are fits to the

calculated potential. In this thesis we have performed calculations for the helium atom using the

single active electron potential from Tong and Lin [43], shown in Table 3.1.

3.1.2 Separation of variables

We want to consider a model system that can be used for ab-initio time propagation as well

as time independent perturbative calculations. This requires the separation of the time dependent

Hamiltonian into a time independent Hamiltonian plus the time dependent field interaction, zE(t).

The time independent part of the Hamiltonian is then diagonalized, giving us a time independent

basis set that we can use for the perturbative calculations, and that we can use as the elements in

which we propagate the total time dependent Hamiltonian.
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We find the basis state functions of the Schrödinger equation for the time independent Hamil-

tonian given by:

H0Ψ(r, t) =

[−∇2

2
+ Ṽ (r)

]
Ψ(r, t) = −∂tΨ(r, t), (3.4)

where Ṽ (r) is the spherically symmetric potential plus boundary conditions. In the spherical

coordinate system, this Schrödinger equation is separable, allowing us to write down the solution

as a product of functions of different coordinates [44]:

Φ(r, t) = R(r)Y (r̂)Ξ(t), (3.5)

where R(r) is a function dependent only on the radial distance between the electron coordinate

and the nuclear coordinate, Y (r̂) depends on the angular coordinate, and Ξ(t) specifies on the time

component of the wavefunction. This separation of variables is only possible because our total

potential Ṽ (r) depends only on the radial coordinate.

From this, we get three separate equations relating the three components:

E = −i∂tΞ(t)

Ξ(t)
(3.6)

l(l + 1) =
1

R(r)
r2∇2

rR(r)− 2r2
[
Ṽ (r)− E

]
(3.7)

l(l + 1) = − 1

Y (r̂)
r2∇2

r̂Y (r̂) (3.8)

where E is the energy eigenvalue, l is the total angular momentum quantum number, ∇2
r is the

radial part of the Laplacian and ∇2
r̂ is the angular part. This reduces the field-free problem to

three eigenvalue problems, two of which have well known solutions. The solution to Equation (3.6)

is the exponential time dependence of a state:

Ξ(t) = e−iEt, (3.9)

while the solution to Equation (3.8) is given by the spherical harmonics:

Yl,m(r̂) = NeimφPl,m(cos θ), (3.10)

where N is a normalization factor, l and m are the total angular momentum quantum number and

projected angular momentum quantum number respectively, and Pl,m are the associated Legendre
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polynomials. The radial equation (Equation (3.7)) is now defined in terms of the spherically

symmetric potential and boundary conditions.

3.2 Numerical basis state method

The time independent calculation of the eigenstates is simplified by using the spherical har-

monics (as discussed in Section 3.1.2). This reduces the calculation to merely finding the radial

part of the eigensystem from Equation (3.7):

[
−∂rr

2
+ Ṽ (r) +

l(l + 1)

2r2

]
Rn,l(r) = En,lRn,l(r). (3.11)

The rest of this section is related to the solution of this eigenvalue equation. We start with a general

discussion of representations of differential equations in section 3.2.1. In section 3.2.2 we give a

brief overview of our numerical method for finding the eigenstates. This leads us into section 3.2.3,

where we discuss the free parameters that are useful for the basis. Section 3.2.4 provides details of

the algorithm that we use to solve the eigensystem, along with a comparison with analytic results

(section 3.2.4.4).

3.2.1 Representations of differential equations

Much work has gone into finding different strategies for solving the time-independent Schrödinger

equation [45–47]. Like all problems in applied math, different methods have different strengths and

weaknesses. Here we will discuss some of the more common techniques for solving the time in-

dependent Schrödinger equation. The general form of the Schrödinger equation for our model is

written as:
[

p2

2m
+ Ṽ (r)

]

︸ ︷︷ ︸
H0

Ψ(r) = EΨ(r), (3.12)

The first decision that must be made when solving any differential equation is the numerical

representation of the solution, and consequently, the differential operator. The wavefunction of an

electron is represented as a complex valued function defined over the three dimensional real-valued
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spatial vector. However, when trying to solve it numerically on machines with finite memory and

computational power, we must make choices in order to describe such a function. These choices

determine the form of our solution. We are primarily interested in this section with the represen-

tation of the eigenfunctions of the time independent Hamiltonian, and will focus our discussion on

methods to solve such a system. We will discuss the propagation of the wavefunction in time in

section 3.3.

There are many choices one can make on how to represent the wavefunction and the Hamilto-

nian. These methods generally fall into two different categories: approximations via the discretiza-

tion of space and approximations via the truncation of series. Below we will give a brief overview

of these general methods. In order to simplify our analysis, we restrict ourselves to the eigensystem

consisting of the 1-D (radial) time independent Hamiltonian, and the corresponding 1-D radial part

of the wavefunction. This matches the problem we are looking to solve.

3.2.1.1 Discretization of space

One way to solve a time-independent differential equation is to discretize the variables [48].

In the case of the Schrödinger equation, this means discretizing the space in which an electron (or

a center of mass) is represented. For example, for a Cartesian coordinate system, one defines a

grid of points on which the solution is defined, while between these points the solution is inferred.

Typically, an evenly spaced grid is used for simplicity, however this is by no means a requirement.

For an evenly spaced grid, the distance between adjacent points – the grid spacing – we denote by

∆x, and the nth point on the grid is given as xn. The total number of points is represented by

nmax.

Derivatives on such a discrete grid are called finite differences, and thus the methods that

solve differential equations on a finite grid are called finite difference methods. Finite difference

methods are perhaps the simplest of the various methods to solve the Schrödinger equation. In

position space, the momentum operator is represented by a derivative p = −i∇, and thus the

kinetic energy term is proportional to the second derivative. The first derivative of a function f(x)
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between two adjacent points of a grid is then approximated by:

∂xf(x) =
f(x+ ∆x)− f(x)

∆x
+O(∆x2). (3.13)

Equation (3.13) is referred to as the forward difference, because it approximates the derivative at

x using the value of the function at x+ ∆x and x. The backward difference is easily inferred from

the forward difference.

Combining the forward difference and backward difference, one gets the central difference for

a second order derivative:

∂xxf(x) =
f(x−∆x)− 2f(x) + f(x+ ∆x)

∆x2
+O(∆x2). (3.14)

Using this, the time independent Schrödinger equation in one dimension can be written as:

HΨ(x) = EΨ(x) (3.15)

−1

2

Ψ(xn−1)− 2Ψ(xn) + Ψ(xn+1)

∆x2
+ V (xn)Ψ(xn) = EΨ(xn). (3.16)

The boundary conditions are set by fixing the values of Ψ(x0) and Ψ(xmax).

The Hamiltonian H0 in Equation (3.16) above can be represented as a matrix:

H0 =




1
m∆x2

+ V (x1) − 1
2m∆x2

0 · · · 0

− 1
2m∆x2

1
m∆x2

+ V (x2) − 1
2m∆x2

0 · · · 0

0 − 1
2m∆x2

1
m∆x2

+ V (x3) − 1
2m∆x2

0 · · ·
...

. . .
. . .

. . .
. . .

. . .




, (3.17)

where the boundary conditions have been fixed via neglecting to add the respective points to the

matrix, which is equivalent to setting them to zero. Equation (3.16) can be rewritten as a matrix

equation:

HoΨ = EΨ (3.18)

where the wavefunction is now represented as an n dimensional vector. This formulation allows

one to use matrix eigenfunction solvers.
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The finite difference method in its simplest form is very easy to implement and reason about.

For low dimensional calculations, it is compact in its representation, and with a small enough grid,

it usually has acceptable errors. Unfortunately, the finite difference method is difficult to adapt

to non-uniform grids [48, 49], and with a large number of dimensions, its requirement for a small

grid-spacing quickly becomes computationally unfeasible. Finite difference methods are frequently

used as well to solve the time-dependent Schrödinger equation, using a finite difference to discretize

the time component as well as the space components.

3.2.1.2 Finite series representations

Another method to represent the wavefunction and Hamiltonian is as an abbreviated series.

Basic calculus allows one to approximate any well behaved arbitrary function as some finite number

of terms in a power series expansion such that the desired accuracy is achieved. More generally, one

can represent any well behaved arbitrary function f(x), in this case the wavefunction, as a truncated

series in any complete basis S with basis elements sn(x) (for simplicity, we have restricted ourselves

to a discussion in one dimension):

f(x) =
∑

n

cnsn(x), (3.19)

where cn is a coefficient that represents the weight of the individual functions sn(x) within the sum.

This allows one to potentially represent f(x) very accurately in a small amount of memory, given

one chooses an appropriate basis set S, such that the number of basis states needed for convergence

is small.

This scheme can be expanded to time dependent problems by defining a time dependent

coefficient to each basis element:

f(x, t) =
∑

n

cn(t)sn(x). (3.20)

A linear operator Ô can be represented within S as a matrix with weighted transitions

between basis elements sn and sn′ in some domain R:

Ôn′,n =

∫

R
s†n′(x)O(x)sn(x) dx. (3.21)
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Consequently, the Hamiltonian within the Schrödinger equation can be represented as:

Ĥn′,n =

∫

R
s†n′(x)H(x)sn(x) dx, (3.22)

for a basis set S which consists of orthonormal elements sn. When S is not orthonormal, then s†n

is no longer the complex conjugate of sn, and must be constructed out of the overlap matrix (for

more information, see [50, 51]).

From a computational perspective, a low memory footprint of the operator is important.

There are two properties of an operator that can lead to a low memory footprint: the total number

of states needed to accurately represent the wavefunction and the sparseness of the operators acting

on such a wavefunction. If one knows, a priori, that certain elements will be zero within the matrix,

then such elements do not need to be represented, and storage can be reduced.

There is an upfront cost to using a finite series representation. The Hamiltonian must be

found within this representation using Equation (3.22) before one can do any further calculations

– such as propagation – in this basis. Typically, the Hamiltonian in this form can be saved and

used for multiple further calculations. When using the field-free basis, the Hamiltonian must be

recalculated for every combination of atomic species and grid that one wishes to use.

A few basis sets are particularly common for ab-initio solutions of the time dependent

Schrödinger equation in problems in atomic, molecular and optical physics. Each basis set has

benefits and drawbacks. In general, the sparsity of the Hamiltonian within the representation –

the number of non-zero matrix elements compared to the size of the matrix – and the number of

elements of the basis set S necessary to approximate the wavefunction determine the memory and

computation required for a calculation.

A common expansion used is the Fourier series [52], where an arbitrary complex function is

decomposed as a sum of complex exponentials over the interval of convergence [x0, x0 + P ]:

f(x) =

∞∑

n=−∞
cne

i 2πn
P
x. (3.23)

By truncating the series to a finite number of exponentials, the sum represents an approximation

of the function. For an atomic, field-free potential, the Fourier representation of the Hamiltonian
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is very dense: the matrix element between any two frequencies is nonzero, for a typical atomic

potential proportional to −1/x. Furthermore, the representation of the ground state of a hydrogen

atom requires a large number of frequency components to reach convergence to sufficient accuracy.

On the other hand, for a free electron without any potential (H = p2/2), the Hamiltonian is

diagonal in the Fourier representation. The Fourier basis functions are eigenfunctions of the kinetic

energy term of the Hamiltonian, allowing for an efficient description of the free electron problem

within this basis set.

We have already used the spherical harmonics representation in section 3.1.2. For spherically

symmetric problems, the angular parts of the wavefunction are easily represented in terms of

spherical harmonics. For atoms interacting with an electric field, the dipole transition rules (l′ = l±1

for the total angular momentum quantum number l and m − 1 < m′ < m + 1 for the magnetic

quantum number m if necessary) give a very sparse matrix representation of the dipole transition

operator for single active electron potentials. Since the spherical harmonics are eigenstates of the

angular part of the single active electron field-free Hamiltonian, the matrix representing this part

of the field-free Hamiltonian is diagonal.

Another widely used method to represent the radial part of a wavefunction are B-Splines [53,

54]. B-Splines are a family of piece wise polynomials defined via the recurrence relation:

Bi,1(x) =





1 if ti ≤ x < ti+1

0 otherwise

(3.24)

Bi,n(x) =
x− ti

ti+n−1 − ti
Bi,n−1(x) +

ti+n − x
ti+n − ti+1

Bi+1,n−1(x), (3.25)

where Bi,n(x) is the B-Spline of order n defined between the “knot”s ti and ti+k. These knots can

be at arbitrary points within the space that is being used, and multiple knots at the same point can

be used to fulfill boundary conditions and allow discontinuities to be represented. This behavior

can be seen in Figure 3.1, where each set of lines represents a basis function of order 3 that is

centered at different knot points. The locations of the knots are shown at the bottom axis. Notice

that at multiple knots (at the far right and far left) a B-Spline may have discontinuous derivatives.
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This is useful for representing Neumann boundary conditions and discontinuous potentials.

For a B-Spline basis the accuracy improves as the density of the knots increases, similar to the

increased accuracy when decreasing grid point spacing in finite difference schemes. B-Splines are

functions with limited support – they are only non-zero within a small number of knots – leading

to a sparse representation of the radial part of the Hamiltonian. B-Splines of nth rank are nth

order polynomials, which have a well defined nth derivative when defined over n knots with unique

locations. Thus, the transition elements of the Hamiltonian can be obtained analytically for an

analytical potential. Unfortunately, B-Splines do not form an orthonormal basis, which means that

an overlap matrix must be calculated in order to solve the time-independent Schrodinger equation,

as mentioned above.1820 H Bachau et al
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Figure 1. The full set of B-splines of order k = 3 relative to the knot sequence
{0, 0, 0, 1, 2, 3, 4, 5, 5, 5}. Knots are represented by full circles.

references are discussed in the review. To help the reader we have divided the papers into
sections although some papers in practice cover more than one category. The general references
have been given separately for each section to reduce the time needed to find a particular
reference. If a reference is mentioned in several chapters it is included only once (the first
time).

Throughout, we use atomic units (au) unless specifically indicated.

2. Description of B-splines

B-splines are functions designed to generalize polynomials for the purpose of approximating
arbitrary functions. One can view them as new elementary functions such as sin x or jl(x).
One becomes familiar with them by understanding their qualitative behaviour and how to use
them, that is how to obtain values of the functions, their derivatives or integrals. This is the
topic of this section. A complete description of B-splines and their properties can be found
in de Boor’s book [5]. Just like sin x, efficient numerical evaluation can be accomplished by
black-box routines, and it is not generally important to know the algorithm for proficient use.

Let us introduce a few definitions.

• The polynomials of order k (maximum degree k − 1) are

p(x) = a0 + a1x + · · · + ak−1x
k−1.

• A function which is continuous (on a given interval) together with its derivatives up to
order n, that is f (x), Df, . . . , Dnf , is said to be of class Cn. Then C0 means that only f

is continuous and C−1 that f is discontinuous.
• Consider an interval I = [a, b] divided into l subintervals Ij = [ξj , ξj+1] by a sequence

of l + 1 points {ξj } in strict ascending order

a = ξ1 < ξ2 < · · · < ξl+1 = b.

