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Magnetism has been known for millennia. Yet, even today, our understanding of the interplay

of various interactions and processes in a material that give rise to its magnetic properties and,

in particular, are responsible for their dynamics is quite limited. Such understanding, however, is

critical not only from the standpoint of fundamental research. From an applied perspective, there is

a strong motivation to explore the possibility of utilizing the spin degree of freedom in the quest of

improving the efficiency, increasing the speed, and reducing the size of logic devices, which requires

a detailed understanding of magnetic interactions and their dynamics. Part of the reason for a lack

of such understanding is related to experimental challenges in capturing materials’ magnetism at

its natural time and length scales. Recent advances in ultrafast extreme ultraviolet (EUV) and soft

X-ray sources have enabled element-specific studies of magnetic materials with nanometer spatial

and femtosecond temporal resolution by use of magneto-optics.

In this thesis, I present temporally and spatially resolved studies of ferromagnetic thin films.

In Chapter 4, I develop a new magneto-optical technique that allows a direct measurement of

the full resonant complex magneto-optical coefficient of a material with tabletop high harmonic

(HHG) sources of EUV light. I apply it, along with a conventional magneto-optical technique,

to a thin Co film in a pump-probe experiment to study the dynamic response of the film to a

femtosecond laser pulse. By comparing the experimental results with theoretical predictions, a

connection to the microscopic mechanisms of ultrafast demagnetization is made, and it is found

that the transient magnetization dynamics in Co are mostly dominated by magnon excitations

with possible smaller contributions from other mechanisms. In Chapter 5, I develop an approach

for resonant magnetic scattering (RMS) on a tabletop with an HHG source that does not require



iv

wavelength-selective optics and instead relies on the resonant nature of the scattering process. I

use this approach to study magnetic textures with spatial resolution and, by applying a field to a

ferromagnetic multilayer film, observe a transition from a disordered network of stripe domains to

an ordered lattice of magnetic vortices. In Chapter 6, I present the results of a dynamic soft X-ray

RMS experiment on a disordered domain network performed at the Linear Coherent Light Source

(LCLS) at SLAC. By directly applying the experimental data to a carefully simulated domain

pattern, I capture laser-induced transient changes in the domains in real space and observe strong

non-uniformities in the demagnetization across the sample, which, with the help of simulations,

are attributed to a combined effect of ultrafast spin-polarized currents and a gradient in the pump

absorption throughout the thickness of the sample. In Chapter 7, I show preliminary simulations

and provide an outlook towards time-resolved lensless magnetic spectro-microscopy with HHG

sources.
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2.10 Bloch (chiral) and Néel (non-chiral) skyrmions . . . . . . . . . . . . . . . . . . . . . 29

2.11 Timescales of electron, lattice, and spin dynamics after a laser excitation . . . . . . . 31

2.12 3p→ 3d transitions in a model ferromagnet . . . . . . . . . . . . . . . . . . . . . . . 33

2.13 MOKE geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Three-step model of high harmonic generation . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Solutions of the three-step model for different ionization phases . . . . . . . . . . . . 40

3.3 Ground-state and dynamics of an electron wavefunction . . . . . . . . . . . . . . . . 43

3.4 Experimental HHG spectrum in He . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



xiii

3.5 Dynamics of an electron wavefunction in a single-color circular and a bichromatic

trefoil-shaped field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 The field of a two-color laser driver for circularly polarized HHG . . . . . . . . . . . 46

3.7 Setup for circularly polarized HHG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Experimental spectrum of circularly polarized HHG in He . . . . . . . . . . . . . . . 48

3.9 Hollow-core waveguide for phase-matched HHG . . . . . . . . . . . . . . . . . . . . . 50

4.1 An example T-MOKE asymmetry spectrum at the M -edge of Co . . . . . . . . . . . 58

4.2 Time-resolved EUV T-MOKE setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Time-resolved EUV T-MOKE data collection flow . . . . . . . . . . . . . . . . . . . 61

4.4 An example ultrafast demagnetization curve . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Static angle-resolved T-MOKE signal from a Co film . . . . . . . . . . . . . . . . . . 63

4.6 D-MOE geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 Spectrometer part of the D-MOE setup . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.8 Static D-MOE asymmetry at the M -edge of Co . . . . . . . . . . . . . . . . . . . . . 69

4.9 Fields at an interface between two media . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.10 Azimuthal and polar angles for the magnetization vector. . . . . . . . . . . . . . . . 71

4.11 Sample structure for angle-resolved T-MOKE . . . . . . . . . . . . . . . . . . . . . . 75

4.12 Difference in diffraction efficiencies in the D-MOE geometry for the two opposite

magnetization directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.13 Im (εxy) at the M -edge of Co with a reduced exchange splitting calculated from first

principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.14 Ultrafast demagnetization in a 10 nm Co film . . . . . . . . . . . . . . . . . . . . . . 80

4.15 Time-resolved data and analysis of angle-resolved T-MOKE . . . . . . . . . . . . . . 81

4.16 Comparison of the experimental and reconstructed D-MOE, T-MOKE, and L-MOKE

signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



xiv

4.17 Comparison of the experimental and calculated polarization scans based on εxy ex-

tracted from the T–MOKE and L-MOE scans. . . . . . . . . . . . . . . . . . . . . . 89

4.18 Static experimental εxy of Co and comparison with theory and Kramers-Kronig trans-

form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.19 Average demagnetization response of a 5 nm Co film based on the D-MOE data . . 92

4.20 Transient laser-induced changes in εxy measured with time-resolved D-MOE . . . . . 93

4.21 Direct comparison between theory and experiment for the static and transient εxy

of Co . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 Concept of an EUV RMS experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Schematic of the EUV HHG light source for tabletop RMS . . . . . . . . . . . . . . 106

5.3 RMS chamber layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Transverse profile of a phase-matched HHG beam . . . . . . . . . . . . . . . . . . . . 110

5.5 HHG spectrum and scattering efficiency in the RMS setup . . . . . . . . . . . . . . . 111

5.6 Toroidal mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.7 Calculated reflectivity of the toroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.8 Calculated and measured magnetic fields . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.9 Example RMS pattern from an Fe-Gd multilayer alloy . . . . . . . . . . . . . . . . . 117

5.10 Field-dependent RMS patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.11 RMS from ordered stripe domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.12 Azimuthally averaged RMS pattern for the Fe-Gd sample . . . . . . . . . . . . . . . 119

5.13 Field dependence of the domain size of the Fe-Gd sample . . . . . . . . . . . . . . . 120

5.14 RMS from a skyrmion lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.15 2D hexagonal close-packed lattice of skyrmions . . . . . . . . . . . . . . . . . . . . . 121

6.1 Experimental setup for TR-RMS at LCLS . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 Sample structure and MFM image of domains . . . . . . . . . . . . . . . . . . . . . . 127

6.3 Static RMS intensity distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



xv

6.4 Mask of bad pixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5 Time-resolved soft X-ray scattering data . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.6 Separation of the spin and charge scattering . . . . . . . . . . . . . . . . . . . . . . . 138

6.7 Summary of the transient RMS dynamics . . . . . . . . . . . . . . . . . . . . . . . . 139

6.8 Background subtraction for scattered intensity . . . . . . . . . . . . . . . . . . . . . 140

6.9 Simulated domain pattern and comparison of the simulated and experimental RMS . 143

6.10 Fitted spatial filter in Fourier space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.11 Extracted laser-induced evolution of magnetic domains . . . . . . . . . . . . . . . . . 147

6.12 Laser-induced changes in domains with a Gaussian spatial filter . . . . . . . . . . . . 148

6.13 Schematic of the spin transport model . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.14 Simulated laser-induced changes in domains . . . . . . . . . . . . . . . . . . . . . . . 152

6.15 Depth gradient of the IR laser excitation . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.16 Temperature-dependent magnetization of the FeCo/Ni multilayer . . . . . . . . . . . 156

6.17 Electron, lattice and spin temperatures of FeCo/Ni . . . . . . . . . . . . . . . . . . . 156

6.18 Calculated depth-dependent magnetization profile and comparison with the XMCD

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.19 Subdivision of a thick domain sample into layers . . . . . . . . . . . . . . . . . . . . 159

6.20 Experimental temperature dependence of the magnetic anisotropy for the FeCo/Ni

sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.21 Calculated time-dependent domain wall width . . . . . . . . . . . . . . . . . . . . . . 162

7.1 Geometry and notations for a diffraction problem . . . . . . . . . . . . . . . . . . . . 167

7.2 CDI algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.3 Flow of the ePIE algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.4 Simulation of a ptychographic reconstruction of magnetic domains . . . . . . . . . . 175

A.1 An approach for a depth-sensitive T-MOKE calculation . . . . . . . . . . . . . . . . 202

A.2 T-MOKE EUV depth sensitivity function of a 10 nm Co film . . . . . . . . . . . . . 203



xvi

B.1 A periodic scattering structure for RCWA . . . . . . . . . . . . . . . . . . . . . . . . 206

C.1 Electron specific heat of Ni, Co, Cu, and Ta . . . . . . . . . . . . . . . . . . . . . . . 221

C.2 Lattice specific heat of Ni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

C.3 Magnetic specific heat of Ni and Co . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

C.4 Electron thermal conductivity of Ni . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

C.5 Temperature-dependent electron-phonon coupling . . . . . . . . . . . . . . . . . . . . 228

D.1 Bad pixel map for the tabletop RMS expereiment . . . . . . . . . . . . . . . . . . . . 230



Chapter 1

Motivation and Scope

Throughout its history, the research of magnetism has always been at the frontier of scien-

tific knowledge. The discovery of electromagnetic induction by Michael Faraday in 1831 laid the

foundation for the unification of electricity and magnetism and the subsequent development of the

classical electromagnetic theory by James Maxwell.

In the late 1920’s, the concept of spin, an intrinsic angular momentum of elementary particles,

was introduced in quantum mechanics by George Uhlenbeck, Samuel Goudsmit, and Ralph Kronig,

and the theoretical formalism was later developed by Wolfgang Pauli and Paul Dirac for the non-

relativistic and relativistic cases, respectively. The property of spin gives rise to the intrinsic

magnetic moments of elementary particles, and, therefore, the magnetic moments of atoms, which

they make up, and, in turn, the magnetic moments of solids, which those atoms constitute. Around

the same time, in 1928, Werner Heisenberg proposed his model of the spin-dependent exchange

interaction, which became the first successful quantum mechanical picture of ferromagnetism and

explained the nature of the phenomenological molecular field inside a ferromagnet postulated by

Pierre-Ernest Weiss in 1907.

In the 1930’s, developments in the band theory of ferromagnetism were made by Edmund

Stoner, John Slater, and Neville Mott. However, despite this progress and the success of the density

functional theory in the second half of the 20th century, our understanding of magnetism is still

lacking. Even for the simple itinerant ferromagnets (Fe, Co, and Ni) there is no satisfactory theory

that simultaneously explains their fractional magnetic moments and finite-temperature properties.
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The dynamical evolution of a ferromagnet arising in response to a strong excitation, e.g. by a laser

pulse, is a similarly poorly understood phenomenon.

Yet such understanding is of paramount importance for reasons that are both fundamental

and applied in nature. From a fundamental standpoint, the understanding of magnetic materials,

perhaps, holds an answer to high temperature superconductivity and, in more general terms, to a

better understanding of strongly correlated quantum systems.

From an applied standpoint, the motivation for a better understanding comes from the tech-

nology sector, as it historically has. Specifically, the chip manufacturing industry is at a point where

it has become increasingly difficult to fulfill the projections of Moore’s law. Modern lithographic

techniques are exploring the emerging extreme ultraviolet technology in order to manufacture chips

with smaller features, but this same challenge of miniaturizing features on a chip will have to be

faced again once the benefits of this technology have been exhausted. In addition, such miniatur-

ization is often associated with increased energy dissipation.

A possible solution to these problems would be to exploit the spin degree of freedom in order to

encode and transfer information, which is the subject of the field of spintronics [1, 2, 3]. It has been

shown that spintronic devices, such as the non-volatile magnetic random access memory (MRAM),

can be very energy-efficient [4, 5], which is highly relevant in the context of wide-spread battery-

powered personal devices, and can be readily integrated with existing semiconductor microchips.

Spintronic devices are also remarkably well suited for neuro-inspired computer architectures [6].

Such architectures, as opposed to the classical von Neumann architecture with centralized process-

ing, are very desirable for data mining and deep learning algorithms that are needed to analyze

the vast amount of data that is being generated worldwide at an ever increasing rate. A significant

portion of this data can be of great value. New markets relying on big data analytics are already

to emerging, and tailor-engineered magnetic materials can be an underpinning technology for all

of this.

Additionally, a problem associated with high rates of data production is its storage. Despite

significant progress in the flash-based data storage technology, the cost and lifetime of solid-state
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drives prohibit their use for archival purposes. Hard-disk drives thus remain relevant—although

their use has started to shift from personal devices to cloud storage facilities—and research is still

being done to increase their capacity and efficiency while lowering the cost. For a new generation

of spintronic and magnetic devices, a possibility of switching their state with laser pulses—the

fastest man-made events in the Universe—is being explored in order to achieve the fastest possible

switching speeds.

As elements on microchips become smaller and faster, and are expected to reach nanometer

spatial and femtosecond temporal scales in the future, the applications listed above will ultimately

require a coherent control of the spin degree of freedom in order to overcome the speed limit

imposed by the induction laws of classical electromagnetism. This goal requires a fundamental

understanding of the magnetic interactions in a material at various time and length scales.

A lack of such understanding is caused by the fact that, until recently, there hadn’t been

experimental tools that allowed us to observe magnetism at its relevant time and length scales.

The relevant timescale in magnetism can be estimated from the time-energy uncertainty relation

∆E∆t ∼ ~. With the characteristic exchange interaction energy of ∼ 0.5 eV, ∆t ∼ ~/∆E ∼ 1 fs.

The relevant length scales for magnetism range from interatomic distances (∼ 1 Å) for the exchange

interaction to correlation lengths extending to several tens of nm for magnetostatic interactions

[7, 8]. This motivates the need for a tool that can probe magnetism on femtosecond time and,

ideally, sub-nanometer length scales.

Figure 1.1 demonstrates the characteristic time and length scales for various systems and

processes in the nano-world, and the temporal and spatial resolution of the tools currently available

to carry out measurements of such systems. Unsurprisingly, there is no universal tool capable of

providing both a very high temporal and spatial resolution . As shown in the figure, synchrotrons

have the highest spatial resolution [9], while laser-driven high harmonic sources are unrivaled in

terms of their temporal resolution [10, 11, 12, 13, 14]. Free-electron lasers (FELs) occupy the middle

ground between synchrotrons and high harmonic sources with regards to their spatial and temporal

resolution [15] and, in addition, provide a very high brightness. There has also been recent progress
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in time-resolved electron [16] and Lorentz [17] microscopy. For the purposes of studying magnetism,
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Figure 1.1: Relevant time and length scales of nano-systems and spatial and temporal resolution
of selected tools available to study them.

the tool also needs to be sensitive to the spin degree of freedom. Apart from purely scientific

merits, usability considerations, such as ease of access to the tool, must be taken into account. The

latter makes tabletop high-harmonic sources very attractive for time-resolved EUV magneto-optical

spectroscopy. Additionally, such sources generate short wavelength light, which makes them well

suited for imaging magnetic textures with ∼10 nm features, which is relevant in a wide variety of

magnetic systems and devices. Current developments in the mid-infrared (mid-IR) laser technology

will enable soft X-ray (SXR) high harmonics, which will further improve the resolution to ∼1 nm.

High harmonic sources thus have a potential of becoming a mainstream instrument for dynamic

magnetic microscopy with high temporal and spatial resolution. This development would make the

resources of state-of-the-art large-scale facilities available for more demanding experiments that,

for example, require a high-brightness X-ray probe and would ultimately accelerate the progress in

the study of materials and their magnetism.
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This thesis is primarily focused on studying the phenomenon of ultrafast magnetization dy-

namics in multilayer films with tabletop high harmonic sources by use of both spectroscopic and

spatially-resolved resonant scattering approaches. A portion of the thesis is dedicated to a develop-

ment of high harmonic sources with full polarization control and to a time-resolved resonant mag-

netic scattering experiment at the LCLS FEL. In the introductory Chapter 2, I discuss the nature of

magnetism in metals and its interaction with polarized light that leads to various magneto-optical

phenomena, which thus allow us to measure magnetic systems with an optical probe. In Chapter 3,

I discuss the process of high harmonic generation in detail and present a method of generating

high harmonics with a two-color laser driver, which makes it possible to fully control their polar-

ization. I also briefly discuss generation of coherent soft X-ray pulses in an FEL. In Chapter 4, the

development of new EUV magneto-optical techniques is described. These techniques enable a com-

plete characterization of a material’s magneto-optical permittivity and, through ab initio density

functional theory calculations, can capture the microscopic mechanisms at play during ultrafast

demagnetization. In Chpater 5, I develop a spatially resolved EUV magneto-optical approach by

use of resonant magnetic scattering (RMS) and study the formation of field-induced magnetic tex-

tures. In Chapter 6, I report the experimental results of a dynamic RMS experiment performed

at LCLS. The analysis of the results, along with the relevant simulations, reveals the role of spin

transport and non-uniform pump absorption in the laser-induced dynamics of magnetic domains.

Finally, in Chapter 7, I provide an outlook for future work in the field and explore avenues for

real-space time-resolved EUV magnetic microscopy.



Chapter 2

Introduction

In this chapter, I review several fundamental aspects pertaining to the field of materials’

magnetism and its dynamics. I discuss the fundamentals of magnetism in materials and the effect

it has on their optical properties, which, in turn, give rise to various magneto-optical phenomena

and thus allow us to observe magnetism with an optical probe.

2.1 Magnetism of metals

Our present-day understanding of magnetism is rooted in two distinctly different models:

the Heisenberg model and the Stoner model. The former describes the macroscopic magnetization

as arising from an alignment of microscopic magnetic moments in the Heisenberg exchange field

inside a material and successfully explains finite-temperature phenomena such as the temperature

dependence of the magnetization and magnetic susceptibility. However, this model fails to explain

the magnitude of the microscopic moments. The latter Stoner model considers delocalized electrons

which form energy bands in the periodic potential of the crystal lattice. In this model, the difference

in the number of electrons in the bands with opposite spins gives rise to an uncompensated magnetic

moment. The Stoner model, on the other hand, cannot predict the finite-temperature properties

of magnetic materials. Historically, attempts to develop a unified description of magnetism have

taken either the Stoner or the Heisenberg model as a starting point, but, to date, a first principles

unified theory is still lacking.

In the following, I review the Stoner and Heisenberg models with an emphasis on the 3d tran-
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sition metals (Fe, Co, and Ni). I also provide a brief overview of the other two aspects of magnetism

that this thesis is concerned with: Magnetic domains and textures, and ultrafast magnetization

dynamics.

2.1.1 Origin of the band structure and the Stoner model

The Stoner model of ferromagnetism in metals was developed in the 1930’s by Mott, Slater,

and Stoner in an attempt to explain the broken magnetic moment values of ferromagnetic metals

[18, 19, 20, 21, 22]. The magnetic moments of atoms are well known to be multiples of the Bohr

magneton µB: m = (2s + l)µB/~, where s and l are the spin and orbital moments, respectively.

Consider, for example, atoms of the 3d magnetic metals Fe, Co, and Ni. For Fe, the ground state

electronic configuration is [Ar]3d64s2, which leaves 4 unfilled electron states in the d -shell. Ac-

cording to Hund’s rules, the minimum energy configuration must maximize the total spin quantum

number in that shell, which leads to 4 unpaired electrons and thus to a magnetic moment of Fe

of 4µB. Similarly, for Co and Ni, the corresponding moments are 3µB and 2µB. In principle,

the orbital moment also needs to be included, but in any case, a prediction based on the single

atom picture gives integer magnetic moments. This compares poorly with the measured magnetic

moment values in solids of 2.216µB for Fe, 1.715µB for Co, and 0.616µB for Ni. The Stoner model

was able to successfully predict the correct values of the magnetic moments of metals by taking

into account the fact that in solids atomic levels become broadened and form energy bands. The

formation of the bands can be understood qualitatively as a result of a perturbation of the atomic

Coulomb potential due to bonding interactions. Valence states are less localized and are subject to

stronger perturbations than the more localized core-level states, which is why valence energy levels

are broadened stronger than the core levels. The periodicity of the lattice potential determines the

exact details of the band structure.

Today, density functional theory (DFT) [23, 24, 25, 26] can be used to carry out precise band

structure calculations. The details of DFT are beyond the scope of this thesis, but I shall briefly

outline its main principles.
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DFT is concerned with finding the ground state of a many-electron system, which could be

a bulk solid, an interface, or a nano-particle, for example. In other words, the goal is to find the

minimum energy eigen-solution of the non-relativistic time-independent Schrödinger equation for

a system of N electrons

Ĥ |ψ (~r1, . . . , ~rN )〉 = E |ψ (~r1, . . . , ~rN )〉 (2.1)

where Ĥ is the Hamiltonian of the system, E is its eigenvalue, and |ψ (~r1, . . . , ~rN )〉 is the eigen-

function, ~ri are the spatial coordinates of the particles. The Hamiltonian has several terms, each

describing a specific type of interaction

Ĥ = T̂ + V̂ + Û =
N∑
i

(
− ~2

2mi
∇2
i

)
+

N∑
i

V (~ri) +
1

2

N∑
i 6=j

U (~ri, ~rj) (2.2)

where T̂ is the kinetic energy term, V̂ is the potential energy of the electron-lattice Coulomb

interaction, and Û describes the electron-electron interaction. Because of this interaction, electrons

cannot be considered as independent, and the eigenvalue problem (2.1) becomes virtually intractable

without applying special techniques.

One particular advantage of DFT is that it simplifies the problem by reformulating it in

terms of a single-particle in an effective potential. As a result, the number of degrees of freedom

is reduced to four (three spatial coordinates and spin) from 4N . This is done by introducing an

electron density ρ (~r). In the framework of the Hohenberg-Kohn-Sham DFT method [27, 28], the

ground-state wavefunction |ψ0 (~r1, . . . , ~rN )〉 is uniquely determined by the ground-state electron

density. In other words, the wavefunction is a functional of the electron density:

|ψ0〉 = |ψ [ρ0]〉 . (2.3)

By extension, any observable, particularly the ground-state energy, is also a functional of ρ

E = E [ρ] = 〈ψ [ρ]| T̂ + V̂ + Û |ψ [ρ]〉 . (2.4)

The second Hohenberg-Kohn theorem [27] states that E [ρ] is minimized for the ground-state elec-

tron density ρ0, and it thus follows that the first order variation of the energy with respect to ρ is
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stationary. Under a particle number constraint N =
∫
d3~rρ(~r) this statement can be expressed as

δ (E [ρ]− µN)

δρ
= 0, (2.5)

where µ is the chemical potential. Problem (2.5) is solved by introducing an auxiliary system of

non-interacting particles moving in an external effective potential V̂s. Equation (2.5) then yields

the Kohn-Sham equations: [
− ~2

2m
∇2 + V̂s

]
|φi (~r)〉 = εi |φi (~r)〉 ,

ρ (~r) =
N∑
i

〈φi (~r)〉2 .
(2.6)

The effective potential V̂s consists of three terms: the periodic lattice potential V̂l (~r), the electron-

electron Coulomb repulsion V̂H , known as the Hartree term, and the exchange correlation term

V̂XC [ρ]

V̂s = V̂l + V̂H + V̂XC = V̂l +
e2

4πε0

∫
d3~r ′

ρ (~r ′)

|~r − ~r ′|
+ V̂XC [ρ] . (2.7)

Since V̂s depends on ρ, equations (2.6) must be solved in a self-consistent manner. Typically, the

procedure starts with a guess for ρ (~r), then V̂s is calculated and eqs. (2.6) are solved. The solution

is then used to update ρ (~r). The steps are repeated iteratively until a convergence condition is

reached.

In magnetic materials, the total electron density is a sum of the spin-up and spin-down

densities ρ (~r) = ρ↑ (~r) + ρ↓ (~r). The exchange correlation potential in eq. (2.7) then becomes spin-

dependent, i.e., V̂XC = V̂XC [ρ (~r) , σ (~r)], where σ (~r) = ρ↑ (~r) − ρ↓ (~r). The first equation in (2.6)

is split into two—one for each spin direction, and the iterative solution procedure described above

yields a spin-dependent band structure which defines a dispersion relation for each band index n

in a 3-dimensional k-space ε↑↓n = ε↑↓n
(
~k
)

. From this dispersion relation, the total (spin-resolved)

density of states (DOS) can be obtained by counting available states per unit volume in an energy

interval [ε; ε+ dε]. Mathematically, this is expressed as an integral over surfaces of constant energy

ε (such as the Fermi surface shown in Fig. 2.1) in k-space [29]

g↑↓ (ε) =
1

(2π)3

∑
n

∫
dS~k∣∣∣∇~kε↑↓n ∣∣∣ , (2.8)
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where dS~k is a surface element (see Fig. 2.1). The spin-resolved density of states for fcc cobalt is

Figure 2.1: Fermi surfaces of fcc cobalt for spin-up and spin down states in the Brillouin zone. The
surfaces were computed using the Elk code [30]. An area element used in eq. (2.8) is shown on the
spin-down surface. Note that there are several spin-up Fermi surfaces originating from different
bands.

shown in Fig. 2.2. The spin-up energy band is shifted by an amount ∆ex relative to the spin-down

band. This shift is called the exchange splitting, and it originates from the exchange-correlation

potential V̂XC in eq. (2.7). On a more fundamental level, it is caused by the Pauli exclusion

principle. Because electrons are fermions, the same state cannot be occupied by more than one

electron, and when a spin is flipped from, say, the spin-up to the spin-down band, it will occupy

a higher energy state. The Pauli exclusion principle thus gives rise to an energy cost associated

with a single spin flip in the presence of all the other spins. For that reason, the exchange splitting

is called the spin-flip energy. Spin-flip excitations are known as Stoner excitations and are on the

order of ∼1 eV, which is determined by the magnitude of the exchange splitting. The relative

strength of interactions within the Stoner and Heisenberg models is discussed in subsection 2.1.3.

Notice that the number of occupied states for the spin-up band (blue shaded area) is smaller than

that for the spin-down band (orange shaded area). This is because in equilibrium, the chemical

potentials of particles in both bands must be equal, and so the highest filled energy level is the
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same in the spin-up and the spin-down bands. This leads to a greater total number of electrons in

the spin-down band, which is called the majority band. The spin-up band is called the minority

band. The choice of up and down is arbitrary, but it is important that the spins in the two bands

are aligned in opposite directions relative to one another.
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Figure 2.2: Spin-up (minority states) and spin-down (majority states) DOS for fcc Co. Filled states
up to the Fermi level are shaded with color. The majority and minority bands are shifted in energy
with respect to one another by an amount ∆ex called the exchange splitting.

The difference in the number of majority and minority electrons gives rise to an uncompen-

sated magnetic moment

mtot =
~
2
γe

∫
(g↓ (ε)− g↑ (ε)) f (ε, T ) dε, (2.9)

where γe is the electron gyromagnetic ratio, and f (ε, T ) =
(
e(ε−µ)/kBT + 1

)−1
is the Fermi-Dirac

distribution, where µ is the chemical potential that also depends on the temperature T . Because

the gyromagnetic ratio for the electron is negative, the magnetic moment points in the direction

of the minority spins. Equation (2.9) yields fractional magnetic moments for ferromagnetic metals

that agree well with experiment.

Because of its ability to explain fractional magnetic moments, the Stoner model became a
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significant breakthrough in the 1930’s. To reiterate, in the Stoner model, valence electron states

form energy bands, one spin-up and one spin-down. The two bands are shifted in energy with

respect to one another, which, in equilibrium, results in a difference in the number of electrons

filling each band. This difference leads to an uncompensated magnetic moment that is, generally

speaking, non-integer, according to eq. (2.9). However, despite the success of this model, it still

has major limitations. In particular, the Stoner model cannot predict the temperature dependence

of the magnetic properties, such as, for instance, the Curie temperature of metals.
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Figure 2.3: Comparison of the experimental temperature-dependent magnetization [31] and the
Stoner model prediction for Co.

The Curie temperature is a temperature at which the macroscopic magnetization of a ferro-

magnet vanishes. In eq. (2.9), the temperature dependence of the magnetic moment is entirely due

to the temperature dependence of the Fermi-Dirac distribution f (ε, T ). This leads to an overesti-

mation of the Curie temperature by a very significant amount. A comparison of the experimental

temperature-dependent saturation magnetization of Co and a Stoner model prediction calculated

with eq. (2.9) is shown in Fig. 2.3. In the figure, the calculated decay of the magnetization with

temperature is underestimated because the density of states from Fig. 2.2 used in eq. (2.9) remains

rigid, i.e., it is temperature-independent. If the exchange splitting was reduced at elevated temper-

atures, the magnetization would reduce faster. But even if an exchange splitting reduction were to



13

be accounted for, the large magnitude of ∆ex on the order of ∼1 eV, as mentioned above, requires

temperatures of ∼ 104 K in order for the exchange splitting, and thus the magnetic moment, to

vanish. This renders the Stoner model unsuited for explaining the temperature-dependent magnetic

properties of materials. This problem is solved in the Heisenberg model.

2.1.2 Localized electrons and the Heisenberg model

Unlike the Stoner model, the Heisenberg model does not start from first principles. Rather,

it considers a chain of localized magnetic moments that interact with one another by means of a

quantum mechanical exchange. The strength of this exchange is an input parameter for the model.

The Heisenberg model is closely related to the Weiss mean-field model of ferromagnetism, and for

the sake of simplicity, I will first derive the temperature dependence of the magnetization in the

Weiss mean-field approximation and then explain the nature of the mean field in the context of the

Heisenberg exchange.

In 1907, Peter Weiss postulated the existence of a molecular field inside a ferromagnet that

aligned all the microscopic magnetic moments in the direction of the field and that was proportional

to the magnetization with a field constant β [32]

HW = βM. (2.10)

The mean B-field in the material is BW = µ0 (1 + 1/β)HW , where µ0 is the magnetic permeability

of vacuum.

Note that this is based on the SI system definition of the H-field ~H = ~B/µ0 − ~M . By this

definition, magnetization ~M has the units of A/m, the same as the field strength ~H. An alternative

definition is sometimes encountered where ~H = 1/µ0

(
~B − ~M

)
, and ~B and ~M both have the units

of Tesla. The first definition ~H = ~B/µ0 − ~M is used throughout this thesis.

Consider N identical magnetic dipoles ~µ in a field ~BW . The potential energy of the ith dipole

in the field ~BW is Ei = −~µi · ~BW = −µBW cos θi, where θ is the angle between ~µ and ~BW . A
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single-dipole partition function is then [33]

Z =
∑
i

exp

[
µBW cos θi

kBT

]
. (2.11)

Assuming ~BW is along the z-axis, the average magnetic moment µz along this axis can be written

as [33]

µz =

∑
i
µ cos θi exp

[
µBW cos θi

kBT

]
∑
i

exp
[
µBW cos θi

kBT
.
] . (2.12)

And the total magnetization of a system of N dipoles is M = Nµz. If the system is quantized and

the dipole moments are due to unpaired spin-1/2 electrons, then the angle θi takes only two values:

0 and π, and the magnitude of the magnetic moment is one Bohr magneton µ = µB. In this case,

eq. (2.12) can be simplified, and the magnetization becomes

M = µBN
exp

[
µBBW
kBT

]
− exp

[
−µBBW

kBT

]
exp

[
µBBW
kBT

]
+ exp

[
−µBBW

kBT

] = µBN tanh

(
µBBW
kBT

)
. (2.13)

This equation, together with eq. (2.10) and the magnetization at 0 K M(0) = µBN , gives an

equation for the temperature-dependent magnetization

M(T )

M(0)
= tanh

(
µBµ0(β + 1)M(T )

kBT

)
. (2.14)

The argument of the tanh is small near the Curie temperature TC , and, keeping only the first order

term in its Taylor series expansion, one can obtain an expression for TC

TC =
µB
kB

µ0(β + 1)M(0). (2.15)

With an experimental value of the Curie temperature for a given material, eq. (2.14) can be solved

numerically to find M(T )/M(0). A result for Cobalt is shown in Fig. 2.4. An agreement with the

experimental data is much better than that in Fig. 2.3.

Because the Weiss mean-field theory gives a fairly accurate prediction of the temperature-

dependent magnetization, it is possible to use expressions (2.15) and (2.10) to estimate the mag-

nitude of the molecular field BW inside a material. From typical values of ∼ 103 K for the Curie
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Figure 2.4: Comparison of the experimental temperature-dependent magnetization [31] and the
Heisenberg model prediction for Co.
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temperature of the ferromagnetic 3d metals, such as Fe, Co, and Ni, an estimated molecular field

BW ∼ 103 T. If this was an actual magnetic field, it would require the presence of charge currents

of such a high density that it would be above the damage threshold of the material itself.

The fact that ferromagnets exist means that the molecular field is not generated by charge

currents. It arises from a purely quantum phenomenon of exchange interaction due correlation

terms in the Hamiltonian describing a particular system, such as, for example, Û in eq. (2.2).

The minimal system necessary to understand the exchange interaction is a system with two

electrons, e.g., the He atom. Because electrons are fermions, the total wavefunction of a multi-

electron system must be antisymmetric under an exchange of any pair of electrons, according to

the spin-statistics theorem [34]. The Pauli exclusion principle is a consequence of this theorem. For

a two-electron system, the total wavefunction is a product of the spatial part |ψ (~r1, ~r2)〉 and the

spin part |χ (~s1, ~s2)〉

|ψasym(~a,~b)〉 = |ψsym,asym (~r1, ~r2)〉 |χasym,sym (~s1, ~s2)〉 . (2.16)

In order for |ψ(~a,~b)〉 to be antisymmetric, either |ψ (~r1, ~r2)〉 must be symmetric and |χ (~s1, ~s2)〉

antisymmetric or vice versa. These two possibilities correspond to the singlet and triplet states

of the two-electron system, respectively. In the singlet state, the spin part is antisymmetric, and

the total spin quantum number is S = 0; hence, the projection on the z-axis MS = 0. In the

triplet state, the spin part is symmetric, and the total spin quantum number S = 1, and the spin

projection quantum number MS = −1; 0; 1. When applied to the He atom, the electron-electron

interaction term in the Hamiltonian of the form Ĥee = e2/4πε0 |~r1 − ~r2|, treated as a first order

perturbation, gives rise to an energy difference ∆E between the singlet and triplet excited states.

This difference is called the exchange energy. Thus, the exchange interaction is a result of the

Coulomb repulsion between the electrons and a requirement of the Pauli exclusion principle that

the total wavefunction of the system must be antisymmetric. For a detailed derivation of ∆E see

Refs. [8] and [35].

In the Heisenberg Hamiltonian, which describes a system of interacting spins, the interaction
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between the spins is parametrized with an exchange coupling Jij

ĤHeis = −
N∑
i 6=j

Jij~̂si · ~̂sj = −2

N∑
i<j

Jij~̂si · ~̂sj , (2.17)

where the exchange integral (or exchange coupling) Jij is similar to that for the He atom:

Jij =

∫∫
ψi(~r1)ψj(~r2)

e2

4πε0 |~r1 − ~r2|
ψ∗i (~r2)ψ∗j (~r1)d3~r1d

3~r2. (2.18)

Unlike in the He atom case, this exchange integral cannot be readily evaluated in a solid where the

interactions are much more complex. An additional aspect that makes the evaluation of Jij even

more difficult for a realistic ferromagnetic system is the fact that the magnetic moments are not

spin-1/2 electrons but are composite atomic spins. For those reasons, Jij is normally taken as a

model parameter.

With the Heisenberg Hamiltonian (2.17), it is possible to express the energy of the interaction

of the ith spin with all other spins as

Ei = −2~si ·
∑
j

Jij~sj . (2.19)

In the Weiss model, Ei = −~µi · ~BW , where the magnetic moment ~µi = gµB~si, and g is the

gyromagnetic factor. With this, the Weiss mean field can be identified in eq. (2.19).

~BW = − 2

gµB

∑
j

Jij~sj (2.20)

From this expression, it becomes immediately clear that the origin of the Weiss molecular field is

entirely due to the quantum mechanical exchange interaction. For this reason, it is also called the

Heisenberg exchange field. The DFT result discussed in the previous subsection is mapped onto

the Heisenberg model by separating the spin ~si into a constant component 〈~si〉 and a fluctuating

component ∆~si = ~si − 〈~si〉 and making a substitution ~si → 〈~si〉 in eq. (2.20). For a lack of a

satisfactory first principles theory, this approach is able to capture the fractional magnetic moment

predicted by the band theory at T = 0 K as well as the finite temperature predictions of the

Heisenberg model. More details on this topic can be found in Refs. [23] and [8].
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2.1.2.1 Spin waves

The Heisenberg model together with the mean-field theory gives a good prediction of the

finite temperature magnetic properties. However, the Hamiltonian in (2.17) needs to be examined

further in order to understand what microscopic excitations lead to the predicted temperature

dependence of the magnetization.

Consider a one-dimensional chain of spin-1/2 moments, such as in Fig. 2.5. It is described by

𝑛 𝑛 + 1𝑛 − 1

𝑎

Figure 2.5: One-dimensional infinite periodic spin chain. The lattice period is a. The position of
spin n is na

the Hamiltonian (2.17). I will consider a simplified case where only the nearest neighbors interact.

In this case, the exchange integral Jij = J when j = i ± 1 and Jij = 0 otherwise. This simplifies

the expression for the Heisenberg Hamiltonian. It can be simplified even further by using a realtion

between the Pauli vectors and the permutation operator ~̂si · ~̂sj = 2P̂ij − 1, which yields [36]

ĤHeis = −2J
∑
n

(
P̂n,n+1 − 1

)
. (2.21)

I label the state of the spin chain with the nth flipped moment as |n〉. In this notation, the action

of the permutation operator on the states is as follows:

P̂n,n+1|m〉 = |m〉 if m 6= n, n+ 1,

P̂n,n+1|n〉 = |n+ 1〉,

P̂n,n+1|n+ 1〉 = |n〉.

(2.22)
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With these relations, the matrix elements Hn,m = 〈n|ĤHeis|m〉 of the Hamiltonian (2.21) can be

evaluated [36]

Hn,n = 4J,

Hn,n+1 = Hn,n−1 = −2J,

Hn,m = 0 if |n−m| > 1.

(2.23)

Now, consider a state of the chain which is a superposition of states with a spin flipped at each

possible site

|ψ〉 =
∑
n

|n〉〈n|ψ〉 =
∑
n

Cn|n〉. (2.24)

where Cn is the probability amplitude that the spin on the nth site is flipped. If the spin-flip

excitation propagates down the chain, the probability that on any given site the spin is flipped

evolves with time, and this evolution must obey the time-dependent Schrödinger equation

i~
d|ψ〉
dt

= ĤHeis|ψ〉, (2.25)

which, with eqs. (2.23) and (2.24), turns into an infinite system of equations

i~
dCn
dt

=
∑
m

HmnCm = −2J (Cn−1 + Cn+1 − 2Cn) . (2.26)

If an excitation were to propagate unaltered, all the probability amplitudes Cn would have to

change at the same rate. In other words, this means that |ψ〉 is a definite energy state. Thus an

ansatz solution for Cn is

Cn = αne
−iEt

~ . (2.27)

Substituting this expression into eq. (2.26), a linear system of equations for the coefficients αn,

which determine the properties of an excitation, can be obtained

Eαn = −2J (αn−1 + αn+1 − 2αn) . (2.28)

Since the spin chain under consideration is periodic with a lattice constant a, it is reasonable to

expect that the coefficients αn are connected with one another also in a periodic manner. With a
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periodic ansatz αn = einka, a dispersion relation for an excitation propagating along the chain with

a wavenumber k = 2π/λ can be derived [36]

E = −2J
(
e−ika + eika − 2

)
= 4J (1− cos ka) . (2.29)

For long wavelengths (small k’s), the cosine in the expression above can be Taylor expanded, and,

keeping terms up to second order, the dispersion relation is simplified to

E = 2Jk2a2. (2.30)

Through the kinetic energy of a particle Ekin = ~2k2/2m, such an excitation corresponds to a

particle with an effective mass [36]

meff =
~2

4Ja2
. (2.31)

These particles are called magnons. A magnon can be interpreted as a propagating excitation

corresponding to a single spin flip distributed across an entire lattice. In the Heisenberg model,

these excitations are responsible for the finite-temperature properties of ferromagnets.

