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An ultracold Bose-Fermi gas mixture of 40K and 87Rb atoms has tunable interspecies inter-

actions and therefore provides a fantastic platform for exploring not only few-body physics such

as Feshbach molecule formation and Efimov trimers, but also many-body physics including Bose

polarons, quantum Hall physics and so on. In this thesis, I present experimental evidence of Bose

polarons in cold atoms obtained using radio-frequency spectroscopy to measure the excitation spec-

trum of fermionic 40K impurities resonantly interacting with a BEC of 87Rb atoms. These Bose

polarons originate from the dressing of an impurity coupled to its environment, which is an im-

portant paradigm in quantum many-body physics. I also present initial work that launches an

exciting new direction for our experiment, which is exploring rotating quantum gases. Goals for

this work include studying both rotating Bose and Fermi superfluids with tunable interactions as

well as working toward rapidly rotating quantum gases in the quantum Hall regime. For these

goals, a new all-optical trap for rotating gases was designed, implemented, and tested using a 87Rb

Bose-Einstein condensate.
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Chapter 1

Introduction

With the development of laser trapping and cooling technologies, neutral atoms can be ma-

nipulated in an unprecedent way. Many applications have been achieved so far. One of the most

successful directions is to study new phases of matter, which may only exist at ultralow tem-

peratures near absolute zero (T ∼ 10−6K). Here, the thermal de Broglie wavelength of atoms,

λT = h/
√

2πmkBT , becomes comparable to the interparticle spacing and quantum mechanical

effects start to dominate. In this regime, quantum many-body physics can be engineered by tuning

the interactions between atoms. This thesis presents experiments that engineer and measure some

interesting quantum many-body physics by using an ultracold Bose-Fermi gas mixture of 40K and

87Rb.

1.1 Many-body physics in ultracold atomic gases

Condensed matter systems consist of many particles and many of these cannot be well de-

scribed by single-body physics without interactions. Beyond few-body models, theoretical cal-

culations and discussions of a many-body system can become extremely difficult. On the other

hand, some collective phenomena demonstrated by condensed matter samples, like superconductiv-

ity, ferromagnetism, and integer/fractional conductance, are intriguing for a physicist and crucial

for advance of technology. Understanding these interacting quantum many-body systems requires

considerations of hundreds and thousands of individual particles and particle-particle interactions,

which cannot be treated exactly. As a result, new theoretical models are proposed. These theories
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Figure 1.1: A polaron formed by an electron moving in a crystal lattice and its counterpart, a Bose
polaron formed by an impurity atom immersed in a BEC.

can not only explain observed collective phenomena but also can predict novel local properties, such

as a quasiparticle excitation with fractional statistics, known as an anyon. Furthermore, based on

the current understanding of many-body systems, people are proposing novel materials, of which

only a few have been realized in a condensed matter lab, while more of them remain unexplored.

Ultracold atomic gases with tunable interactions provide a promising platform to engineer these

exotic states.

The first many-body physics topic related to my research in this thesis is the Bose polaron.

An electron moving in an ionic crystal lattice is dressed by coupling to lattice vibration modes

(phonons), which as a result forms a quasiparticle, known as a polaron (see Fig. 1.1a). Such a

mechanism is highly nontrivial and has become an important paradigm in quantum many-body

physics [1]. Recently, intense theoretical discussions focused on impurities immersed in a Bose-

Einstein condensate (BEC) with couplings between impurities and Bogoliubov phonon excitations

of BEC [2, 3, 4, 5, 6, 7, 8]. It is suggested that impurities dressed by phonons would form novel

quasiparticles, known as Bose polarons (see Fig. 1.1b), even in the strongly interacting regime

[9, 10, 11, 12]. However, measurement of Bose polarons in the strongly interacting regime is

challenging due to the loss of atoms through three-body recombination and effects of density inho-

mogeneity in trapped atomic gases. In this thesis I report experimental evidence of Bose polarons

by using radio-frequency spectroscopy to measure the excitation spectrum of fermionic 40K impu-

rities resonantly interacting with a BEC of 87Rb atoms. We find that the measured energy of the
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Figure 1.2: Similarity between a rotating BEC and a quantum Hall system. Left: measured density
distribution of the gaseous Bose-Einstein condensate under rotation; an exotic vortex lattice forms
as the rotation speed increases. (credit: JILA TOP trap.) Right: illustration of moving electrons
when they are in quantum Hall states under strong magnetic field. (credit:UTokyo.)

impurites immersed in the BEC matches well with that calculated for Bose polarons for a range of

interaction strengths. In particular, we confirm that the polaron state exists even across unitarity

in the strongly interacting regime and approaches the weakly bound molecular state. Furthermore,

for attractive interactions, we show that Rabi oscillations can be observed when exciting Bose po-

larons. This work is the first measurement of the Bose polaron in a three-dimensional trapped atom

gas, which helps better understanding of the quantum many-body physics of Bose-Fermi mixtures.

The second many-body physics topic related to the research in this thesis is the quantum Hall

effect. Quantum Hall states are exotic “topological” states of matter that were originally used to

describe states of electrons moving in a two-dimensional plane in a strong magnetic field (see right

panel of Fig. 1.2). Understanding these states is important and has led to the proposal of novel

materials. A well-known example is the topological insulator, which is a popular research topic in

condensed matter field at present [13]. Although the quantum Hall effect has been observed using

specialized semiconductors [14], there are very few experimental examples of quantum Hall states.

Recently it was proposed to realize quantum Hall states by rapidly rotating an ultracold atomic

gas [15]. In this thesis, I will discuss the connection between quantum Hall states and rapidly

rotating ultracold gases. Then I will demonstrate a new apparatus that we designed with the goal

of producing rapidly rotating ultracold gases into the quantum Hall regime. Technical challenges

as well as experimental progress will be shown.
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In the past decade, many other examples of using ultracold atomic gases to study many-

body physics were demonstrated. Topics include quantum magnetism, Harper Hamiltonian, Fermi

polarons, artificial gauge fields, and so on. More interesting experiments are on the way. Ultracold

atomic gases have become an indispensable test bed for exploring many-body physics.

1.2 Bose gas and Fermi gas at ultralow temperature

Many review papers and theses have comprehensive introductions on the ultracold Bose gas,

the Bose-Einstein condensate and the degenerate Fermi gas. Here I won’t repeat these and instead

I will just introduce the necessary knowledge for understanding the relevant many-body physics

that I will present in this thesis.

Table 1.1: Useful formula for a weakly interacting BEC in 3D at the Thomas-Fermi limit [15]. Here
M is the boson mass, n is the atom number density, g = 4πa~2/M is the coupling constant with a
being the scattering length and M being the atomic mass of an atom.

Quantities Formula

Oscillator length (non-interacting BEC size) d0 =
√

~
Mω0

Healing length ξ = 1√
8πan

Thomas-Fermi distribution n(r) = n0

(
1− x2

R2
x
− y2

R2
y
− z2

R2
z

)
Chemical potential µ = 52/5

2

(
N0a
d0

)2/5
~ω0

Thomas-Fermi radii Rx,y,z =
√

2µ
Mω2

x,y,z

Peak BEC density& Number† n0 = µ/g, N0 = 8πn0R
3
0/15

Column density n̄(r) = n̄0

(
1− x2

R2
x
− y2

R2
y

)3/2

Peak BEC column density & Number n̄0 = (4/3)Rzn0, N0 = (2π/5)n̄0RxRy
Averaged BEC density 〈n〉 = (4/7)n0

RMS width & TF radius σRMS = 0.437RTF

†averaged Thomas-Fermi radius R0 = (RxRyRz)
1/3.

When a thermal 87Rb atomic gas in a harmonic trap is cooled down below a critical temper-

ature, Tc = ~ω0[N/ζ(3)]1/3/kB, a phase transition occurs and a Bose-Einstein condensate is formed

with a BEC fraction given by, N0/N = 1−(T/Tc)
3. Here the averaged trapping frequency is defined

by ω0 = (ωxωyωz)
1/3, the Riemann zeta function ζ(3) = 1.2, kB is the Boltzmann constant, N0
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is the number of atoms in the BEC, and N is the total atom number. When the BEC fraction is

big enough, the interaction between BEC atoms, characterized by the scattering length a, needs

to be considered. For our case of a weakly interacting BEC (ξ � 1/n1/3) , the static BEC can be

described by the time-independent Gross-Pitaevskii (GP) equation [15]−~2∇2

2M︸ ︷︷ ︸
kinetic

+Vtr(r)︸ ︷︷ ︸
trap

+ g|Ψ(r)|2︸ ︷︷ ︸
interaction

Ψ(r) = µΨ(r), (1.1)

where M is the mass of the atom, µ is the chemical potential, Ψ(r) is the macroscopic condensate

wave function (or “order parameter”), and g is the coupling constant g = 4πa~2/M . Here a = 100a0

is the scattering length between two Rb atoms with a0 being the Bohr radius [16]. The BEC

density is given by n(r) = |Ψ(r)|2, and sometimes it is useful to write Ψ(r) =
√
n(r)eiφ(r) with

a phase term φ(r). For this thesis, we are working in the Thomas-Fermi regime (N0a/d0 � 1 or

µ ≈ n0g � ~ωx,y,z) and thus the kinetic energy term in Eq. (1.1) can be ignored. As a result,

the BEC density simply follows an inverse parabola distribution (see Table 1.1). A more detailed

introduction can be found in Ref. [15].

Table 1.2: Useful formula for a weakly interacting BEC in quasi 2D. Here g2 is the reduced coupling
constant in 2D.

Quantities Formula

Thomas-Fermi distribution n(r) = n0

(
1− x2

R2
x
− y2

R2
y

)
e−z

2/l2z

Thomas-Fermi radii Rx,y =

√
2µ′2D
Mω2

x,y

Chemical potential µ2D = ~ωz/2 + µ′2D, µ′2D = 2N0g2

πRxRy

Column density&Number n̄(r) = n̄0

(
1− x2

R2
x
− y2

R2
y

)
, N0 = π

2RxRyn̄0,

For a rapidly rotating gas, a quasi-2D BEC is relevant in the regime of small chemical po-

tential, where µ < ~ωz. Here, the BEC stays at the lowest energy level along z while it still

occupies many energy levels in the x and y directions. The wavefunction can be written as

Ψ(r) = 1
π1/4
√
lz
e−z

2/2l2zΨ2(x, y) with the oscillator length lz =
√
~/Mωz and Ψ2(x, y) being the
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2D condensate wavefunction. The critical temperature is T 2D
c = ~√ωxωy[N/ζ(2)]1/2/kB with the

Riemann zeta function ζ(2) = 1.64 [17]. The GP equation is modified as [Rychtarik’s thesis [18]](
−
~2∇2

⊥
2M

+ Vtr(r⊥) + g2|Ψ2(r⊥)|2
)

Ψ2(r⊥) = µ′2DΨ2(r⊥), (1.2)

where the 2D spatial coordinate r⊥ = {x, y}, the reduced coupling constant g2 =
√

8π~2a/Mlz and

the chemical potential µ2D = µ′2D + ~ωz/2. Useful formula are listed in Table 1.2.

Table 1.3: Useful formula for a degenerate Fermi gas in 3D.

Quantities Formula

Fermi energy & Fermi temperature EF = kBTF = (6N)1/3~ω0

Fermi-Dirac distribution∗ f(ε) = 1
eε/kBT /ζ+1

, fugacity ζ = eµ/kBT

Number N = −(kBT/~ω0)3Li3(−ζ)

Relationship of fugacity and T Li3(−ζ) = − 1
6(T/TF )3

Chemical potental µ = kBT ln ζ

∗Lin(x) is Poly-Logarithmic function of order n defined as Lin(x) =
∑∞

k=1 x
k/kn.

For the Fermi gas of 40K atoms in my system, most of the experiments in this thesis use a

relatively “hot” gas at T/TF ∼ 0.5. However, for completeness, I will list some frequently used

quantities that are important for discussing a Fermi gas. In general, the density of states in a

d-dimensional harmonic potential is

ρ(ε) =
εd−1

(d− 1)!
∏d
i=1 ~ωi

, (1.3)

where ωi is the trapping frequency along i-th direction. The density distribution of a Fermi gas

trapped in a 3D harmonic trapping potential follows

n(r) = −(kBMT )3/2

(2π)3/2~3
Li3/2

(
−ζe−

M
2kBT

(ω2
xx

2+ω2
yy

2+ω2
zz

2)
)
, (1.4)

which is reduced to the classic Maxwell-Boltzmann distribution at T/TF � 0.1. Some basic quan-

tities have been listed in Table 1.3 and more detailed discussions can be found in DeMarco’s thesis

(P.233) [19].
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Figure 1.3: Few-body physics explored by tuning a Feshbach resonance. (a) Association of KRb
Feshbach molecules by ramping the magnetic field across a Feshbach resonance [20]. (b) Tests of
universal three-body physics in an ultracold Bose–Fermi mixture [21]. I was involved in previous
work on these two topics done in my lab; detailed discussions are included in Cumby’s thesis [22]
and Bloom’s thesis [23].

1.3 Feshbach resonance for tuning interactions

One of our powerful tools in ultracold gases is a Feshbach resonance that can be used to tune

the atomic interactions [24]. The capability of controlling interactions is very important to study not

only few-body physics but also many-body physics [25]. Examples of few-body physics include two-

body Feshbach molecule association [Cumby’s thesis [22]], three-body Efimov resonances [Bloom’s

thesis [23]], and so on (see Fig. 1.3). Examples of many-body physics include BCS-BEC crossover

of a degenerate Fermi gas [Regal’s thesis [26]], impurity-bath coupling [27, 28, 29, 30, 31], and

so on. Simply speaking, when tuning an applied magnetic field B close to a specific value B0,

the scattering rate between particles is enhanced. For the simplest situation of isotropic s-wave

scattering, interactions can be well described by a parameter known as the scattering length a. The

dependence of the scattering length a on B is given by [24]

a(B) = abg

(
1− ∆

B −B0

)
, (1.5)
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Figure 1.4: Scattering length aKRb versus magnetic field B around the interspecies Feshbach reso-
nance between 40K and 87Rb atoms. The interaction is short-range. It is attractive for aKRb < 0
and repulsive for aKRb > 0.

with abg being the background scattering length and ∆ the resonance width. The coupling constant

g is proportional to a.

For 87Rb, there are no broad Feshbach resonances [16] and therefore we can simply treat it

to be a gas with constant background scattering length aBB = 100a0 . Here a0 is the Bohr radius.

For describing a 87Rb BEC, a weak background interaction is included in the theories leading to

the Bogoliubov phonon excitations, which is relevant to the Bose polarons discussed in Ch. 3.

For 40K, we work in the polarized limit in which all atoms are in a single hyperfine state

|F,mF 〉 = |9/2,−9/2〉, where F corresponds to the total atomic angular momentum and mF is its

projection. Due to the quantum statistics of fermions, fermion-fermion interactions are strongly

suppressed in the ultracold gas. In my following discussions, fermion-fermion interactions are

ignored.

For a mixture of 40K atoms and 87Rb atoms, an s-wave Feshbach resonance is used to control

the interactions between bosonic 87Rb atoms in the |1, 1〉 state and fermionic 40K atoms in the

|9/2,−9/2〉 state. The boson-fermion scattering length aKRb as a function of magnetic field B

(Fig. 1.4) is given by aKRb=abg[1 − ∆/(B − B0)], abg=−187 a0, B0=546.62 G, ∆=−3.04 G [32].

We use this Feshbach resonance to tune interactions between 40K atoms and 87Rb atoms to study
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interesting many-body physics.

1.4 Overview

This thesis covers two main research topics that I was leading in the past two years. The

first one is a study of Bose polarons as described in Sec. 1.1. The main tools we used are the

interspecies Feshbach resonance and RF spectroscopy. This work helps elucidate the behavior of

impurities in a BEC, which is a paradigmatic problem in many-body physics. The second topic

is to design and construct a new apparatus for creating rotating ultracold atomic gases in the

quantum Hall regime. Technical challenges are explored and experimental progress is discussed.

Besides studying quantum Hall physics, such a versatile apparatus is also promising to explore

other interesting physics such as the effect of dimensionality on the BEC/BKT transition, vortices

in a strongly interacting BEC, etc..

The remainder of the thesis is organized as follows.

Chapter 2 presents improvements I made to the frequency stabilization of the Rb and K laser

systems. A stable laser system is crucial for laser cooling and trapping atoms. It is also important

to have the ability to jump the laser frequency for atom detection. By using new electronics

technology, I set up a flexible beatnote locking that allows the frequency of a laser beam to be

shifted easily over a GHz range.

Chapter 3 is dedicated to the Bose polaron study. I include a general introduction to the Bose

polaron problem. Then I show our experimental results for the polaron energy spectrum, which is

compared to theoretical models. To probe the particle nature of polarons, we also investigate Rabi

oscillations when driving these states.

Chapter 4 discusses quantum Hall physics and its connection with rapidly rotating ultracold

gases. I introduce quantum Hall states and why they are bizarre. Their connection with rotating

gases as well as experimental challenges are discussed.

Chapter 5 introduces a new apparatus for rapidly rotating ultracold gases. A “painted” (or

time-averaged) optical trapping potential is a critical part of our approach. The time-averaging or
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“painting” can give us a near-perfect round trap geometry and can also reduce roughness of the

trapping potential, which is critical for rotating gases very rapidly.

Chapter 6 summarize the major results of this thesis and concludes with a discussion of future

experiments.



Chapter 2

Improved laser systems for cooling and trapping Rb and K atoms

A stable laser system is crucial for laser cooling and trapping atoms. In this chapter, I present

the improvement I made to stabilize our rubidium and potassium laser systems. In particular, I set

up a modulation transfer spectroscopy, an excellent way of stabilizing lasers developed recently, for

the potassium laser system [33]. This spectroscopy is compared against the frequency-modulation

(FM) spectroscopy [34, 35]. In addition, with new electronics technology, I set up a flexible phase

lock of a slave laser (trap laser) to a master laser (repump laser), which allows us to shift the

frequency of the slave laser over a GHz range. The spectroscopic properties of rubidium and

potassium can be found in [36] and [37], respectively.

2.1 Rubidium laser stabilization (FM spectroscopy)

To get a 87Rb magneto-optical trap (MOT), two lasers, the repump laser and the trap laser,

are needed. The repump laser is for hyperfine pumping using the (F = 1 → F ′ = 2) transition.

Here F (F ′) denotes the total atomic angular momentum of the ground (excited) states. In our

experiment, the repump laser is locked to the 87Rb F = 1 → F ′ = 1, 2 crossover using FM

spectroscopy (see the next paragraph). Then, the frequency of the repump laser is shifted up by

78 MHz using a single-passed acouto-optical modulator (AO) (+1 order). The trap laser is for

cooling and trapping using the cycling transition (F = 2 → F ′ = 3). Since the frequency of the

87Rb (F = 2 → F ′ = 3) transition is less than that of the 87Rb (F = 1 → F ′ = 1, 2 crossover1 )

1 The crossover frequency is equal to the average of two involved atomic transition frequencies. For example,
fF=1→F ′=1,2 crossover = (fF=1→F ′=1 + fF=1→F ′=2)/2.
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Figure 2.1: An improved rubidium laser system. (a) The FM spectroscopy setup for the repump
laser. (EOM denotes an electro-optical modulator; PD is a photodetector; LF is a loop filter; AO
is an acousto-optical modulator; DBR is a distributed Bragg reflector laser.) A single-passed AO
is used to shift the laser frequency up by 78 MHz. (b) The error signal for locking the repump
laser. The upper panel shows the absorption spectroscopy (adapted from [38]) and the lower panel
is the error signal obtained using FM spectroscopy [34, 35]. The red dot indicates the reference
point, where we lock our repump laser’s frequency. (c) The phase-lock setup for the trap laser.
DDS denotes a direct digital synthesizer (Analog devices: AD9959-eval). “f/128” is a frequency
divider (Hittite microwave: HMC363). The phase frequency detector has the model number (Hittite
microwave: HMC440). (d) The RF spectrum of the beat between the trap laser and the repump
laser when the phase lock is on. The beat signal is measured by a RF spectrum analyzer. The
x-axis has the center at 6.618 GHz and the span of 20 MHz. The unit of the y axis is dBm.

transition by 6.4896 GHz [36], we lock our trap laser to the repump laser using a phase-lock loop

with a beat frequency of fb = 6.622 GHz. Then, the frequency of the trap laser is shifted up by

133.5 MHz using a double-passed AO (+1 order).

Fig. 2.1(a) shows the schematic of FM spectroscopy setup for the repump laser. There are

two overlapped counter-propagating beams passing through a Rb vapor cell. The beam probed

by a photodetector (PD) is called the probe beam and the other one is called the pump beam.
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When we scan the laser’s frequency by ramping the laser current, the measured power of the probe

beam gives a Doppler-free absorption spectroscopy as shown in the upper panel of Fig. 2.1(b).

The red dot indicates the lock point, where we lock our repump laser. The lower panel of Fig.

2.1(b) shows the error signal that is input into a loop filter (LF) for stabilizing the repump laser

frequency. The error signal is the derivative of the absorption signal and is obtained using FM

spectroscopy [34, 35], which requires the laser beam’s phase to be modulated. An electro-optical

modulator (EOM) shown in Fig. 2.1(a) is used to modulate the phase of the repump laser beam

with the modulation frequency, fm = 11.8 MHz. Although we modulate both the probe and pump

beams, only the probe beam needs to be modulated.