The ξj will be called breakpoints (bps).

A full set of B-splines (to be defined later) over the interval [0, 5] is shown in figure 1,
which we shall repeatedly use for illustration. In this example, the interval is divided into five

Figure 3.1: All B-Splines of order n = 3 for the knot sequence shown by full circles on the bottom
axis. Note that multiple knots can be used in order to induce discontinuities in the basis functions.
Reproduced from [53].

For strong-field problems, the B-Spline basis is a popular choice. B-Splines, due to their

analytically calculable matrix elements, are efficient in both memory and computation. The B-

Spline basis functions are used as is (as shown in Equation (3.20)), or as a basis to represent the

field-free eigenstates of the system.
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TDSE calculations of the ATI spectra of hydrogen [55] was one of the first successful applica-

tion of B-Splines to the strong-field regime. Since then, B Splines have been used to examine high

harmonic generation, fully two dimensional multi-photon ionization of helium, and examinations

of single ionization in H−. For more information on the applications of B-Splines to atomic physics

calculations, see [53, 56].

Slater type orbitals are another popular basis set for radial calculations in atomic and molec-

ular physics [47, 57]. They are typically of the form:

Sn,ζ(r) = rn−1e−ζr, (3.26)

where n and ζ are parameters of the basis function. Typically, n is associated with the principal

quantum number, while ζ is a tunable parameter which describes the radial extent of the orbit.

Slater orbitals were originally investigated due to their similarity to the hydrogenic wavefunctions.

The Slater orbitals form a complete basis for a fixed ζ. However, slow convergence can occur for

features much farther from the origin than ζr. In order to combat this, it is common for multiple

values of ζ to be used in a single calculation, expanding the size of the basis.

Slater type orbitals are typically used in variational calculations of atomic states [57, 58].

This allows basis sizes to be minimized while still maintaining accuracy for single (or few) state

calculations. Unfortunately, this variational process produces a new set of basis functions for each

new state, which makes calculations of large numbers of states difficult. As the number of nodes

in a wavefunction goes up, the number of basis states required also increases. The combination of

these two behaviors – the individualized basis states for each state, and the increasing number of

basis states necessary for highly oscillatory states – means that Slater type orbitals have not seen

much use in strong-field calculations.

Gaussians are another common basis set used in solutions of the atomic and molecular

Schrödinger equation [59]. There are a number of different schemes for using Gaussian functions

as a basis for finding atomic orbitals [47]. A common one is analogous to the Slater type orbitals:

Gl,α(x) = rle−αx
2
, (3.27)
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where α is a parameter defining the width, and l defines the order of the basis element. For a fixed

α, the set of Gaussians of different order l forms a complete basis. Unfortunately, a basis set with

fixed α is exceedingly slow to converge for most realistic atomic orbitals, and thus multiple basis

sets with different α’s are used to speed convergence.

Because of this, calculations using Gaussian basis sets are usually made up of composite

basis elements, where a linear combination of pure Gaussian basis elements create a set of new

basis elements. A common choice is using linear combinations of Gaussians to generate Slater type

orbitals. Because Gaussians are simpler to analytically integrate than Slater type orbitals, this

makes calculations with Slater type orbitals easier to manage, at the expense of accuracy, as a

finite number of Gaussians cannot represent a Slater orbital exactly.

Slater-type orbitals and Gaussian-type orbitals are commonly used in computational chem-

istry. They can generate very quick, accurate electronic structure calculations of multi-centered

molecules due to their natural similarity to real atomic orbitals. Unfortunately, both suffer from

difficulty in accurately representing the continuum wavefunctions. This inability to describe the

continuum efficiently has decreased their usefulness in strong-field calculations, though some hy-

brid calculations have been able to utilize these wavefunctions for bound state representations,

combining them with more flexible methods for continuum state calculations [60].

3.2.2 Numerical basis state method

We find the field-free basis numerically by solving the eigensystem given by Equation (3.12).

The spectra of any unrestricted atom is infinite in the number of bound states as well as the number

of continuum states. Of course, this cannot be represented in finite memory, nor calculated with

finite computational power. In order to overcome this, we restrict the atomic spectra by confining

the atom within an infinite spherical well potential, which discretizes the continuum part of the

atomic basis states, and reduces the number of bound states to a finite number. We artificially

restrict the number of continuum states by restricting the maximum energy state that we need to

represent in our wavefunction.
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In practice, the range of the infinite spherical potential is denoted by Rmax , and a Dirichlet

boundary condition is enforced at the boundary, i.e. Φ(Rmax) = 0. The value of Rmax sets the

density of states for the continuum and highly excited bound states. We typically use values of

500− 1000 a.u. for our calculations (see section 3.2.3 for more information on how this affects our

basis set.)

As noted above, we use the spherical harmonics as angular eigenfunctions, while the radial

eigensystem is given by Equation (3.11). We use a finite difference method to find the individual

eigenfunctions represented as values on a radial grid. In order to maintain accuracy around the

singularity in Equation (3.11), a higher density of points is needed near the singularity, while

far fewer are required far from the singularity. Unfortunately, finite difference calculations with

nonlinear grid spacing are often plagued by numerical errors. Transforming Equation (3.11) into

a logarithmic variable (denoted by x) gives us the required accuracy at small values of r and

increases the spacing at higher values of r, while allowing us to maintain an evenly spaced grid.

Such a nonlinear grid is accomplished by transforming Equation (3.11) using x = log(r), and we

find the transformed wavefunction ηn,l(x) = Rn,l(r(x))
√
r(x):

[
−∂xx

2
+

(l + 1
2)2

2
+ r(x)2 (En,l − V (r(x)))

]
ηn,l(x) = 0. (3.28)

Here, the x coordinate is evenly spaced, while the r coordinate is logarithmically spaced. We

have removed the explicit notation of our boundary conditions from the potential, these will be

enforced by the numerical method rather than as a term in the potential. This necessitates the

need to set a minimum radial distance (denoted Rmin). In test calculations we have found that

Rmin = 10−6 a.u. leads to accurate representations of the ground state wavefunctions. We constrain

this second order differential equation to have a unique solution by fixing the boundary conditions

Rn,l(Rmin) = Rn,l(Rmax) = 0, and ensuring the resulting function Rn,l(r) is normalized.
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3.2.3 Properties of the basis

There are a number of free parameters that we must decide on when calculating our basis.

Here we list the parameters, what impact they have on the calculations, and typical values that we

have used in our calculations.

• Rmax: the largest r value in the grid, defined by the boundary conditions. This determines

the spatial extent of the wavefunction and the density of the continuum states. Figure 3.2

shows the energy vs. n of the state for different Rmax. The quadratic dependence of

the energy as a function of n is fairly clear, along with the increased density of states

(decreased quadratic coefficient) as Rmax increases for fixed n. Unlike typical grid based

methods, we do not have an absorber at Rmax, so we require a very large grid, to avoid

reflection problems. The strength of the electric field we can represent is limited by this

hard boundary: any part of the wavefunction that reaches the boundary of our grid will be

reflected off. Test calculations have shown that a good lower bound on the extent of the

grid with respect to electric-field strength E and frequency ω is:

Rmax & N
π

ω

√
20UP , (3.29)

where N is the number of periods of the laser field, ω is the frequency of the laser field

and Up is the ponderomotive potential E2/4ω2. An electron that is ionized near the center

of the pulse and excited to 10Up (the maximum classical rescattering energy possible in a

single cycle [61, 62]) will have just enough momentum to drift to the edge of our box by the

end of the pulse. For a 1014 W/cm2 and 800 nm laser, this corresponds to approximately

130 a.u. per 2 cycles of the laser field. We typically use 1000 atomic units as our maximum

radius.

• npoints: The number of points on the grid. Due to the logarithmic spacing of our grid

points, the density is lowest at Rmax. This restricts the maximum n state that we can

represent: higher n states have higher frequencies, and the Nyquist frequency requires that
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Figure 3.2: Energy as a function of n for different Rmax from 300 to 1000. Note the quadratic
dependence of En as a function of n that becomes more pronounced for smaller Rmax.

we have at least two points on our grid per period of the wave. Practically speaking, we

have found that significantly more points than that must be used to prevent errors both in

calculating the states and in integrating the states to find the dipole transitions. We show

the effects of using too few points for the wavefunction in Figure 3.3, where the left panel

shows the high r part of the wavefunction when too few points are included, and the right

shows the same part of the wavefunction when we include enough points. The number of

points is functionally limited by the amount of memory available: we use long doubles (16

bytes) for each point in our calculations, so we require at least npoints ∗ nmax ∗ 16 bytes of

memory per node. Typically, we use 300, 000 points for nmax = 2000 and Rmax = 1000.

• nmax: the maximum principal quantum number state that we can represent, which is an

upper bound on the energy represented by a given wavefunction. This parameter is limited

by the number of points on the grid and Rmax. A lower bound on the required nmax for an

atom interacting with an electric field E with frequency ω is 10Up = 10E2/4ω2. For a 1014

W/cm2 and 800nm laser, this corresponds to approximately 3 a.u. For nmax = 2000 and

Rmax = 1000, En=2000 ≈ 19 a.u. The relationship between Rmax, n and E is shown above

in Figure 3.2.
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Figure 3.3: A demonstration of aliasing shown for state n = 2000, l = 0 with Rmax = 1000, with
100, 000 points on the left as an example of too few points, and 300, 000 points on the right as an
example of barely enough. For clarity, only the last 100 a.u. of the wavefunction has been shown.
Note the oscillating amplitude for the plot with too few points. This is an example of a state that
does not have enough points for an accurate integration when finding the dipole moment.

• lmax: the maximum angular quantum number we can represent. Due to the fact that we

put our potential inside an infinite spherical well potential, we do not have the accidental

degeneracy of the l states [63], and our highest l states have more energy than the corre-

sponding low l states with the same principal quantum number. Typically, we set lmax to

70.

3.2.3.1 Representation in the field-free basis set

We are interested in representing the solution of the Schrödinger equation in the field-free

energy basis. Using the radial eigenfunctions and spherical harmonics, any wavefunction can be

written as:

Ψ(r, t) =
∑

n,l

cn,l(t)Rn,l(r)Yl,m(r̂), (3.30)

where Yl,m(r̂) are the well known spherical harmonics found in e.g. [64], and m is constant for

any given calculation (typically m = 0). Rn,l(r) are the radial wavefunctions that we found in the

previous sections, and cn,l(t) are the time dependent complex coefficients. In the field free basis,

we represent the wavefunction Ψ(t) as a vector composed of the complex coefficients cn,l(t). Thus,

a wavefunction denoting the ground state of hydrogen is merely |c1,0(t)| = 1 and cn 6=1,l = 0. We
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represent this vector as C(t).

The time dependent Schrödinger equation for an atom interacting with a oscillating electric

field pointing in the z direction can be written down as:



H0︷ ︸︸ ︷
−p2

2
+ V (r) +

H′(t)︷ ︸︸ ︷
zE(t)


Ψ(r, t) = i∂tΨ(r, t). (3.31)

The field-free Hamiltonian H0 is diagonal in its own basis, and thus the projection of this term

into the field-free basis is trivial. The time dependent part of the Hamiltonian H ′(t) can be found

within the field free basis as:

ẑn,l,n′,l′ = 〈φn,l| r cos θ |φn′,l′〉 =

∫ Rmax

0
Rn,lrRn′,l′dr

∫
Yl,m cos(θ)Yl′,mdr̂, (3.32)

where ẑ is the dipole moment operator in the field-free basis, with matrix elements given by the

integrals in Equation (3.32). In practice, the spherical harmonic integrals are found from the

Clebsch-Gordon coefficients using a library function [65] for more efficient calculation. Combining

this information, the time dependent Schrödinger equation is given by:

Ĥ(t)C(t) =
[
Ĥ0 + E(t)ẑ

]
C(t) = i∂tC(t), (3.33)

where we have defined the time dependent Hamiltonian in the field free basis as Ĥ(t).

3.2.4 Implementation of numerical basis state method

3.2.4.1 Numerov Method

We would like to solve Equation (3.28) numerically on an evenly spaced grid, with respect to

x. However in this form, it is no longer an eigensystem of the form:

Âv(x) = λv(x), (3.34)

where Â is a matrix, and λ and v(x) are the eigenvalue and eigenvector respectively. Instead,

Equation (3.28) is known as a generalized eigenvalue problem, which are equations of the form:

Âv(x) = λB̂v(x), (3.35)
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where B̂ is also a matrix. Unfortunately, in our case, B̂ = r2 is a matrix that is very poorly

conditioned, with an approximate condition number of κ = R2
max/R

2
min. Typical values of κ for our

problems are 1018, since the loss of precision in basic arithmetic methods is typically the log of the

condition number, log10(κ) = 18. Finite-difference matrix based eigensolvers become unrealistic to

apply to this formulation of the problem.

Instead, we use the Numerov method, which is an explicit, fourth order accurate, linear

multistep method for solving linear second order differential equations. The Numerov method can

be applied to problems of the form:

∂xxy(x) = f(x)y(x), (3.36)

where y(x) is the solution to the second order differential equation to be found, and f(x) is the

driving function. Equation (3.28) can be written in this form with:

f(x;En,l) =
(l + 1

2)2

2
+ r(x)2 (En,l − V (r(x))) , (3.37)

where it is important to note the dependence of f(x) on the energy of the state En,l.

The Numerov method is part of a family of methods known as “shooting” methods. These

methods use a backward difference to find the next value of the solution y(x) from the previous two

values already found. In the case of the Numerov method the next value of the solution is given

by:

y(xn+1) =
y(xn)

(
1− 5h2

12 f(xn)
)
− y(xn−1)

(
1 + h2

12f(xn−1)
)

(
1 + 5h2

12 f(xn+1)
) , (3.38)

where xn is the nth point in the continuously spaced grid between Xmin = log(Rmin) and Xmax =

log(Rmax).

3.2.4.2 Algorithm

It is important to note that the Numerov method is not an eigenvalue solver but a differential

equation solver. It attempts to find a function y(x), given a function f(x;En,l) and two starting

points. However, for an energy that is not an eigenvalue, y(x) will eventually diverge. We must use
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this divergent behavior – and the other properties of the eigenfunctions such as continuous second

derivatives for continuous potentials and adherence to the boundary conditions – to determine an

algorithm that will reliably give us accurate eigenvalues and eigenfunctions.

The algorithm that we use is fundamentally a binary search. We first establish an upper

bound and a lower bound to the energy of the eigenstate that we are interested in finding. We then

calculate the wavefunction for the energy in the middle of this region and determine if that energy

is greater or smaller than the energy of the eigenstate that we are interested in. If it is greater, we

use it as a new upper bound on the energy, and look for an energy halfway between this new upper

bound and the previously established lower bound. If it is lower, we similarly restrict the search

space. In this way, we converge to the correct energy to whatever accuracy we desire, within the

discretization error of the Numerov method.