Even though the derivation above was performed for a one-dimensional spin chain, it contains

all of the essential physics, and the result can be generalized to three dimensions. Since an electron

spin is 1/2, a single spin flip reduces the total spin angular momentum of the chain by 1, which

means that magnons are integer-spin particles and, therefore, obey the Bose-Einstein statistics.

A magnetization reduction due to magnon excitations can then be calculated simply by counting

magnons. This can be done analytically at low temperatures (long magnon wavelengths) by inte-

grating the Bose-Einstein distribution, with the energy given by (2.30), over k. Since the number of

magnons is not conserved, the chemical potential is zero, and the Bose-Einstien distribution turns

into the Planck distribution

nk =
1

eE(k)/kBT − 1
. (2.32)

Integrating this expression, with E(k) given by eq. (2.30), over k in three dimensions gives the

famous Bloch law for the temperature dependence of the magnetization [37]

M(T ) = M(0)
(

1− (T/Θ)3/2
)
. (2.33)
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This dependence holds at low temperatures, and there are deviations from it near surfaces where

some magnon states are prohibited.

Because magnons are bozons, a single state can be occupied by an unlimited number of

magnons. Therefore, when the temperature is raised above 0 K, very long wavelength excitations

would destroy the magnetic order. In order to prevent this from happening, a small energy gap

must exist that prohibits such magnons. Magnetic anisotropy, which I discuss below, provides such

a gap.

Figure 2.6: Spin waves are classical analogs of magnons. The magnetic moments precess around
the direction of the mean field in a coherent manner: the phases of the precession for each spin are
correlated.

Sometimes, it is helpful to consider the classical analog of a magnon—a spin wave. I shall

provide a breif description of a spin wave, which is shown in Fig. 2.6. Just like a magnon, a spin

wave excitation is distributed along an entire lattice. Each magnetic moment precesses around the

direction of the mean magnetization. As a result, the magnitude of the moments’ projections on

this axis is reduced, which leads to an overall magnetization reduction. The precessional motion

of different spins is coherent, i.e., their phases are locked relative to one another. Such collective

dynamics amount to a propagating precession phase. This classical approximation can be useful

when DFT results are mapped onto the Heisenberg model. Particularly, there are DFT methods
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that yield correct finite-temperature results by applying a “frozen magnon” scheme, i.e., a spin

spiral in which magnetic moments are tilted in the same way as they are in a classical spin wave

[38]

2.1.3 Magnetic interactions in metals: itinerant and localized electrons

The reason that the Stoner and Heisenberg models result in such drastically different predic-

tions and have limited applicability is that they start from two contrasting initial assumptions. The

Heisenberg model assumes that the electrons are localized in real space, while the Stoner model

assumes that they are localized in reciprocal space [39]. In reality, the applicability of each of these

models is determined by the localization of the wavefunction of the electrons responsible for the

magnetic properties of a material, which is highly system dependent. In general, it depends on the

shape of the effective atomic potential, which includes a centrifugal term due to the orbital angular

momentum as a correction to the screened Coulomb potential [8]

Veff (r) = − Z
∗e2

4πε0r
+
l(l + 1)~2

2mer2
, (2.34)

where l is the orbital angular momentum quantum number. and Z∗ is an effective charge of the

nucleus that takes into account the screening by the inner shell electrons. An example effective

potential and a 3d radial wavefunction are shown in Fig. 2.7. With a typical lattice constant of

several Bohr radii a0, the wavefunctions from the neighboring lattice sites will overlap.

In rare-earth metals, such as Gd, the 4f valence shell is only partially filled and thus produces

an uncompensated magnetic moment. The wavefunction of the 4f electrons is highly localized [40],

and, therefore, the magnetic moments have a local, atomic character. Rare earth metals are well

described by the Heisenberg model.

The situation with the 3d transition metals Fe, Co, and Ni, is more complicated. The spatial

extent of the 3d orbitals is in the intermediate range (although they are localized in some insulators

[8]). The orbitals are localized enough to generate a significant local moment and, at the same time,

broad enough to provide a sizable overlap with the neighbors. The 3d electrons are often referred
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Figure 2.7: An effective potential and an outer shell wavefunction of a 3d element (Z∗ = 10).
The wavefunction extends to a few Bohr radii, which, in a solid, provides an overlap with the
neighboring wavefunctions.
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to as “itinerant” meaning that they are neither fully localized nor fully independent but rather

jump from atom to atom. The Stoner and Heisenberg models by themselves cannot fully explain

the full range of magnetic properties of the 3d ferromagnets, which necessitates a new theory of

magnetism that is currently lacking.

There have been attempts to develop a unified theory of magnetism that have chosen either

the Stoner or the Heisenberg model as a starting point. At present, a promising approach, called

the self-consistent renormalization theory, starts with the Stoner model and considers the feedback

of spin fluctuations on the band structure in a self-consistent manner. The details of this theory

are beyond the scope of this thesis and can be found in Ref. [39].

For a lack of a better theory, at the moment, it is customary to map the DFT zero-temperature

ground state onto the Heisenberg model, as mentioned above. In doing so, it is important to

understand the meaning of exchange in both models. In the Heisenberg model, the exchange

energy is the energy required to reverse a local moment composed of unpaired moments inside an

atom in the molecular mean field of all other moments. This energy is typically ∼200 meV. In the

Stoner model, the exchange energy corresponds to a single electron spin reversal in the sea of all

other delocalized electrons. Its value is close to the energy difference of the singlet and triplet states

of a two-electron atom and is on the order of ∼1 eV. The difference in the meaning of exchange in

the two models is illustrated in Fig. 2.8.

The large value of the exchange splitting in the Stoner model is the reason why it predicts

such high Curie temperatures, as discussed above. Because the exchange energy in the Heisenberg

model is much lower, the TC values predicted by it are much closer to the experimental ones.

Ultimately, this brings up the question of whether the magnetic moment is completely quenched

above TC or whether the macroscopic magnetization vanishes because of the disorder, while the

microscopic moments persist. The agreement of the Curie temperature predicted by the Heisenberg

model with the experimental values suggests that the latter is the case. This is important in the

context of ultrafast demagnetization, which I discuss below, because it limits the number of available

relaxation channels for an excited spin system.
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Figure 2.8: Exchange in the Stoner and Heisenberg models. In the Heisenberg model (left), the
exchange energy corresponds to a reversal of a local magnetic moment in the mean exchange field
of other moments. In the Stoner model, it corresponds to a spin flip of a single electron in the sea
of all other electrons.
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2.1.4 Spin-Orbit Interaction

The spin-orbit interaction couples spins to the lattice and leads to the magnetocrystalline

anisotropy Ku [41] by breaking the symmetry of the isotropic exchange interaction and thus sets a

macroscopic magnetization direction. It was discovered spectroscopically through the fine structure

of atomic spectra of alkali metals. Qualitatively, it can be understood as the coupling of the spin of a

bound electron to its orbital motion. In the frame of reference of the electron, the nucleus effectively

orbits it creating a magnetic field ~B. The field strength depends on the orbital angular momentum

~L of the electron and its distance to the nucleus, which is determined by the n quantum number.

The interaction of the electron spin ~S with this field causes a shift in its energy by Eso = − ~B · ~S.

Since ~B is proportional to ~L, the spin-orbit Hamiltonian Ĥso can be written as [8]

Ĥso = ξnl~S · ~L, (2.35)

where ξnl is referred to as the spin-orbit coupling constant which depends on the quantum numbers

n and l and has the units of energy. It determines the strength of the spin-orbit interaction, which is

rather weak in the 3d ferromagnets—on the order of ∼ 10−100 meV and leads to a relatively small

orbital magnetic moment [8]. Despite its low magnitude, the spin-orbit coupling plays an important

role in setting a macroscopic magnetization direction. Because the crystal lattice has a preferred

direction, due to the anisotropy of the bonding between atoms, it breaks the isotropic symmetry

of ~L [42], which, in turn, sets the orientation of ~S since, in the minimum energy configuration, ~S

must be parallel to ~L. The energy difference between the parallel and perpendicular alignment of

~S and ~L is equal to the energy required to rotate the spins from their preferred easy-axis direction

to one orthogonal to it. This energy is referred to as the magnetocrystalline anisotropy energy.

Despite a direct connection with the spin-orbit interaction, the magnetocrystalline anisotropy

is still very difficult to estimate accurately because of the complex band structure calculations

involved, which precludes a clear physical insight into its origins [43]. Nonetheless, it is understood

that the magnetocrystalline anisotropy can be enhanced at interfaces due to missing chemical bonds

[44, 45] and used to engineer magnetic films with a magnetization direction perpendicular to their
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surface. The latter is critical for the creation of nanoscale magnetic domains and other magnetic

textures, which is why in order to obtain them, stacks of ultrathin magnetic layers, with a high

number of layer repeats to increase the number of interfaces, are typically grown.

2.1.5 Magnetic domains and textures

If a magnetic film were uniformly magnetized in the easy direction determined by its mag-

netocrystalline anisotropy, it would produce a stray magnetic field. In order to minimize this field,

the magnetization breaks into domains of opposite directions. Additionally, the shape anisotropy

Ks also contributes to the total internal energy of the film and thus affects the domain formation

[46]. In nanometer-thin samples with the easy axis parallel to the surface of the film, the stray

field is very small because it exits the film through the side surface whose area is negligible com-

pared to the front and back surfaces of the film, and, therefore, the film typically stays uniformly

magnetized. In samples with perpendicular magnetic anisotropy, the stray magnetic field is large,

and, in the absence of an external field, magnetic domains are formed. The domain size and shape

depend strongly on the magnetic interactions inside the sample, which can be controlled through

the multilayer structure of the film. Typically, the thinner the film the smaller the domains.

The transition region between two oppositely magnetized domains in which the magnetization

rotates from one direction to the other is called the domain wall. There are two distinct types of

domain wall, the Néel wall, where the magnetic moments rotate around the axis parallel to the

plane of the wall, and the Bloch wall, where the moments rotate around the axis perpendicular

to the plane of the wall. The two wall types are shown in Fig. 2.9. The type, size and energy of

domain walls are determined by the energy of the exchange interaction and magnetic anisotropy,

which compete with one another. For example, if the anisotropy is large, an alignment of the

moments parallel to the easy axis is favored. In order to minimize the total internal energy of the

film, the volume with any other orientation of the magnetic moments would have to be minimized.

For that reason, the width of the domain walls would have to be reduced. To the contrary, if the

exchange energy is high, changing the orientation of a magnetic moment relative to other moments
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becomes energetically unfavorable. Hence, in order to minimize the energy cost, the wall width

increases [8].

Bloch Wall Néel   Wall

Figure 2.9: Bloch (left) and Néel (right) domain walls. The magnetization in the Bloch wall rotates
around the axis perpendicular to the plane of the wall, while in the Néel wall, it rotates around the
axis parallel to the wall plane.

Similarly to the formation of magnetic domains, various competing interactions lead to other

magnetic textures. A particularly interesting example is magnetic vortices referred to as skyrmions

[47, 48, 49], which arise due to the ~µ×~µ-type Dzyaloshinsky-Moriya interaction [50, 51] or competing

domain wall energy and long-range dipolar interactions [52, 53, 54]. Skyrmions are said to be

topologically stable in a continuous field approximation, which breaks down on the scale of a discrete

atomic lattice. This topological stability makes them particularly attractive as information carriers

in energy-efficient logic devices [55, 56]. A skyrmion can be thought of as a magnetic domain

collapsed into a point and surrounded by a domain wall. Depending on the wall type, skyrmions

can either be chiral or non-chiral. The former originate from Bloch-type walls and the latter from

the Néel-type, as shown in Fig. 2.10.

Apart from topologically protected skyrmions, there is a variety of other textures such as

magnetic bubbles, spin spirals, etc. Because magnetic textures span a broad range of correlation

lengths from sub-nm to tens of nm and even µm, studying their static and dynamic behavior

could provide critical insight into the microscopic origins of magnetism. I report such studies in

Chapters 5 and 6.
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Chiral Non-Chiral

Figure 2.10: Bloch (chiral) and Néel (non-chiral) skyrmions.
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2.1.6 Optically-induced ultrafast magnetization dynamics

The phenomenon of ultrafast magnetization dynamics driven by a femtosecond laser pulse was

discovered in Ni in 1996 [57]. In this pioneering work, a magneto-optical polarization rotation of the

probe pulse reflected from a Ni film was observed at various delay times after an excitation of the

film by a 60 fs laser pulse. A sharp drop in the magneto-optical signal followed by a slower recovery

was observed. An example curve measured in Co is shown in Fig. 4.4 in Chapter 4. This work

opened up a new field in the magnetism research with the goal of understanding the microscopic

mechanisms behind ultrafast magnetization dynamics. Such an understanding is needed not only

from the perspective of fundamental research but also from an applied standpoint as it could

lead to a new generation of spintronic devices that can be operated on the natural timescales of

magnetism through a coherent control of their properties with light. Additionally, it could also

have implications for high-temperature superconductivity as it is closely related to magnetism.

Since the original discovery, various types of laser induced magnetization dynamics have been

found. They include type I and type II demagnetization dynamics and the phenomenon of all-optical

switching. Type I demagnetization is observed in the 3d ferromagnets where a recovery phase

happens immediately after an initial rapid loss of magnetization [58]. Type II demagnetization,

where the rate of magnetization loss slows down significantly with time, is observed in rare-earth

metals, their alloys, and other systems[59, 60, 61]. A magnetization reversal referred to as the

all-optical switching (AOS) by a single as well as multiple laser pulses has also been demonstrated

[62, 63, 64]. AOS suggests that light could directly couple to the spin system.

The difficulty in solving the puzzle of ultrafast demagnetization has to do with the com-

plexity of the interactions involved. The coupled electron, phonon, and spin systems are strongly

out of equilibrium, particularly on femtosecond timescales (see Fig. 2.11). There is also evidence

suggesting that the phonon system could be out of equilibrium even on picosecond timescales [65].

This presents a great challenge for both theory and experiment. The theoretical challenge is in

describing the transient dynamics of a many-body strongly coupled quantum system from first prin-
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ciples. The experimental challenge is to unambiguously capture the dynamics of each of the three

interacting systems, i.e., the electrons, lattice, and spins. Typically, a single technique is used for

the purpose of measuring the response of a particular system to a laser excitation. For example, the

lattice response can be accessed using EUV nanometrology [66], which measures the reflectivity and

diffraction efficiency of patterned films, or resonant X-ray diffraction. Electron dynamics can be

measured using photoemission or X-ray absorption spectroscopy or EUV and X-ray reflectometry,

and the response of the spin system can be captured with the help of magneto-optical spectroscopies

in the visible, EUV and X-ray spectral ranges as well as spin polarized photoemission. However,

each experimental method measures a certain observable, which might not necessarily represent a

pure electron, phonon, or spin system. For example, visible magneto-optical measurements have

been shown to be affected by non-magnetic contributions to the signal [67, 68]. For that reason,

studying the sample using multiple techniques can be advantageous because it can help disentan-

gle the magnetic and non-magnetic contributions, as, for example, was done in Ref. [69], which

reported a laser-induced ultrafast phase transition in Ni.

Although ultrafast demagnetization is a difficult subject, and, to date, no universal picture of

this phenomenon exists, the general underlying microscopic mechanisms, illustrated in Fig. 2.11, can

be understood, at least qualitatively, based on the conservation of energy and angular momentum,

which is key for magnetism. On timescales of a few femtoseconds to tens of femtoseconds, the

Excitation
of electrons
(and spins)

Electron scattering
and thermalization

Demagnetization via
local mechanisms
and spin currents

Electron-phonon
coupling and
thermalization Thermal transport

10 fs 100 fs 1 ps 10 ps 100 ps

Figure 2.11: Timescales of electron, lattice, and spin dynamics after a laser excitation.
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electron system absorbs the energy from the laser pulse. If the laser pulse is circularly polarized, it

carries angular momentum, which upon absorption is transferred to the material and can eventually

result in a magnetization reversal via the AOS process discussed above. If the pulse is linearly

polarized, its net angular momentum is zero, and the energy absorbed by electrons is transferred

to the spin and lattice systems on timescales that range from tens of femtoseconds to tens of

picoseconds. Simultaneously, the three systems thermalize by means of various electron, magnon,

and phonon scattering processes. Spin excitations lead to a decrease in spin polarization. Because

angular momentum must be conserved and the net angular momentum transferred to the material

by the pulse is zero, a reduction in spin polarization generates a net angular momentum anti-parallel

to the direction of the majority spins. This means that an equal and opposite angular momentum

must be absorbed somehow.

One possibility is to transfer this excess angular momentum to the lattice via the spin-orbit

coupling, which is greatly enhanced for highly excited electrons and can thus happen on sub-

picosecond timescales [8]. This process would generate a phonon and a magnon with opposite

angular momenta, and magnons would reduce the net magnetization of the sample. Since the

specific heat of the spin system is much smaller than that of the lattice (see Appendix C), the

rise in the lattice temperature accompanying the exchange of angular momenta would be relatively

small, compared to the rise in the spin temperature.

Another possibility is to drive the excited majority spins out of the pumped volume. The

magnetization would then be reduced locally and enhanced elsewhere. In the case of magnetic

domains or two oppositely magnetized films, such spin-polarized currents would reduce the mag-

netization everywhere due to a direct exchange of angular momentum between either the domains

or the films.

Alongside all these processes, thermal diffusion also takes place. In metals, thermal transport

is mediated by electrons and can thus be rather fast, while lattice heating is limited by the strength

of electron-phonon coupling.

Laser-driven ultrafast magnetization dynamics is one of the main subjects of this thesis and
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is considered in both uniformly magnetized films as well as in the presence of a network of magnetic

domains in Chapters 4 and 6, respectively.

2.2 Origin of magneto-optical effects in the EUV and soft X-ray regions

The magnetic state affects the transition probabilities between different energy levels and can

therefore be probed optically. I start by discussing the effect of X-ray magnetic circular dichroism

(XMCD) which results in different absorption of left and right circularly polarized light. XMCD

was first predicted theoretically in 1975 at the M -edge of Ni[70] and measured experimentally in

1987 at the K-edge of Fe [71]. It can be understood with the help of the two-step model of XMCD

[72]. In the first step of the model, electrons are excited from the core 3p-states to 3d states by

circularly polarized photons, as seen in Fig. 2.12, which shows XMCD at the M -edge of a model

ferromagnet. A careful analysis of the transitions with appropriate dipole selection rules, namely

rightleft

Figure 2.12: 3p→ 3d transitions in a model ferromagnet.

∆l = ±1, ∆s = 0, ∆ml = ±1, and ∆ms = 0, yields an imbalance in the transition intensities for

spin-up and spin-down electrons (see Refs. [8] and [72] for details). In the absence of the exchange

splitting of the d-bands ∆ex, however, this imbalance does not manifest itself as XMCD. The latter

requires a second step, in which the exchange-split d-bands act as a spin detector. In Fig. 2.12,
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unoccupied states above the Fermi level exist only for the minority spin-up states, which means

that only spin-up electrons photoexcited from the 3p states can be absorbed. Combined with an

asymmetry in transition intensities between spin-up and spin-down electrons for circularly polarized

incident light, this results in an absorption asymmetry between the two circular polarizations.

The dipole matrix elements of the transitions between initial i and final f states for linear

and right and left circular polarizations are [72]

Dlinear = 〈i| ẑ |f〉 ,

Dright = 〈i| x̂+ iŷ |f〉 ,

Dleft = 〈i| x̂− iŷ |f〉 .

(2.36)

First principles calculations of the transition elements are difficult yet necessary for the computation

of the optical properties of materials by use of the linear response theory [73], which allows one to

calculate the rank 2 optical conductivity tensor σ̂ [74, 75] related to the dielectric tensor ε̂ as

ε̂ = Î +
4πi

ω
σ̂, (2.37)

where Î is the identity matrix.

The dielectric tensor, in general, has non-zero off-diagonal components εxy, referred to as the

magneto-optical dielectric permittivity, which give rise not just to XMCD, but to other magneto-

optical effects as well. Because the transition matrix elements given by eq. (2.36) are complex, εxy is

also complex and therefore affects both the amplitude and the phase of the transmitted EUV light.

The latter, in the case of linearly polarized light incident normal to the surface of an out-of-plane

magnetized film, leads to a magneto-optical rotation of the polarization, known as the Faraday

effect. More details on the magneto-optical effects in a transmission geometry can be found in

Chapter 5.

In reflection geometries, εxy affects the Fresnel reflection coefficients and leads to magneto-

optical changes in the amplitude, phase and polarization of the reflected light, known as the

magneto-optical Kerr effect (MOKE). Based on the symmetry of the dielectric tensor, there are

three special cases when the magnetization is oriented in three distinct directions with respect to
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the material’s surface and the plane of incidence, as shown in Fig. 2.13, which are called longitudinal

(L), polar (P), and transverse (T) MOKE.

Figure 2.13: P- (blue), L- (green), and T-MOKE (red) geometries. The geometries are defined
with respect to the plane of incidence of the probe and the surface of the sample. In P-MOKE, the
magnetization mz is orthogonal to the surface and parallel to the plane of incidence; in L-MOKE,
my is parallel to both; in T-MOKE, mx is parallel to the surface and orthogonal to the plane of
incidence.

An analysis of the Maxwell boundary conditions at an interface between vacuum and a semi-

infinite magnetized layer yields magneto-optical Kerr rotation θMOKE and ellipticity EMOKE for

the incident s- and p-polarizations for L- and P-MOKE, which, combined in a single complex

quantity, are written as [73]

θ
(s)
L−MOKE + iE

(s)
L−MOKE ≈

εxy√
εxx(εxx − 1)

(
cosφi tanφt
cos (φi − φt)

)
,

θ
(p)
L−MOKE + iE

(p)
L−MOKE ≈

εxy√
εxx(εxx − 1)

(
cosφi tanφt
cos (φi + φt)

)
,

θ
(s)
P−MOKE + iE

(s)
P−MOKE ≈

εxy√
εxx(εxx − 1)

(
cosφi

cos (φi − φt)

)
,

θ
(p)
P−MOKE + iE

(p)
P−MOKE ≈

εxy√
εxx(εxx − 1)

(
cosφi

cos (φi + φt)

)
,

(2.38)

where φi is the angle of incidence and φt is the angle of refraction, and εxx is the diagonal element

of the dielectric tensor. L-MOKE and P-MOKE geometries require a polarization analysis of the

magneto-optical reflections, which is difficult in the EUV spectral range due to a lack of efficient

polarizers. Unlike L- and P-MOKE, T-MOKE shows no change in the polarization, however, for p-

polarization, there is a magneto-optical change in amplitude, which makes this geometry well suited
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for EUV magneto-optical spectroscopy. More details on EUV T-MOKE as well as an introduction

of a new magneto-optical spectroscopic technique can be found in Chapter 4.

2.3 Conclusions

In this chapter, the Stoner and Heisenberg models of magnetism have been discussed. In the

former model, electrons are delocalized whereas in the latter they are treated as local. The Stoner

model explains the fractional magnetic moments of metals, and the Heisenberg model correctly

predicts their thermodynamic properties. Spin fluctuations in the two models play an important role

in the magnetization dynamics of materials following an ultrafast laser excitation. I also discussed

the origin of magnetic domains and other textures, which may provide additional microscopic

relaxation channels for laser-driven magnetization dynamics.

The splitting of the spin-up and spin-down bands in a ferromagnet leads to a polarization- and

magnetization-dependent absorption of light, which underlies magneto-optical effects. The latter

effects allow us to access the magnetic state of a material with light, and the magnetic contrast is

enhanced at the elemental absorption edges.



Chapter 3

Ultrafast Sources of Coherent EUV and Soft X-ray Radiation

In this chapter, I discuss sources of extreme ultraviolet (EUV) and soft X-ray radiation, which

are capable of producing temporally and spatially coherent femtosecond pulses and can thus be

used in experiments studying ultrafast dynamics of materials and devices at the nanoscale with a

high temporal and spatial resolution. My main focus is on tabletop laser-driven sources based on

high harmonic generation (HHG), as they are the primary tool used in the experiments reported

in this thesis. I also briefly discuss the working principles of a free-electron laser (FEL), which was

used in the experiment reported in Chapter 6.

Historically, the first X-rays were produced in vacuum discharge tubes via bremsstrahlung

and X-ray fluorescence. Synchrotron radiation was discovered in 1947 [76], and conversions of

synchrotrons from particle accelerators into light sources started in the 1950’s. In synchrotrons,

radiation is produced by accelerating charged particles (most often electrons) moving at nearly

the speed of light, and the spectrum ranges from infrared wavelengths to hard X-rays. Due to its

small wavelengths, synchrotron light has been used to study many material and molecular systems,

but it lacks the temporal resolution necessary to study such systems at their natural timescales

(see Fig. 1.1). Today, laser-driven HHG sources and FELs are capable of providing both a high

spatial and temporal resolution and can be used for element-specific ultrafast studies of material

and molecular systems. HHG sources are particularly attractive as they are suited for laboratory-

scale experiments and provide ease of access and require less maintenance and operation costs than

large scale experimental facilities.
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3.1 High Harmonic Generation

The first observation of HHG was reported in 1987 [77, 78], and a broad HHG spectrum

generated with IR lasers with roughly similar harmonic intensities throughout the spectrum up to

an HHG cutoff energy was reported shortly thereafter [79, 80]. The development of the theory of

HHG started around the same time.

3.1.1 The three-step model

Historically, the first model of HHG was a semiclassical three-step model [81, 82, 83], shown

in Fig. 3.1. Within this model, in a single-atom picture, an electron starts in the ground state

and, when the atomic potential is distorted by the electric field of an incident laser pulse, it can

tunnel out of the atom. Given the typical ionization energies of noble gases of ∼15-20 eV, the tunnel

ionization requires laser intensities > 1014 W/cm2, which can be easily achieved using chirped pulse

amplification (CPA) [84, 85] of femtosecond laser pulses. The ionization rate is known as the ADK

rate after Ammosov, Delone, and Krainov who performed the original fully quantum calculations

[86]. In the second step, the electron is accelerated in the laser field. Finally, for a range of phases

of the laser field, the electron trajectory is closed, and the electron recombines with the parent ion

emitting the energy it gained from the laser field in the form of a short-wavelength burst of light.

An electron motion in the field can be described classically by Newton’s equations of motion.

For a linearly polarized laser driver, the problem becomes one-dimensional. Consider an electron

(charge −e, and mass me) in a harmonic field E0 cosωt, where ω is the angular frequency of the

field. An equation of motion then reads

meẍ+ eE0 cosωt = 0. (3.1)

Integrating this equation with the initial condition that, at the time of the ionization ti, of zero
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Figure 3.1: Three-step model of HHG. (a) Original and perturbed atomic potential along with the
driving laser potential. (b)-(d) Steps of the three-step model. (b) The atomic potential is disorted
by the laser field allowing tunnel ionization (the electron wavepacket is shown in red). (c) The
ionized electron is accelerated in the field gaining energy, (d) which is released in the form of a high
energy photon (purple) upon recombination with the parent ion.
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position x and velocity ẋ of the electron yields

ẋ = − eE0

meω
(sinωt− sinωti) ,

x =
eE0

meω

(
(t− ti) sinωti +

1

ω
(cosωt− cosωti)

)
.

(3.2)

Solutions for different ionization phases ωti are plotted in Fig. 3.2. Note that in order for the

Figure 3.2: Solutions of the three-step model for different ionization phases.

electron to recombine with the parent ion, the solution must cross zero, which is only true when

the initial phase 0 ≤ ωti ≤ π/2, within a single cylce of the laser driver.

The ponderomotive energy Up is defined as the time-averaged kinetic energy of the ionized

electron, and from eq. (3.2), it is found that

Up =
e2E2

0

4meω2
. (3.3)

Eq. (3.2) can be solved numerically to find ti that gives the maximum possible kinetic energy

Tmax of an electron upon recombination. The solution yields Tmax ≈ 3.17Up. The maximum

possible HHG photon energy hνmax is given by Tmax and the atomic ionization energy Ip, which is
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the potential energy of the ionized electron relative to its ground state

hνmax = Ip + 3.17Up. (3.4)

hνmax is also called the cutoff energy. It scales linearly with Ip, which, of the noble gases, is the

highest for He (24.59 eV), and is also linearly dependent on the laser intensity IL and the square

of the laser wavelength λ2. Therefore, in order to maximize the HHG photon energy, one must

use a gas with a high Ip, a laser driver with a high peak intensity IL, which can be obtained by

compressing the pulse temporally, and a long wavelength λ.

3.1.2 Electron wavefunction dynamics

The three-step model is included in the more general quantum picture of HHG [87, 88]. A

rigorous quantum model must take into account the selection rules in a multi-electron atom. An

approximation of a single active electron in an effective field created by the nucleus and the rest

of the electrons in an atom allows one to simplify the full Schrödinger equation to a single particle

problem [87], for which the time-dependent Schrödinger equation (TDSE) reads[
− ~2

2me
∇2 + V̂ (~r, t)

]
|ψ (~r, t)〉 = i~

∂

∂t
|ψ (~r, t)〉 . (3.5)

The time-dependent potential V̂ (~r, t) includes a static atomic potential V̂a(~r) and a time-dependent

laser potential V̂L(~r, t)

V̂ (~r, t) = V̂a(~r) + V̂L(~r, t) = − e2

4πε0
√
r2 + α2

− e ~E(t) · ~r, (3.6)

where the laser field ~E(t) in the case of a linearly polarized laser driver is

~E(t) = ~E0(t) cosωt, (3.7)

where ~E0(t) is the envelope of the pulse.

An initial condition for |ψ (~r)〉 is the ground state wavefunction of an unperturbed atom.

Therefore, the minimum energy eigenvector of the time-independent Hamiltonian Ĥ = − ~2
2me
∇2 +

V̂a(~r) must be found prior to solving the time-dependent problem. This can be done by use of a
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finite-difference numerical scheme [89]. TDSE (3.5) can then be solved. The solution can formally

be written as

|ψ (~r, t)〉 = exp

(
− i
~

[
− ~2

2me
∇2 + V̂ (~r, t)

]
t

)
|ψ (~r, t = 0)〉 . (3.8)

With a known evolution operator ˆU(t) = exp
(
− i

~

[
− ~2

2me
∇2 + V̂ (~r, t)

]
t
)

, eq. (3.8) can be used

to find the laser-driven dynamics of the electron wavepacket. The difficulty in evaluating Û is

that the kinetic and potential energy operators T̂ = − ~2
2me
∇2 and V̂ (~r, t) do not commute and,

therefore, eT̂+V̂ 6= eT̂ eV̂ . However, on small time steps ∆t, the Trotter approximation can be

applied lim∆t→0

(
e(T̂+V̂ )∆t

)1/∆t
=
(
eT̂∆teV̂∆t

)1/∆t
[90], and thus the evolution operator becomes

Û(∆t) ≈ eT̂∆teV̂∆t. (3.9)

The spectral theorem [91] states that for a diagonal operator Ô there is a space, on which the

representation of Ô is a multiplication operator. For the potential energy operator V̂ this is real

space. Also, for a diagonal operator, eÔ = diag(eOi), where Oi are the eigenvalues of Ô. Hence,

the action of eV̂∆t on |ψ〉 in real space is equivalent to multiplying |ψ (~r)〉 by eV (~r)∆t. The kinetic

energy operator T̂ = ~2k2
2me

is diagonal in momentum space, which is related to real space via Fourier

transform, and, therefore, the multiplication by eT (~k)∆t is performed in momentum space. With

this, the time propagation of |ψ (~r, t)〉 can be written as

|ψ (~r, t+ ∆t)〉 = F−1

{
e−

i~k2
2me

∆tF
{
e−

i
~V (~r,t)∆t |ψ (~r, t)〉

}}
. (3.10)

In the numerical implementation of eq. (3.10), the multiplication in real space was split in two

steps before and after the multiplication in Fourier space in order to improve the stability of the

method, and an apodizing mask was applied at each time step to simulate an open boundary of a

finite computation window.

Simulated dynamics of an electron wavefunction in a hydrogen-like atom are shown in Fig. 3.3

along with the ground-state wavefunction. The highly localized ground-state wavefunction is spread

around by the laser field and forms time dependent ripples. The spreading amounts to the tunnel

ionization discussed above, and the ripples lead to a time-dependent dipole moment which produces

dipole radiation.
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According to the Larmor formula, the total power radiated by an accelerating charge is [92]

P (t) =
µ0q

2 |ẍ|2

6πc
=
µ0 |p̈|2

6πc
, (3.11)

where µ0 is the permeability of free space and q is the electric charge, and the dipole moment

p is defined as p = qx (for a dipole in the x-direction). With a known time dependence of the

Figure 3.3: (a) Ground-state and (b) laser-driven dynamics of the electron wavefunction in a
hydrogen-like atom. The ripples in the wavefunction in (b) give rise to dipole radiation.

wavefunction, the dipole moment can be computed as

~p(t) = e 〈ψ (~r, t)|~r |ψ (~r, t)〉 . (3.12)

The power spectrum of HHG is proportional to F {P (t)}, where the time-dependent radiated power

is given by eq. (3.11). The dipole selection rules allow only odd harmonics in the spectrum, which

is confirmed experimentally in Fig. 3.4.

3.1.3 Circularly polarized HHG

Intuitively, it would seem that in order to produce circularly polarized harmonics, the HHG

process would have to be driven by a circularly polarized laser, for which the field in the (x, y)

plane is given by

~Ecirc(t) = E0(t)(x̂ cosωt+ ŷ sinωt), (3.13)
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Figure 3.4: Experimental spectrum of linearly polarized HHG in He. The fundamental wavelength
is 800 nm. Only odd harmonic orders are present.
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where x̂ and ŷ are unit vectors in the x and y directions, respectively. However, solving eq. (3.5)

with ~Ecirc given by eq. (3.13) yields no dipole oscillations, as seen in Fig. 3.5(a). Instead the

wavefunction is driven away from the ion and the recombination never occurs.

Figure 3.5: Dynamics of an electron wavefunction in (a) a single-color circular and (b) a bichromatic
trefoil-shaped field. With a circularly polarized laser driver, the wavefunction is driven away from
the ion and never recombines. The dipole oscillations responsible for HHG are missing. With a
bichromatic ω + 2ω trefoil-shaped driver, the dipole oscillations appear in three directions, which
effectively leads to circularly polarized HHG.

It would seem that circular polarization could only be achieved by conversion from linear [93].

However, such an approach is very lossy and can only be implemented in a rather narrow spectral

range. A direct production of circularly polarized HHG is possible, but it requires a specially shaped

laser field that would not only drive the wavefunction in both x- and y-directions, but would also

allow its re-collision with the parent ion. Such an approach was first proposed in 1995 [94, 95]. In

it, two co-propagating circularly polarized pulses rotating in opposite directions make up the laser

driver. The two pulses have different wavelengths: one is at the fundamental wavelength and the

other is at its second harmonic. When added together, the two pulses produce an electric field that

is given by the following expression

~Eω+2ω(t) = E0(t)(x̂(cosωt+ cos 2ωt) + ŷ(sinωt− sin 2ωt)). (3.14)
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The field vector ~Eω+2ω(t) travels on a trefoil-like trajectory over a single cycle of the fundamental,

as shown in Fig. 3.6. When an electron is driven by such a field, it can recombine with the parent

+ =

Figure 3.6: The field of a two-color laser driver for circularly polarized HHG. A combination of
two circularly polarized co-propagating fields at the fundamental wavelength (red) and its second
harmonic (blue) that rotate in opposite directions results in a trefoil-like field pattern.

ion producing dipole oscillations (see Fig. 3.5(b)) and thus making HHG possible. A measurement

of the ellipticity of HHG produced using the method described above is reported in Ref. [96] and

the helicity was measured in Ref. [97].

Notably, upon closer inspection of Fig. 3.5(b), it can be seen that the ripples in the wavefunc-

tion occur predominantly in three distinct directions. This threefold symmetry is imposed by the

symmetry of the bichromatic driver and results in three linearly polarized EUV bursts per one laser

cycle of the fundamental that are delayed with respect to one another, and the plane of polarization

of each burst is rotated by 120◦ relative to the other bursts. Together the three EUV bursts result

in right and left circularly polarized HHG [98]. The existence of the sequential linearly polarized

bursts was confirmed experimentally by analyzing quantum pathways of photoemitted electrons

from a metallic surface irradiated by circularly polarized harmonics [99].

A setup for circularly polarized HHG is shown in Fig. 3.7. A pulse train from a Ti:Sapphire

laser amplifier at a central wavelength of ∼790 nm travels through a BBO crystal to generate pulses

at 395 nm. The two beams are split into separate arms by a dichroic mirror, and a delay stage
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is introduced in one arm to overlap the red and blue pulses in time; a set of waveplates in each

arm controls the polarization of the respective beam; another dichroic mirror recombines the two

beams in space, and the combined beam is focused into a hollow-core waveguide filled with He

where the HHG process takes place. The light emitted from the waveguide is measured with an

EUV spectrometer.

grating

TM
Al filters

Waveguide

L2

L1

BBO DM1

DM2

delay stageλ400/4

λ800/2

λ800/4

λ400/2

CCD

EUV Spectrometer

Figure 3.7: Setup for circularly polarized HHG. A delay stage is used for a temporal overlap of the
red and blue pulse trains. DM1 and DM2 are dichroic mirrors that split and recombine the two
beams, respectively. The lenses L1 and L2 focus each beam into the waveguide, and the toroidal
mirror TM re-images the output of the waveguide onto the CCD.

The conservation of energy and angular momentum determines which circularly polarized

harmonic orders are allowed in the HHG spectrum. The harmonic order q is defined relative to the

fundamental frequency ω. First, for n absorbed photons of frequency ω and m absorbed photons

of frequency 2ω, the conservation of energy gives

qω = nω +m2ω. (3.15)

Second, because the harmonics are either right or left circularly polarized, the conservation of the

spin angular momentum requires that

n−m = ±1. (3.16)
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From eqs. (3.15) and (3.16), it follows that the allowed harmonic orders are

q = 3m± 1. (3.17)

Therefore, circularly polarized harmonics driven by a bichromatic driver defined by eq. (3.14) are

expected to appear in pairs, which is confirmed by an experimental spectrum in Fig. 3.8, in which

every third harmonic is suppressed.

20 25 30 35
Harmomnic Order

0

0.5

1

1.5

2

In
te

n
si
ty

(c
o
u
n
ts

)

#104

Figure 3.8: Experimental spectrum of circularly polarized HHG in He. Every third harmonic is
suppressed, in agreement with the selection rules.

The helicity of each harmonic in the spectrum can be derived from eq. (3.16) and (3.17). For

instance, if n−m = 1, the helicity of the corresponding harmonic order q = 3m− 1 is determined

by the helicity of the field at the fundamental frequency ω, while for n −m = −1, the harmonic

order q = 3m+ 1 has the same helicity as the second harmonic 2ω.

Circularly polarized HHG has been demonstrated in non-collinear geometries, where har-

monics of different helicities could be separated spatially [100], and in the soft X-ray region with a

bichromatic driver composed of optical fields at 1.3 µm and 800 nm [101].

Both the semiclassical and quantum models of HHG discussed above deal with radiation by

a single atom. In reality, the HHG process takes place in a finite volume of gas that is pumped by
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a laser, and the total HHG flux is built up from the light emitted by multiple atomic sources. If

radiation from these sources can be added in-phase, a significant improvement in HHG flux can be

obtained. Such coherent addition is known as phase matching.