The error signal is crucial for stabilizing the laser’s frequency. We care about its signal-to-

noise ratio (S/N) that is defined here as the ratio of the peak-to-peak amplitude over the background

noise amplitude. The error signal of (F = 1 → F ′) is about ten times weaker than that of

(F = 2 → F ′). To increase the S/N of the error signal at the F = 1 → F ′ = 1, 2 crossover,

the vapor cell is heated to above the melting point of rubidium (38.9 ◦C) to increase the vapor

pressure. The optimal temperature is determined by looking at the S/N and is set to be 58 ◦C

in our experiment. Additionally, it is important to keep the light intensity of the probe beam less

than the saturation intensity (Isat = 2.5 mW/cm2 [36]). For our case, the 1/e2 width of the probe

beam is about w = 1 mm and the power is P = 20 µW, which gives the peak intensity of the probe

beam, I = 2P
πw2 ≈ 1.3 mW/cm2.

Fig. 2.1(c) shows a diagram of the phase-lock setup for the trap laser. A 6.622 GHz beat

signal is detected by a fast PD (EOT Inc.: ET-4000) with a bandwidth of 12.5 GHz. Because

the phase frequency detector (PFD) (Hittite microwave: HMC440) only has a bandwidth of 10

to 1300 MHz, we divide the beat frequency by a factor of 128 (a factor of 8 using a frequency

divider (Hittite microwave: HMC363) and another factor of 16 by the PFD). By comparing against

a reference RF signal of 51.7335 MHz, the PFD converts the divided beat signal into an error

signal for the laser stabilization. The reference RF signal is provided by a direct digital synthesizer

(DDS), which is controlled by a computer. We tune the trap laser’s frequency by changing the
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reference RF frequency. In this way, we can shift the trap laser’s frequency over a GHz range,

which is important for the phase contrast imaging discussed in Sec. 5.2.1. Fig. 2.1(d) shows the

RF spectrum of the beat between the trap laser and the repump laser when the phase-lock loop is

on. The delta function of the spectrum indicates a phase lock of the trap laser to the repump laser.

In the above discussion, I have focused on the spectroscopy of the Rb laser system that I

changed for improving laser stabilization. The rest of the Rb laser system can be found in Chap.

4 of the previous thesis [23].

2.2 Potassium laser stabilization (modulation transfer spectroscopy)

For a 40K MOT, both the repump and trap lasers are important for cooling and trapping.

The repump laser is red-detuned from the F = 7/2 → F ′ = 9/2 transition and the trap laser is

red-detuned from the cycling transition, F = 9/2 → F ′ = 11/2. Because of the small natural

abundance of 40K (0.0117%), the spectroscopy signal of 40K from a vapor cell is too weak to use

for laser stabilization. Instead we lock our repump laser to the 39K F = 2 → F ′ = 3 transition

using modulation transfer spectroscopy [33] (see the next paragraph). The isotope 39K has a large

natural abundance of 93.3%. The frequency of the 40K F = 7/2→ F ′ = 9/2 transition is less than

that of the 39K F = 2 → F ′ = 3 transition by only 431.9 MHz [37], which can be easily reached

using a double-passed AO. In our experiment (see Fig. 2.2(a)), a double-passed AO (+1 order)

is used to shift the frequency of the repump laser up by 424 MHz before doing the modulation

transfer spectroscopy. For the trap laser, the frequency of the 40K F = 9/2→ F ′ = 11/2 transition

is larger than that of the 39K F = 2 → F ′ = 3 transition by 809.8 MHz [37] and we lock our trap

laser to our repump laser through a phase lock with the beat frequency 784.8 MHz.

Fig. 2.2(a) shows the schematic of the modulation transfer spectroscopy setup for the repump

laser. Different from FM spectroscopy, the probe beam in the modulation transfer spectroscopy is

not modulated, while the pump beam is frequency modulated by an EOM. However, to produce

the error signal, the probe beam needs containing modulated sidebands [39, 33]. It turns out

that the probe beam picks up the modulated sidebands from the collinear pump beam through a
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Figure 2.2: An improved potassium laser system. (a) The modulation transfer spectroscopy setup
for the repump laser. A double-passed AO is used to shift the laser frequency up by 424 MHz. (b)
The error signal for locking the repump laser. The yellow line shows the absorption spectroscopy
and the cyan line is the error signal obtained using the modulation transfer spectroscopy [33]. The
red dot indicates the reference point, where we lock our repump laser. (c) The phase-lock setup for
the trap laser. The beat frequency is 784.8 MHz.

nonlinear four-wave mixing mechanism [40, 41], which is a modulation transfer process. Due to

the nonlinear nature of the modulation transfer process, there are three main advantages using the

modulation transfer spectroscopy [39, 33]. First, the error signal has a flat zero baseline, since the

modulation transfer process only takes place at sub-Doppler resonances. Second, the zero-crossings

of the error signals correspond accurately to the atomic transitions [39]. Third, the error signal

for a cycling transition is largest, since the modulation transfer is strongest for cycling transitions,

which allows the four-wave mixing to occur many times. In particular, as shown in [33], the error

signal corresponding to a cycling transition can be further enhanced by using σ+-σ+ polarizations
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(i.e. right-hand circular probe and left-hand circular pump). This third feature is especially useful

when the spectrum contains several closely spaced transitions such as the spectrum of 39K.

Fig. 2.2(b) shows the error signal (the cyan line) obtained using the modulation transfer

spectroscopy as well as the Doppler-free absorption spectroscopy (the yellow line). From the ab-

sorption spectroscopy, we see three dominant features. From the left to right, the first one is a

feature containing three closely spaced 39K (F = 2 → F ′ = 1, 2, 3) transitions, the second one

is a feature containing two 39K ground-state crossovers, and the third one is a feature containing

three 39K (F = 1 → F ′ = 0, 1, 2) transitions and two 41K crossovers [33, 42]. The error signal is

crucial for stabilizing the laser’s frequency. To enhance the error signal at the cycling transition

(F = 2 → F ′ = 3), I put two quarter-wave plates at two sides of the vapor cell to achieve σ+-σ+

polarizations for the probe and the pump beams shown in Fig. 2.2(a). As shown in Fig. 2.2(b),

the resulting error signal at the cycling transition (F = 2→ F ′ = 3) is particularly large, while the

other non-cycling features are completely suppressed.

Additionally, to increase the S/N of the error signal, the K vapor cell is heated to above

the melting point of potassium (63 ◦C) to increase the vapor pressure. The best value of the

temperature is determined by looking at the S/N and is set to be 70 ◦C. The light intensity of the

probe beam is kept less than the saturation intensity (Isat = 1.75 mW/cm2). For our case, the

1/e2 width of the probe beam is about 1.5 mm and the power is 60 µW, which gives the intensity

of the probe beam I = 2P
πw2 ≈ 1.7 mW/cm2.

Fig. 2.2(c) shows the diagram of the phase-lock setup for the trap laser. A 784.8 MHz

beat signal is detected by a fast PD (EOT Inc.: ET-3000A) with a bandwidth of 30 kHz to 1.5

GHz. The rest of the electronics are similar to the Rb phase-lock setup and can be understood

straightforwardly.

For comparison, I put the FM spectroscopy signal and the modulation transfer spectroscopy

signal (without the two quarter-wave plates) together in Fig. 2.3. The FM spectroscopy is obtained

by moving the EOM so that it modulates both the probe and the pump beams (similar to the setup

shown in Fig. 2.1(a)). Generally, we set the frequency corresponding to the absorption peak as
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Figure 2.3: Comparison between the modulation transfer spectroscopy and FM spectroscopy for
the potassium laser system. The blue dashed line corresponds the absorption peak, where we used
to lock our K repump laser. The green dashed line marks the zero crossing of the error signal of
the modulation transfer spectroscopy, where we lock our repump laser now. The green dashed line
also indicates the location of the (F = 2 → F ′ = 3) transition. The frequency difference between
the blue line and the green line is 11 MHz.

a lock point for FM spectroscopy (blue dashed line) and set the frequency at the zero crossing

of the error signal as a lock point for the modulation transfer spectroscopy (green dashed line).

These two lock points are different by 11 MHz. From Fig. 2.3, we can see the three advantages

of the modulation transfer spectroscopy I mentioned above: (1) flat zero baseline; (2) accurate

correspondence between zero crossing and the atomic transition; (3) dominant error signal at cycling

transitions. In addition, the error signal of the modulation transfer spectroscopy shows an anti-

symmetric shape around the zero crossing, which is good for laser stabilization. It also shows a

narrower capture range (frequency range covered by the linear slope of the error signal) than FM

spectroscopy has.

In the above discussion, I have focused on the spectroscopy of the K laser system that I

changed for improving laser stabilization. The rest of the K laser system can be found in Chap. 4

of the previous thesis [23].



Chapter 3

Bose polarons in the strongly interacting regime

Ultracold atomic gases provide a fantastic platform for exploring many-body physics with

tunable particle-particle interactions. In this chapter, I present an experimental study of the Bose

polaron, which is a quasiparticle created by a quantum many-body effect. We used RF spectroscopy

to measure the energy shift of the polaron state at different interaction strengths. We find that

our results match recent theoretical calculations very well. This work is the first measurement

of the Bose polaron in a three-dimensional trapped atom gas and provides strong evidence of the

polaronic dressing due to quantum many-body physics.

3.1 Bose polaron theory

An electron moving in an ionic crystal lattice is dressed by coupling to lattice vibration

modes (phonons) and, as a result, forms a quasiparticle known as a polaron (see Fig. 1.1(a)). Such

a mechanism is highly nontrivial and has become an important paradigm in quantum many-body

physics [1]. Historically, such a mechanism was originally pointed out by Landau and Pekar [43, 44].

Then Fröhlich proposed an effective Hamiltonian to describe the polaron problem [45, 1]:

HFröhlich =
∑
p,σ

εpC
†
p,σCp,σ + ω0

∑
q

a†qaq +
∑
q,p,σ

V(q)C†p+q,σCp,σ

(
aq + a†-q

)
. (3.1)

In the first term, Cp,σ (or C†p,σ) is the annihilation (or creation) operator of an electron with

a momentum p, spin σ, and the energy dispersion εp = p2/2me. In the second term, aq (or

a†q) is the annihilation (or creation) operator of a phonon with a momentum q and the energy
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ω0. Here phonons are the vibration modes of the crystal lattice. The third term describes the

coupling between the electrons and the phonons with the coupling strength V(q). The above

Fröhlich Hamiltonian has become a standard model for describing the original polaron problem

and a polaron that can be described by Eq. (3.1) is called a Fröhlich polaron. A large amount of

theoretical work has been done to solve the Fröhlich Hamiltonian and references can be found in

[1]. The most accurate solution came from Feynman through a variational method based on path

integrals [46], although his theory is very lengthy [1].

Recently, intense theoretical discussions focused on impurities immersed in a Bose-Einstein

condensate (BEC) with couplings between the impurities and Bogoliubov phonon excitations of

BEC [2, 3, 4, 5, 6, 7, 8]. It was suggested that impurities dressed by phonons would form novel

quasiparticles, known as Bose polarons, even in the strongly interacting regime [9, 10, 11, 12]. To

see this, let’s consider a system of fermionic impurities immersed in a Bose-Einstein condensate.

The impurity-boson coupling can be tuned through a magnetic-field Feshbach resonance, which

was introduced in Sec. 1.3. The low-energy effective Hamiltonian [9, 10] is

H =
∑
p

εf (p)f †1,pf1,p +
∑
q

εb(q)b†qbq +
gbf
V

∑
k,k′,q

b†k′f
†
1,q−k′f1,q−kbk, (3.2)

where εb,f (k) = k2/2mb,f are the kinetic energy terms for the majority bosons and the impurity

fermions respectively. Here mb,f denote the atomic mass of a boson and fermion, respectively. In

the first term, fσ,p (or f †σ,p) is the annihilation (or creation) operator of an impurity fermion in the

hyperfine state σ with a momentum p. In the second term, bq (or b†q) is the annihilation (or creation)

operator of a majority boson with a momentum q. The coupling constant gbf is determined by the

scattering length abf between bosons and fermions. For the zero-range model, the coupling term

has an ultraviolet divergence, which is regularized by 1
gbf

=
µbf

2πabf~2 − 1
V

∑
k

2µbf
k2 . Here the reduced

mass is µbf = mbmf/(mb + mf ) and V is the volume. The mean-field approximation consists of

taking the coupling constant as gMF
bf = 2πabf~2/µbf , which can be either attractive (negative) or

repulsive (positive) depending on the sign of the scattering length.

For a weak repulsion (n0a
3
bb � 1/6π2) between bosons characterized by a boson-boson scat-
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tering length abb, the ground state of the BEC can be well described by Bogoliubov theory. Here

n0 is the BEC density. The elementary excitations in the condensate are the collective Bogoliubov

modes, which have a dispersion of γb(k) =
√
εb(k)(εb(k) + 2gbbn0). Here the mean-field coupling

constant given by gbb = 4πabb~2/mb and n0 is the BEC density. The Bogoliubov transforma-

tion is bk = ukαk − vkα†−k with real and positive factors u2
k = [1 + (εb(k) + gbbn0)/γb(k)]/2 and

v2
k = [−1 + (εb(k) + gbbn0)/γb(k)]/2 [10]. Using the Bogoliubov transformation, the Hamiltonian

given in Eq. (3.2) becomes [10]:

H = H0 +HI , (3.3)

H0 = Eg +
∑
p

εf (p)f †1,pf1,p +
∑
q

γb(q)α†qαq,

HI =
gbf
V

N0

∑
k

f †1,kf1,k +
√
N0

∑
k,p

R(p)f †1,k+pf1,k(αp + α†−p)+

∑
k,k′,q

D(k,k′)f †1,q+k′−kf1,qα
†
k′αk

 ,

where αq (or α†q) is the Bogoliubov phonon annihilation (or creation) operator, Rp = up − vp,

D(k,k′) = ukuk′ + vkvk′ and uk, vk are the coefficients of the Bogoliubov transformation. An

approximation, N0 =
∑

k〈b
†
kbk〉 ≈

∑
k b
†
kbk, has been used during the above derivation and N0 is

the BEC number. Eg is a constant ground-state energy. The first term in HI gives the conventional

mean-field interaction with the mean-field energy shift ∆MF = gbfn0 and the BEC density n0 =

N0/V . The second term in HI is identical to the coupling term in the Fröhlich Hamiltonian Eq.

(3.1). The third term is a scattering term.

To be in the Fröhlich polaron regime, it was pointed out that the condensate depletion in the

vicinity of an impurity needs to be small, which gives rise to a constraint [47, 48]

|gbf | � 4~csξ2 =⇒
(
mb +mf

mf

)2

4π3a2
bfabbn0 � 1, (3.4)

where the speed of sound in the BEC is cs =
√
gbbn0/mb and the healing length of the BEC is

ξ = 1/
√

8πabbn0. Under this constraint, the third term in HI can be ignored and Eq. (3.3) is
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identical to Eq. (3.1). Further, Eq. (3.4) can be reduced to [48]

ε ≡ 2π3/2

(
1 +

mb

mf

)
|abf |
√
abbn0 � 1.

As discussed in Ref. [48]1 , when choosing ε ≤ 0.3 as the boundary for being in the Fröhlich regime,

one obtains the maximum BEC density

nmax
0 =

[
ε

2π3/2(1 +mb/mf )

]2 1

abba
2
bf

,

below which the Bose polaron can be treated as the Fröhlich polaron. For our 40K and 87Rb system,

Fig. 3.1(a) shows the regime where it is valid to treat the Bose polaron as the Fröhlich polaron.

Another important quantity for discussing the Fröhlich polaron is the polaronic coupling constant

Figure 3.1: The regime where the Bose polaron behaves as a Fröhlich polaron. For our system,
the boson is a 87Rb atom and the fermion is a 40K atom. (a)A plot that shows the valid regime
for treating the Bose polaron as a Fröhlich polaron. The red dashed line indicates the typical peak
BEC density in our experiment. (b)The maximum polaronic coupling constant achievable for the
Fröhlich polaron.

α ≡ 2
√

2π

√
n0

abb
a2
bf .

According to Ref. [48], when the value of α is larger than one, the Fröhlich polaron is in an

interesting intermediate coupling regime. By substituting the maximum BEC density nmax
0 into

1 The numerical table given in this paper about nmax
0 and αmax

Rb-K may be wrong. I suspect that they misused the
Rb mass for the impurity mass, M , and the K mass for the majority mass, m.
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the above equation, we get the maximum α allowed for the Fröhlich polaron as shown in Fig.

3.1(b). At a BEC density of n0 = 1.8 × 1014 cm−3, the corresponding critical scattering length is

abf = 170 a0 and the maximal polaronic coupling constant is αmax = 0.12. Therefore, from Fig.

3.1(a), we can see that for our experimental conditions, the Bose polaron is outside the regime where

the Fröhlich approximation is valid and all interaction terms in Eq. (3.3) need to be considered.

From the phase boundary shown in Fig. 3.1(b), we note that reaching α > 1 in the Fröhlich regime

would require |abf | > 2, 500 a0, which, as seen from the phase boundary shown in Fig. 3.1(a),

corresponds to a BEC density more than two orders of magnitude smaller than in our experiment.

Bose polaron theory in the strongly interacting regime In the regime of strong

impurity-boson coupling, beyond the Fröhlich approximation, one must consider Eq. (3.3). There

are two published analytical methods that were used to solve for the Bose polaron in the strongly

interacting regime: the T-matrix method [9] and the variational method [10]:

• The T-matrix method can be used to calculate the self-energy Σf (Ω, p) of the impurities [9].

The retarded Green’s function and the spectral function of the polaron can be calculated

using

GRf (Ω,p) =
1

~Ω− p2

2mf
− Σf (Ω,p) + i0+

,

AI(Ω,p) = −2 ImGRf (Ω,p), (3.5)

where Ω is the energy and p is the momentum of the polaron. The quasiparticle dispersion

relation is defined as the solution of

E(p)− p2

2mf
− ReΣf [E(p), p] = 0,

where quantities depend only on the magnitude of momentum p = |p|. The spectral weight

or quasi-particle residue, which describes how much the bare atom is involved in the polaron

state, is given by

Z(p) =
1

1− ∂ΩReΣf [Ω, p]

∣∣∣∣
Ω=E(p)/~

.



23

The decay width is obtained from

γ(p) = −Z(p) ImΣf [E(p), p].

At the small momentum limit of p ∼ 0, the effective mass of the Bose polaron satisfies,

E(p) = E0 + p2

2meff
+O(p4), and can be obtained using

meff =
p

∂pE(p)

∣∣∣∣
p=0

=
mb/Z(p)

mb/mf + 1
p∂pReΣf [Ω, p]|E(p)

∣∣∣∣∣
p=0

,

with a simplification [9]

meff = mf

(
1 +mf/mb

Z +mf/mb

)
, (3.6)

for a noninteracting BEC.

• The variational method gives a trial wave function of polarons as [10]

|Φ(q)〉 ∼

φ0(q)f †1,q +
∑
k 6=0

φk(q)f †1,q−kα
†
k

 |BEC〉, (3.7)

which has a total momentum q. The first term corresponds to bare impurity atom involved

in the polaron state and its coefficient has a connection with the quasi-particle residue

through |φ0(q)|2 = Z(q). The second term describes a phonon excitation of the condensate

with wavevector k .

In our experiment, we use 40K atoms as impurities in a 87Rb BEC. To approach the impu-

rity/polaron limit, we tune the populations of the two species so that the number ratio NK/NBEC≈

0.1 and estimated ratio of the peak densities is nK/nBEC<0.04. The fermionic impurity atoms have

T/TF>0.6 and therefore we expect that their quantum statistics is not important [49]. For our

weakly interacting BEC, the boson-boson scattering length is aBB = 100a0 [50]. Following other

papers [9, 10], we define energy and momentum scales respectively by

En = ~2(6π2nBEC)2/3/2mRb, kn = (6π2nBEC)1/3. (3.8)

Here a0 is the Bohr radius, ~=h/2π with h being the Planck constant and mRb is the mass of a Rb

atom. An s-wave Feshbach resonance is used to control the interactions through the impurity-boson
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scattering length aIB for 87Rb atoms in the |f,mf 〉=|1, 1〉 state and fermionic 40K atoms in the

|9/2,−9/2〉 state (see Sec. 1.3), where f corresponds to the atomic angular momentum and mf is

its projection.

Figure 3.2: Predicted energy spectrum of an impurity immersed in a Bose-Einstein condensate with
tunable impurity-boson interactions. The red and blue lines represent two polaronic branches that
are called attractive polarons and repulsive polarons, respectively. For comparison, the green line
shows the two-body molecular bound state energy, −Eb/En = −mRb/µKRb/(knaIB)2, with µKRb

being the reduced mass of a Rb atom and a K atom. For comparison, we also plot energy shifts
based on the mean-field calculation (dashed lines) with ∆MF/En = (2mRb/3πµKRb)(knaIB).