The ability to do this binary search relies on the ability to accurately determine whether the

guess for the energy of the state is high in energy or low in energy in comparison to the true energy

of the state. There are two different techniques available to determine if the state is high or low

in energy. However, they suffer from robustness issues depending on the energy, and how far the

energy is from the correct energy for the state that we are trying to find:

• The number of nodes (zeroes) of the wavefunction. We know that solutions to the spherical

time independent Schrödinger equation with quantum numbers n and l have n − l − 1

nodes. However, for tightly bound states, where the wavefunction approaches zero before

our external boundary condition must be enforced, there is a wide range of energies that

will have the correct number of nodes. For energies below the ground state of the atom we

are examining, the Numerov method can also exhibit behavior where it generates spurious

nodes.

• Enforcing the boundary conditions by propagating from both ends, and then determining

the derivative of the wavefunction where the two propagations meet. For an eigenfunction,

these two wavefunctions should meet exactly, and have a matched first and second derivative
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where they meet. However for an energy that is too small, the forward derivative will have

a smaller second derivative than the backward propagation. For an energy that is too large,

the opposite occurs.

• When the solver is very close to the correct energy, the difference in the second derivative

can get smaller than machine precision, while there might be a difference between the upper

bound and lower bound of the energy that is significantly larger. This necessitates the use

of the first derivative to finish the calculation. For an energy that is too small, the forward

first derivative will be larger than the backward first derivative.

While none of these techniques can find a state on their own, we can combine them in

order to design a more robust algorithm for determining the correct eigenstate, with the correct

eigenenergy. After we calculate the wavefunctions, we normalize them, and store them for later

orthogonalization.

This processes is independent for each value of l that we wish to use, allowing for a simple

parallelization in calculating the eigenstates for each l independently. This results in each processor

working on a single l value, and solving for each n in sequence. Parallelization of the individual n

eigenstates is not worth the effort due to the sequential nature of the orthogonalization that must

be performed after finding each n.

3.2.4.3 Orthogonalization

Solving for basis states using the Numerov method is not exact. Small numerical inaccura-

cies and instabilities prevent the wavefunctions determined this way from being pure eigenstates.

Furthermore, since we are not using an eigenstate solver that has an orthogonalization step, the

orthogonalization must be enforced explicitly. This is important, since the dipole transition oper-

ator within the field-free Hamiltonian needs to be found from orthogonal states in order to avoid

errors in the calculation.
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The states that are found by our eigensolver are a mixture of the true orthogonal eigenstates

φ̃n,l(r) = an,lφn,l +
∑

n′ 6=n,l
〈φ̃n,l|φn′,l〉φn′,l(r). (3.39)

Here, φ̃ represents a state from the eigensolver that still needs to be orthogonalized, φ represents a

pure state, and an,l is the fraction of φ̃ that is a pure state. For the states found by our eigensolver,

an,l will be close to 1.

We remove the unwanted contributions from each state using the modified Gram-Schmidt or-

thogonalization routine [66]. The modified Gram-Schmidt orthogonalization routine just subtracts

the projection of the completed states from each new state after it is calculated. In this manner,

only the components of the previously calculated pure states are left:

Algorithm 1 The Modified Gram-Schmidt algorithm

1: for all n← nmin . . . nmax do
2: vn ← φ̃n,l
3: for all i← 1 . . . n− 1 do
4: vn = vn − (vi · vn)vi

5: vn = vn/|vn|

Algorithm 1 is only concerned with a growing subset of the basis states in our basis set –

the outer loop (line 1) is done concurrently with the Numerov eigensolve. Because each state is

only orthogonalized against the previous states that have been calculated, we can orthogonalize a

state in parallel while finding the next state via the Numerov method. This significantly reduces

the calculation time.

Note that the orthogonality condition only needs to be enforced for the radial eigenfunctions

with the same l value. States that have different l values have their orthogonality ensured by the

angular part of the wavefunction.

3.2.4.4 Comparisons with previous results and literature data

Any numerical method should be compared against known results. Thankfully, the hydrogen

atom is analytically solvable, and gives us a good benchmark to compare against.
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The analytic solutions of the radial states of the hydrogen atom can be written down in terms

of Kummer’s function:

Rn,l(ρ) = N

(
− i
ρ

)l
e−ρ/2M(l + 1− n, 2l + 2, ρ), (3.40)

ρ =
2Zr

n
, (3.41)

where N is a normalization constant, Z is the nuclear charge, n is the principal quantum number

for bound states, and n = −iZ/k for continuum states with momentum k.

For the bound states, this reduces to:

Rn,l(r) = Ne−r/n
(

2r

n

)l+1

L2l+1
n−l−1

(
2r

n

)
, (3.42)

where L is one of the associated Laguerre polynomials, and each state has energy En = 1/(2n2).

The continuum states are given in terms of the Coulomb wave function (Fl(η, ρ)):

Rn,l(r) = NFl

(−1

k
, kr

)
, (3.43)

which we find using a library function [67, 68]. The momentum is calculated from the dispersion

relation k =
√

2E.

A comparison between our calculations and the results of Equations (3.42) and (3.43) has

been performed. In Figure 3.4, the bound states are plotted along with the relative error between

the analytic and calculated wavefunctions, while in Figure 3.5, the same has been done for the

continuum. The boundary conditions change the character of the bound states with principal

quantum number above roughly n = 16, as the exponential decay can no longer get small enough

before encountering the infinite potential at the edge.

For the bound states, we can also compare the calculated energies to the analytically known

energies. In Figure 3.6, the relative error is shown for the first five l eigenvalues and the first 18

n eigenvalues. The calculated eigenvalues diverge from the real eigenvalues drastically when n is

greater than 16, as the boundary conditions influence the wavefunction and its energy.

We have adapted this method from a previous work by Chen et al. [69], but we improved

upon the accuracy of the bound states found in [69] significantly. Table 3.2 gives a comparison
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Figure 3.4: A comparison between the analytic and the calculated bound states for the ground state
(n = 1, l = 0) on the left, and n = 5,l = 1 on the right. The relative error of |Ψcalc−Ψanal|/Ψanal is
included underneath each plot. These were calculated with Rmax = 1000, 300, 000 points per grid,
and Rmin = 10−6. The plots only show a portion of the r range of the wavefunctions so details can
be seen.

between this work and the previous work. We note that we have reached an improvement in the

relative error between the analytic result and our calculated energies on the order of 10−3 to 10−4

better.

3.3 Time dependent calculations

The ab-initio calculation of the susceptibilities requires an ab-initio calculation of the time

dependent wavefunction. Thus, we must propagate Equation (3.33) in time, which usually takes

the vast majority of the calculation time. There are two important parts of the numerical solution

of the time-dependent calculations: the propagation itself, which is done using the Crank-Nicholson

method for the work presented in this thesis (see section 3.3.1) and the implementation of an absorb-

ing boundary condition, which in this work is related to the absorption of part of the wavefunction

representing high energy states.

3.3.1 Propagation calculations

Equation (3.33) can be approximated as:

C(t+ ∆t) u e−iĤ(t)∆tC(t) u
1− i∆t

2 Ĥ(t)

1 + i∆t
2 Ĥ(t+ ∆t)

C(t), (3.44)
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Figure 3.5: A comparison between the analytic and the calculated continuum states for the state
n = 30,l = 1 on the left, and n = 200,l = 70 on the right. The relative error of |Ψcalc−Ψanal|/Ψanal

is included underneath each plot. These were calculated with Rmax = 1000, 300, 000 points per
grid, and Rmin = 10−6. The momentum was found from the calculated energy of the state, rather
than the quantum number. This compounds the error in the wavefunction, and results in a large
error near the boundaries as the analytic wavefunction is not constrained to be zero due to the
boundary conditions.

for a small timestep ∆t. The second step uses the Cayley unitary transformation [70] in order

to preserve the normalization of the wavefunction. The representation of the time propagation

operator via the exponential function leads to the following condition: the exponent Ĥ(t)∆t has to

be much less than 2π, in order to guarantee that we do not get aliasing effects from the propagation

of the wavefunction. We satisfy this condition when Enmax∆t < 1. This typically results in time

steps that are approximately 0.05 a.u.

This approach is known as the Crank-Nicholson method which is a unitary, energy conserving,

and unconditionally stable method for propagating first order in time differential equations to

second order accuracy [71]. For our system, we rewrite Equation (3.44) as:

(
1 + i∆t

2 Ĥ(t+ ∆t)
)

C(t+ ∆t) =
(

1− i∆t
2 Ĥ(t)

)
C(t). (3.45)

This is an equation of the form Ax = b, with A =
(
1 + i∆t

2 H(t+ ∆t)
)
, b =

(
1− i∆t

2 H(t)
)
C(t)

and x = C(t+ ∆t).

The algorithms just described can be formulated in terms of repeated solutions of linear

matrix equations. Due to the ubiquity of this method, a number of well designed software packages
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Figure 3.6: The relative error in the calculated energy eigenvalues compared to the analytical
energy En = 1/(2n2) for l < 5. The right figure is a zoomed in version of the left, to better show
the errors at low n. The n > 16 states start to be influenced by the bounding box, while n > 23
states have errors larger than 10%, shown by the dot-dashed brown line.

are available to help in the solution. We solve this linear system using PETSc: the Portable

Extensible Toolkit for Scientific computation [72–74].

3.3.2 Absorbing boundary

Strong field ionization processes can generate very high energy electrons upon the absorption

of a large number of photons. Since we need to restrict our calculation to a finite number of basis

states, we can only represent states up to some maximum energy. Consequently, we need to suppress

the population of even higher energy states. We solve this problem with an absorbing boundary

implemented for states with either high energy (high n states) or high angular momentum (high l

states). The absorbing boundary is represented by a masking function which is multiplied to the

wavefunction at every time step. The masking function used in this work is a cos1/8 function given

by:

a(n, l) = cos1/8

(
n− (nmax − nabs)

nabs

π

2

)
cos1/8

(
l − (lmax − labs)

labs

π

(2)

)
(3.46)

The specific function used in the present work was found to sufficiently reduce the wavefunction

inside the absorbing region and, hence, prevent reflections back to states with lower energy and/or

angular momentum. In test calculations we have found that in this specific set of problems the

cos1/8 absorber leads to a more efficient suppression of the wavefunction than other techniques
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Prev. Result This Work

n En l = 0 l = 1 l = 0 l = 1

1 −0.5 2.0× 10−8 4.3× 10−14

2 −0.125 2.0× 10−8 0.0× 10−10 2.6× 10−13 4.6× 10−14

5 −0.02 8.0× 10−9 5.0× 10−9 2.1× 10−14 3.9× 10−14

10 −0.005 2.3× 10−9 1.9× 10−9 9.2× 10−14 3.3× 10−15

Table 3.2: The relative error between the analytic and calculated energies of a few different bound
states from [69] and this work. We achieve significantly better (3 or 4 orders of magnitude) accuracy
using our logarithmic grid.

such as complex absorbing potentials or other potentials of the form cos1/n. In Figure 3.7, the final

wavefunctions of a 10 cycle sine-squared pulse with carrier frequency 800 nm and intensity 1014

W/cm2 with and without an absorber.

3.4 Summary

In summary, the numerical basis state method is a capable process for doing ab-initio calcu-

lations of the time dependent Schrödinger equation. The field-free basis states that underlie both

the numerical basis state method and the perturbative calculations that will be used in subsequent

chapters are found using a Numerov based eigensolving algorithm, while the propagation used in

the ab-initio is performed using the Crank-Nicolson method.

This will allow us to compare between the perturbative and non-perturbative calculations of

the susceptibility, as seen in Chapter 4. Furthermore, we will use this method on its own in order

to find the time dependent susceptibility in Chapter 5.
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Figure 3.7: The final wavefunctions from two different calculations using a 10 cycle sine-squared
pulse with carrier frequency 800 nm and intensity 1014 W/cm2. Panel on the left shows three
different sizes of l absorbers for an n absorber of size 50. Good convergence is achieved, with l = 20
giving good accuracy at lower energy levels. Panel on the right shows three different sizes of n
absorbers with an l absorber of size 20. All absorbers are identical for lower energies, however the
n absorber of size 50 shows some reflection at high energies.



Chapter 4

Calculations of ab-initio and perturbative susceptibilities

In this Chapter we apply the numerical basis state method to calculate the nonlinear pertur-

bative susceptibilities, and compare them to ab-initio calculations of the susceptibilities. Through

this comparison, we show that the perturbative susceptibilities we calculate fail to show converging

behavior at intensities above a certain threshold. We further find that in the same intensity regime

the results of perturbative calculations and the ab-initio calculations diverge. We examine a few

different systems in order to confirm this behavior, and discuss the effect that the ionization energy

has on divergence as a function of intensity using hydrogen, helium, as well as different model

atoms.

We also examine the process of low-order harmonic generation by examining the third and

fifth harmonics in hydrogen. By analyzing the perturbative series as a function of intensity, and

the ab-initio calculations as well, we determine the breakdown of the perturbative approximation

for low order harmonic generation.

4.1 Introduction

The nonlinear response of an atom to a strong external field, e.g. an intense laser, can give

rise to a number of interesting phenomena. Low order harmonic generation, where the atom emits

odd harmonics of the fundamental frequency, is generated by absorbing n photons at frequency ω

and emitting a photon with frequency nω. If nω is large enough to ionize the atom, multiphoton

ionization is observed. These processes are perturbative at low intensities: the efficiency of nω
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generation is proportional to En, where E is the electric field strength.

The response of the polarization to the electric field is given by:

P (ω) = χ(ω)E(ω), (4.1)

where χ is the electric susceptibility of the material. For a perturbative process, this can be

expanded in powers of the electric field as:

P (ω) = χ(1)(ω)E(ω)+χ(2)(ω;ω1, ω2)E(ω1)E(ω2)+χ(3)(ω;ω1, ω2, ω3)E(ω1)E(ω2)E(ω3)+ . . . (4.2)

where ω =
∑

i ωi. Typically, this series is truncated after the first nonzero nonlinear term χ(3)

(χ(2) is zero for centrosymmetric media), and the term where ω = ω1 = ω2 = −ω3 can be used to

describe the physics of self-focusing.

We can see the three step process of filamentation (discussed in Chapter 1) demonstrated in

the ab-initio calculations of the susceptibility of noble gases done in 2002 by Nurhuda et al. [75].

In Figure 4.1 we show the susceptibility as a function of intensity. The linear increase in the

susceptibility at low intensity is self-focusing, the saturation is associated with the ionization, and

the downturn is associated with plasma induced defocusing. This saturation and eventual downturn

requires negative higher order contributions in the susceptibility, though Nurhuda explained the

saturation and downturn as the influence of the ionized electron.

The ionization based model described in Chapter 1 was believed to be well understood [15].