3.1.4 Phase matching

The concept of phase matching originated in nonlinear optics [102] in the context of para-

metric processes, e.g. four-wave mixing, second harmonic generation, sum and difference frequency

generation, etc. In order for such processes to be efficient, the correct phase relationships between

the interacting waves have to be maintained. Similarly, in HHG, the phase of EUV light emitted at

different points along the propagation direction of the laser driver needs to be the same in order for

the HHG signal to add constructively. The requirement that the phase between the laser driver and

the EUV light remains the same along the propagation direction means that their phase velocities

defined as vp = ω/k have to be equal, i.e.,

ωf
kf

=
ωq
kq
, (3.18)

where ωf and kf are the fundamental angular frequency and wavenumber, and ωq and kq are the

angular frequency and wavenumber of the harmonic of order q. Assuming that ωq = qωf , eq. (3.18)

becomes

∆k = qkf − kq = 0, (3.19)

where ∆k is called the phase mismatch. In the limit of perfect phase matching, when ∆k = 0, the

EUV photon flux grows quadratically with the interaction length, greatly exceeding the non-phase-

matched flux, and reaches saturation when the absorption by the medium is taken into account

(see Ref. [103] for details).

The difficulty in achieving phase matching for HHG has to do with the dispersion of the

refractive index of the neutral gas and plasma. At EUV wavelengths, the refractive index is close

to 1, and their phase velocity is nearly equal to the speed of light c = 3 · 108 m/s, while for the IR

laser driver that is not the case. A solution to this problem was proposed in Ref. [104]. Instead of
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a gas jet, the HHG process took place in a gas filled hollow-core waveguide (see Fig. 3.9), which

allowed the balancing of the dispersion of neutral atoms and plasma by a mode dispersion due to

the confinement of light in the waveguide.

Gas inGas outIR pump
EUV

Figure 3.9: Hollow-core waveguide for phase-matched HHG. The laser driver is focused into the
waveguide such as to match its lowest order mode (EH11)

The expression for the phase mismatch in a hollow-core waveguide for a harmonic order q is

given by [105, 106]

∆k ≈ q
(
u2

11λf
4πa2

− P (1− η)
2π

λf
(∆δ + n2IL) + PηNareλf

)
, (3.20)

where λf is the fundamental wavelength of the driving laser, u11 = 2.405 is the first zero of the

zeroth order Bessel function of the first kind J0, a is the radius of the waveguide, P is the gas

pressure, η is the ionization fraction of the gas, ∆δ = Re(n(λf ) − n(qλf )) is the difference in the

real parts of the indices of refraction at the fundamental wavelength and its qth harmonic, n2 is

the nonlinear refractive index, which is small and is often neglected [105], IL is the driving laser

intensity, Na is the number density of the gas per unit pressure, and re is the classical electron

radius. The first term in parentheses represents the waveguide dispersion, the second term is due

to the dispersion of neutral atoms and the third is due to plasma dispersion. The parameters that

can be fairly easily controlled in an experiment are the waveguide radius a, the gas pressure P and

the ionization fraction η, which depends on the intensity of the laser and can be computed from

the ADK tunnel ionization rate discussed above.

With ∆k = 0, eq. (3.20) can be solved to find the phase-matching pressure

P ≈
u2

11λ
2
f

4πa2(2π∆δ − ηNareλ2
f )
. (3.21)

At the critical ionization level ηc ≈ 2π∆δ/Nareλ
2
f , the denominator vanishes and P → ∞, which

means that phase matching above the critical ionization level is impossible. In He, the critical
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ionization is ∼0.5%, and the corresponding laser fluence, based on the ADK rate calculations

mentioned above and assuming a 150 µm diameter waveguide and a 25 fs pulse with the central

wavelength of 800 nm, is ∼1.5 mJ/cm2 [107, 108]; the maximum possible harmonic order is 91

[108].

The concept of phase matching is applicable for linearly as well as circularly polarized HHG,

albeit with helicity-dependent considerations [109], and bright phase-matched circularly polarized

harmonics were demonstrated in Ref. [97].

3.2 X-ray free-electron lasers

Another source of ultrafast coherent EUV and X-ray pulses is a free-electron laser (FEL).

Although the idea of an FEL originated in the 1970’s [110], X-ray FELs are fairly recent [111, 15].

In an FEL, a coherent X-ray pulse is produced when a relativistic electron bunch passes through

a periodic series of alternating magnets, known as the undulator [112]. The power radiated by an

accelerating electron is given by the relativistic generalization of the Larmor formula (3.11)

P =
q2γ6

6πε0c

[
(~̇β)2 − (~β × ~̇β)2

]
, (3.22)

where ~β is the ratio of the charge velocity to the speed of light, and γ = 1/
√

1− β2 is the relativistic

Lorentz factor. At relativistic speeds, γ > 1 and the γ6 factor in eq. (3.22) leads to a significant

increase in radiated power, which makes FELs so bright.

The key components of an X-ray electron laser are an electron injector that sends a short

electron bunch into an accelerator section, in which it is accelerated to GeV energies, and an

undulator where the X-ray light is emitted. The discussion of FELs below is limited to the Linear

Coherent Light Source (LCLS) FEL at SLAC since the experiment reported in Chapter 6 was

performed there.

At LCLS, electrons are emitted from the copper photocathode of an RF electron gun by a

UV laser operating at 253 nm (third harmonic of an amplified Ti:Sapphire laser) [113]. The RF

gun boosts the energy of photoelectrons to 135 MeV and sends them into two sequential bunch
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compressors, which accelerate and shorten the duration of electron bunches. The stochastic nature

of the photoesmission process at the cathode results in fluctuations of the X-ray pulse brightness

and introduces an uncertainty in the pulse arrival time thus limiting the temporal resolution of

the FEL, which can be improved by measuring the relative arrival time of the pulses [114]. After

the compressors, an electron bunch is injected into the tunnel of a linear accelerator re-purposed

from particle physics experiments. After the accelerator section, high energy electrons enter the

undulator where the generation of an X-ray pulse takes place as the electrons are forced to move on a

curved trajectory in an alternating magnetic field. As they propagate along the undulator, electrons

and X-ray photons couple to one another. Such coupling results in self-amplified spontaneous

emission (SASE) from the spontaneous emission arising from the initial electron beam shot noise.

Again, due to its stochastic nature, SASE gives rise to fluctuations in the beam brightness and leads

to a rather low temporal coherence [115]. To improve the latter, SASE can be used to self-seed

the FEL [115]. Because X-rays are amplified through interactions with relativistic electrons, the

latter can be viewed as a laser gain medium, and X-ray FELs can thus be considered single-pass

laser amplifiers. Gain saturation in a SASE FEL is achieved by use of very long undulators or gain

media [111].

In the soft X-ray and EUV regions, external seeding methods, which include seeding with

HHG, have been proposed to reduce fluctuations [116, 117, 118] and a fully seeded operation has

been implemented at the FERMI FEL in Trieste [119, 120].

FELs can provide coherent ultrashort X-ray pulses of very high brightness. However, due to

their complex design and high operational costs, there are only a few FEL user facilities available

worldwide. Currently, they can deliver an X-ray beam to only one experimental end station at

a time. For these reasons, their accessibility is severely limited. Due to their compactness and

relatively low cost, HHG sources are much more accessible and can be used in a broad range of

materials science, biology and chemistry experiments that are not as demanding with regards to the

photon flux but require a high temporal resolution, broad spectrum, or good coherence properties

of the probe.
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3.3 Conclusions

In this chapter, I reviewed HHG and FEL sources of EUV and soft X-ray light suited for

studying material and molecular systems with high temporal and spatial resolution as well as

element specificity. Both the classical three-step model of HHG in a single atom and a full quan-

tum picture based on a solution of the time-dependent Schrodinger equation for an electron in a

combined atomic and laser potential were presented. Quantum simulations show that circularly

polarized HHG cannot be achieved with a cicularly polarized single-color laser driver and a complex

field pattern is required to generate circular polarization directly. Such a field, called a bichromatic

driver, can be obtained by mixing two laser pulses of different colors. Conservation laws constrain

the allowed harmonic orders: even and every third orders are suppressed for linearly and circularly

polarized HHG, respectively. This is confirmed by the experimental HHG spectra for the two polar-

izations. Neutral gas and plasma dispersions in an active HHG region can be compensated for by

confining light in a hollow-core waveguide, and the HHG process can thus be phase-matched, which

results in a significant increase in the intensity of an HHG-based tabletop source of EUV light with

full polarization control. FELs produce very bright X-ray pulses by use of accelerated relativistic

electron bunches but due to their complexity and cost allow very limited access to users. HHG and

FEL sources can compliment one another in their respective applications in order to realize the full

potential of ultrafast, coherent X-rays in the study of material, molecular, and biological systems

and nanoscale devices.



Chapter 4

Extension of the EUV Magneto-Optical Spectroscopy

In this chapter, I extend the traditional magneto-optical techniques and present two ap-

proaches that are capable of measuring the full resonant EUV complex magneto-optical permittiv-

ity εxy, which depends on the microscopic state of a magnetic material, in a reflection geometry. In

the first approach, εxy can be extrated from the magneto-optical reflectivity spectra measured at

multiple angles of incidence in the transverse magneto-optical Kerr effect (T-MOKE) geometry. In

the second, more efficient approach, the angle of incidence is kept fixed, and a series of magneto-

optical spectra is taken by scanning the polarization direction of a linearly polarized EUV probe.

I show that εxy can be unambiguously determined from this extensive data set.

The two techniques were applied in a pump-probe experiment on thin Co films in order to

trace the evolution of εxy during the course of laser-induced ultrafast demagnetization. With the

help of ab initio DFT simulations (carried out at Uppsala University), a connection was made to

the microscopic processes, i.e., ultrafast longitudinal and transverse excitations and their role in the

demagnetization process on femtosecond and picosecond timescales. The magnetization response to

an ultrashort IR laser excitation was found to be dominated by transverse excitations, or magnons,

with a possible smaller contribution from a transient reduction of the exchange splitting. This

conclusion is supported independently by the angle- and polarization-resolved techniques.
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4.1 Time-resolved EUV T-MOKE

I start by describing T-MOKE in the EUV spectral region, which has an advantage, compared

to the visible one, that stems from its resonant nature because magneto-optical reflection spectra

taken at the resonant absorption edges (particularly the M -edges of the ferromagnetic 3d metals Fe,

Co, and Ni in the range of ∼ 50-70 eV) can provide access to the microscopic picture of magnetism

and its dynamics.

The three MOKE geometries P-, L-, and T-MOKE are discussed in Chapter 2. The former

two require an analysis of the polarization state of the reflected light and are thus not very well suited

for the EUV photon energies, due to a lack of efficient polarization analyzers. In the transverse

geometry, however, the polarization state of the reflected light remains unchanged, and the contrast

is purely an amplitude one. This can be shown analytically by considering the dielectric tensor

(relative to the permittivity of free space ε0) for the transverse magnetization direction along the

x-axis (see Fig. 2.13) in an isotropic material [121]

ε̂ =


εxx 0 0

0 εxx −iQεxx

0 iQεxx εxx

 , (4.1)

where Q is the magneto-optical constant, and the off-diagonal element of ε̂ is defined as εxy =

−iQεxx.

Consider the Maxwell curl equations together with the constitutive relations (in a medium

with a magnetic permeability µ = 1, relative to the permeability of free space µ0, and in the absence

of current sources)

~∇× ~E = −∂
~B

∂t
,

~∇× ~H =
∂ ~D

∂t
,

~D = ε0ε̂ ~E,

~H =
1

µ0

~B.

(4.2)
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By taking a curl of the first equation in (4.2) and using c = 1/
√
ε0µ0, the following form of

the wave equation can be derived

−∇2 ~E + ~∇
(
~∇ · ~E

)
= − ε̂

c2

∂2 ~E

∂t2
. (4.3)

By inserting a plane wave solution ~E = ~E0e
i(ω~n·~r/c−ωt) in eq. (4.3), where the refractive index

~n is defined along the direction of the wavevector ~k as ~n = ~kc/ω, an eigenvalue equation can be

obtained [73] (
|~n|2 − ε̂+ ~n⊗ ~n

)
· ~E0 = 0, (4.4)

where ⊗ denotes an outer product of two column vectors. The eigenvalues are found from

det
(
|~n|2 − ε̂+ ~n⊗ ~n

)
= 0, (4.5)

and the corresponding eigenvectors ~E0 are found from eq. (4.4).

For the dielectric tensor in the T-MOKE geometry, defined by eq. (4.1), the eiegenvectors

correspond to the s- and p-polarizations, and the respective eigenvalues of the refractive index are

n2
s = εxx,

n2
p = εxx +

ε2xy
εxx

.

(4.6)

Therefore, in the T-MOKE geometry, only the p-polarization is affected by magneto-optical changes

to the refractive index. Taking eqs (4.6) into account, the Fresnel reflections in the transverse

geometry at an interface of a semi-infinite magnetic layer are [121]

rpp =
ns cosφi − cosφt
ns cosφi + cosφt

+ iQ
2ns cosφi sinφt

(ns cosφi + cosφt)
2 ,

rss =
cosφi − ns cosφt
cosφi + ns cosφt

,

(4.7)

where φi and φt are the incident and refracted angles, and rpp and rss are the reflections for the p-

and s-polarizations, respectively. Generally speaking, the polarization can rotate from s to p and

vice versa, upon reflection from a surface magnetized in an arbitrary direction. For that reason,

it is convenient to add reflection coefficients rsp and rps, which vanish in the transverse geometry

[121].
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Typically, in an experiment, a reflected intensity is measured Ir = I0|rpp|2, where I0 is the

incident intensity, and thus the information about the phase of the complex reflection coefficient

rpp is lost. For brevity, I define the parameters r
(0)
pp = ns cosφi−cosφt

ns cosφi+cosφt
and r

(1)
pp = i 2ns cosφi sinφt

(ns cosφi+cosφt)
2 ,

and rewrite the p-polarization reflection coefficient as

rpp = r(0)
pp +Qr(1)

pp . (4.8)

To a first order in Q, the reflected intensity is

Ir = I0

(
|r(0)
pp |2 + 2Re

(
Qr(1)

pp r
(0)
pp

))
. (4.9)

For a source with a fluctuating I0, it can be difficult to distinguish the magnetic contribution to

the total reflected intensity. For that reason, a differential measurement is usually performed by

magnetically saturating the sample in a positive direction, measuring the reflected intensity I
(+)
r ,

and then reversing the magnetization direction, upon which the sign of Q in eq. (4.9) is also

reversed, and measuring the reflected intensity I
(−)
r . From the two measurements, a quantity called

the magneto-optical asymmetry is constructed

A =
I

(+)
r − I(−)

r

I
(+)
r + I

(−)
r

. (4.10)

Using eqs. (4.7) and (4.9) and Snell’s law sinφt = sinφi/ns, an explicit expression for A can be

derived

A = 2Re

(
Qr

(1)
pp r

(0)
pp

|r(0)
pp |2

)
= 2Re

 iQ sin 2φi

n2
s cos2 φi − 1 + sin2 φi

n2
s

r
(0)
pp(

r
(0)
pp

)∗
 . (4.11)

With an approximation r
(0)
pp /

(
r

(0)
pp

)∗
≈ 1, which holds relatively well for materials’ refractive indices

in the EUV spectral range, and given that εxy = −iQn2
s, the asymmetry can be expressed as (up to

an overall sign, which depends on an arbitrary definition of the positive and negative magnetization)

A ≈ 2Re

(
εxy sin 2φi

n4
s cos2 φi − n2

s + sin2 φi

)
. (4.12)

It is important that A ∝ Q, which allows one to access the magnetic state by performing a magneto-

optical differential measurement. An advantage of T-MOKE measured with an HHG source is
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that the HHG spectrum is so broad that it can access the absorption edges of multiple elements

simultaneously and thus probe laser-induced magnetization dynamics of alloys and multilayer films

with elemental specificity. The asymmetry is maximized at the Brewster angle, which, for a typical

metal, is near 45◦. An example magneto-optical asymmetry spectrum taken with an HHG source

at the M -edge of Co is shown in Fig. 4.1. The figure clearly shows a difference between the

spectra measured at the opposite magnetization directions (blue). The difference results in an

EUV spectrum of the magneto-optical asymmetry shown in orange.

Figure 4.1: An example T-MOKE asymmetry spectrum (orange) at the M -edge of Co. The HHG
spectra reflected from the sample when it was positively (solid) and negatively (dashed) magnetized
are shown in blue.

The spectra in Fig. 4.1 were measured with a pump-probe T-MOKE setup shown in Fig. 4.2.

In the setup, an IR laser pulse train is delivered by a KMLabs Dragon Ti:Sapphire laser amplifier

producing 20 fs pulses at a ∼795 nm central wavelength with an energy of 2 mJ/pulse at a repetition

rate of 4 kHz. This pulse train is split into two beams: 10% of the original beam goes into the pump

arm, which has a delay stage in it to control the arrival time of pump pulses on the sample, while

90% is focused into a hollow-core waveguide where a Ne gas flows under a pressure of ∼630 Torr.

In the waveguide, the IR laser drives a phase-matched HHG process, which produces broadband

EUV light whose spectrum is shown in Fig. 4.1. A toroidal mirror with an imaging distance of
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60 cm re-images the output of the waveguide onto a CCD camera (Andor Newton 920), which is

operated in a full vertical binning mode, to increase the readout rate. Before reaching the CCD,

an EUV beam impinges on a magnetic sample that has grooves etched throughout its thickness

with a line spacing of 500 lines/mm in order to achieve spectral resolution and thus simultaneously

acts as a spectrometer diffraction grating. The magnetic field at the sample is controlled by an

electromagnet. Thin film Al filters are placed right after the waveguide and right in front of the

CCD camera to block any residual IR light coming from the waveguide and reflected from the

sample, respectively. The pump and the probe beams are combined on a mirror with an aperture

at the center. The EUV beam is transmitted through the aperture while the pump beam is reflected

from the mirror as close to the aperture as possible to minimize the angle between the two beams

and thus improve the time resolution. The angle of the goniometer arm, that includes both the

sample and the CCD, can be adjusted, which allows a measurement of the T-MOKE response at

multiple angles of incidence. The importance of such a measurement is discussed below.

The diagram in Fig. 4.3 below shows the data collection flow of the T-MOKE setup. The

synchronization of the instruments and the data acquisition was implemented in LabView.

Fig. 4.4 shows an example ultrafast demagnetization and recovery trace in pure cobalt

measured with the setup in Fig. 4.2 and the data collection procedure in Fig. 4.3. While the

demagnetization trace in Fig. 4.4 represents an average response of the material’s magnetization to

an ultrafast laser pulse, it, nonetheless, is of limited utility because the T-MOKE asymmetry defined

by eq. (4.12) and measured at a fixed angle does not allow the separation of the real and imaginary

parts of εxy. Knowledge of the evolution of the full resonant complex εxy is important because

it would allow one, through first principles calculations, to make a connection to the microscopic

mechanisms that drive the magnetization response in Fig. 4.4. Specifically, Ref. [70] makes a

prediction that longitudinal Stoner excitations will have a different effect on the magneto-optical

spectrum than transverse magnon excitations (see Chapter 2 for details). Namely, longitudinal

excitations change the spectral shape of εxy, while transverse excitations simply lead to a uniform

reduction of its magnitude across the entire spectrum. It is, therefore, important to have a technique
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λ/2

Figure 4.2: Time-resolved EUV T-MOKE setup. Laser-driven HHG in the waveguide produces a
train of EUV pulses that are inherently synchronized with the IR laser pulses in the pump arm,
which has a delay stage in it to control the delay time between the pump and the probe at the
sample. The toroidal mirror re-images the output of the waveguide onto the CCD camera, which
collects the EUV light diffracted by the grating sample. The projection-field electromagnet applies
a magnetic field to the sample. The CCD and the sample can be tilted simultaneously, and thus
the T-MOKE response can be measured at various angles of incidence.
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Figure 4.3: Time-resolved EUV T-MOKE data collection flow.

Figure 4.4: An example ultrafast demagnetization curve measured from the T-MOKE signal at the
M -shell absorption edge in pure Co.
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that would allow a direct extraction of εxy.

4.2 Measurement of the full complex magneto-optical permittivity

Such an extraction can be preformed in two ways—by adding an angle resolution to T-MOKE

or by setting the magnetization direction at an angle to its transverse orientation and performing a

scan of the polarization angle of a linearly polarized EUV probe. I outline both approaches below.

4.2.1 Angle-resolved T-MOKE

I start with the angle-resolved T-MOKE approach as it is a straightforward extension of

the conventional T-MOKE given by expression (4.12) [122]. I define an angle-dependent factor

p(φi) = sin 2φi
n4
s cos2 φi−n2

s+sin2 φi
and rewrite eq. (4.12) as

A = p(φi)εxy + p∗(φi)ε
∗
xy. (4.13)

For two different angles of incidence, eq. (4.13) yields a linear system with two equations and two

unknowns εxy and ε∗xy, which can be solved uniquely to find both the real and imaginary parts

of εxy. The factor p(φi) depends on the refractive index, which might change when the sample

is pumped by a femtosecond IR laser pulse. However, it has been shown that the non-magnetic

contribution to the EUV T-MOKE asymmetry from ultrafast changes in the refractive index is

two orders of magnitude smaller than the magnetic one and can thus be neglected [123, 124]. In

practice, due to experimental uncertainties and noise in the data, more than two angles of incidence

are required in order to solve for εxy. An angle-resolved T-MOKE measurement can be carried out

with the setup shown in Fig. 4.2 by titlting the sample and, correspondingly, the CCD camera. A

static angle-resolved T-MOKE asymmetry measured at the M -edge of Co is shown in Fig. 4.5

4.2.2 Diagonal magneto-optical effect

I now discuss the second approach that allows a direct measurement of εxy [125]. In this

approach, the magnetization is set ”diagonally”, i.e. it has both a transverse and a longitudinal
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Figure 4.5: Static angle-resolved T-MOKE signal from a Co film: (a) Raw, (b) Interpolated



64

component, as shown in Fig. 4.6, and, for that reason, the effect is called a diagonal magneto-optical

effect or D-MOE.

Figure 4.6: D-MOE geometry. The magnetization is set in-between the longitudinal and transverse
orientations and the polarization angle is rotated. An example multilayer structure of a Co sample
is also shown. θ is the polarization angle with repsect to s-polarization.

I start the derivation of the D-MOE asymmetry at the interface of a semi-infinite magnetic

layer by expanding the amplitude of an incident linearly polarized field ~Ei in the basis of s- and

p-polarizations (Es, Ep)

~Ei =

Es
Ep

 =

cos θ

sin θ

E0, (4.14)

where θ is a polarization angle relative to s-polarization, as shown in Fig. 4.6, and E0 is the

magnitude of the incident field, which I set to 1 in the derivation below without loss of generality.

It is convenient to assemble the Fresnel reflection coefficients similar to the ones in eqs. (4.7) into

a 2× 2 Fresnel reflection matrix r̂. The relationship between the incident and reflected fields then

becomes

~Er = r̂ ~Ei = r̂

cos θ

sin θ

 , (4.15)

where r̂ depends on the magnetization ~m [121, 126]. For an in-plane magnetization direction, to a
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first order in magneto-optical Voigt parameter Q = iεxy/εxx, r̂ can be written as

r̂(~m) =

rss rsp

rps rpp

 '
 r

(0)
ss r

(1)
sp myQ

−r(1)
sp myQ r

(0)
pp + r

(1)
pp mxQ

 , (4.16)

where the superscripts (0) and (1) denote non-magnetic and magnetic first order contributions to

the reflection coefficients, respectively. Note that r
(0)
ss ≡ rss. With eq. (4.10) and expressions (4.15)

and (4.16), the magneto-optical asymmetry for a sample magnetized in-plane with magnetization

components mx and my along the x- and y-axis, respectively, can be derived (again, keeping only

terms up to first order in Q)

A =
my sin 2θ<

(
(rss − r(0)

pp )∗r
(1)
sp Q

)
−mx (1− cos 2θ)<

(
r

(0)∗
pp r

(1)
pp Q

)
|r(0)
pp |2 sin2 θ + |rss|2 cos2 θ

. (4.17)

For transverse (mx = 1, my = 0) and longitudinal (mx = 0, my = 1) configurations, the familiar

expressions for the asymmetries AT and AL are recovered [127, 128]

AT := A(mx = 1;my = 0) =
(cos 2θ − 1)<

(
r

(0)∗
pp r

(1)
pp Q

)
|r(0)
pp |2 sin2 θ + |rss|2 cos2 θ

, (4.18)

AL := A(mx = 0;my = 1) =
sin 2θ<

(
(rss − r(0)

pp )∗r
(1)
sp Q

)
|r(0)
pp |2 sin2 θ + |rss|2 cos2 θ

. (4.19)

Note that the T-MOKE asymmetry AT maximizes when θ = π/2, i.e. for p-polarization, and

AL = 0 for θ = π/2 and θ = 0, which means that a mixed polarization is required to measure an

asymmetry in the longitudinal configuration.

In the diagonal geometry, |mx| = my = 1/
√

2, and the D-MOE asymmetry is

AD := A

(
mx = − 1√

2
;my =

1√
2

)
= FD(θ)Q+ F ∗D(θ)Q∗, (4.20)

where the complex factor FD(θ) has been defined as

FD(θ) =
sin 2θ(rss − r(0)

pp )∗r
(1)
sp + (1− cos 2θ) r

(0)∗
pp r

(1)
pp

2
√

2
(
|r(0)
pp |2 sin2 θ + |rss|2 cos2 θ

) . (4.21)

Note that eq. (4.20) would hold for any other in-plane orientation of ~m, as long as both the x and

y magnetization components are non-zero. Here a symmetric configuration |mx| = my = 1/
√

2 is

chosen for simplicity and without loss of generality.
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I now show that eqs. (4.20) and (4.21) can be used to uniquely determine Q, and thus εxy

from measurements taken at multiple polarization angles, while the transverse and longitudinal

geometries are not suited for that purpose. I rewrite AT and AL in a form similar to eq. (4.20)

AT = FT (θ)Q+ F ∗T (θ)Q∗ ≡ fT (θ)
(
r(0)∗
pp r(1)

pp Q+ r(0)
pp r

(1)∗
pp Q∗

)
, (4.22)

AL = FL(θ)Q+ F ∗L(θ)Q∗ ≡ fL(θ)
(

(rss − r(0)
pp )∗r(1)

sp Q+ (rss − r(0)
pp )r(1)∗

sp Q∗
)
, (4.23)

where the parameters fT (θ) and fL(θ)—as well as FT (θ) and FL(θ) implicitly—are defined as

fT (θ) ≡ FT (θ)

r
(0)∗
pp r

(1)
pp

=
(cos 2θ − 1)

2
(
|r(0)
pp |2 sin2 θ + |rss|2 cos2 θ

) , (4.24)

fL(θ) ≡ FL(θ)

(rss − r(0)
pp )∗r

(1)
sp

=
sin 2θ

2
(
|r(0)
pp |2 sin2 θ + |rss|2 cos2 θ

) . (4.25)

A system of two linearly independent equations is required in order to find a unique solution for Q

and Q∗. Such a system can be obtained by measuring the magnetic asymmetry spectrum at two

different polarization angles θ1 and θ2 and, in the most general form, can be written asax bx

cx dx


Q

Q∗

 =

Ax(θ1)

Ax(θ2)

 , (4.26)

where the subscript x = T, L or D. From eqs. (4.22), (4.23), and (4.20), for the transverse,

longitudinal, and diagonal geometries, the system matrix Λx has the following explicit expressions

ΛT :=

aT bT

cT dT

 =

fT (θ1)r
(0)∗
pp r

(1)
pp fT (θ1)r

(0)
pp r

(1)∗
pp

fT (θ2)r
(0)∗
pp r

(1)
pp fT (θ2)r

(0)
pp r

(1)∗
pp

 , (4.27)

ΛL :=

aL bL

cL dL

 =

fL(θ1)(rss − r(0)
pp )∗r

(1)
sp fL(θ1)(rss − r(0)

pp )r
(1)∗
sp

fL(θ2)(rss − r(0)
pp )∗r

(1)
sp fL(θ2)(rss − r(0)

pp )r
(1)∗
sp

 , (4.28)

ΛD :=

aD bD

cD dD

 =

FD(θ1) F ∗D(θ1)

FD(θ2) F ∗D(θ2)

 . (4.29)

The determinants of the system matrices are

det ΛT = fT (θ1)fT (θ2)

(∣∣∣r(0)
pp

∣∣∣2 ∣∣∣r(1)
pp

∣∣∣2 − ∣∣∣r(0)
pp

∣∣∣2 ∣∣∣r(1)
pp

∣∣∣2) ≡ 0, (4.30)
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det ΛL = fL(θ1)fL(θ2)

(∣∣∣rss − r(0)
pp

∣∣∣2 ∣∣∣r(1)
sp

∣∣∣2 − ∣∣∣rss − r(0)
pp

∣∣∣2 ∣∣∣r(1)
sp

∣∣∣2) ≡ 0, (4.31)

det ΛD = FD(θ1)F ∗D(θ2)− F ∗D(θ1)FD(θ2) 6= 0. (4.32)

The only non-trivial determinant (when cos (θ1) sin (θ2) 6= sin (θ1) cos (θ2), which is satisfied when

θ1,2 6= 0 and θ1 6= θ2) is the one that corresponds to the diagonal geometry, which means that this

geometry can be used for a unique determination of Q and εxy by scanning the polarization angle,

while the transverse and longitudinal geometries are not suited for that purpose.

The experimental setup in Fig. 4.2 needs to be adapted for D-MOE measurements. The

rotation of the polarization of the EUV probe is easily achieved by simply rotating the polarization

of the IR driving laser with a half-wave plate placed before the waveguide in which the HHG

process takes place. The direction of the linear polarization of HHG pulses follows that of the

laser driver [88, 82]. Therefore, no modification to the HHG source part of the setup is required,

other than replacing a manual rotation stage for the half-wave plate with a motorized one, so

that the polarization scans could be integrated into an automated data acquisition procedure in

Fig. 4.3. In order to apply a magnetic field in a diagonal direction, the sample mount needs to

be redesigned because with the mount in Fig. 4.2 the field can only be applied in the transverse

direction. The spectrometer arm of the setup adapted for D-MOE measurements is shown in

Fig. 4.7. Because scanning the angle of incidence is no longer required, the spectrometer can be

positioned horizontally, which has an added benefit of increased stability. Moreover, the diffraction

grating can now be separated from the sample. Not only does this design simplify the sample

making process by eliminating the need to pattern a grating on top of the film, but it also improves

the diffraction efficiency as the grating can now be blazed and positioned in a conical mount [129].

Additionally, the separation of the grating from the sample removes any ambiguity in the sample’s

response as it can be attributed to the sample itself without the need to consider the effects of the

grating deposited on the sample. Below, I do consider the polarization sensitivity of the grating

response, nonetheless, in order to confirm that it does not affect the D-MOE signal. A different

Ti:Sapphire amplifier, a KMLabs Wyvern, was used in the D-MOE experiment. The laser was
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operated at a 5 kHz repetition rate, with a pulse duration of ∼40 fs, and a pulse energy of 2 mJ.

Figure 4.7: Spectrometer part of the D-MOE setup. A projection-field electromagnet is placed
behind the sample. The diffraction grating is separated from the sample and is oriented in a conical
mount, with the grating lines parallel to the plane of incidence for higher diffraction efficiency.

A static polarization-resolved D-MOE asymmetry is shown in Fig. 4.8, as measured at the

harmonic peaks. Note that overall, the amount of data in Fig. 4.8 is greater than that in Fig. 4.5

because it is easier to take finer steps in the polarization angle than in the angle of incidence. In

addition, when the angle of incidence is changed the amount of the absorbed IR pump light also

changes slightly. That is not the case for time-resolved D-MOE since it keeps the angle of incidence

constant.

4.2.3 Magneto-optical multilayer formalism

For thick samples, expressions (4.12) and (4.20) could be applied directly to the data in

Figs. 4.5 and 4.8, respectively, to extract εxy. However, the data in the figures were taken with

multilayer thin films, which can significantly modify the Fresnel reflections. A formalism describing

the propagation of light in magnetic multilayers was developed in Ref. [130], and I outline it below.
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Figure 4.8: Static polarization-resolved D-MOE asymmetry at the M -edge of Co measured at the
harmonic peaks.
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Within this formalism, each layer in a multilayer stack is represented by a set of matrices:

the boundary matrix L that describes the reflection from and transmission through the boundary

of two layers and the propagation matrix D̄ that describes the propagation of light through a given

layer. The entire multilayer stack then is represented by a combination of those matrices for each

layer.

The medium boundary matrix L is derived from the Maxwell boundary conditions. Consider

an interface between two semi-infinite media, as in Fig. 4.9. In each half-space, there are forward

(incident) and backward (reflected) propagating fields marked by the superscripts (i) and (r),

respectively. The medium above the boundary is denoted with an index 1, and the one below with

an index 2. The medium boundary matrix L is defined as a matrix that relates two 4-element

𝑧 = 0

𝑧

𝑦

𝑥Θ

𝐸1
(𝑖)

𝐸1
(𝑟)

𝐸2
(𝑟)

𝐸2
(𝑖)

𝐸1𝑝
(𝑖)

𝐸1𝑠
(𝑖)

Figure 4.9: Fields at an interface between two media. The x- and y-axes are in the plane of the
interface, and the z axis is normal to it. Adapted from [130].

vectors

F = LP, (4.33)

where vectors F and P contain the x- and y-components of the E and H fields and the incident
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and reflected s- and p-components of the E-field, respectively, all in a given medium

F =



Ex

Ey

Hx

Hy


, P =



E
(i)
s

E
(i)
p

E
(r)
s

E
(r)
p


. (4.34)

At the boundary between media 1 and 2, F1 = F2, and from eq. (4.33), matrix L for a medium with

𝑧

𝑦

𝑥

𝛾

𝑀

𝜙

Figure 4.10: Azimuthal and polar angles for the magnetization vector. For a yz plane of incidence,
the polar geometry corresponds to φ = 0; transverse φ = π/2, γ = 0; longitudinal φ = π/2,
γ = pi/2, and diagonal φ = π/2, 0 < γ < π/2.

a refractive index N and a magnetization direction determined by the polar angle φ and azimuthal

angle γ (see Fig. 4.10) can be obtained (details can be found in Ref. [130])

L =



1 0 1 0

i
2
αy
αz
Q (αygi − 2Sφ,γ) αz + iαyCφ,γQ − i

2
αy
αz
Q (αygr − 2Sφ,γ) −αz + iαyCφ,γQ

i
2NgiQ −N i

2NgrQ −N

Nαz
iN
2αz

giQ −Nαz − iN
2αz

grQ


. (4.35)
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In the expression above, the following definitions have been introduced

Sφ,γ = sinφ sin γ, Cφ,γ = sinφ cos γ,

αy = sin Θ, αz = cos Θ,

gi = αz cosφ+ αySφ,γ , gr = −αz cosφ+ αySφ,γ ,

(4.36)

where Θ is the angle of incidence.

The propagation matrix D̄ relates the fields at the top of a layer with the fields at a depth z

in the layer and is defined by

P (0) = D̄(z)P (z). (4.37)

This matrix takes into account phase shifts, absorption, and polarization rotation of the light

propagating through a given layer. For a layer of thickness d, the medium propagation matrix can

be written explicitly as

D̄ =



U Uδi 0 0

−Uδi U 0 0

0 0 U−1 −U−1δr

0 0 U−1δr U−1


, (4.38)

where the elements U , δi, and δr are defined as follows

U = exp

(
−i2π

λ
Ndαz

)
,

δi =
π

λ
Nd

Q

αz
gi,

δr =
π

λ
Nd

Q

αz
gr,

(4.39)

where λ is the free-space wavelength of the light propagating in the layer. Here, it is important to

note that a convention where a forward propagating wave is given by E = E0 exp
(
i(N~k0 · ~z − ωt)

)
is used. It requires a positive imaginary part of the refractive index, i.e. N = 1 − δ + iβ. It also

determines the sign of the Kramers-Kronig transform, which I describe below.

The action of an entire multilayer stack on an initial 4-element vector Pi containing forward

and backward propagating waves (zero for an incident wave) for s- and p-polarizations is described
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by a single 4× 4 matrix M defined as

Pi = MPf , (4.40)

where Pf is the final 4-element vector, and M is equal to a product of the medium propagation

and boundary matrices and their inverses for all the layers [130]

M = L−1
i

∏
m

LmD̄mL
−1
m Lf . (4.41)

M can be written in a block-diagonal form as

M =

G H

I J

 , (4.42)

where G, H, I, J are 2 × 2 matrices. The Fresnel transmission and reflection matrices (as in eq.

(4.16)) can then be identified as [130]

t̂ =

tss tsp

tps tpp

 = G−1,

r̂ =

rss rsp

rps rpp

 = IG−1.

(4.43)

With the expressions above, the following procedure can be used to compute magneto-optical

reflections and transmissions for a magnetic multilayer stack

(1) Set the angle of incidence and the polarization state of an incident beam

(2) Set the magnetization directions for all layers

(3) For each layer, determine the refractive index N and the magneto-optical Voigt parameter

Q at the wavelength of interest

(4) For each layer, compute the medium boundary and propagation matrices according to

eqs. (4.35) and (4.38), respectively

(5) Compute the total matrix M for an entire stack according to (4.41)
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(6) Compute the Fresnel transmission and reflection matrices t̂ and r̂ using eqs. (4.42) and

(4.43)

(7) Compute the transmitted and reflected fields as ~Et = t̂ ~Ei and ~Er = r̂ ~Ei, respectively

Sometimes, it can be advantageous to use a slightly different procedure in the interest of

computational expediency. One example is when a large parameter space of wavelengths and

incidence angles needs to be swept. In that case, the code would be easier to parallelize if reflec-

tions and transmissions at each boundary were calculated explicitly from the boundary condition

Li−1Pi−1 = LiPi. For the most general case of arbitrary magnetization directions in the adjacent

layers, the expressions are too unwieldy to provide here, but such a calculation was, nonetheless,

performed in Mathematica. With known boundary reflections and transmissions, a wave can be

propagated through a multilayer stack until a convergence condition (e.g. an error tolerance) is

reached. An added benefit of such an approach is that it allows a calculation of the fields through-

out an entire sample. This is useful when, for example, the pump absorption profile needs to be

calculated, or an estimation of the depth sensitivity of an EUV probe needs to be performed. I

discuss the latter estimation in Appendix A.

4.2.3.1 Effect of optical elements on the magneto-optical signal

With the multilayer formalism, the extraction of εxy from the angle-resolved and polarization-

resolved data sets is performed by a fitting procedure, i.e., εxy is adjusted in order to minimize a

root mean square (rms) error between the experimental data and the calculated angle-resolved

T-MOKE or polarization-resolved D-MOE signals.

In the case of the angle-resolved T-MOKE, a 500 lines/mm diffraction grating was lithograph-

ically patterned on the sample (see Fig. 4.11). Because the diffraction grating is patterned directly

on the sample, it might reduce the T-MOKE asymmetry because the Si substrate is non-magnetic

and has a higher reflectivity. Upon diffraction from the grating, it is mixed with the light reflected

from the magnetic part and, therefore, needs to be taken into account. This is done by calculating
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the Fresnel reflections for both the grooves and ridges of the grating using the multilayer approach.

This gives a spatially varying distribution of the reflection coefficient r(y). The reflected field at

the detector is equal to a Fourier transform of a product of the incident probe and r(y)

Ẽ(ky) ∝ F {r(y)Ei(y)} , (4.44)

where Ei(y) is a Gaussian illuminating approximately 50 grating lines. The calculated intensity is

taken at the first order diffraction peak position k1, for a given wavelength

Ir =
∣∣∣Ẽ(ky = k1)

∣∣∣2 . (4.45)

SiO2 150 nm/ Si substrate

Co 10 nm

Si3N4 3 nm

Ta 3 nm

1 mm 1 mm

Figure 4.11: Sample structure for angle-resolved T-MOKE. A 10 nm Co film is grown on a Si wafer
with a 3 nm Ta seed layer and a 3 nm Si3N4 cap. The sample was lithographically patterned to
form a 500 lines/mm grating.