In Fig. 3.2, we show the calculated energies of Bose polaron states as function of the in-

teraction strength in the zero-temperature and zero-momentum limit. The theoretical lines are

based on a T-matrix approach presented in Ref. [9] and similar results have been obtained with

a variational approach in Ref. [10]. The spectrum has two quasiparticle branches: the attractive

branch (red line) and the repulsive branch (blue line). The energies in the two branches shift in

opposite directions from the non-interacting case (∆ = 0 axis). In the weakly interacting limit, the

energy shift approaches the mean-field shift (dashed lines), ∆MF/En = (2mRb/3πµKRb)(knaIB).
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The two branches have different properties. For the repulsive branch, the polaron is a well-

defined particle state only in the weakly interacting regime or the large 1/(knaIB) regime, where

the lifetime is long and therefore the spectroscopic width of the polaron is narrow. In the strongly

interacting regime, or the small 1/(knaIB) regime, the polaron lifetime becomes short and the energy

level is broadened as indicated by the shaded regime. For the attractive branch, the polaron state

is the ground state of the Hamiltonian and is well-defined in both the weakly interacting regime

and the strongly interacting regime. In particular, the attractive polaron state exists at unitarity

(aIB →∞) and is predicted to approch a weakly bound molecular state (green line) on the aIB > 0

side of the Feshbach resonance.

Fig. 3.3 shows the corresponding residue Z and effective mass meff at different interaction

strengths. When there is no impurity-boson coupling, Z = 1 and meff = mK. For the attractive

branch, as the interaction strength 1/knaIB increases towards the positive aIB side of the Feshbach

resonance, Z → 0 and meff → (mK +mRb), as the polaron approaches a two-body bound state or

molecule [9].

Three-body recombination In the Bose polaron theory presented thus far, three-body

recombination has been ignored. However, this process, in which three atoms collide inelastically

and form a diatomic molecule, and typically release enough energy to eject all three atoms from the

trap, exists in all Bose gases and Bose-Fermi gas mixtures. Moreover, with tunable interactions,

the three-body recombination rate has an a4 dependence that results in a dramatic increase of

atom loss rates near a Feshbach resonance. Three-body recombination will limit the lifetime of

Bose polarons. For our system, the three-body recombination happens between two Rb atoms and

one K atom and can be described by [51]

d

dt
nK = − 1

2!
αnKn

2
BEC,

where nK (nBEC) is the K density (BEC density) and the factor of 1/2! is included for a BEC

compared to a noncondensed ultracold gas of bosons. Here α is the three-body recombination

rate coefficient for uncondensed bosons, which scales as a4
IB (ignore Efimov structure). For a large
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Figure 3.3: Residue and effective mass calculated from the T-matrix method. (a) Residue Z at
different interaction strengths. (b) Effective mass meff/mK from Eq. (3.6) at different interaction
strengths. The red line shows the attractive polaron branch, while the blue line shows the repulsive
polaron branch.

population imbalance, the above equation can be simplified to

d

dt
NK = − 1

2!
αn2

BECNK ,

which has the solution NK(t) = NK(0) exp(−Γ3t) with the loss rate Γ3 = 1
2αn

2
BEC. To continue

our discussion, let me rewrite α as α = A3a
4
IB [52] with A3 being a constant. The values of α have

been measured at different values of aIB in our previous work [21]. We find A3 = 1.1× 10−8 m2/s

for aIB < 0 and A3 = 3.3 × 10−8 m2/s for aIB > 0 by fitting our data to α = A3a
4
IB. To compare
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Figure 3.4: Three-body recombination loss rate. It is obtained using Eq. (3.9), which breaks down
at small |1/knaIB|. As a consequence, Γ3 will saturate at small |1/knaIB|. The dashed line is used
to illustrate this saturation behavior, although the saturation value is uncertain yet.

with the energy shifts of Bose polarons, we can express the loss rate Γ3 in terms of En and 1/knaIB:

~Γ3/En = κ3(knaIB)4, (3.9)

where κ3 = A3mRb
(6π2)2~ is a dimensionless quantity. We calculate κ3 = 0.004 for aIB < 0 and κ3 = 0.015

for aIB > 0.

Fig. 3.4 shows this three-body recombination loss rate of the impurity atoms based on Eq.

(3.9). However, a limitation of Eq. (3.9) is the assumption that α scales as a4
IB, which breaks down

in the regime where |1/knaIB| is small. In this regime, α will saturate and a dashed line in Fig. 3.4

is used to illustrate this saturation behavior, although the saturation value is uncertain yet. From

Fig. 3.2 and 3.4, we can see that the three-body recombination rate becomes comparable with the

predicted energy shifts around |1/knaIB| ∼ 0.5. Thus, a challenge for detecting Bose polarons in

the strongly interacting regime will be the finite lifetime due to three-body collisional loss.

Efimov effect Ref. [12] theoretically considers the effect of Efimov trimers on the Bose
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polaron. The authors consider an Efimov resonance at a− = −50 abb and predict that close to

1/kna−, both the energy and residue of the Bose polaron would deviate from that calculated without

considering the Efimov effect. However, for our system, the location of the Efimov resonance is

predicted to be a− < −30, 000a0 [53], which is consistent with a measurement by our group [21].

The Efimov effect on the Bose polaron at such large scattering length would only affect an extremely

narrow regime in 1/knaIB and we do not expect to resolve this.

3.2 RF spectroscopy of the Bose polaron

As discussed in the previous section, the Bose polaron is a rich quantum many-body effect that

is an important paradigm in condensed matter physics. Ultracold atoms, with their interactions

tunable with a Feshbach resonance, provide a unique opportunity to experimentally explore the

Bose polaron. In particular, we can go to regimes where the interparticle interactions are very

strong and where the physics goes beyond the often considered Fröhlich polaron. The regime of

strong impurity-boson interactions has recently been treated theoretically; however, there are thus

far no experimental results probing the Bose polaron in a strongly interacting regime.

In contrast, impurities in a Fermi gas of atoms have been studied experimentally using RF

spectroscopy [27, 29, 30, 31]. Our experiment will employ similar techniques as these Fermi polaron

measurements. However, there are some important differences between the Bose polaron and the

Fermi polaron. First, the Bose polaron problem is arguably richer because there are two relevant

interaction parameters: aBB and aIB, whereas there is no equivalent of aBB in a spin-polarized

Fermi gas. Second, on the experimental side, we will see that three-body inelastic loss and the

relatively small spatial extent of a BEC (compared to an impurity gas) both create challenges to

polaron measurements.

To measure the energy spectrum of the impurities immersed in a BEC, we perform radio-

frequency (RF) spectroscopy on 40K impurty atoms. The impurity atoms are initially prepared

in a weakly interacting state, |0〉 = |9/2,−7/2〉 and then, are driven into the strongly interacting

|1〉 = |9/2,−9/2〉 state by a RF pulse at frequency ν (see Fig. 3.5(a)). The RF power is typically
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Figure 3.5: RF spectroscopy of the Bose polaron. (a) Energy diagram for the RF spectroscopy. (b)
The spatial distribution of the trapped gases along with the imaging axis.

set to give a π-pulse for the bare atom transition. Impurity atoms in the |1〉 state are imaged

immediately after the RF pulse. This spectroscopy of RF injection into the strongly interacting

state minimizes the three-body losses. We denote the transition frequency of bare 40K atoms

by ν0. The RF pulse has a gaussian envelop with the Fourier transformed RF lineshape being

R(ν) ∝ exp(−2ν2/δν2) (see appendix A). The Fourier limited linewidth δν is inversely proportional

to the pulse duration, δν = 1/(π∆t), with ∆t being the 1/e2 width of the gaussian pulse envelop

for the RF power. The RF pulse is applied from t = −2∆t to t = 2∆t.

An experimental challenge arises from the very different cloud sizes for the impurity gas

and the BEC as shown in Fig. 3.5(b). In our system, the measured trapping frequencies for K

atoms are ωKρ = 2π × 50 Hz and ωKz = 2π × 281 Hz and the trapping frequencies for Rb atoms

are ωRbρ = 2π × 39 Hz and ωRbz = 2π × 183 Hz. The two clouds also separate along the vertical

direction due to differential gravitational sag which is given by sag = g[1/(ωRbz )2 − 1/(ωKz )2] = 4

µm. The cloud size of the impurity gas is about twice that of the BEC. As a result, only about

15% of the 40K atoms overlap the BEC. By imaging the spin-flipped 40K atoms in situ with a

probe beam propagating along z and with a resolution well below the BEC size, we can select

out signal that comes from 40K atoms near the center of the BEC in the transverse direction.
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However, the imaging integrates through the cloud in z and therefore the issue of signal from 40K

atoms outside the BEC, as well as from regions of lower BEC density, remains. We deal with

this remaining density inhomogeneity issue by (1) using the transverse size of the imaged atoms to

know when the signal is dominated by 40K atoms that overlap with the BEC, and (2) performing

an inverse Abel transform of this data to extract the central density. The inverse Abel transform

allows one to find the central density where one assumes a symmetry between an imaged direction

(transverse) and the integration direction (z). Differential gravitational sag breaks this symmetry,

however, because of attractive mean-field interactions in the initial gas, this density profile of the

40K atoms has approximate symmetry about the BEC center. We have modeled the effect of density

inhomogeneity and sag on RF spectroscopy in the mean-field regime and found that the inverse

Abel transform returns the correct central density of the cloud of spin-flipped 40K atoms (see Sec.

3.5.2).

In Fig. 3.6(a-c), I show typical RF spectroscopy data at a weak interaction strength with

1/knaIB = −2.3. The center optical depth (OD) and root-mean-square (RMS) width of the impurity

atom cloud are obtained here by fitting the image to a 2D gaussian distribution. To distinguish

signal that is dominated by 40K atoms overlapping with the BEC, we use the cloud size. Open

circles are used to denote the bare atom signal, while the Bose polaron signal is represented by

red dots. Red dots are selected based on when the imaged cloud size is smaller than or equal to

the measured BEC size (see Fig. 3.6(c)). Fig. 3.6(d) shows the number of spin-flipped atoms

averaged over a circular annulus with the radius ρ = 28 µm. At this radius, the 40K atom do not

overlap the Rb BEC and we obtain the RF spectra for the bare atom transition. The frequency

ν0 is obtained by fitting this data to a gaussian lineshape R(ν − ν0) (see Eq. (A.6) in appendix

A). The fit result is indicated by the black line. Fig. 3.6(e) shows the peak density (normalized)

obtained using an inverse Abel transform. We only show the data where the signal is dominated

by 40K atoms overlapping with the BEC (red dots). We normalize the measured peak density of

the spin-flipped atom cloud to the calculated peak density of the impurity atoms. This calculation

uses the measured 40K atom number & BEC number, as well as the gas temperature measured
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Figure 3.6: RF spectroscopy of the Bose polaron. (a-c) Typical RF spectroscopy data at a weak
interaction strength of 1/knaIB = −2.3. Red dots mark data where the imaged cloud size is less
than or equal to the BEC size. (b) Here the center OD data are normalized to its highest value. The
blue line is a fit to a mean-field model described by Eq. (3.20). (d) RF spectroscopy on the bare
atom transition. Here the bare atom signal is obtained by averaging over a circular annulus with
the radius ρ = 28 µm (inset) and is normalized to its highest value. The line is a fit to the spectral
function, R(ν − ν0), from which we get the bare atom transition, ν0. (e) RF spectroscopy showing
the signal from atoms located at the center of the BEC. We only use data where the imaged cloud
has a width smaller than or equal to the BEC size. A gaussian function, Eq. (3.10), is used to fit
our data (red line) with the fitting result of x0 = 0.139 and w = 0.045 (the Fourier width hδν/En
should be compared to 2w).

from the tail of the initial 40K cloud.

Comparing Fig. 3.6(a) and 3.6(d), one can see that when just looking at the number of spin-

flipped atoms, most of the signal comes from the large fraction ( 85%) of 40K atoms that do not

overlap the BEC. The width of the main feature here, which corresponds the bare atom transition,

comes from the Fourier width of the RF pulse. The duration of the gaussian RF pulse for this data

is 4∆t = 0.52 ms, which gives a Fourier width of δν = 1/(π∆t) = 2.4 kHz and hδν/En = 0.09.

Here, En (and kn) are calculated from the measured peak BEC density of 87Rb atoms in trap using
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Eq. (3.8).

Looking at the central optical depth of the imaged (spin-flipped) atoms (Fig. 3.6(b)), we

see roughly equal contributions from atoms that overlap with the BEC (red dots) and atoms that

outside the BEC in the vertical imaging direction. Finding the central 3D density of the imaged

atoms, by applying an inverse Abel transform to the images, allows us to extract an RF spectrum

from only impurity atoms that are located within the BEC (Fig. 3.6(e)). Here, we can fit to a

gaussian lineshape

y(x) = A exp[−(x− x0)2/(2w2)], (3.10)

to extract the center x0 = 0.139 and the RMS width w = 0.045 (red line). Note that here our

Fourier limited width hδν/En should be compared to 2w from the fit.

3.3 Energy spectrum of the Bose polaron

Fig. 3.7 shows selected RF spectra at different interaction strengths obtained using an inverse

Abel transform to extract the signal from the center of the BEC. For cyan dots, we set the pulse

duration to be 4∆t = 0.52 ms except for 1/knaIB = −2.9 and 4.4, where we set the pulse duration

to be 4∆t = 0.9 ms so that the Fourier width is δν = 1 kHz (or hδν/En = 0.035). The RF power is

set to give a π-pulse for the bare atom transition. The yellow dot corresponds to data taken with a

4∆t = 0.52 ms RF 5π-pulse. Black dots show data taken with a 4∆t = 0.1 ms RF π-pulse (Fourier

width δν = 13 kHz and hδν/En = 0.5). For each RF spectrum shown in Fig. 3.7, we observe a peak

structure with a spectral width that broadens for larger interaction strengths. Using a gaussian

fit described by Eq. (3.10), we extract the energy shift, the peak height, and the spectral width,

which are shown in Fig. 3.8.

From Fig. 3.8, we see that the spectral width broadens for larger interaction strengths and

the peak height becomes correspondingly smaller. One thing that can cause a broadened spectral

width is the lifetime or the width of the energy level. The three-body recombination can cause

inelastic collision and therefore affect the lifetime of the energy level (see Fig. 3.4). In addition, the
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Figure 3.7: RF spectra of Bose polarons. Use data where the imaged cloud has a width smaller
than or equal to the BEC size. We use an inverse Abel transform to obtain the signal from impurity
atom within the BEC. For cyan dots, we set the pulse duration to be 4∆t = 0.52 ms except for
1/knaIB = −2.9 and 4.4, where we set the pulse duration to be 4∆t = 0.9 ms. The RF power is
set to give a π-pulse for the bare atom transition. The yellow dot corresponds to data taken with
a 4∆t = 0.52 ms RF 5π-pulse. Black dots show data taken with a 4∆t = 0.1 ms RF π-pulse. The
green circles represent data that may come from incoherent excitations (see Sec. 3.5.3), which do
not contribute to polaron signals.

repulsive polaron state can decay to the attractive polaron state, which broadens the energy width

of the repulsive polaron state. From the cyan dots as shown in Fig. 3.8, we see that the spectral

widths on the a > 0 side are broadened more than these on the a < 0 side. Although the density

inhomogeneity can cause a broadened spectral width, its effect is relatively small.

To extract the polaron energy shift from the RF spectra, we need to account for the mean-
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Figure 3.8: Summary of the RF spectra. The bottom panel shows the energy shifts. The middle
panel shows the corresponding peak height. The top panel shows the spectral width.

field shift in the initial gas. The initial |0〉 state of the impurity atoms has a weak background

interaction with the BEC atoms described by the background scattering length abg = −187 a0 [32].

This gives a mean-field energy shift of Ebg = gbgnBEC, where gbg = 2πabg~2/µKRb. The energy shift

of the Bose polaron is thus

∆ = h(ν0 − νrf ) + Ebg. (3.11)

For our case of averaged peak BEC density, nBEC = 1.8× 1014 cm−3, En/h = 28.4 kHz and Ebg =
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Figure 3.9: Measured energy shift of the Bose polaron (circles) and weakly bound molecules (trian-
gles). The error bar of the energy shift corresponds to the RMS width of a gaussian fit, Eq. (3.10),
to the RF spectra (see Fig. 3.7). Yellow triangles show data for K-Rb Feshbach molecules. The
binding energy of K-Rb Feshbach molecules is extracted by fitting our K-Rb RF association data
to a well-established model [32].

−0.14En. Fig. 3.9 shows the measured energy shift, ∆, as a function of the interaction strength.

Cyan dots denote the data shown in Fig. 3.7. We also include measurements of the binding energy

of weakly bound molecules using RF association as shown by the yellow triangles. These molecule

data come from K atoms that do not overlap with the BEC, and spectra corresponding to the data

are presented in Sec. 3.5.4.

From Fig. 3.9, we can see that our measured energy shift of the impurities immersed in the

BEC matches well with that predicted recently for the Bose polaron (red and blue lines) in the

regime of strong impurity-boson interactions. In particular, our data are consistent with a polaron

state (red line) that exists across unitarity (1/knaIB → 0) with an energy that approaches that of

a weakly bound molecular state (green line) on the aIB > 0 side of the Feshbach resonance. Note

that the theory line for the molecular state comes from a two-body theory.

Ideally, RF spectroscopy of polarons can be used to extract the residue, Z, of the polaron
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by integrating the spectrum over the whole frequency range. This has been used experimentally

to extract the residue of the Fermi polaron [27], which is a quasiparticle formed by an impurity

interacting with a Fermi gas. However, extracting Z in this way requires that the data is taken in the

linear regime, where the signal is proportional to the product of RF power and pulse duration. As

discussed in the next section, our data is not always taken in this linear regime. In addition, losses

could affect our data. While atom loss in a Fermi gas is suppressed due to the Pauli exclusion

principle, for our Bose-Fermi gas mixture, three-body recombination can cause significant atom

loss in the strongly interacting regime. This could result in a reduced signal strength in the RF

spectroscopy.

3.4 Coherent Rabi oscillation and damping of the Bose polaron

Another important property of Bose polarons is the quasiparticle’s residue Z, which describes

how much the excitation or quasiparticle looks like a non-interacting particle. This can be seen in

the trail variational wavefunction given in Eq. (3.7), where Z(q) = |φ0(q)|2. For our experiment,

the temperature T ≈ 150 nK, which corresponds to a momentum of the impurity atom pT =

√
mKkBT = 0.16 ~kn. The kinetic energy of kBT ≈ 0.12En is small compared to the measured

energy shift (see Fig. 3.8) so that the momentum of the impurity atom approximates to zero.

When performing a Rabi oscillation between the polaron state, |Φ(p)〉, and the non-interacting

bare atom state, |0〉, with zero momentum, the residue Z is related to the Rabi frequency Ω

through
√
Z = Ω/Ω0 [29]. Here Ω0 is the Rabi frequency for non-interacting atoms. To understand

this relation and further extend it to a useful form for discussing our measurement, let me start

with the RF Hamiltonian in the Shrödinger picture described by (see Eq. (A.3))

Ĥrf (Ω0) = ~
Ω0

2

∑
k

(
f †1,kf0,k +H.c.

)
,

with the basis {|0〉|BEC〉, |Φ(0)〉} for the Rabi oscillation between the polaron state and the non-

interacting bare atom state. Here we only consider the zero-momentum polaron state, |Φ(0)〉, due

to the momentum conservation of the RF process. In the following discussion, I denote |0〉|BEC〉
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simply by |0〉. The time-dependent wavefunction, |ψ(t)〉 = C0(t)|0〉+C1(t)|Φ(0)〉, can be expressed

as a vector, |ψ(t)〉 = (C0(t), C1(t))T (T denotes the transpose operation). The Schrödinger equation

is thus written as

i~∂t

 C0(t)

C1(t)

 =

 〈0|Ĥrf (Ω0)|0〉 〈0|Ĥrf (Ω0)|Φ(0)〉

〈Φ(0)|Ĥrf (Ω0)|0〉 〈Φ(0)|Ĥrf (Ω0)|Φ(0)〉


 C0(t)

C1(t)



=

 0 ~Ω0
2 φ0

~Ω0
2 φ
∗
0 0


 C0(t)

C1(t)

 , (3.12)

with an initial condition of C0(0) = 1 and C1(0) = 0. To obtain Eq. (3.12), Eq. (3.7) has been

used and φ0 = φ0(q = 0). Solving the above equation, we get the population of impurity atoms in

the polaron state as

|C1(t)|2 = sin2

(
dE0

2
|φ0|t

)
, (3.13)

where d is the induced electrical dipole moment of atoms and E0 is the electric field amplitude of

the RF pulse.

If we fix E0 and vary t, Eq. (3.13) describes a Rabi oscillation in time with

|C1(t)|2 = sin2

(
Ω

2
t

)
,

where Ω = dE0|φ0| is the Rabi frequency of polarons. The Rabi frequency of non-interacting

impurty atoms is Ω0 = dE0. The residue Z can be obtained using the relation of (Ω/Ω0)2 =

|φ0|2 = Z. This relation has been used in Ref. [29] to measure the residue of the Fermi polaron.