However, in 2009, Loriot et al. challenged this model by extracting out higher order terms of the

index of refraction [24] (see Section 2.1 for how the index of refraction is related to the susceptibility)

by using a cross polarization measurement that is insensitive to the plasma contribution. The

extracted terms, part of the perturbative series for the index of refraction:

n = n0 + n2I + n4I
2 + n6I

3 + n8I
4 + n10I

5 + . . . , (4.3)

shown in Table 1.1 have a positive n2, a negative n4, a positive n6 and a negative n8. This challenged

the idea that the saturation and downturn of the susceptibility was caused by ionization alone, and

led to the Béjot et al. paper where they examined filamentation without ionization [25].
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Fig. 1. Plot of the real part of nonlinear susceptibility ∆χ obtained
by direct numerical integration of TDSE as a function of laser
intensity. In panels a), b), c), and d), results for Ne, Ar, Kr,
and Xe are shown. The laser frequency used for simulations was
1.55 eV.

where it has been found a cusp in low intensity domain. This
increase in low intensity regime is in accordance with the per-
turbation theory prediction. It is also pointed out that during
the linear increase of susceptibility, only transitions between
ground state and excited states are important for the pro-
cesses. Several works devoted for calculating γ have revealed
that it is sufficient to include the bound-excited state tran-
sitions,17) thus neglecting the role of bound-continuum tran-
sitions. In connection with the nonlinear susceptibility, one
may deduce that during the linear phase of increasing suscep-
tibility, the ionization of the atom is considerably negligible.
In somewhat higher intensity, however, the nonlinear suscep-
tibility is saturated. We found that the saturation intensity
(in optical intensity) at which χ reaches maximum value are
8.13×1013 W/cm2, 2.66×1013 W/c m2, 1.56×1013 W/cm2,
and 1.35×1013 W/cm2 for Ne, Ar, Kr, and Xe, respectively.
The existence of saturation intensity strongly suggests that
higher order nonlinearity (k > 3) mostly posses a negative
sign, thus compensating the positive χ(3). Consequently, de-
scribing the nonlinear susceptibility of the medium up to
third order only in its interaction with intense laser field, as
usually applied in the conventional self focusing theory, is far
from enough, since it cannot give, for example, the saturated
χ, shoulders and cusps and predict the processes associated
with. A correct treatment of interaction between intense laser
field in the nonlinear medium therefore has to take into ac-
count the higher order susceptibility (than 3), particularly
when the intensity is higher than saturation intensity.

In Fig. 2 we display the imaginary part of χ. It can be seen
that for intensity below the saturation intensity, this imagi-
nary part is almost negligible, indicating there is neither ab-
sorption nor ionization due to laser beam occurring. In higher
intensity, the imaginary part grows in a comparable magni-
tude. To find the relation between the imaginary part and
the ionization, it is necessary to determine the rate of the
ionization. We estimate the rate Γ from depletion of ground
state by

Γ = − 1

Pg(t)
lim

∆t→0

∆Pg(t)

∆t
, (7)

Fig. 2. Same as Fig. 1, but now for imaginary part of the nonlinear
susceptibility ∆χ.

where Pg(t) is the probability of the electron in the ground
state, given at time t. The results are shown in Fig. 3 (a)–(d),
respectively for Ne, Ar, Kr, and Xe. We have noticed that
the rate at saturation intensity are 1.8 ×10−5 a.u., 8.7×10−5

a.u., 1.5×10−4 a.u., and 4.7×10−4 a.u., respectively for Ne,
Ar, Kr, and Xe. The conversion factor for ionization rate
is 1 a.u. = 4.608×1016 s−1. Figure 3, in connection with
Figs. 1 and 2, reveal that the rapid fall of ∆χ in the intensity
regime beyond the saturation value corresponds to the growth
of ionization, and accordingly also the growth of imaginary
part of the χ. The saturation intensity in this view can be
thus considered as a transition from perturbation- to multi-
photon/multi ionization regime.

It is also clear from Fig. 3, that beyond the perturbation
regime, the resonance between states becomes prominent and
its signature can be seen from the existence of cusps and
shoulders. Particularly in case of Xe, the resonance takes
place indeed in somewhat lower intensity, since Xe has lower
resonance states than other atoms. Furthermore, it seems

Fig. 3. Ionization rate of noble gas in intense laser field. Panel a),
b), c), and d) are for Ne, Ar, Kr, and Xe, respectively. The
conditions for simulations are the same as in Fig. 1.

42

Figure 4.1: Susceptibility of the neon atom as a function of intensity. Note the linear increase as a
function of intensity for low intensities, the saturation, and the eventual decrease of the suceptibility.
From [75].

This possibility subsequently ignited a significant controversy in the field of filamentation,

and there have been a number of papers that have attempted to either confirm or disprove the

applicability of the higher order Kerr effect (HOKE) contribution to the filamentation process. It

raised two related questions: Are the higher order Kerr terms an accurate way to describe the

physics of filamentation? Did Loriot et al. actually extract out the perturbative Kerr terms? We

will discuss a few of the more notable theoretical considerations of the higher order Kerr terms.

Köhler et al. used an ab-initio method to determine the higher order susceptibilities of

the hydrogen atom [29]. They attempted to extract the susceptibilities in two different ways: by

examining the nth harmonic yield as a proxy for χ(n) (the harmonic susceptibilities), which can be

done as a function of intensity; and by finding the individual perturbative degenerate susceptibilities

from the susceptibility vs. intensity curve. For a perturbative process, the susceptibility terms

should be constant with intensity by definition. However, this is not what was found. In Figure 4.2,

the nonlinear susceptibilities of hydrogen are reproduced from [29]. Notice that for longer pulses, the

susceptibilities are all constant, or nearly so at low intensities. This is the behavior that is expected

for perturbative susceptibilities. However, as the intensity increases, the susceptibilities that are

extracted are no longer independent of the intensity, implying a fundamentally non-perturbative
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process.
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field strength. Additionally, we assume that the characteristic
peak at the j th harmonic jω0 in P̂

(j )
NL is mainly caused by χ (j ).

Then, one can deduce consecutively the χ (j ) using

P̂
(j )
NL (jω0) = ϵ0χ

(j )√π

(
E0

2

)j

τ
1√
j
, (10)

which is valid for the Gaussian pulses of Eq. (4). Alternatively,
we can evaluate P̂NL(ω0,I ) at different peak intensities I and
infer the values of χ (j ) by solving a system of linear equations

P̂NL(ω0,I1) = ϵ0FT
{
χ (3)E3

1(t) + χ (5)E5
1(t) + · · ·

}∣∣
ω0

,

P̂NL(ω0,I2) = ϵ0FT
{
χ (3)E3

2(t) + χ (5)E5
2(t) + · · ·

}∣∣
ω0

, (11)

· · · = · · · ,

where FT denotes the Fourier transform. Note that the former
approach evaluates the susceptibilities at different harmonic
frequencies jω0, whereas the latter approach gives access to
all χ (j ) directly at ω0. For purely instantaneous HOKE terms
of Eq. (5), both approaches should yield the same χ (j ).

Let us first evaluate χ (j ) at the harmonic frequencies
jω0. Results are presented in Figs. 1(a)–1(c), where χ (3),
χ (5), and χ (7) are plotted for different pulse durations τ vs
peak intensity. We can observe how difficult it is to extract
meaningful coefficients χ (j ) being independent of intensity
and pulse duration in the range where PNL becomes relevant,
i.e., I > 1 TW/cm2. The fact that it is not possible to describe
the nonlinear polarization in terms of a Taylor expansion at
intensities above 10 TW/cm2 already indicates significant
changes in the electronic configuration of the atomic system.

This involves, e.g., the enhanced population of Stark-shifted
Rydberg states, staying close to the ionization threshold due
to a comparable increase of the ponderomotive potential [34].
Moreover, the observed dependency of the higher-order χ (j )

on the pulse duration reflects strong nonlinear dispersion, i.e., a
noninstantaneous character of the nonlinear response at higher
intensities. Due to this nonlinear dispersion, and because we
are searching for a description of PNL at ω0, we resort to the
latter approach of Eqs. (11) in the following. By doing so,
we can only extract a minimum set of consistent parameters;
namely,

χ (3) = 2.3 × 10−25 (m/V)2, (12)

χ (5) = −2.5 × 10−45 (m/V)4, (13)

all higher-order χ (j ) being discarded since all of them
strongly fluctuate along the intensity range. We will further
refer to this simple model as HOKE_35. Note that we will
later introduce another set of parameters, HOKE_FIT, which
includes nonlinear coefficients up to χ (9), chosen to obtain a
more accurate description of the nonlinear saturation.

For the standard model with MPI rate, in addition to
χ (3), the photon number K and the cross section σK has to
be determined from the TDSE simulation data. For pulses
with wavelength λ0 = 800 nm and the ionization potential
of hydrogen of UH = 13.6 eV one obtains a minimum photon
number of K = mod(UH/h̄ω0 + 1) = 9. However, we find the
least dependence of σK on the peak intensity when employing
a reduced photon number of K = 6. This is plausible, since
for the intensities employed here the Keldysh parameter γ
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FIG. 1. (Color online) Model parameters extracted from 1D TDSE simulations. (a) χ (3), (b) χ (5), (c) χ (7) for τ = 10 fs (blue circles),
τ = 20 fs (red squares) and τ = 100 fs (green crosses) as a function of the peak intensity I . (d) The MPI cross section σ6 extracted from 1D
TDSE simulations [same color coding as in panels (a)–(c)].
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Figure 4.2: The nonlinear harmonic susceptibilities of the hydrogen atom as a function of intensity.
From [29].

Bree et al. attempted to calculate the nonlinear indices in a different way [31, 32]. They first

calculated the n photon ionization cross-section using a modification to the strong-field approxi-

mation, and used this as a proxy for the nth order perturbative absorption. Using the nonlinear

Kramers-Kronig relationship, they found the approximate nonlinear coefficients of the index of

refraction. This index of refraction qualitatively showed the same saturation and downturn of the

susceptibility present in the Loriot et al. paper, however, theoretical questions about the use of a

ionization cross section to find an ionization independent index of refraction lay doubts as to the

validity of this result.

These theoretical and experimental studies hinted at, but failed to reach, a consensus on

the applicability of the higher order susceptibility terms to the physics of high intensity pulses.

We intend to determine the boundary of applicability for the perturbative susceptibility with our

work, by making a comparison between perturbative and ab-initio calculations within the same

theoretical framework.

The remainder of this Chapter is spent discussing the results of the comparison between the

calculated perturbative susceptibility and the calculated ab-initio susceptibility (section 4.2) and
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an examination of the perturbative and ab-initio low order harmonics (section 4.4).

4.2 Electric Susceptibility

We first examine the electrical susceptibility. We would like to discuss the higher order Kerr

effect, however, the index of refraction is fundamentally a macroscopic phenomena. We discussed

in section 2.1 the relationship between the index of refraction and the electrical susceptibility1

Any discussion of the validity or accuracy of the perturbation series requires a benchmark to

compare it to. Thus, our discussion of an intensity limit for the higher order perturbation terms

requires a comparison between the perturbative series and ab-initio calculations. Furthermore, in

order to reduce the relevance of various numerical approximations, we use the same basis states to

calculate both the ab-initio and perturbative calculations.

We have discussed the calculation of the basis states necessary for both the perturbative series

calculation and the ab-initio calculation in subsection 3.2.4. We have also previously discussed the

ab-initio propagation in the field-free basis in subsection 3.3.1.

4.2.1 Ab-initio calculations

From Equation (2.12), we find the susceptibility by first determining the expectation value

of the dipole moment as a function of time for an electric field polarized in the z direction:

〈p(t)〉 = −e 〈Ψ(t)| ẑ |Ψ(t)〉 , (4.4)

where |Ψ(t)〉 is the computed ab-initio wavefunction as a function of time, and ẑ is the dipole

moment operator given by:

ẑ =
∑

n,l,n′,l′
〈φn,l| z |φn′,l′〉 , (4.5)

where |φn,l〉 is the field free energy state with principal quantum number n and angular quantum

number l.

1 Part of the results presented in this section are published in A. Spott et al., Ab-initio and perturbative calculations
of the electric susceptibility of atomic hydrogen, Physical Review A 90, 013426 (2014).
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The electric field is represented as a sin squared envelope:

E(t) = E0 sin2

(
πt

T0

)
sin(ωt) (4.6)

where E0 is the maximum field strength, T0 is the duration of the pulse, and ω is the central field

frequency. The susceptibility is then calculated using the relation:

χ(ω) =
F [〈Ψ(t)| z |Ψ(t)〉]

E(ω)
(4.7)

Ab-initio calculations are typically done with a nmax of 2000, and a lmax of 70, which takes

approximately 8 hours on 20 nodes of the Janus supercomputer. Each node has 12 cores.

4.2.2 Perturbative calculation

For the perturbative calculations, we use the eigenstates of the field-free energy basis to calcu-

late the Nth coefficient of the perturbative power series expansion of the ground state wavefunction

in the external field, as given in Chapter 2:

|ψ(N)(ω1, . . . , ωN )〉 = (4.8)

∑

jN 6=j0

· · ·
∑

j1 6=j0




N∏

i=1

〈ψji | µ̂E(ωi)e
−iωit |ψji−1〉

ωji − ωj0 −
i∑

k=1

ωk


 |ψjN 〉

where ωj0 is the ground state energy, ωk and ωi are the participating frequencies of the electric field,

ji denotes the state in the numerical basis set, and µ̂ is given by Equation (4.5). The lifetimes of the

excited states are neglected since all calculations performed in this study are far from resonance.

The Nth-order term in the expansion of the single atom polarization in an overall nω process can

then be written:
〈
P(N)(nω)

〉
= P

N∑

j′=0

〈ψ(j′)| µ̂ |ψ(N−j′)〉 , (4.9)

where n = 1, 3, 5, . . .,
∑

j ωj = nω and ωj = ±ω. P refers to the average of all permutations of the

frequencies. The symmetry of the electric field with respect to positive and negative frequency com-

ponents (due to the fact that the electric field is a real quantity) allows us to rewrite Equation (4.9)
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as:
〈
P(N)(nω)

〉
= ε0χ

(N)
nω

N∏

i=1

E(ωi) (4.10)

with χ
(N)
nω is the Nth-order term of the susceptibility at frequency nω due to contributing electric

field frequencies ωi. This allows us to calculate the susceptibility for any given harmonic n, fre-

quency ω and order N . For this section, we are concerned with situations with n = 1, specifically

the degenerate N wave mixing term for a perturbative susceptibility of order N .

4.2.3 Results of perturbative series and ab-initio calculations for electric suscep-

tibilities

Here, we first present the results of our calculations for the perturbative coefficients in the

power series expansion of the electric susceptibility showing the convergence of the results with

respect to the box size of the numerical grid R0 and the basis size. We then proceed by analyzing

criteria for the breakdown of the series expansion at high field strengths and identify a regime for

a critical field strength. Finally, we compare the results of the perturbative calculations with those

of the ab-initio calculations, and determine the regions of correspondence and divergence of these

two methods.