For the D-MOE experiment, the effect of the toroidal mirror on the polarization of the

probe and the effect of the spectrometer grating on the D-MOE asymmetry must be examined.

I will first consider the effect of the toroidal mirror. Because the measurement is polarization

sensitive, one might expect that, upon reflection from the toroid, the linear polarization of the

probe becomes elliptical. I confirm that the ellipticity of the reflected EUV probe is very small.

The polarization ellipse is uniquely described by a set of four parameters known as the Stokes

parameters [131]. The Stokes parameter S3 is related to the ellipticity, and S3 = 0 for linear

polarization and S3 = ±1 for circular. By calculating multilayer reflections at a 6◦ grazing incidence

angle for different polarization angles ranging from s- to p-polarization from a toroid made out of
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Pyrex glass and coated with a 100 nm of B4C, I find that S3 ≤ 0.11. This means that approximately

95% of the reflected field maintains the original incident polarization, while only ∼5% is rotated

perpendicularly to that direction. In other words, the ratio of the minor and major semi-axes of the

reflected elliptical polarization is 0.055. This ellipticity is rather small and thus can be neglected

for the purposes of the D-MOE experiment.

A diffraction grating could also introduce artifacts in the D-MOE signal. The reason for

this is a possible difference in diffraction efficiencies for the light reflected from the positively

and negatively magnetized sample. This is because the D-MOE configuration in Fig. 4.6 is not

symmetric, which leads to a difference in the polarization states of the probe reflected from the

sample when its magnetized in the +~m and −~m directions. Because the spectrometer grating is a

sawtooth grating and is mounted in a conical configuration, it breaks the symmetry further, which

could result in different diffraction efficiencies for different polarizations. The calculation in Fig.

4.12 was carried out for different polarization angles of EUV light incident on a thin Co film with a

multilayer composition of Si/SiO2(150)/Ta(3)/Co(10)/Si3N4(3), where all layer thicknesses are in

nm. First, I calculate the magneto-optical reflections from this sample for opposite magnetization
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Figure 4.12: Difference in diffraction efficiencies in the D-MOE geometry for the two opposite
magnetization directions. Complex magneto-optical reflections from a Co multilayer were calculated
and used as inputs for an RCWA model (see Appendix B) in order to compute diffraction efficiencies
from a blazed grating mounted in a conical configuration. The difference is small and does not
exceed 0.35%.
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directions in the D-MOE geometry at a 52◦ incidence using the multilayer approach described

above. Next, I use the calculated complex reflected fields as inputs for a diffraction efficiency

calculation. The latter is performed using the rigorous coupled-wave analysis (RCWA) formalism

described in Appendix B. The sawtooth grating used in the calculation was made of Zerodur glass

with a 30 nm B4C coating. The periodicity of the grating was 2 µm, and the blaze angle was 4.7◦. It

was mounted in a conical configuration at a 5◦ grazing incidence, and the grating vector was turned

by 2◦ with respect to the normal to the plane of incidence, to allow for any possible misalignment.

The difference in the calculated diffraction efficiencies in Fig. 4.12 does not exceed 0.35%, and,

therefore, the effect of the spectrometer grating on the D-MOE asymmetry is negligible.

4.3 Understanding the microscopic picture of ultrafast demagnetization

Despite the active interest in the phenomenon of ultrafast demagnetization over the past two

decades and a large volume of experimental data [57, 132, 133, 123, 134, 135, 136] the consensus

as to the microscopic picture of laser-driven magnetization dynamics is still lacking in the scientific

community [137, 138, 139, 140, 141]. There are several reasons for this. First, as discussed in

Chapter 2, our understanding of ferromagnetism in transition metals is incomplete due to the

itinerant nature of 3d electrons in those metals, i.e. they exhibit both localized and delocalized

behavior. Second, measurements are often performed on one material, e.g. Ni, and the conclusions

are sometimes extrapolated to other materials, such as Co and Fe. Even though they are all

transition metals, they are quite different from one another and such an extrapolation is not always

correct. Third, measurements often employ different techniques, such as visible MOKE, EUV

T-MOKE, spin-resolved photoemission, or XMCD. These techniques have inherent limitations,

and, in general, they measure different aspects of the phenomenon. For example, photoemission

is sensitive to the first few monolayers near the surface of the sample, and the measurement is

performed along a specific direction in the Brillouin zone. EUV T-MOKE, on the other hand,

is capable of measuring polycrystalline materials, which gives an average signal across the entire

Brillouin zone, and the T-MOKE response is a convolution of the magnetization profile throughout
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the thickness of the sample with the T-MOKE depth sensitivity function (see Appendix A), which

can extend up to a few tens of nm into the sample. Due to a non-uniform absorption of the IR

pump light, the conditions at the surface and in the bulk of the film can be quite different, and

care must be taken while comparing the results of photoemission experiments with those of visible

or EUV T-MOKE [142, 143]. For example, such a comparison was made for a single crystal bulk

(400 nm) Ni film, and the difference in the T-MOKE and photoemission data was attributed to a

depth dependence of the demagnetization process [144, 145]; additionally, in these references, an

ultrafast phase transition from the ferromagnetic to the paramagnetic state was reported.

The following processes have been reported in the literature as potential microscopic drivers

of ultrafast demagnetization, in the absence of a phase transition:

• Ultrafast magnon generation, or transverse spin excitations [146, 147, 148, 149, 150, 151].

• Longitudinal spin-flips driven by the spin-orbit interaction in the valence band [152] through

the Elliott-Yafet electron-phonon scattering process [153]. In the context of the microscopic

three-temperature model, these lead to a reduction of the exchange splitting ∆ex (see Fig.

2.2) [58].

• Superdiffusive spin currents [154, 155, 156].

The former two items are known as the local demagnetization mechanisms because they lead to a

local reduction of the magnetization, while the superdiffusive spin currents are non-local because

they involve transport of the spin polarization from one part of the film to another. Because the films

studied here are grown on insulating substrates and are rather thin, the non-local demagnetization

channel is blocked, and only the local excitations are considered. Longitudinal spin fluctuations

exist within the framework of the Stoner model of ferromagnetism, and transverse fluctuations are

based on the Heisenberg model. More details on the two models and the types of spin excitations

within them can be found in Chapter 2. It should be noted that very short-wavelength magnons

overlap with the Stoner continuum of spin-flip excitations, and they have very short lifetimes
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[157, 158], on the order of femtoseconds for Co, and, therefore, such short wavelength magnons can

contribute to ultrafast magnetization dynamics.

As mentioned above, transverse and longitudinal spin fluctuations affect the magneto-optical

permittivity εxy differently: transverse excitations lead to a uniform reduction of εxy across all

photon energies, while longitudinal excitations change its spectral shape [70]. This was confirmed

by first principles DFT calculations of the DOS for hcp Co. The calculations were carried out

at Uppsala University, Sweden, and Charles University, Czech Republic, using the WIEN2k DFT

code [159]. The dielectric tensor was computed from the linear response theory [73]. More de-

tails regarding the calculations can be found in Ref. [122] and its Supplementary Information.

These calculations confirmed that if the magnetization was tilted by an angle of up to 22◦, the

amplitude of εxy would decrease uniformly without a change in its spectral shape. On the other

hand, if a decrease in magnetization was due to, at least in part, a reduction in the exchange

splitting, the spectral shape of εxy would be affected, as shown in Fig. 4.13. This provides a
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Figure 4.13: Im (εxy) at the M -edge of Co with a reduced magnetization calculated from first
principles for different values of exchange splitting ∆ex. Note the changes in the spectral shape as
the exchange splitting is reduced.

means of distinguishing between longitudinal and transverse excitations in a material following a

femtosecond optical pump, i.e., tracing the transient evolution of the measured full complex reso-

nant magneto-optical permittivity εxy. Such tracing was carried out using the angle-resolved EUV
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T-MOKE and polarization-resolved D-MOE techniques discussed above. In the following, I present

the experimental results obtained using the two methods and the respective conclusions.

4.4 Ultrafast demagnetization with angle-resolved T-MOKE

First, with a 10 nm Co thin film whose composition is shown in Fig. 4.11, a T-MOKE

demagnetization curve was measured (see Fig. 4.14) at the M -edge of Co at a 45◦ incidence using

the setup in Fig. 4.2. Because the experimental procedure for angle-resolved T-MOKE involves

12% demag.

5% demag.

Figure 4.14: Ultrafast demagnetization in a 10 nm Co film. The maximum demagnetization is 12%
(at 700 fs) and the demagnetization at 3 ps is 3%. The absorbed pump fluence is estimated at
1.3 mJ/cm2.

a manual adjustment of the angle of incidence, which is rather cumbersome and time consuming,

only two time points on the curve in Fig. 4.14 were chosen for an angle-resolved scan (from 37.5◦

to 52.5◦): at the time of maximum demagnetization at 700 fs, and at 3 ps, when the system has

reached thermal equilibrium and is in the recovery phase. Transient changes to the static angle-

resolved T-MOKE scan (Fig. 4.15(a)) at these times are shown in Fig. 4.15(b) and (c). The static

data and the dynamic changes to it can now be analyzed to determine the relative contributions

of the longitudinal and transverse spin fluctuations. Note that a dissipation channel through spin-

polarized currents is blocked because the ferromagnetic films are grown on insulating substrates.
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Figure 4.15: Time-resolved data and analysis of angle-resolved T-MOKE. The top row is the exper-
imental data, the second row is the simulations that correspond to the best fit to the experimental
data, and the bottom row is the rms analysis. The columns (from left to right) correspond to
the times of < 0 ps, 0.7 ps, and 3 ps. (a) Static angle-resolved T-MOKE asymmetry. (b), (c)
Differential changes to the static asymmetry at 0.7 and 3 ps, respectively. (d), (e), (f) are the static
angle-resolved T-MOKE and the differential changes to it at 0.7 ps and 3 ps, respectively, calculated
based on the theoretical values of εxy. (g), (h), (i) are quadratic surface fits to the rms residue
calculated by fitting the experimental data with calculated T-MOKE signals based on different
theoretical values of εxy calculated at various electron temperatures and exchange splittings.
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The analysis involves fitting the data with simulated angle-resolved T-MOKE signals that

are based on εxy’s calculated for different electron temperatures and exchange splittings in a self-

consistent manner (see Ref. [122] for details on the calculation of εxy). This is preferable to a

direct extraction of εxy from the experimental data because a robust extraction would require a lot

more points in the incidence angle than were actually measured. In the first step of the analysis,

a fit to the static data in Fig. 4.15(a) is found. This is done by applying a Gaussian broadening

and an energy shift to the ab initio calculated εxy at a zero electron temperature Te = 0 K and

exchange splitting ∆ex = 1.672 eV, which corresponds to the ground-state magnetic moment of Co

of 1.63 µB. These transformations are necessary in order to include the effects that the theoretical

calculations do not take into account, such as a finite lifetime of electrons that are optically excited

from the 3p core states to the conduction band of Co, which requires a Gaussian broadening, an

energy offset of the theoretical 3p levels relative to the experiment (requires an energy shift), and an

overestimation of the magnitude of εxy as well as magnon excitations present at 300 K (requires an

application of a scaling factor of < 1). Additionally, a small offset of < 1◦ in the incidence angle as

well as a 2% s-polarized component of the probe were included in order to allow for a misalignment

of the EUV probe with respect to a purely horizontal direction and its depolarization on optical

surfaces (e.g. the toroid). An additional broadening by a Gaussian kernel with a FWHM of 1.28 eV

was applied to the simulated angle-resolved T-MOKE asymmetry in order to take into account the

fact that an EUV probe illuminated only ∼50 grating lines, which lowered the spectral resolution.

The optimal energy shift δE, the width of the Gaussian broadening kernel w, and the scaling factor

G are found by minimizing a mean square difference between the calculated asymmetry and the

experimental one in Fig. 4.15(a)
∑

Θ,E [Aexp(Θ, E)−Acalc (Θ, E, εxy (w,G, δE))]2 = min, where

the sum is taken over all measured incidence angles Θ and harmonic energies E(see Fig. 4.5(a)).

The optimal parameters w, δE, and G are then applied to the rest of εxy’s calculated for all other

electron temperatures Te and exchange splittings ∆ex.

In the next step, a fit to the time-resolved experimental data in Fig. 4.15(b) and (c) is

performed. This is done by minimizing an rms residue r between the experimental transient change
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in asymmetry ∆Aexp (both at 0.7 ps and 3 ps) and one calculated for a given theoretical εxy(Te,∆ex)

at a specific Te and ∆ex. The only fitting parameter that minimizes r is the magnon contribution

to the total demagnetization ∆mt = ∆µt/µ, where µ = 1.63 µB is the ground state magnetic

moment of Co, and ∆µt is a reduction of its projection on the axis of average magnetization due

to transverse excitations. The effect of transverse excitations is included by multiplying εxy by a

factor (1−∆mt). The rms residue mentioned above is expressed as

r(∆t, Te,∆ex,∆mt) =

√
1

N

∑
Θ,E

[
∆A

(Θ,E)
exp (∆t)−∆A

(Θ,E)
calc ((1−∆mt)εxy(Te,∆ex))

]2
, (4.46)

where ∆t is a delay time between the pump and the probe, which is equal to either 0.7 ps or 3 ps,

and N is the total number of experimental data points in the energy-angle parameter space (see

Fig. 4.5). In addition to the transverse contribution to demagnetization ∆mt, the fitting procedure

yields an rms residue, calculated according to eq. (4.46), as a function of the electron temperature

Te and the exchange splitting ∆ex (or rather its reduction δ∆ex(t) = ∆ex(t = 0)−∆ex(t)).

The smaller the rms residue defined by eq. (4.46) the better the fit. For a theoretical εxy

calculated for certain Te and ∆ex, r(∆t, Te,∆ex,∆mt) would be minimized, and thus the optimal

values T
(min)
e and ∆

(min)
ex of the electron temperature and the exchange splitting can be determined.

Because εxy’s were calculated on a discrete grid of temperatures and exchange splittings, the rms

residues calculated on the same grid through the fitting procedure described above are fitted with

a parabolic surface given by

f(Te,∆ex) = A+B
((

∆ex −∆(min)
ex

)
+ C

(
Te − T (min)

e

))2
+D

(
Te − T (min)

e

)2
, (4.47)

where A,B,C,D, T
(min)
e ,∆

(min)
ex are fitting parameters. The parabolic fitting function (4.47) is

justified because this is the lowest order approximation to a function around its minimum. The

parabolic fits to the rms residues calculated at 0, 0.7, and 3 ps are shown in Fig. 4.15(g), (h),

and (i), respectively. The minimum of the parabolic surface moves from the upper left corner,

corresponding to the ground state with zero exchange splitting reduction Te = 300 K, towards the

center at 0.7 ps, indicating an increase in Te and a reduction in ∆ex, and then at 3 ps, as the system

recovers, back to the upper left corner.
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According to eq. (2.9), with a reduced exchange splitting ∆
(min)
ex , the magnetic moment

per atom also becomes reduced by an amount ∆µl, and a longitudinal contribution to the total

demagnetization ∆ml = ∆µl/µ can be found. In addition, at an elevated electron temperature, the

thermal filling of the spin-up and spin-down bands changes, and the magnetic moment is reduced

by an additional amount ∆me(Te) = 1−µ(Te)/µ(Te = 0). The temperature dependence of µ(Te) is

shown in Fig. 2.3 in orange. Thus the total demagnetization ∆m is a sum of the transverse ∆mt,

longitudinal ∆ml, and thermal smearing ∆me contributions

∆m = ∆mt + ∆ml + ∆me. (4.48)

∆ml and ∆me are determined from ∆
(min)
ex and T

(min)
e , respectively, which are found from

fitting a parabolic surface (4.47) to the rms residues calculated using eq. (4.46). The procedure of

calculating the rms residues also yields a dependence of ∆mt on ∆ex and Te, and, once the optimal

values for the exchange splitting and electron temperature at the minimum of the parabolic surface

are found, the corresponding ∆mt can also be determined.

The results of the analysis are summarized in Table 4.1 According to this table, at 0.7 ps,

Table 4.1: Summary of the analysis of the angle-resolved T-MOKE data.

< 0 ps 0.7 ps 3 ps

Te (K) 300 1018 352

Measured ∆m 0 0.12± 0.01 0.05± 0.01

Fitted ∆m 0 0.115± 0.014 0.049± 0.012

Fitted net moment (µB/atom) 1.62 1.44± 0.02 1.54± 0.02

∆ml 0 0.032± 0.013 0.021± 0.011

∆µl (µB/atom) 0 0.05± 0.02 0.03± 0.02

∆mt 0.008 [38] 0.073± 0.006 0.028± 0.004

∆µt (µB/atom) 0.013 0.12± 0.01 0.05± 0.01

∆me 0 0.01 0

∆µe (µB/atom) 0 0.016 0

approximately 2/3 of the total 12% magnetization reduction comes from transverse excitations

∆mt, about 10% of the signal is due to thermal repopulation of the bands ∆me, and the rest
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is from longitudinal excitations ∆ml. At 3 ps, longitudinal and transverse excitations contribute

approximately 40% and 60% to the total demagnetization, respectively.

In order to confirm that both types of excitations drive the demagnetization process simulta-

neously, the above analysis was repeated for two additional cases where, in addition to the thermal

repopulation of the bands ∆me, only a single type of excitation was allowed (either transverse or

longitudinal). The results are summarized in Tables 4.2 and 4.3

Table 4.2: Summary of the analysis of the angle-resolved T-MOKE data with longitudinal excita-
tions only.

< 0 ps 0.7 ps 3 ps

Te (K) 300 3225 796

Measured ∆m 0 0.12± 0.01 0.05± 0.01

Fitted ∆m 0 0.082± 0.025 0.034± 0.009

Fitted net moment (µB/atom) 1.62 1.49± 0.04 1.56± 0.04

∆ml 0 0.032± 0.025 0.029± 0.009

∆µl (µB/atom) 0 0.052± 0.041 0.047± 0.014

∆mt 0.008 0.008 0.008

∆µt (µB/atom) 0.013 0.013 0.013

∆me 0 0.05 0.005

∆µe (µB/atom) 0 0.08 0

In both Tables 4.2 and 4.3, the predicted net demagnetization ∆m at 0.7 ps as well as 3 ps

is below the experimentally measured values. It should be noted that in Table 4.3, only the lower

limit of ∆m is estimated because εxy’s calculated for higher electron temperatures were required to

minimize the rms residue. In addition, both analyses predict very high electron temperatures. For

the experimental value of absorbed fluence of F = 1.3 mJ/cm2, the upper and lower temperature

limits can be estimated by solving for T from

F/d =

∫ T

300 K
C(τ)dτ, (4.49)

where d is the thickness of the film, and C(T ) is the temperature dependent specific heat. Here, a

uniform distribution of the absorbed fluence throughout the sample thickness is assumed. Because

only an average temperature needs to be estimated, such an approximation is acceptable. The
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Table 4.3: Summary of the analysis of the angle-resolved T-MOKE data with transverse excitations
only.

< 0 ps 0.7 ps 3 ps

Te (K) 300 3500 1136

Measured ∆m 0 0.12± 0.01 0.05± 0.01

Fitted ∆m 0 > 0.087 0.033± 0.008

Fitted net moment (µB/atom) 1.62 < 1.48 1.57± 0.012

∆ml 0 0 0

∆µl (µB/atom) 0 0 0

∆mt 0.008 > 0.037 0.025± 0.008

∆µt (µB/atom) 0.013 > 0.06 0.041± 0.012

∆me 0 0.05 0.008

∆µe (µB/atom) 0 0.016 0.012

upper electron temperature limit corresponding to the 0.7 ps delay time is found when all of the

absorbed energy goes into the electron system, which means that C = Ce. With the electron heat

capacity of Co (see Appendix C), eq. (4.49) yields an upper limit of 2295 K for Te. Similarly, a

lower limit of 620 K, which corresponds to 3 ps, is found when the total specific heat includes all

three energy baths: electrons, lattice, and spins, and so the total heat capacity C = Ce + Cl + Cs

(see Appendix C). The temperatures in Tables 4.2 and 4.3 at 0.7 ps exceed the upper limit. Even

though they are within the limits at 3 ps, the values of ∆m disagree with the experimental ones.

This supports the conclusion that both longitudinal and transverse excitations, rather than a single

type of excitation, contribute to the total demagnetization at both delay times.

These results must interpreted with caution because of the rather low temperature sensitivity

of the method, which leads to a large uncertainty of the temperatures derived from the fitting

procedure. This can be seen from Figs. 4.15(h) and (i), where the iso-contours are stretched in

the horizontal direction, indicating a shallow minimum along Te. For that reason, the analysis

was repeated with the coefficients C and D in eq. (4.47) set to zero, which yields a temperature

dependence of both ∆ml and ∆mt. The analysis confirms that regardless of the temperature, both

types of excitations are required in order to explain the net amount of demagnetization observed
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in the experiment, albeit with different ratios of longitudinal to transverse contributions depending

on the temperature.

4.5 Ultrafast demagnetization with D-MOE

Unlike angle-resolved T-MOKE, D-MOE is a very efficient technique, which allows one to

collect a sufficient amount of data relatively quickly, thus making possible a direct measurement of

the full resonant complex εxy.

First, I validate D-MOE by extracting εxy of Co from a static polarization scan (shown in

Fig. 4.8) performed on a Co multilayer with a composition of Si/SiO2(150)/Ta(3)/Co(10)/Si3N4(3)

(all layer thicknesses are in nm) shown in Fig. 4.6. The extraction is performed by fitting the D-

MOE data in Fig. 4.8 with a multilayer model of the sample based on the multilayer formalism

introduced above. Material refractive indices used in the model were taken from Ref. [160]. εxy

is found, independently at different photon energies, from the best fit of the simulated D-MOE

signal to the experimental data. In order to validate the technique, the extracted εxy is then

used to successfully reproduce the polarization-resolved asymmetries measured in the transverse

and longitudinal geometries. A comparison of the experimental D-MOE, T-MOKE, and L-MOE

signals with the calculated ones based on the εxy extracted from D-MOE is shown in Fig. 4.16. The

abbreviation L-MOE introduced here stands for longitudinal magneto-optical effect, which is given

by eq. (4.19). It should not be confused with L-MOKE, as the latter requires a polarization analysis

whereas the former simply results in a magneto-optical asymmetry. The agreement between the

experimental data and the reconstructions based on the extracted εxy in Fig. 4.16 demonstrates

the validity of the D-MOE technique.

An additional test was also performed where the same extraction procedure was applied

to the T-MOKE and L-MOE data. The results are summarized in Fig. 4.17. Importantly, the

reconstructions are successful only for the geometries from which εxy was extracted, but not for

the other ones. This confirms the conclusion of eqs. (4.31), (4.30), and (4.32), which states that

only the diagonal geometry can provide a unique εxy by use of polarization scanning, while the
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Figure 4.16: Comparison of the experimental (a)-(c) and reconstructed (d)-(f) D-MOE, T-MOKE,
and L-MOE polarization angle-resolved spectra. The experimental data points are taken at the
discrete HHG peaks of the probe. θ = 90◦ corresponds to p-polarization; θ = 0◦ corresponds to
s-polarization. The reconstructions are based on the εxy(ω) extracted from (a).
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Figure 4.17: Comparison of the experimental and calculated polarization scans based on εxy ex-
tracted from the T–MOKE and L-MOE scans. (a) experimental signals, (b) reconstructions based
on the εxy extracted from T-MOKE, (c) reconstructions based on the εxy extracted from L-MOE.
The reconstructions can successfully reproduce only the signals in their respective experimental
geometries, which the extraction of εxy was based on, but not the other two.
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transverse and longitudinal geometries cannot.

Another verification of the D-MOE method is done by checking the consistency of the ex-

tracted εxy with the Kramers-Kronig relations [161]. Because εxy arises as a material’s response to

an electromagnetic wave [73, 161], which is causal, it must be analytic [161, 162]. As such, it must

satisfy the Kramers-Kronig relations, which are written as [73]

Re(εxy) =
2

πω
P

∫ ∞
0

dω′
ω′2

ω′2 − ω2
Im(εxy),

Im(εxy) = − 2

π
P

∫ ∞
0

dω′
ω′

ω′2 − ω2
Re(εxy),

(4.50)

where P indicates the principal value of the integral. Note that the sign of the second expression

depends on the sign convention for the absorptive part of the refractive index n. Expressions

(4.50) are defined for the positive absorptive part of n. An extracted experimental εxy for a 5 nm

Co film, which was also used for dynamic measurements, is shown in Fig. 4.18, along with the

Kramers-Kronig transform of an interpolated Im(εxy) and a comparison with a theoretical εxy.

The experimental εxy satisfies the Kramers-Kronig relations and agrees well with the theoretical

Figure 4.18: Static experimental εxy of Co measured on a Si/SiO2(150)/Co(5)/GeO2(3) multilayer.
The data satisfy the Kramers-Kronig relations and compare well with the theoretical values [122].

calculations of Ref. [122].

An experimental uncertainty in the measured εxy shown as the errorbars in Fig. 4.18 was

estimated based on the measured standard deviation of the intensity of the EUV probe. Uncertain-
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ties in the reflected intensities were propagated into the measured asymmetry, for each polarization

according to

∆A =

√(
∂A

∂R+
∆R+

)2

+

(
∂A

∂R−
∆R−

)2

=
2
√
R2
−∆R2

+ +R2
+∆R2

−

(R+ +R−)2 , (4.51)

where ∆R+ and ∆R− are the standard deviations of the reflected intensities R+ and R− for the

positive and negative magnetization directions, respectively. ∆R+ and ∆R− were measured at

each HHG peak independently. In principle, ∆A could be determined from the experimental data,

however, only HHG spectra averaged over 100 acquisitions were saved, which streamlined the data

acquisition process and reduced data storage requirements. Therefore, in order to estimate an

uncertainty in εxy, a series of Gaussian-distributed D-MOE polarization scans was simulated with

an average D-MOE asymmetry over the series equal to the experimentally measured value and

a standard devition ∆A calculated according to eq. (4.51). For each element of the series, an

extraction of εxy was performed, which yielded a series of εxy. ∆εxy was calculated as a standard

deviation of that series.

In the next step, time-resolved D-MOE polarization scans were taken. The polarization

angle was scanned from 30◦ to 150◦ in steps of 6.7◦, and the delay times were scanned in the range

from -0.5 ps to 2 ps with 25 fs time steps. It should be noted that such fine time steps, which

effectively amount to measuring εxy as a continuous function of time, were made possible due to

the efficiency of the D-MOE method. Other methods that are, in principle, capable of directly

measuring εxy have certain challenges in the EUV and X-ray spectral regions associated with them,

which precludes the use of such methods for dynamic measurements with fine time steps. In the

case of angle-resolved T-MOKE [122], XMCD in transmission [163, 8] and reflection [164], or polar

MOKE [165, 166], one has to vary the angle of incidence. A polarization analysis is required in the

case of longitudinal MOKE [167, 165, 166] and Faraday and Voigt rotation [168, 169, 170]. The

data were taken on a 5 nm Co film grown directly on an insulating substrate with a composition of

Si/SiO2(150 nm)/Co(5 nm)/GeO2(3 nm). Such a sample structure was used in order to exclude any

possible non-local microscopic demagnetization mechanisms, e.g. superdiffusive spin currents, and
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thus isolate the contributions of local processes, e.g. magnons, spin-flips, and exchange splitting

reduction, to the total demagnetization. Average demagnetization curves measured from raw D-

MOE data and based on extracted εxy(t) are shown in Fig. 4.19. Both curves in the figure agree
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Figure 4.19: Average magnetization response of a 5 nm Co film on an insulator based on raw
D-MOE data as well as extracted time-dependent εxy(t).

well. The signal measured from the raw D-MOE data was averaged over multiple harmonic peaks

and all of the polarization angles in the scanned range. To improve the signal-to-noise ratio, a

threshold of 0.12 was applied to the D-MOE asymmetry before time-zero. For the blue curve, an

average response of Im(εxy(E, t)) was taken in the energy range from 55 to 63 eV. Based on double-

exponential fits [171] of the two experimental data sets, the demagnetization τD and recovery τR

times were τD = 224± 53 fs and τD = 242± 58 fs and τR = 2302± 623 fs and τR = 2417± 686 for

the blue and orange curves in Fig. 4.19, respectively.

Using the method described above, values of εxy were extracted at each delay time between

an IR laser pump pulse and an EUV probe. A time dependent change ∆εxy(E, t) = εxy(E, t) −

εxy(E, t < 0) is shown in Fig. 4.20. The data in the figure show a transient reduction and recovery

of εxy. This direct time-resolved measurement of an evolving εxy allows an analysis of the relative

contributions of the local transverse and longitudinal excitations to the total demagnetization,

according to Ref. [70], at various time steps. The non-local mechanisms, i.e. spin-polarized

currents are not allowed in the sample structure considered here.
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Figure 4.20: Transient changes in εxy measured with time-resolved D-MOE: (a) Re(∆εxy(E, t)) =
Re(εxy(E, t)− εxy(E, t < 0)), (b) Im(∆εxy(E, t)) = Im(εxy(E, t)− εxy(E, t < 0)). Also shown is a
comparison of the (c) real and (d) imaginary parts of εxy at the time of maximum demagnetization
t = 450 fs with the unperturbed state at t < 0.
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With the angle-angle resolved T-MOKE technique described above, such an analysis was

performed by comparing experimental and theoretical angle-resolved T-MOKE spectra. The D-

MOE technique allows a direct comparison of the experimental and theoretical values of εxy, which

is shown in Fig. 4.21. The comparison is done between the imaginary parts. In panel (a) of the

Figure 4.21: Direct comparison between theory and experiment for the static and transient εxy of
Co. (a) The ground-state case t ≤ 0. The red and yellow theoretical curves do not include any
magnon excitation. A reduction in the magnetic moment from 1.63 µB (red) to 1.42 µB (yellow) is
entirely due to a reduced exchange splitting. For the ground state, the theoretical εxy corresponding
to an unperturbed exchange splitting (red) is in better agreement with the experiment (blue). (b)
t = 450 fs. The theoretical εxy’s are calculated for varying relative contributions (see the legend)
of the longitudinal and transverse excitations to the total demagnetization of 42 %.

figure, the ground state is considered. An ab initio calculated εxy corresponding to a magnetic

moment of 1.63 µB per atom (red) is a better fit to the experimental data (blue) than the 1.42 µB

per atom (yellow) obtained with a reduced exchange splitting. At t = 450 fs, in panel (b), several

ab initio calculations are compared with the experimental result. For each of those cases, the

relative contributions to the total demagnetization of 42 % from transverse excitations and exchange

splitting reduction are varied. For the red curve, it was assumed that the entire 42 % reduction in

magnetization is driven by magnon generation; whereas for the purple curve it is purely due to a

decrease in the exchange splitting. The yellow curve is an intermediate case, for which about 3/4

of the demagnetization comes from magnons and the rest is from the exchange splitting reduction.



95

Because the highest signal-to-noise ratio is at the peak of Im(εxy), which is around 60.5 eV, a

comparison between theory and experiment is more reliable at that energy. The red and yellow

curves are within the experimental uncertainty indicated by the errorbars in the figure, while the

purple curve is outside the error bars. This helps estimate an upper limit on the relative contribution

from the exchange splitting reduction to the total demagnetization at ∼25 %. Thus a reduction

of εxy is predominantly uniform across the spectrum, and at least 75 % of the demagnetization in

Co is driven by magnons, or transverse excitations, which compares well with the result obtained

with the angle-resolved T-MOKE reported above as well as the recent time- and spin-resolved

photoemission measurements [172].

The spectral resolution of D-MOE is limited by the spectrum of the HHG source, which is a

comb of harmonic peaks separated by approximately 3.1 eV. More information about the transient

evolution of εxy can be obtained using a source with a continuous spectrum. Such an HHG spectrum

can be achieved by generating isolated attosecond pulses[173, 174, 175].

4.6 Conclusions

In this chapter, I presented two new magneto-optical techniques, an angle-resolved T-MOKE

and a polarization-resolved diagonal magneto-optical effect, which extend the capabilities of the

traditional transverse, longitudinal, and polar magneto-optical geometries and can be used to un-

ambiguously determine the full resonant complex magneto-optical permittivity of materials εxy.

The permittivity depends on the microscopic state of a given material, i.e., on the number of lon-

gitudinal spin fluctuations, which lead to a reduction of the exchange splitting, and the number of

transverse spin fluctuations, or magnons. A connection between the measured εxy and the relative

amounts of longitudinal and transverse excitations is made via first principles DFT calculations,

which confirm that magnons result in a uniform reduction of εxy across an entire spectrum, while a

decrease in exchange splitting changes the spectral shape of εxy, in agreement with previous work.

The two techniques were used to study laser-induced magnetization dynamics on sub-picosecond

timescales of thin Co films, namely, the role of transverse and longitudinal excitations in the ul-
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trafast demagnetization process driven by a near-infrared laser pulse. By tracing the dynamical

changes in εxy and comparing them with theory, it was found that the demagnetization response

of Co is dominated by magnons, with a possible smaller contribution from an exchange splitting

reduction. The findings obtained independently with both the angle-resolved T-MOKE and the

polarization-resolved D-MOE methods are in agreement.

The character of the microscopic demagnetization mechanisms discussed in this chapter is

likely not universal for all 3d ferromagnets, and could be unique for Co because of its rather large

exchange splitting compared to the exchange interaction energy. This could make the microscopic

demagnetization channel by means of magnon generation energetically more favorable. Recent work

comparing photoemission and T-MOKE measurements suggests that the situation is different in

Ni, where the values of the exchange splitting and exchange interaction energies are much closer. A

similar comparison of photoemission and EUV magneto-optical measurements for Co and Fe would

be very useful in the future. In addition, an EUV source with a continuous HHG spectrum will be

able to provide much more magneto-optical information than a source with a rather sparse HHG

comb.



Chapter 5

EUV Magneto-Optics with Spatial Resolution

This chapter is dedicated to a coherent resonant magnetic scattering (RMS) experiment with

a tabletop EUV HHG light source. Unlike spectroscopic approaches, scattering experiments provide

important information about spatial variations of the magnetization and are capable of capturing

nanoscale magnetic features.

Magneto-optical phenomena, such as the Kerr and Faraday effects, have been known since

the nineteenth century, and a quantum theory of the interaction of electron magnetic moments with

polarized photons was developed in 1929 [176]. The interaction of X-rays with magnetic materials

had not been discovered until the 1970’s, when a theoretical paper predicted relativistic corrections

to the Compton and Bragg scattering cross-sections due to magnetic moments [177]. The first

observation of X-ray magnetic diffraction from an antiferromagnetic NiO crystal was made in 1972

with a cathode tube used as a source of incoherent X-rays [178], and later measurements on ferro-

and ferrimagnetic compounds were reported along with detailed relativistic quantum calculations

[179]. The development of bright X-ray sources, such as synchrotrons, turned magnetic scattering

into a reliable measurement technique by compensating for a low scattering cross-section with a

bright photon flux and thus boosting the signal [180]. An enhancement of magnetic scattering at

elemental absorption edges was observed in 1988 [181].

Tabletop EUV light sources have an advantage over synchrotron facilities in that they bring

coherent RMS experiments to a laboratory setting and thus provide more flexibility and cost effi-

ciency. Additionally, with such sources, RMS could be performed in a time-resolved manner with
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femtosecond temporal resolution [182]. The first demonstration of coherent RMS with a tabletop

source at the M2,3 absorption edge of Co was reported in Ref. [183], and with a bright phase-

matched high harmonic source at the M2,3 absorption edge of Fe in Ref. [184].

Given that the magnetic scattering efficiency is very weak, the design of the experiment

reported here makes use of the resonant nature of RMS and employs efficient grazing incidence

broadband EUV focusing optics, instead of multilayer coatings as in Refs. [183] and [184], in order

to maximize the photon flux at the sample.

In this chapter, I develop a theoretical description of RMS with linearly and circularly polar-

ized light and show that the contrast mechanism for the scattering with a linearly polarized probe is

entirely due to Faraday rotation. I also derive an optimal sample thickness that maximizes the RMS

signal. I design an RMS experiment on a tabletop and apply it to study field-dependent skyrmion

formation in a sample with perpendicular magnetic anisotropy. I report an observation of a tran-

sition from a disordered domain phase to an ordered hexagonal lattice of skyrmions accompanied

by an increase in the size of magnetic features.

5.1 Resonant magnetic scattering with linearly and circularly polarized light

As mentioned in Chapter 2, the interaction of light with a magnetized material can be

described using the material’s dielectric tensor ε̂. The off-diagonal elements of the tensor depend

on the magnetization direction. For an arbitrary direction, all three off-diagonal elements εxy, εxz,

and εyz are, in general, non-zero, and an electromagnetic wave transmitted through or reflected

from such a material will have magneto-optical changes to its amplitude, phase and polarization.

However, in most cases, the magnetization direction is either strictly parallel or perpendicular to the

surface of the sample, which introduces additional symmetries and helps simplify the problem. In

particular, a significant simplification is achieved in the case of magnetic films with perpendicular

magnetic anisotropy. In these films, the magnetization predominantly points into or out of the

plane of the film, and the perpendicular magnetic anisotropy leads to a variety of magnetic textures

ranging from networks of nanoscale domains to magnetic bubbles and vortices, known as skyrmions,
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depending on the composition of the film.

For an out-of plane magnetization, the dielectric tensor becomes

ε̂ =


εxx εxy 0

−εxy εyy 0

0 0 εzz

 , (5.1)

where z is the axis orthogonal to the surface of the sample. Note that εyx = −εxy [185, 186].

With the ε̂ defined by eq. (5.1), from eq. (4.4), it can be shown that for left (+) and right (−)

circularly polarized incident fields, the refractive indices in a material uniformly magnetized in an

out-of-plane direction satisfy [73]

n2
± = εxx ± iεxy cosφ, (5.2)

where φ is the angle of refraction. For normal incidence, φ = 0, and by taking a square root of

eq. (5.2), and Taylor expanding it up to a first order in εxy, the expression for the refractive index

can be simplified to

n± =
√
εxx

(
1± i εxy

εxx

)
= n0 ± δns, (5.3)

where n0 =
√
εxx is the non-magnetic part of the refractive index, and δns = iεxy/

√
εxx is its

magnetic variation. For convenience, I write δns in terms of its real (∆δ) and imaginary (∆β)

parts

δns = −∆δ + i∆β. (5.4)

Equation (5.3) can be viewed as a difference between the refractive indices for left and right

circularly polarized fields for a fixed out-of-plane magnetization direction, or as a difference in

refractive indices upon magnetization reversal for a field of fixed helicity.

I now consider the transmission of a plane wave with a wavenumber k through a magnetized

film of thickness d. I define the basis vectors for the linear s and p and circular (+) and (−)
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polarizations in terms of the x and y field components as

~Es =

1

0

 , ~Ep =

0

1

 ,

~E+ =
1√
2

1

i

 , ~E− =
1√
2

 1

−i

 .

(5.5)

Starting with a simpler case of circular polarization, the transmitted field is

~E
(t)
+ =

1√
2

1

i

 eikn+d =
1√
2

1

i

 eikn0de−ik∆δde−k∆βd,

~E
(t)
− =

1√
2

 1

−i

 eikn−d =
1√
2

 1

−i

 eikn0deik∆δdek∆βd,

(5.6)

for the positive and negative magnetization directions, respectively. For a magnetic domain sample,

~E
(t)
+ and ~E

(t)
− correspond to the fields transmitted through the positively and negatively magnetized

domains. Between ~E
(t)
+ and ~E

(t)
− , there is a difference in both phase and amplitude. The difference

in phase is 2k∆δd and the difference in amplitude is approximately 2k∆βd. The polarization state

remains circular and unchanged. The latter is especially important for holographic imaging of

magnetic domains [187, 188, 189] because, in order for the beams transmitted through the domains

and the reference hole to interfere, they must have identical polarizations. The disadvantage is

that the non-magnetic signal, such as scattering from inhomogeneities in the film, for example, will

interfere with the magnetic one making it impossible to separate the magnetic and the unwanted

non-magnetic scattering.