Equivalently, if we fix t and vary E0, Eq. (3.13) describes a Rabi oscillation in E0 with

|C1(E0)|2 = sin2

(
Ω̃

2
E0

)
, (3.14)

where Ω̃ = d|φ0|t is an equivalent Rabi frequency. The equivalent Rabi frequency for non-interacting

impurity atoms is Ω̃0 = dt. The quasiparticle’s residue Z can be obtained using

Z = |φ0|2 = (Ω̃/Ω̃0)2. (3.15)

This relation is particularly useful for measuring the Bose polaron’s residue using the Rabi os-

cillation described by Eq. (3.14), because the three-body recombination loss of impurity atoms
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Figure 3.10: Coherent Rabi oscillation for the Bose polaron. (a) Rabi oscillation of Bose polarons
at different interaction strengths. The signal is from the center OD and normalized to the highest
value in each data set. Red lines are fits to Eq. (3.16). (b) The damping rate Γ and residue
Z = (Ω̃/Ω̃0)2 from the Rabi oscillation. The inset shows the effective mass of the Bose polaron
obtained by using Eq. (3.6). Lines are the calculated values based on the T-matrix method.

exponentially depends on t and is independent of E0. By fixing t and varying E0, the effect of the

three-body loss on the Rabi oscillation frequency is minimized, which helps accurately measuring

Z.

In our experiment, we perform the Rabi oscillation between the polaron state and the weakly

interacting initial state |0〉. Two period of oscillation is achieved by varying the RF power, while

fixing the pulse duration to 4∆t = 0.4 ms and RF frequency at νp. The Rabi oscillation in a

function of the electric field amplitude, E0, of the RF pulse has a form as shown in Eq. (3.14) and

we plot our Rabi signal versus E0 in Fig. 3.10(a).

The Rabi oscillation gets slower as expected at higher interaction strength. In addition, it
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also shows a damping on the oscillation amplitude as well as a growing incoherent signal added to

the oscillation offset. Such decoherence behavior was also observed in Fermi polaron experiments

[29, 30], in which it was explained due to two-body collisions. As indicated by the red lines in Fig.

3.10(a), we fit our data to an empirical model described by

y(x) = A

[
e−2Γx sin2

(
Ω̃

2
x

)
+
(
1− e−2Γx

)]
, (3.16)

where x is E0 and Ω̃ is the equivalent Rabi frequency. The first term is the coherent part with

the damping rate Γ and the second term is the incoherent part. The Rabi frequency, Ω̃0, of bare

K atoms is obtained by performing the same RF pulse on K atoms in the absence of Rb atoms.

When the interaction strength gets larger, the damping rate becomes higher and eventually it

washes out the oscillation pattern as 1/knaIB > −0.7 in our experiment. For the repulsive polaron,

the damping is so fast that we cannot see any oscillation pattern until the interaction strength is

lowered to 1/knaIB ≥ 3.57. This difference from the attractive case may be a comprehensive result

of the finite lifetime and the incoherent RF excitation (see Sec. 3.5.3) of the repulsive polaron.

In Fig. 3.10(b), the damping rate as well as the fractional Rabi frequency at different in-

teraction strengths are shown. From the upper panel of Fig. 3.10(b), we see that the damping

rate Γ increases as the interaction strength 1/knaIB increases and saturates at 1/knaIB ≥ −1,

where the measured values of (Ω̃/Ω̃0)2 deviate from the theoretical prediction (black line). When

1/knaIB < −1, the measured values of (Ω̃/Ω̃0)2 agree with the theoretical prediction pretty well

as shown in the lower panel of Fig. 3.10(b). The inset shows the effective mass of the polaron

obtained using meff/mK = (1 + mK/mRb)/(Z + mK/mRb) (see Eq. (3.6)). We can see that the

effective mass of the impurity atom becomes heavier at larger 1/knaIB, which is due to the stronger

polaronic coupling between the impurity and the BEC.
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3.5 Data analysis in detail

3.5.1 A mean-field model of density inhomogeneity

An experimental challenge arises from the very different cloud sizes for the impurity gas and

the BEC. This can be seen from the initial density distributions of the Rb BEC and K atoms in

|0〉 state before a RF pulse

nBEC(ρ, z) = n0

(
1− ρ2

R2
ρ

− z2

R2
z

)
,

nK,0(ρ, z) = npk exp

[
− ρ2

2W 2
ρ

− (z − sag)2

2W 2
z

− gbgnBEC(ρ, z)/kBT

]
, (3.17)

where the size of the BEC is charaterized by the Thomas-Fermi radius {Rρ, Rz} and that of

the K cloud by the RMS width {Wρ, Wz}. Here we assume thermal equilibrium and ignore the

quantum statistics of the fermionic 40K atom. The RMS width is related to the temperature T

through Wρ,z =
√
kBT/mK/ω

K
ρ,z. The gravitational sag between Rb and K cloud is given by

sag = g[1/(ωRbz )2 − 1/(ωKz )2] with g being the gravitational constant. Here, ωKρ,z are the trapping

frequencies of K atoms and ωRbρ,z the trapping frequencies of Rb atoms. The last term in nK comes

from the mean-field potential due to the Rb BEC with the coupling constant gbg = 2πabg~2/µKRb

and abg = −187a0 [32].

Fig. 3.11 shows the calculated density distributions of the initial impurity cloud and the

BEC along z. The gravitational sag shifts the centers of the K and Rb clouds apart, which breaks

the ellipsoidal symmetry of the system along z. On the other hand, the background impurity-

boson interaction leads to an attractive mean-field potential for the impurity and thus results in an

enhanced impurity density near the center of BEC, which tends to restore the ellipsoidal symmetry

near the center of the BEC. In addition, to look at the symmetry of the impurity-boson system, it

is instructive to write down the energy density functional [54]:

E [nBEC, nK,0] = gbbnBEC(ρ, z)2 +
3(6π2)2/3~2

10mK
nK,0(ρ, z)5/3 + gbfnBEC(ρ, z)nK,0(ρ, z),

+UBEC(ρ, z)nBEC(ρ, z) + UK(ρ, z)nK,0(ρ, z),
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Figure 3.11: Density profile of the initial impurity cloud and the BEC based on Eq. (3.17). The
BEC density n0 = 1.8 × 1014 cm−3, Rz = 3.4 µm, Wz = 3.2 µm, sag = 4.3 µm and T = 153
µK. The gray region represents the BEC density. The red regime denotes the weighted impurity
density, nK,0(0, z)nBEC(0, z)/n0 (see Eq (3.18)).

where UBEC(ρ, z) and UK(ρ, z) are the external trapping potentials of the BEC and the K atoms

respectively. In the limit of nBEC � nK,0 near the BEC center, the energy density functional is

simplified to

E [nBEC, nK,0] = gbbnBEC(ρ, z)2 + gbfnBEC(ρ, z)nK,0(ρ, z) + UBEC(ρ, z)nBEC(ρ, z), (3.18)

where the first and third terms have ellipsoidal symmetry, and the second term has approximate

ellipsoidal symmetry as shown by the red regime in Fig. 3.11. Thus the region near the center of

the BEC has approximate ellipsoidal symmetry, which is important for us to use the inverse Abel

transform discussed in Sec. 3.5.2.

After the RF pulse, the number of spin-flipped K atoms in |1〉 state near the cloud center

(ρ < ρ0) is modeled, based on Eq. (A.6), as

NK,1(ν, ρ ≤ ρ0) = A

∫ ρ0

0
ρdρ

∫ ∞
−∞

dz nK,0(ρ, z)R(ν − νp nBEC(ρ, z)/n0), (3.19)

in which A is a constant and νp is the mean-field energy shift at the center of the BEC. The effect

of a non-uniform BEC density is modeled using mean-field energy shift in R(ν − νp nBEC(ρ, z)/n0)
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[55]. The effect of finite imaging resolution can be modeled by convolving the above equation with

a point spread function, for which we choose a gaussian function, exp
(
− ρ2

2σ2
res

)
, with σres being

the resolution. Thus Eq. (3.19) is modified as

NK,1(ν, ρ ≤ ρ0) = A

∫ ρ0

0
ρdρ

∫ ∞
0

ρ̃dρ̃ exp

[
−(ρ̃− ρ)2

2σ2
res

]
×∫ ∞

−∞
dz nK,0(ρ̃, z)R(ν − νp nBEC (ρ̃, z)/n0) , (3.20)

which is a model that we use to understand the measured RF lineshape (see Fig. 3.6(b)) in the

weak interaction or mean-field regime.

Fig. 3.12 shows different calculated RF lineshapes that illustrate the effects of the initial

background mean-field potential, the size of the integrated area, the temperature, and the imaging

resolution. There are two main features for the RF lineshape. The first one is the height of the

polaron signal relative to the bare atom signal. From Fig. 3.12, we see that this height is sensitive

to the initial background mean-field potential and the temperature. A deeper mean-field potential

or lower temperature generates a higher height of the polaron signal. The second feature is the

double-peak structure consisting of a bare atom peak and a polaron peak. The polaron peak

structure turns out to be sensitive to the initial background mean-field potential as well as the

resolution as shown in Fig. 3.12. A shallower mean-field potential or a bad imaging resolution

(large σres) tends to flatten the polaron peak.

We fit our data shown in Fig. 3.6(b) to Eq. (3.20) with floating parameters {A, νp} and all

other relevant quantities are obtained from the experimental measurements. The imaging resolution

is measured by imaging a tiny BEC as point source and we get σres = 3.4 µm. The fitting result

is shown in Fig. 3.6(b) as a blue line, which overlaps with our data very well at the negative aIB

side. The fit also gives the polaron energy shift νp at the BEC center.

Eq. (3.20) is the model that we used for understanding our RF lineshapes at the relatively

weak interaction or mean-field regime with 1/kn|aIB| > 1.5. Once the interaction is strong enough,

the above model is inadequate because the mean-field model breaks down. One needs to consider

the quasiparticle residue Z as well as the three-body recombination collision into Eq. (3.20), which
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Figure 3.12: Calculated RF lineshapes based on Eq. (3.20). (a) RF lineshapes at different strengths
of the initial background mean-field potential, gbgn0. Here T = 190 nK and σres = 0 µm. The actual
gbgn0/h = −4 kHz. (b) RF lineshapes for different sizes of the integrated area. The radial size of
the BEC is chosen to be Rρ = 15.2 µm. Here T = 190 nK, σres = 0 µm and gbgn0/h = −2 kHz.
The actual radius of the integrated area is 2.76 µm. (c) RF linesahpes at different temperatures.
T = 150 nK in our experiment. (d) RF lineshapes for different imaging resolutions. Here T = 190
nK and gbgn0/h = −2 kHz. δν is set to be 1.4 kHz. The measured resolution is σres = 3.4 µm.
The dashed lines indicate the locations of νp.

is difficult.

3.5.2 Justification for inverse Abel transform

The inverse Abel transform can be used to calculate the three-dimensional density distribution

from an two-dimensional absorption image. When the system has the spherical symmetry, cylin-

drical symmetry, or ellipsoidal symmetry. In the following, I focus on a system with the ellipsoidal
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symmetry. In this case, we can define a “radius”, r =
√
x2 + b2y2 + c2z2, for the three-dimensional

space and ρ =
√
x2 + b2y2, for the two-dimensional space. The two-dimensional absorption image

is denoted by F (ρ) and the three-dimensional density distribution f(r) is obtained using

f(r) = − 1

π

∫ ∞
r

dF (ρ)

dρ

dρ√
ρ2 − r2

. (3.21)

With the inverse Abel transform, we can potentially solve the non-uniform density issue in our

Bose polaron study. However, the gravitational sag between the K cloud and Rb BEC breaks the

ellipsoidal symmetry of our mixture system. In the following, we use a numerical simulation to

show that the inverse Abel transform nevertheless works well for us to extract the RF spectrum

of Bose polarons at the BEC core. This is because the region near the center of the BEC, which

contains the signal we wish to extract, has approximate ellipsoidal symmetry. We calculate the

inverse Abel transform using a matrix approach that was adapted from Eric Mueller and that is

appropriate for an image with discrete points.

In our system, the measured trapping frequencies for K atoms are ωKρ = 2π × 50 Hz and

ωKz = 2π × 281 Hz and the measured trapping frequencies for Rb atoms are ωRbρ = 2π × 39 Hz

and ωRbz = 2π × 183 Hz. We estimate the gravitational sag using sag = g[1/(ωRbz )2 − 1/(ωKz )2] = 4

µm. In our simulation, we start from the density distributions given by Eq. (3.17). The radius

r =
√
x2 + y2 + (ωKz /ω

K
r )2z2 and ρ =

√
x2 + y2. The RF spectroscopy is modeled based on the

mean-field theory and similar to Eq. (3.19), we use

nK,1(r, ν) = nK,0(ρ, z)R(ν − νp nBEC(ρ, z)/n0), (3.22)

to test how well the inverse Abel transform works for the purpose of extracting the RF spectroscopy

signal of Bose polarons at the BEC center. From Eq. (3.22), we can also obtain a calculated

absorption signal (column density)

n̄K,1(ρ, ν) =

∫ ∞
−∞

dz nK,0(ρ, z)R(ν − νp nBEC(ρ, z)/n0),

for a RF frequency ν. By performing the inverse Abel transform on the 2D column density n̄K,0,
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Figure 3.13: Simulated data for testing the inverse Abel transform for extracting the Bose polaron
signal at the BEC center. The blue stars represent the expected RF spectrum, nK,1(r = 0, ν),
based on Eq. (3.22). The red squares are the RF spectrum, nInv.AbelK,1 (r = 0, ν), extracted from the
inverse Abel transform based on Eq. (3.23). (a) RF spectrum with sag. (b) RF spectrum with
noise added to the fake column density n̄K,1(ρ, ν) (10% multiplicative noise and 0.05 additive noise;
both numbers are Gaussian standard deviations). (c) RF spectrum at a larger interaction strength.

we get

nInv.AbelK,1 (r, ν) = Inverse Abel transformation{n̄K,1(ρ, ν)}, (3.23)

which is the three-dimensional density distribution of the spin-flipped K atoms by the RF pulse.

Now we can compare nInv.AbelK,1 (r = 0, ν) against nK,1(r = 0, ν) (Eq. (3.22)) at the BEC center.

Fig. 3.13 shows the simulation results. Around νp, the RF spectrum of Bose polarons overlaps

with the expected very well, although it overestimates the signal around the bare atom transition

ν0. In Fig. 3.13(b), we add some noise to the fake column density n̄K,1(ρ, ν) to test the robustness

of the inverse Abel method, and we find that noise does not change the results. In Fig. 3.13(c), we

test the RF spectrum at a larger interaction strength and it works likewise.
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3.5.3 Coherent and incoherent excitation spectrum

As observed in Fermi polaron experiments [27, 29], a spectrally broad incoherent signal along

with the narrow coherent signal are excited when performing a RF spectroscopy on the Fermi

polaron (a quasiparticle formed by an impurity interacting with a Fermi gas). This broad incoherent

signal would affect the extracted value of the polaron energy if it wasn’t treated correctly. The main

contribution to this incoherent signal stems from the molecule-hole continuum (MHC) existing in

the Fermi gas [29]. In contrast, for a Bose-Fermi gas mixture with the majority of bosons, this

MHC is not important. Instead, other decoherence mechanism may exist leading to an incoherent

signal [9, 56].

Based on the time evolution of impurities under the RF pulse, a generic feature of the RF

response is given in Sec. IV.A of Ref. [56] and is adapted for our system as

I(ω) = Icoh(ω) + Iincoh(ω), (3.24)

Icoh(ω) = Zδ(ω − 2πνp), (3.25)

Iincoh(ω � 2πν0) ∝ C(2πν0 − ω)−3/2, (3.26)

where I is the RF response, Z is the quasiparticle residue, and C is the Tan’s contact [57, 58]. The

RF spectrum I(ω) consists of two parts, the coherent part Icoh and the incoherent part Iincoh. The

incoherent part is due to dephasing and exists only when ω < 2πν0. Here a uniform BEC density is

assumed and the RF fourier limited lineshape R(ν) is not included. For the non-interacting case,

Icoh(ω) = δ(ω − 2πν0) and Iincoh = 0. By considering the RF fourier limited lineshape R(ν), Eq.

(3.24) becomes

Ĩ(ω) =

∫ ∞
−∞

dω̃R[(ω̃ − ω)/2π]I(ω̃)

= ZR(νp − ω/2π) +

∫ ∞
−∞

dω̃R[(ω̃ − ω)/2π]Iincoh(ω̃) (3.27)

where I set R(ν) =
√

2
π

1
δν exp(−2ν2/δν2). In particular, Ĩ(ω � 2πν0) ∝ C(2πν0 − ω)−3/2.

Fig. 3.14 shows the observation of the Tan’s contact at both positive and negative interac-

tions. As discussed above, the Tan’s contact as a ω−3/2 tail shows up only at the ν < ν0 side (green
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Figure 3.14: Tan’s contact shown as a ω−3/2 tail in our RF spectroscopy data. Black lines indicate
the bare atom transition. Red dots denote the data with the cloud size smaller than or equal to the
BEC size. (a) RF spectroscopy at 1/knaIB = 0.7. The RF pulse duration is fixed at 4∆t = 0.52 ms.
From the top to bottom, the RF power is increased to give a π pulse, 3π pulse, and 5π pulse. Green
lines indicate the Tan’s contact and come from fits of the RF tail to C(2πν0−ω)−3/2. Additionally,
K-Rb Feshbach molecules are formed from the Rb thermal cloud as shown on the right corner and
the pink line is a fit to a RF association model [32]. (b) RF spectroscopy at 1/knaIB = −1.9. The
RF pulse duration is fixed at 4∆t = 0.52 ms. From the top to bottom, the RF power is increased
to give a π pulse and 5π pulse. The red dots on the left indicate the Tan’s contact tail, while the
red dots on the right represent the attractive polaron signal.

lines). The fact that the cloud size of the contact signal is smaller than the BEC size (as indicated

by the red color) means that the contact signal is from the 40K atoms overlapping with the BEC.

At relatively small RF power (e.g., π pulse), the contact signal is too small to be observable, which
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is good for measuring the energy shifts of Bose polarons.

In conclusion, for the attractive polaron spectroscopy, the incoherent signal and the polaron

signal are well separated in frequency and are on the opposite sides of the bare atom transition.

For the repulsive polaron spectroscopy, although the incoherent signal and the polaron signal may

overlap with each other, the polaron signal can still be selected out by choosing a RF pulse with

relatively small RF power. Unfortunately, when performing a Rabi oscillation in terms of RF power,

this incoherent signal will wash out the oscillation pattern immediately for the repulsive polaron.

3.5.4 RF association and dissociation of K-Rb Feshbach molecules

Figure 3.15: RF association and dissociation of K-Rb Feshbach molecules. (a) RF association
of K-Rb Feshbach molecules at 1/knaIB = 0.96, 0.72, 0.51, 0.37. The magenta line is obtained by
fitting the molecule data to a well-established model [32]. The black line indicate the bare atom
transition. The green line is the contact tail as discussed in the previous section. (b) RF dissociation
of K-Rb Feshbach molecules at 1/knaIB = 0.72 (bottom panel). The magenta line is a fit to a well-
established model [59]. As a reference, the association data is shown in the upper panel. The
dashed line indicates the location of the binding energy of molecules.

RF association of K-Rb Feshbach molecules has been well studied in [51] and [32]. Here
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we measure the binding energy of K-Rb Feshbach molecules in the strongly interacting regime,

where the binding energy follows a universal relation, Eb/En = mRb/µKRb/(knaIB)2. Fig. 3.15(a)

shows the data of RF associating K-Rb molecules. The binding energy is extracted by fitting

the molecule data to a well-established model [32], which is indicated by the magenta line. The

binding energy of K-Rb molecules is shown in Fig. 3.9 as yellow triangles, which match the

universal theory line (green) very well. The RF pulse we used for associating K-Rb Feshbach

molecules has a pulse duration 4∆t = 0.52 ms and the RF power is set to give a 7π pulse. In

addition, we also measured the binding energy by RF dissociating K-Rb molecules as shown in Fig.

3.15(b), which is in agreement with that measured by RF association. Here the K-Rb molecules

were created by magneto-association described in our previous paper [20]. The dissociated K

atoms are in |9/2,−7/2〉 state, which is directly imaged by using the non-cycling transition of

|9/2,−7/2〉 → |11/2,−9/2〉 with the measured imaging efficiency of 80%.

3.6 Summary

I report experimental data probing Bose polarons using radio-frequency spectroscopy. We

measure the excitation spectrum of fermionic 40K impurities strongly interacting with a BEC of

87Rb atoms. We find that the measured energy of the impurites immersed in the BEC matches

well with that recently predicted for Bose polarons [9, 10] in the regime of strong impurity-boson

interactions. In particular, our data are consistent with a polaron state that exists across unitarity

(aIB →∞) with an energy that approaches that of a weakly bound molecular state on the aIB > 0

side of the Feshbach resonance. Furthermore, for attractive interactions, we observe Rabi oscilla-

tions when exciting Bose polarons. This work is the first measurement of the Bose polaron in a

three-dimensional trapped atom gas and provides a starting point for understanding the quantum

many-body physics of Bose-Fermi mixtures.