4.2.3.1 Perturbative higher-order nonlinear susceptibilities

In Figure 4.3(a) we present the results of our perturbative calculations for the susceptibility

coefficients of the power series for the hydrogen atom, Equation (4.2), up to χ(11) as a function of

the frequency of a uniform external electric field. Over the frequency regime shown the coefficients

are almost constant, but the higher-order coefficients tend to increase at the largest frequencies

considered in the present calculations. The increase indicates that one approaches the regime of

resonant transitions. When we examine the same figure for the helium atom, Figure 4.3(b), we

note that the resonant transition regime is at a higher frequency, as expected due to the larger

energy gap between the ground state and first excited state in helium. Since the life times of the

excited states are neglected in the present perturbative calculations, we have restricted ourselves
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Figure 4.3: a) Results of calculations for the different terms in the power series expansion for the
hydrogen atom, Equation (4.2), as a function of frequency ω of a uniform electric field. b) Same
for the helium atom. Note the difference in the magnitude of the susceptibilities for hydrogen and
helium. The dashed line denotes 800 nm, the wavelength used for the majority of our calculations.

to calculations up to χ(11) and the frequency regime below 0.06 a.u. (corresponding to wavelengths

of approx. 800 nm and longer), in order to avoid the effects of the lifetimes on our calculations. We

may note here already that based on the perturbative results in Figure 4.3(a) and Figure 4.3(b) it

is unlikely that a negative slope in the nonlinear susceptibility, such as one seen in Loriot et al. [24],

or the negative slope that Nurhuda shows in [75] can be explained via the power series expansion

in the present theory, since the first five coefficients of the series are found to be positive over the

frequency regime studied.

The strength of the higher order terms for the helium atom increase at a slower rate compared

to hydrogen. As we increase the order, the values of the susceptibility terms for helium are much

smaller than for hydrogen. For example, χ(11) is approximately 107 a.u. for helium, while it

is approximately 1013 a.u. for hydrogen. This can be explained by the larger energy difference

between the first excited state and the ground state for helium compared to hydrogen, which leads

to a weaker coupling between the states in helium.

The convergence of the results presented in Figure 4.3(a) was tested well with respect to the
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Figure 4.4: a) Perturbative susceptibility coefficients χ(N) in the power series expansion, Equa-
tion (4.2), as a function of the maximum principal quantum number nmax in the basis set for the
hydrogen atom. The radial box size was R0 = 500. The dashed line denotes the transition from
bound to continuum sets in the present basis set, while the crosses indicate convergence of the
results within 1% of the respective result at nmax = 800. b) Same as (a), but for helium.

size of the radial box R0 and the basis size. For the present set of calculations in hydrogen we have

found that a box size of R0 = 500 was sufficient to reduce the error to be within 0.5%. For helium,

a box size of R0 = 500 was used as well. The size of the numerical basis in the present calculation

is determined by the maximum angular momentum (lmax = (N + 1)/2, where N is the order of

the coefficient calculated), and the maximum principal quantum number (nmax) chosen. For a grid

size of R0 = 500, we varied the principal quantum number up to nmax = 1400 (corresponding to

an energy of approximately 38.5 atomic units) for our perturbative calculations.

In Figure 4.4(a) we show results for χ(N) as a function of nmax for R0 = 500 at ω = 0.056.

One can clearly see that the results for each of the coefficients converge to a finite value for large

nmax. The cross on each line indicates that the result is within 1% of the corresponding value at

nmax = 800. As one would expect, each higher order term requires additional states to be included

in the calculation in order to reach convergence. Furthermore, the dashed line at nmax = 19

indicates the separation of bound from continuum states in our basis set. For each of the nonlinear

coefficients (χ(N) with N ≥ 3) we observe that the contributions from the bound states to the
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coefficients are positive while those from the continuum states are negative. Thus, in order to reach

convergence obviously both bound and continuum states have to be included.

4.2.3.2 Breakdown of the perturbative power series expansion
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Figure 4.5: a) The perturbative nonlinear susceptibility terms χ(N)I(N−1)/2 scaled by χ(3)I as a
function of the intensity of a uniform electric field at 800 nm for the hydrogen atom. b) The same
for helium

In order to be applicable, the power series expansion, Equation (4.2), must converge. Since

we cannot determine all the terms in the expansion, we estimate a region of applicability by

investigating the relative contributions from the low order nonlinear terms in the expansion. To

this end, we have determined the ratios of the higher order nonlinear terms (N ≥ 5) to the lowest

order nonlinear term, i.e. χ(N)I(N−1)/2/(χ(3)I) as a function of the intensity I = |E|2. The results

for hydrogen are shown in Figure 4.5(a) along with the sum of all higher-order terms calculated

with respect to the third-order term (solid line). For low intensities (≈ 1012 W/cm2), each higher-

order nonlinear term is much smaller than the lowest-order nonlinear term in the expansion. We

therefore can expect that the power series does converge in this intensity regime. On the other

hand, at high intensities (≈ 1014−1015 W/cm2) the trend is reversed, higher-order terms are larger

in magnitude than the lowest-order term, indicating that the series may diverge. For helium, this
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N=5 N=7 N=9 N=11

XH = 0.01 2.6 0.91 0.63 0.29
XH = 0.1 26 9.1 6.3 2.9

XHe = 0.01 26 8.0 7.2 3.2
XHe = 0.1 260 80 73 32

Table 4.1: Intensities (in 1012 W/cm2) at which the ratio XH = χ(N)I/χ(N−2) equals either 0.01
or 0.1 for hydrogen. XHe corresponds to the same for helium.

trend does not reverse until approximately 1015− 1016 Wcm−2, an order of magnitude higher than

for hydrogen. This can be explained by the slow increase of the successive coefficients for hydrogen

mentioned earlier.

In order to further narrow down the intensity regime at which the convergence of the power

series expansion becomes questionable, we note that the ratio of the sum of all higher order terms

calculated to the lowest-order nonlinear term exceeds 10% at about 3×1013 W/cm2 for the hydrogen

atom. From the results in Table 4.1 we further see that in this intensity regime the ratio of successive

terms in the perturbative power series expansion does exceed 10%, which may be considered as

another indication for the inapplicability of the series expansion. This behavior is repeated for the

helium atom, but at a higher intensity. The ratio of the sum of all higher order terms calculated

to the lowest-order nonlinear terms exceeds 10% at about 3× 1014 W/cm2 for the helium atom.

4.2.3.3 Comparison of results of perturbative and ab-initio calculations

Ab-initio calculations of the susceptibility are performed for laser pulses at a central wave-

length of 800 nm having a sin2-envelope and a total pulse length consisting of a finite number

of electric field cycles. In order to compare our results for the power series expansion, which are

determined for a uniform electric field, to those of the ab-initio calculations, we therefore need to

account for the finite length and envelope of the pulse. To this end, we have averaged each term of

the power series expansion over the intensity distribution of the pulse.

The comparison of the results of the perturbative calculations and those of the ab-initio

calculations for a 10-cycle pulse and a 30-cycle pulse for hydrogen (Figure 4.6(a)) shows excellent
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agreement at low intensities. In this regime of intensities all three results increase linearly with

intensity, in agreement with the expectation that the lowest-order nonlinear term is dominant

at these intensities. At higher intensities however the results of the two calculations reveal an

opposite trend. While the ab-initio results show, in good quantitative agreement with earlier

predictions [75, 76], and seen in Figure 4.1, a negative slope for the susceptibility as a function

of intensity, the sum of the first five terms in the power series expansion has a positive slope, as

expected from the positive sign of each term in the power series determined here. The 30 cycle

pulse shows a larger deviation from the perturbative calculations as the intensity increases, but

starts the deviation at the same general intensity as the 10 cycle pulse. Since the saturation of the

susceptibility is related to the ionization of the underlying media, we expect longer pulses to ionize

more, and thus deviate more strongly from the first order nonlinear susceptibility.

The peak intensity at which the discrepancy between perturbative and ab-initio results equals

1% is given in Table 4.2 for different pulse lengths at 800 nm. The result is slightly larger than our
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Figure 4.6: a) Comparison of results of perturbative (black line) and ab-initio calculations for the
susceptibility of hydrogen as a function of peak intensity of a 10-cycle and 30-cycle laser pulse at
800 nm. b) Comparison of results of perturbative and ab-initio calculations for the susceptibility
of helium as a function of peak intensity of a 10-cycle laser pulse at 800 nm.
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pulse length 4 10 16

peak intensity 4.7 4.2 3.9

Table 4.2: Peak intensities (in 1013 W/cm2) at which the relative error between the results for
the ab-initio susceptiblity and the perturbative susceptibility equals 1% for laser pulses of different
pulse lengths (given in field cycles) at 800 nm for hydrogen.

estimates of the applicability limit of the perturbative series expansion in the previous subsection,

since the latter one has been obtained for a uniform field without ionization. However, we can still

conclude that the negative slope of the susceptibility is a result of the nonperturbative interaction

between the hydrogen atom and the intense laser pulse. Thus, an explanation of this feature

using higher-order expansion terms (e.g., HOKE) appears to be questionable and not applicable.

This also implies that a determination of higher order terms from ab-initio results in the intensity

regime above 2−4×1013 W/cm2 is meaningless. This is in agreement with the results of Köhler et

al. [29], who were not able to extract consistent HOKE terms from results of ab-initio simulations

in this intensity regime. Instead, if necessary, the atom-field dynamics has to be treated using a

nonperturbative theoretical description of the polarization and susceptibility.

For helium (Figure 4.6(b)), we see the same general trend: good agreement between the

results of the perturbative and ab-initio calculations at low intensities, and opposite trends at

high intensities, however for helium the higher order terms have a visibly smaller effect on the

perturbative susceptibility. The third order susceptibility term dominates the perturbative solution

until past the divergence between the perturbative and ab-initio calculations.

The disagreement between the ab-initio and perturbative calculations for hydrogen and he-

lium make clear the expected deviations for different ionization energies. We have further studied

this relationship between ionization energy and onset of the breakdown of the perturbative series

by using a Coulomb potential with different nucleus charges:

V (r) = −Zeff

r
, (4.11)

where we may vary Zeff , the nuclear charge, continuously. We show in Figure 4.7 the intensities

where a divergence occurred for 1% and 10% relative error as calculated in Table 4.2. We note that
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Figure 4.7: The intensity where the relative error between the perturbative and ab-initio calcula-
tions diverge by 1% and 10%, as a function of the ground state energy of atoms with nuclear charge
1, 1.25, and 1.5. The ab-initio calculations were done for a 10 cycle pulse with center frequency
corresponding to 800 nm. Convergence was checked in the same manner as for previous results.

the ionization energy correlates with the breakdown of the perturbation theory as expected, given

that a higher ionization energy leads to smaller perturbative terms.

4.3 Low-order harmonic generation

The comparison between the perturbative series and the nonperturbative susceptibilities let us

identify an intensity regime for the breakdown of the perturbative series for hydrogen and helium.

We will now analyze whether or not our conclusions regarding the applicability of perturbation

theory can be confirmed by a similar study of low order harmonic generation 2 .

Kolesik et al. proposed a litmus test to determine if the higher order susceptibilities accurately

describe the physics of the propagation of high intensity light through a gas [33]. They did two

propagation calculations: one with higher order susceptibility terms, and one where they truncated

the perturbative series after the first nonlinear susceptibility term. They then examined the third

and fifth harmonic yields from both calculations. They found that the ratio of the fifth to third

2 Part of the results presented in this section are published in A. Spott et al., Transition from perturbative to
nonperturbative interaction in low-order-harmonic generation, Physical Review A 91, 023402 (2015).
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harmonic yields was roughly 0.1 for the model that included the full perturbative series, while it

was significantly less than 10−3 for the model that truncated the series after the third harmonic

term, at the saturation intensity of the susceptibility (roughly 1014 Wcm−2 for the system they

were examining). They proposed that a measurement of this ratio might lead to a clear ruling on

the importance of higher order susceptibilities to the propagation of high intensity light.

There have been two experiments that have attempted to discern which model is correct.

The first, done by the same group that proposed the test, found that for femtosecond pulses with

intensities measured in the 10s of TW/cm2 and a central wavelength of 2.2 µm the ratio of the

yields between the third and fifth harmonics was 2 × 10−4 [35]. This was consistent with models

that did not have any higher order (greater than the third order) susceptibility terms, appearing

to confirm their hypothesis that the higher order Kerr terms did not play a role in high intensity,

short pulse propagation.

However, around the same time, another group performed similar experiments, with roughly

the same intensities and pulse duration, but a 1500 nm central wavelength [34]. This experiment

found that the ratio of the fifth over the third harmonic was closer to 0.1 at the saturation intensity,

giving credence to the higher order susceptibilities being necessary for properly describing the

propagation of high intensity laser pulses.

Using our method already developed, we believe that we can contribute to explaining the

discrepancy between these two experiments, and further expand our analysis from Section 4.2.3

towards longer wavelengths.

4.4 Perturbative and ab-initio calculations of low order harmonics

We calculated the susceptibilities for the low order harmonics using Equations (4.9) and

(4.10), this time examining the 3ω and 5ω dipole moment contributions.

In Figure 4.8 we present an example for an ab-initio calculation of a low-order harmonic

spectrum generated at a driver wavelength of 1600 nm, a peak intensity of 5× 1013 W/cm2 and a

pulse duration of 10 cycles. The results have been determined for a box size of R0 = 1000 a.u., a
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Figure 4.8: Results of ab-initio numerical calculations for a low-order harmonic spectrum generated
by a driver laser pulse at a central wavelength of 1600 nm, a peak intensity of 5× 1013 W/cm2 and
a pulse length of 10 cycles. The inset shows the relative error between calculations using radial box
sizes of Rmax = 500 and Rmax = 1000.

time step of ∆t = 0.05 a.u. and a maximum principal quantum number nmax = 2000 as well as

lmax = 70. The convergence of the results with respect to the size of the radial box is shown by

the relative error between the results for box sizes of R0 = 500 and R0 = 1000. Please note that

the minima in the error correspond to the peaks in the harmonics.

As for the ab-initio calculations, we performed test calculations to ensure that the results

of our calculations for the terms in the perturbation expansion of the susceptibility for low-order

harmonic generation are converged with respect to the size of the box R0 and the size of the basis

set nmax. We note that the maximum angular momentum is determined by lmax = (N+1)/2, where

N is the order of the coefficient calculated. In general, we have found that a box size of R0 = 500 is

sufficient for the present purpose. In Figure 4.9 we show results for χ
(N)
nω for n = 1 (dashed-dotted

lines), n = 3 (solid lines) and n = 5 (dotted lines) as a function of nmax for R0 = 500 at a laser

wavelength of 1600 nm. In general, we observe that the contributions from the bound states are

positive, reflected in the increase of the susceptibilities for low nmax, and those from the continuum
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Figure 4.9: Results for perturbative power series coefficients χ
(N)
nω for n = 1 (dashed-dotted lines),

n = 3 (solid lines) and n = 5 (dotted lines) as a function of nmax.

states are negative, corresponding to the decrease of the susceptibilities for higher nmax.