With linear polarization, the situation is different. I choose ~Es as the incident field. It can

be written as a superposition of left and right circular fields

~Es =
1√
2

(
~E+ + ~E−

)
=

1

2


1

i

+

 1

−i


 . (5.7)

For the positive magnetization direction, the transmitted field is

~E(t,+) =
1√
2

(
~E+e

in+kd + ~E−e
in−kd

)
=

1√
2
ein−kd

(
~E+e

−2∆βkde−2i∆δkd + ~E−

)
. (5.8)
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A similar expression can be derived for the transmitted field when the magnetization direction is

reversed

~E(t,−) =
1√
2

(
~E+e

in−kd + ~E−e
in+kd

)
=

1√
2
ein−kd

(
~E+ + ~E−e

−2∆βkde−2i∆δkd
)
. (5.9)

I now expand eqs. (5.8) and (5.9) in the basis of the linear s- and p-polarizations using

~E± =
1√
2

(
~Es ± i ~Ep

)
. (5.10)

Eqs. (5.8) and (5.9) then become

~E(t,+) =
1

2
ein−kd

[(
~Es + i ~Ep

)
e−2∆βkde−2i∆δkd +

(
~Es − i ~Ep

)]
,

~E(t,−) =
1

2
ein−kd

[(
~Es + i ~Ep

)
+
(
~Es − i ~Ep

)
e−2∆βkde−2i∆δkd

]
.

(5.11)

Grouping the terms with ~Es and ~Ep, these expressions yield

~E(t,±) =
1

2
ein−kd

[(
1 + e−2∆βkde−2i∆δkd

)
~Es ∓ i

(
1− e−2∆βkde−2i∆δkd

)
~Ep

]
. (5.12)

According to eq.(5.12), for the case of a linearly polarized incident field, the light transmitted

through a material magnetized out-of-plane becomes elliptically polarized and the axes of the

ellipse are rotated. Such rotation is known as the Faraday effect; the amount of rotation is the

same for both the positive and negative magnetization directions, but the rotation directions are

opposite. When decomposed into the s- and p-polarization components, the transmitted fields

for the two magnetization directions have identical s-polarization components (for the incident

s-polarized field), and the p-polarization components have equal magnitudes but opposite signs,

which effectively amounts to a π phase shift between them since −1 = eiπ. For a network of up and

down magnetic domains, this phase shift maps out the transverse magnetization profile and causes

the incident light to scatter. An important consequence of eq. (5.12) is that the light scattered

from magnetic feastures is polarized orthogonally to the incident linearly polarized field. Since any

non-magnetic scattering preserves the polarization state, the photons scattered magnetically and

non-magnetically will have orthogonal polarizations and thus will not interfere. This makes the

separation of the magnetic and non-magnetic scattering signals possible by magnetically saturating
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the sample and subtracting the scattered intensity from the signal measured with an unsaturated

sample. On the other hand, any holographic imaging techniques that rely on an interference of the

scattered light with a reference beam are not possible with linear polarization.

5.1.1 Maximization of the scattered intensity

From eq. (5.12), the magnetically scattered fraction of the incident flux is

ρRMS =

∣∣∣∣ i2ein−kd (1− e−2∆βkde−2i∆δkd
)∣∣∣∣2 =

=
1

4

∣∣∣ein0kd
(
e∆βkdei∆δkd − e−∆βkde−i∆δkd

)∣∣∣2 , (5.13)

where the non-magnetic part of the refractive index is defined as n0 = 1− δ + iβ. The goal now is

to find the optimal sample thickness d that maximizes the RMS signal ρRMS . By Taylor expanding

the exponents of the factor in parentheses in powers of ∆δ and ∆β and keeping the terms only up

to a first order in ∆δ and ∆β, I obtain

ρRMS ≈
1

4
e−2βkd |(2∆βkd+ 2i∆δkd)|2 . (5.14)

After expanding the square eq. (5.14) is simplified to

ρRMS = k2d2e−2βkd
(
∆β2 + ∆δ2

)
. (5.15)

For the optimal sample thickness, ∂ρRMS/∂d = 0. Taking a derivative of eq. (5.15) with respect

to d yields

∂ρRMS

∂d
= −2βe−2βkdk3d2

(
∆β2 + ∆δ2

)
+ 2k2de−2βkd

(
∆β2 + ∆δ2

)
= 0, (5.16)

which leads to an equation for d

− βkd2 + d = 0. (5.17)

The non-trivial solution of eq. (5.17) is

d =
1

βk
. (5.18)

Given that βk = 1/2a, where a is an absorption length, according to eq. (5.18), the optimal

thickness of the sample that maximizes the total magnetically scattered intensity is equal to twice
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the absorption length of a given material at the wavelength of the X-ray or EUV probe. This is a

result of the fact that the Faraday rotation, which leads to the magnetic contrast, increases linearly

with d, while the overall transmittance of light by the sample decreases exponentially with d.

An important consequence of eq. (5.18) for EUV and soft X-ray scattering experiments has

to do with the typical absorption lengths at the M and L absorption edges of metals. Absorption

lengths at the M -edges are on the order of ∼ 20 nm while at the L-edges they are ∼ 10 times

greater. This means that the optimal sample thicknesses of∼ 40 nm for EUV experiments agree well

with the typical thicknesses of several tens of nm of magnetic multilayer films with perpendicular

magnetic anisotropy. Soft X-ray experiments, on the other hand, operate far away from the optimal

conditions. This can be partially compensated for by a high photon flux at synchrotrons or free-

electron lasers. In addition, sample surface quality typically improves as its thickness is reduced,

and, in that respect, the situation is more favorable for HHG sources.

5.1.2 Estimation of the RMS efficiency

With the result of eq. (5.18), the maximum scattering efficiency can be computed from eq.

(5.15) as

ρ
(max)
RMS =

1

β2
e−2

(
∆β2 + ∆δ2

)
. (5.19)

With the typical magnitudes of β, ∆β, and ∆δ of 0.1, 10−2, and 10−2, respectively, at the M -edges

of Fe, Co, and Ni [168], the highest possible fraction of magnetically scattered flux relative to

the incident intensity can be estimated at ∼ 10−3. In reality, it is even lower because films with

perpendicular magnetic anisotropy are usually composed of multiple layers, which might effectively

reduce ∆β and ∆δ. In addition, given that the diffraction efficiency depends on the transverse

magnetization profile of a particular sample, the actual ρRMS will decrease even further. Thus

RMS experiments are very demanding with respect to the photon flux, and great care must be

taken to generate a high number of photons at the resonance energy of the sample of interest as

well as to preserve it as the probe beam is transported down the beamline.
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5.2 Resonant magnetic scattering on a tabletop

In order to generate a high photon flux at EUV wavelengths, laser driven phase-matched

high harmonics were used [104]. The phase matching process is critical for the HHG brightness

and is described in more detail in Chapter 3. In order to preserve the photon flux, broadband

grazing incidence optics rather than wavelength-selective multilayer EUV mirrors were used. This

approach relies on the resonant nature of the EUV magnetic scattering: in eq. (5.15), ∆β and ∆δ

depend on the photon energy and are greatly enhanced at the resonant energy of the absorption

edge for a given material. Therefore, on resonance, ρRMS is much greater than off resonance, and

only the photons at the resonant photon energy will scatter. A caveat with this approach is that

it puts constraints on the sample composition, i.e., the sample cannot contain multiple elements

whose absorption edges lie within the bandwidth of the EUV source because this will create an

overlay of multiple scaled versions of the scattering pattern, each corresponding to the absorption

edge of a given element within the sample, and will ultimately lead to decoherence effects. For

example, if the photon energies of the EUV beam range from ∼30 to 72 eV (absorption edge of

Al filters), and the sample contains approximately equal amounts of Fe and Co whose M -shell

absorption edges are at ∼53 eV and ∼59 eV, respectively, the scattered intensity at 53 eV will

overlap with that at 59 eV, and the total scattered intensity will be smeared because of this. Note

that for uniform transverse distributions of the Fe and Co atomic species, the scattering pattern is

determined purely by the magnetic texture of the sample, and will have the same profile at both

photon energies, but because higher energy photons scatter at smaller angles, it will appear smaller

at the Co edge than at the Fe. However, if only one element with an absorption edge within the

bandwidth of the EUV source is present in the sample, which was the case with the Fe-Gd magnetic

film studied here, this concern is alleviated, and broadband optics are safe to use.

Fig. 5.1 illustrates the concept of an EUV RMS experiment. Instead of multilayer EUV

mirrors, more efficient broadband optics are used, which increased the photon flux incident on the

sample. A toroidal mirror focuses the beam, and the flat mirror directs it through the sample.
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In addition, it allows small adjustments of the beam pointing. A permanent ring magnet can be

moved along the beam, and thus magnetic fields of up to 270 mT can be applied to the sample. A

beam block placed in front of the CCD which collects diffraction patterns prevents the undiffracted

light from saturating it. This is necessary because a direct transmitted beam carries no magnetic

information and is several orders of magnitude more intense than the magnetic scatter. I outline

Toroidal mirror

Flat mirror

Magnet

Sample

CCD

Beam block

Figure 5.1: The concept of an EUV RMS experiment. Broadband grazing incidence optics are
more efficient than wavelength-selective multilayers. A permanent ring magnet applies a field to
the sample. The CCD placed behind the sample is used to collect the scattered intensity.

the design considerations in more detail below.

5.2.1 Experimental Design

The design of the tabletop RMS setup is concerned with optimizing the brightness and the

beam profile of the EUV source as well as the general layout and efficiency of the optics in the

scattering chamber itself.

I start by discussing the design of the EUV source. A schematic of the source is shown in Fig.

5.2. EUV light is obtained by driving the process of high harmonic generation with an infrared
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amplified Ti:Sapphire laser at the central wavelength of 795 nm. The repetition rate of the laser

was 5 kHz, and the pulse energy was 1.9 mJ. The pulse duration was intentionally stretched in

order to minimize the B-integral [190]

B(~r, t) =
2π

λ

∫
n2 |E(~r, t)|2 dz, (5.20)

where n2 is the second-order nonlinear component of the refractive index. The quantity in eq. (5.20)

corresponds to a nonlinear phase accumulation during the propagation of a laser pulse, which can

interrupt the phase-matched HHG process and thus cause instabilities of the EUV pulses. B(~r, t)

can be minimized by reducing the magnitude of the electric field |E(~r, t)|, which can be achieved

by stretching the laser pulse.

Beam
pointulock

CCDP

CCD2

FromuTi:Sapphire
5kHzIuPv9umJApulse

4Wufs

Touscattering
chamber

CMP

CM2

LensIufu=u5Wucm

MP

M2

BSP

BS2

Capillary
Cartridge In-vacuum

iris
Alufilters
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AM2

Figure 5.2: Schematic of the EUV source. Amplified 40 fs pulses from a Ti:Sapphire laser (KMLabs
Wyvern) at the central wavelength of 795 nm are converted into bright EUV pulses in a hollow-core
glass waveguide filled with He. The pointing of the infrared beam into the fiber is stabilized. Any
residual infrared light emitted from the fiber is blocked by an in-vacuum aperture and a series of
Al filters.

HHG, however, requires a high-intensity laser driver, and for that reason, laser pulses need to

be compressed before they enter the gas filled capillary in Fig. 5.2. The compression is performed

with a pair of chirped mirrors CM1 and CM2, which compensate for the quadratic spectral phase

introduced into the pulse for the purpose of increasing its duration and thus compress the pulse
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back to its nearly transform-limited length of ∼40 fs. Because this pulse compression is performed

relatively close to the HHG region, it accomplishes the goal of minimizing the B-integral by op-

timizing the long pulse vs. short pulse propagation distance while delivering short pulses to the

gas-filled capillary.

A CaF2 lens with a focal length of 50 cm is used to focus the beam into the hollow-core

waveguide. The material of the lens has a low group velocity dispersion, which allows one to

minimize the stretching of laser pulses as they travel through the lens. The laser spot size at the

focus of the lens is matched with the inner diameter of the fiber of 150 µm in order to optimize

the coupling of the laser light into the lowest order mode of the fiber. The fiber entrance is placed

close to the focus of the lens.

The beam splitter immediately after the lens (BS1) in Fig. 5.2 reflects 99% of the IR beam

into the fiber, and 1% goes into the beam stabilization system composed of a 50/50 beam splitter

BS2, a mirror M2, two CCD cameras CCD1 and CCD2, control software, and two actuated mirrors

AM1 and AM2. The purpose of the beam stabilization system is to lock the position and angle of

the IR laser beam at the entrance of the fiber as they may change due to thermal drifts in the laser

amplifier and, therefore, can cause a reduction in the coupling efficiency into the fiber, which, in

turn, may lead to instabilities and decreased efficiency of the HHG process and result in a low total

photon flux. The cameras track the centroids of non-focused (CCD1) and focused (CCD2) beams

and the control software makes adjustments to the actuated mirrors AM1 and AM2 based on the

feedback from the cameras. The two actuated mirrors are placed before the pair of chirped mirrors

in order to keep the incidence angle of the laser beam on CM1 and CM2 the same. Changes in

the incidence angle on the chirped mirrors can result in a fluctuating pulse duration and adversely

affect the HHG process. More details on the beam stabilization setup can be found in Ref. [107].

The HHG process itself takes place in a KMLabs XUUSTM hollow waveguide cartridge. The

waveguide is filled with He gas at ∼900 Torr. Because the end section of the waveguide is very

short, an efficient pumping scheme must be used in order to evacuate any residual gas from the

beamline to minimize re-absorption of high harmonics. Two Agilent TriScroll 300 roughing pumps
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and a Pfieffer HiPace 300 turbo pump were used for that purpose. A pressure of 10−4 Torr in

the beamline was reached even at the highest gas pressures in the waveguide. To maximize the

amount of IR light coupled into the waveguide, a sapphire Brewster window was used in front of

the waveguide at the entrance into the vacuum section of the beamline. The Brewster window

was oriented such that the HHG linear polarization would be in the s-polarization direction with

respect to the toroidal mirror in Fig. 5.1 in order to maximize its reflectivity. A half-wave plate

WP in Fig. 5.2 was used to match the polarization of the laser to the orientation of the Brewster

window and maximize the transmission through the window. After the waveguide, a 500 nm and

a 200 nm Al filters were used to reject any residual IR light emitted from the waveguide. Because

the divergence of the IR beam is higher than that for the EUV, an aperture was placed in front of

the filters to select a small central portion of the IR beam and transmit the full EUV beam. Such

an approach greatly reduces the total amount of the IR power incident on the Al filters and thus

lowers the risk of their failure.

I now proceed to discussing the layout of the scattering chamber shown in Fig. 5.3. Three

beam paths are implemented in the chamber. The main one is path 1 shown in purple in the figure.

In this path, the EUV beam from the waveguide impinges on a toroidal mirror, which focuses it

through the sample. The toroid is oriented at a ∼10◦ grazing incidence, and, in order to redirect

the beam onto the sample, a flat mirror M2 oriented at the same angle is used. The beam is

then transmitted through a sample with a magnetic texture, and the diffracted light is collected

with an imaging CCD (Andor DO-436). The beam block in front of the imaging CCD blocks the

un-diffracted transmitted beam as it contains no magnetic information, and, due to its very high

intensity compared to the scattered light, can saturate the camera and thus make the observation of

magnetic scattering impossible. The beam block is mounted on translation stages and its position

can be adjust to match the position of the un-diffracted peak on the CCD. The sample can be

translated in three directions. Translating it along the x and y directions perpendicular to the

normal to the sample helps align it with the incident beam, while translation along the beam

adjusts the distance between the imaging CCD and the sample and thus, for a fixed scattering
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angle, controls the size of the measured diffraction pattern. In the experiment reported here, the

sample was placed at a distance of 36 mm away from the CCD. The sample mount was intentionally

made rather big, so that it would prevent any light scattered in the chamber from illuminating the

imaging CCD. A ring magnet placed in front of the sample applies a magnetic field while letting

the EUV beam to go through. More details on the magnet mount are given below.

In path 2, shown in yellow in Fig. 5.3, a 45◦ gold coated mirror M1 can be inserted in the

beam before the toroid to reflect it onto the beam diagnostic CCD (Andor Newton 920). It helps

ensure that the HHG process in the waveguide cartridge is phase-matched and the EUV mode is

good with a symmetric Gaussian profile and low divergence as shown in Fig. 5.4. This is a critical

step because the EUV photon flux depends on how well phase-matched the HHG process is, and

the focusing of the beam depends on its divergence and profile. A beam with a high divergence

and/or an asymmetric profile cannot be focused into a small spot by the toroid. Typically, a good

mode indicates that the phase-matching is also good, and, therefore, the photon flux is high.

In path 3, shown in Fig. 5.3 in blue, mirror M2 can be moved out of the beam in order to

direct it into a spectrometer that consists of a 500 lines/mm gold coated diffraction grating and

a CCD (Andor DO-420 BN). The imaging CCD and the spectrometer CCD are both mounted at

the focus of the toroid, which, in the case of the spectrometer, improves the spectral resolution by

making the spot sizes of the diffracted beamlets small in the plane of the CCD. The spectrometer

allows a small tuning of the HHG spectrum to match a harmonic peak with the resonant absorption

peak of the sample. An example spectrum is shown in Fig. 5.5(a) together with the maximum

estimated scattering efficiency for Fe calculated according to eq. (5.19) with the optical constants

for Fe taken from Ref. [168]. As can be seen from the figure, the spectral overlap of ρ
(max)
RMS and the

HHG spectrum could be improved, but even with the existing overlap, the scattering predominantly

occurs at a single harmonic energy, as evidenced by Fig. 5.5(b), which shows a normalized product

of the two curves in (a).

Another important consideration in the design of the setup is the EUV spot size on the

sample. It can be estimated by assuming that the EUV beam is a perfect Gaussian (M2 = 1)
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Figure 5.3: RMS chamber layout. Three beam paths are implemented in the chamber: In path 1
(purple), the EUV beam is transmitted through the sample, and the diffraction pattern is collected
with the Imaging CCD; in path 2 (yellow), the beam is directed onto the Beam diagnostic CCD,
which measures its spatial profile; in path 3 (blue), the beam is directed into the spectrometer.

Figure 5.4: Transverse profile of a phase-matched HHG beam. The vertical streaks are from the
scratches on the gold mirror.
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Figure 5.5: (a) An example HHG spectrum and its overlap with the scattering efficiency ρ
(max)
RMS . (b)

The product of the spectrum and ρ
(max)
RMS demonstrates that the scattering occurs predominantly at

a single harmonic energy.
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and propagating it through the beamline to the sample. The beam radius at the output of the

waveguide can be calculated from the divergence in Fig. 5.4 as [191]

w0 =
λ

πθ
, (5.21)

where θ is the divergence half-angle. With θ ≈ 0.5 mrad and λ ≈ 23 nm at the M -edge of Fe,

w0 ≈ 15 µm, and thus the spot size 2w0 is 30 µm. A toroid has two focal lengths—sagittal and

tangential—that correspond to the sagittal and tangential radii of curvature of its surface r and R,

respectively, shown in Fig. 5.6. The two focal lengths depend on the angle of incidence α and are

r

R
α

Figure 5.6: A sketch of a toroidal mirror. r and R are the sagittal and tangential radii of curvature,
respectively. α is the angle of incidence with respect to the surface normal.

the same when

cosα =

√
r

R
. (5.22)

For α defined by eq. (5.22), the focal length is

f =
1

2

√
rR. (5.23)

For the toroid used in this experiment, r = 90.5 mm and R = 3220 mm, which, according to

eqs. (5.22) and (5.23), yields α = 80.35◦, which is equivalent to a 9.65◦ grazing angle, and f = 27 cm.

The distance between the toroid and the EUV source is 160 cm, and with a known focal length

and the size of the EUV beam at the output of the waveguide, the beam size at the sample position

can be calculated with the ABCD-matrix method [191]. At the sample position 29 cm away from

the toroid (and 3.6 cm from the imaging CCD), an estimated beam diameter is ∼150 µm. This is

a rather large beam, compared to typical illumination spot sizes of a few µm in EUV microscopy;

however, for scattering experiments this can be beneficial because an average over a bigger area is
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taken. Additionally, if a magnetic texture consists of repeated features, such as worm-like domains

or a skyrmion lattice, the scattering peak is sharper for a larger illumination area. This is analogous

to the resolution of a diffraction grating: the resolution improves and the diffraction peaks become

sharper if a larger area of the grating is illuminated.

5.2.2 Beamline efficiency

As mentioned above, a high EUV photon flux from the laser driven HHG source in Fig. 5.2

needs to be preserved in the beamline. Typical reflectivities of multilayer wavelength-selective

EUV mirrors do not exceed 50%, and approximately 3/4 of the photon flux would be lost on a pair

of such mirrors. For that reason, broadband grazing incidence optics were used in the chamber.

Reflectivities at grazing incidence are normally quite high. Fig. 5.7 confirms that this is indeed the

case for the toroidal mirror and flat mirror M2 (see Fig. 5.3). Both optics are made from Pyrex

glass and coated with 30 nm of B4C. The reflectivities in the figure are calculated for a grazing

angle of 10◦ with the multilayer approach described in Chapter 4. For a toroid-flat mirror pair

Figure 5.7: Reflectivity of a toroidal mirror made from Pyrex glass and coated with 30 nm of B4C
at a 10◦ grazing incidence.
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in path 1 in Fig. 5.3, the total reflectivity is approximately 0.71 for s-polarization and 0.64 for

p-polarization, according to the data in Fig. 5.7. In the case of an s-polarized EUV probe, there is

almost a threefold improvement compared to multilayer EUV mirrors.

Two alternative designs are possible to reject the residual IR light emitted from the fiber.

The first design includes a pair of rejector mirrors, typically made from Ru or another material,

that are very efficient at absorbing the IR light and reflecting the EUV. After the Ru rejectors,

a thin (200 nm) Al film is placed to filter out any IR light that either was not absorbed or was

scattered. This design is robust in that it ensures that no damage to the camera by direct laser light

will be caused should the Al film break. However, the rejectors are most efficient when the incident

light is p-polarized. For example, for a pair of Ru rejectors at an 8◦ grazing incidence, the total

reflectivity is 0.36 at the Fe absorption edge, and if the 0.72 transmissivity of the 200 nm Al filter is

included, the efficiency of the Ru rejectors with an Al filter becomes 0.26. Alternatively, a series of

Al filters can be used. A combination of a 500 nm and a 200 nm Al film transmits virtually no IR

light, and its transmissivity at the Fe M -edge is 0.32, which is higher than the reflectivity of a pair

of Ru rejectors, and, therefore, this design is preferable. Additionally, at normal incidence, these

filters are not sensitive to the polarization direction. The disadvantage is that the Al filters could

fail under very high thermal load from the IR laser pulses thus putting the imaging camera and

the sample at risk. To mitigate this risk, an aperture is used in front of the filters (see Fig. 5.2).

It blocks most of the IR beam, whose divergence is high, while transmitting a slowly diverging

EUV beam. The total efficiency of the beamline includes the transmissivity of the Al filters and

the reflectivities of the toroid and the flat mirror and is equal to 0.26 at the Fe absorption edge

meaning that approximately 26% of the EUV light generated in the waveguide is delivered to the

sample.

5.2.3 Application of an external magnetic field

An external magnetic field can either be applied to the sample with an electromagnet or

a permanent magnet. For an in-vacuum experiment, the latter is preferable because it does not
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require water lines in the vacuum chamber to cool the magnet. Additionally, stronger fields can be

achieved with a permanent magnet, and the field at the sample can be adjusted by changing the

distance to the magnet. In Fig. 5.8, the measured on-axis (a) and the calculated (b) fields of a

system of two permanent ring magnets are shown. Two magnets, rather than a single magnet are

required for the mounting. The maximum on-axis field magnitude is ∼ 280 mT, which should be

sufficient to induce the skyrmion phase in the Fe-Gd sample, according to Ref. [192]. In addition,

the field near the axis at z > 8 mm is relatively uniform and thus the experiment should not be

very sensitive to a small misalignment of the magnet relative to the sample and the EUV beam.

Figure 5.8: Magnetic field of a system of two permanent ring magnets (shown in dark blue) (a)
measured on-axis and (b) calculated.

The calculation in Fig. 5.8(b) was carried out using a magnetostatic scalar potential approach

[92]. According to this approach, the magnetic potential, in the absence of boundary surfaces, is

given by

ΦM (~r) = −
∫ ~∇′ · ~M(~r′)

|~r − ~r′|
d3~r′, (5.24)

where ~M(~r) is a spatially dependent magnetization, and the magnetic field in free space can then

be computed using

~B = −µ0
~∇ΦM . (5.25)

The magnet mount is placed on a translation stage, and the distance between the sample



116

and the magnet, and thus the field at the sample, can be adjusted.

5.3 Field-dependent scattering

The magnetic field dependence of resonant magnetic scattering from an Fe-Gd film was

studied. The nominal structure of the sample was [Gd (0.41 nm)/Fe (0.34)nm]×80. However, due

to an interdiffusion of the Fe and Gd layers, the interfaces disappeared, and the entire film could be

considered an amorphous alloy. The sample was prepared at the Center for Memory and Recording

Research at the University of California San Diego, and more details about it can be found in Refs.

[192] and [53]. The magnetic film was grown on a 50 nm Si3N4 membrane, and 5 nm Ta films were

used as a seed and cap layers.

Since the scattering experiment is performed at the Fe M -edge, the total thickness of the Fe

layers needs to be optimized in order to improve the magnetic contrast, according to eq. (5.18).

With an attenuation length of Fe equal to ∼15 nm at 54 eV, the optimal thickness is 30 nm, which

is very close to the sample’s total thickness of the Fe layers of 27.2 nm.

In the sample studied here, skyrmions are formed due to a competition between long-range

magnetic dipolar interactions and the energy of domain walls [54, 52, 193]. Such skyrmions are

also called dipole-stabilized skyrmions to emphasize the fact that, although they are topologically

similar to the more common skyrmions stabilized by the chiral Dzyaloshinskii-Moriya interaction

[194, 195, 196], the mechanism that leads to their formation is different from the latter. The

sample was designed to form a hexagonal lattice of dipole-stabilized skyrmions in a magnetic field.

Here, I study a transition from a disordered stripe-domain phase to an ordered skyrmion phase by

measuring RMS patterns at various applied magnetic fields.

An example RMS pattern is shown in Fig. 5.9. The pattern was taken at zero applied field

and shows two intensity lobes around q ≈ 0.03 nm−1, where q is the momentum-transfer vector

defined as q = 4π sin(θ/2)/λ (with λ = 23.16 nm) and θ are the wavelength and scattering angle,

respectively. This is a signature of a disordered nanoscale worm-like domain network commonly

seen in thin films with perpendicular magnetic anisotropy. At q ≈ 0.06 nm−1, additional lobes
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can be seen. They correspond to second-order scattering and indicate that there is an asymmetry

between up and down domains. To understand this, consider a Fourier series expansion of a square

wave. If the wave is perfectly symmetric, only odd harmonics will be present in the expansion 1 .

If the duty cycle is not equal to 50%, or the shape of the wave deviates from a perfect square wave,

e.g. becomes a sawtooth wave, even harmonics will appear in the expansion. In the case considered

here, those are manifested as two additional intensity lobes.

Figure 5.9: Example RMS pattern from an Fe-Gd multilayer alloy at zero field. Notice a weak
second order scattering ring at q ≈ 0.06 nm−1.

Fig. 5.10 shows RMS patterns taken as the field was increased from 0 to 180 mT. The

intensity in all of the images is normalized to 1. The patterns in the figure change from large lobes

at low fields to more concentrated intensity distributions in q-space at higher fields. This indicates

a transition from a disordered network of worm-like domains to a more ordered phase of stripe

domains. For a perfectly ordered stripe domain phase, the scattering pattern has two concentrated

peaks at ~q0 and −~q0, as shown in Fig. 5.11. The magnitude of q0 corresponds to the periodicity of

the domain pattern, and its direction is orthogonal to the direction of the stripes. At B > 100 mT,

the RMS patterns look like an overlay of an RMS pattern from perfectly ordered stripe-domains

and that from a more disordered domain distribution. This is likely due to a co-existence of an

1 http://mathworld.wolfram.com/FourierSeriesSquareWave.html

http://mathworld.wolfram.com/FourierSeriesSquareWave.html
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Figure 5.10: Field-dependent RMS patterns. The film transitions from a disordered worm-like
domain phase at low fields to a more ordered mixed phase of stripe domains at high fields.

Figure 5.11: RMS from ordered stripe domains in Fe-Gd (taken at 54 eV, B = 0 mT).
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ordered and disordered domain phases within the illuminated area.

The domain periodicity at a given field can calculated from the RMS patterns. For small

scattering angles, 2 sin(θ/2) ≈ sin θ = mλ/p, where p is the periodicity, and m is a diffraction order.

In Fig. 5.10, m = 1. The domain size d = p/2, and, given the definition of the scattering vector q,

an expression for the domain size is

d =
π

q
. (5.26)

In order to obtain an accurate estimate of the position of diffraction peaks in q-space, the diffraction

patterns in Fig. 5.10 are averaged in the azimuthal direction. The averaging must exclude areas

of the detector with pixels that do not carry any scattering information because they were either

obscured by the beam block (see the white shadow in Fig. 5.9) or exposed to scattered light (see

the left edge of Fig. 5.9). Such a map of bad pixels is shown in Fig. D.1 in Appendix D. A detailed

description of the averaging procedure is given in Chapter 6. An example azimuthally averaged

intensity distribution for B = 25 mT in Fig. 5.10 is shown in Fig. 5.12. In the figure, the peak

Figure 5.12: Azimuthally averaged RMS pattern for the Fe-Gd sample at B = 25 mT.

is located at q = 0.0315 nm−1, which corresponds to a domain size d = 99.7 nm, according to

eq. (5.26). By performing the averaging procedure for each field value in Fig. 5.10, the dependence
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of the diffraction peak position, and thus of the domain size, on the field can be obtained. The

results are shown in Fig. 5.13. As the field increases, the scattering peak in (a) shifts towards lower

q-values, and the domain size in (b) increases, accordingly.

Figure 5.13: The dependence of the (a) angular RMS spectrum and (b) domain size of the Fe-Gd
sample on the applied magnetic field.

Upon further increase of the magnetic field to 220mT, a hexagonal lattice of dipole-stabilized

skyrmions formed in the film, which is reflected in the hexagonal shape of the scattering pattern

shown in Fig. 5.14, in agreement with Ref. [192]. The lattice constant, as determined from the

figure, is a = 228 nm. Assuming that the lattice is two-dimensional and close-packed, as illustrated

in Fig. 5.15, the radius of the skyrmions is rs = 124 nm. This result is a first demonstration of

resonant magnetic scattering from a skyrmion lattice on a tabletop.

5.4 Conclusions

This chapter presented the design of a resonant magnetic scattering experiment on a tabpletop

and its implementation for studying field-dependent scattering from a Fe-Gd magnetic film, as well

as some general theoretical considerations pertaining to the scattering process with linearly and

circularly polarized probes.

I showed analytically that the contrast mechanism of resonant magnetic scattering with

linearly polarized light arises from the Faraday rotation, which is mapped onto the magnetic texture,
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Figure 5.14: RMS from a hexagonal skyrmion lattice.

a

rs

Figure 5.15: Two-dimensional hexagonal close-packed lattice of skyrmions. a is the lattice constant
rs = a/2 is the skyrmion radius.
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and derived the optimal sample thickness, equal to twice the attenuation length, that maximizes

the scattered flux.

A high photon flux at the M -shell absorption edge of Fe was achieved with a phase-matched

laser-driven HHG process. The resonant nature of magnetic scattering in the EUV spectral region

allowed an improvement of the beamline efficiency through the use of efficient broadband grazing

incidence optics instead of multilayer mirrors. Even though the spectrum of the EUV probe incident

on the sample is broad, only the photons whose energy is on resonance with the absorption edge

of a given magnetic material are scattered.

The tabletop RMS setup was employed to study the field dependence of magnetic textures

in a Fe-Gd multilayer alloy with perpendicular magnetic anisotropy. At low fields, the sample

exhibited disordered domain networks. As the field increased, the domain size also increased, and

the domains themselves became more ordered. At B = 220 mT, an RMS pattern with a hexagonal

symmetry was observed. It was attributed to a formation of a two-dimensional hexagonal close-

packed lattice of dipole-stabilized skyrmions. This constituted the first observation of magnetic

skyrmions with a tabletop EUV source.



Chapter 6

Laser-Induced Spin Dynamics in a Network of Magnetic Domains

In this chapter, I report the results of an RMS experiment performed at LCLS. The goal of the

experiment was to study optically-induced dynamics of nanoscale magnetic domains and domain

walls in a ferromagnetic multilayer film by use of resonant soft X-ray (SXR) magnetic scattering.

In the experiment, photons at high scattering angles were captured, which allowed access to fine

spatial features such as domain walls. I develop a method of reconstructing dynamic changes to

magnetic domains in real space by applying the experimental time-resolved scattering data to a

simulated domain pattern whose Fourier spectral intensity agrees well with the static experimental

scattering intensity. The reconstructed changes in the domain pattern reveal feature-dependent

non-uniform demagnetization. I develop a phenomenological spin transport model and apply it

to the same simulated domain pattern and find that the model predictions agree well with the

experimental reconstructions. I, therefore, attribute the observed spatially resolved dynamics to

a transient exchange of angular momentum between magnetic domains of opposite magnetization.

I also find that, on short timescales, domain walls remain sharp and demagnetize less than the

domains themselves, but their demagnetization and broadening proceed even on long timescales. I

perform thermal transport simulations and correlate this behavior with the heat diffusion through

the crystal lattice throughout the depth of the sample, which affects the total magnetic anisotropy

of the film and thus the width of the domain walls.
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6.1 Overview of previous work

RMS is a very powerful technique because it allows one to access spatial variations of magnetic

properties with light. This is especially important in time-resolved studies since additional non-

local demagnetization channels, such as superdiffusive spin currents [154], can arise due to magnetic

inhomogeneities, e.g. in a network of magnetic domains, and contribute to the demagnetization

process. Because of this and the nanometer magnetic correlation lengths involved, laser-induced

evolution of a magnetic texture can be substantially different from that of a uniformly magnetized

film. To date, most studies of ultrafast demagnetization have either adopted a spatially averaged

approach [197, 172, 144] or used uniformly magnetized samples [127, 57, 122, 133, 125, 198, 199].

They have been able to uncover the role of Stoner excitations and ultrafast magnon generation in

ultrafast demagnetization [122, 125], as described in Chapter 4, and also reported an observation

of an ultrafast phase transition from the ferromagnetic to the paramagnetic state [144, 172]. In

the absence of spatial resolution, however, observation of lengthscale-dependent ultrafast magnetic

phenomena would be impossible without specifically tailoring the design of the sample, as was

done in Refs. [200, 201, 156, 202], where the authors observed ultrafast spin transport by carefully

designing the magnetic multilayer stacks and measuring a spectroscopic time-resolved MOKE re-

sponse in the EUV or visible spectral range. An ability to perform measurements with both a high

temporal and spatial resolution is critical not only for gaining insight into the fundamental aspects

of materials’ magnetism but also from the practical standpoint when, for instance, fast switching

of a nanoscale magnetic device needs to be observed.

I reviewed the tools for studying materials systems and their respective temporal and spatial

resolution in Fig. 1.1 in Chapter 1. FELs and laser-driven tabletop HHG sources are best suited for

the task of capturing magnetization dynamics with a high temporal and spatial resolution by means

of time-resolved resonant magnetic scattering. Such experiments have been performed to study

ultrafast spatially resolved magnetization dynamics in real space in patterned [203] and disorded

[204] systems by use of X-ray holography at an FEL. Time-resolved experiments in reciprocal space
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have been carried out using both FEL [205, 206, 207] and HHG [182] sources. Refs. [206, 207]

report on magnetization dynamics in granular media, which are quite different from the domain

sample studied here. Relevant results concerning the evolution of a pattern of disordered magnetic

domains are reported in Refs. [182, 204, 205], where evidence of ultrafast spin-polarized transport

between domains is observed. While Ref. [182] does not make any claims regarding the dynamics

of domain walls, Refs. [205, 204] state that the the domain walls are softened in a laser-excited

sample. This softening is attributed to the effect of spin currents. However, in all of the references

above, the spatial resolution was limited by the relatively low scattering angles, which included

only the first order scattering ring. Therefore, the interpretation of the results is based on an

extrapolation of the experimental signals to higher scattering angles.

In the experiment reported here, in addition to the first order ring, third and fifth orders were

measured, which allowed an extraction of the dynamics of very small magnetic features including

domain walls. In contrast with Refs. [204, 205], I observe that domain walls demagnetize less and

remain sharp on short timescales, and only start to broaden at longer times. In this chapter, I

discuss possible sources of this disagreement with the previous results in the literature.

6.2 Soft X-ray scattering experiment at LCLS

The experiment was performed at the SXR beamline at LCLS, and the setup is shown in

Fig. 6.1. Soft X-ray pulses with a 60 fs pulse length were produced by the FEL at a repetition rate of

120 Hz. The energy of the photons in the pulse was set to 852.7 eV to match the L3 absorption edge

of nickel. The linear polarization of the soft X-ray pulses was converted to circular in the Delta-

undulator [208]. The X-rays were scattered by a domain sample whose multilayer composition

was Si3N4(50)/ Ta(3)/ Cu(5)/ (Co90Fe10(0.2)/ Ni(0.6))x50/ CoFe(0.2)/ Cu(3)/ Ta2O5(3), where

the layer thicknesses in parentheses are in nm. Such a sample structure generated perpendicular

magnetic anisotropy (PMA), which lead to a formation of worm-like magnetic domains with a

periodicity of 160 nm. The multilayer structure of the sample and its magnetic force microscopy

image are shown in Fig. 6.2. As discussed in Chapter 5, the magnetic contrast mechanism with
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circularly polarized X-rays is due to the X-ray Magnetic Circular Dichroism (XMCD), which is

manifested as a dichroism in the X-ray absorption of light with a well defined helicity by domains

with opposite magnetization directions. XMCD thus maps the domain pattern to a difference in

X-ray absorption. In the far field, the X-rays scattered by the domain sample produce a series of

concentric rings corresponding to odd orders of diffraction. This scattering pattern was recorded

with a pnCCD detector placed 275.3 mm away from the sample. The detector consisted of four

512×512 pixel independent panels with adjustable positions, and the pixel size was 75 µm. Such an

experimental geometry allowed detection of X-rays scattered at angles of up to ∼ 8◦. The pnCCD

X-ray Probe

IR Pump

Electromagnet

pnCCD

Al filter

XMCD CCD

Domain Sample

Figure 6.1: Experimental setup for time-resolved soft X-ray resonant magnetic scattering. The
pnCCD is used to detect scattered X-rays at different delay times between an IR pump and an X-ray
probe, and the detector behind the pnCCD is used for XMCD measurements. The electromagnet
allows one to control an external magnetic field at the sample.

had an opening at the center to allow the unscattered X-rays propagate through. These X-rays

were detected with an Andor Newton CCD camera placed behind the pnCCD. An Al filter in front

of the Andor CCD suppressed the IR light from the pump laser. An electromagnet could apply

up to 0.6 T of external magnetic field perpendicularly to the surface of the sample. In addition to

zero-field RMS measurements, both the scattering (with the pnCCD) and XMCD (with the Andor
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Sample structure

x50{

Si3N4 (100 nm)

Ta (3 nm) 
Cu (5 nm) 

Co90Fe10 (0.2 nm)
Ni (0.6 nm) 

Co90Fe10 (0.2 nm)

Cu (5 nm) 
Ta2O5 (3 nm)

Figure 6.2: Sample structure and MFM image of domains. The domains are disordered, and their
periodicity is ∼160 nm.
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CCD) signals were taken when the sample was magnetically saturated. Those data were used to

remove any non-magnetic contributions from the zero-field scattering data. I describe the details

of this removal procedure in Section 6.4.