Chapter 4

Quantum Hall physics: bizarre and interesting

Ever since Edwin Hall discovered the Hall effect in 1879, measuring electrical conduction in a

magnetic field has become one of the standard ways to characterize conductive materials. In 1980,

Klaus von Klitzing discovered the integer quantum Hall (IQH) effect when he was measuring the

Hall conductivity of a 2D semiconductor sample in a strong magnetic field (B ∼Tesla) (the 1985

Nobel prize in physics). What he found is that the Hall conductivity was exactly quantized at

integer values of e2/h. Here e is the charge of an electron and h is the Planck constant. Later the

fractional quantum Hall (FQH) effect was discovered by Horst Störmer and Daniel Tsui and was

partially explained by Robert Laughlin (the 1998 Nobel prize in physics). What they found is that

the Hall conductance of a 2D electron gas shows precisely quantized plateaus at fractional values

of e2/h. FQH states represent new states of matter that contain a completely new kind of order—

topological order, which cannot be described by the conventional theories. Thus they greatly enrich

our understanding of quantum many-body physics and quantum phase transitions. However, there

have been few experimental ways to locally detect these exotic states so far. Recently, ultracold

atomic gases have been proposed as systems where experiment would be able to simulate the

quantum Hall states and furthermore be able to detect the local properties of these states [15].

4.1 Classical Hall effect

The classical Hall effect is introduced and some important quantities are described here.

Considering a 2D conductor exposed to an external magnetic field B along z, one can measure the
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Figure 4.1: Classical Hall effect. (a) Measuring Hall conductance of a sample. An external electrical
field Ey is along y and an external magnetic field B is along z. Hall voltage VH as well as the normal
current I along y are measured. (b) The helical motion of an electron moving on the x-y plane due
to the Lorentz force based on Eq. (4.1). (c) The dependence of Hall resistance, RH , on B based
on Eq. (4.2).

conductance by applying an electric field Ey (or a voltage potential V ) across the sample along y

(see Fig. 4.1 (a)). Due to the Lorenz force, electrons are doing helical motion inside the sample

and eventually reach the transverse edge (see Fig. 4.1 (b)). Thus, the transverse Hall voltage is

produced by the accumulated electrons on the edge. In experiment, the electric current I along y

and Hall voltage VH along x are recorded. The normal resistance can be obtained using R = V/I,

while the Hall resistance is RH = VH/I.

In the classical case, the Lorentz force felt by electrons is F = −e(E + v × B). Here the

electric field E = Exx̂ + Eyŷ with Ey = V/Ly and Ex = VH/Lx. Lx and Ly are the lengths of

the sample along x and y, respectively. The constant magnetic field B = Bẑ. Combined with the

Newton’s equation, F = me
dv
dt , we can get the velocity of an electron as

v(t) = v0 [cos(ωct)x̂ + sin(ωct)ŷ] +

(
eEy
meωc

x̂− eEx
meωc

ŷ

)
, (4.1)

where cyclotron frequency ωc = eB/me and v0 is the initial velocity. The first term in the above

equation describes the cyclotron orbit and the second term represents a drift motion with the drift

velocity vd =
eEy
meωc

x̂ − eEx
meωc

ŷ. The electric current density is defined by j = −nevd with n being

the electron density. Thus we have j = −(ne/B)Eyx̂ + (ne/B)Exŷ. According to the Ohm’s law,
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j = σ · E 1 , we have the conductivity, σxx = σyy = 0 and σxy = −σyx = −ne/B. The resistivity,

as the inverse of the conductivity2 , is ρxx = ρyy = 0 and ρxy = −ρyx = 1/σxy = −B/ne. Here

the off-diagonal conductivity elements {σxy, σyx} are called Hall conductivities. The Hall resistance

(Hall conductance) turns out to be the same as the Hall resistivity (Hall conductivity). This can

be seen from RH = VH/I = ExLx/jyLx = Ex/jy = 1/σyx = ρyx. The value of the Hall resistance

follows

RH = ρyx =
B

ne
. (4.2)

which depends linearly on B (see Fig. 4.1 (c)). Based on Eq. (4.2), the Hall effect has become an

important way to measure the charge carrier density n.

All above discussions made use of classical mechanics, which should be valid when the mag-

netic field is small enough that no energy gap is opened up. Next, I will discuss the case of strong

magnetic field, where the quantum mechanics is used.

4.2 Landau levels

Landau levels are a quantum mechanical effect of a magnetic field on the motion of charged

particles moving in a 2D plane. In the presence of a uniform magnetic field perpendicular to

the 2D plane, charged particles move along quantized orbits according to quantum mechanics and

therefore the energy of these particles are quantized into a series of equally spacing energy levels,

called Landau levels. For the case of a many-particle system, each of these Landau levels can be

occupied by multiple particles due to the degeneracy, which depends on both the strength of the

magnetic field and the size of the system. What surprising is that L. D. Landau discussed this

physical system in 1930 [60], 50 years before people discovered the integer quantum Hall effect.

Consider electrons moving in the 2D x-y plane, which has an area A = LxLy (see Fig. 4.1(a)).

1 Here the Ohm’s law is a two-dimensional formula:

(
jx
jy

)
=

(
σxx σxy
σyx σyy

)(
Ex
Ey

)
.

2 The resistivity ρ = σ−1, which means ρxx = σyy/(σxxσyy − σxyσyx), ρyy = σxx/(σxxσyy − σxyσyx), ρxy =
−σyx/(σxxσyy − σxyσyx), ρyx = −σxy/(σxxσyy − σxyσyx).
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Applying an uniform magnetic field along z, it is well described by a single-body Hamiltonian [60]

H =
1

2me

[
p̂⊥ +

e

c
A⊥(x, y)

]2

=
p̂2
x

2me
+

1

2
meω

2
c

(
x− ~ky

meωc

)2

(4.3)

=
p̂2
⊥

2me
+

1

2
me(ωc/2)2ρ2 + (ωc/2)L̂z (4.4)

where ωc is the cyclotron frequency with ωc = eB/mec (c is the speed of light). Here A(x, y) is the

vector potential of the magnetic field with A⊥ = {Ax, Ay}, the momentum operator p̂⊥ = {p̂x, p̂y},

and the radius ρ2 = x2 + y2. L̂z = xp̂y − yp̂x is the orbital angular momentum operator along z.

Eq. (4.3) is obtained by using the Landau gauge, A = {0, Bx, 0} and Eq. (4.4) is gotten by using

the symmetric gauge, A = 1
2{−By,Bx, 0}, both of which are identical with each other and satisfy

∇×A = Bẑ. Their eigenenergy is

E = (n+ 1/2)~ωc, (4.5)

where n is an integer taking values of 0, 1, 2 · · · . Different values of n here represent different Landau

levels. The wavefunctions for different gauges are different from each other. Both situations are

useful for our discussions. The former is useful for explaining transport measurements and edge

states, while the latter is useful for discussing the connection with a rotating gas.

For Eq. (4.3) associated with the Landau gauge, the eigenfunction is [60]

ψn,ky(x, y) = eikyyφn(x− x0), (4.6)

where n and ky are quantum numbers, φn is the well-known wavefunction of an harmonic oscillator.

The location of the harmonic oscillator is

x0 =
~ky
mωc

, (4.7)

where ky is quantized due to the boundary condition and takes values ky = 2πny/Ly (ny =

0, 1, 2, · · · , Ny). Due to the constraint of 0 ≤ x0 ≤ Lx, we get Ny = Int(Φ/Φ0) (Int means integer

part) with Φ = BLxLy being the magnetic flux and Φ0 = hc/e being the fundamental quantum of
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flux. The degeneracy or the maximum number of particles per Landau levels is

D = (2s+ 1)
Φ

Φ0
, (4.8)

where s is the spin of an electron with s = 1/2. One important feature for Landau levels is the

quantization of the cyclotron orbits. This can be seen by using a semi-classical picture: E =

(n+ 1/2)~ωc = 1
2mω

2
cR

2
c , which gives the quantized cyclotron orbits

R2
c = (2n+ 1)

~c
eB

. (4.9)

For Eq. (4.4) associated with the symmetric gauge, the eigenfunction is [61, 62]

ψn,m(x, y) =
e|w|

2/2∂m+ ∂
n
−e
−|w|2√

πa2
⊥n!m!

, (4.10)

where n is the index of Landau levels, m is an “angular momentum” index with L̂z|ψnm〉 =

~(m − n)|ψnm〉, w = (x + iy)/a⊥, a⊥ =
√

2~/meωc, and ∂± = (a⊥/2)(∂x ± i∂y). Note that

a⊥ =
√

2lB with the magnetic length lB =
√

~/meωc. The degeneracy of each Landau level also

follows Eq. (4.8).

For the lowest Landau level n = 0, the wavefunction is, ψ0,m(ρ, φ) = eimφe−ρ
2/2a2

⊥(ρ/a⊥)m/
√
m!π,

which carries angular momentum m~. These states have a ring shape and the position of the max-

imum of |ψ0,m(ρ, φ)| is at ρpk =
√
ma⊥ (Fig. 4.2). The ring of the mth state has an area of mπa2

⊥,

with an enclosed magnetic flux mπa2
⊥B = mΦ0. Hence there is one flux quanta per state and

the number of states in the lowest Landau level corresponds to the number of flux quanta. The

many-body wavefunction for the lowest Landau level (n = 0) state has the form [63]

Ψ1(z1, · · · , zN ) = A[(z1)0(z2)1(z3)2 · · · ]e−
∑N
k z2

k/4l
2
B

= det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · ·

z1 z2 · · ·

(z1)2 (z2)2 · · ·
...

...
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
e−

∑N
k z2

k/4l
2
B

=
N∏
i<j

(zi − zj) e−
∑N
k z2

k/4l
2
B , (4.11)
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Figure 4.2: Degenerate states of the lowest Landau level. (a) Circular and quantized orbits of the
states in the lowest Landau level. The mth state in the lowest Landau level has a ring shape with
the peak position at ρpk =

√
ma⊥. Solid lines represent the occupied states while the dashed lines

represent the empty states. (b) Amplitude squared of the wavefunctions of the states in the lowest
Landau levels. Each state has a single peak structure that spatially overlaps with neighboring
states. The 1/e2 width of each peak is about lB. (c) Density profile of the partially filled lowest
Landau level with n2D =

∑
m |ψ0,m|2. It is uniform near the center.

where A is the anti-symmetrization operator, N is the total number of electrons, and zj = xj+iyj =

ρje
iφj is the complex coordinate in 2D for the jth electron.

The Landau levels are the foundation of the quantum Hall states. They have been used

successfully for explaining the integer quantum Hall effect. However, to understand the fractional

quantum Hall effect, the picture of Landau levels is inadequate and one needs to include the

particle-particle interactions.
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Figure 4.3: Integer and fractional quantum Hall effects (reproduced from [14]). The hallmark of
these effects is the quantized Hall resistance, RH = h

νe2
. The index ν = 1, 2, 3, · · · (IQH effect) and

ν = 1
3 ,

2
5 ,

3
7 , · · · (FQH effect).

4.3 Integer and fractional quantum Hall effects

Quantum Hall effects are the manifestation of quantum Hall states through electron transport.

To observe these effects, one needs a nearly ideal 2D electron system, which can be realized by

confining charge carriers in a narrow potential well. Such a system was originally realized by using

GaAs/AlGaAs heterostructures [14]. The carriers in such structures are free to move in a 2D

plane, but their motion perpendicular to the plane is frozen by cooling the sample (T ∼ 1mK) to

the lowest energy level along this direction. As a consequence, a quasi-2D metal emerges with the

carrier density (n ∼ 0.2 − 4 × 1011cm−2) [14]. Quantum Hall effects have also been observed in
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other materials, for example, graphene [64].

Figure 4.3 shows the results of the measured normal resistance R and Hall resistance RH for

both the Integer quantum Hall (IQH) effect and the fractional quantum Hall (FQH) effect. The

hallmark of these effects is the quantized Hall resistance,

RH =
h

νe2
, (4.12)

where the index ν = 1, 2, 3, · · · (IQH effect) and ν = 1
3 ,

2
5 ,

3
7 , · · · (FQH effect). At each plateau of

RH , the normal resistance R vanishes. According to

R =
V

I
=
EyLy
jyLx

= ρyy(Ly/Lx) =
σxx

σxxσyy − σxyσyx
Ly
Lx
,

the conductivity σxx = 0, which means an insulator. On the other hand, the transverse conductivity

σxy 6= 0, which means a conductor. It turns out that the insulating behavior comes from the bulk

property of the material, while the conduction is due to edge states. Such kind of bizarre materials

are called the topological insulators [13].

The IQH effect can be understood by considering the filling of Landau levels (see Fig. 4.4).

For an electron gas trapped in a 2D uniform potential well, the density of states is homogenous

in energy (see Fig. 4.4(b)). At zero temperature, the energy states below the Fermi energy EF

are occupied by electrons. When B = 0, there are no Landau levels. Thus the system is a normal

conductor. As the magnetic field B is increased from zero, the system first shows the Hall effect.

As the value of B increases, the energy spacing ~ωc = ~eB/mec between Landau levels increases.

As a result, energy gaps are opened at large values of B and Hall plateaus start to show up. At the

same time, the density of states or the degeneracy of Landau levels, given by Eq. (4.8) increases

linearly with respect to B. Therefore, fewer and fewer Landau levels are filled. The number of

filled Landau levels corresponds to the index ν of the IQH effect and ν is called the filling factor.

At each plateau, the Fermi energy lays in the energy gap, which means the system is an insulator

based on the traditional classification. What exotic is that this traditional insulator can conduct

electric current by edge states (Fig. 4.4(c)).



58

Figure 4.4: Understanding the IQH effect by filling Landau levels. (a) The integer quantum Hall
effect at different values of B. (b) The correspondent picture of filling Landau levels. (a) & (b)
are adapted from (http://en.wikipedia.org/wiki/Quantum Hall effect). Red shaded regime means
occupied states below the Fermi energy (dashed line). The energy band is gapless at small values of
B, where the classical Hall effect dominates. Once B is large enough, energy gaps are opened and
Hall plateaus start to show up. Since the density of states or the degeneracy of Landau levels scales
linearly with B, fewer and fewer Landau levels are occupied at higher B. (c) Ideal Landau levels
for a device with boundaries (adapted from [65]). From Eq. (4.7), the location x0 is quantized as
represented by dots. The bulk states are insulating states, while the edge states contribute to the
conduction.

The FQH effect has much richer physics than the IQH effect. The picture of filling Landau

levels is not sufficient for describing the FQH effect and particle-particle interactions need to be

considered. At fractional values of ν, the system has a partially filled Landau level. Furthermore,

the plateau structure of RH at the fractional ν means that an extra energy gap has opened in a

Landau level, which is not predicted by the single-body physics and is due to the particle-particle

interactions. The most exotic implication of the FQH effect is the existence of quasiparticles with

fractional statistics and fractional charges. These composite quasiparticles are formed by attaching
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Figure 4.5: Understanding the FQH effect by the Laughlin’s wavefunction. (a) Densities for 15,
20 and 25 particles in the ν = 1/3 quantum Hall regime (adapted from [66]). The densities are
obtained by classic Monte-Carlo calculations. Here ρ is the radius and lB is the magnetic length.
(b) A cartoon picture of the composite quasiparticles (reproduced from [67]). The electrons (red
dots) are moving along cyclotron orbits around the magnetic flux Φ = 3Φ0 (lines) at the orbital
center.

magnetic fluxes to electrons and have become the underlying principle to describe the many-body

states of the FQH effect.

In 1983, Laughlin proposed a many-body wave function for ν = 1/3 that is known as Laugh-

lin’s wavefunction [61]

Ψ1/3 =

N∏
i<j

(zi − zj)3 exp

(
−

N∑
k

|zk|2/4l2B

)
. (4.13)

This wavefunction is similar to Eq. (4.11) except that it has a third-order zero (zi − zj)3 for any

pair of electrons. In addition, Ψ1/3 describes a circular droplet of uniform density (see Fig. 4.5(a)).

The exponent 3 in each factor expresses the attachment of three flux quanta to the position of each

electron. It describes a composite quasiparticle that includes three flux quanta and one electron (see

Fig. 4.5(b)). More generally, the exponent can be changed from 3 to q for the ν = 1/q (q = odd)

state and it then characterizes an electron dressed by q flux quanta. Only odd q are allowed,

since only they guarantee antisymmetry of this electron wave function. Based on the Laughlin’s

wavefuntion [61], it shows that an energy gap exists for the fractional quantum Hall state, which

explains the plateau structure of RH at the fractional values of ν.
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4.4 Rapidly rotating atomic gases to quantum Hall regime: ideal cases

Electricallly neutral atoms in a magnetic field ~B do not feel any Lorentz force (for an electron,

F = −e~v× ~B). But if we put atoms in a rotating frame, they feel the Coriolis force, F = 2M~v× ~Ω,

due to a rotating field ~Ω. The identical structure between the Lorenz force and Coriolis force

indicates that we may be able to realize quantum Hall states by rotating ultracold gases of neutral

atoms. In this section, I will discuss the connection between a rotating gas and quantum Hall

states. Some experimental challenges will be reviewed in the next section.

4.4.1 Fermion case

Let me first discuss the case of rotating an ultracold Fermi gas. For a Fermi gas, the atoms

follow Fermi statistics and thus they naturally form an incompressible fluid due to Pauli blocking. It

requires that each quantum state can only be occupied by a single particle. This incompressibility

is important for observing the plateaus of quantum Hall effects, because it allows electrons to

be able to fill many Landau levels. To get the incompressibility for a bosonic gas, the repulsive

particle-particle interactions are in need.

Considering a 2D rotating Fermi gas in a harmonic potential, the single-body Hamiltonian

without interactions in the rotating frame is [62]

H + ΩL̂z =
p̂2
⊥

2M
+

1

2
Mω2

⊥ρ
2 + ΩL̂z, (4.14)

where M is the atomic mass of an atom and ω⊥ is the trapping frequency of the harmonic potential.

Assuming Ω = ω⊥, Eq. (4.14) would have exactly the same form as Eq. (4.4). The eigenfunctions

and eigenvalues of Eq. (4.14) are [62]

un,m(x, y) =
e|w|

2/2∂m+ ∂
n
−e
−|w|2√

πa2
⊥n!m!

, (4.15)

εn,m = ~(ω⊥ + Ω)n+ ~(ω⊥ − Ω)m+ ~ω⊥, (4.16)

where the quantum number n,m = 0, 1, 2 · · · with L̂z|un,m〉 = ~(m − n)|un,m〉, w = (x + iy)/a⊥,

a⊥ =
√
~/Mω⊥, and ∂± = (a⊥/2)(∂x ± i∂y). un,m is basically the same as ψn,m in Eq. (4.10) but
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Figure 4.6: Realizing the IQH states by rapidly rotating a Fermi gas. (a) Shift of energy spectrum
due to the rotation based on Eq. (4.16) and (4.17). When Ω approaches ω⊥, the Landau levels
are formed and the size of the un,m state is enlarged. (b)The gaps of energy bands are opened by
rotating a gas. The density of states for a static gas is ρ(ε) = ε/~2ω2

⊥ (see Eq. (1.3)). Red shaded
regime means occupied states below the Fermi energy (dashed line). The energy band is gapless at
small values of Ω. Once Ω is large enough, energy gaps are opened. Different from the 2D electron
system, the energy gap for a rotating gas is basically constant, independent of Ω. The number of
occupied Landau levels can be tuned by varying the total number N of atoms (or εF ).

with different a⊥. The quantized orbit for the un,m state can be seen by

〈ρ2〉n,m = 〈un,m|ρ2|un,m〉 = (n+m+ 1)a2
⊥, (4.17)

which gives a good estimate of the area covered by the un,m state. Here ρ is the radius. At the

limit of Ω→ ω⊥, Eq. (4.16) reduces to the Landau levels

En = (n+ 1/2)~(2ω⊥), (4.18)

with the energy spacing 2~ω⊥. Note that the rotating rate Ω cannot be bigger than the radial
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Figure 4.7: Density distribution of a rotating Fermi gas in the quantum Hall regime based on
Eq. (4.19). Lower εF and lower T give more clear wedding cake structure. The oscillator length
a⊥ =

√
~/Mω⊥ = 2.5 µm for a 2π × 40 Hz trap (M is the atomic mass of a 40K atom) and

Ω = 0.99ω⊥.

trapping frequency ω⊥, because the centrifugal force gives effectively an anti-trapping potential.

For Ω < ω⊥, the density of atoms at zero temperature is n2D(ρ) =
∑

n,m |un,m(ρ)|2Θ(εF −

εn,m) with Θ(x) being the step function and εF the Fermi energy. The total number N =
∑

n,m(εF−

εn,m). At finite temperature T , the density of atoms becomes

n2D(ρ) =
∑
n,m

|un,m(ρ)|2f(εn,m), (4.19)

with the Fermi-Dirac distribution function f(ε) = 1/(e(ε−εF )/kBT + 1). Correspondingly, the total

number is N =
∑

n,m f(εn,m).