4.4.1 Intensity dependence of low-order harmonic generation

We have applied both calculation methods to investigate the intensity dependence of low order

harmonics and the transition from perturbative to non-perturbative interaction in hydrogen. In

Figure 4.10 we present the integrated power of the (a) 1st, (b) 3rd and (c) 5th harmonic as a function

of peak laser intensity at a central wavelength of 1600 nm and a pulse length of 10 cycles, as obtained

from our ab-initio calculations. For these results we have calculated the harmonic spectrum and

integrated the signal for the power of the nth harmonic over the energy range [(n− 1)ω, (n+ 1)ω].

We compare the results of our numerical calculations with the power law In, which is expected for a

perturbative n-photon process. The predictions from the power law were matched to the numerical

results at low intensities. The inset in each of the panels shows the relative error between the

ab-initio results and the power law predictions with respect to the ab-initio results.

The results show that in the intensity regime between 1012 Wcm−2 and a few times 1013 Wcm−2

the ab-initio results start to deviate from the respective power law. This is an indication of the
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Figure 4.10: Results of ab-initio calculations for the integrated harmonic power (solid circles with
solid lines) for the (a) 1st, (b) 3rd and (c) 5th harmonic as a function of the peak laser intensity
of a laser pulse of 10 cycles at a wavelength of 1600 nm. The numerical results are compared to
a perturbative In power law fit, which is matched to the ab-initio results at the lowest intensity.
The insets show the relative error between ab-initio results and power law predictions with respect
to the ab-initio results.

transition from a perturbative to a non-perturbative electron-field interaction. These results are in

agreement with previous results that the onset of other non-perturbative phenomena, e.g., above

threshold ionization [3] and high-order harmonic generation [77, 78], occurs in the same intensity

regime.
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Figure 4.11: Results for the ratio of higher-order terms to the lowest-order nonlinear term in the
perturbative series expansion for (a) χω, (b) χ3ω and (c) χ5ω. Also shown is the ratio of the sum
of all higher order terms calculated with respect to the lowest-order term (solid lines).

Based on the ab-initio results, we expect that the perturbative power series expansion of the

susceptibility corresponding to the process of low-order harmonic generation should break down in

this intensity range as well. In order to test this expectation, we have calculated the first few terms
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in the expansion for χω, χ3ω and χ5ω at 1600 nm. We study the relative contribution of higher-

order terms in the expansion by presenting their ratios with respect to the lowest-order nonlinear

term in Figure 4.11. Also, shown is the ratio of the sum of all higher-order terms calculated to

the lowest-order term. From the results we observe the same behavior, as previously reported for

the electrical susceptibility χω at shorter wavelength [79], namely each higher order term is much

smaller than the lowest order term, indicating the convergence of the corresponding power series

expansion, at the lowest intensities studied. On the other hand, the breakdown of the series at

the highest intensities is obvious as well, since the contributions of the higher order terms exceed

that of the lowest order term. We further note that in each case the sum of the calculated higher-

order terms reaches about 10% of the lowest-order term for intensities in the range of 1 × 1013 to

2 × 1013 W/cm2. Therefore, this limit can be considered as an indication for the breakdown of a

perturbative series expansion in strong-field processes for the hydrogen atom [23].

4.5 Summary

We have performed calculations of the susceptibility of atomic hydrogen and atomic helium

using a numerical basis state method, via a perturbative power series expansion as well as the

ab-initio results for the field induced polarization. The results of our perturbative calculations

indicate a breakdown of the series expansion at intensities in the lower range of 1013 Wcm−2 for

hydrogen and 1014 Wcm−2 for helium. Comparison with the ab-initio results shows a discrepancy

in the trend in the same intensity regime. We therefore conclude that the negative slope of the

susceptibility of atomic hydrogen and helium at higher intensities cannot be explained by the higher-

order terms of a perturbative power series expansion. Instead, the feature has to be considered as

a signature of the nonperturbative interaction between the atom and the field.

Our results for low-order harmonic generation from both ab-initio as well as perturbative cal-

culations show the same onset of a transition from perturbative to non-perturbative interaction be-

tween the atom and the field as the results for the electrical susceptibility χω at shorter wavelength.

It is therefore not surprising that previous studies on low-order harmonic yields [26, 34, 35, 80, 81]
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did not help in resolving the question about the significance of higher-order Kerr effects in the

filamentation of short higher-power laser pulses in gaseous media. In contrast, we conclude that

any deviations from the predictions of the lowest-order perturbation theory for the polarization

(and other observables) should be interpreted as a signature for the non-perturbative character of

the electron-field interaction. In particular, our results also show that a quantitative analysis of

strong-field below-threshold harmonic generation requires a nonperturbative theoretical approach,

as e.g. introduced in [82].

While we are not able to prove a general statement about the breakdown of the perturbative

susceptibility, combined with the previous results showing ATI peaks in xeon [3], and high harmonic

generation [17] at similar wavelengths, we believe that a strong argument has been made for the

inapplicability of perturbative descriptions of strong field processes around these intensities, and

for these wavelengths.



Chapter 5

Time Dependent Susceptibility

In this Chapter, we introduce a method to calculate the time dependent susceptibility using

the short time Fourier transform. First, we analyze various windowing functions for determining

the short time Fourier transform and settle on the Dolph-Chebyshev family of windowing functions

for our time dependent susceptibility calculations.

We then examine the time dependent susceptibility of helium at intensities near the break-

down of the perturbative susceptibility found in the previous Chapter. Using this method, we

examine several features that show up at these intensities and explain them via the dynamics of

the field-free bound state and continuum state contributions to the susceptibility. From there,

we further study the emergence of the non-perturbative multi-photon ionization evident in the

population growth and the susceptibility of helium as we increase the intensity.

5.1 Introduction

High harmonic generation (HHG) is a process for generating extreme ultraviolet (10 ∼ 100

eV), soft x-ray (100 ∼ 1000 eV) and even hard x-ray (> 1 keV) coherent photons from much

longer wavelength driving fields. The success in generating bright beams is largely a combination

of microscopic and macroscopic phenomena. On the microscopic level, HHG is a process in which

an electron in a single atom is driven by the external field and generates radiation of large multiples

of the frequency of the driving field, as discussed in section 1.2 previously. On the macroscopic

level, a coherent constructive interference of these high harmonic emissions from a large number of
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atoms needs to be achieved in order to generate a bright laser beam [83–85]. Ensuring that this

interference is constructive instead of destructive in the direction of the propagation of the driving

field is mainly done by matching the phase velocity of the driving light field with the phase velocity

of the generated light. We note that geometric effect as well as other effects, such as group velocity

matching [86, 87] can play a role as well, depending on the experimental setup and the wavelength

of the driving field.

In general, this phase matching relationship can be written as (e.g. [88]):

∆k(t) = qkω(t)− kqω(t) (5.1)

where q is the harmonic number, kω(t), and kqω(t) are the magnitudes of the wavevector of the

driving field and the qth harmonic, respectively, and ∆k is the phase mismatch between them. In

terms of the index of refraction, this can be written as

∆p(t) = n(ω; t)− n(qω; t) + ∆g(t) (5.2)

where ∆p(t) is the phase velocity mismatch, n(ω; t) is the index of refraction of the driving field,

n(qω; t) is the index of refraction of the qth harmonic, and ∆g(t) is a geometry induced factor for

the beam parameters. In this form, there is an explicit relation between the time dependent index

of refraction and the phase velocity mismatch.

Typically, the phase matching is determined by the n(ω; t) term, since the index of refraction

of the higher harmonics (n(qω; t), for large q), is well approximated by 1. Thus, the phase velocity

mismatch is described in terms of the index of refraction of the fundamental field, which can be

split up into two contributions (e.g. [87]):

n(ω; t) ≈ natom(ω; t) + nion(ω; t) (5.3)

The term natom(ω; t) is the contribution from the neutral atoms or molecules. This term is typically

positive, and will approach zero as the neutral atoms are ionized during the pulse, and thus the

number density of neutral atoms decreases. The second term nion(ω; t) is the index of refraction

due to the ionized electrons. This term is negative, and will increase in magnitude as more atoms
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are getting ionized. HHG is often observed in low density gas and the nonlinear terms in these

calculations are typically ignored, leading to the index of refraction being approximated by:

ni(ω, t) ≈ 1 + 1
2χ

(1)
i (ω)ηi(t) (5.4)

where i represents either the atoms or the ionized electrons, χ
(1)
i (ω) is the linear susceptibility, and

ηi(t) is the time dependent density of the atoms or ionized electrons.

Recently, however, two results have challenged this conventional approximation of a lin-

ear susceptibility: the generation of extremely high harmonics from very powerful mid-infrared

lasers [89], and the generation of bright harmonics in multi-ionized noble gases using powerful UV

lasers [90]. In the first case, the generation of x-rays from mid-infrared lasers is improved by fila-

mentation using very high pressure gas. From Chapter 1, we know that filamentation occurs in the

regime where nonlinear effects can no longer be neglected and even not described perturbatively.

We may therefore expect that a more powerful ab-initio non-perturbative method of determining

the time dependent index of refraction might be useful. In the second case, the generation of bright

harmonics by powerful UV laser sources requires intensities where multiple ionization occurs, which

is likely beyond the saturation point of the nonlinear refractive index as a function of intensity. As

we have previously shown in Chapter 4, this intensity regime marks a breakdown in the accuracy

of the conventionally used perturbative series for the refractive index.

Examining the nonlinear response near the ionization threshold as a function of time is also

another useful test towards further understanding the process of filamentation and the limits of

perturbation theory. In investigating this question, Wahlstrand et al. [91–93] developed a technique

for observing the time dependent response of a thin gas to a strong pump pulse by measuring

the phase delay of a weak supercontinuum probe pulse coincident with the pump pulse. The

supercontinuum probe pulse is chirped, in order to read out the phase shift as a function of time

and determine a time dependent response.

The experimental results performed by Wahlstrand et al. for neon below and above the onset

of ionization are presented in Figure 5.1. It shows both the transverse extent of the pump pulse,



77

been reviewed by Hutchings, Sheik-Bahae et al. [10], and
has been used to calculate the real nonlinear index of
refraction (n2) of semiconductors from two-photon absorp-
tion, Raman transitions and the ac Stark effect [11]. In this
analysis, they related the real and imaginary parts of the
response quadratic in the field strength.

To apply the general KK relation to nonlinear absorption
and the nonlinear refractive index [10], one considers the
linear response to a weak probe field at frequency! of the
system consisting of the matter and a strong optical pump
field Eð!0Þ. The real refractive index change "n for a
probe field at frequency ! is then

"nð!;Eð!0ÞÞ ¼ c

!
P
Z 1

0

""ð!; Eð!0ÞÞ
!2 $!2 d!; (1)

where P denotes principal value. Here, ""ð!; Eð!0ÞÞ is
the change in absorption coefficient of a probe beam at
frequency ! in the system composed of the matter and a
pump field Eð!0Þ. Below we are interested only in the
index change for nearly degenerate fields, so we set
!0 ¼ ! after performing the integration [10]. For the
Kerr and ionization processes discussed in this Letter,
where the response time is essentially instantaneous and
thus only the pump field magnitude is important, we re-
place Eð!0Þ in Eq. (1) with intensity Ið!0Þð / jEð!0Þj2Þ and
write ""ð!; Ið!0ÞÞ ¼ ""ð!; !0; IÞ.

In recent papers, Brée et al. [12–14] applied this proce-
dure to high order processes in gases and transparent
solids: they derived the real part of the kth order response
(n2kI

k) from the kth order absorption process, which they
identified as kth order multiphoton ionization (MPI). The
corresponding absorption coefficient is proportional to
I$1wkþ1, where wk ¼ #kI

k is the kth order MPI rate.
They found that the nonlinear index shift for argon

obtained from the series "n ¼ P
n2jI

j saturates and turns
negative in the intensity range I & 40–50 TW=cm2, well
below the threshold for ionization, which is near
&80 TW=cm2. At very low intensity, their method gives
reasonable agreement for the k ¼ 1 case (n2) with prior
experimental results for the noble gases [12,13].
Equation (1) formally requires knowledge of the

absorption spectrum as a function of the frequencies !
and !0, which available theories based on monochromatic
optical fields cannot provide. Brée et al. [12–14]
extended an ‘‘average frequency’’ approximation used
by Sheik-Bahae et al. for two-photon absorption [11]
to arbitrary order K-photon processes, using
""ð!1; !2; . . . ; !KÞ ' ""ðð!1 þ ( ( ( þ!KÞ=KÞ. For ab-
sorption of K pump photons at frequency!0 and one probe
photon of frequency !, the change in absorption was thus
written as

""ð!; !0; IÞ ' ""ð!avg;K; IÞ; (2)

where!avg;K ¼ ðK!0 þ!Þ=ðK þ 1Þ, which assumes exci-
tation with a single average frequency. We also adopt this
approach, but examine its accuracy below.
In any consideration of high field ionization as an ab-

sorption mechanism to be used in Eq. (1), one must be
aware of the transition between perturbative (MPI) and
nonperturbative (tunneling) ionization regimes. A measure
of this transition is the dimensionless Keldysh parameter
$ ¼ ð2%pÞ1=2!=E0, where %p is the ionization potential of
a gas atom, E0 is the peak laser field, and atomic units are
used. While one is safely in the MPI limit for $ ) 1 and in
the tunneling limit for $ * 1, it is typically qualitatively
argued that $< 1 is sufficient to be in the tunneling limit
and $> 1 to be in the MPI limit [12]. As we show here,
when considering the KK relations, one must be consid-
erably more careful.
In their calculation, Brée et al. use expressions for the

k-photon ionization rate wk derived from the $ ! 1 or
MPI limit of a recently derived ionization rate R [15] based
on the theory of Perelomov-Popov-Terent’ev [16]. The
expression R (Eq. 6 of [15]) is valid at arbitrary values of
$. It handles the MPI and tunneling limits, and provides an
accurate interpolation for $ lying in between. It assumes
a single active electron and nonrelativistic intensities.
In Fig. 2(a), we plot R, RT , and w ¼ P50

k¼11 wk for atomic
hydrogen (%p ¼ 13:6 eV) for @! ¼ 1:55 eV (&¼800 nm)
as a function of intensity, where RT is the tunneling rate
[17] (equal to the $ * 1 limit of R) and the k > 9 terms in
w represent above threshold ionization. At low intensities
R / IM, where Mð¼ 9 for HÞ is the minimum number of
photons for ionization, and at higher intensities R rolls off,
asymptotically approaching RT . Above &70 TW=cm2

($ ¼ 1:3), w diverges significantly. However, even as
low as 6 TW=cm2 ($ ¼ 4:4), R and w differ by a factor
of &100. Similar plots for Ar show that the terms contain-
ing #k in w are inadequate to describe ionization in the

FIG. 1 (color online). Probe phase shift "#ðx; tÞ measured in
neon using single-shot supercontinuum spectral interferometry,
for an intensity below (left) and above (right) the onset of
ionization.