An X-ray probe pulse arrived at the sample with a time delay relative to an IR pump pulse

from an amplified Ti:Sapphire laser at 795 nm. The pump pulses were 60 fs long, and the average

incident pump fluence was ∼23 mJ/cm2. The pump laser was time-locked to the FEL. However

the FEL had an intrinsic jitter associated with an uncertainty in the emission time, energy, and

intensity of individual electron bunches, which was manifested as fluctuations in the arrival time,

energy, and brightness of X-ray pulses. The delay time between the IR pump and the X-ray probe

was scanned in the range from −3 ps (to probe an unperturbed sample at negative delays) to 20

ps. Scattering patterns at each delay time were taken in a signle-shot manner. Because of the

jitter in the arrival time of the probe, the position of the delay stage in the pump arm does not

correspond to a fixed pump-probe delay from pulse to pulse. However, a correlation method used

to time stamp the X-ray pulses at LCLS allows one to correct for such jitter. If both the position of

the delay stage and the arrival time of the probe pulse are known, then the total delay between the

pump and the probe can be calculated. For this reason, the delay stage is moved continuously in

order to improve the statistics. In the next step, all of the collected scattering patterns are sorted

according to their delay, and the pattern at a requested delay is computed as an average of all

the patterns recorded within a specified time window (400 fs for this experiment) centered at that

delay. Such a binning procedure, while lowering the temporal resolution, leads to a significantly

improved signal-to-noise ratio.

6.3 Data processing considerations

With the experimental setup in Fig. 6.1, two-dimensional RMS intensity distributions

S2
q (qx, qy) shown in Fig. 6.3(a) were measured. Because of the azimuthal symmetry of S2

q (qx, qy),
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the dimensionality of the data set can be reduced by computing an azimuthal average of S2
q (qx, qy)

〈S2
q 〉(q) =

1

2π

2π∫
0

S2
q (q cosφ, q sinφ)dφ, (6.1)

where the scattering vector q is defined as q = 4π sin(θ/2)/λ (λ is the incident wavelength and θ is

the scattering angle). An azimuthally averaged RMS intensity distribution is shown in Fig. 6.3(b).

Prior to computing 〈S2
q 〉 with eq. (6.1), it is important to ensure that several aspects are properly

RMS Intensity S2
q (qx, qy) (a.u.)
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(b)

Figure 6.3: RMS intensity distribution from an unperturbed domain sample at t = 0: (a) as
measured by the pnCCD, (b) averaged in the azimuthal direction. In (b), the first and third order
scattering peaks are clearly visible at 0.04 and 0.12 nm−1, respectively. A small fifth order peak is
discernable at 0.2 nm−1.

accounted for.

First, the panels of the pnCCD must be aligned correctly. The spacing in pixels between

the panels seen as white lines cutting through the data in Fig. 6.3(a) represents the actual phys-

ical spacing between the panels. If this distance-to-pixel calibration is incorrect, the azimuthally

averaged signal will be distorted.

Second, the center of the scattering pattern must be determined accurately. This is important

for the correct computation of 〈S2
q 〉, especially at low q-values. For a continuous detector this can

be done simply by finding the centroid of the image. For the pnCCD detector consisting of four

separate panels, the centroid does not give the true position of the center of the scattering pattern

because of the missing pixels in between the panels. I, therefore, threshold the data and fit a circle
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to the pixels whose values are above the specified threshold. A function that performs the fitting

can be found online.1

Third, the missing pixels in between the pnCCD panels (as well as pixels at the edges of

the pnCCD that are saturated by the pump) must be properly accounted for. Eq. (6.1) assumes

that on a circle of radius q, there are 2πq pixels. However, in the case considered here, data on

some pixels might be missing, so the total number of pixels with data is less than 2πq. This is

illustrated with the pixel mask in Fig. 6.4, where the pixels with missing or bad data are shown

in black, and a circle of constant q is shown in blue. The intersection of the circle with the black

pixels should not contribute to the total average. Assuming that the scatter pattern is azimuthally

symmetric the missing data can be accounted for by multiplying 〈S2
q 〉(q) defined by eq. (6.1) by

a correction factor fc(q) =
(∫ 2π

0 m(q, φ)dφ
)−1

, where m(q, φ) is a mask of pixels with bad data

shown in Fig. 6.4, such that m(q, φ) = 1 for good pixels (white) and m(q, φ) = 0 otherwise (black).

0

0.2

0.4

0.6

0.8

1

q

φ

Figure 6.4: Mask of bad pixels m and a circle of constant q. m(q, φ) = 1 for good pixels (white)
and m(q, φ) = 0 otherwise (black).

With the procedure described above, an azimuthally averaged spectrum is obtained (see

Fig. 6.3(b)). The procedure is repeated for each delay time between the pump and the probe and

yields a time-dependent azimuthally averaged dataset 〈Iq〉(t) shown in Fig. 6.5 as a density plot of

the time-resolved data normalized by the static signal 〈Iq〉(0). Here, I have changed the notation

1 https://blogs.mathworks.com/pick/2008/03/14/fitting-a-circle-easily/

https://blogs.mathworks.com/pick/2008/03/14/fitting-a-circle-easily/
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for the scattered intensity from S2
q to Iq to emphasize the fact that the measured scattering is

not necessarily purely magnetic (which will be denoted by S2
q further in the text) but also has a

charge component C2
q contributing to the total scattered intensity Iq. In Section 6.4, I show that

the oscillations seen in Fig. 6.5 around q ≈ 0.3 nm−1 come from the charge scattering and develop

a method of isolating the purely magnetic component of the scattered intensity S2
q .

Total Scattered Intensity Iq(t)=Iq(0)

0 10 20
t (ps)

0.1
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!
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Figure 6.5: Time-resolved azimuthally averaged scattered intensity normalized by the static signal
〈Iq〉(t)/〈Iq〉(0). Note the oscillations at q ≈ 0.3 nm−1.

6.4 Separation of magnetic and electronic scattering

6.4.1 Mathematical basis

In the following, I derive the intensity of the probe beam at the pnCCD after it is scat-

tered by a sample with some real-space distribution of the magnetization (or spin) s(~r) and charge

c(~r). I employ the refractive index formalism to describe X-ray interactions with matter, which

is equivalent to the scattering factor formalism often used for that purpose [160]. The derivation

takes into account contributions from both the charge distribution c(~r), as well as two types of spin

distribution—one that is uncorrelated (s(~r)) and one that is correlated (αc(~r)) with the charge,

where α is a scalar that represents the magnitude of the charge-correlated spin distribution. Be-

cause the sample is probed with circularly polarized X-rays, the magnetic and charge scattering



132

components have the same polarization and can interfere in the detector plane. Therefore, care

must be taken while separating the two scattering components.

6.4.1.1 General case

A wave transmitted through the sample is called the exit surface wave (ESW). If the electric

field of the incident wave is E0, the exit surface wave is

E = E0 exp [ikd (n0 + δnss(~r) + δncc(~r) + αδnss(~r))] , (6.2)

where d is the sample thickness, δnc is the magnitude of the refractive index variation due to charge,

δns is the magnetic refractive index variation, i.e. it is defined by the difference in the refractive

index between the positive (+) and negative (−) magnetization directions δns = 1
2(n+ − n−),

k = 2π/λ. s(~r) is determined by, for example, the magnetic domain topography of a given sam-

ple and is equal to the spatial dependence of the out-of-plane component of the magnetization

s(~r) = Mz(~r). c(~r) is determined by spatial variations of the charge distribution that arise due

to, e.g., inhomogeneities in the chemical composition and/or sample roughness. In the most gen-

eral case, there is a charge-correlated spin distribution αc(~r), which depends on how strongly the

magnetization is sensitive to local charge variations c(~r). In the case of granular media [206, 207],

such correlation is indeed very strong. In the case considered here, it is expected to be negligible

because the sample is relatively flat and homogeneous. Nonetheless, I shall keep the αc(~r) term in

order to develop a rigorous approach. Note that c(~r), s(~r), and α can all be time-dependent, and

the time dependencies of these terms are not necessarily the same.

The spot size of the X-ray probe is on the order of 100 µm in the experiment, which is much

bigger than the characteristic lengths of the domain sample. Hence, I assume that the incident

beam is a plane wave, and, in eq. (6.2), E0 = 1. Additionally, I divide out the factor exp [ikdn0]

because it does not contribute to the scattered intensity. For brevity, I define Cr = ikdδncc(~r) and

Sr = ikdδnss(~r). With these definitions and the assumptions made above, eq. (6.2) simplifies to

E = exp

[
Sr + Cr + α

δns
δnc

Cr

]
. (6.3)
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I Taylor expand this expression up to second order

E = 1 +Cr + Sr +α
δns
δnc

Cr +
1

2
C2
r +

1

2
S2
r +

1

2
α2

(
δns
δnc

)2

C2
r +α

δns
δnc

C2
r +α

δns
δnc

CrSr +CrSr. (6.4)

The complex electric field of the scattered wave at the detector is obtained by Fourier transforming

expression (6.4)

Eq = δ(~q) +

(
1 + α

δns
δnc

)
Cq + Sq +

1

2

(
1 + 2α

δns
δnc

+ α2

(
δns
δnc

)2
)
F{C2

r }+

+
1

2
F{S2

r}+

(
1 + α

δns
δnc

)
F{CrSr},

(6.5)

where I defined Cq = F{Cr} and Sq = F{Sr}. This expression can be simplified by introducing

a =
(

1 + α δnsδnc

)
and canceling the Dirac-Delta δ(~q), as it is only non-zero at ~q = 0, i.e. for the

unscattered light, which I am not considering here. Eq. (6.5) now simplifies to

Eq = aCq + Sq +
1

2
a2F{C2

r }+
1

2
F{S2

r}+ aF{CrSr}, (6.6)

The scattered intensity is Iq = |Eq|2. Using eq. (6.6) and neglecting the third order terms,

an expression for the scattered intensity can be derived

Iq =
∣∣a2C2

q

∣∣+
∣∣a3CqF{C2

r }
∣∣ cos

(
ξaCq − ξa2F{C2

r}
)

+

+ 2
∣∣a2CqF{CrSr}

∣∣ cos
(
ξaCq − ξaF{CrSr}

)
+
∣∣aCqF{S2

r}
∣∣ cos

(
ξaCq − ξF{S2

r}
)

+

+ 2 |aCqSq| cos
(
ξaCq − ξSq

)
+
∣∣a2F{C2

r }Sq
∣∣ cos

(
ξa2F{C2

r} − ξSq
)

+

+ 2 |aF{CrSr}Sq| cos
(
ξSq − ξaF{CrSr}

)
+
∣∣F{S2

r}Sq
∣∣ cos

(
ξSq − ξF{S2

r}
)

+
∣∣S2
q

∣∣ ,
(6.7)

where ξx are the phases of the respective terms indicated by the subscript x. The expression

above is very unwieldy, but it is simplified upon azimuthal integration because, for disordered and

uncorrelated distributions s(~r) and c(~r), many of the cosines average out to zero. The phases in

the following pairs are random and uncorrelated ξaCq and ξSq , ξa2F{C2
r} and ξSq , ξF{S2

r} and ξaCq .

Therefore
〈
cos
(
ξaCq − ξF{S2

r}
)〉

= 0,
〈
cos
(
ξaCq − ξSq

)〉
= 0, and

〈
cos
(
ξa2F{C2

r} − ξSq
)〉

= 0, where

〈X〉 = 1/2π
∫ 2π

0 X(φ)dφ is an azimuthal average.

The terms with the factors
∣∣a3CqF{C2

r }
∣∣ and

∣∣F{S2
r}Sq

∣∣ are vanishingly small and, as such,

can be eliminated. The reason for this is that Cq and F{C2
r }, and Sq and F{S2

r} have a different
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q-dependence. To illustrate this, consider a one-dimensional example f(x) = eiωx. The Fourier

transforms of f(x) and f2(x) are F{f(x)} = δ(ω) and F{f2(x)} = F{ei2ωx} = δ(2ω). The

product of the two Dirac-Deltas is zero δ(ω)δ(2ω) = 0. Similarly, if the Fourier transform of Sr

is a ring of a certain diameter, then the Fourier transform of S2
r is a ring of twice the diameter,

and the product of the two rings is negligible if the widths of the rings are smaller than their

radii, which is the case for the data set being considered. The same argument applies to Cr. With

these approximations and the fact the, from the convolution theorem, F{CrSr} = Cq ⊗ Sq, where

the symbol ⊗ denotes the convolution operation, the final expression for the azimuthally averaged

scattering intensity is

〈Iq〉 =

∣∣∣∣1 + α
δns
δnc

∣∣∣∣2 〈|Cq|2〉+ 2

∣∣∣∣1 + α
δns
δnc

∣∣∣∣2 〈|Cq| |Cq ⊗ Sq| cos
(
ξaCq − ξaCq⊗Sq

)〉
+

+ 2

∣∣∣∣1 + α
δns
δnc

∣∣∣∣ 〈|Cq ⊗ Sq| |Sq| cos
(
ξSq − ξaCq⊗Sq

)〉
+
〈
|Sq|2

〉
.

(6.8)

This expression is valid in the general case and can be simplified for the special cases of zero and

near-saturation applied magnetic field B.

6.4.1.2 Zero applied field

Without an external magnetic field, Cr and Sr are random an uncorrelated, and, therefore〈
cos
(
ξaCq − ξaCq⊗Sq

)〉
=
〈
cos
(
ξSq − ξaCq⊗Sq

)〉
= 0. The measured azimuthally averaged intensity

then becomes

〈Iq(B = 0)〉 =

∣∣∣∣1 + α
δns
δnc

∣∣∣∣2 〈|Cq|2〉+
〈
|Sq|2

〉
. (6.9)

If α = 0, the signal is simply the sum of the magnetic and charge scattering intensities.

6.4.1.3 Near-saturation applied field

I have assumed above that the magnetic part has two components—a non-uniform charge-

correlated ±α δnsδnc
Cr and a uniform charge-uncorrelated s(~r) = ±1, so that Sr = ±idkδns when the

sample is magnetically saturated by an external field. The Fourier transform of Sr, in this case, is

a delta-function Sq = F{Sr} = ±idkδnsδ(~q). Therefore, Sq(~q 6= 0) = 0, and Sq ⊗Cq = ±idkδnsCq.
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Note that I am not assuming the existence of a non-uniform and charge-uncorrelated magnetization

component because, in the experiment, only scattering into q-vectors corresponding to the charge

scattering was observed with a saturating applied field without any additional time-dependent

scattering into any other q-vectors. It would be an improbable coincidence if a charge-uncorrelated

magnetic component would scatter X-rays into the same cone of angles as the Cr. The assumption

employed here can, therefore, be considered reasonable.

Under these conditions, only the first two terms in eq. (6.8) remain and the expression for

〈Iq〉 is simplified to

〈Iq(B 6= 0)〉 =

∣∣∣∣1 + α
δns
δnc

∣∣∣∣2 〈|Cq|2〉+ 2 |dkδns|
∣∣∣∣1 + α

δns
δnc

∣∣∣∣2 〈|Cq|2 cos
(
ξaCq − ξ±idkδnsaCq

)〉
.

(6.10)

In order to compute the scattered intensity using this expression, the argument of the cosine has

to be evaluated for positive and negative applied fields. This can be done using the fact that the

phase of a product of two complex numbers is equal to the sum of their individual phases. The

following expressions thus hold

ξaCq = ξa + ξCq ,

ξ±idkδnsaCq = ξa + ξCq + ξ±idkδns .

(6.11)

The phase of the complex number ±idkδns for positive and negative fields, respectively, is simply

ξ+idkδns = arctan

(
Im(δns)

Re(δns)

)
+
π

2
,

ξ−idkδns = arctan

(
Im(δns)

Re(δns)

)
+
π

2
+ π.

(6.12)

Using eqs. (6.10), (6.11), and (6.12), I derive the final expression for the scattered intensity under

a saturating applied magnetic field

〈Iq(B 6= 0)〉 = (1± 2dkIm(δns))

∣∣∣∣1 + α
δns
δnc

∣∣∣∣2 〈|Cq|2〉 . (6.13)

Note that Cq and α can be time-dependent. Additionally, in the saturation-field case, I allow

δns to be time-dependent in order to take into account the possibility of ultrafast demagnetization

of a uniformly magnetized sample via local demagnetization mechanisms. Because of the possible
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additional demagnetization channels in the zero-field case, the time dependence of δns in that case

is not necessarily the same. Finally, in the limit of α = 0 the total scattering intensity is simply

equal to the charge scattering intensity modulated by the XMCD absorption.

6.4.1.4 Separation of the spin and charge contributions

I now use eqs. (6.9) and (6.13) to separate the magnetic and charge scattering intensities.

First, I use eq. (6.13) to solve for
〈
|Cq|2

〉
. To streamline the derivation, I introduce a

substitution f = α δnsδnc
. With this substitution, I expand the term |1± f |2 and rewrite the intensities

for the positive and negative fields

〈Iq(B > 0)〉 = (1 + 2dkIm(δns))
∣∣1 + |f |2 + 2Re(f)

∣∣2 〈|Cq|2〉 ,
〈Iq(B < 0)〉 = (1− 2dkIm(δns))

∣∣1 + |f |2 + 2Re(f)
∣∣2 〈|Cq|2〉 . (6.14)

I define the sum and difference intensities as and

Σ =
1

2
(〈Iq(B > 0)〉+ 〈Iq(B < 0)〉) ,

∆ =
1

4
(〈Iq(B > 0)〉 − 〈Iq(B < 0)〉) .

Using eqs. (6.14), ∆ and Σ can be written explicitly as

∆ =
(
dkIm(δns)

(
1 + |f |2

)
+ Re(f)

) 〈
|Cq|2

〉
,

Σ =
(
1 + |f |2 + 4dkIm(δns)Re(f)

) 〈
|Cq|2

〉
.

(6.15)

Assuming that f is small (because α must be small in this experiment) and δns is small, and

neglecting second order terms, these expressions are simplified to

∆ ≈
(
dkIm(δns) + Re

(
α
δns
δnc

))〈
|Cq|2

〉
,

Σ ≈
〈
|Cq|2

〉
.

(6.16)

The charge-uncorrelated (time-dependent) term Sxmcd = dkIm(δns(t)) can be found from

the measured XMCD signal since d and k are known, δns(t = 0) can be found from the CXRO

database [209], and the time dependence of δns(t) is given by the time dependence of the XMCD

intensity ∆Ixmcd(t). Thus the charge-correlated (time-dependent) term Re
(
α δnsδnc

)
can be found

from ∆.
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In order to finalize this derivation and separate the charge and magnetic contributions to the

scattering intensity, I Taylor-expand eq. (6.9) in powers of Re
(
α δnsδnc

)
up to a first order

〈Iq(B = 0)〉 ≈
(

1 + Re

(
α
δns
δnc

))〈
|Cq|2

〉
+
〈
|Sq|2

〉
. (6.17)

Using eqs. (6.16) and (6.17) and the definition Sxmcd = dkIm(δns(t)), I now solve for
〈
|Sq|2

〉
and thus completely separate the spin and charge contributions to the scattering intensity〈

|Cq|2
〉

= Σ =
1

2
(〈Iq(B > 0)〉+ 〈Iq(B < 0)〉) ,〈

|Sq|2
〉

= 〈Iq(B = 0)〉 −
(

1 +
∆

Σ
− Sxmcd

)
Σ.

(6.18)

Notice that in the limit of α = 0, ∆
Σ−Sxmcd = 0, and

〈
|Sq|2

〉
simply becomes the difference between

the total measured intensity and the average of intensities measured at the opposite values of an

applied saturating field.

With eq. (6.18), the separation procedure can be summarized as follows

(1) Measure the scattering intensity 〈Iq(B = 0)〉 at zero field.

(2) Apply a saturating magnetic field to the sample and measure the scattering intensities

〈Iq(B > 0)〉 and 〈Iq(B < 0)〉 for the opposite directions of the field. Simultaneously, take

an XMCD signal ∆Ixmcd(t) with the XMCD detector in Fig. 6.1.

(3) From ∆Ixmcd(t) compute Sxmcd

(4) Using eqs. (6.18), compute
〈
|Cq|2

〉
and

〈
|Sq|2

〉
.

6.4.2 Implementation of the separation procedure

The result of the application of the separation procedure derived above to the experimental

dataset in Fig. 6.5 is shown in Fig. 6.6(c). The oscillations seen in the total scattered intensity

in Fig. 6.6(a) are present in the sum intensity Σ, shown in Fig. 6.6(b), which confirms that their

origin is non-magnetic. They appear due to laser-induced acoustic strain waves that originate

at charge inhomogeneities and travel through the film. As can be seen from Fig. 6.6(c), the
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(a)

(b)

(c)

Figure 6.6: Separation of the spin and charge scattering: (a) Total measured scattering inten-
sity 〈Iq(B = 0, t)〉 / 〈Iq(B = 0, t = 0)〉, (b) Charge scattering Σ(t)/Σ(t = 0), (c) Spin scattering〈
S2
q (t)

〉
/
〈
S2
q (t = 0)

〉
.
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oscillations that appear in the original signal in Fig. 6.6(a) are no longer present in the magnetic

scattering intensity in Fig. 6.6(c) computed according to eq. (6.18), which confirms the validity of

the separation procedure. The XMCD signal used to separate out the spin contribution is shown

in Fig. 6.7. While the XMCD trace is noisy its effect on the final result is small because the

magnitude of the charge-correlated spin distribution represented by α is small.

6.5 Summary of the experimental RMS results

Using the purely magnetic scattering signal in Fig. 6.6(c), I can now carry out its time-

resolved analysis, which is summarized in Fig. 6.7.

ΔM(q) = 1−
√
〈S2

q 〉(t)/〈S2
q 〉(t = 0)
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Figure 6.7: Summary of the transient RMS dynamics in the CoFe/Ni multilayer sample: (a) q-
dependent relative demagnetization; (c) demagnetization as determined from the first, third, and
fifth order peaks as well as the XMCD signal; dynamics of the (b) first and (d) third order scattering
peaks. The solid black lines represent the center positions of the peaks.

First, I compute the magnetization dynamics in reciprocal space as a function of momentum

transfer q and time t according to

∆M(q) = 1−
√〈

S2
q

〉
(t)/

〈
S2
q

〉
(t = 0). (6.19)
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The result is shown in Fig. 6.7(a). Surprisingly, the magnetization behaves differently at different

q’s, which suggests some interesting feature-dependent spatial dynamics of magnetic domains. In

order to analyze the first, third, and fifth order scattering rings separately, they need to be isolated.

Because the magnitude of the first order peak is ∼2 orders of magnitude greater than that of

the third order (see Fig. 6.3(b)), the first order can be considered isolated without any further

processing. The fifth order peak is too small—only a few detector counts above the noise level—

and a reliable background subtraction for this peak has been impossible. The third order peak

is sitting on an exponential background, which is manifested as a straight line with a constant

negative slope on the log scale in Fig. 6.3(b). As such, the background under the third order peak

can be fitted with a decaying exponential, at each time step. An example of such fitting for t = 0

ps is shown in Fig.6.8.
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Figure 6.8: Background subtraction for scattered intensity at t = 0 ps in order to isolate the third
order peak (blue signal above the orange background).

For the isolated scattering peaks, I track changes in their position and magnitude with

time. Square roots of the peaks’ magnitude correspond to changes in magnetization M(q, t) =√〈
S2
q

〉
(t)/

〈
S2
q

〉
(t = 0), according to eq. (6.19). They are shown in Fig. 6.7(c). Note that the
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first order demagnetization trace agrees well with the XMCD signal. The third and fifth order

demagnetization traces match well with the first order at short times, but start to decay after ∼

7 ps. The discrepancy between the fifth order and the rest of the data stems from the fact that the

fifth order could not be properly isolated. For that reason, I did not perform a peak shift analysis

for the fifth order.

I track the peak positions of the first and third order scattering peaks by separately fitting

each peak with a split Pearson type VII distribution [205]

〈Iq〉 = I0

(
1 +

(q − q0)2

α2
1m1

)−m1

H(q0 − q) + I0

(
1 +

(q − q0)2

α2
2m2

)−m2

H(q − q0), (6.20)

where I0 is the peak amplitude, α1,2 and m1,2 are the parameters of the distribution that account

for its skewness and sharpness, q0 is the position of the peak maximum, which I define as the center

of the peak, and H is the Heaviside step function. At each time delay, the fitting of the peaks with

eq. (6.20) is performed, which yields q0(t) for the first and third order peaks shown with a black line

in Fig. 6.7(b) and (d), respectively. Both peaks shift rapidly towards lower q’s by approximately

7% within the first 1.6 ps, after which their positions remain almost constant. A similar peak shift

observed only in the first order was interpreted as evidence of a softening of domain walls caused

by superdiffusive spin currents in Ref. [205]. Here, I show that the additional data provided by the

third and fifth order scattering rings are inconsistent with such a scenario, and, to the contrary,

domain walls remain sharp.

I summarize the main features of the time-resolved data set in Fig. 6.7 as follows:

• Demagnetization traces extracted from the first, third and fifth orders agree on short times.

• Third and fifth order magnetization starts to decay relative to the first order after ∼7 ps.

• First order demagnetization agrees well with the XMCD trace.

• First and third order scattering peaks shift rapidly towards lower q’s within the first 1.6 ps.
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6.6 Reconstruction of real-space transient domain dynamics

In order to gain insight into spatially resolved magnetization dynamics, it would be very

advantageous to have the capability of time resolved real-space imaging of magnetic domains. Co-

herent diffractive imaging techniques are capable of reconstructing an object from its diffraction

intensity distribution by use of phase retrieval methods, which rely on specialized computer al-

gorithms [210, 211, 212, 213, 214]. However, such phase retrieval methods require that the data

satisfy certain constraints. One of such constraints is oversampling [215], which requires that the

diffraction amplitude is sampled at a spatial frequency exceeding the Nyquist frequency. This

oversampling ratio is expressed as [107]

ρ =
λz

pD
, (6.21)

where λ is the wavelength of the probe, z is the distance between the sample and the detector, D

is the lateral size of the object, and p is the pixel size of the detector. In order for phase retrieval

algorithms to work, ρ must be greater than 2. In the experiment reported here, ρ ≈ 0.1, which

makes the reconstruction of the real-space domain pattern impossible.

Therefore, in order to observe spatially resolved transient changes to the magnetization pro-

file, particularly to the out-of plane magnetization component Mz(x, y), a different approach has

to be adopted. I develop such an approach below. It involves application of the measured RMS

data to a simulated domain pattern, for which the phase is known and does not need to be re-

trieved computationally, and thus enables the computation of transient laser-induced changes in

the simulated pattern. A caveat with this approach is that the simulated domain pattern has to

represent the actual domain pattern of the sample to a high degree of accuracy. The arrangement

of the domains is not so important because the system is disordered, and the experimental data

were averaged over multiple domain configurations due to shot-to-shot variability of the domain

pattern caused by a re-nucleation of the domains after an optical pump pulse. In principle the

MFM image in Fig. 6.2 could be used for the purpose of reconstruction. However, the quality

and the resolution of the image are not sufficient. Instead, I use a domain pattern that was sim-
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ulated using the MuMax software [216] with the first and second order magnetic anisotropy equal

to the experimental values of 343 kJ/m3 and -143 kJ/m3, respectively. The simulation grid size

was 1024×1024×8 cells, and the dimensions of each cell were 5×5×5 nm. The resulting pattern

and the comparison of its scattered intensity
〈
S2
q

〉
with the experimental one are shown in Fig.

6.9 The agreement between the simulated and the experimental RMS intensities is reasonable: the

Figure 6.9: (a) Part of the simulated domain pattern and (b) comparison of the simulated and
experimental scattering intensities for the first (left) and third (right) orders.

magnitudes and positions of the peaks agree well, while the experimental peaks are broader than

the simulated ones. The cause for the latter is the fact that the probed area in the experiment was

∼ 100× 100 µm, while the simulation window was only ∼ 5× 5 µm. For perfectly regular domains,

increasing the width of the window would lead to a narrowing of the scattering peaks. However,

because in the FeCo/Ni sample domains are stochastic, broader areas show more domain variability

and thus broaden the scattering peaks. Simulating a larger area is computationally prohibitive,

and for that reason, given that the agreement between the RMS intensities is satisfactory, I use the

simulated domain pattern in Fig. 6.9(a). Caution must be exercised in order not to over-interpret

the results of the reconstruction procedure due to the discrepancies between the simulated and

experimental scattering intensities mentioned above.

The base assumption underlying the method of reconstructing laser-induced changes in mag-

netic domains is that, at any given time t, the profile Mz(x, y, t) can be represented by a convolution



144

of the original magnetization profile Mz(x, y, t = 0) with a spatial filtering kernel G(x, y, t)

Mz(x, y, t) = G(x, y, t)⊗Mz(x, y, t = 0). (6.22)

This assumption is valid if there are no new spectral components in the Fourier spectrum of Mz at

time t compared to t = 0 ps. Fig. 6.6 clearly demonstrates that this is indeed the case: none of the

values in the figure exceed unity, and thus a Fourier spectrum at any time is just a modified original

Fourier spectrum. Note that eq. (6.22) does not require a linear response of the magnetization

to an optical pump in the time domain. Since the RMS intensity is related to Mz via a Fourier

transform as S2
q = |F{Mz}|2, from the convolution theorem and eq. (6.22), it follows that the RMS

intensity at time t can be expressed as a product of the unperturbed RMS intensity and a squared

Fourier transform of G(x, y, t)

S2
q (t) =

∣∣g2
q (t)

∣∣ · S2
q (t = 0), (6.23)

where gq(t) = F{G(x, y, t)}. Eq. (6.23) can be solved to find the spatial filter in reciprocal space

|gq(t)| =
√
S2
q (t)/S2

q (t = 0). (6.24)

Because of the azimuthal symmetry, eq. (6.24) holds for the azimuthal averages as well. Thus

|gq(t)| is simply equal to the time-resolved RMS data set normalized by the unperturbed RMS

intensity, and the quantity shown in Fig. 6.6(c) is equal to |gq|2 (t). In practice, I obtain gq(t)

by fitting the square root of the normalized RMS data with a smoothing spline and extrapolating

to higher q-vectors with a constant value equal to the average demagnetization at a given time

step. This is illustrated in Fig. 6.10, where gq(t = 1.6 ps) is shown at the time of both maximum

demagnetization and maximum shift in the peak positions. gq is then rotated around q = 0 nm−1

to produce a rotationally symmetric two-dimensional Fourier filter.

In the most general case, gq is complex and thus its phase would be lost in eq. (6.24).

However, here, gq is purely real. This is because the spatial filtering kernel G(x, y, t) is even and

real, and, therefore, its Fourier transform gq is also real. The even parity of G(x, y, t) follows from

its azimuthal symmetry which requires that G(x, y, t) = G(−x,−y, t). The azimuthal symmetry, in
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turn, is based on an assumption that laser-induced changes in the magnetization profile are driven

by an isotropic process because, for a disordered domain network, there should not be any preferred

direction. The real-valuedness of G(x, y, t) follows from the real-valuedness of the magnetization

profile Mz(x, y, t). Hence, as a Fourier transform of a real and even function, gq is real. It is also

positive. If gq became negative for certain times the XMCD signal in Fig. 6.7(c) would switch sign.

Such a reversal of the magnetization was not observed. If gq crossed zero at certain q’s, g2
q would

be equal to zero at those q’s. However, g2
q is always positive, according to Fig. 6.6(c). Therefore,

gq is real and positive, which means that its phase is zero, and that gq = |gq|.
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Figure 6.10: Spatial filter gq(t = 1.6 ps) (red) is fitted to the data (black) with a smoothing spline.
A constant value is extrapolated to high q’s.

With the simulated magnetization profile Mz(x, y, t = 0) and the experimentally measured

spatial filter gq(t), an excited domain pattern at time t can now be found from eqs. (6.22) and

(6.23) as

Mz(x, y, t) = F−1 {gq(t)F {Mz(x, y, t = 0)}} . (6.25)

At each time t, I apply eq. (6.25) and thus follow the evolution of an excited domain pattern

in real-space. Fig. 6.11 shows the original simulated unperturbed domain pattern (panel (a)) and



146

snapshots of the relative changes to this pattern at the time of maximum demagnetization (and

maximum RMS peak position shifts) of 1.6 ps (panel(b)), and at the longest time step of 20 ps

(panel (d)). Fig. 6.11(c) shows the lineouts of the domain profiles along the red line in Fig. 6.11(a)

at 0 ps, 1.6 ps and 20 ps.

The reconstructed domain pattern exhibits several distinct features

(1) The demagnetization process is spatially non-uniform: smaller domains and domain ends

demagnetize stronger

(2) This feature-dependent asymmetric quenching causes a perceived motion of domain walls

by shifting the magnetization zero-crossings. In the two-dimensional images (b) and (d) in

Fig. 6.11, it is manifested as sharp color transitions from red to blue at the domain walls.

In Fig. 6.11(c), the zero-crossing of the orange and yellow curves at around −0.27 µm is

shifted by 2.6 nm to the right relative to the unperturbed blue curve.

(3) The domain walls themselves demagnetize less than the centers of domains.

(4) At long times, the magnetization profile becomes smoother as evidenced by the recovery of

the magnetization at the domain centers of the yellow curve in Fig. 6.11(c).

To finalize the discussion of the reconstruction of laser-induced changes, I repeat the recon-

struction procedure with a Gaussian spatial filter based only on the first order scattering ring in

order to see the effect of the data at higher q-vectors on the reconstruction and directly compare

the results with Ref. [205]. Fig. 6.12 shows both, a Gaussian fit for the filter at 1.6 ps (panel (a))

and changes to the original domain pattern that were reconstructed using this filter.

A comparison of Fig. 6.12(b) and Fig. 6.11(b) reveals that if the high q data are removed, the

demagnetization process remains spatially non-uniform, but the domain walls are quenched much

stronger than the domain centers. This is in agreement with Ref. [205], but contradicts the result

of this experiment. Thus, discarding scattering data at high q’s does not allow one to capture the

persistence of domain walls and their motion in the course of ultrafast demagnetization.
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Figure 6.11: Laser-induced evolution of magnetic domains: (a) original domain pattern; changes in
the domain pattern at (b) t = 1.6 ps (the time of maximum demagnetization and maximum peak
shifts) and (d) 20 ps after the pump pulse; (c) lineouts of domain profiles at various times along
the red line in (a).
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Figure 6.12: Laser-induced changes in domains with a Gaussian spatial filter according to Ref.
[205]: (a) Gaussian fit to the filter; (b) Changes in the domains reconstructed with the filter in (a).
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6.7 Spin transport in a laser-excited domain network

To explain the features observed in the spatially-resolved magnetization dynamics, namely,

the non-uniformity of the demagnetization process, the smaller quenching of domain walls and their

motion, I develop an effective model that describes two interacting spin populations: one is a cold

, i.e., below the Fermi level, and stationary ground-state population Scold(x, y), and the other is

an excited spin population Shot(x, y), which is hot, i.e., above the Fermi level, and mobile. The

model is illustrated in Fig. 6.13. The two populations interact with one another because the cold

Shot

Scold

Fermi
Level

Up-domain Down-domain

DOS DOS

Shot

Shot

Figure 6.13: Schematic of the spin transport model.

electrons are promoted above the Fermi level by the laser pump, and the hot electrons cool down

and eventually decay. Additionally, the hot electrons can move to reduce a magnetization gradient.

Mathematically, the dynamics of the two spin populations are described by the following coupled

equations

∂Scold(x, y, t)

∂t
= −γ(t)Scold(x, y, t) + β(t)Shot(x, y, t),

∂Shot(x, y, t)

∂t
= γ(t)Scold(x, y, t)− β(t)Shot(x, y, t) + ~∇

(
D(x, y, t)~∇Shot(x, y, t)

)
,

Mz(x, y, t) = Scold(x, y, t) + Shot(x, y, t),

(6.26)
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where γ(t) is the rate of generation of hot electrons, β(t) is the rate of their relaxation, the diffusion

coefficient D(x, y, t) determines the transport properties of hot electrons, and Mz(x, y, t) is the total

transverse profiles of the z-component of the magnetization.

The parameters γ, β and D are phenomenological, but they can have a microscopic origin.

For example, β can be viewed as an ensemble-averaged decay rate of electrons above the Fermi

level

β =
1∫ EF

−∞ τ(ε)g(ε)f(ε, T )dε
, (6.27)

where τ(ε) is the lifetime of excited electrons [217], and g(ε) and f(ε) are the density of states and

the non-equilibrium electron distribution function, respectively.

The diffusion coefficient D(x, y, t) is an effective parameter, which, similarly to eq. (6.27), is

also an ensemble average of the hot spin population. The underlying processes of spin transport

might not necessarily be diffusive, and might evolve from ballistic transport at early times after

the laser pump to diffusive transport at longer times, according to Ref. [155], which refers to such

transient evolution as the superdiffusion of spins. Note that this is different from the standard

definition of superdiffusion, where the particle displacement ∆x ∝ tp>1 [218]. However, since the

former nomenclature has become a standard convention in the field of ultrafast magnetism, I shall

refer to the transient evolution from ballistic to diffusive transport as superdiffusive spin transport.

In the spin transport model described by eqs. (6.26), the superdiffusion can effectively be described

through the time dependence of D.

The spin transport model presented here requires that the polarization of spin currents is

preserved over hundreds of nm. Although such lengths exceed the mean free path of hot electrons,

efficient spin-polarized currents mediated by hot electrons through up to 300 nm thick Cu films

have been observed in ultrafast experiments [219, 220].

The results of applying eqs. (6.26) to the domain pattern in Fig. 6.11(a) are shown in Fig.

6.14. The parameter values used in the simulations were β = 2.5 ps−1, γ was time-dependent

γ(t) = (1 − exp(−t/τ))102 ps−1, where τ = 100 fs, and the diffusion coefficient D in Fig. 6.14(a)
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was higher for the domains than for the domain walls D(x, y) = 2 · 104(0.15 + 0.85M2
z (x, y, t =

0)) nm2/ps whereas in Fig. 6.14(b) it was constant D = 104 nm2/ps. Note that the values of the

parameters were chosen with the goal of reproducing the extracted changes in the domain pattern in

Fig. 6.11 and are derived neither from first principles nor from a rigorous fitting procedure, so their

uniqueness cannot be guaranteed. Nonetheless, the simulations do capture the main features of

the experimentally extracted dynamic domain patterns and clearly demonstrate that the observed

laser induced changes in the magnetization profile are driven by spin transport.

Fig. 6.14(a) simulated with a varying diffusion coefficient D agrees well with the extracted

changes in the domain pattern in Fig. 6.11(b), while the result of the simulation with a constant

D in Fig. 6.14(b) is in good agreement with Fig. 6.12 obtained by neglecting scattering data

at high q-vectors. This leads to a conclusion that the smaller quenching of the magnetization at

the domain walls is caused by a dependence of the spin transport properties on the local mag-

netization vector, which reduces the spin-polarized flux at the domain boundaries. The lineouts

in Fig. 6.14(c) illustrate this point further. The orange curve, which corresponds to the simula-

tion with a magnetization-dependent D, exhibits sharper domain walls, albeit not as sharp as in

Fig. 6.11(c), and a clear shift of the domain wall at −0.27 µm to the right, in good agreement with

the experimental domain reconstructions. For a constant D, the broadening of the domain walls is

too strong.