From Eq. (4.18), we can see that the integer quantum Hall states can be realized by rapidly

rotating an ultracold Fermi gas (Fig. 4.6). The degeneracy of the Landau levels at the limit of

Ω→ ω⊥ is

D =
2ω⊥

ω⊥ − Ω
. (4.20)
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For the special case of Ω = ω⊥, the atoms move in free space and there is no quantized energy

levels. To detect the Landau levels or the integer quantum Hall states, one way is to look at the

density distribution [62]. In the quantum Hall regime, the density distribution will show a “wedding

cake” structure (see Fig. 4.7), which looks similar to the plateau structure of the IQH effect. For

the given εF , the size of the nth Landau level can be estimated by ρn = a⊥
√
n+m∗n + 1 with

the highest angular momentum state in the nth Landau level, m∗n = Int[ εF /~−ω⊥−(ω⊥+Ω)n
ω⊥−Ω ]. When

Ω→ ω⊥, we have the size of the nth Landau level as

ρn = a⊥

√
εF /~− (2n+ 1)Ω

ω⊥ − Ω
, (4.21)

with the oscillator length a⊥ =
√

~/Mω⊥ = 2.5um for a 2π× 40 Hz trap (M is the atomic mass of

a 40K atom).

4.4.2 Boson case

The Eqs. (4.15) and (4.16) also work for a bosonic gas. The only difference from the fermionic

case is the compressibility of a bosonic gas. Due to the Bose-Einstein statistics, a single state can

be occupied by infinite number of bosonic atoms, which makes it hard to get a small filling factor

ν. In the past, the TOP trap experiment at JILA rotated a 87Rb BEC into the lowest Landau

level, but the filling factor was about 100. That is, there were 100 atoms occupying each u0,m

state. Assuming we have a Feshbach resonance (see Sec. 1.3), we can tune the particle-particle

interaction to be repulsive. In this case, the atoms would repel each other and eventually form

an incompressible fluid. By tuning the interaction strength, one can tune the number of occupied

Landau levels. Interactions of bosons potentially make them to be a fermion-like liquid [68, 69, 70].

4.5 Technical challenges

In the last decade, the technique of rotating ultracold gases has been developed for the original

goal of studying the superfluid property of a BEC [15]. However, due to technical challenges, none

of the existing schemes have been sufficient for observing quantum Hall states. In the following,
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I discuss these challenges and in the next chapter I present an new apparatus for potentially

overcoming these challenges.

4.5.1 An extremely smooth and harmonic optical trap

An ultracold atom experiment generally uses a harmonic trapping potential to confine the

gas. To get fast rotation, the trap geometry needs to be as round as possible in the rotating plane,

which is relatively easy to achieve with careful design. Secondly, higher order anharmonic terms of

the trapping potential could limit the rotation rate. This can be seen from the following potential

(see Sec. 5.3)

U(x, y) = U0 +A2(x2 + y2) +A3y
3.

The y3 terms can break the circular symmetry and slow down rotation. Thirdly, the smoothness of

the potential is very important for a long-lived rotating gas. In particular, once the rotation rate is

close to the trapping frequency ω⊥, any small roughness will have a big effect in damping rotation.

In order to get fast rotation, e.g. Ω ∼ 0.99ω⊥, the roughness need to be reduced below 1%.

The harmonic trapping potential could be achieved with a magnetic trap or with an optical

trap. With a magnetic trap, it is easier to satisfy the conditions of smoothness and harmonicity.

However, a magnetic trap makes it very difficult to use a magnetic Feshbach resonance to tune the

particle-particle interactions, which is very important for reaching the quantum Hall regime. In

comparison, an optical trap is an ideal option for accessing a magnetic Feshbach resonance, but is

difficult to get as smooth and harmonic as a magnetic trap.

4.5.2 Rapid rotation close to 0.99 of trapping frequency

There are two main ways of rapidly rotating ultracold gases that have been demonstrated.

The first way is to use a blue-detuned laser beam to stir the trapped gas. This way has been

used by the MIT group for rotating a 23Na BEC [71] and a 6Li degenerate Fermi gas [72], and by

the Paris group for rotating a 87Rb BEC [73]. However, because the center-of-mass motion of the

harmonically trapped atom cloud is dynamically unstable as Ω → ω⊥ [74], the stirring method is
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not fully appropriate for approaching the rapidly-rotating regime. The instability of center-of-mass

motion limits how close to ω⊥ the rotating rate Ω can be. The second way of rapidly rotating

ultracold gases is to use a deformable trap. The gas is stirred by deforming the trap to an elliptical

shape, then jumping the major axis by 45 degree to impart angular momentum to the atoms, and

then restoring the trap geometry to be round. After this stirring process, the rotation rate of

gas is generally up to about 0.4ω⊥. To further speed up rotation, a special evaporation process,

called spin-up evaporation, is used. The basic idea is to evaporate away atoms with lower angular

momentum so that the averaged angular momentum per atom is increased. As a result, the rotation

rate of the atom cloud is increased according to Lz = mΩ2ρ. This way works great as demonstrated

by the JILA TOP trap experiment [75]. They also demonstrated a 87Rb BEC that was rotated so

fast that all Rb atoms were in the lowest Landau level [76]. In the next chapter, we present our

scheme, which uses a similar spin-up evaporation technique to speed up the rotation of a gas.

4.5.3 Detecting local density by a quantum gas microscope

The wedding cake structure is an important feature of quantum Hall states. The plateau size

is about a⊥ = 2.5 µm. The atom number per unit area of πa2
⊥ is only a few atoms. To detect such

a small feature, one needs a quantum gas microscope [77, 78, 79, 80, 81, 82, 83].

4.6 Other proposals

Beyond rotating gases, there are other proposals for simulating quantum Hall states using

ultracold atoms. These proposals include (i) rotating gases trapped in an optical lattice [84]; (ii)

synthetic fields created by Raman beam coupling [85, 86, 87]; and (iii) laser assisted tunneling in

a tilted optical lattice [88, 89].
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A novel all-optical trap for rapidly rotating gases

In this chapter, a new apparatus for rotating ultracold gases is introduced, and its optimiza-

tion procedures are described. Some important features of this new apparatus include an all-optical

trapping potential, a controllable potential geometry, and a good imaging system. To characterize

the apparatus, we used a 87Rb BEC as a sensor to round out the trapping potential and further

to measure the roughness of potential. Ultimately, the apparatus was tested by rotating the 87Rb

BEC and quantized vortices were detected. By counting vortices, we can estimate how fast the

atomic gas is rotated. In particular, we used the rotating Rb BEC to test a spin-up evaporation

technique, which is a crucial part of our strategy for achieving rapid rotation.

5.1 A new apparatus for rotating gases

Fig. 5.1 shows the schematics of the new apparatus. It consists of two independent laser

beams that form an optical trapping potential. The first beam is a horizontally propagating sheet

beam that is designed to provide only vertical confinement for the atoms. The second beam is a

vertically propagating round beam, which confines the atoms horizontally. Both beams have the

same wavelength (1090nm) and generate a far red-detuned optical dipole trap. The linewidth of

the lasers is 1 nm, which reduces the interference of the laser beams. An important feature of the

apparatus is that the pointing direction of the vertical beam is controlled by a dual-axis acousto-

optic modulator (AOM). By using the AOM, we can change the position of the vertical beam,

which makes it possible to create a time-averaged or painted trapping potential.
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Figure 5.1: A new apparatus for rotating ultracold gases. It consists of two main laser beams. The
first beam is a horizontally propagating sheet beam with 1/e2 beam waist of 1 mm×30 µm, which
is designed to provide only vertical confinement for the atoms. The second beam is a vertically
propagating round beam, which confines the atoms horizontally. The B coils are used for accessing
a Feshbach resonance. An imaging setup is indicated by the blue line.

An AOM device can change the steering of a laser beam by imparting a phonon momentum

~k to a photon that passes through the AOM [90]. Here phonons refer to the acoustic vibration

mode of the AOM crystal driven by an external RF signal with frequency ν. Photons come from

a laser beam that passes through the AOM. Denoting the initial momentum of the photon by ~p,

we get the final momentum of the photon as ~p + ~k. Since the initial momentum ~p is generally

perpendicular to the phonon momentum ~k, the laser beam deviates from its initial direction after

passing through the AOM. The deviation amplitude depends on the angle between ~p and ~p+~k and

the magnitude of ~k is related to ν as, |~k| = hν/cs (h is the Planck’s constant and cs is the speed of

sound). Therefore we can change the propagating direction of a laser beam by changing the phonon

frequency ν. In the experiment, we use AOMs that use a longitudinal acoustic mode, which gives

a rise time of 150 ns/mm(beam diameter). The AOMs we used are from Gooch & Housego with
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Figure 5.2: Control of laser beam pointing using an AOM. (a) Deflection angle versus RF frequncy.
The central frequency of the AOM is 80MHz. The deflection angle is linearly proportional to the
RF frequency. The line shows a linear fit with the slope of 0.213 mRad/MHz. (b) The deflection
efficiency of the AOM vs. the RF frequency, using 33 dBm of RF power into the AOM.

the model number (46080-2-1.06-LTD). The AOMs have an aperture diameter of 2 mm and an

operating RF frequency ν tunable from 65 to 95 MHz. The dependence of the deflection angle on

the driving RF frequency is shown in Fig. 5.2(a). Fig. 5.2(b) shows the corresponding variations

of the deflection efficiency on the RF frequency. The deflection angle is determined by measuring

the transverse separation of the deflected and undeflected beams at a distance of 30 cm from the

AOM. The deflection efficiency is the measured power in the deflected beam divided by the input

beam power.

5.1.1 A painted trapping potential

To make a painted trapping potential in the x-y plane, we use two AOMs oriented to give

perpendicular deflections to change the trap position in the x-y plane. The driving electronics

for the AOMs are controlled by a computer, which allows us to program an arbitrary trajectory

of the beam position within a period T . Because the period T is very short compared to the

time-averaged trapping period, the atoms feel a time-averaged trapping potential rather than the

instantaneous potential. For a static optical dipole trap, the trapping potential is described by

U(x, y) = U0 exp{−2[(x− x0)2 + (y − y0)2]/w2
0} with the center position at (x0, y0). After turning
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on the painting, we can express the time-averaged trapping potential generally as

Upaint(x, y) =
U0

T

∫ T
0
dt exp

[
−2

(x− xc(t))2 + (y − yc(t))2

w2
0

]
, (5.1)

with a time-dependent center position (xc(t), yc(t)).

We want our time-averaged trapping potential to be axially symmetric around the z axis.

In the following discussions, it is convenient to work with the polar coordinates {x, y} → {ρ, φ}.

Thus we denote the center position of the instantaneous trapping potential by {ρc(t), φc(t)}. To

simplify the mathematical derivation, we assign two different time scales, T and T1, for ρc(t) and

φc(t) respectively with the condition of T � T1. We then treat ρc as fixed when we discuss φc(t) at

the fast time scale. This is a reminiscent of a similar treatment that is often used in the description

of the motion of atomic nulei and electrons, known as Born-Oppenheimer approximation. To

maintain the axial symmetry, the trajectory of the polar angle φc(t) needs to follow a circle, i.e.,

φc(t) = 2πt/T1. We then have xc(t) = ρc cos(2πt/T1) and yc(t) = ρc sin(2πt/T1). By integrating

the fast time scale over the period of T1, we get the time-averaged trapping potential based on Eq.

(5.1) as

Upaint(ρ) =
U0

T
e−2ρ2/w2

0

∫ T
0
dtse

−2ρ2
c(ts)/w

2
0J0

(
i
4ρρc(ts)

w2
0

)
, (5.2)

where the only time-dependent quantity left is ρc(ts) and J0 is the zeroth order of Bessel’s func-

tion J0(x) = J0(−x) = 1
π

∫ π
0 eix cos θdθ =

∑∞
k=0(−1)k(x2/4)k/(k!)2. The above equation is φ-

independent, as expected for axial symmetry. The geometry of the time-averaged trapping poten-

tial is then determined by the specific function form of ρc(ts). In the following, I give functional

forms of ρc(ts) for a ring trap, a homogeneous trap, and a harmonic trap.

A ring trap The simplest functional form of ρc(ts) = C, where C is a constant, gives a

ring trap with the time-averaged trapping potential given by

Upaint(ρ) = U0e
−2(ρ2+C2)/w2

0J0

(
i
4ρ · C
w2

0

)
.

The resultant trapping potential is shown in Fig. 5.3(a).

A uniform trap It is impossible to get a uniform trapping potential over all space by

painting. Instead I focus on getting a uniform trapping potential around the center regime as
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Figure 5.3: Time-averaged trapping potentials. The left is the trajectory of the trap center. The
middle is the calculated potential profile. The right is the measured time-averaged laser intensity.
(a) A ring trap. The functional form for the painted beam is ρc(t) = 2w0. (b) A uniform trap.
Here, ρmax

c is set to be 3w0. At the center regime with ρ < ρmax
c , there is a uniform trapping

potential. (c) A harmonic trap. b is set to be 1 and ρmax
c is set to be 3w0. The center regime with

ρ < ρmax
c shows a harmonic trapping potential.

shown in Fig. 5.3(b). For this goal, ρc(ts) = ρmax
c

√
ts/T , which gives

Upaint(ρ) =
1

2
U0

(
w0

ρmax
c

)2

,

for ρ < ρmax
c and ρmax

c ≥ 3w0. The analytical derivation of the above equation can be found in

Append. B. From the above equation, we see that the bigger the painted size ρmax
c is, the smaller

the trap depth is.
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A harmonic trap For a harmonic trap, I found that

ρc(ts) = ρmax
c ·

√
b+ 1−

√
(b+ 1)2 − 4bts/T

2b
, (5.3)

with the dimensionless parameter 0 ≤ b ≤ 1. This function satisfies ρc(ts = 0) = 0 and ρc(ts =

T ) = ρmax
c . Eq. (5.3) is equivalent to

ts = T ·

[
(b+ 1) ·

(
ρc
ρmax
c

)2

− b ·
(

ρc
ρmax
c

)4
]
.

Taking them into Eq. (5.2), we have

Upaint(ρ) =
U0w

2
0

2(ρmax
c )2

[
b+ 1− b

(
w0

ρmax
c

)2
]
− U0w

2
0b

(ρmax
c )4

ρ2,

=
U0w

2
0

2(ρmax
c )2

− 1

4
mω2

ρ

[
(ρmax
c )2 − ω2

ρ

]
+

1

2
mω2

ρρ
2,

for ρ < ρmax
c and ρmax

c ≥ 3w0. Here the trapping frequency ωρ depends on the b with a relation

of 1
2mω

2
ρ = −U0w

2
0b/(ρ

max
c )4. The analytical derivation of the above equation can be found in

Append. B. The time-averaged trap depth is given by

Udepth =
U0w

2
0

2(ρmax
c )2

[
b+ 1− b

(
w0

ρmax
c

)2
]
.

Both the time-averaged trapping frequency and trap depth depend on not only ρmax
c but also b.

Fig. 5.3(c) shows a time-averaged harmonic trapping potential.

To perform the painting trajectories discussed above in experiment, we use the electronics

shown in Fig. 5.4 to drive two AOMs. Two AOMs are oriented 90 degree from each other so that

they can independently control the x and y positions of a laser beam. Each AOM is driven directly

by a voltage-controlled oscillator (VCO), whose output frequency is determined by an externally

controlled voltage. We can change this external control voltage to change the position of the laser

beam. For getting a ring trap, I used a sine wave signal and a cosine wave signal for the external

control voltages to drive the two VCOs. The two control voltages are obtained from a direct

digital synthesizer (DDS) and share the same time-independent amplitude, which is controlled by

two variable gain amplifiers (VGAs). Based on the ring trap, a uniform trapping potential or a
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Figure 5.4: Electronics for driving AOMs. A dual-axis AOM consists of two AOMs, whose ori-
entations are perpendicular to each other. The driving frequency of the AOMs is centered at 80
MHz and is provided by two voltage-controlled oscillators (VCOs). A two-channel direct digital
synthesizer (DDS, AD9959-eval) combined with two variable gain amplifiers (VGAs, AD8330-eval)
are used to control VCOs. In addition, the VGAs are controlled by an arbitrary-wave function
generator for painting ρc(ts) from Eq. (5.3).

harmonic trapping potential can be obtained by setting a time-dependent amplitude for the sine and

cosine wave signals. This time-dependent amplitude needs to follow the corresponding functional

form of ρc(ts) discussed above.

5.1.2 A good imaging setup

To optimize our apparatus, we need an imaging system to be capable of resolving our BEC

in trap and resolving vortices after expansion. As shown in Fig. 5.5, I used a 1/2 inch diameter

objective lens with a numerical aperature (N.A.) of 0.12. Due to our limited optical access, it is

challenging to increase the N.A. of this lens. Our objective lens has a diffraction-limited resolution

of D = 0.61λ/N.A. = 3.9 µm (Rayleigh criterion). The depth of field is DOF = λ/N.A.2 = 54 µm.

To focus the imaging system, we fixed the position of camera about 400 mm away from a second,

“eyepiece” lens with a focal length of f = 400 mm and moved the objective lens closer to or farther

from the atoms using a translation stage. The optimal position of the objective lens was found by

using the lensing effect.

A good introduction to the lensing effect can be found in Matthews’ thesis [91]. A trapped



73

Figure 5.5: A good imaging setup. Due to our limited optical access, I chose an 1/2” diameter
objective lens with N.A.=0.12. The objective lens has a diffraction-limited resolution of D =
0.61λ/N.A. = 3.9 µm (Rayleigh criterion). The depth of field is DOF = λ/N.A.2 = 54 µm.

atomic gas is basically an optical medium and behaves like a lens when a laser beam passes through

it. The index of refraction of such an optical material depends on the frequency detuning of the

laser beam from the atomic resonance. For blue-detuned light, the index is smaller than 1 and thus

the trapped atomic gas with higher optical thickness in the center behaves as a concave lens. For

red-detuned light, the index is bigger than 1 and thus the trapped atomic gas with higher optical

thickness in the center behaves as a convex lens. For resonant light, the index equals to 1 and no

lensing effect occurs. When we image an atomic gas, an out-of-focus imaging system distorts the

images differently for different detunings. As shown in Fig. 5.6(a), for the blue-detuned case, if the

focal plane of the imaging system is before (location A) the object plane, there is excess light in the

center captured by the camera, which results in a negative dip in the measured optical depth; if the

focal plane of the imaging system is past (location B) the object plane, there are more light on the

edge of the cloud captured by the camera, which results in negative edge in the measured optical

depth. Similar but reverse lensing effects occur for the red-detuned case (see effects at locations C

and D). The lensing effect provides an accurate way for us to find the position of the object plane.
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Figure 5.6: The lensing effect when focusing our imaging system. (a) Illustration of the lensing
effect when a laser beam passes through a trapped atomic gas (reproduced from Matthews’ thesis
[91]). The optical index of the trapped atomic gas is less than 1 for the blue-detuned laser light and
therefore the trapped atomic gas behaves as a concave lens. On the other hand, the optical index
is bigger than 1 for the red-detuned light and the trapped atomic gas behaves as a convex lens.
(b) Measured lensing effect in our system. The position of the objective lens is measured from an
arbitrary fixed point: lower values are farther from the atoms. The cloud size is from a gaussian
fit and increases on both sides because of the bad fittings caused by the saturated OD for B,C and
the dip structure for A,D.

Fig. 5.6(b) shows the lensing effect observed when we were focused our imaging system.

We imaged a dense Rb thermal gas (with the peak optical depth pkOD = 130) in trap while

moving the objective lens to different locations. The cloud size in the images was obtained by
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Figure 5.7: Using the lensing effect to focus our imaging system. The crossing point of blue-detuned
and red-detuned lines gives the optimal position.

fitting to a gaussian distribution. From the optical depth images, the lensing effect appears exactly

as we expect. The imaging system was focused by comparing the pkOD for blue-detuning and

red-detuning, with the optimal position given by the crossing point (see Fig. 5.7).

5.2 Optimizing the trap roundness

To get a rapidly rotating gas, the trapping potential needs to be axially symmetric. That

means the trapping frequencies along x and y need to be the same. An effective way to measure

the trapping frequencies is to look at the atoms sloshing in the trap. We use a non-destructive

imaging technique, called phase contrast imaging to monitor the slosh of a BEC to measure the

trapping frequencies.

5.2.1 Phase contrast imaging

Phase contrast imaging is a non-destructive imaging technique. It is generally used in the

ultracold atoms to image a BEC many times before destructing the BEC. We use it to monitor

the slosh of a BEC to measure the trapping frequencies. Right after passing through a BEC, the
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Figure 5.8: Phase contrast imaging setup. The dashed lines represent the scattered light by a BEC.
A phase plate with a 510 nm thick and 45 µm diameter phase dot (black mark) is placed at the
back focus of the objective lens. The phase dot causes a π/2 phase shift in probe light relative to
the scattered light.

transverse electric field of the probe beam can be written as E(x, t) = E0 cos(ωt + φ(x)) with x

being the spatial coordinate along the transverse direction and φ(x) being the x dependent phase

shift caused by the BEC. For a small φ(x), the electric field can be written as [Matthews’ thesis

[91]]

E(x, t) = E0 cos(ωt) + E0 sin(ωt)φ(x),

in which the first term comes from the unscattered light and the second term comes from the

light scattered by the BEC. The probe light intensity, I(x) ∝ |E(x, t)|2 (the bar means the time

average), won’t generate any phase signal. But if we shift the second term by a phase of π/2, we

get E(x, t) = E0 cos(ωt) + E0 cos(ωt)φ(x) and the probe light intensity becomes

I(x) = I0(1 + 2φ(x)), (5.4)

where the higher order term of φ(x)2 is omitted. (The technique for applying this π/2 phase shift is

discussed in the next paragraph.) When imaging atoms in the experiment, we have three frames: a

shadow frame that shows the probe beam after passing through the atoms (denoted by IS), a light
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frame that shows the probe beam (no atoms) (IL), and a dark frame that shows only background

light (no probe beam) (ID). The final signal for phase contrast imaging is obtained using

S(x, y) =

∣∣∣∣ IS − ID

IL − ID
− 1

∣∣∣∣ = 2 |φ(x, y)| ,

which is different from the usual absorption imaging where the optical depth is obtained using,

OD(x, y) = ln
(
IS−ID
IL−ID

)
. The signal φ is negative for a blue-detuned probe beam and positive for a

red-detuned probe beam [Haljan’s [92]]. The nondestructive property of the phase contrast imaging

can be seen from the relationship, φ ∝ 1/δ and the photon scattering rate Γ ∝ 1/δ2 with δ being

the detuning. Therefore, at large detuning (δ ∼ 1GHz) with a BEC, the phase shift φ can be

detectable when Γ is negligible, which results in little atom loss in trap due to the scattering of

probe photons. Additionally, for a large detuning δ � γ, absorption is related to the phase shift

by (see Eq. (4.11) of Matthews’ thesis [91])

OD ∝
∣∣∣γ
δ
φ
∣∣∣ ,

where γ is the natural line width. There is no detectable absorption at a large detuning. An

example of our phase contrast imaging can be found in Fig. 5.12.