PRL 109, 113904 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

14 SEPTEMBER 2012

113904-2

Figure 5.1: The phase shift ∆Φ in radians as a function of time and transverse position in a gas of
neon. On the left shown are results observed at an intensity below the ionization threshold, while
the results on the right are at an intensity above the ionization threshold. Note the negative phase
shift from the ionized electrons present on the right, after the probe pulse has ended (From [91]).

and the phase shift as a function of time. The phase shift is directly related to the shift in the

index of refraction ∆n due to the interaction of the pump pulse with the gas. However, the results

must be carefully interpreted, as each time is also associated with a corresponding frequency in the

supercontinuum signal, resulting in ∆n(ω(t), t), with ω and t coupled.

In order to explain the experimental results, we use the theoretical ab-initio approach devel-

oped in the previous Chapters to determine a time dependent susceptibility and analyze it. In the

rest of this Chapter, we will first give an overview of the method of calculating the time dependent

susceptibility, and then discuss some results for the helium atom at different laser parameters.
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5.2 Theoretical Method

A non-perturbative analysis of the time dependent susceptibility requires the calculation of

the time dependent dipole moment beyond the conventional approach of perturbation theory. Thus

we use our ab-initio method described in Chapter 3 to determine the dipole moment. As a brief

reminder, we find the time dependent dipole moment as the expectation value of the dipole operator

µ̂ with respect to the time dependent wavefunction |Ψ(t)〉 as:

µ(t) = 〈Ψ(t)| µ̂ |Ψ(t)〉 (5.5)

where the dipole operator is defined as:

µ̂ = −
∑

n,l,n′,l′
|ψn,l〉 〈ψn,l|z|ψn′,l′〉 〈ψn′,l′ | , (5.6)

and |ψn,l〉 = Rn,l(r)Yl(r̂) are the eigenstates of the field-free Hamiltonian. The wavefunction |Ψ(t)〉

is the solution to the time dependent Schrödinger equation with Hamiltonian:

H = H0 + µ̂E(t)H0 =
∇2

2
+ V (r). (5.7)

Here, we assume that V (r) is a spherically symmetric, single active electron potential, and H0 is

the field-free Hamiltonian.

5.2.1 Time dependent susceptibility

The time independent susceptibility is given by:

χ(ω) =
F {µ(t)} (ω)

F {E(t)} (ω)
(5.8)

where F {x(t)} is the Fourier transform of x(t). If one multiplies the dipole moment µ(t) and the

electric field E(t) by a windowing function before taking the Fourier Transform, one obtains a time

dependent susceptibility:

χ(ω; τ) =
F {µ(t)w(t− τ)} (ω)

F {E(t)w(t− τ)} (ω)
, (5.9)
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where the time τ (corresponding to the center of the windowing function) is now a parameter to

the susceptibility, and w(t) is a windowing function with limited support, i.e. it is only non-zero

over some finite range [−T/2, T/2].

The windowing of the Fourier transform is known as the short time Fourier transform [94]. By

limiting the non-zero part of the time domain function one defines a time associated with the Fourier

transform. By moving the center of the windowing function, one gets a Fourier transform for each

point in time. When one applies this concept to the susceptibility, one obtains the time dependent

susceptibility given in Equation (5.9). As the properties of the short time Fourier transform depend

strongly on the windowing function that is being used, we will first discuss some of the properties

of the windowing function, before presenting the results for the time dependent susceptibility.

5.2.2 Windowing functions

The properties of the windowing function are important to get an accurate time dependent

susceptibility. A windowing function that is too wide in frequency will not allow us to separate

out the driving frequency behavior from the harmonics (primarily the third and fifth), or the low

frequency drift of ionized wavepackets. On the other hand, one that is too wide in time will not

give the necessary time resolution and will effectively smooth out the short time behavior.

A windowing function w(t−t′) is any function that is non-zero only for some limited width in

time, and is symmetric about some center time t−t′ = 0. The simplest windowing function is known

as the boxcar or rectangular window [95]. This function is 1 everywhere within the window size.

Applying it to a function f(t) is equivalent to just taking the Fourier transform of the overlapped

w(t− t′)f(t).

The boxcar window, however, is a very poor window for many applications. The sharp cutoff

at the edges of the boxcar window creates large sidelobes when taking the Fourier transform. The

Fourier transform of such a square pulse is the sinc function (= sin(ω)/ω), which results in a 1/ω

falloff of the sidelobes. This can be seen in Figure 5.2, which shows the amplitude of the discrete

Fourier transform on a log scale. One can clearly see the sidelobes besides the central peak and
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Figure 5.2: The boxcar windowing function (a) in the time domain, (b) the frequency domain (log
scale), and (c) a close up view of the frequency domain (log scale) with the harmonic orders denoted
for a single cycle window. Note that the attenuation for the first sidelobe is very poor (less than
10db)

their considerable height. The x-axis is presented in units of the discrete Fourier transform (DFT)

bins – the smallest frequency difference that is representable by a DFT of the same size as the

window.

Since multiplying a function f(t) by a windowing function in the time domain is equivalent

to taking the convolution of the windowing function and f̂(ω) in the Fourier domain, the above ex-

ample shows that the frequency response of the windowing function is important for understanding

the behavior of the window function on the signal. There are a couple of criteria that are important

when choosing a windowing function. For our purpose, we wish to optimize with respect to the

following features:

(1) Small influence of the contributions from odd harmonics of the driving frequency. The 3rd

(and 5th) harmonic should not affect the calculated susceptibility at the driving frequency,

thus the sidelobes at these frequencies should be suppressed.

(2) Small interference between the contributions from the driving frequency and the very

low frequency part of the dipole moment. During strong-field interactions, an electron

wavepacket that is ionized will begin to drift with a velocity that is proportional to the

vector potential at the time of ionization. This will show up as a component at a very low
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frequency to the susceptibility which should not have an effect on the calculated results at

the driving frequency in the calculations.

(3) Small window size in time, in order to examine the processes with good time resolution.

The sidelobe attenuation defines the effect that the higher order harmonics and the DC component

of the field will have on the signal. If the sidelobes of the windowing function are not suppressed

enough, then there will be some contribution overlapping with the time dependent susceptibility at

the frequency of interest. The central peak bandwidth is also important for controlling how much

of the signal from other frequencies effects the result at the central frequency. If the bandwidth is

too large, then the calculated signal at the primary frequency will include contributions from the

DC or even third harmonic components. These properties must be taken into account in order to

optimize the result with respect to the first and second points above. The central bandwidth of any

windowing function – as well as the sidelobe suppression in many cases – is inversely proportional

to the size of the windowing function in time. This means that one must balance a narrow central

peak with high sidelobe suppression in order to avoid the influence of unwanted signals from other

frequency components, with a large central bandwidth in order to have better time resolution.

There are a few windowing functions that have the required behavior, which will be discussed

below. The central peak of a window in the “flattop” family of windowing functions is very flat,

giving it its name. Windows in this family are typically cosine windows (windows defined as a sum

of scaled cosines), and are optimized such that the derivative in the frequency domain at ω = 0 is

zero. This property is valuable when the sampling time and the periodicity of the signal are not

well aligned since the frequency of interest will be captured even though it is not well matched with

the frequency bins.

A flattop windowing function from [95] that has been simultaneously optimized for large

sidelobe attenuation and a flat top is shown in the time and frequency domains in Figure 5.3. This

window is called a 5th order window, consisting of five cosine terms, and as such the first sidelobe
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Figure 5.3: Flattop window given in Equation 5.10, in the time domain (a), the frequency domain
(b), and with a closeup of the frequency domain (c). Note that the wide central peak covers 5
frequency bins.

will be the 5th frequency bin from the center. This flattop window is given approximately by [95]:

w(n) = 0.216−0.417 cos

(
2πn

N − 1

)
+0.277 cos

(
4πn

N − 1

)
−0.084 cos

(
6πn

N − 1

)
+0.007 cos

(
8πn

N − 1

)
,

(5.10)

where N is the total size of the window in samples and n is the number of the current point in

samples.

A window which has been optimized for the highest attenuation in the first sidelobe (the

sidelobe nearest to the center peak) provides another interesting option. The Hamming window [96]

is a second order window with such a property,

wHamming(n) = 0.54− 0.46 cos

(
2πn

N − 1

)
, (5.11)

while the Blackman-Harris window [96] is a third order window of this kind

wBlackman-Harris(n) = 0.359−0.488 cos

(
2πn

N − 1

)
+0.141 cos

(
4πn

N − 1

)
−0.012 cos

(
6πn

N − 1

)
. (5.12)

The first sidelobe of the Hamming window has an attenuation of roughly a factor of 43db, while

the Blackhman-Harris window has an attenuation of roughly a factor of 65db.

Finally, the Dolph-Chebyshev window [97], shown in Figure 5.4, is a window that is optimized

to have the narrowest central bandwidth for a given constant attenuation in the sidelobes. The
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Figure 5.4: The Dolph-Chebyshev window with an attenuation set to 80db in the (a) time, (b)
frequency and (c) a closeup of the frequency domain

Dolph-Chebyshev window is defined in the Fourier domain, rather than the time domain:

F {w(n)} (k) =
cos
(
N cos−1[β cos

(
πk
N

)
]
)

cosh
[
N cosh−1(β)

] (5.13)

β = cosh

[
1

N
cosh−1

(
10

A
20

)]
, (5.14)

where A is the attenuation in decibels, and k is the frequency component.

None of these windows have a central lobe that has a full width of less than four frequency

bins. This necessitates our window encompassing more than one period of our target frequency,

in order to avoid leaking from the DC component. In the rest of this Chapter we use the Dolph-

Chebyshev window with a width of three periods of the frequency of interest. Our test calculations

have shown that it is a good compromise between attenuation of components that we are not

interested in, and a reasonably good time resolution.

5.2.3 Segmentation of time dependent susceptibility

Our use of a basis state method makes any observables accessible for separation in contri-

butions from the eigenstates of the field-free Hamiltonian. Thus, we can split the time dependent

susceptibility into contributions arising from bound and continuum states in order to better under-

stand the influence of these states on the total susceptibility. As pointed out before, in our method
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the wavefunction in the energy basis is a coherent superposition of the field-free energy states:

|Ψ(t)〉 =
∑

n,l

cn,l,E(t) |φn,l,E〉 , (5.15)

where the eigenstates |φn,l,E〉 are labeled by energy E as well as the principal quantum number n

and the angular quantum number l. Thus, by selectively setting cn,l,E to zero for some choice of

n, l and E, we can select the wavefunction to find a partial dipole moment.

We examine the wavefunction in two principle regions of the field-free spectrum: the bound

states consisting of all states with energy less than zero, and the continuum states consisting of all

states with energy greater than zero. This split then gives us three terms in the dipole moment:

〈Ψ(t)| µ̂ |Ψ(t)〉 =

bound-bound︷ ︸︸ ︷
〈Ψ(t)|P †b µ̂Pb |Ψ(t)〉+

continuum-continuum︷ ︸︸ ︷
〈Ψ(t)|P †c µ̂Pc |Ψ(t)〉

+

bound-continuum︷ ︸︸ ︷[
〈ψ(t)|P †b µ̂Pc |ψ(t)〉+ c.c.

]
(5.16)

where Pb is the projection operator onto the bound states which sets cn,l,E = 0 for E > 0, and Pc is

the projection operator onto the continuum states. These three terms – referred to as bound-bound,

bound-continuum and continuum-continuum contributions to the susceptibility – will be discussed

in the remainder of the Chapter.

5.3 Results

We have used the Short time Fourier transform to calculate the time dependent susceptibility

of Helium at five different intensities: 100, 150, 200, 250, and 300 TWcm−2. These calculations

were performed for a 10 cycle full width at half max pulse at 800 nm. The results for the middle

16 cycles are shown in Figure 5.5, with a vertical dot-dashed line denoting the center of the electric

field of the pulse. We denoted the central cycle of the field by “0.” For the low intensities (100,

150 and 200 TWcm−2), the susceptibilities adiabatically follow the envelope of the field intensity.

Above 200 TWcm−2, however, the results deviates from this adiabatic behavior. At 250 TWcm−2

the peak of the susceptibility shifts towards the beginning of the pulse, and at 300 TWcm−2 it has
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Figure 5.5: (a) The time dependent susceptibility of helium for Gaussian pulses with a wavelength of
800 nm and a full-width at half-maximum of 10 cycles at different intensities (100 TWcm−2 (purple),
150 TWcm−2 (red), 200 TWcm−2 (green), 250 TWcm−2 (orange), and 300 TWcm−2 (blue)). The
center of the driving electric field pulse is denoted with a vertical dot-dashed line, and time is
denoted in cycles of the driving field. The arrows point out the shifted peak in the susceptibility
(1) and the “kink” (2) at highest intensities. Note that both the 250 TWcm−2 pulse and the
300 TWcm−2 pulse peak before the driving field. (b) A detailed plot for 300 TWcm−2.

moved by more than a full cycle of the driving field. This behavior is in qualitative agreement

with results presented in the supplemental materials of [91]. However, we note that it is even

more obvious in the experimental results for krypton and xenon than for helium. After the peak

in the susceptibility, the slope in the trailing edge for the 300 TWcm−2 pulse also deviates from

adiabatic behavior, exhibiting two regions over which the susceptibility follows an approximately

linear dependence on time: from -1 cycles to +5 cycles, and from +5 cycles on. This creates a

“kink” at +5 cycles where the slope of the susceptibility changes from the strongly negative slope

between -1 and +5 cycles to the less negative slope after +5 cycles. In the rest of this section we

focus on the origin of these high intensity features – the “kink” and the shift of the peak of the

pulse – within the context of our energy basis calculations. In particular, we analyze the field free

bound and continuum state contributions to the susceptibility as a function of time.

5.3.1 Bound-bound contributions

The bound-bound contribution to the time dependent susceptibility (see Equation (5.16))

is shown in Figure 5.6(b), accompanied by the excited state population taken at the zeros of the
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Figure 5.6: a) Bound-bound contribution to the time dependent susceptibility, (〈P †b µ̂Pb〉 (t)). It
follows the intensity envelope of the field for all intensities over the majority of the pulse. We note
a small deviation at the end of the pulse for 300 TWcm−2 where the residual population in the
excited states results in a higher value of the susceptibility at the end of the pulse as compared
to the beginning of the pulse. (b) Population of the excited states taken at the zeros of the
driving field. Note the non-adiabatic contribution to the population for driving fields stronger than
150 TWcm−2, along with the residual population at the end of the pulse for 300 TWcm−2. For both
panels: 100 TWcm−2 (purple), 150 TWcm−2 (red), 200 TWcm−2 (green), 250 TWcm−2 (orange),
and 300 TWcm−2 (blue) pulses.

driving electric field (Figure 5.6(a)). The excited states are here defined as field free states with

energy less than zero, excluding the ground state. For the lowest intensity (100 TWcm−2 purple

curve), the population and the susceptibility adiabatically follow the envelope of the intensity, as

expected. For higher intensities, the population does not follow the electric field intensity smoothly.