A comparison in Fig. 6.14(d) of the azimuthally averaged scattering intensities corresponding

to the simulations with a magnetization-dependent and constant D with the scattering intensity of

the original domain pattern reveals that, in both cases, there is a shift of the first order peak (left

panel) towards lower q’s, in agreement with the experimental data in Fig. 6.7(b). However, the

third order peak (right panel) disappears when D is assumed to be constant. For the magnetization-

dependent D, the third order peak persists, again, in agreement with the experimental data, albeit

with a somewhat decreased magnitude, and, like in the experiment, it is shifted relative to the blue

curve at 0 ps. A small reduction of the simulated third order peak suggests that the dependence of

the diffusion coefficient on the magnetization might be more complex than what is assumed here.
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Figure 6.14: Laser-indeced changes to the ground-state of a domain pattern (Fig. 6.11(a)) simulated
using eqs. (6.26) with (a) a magnetization dependent diffusion coefficient D = 2 · 104(0.15 +
0.85M2

z (x, y, t = 0)) nm2/ps and (b) constant diffusion coefficient D = 104 nm2/ps. The white
lines in (a) and (b) indicate the paths along which (c) the lineouts of the magnetization profile are
taken. (d) is a comparison of the 〈S2

q 〉 Fourier spectra of the original domain pattern and calculated
for the cases (a) and (b).
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Nonetheless, the figure provides clear proof of the dependence of the spin transport properties on

the magnetization.

In summary, the simulations in Fig. 6.14 demonstrate that ultrafast spin transport gives rise

to the observed non-uniformity of the demagnetization in Fig. 6.11. Because the spin-polarized

flux is proportional to the size of a domain boundary ∼ d2, where d is the characteristic domain

size, and the total number of spins within a domain is proportional to its volume ∼ d3, the number

of spins leaving the domain per unit time relative to the number of spins contained within the

domain scales as 1/d. Therefore, the smaller the domain the more it demagnetizes, which is why in

Fig. 6.11, the magnetization reduction is stronger for smaller domains and domain ends. Such an

asymmetry in the demagnetization leads to shifts in zero-crossings of the magnetization, which are

perceived as domain wall motions. The persistence of domain walls requires a reduced transport

of spins at the walls compared to the domain centers. This could either be an intrinsic property

of ultrafast spin transport or it could be related to the behavior of the magnetic anisotropy. The

latter is responsible for the slow decay of the magnetization measured at the third order peak in

Fig. 6.7, as I show below.

6.8 Effects of temperature gradients on domain wall dynamics

The thickness of the CoFe/Ni magnetic film in Fig. 6.2 was 40 nm. Given that the absorption

length of the pump at 800 nm in Ni is ∼13 nm, one could expect a significant gradient of laser

excitation throughout the film. Indeed, this is the case for the sample considered here, as can be

seen from Fig. 6.15. The heat source in the figure was computed as

S = −dFabs(z)/dz,

where the absorbed fluence Fabs(z) of the infrared laser pump was calculated using the full multi-

layer formalism described in Chapter 4. In this section, I explore how this gradient in the pump

absorption affects the magnetization dynamics.

I start with the three-temperature model (3TM) proposed in the 1996 pioneering work on ul-
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Figure 6.15: Depth gradient of the IR laser excitation in the CoFe/Ni multilayer in Fig. 6.2 for an
incident pump fluence of 26.7 mJ/cm2.
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trafast magnetization dynamics [57]. The model consists of three coupled thermodynamic equations

that describe the interacting electron, lattice, and spin energy baths

Ce(Te)
∂Te
∂t

= ~∇ ·
(
κe(Te, Tl)~∇Te

)
+Gel(Te)(Tl − Te) +Gel(Ts − Te) + S(z, t),

Cl(Tl)
∂Tl
∂t

= ~∇ ·
(
κl(Te, Tl)~∇Tl

)
+Gel(Te)(Te − Tl) +Gls(Ts − Tl),

Cs(Ts)
∂Ts
∂t

= Ges(Te − Ts) +Gls(Tl − Ts),

(6.28)

where indices e, l, and s correspond to the electron, lattice, and spin systems; Tx is the temperature

of the respective system, Cx is the specific heat, κx is the thermal conductivity, and Gij are the

coupling parameters between the electron and lattice, electron and spin, and lattice and spin energy

baths. The source term in first equation in (6.28) describes the direct absorption of the pump pulse

by the electron system. The details regarding the material parameters used in the 3TM simulations

can be found in Appendix C.

The 3TM is fitted to the experimental XMCD signal in Fig. 6.7(c) by converting the spin

temperature Ts to the magnetization using the temperature dependence of the magnetization of

the sample measured with a vibrating-sample magnetometer (VSM) (see Fig. 6.16).

6.8.1 Electron, lattice, and spin temperatures

The electron, lattice, and spin temperatures for the best fit of the 3TM to the experimen-

tal XMCD data are shown in Fig. 6.17, and the corresponding calculated depth profile of the

magnetization, as well as its depth average, are shown in Fig. 6.18

While the equilibrium in the electron temperature is established quickly throughout the

thickness of the sample (see Fig. 6.17(a)) due to a high electron thermal conductivity κe, the

gradients in the lattice and spin temperatures persist out to longer times. The thermal conductivity

of the latter two is negligibly small (see Appendix C) and thus the equilibriation of the temperature

distribution of the lattice and spin systems throughout the sample is mediated by electrons. For

the case of the lattice, for example, at early times, the hot electrons at the top portion of the

sample strongly couple their energy to phonons and also diffuse downward into the cooler bottom
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Figure 6.16: Temperature-dependent magnetization of the FeCo/Ni multilayer. The experimental
data are represented by black circles, and the blue curve is a fit with M(T ) = 1− (T/TC)l (TC =
982.2 K and l = 3.166).

Figure 6.17: Depth-dependent (a)-(c) and depth-averaged (d)-(f) temperatures of the (a), (d)
electron, (b), (e) lattice, and (c), (f) spin baths. The total averages as well as separate ones for the
Ni and Co layers are shown in (d)-(f).
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portion of the film where they again transfer some of their energy to the lattice. Even if the

electrons and the lattice are in thermal equilibrium locally, any gradient in the lattice temperature

will manifest itself as a gradient in the electron temperature through the electron-lattice coupling

parameter Gel. The cycle of coupling-diffusion-coupling will thus continue until a full thermal

equilibrium is reached. For the spins, the situation is similar. These temperature gradients result

in a magnetization gradient shown in Fig. 6.18

Such a non-uniform simulated demagnetization suggests that, for a domain pattern, the

dynamics could be different at different depths. It is important to understand that the scattering

data provide depth-averaged information, as I show below.

6.9 Propagation of X-rays through a thick sample

Because the wavelength of the X-ray probe at 1.45 nm is much smaller than the thickness

of the magnetic multilayer film of 40 nm, strictly speaking, the propagation of X-rays through

such a film should be treated as a three-dimensional problem, and a gradient in the magnetization

can be expected to affect the overall scattering intensity. In general terms, the propagation of

an electromagnetic wave through a non-uniform medium with a spatially varying refractive index

n(x, y, z) is described by the Helmholtz equation [221]

∇2E + k2
0n

2(x, y, z)E = 0, (6.29)

where E is the electric field envelope, which excludes the fast oscillating part eiωt, and k0 is the

wavenumber in vacuum. For an arbitrary refractive index n(x, y, z), this equation can be solved

numerically using the split-step method [222] to obtain an ESW out of a thick sample. The split-

step method involves subdividing the sample into thin layers, as shown in Fig. 6.19; each layer

modifies the phase and the amplitude of the propagating electric field, according to the refractive

index in that layer n(x, y, zi), where i is the index of the layer. Propagation in between the layers

is computed by applying a free-space spatial filter in Fourier space [222]. However, for a weakly

scattering magnetic domain sample, the method can be simplified. Because the probability of a
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Figure 6.18: Calculated (a) depth-dependent and (b) depth-averaged time-dependent magnetiza-
tion. The average calculated magnetization agrees well with the experimental XMCD trace.
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Figure 6.19: Subdivision of a thick domain sample into layers. The transverse magnetization profile
varies with depth.
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scattering event is small compared to non-magnetic scattering, the likelihood that a photon can

scatter twice as it travels through the sample is negligible. As such, the ESW can be written as a

sum of the waves coming from individual layers

ESW =

N∑
i

s(x, y, zi), (6.30)

where N is the total number of layers, and s is a spatially-dependent magnetic profile as defined

in eq. (6.2). It should be noted that the phase and amplitude of each s(x, y, zi) is determined

only by the transverse variations of the magnetization in layer i. The total accumulated phase and

attenuation for each layer do not depend on the position of the layer zi and are determined by

the total thickness of the film and its composition. In the detector plane, the field Sq is a Fourier

transform of the ESW

Sq(qx, qy) = F

{
N∑
i

s(x, y, zi)

}
=

N∑
i

F {s(x, y, zi)} =

N∑
i

S(i)
q , (6.31)

and is equal to the sum of Fourier transforms of the scattered waves coming from individual layers.

Assuming that the transverse magnetization profile is the same for all zi at t = 0 ps, eq. (6.23) can

be applied to each layer

S(i)
q (t) = g(i)

q (t)∆Sq(t = 0), (6.32)

where ∆Sq(t = 0) corresponds to the field in the detector plane scattered from a single layer at

t = 0 ps. From eqs. (6.32), (6.31), and (6.24), an expression for the net measured spatial filter can

be derived

gΣ
q (t) =

√√√√√√
∣∣∣∑N

i g
(i)
q (t)∆Sq(t = 0)

∣∣∣2∣∣∣∑N
i ∆Sq(t = 0)

∣∣∣
2

. (6.33)

The factors |∆Sq(t = 0)|2 in the numerator and denominator cancel one another, and eq. (6.33) is

simplified to

gΣ
q (t) =

1

N

N∑
i

g(i)
q (t). (6.34)

Therefore, for a thick sample, the measured spatial filter in reciprocal space gΣ
q (t), i.e., a root of the

RMS intensity at time t normalized by the static RMS intensity, is equal to the depth-average of
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the spatial filters for the layers at different depths zi. Since the scattering amplitude is proportional

to the magnitude of the magnetization component Mz at a particular depth, with a magnetization

gradient, layers that are demagnetized stronger would contribute less to the detected RMS intensity.

6.9.1 Evolution of the magnetic anisotropy

I now consider the effect of the magnetic anisotropy Ku. Its temperature dependence mea-

sured with a VSM is shown in Fig. 6.20. Assuming that the anisotropy energy depends on the
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Figure 6.20: Experimental temperature dependence of the magnetic anisotropy Ku for the FeCo/Ni
sample.

lattice temperature, the time-dependent depth profile of Ku can be found by use of the calculated

lattice temperature in Fig. 6.17. The anisotropy energy determines the domain wall width [8]

d = π

√
A

Ku
, (6.35)

where A is the exchange stiffness. According to Ref. [147], A(T ) ∝ M2(T ). Hence, the time-

dependent domain wall width z-profile can be found from eq. (6.35) using the lattice temperature

in Fig. 6.17(b), the temperature dependence of Ku in Fig. 6.20, and the transient magnetization

profile in Fig. 6.18. A proper calculation of the depth-averaged domain wall width needs to take
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into account account the magnetization gradient because, as mentioned above, film layers that are

demagnetized stronger contribute less to the scattering signal. For that reason, the RMS data

should be expected to be more sensitive to the colder bottom layers of the sample. I, therefore,

define the average domain wall width as

〈d〉 (t) =

∫ L
0 M(z, t)d(z, t)dz∫ L

0 M(z, t)dz
(6.36)

and plot it from 8 to 20 ps in Fig. 6.21. The result in Fig. 6.21 is rather qualitative and has to be
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Figure 6.21: Calculated time-dependent domain wall width changes relative to the static case.

interpreted with caution because the true temperature dependence of the exchange stiffness for the

sample considered here is unknown. In addition, it is not entirely clear whether the magnetization

and temperature gradients can be converted directly into a domain wall width gradient using eq.

(6.35) which is applicable in thermal equilibrium (I only used the data at times greater than 8 ps

for that reason). Nonetheless, even with such a qualitative approach, there is evidence of a slow

increase of the domain wall width with time. This suggests that the observed slow decrease of the

magnitude of the third order in Fig. 6.7(c) could be caused by an increase in the domain wall width

related to the thermal diffusion throughout the thickness of the sample.
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Further investigation of this phenomenon is needed, and additional insight can be gained

from both rigorous micromagnetic simulations as well as time-resolved experiments, which employ

techniques, such as X-ray vector nanotomography, capable of imaging magnetic structures in three

dimensions [223].

6.10 Conclusions

In this chapter, experimental results on time-resolved resonant magnetic scattering of soft

X-rays from a magnetic domain sample were presented. The scattering data were collected at

high q-vectors, which, in contrast with previous work, allowed an extraction of the magnetization

dynamics of small spatial features, such as domain walls. Spatially-dependent demagnetization

can be represented as a convolution of the static domain pattern with a time dependent spatial

filter, and such filter can be extracted from the scattering data. By applying this filter to a simu-

lated domain pattern, spatially-resolved transient changes in the transverse magnetization profile

were reconstructed. The reconstructions showed that the demagnetization process was spatially

non-uniform with stronger quenching of smaller domains and domain ends. In addition, the de-

magnetization of domain walls was found to be surprisingly weak, and their broadening occurred

only on long timescales. The spatial non-uniformity of the demagnetization and the persistence of

domain walls was explained with a phenomenological spin transport model that included a reduced

transport at the walls, thus confirming that the laser induced demagnetization process in a domain

network is primarily driven by spin-polarized currents which facilitate a direct exchange of angular

momentum between domains of opposite magnetization. The slow broadening of domain walls on

long timescales was confirmed by energy transport simulations in combination with simulations

of the propagation of X-rays through a thick sample. This broadening was attributed to a slow

reduction of the temperature and magnetization gradients—initially caused by a non-uniform ab-

sorption of the laser pump—through thermal diffusion. In the future, further insight can be gained

from experiments that can capture magnetic structures in three dimensions as well as rigorous

simulations.



Chapter 7

Outlook: Towards Time-Resolved Element-Specific Magnetic Microscopy

Magnetic materials exhibit a rich variety of spin textures ranging from macroscopic domains

to nanoscale topologically protected magnetic vortices known as skyrmions. Those textures play

a very important role because they correspond to the minimum-energy or meta-stable states of

a particular material system and, as discussed in Chapter 6, can provide additional dissipation

channels, e.g. via spin currents, after the system has been excited by a laser pulse. Thus magnetism

and its dynamics are inherently spatially dependent. Most spectroscopic studies overlook this

spatial dependence by either magnetically saturating the sample in a specific direction and thus

erasing the features or by effectively averaging across them. Yet, an ability to observe magnetism

not only with a high temporal but also with a high spatial resolution is critical for its fundamental

understanding.

There are multiple techniques that can provide a spatial resolution for studying magnetic

materials. With resonant magnetic scattering discussed in Chapters 5 and 6, the spatial infor-

mation is accessible in reciprocal space. Real-space imaging techniques include Kerr and Fara-

day microscopy [224, 225], scanning Hall probe [226, 227] and SQUID [228, 229] microscopy,

Lorentz microscopy [230], scanning transmission X-ray microscopy [231], photoemission electron

microscopy [232, 233, 234], magnetic force microscopy [235, 236], holographic methods [188, 237,

238, 239, 203, 204], and coherent diffractive imaging (CDI) techniques also known as lensless imag-

ing [187, 210, 212, 214, 213, 240, 241, 242, 243]. Detailed reviews of various imaging techniques

can be found in Refs. [244] and [230].
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An ideal technique for magnetic microscopy would have to have both a high spatial and

temporal resolution. These requirements necessitate the use of a small wavelength probe with a

short pulse duration. HHG driven EUV and soft X-ray coherent light sources are particularly suited

for this purpose. With such sources, magnetic microscopy can be implemented on a tabletop in

a laboratory setting. EUV microscopes that rely on re-imaging with Fresnel zone plates [245] are

inefficient and suffer from aberrations. Their resolution is limited by the width of the outer ring.

Similarly, the resolution of holographic approaches is limited by the size of reference holes, and,

due to the small size of the latter, such approaches are also lossy. This is particularly important

for weakly scattering objects such as magnetic textures. Lensless imaging techniques are very

attractive since they require imaging geometries that are very similar to those used for resonant

magnetic scattering and thus can be easily adapted to existing scattering experiments (see Chapters

5 and 6). In addition, their resolution is truly diffraction limited meaning that for a wavelength of

λ ∼ 20 nm near the M-edges of the 3d ferromagnets the theoretical resolution limit is ∼ 10 nm.

CDI has been used for imaging magnetic textures with both synchrotron [246, 247] and HHG

sources [187]. A remarkable example is a reconstruction of a three-dimensional magnetization map

in a microscopic rod using X-ray vector nanotomography [223]. FELs can also be used for time-

resolved magnetic CDI and can provide a high spatial resolution. However, HHG sources have

a better temporal resolution and an added advantage of easy access, relative compactness, and

comparatively low operation costs. Thus developing an approach for time-resolved CDI magnetic

microscopy with an HHG source would be beneficial.

As mentioned above, static CDI has been demonstrated with an HHG source in Ref. [187].

However, this work utilized circularly polarized harmonics, for which the information about the

magnetization magnitude and direction is mixed in the reconstructed phase and amplitude, and

the method relied on a holographic reconstruction thus making the sample design quite complicated.

Below, I demonstrate the feasibility of lensless magnetic imaging with linearly polarized HHG, for

which the experimental setup is simpler, and show that the reconstructed amplitude represents the

magnitude of the out-of-plane magnetization component, and the phase represents its direction.
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The method does not rely on holography and, therefore, no special considerations are required in

designing the sample. At the end of this chapter, I also provide an outlook for future work which

includes studying antiferromagnets and phase transition materials.

7.1 Principles of lensless imaging

A basic lensless imaging problem is shown in Fig. 5.1. A coherent EUV probe interacts with

the object and the scattered electric field forms a diffracted intensity distribution in the CCD plane.

Because the detector only measures the intensity, the information about the phase is lost. If the

phase were known, however, the electric field from the detector plane could be propagated back

to the object, and, with a known probe, the phase and amplitude of the object could be found.

Hence, the lensless imaging problem becomes a phase retrieval problem, which can be solved by

a number of iterative algorithms. CDI has a lot in common with the phase retrieval problem in

crystallography, although the two fields have developed largely independently [248]. Historically,

the first optical phase retrieval algorithm was proposed in 1971 and is known as the error reduction

algorithm [249]. In this algorithm, the phase is found by iteratively propagating the field between

the two planes and setting the amplitude of the field to be equal to the measured amplitudes in both

the detector and the object planes at each iteration. The constraint that the solution must satisfy

the measured intensities in both planes allows the algorithm to converge. Generally speaking, the

solution does not have to be constrained in terms of the measured intensities only; any other set of

constraints suited for the problem will also work. The scalar propagation between the object and

the detector planes is described by the Helmholtz equation [221]

∇2E(~r) + k2E(~r) = 0, (7.1)

where k = 2π/λ. Assuming that z is the propagation direction, a Fourier transform of (7.1) in the

transverse direction reads (
− |~q⊥|2 + ∂2

z + k2
)
Ẽ(~q⊥) = 0, (7.2)
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where ~q⊥ = k∆~r⊥/z denotes the spatial frequencies in the transverse plane, and Ẽ(~q⊥) is the

Fourier transform of E(~r). In the definition of ~q⊥, I introduced ∆~r⊥ = ~r⊥ − ~R⊥, where ~R⊥ is the

transverse coordinate in the object plane (see Fig. 7.1 for notations). The solution to eq. (7.2) is

𝑧 = 0

𝑋

𝑌

𝑅⊥
 𝑟⊥

𝑥

𝑦

𝑧

Object plane Detector plane

Figure 7.1: Geometry and notations for a diffraction problem.

Ẽ(~q⊥, z) = Ẽ(~q⊥, z = 0) exp

(
i

√
k2 − |~q⊥|2z

)
. (7.3)

In real-space, the field at the detector is then found as an inverse Fourier transform

E(~r⊥, z) = F−1
{
Ẽ(~q⊥, z)

}
= F−1

{
Ẽ(~q⊥, z = 0) exp

(
i

√
k2 − |~q⊥|2z

)}
. (7.4)

In the paraxial approximation, the diffraction angle is small, and the transverse components of the

wavevector are much smaller than the longitudinal component, i.e., |~q⊥| � k. The square root in

the exponent can then be Taylor expanded up to a second order, which yields

E(~r⊥, z) = F−1

{
Ẽ(~q⊥, z = 0) exp

[
ikz

(
1− |~q⊥|

2

2k2

)]}
. (7.5)

Eq. (7.5) can be written in terms of a convolution of the field at z = 0 with a Fresnel propagation

kernel [250, 222]

E(~r⊥, z) = E(~r⊥, z = 0)⊗ h(~r), (7.6)



168

where, using the definition of ~q⊥ above and eq. (7.5), h(~r) is defined as

h(~r) = eikze
ik
2z
r2⊥ . (7.7)

Note that for simplicity, a factor 1/iλz present in the Fresnel-Huygens integral is not included in

the definition of h(~r). For a more rigorous derivation see Refs. [250] and [222]. The convolution,

up to a phase factor, can be written explicitly as

E(~r⊥, z) =

∫∫
E(~R⊥, z = 0)ei

k(~r⊥−~R⊥)2

2z d2 ~R⊥, (7.8)

where the integration is carried out over the entire spatial extent of the object, and the eikz phase

factor, again, has been omitted. Expanding the square under the exponent in eq. (7.8) yields

E(~r⊥, z) = ei
kr2⊥
2z

∫∫
E(~R⊥, z = 0)e−i

k~r⊥·~R⊥
z ei

kR2
⊥

2z d2 ~R⊥. (7.9)

If z � a2/λ, which is known as the Fraunhofer approximation, where a is the characteristic size of

an object, it holds that ei
kR2
⊥

2z ≈ 1, and eq. (7.9) simply becomes

E(~r⊥, z) ∝ F
{
E(~R⊥, z = 0)

}
, (7.10)

where the phase factor has been omitted. Eq. (7.10) has an important consequence, i.e., it tells

us that the fields at the object and the detector are related via a Fourier transform. This is true

if the condition z � a2/λ is satisfied. For typical parameters for EUV imaging of λ ≈ 20 nm and

a ≈ 10 µm, z � 5 mm. In the scattering experiment discussed in Chapter 5, the distance between

the sample and the detector was 3.6 cm, which satisfies the Fraunhofer approximation.

Now that the connection between the fields in the two planes has been established, a scheme

for a CDI algorithm can be developed (see Fig. 7.2). In this scheme, the algorithm starts with a

guess for the phase of the Fourier transform of the object and then interates between Fourier and

object spaces. At each iteration, a set of constraints is applied. In Fourier space, the constraint is

that the modulus of the Fourier transform of the object G(~q) must be equal to a square root of the

measured diffracted intensity. In real space, various constraints are possible. They include [107]
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the isolation constraint, the non-negativity constraint, and the overlap constraint for ptychography.

Diffraction from magnetic samples leads to different constraints, which are discussed below.

The phase retrieval procedure in Fig. 7.2 guarantees an almost unique solution (up to a

translation, reflection, and phase conjugation) in two dimensions as long as the diffraction pattern

is oversampled in the Fourier domain [215]. It is a consequence of the Nyquist-Shannon theorem,

which states that a continuous signal can be recovered from a discrete dataset if the data are

sampled at a rate above a certain frequency, known as the Nyquist frequency [251]. The data is

Real-Space Constraints

𝑔𝑛+1  𝑟 =  𝐶 𝑔𝑛  𝑟

At the detector

𝐺𝑛+1  𝑞 = ℱ 𝑔𝑛+1  𝑟

Modulus Constraint

𝐺𝑛+1  𝑞 =
𝐺𝑛+1  𝑞

𝐺𝑛+1  𝑞
𝐼𝑚𝑒𝑎𝑠  𝑞

Updated Object

𝑔𝑛  𝑟 = ℱ−1 𝐺𝑛  𝑞

Start with a guess for 
the phase of 𝐺  𝑞

𝑛 → 𝑛 + 1
Converged?

Output: 
𝑔𝑛+1  𝑟

Figure 7.2: CDI algorithm. n is the current iteration number, g(~r) is the complex object, G(~q) is its
Fourier transform, Imeas is the measured diffraction intensity, and Ĉ represents a set of real-space
constraints.

said to be oversampled if the oversampling ratio ρ ≥
√

2 [215]. The ratio is given by

ρ =
λz

pD
, (7.11)

where λ is the wavelength of the probe, z is the distance between the object and the detector, D

is the size of the illuminated area of the object, and p is the detector pixel size.

The convergence criterion for the algorithm in Fig. 7.2 is the difference between the modulus

of the Fourier transform of the reconstructed object and the measured diffraction amplitude
√
Imeas,
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for which the metric is the sum squared error χ2
n =

∑
~q

(
Imeas(~q)− |Gn(~q)|2

)2
. The iterations are

stopped when a specified error tolerance is reached.

Apart from the update condition in Fig. 7.2, there are multiple other ways to update the

object at each iteration, which give rise to faster converging CDI algorithms such as the hybrid

input-output (HIO) [210] and relaxed averaged alternating reflections (RAAR) [252]. These al-

gorithms rely on a single exposure and are thus well suited for single-shot dynamic imaging of

magnetic textures that are non-repeatable, such as magnetic domains, which can nucleate differ-

ently each time after being excited by a laser pulse. For static and stroboscopic imaging, where

a magnetic texture can be repeated reliably at each time step, a ptychographic phase retrieval,

which is a scanning technique that relies on multiple exposures, is preferable due to its superior

performance and reliability [242, 253, 254]. In addition, ptychography can reconstruct not only

the object, but also the profile of the probe [242]. Repeatable dynamic magnetic textures include

magnon waveguides and spintronic logic elements. If magnetic domains are weakly excited, they

can also relax to the original configuration and could thus be repeatable. In the following, I briefly

outline an approach to ptychography and derive constraints for magnetic samples that are appli-

cable for most CDI algorithms. Using these constraints, I simulate a ptychographic reconstruction

of nanoscale magnetic domains.

7.2 Ptychography CDI of magnetic textures with linearly polarized light

Because ptychography is a scanning technique, it can be used for imaging extended objects,

which relaxes the requirements on the sample fabrication because microscopic apertures no longer

need to be made. An extend ptychographical algorithm (ePIE) [242] does not require an accurate

model of the illumination, and would, therefore, be most useful in dealing with actual data, for

which the exact illumination is, in general, unknown. In ptychography, a complex object O(~r) is

illuminated by a complex probe P (~r − ~Rs), where the illumination position ~Rs is scanned across

the object (the subscript s enumerates the illumination position), and the main constraint in real

space (Ĉ in Fig. 7.2) is an overlap of the illuminated areas at various positions ~Rs. An exit surface
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wave g(~r) is simply a product of P and O

g(~r) = O(~r)P (~r − ~Rs). (7.12)

One iteration of ePIE involves a loop over all illumination positions, which are addressed in a

random order to avoid artifacts associated with the periodicity in the reconstructed object and

probe. At each position, the object and the probe are updated separately. The object is updated

by dividing out the probe from the ESW and vice versa. The update condition for the object is

On+1(~r) = On(~r) + α
P ∗n(~r − ~Rs(n))∣∣∣Pn(~r − ~Rs(n))

∣∣∣2
max

(
g′n(~r)− gn(~r)

)
, (7.13)

where n is the current iteration number, α is an algorithm feedback parameter (typically, α = 1),

gn(~r) is the current guess for the ESW, and g′n(~r) is an updated guess, calculated according to

g′n(~r) = F−1

{√
Is(n)(~q)

F{gn(~r)}
|F{gn(~r)}|

}
, (7.14)

where Is(n) is the diffracted intensity measured at the illumination position ~Rs. An update for the

probe is written similarly to eq. (7.13)

Pn+1(~r) = Pn(~r) + β
O∗n(~r + ~Rs(n))∣∣∣On(~r + ~Rs(n))

∣∣∣2
max

(
g′n(~r)− gn(~r)

)
. (7.15)

Again, the feedback parameter β is typically set to 1. The overlap constraint is implicitly contained

in eqs. (7.13), (7.14), and (7.15). With these update conditions, the flowchart in Fig. 7.2 is modified,

and, for the ePIE algorithm, it is shown in Fig 7.3. Next, I discuss real-space constraints that are

specific for magnetic imaging and are applicable for ePIE as well as for other CDI algorithms.

7.2.1 Algorithm constraints for magnetic samples

In order to derive the constraints, the interaction of linearly polarized light with a magnetic

sample must be considered. A detailed analysis of such interaction was conducted in Chapter 5,

and it was found that, at normal incidence, the polarization of the transmitted magnetically scat-

tered light is orthogonal to the polarization of the incident probe beam, while the unscattered light
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Figure 7.3: Flow of the ePIE algorithm. At n = 1, ePIE uses supplied guesses for the object O(~r)
and the probe P (~r). All illumination positions ~Rs(n) must be iterated over before the algorithm
proceeds to the n + 1 iteration. For magnetic imaging with linear polarization, an additional
real-space constraint must be added.
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maintains the original polarization but contains no magnetic information (see eq. (5.12)). The

magnetic contrast thus arises due to the Faraday rotation (in combination with XMCD), and, in

the first approximation, the amount of rotation is proportional locally to an out-of-plane magneti-

zation component mz. A larger rotation results in a larger orthogonal, i.e., magnetically scattered,

polarization component, and the amplitude of the ESW thus maps the magnitude of mz(x, y). The

direction of the rotation depends on the local sign of mz. For the two opposite rotations, the mag-

netically scattered polarization components have opposite signs, which amounts to a π phase shift.

This phase shift, therefore, maps the sign of mz(x, y). These two statements are mathematically

expressed as

ESW (x, y) = A0(x, y) |mz(x, y)| ei
π
2

(
1+

mz(x,y)
|mz(x,y)|

)
, (7.16)

where A0(x, y) is the incident probe. Note that the expression above includes only the magnetically

scattered polarization component, which is orthogonal to the incident polarization. In eq. (7.16),

the phase only takes the values of 0 and π, which, makes the object purely real. Therefore, a

constraint that is specific for magnetic samples probed with linearly polarized light is simply that

the object is real

O(x, y) = O∗(x, y). (7.17)

The fact that the object can be negative seemingly contradicts the non-negativity constraint com-

monly used in CDI. However, it does not mean that the absorption becomes negative. Rather,

it indicates that, due to magnetism, locally, the absorption can be less than its mean value. In

addition, according to eq. (7.16), the magnetically scattered ESW has no undiffracted (DC) com-

ponent, which is a consequence of mz(x, y) changing sign across the sample. This means that the

DC peak has no magnetic information in it and can be disregarded, which is convenient because in

an actual experiment, the DC peak has to be blocked due to its much higher intensity compared

to the RMS intensity (see the discussion in Chapter 5), in order to avoid saturating the detector.

A simulation of a ptychographic reconstruction of magnetic domains was performed using

ePIE with the constraint given by eq. (7.17). The results shown in Fig. 7.4 demonstrate a
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successful reconstruction of the original domain pattern. The parameters of the simulation where

chosen to be close to the experimental parameters: the energy of the EUV probe was 53 eV, the

domain size was ∼80 nm. With the probe spot size of approximately 1.5 µm, a field of view of

∼2.5 µm was achieved by scanning the probe spot across the sample. The resolution of the spatial

grid in the simulations was ∼20 nm/pixel. Note that the sign of the reconstructed mz is reversed

compared to the original domain texture. This is a manifestation of the ambiguity of the sign of the

phase in the solution of the phase retrieval problem. The simulation demonstrates the feasibility

of magnetic imaging with a linearly polarized tabletop HHG source.

7.3 Element-specific spectro-microscopy

Using a technique known as ptychographic information multiplexing (PIM) [255, 256, 257],

it is possible to reconstruct multiple objects corresponding to different modes of illumination that

add incoherently at the detector. The modes can include illumination with different polarizations,

spatial profiles, or wavelengths [258, 259, 260]. The latter is particularly important as it can

be used for visualization of magnetic textures at the M -shell absorption edges of multiple 3d

ferromagnets simultaneously, which paves a way for lensless magnetic microscopy with an elemental

contrast. A repeatable magnetic texture, e.g. a patterned nanoscale magnetic device, can be imaged

stroboscopically in a pump-probe experiment using PIM, and thus spatially-resolved dynamics

of multiple elements can be measured with femtosecond time resolution. Finally, the dynamics

of the deterministic all-optical magnetization reversal [62] can be studied stroboscopically using

ptychographic imaging.

7.4 Further work

In addition to magnetic microscopy, there are multiple other promising areas of interest.

Ferromagnets represent a rather narrow class of strongly correlated materials. Another class is

antiferromagnets, which play an important role in high-TC superconductivity [261]. An antiferro-

magnetic spin alignment typically occurs in transition metal compounds such as FeMn and NiO
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Figure 7.4: Simulation of a ptychographic reconstruction of magnetic domains. (a) and (b) are the
original probe beam profile and domain texture, respectively; (c) and (d) are the corresponding
reconstructions; (e) is the evolution of the squared error with the number of algorithm iterations.
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and can be studied magneto-optically using X-ray magnetic linear dichroism (XMLD) [73, 128],

which has been used in combination with photoelectron microscopy to image antiferromagnetic do-

mains [262, 263, 264]. Due to its small magnitude, XMLD requires an improvement in the photon

flux and stability of HHG sources, but, in principle, can be readily implemented in a pump-probe

experiment to study laser-induced spin dynamics in antiferromagnets.

Studying magnetization dynamics in these and other complex magnetic systems, such as half-

metals (Heusler alloys) [265, 266] and materials with phase transitions at cryogenic temperatures,

e.g. magnetite [267, 268, 269], with EUV resonant magneto-optical spectroscopy can improve the

understanding of magnetism in the context of strongly correlated quantum phenomena and bring

us closer to the ultimate goal of its coherent control.
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[17] Nara Rubiano da Silva, Marcel Möller, Armin Feist, Henning Ulrichs, Claus Ropers, and
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Salin, and Patrick Agostini. Optimizing High Harmonic Generation in Absorbing Gases:
Model and Experiment. Physical Review Letters - PHYS REV LETT, 82:1668–1671, February
1999.

[104] Andy Rundquist, Charles G. Durfee, Zenghu Chang, Catherine Herne, Sterling Backus, Mar-
garet M. Murnane, and Henry C. Kapteyn. Phase-Matched Generation of Coherent Soft
X-rays. Science, 280(5368):1412–1415, May 1998.

[105] Charles G. Durfee, Andy R. Rundquist, Sterling Backus, Catherine Herne, Margaret M.
Murnane, and Henry C. Kapteyn. Phase Matching of High-Order Harmonics in Hollow
Waveguides. Physical Review Letters, 83(11):2187–2190, September 1999.

[106] M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev,
M. M. Murnane, and H. C. Kapteyn. Bright, Coherent, Ultrafast Soft X-Ray Harmon-
ics Spanning the Water Window from a Tabletop Light Source. Physical Review Letters,
105(17):173901, October 2010.

[107] Matthew D. Seaberg. Nanoscale EUV Microscopy on a Tabletop: A General Transmission
and Reflection Mode Microscope Based on Coherent Diffractive Imaging with High Harmonic
Illumination. PhD thesis, 2014.

[108] Amy Louise Lytle. Phase Matching and Coherence of High-Order Harmonic Generation in
Hollow Waveguides. PhD thesis, University of Colorado Boulder, 2008.



185

[109] Ofer Kfir, Patrik Grychtol, Emrah Turgut, Ronny Knut, Dmitriy Zusin, Avner Fleischer,
Eliyahu Bordo, Tingting Fan, Dimitar Popmintchev, Tenio Popmintchev, Henry Kapteyn,
Margaret Murnane, and Oren Cohen. Helicity-selective phase-matching and quasi-phase
matching of circularly polarized high-order harmonics: towards chiral attosecond pulses.
Journal of Physics B: Atomic, Molecular and Optical Physics, 49(12):123501, 2016.

[110] John M. J. Madey. Stimulated Emission of Bremsstrahlung in a Periodic Magnetic Field.
Journal of Applied Physics, 42(5):1906–1913, April 1971.

[111] J. Feldhaus, J. Arthur, and J. B. Hastings. X-ray free-electron lasers. Journal of Physics B
Atomic Molecular Physics, 38:S799–S819, May 2005.

[112] P. Luchini and H. Motz. Undulators and Free-electron Lasers. Clarendon Press, Oxford
England : New York, 1 edition edition, August 1990.

[113] R. Akre, D. Dowell, P. Emma, J. Frisch, S. Gilevich, G. Hays, Ph. Hering, R. Iverson,
C. Limborg-Deprey, H. Loos, A. Miahnahri, J. Schmerge, J. Turner, J. Welch, W. White,
and J. Wu. Commissioning the Linac Coherent Light Source injector. Physical Review
Special Topics - Accelerators and Beams, 11(3):030703, March 2008.

[114] N. Hartmann, W. Helml, A. Galler, M. R. Bionta, J. Grünert, S. L. Molodtsov, K. R. Fer-
guson, S. Schorb, M. L. Swiggers, S. Carron, C. Bostedt, J.-C. Castagna, J. Bozek, J. M.
Glownia, D. J. Kane, A. R. Fry, W. E. White, C. P. Hauri, T. Feurer, and R. N. Coffee.
Sub-femtosecond precision measurement of relative X-ray arrival time for free-electron lasers.
Nature Photonics, 8(9):706–709, September 2014.

[115] J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz,
J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Rat-
ner, J. Rzepiela, D. Shu, Yu Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentyev, E. Trakht-
enberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu. Demonstration of self-seeding in
a hard-X-ray free-electron laser. Nature Photonics, 6(10):693–698, October 2012.

[116] T. Sato, A. Iwasaki, S. Owada, K. Yamanouchi, E. J. Takahashi, K. Midorikawa, M. Aoyama,
K. Yamakawa, T. Togashi, K Fukami, T. Hatsui, T. Hara, T. Kameshima, H. Kitamura,
N. Kumagai, S. Matsubara, M. Nagasono, H. Ohashi, T. Ohshima, Y Otake, T. Shintake,
K. Tamasaku, H. Tanaka, T. Tanaka, K. Togawa, H. Tomizawa, T. Watanabe, M. Yabashi,
and T. Ishikawa. Full-coherent free electron laser seeded by 13th- and 15th-order harmonics of
near-infrared femtosecond laser pulses. Journal of Physics B: Atomic, Molecular and Optical
Physics, 46(16):164006, 2013.

[117] Theophilos Maltezopoulos, Manuel Mittenzwey, Armin Azima, Jörn Bödewadt, Hatem
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Sai Phani Kanth Arekapudi, Daniel Steil, Sascha Schäfer, Manfred Albrecht, Oren Cohen,
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Appendix A

Depth Sensitivity of T-MOKE

To date, depth resolution has been achieved by simultaneously measuring Kerr ellipticity and

Kerr rotation, which is known as the complex Kerr effect and has been used to capture the depth

profiles of the magnetization in thin films, multilayers, and nano-strucures [270, 271, 272, 273, 274]

as well as to measure transient changes to the depth profile in the course of ultrafast demagnetization

and thus uncover the role of ultrafast spin transport [275, 202, 276]. The depth sensitivity of T-

MOKE, which is a pure intensity measurement, was also used in simulations in order to determine

the role of laser-induced spin currents in Co [277] as well as to understand the depth-resolved

critical behavior in Ni [144]. Below, I present a calculation of the depth sensitivity of T-MOKE.

Assuming that an infinitesimally thin layer of thickness dz at a depth z contributes an amount

ξ(z)dz to the total asymmetry A, the latter can be expressed as

A =

∫ d

0
ξ(z)dz, (A.1)

where d is the film thickness and ξ(z) is called the depth sensitivity function.

In deriving the depth sensitivity function I follow the approach of Ref. [278]. The approach is

based on subdividing a magnetic film into thin layers of thickness dz and setting the magnetization

of all but one layer at depth z to zero, as shown in Fig. A.1. At each position z of the layer,

the T-MOKE asymmetry dA is calculated using the multilayer formalism described in Chapter

4, and the depth sensitivity is then determined as ξ(z) = ∂A
∂z

∣∣
z
. Such an approach is based on

the assumption that the responses of individual layers are independent of one another. Generally
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Figure A.1: An approach for a depth-sensitive T-MOKE calculation. The depth sensitivity function
is found by calculating the T-MOKE asymmetry at each position of the magnetized sublayer.

speaking, this is not necessarily true, and small corrections need to be made to ξ(z) calculated

in the manner described above. I implement the corrections by repeating the calculation for the

structure in Fig. A.1, with the only difference that a non-magnetized thin layer is now translated

along the depth of a magnetized material. The resulting calculated quantity at each layer position

is A0−ξ(z)dz, where A0 is the net T-MOKE asymmetry of the film. The corrected depth sensitivity

is found as an average of the depth sensitivities calculated using the two methods described above.