To get a π/2 phase shift only on the scattered light, a piece of glass with a 510 nm thick and

45 µm diameter phase dot is put at the back focus of the objective lens as illustrated in Fig. 5.8.

(The phase dot was made by depositing MgF2 on the glass by the JILA machining shop.) This

phase plate gives a π/2 phase difference between the probe light, which is focused on the phase dot

and then the glass, and the scattered light, most of which passes through the glass only. Thus the

phase difference is

knd− k0d = k0(n− 1)d = π/2,

from which we get the thickness d of the phase dot. Here kn is the wave vector of the light in the

medium (kn = 2πn/λ) and k0 is the wave vector of the light in the vacuum (k0 = 2π/λ). The index

of MgF2 is n = 1.38 and λ = 780 nm. At the position of the phase plate, the size of the phase dot

need to be larger than the size of the focused probe beam and much smaller than the size of the

light scattered by the BEC.
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Figure 5.9: Coarse alignment of the tiny phase dot. Pictures show the diffraction pattern of the
phase dot on the probe light without a BEC. At the optimal location (red regime), there should
be no diffraction, which means the whole probe beam is hitting the phase dot. A larger value of z
means a position closer to the objective lens.

For our case, the Thomas-Fermi radius of our BEC is about 16 µm (for 3× 105 87Rb atoms

in a harmonic trap with trapping frequencies 40 × 40 × 183 Hz) and the (1/e2) diameter of the

probe beam is 2 mm before passing the objective lens. Using the gaussian beam formulas, w(z) =

w0

√
1 + (z/zR)2 and zR = πw2

0/λ, we estimate the (1/e2) diameter of the scattered beam is 1.4 mm

and the (1/e2) diameter of the probe beam is 20 µm at the position of the phase plate. Therefore,

a phase dot with diameter of 45µm is chosen to satisfy the condition, 20µm < 45µm� 1.4mm. To

align such a tiny spot, we do a coarse alignment without a BEC. We used a three-axis translation

stage to control all {x, y, z} positions of the phase plate. A beam profile camera (S-BC-XHR) was

put ∼ 10 cm after the focus point and before the “eyepiece” lens to monitor the diffraction pattern

of the phase dot on the probe beam as shown in Fig. 5.9. First, we put the phase plate very close

to the objective lens to align {x, y} positions by looking at the diffraction. Here the probe beam

has a large diameter, which makes the alignment easier. Next, we moved the phase plate along z

towards the focus point step by step and the {x, y} positions were corrected at every step. Finally,
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Figure 5.10: Stabilizing the time-averaged trapping potential. (a) Setup of the feedback system.
The x and y positions of the trapping beam are monitored by a quadrant photodetector (SPOT-
9DMI) and are stabilized by driving the AOMs using a feedback loop. A 100Hz low-pass filter is
used in the feedback loop to avoid affecting the 1kHz painting trajectory. (b) Position stability
with the servo system on and off measured by a beam profile camera. The center position of the
time-averaged beam is recorded as a dot after every time step. (c) The error spectrum with the
servo system on and off measured by a SRS FFT spectrum analyzer.

we found the best location without any diffraction, which means the whole probe beam is hitting

the phase dot. After this, a fine alignment can be done by maximizing the phase signal of a BEC,

which is straightforward.

5.2.2 Inducing slosh of a BEC

To measure the roundness of the trap, we measure the trapping frequencies by exciting a

center-of-mass oscillation, or slosh, of a BEC in the x-y plane. One way of inducing slosh is to

apply a magnetic-field gradient to kick the atom cloud. However, we tend to work with a relatively

large bias magnetic field in the optical trap, which makes it difficult to induce significant slosh

amplitude along both x and y using additional small magnetic-field coils. Instead, we can induce

slosh by jumping the center position of the optical trapping potential. In fact, in our setup we

have a feedback loop to reduce the low-frequency drift (< 100Hz) of the center position of the

time-averaged trapping potential (see Fig. 5.10 (a)). Fig. 5.10 (b) and (c) show that the position

of the trapping potential can be well stabilized by the feedback loop. This also give us the freedom

of jumping the positions of the optical trapping potential, simply by changing the control voltages
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Figure 5.11: Lab frame and trap frame. x′ is defined as the minor axis of the trapping potential
and it corresponds to a higher trapping frequency f+. y′ is defined as the major axis of the trapping
potential and it corresponds to a lower trapping frequency f−.

that go into the servo electronics, to induce slosh of a BEC.

5.2.3 Rounding out the trap

To get a rotating gas, the trapping potential needs to be axially symmetric. That means the

trapping frequencies along x and y need to be the same. In this section, I discuss how to adjust

the painting parameters to make our trap as round as possible. Let’s consider with an elliptical 2D

trapping potential with principal axes denoted by {x′, y′} that have an angle of θ from the imaging

frame {x, y} (see Fig. 5.11). The center-of-mass motion of a BEC in this 2D trap can be treated as

two independent 1D oscillations along the principal axes of the trapping potential. We can write

the center trajectory as x′0(t) = Amine
−t/τ cos(2πf+t) and y′0(t) = Amaje

−t/τ sin(2πf−t + φ0) with

f+ and f− being the trapping frequencies along x′ and y′ respectively. Here the damping term

is due to roughness of the time-averaged trapping potential. Usinng phase contrast imaging, we

measure the BEC trajectory in the lab frame, or imaging frame, where the motion is connected

with {x′0(t), y′0(t)} through the frame transformation x0(t)

y0(t)

 =

 cos θ − sin θ

sin θ cos θ


 x′0(t)

y′0(t)

 . (5.5)

To measure the trapping frequencies along both x′ and y′, a circular slosh trajectory is
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Figure 5.12: BEC slosh measurement for rounding out the trap. The probe beam is 600MHz
red-detuned for phase contrast imaging. IS , IL and ID are the shadow frame, light frame and

dark frame, respectively. The final signal is obtained using S =
∣∣∣ IS−IDIL−ID − 1

∣∣∣. {x0, y0} is the center

position of the BEC cloud obtained by fitting the image(s) to a 2D gaussian. The lines through
the data (points) show a fit to Eq. (5.5).

preferred. In the experiment, we first kicked the x position of the time-averaged trapping potential

and a quarter trapping period later, the y position was kicked. (To kick the x or y position, we

jump the center position of the trap and then immediately jump it back.) Limited by the camera

CCD size (1024×1024 pixels), we can take 18 pictures for each readout of the CCD camera using

a kinetics mode to shift the exposed pixels between pictures. As shown in Fig. 5.12, the trapping

frequencies {f+, f−} are obtained by fitting the slosh data to Eq. (5.5). To describe the roundness

of the trapping potential, we define the ellipticity as εtrap = (f2
+− f2

−)/(f2
+ + f2

−) and the averaged

radial trapping frequency as fρ = (f+ + f−)/2 [Coddington’s thesis [93]]. A difference between f+

and f− causes a beat in the slosh with a beat frequency fb = f+ − f−.

As discussed in Sec. 5.1.1, to get a time-averaged harmonic trapping potential, we use a

painting trajectory described by

xc(t) = Aρc(t) cos(2πt/T1 + ϕ), yc(t) = Bρc(t) sin(2πt/T1), (5.6)
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where ρc(t) follows Eq. (5.3) with the period T . Note that xc is controlled by the vertical AOM and

yc by the horizontal AOM (see Fig. 5.1). In our experiment, we chose 1/T1 = 100kHz, 1/T = 1kHz,

and b = 0.9. Parameters {A,B,ϕ} can be controlled independently in the experiment. Ideally,

they should satisfy A = B and ϕ = 0. In practice, due to the optical aberrations and imperfect

alignment, the final painted trajectory can be different from the programmed function. This is why

we need to measure the slosh of a BEC to optimize the experiment input parameters {A,B,ϕ}.

In the experiment, ϕ is controlled by the DDS and {A,B} could be changed by either the VGAs

or the DDS (see Fig. 5.4). We chose to use the VGAs to round out the trap and the DDS was

reserved for the stirring process discussed in Sec. 5.5.

From the slosh data, we can measure {f+, f−, θ} that describe the harmonic trapping po-

tential. To connect such information to the painting trajectory in the lab frame, we can write an

equipotential contour as

f2
+x
′2 + f2

−y
′2 = const(

x′ y′
) f2

+ 0

0 f2
−


 x′

y′

 = const

(
x y

) cos θ − sin θ

sin θ cos θ


 f2

+ 0

0 f2
−


 cos θ sin θ

− sin θ cos θ


 x

y

 = const

(
x y

) f2
+ cos2 θ + f2

− sin2 θ (f2
+ − f2

−) sin θ cos θ

(f2
+ − f2

−) sin θ cos θ f2
+ sin2 θ + f2

− cos2 θ


 x

y

 = const

(
f2

+ cos2 θ + f2
− sin2 θ

)
x2 +

(
f2

+ sin2 θ + f2
− cos2 θ

)
y2 + [(f2

+ − f2
−) sin 2θ]xy = const. (5.7)

On the other hand, due to the optical aberrations and imperfect alignment, the final painted

trajectory can be different from the programmed function (see Eq. (5.6)). An effective painted

trajectory in the lab frame can be generally expressed as x̃c(t) = Ãρc(t) cos(2πt/T1 + ϕ̃) and

ỹc(t) = B̃ρc(t) sin(2πt/T1). To obtain values of {Ã, B̃, ϕ̃} from the measured {f+, f−, θ}, we write

the effective painted trajectory into the following form

B̃2x̃2
c + Ã2ỹ2

c +
2ÃB̃

sin ϕ̃
x̃c · ỹc = const. (5.8)
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Figure 5.13: Ellipticity of the trapping potential versus the painting trajectory. Curves are guides
to the eye. The x axes show the voltage going to the VGAs that we used for controlling A and B.
At ϕ = 5 deg, we get the minimum ellipticity.
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By comparing Eqs. (5.7) and (5.8), we get the following relationship

Ã/B̃ =

√
f2

+ sin2 θ + f2
− cos2 θ

f2
+ cos2 θ + f2

− sin2 θ
,

ϕ̃ ≈ sin ϕ̃ =


√

(f2
+−f2

−)
2

sin2 θ cos2 θ+f2
+f

2
−

(f2
+−f2

−) sin θ cos θ
if θ 6= 0,±π/2,±π, · · ·

0 if θ = 0,±π/2,±π, · · ·
, (5.9)

which is valid when f+ 6= f−. Eq. (5.9) is useful in the sense that it tells us how we need to change

A, B and ϕ to reduce the ellipticity, namely, {A/B → A/B · (B̃/Ã), ϕ→ ϕ− ϕ̃}.

Figure 5.13 shows some typical data for rounding out the trap. We need to optimize the

ellipticity in a 2D parameter space {A/B,ϕ}. Only when both A/B and ϕ are optimized, we find

that we can get the ellipticity below 1%. This measured minimal ellipticity may be limited by the

measurement time. When close to the optimal settings, the value of θ becomes very sensitive to

the value of A/B and θ jumps by 90 deg as A/B crosses the optimal value.

5.3 Anharmonicity

In addition to imperfect roundness of the trapping potential, anharmonicity and roughness

can also limit the rotating rate of our ultracold gases. In this section, I discuss the anharmonicity

for our time-averaged trapping potential. To discuss an anharmonic oscillation, it is good to start

with the Lagrangian [94]

L =
1

2
mẋ2 − 1

2
mω2

0x
2 − 1

3
mαx3 − 1

4
mβx4,

that includes x3 and x4 anharmonic terms with correspondent weights α and β. The trapping

potential is then

U(x) =
1

2
mω2

0x
2 +

1

3
mαx3 +

1

4
mβx4.

The corresponding equation of motion is

ẍ+ ω2
0x = −αx2 − βx3.
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The solution of the above equation has been given in Ref. [94] and is given as follows

x(t) = x(1) + x(2) + x(3), ω = ω0 + ω(1) + ω(2), (5.10)

with

x(1) = A cosωt, ω(1) = 0

x(2) = −αA
2

2ω2
0

+
αA2

6ω2
0

cos 2ωt, ω(2) =

(
3β

8ω0
− 5α2

12ω3
0

)
A2

x(3) =
A3

16ω2
0

(
α2

3ω2
0

− 1

2
β

)
cos 3ωt.

There are two features about this solution. The first is that the slosh frequency ω depends on the

slosh amplitude A. The second is that the odd anharmonic term, x3, can cause an offset shift of

the slosh and this shift depends on the slosh amplitude.

Figure 5.14: Effect of the anharmonic trapping potential on slosh. Red and blue points are
measured separately using 1D slosh. Along y, we see a clear amplitude dependence of ω(A) =
ω0 − 0.031(Hz/px2)A2 (blue line), while the slosh offset is basically unchanged. This indicates
a dominant x4 term along y. The offset along x is not shown because of the relatively small
anharmonicity. (1 px=1.38 µm).

Fig. 5.14 shows our measurement of anharmonicity of our time-averaged trapping potential.

In order to tell which of the anharmonic terms, x3 or x4, is dominant, I consider the case where

the dominant anharmonicity is from the x3 term. In this case, by fitting our trapping frequency
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data to the equation, ω(A) = ω0 − 5α2

12ω3
0
A2, we get the weight, α = ±973 px−1s−2, and therefore

the displacement, |∆x(A)| =
∣∣∣αA2

2ω2
0

∣∣∣ = 0.009A2, which does not match our slosh offset data in Fig.

5.14. This suggests that the x4 term is the dominant anharmonic term. Fitting our trapping

frequency data to the equation, ω(A) = ω0 + 3β
8ω0

A2, we get the weight, β = −19.44 px−2s−2, and

the trapping frequency, ω0 = 2π × 37Hz. It further gives x(3) = 11.2× 10−6A3 cos 3ωt, which is so

small compared to x(1) = A cosωt that it won’t have a significant effect on our slosh data. The

fact that there is a bigger anharmonic effect on slosh along y than that along x suggests that the

anharmonic source comes from the asymmetric part of the trapping potential, namely, the sheet

beam (see next section).

5.4 Roughness

In this section, I discuss the roughness of our optical trapping potential. Roughness refers

to high spatial frequency (short wavelength) defects in the trapping potential. We suspect that

the sheet beam might have the dominant roughness. The setup of the sheet beam is shown in

Fig. 5.15(a). We want the sheet beam to provide the vertical confinement. Hence, its beam

profile was designed to have a small beam waist (30µm) along the vertical direction z and a large

beam waist along y as shown in Fig.5.15(b). To reduce the roughness and to further flatten the

horizontal confinement, we use an AOM to paint the sheet beam along y at 300 kHz; the resulting

time-averaged laser intensity is shown in Fig. 5.15(c).

One way to probe the roughness of the sheet beam is to expand the Rb BEC in the sheet beam

by turning off the vertical painted trapping beam while keeping the sheet beam on. After some

time-of-flight (TOF), the density distribution of the expanded BEC is imaged using absorption

imaging. Fig. 5.16(a) shows the BEC distribution after expanding in the sheet beam for different

TOFs. The roughness of the trap results in parallel stripes seen at large expansion times (> 15 ms).

The orientation of these stripes is coincident with the propagating direction of the sheet beam.

To emphasize the effect of the trap roughness, we lowered the chemical potential of the BEC

to be closer to the quasi-2D regime, where the BEC density is more strongly affected by roughness
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Figure 5.15: Sheet beam information. (a)Sheet beam configuration. The sheet beam enters the
science cell (cyan regime) with an incident angle of 10.6 deg, which was chosen to avoid overlapping
with the reflected beams. Roughness could be caused by imperfection in the glass wall of the cell.
(b) Static sheet beam. The vertical (1/e2) beam waist is 30µm and the horizontal waist is 700µm.
(c) “Painted” sheet beam. The central regime is flat as we expect.

in the trap potential. In the experiment, this was done by reducing the BEC number (from ∼ 105

to ∼ 104) as well as decreasing the radial trapping frequency (from 2π × 40 Hz to ∼ 2π × 2 Hz)

by lowering the vertical beam power. Fig. 5.16(b-d) shows the detected BEC density distributions

that reveal the trap roughness. In Fig. 5.16(b) and (c), the location of the stripes was monitored

when moving the vertical trap beam along y and x respectively. It turns out that the stripes stay

at the same location independent of the vertical beam position. In addition, the stripes exist even

when the vertical beam power is weak. All these evidences suggest that the stripes are coming

from the sheet beam. In Fig. 5.16(d), we see that the location of the stripes was unchanged when

moving the sheet beam along y. This is consistent with the fact that our painting in y does not

remove the roughness. A likely situation is that the cell glass has some fine structure that results
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Figure 5.16: Detecting the roughness of the sheet beam using the density distribution of a BEC.
(a) BEC density distribution after expanding in the sheet beam for different TOFs. (b) Monitoring
the locations of stripes when moving the vertical beam along y. The green lines provide a reference
for ease of comparing the location of structure in the density profile. (c) Monitoring the locations
of stripes when moving the vertical beam along x. (d) Monitoring the locations of stripes when
moving the sheet beam along y. The size of stripes was measured to be 16µm.

in shadows in the sheet beam. Because the cell wall is only ∼ 5 mm from the atoms, motion of

the sheet beam in y (with painting or by moving the center of the beam) is primarily translation

(instead of a change in angle), which does not change the location of the shadow. We estimated
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the roughness in Fig. 5.16(d) to be 15 nK by measuring the chemical potential of the BEC and

estimated the trap depth to be 3 µK, which give a fractional roughness of the trapping beam of

0.5%. This roughness is suspected to limit the rotation rate (Ω/ω⊥ = 0.7) that we achieved so far

(see Sec. 5.7), which is not enough for reaching the quantum Hall regime (Ω/ω⊥ > 0.9).

Based on the above analysis,we have designed a new sheet beam. The new beam has a similar

beam profile but with a much larger range of painting, which gives a significant angle change of the

beam at the cell that should wash out the roughness caused by the cell glass. Meanwhile, in the

following sections, I present rotation results using the existing setup.

5.5 Rotating a Rb BEC

Figure 5.17: Rotating a Rb BEC. The sheet beam power was lowered to evaporate Rb atoms to
get a BEC of about 105 atom; To stir the BEC, we changed the vertical time-averaged trapping
potential to be elliptical and then rotated the elliptical trap for 1 s. After stirring, the trap geometry
was restored to a round shape and the cloud was imaged after a 500ms thermalization time. The
picture on the left comes from the top imaging system introduced in Sec. 5.1.2, while the picture
on the right is from a side imaging system that has a magnification of 3 (not shown in Fig. 5.1).
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After the above optimizations, we tried rotating a Rb BEC and looked for BEC vortices for

the first time in my lab. An experimental timing diagram of the procedure is illustrated in Fig.

5.17. We started with a thermal Rb cloud around 2 µK. To get a BEC, the sheet beam power

was lowered to evaporate Rb atoms and achieve a BEC of about 105 atoms. To rotate the BEC,

we programmed the DDS to change the vertical time-averaged trapping potential to be elliptical

and rotated the elliptical trap for 1 s. After this stirring, the trap geometry was restored back to

a round shape and we waited 500 ms for thermalization before taking an absorption imaging. To

be able to resolve the vortex structure, we expanded the BEC for 15ms before imaging. As shown

in Fig. 5.17, vortices were detected, which is proof that we created a rotating BEC. The observed

small structure is consistent with the diffraction limited resolution of 3.9 µm. This experiment

demonstrates that our imaging system is capable of resolving vortex structure in a rotating BEC,

which is crucial for a rotating BEC experiment. However, the rotation rate achieved by this stirring

process is far from rapid rotation as indicated by the low vortex number. Next, we wanted to test

out a spin-up evaporation technique to speed up the rotation.