Instead, the population consists of a dominant contribution driven by the perturbative interaction,

where the first order and third order terms of the susceptibility dominate, and a much smaller non-

perturbative part, due to the population in excited states with larger l which are populated in the

trailing part of the pulse via transitions back from the continuum. We will further analyze this non-

perturbative behavior in subsection 5.3.4. For the highest intensity considered (300 TWcm−2), the

residual population in the high l states results in a bound-bound contribution to the susceptibility

at the end of the pulse that is slightly larger than at the beginning of the pulse.

The susceptibility from the bound states is the largest contribution to the total susceptibility.
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Figure 5.7: (a) Continuum-continuum contribution to the time dependent susceptibility

(〈P †c µ̂Pc〉 (t)). This contribution to the susceptibility is negative at high intensities (200 TWcm−2

and above). (b) The population of the continuum states taken at the zeroes of the driving field.
Note the exponential growth for 300 TWcm−2, which starts slightly before the center of the pulse
and peaks slightly after. This is followed by a decline to a residual population at the end of the pulse.
For both panels: 100 TWcm−2 (purple), 150 TWcm−2 (red), 200 TWcm−2 (green), 250 TWcm−2

(orange), and 300 TWcm−2 (blue) pulses.

It is therefore the reason that the overall shape of the susceptibility follows (almost adiabatically)

the envelope of the intensity. Indeed at low intensities, this contribution to the susceptibility

almost entirely defines the shape of the total susceptibility. For the deviations from field-following

behavior, specifically the features we pointed out earlier at higher intensities, we will now analyze

the other contributions in Equation (5.16).

5.3.2 Continuum state contributions

The continuum-continuum contribution to the time dependent susceptibility is shown in

Figure 5.7(a), accompanied by the population in the continuum states (with energy greater than

zero) taken at the zeros of the driving electric field (Figure 5.7(b)). At the lowest intensities, the

shape of the susceptibility as a function of time is again adiabatic, and positive, though small.

At these intensities, there is no residual population in the continuum at the end of the pulse and

the population in the continuum is mainly transient and likely via perturbative interactions. This
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agrees with our observation that the population in the continuum states exponentially decreases

with increasing energy. We show this in Figure 5.8, where the population is shown as a function

of the energy at the zero of the field at cycle +1. We also note that the population in these states

exhibits the same qualitative behavior as that in the excited states just below the threshold; namely

an exponential decrease in the population with increasing energy, and a positive contribution to

the susceptibility, as expected from perturbation theory [79]

In contrast, at the highest intensities (250 and 300 TWcm−2), the continuum is strongly (non-

perturbatively) populated between -2 and +1 cycles before relaxing back to a residual continuum

population at the end of the pulse. The exponential growth in population over a few cycles is a clear

indication of the deviation from the perturbative regime and correspondingly leads to similar char-

acteristic changes in the susceptibility as a function of time. Figure 5.8 shows that the population

is almost equally distributed among the low energy continuum states, another strong indication

of a deviation from a perturbative interaction between the field and helium atom. We note that

this result agrees with our previous results in Chapter 4, where we have observed the transition
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Figure 5.8: The population in the continuum states as a function of energy at cycle 1 for
100 TWcm−2 (purple), 150 TWcm−2 (red), 200 TWcm−2 (green), 250 TWcm−2 (orange), and
300 TWcm−2 (blue) pulses. Note the exponential decrease in population for the 100 TWcm−2

pulse, while at the higher intensity pulses the distribution extends to higher energies.
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from the perturbative to the non-perturbative regime at similar intensities. The population in the

continuum from the multiphoton transitions to the continuum causes a negative contribution to

the susceptibility, in contrast to the signatures seen at low intensities. We also note that the dip in

the continuum-continuum contribution to the susceptibility at +7 cycles (Figure 5.7(a)) is matched

by the peak in the continuum population at +7 cycles in (Figure 5.7(b)).

These features in the contribution from the continuum states at the highest intensities can

explain the signatures we pointed out in the total susceptibility (Figure 5.5). The strong growth

in the continuum population (and corresponding negative contribution from the continuum con-

tributions to the susceptibility) shows up in the total susceptibility as a shift in the peak of the

susceptibility towards earlier times in the pulse. The peak in the population at around +1 cycles

(and the corresponding minimum in the susceptibility) results in the linear regime between -1 and

+5 cycles until the “kink” in the total susceptibility when the trapped population in the bound

states contributes significantly enough to the total susceptibility to cancel out part of the negative

contribution from the continuum states at approximately +5 cycles.

5.3.3 Cross term contributions

The contributions to the susceptibility from the cross terms (〈Ψ(t)|P †b µ̂Pc |Ψ(t)〉 + c.c.) are

shown in Figure 5.9. Overall, the variation in this contribution is small and, hence, it is not

important for our understanding of the dynamic features in the total susceptibility. We observe a

low field-contribution (at the beginning and end of the pulse), a field envelope following negative

contribution, and small deviations at higher intensities. While the overall offset is due to the first

order linear term to the susceptibility, the field envelope following negative contributions result

from the third order term. The negative shape is likely due to a phase difference between the third

order perturbative population in the continuum and the ground state with which it is interacting

(i.e. the 〈ψ(3)(t)| µ̂ |ψ(0)(t)〉 term in the dipole moment). The deviations of this shape at higher

intensities are likely due to non-perturbative effects.
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Figure 5.9: Cross-term contributions to the susceptibility: (100 TWcm−2 (purple), 150 TWcm−2

(red), 200 TWcm−2 (green), 250 TWcm−2 (orange), and 300 TWcm−2 (blue) pulses.) Note the
large offset but subsequent small dip in the susceptibility. The dynamic variation here is much less
for high intensities than for the bound states or the continuum states.

5.3.4 Populations and susceptibilities for high and low angular momentum

As mentioned previously, we attribute part of the (nonadiabatic) signatures in the total

susceptibility at high intensities as due to the transition to a nonperturbative interaction of the field

with the target atom. In particular, the population of the continuum states clearly shows features

of the nonperturbative interaction, e.g. the exponential growth in continuum state population over

a short interaction time.

While it is difficult to separate perturbative and nonperturbative effects in our ab-initio

calculations, we noted another interesting signature of the transition between the corresponding

regimes. This is the population of excited bound states with angular momentum quantum number

larger than 1. To show this characteristic feature we present in Figure 5.10 the population in the

excited bound states, recorded at the zeroes of the field, as a function of interaction: (a) for all

states with l = 1 and (b) for all states with l > 1. At all intensities considered, we note that the

population in the p states (Figure 5.10(a)) mainly adiabatically follows the field envelope, while

the population in the higher l states appears in the trailing part of the pulse. Moreover, the latter

population is predominantly observed at higher intensities. This effect reminds of various previous
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Figure 5.10: Excited state population, for (a) l ≤ 1 and (b) l > 1. The lines represent results
of calculations for 100 TWcm−2 (purple), 150 TWcm−2 (red), 200 TWcm−2 (green), 250 TWcm−2

(orange), and 300 TWcm−2 (blue) pulses.

studies [69, 98, 99] in which the trapping of population in excited states via transition from the

continuum in the trailing part of the pulse has been observed and analyzed. Here, our results show

that this excited population has significant contributions from states with l ≥ 2.

Indeed, a similar and with respect to the susceptibility even more significant effect is found

for the continuum states. In Figures 5.11 (population) and 5.12 (susceptibility) we present the dis-

tributions for states with small (panels (a): l ≤ 1) and large (panels (b): l ≥ 2) angular quantum

numbers. As noticed before for the excited states, it is the population in the states with larger

angular momentum quantum numbers which exhibit the nonadiabatic and nonperturbative charac-

teristic features both in the population and in the contribution to the susceptibility. Interestingly,

in the case of the continuum the contributions from the higher l states are by far the dominant ones

at high intensities, giving rise to the signatures observed in the previous results (see Figure 5.7 for

the continuum-continuum contributions and Figure 5.5 for the total susceptibility).

The continuum population at the zeros of the field exhibits classic non-perturbative behavior

at 3 × 1014 W/cm2: the growth in population is well described by an exponential curve. This

non-perturbative ionization corresponds with both the onset of a negative contribution to the
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Figure 5.11: Continuum population, for (a) l ≤ 1 and (b) l > 1 on the right. The lines repre-
sent results of calculations for 100 TWcm−2 (purple), 150 TWcm−2 (red), 200 TWcm−2 (green),
250 TWcm−2 (orange), and 300 TWcm−2 (blue) pulses. Note the difference in the time dependence
on the left, and on the right

susceptibility and the breakdown in the susceptibility as shown in the previous Chapter, where at

3× 1014 W/cm2 the ab-initio susceptibility separates from the perturbative susceptibility.

5.4 Conclusion

In this Chapter, we have extended our analysis of the nonlinear susceptibility towards its time

dependence during the interaction of helium atom with a laser pulse. In our study, we focus on the

intensity regime between 1× 1014 and 3× 1014 W/cm2, in which we have previously identified the

transition from perturbative to nonperturbative light-matter interaction. In agreement with recent

experimental data, our theoretical results show several deviations from the adiabatic dependence

of the susceptibility on the field envelope that would be expected for a perturbative interaction.

In particular, we observe a shift of the maximum in the susceptibility towards times before the

center of the pulse and a change in the slope of the results in the trailing part. We identify that

both characteristic features are due to the onset of nonperturbative multiphoton ionization, the

strong population of the continuum and the transition of the population back from the continuum

into excited states. Moreover, our analysis shows that states with a higher angular quantum
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number (l ≥ 1) are significantly populated at higher intensities, which provides a signature for

the nonperturbative interaction leading to the deviations from the typical adiabatic shape of the

susceptibility as a function of time.
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Figure 5.12: The total susceptibility, split up into l ≤ 1 on the left and l > 1 on the right. From
top to bottom, the lines represent 100TWcm−2 (purple), 150TWcm−2 (red), 200TWcm−2 (green),
250TWcm−2 (orange), and 300TWcm−2 (blue) pulses. The features we previously associated with
the continuum are completely absent in the l ≤ 1 susceptibility, instead they show up in the higher
l states.



Chapter 6

Conclusions

In this thesis, we have examined the response of matter to a strong light pulse, via an analysis

of the electrical susceptibility of atoms at intensities in the transition regime between the perturba-

tive and non-perturbative atom-field interaction. In Chapter 1 we discussed the introduction of the

higher order Kerr effect as a mechanism to explain the physics of filamentation. Filamentation is a

phenomenon that occurs when propagating intense, short laser pulses in media. When the power

of the pulse is large enough, the beam will undergo self-focusing where the higher intensity parts of

the beam will induce a higher index of refraction than the lower intensity parts. This self-focusing

will continue until ionization occurs, at which point the ionized electrons will defocus the beam

until the intensity has decreased enough to let self-focusing dominate again. The ionization and

defocusing of this process involve what have traditionally been understood as non-perturbative

processes – e.g. above threshold ionization, high harmonic generation and multiphoton ionization.

The process of filamentation has been long understood in terms of this focus, defocus cycle until

Loriot et al. [24] extracted out the terms of the index of refraction power series and found both

negative and positive terms. This led to a series of articles that discussed the implications of such

a series, including the possibility of ionization-free defocusing as a model of filamentation. This

discussion provides the motivation of this thesis, as it raised a more fundamental question regarding

the applicability of the perturbative series to a process that occurs simultaneously with well known

non-perturbative physics.

Examining the perturbative series description and non-perturbative version of the suscepti-
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bility side-by-side requires a detailed understanding of the perturbative series. In Chapter 2 we

gave brief review of perturbation theory, a discussion of the first few perturbative dipole moment

terms and their corresponding susceptibilities, and some remarks about the relationship between

the susceptibility and the index of refraction. we discussed the relationship between the terms of

the perturbative index of refraction and the perturbative susceptibility, describing the nonlinear

dependence of the index of refraction on the density of the media, while the susceptibility’s linear

dependence on the density makes for a more appropriate quantity for single atom calculations. The

first few dipole moment terms describe linear polarization, sum and difference frequency generation,

along with the non-resonant physics that we are interested in. Finally, we discussed how to find the

susceptibilities from the dipole moment before describing the general form of the susceptibilities

for an arbitrary order in the perturbation series.

The perturbative susceptibilities require the field-free basis states for calculation, the meth-

ods of obtaining this basis comprised the bulk of Chapter 3. This Chapter is where we outlined our

method for finding the field-free energy basis states that we use for our ab-initio calculations along

with our perturbative susceptibility calculations. The field-free basis was observed within a num-

ber of approximations to ease the numerical difficulties of solving the time dependent Schödinger

equation in its most general form. We applied a single-active electron approximation as well as

restricting ourselves to spherically symmetric potentials, in order to restrict ourselves to spheri-

cally separable problems in which we only need one dimension to solve numerically. From here,

we used the Numerov method to find the radial eigenstates, relying on the spherical harmonics for

our angular states. The dimensionality of our problem was further reduced by limiting ourselves

to linear polarization of the external field. For the ab-initio method, we used a Crank-Nicholson

method for time propagation. This allowed us to find both the perturbative susceptibilities – using

the field-free basis and the general form of the susceptibilities in Chapter 2, and non-perturbative

ab-initio susceptibilities from the dipole moment using the same theoretical framework.

In Chapter 4, we made a comparison of the perturbative susceptibilities and the non-perturbative

ab-initio susceptibilities found using the ab-initio method. The perturbative series was shown to
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be positive for all terms calculated for helium and hydrogen (up to the 11th order perturbative

correction or the sixth non-zero term in the series), which immediately countered the behavior seen

in the higher order Kerr terms that Loriot et al. [24] found. We performed a comparison between

the perturbative series and the susceptibilities found using the non-perturbative ab-initio method

for a number of different intensities, and showed a clear threshold intensity for helium and hydrogen

where the perturbative and the non-perturbative susceptibilities diverge. At this intensity, we can

clearly state that the perturbative series no longer describes the physics of the system. We next

extended this comparison to the third and fifth harmonics generated in hydrogen at longer wave-

lengths, where we found that the ab-initio calculation appeared to diverge from the perturbative

prediction at lower intensities for higher harmonics.

Finally, we discussed the time dependent susceptibility in Chapter 5. Here, we used the

short time Fourier transform to model the time dependent susceptibility. We examined the sus-

ceptibility of helium around the intensity that led to the divergence between the perturbative and

non-perturbative susceptibilities in the previous Chapter. Our analysis focused on the features of

the susceptibility that drive this deviation. We split the susceptibility into continuum-continuum,

bound-bound and bound-continuum contributions using the field-free eigenstates to make the dis-

tinction. We showed that multiphoton ionization and the resultant ionized electrons in the contin-

uum have the largest non-perturbative effect and cause the continuum-continuum susceptibility to

be negative. The bound-bound contribution is shown to be dominated by perturbative behavior.

This distinction was made more explicit by a separation into low (l < 2) and high (l ≥ 2) angular

momentum states. This separation showed that the perturbative behavior is confined to the low

angular momentum states, even when the continuum is taken into account, while the susceptibil-

ity from the high angular momentum states is primarily non-perturbative. The population of the

continuum, split along these same lines, supported this idea.
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