An example of ξ(z) calculated at a 52◦ incidence for a 10 nm Co film with a multilayer composition

of SiO2 (150 nm)/Co (10 nm)/GeO2 (3 nm) and grown on a Si substrate is shown in Fig. A.2.

Interestingly, the depth sensitivity switches sign a ∼5 nm due to a phase accumulation in the

probe wave propagating through the film, which could mean that the T-MOKE asymmetry can

be optimized by adjusting the thicknesses of the sample’s layers, and, particularly, making the

magnetic film somewhat thinner.

It is sometimes assumed that T-MOKE is only sensitive to interfaces, where there is a dis-

continuity in the optical properties of two media, which gives rise to a reflected wave, and thus any

changes of the magnetization in the bulk of the film cannot be detected. This assumption is incor-

rect because any variations of the magnetization within the magnetic film are mapped onto spatial

inhomogeneities of its optical properties, which reflect light and, therefore, affect the T-MOKE

signal. Mathematically, this is expressed as

A [m(z)] =

∫ d

0
m(z)ξ(z)dz. (A.2)
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Figure A.2: T-MOKE EUV depth sensitivity function of a 10 nm Co film with a multilayer compo-
sition of SiO2 (150 nm)/Co (10 nm)/GeO2 (3 nm) at a 52◦ incidence. The magneto-optical Voigt
parameter Q was taken from Ref. [168].
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Hence, T-MOKE should, in principle, be able to capture a non-uniform depth profile of the magne-

tization m(z). The idea is similar to that of X-ray reflectometry, where element composition profiles

are deduced from angle-dependent reflectivity curves [279]. In order to perform such a measure-

ment, a series of configurations has to be found, for example, by taking T-MOKE measurements

at different angles of incidence, for which the corresponding functions ξ(z) are sufficiently different

from one another and sample different depths of the film. In that case, a system of equations can

be obtained based on eq. (A.2), and problem (A.2) can thus be inverted. For EUV T-MOKE,

however, sweeping the energy, polarization, magnetization direction, and angle of incidence pa-

rameter spaces did not result in a well-conditioned system of equations that could yield a unique

solution for m(z). The knowledge of the depth sensitivity function is, nonetheless, useful because

it allows an optimization of the sample design in order to maximize the T-MOKE asymmetry, and

can also be used in simulations, e.g. for understanding the response of a sample to an ultrafast

laser excitation.



Appendix B

Rigorous Coupled-Wave Analysis

In this appendix, I provide a brief overview of the Rigorous Coupled-Wave Analysis (RCWA)

method. RCWA was proposed by M.G. Moharam and T.K. Gaylord in the early 1980’s [280] as

an efficient semi-analytical method to treat the problem of diffraction of light by a general planar

grating. Subsequent developments of the method, such as the Enhanced Transmittance Matrix

approach (ETM), improved the stability and convergence of RCWA [281, 282]. A comprehensive

and thorough review of RCWA as well as additional references can be found in Ref. [283]. I follow

[283] in deriving the RCWA below.

RCWA solves Maxwell’s equations without any approximations (hence the name “rigorous”)

in the Fourier space. The propagation in the longitudinal z-direction is treated analytically, while

the solution for the transverse components of the electric and magnetic fields in the (x, y) plane is

obtained numerically. The method treats any scattering object, such as, for example, a diffraction

grating, as a three-dimensional distribution of the dielectric constant εr(x, y, z) and requires a

periodicity of εr in the transverse directions, such as shown in Fig. B.1. RCWA finds the eigenmodes

of the fields in a unit cell of εr and stitches them with the fields outside of the scattering object in a

way that satisfies Maxwell’s boundary conditions. If εr is non-uniform in z, it can be subdivided into

layers that are approximately uniform in z, and the stitching of the eigenmodes will have to be done

between the subdividing layers as well. This procedure is known as the staircase approximation.

With it, a structure of any complexity in z can be treated, but because each layer requires its own

eigenmode calculation, very complex structures quickly become computationally intensive. Because
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𝜃
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Region II

Figure B.1: RCWA geometry. The dielectric constant of the scattering structure εr(x, y, z) must be
periodic. A unit cell is shown in red. The wave vector of an incident wave is ~kinc. Region I above
the scattering structure contains the incident and reflected waves. Region II below the structure
contains the transmitted waves.
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RCWA solves Maxwell’s equations separately for each Fourier component, or spatial harmonic, of

the field. Problems that can be represented well by a small number of spatial harmonics are best

suited for this method. As a consequence, this puts a constraint on the transverse contrast in εr: it

needs to be relatively smooth without sharp edges. The sharper the features in εr, the more spatial

harmonics are required to adequately describe the problem and the higher the computational cost.

I start with Maxwell’s curl equations, which in a source-free material are written as

∇× ~E = k0µr
~̃H,

∇× ~̃H = k0εr ~E,

(B.1)

where the normalized magnetic field ~̃H is defined as ~̃H = −i
√
µ0/ε0 ~H, and k0 is the wavenumber

of the incident wave. Using the Levi-Civita symbol eijk and Einstein’s summation convention

(summation over repeated indices), these equations can be re-written in a compact form

eijk
∂

∂xj
Ek = k0µrH̃i,

eijk
∂

∂xj
H̃k = k0εrEi,

(B.2)

where the indices i, j, k run through x, y, z each. A Fourier series expansion in the (x, y) plane of

the fields in each z-layer labeled with an index j yields

~Ej(x, y, z) =

m=+∞∑
m=−∞

n=+∞∑
n=−∞

~Sj,m,n(z) exp
[
−i
(
kxm,nx+ kym,ny

)]
,

~̃Hj(x, y, z) =
m=+∞∑
m=−∞

n=+∞∑
n=−∞

~Uj,m,n(z) exp
[
−i
(
kxm,nx+ kym,ny

)]
.

(B.3)

In (B.3), the wavevector components of the (m,n)th spatial harmonic (Fourier component) are

k(x)
m,n = k

(x)
inc −

(
m~G1 + n~G2

)
· x̂,

k(y)
m,n = k

(y)
inc −

(
m~G1 + n~G2

)
· ŷ,

k
(z)
j,m,n =

√
k2

0ε
(j)
r −

(
k

(x)
m,n

)2
−
(
k

(y)
m,n

)2
.

(B.4)

Note that in these equations, depending on the sign of the expression under the square root, the

z-component of the wavevector is either purely real or purely imaginary. The latter represents
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evanescent waves. In order to complete the Fourier series expansion of Maxwell’s equations, the

dielectric constant and the magnetic permeability need to be expanded. Their inverses are expanded

as well, for better convergence. Defining ~Gm,n as ~Gm,n = m~G1 + n~G2 and ~r as ~r = x · x̂+ y · ŷ, ε
(i)
r

and µ
(i)
r and their inverses can be expressed as

ε(j)r =

m=+∞∑
m=−∞

n=+∞∑
n=−∞

aj,m,n exp
(
i ~Gm,n · ~r

)
,

µ(j)
r =

m=+∞∑
m=−∞

n=+∞∑
n=−∞

cj,m,n exp
(
i ~Gm,n · ~r

)
,

(
ε(j)r

)−1
=

m=+∞∑
m=−∞

n=+∞∑
n=−∞

bj,m,n exp
(
i ~Gm,n · ~r

)
,

(
µ(j)
r

)−1
=

m=+∞∑
m=−∞

n=+∞∑
n=−∞

dj,m,n exp
(
i ~Gm,n · ~r

)
.

(B.5)

The Fourier coefficients aj,m,n, bj,m,n, cj,m,n, and dj,m,n are given by

φj,m,n =
1

A

∫∫
A

fj(x, y) exp
(
−i ~Gm,n · ~r

)
d2~r, (B.6)

where φj,m,n stands for aj,m,n, bj,m,n, cj,m,n, or dj,m,n, and fj(x, y) stands for ε
(j)
r ,
(
ε
(j)
r

)−1
, µ

(j)
r , or(

µ
(j)
r

)−1
, respectively. A is the area of the unit cell in the (x, y) plane.

Substituting eqs. (B.3) and (B.6) into eq. (B.2), one obtains a system of Maxwell’s equations

in reciprocal space for the (m,n)th spatial harmonic (see Ref. [283] for details)

−ik(y)
m,nS

(z)
j,m,n(z)−

dS
(y)
j,m,n(z)

dz
= k0µ

x
j ⊗ U

(x)
j (z),

ik(x)
m,nS

(z)
j,m,n(z) +

dS
(x)
j,m,n(z)

dz
= k0µ

y
j ⊗ U

(y)
j (z),

−ik(x)
m,nS

(y)
j,m,n(z) + ik(y)

m,nS
(x)
j,m,n(z) = k0µ

z
j ⊗ U

(z)
j (z),

−ik(y)
m,nU

(z)
j,m,n(z)−

dU
(y)
j,m,n(z)

dz
= k0ε

x
j ⊗ S

(x)
j (z),

ik(x)
m,nU

(z)
j,m,n(z) +

dU
(x)
j,m,n(z)

dz
= k0ε

y
j ⊗ S

(y)
j (z),

−ik(x)
m,nU

(y)
j,m,n(z) + ik(y)

m,nU
(x)
j,m,n(z) = k0ε

z
j ⊗ S

(z)
j (z),

(B.7)

where the symbol ⊗ denotes the convolution operation. Since for an arbitrary system, in general,

one needs an infinite number of spatial harmonics (terms in the Fourier expansion), the system
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(B.7) is also infinite. However, in an actual implementation of RCWA on a computer, the number

of harmonics is finite, and, as mentioned above, the fewer harmonics are needed for an accurate

description of the scattering object the better. With a finite number of spatial harmonics, the system

of equations can be re-written in a matrix form (with the introduction of a non-dimensionalized

wavevector
~̃
k = ~k/k0 and longitudinal coordinate z̃ = k0z)

−iK̃ysz −
dsy
dz̃

= [[µr]]ux,

iK̃xsz +
dsx
dz̃

= [[µr]]uy,

−iK̃xsy + iK̃ysx = [[µr]]uz,

−iK̃yuz −
duy
dz̃

= [[εr]]sx,

iK̃xuz +
dux
dz̃

= [[εr]]sy,

−iK̃xuy + iK̃yux = [[εr]]sz,

(B.8)

where the matrix K̃ and vectors u and s are defined as follows

K̃q =



k̃q(1, 1) 0 . . . 0

0 k̃q(1, 2) . . . 0

...
...

. . .
...

0 . . . 0 k̃q(M,N)


, (B.9)

uq =



Uq(1, 1)

Uq(1, 2)

...

Uq(M,N)


, sq =



Sq(1, 1)

Sq(1, 2)

...

Sq(M,N)


, (B.10)

where index q represents the subscripts x, y, or z. Note that [[εr]] and [[µr]] are square matrix

operators that perform the convolution operation mentioned above. They are not dielectric constant

and magnetic permeability matrices defined on a real-space grid. [[εr]] and [[µr]] can be found by

computing Fourier coefficients of εr(x, y) and µr(x, y) and re-arranging them along the matrix

diagonals. The number of coefficients is equal to the total number of spatial harmonics used to
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describe a given problem. More details on the re-arrangement of the Fourier coefficients can be

found in Ref. [283]. For a one-dimensional problem, the convolution matrices [[εr]] and [[µr]] become

matrices with constant left-to-right diagonals known as Toeplitz matrices [284]. This is relevant for

the case of a one-dimensional sawtooth-shaped diffraction grating which I consider in this thesis.

In the next step, the longitudinal field components are eliminated from the system of equa-

tions (B.8). This can be done by using the third and sixth equation of the system, which yields

uz = [[µr]]
−1
(
−iK̃xsy + iK̃ysx

)
,

sz = [[εr]]
−1
(
−iK̃xuy + iK̃yux

)
.

(B.11)

Substituting these expressions into (B.8) leaves only four differential equations for the transverse

components of the fields

dux
dz̃

= K̃x[[µr]]
−1K̃ysx +

(
[[εr]]− K̃x[[µr]]

−1K̃x

)
sy,

duy
dz̃

=
(
K̃y[[µr]]

−1K̃y − [[εr]]
)

sx − K̃y[[µr]]
−1K̃xsy,

dsx
dz̃

= K̃x[[εr]]
−1K̃yux +

(
[[µr]]− K̃x[[εr]]

−1K̃x

)
uy,

dsy
dz̃

=
(
K̃y[[εr]]

−1K̃y − [[εr]]
)

ux − K̃y[[εr]]
−1K̃xuy.

(B.12)

These equations can be re-written in a block-matrix form

d

dz̃

ux

uy

 = Q

sx

sy

 ,
d

dz̃

sx

sy

 = P

ux

uy

 ,
(B.13)

where the matrices Q and P are defined as

Q =

 K̃x[[µr]]
−1K̃y [[εr]]− K̃x[[µr]]

−1K̃x

K̃y[[µr]]
−1K̃y − [[εr]] −K̃y[[µr]]

−1K̃x

 ,

P =

 K̃x[[εr]]
−1K̃y [[µr]]− K̃x[[εr]]

−1K̃x

K̃y[[εr]]
−1K̃y − [[µr]] −K̃y[[εr]]

−1K̃x

 .
(B.14)
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From eqs. (B.13), matrix wave equations can be derived. They have an identical form for

both the electric and magnetic fields. For this reason, I only write down the wave equation for the

transverse Fourier components of the electric field

d2

d2z̃

sx

sy

−Ω2

sx

sy

 = 0, (B.15)

where Ω2 = PQ. The general solution of eq. (B.15) is expressed in terms of forward (+) and

backward (−) propagating wavessx

sy

 = e−Ωz̃s(+)(0) + eΩz̃s(−)(0). (B.16)

In this equation, the terms s(±)(0) are the initial transverse Fourier amplitudes of the forward

and backward propagating waves. An exponent of a square diagonalizable matrix exp(A) =

W exp(λ)W−1 [285], where λ is a diagonal matrix of the eigenvalues of A, and W is a matrix of the

eigenvectors of A in which each column is an eigenvector corresponding to its respective eigenvalue

on the diagonal of λ. The solution (B.16) can thus be expressed in terms of the eigenvectors W

and eigenvalues λ2 matrices of Ω2 assx

sy

 = We−λz̃W−1s(+)(0) + Weλz̃W−1s(−)(0) = We−λz̃c(+) + Weλz̃c(−), (B.17)

where I defined the coefficients c(±) = W−1s(±)(0).

A similar procedure can be performed for the transverse Fourier components (spatial har-

monics) of the magnetic field. It can be shown by substituting expression (B.17) into the first

equation in (B.13) that the relation between the eigenvector matrix V for the magnetic field and

the eigenvector matrix W for the electric field is V = QWλ−1 [283], and by combining the electric

and magnetic fields into a single vector, an entire solution can be expressed as

ψ =



sx

sy

ux

uy


=

W W

−V V


exp(−λz̃) 0

0 exp(λz̃)


c(+)

c(−)

 . (B.18)
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In order to calculate the fields reflected from and transmitted through a periodic structure,

one needs to evaluate the mode coefficients c(±) outside of the structure. This can be done by ap-

plying Maxwell’s boundary conditions for the s and u transverse field components. At an interface,

the tangential components of the ~E and ~H fields are continuous in the absence of surface charges

and currents. Therefore, at the boundary between the layers i and i+ 1, it follows that ψi = ψi+1.

This condition can be written asWi Wi

−Vi Vi


e−λid̃i 0

0 1


c

(+)
i

c
(−)
i

 =

Wi+1 Wi+1

−Vi+1 Vi+1


1 0

0 e−λi+1d̃i+1


c

(+)
i+1

c
(−)
i+1

 , (B.19)

where d̃i is the thickness of the ith layer normalized by k0. Note that in deriving (B.19) from (B.18)

I have introduced a substitution z̃i → z̃i −
∑i−1

j=1 d̃j , which leaves only the negative exponential

exp(−λid̃i) when z̃i =
∑i−1

j=1 d̃j , which is the coordinate of the boundary of the ith and (i − 1)st

layers, or when z̃i = d̃i +
∑i−1

j=1 d̃j , which is the coordinate of the boundary of the ith and (i+ 1)st

layers. The expression above can be re-written in a more compact form by introducing

Fi =

Wi Wi

−Vi Vi

 , Xi = exp(−λid̃i), Ci =

c
(+)
i

c
(−)
i

 . (B.20)

With these substitutions, the boundary condition (B.19) simplifies to

Fi

Xi 0

0 1

Ci = Fi+1

Xi+1 0

0 1

Ci+1. (B.21)

Special care must be taken when considering boundary conditions at the first and last in-

terfaces of the scattering structure as these are responsible for coupling the incident light into the

structure correctly as well as giving the correct reflections and transmissions of the structure as a

whole. I label the region that contains the incident and reflected waves as Region I and the region

that contains the transmitted waves as Region II. In Fig. B.1, Region I is above the blue structure,

and Region II is below it. The boundary condition (B.21) at the first and last interfaces, which are

the interfaces between Region I and the first layer of the structure and Region II and the last layer
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of the structure, respectively, can be written as

ψI (II) = Ffirst(last)

Xfirst(last) 0

0 1

Cfirst(last). (B.22)

In Region I, ψI is a sum of the forward propagating incident wave and a backward propagating

reflected wave. In Region II, ψII is a forward propagating transmitted wave. If the incident electric

field

~Einc = ~P exp
(
−i~kinc · ~r

)
, (B.23)

where ~P is the polarization vector, it can be shown by substitution into eq. (B.2) that the corre-

sponding transverse components of the incident magnetic field areH̃x

H̃y


inc

=
i exp

(
−i~kinc · ~r

)
µIk0

k(z)
incpy − k

(y)
incpz

k
(x)
incpz − k

(z)
incpx

 . (B.24)

The same relationship holds for the Fourier components of the fields. The transverse Fourier

components of the incident electric field aresx

sy


inc

=

pxδm,n=0

pyδm,n=0

 , (B.25)

where I introduced a vector δm,n=0 that has the same number of elements as the number of spatial

harmonics in a given problem, but all elements of the vector are zero except for the element at

m = n = 0. This is a representation of an incident plane wave as a 0th order spatial harmonic.

From eqs. (B.25) and (B.24), the Fourier components of the incident magnetic field areux

uy


inc

=
i

µI


(
k̃

(z)
incpy − k̃

(y)
incpz

)
δm,n=0(

k̃
(x)
incpz − k̃

(z)
incpx

)
δm,n=0

 . (B.26)

Denoting the reflected Fourier components of the electric field in Region I as rx and ry, the

total electric field in that region as a sum of the incident and reflected waves issx

sy


I

=

pxδm,n=0

pyδm,n=0

+

rx

ry

 . (B.27)
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The associated reflected magnetic field in Region I can be found with the help of the first equation

in (B.13). The reader is referred to [283] for more details. Just like the electric field, the magnetic

field in Region I is a sum of the incident and reflected wavesux

uy


I

=
i

µI


(
k̃

(z)
incpy − k̃

(y)
incpz

)
δm,n=0(

k̃
(x)
incpz − k̃

(z)
incpx

)
δm,n=0

+
i

µI

− K̃xK̃y

K̃I,z
− K̃2

I,z+K̃2
y

K̃I,z

K̃2
I,z+K̃2

x

K̃I,z

K̃xK̃y

K̃I,z


rx

ry

 . (B.28)

A similar derivation can be performed for the fields transmitted through the scattering structure.

With the transmitted transverse Fourier components of the electric field tx and ty, the magnetic

field in Region II is ux

uy


II

=
i

µII

 K̃xK̃y

K̃II,z

K̃2
II,z+K̃2

y

K̃II,z

− K̃2
II,z+K̃2

x

K̃I,z
− K̃xK̃y

K̃II,z


tx

ty

 . (B.29)

Having determined the fields, and hence vector ψ in Regions I and II, it is now possible to write

explicitly the boundary conditions (eq. (B.22)) at the interfaces between the scattering structure

and the surrounding media. In order to write them in a more compact form, I first introduce some

auxiliary matrices and vectors

A =
i

µI



−iµI1 0

0 −iµI1

− K̃xK̃y

K̃I,z
− K̃2

I,z+K̃2
y

K̃I,z

K̃2
I,z+K̃2

x

K̃I,z

K̃xK̃y

K̃I,z


. (B.30)

B =
i

µII



−iµII1 0

0 −iµII1

K̃xK̃y

K̃II,z

K̃2
II,z+K̃2

y

K̃II,z

− K̃2
II,z+K̃2

x

K̃I,z
− K̃xK̃y

K̃II,z


. (B.31)

ψinc =



pxδm,n=0

pyδm,n=0

i
µI

(
k̃

(z)
incpy − k̃

(y)
incpz

)
δm,n=0

i
µI

(
k̃

(x)
incpz − k̃

(z)
incpx

)
δm,n=0


, R =



rx

ry

rx

ry


, T =



tx

ty

tx

ty


. (B.32)
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With these definitions, the first boundary condition between Region I and the scattering structure

is

ψinc + AR = F1

1 0

0 X1

C1, (B.33)

and the condition between the structure and Region II for a structure with N interfaces is

BT = FN

XN 0

0 1

CN . (B.34)

These boundary conditions (eqs. (B.33), (B.21), and (B.34)) can be solved for an entire structure

in order to find the total reflection and transmission as well as diffraction efficiencies for various

spatial harmonic orders and, if required, electric and magnetic fields inside the structure. There

are several ways of solving this problem.

The solution method that I describe below is called the Enhanced Transmittance Matrix

(ETM) approach. It was first proposed in Ref. [282] in 1995 and is a stable implementation of

RCWA. The stability is ensured by analytically avoiding growing exponential terms of the form

X−1
i = exp(λid̃i) which could lead to ill-conditioned matrices when eqs. (B.21) are solved.

The unknowns that need to be solved for are the reflection and transmission vectors R and

T in eqs. (B.33) and (B.34). ETM starts with the last interface. The mode coefficients CN are

found from (B.34)

CN =

X−1
N 0

0 1

F−1
N BT =

X−1
N 0

0 1


aN

bN

T. (B.35)

In the equation above, the following definition has been introducedaN

bN

 = F−1
N B. (B.36)

In order to eliminate the growing exponential term X−1
N in eq. (B.35), an auxiliary transmittance

vector TN is introduced, and the unknown vector T is expressed in terms of TN as

T = a−1
N XNTN . (B.37)
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With the auxiliary vector TN eq. (B.35) becomes

CN =

 1

bNa−1
N XN

TN . (B.38)

By going backwards through the layers using eq. (B.21) and introducing auxiliary variables ai, bi,

and Ti for each layer, one can arrive at expressions similar to eqs. (B.36), (B.37), and (B.38)

Ci =

 1

bia
−1
i Xi

Ti, Ti+1 = a−1
i XiTi,

ai

bi

 = F−1
i Fi+1

1 0

0 Xi+1


 1

bi+1a
−1
i+1Xi+1

 .
(B.39)

With C1 determined by (B.39), the boundary condition (B.33) at the first interface (between the

structure and Region I) is modified to

ψinc + AR = F1

1 0

0 X1


 1

b1a
−1
1 X1

T1. (B.40)

From here, R and T1 can be foundR

T1

 =

[
−AB̃

]−1

ψinc, where B̃ = F1

 1

X1b1a
−1
1 X1

 . (B.41)

If only reflected spatial harmonics need to be solved for, the method can stop here. To find the

total transmission through the scattering structure, work forward through the layers using

T = a−1
N XNa−1

N−1XN−1 . . .a
−1
2 X2a

−1
1 X1T1. (B.42)

Now that the electric and magnetic fields are known everywhere in space, the reflection and

transmission diffraction efficiencies, defined as fractions of the incident power, or the magni-

tude of the Poynting vector, scattered into a particular reflected or transmitted spatial harmonic

Dm,n = P
(z)
m,n/P

(z)
inc , can be found according to [283]

DR =

(
|Rx|2 + |Ry|2 +

∣∣∣K̃−1
I,z

(
K̃xRx + K̃yRy

)∣∣∣2)Re

[
K̃I,z

k̃
(z)
inc

]
,

DT =

(
|Tx|2 + |Ty|2 +

∣∣∣K̃−1
II,z

(
K̃xTx + K̃yTy

)∣∣∣2)Re

[
µI

µII

K̃II,z

k̃
(z)
inc

]
.

(B.43)
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Below, I provide a step-by-step procedure to implement RCWA using the ETM approach:

(1) Define the parameters of the incident wave: direction, wavelength and polarization.

(2) Define the parameters of the scattering structure: εr and µr for each layer of the structure

as well as in the transmission and reflection regions, period in the x and y directions, layer

thicknesses of the structure, the number of spatial harmonics in the x and y directions.

(3) Given the parameters defined in the previous step, construct the scattering structure on a

high-resolution spatial grid.

(4) For each layer of the structure, compute the convolution matrices [[εr]] and [[µr]].

(5) Compute matrices K̃x, K̃x and K̃y, as defined by (B.9), and, in the reflection and trans-

mission regions, matrix K̃z.

(6) Compute matrices A and B as defined by eqs. (B.30) and (B.31), respectively.

(7) Work backwards through the layers starting from the last one and, for each layer, solve

an eigenvalue problem for matrix Ω2 = PQ, where matrices P and Q are defined by eq.

(B.14). With the computed eigenvector and eigenvalue matrices, obtain matrices F and X

defined by eq. (B.20), and with those, solve for the matrices ai according to the second

equation in (B.39). In order to calculate aN for the last layer (first iteration), use eq.

(B.36).

(8) When the first boundary is reached, solve for the reflected spatial harmonics R and the

auxiliary transmission T1 using eq. (B.41).

(9) Propagate forward through the layers to determine the transmitted spatial harmonics T

from eq. (B.42).

(10) Compute the reflected and transmitted diffraction efficiencies DR and DT according to

(B.43). The total reflection and transmission of the structure can be found by summing
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the diffraction efficiencies over all spatial harmonics. This can be used to ensure the con-

servation of energy, which is a very powerful criterion that determines whether the output

of the algorithm is meaningful. The sum of the total reflection and transmission is equal

to 1 when there is no loss or gain in the structure, and is less or greater than 1 when there

is loss or gain, respectively.

In addition to the reflected and transmitted waves, fields within the scattering structure can also

be calculated. This is useful for gaining insight into the coupling of incident light to a device, but it

requires keeping track of additional parameters as the algorithm proceeds, which, in turn, requires

more memory. For the case considered in this thesis of an EUV beam reflected from a sawtooth

diffraction grating, such a calculation was not necessary, and for that reason I do not discuss it

here. More details on the calculation of the fields within the structure can be found in Ref. [283].

Because the ETM approach requires that multiple matrix variables be stored in memory for

each layer, it can very quickly become computationally intensive. Since the size of the matrices is

determined by the number of spatial harmonics needed to describe the problem, and the number of

matrices depends on the number of layers, the memory requirements of the algorithm grow rapidly

as the complexity of the scattering structure increases, i.e., if more layers and/or spatial harmonics

are needed for its adequate description. Nonetheless, to date, ETM is one of the fastest and most

stable implementations of RCWA.



Appendix C

Material Parameters for the 3-Temperature Model

In this appendix, I provide the material parameters used in the simulation of the electron,

lattice, and spin temperatures in the CoFe/Ni multilayer film in Chapter 6. The model requires

the following inputs for each material that are, in general, temperature dependent

(1) Electron specific Ce(Te)

(2) Lattice specific heat Cl(Tl)

(3) Magnetic specific heat Cs(Ts)

(4) Electron thermal conductivity κe(Te, Tl)

(5) Lattice thermal conductivity κl(Te, Tl)

(6) Electron-lattice coupling Gel(Te)

(7) Electron-spin coupling Ges(Te)

(8) Lattice-spin coupling Gls

(9) Material refractive indices to calculate the source term 1

The layer structure of the sample of interest is Si3N4(50)/ Ta(3)/ Cu(5)/ (Co0.9Fe0.1(0.2)/ Ni(0.6))x50/

CoFe(0.2)/ Cu(3)/ Ta2O5(3), where the layer thicknesses in parentheses are in nm. Because the

fraction of Fe in the CoFe layer is only 0.1, I assume that the material properties of that layer are

1 Available at https://refractiveindex.info/

https://refractiveindex.info/
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adequately described by those of pure Co. The sample thus includes six different materials, and for

each one of those materials, nine properties need to be specified, according to the list above. This

amounts to a total of 36 material properties, many of them being temperature dependent.

C.1 Electron specific heat

Specific heat is defined as a derivative of the total internal energy E with respect to temper-

ature C(T ) = dE
dT . The total internal energy of a statistical system is

E(T ) =

∞∫
0

εg(ε)f(ε, T )dε, (C.1)

where g(ε) is the density of states of the system, and f(ε, T ) is its distribution function. Electrons

are described by the Fermi-Dirac distribution for which

f(ε, T ) =
1

e
ε−µ(T )
kT + 1

, (C.2)

where µ(T ) is a chemical potential. With eqs. (C.1) and (C.2), the specific heat of the electron

thermal bath can be found

Ce(T ) =

∞∫
0

g(ε)(ε− µ(T ))
e
ε−µ
kT(

e
ε−µ
kT + 1

)2

(
ε− µ
kT 2

+
1

kT

∂µ

∂T

)
dε. (C.3)

The temperature dependence of the chemical potential on T , which is required for the calculation

of the specific heat according to the equation above, is found from the conservation of the total

electron number density

N =

∞∫
0

g(ε)f(ε, T )dε. (C.4)

The formalism described above is applicable in metals where electrons are not strongly bound to

their respective nuclei and are free to move in the periodic potential of the lattice. The electron

heat capacities for Ni, Co, Cu, and Ta (all with the fcc crystal structure) are shown in Fig. C.1.

Note that eq. (C.3) requires the knowledge of the electron density of states g(ε). For the metals

shown in the figure, g(ε) was calculated with the ELK package [30]. All the other materials in the

multilayer structure are insulators, and, because electrons in those materials are strongly bound,
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Figure C.1: Electron specific heat of Ni, Co, Cu, and Ta.
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their heat capacity is negligible. As can be seen from Fig. C.1, the dependence of the specific on

the temperature is non-linear, and thus the Sommerfeld model in which Ce = γeT [29] does not

provide an accurate estimate of the electron specific heat, particularly at high temperatures.

C.2 Lattice specific heat

The lattice (or phonon) specific heat is given by the Debye model [29].

Cl = 9NkB

(
T

TD

)3
TD/T∫
0

x4ex

(ex − 1)2 dx (C.5)

where N is the number of atoms per unit volume, TD is the Debye temperature, and kB is the

Boltzmann constant. Because the functional form of Cl(T ) for different materials is the same,

according to eq. (C.5), I only show the lattice specific heat for Ni in Fig. C.2 as an example. Notice
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Figure C.2: Lattice specific heat of Ni.

that at high temperature the electron specific heat in Fig. C.1 is of the same order of magnitude

as that of the lattice. The Debye temperatures can be found online. 2

2 http://www.knowledgedoor.com/2/elements_handbook/debye_temperature.html

http://www.knowledgedoor.com/2/elements_handbook/debye_temperature.html
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C.3 Magnetic specific heat

The only magnetic materials in the sample being considered here are Ni and the Co0.9Fe0.1

alloy. At low temperatures, low energy magnons are responsible for magnetic excitations and thus

act as a thermal reservoir. Thus, the total internal energy of the magnetic degree of freedom

should be described by expression (C.1). With f(ε, T ) equal to the Bose-Einstein distribution for

magnons and a known magnon density of states, which can be calculated using DFT packages, the

magnetic part of the specific heat of a material can in principle be calculated. However, because

at higher temperatures Stoner excitations start to play an important role, this approach is only

valid at low temperatures. Particularly, near the Curie temperature, special considerations must

be taken into account [286, 287, 288]. The situation is complicated by a lack of a first principles

theory of magnetism. A good approximation to the specific heat of the spin degree of freedom can

be obtained from the Weiss mean-field theory [289]

Cs =
µANakBρ

A

x2 tanhx

tanhx cosh2 x− x
, (C.6)

where µA is the magnetic moment per atom measured in Bohr magnetons, A is the atomic weight,

Na is the Avogadro number, ρ is the mass density, and

x =
Ms/M(0K)

T/Tc
,

where the ratio Ms/M(0K) is defined implicitly through the Weiss law [289]

Ms

M(0K)
= tanh

(
Ms/M(0K)

Ts/Tc

)
.

In practice, however, a more accurate estimate of the magnetic specific heat can be obtained

by subtracting the electron and lattice contributions from the total specific heat or by simply using

experimentally measured values if those are available. Since the three-temperature model is phe-

nomenological, such an approach can be considered reasonable, and should produce more accurate

results than with purely theoretical values of the magnetic specific heat. For Ni, experimental

values for the total specific heat are available in Ref. [286], and for Co in Ref. [290]. The magnetic
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specific heat of Ni and Co used in this thesis is shown in Fig. C.3. In simulations, the magnetic

heat capacity is often neglected [58]; however, Fig. C.3 clearly shows that near the Curie tempera-

ture, the magnetic specific heat is actually on the same order of magnitude as the lattice, and thus

cannot be neglected. In fact, it can play an important role in the transport of energy in a magnetic

sample [291, 292, 293].
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Figure C.3: Magnetic specific heat of Ni and Co.

It is important to understand that the values in Figs. C.1-C.3 are for bulk materials. In

multilayer samples they might be altered due to confinement effects and interfaces. This can be

especially significant in magnetic multilayers where sub-nanometer layers can interact and thus

modify the magnon spectrum responsible for the specific heat of the spin energy bath.

Finally, as a practical note, in the calculations presented in this thesis, values of Cs above the

Curie temperature were set to a small positive number rather than zero in order to avoid numerical

instabilities in cases where the laser pump fluence is sufficiently large to drive the material above

its Curie temperature.
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C.4 Thermal conductivity

Thermal transport may play a very important role in laser-induced material dynamics, espe-

cially in an optically thick sample, i.e., when there is a strong gradient in the absorbed laser pump

fluence throughout the sample. Specifically, for the FeCo/Ni multilayer considered in Chapter 6,

there is a strong gradient in the absorption of the pump light, which affects the magnetization dy-

namics. In order to accurately describe such dynamics, the dependence of the thermal conductivity

of materials on the electron and phonon temperatures needs to be taken into account.

First, I consider the case for metals. There, thermal transport is mediated by electrons

in the conduction band. Qualitatively, the temperature dependence of thermal conductivity κe

can be understood by considering energy excitations of such electrons. In simple terms, the more

excited an electron is the farther it is from its parent nucleus and the less it feels the atomic

potential. Hot electrons should thus move more freely than cold electrons, and κe should increase

with electron temperature. On the other hand, electron-phonon scattering limits the mean free

path of electrons. The hotter the lattice, the more phonon states are occupied and, for a given

electron-phonon scattering rate, the net probability of a scattering event increases. Therefore, κe

should decrease with the lattice temperature. This behavior is not universal and depends on the

electron band structure and the phonon spectrum for a given material. More details can be found

in Refs. [294, 295]. According to Ref. [294], a good approximation for the temperature-dependent

electron thermal conductivity is

κe(θe, θl) = C
(θ2
e + 0.16)5/4(θ2

e + 0.44)θ

(θ2
e + 0.092)1/2(θ2

e + bθl)
, (C.7)

where θe = kBTe/εF , θl = kBTl/εF , and C and b are fitting parameters. The latter two can be

found by fitting expression (C.7) to the experimental data in Ref. [296]. The fitting parameters

are provided in Table C.1, and the result for Ni is shown in Fig. C.4 as an example. The lattice

thermal conductivity for metals is, in general, negligible and I thus set κl = 0 for the metals in the

table. The spin thermal conductivity for magnetic materials is also assumed to be zero because

I am not considering spin-dependent thermal transport (not to be confused with the transport of
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Table C.1: Fitting parameters for the electron thermal conductivities of Ni, Co, Cu, and Ta and
their Fermi energies.

Material C (W/m·K) b εF (eV)

Ni 0.94 0.0017 13.97
Co 2.49 0.005 7.97
Cu 79.06 0.06 7.00
Ta 3070 18 10.79

the spin), and, as such, κs should be absorbed in κe.

For the insulators in the multilayer stack, namely, Si3N4 and Ta2O5, κe = 0 because electrons

are bound and do not contribute to the heat conduction which is mediated by phonons. Since the

thermal conductivity of Si3N4 and Ta2O5 is much smaller than that of the metallic layers in the

sample, the coupling of the thermal energy into the Si3N4 membrane and the Ta2O5 cap is very

slow, and the temperature dependence of κl can be neglected. For Si3N4, κl = 3 W/m·K, according

to [297], and for Ta2O5, κl = 1 W/m·K, according to [298].

C.5 Electron-lattice-spin coupling

The strength of the electron-lattice coupling Gel depends on the electron phonon-scattering

rate. In most simulations, it is assumed to be constant and is used as a model fitting parame-

ter. However, the electron-phonon interaction depends on the electrons’ energy and momentum

and should thus depend on the electron temperature. Ref. [299] provides an expression for the

temperature-dependent electron-phonon coupling factor

Gel(T ) =
π~kBλ

〈
ω2
〉

g(εF )

∫ ∞
−∞

g2(ε)

(
−∂f
∂ε

)
dε, (C.8)

where λ is an electron-phonon mass enhancement parameter [300] and
〈
ω2
〉

is the second moment

of the phonon spectrum by McMillan [301]. The factor λ
〈
ω2
〉

can be approximated by λ(kBTD)2

[299]. In the simulations presented in this thesis, I used λ = 0.26 for Ni [302], λ = 0.41 for Co

[303], λ = 0.13 for Cu [304], and λ = 0.88 for Ta [305]. The resulting electron-phonon temperature-

dependent coupling parameters for the four metals are shown in Fig. C.5. In the figure, the
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Figure C.4: Electron thermal conductivity of Ni.
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temperature of the lattice is assumed to be 300 K. There is no universal trend for the curves. For

Ni, the coupling becomes weaker with temperature, while for Cu and Ta it increases. For Co, the

behavior is non-monotonic. An optical excitation can increase the electron temperature by almost

2 orders magnitude from the room temperature. The coupling parameter may change significantly

over such a broad range of temperatures and thus should not be approximated by a constant value.
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Figure C.5: Electron-phonon coupling of Ni, Co, Cu, and Ta.

For the insulating layers Si3N4 and Ta2O5, the concept of electron-phonon coupling is not

applicable, but because the three-temperature model requires those inputs, I set this parameter to

a small number ∼ 3× 108 W/m3K.

The electron-spin Ges and the lattice-spin Gls coupling parameters are not known and are

varied in order to fit the experimental data. Because Ges and Gls are not independent with respect

to the fitting procedure, one of them needs to be specified explicitly. I set Gls to 6×1016 W/m3K for

both Ni and Co. This is in agreement with an approximate value of 1.6×1016 W/m3K for Fe given

in Ref. [306]. With Ges = 3 × 1017 W/m3K for both Ni and Co, a good fit of the magnetization

predicted by the three-temperature model to the experimental data is found.
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As a final note for this Appendix, there is a useful online resource for the electron-lattice

coupling parameter, electron specific heat, chemical potential, and density of states of multiple

materials. 3

3 http://www.faculty.virginia.edu/CompMat/electron-phonon-coupling/

http://www.faculty.virginia.edu/CompMat/electron-phonon-coupling/
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Appendix D

Bad Pixel Map for the Tabletop RMS Experiment

A map of bad pixels is shown in Fig. D.1. These pixels do not carry any information because

they have either been obscured by the beam block or exposed to unblocked scattered IR light. The

analysis of the RMS data in Chapter 5 takes the map in Fig. D.1 into account.

Figure D.1: Bad pixel map for the tabletop RMS expereiment. The areas with bad pixels are shown
in black
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