5.6 Spin-up evaporation technique

A spin-up evaporation technique has been successfully demonstrated in a magnetic trap

[75]. It consists of an evaporation process that can increase the average rotation rate per atom

by evaporating away atoms not just with high energy but also with low angular momentum. We

wanted to extend this technique to an optical trapping potential. The basic idea is based on

the angular-momentum or rotation-rate distribution of atoms in a harmonic trap. For an atomic

gas rotating around the z axis, assuming rigid-body rotation, the angular momentum, Lz = mρ2Ω,

indicates that the atoms with larger ρ have higher angular momentum as shown in Fig. 5.18. In the

experiment, when we evaporate the gas by lowering down the sheet beam power, the atoms around

the −z edge (indicated by the dashed line) are removed due to gravity. Most of these removed

atoms carry relatively low angular momentum. As a result, the average angular momentum per

atom increases.
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Figure 5.18: The idea of spin-up evaporation. When we perform evaporation by lowering the sheet
beam power, atoms near the −z edge (indicated by the dashed line) are removed due to gravity.

5.6.1 Monte-Carlo simulation

To further explore this strategy, we did a numerical simulation of spin-up evaporation in the

optical trap. The simulation procedure is described in Fig. 5.19. At t = 0, we want to generate

Figure 5.19: Procedures of the Monte-Carlo simulation.

N = 9× 103 atoms that were randomly distributed following a Maxwell-Boltzmann distribution in
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a trapping potential U(~r) with an initial rotation rate Ω = 0.4ωρ and temperature T = 200 nK. (ωρ

is the radial trapping frequency.) To achieve this, we first generate N atoms without rotation in a

trapping potential U(~r)− 1
2mΩ2ρ2 with the temperature T (see details of the random distribution

algorithm in Append. A of Cumby’s thesis [22]). The position and velocity, {~ri, ~vi}, of each particle

is recorded. Based on the fact that atoms moving in a potential U(~r)− 1
2mΩ2ρ2 in a rotating frame

(with the rotation rate Ω) are identical to atoms that rotate at the rate Ω and feel a potential U(~r)

in the lab frame, the initial rotation rate of Ω was imparted to the atoms by a transformation of

coordinates  xi = xi

yi = yi

,

 vxi = vxi − Ωyi

vyi = vyi + Ωxi

, (5.11)

where ~ri = {xi, yi, zi} and ~vi = {vxi , v
y
i , v

z
i } are used. Thus, we prepared N atoms that were

randomly distributed following a Maxwell-Boltzmann distribution in a trapping potential U(~r)

with an initial rotation rate Ω and temperature T . In our simulation, the trapping potential U(~r)

was described by

U(~r) =
1

2
mω2

ρ(x
2 + y2) + α

2P

πwy(x)wz(x)
exp

(
− 2y2

wy(x)2
− 2z2

wz(x)2

)
+mgz,

where the first term is a round harmonic trap along the radial direction, the second term describes

the sheet beam with the beam power P , and the third term is due to gravity. The polarizability

α = −1.9 × 10−36 m2s. wy(x) = w0
y

√
1 + (x/xRy)2 with w0

y being the 1/e2 beam width along y

and the Rayleigh range xRy = π(w0
y)

2/λt. wz(x) = w0
z

√
1 + (x/xRz)2 with w0

z being the 1/e2 beam

width along z and the Rayleigh range xRz = π(w0
z)

2/λt. (λt = 1090 nm). For this simulation, I set

w0
z = 7 µm and w0

y = 300 µm.

The time evolution of the atoms during an evaporation process was simulated numerically

for our optical trapping potential using the Monte-Carlo method described in [95, 96]. The bound-

ary condition is determined by the border between the trapping and anti-trapping regimes (it is

approximately a plane at the −z edge). The collision includes only the elastic collision based on

a hard core model [60]. Fig. 5.20(a) shows the numerically generated atoms (dots) in our optical
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Figure 5.20: Monte-Carlo simulation of the spin-up evaporation. (a) Atom distribution in our
optical trapping potential. (b) The sheet beam power is exponentially lowered to evaporate the
atoms. (c) & (d) The simulation results. The rotation rate increases significantly through the
spin-up evaporation. The kinetic energy is lowered as expected.

trapping potential U(~r) at t = 0. The evaporation was done by lowering the sheet beam power,

which lowered the potential barrier on the −z edge due to gravity (see the lower panel of 5.20(a)).

The trajectory, {~ri, ~vi} of each atom was recorded after every time step. From the trajectory, we

can calculate the kinetic energy (K.E.), angular momentum Lz, inertia Iz, and rotation rate by

N =
∑
i

1, K.E. =
∑
i

1

2
mr2

i /N,

Lz = m
∑
i

(xiv
y
i − yiv

x
i ), Iz = m

∑
i

(x2
i + y2

i ),

Ω = Lz/Iz.

Fig. 5.20(c) & (d) show our simulation results. The evaporation trajectory is illustrated in
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Figure 5.21: Experimental sequence of the spin-up evaporation. The stirring process was performed
after we started evaporating but before a BEC formed. After that, we continued evaporating. The
voltages shown above are proportional to the sheet beam power. When evaporating to 0.85V, the
imaged atom density shows that all atoms were in the thermal or uncondensed state. Once we
evaporated to 0.8V, a BEC formed with vortices due to rotation. As we evaporated further, the
BEC got larger. Meantime, more vortices showed up, which indicated a faster rotation rate. The
images were taken after a TOF=15ms expansion.

Fig. 5.20(b) and it can also be seen in the atom number decrease as a function of time and the

corresponding decrease in kinetic energy. At the same time, the rotation rate increases significantly.

Note that the kinetic energy along x is higher than that along z due to the rotation.

5.6.2 Experimental verification

In the experiment, spin-up evaporation can be realized simply by following the timing se-

quence shown in Fig. 5.17, but performing the stirring process earlier. As shown in Fig. 5.21,

we performed the stirring process after we started evaporating but before a BEC formed. Then

we continued evaporating until a BEC formed. As you can see from Fig. 5.21, vortices appeared

as soon as a BEC formed. As we evaporated further, the BEC number grew and more vortices

appeared, which indicates a faster rotation rate. This behavior demonstrates that the spin-up
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evaporation works for our situation.

5.7 Rotation rate

Vortex lattice. In a harmonic trapping potential, vortices in a low-temperature BEC form

a triangular lattice (or “Abrikosov” lattice). However, imperfection of the trapping potential can

cause partial melting of the vortex lattice, dislocations, and grain boundaries [71]. An example of

near-perfect vortex lattice can be found in [97]. In our situation, shown in Fig. 5.22(a-b), we see

some dislocations in the vortex lattice, which we attribute to roughness of our trapping potential.

If we evaporate further, the density of vortices does not increase. Instead the shape of the whole

BEC deforms to be somewhat triangular, which indicates the excitation of surface modes; this can

be seen in Fig. 5.22 (c-d).

Figure 5.22: Vortex lattice of a rotating BEC. (a-b) Example images of the fastest rotating BEC
we have achieved. The vortex lattice is not perfect due to the roughness of our trapping potential.
(c-d) BEC vortex lattice for deeper evaporation. The vortex density didn’t increase. Instead the
shape of the whole BEC deformed to be triangular, which indicates the excitation of surface modes.
The BEC was expanded in the sheet beam for 3 ms and then expanded in the free space for 15 ms
before the absorption imaging.

Rotation rate. An effective way to measure the rotation rate is to use the aspect ratio of

the atom cloud (the axial size over the radial size) imaged in-situ [75]

Ω/ωρ =
√

1− (λ/λ0)2, (5.12)

where λ0 and λ are the initial and final aspect ratios of the cloud respectively. Here, the centrifugal

force increases the transverse cloud size compared to the axial size. However, because the BEC size
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along z (Thomas-Fermi radius RzTF ∼ 3 µm) is below our imaging resolution, it is difficult for us to

measure this aspect ratio accurately. Instead, we can estimate the rotation rate from the measured

aspect ratio of an expanded cloud. For this we need a model of BEC expansion [98, 99]. From the

expanded BEC cloud, we estimate the rotation rate of the BEC in Fig. 5.22(a-b) to be Ω/ωρ ≈ 0.7.

An alternative way to extract the rotation rate is to use the vortex density in-situ [15]

nv = Nv/A = MΩ/π~

where Nv is the vortex number in the area A and M is the atomic mass of an atom. Since we count

vortices on an expanded rotating BEC, to get the vortex density in-situ, we also need the model of

BEC expansion [98, 99].

5.8 Future directions

In this thesis, I presented our work developing and optimizing our apparatus by rotating a

87Rb BEC. In future experiments, we would like to rotate a different atomic species such as bosonic

39K, which has a convenient Feshbach resonance for tuning the interaction strength, or fermionic

40K. Since our trap is all-optical, the techniques we have demonstrated should be readily applicable

to these other species.



Chapter 6

Conclusions and outlook

In this Thesis, I explored some interesting many-body physics in an ultracold gas mixture of

87Rb and 40K atoms.

The first one is a study of Bose polarons as discussed in Chap. 3. I report experimental

evidence of Bose polarons by using radio-frequency spectroscopy to measure the excitation spectrum

of fermionic 40K impurities resonantly interacting with a BEC of 87Rb atoms. We find that the

measured energy of the impurites immersed in the BEC matches well with that calculated for Bose

polarons for a range of interaction strengths. In particular, we confirm that the polaron state

exists even across unitarity in the strongly interacting regime and approaches the weakly bound

molecular state. Furthermore, for attractive interactions, we show that Rabi oscillations can be

observed when exciting Bose polarons. This work is the first measurement of the Bose polaron in a

three-dimensional trapped atom gas, which helps better understanding of the quantum many-body

physics of Bose-Fermi mixtures.

The second topic is related to the quantum Hall effects as discussed in Chap. 4 and 5.

The interesting and bizarre quantum Hall effects are reviewed and their connection with a rapidly

rotating ultracold gas is discussed. To realize these quantum Hall states by using ultracold atoms,

we design and construct a new apparatus for creating rotating ultracold atomic gases. Technical

challenges are explored and experimental progress is discussed.

Besides studying quantum Hall physics, such a versatile apparatus is also promising to explore

other interesting physics such as rotating a strongly interacting BEC and the effect of dimensionality
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on the BEC/BKT transition.

Although rotating a BEC has been studied for more than a decade, as far as I know no one

has studied a rotating BEC with tunable interactions. With tunable interactions via the Feshbach

resonance, the 39K is the best candidate for us to study BEC vortices with tunable interactions.

Another interesting project that we are probably able to study by our unique apparatus is the

effect of dimensionality on the BEC/BKT transition. As you know, the BKT is a phase transition

from a well-ordered BEC superfluid to a partially-ordered BKT superfluid when changing dimen-

sionality from 3D to 2D. As demonstrated in Sec. 5.4, we are able to control the dimensionality

from 3D to 2D through our unique apparatus. Thus it is possible for us to map out a phase diagram

of the BEC/BKT transition.
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to the fröhlich polaron model: application to impurity-bec problem. Sci. Rep., 5:12124, 2015.

[49] B. DeMarco and D. S. Jin. Onset of fermi degeneracy in a trapped atomic gas. Science,
285:1703–1706, 1999.



102

[50] E. G. M. van Kempen, S. J. J. M. F. Kokkelmans, D. J. Heinzen, and B. J. Verhaar. Interisotope
determination of ultracold rubidium interactions from three high-precision experiments. Phys.
Rev. Lett., 88:093201, 2002.

[51] J. J. Zirbel, K.-K. Ni, S. Ospelkaus, J. P. D. D’Incao, C. E. Wieman, J. Ye, and D. S. Jin.
Collisional stability of fermionic feshbach molecules. Phys. Rev. Lett., 100:143201, 2008.

[52] J. P. D’Incao and B. D. Esry. Scattering length scaling laws for ultracold three-body collisions.
Phys. Rev. Lett., 94:213201, 2005.

[53] Y. Wang, J. Wang, J. P. D’Incao, and C. H. Greene. Universal three-body parameter in
heteronuclear atomic systems. Phys. Rev. Lett., 115:069901, 2015.

[54] R. Roth and H. Feldmeier. Mean-field instability of trapped dilute boson-fermion mixtures.
Phys. Rev. A, 65:021603, 2002.
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Appendix A

RF spectroscopy of non-interacting atoms

A RF photon has frequency ν0 typically around 80 MHz and has a negligible momentum. The

RF spectroscopy therefore induces momentum-conserving transitions. Let H0 be the noninteracting

Hamiltonian of K atoms and Hrf (t) be the time-dependent interaction between RF radiation and

K atoms. we have

H = H0 +Hrf , (A.1)

H0 =
∑
p

[
εf (p)f †1,pf1,p + (εf (p) + hν0)f †0,pf0,p

]
,

Hrf (t) = ~E(t)
∑
k

(f †1,kf0,k +H.c.),

where fσ,p (or f †σ,p) is the annihilation (or creation) operator of an impurity fermion in the hyperfine

state σ with a momentum p. For a gaussian RF pulse during t ∈ [0, 4∆t], it is described by

E(t) =
(
dE0

2

)
exp(−(t−2∆t)2/∆t2)(e−i2πν0t+ei2πν0t), which corresponds to an electric field E(t) =

E0 exp(−(t− 2∆t)2/∆t2) cos(2πν0t). Here d is the induced electrical dipole moment of atoms. The

fast-time-averaged RF power is P̄ (t) = ε0c
2 E

2
0 exp(−2(t− 2∆t)2/∆t2).

Let the initial state |I〉 = |0,k = 0〉 and final state |F 〉 = |1,k〉. The time-dependent

Schrödinger equation for the RF spectroscopy is

i~∂t|ψk=0(t)〉 = [H0 +Hrf (t)]|ψk=0(t)〉.

To solve the above equation, I write a single-body wavefunction with zero momentum as

|ψk=0(t)〉 = C0(t)e−i(εf (0)+hν0)t/~|0,k = 0〉+ C1(t)e−iεf (0)t/~|1,k = 0〉
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with the initial condition of C0(0) = 1 and C1(0) = 0. Solving the above differential equation,

we have C1(t) = −i sin [Ω0∆t(1 + Erf ((t− 2∆t)/∆t))]. During the above derivation, the rotating

wave approximation has been used. Here the Rabi frequency Ω0 = dE0. For our RF spectroscopy,

the gaussian pulse duration 4∆t is the same as t, which means C1(t) = −i sin(Ω0t/2). The fractional

population of the spin-flipped atoms in the final state |F (k)〉 is thus

PF = |〈F (k)|ψk=0(t)〉|2 = δ(k) sin2

(
Ω0

2
t

)
, (A.2)

which gives the Rabi oscillation with the oscillation frequency Ω0. Here δ(k) is the Dirac delta

function.

In the Schrödinger picture, Eq. (A.1) can be written into a time-independent form

Ĥrf (Ω0) = ~
Ω0

2

∑
k

(f †1,kf0,k +H.c.), (A.3)

with the corresponding time-dependent wavefunction at the momentum k being

|ψk(t)〉 = C0(t)|0,k〉+ C1(t)|1,k〉.

The Schrödinger equation is thus, i~∂t|ψk(t)〉 = Ĥrf (Ω0)ψk(t)〉, which gives the solution of C1(t) =

−i sin(Ω0t/2). The Radi frequency has a relation

Ω2
0 =

4

~2

∣∣∣〈1,k|Ĥrf (Ω0)|0,k〉
∣∣∣2 , (A.4)

which is useful when discussing the residue of a quasiparticle (see Sec. 3.4).

To get a lineshape for the gaussian pulse in the frequency domain, we need to do the Fourier

transformation of E(t), which has

Ẽ(2πν) =

∫ ∞
−∞

dt ei2πνtE(t) = 2~∆tΩ0e
i4ν/δνe−(ν−ν0)2/δν2

, (A.5)

with 1/e width δν = 1/(π∆t). Therefore, the lineshape is R(ν − ν0) ∝ |Ẽ(2πν)|2 ∝ exp[−2(ν −

ν0)2/δν2]. After the RF pulse, the number of spin flipped K atoms in |1〉 state at the central regime

(ρ < ρ0) can be modeled by

NK,1(ν, ρ ≤ ρ0) = A

∫ ρ0

0
ρdρ

∫ ∞
−∞

dz nK,0(ρ, z)R(ν − ν0) = NK,0(ν, ρ ≤ ρ0)R(ν − ν0), (A.6)

where A is a constant and nK,0(ρ, z) is the density distribution of the K atoms in |0〉 state.



Appendix B

Time-averaged trapping potentials

An uniform trap I choose the functional form of ρc(ts) = ρmax
c

√
mod(ts, T )/T with

T being the period. Let’s consider the range of ts ∈ [0, T ]. we have ρc(ts) = ρmax
c

√
ts/T and

ts = T · [ρc(ts)/ρmax
c ]2. The Eq. (5.2) is thus

Upaint(ρ) =
U0

T
e−2ρ2/w2

0

∫ T
0
dtse

−2ρ2
c(ts)/w

2
0J0

(
i
4ρ · ρc(ts)

w2
0

)
=

U0

T
e−2ρ2/w2

0
2T

(ρmax
c )2

∫ ρmax
c

0
ρcdρce

−2ρ2
c/w

2
0J0

(
i
4ρ · ρc
w2

0

)
=

U0

T
e−2ρ2/w2

0
2T

(ρmax
c )2

∞∑
k=0

∫ ρmax
c

0
dρce

−2ρ2
c/w

2
0ρ2k+1
c

(
2ρ

w2
0

)2k

/(k!)2

=
U0

T
e−2ρ2/w2

0
2T

(ρmax
c )2

∞∑
k=0

(
2ρ

w2
0

)2k

/(k!)2

∫ ∞
0

dρce
−2ρ2

c/w
2
0ρ2k+1
c

=
U0

T
e−2ρ2/w2

0
2T

(ρmax
c )2

∞∑
k=0

(
2ρ

w2
0

)2k

(w2
0/2)k+1/2/k!

=
U0

T
e−2ρ2/w2

0
2T

(ρmax
c )2

∞∑
k=0

(
2ρ2

w2
0

)k
(w2

0/4)/k!

=
1

2
U0

(
w0

ρmax
c

)2

during which I have used the formula J0(x) =
∑∞

k=0(−1)k(x2/4)k/(k!)2 and
∫∞

0 x2k+1e−x
2/a2

dx =

k!
2 a

2k+2. The approximation of
∫ ρmax

c

0 dρce
−2ρ2

c/w
2
0

{
ρ2k+1
c

(
2ρ
w2

0

)2k
/(k!)2

}
→
∫∞

0 dρce
−2ρ2

c/w
2
0{· · · }

holds to be true when ρmax
c ≥ 3w0 (verified by a numerical calculation).

A harmonic trap I choose a more complex functional form of

ρc(ts) = ρmax
c ·

√
b+ 1−

√
(b+ 1)2 − 4b ·mod(ts, T )/T

2b
,
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with the unitless parameter 0 ≤ b ≤ 1. This function satisfies ρc(ts = 0) = 0 and ρc(ts = T ) = ρmax
c .

The above equation is equivalent to

ts = T ·

[
(b+ 1) ·

(
ρc
ρmax
c

)2

− b ·
(

ρc
ρmax
c

)4
]
.

For the convenience of discussions, let me rewrite the above equation as ts = Aρ2
c − Bρ4

c with

A = T · (b+ 1)/(ρmax
c )2 and B = T · b/(ρmax

c )4. The Eq. (5.2) is thus

Upaint(ρ)

=
U0

T
e−2ρ2/w2

0

∫ T
0
dtse

−2ρ2
c(ts)/w

2
0J0

(
i
4ρ · ρc(ts)

w2
0

)
=

U0

T
e−2ρ2/w2

0

[
2A

∫ ρmax
c

0
ρcdρce

−2ρ2
c/w

2
0J0

(
i
4ρ · ρc
w2

0

)
− 4B

∫ ρmax
c

0
ρ3
cdρce

−2ρ2
c/w

2
0J0

(
i
4ρ · ρc
w2

0

)]
=

U0

T
e−2ρ2/w2

0

∞∑
k=0

(
2A

∫ ρmax
c

0
dρce

−2ρ2
c/w

2
0ρ2k+1
c − 4B

∫ ρmax
c

0
dρce

−2ρ2
c/w

2
0ρ2k+3
c

)(
2ρ

w2
0

)2k

/(k!)2

=
U0

T
e−2ρ2/w2

0

∞∑
k=0

(
2A

∫ ∞
0

dρce
−2ρ2

c/w
2
0ρ2k+1
c − 4B

∫ ∞
0

dρce
−2ρ2

c/w
2
0ρ2k+3
c

)(
2ρ

w2
0

)2k

/(k!)2

=
U0

T
e−2ρ2/w2

0

∞∑
k=0

[
2A

(
w2

0

2

)k+1
k!

2
− 4B

(
w2

0

2

)k+2
(k + 1)!

2

](
2ρ

w2
0

)2k

/(k!)2

=
U0

T
w2

0

2
(A−Bw2

0 − 2Bρ2)

during which I have used the formula J0(x) =
∑∞

k=0(−1)k(x2/4)k/(k!)2 and
∫∞

0 x2k+1e−x
2/a2

dx =

k!
2 a

2k+2. The approximation of
∫ ρmax

c
0 dρce

−2ρ2
c/w

2
0

{
ρ2k+1
c

(
2ρ
w2

0

)2k
/(k!)2

}
→
∫∞

0 dρce
−2ρ2

c/w
2
0{· · · }

holds to be true when ρmax
c ≥ 3w0 (verified by a numerical calculation).


